

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

 First Edition (May 2008)

 This edition applies to DB2 9.5 for Linux, UNIX, and Windows.

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade/shtml.

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 AIX 5L™

 AIX®

 DB2®

 IBM®

 Redbooks®

 Redbooks (logo)[image:]®

 WebSphere®

 The following terms are trademarks of other companies:

 Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and other countries.

 Java, JDBC, Solaris, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 DB2® Workload Manager (WLM) introduces a significant evolution in the capabilities available to database administrators for controlling and monitoring executing work within DB2. This new WLM technology is directly incorporated into the DB2 engine infrastructure to allow handling higher volumes with minimal overhead. It is also enabled for tighter integration with external workload management products, such as those that are provided by AIX® WLM.

 This IBM® Redbooks® publication discusses the features and functions of DB2 Workload Manager for Linux®, UNIX®, and Windows®. It describes DB2 WLM architecture, components, and the WLM-specific SQL statements. It demonstrates installation, WLM methodology for customizing the DB2 WLM environment, new workload monitoring table functions, event monitors, and stored procedures. It also provides examples and scenarios using DB2 WLM to manage database activities in DSS and OLTP mixed database systems. Through the use of examples, you will learn about these advanced workload management capabilities, and see how they can be used to explicitly allocate CPU priority, detect and prevent “runaway” queries, and to closely monitor database activity in a number of different ways.

 The book also discusses using Data Warehouse Edition Design Studio and DB2 Performance Expert with DB2 WLM. Finally, the primary differences between Workload Manager and Query Patroller are explained, along with how they interact in DB2 9.5.

 The team that wrote this book

 This book was produced by a team of specialists from around the world working at the International Technical Support Organization, San Jose Center.

 Whei-Jen Chen is a Project Leader at the International Technical Support Organization, San Jose Center. She has extensive experience in application development, database design and modeling, and DB2 system administration. Whei-Jen is an IBM Certified Solutions Expert in Database Administration and Application Development, as well as an IBM Certified IT Specialist.

 Bill Comeau is the technical manager for the WLM development team based in Toronto. He has worked for IBM for 17 years, including seven years of developing workload management solutions for DB2 LUW. In addition, Bill holds an Honours degree in Computing Science from Dalhousie University in Halifax, Nova Scotia.

 Tomoko Ichikawa is an IT Specialist with IBM Systems Engineering Co., Ltd. in Japan. She has worked in DB2 technical support for four years. She has planned, developed, and delivered transition workshops on DB2 UDB V8.2, V8.2.2, and V9.1 for IBM personnel in Japan. Tomoko’s areas of expertise include application development, database performance and monitoring, and problem determination in a three-tier environment (DB2 for LUW and WebSphere® Application Server).

 S Sadish Kumar is a Senior DB2 Database Administrator in IBM India. He holds a Masters degree in Computer Science and has more than 12 years of IT experience. He has been with IBM for nine years. His areas of expertise include administration, capacity planning, performance monitoring and tuning, problem determination, and database recovery with DB2 ESE on AIX, Linux, and Windows platforms. As part of the DB2 World Trade Support level 2 Engine and Application Support team in Toronto for a year and a half, Sadish supporting customers on Intel® and UNIX platforms. He now works as a Senior DB2 DBA on systems and applications for leading financial companies in the USA on assignment from IBM India. He has co-authored the IBM Redbooks publication DB2 UDB V7.1 Performance Tuning Guide.

 Marcia Miskimen is a Software Engineer at IBM Software Group's Silicon Valley Lab, where she is a specialist supporting Information Management Tools on LUW platforms. She has worked in the IT industry for more than 25 years, both with IBM and externally. Marcia has worked in application development, systems management, operations support, and in services and consulting, including 10 years as an IT Specialist in IBM Global Services. Her areas of expertise and interest include the application development life cycle, software testing, technical writing, and tools of all sorts. Marcia has co-authored several IBM Redbooks publications on DB2 Performance Expert and DB2 Recovery Expert.

 H T Morgan is a Senior Software Engineer working as a Premier Support Analyst in the Information Management Software Group. As a Premier Support Analyst, he provides dedicated DB2 support for several large data warehouse customers. He has 40 years of experience in the Information Technology field, including 20 years of working on various aspects of DB2 development and support. Since joining IBM in 1998, H T has worked in Global Services and DB2 Lab Services as a Consulting I/T Specialist, and as a DB2 Premier Support Analyst. Prior to joining IBM, his expertise in DB2 included application development and design, relational technology research, project management, software development management, and technical support management.

 Larry Pay is a DB2 consultant for Linux, UNIX, and Windows with North American Lab Services. He has eight years of experience with DB2 on AIX, Solaris™, and Linux. Before joining IBM in 1999, he worked as a DBA and Systems Analyst for 15 years, implementing and supporting multiple databases for several large companies in California. Larry’s area of expertise is the implementation, support, and performance tuning of DB2 UDB data warehouses.

 Tapio Väättänen is an IT Specialist with IBM Global Technology Services in Finland. He has more than 12 years of experience in the IT industry, and has spent almost half of his career as a UNIX Specialist, working on databases in UNIX and Linux environments. Tapio is an IBM Certified DB2 Administrator and is currently working on the Finnish DB2 team, providing consultation services and supporting DB2 customers focusing on high availability, performance tuning and disaster recovery solutions.

 [image:]

 Figure 1 Left to right: Larry, Tapio, H T, Tomoko, Sadish, and Marcia. Bill Comeau (not shown) also participated in this project.

 Acknowledgements

 The authors express their deep gratitude for the advice and support they received from Paul Bird at the IBM Toronto Laboratory.

 We also thank the following people for their support and contributions to this project:

 Karen Mcculloch
Louise McNicoll
Mokhtar Kandil
Francis Wong
IBM Toronto Laboratory

 Kevin Beck
Dinkar Rao
Elizabeth Benavidez
IBM Software Group, USA

 Tetsuya Shirai
IBM Systems Engineering, Japan

 Anne Lesell
IBM Global Business Services, Finland

 Nela Krawez
Ute Baumbach
Torsten Steinbach
IBM Software Group, Germany

 Many thanks to our support staff for their help in the preparation of this book: Emma Jacobs, Sangam Racherla, and Deanna Polm
International Technical Support Organization, San Jose Center

 Become a published author

 Join us for a two- to six-week residency program! Help write a book dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You will have the opportunity to team with IBM technical professionals, Business Partners, and Clients.

 Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you will develop a network of contacts in IBM development labs, and increase your productivity and marketability.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an e-mail to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

[image:]
[image:]

Introduction

 In today's world, data is being collected faster than at any other period in history. At the same time many businesses are trying to maximize their cost efficiencies by using their computing hardware and software resources as heavily as possible. Data servers are being consolidated, report generation is easily accessible, and users are permitted ad hoc access to valuable data. This trend leads to increased potential for periodic chaos in any data server environment. Thus, methods are needed for returning stability, predictability, and control (in the form of resource and request management and monitoring) back to data server customers in the form of workload management.

 DB2 Workload Manager (WLM), integrated into the DB2 9.5 data server for Linux, UNIX, and Windows, is a comprehensive workload management feature that gives you deeper insight into how your system is running, and finer control over resources and performance.

 By reading this book, you will become familiar with the enhanced workload management capabilities that are included in the DB2 Version 9.5 release.

 We discuss the following topics in this chapter:

 •The background of workload management

 •Concepts of workload management

 •DB2 Workload Manager

 1.1 Workload management

 In a typical database environment, there are a wide range of database activities that can flood the data server. There are short transactional updates to a warehouse, (potentially) long reports, batch loading of data, applications calling stored procedures, and so on. These activities can come from many different sources as well, such as different users, business units, applications, multi-tier servers, and even DB2 itself. At times, it is not uncommon to find the data server performing unexpectedly because of all the database activity. In order to keep control of the data server work, a comprehensive approach to workload management is critical.

 Stages of a workload management environment

 An effective workload management environment can be broken down into four basic stages, as explained here.

 Define the business goals

 First you need to develop a good understanding of the business goals you are looking to meet for this system. For example, perhaps there are updates to the database from cash registers around the country and it is critical to have a fast response time in order to keep customers from waiting. Or maybe you have a set of daily reports that have to be completed by 9 am every morning for a status meeting.

 Identify the activities to be managed

 After the goals are established, you need to identify the activities that you will manage. The wider the range of options for identification, the more likely it is that you will be able to isolate the work you will be managing. Examples of methods of identification include by source (for example, an application or user ID that submitted a query) or by type (for example, load commands or queries that are read-only).

 Manage the activities to meet the business goals

 The third stage of workload management is to manage the activities previously identified in order to meet your business goals. This would include any mechanism that can affect how an activity is executed. For example, CPU or I/O resources could be made available to a set of queries (which are a type of database activity), thresholds could be introduced to limit the time spent on an activity or the number that can run concurrently, or activities could be simply stopped.

 Monitor the activities on the data server

 The final stage of workload management is the ability to monitor the state of activities on the data server. If you have taken the time to establish business goals for the environment, then it is important to have the mechanisms in place to determine whether you are meeting those goals, as well as monitoring options to identify and resolve problem areas—or even just obtain a clear picture of which activities are running. For example, if you have response time goals, then you need to be able to determine what the average response time is so you can take action if those goals are not being met.

 Monitoring information is also very useful in determining if there are modifications required to the identification or management stages. It is a good idea as well to use some monitoring information before the initial configuration to validate the approach used in identification. For example, the activity information available from the monitoring should contain enough details about its source or type to help with the identification process.

 Figure 1-1 illustrates these workload management stages.

 [image:]

 Figure 1-1 Stages of workload management

 1.2 DB2 Workload Manager

 The approach taken to provide a robust workload management was to first focus on establishing an execution environment. An execution environment is simply a contained area where the database activities are allowed to run, like a “sandbox” for the requests to “play” in.

 With the execution environment concept in place, and after the business goals have been defined, the remaining stages of workload management fall into place:

 •Identification

 In the identification stage, you focus on assigning database activities to an execution environment where the activities map to the activities that you built the business goals around.

 •Management

 In this stage, the focus is on the tactical controls that track and modify the execution flow of database activities in order to meet the business goals.

 •Monitoring

 This stage provides access to the state of activities in the execution environment, as well as an indication as to whether the business goals are being met.

 There are a number of common DB2 business problems that can be addressed through an effective workload management implementation. These problems include:

 •Protecting the system from (or, runaway) rogue queries

 Large resource-intensive activities (complex queries, for example) can be a huge hindrance on the performance of the data server workload. Sometimes the activities are perfectly valid but, more often than not, they are simply poorly-written queries or cases where too many expensive activities are running at the same time.

 •Maintaining consistent response times for activities

 It is critical to keep short transactional queries in a warehouse environment executing at a consistent and predictable pace. Often, these activities can be isolated and can easily have response times impacted by unexpected workloads.

 •Protecting the data server from a system slowdown during peak periods of database activity

 Normally there are periods during every day (or week, or month) where a large number of database activities seem to all be executing at the same time. Not surprisingly, this often results in resource contention and slowdowns on the system.

 •Providing explicit resource control

 Resource allocation and resource contention can be a real problem on the data server machine. Customers need ways to fairly allocate resources across execution environments and limit excess resource consumption.

 •Enforcing Service Level Agreement (SLA) objectives

 Service Level Agreements often introduce explicit response time goals for database activities, with few or no methods in place to control the workloads and use monitor information to cheaply determine how the data server is tracking to those goals.

 •Granular monitoring of database activities (that is, the ability to monitor the whole life cycle of activities, as well as the aggregate distribution)

 Often a “big picture” view of data server activity is sufficient information to determine the overall health of the activity distribution. Sometimes detailed information is required for problem determination and historical analysis.

 In the following chapters you will learn, in detail, how DB2 workload management can be used to address these business problems. You will also gain insight into the DB2 workload management concepts and architecture, how to get started using WLM with samples and best practices, as well as tool integration and problem determination suggestions.

[image:]
[image:]

Workload Manager architecture and features

 In this chapter we describe the DB2 9.5 Workload Manager (WLM) architecture and components, and explain how they interrelate with each other. The role of each major WLM component is discussed from a business point of view, and what part it plays in the WLM architecture is also examined.

 Prior to DB2 V9.5, workload management meant the use of DB2 Query Patroller in conjunction with the DB2 Governor. In DB2 9.5, workload management means the use of DB2 Workload Manager by itself, in conjunction with the DB2 Governor, or coexisting with the DB2 Query Patroller and the DB2 Governor.

 We discuss the following topics in this chapter:

 •DB2 Workload Manager concepts

 •Architecture

 •DB2 WLM monitor and control capabilities

 •New database configuration parameter and catalog tables

 •Working with WLM SQL and objects

 2.1 DB2 Workload Manager concepts

 In today’s competitive business environment, the quest to increase business productivity creates an increasing need to do more with fewer resources, in an accelerated tomfooleries, and with less cost. A typical scenario for a data warehouse using DB2 would see multiple Extract, Transform, Load (ETL) jobs, multiple queries and reporting loads from multiple third-party Business Intelligence (BI) tools running throughout the day, as well as batch jobs and DBA utility jobs running all night.

 This would not take into account sudden shifts in priorities due to business needs, and perhaps the need to run multiple reports at the same time, creating sustained workloads during peak periods throughout the day. Sometimes, a “rogue” or runaway query may be submitted during peak hours, causing all work in the system to slow down. Some companies would acquire more hardware resources to address the problem. Other companies would terminate the resource-intensive queries outright. Still others might choose to tune system performance to recover production capacity, or create a very rigid approach to submitting workloads in the production system.

 The use of Query Patroller and DB2 Governor has helped considerably in the management of these DB2 workloads. To extend and expand work management capabilities beyond those offered by these tools, a new set of features was architected and introduced into the DB2 9.5 engine in the form of DB2 Workload Manager (WLM).

 DB2 WLM is a powerful solution that addresses these multiple issues. It allows the user to treat different workloads (applications, users, and so on) differently, and provide them with different execution environments or sandboxes to run in. The quick, flexible, and robust methodology offered by WLM can help you identify, manage, and control your workloads to maximize database server throughput and resource utilization.

 The DB2 WLM architecture is primarily composed of the following components:

 •Service classes

 •Workloads

 •Thresholds

 •Work action sets and Work classes sets

 The DB2 WLM architecture revolves around defining execution environments for activities, and assigning resources to those execution environments.The DB2 9.5 implementation starts with CPU and I/O resource management for DB2 workloads, including asking how can resource sharing be done effectively, as well as how is this resource sharing used to ensure stability to cope with changes in priority and fluctuating loads on the system.

 2.1.1 DB2 service classes

 The service class is the primary point for resource assignment to all database requests. The DB2 service class acts as a unique execution environment for any grouping of work that you can assign resources to, control, and monitor. You can assign CPU or prefetch I/O priority resource to each of the DB2 service classes. All work in a database executes within a DB2 service class.

 You can use the service class to organize activities in the database in a way that makes sense according to your business requirements. For example, if the database is used and shared by different business functions such as Sales, Marketing, and Customer Service, then you can create service superclasses for each of these functions. If within each function, there are several departments that submit reports and load data, then service subclasses can be created for each of these departments. You can then monitor and control how each business unit can use the database resources.

 Another example of categorizing work is to determine if the work coming in is Online Transaction Processing (OLTP), Online Analytical Processing (OLAP) or batch. Because the operating characteristics of an OLTP system are very different from that of an OLAP or batch system, the way in which these categories are controlled and monitored would also be different. In this case, you can designate one service class for OLTP, another service class for OLAP, and a third service class for batch.

 Different user groups can access a DB2 data warehouse using their own Business Intelligence (BI) reporting tools and Extract, Transform and Load (ETL) tools. In such a case, one way of setting up service classes is to designate one service class for each BI reporting tool and each ETL tool.

 A DB2 service class can either be a superclass or a subclass within a superclass. This two-tier DB2 service class hierarchy provides a conceptual framework that closely resembles real-life situations and allows for orderly division of work among the DB2 service classes.

 In DB2 9.5, when a database is created, DB2 creates three predefined default service superclasses:

 •SYSDEFAULTUSERCLASS: This default user service superclass tracks all the user-defined workloads that are assigned to the default user workload.

 •SYSDEFAULTSYSTEMCLASS: The default system service superclass tracks internal DB2 connections and threads that perform system-level tasks. DB2 internal system requests such as DB2 prefetcher engine dispatchable units (EDUs), log reader EDUs, and log writer EDUs are directed to the SYSDEFAULTSYSTEMCLASS service class.

 •SYSDEFAULTMAINTENANCECLASS: The default maintenance server superclass tracks the internal DB2 connections that perform database maintenance and administration tasks. DB2 internal maintenance requests such as DB2 asynchronous background processing agents and DB2 Heath monitor initiated utilities are directed to the SYSDEFAULTMAINTENANCECLASS service class.

 Each of these superclasses has a default subclass SYSDEFAULTSUBCLASS. Superclass is really a logical entity that allows for shared context for any subclasses within it. All work actually executes in a subclass. Anything assigned to a superclass executes in the default subclass created automatically for that superclass.

 Figure 2-1 shows a DB2 system with three user-defined superclasses: Sales, Finance, and Marketing. The Sales superclass contains two service subclasses: DirectSales and ChannelSales. The Finance and Marketing service superclasses have one subclass each: Accounting and Promotions, respectively.

 [image:]

 Figure 2-1 WLM service classes

 Because the service class is the primary point for resource assignment to all incoming database requests and is used for monitoring database activities, we recommend that you identify service classes based on your critical business requirements. For example, you can set up service classes based on any of the following criteria:

 •Service level agreements (SLAs)

 •Need for very high-priority work to bypass normal work queue

 •Conflict in sharing the same CPU and I/O resources

 •Clearly defined logical work groupings

 •Users or departments consistently exceeding resource constraints to the detriment of other users or departments

 •Need to identify and analyze work contributing to resource peak usage

 •Need to validate and plan for data server capacity

 A DB2 service subclass can belong to only one DB2 service superclass, but a DB2 service superclass can have one or more DB2 service subclasses. The maximum number of service superclasses that can be created for a database is 64. The maximum number of service subclasses that can be created under a superclass is 61.

 You can create a DB2 service superclass using the CREATE SERVICE CLASS statement. Example 2-1 displays the SQL statements to create service superclasses and service subclasses that are shown in Figure 2-1 on page 10.

 Example 2-1 Create service superclasses [image:]

 -- Create service superclasses

 CREATE SERVICE CLASS sales;

 CREATE SERVICE CLASS finance;

 CREATE SERVICE CLASS marketing;

 -- Create service sub classes

 CREATE SERVICE CLASS directsales UNDER sales;

 CREATE SERVICE CLASS channelsales UNDER sales;

 CREATE SERVICE CLASS accounting UNDER finance;

 CREATE SERVICE CLASS promotions UNDER marketing;

 [image:]

 In DB2 9.5 on AIX, DB2 workload management can be tightly integrated with the AIX Workload Manager such that the AIX Workload Manager can be used to control CPU shares for database work through the use of AIX service classes. This integration is discussed in more detail in Chapter 6, “AIX Workload Manager considerations” on page 143.

 2.1.2 DB2 workloads

 A DB2 workload is an object that is used to identify submitted database work or user connections so that it can be managed. A workload determines the source based on the database connection attributes under which the work is submitted. Each connection can be assigned to one (and only one) workload at any one time, but there can be multiple connections assigned to the same workload at the same time.

 From a business perspective, identification is key because of the number of different ways that user or system requests can come into the system. Many large IT installations now employ 3-tier or N-tier application servers, such as WebSphere Application Server, where a user can access any of the application servers connected to the database at the same time.

 In other cases, there are data warehouse applications that allow access to the database server only through their own application server, and use only one generic user ID to access the database. DB2 WLM offers the means to be able to identify a user in a complex environment.

 The ability to define multiple connection attributes for a single database connection allows for a robust environment where both simple and complex mapping to service classes can be easily handled.

 The connection attributes tracked by a DB2 workload are:

 •Application Name - The name of the application running at the client, as known to the database server. It is specified as APPLNAME in the workload definition statement.

 •System authorization ID - Authorization ID of the user that connected to the database, as set in the SYSTEM_USER special register. It is specified as SYSTEM_USER in the workload definition statement.

 •Session authorization ID - Authorization ID that is used for the current session of the application, as set in the SESSION_USER special register. It is specified as SESSION_USER in the workload definition statement.

 •Group of session authorization ID - Secondary authorization ID of type group of the session authorization ID. It is specified as SESSION_USER_GROUP in the workload definition statement.

 •Role of session authorization ID - Secondary authorization ID of type role of the session authorization ID. It is specified as SESSION_USER_ROLE in the workload definition statement.

 •Client user ID - The client user ID from the client information specified for the connection, as set in the CURRENT CLIENT_USERID (or CLIENT USERID) special register. It is specified as CURRENT CLIENT_USERID in the workload definition statement.

 •Client application name - The application name from the client information specified for the connection, as set in the CURRENT CLIENT_APPLNAME (or CLIENT APPLNAME) special register. It is specified as CURRENT CLIENT_APPLNAME in the workload definition statement.

 •Client workstation name - The workstation name from the client information specified for the connection, as set in the
CURRENT CLIENT_WRKSTNNAME (or CLIENT WRKSTNNAME) special register. It is specified as CURRENT CLIENT_WORKSTNNAME in the workload definition statement.

 •Client accounting string - The accounting string from the client information specified for the connection, as set in the CURRENT CLIENT_ACCTNG (or CLIENT ACCTNG) special register. It is specified as CURRENT CLIENT_ACCTNG in the workload definition statement.

 These connection attributes determine how a connection is mapped to a workload definition. The workload determines which service class user requests from that connection go to. Figure 2-2 shows two user-defined workloads CAMPAIGN and NEWCAMPAIGN, as well as the connection attributes used.

 [image:]

 Figure 2-2 DB2 workload

 Example 2-3 shows the SQL code to define the CAMPAIGN and NEWCAMPAIGN workloads.

 Example 2-2 Create workloads

 [image:]

 CREATE WORKLOAD campaign APPLNAME('Report') SESSION_USER GROUP ('SALES')

 SERVICE CLASS directsales UNDER sales;

 --

 CREATE WORKLOAD newcampaign SESSION_USER ROLE ('SALESPERSON')

 SERVICE CLASS sales POSITION BEFORE campaign;

 [image:]

 A workload occurrence is started when the connection is attached to a workload definition. Any change in relevant connection attributes, workload definition, or USAGE privilege for a workload will cause the workload assignment to be reevaluated at the start of the next unit of work. If a new workload definition is assigned, the old workload occurrence is ended, and a new workload occurrence is started for the newly assigned workload definition.

 If no match in connection properties is found, the user connection is assigned to the default workload, SYSDEFAULTUSERWORKLOAD. Without re-mapping, these connections are directed to the SYSDEFAULTUSERCLASS service class.

 The default system administration workload SYSDEFAULTADMWORKLOAD is a special DB2 workload that is primarily used by database administrators to perform their work or take corrective action. All workloads except the SYSDEFAULTADMWORKLOAD can have thresholds applied to them.

 By default, the sequence of how the workloads are defined determines the workload evaluation order. The new workload is positioned after the other defined workloads in the evaluation order, but before the SYSDEFAULTUSERWORKLOAD workload.

 You can set the evaluation order by using the POSITION keyword of the CREATE WORKLOAD or ALTER WORKLOAD statement. In Example 2-2 on page 14, the workload NEWCAMPAIGN is defined with position before CAMPAIGN. If user Bob runs the application with APPLNAME “Report” and a session authorization ID belonging to the group SALES, DB2 checks workload NEWCAMPAIGN first for a match before checking the workload CAMPAIGN, and then identifies Bob’s job as belonging to the workload CAMPAIGN. DB2 then directs Bob’s job to the DIRECTSALES service subclass.

 2.1.3 DB2 thresholds

 A DB2 WLM threshold is an object that sets a predefined limit over a specific criteria such as consumption of a specific resource or duration of time. In defining the threshold, a specified action can be triggered if the threshold is exceeded. The way a threshold works is similar to a trigger in that certain actions are initiated when a condition is reached. For example, thresholds can be used to limit the number of connections, the elapsed time, the amount of tempspace used, and the estimated SQL cost of an activity.

 There are two types of DB2 WLM thresholds:

 •Activity thresholds: This threshold applies to an individual activity. When the resource usage of an individual activity violates the activity threshold, it triggers the threshold, which is applied only once.

 •Aggregate threshold: This threshold sets a limit on a measurement across a set of multiple activities and operates as a running total, to which any work tracked by the threshold contributes.

 The supported actions for a threshold are:

 •STOP EXECUTION
Stop processing the activity that caused the threshold to be exceeded. For a threshold with a built-in queue, it means reject any newly arriving work from joining the queue.

 •CONTINUE
Do not stop processing an activity if the threshold is exceeded. For a threshold with a built-in queue, it means add any newly arriving work to the queue.

 •COLLECT ACTIVITY DATA
You can collect information about the activity that exceeded the threshold with different degrees of detail.

 Figure 2-3 illustrates a threshold created to control database activities. In this example, when a new product is launched, the entire Sales department may want to access the database. The Sales department wants to restrict the number of connections to 20 so that database performance is not affected by the surge in interest. This can be done by defining a threshold for service class SALES, setting the maximum number of concurrent database connections on a coordinator partition to 20, and setting the maximum number of queued connections to 5. If these limits are exceeded, the application will be stopped.

 [image:]

 Figure 2-3 WLM threshold

 Example 2-2 shows the threshold definition.

 Example 2-3 Creating a threshold to limit partition connections

 [image:]

 CREATE THRESHOLD limit_part_con

 FOR SERVICE CLASS sales

 ACTIVITIES ENFORCEMENT DATABASE PARTITION

 WHEN TOTALSCPARTITIONCONNECTIONS > 20

 AND QUEUEDCONNECTIONS > 5

 COLLECT ACTIVITY DATA ON ALL WITH DETAILS

 STOP EXECUTION;

 [image:]

 Thresholds can be enforced on activities that are part of a threshold domain, which can range from the entire database to a single workload definition. For example, if the threshold domain is a database, an enforcement scope of the threshold may be just one database partition, or all of the database partitions in the database.

 Each threshold applies to a domain, which can range from the entire database to a single workload definition. The domain of a threshold defines the database object that the threshold is both attached to and operates on. Only engine work taking place within the domain of a threshold may be affected by it. The threshold domains are:

 •Database

 •Service superclass

 •Service subclass

 •Work action

 •Workload

 In each of these threshold domains, the threshold can be enforced over a single workload occurrence, a database partition, or across all the partitions of the database. This is known as the “enforcement scope of the threshold”. The enforcement scope can therefore be a workload occurrence, a database partition, or the entire database (also known as a global enforcement scope).

 Figure 2-4 shows a summary of the DB2 WLM thresholds and the scope and domain that each threshold applies to.

 [image:]

 Figure 2-4 DB2 WLM threshold summary

 When multiple activity thresholds apply to one activity, you must decide which threshold to enforce and in what order. To resolve the scope of activity threshold resolution, WLM observes a hierarchy of domains so that a value defined in a local domain overrides a value from a wider or more global domain. We follow the hierarchy of domains for these activity thresholds, numbered in the order in which threshold enforcement occurs:

 1.	Workload

 2.	Service subclass

 3.	Service superclass

 4.	Work Action

 5.	Database

 Some thresholds, known as queueing thresholds, have a built-in queue and are defined with two boundaries: a threshold boundary and a queueing boundary. When a threshold boundary is reached, additional requests are added to the queue until the queueing boundary is reached. A queueing boundary defines an upper limit for the queue, beyond which a specified action, that is, STOP EXECUTION, is applied to any newly arriving work.

 A threshold can be predictive or reactive, as explained here:

 •A predictive threshold means the threshold boundaries are checked before the tracked work is started.

 •A reactive threshold means the boundaries are checked while the tracked work is executing.

 2.1.4 Work class sets and work action sets

 DB2 WLM provides you the capability to treat activities differently based on their activity type or some individual characteristic. For example, you may want to treat stored procedures differently from all other read and write activity against the database. In one instance, you may want to put a restriction on the number of concurrent Loads executing at any one time. You may also want Data Definition Language (DDL) put into a service class by itself. All these tasks can be accomplished by using a work action set.

 Work action sets allow you to apply DB2 thresholds with discrimination if applied at the database level. They can be used to map activities to service subclasses with discrimination if applied at the service superclass level.

 Work action sets work hand-in-hand with work class sets. A work class set defines the characteristics of the work of interest. In contrast, a work action set dictates what is to happen when the work of interest is detected. A work class set can be shared and used by different work action sets. Work classes can have more than one work action applied to them.

 A work class has an associated work type; the supported work types are listed here:

 •READ - for read-related activities such as SELECT, XQuery

 •WRITE - for update related activities such as DELETE, INSERT, UPDATE

 •CALL - for a CALL statement

 •DML - for data manipulating activities such as SELECT, UPDATE, MERGE

 •DDL - for data definition activities such as CREATE, ALTER, COMMIT

 •LOAD - for the LOAD utility

 •ALL - for all database activities

 Work actions are grouped into work action sets. A work action can apply to either activities at the database level, or to activities at the service superclass level depending on the object that the work action set containing the work action is applied to.

 To create a work action set and a work action, use the CREATE WORK ACTION SET statement. You must do the following:

 •Associate the work action set with an existing work class set, and associate the work action with an existing work class within the same work class set that the work action set was associated with.

 •Associate the work action set with either the database or an existing user-defined service superclass.

 A work action set may be applied to an incoming database request, but more than one work action may be applied by the work action set. In such a case, the first matching work action in an ordered list will be applied. The position of the work action in the ordered list can be changed, depending on which work action needs to be given priority.

 The following actions can be performed within a DB2 work action set:

 •Count activity

 •Prevent execution of an activity

 •Collect activity data

 •Map work to a different service sub class within the same superclass

 •Apply a threshold to an activity that falls within the work class the work action is applied to, if the work action set is applied at the database level.

 •Collect aggregate activity data for activities associated with the work class for which this work action is defined, when the work action set that the work action is in, is applied to a service superclass.

 Figure 2-5 illustrates using work class sets and work action sets to manage workloads. In this example, there are two goals desired. The first goal is to stop expensive queries costing 1000001 timerons or more, and the second goal is to gather more information about stored procedures running in the SALES service superclass.

 To achieve these goals, work class sets must first be created. A work class set named CLASSIFY_QRY is associated with the work class LARGE_QRY having a work type of READ. A work action set called DBACTIONS is associated with the database, and the work action STOP_LARGE_QRY is associated with the work class LARGE_QRY. When an incoming database request of work type READ with a timeron cost greater or equal to 1000001 is encountered, the execution of this database request is stopped, and data about this request is collected for analysis.

 To gather more information about stored procedures, an additional service subclass called PROBLEM_SP_SC was created under service class SALES to collect activity data on the coordinator node. A work class set called PROBLEM_SP_WCS is created and associated with the work class CALLSTATEMENTS having a work type of CALL. A work action set called MAP_ACTIVITY is associated with the service super class SALES and the work class set PROBLEM_SP_WCS. When a stored procedure with a schema of SALES is executed, the work action MAP_SALES_PROC will map all activity and trigger the collection of data about the stored procedure.

 [image:]

 Figure 2-5 Work class set and work action set

 Example 2-4 shows the definitions of work class set and work action set.

 Example 2-4 Defining a work class set

 [image:]

 CREATE SERVICE CLASS PROBLEM_SP_SC UNDER SALES COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS

 CREATE WORK CLASS SET CLASSIFY_QRY (WORK CLASS LARGE_QRY WORK TYPE READ FOR TIMERONCOST FROM 1000001 To UNBOUNDED)

 CREATE WORK ACTION SET DBACTIONS FOR DATABASE USING WORK CLASS SET CLASSIFY_QRY

 (WORK ACTION STOP_LARGE_QRY ON WORK CLASS LARGE_QRY

 WHEN ESTIMATEDSQLCOST > 1000001 COLLECT ACTIVITY DATA STOP EXECUTION)

 CREATE WORK CLASS SET PROBLEM_SP_WCS (WORK CLASS CALLSTATEMENTS WORK TYPE CALL ROUTINES IN SCHEMA "SALES")

 CREATE WORK ACTION SET MAP_ACTIVITY FOR SERVICE CLASS SALES

 USING WORK CLASS SET PROBLEM_SP_WCS

 (WORK ACTION MAP_SALES_PROC ON WORK CLASS CALLSTATEMENTS

 MAP ACTIVITY WITH NESTED TO PROBLEM_SP_SC)

 [image:]

 2.2 Architecture

 The architecture of the DB2 Workload Manager integrates all the workload management objects into a coherent whole in order to make it easier to identify, manage, and monitor all workload in the DB2 database. The workload on the system can be analyzed to determine how the system can be designed to cope with the current and anticipated workload.

 Performance monitoring using DB2 WLM can track the behavior of the system, either on a granular level or over a wide-ranging period. The principal benefit, however, is the ability to understand the characteristics of the incoming workload. That knowledge will enable you to manage and maintain the system desired response times and throughput. In addition, some of the most vexing problems in a database environment, such as runaway or rogue queries and agent contention, can be handled more effectively with the new WLM capabilities.

 The process of using DB2 WLM effectively starts with analyzing the workload by identifying the types and frequency of workloads, and then creating service classes in order to classify the workload into manageable groups.

 The diagram in Figure 2-6 illustrates the interrelationships of the main components of the DB2 WLM architecture.

 [image:]

 Figure 2-6 DB2 WLM architecture

 A user makes a database connection and is assigned to a workload. All activities running under the workload occurrence are mapped to service classes.

 In Figure 2-6, users assigned to workload A are mapped to SUPERCLASS 1 by specifying the UNDER keyword for the SERVICE CLASS keyword. The connection belongs to service superclass 1, but all activities issued out of the connection are automatically mapped to service subclass 1A.

 Users assigned to workloads B and C are mapped to service superclass 2. Any work submitted for workload occurrences belonging to workloads B and C can be mapped to service subclasses 2A and 2B. All activities that are mapped to SUPERCLASS 2, and that match a work class in work class set X to which a MAP ACTIVITY work action is associated, are mapped to service subclass 2A or 2B as specified by the work action.

 A work action set can be defined for either a database or a service superclass. In the diagram, work actions 1A and 1B belong to work action set 1, and it is defined for a database.

 Work actions 1A and 1 B can be any one of the following actions:

 •A threshold

 •PREVENT EXECUTION

 •COLLECT ACTIVITY DATA

 •COUNT ACTIVITY

 Work actions 2A and 2B belong to work action set 2, and they are defined for service superclass 2. The work actions 2A and 2B can be any of the following actions:

 •A mapping action mapping an activity to any service subclass in service superclass 2 except for the default service subclass.

 •PREVENT EXECUTION

 •COLLECT ACTIVITY DATA

 •COLLECT AGGREGATE ACTIVITY DATA

 •COUNT ACTIVITY

 Users assigned to workload D are mapped to a service superclass 3, which does not have a user-defined service subclass. In this case, the connections are mapped to the default subclass SYSDEFAULTSUBCLASS of service superclass 3.

 Connections that do not map to a user-defined workload are mapped to the default workload SYSDEFAULTUSERWORKLOAD, and this in turn is mapped to the default service superclass for user requests, SYSDEFAULTUSERCLASS.

 Internal DB2 system connections are mapped to the default service superclass for internal DB2 connections, SYSDEFAULTSYSTEMCLASS. Internal DB2 maintenance connections are mapped to the default service superclass for maintenance requests, SYSDEFAULTMAINTENANCECLASS.

 As illustrated in Figure 2-6, DB2 WLM thresholds (indicated by [image:]) can be defined on any or all of the following:

 •Database

 •Work action set

 •Service superclass

 •Service subclass

 •Workload

 If the DB2 environment is on AIX, and the AIX WLM is being used, it is possible to associate the DB2 service classes with their corresponding AIX service classes as illustrated in Figure 2-7. The DB2 service classes are associated with their corresponding AIX service classes by using the OUTBOUND CORRELATOR keyword in the CREATE SERVICE CLASS statement to associate threads from the DB2 service class to an AIX service class.

 In Figure 2-7:

 •DB2 service superclasses 1 and 2 are associated with AIX WLM service classes _DB2_SUPERCLASS 1 and _DB2_SUPERCLASS 2, respectively.

 •DB2 service subclasses 1A, 2A and 2B are associated with AIX WLM subclasses _DB2_SUBCLASS 1A, _DB2_SUBCLASS 2A and _DB2_SUBCLASS_2B, respectively.

 •DB2 service class SYSDEFAULTUSERCLASS is associated with AIX WLM service class _DB2_DEF_USER.

 •DB2 SERVICE classes SYSDEFAULTSYSTEMCLASS and SYSDEFAULTMAINTENANCECLASS are associated with AIX WLM service class _DB2_DEF_SYS.

 We discuss the relationship between AIX WLM and DB2 WLM in more detail in Chapter 6, “AIX Workload Manager considerations” on page 143.

 [image:]

 Figure 2-7 DB2 WLM integrated with AIX WLM

 The following lists shows all the WLM-exclusive SQL that can be used to set up and manage WLM:

 •CREATE WORKLOAD, ALTER WORKLOAD, DROP WORKLOAD

 •GRANT (Workload Privileges), REVOKE (Workload Privileges)

 •CREATE SERVICE CLASS, ALTER SERVICE CLASS, DROP SERVICE CLASS

 •CREATE WORK CLASS SET, ALTER WORK CLASS SET, DROP WORK CLASS SET

 •CREATE WORK ACTION SET, ALTER WORK ACTION SET, DROP WORK ACTION SET

 •CREATE THRESHOLD, ALTER THRESHOLD, DROP THRESHOLD

 •CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, DROP HISTOGRAM TEMPLATE

 We discuss the SQL statements in more detail in 2.5, “Working with WLM SQL and objects” on page 32.

 In creating the WLM objects and the SQL to generate it, use the DWE Design to help generate SQL and rules validation for WLM. A section on how to use this tool is discussed in 8.1, “DB2 Warehouse Design Studio overview” on page 188.

 2.3 DB2 WLM monitor and control capabilities

 This section describes the DB2 WLM monitoring and control capabilities for real-time and historical aggregate data. DB2 9.5 provides new table functions for direct ad hoc querying of WLM objects or obtaining summarized statistics over time. The event monitor has been enhanced to support workload management. In addition, DB2 9.5 offers new stored procedures to cancel activities, capture information about individual activities, and collect and reset statistics for workload management objects.

 2.3.1 Real-time monitoring

 In DB2 WLM, real-time monitoring and statistical monitoring capabilities are built into DB2 using the SYSPROC schema and can be accessed with little impact on currently executing workloads. Real-time monitoring is accomplished by using DB2 table functions to obtain operational information.

 The following DB2 9.5 new table functions are for real-time monitoring:

 •WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

 This table function returns a list of workload occurrences across database partitions assigned to a service class, information about the current state, the connection attributes used to assign the workload to the service class, and activity statistics indicating activity volume and success rates.

 •WLM_GET_SERVICE_CLASS_AGENTS

 This table function returns a list of database agents associated with a service class or application handle, the current state of the agent, the action the agent is performing and the status of that action.

 •WML_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

 This table function returns a list of current activities associated with a workload occurrence, information about the activity, the type of activity and the time the activity started.

 •WLM_GET_ACTIVITY_DETAILS

 This table function returns detail about an individual activity, the activity type, and additional information pertinent to that activity type.

 2.3.2 Statistics table functions

 The WLM table functions can also be used to obtain statistics about DB2 workload manager objects. Statistics are maintained for service classes, work classes, workloads, and threshold queues. These statistics are resident in memory and can either be viewed in real time using WLM statistics table functions, or the statistics can be collected and sent to a statistics event monitor where they can be viewed for historical analysis.

 The WLM statistics table functions are listed here:

 •WLM_GET_SERVICE_SUPERCLASS_STATS

 This table function returns information about the concurrent connection high watermark that was calculated since the last statistics reset.

 •WLM_GET_SERVICE_SUBCLASS_STATS

 This table function returns summarized statistics such as number of activities and average execution time calculated since the last time reset.

 •WLM_GET_WORKLOAD_STATS

 This table function returns summarized statistics for one or all workloads and database partitions.

 •WLM_GET_WORK_ACTION_SET_STATS

 This table function returns summarized statistics for one or all work action sets across one or more database partitions.

 •WLM_GET_QUEUE_STATS

 This table function returns information about threshold queues.

 The workload management table functions can also be used in conjunction with the snapshot monitor table functions to aid in problem-solving or performance tuning.

 2.3.3 Event monitors for DB2 WLM

 The enhanced DB2 event monitor provides the capability to monitor WLM-specific events. A total of 71 monitor elements are available to provide information about a workload management implementation.

 •WLM event monitors capture a set of events for debugging or collect historical information for subsequent analysis.

 •Table functions look at and gather point-in-time information.

 Unlike the non-WLM event monitors, the WLM event monitors do not have event conditions that can be triggered by the WHERE clause of the CREATE EVENT MONITOR statement. The WLM event monitors are dependent on how the attributes of service classes, workloads, work classes, and thresholds are set to send activity or aggregate information to the WLM monitors.

 There are three types of WLM event monitors:

 •Activities
This type of event monitor is used to collect information about an activity.

 •Threshold violations
This type of event monitor captures information whenever a threshold violation occurs.

 •Statistics
This type of event monitor captures statistics over a set timeframe. This event monitor gathers aggregated activity information and is directed to a single service class or work class.

 A sample script wlmevmon.ddl in the ~/sqllib/misc directory shows how to create and enable three event monitors DB2ACTIVITIES, DB2STATISTICS, and DB2THRESHOLDVIOLATIONS.

 You can collect various detail levels of the full set of statistics, including average execution times, average queueing times, and histograms. The statistics level to be gathered are specified as an option in the service subclass or work class:

 •COLLECT AGGREGATE ACTIVITY DATA BASE

 •COLLECT AGGREGATE ACTIVITY DATA EXTENDED

 •COLLECT AGGREGATE REQUEST DATA BASE

 There are statistics maintained on the given WLM objects on each database partition, regardless of whether COLLECT AGGREGATE ACTIVITY DATA or COLLECT AGGREGATE REQUEST DATA was specified or not. These statistics are listed here.

 •Threshold queues:

  –	Total queue assignments

  –	Top queue size

  –	Total queue time

 •Service subclasses:

  –	High watermark concurrent activity

  –	Total coordinator activities completed

  –	Total coordinator activities aborted

  –	Total coordinator activities rejected

  –	Number of active requests

 •Service superclasses:

  –	Top concurrent connection

 •Workloads:

  –	Total workload occurrences completed

  –	High water mark of concurrent workload occurrences

  –	High water mark of Concurrent activity

  –	Total coordinator activities completed

  –	Total coordinator activities aborted

  –	Total Coordinator activities rejected

  –	Total workload occurrences completed

 •Work class through a work action

  –	Total activities

 The following statistics are collected when a service subclass or a work class is created or altered with the option COLLECT AGGREGATE ACTIVITY DATA BASE:

 •Coordinator activity lifetime average

 •Coordinator activities execution time average

 •Coordinator activity queue time average

 •High watermark of cost estimate

 •High watermark of Actual rows returned

 •High watermark of temporary table space

 •Activity lifetime histogram

 •Activity execution time histogram

 •Activity queue time histogram

 The following statistics are collected for each database partition for the corresponding service class or work class when a service subclass or a work class is created or altered with the option COLLECT AGGREGATE ACTIVITY DATA EXTENDED:

 •Non-nested coordinator activity inter-arrival time

 •Coordinator activity estimated cost average

 •Coordinator activity inter-arrival time histogram

 •Activity estimated cost histogram

 The following statistics are collected for each database partition for the corresponding service subclass when a service subclass or a work class is created or altered with the option COLLECT AGGREGATE REQUEST DATA BASE:

 •Request execution time average

 •Request execution time histogram

 Histogram

 A histogram is defined as a graphical display of tabulated frequencies. In DB2 WLM, the histogram is represented by a collection of bins or rectangles where the width is represented by a range of values, and the height is represented by the count or frequency of these values. DB2 WLM histograms have a fixed number of 41 bins. Figure 2-8 shows a histogram example.

 [image:]

 Figure 2-8 Histogram plotted to a bar chart

 Histograms can be used to discover workload situations that would not be obvious when looking at the data alone. The distribution of values and the outlying values can be determined at a glance. When histograms are applied to a partitioned database environment, the histogram bins can be used to analyze the distribution of values per partition, or they can be combined into one histogram to get a global view of the data.

 Histograms are available for service subclasses and work classes, and are collected when any of the following clauses are specified when creating or altering the object:

 •COLLECT AGGREGATE ACTIVITY DATA BASE

 •COLLECT AGGREGATE ACTIVITY DATA EXTENDED

 A histogram template can also be created to describe the high bin values for each of the histograms that are collected for an object. These histogram templates are objects with no predefined measurement units that specify what a histogram should look like.

 2.3.4 WLM stored procedures

 DB2 WLM stored procedures are provided to cancel an activity, capture information about an individual activity, and collect and reset statistics for workload management objects.

 The following is a list of these stored procedures:

 •WLM_CANCEL_ACTIVITY - cancels a given activity.

 •WLM_CAPTURE_ACTIVITY_IN_PROGRESS - gathers information on a given activity, including all its child activities, and writes it to the active activities event monitor.

 •WLM_COLLECT_STATS - gathers and resets statistics on service classes, work classes and threshold queues, and writes them to the statistics event monitor.

 WLM_SET_CLIENT_INFO is a stored procedure that allows you to set the values of any of the client information fields at the DB2 server by using a CALL statement.

 2.4 New database configuration parameter and catalog tables

 A new database configuration parameter and several catalog tables are introduced to support WLM.

 WLM_COLLECT_INT

 This new database configuration parameter WLM Collection Interval is used to specify a collection and reset interval, in minutes, for workload management statistics. This parameter is only specified on the catalog partition, and it will determine how often workload management statistics are collected and sent to any statistics event monitor. All WLM statistics table functions will return the accumulated statistics for the current interval since the last reset. The WLM_COLLECT_STATS procedure will perform the same collect and reset operations that would occur automatically on the interval defined by the WLM_COLLECT_INT database configuration parameter.

 New catalog tables

 The new WLM-specific system catalog views are:

 •SYSCAT.HISTOGRAMTEMPLATEBINS - Each row represents a histogram template bin.

 •SYSCAT.HISTOGRAMTEMPLATES - Each row represents a histogram template.

 •SYSCAT.HISTOGRAMTEMPLATEUSE - Each row represents a relationship between a workload management object that can use histogram templates and a histogram template.

 •SYSCAT.SERVICECLASSES - Each row represents a service class.

 •SYSCAT.THRESHOLDS - Each row represents a threshold.

 •SYSCAT.WORKACTIONS - Each row represents a work action.

 •SYSCAT.WORKACTIONSETS - Each row represents a work action set

 •SYSCAT.WORKCLASSES - Each row represents a work class.

 •SYSCAT.WORKCLASSSETS - Each row represents a work class set.

 •SYSCAT.WORKLOADAUTH - Each row represents a user, group or role that has been granted USAGE privilege on a workload.

 •SYSCAT.WORKLOADCONNATTR - Each row represents a connection attribute in the definition of a workload

 •SYSCAT.WORKLOADS - Each row represents a workload.

 2.5 Working with WLM SQL and objects

 In this section, we introduce the new SQL statement for DB2 WLM objects service classes, workload, threshold, and work classes. For the details of the SQL statements, refer to DB2 documents:

 •DB2 Information Center:

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

 •DB2 manuals:

 SQL Reference, Volume 1, SC23-5861
SQL Reference, Volume 2, SC23-5862

 2.5.1 DB2 Service classes

 Use the CREATE SERVICE CLASS statement to define the service superclass and service subclass.

 When you use the CREATE SERVICE CLASS statement, you need to specify the name of the service class. Optionally, you can specify the following properties:

 •AGENT PRIORITY clause

 Use this clause to control agent priority (CPU).

 •PREFETCH PRIORITY clause

 Use this clause to control prefetcher priority (Prefetcher I/O).

 •COLLECT AGGREGATE ACTIVITY DATA

 Use this clause to collect statistics information for service subclass only.

 •COLLECT AGGREGATE REQUEST DATA clause

 Use this clause to collect aggregate request data for service class and send it to the applicable event monitor.

 •COLLECT ACTIVITY DATA clause

 Use this clause to collect activity information for service subclass only.

 •OUTBOUND CORRELATOR clause

 Use this clause to associate the DB2 service class to an AIX service class.

 •ENABLE or DISABLE clause

 Use this clause to specify whether or not connections and activities can be mapped to the service class.

 When you create a service superclass, DB2 automatically creates a default service subclass SYSDEFAULTSUBCLASS under it. When you create the service subclass, you need to specify the name of the parent service superclass.

 Example 2-5 shows the CREATE SERVICE CLASS statement to create a service superclass.

 Example 2-5 Creating a service superclass

 [image:]

 CREATE SERVICE CLASS sales AGENT PRIORITY -20

 [image:]

 Note the following points:

 •On UNIX and Linux operating systems, AGENT PRIORITY values range from -20 to 20. Negative values denote a higher relative priority.

 •On Windows operating systems, AGENT PRIORITY values range from -6 to 6. Negative AGENT PRIORITY values denote a lower relative priority.

 Example 2-6 shows the CREATE SERVICE CLASS statements creating two service subclasses.

 Example 2-6 Creating a service subclass

 [image:]

 CREATE SERVICE CLASS sales_read UNDER sales PREFETCH PRIORITY HIGH

 CREATE SERVICE CLASS sales_write UNDER sales PREFETCH PRIORITY LOW

 [image:]

 DB2 automatically creates a default subclass under each service superclass.

 2.5.2 DB2 Workloads

 Use the CREATE WORKLOAD statement to define the workload. When you use the CREATE WORKLOAD statement, you need to specify the name of the workload and the attribute of the connection. The connection attributes are case-sensitive in this statement.

 The following are clauses to specify the attribute of the connection.

 •APPLNAME

 You need to know your application name as known to the database server. Your application name is shown in the Application name field in system monitor output, and in the output from the LIST APPLICATIONS command.

 •SYSTEM_USER

 You can use the user that connects to the database.	

 •SESSION_USER

 If you use the SET SESSION AUTHORIZATION statement to change the current session user, you can use this attribute. If you do not use the SET SESSION AUTHORIZATION statement, the current session user is the same as the system user.

 If you use a customized security plug-in for authentication, you can return a different value for the current session user.

 •SESSION_USER GROUP

 You can use the group name which the current session user belongs to.

 •SESSION_USER ROLE

 If you use the roles to simplify privilege management, you can use this attribute.

 •CURRENT CLIENT_USERID

 You can use the client user ID from the client information specified for the connection.

 •CURRENT CLIENT_APPLNAME

 You can use the application name from the client information specified for the connection.

 •CURRENT CLIENT_WRKSTNNAME

 You can use the workstation name from the client information specified for the connection.

 •CURRENT CLIENT_ACCTNG

 You can use the accounting string from the client information specified for the connection. The accounting string basically is a custom tag that can be used to identify a set of activities based on user-defined attributes such as a custom report.

 Users can connect directly, or through an application server with different connection properties to DB2. DB2 WLM uses these properties to direct them to the appropriate service class.

 In an N-tier client-server environment, an application server can use the sqlseti API, where client information is set on the client side, to pass specific client information to the DB2 data server.

 Another way to set client information is to use the WLM_SET_CLIENT stored procedure to set client information for the connection at the DB2 server.

 Optionally, you can specify the following attributes or properties:

 •Workload attributes

  –	SERVICE CLASS

 Use this clause to assign work to a service class.

  –	ALLOW DB ACCESS or DISALLOW DB ACCESS

 Use this clause to specify whether or not a request is allowed access to the database.

  –	ENABLE or DISABLE

 Use this clause to specify whether or not this workload will be considered when a workload is chosen.

 •COLLECT ACTIVITY DATA clause

 Use this clause to collect activity information for a workload.

 •POSITION clause

 Use this clause to specify the workload order DB2 searched.

 Example 2-7 shows the CREATE WORKLOAD statement to create a workload assigned to a service superclass.

 Example 2-7 Creating a workload

 [image:]

 CREATE WORKLOAD sales_wl applname('sales.exe') SERVICE CLASS sales

 [image:]

 The SALES_WL workload is associated with requests executed from the application name sales.exe. These requests are run in the SALES service superclass. If you do not specify the SERVICE CLASS clause, these requests are run in the default service class SYSDEFAULTUSERCLASS.

 Workloads have their evaluation order specified by the POSITION keyword. If the POSITION keyword is not specified, the new workload is positioned after all the other defined workloads, but before the last workload, SYSDEFAULTUSERWORKLOAD.

 2.5.3 DB2 Thresholds

 Use the CREATE THRESHOLD statement to define the threshold.

 When you use the CREATE THRESHOLD statement, you need to specify the following properties:

 •Name of the threshold

 •Threshold domain

  –	DATABASE / SERVICE CLASS / WORKLOAD

 •Enforcement scope

  –	DATABASE / DATABASE PARTITION / WORKLOAD OCCURRENCE

 •Threshold

  –	Elapsed time (ACTIVITYTOTALTIME)

 The maximum amount of time that the data server should spend processing an activity.

  –	Idle time (CONNECTIONIDLETIME)

 The maximum amount of time that a connection can be idle.

  –	Estimated cost (ESTIMATEDSQLCOST)

 The maximum estimated cost permitted for DML .

  –	Rows returned (SQLROWSRETURNED)

 The maximum number of rows that can be returned for DML.

  –	Temporary space (SQLTEMPSPACE)

 The maximum amount of temporary table space that can be used by a DML activity at any database partition.

  –	Concurrent workload occurrences (CONCURRENTWORKLOADOCCURRENCES)

 The maximum number of workload occurrences that can run concurrently on the coordinator partition.

  –	Concurrent workload activities (CONCURRENTWORKLOADACTIVITIES)

 The maximum number of coordinator and nested activities that can run concurrently in a workload occurrence.

  –	Concurrent database activities (CONCURRENTDBCOORDACTIVITIES)

 The maximum number of concurrent coordinator activities across all database partitions.

  –	Total database partition connections (TOTALDBPARTITIONCONNECTIONS)

 The maximum number of concurrent database connections on a coordinator partition for a database.

  –	Total service class partition connections (TOTALSCPARTITIONCONNECTIONS)

 The maximum number of concurrent database connections on a coordinator partition for a service superclass.

 •Action

  –	STOP EXECUTION / CONTINUE

 Optionally, you can specify the following properties:

 •Action

  –	COLLECT ACTIVITY DATA clause

 Use this clause to enable collection of information about activities that violate the threshold. Activity information is sent to the active activities event monitor upon activity completion.

 •ENABLE or DISABLE

 Use this clause to specify whether or not the threshold is enabled for use by the database manager.

 Example 2-8 shows the CREATE THRESHOLD statement to create a threshold assigned to a service subclass.

 Example 2-8 Creating a threshold

 [image:]

 CREATE THRESHOLD limit_cost for SERVICE CLASS sales ACTIVITIES ENFORCEMENT database WHEN estimatedsqlcost > 10000 STOP EXECUTION

 [image:]

 The threshold (when estimatedsqlcost > 10000) is enforced for activity that runs in the department superclass across all database partitions.

 2.5.4 DB2 Work Classes and Work Class Sets

 Use the CREATE WORK CLASS SET to create a work class set.

 There are two ways of creating a work class:

 •Use the CREATE WORK CLASS SET statement to create a new work class set to contain the new work class.

 •Add a new work class to an existing work class set using the ALTER WORK CLASS SET statement.

 When you use the CREATE WORK CLASS SET statement, you need to specify the following properties:

 •Name of the work class set

 •Work class definition

 Table 2-1 shows the type keywords available for work classes and the SQL statement corresponding to the different keywords. Except for the LOAD command, all the statements in Table 2-1 are intercepted immediately before execution.

 Table 2-1 Work type keywords and associated SQL statements

 	
 Work type

 keyword

 	
 Applicable SQL statements

 	
 READ

 	
 •All SELECT statements (select into, values into, full select)

 •SELECT statements containing a DELETE, INSERT, or UPDATE are not included

 •All XQuery statements

 	
 WRITE

 	
 •All UPDATE statements (searched, positioned)

 •All DELETE statements (searched, positioned)

 •All INSERT statements (values, subselect)

 •All MERGE statements

 •All SELECT statements containing a DELETE, INSERT, or UPDATE statement

 	
 CALL

 	
 •CALL statement

 •The CALL statement is only classified under the CALL and ALL work class types.

 	
 DML

 	
 All statements that are classified under the READ and WRITE work class types

 	
 DDL

 	
 •All ALTER statements

 •All CREATE statements

 •COMMENT statement

 •DECLARE GLOBAL TEMPORARY TABLE statement

 •DROP statement

 •FLUSH PACKAGE CACHE statement

 •All GRANT statements

 •REFRESH TABLE

 •All RENAME statements

 •All REVOKE statements

 •SET INTEGRITY statement

 	
 LOAD

 	
 •Load utility.

 •The load utility is only classified under the LOAD and ALL work class types.

 	
 ALL

 	
 •All database activity.

 •If the action is a threshold, the database activity that the threshold is applied to depends on the type of threshold. For example, if the threshold type is ESTIMATEDSQLCOST, only DML activity with an estimated cost (in timerons) is affected by the threshold.

 Example 2-9 shows the CREATE WORK CLASS SET statement to create a work class READ_WORK and a work class WRITE_WORK.

 Example 2-9 Creating a work class

 [image:]

 CREATE WORK CLASS SET sales_work

 (WORK CLASS read_work WORK TYPE read,

 WORK CLASS write_work WORK TYPE write)

 [image:]

 2.5.5 DB2 Work Actions and Work Action Sets

 Use the CREATE WORK ACTION SET to define a work action set. You must associate the work action set with an existing work class set. In addition, you must also associate the work action set with the database or an existing service superclass.

 There are two ways of creating a work action:

 •Use the CREATE WORK ACTION SET statement to create a new work action.

 •Add a new work action to an existing work action set using the ALTER WORK ACTION SET statement.

 When you use the CREATE WORK ACTION SET statement, you need to specify the following properties:

 •Name of the work action set

 •FOR DATABASE / SERVICE CLASS

 This clause specifies the database manager object to which the actions in this work action set will apply.

 •USING WORK CLASS SET work-class-set-name

 This clause specifies the work class set containing the work classes that will classify database activities on which to perform actions.

 •WORK ACTION work-action-name on WORK CLASS work-class-name

 This clause specifies the work action definitions including the following:

  –	MAP ACTIVITY WITH NESTED/WITHOUT NESTED TO service-subclass-name

  –	WHEN

  •	CONCURRENTDBCOORDACTIVITIES / AND QUEUEDACTIVITIES

  •	SQLTEMPSPACE

  •	SQLROWSRETURNED

  •	ESTIMATEDSQLCOST

  •	ACTIVITYTOTALTIME

  –	COLLECT ACTIVITY DATA NONE/ COLLECT ACTIVITY DATA WITH DETAILS AND VALUES

  –	STOP EXECUTION / CONTINUE

 •ENABLE or DISABLE

 This clause activates or deactivates the work action.

 •ACTIVITY LIFETIME / QUEUETIME / EXECUTETIME / ESTIMATEDCOST / INTERARRIVAL HISTOGRAM TEMPLATE template-name

 These are properties of histogram templates to be used when collecting aggregate activity data for activities associated with the work class to which this work action is assigned.

 Example 2-10 shows the CREATE WORK ACTION SET statement to create a work action set SALES_ACTION that is associated with the service superclass SALES.

 Example 2-10 Creating a work action set.

 [image:]

 CREATE WORK ACTION SET sales_action FOR SERVICE CLASS sales

 USING WORK CLASS SET sales_work

 (WORK ACTION read_action ON WORK CLASS read_work MAP ACTIVITY TO sales_read,

 WORK ACTION write_action ON WORK CLASS write_work MAP ACTIVITY TO sales_write)

 [image:]

 2.6 DB2 WLM setup

 The base function of DB2 9.5 Workload Manager is available in the core DB2 engine. The more advanced custom features are licensed under the Performance Optimization feature. There are no special considerations for the database using WLM function. Plan your DB2 environment so that it is efficient, easily recoverable, and easy to maintain. Refer to DB2 documentation for system requirements and installation procedure:

 •Getting Started with DB2 installation and administration on Linux and Windows, GC23-5857

 •Quick Beginnings for DB2 Servers, GC23-5864

 To fully utilize DB2 WLM enhancements, plan how your applications will use your databases so that you are able to differentiate different types of applications and work sets:

 •Use different user accounts for different types of workloads when applicable.

 •Do not use administrative accounts for applications.

 A well-designed setup using different accounts for different applications allows you to grant the database privileges to each application based on the business requirement. This not only makes your database environment more secure, but also will make the WLM implementation much easier. You can better separate different types of workloads and manage them accordingly.

 2.6.1 Lab environment

 We used the following lab systems for writing this book. You may see the server names in the examples.

 •AIX servers: Clyde and Bonnie

 •Linux server: Puget

 •Windows server: Cetus

 AIX server configuration

 Figure 2-9 illustrates disk configuration for the partitioned database in the AIX servers. The operating system has its own volume group, rootvg, which is on internal disks. All database-related file systems reside on the external SAN disks.

 [image:]

 Figure 2-9 Our disk setup

 Figure 2-10 illustrates the partition configuration of the WLMDB database that we created on the AIX systems. WLMDB spreads over two physical nodes, and it consists of five database partitions. Partition 0 on Clyde acts as the coordinating partition. WLMDB has six database partition groups:

 •IBMCATGROUP for system catalogs on partition0, the coordinating partition.

 •IBMDEFAULTGROUP spans all five partitions. This has only one table space, USERSPACE1, which is the default table space for new tables. Our intention is not to use this table space for our tests.

 •IBMTEMPGROUP spans all partitions. This has only one table space, which is for temporary tables.

 •NG1 is in partition 0 only. NG1 contains one table space for small referencing tables.

 •NG2 spreads over database partition 1 to partition 4. This partition group has table spaces for our data for tests and benchmarking.

 •NGALL spans all database partitions. It has only one table space, MAINT, for event monitor data to be used for historical analyses.

 [image:]

 Figure 2-10 Our WLMDB partition configuration

 TPC-H

 We deploy TPC-H data for our test database. You can find more information about TPC-H at the following address:

 http://www.tpc.org/tpch/

 Verify your installation

 After DB2 is installed, you can check whether the DB2 installed has the WLM feature by creating a database and verifying if one of the new WLM catalog tables is in place. Example 2-11 shows that we created a database WLMDB and selected WLM catalog table SYSCAT.WORKLOADS. Two default workloads, SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD, were created.

 Example 2-11 Verifying your database is WLM-capable

 [image:]

 db2 create db WLMDB

 DB20000I The CREATE DATABASE command completed successfully.

 db2 connect to WLMDB

 connect to WLMDB

 Database Connection Information

 Database server = DB2/AIX64 9.5.0

 SQL authorization ID = DB2INST1

 Local database alias = WLMDB

 db2 "SELECT WORKLOADID, SUBSTR(WORKLOADNAME,1,24) as WORKLOADNAME FROM SYSCAT.WORKLOADS"

 WORKLOADID WORKLOADNAME

 ----------- ------------------------

 1 SYSDEFAULTUSERWORKLOAD

 2 SYSDEFAULTADMWORKLOAD

 2 record(s) selected.

 [image:]

 2.6.2 First step

 In this section we describe the default WLM configuration and what you can do with it.

 The default DB2 WLM configuration

 In DB2 9.5, DB2 creates three default service classes and two default workloads on the database you create.

 The default service classes are:

 •SYSDEFAULTUSERCLASS

 •SYSDEFAULTMAINTENANCECLASS

 •SYSDEFAULTSYSTEMCLASS

 Each default service superclass has one default service subclass, SYSDEFAULTSUBCLASS.

 The default workloads are:

 •SYSDEFAULTUSERWORKLOAD

 •SYSDEFAULTADMWORKLOAD

 In Figure 2-11 illustrates the relationships between the default workloads and the service classes.

 [image:]

 Figure 2-11 Default workloads and service classes

 On a default configuration, SYSCAT.SERVICECLASSES, SYSCAT.WORKLOADS, and SYSCAT.SYSDEFAULTHISTOGRAM catalog views have content populated.

 Monitoring the default WLM environment

 The default WLM environment is a useful point from which to start to understand the activities taking place at the database. Even with the basic WLM environment, there is significant information available.

 The monitoring functions are immediately useful because in DB2 WLM, by default, all requests run in a service class and all connections are associated with a workload. Therefore, you can immediately take advantage of the monitoring capabilities offered for workloads and service classes. You can use the new WLM table functions to collect statistical information for analysis, or monitor your database activities real time.

 In this section, we provide a few examples showing how to use WLM table functions to see the default WLM settings and the activities in the DB2. A detailed description of the WLM table functions is provided in Chapter 4, “Monitoring DB2 workload management information” on page 75.

 •Use the service class statistics function to understand number of activities being run in the system.

 In Example 2-12, we show how to obtain the system activities information since the last statistics reset. We learned that in our test system, the highest number of concurrent activities was 4, the number of activities aborted was 3, and 24 activities completed since the last statistics reset. Such information can be very useful in helping you to examine the load on your database environment.

 Example 2-12 Summary statistics at service subclass level

 [image:]

 SELECT CONCURRENT_ACT_TOP AS ACT_TOP,

 COORD_ACT_ABORTED_TOTAL AS ABORTED,

 COORD_ACT_COMPLETED_TOTAL AS COMPLETED,

 LAST_RESET

 FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('SYSDEFAULTUSERCLASS','',-2));

 ACT_TOP ABORTED COMPLETED LAST_RESET

 ------- ------- --------- --------------------------

 4 3 24 2007-11-13-15.14.41.513892

 1 record(s) selected.

 [image:]

 •Use workload statistics to understand the total number of connections and the highest number of concurrent connections.

 Example 2-13 shows how to use the WLM_GET_WORKLOAD_STATS table function to obtain the summary statistics at the workload level. The example shows that the highest concurrent number of connections was 4 and that the total number of completed connections was 197 for workload SYSDEFAULTUSERWORKLOAD, since the last reset.

 By looking at this information and the service subclasses statistics (shown in Example 2-12) over time, you can achieve a useful understanding of your database system load.

 Example 2-13 Summary statistics at the workload level

 [image:]

 SELECT CONCURRENT_WLO_TOP,

 COORD_ACT_COMPLETED_TOTAL

 FROM TABLE(WLM_GET_WORKLOAD_STATS('SYSDEFAULTUSERWORKLOAD',-2));

 CONCURRENT_WLO_TOP COORD_ACT_COMPLETED_TOTAL

 ------------------ -------------------------

 4 197

 1 record(s) selected.

 [image:]

 •Use the workload occurrences function to examine the connections on the system. In particular, use this function to understand who is submitting work into system (that is, which users or which applications), and also to learn about the connection attributes for the applications that submit work to the system. This information is particularly useful if you want to isolate those applications.

 Example 2-14 shows how to list the workload occurrences on a particular service class by using the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.

 Example 2-14 List of workload occurrences on a particular service class

 [image:]

 SELECT SUBSTR(SESSION_AUTH_ID,1,15) AS SESSION_AUTH_ID,

 SUBSTR(APPLICATION_NAME,1,16) AS APPLICATION_NAME

 FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('SYSDEFAULTUSERWORKLOAD','',-2));

 SESSION_AUTH_ID APPLICATION_NAME

 --------------- ----------------

 SAP_USER SAP.EXE

 OLTP_USER OLTP.EXE

 BATCH_USER BATCH.EXE

 3 record(s) selected

 [image:]

 •Use the workload activities table function to understand the types of activities that are run on the system. For example, you could periodically run a query that counts number of activities of a specific type. Over time, you would build up an understanding of the number of loads, the number of reads, and so on.

 Example 2-15 shows using the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to list queries and query types running on the system. We see that there are currently two reading activities and one writing activity. By collecting this information periodically over a time frame, you can learn how activity types and the quantity of each activity differ over time.

 Example 2-15 List queries and query types running on the system

 [image:]

 SELECT APPLICATION_HANDLE AS HANDLE,

 ACTIVITY_ID AS ID,

 SUBSTR(ACTIVITY_STATE,1,9) AS STATE,

 SUBSTR(ACTIVITY_TYPE,1,8) AS TYPE

 FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2));

 HANDLE A_ID U_ID STATE TYPE

 ------ ---- ---- --------- --------

 301 1 1 EXECUTING READ_DML

 420 1 10 EXECUTING WRITE_DML

 598 1 1 EXECUTING READ_DML

 3 record(s) selected.

 [image:]

 •Use the workload activity details function to examine a long-running activity and understand where it came from, what statement is being run, and why it is running so long. This information can be useful later for establishing thresholds.

 In Example 2-16, we use the WLM_GET_ACTIVITY_DETAILS table function to find out start time, effective isolation level, rows fetched, and rows modified for application 420. The application handle number 420 is obtained from Example 2-15.

 Example 2-16 Workload activity details

 [image:]

 SELECT SUBSTR(NAME, 1, 20) AS NAME,

 SUBSTR(VALUE, 1, 30) AS VALUE

 FROM TABLE(WLM_GET_ACTIVITY_DETAILS(420, 10, 1, -2))

 WHERE NAME IN ('APPLICATION_HANDLE',

 'LOCAL_START_TIME',

 'UOW_ID',

 'ACTIVITY_ID',

 'ACTIVITY_TYPE',

 'EFFECTIVE_ISOLATION',

 'ROWS_FETCHED',

 'ROWS_MODIFIED');	

 NAME VALUE

 -------------------- ------------------------------

 ACTIVITY_ID 1

 ACTIVITY_TYPE WRITE_DML

 APPLICATION_HANDLE 420

 LOCAL_START_TIME 2007-11-14-04.43.00.004358

 UOW_ID 10

 EFFECTIVE_ISOLATION 1

 ROWS_FETCHED 6

 ROWS_MODIFIED 21

 8 record(s) selected.

 [image:]

[image:]
[image:]

Customizing the WLM execution environments

 Now that we have worked through the default WLM setup, it is time to begin building a WLM plan and implementing the plan. From this plan we can evolve our WLM implementation.

 We discuss the following topics in this chapter:

 •Steps for customizing DB2 WLM to achieve business objectives, including developing a workload identification worksheet

 •Methodology for building and evolving a WLM implementation

 3.1 Stages of workload management

 Typically, a DB2 database system has several different kinds of workloads, each with its own resource and availability requirements. The workloads often undergo similar changes throughout their life cycle. For example, Sales reporting may require large reports on a monthly or quarterly basis. In contrast, Inventory may require extensive re-casting of inventory quarterly or annually. These requirements may change over time as new business is acquired, applications are merged into the database system, or the data in the database system simply grows.

 As mentioned in 1.1, “Workload management” on page 2, these stages are important for managing these workloads and protecting their needed resources:

 •Identify the work

 The management goals are either given or can be derived from business objectives, service delivery, or performance objectives. To achieve a goal, you first must be able to identify details about the work.

 There are many different sources that you can use to identify database activities, for example: user ID, user group, application name, session name, and so on. Activities can be of varying types: system activities, administration activities, utilities, and applications. You can group the activities based on business area, activity type, or service requirements for DB2 WLM to manage.

 •Manage the work

 During this stage, you determine how you want to manage the work and the resources being consumed in order to meet your goals. This is where you determine what actions you want to take to try to insure that all work is completed when needed. That is, now that the workload has been identified, it now must be managed.

 Through WLM, work is prioritized and action is taken based on how the work is classified or managed. Based on how the work is managed, priorities and actions can be set. Workloads are managed by controlling the resources they may consume and their priorities for consuming them.

 Work can be managed based on the type of request and where it came from (such as ad hoc queries from the Sales department, or reports from the Accounting department). Alternatively, workloads can be managed based on a common action, function or resources consumed (such as ETL jobs loading massive amounts of data that are added to the data warehouse using the LOAD utility). These jobs may tie up tables in the database for long periods of time, so their consumption of resources may need to be controlled as to not interfere with other work needing to be complete. The actions or restrictions you want to impose on your workloads will determine how you manage them.

 •Monitor the work

 Monitoring helps you to determine whether you are achieving a goal, and to identify problems that might be preventing you from achieving that goal. Using monitoring, you can capture the activity information, store it, and then analyze the data.

 This is a continuous cycle that can be expressed as the cyclical process as shown in Figure 3-1.

 [image:]

 Figure 3-1 WLM methodology cycle

 In the following sections, we explain these stages in greater detail.

 3.2 Identify the work

 The process of identifying workloads can be very complex. It is best to start by using what you already know. Much important information about the workload is often available at the very beginning of the planning process and is based on business requirements:

 •What are the business requirements?

 •Are there Service Level Agreements (SLAs) that must be met?

 •Are there management or user requirements?

 Using this information, first develop a comprehensive view of the work in the database that needs to satisfy these business requirements. Next, identify the characteristics and changes to the workload by using workload profiling.

 Checklist

 In the process of identifying the workload, gather as much as information about it as possible. In the management stage, this information will be used to customize the WLM to manage your workload to meet the business goal. Here we list the items to be identified:

 •Tasks

 What processes do you want to identify, or what you have discovered from previous monitoring?

 Examples of processes to identify include utilities run by DBA, all the report jobs, and so on.

 •Business requirements

 What is the purpose or function of a task? What requirements are attached to this task?

 These requirements should be expressed in terms of desired outcome, such as an SLA or business restrictions.

 •Task identity

 How is the process identified in the system?

 WLM will identify what workload comes to the database system; it can identify a process or workload by using the following:

  –	Application name (APPLNAME)

  –	Authorization ID (SYSTEM_USER)

  –	SESSION_USER

  –	SESSION_USER GROUP

  –	SESSION_USER ROLE

  –	CLIENT_USERID

  –	CLIENT_APPLNAME

  –	CLIENT_WRKSTANNAME

  –	CLIENT_ACCTNG

 For each task, you must identify at least one of these for WLM.

 •Action

 What action is needed for this process? What do you want to happen to control or measure this task?

 WLM provides the following actions:

  –	Database level data collection

  •	High level data collection

 The aggregate activity data will be captured for the service class and sent to the applicable event monitor. The information is collected periodically on an interval that is specified by the wlm_collect_int database configuration parameter. The SQL statement clauses are:

 COLLECT AGGREATE REQUEST DATA

 COLLECT AGGREGATE ACTIVITY DATA [BASE | EXTENDED]

  •	Detailed data collection (at all levels: database, service class, workload

 The information about each activity that executes in the service class will be sent to the applicable event monitor when the activity completes. The SQL statement clause is:

 COLLECT ACTIVITY DATA

  –	Controls on processes

 You specify what to control and the control scope by using WORK ACTION or THRESHOLD.

 3.2.1 Workload identification worksheet

 Use a worksheet to list the tasks, business requirements, process identified, and action identified.

 The workload example used here is a typical starting point for many data warehouse customers. We categorized our workload as follows:

 •Administrative tasks

 We categorized the work such as security, monitoring, data maintenance (backup, recovery, REORG, RUNSTATS) as administrative tasks. The task identification is the group ID DB2ADM.

 •Batch work

 The batch work we identified includes loading data from various external sources and Extract Transform Load applications (ETL). The workload identification is etl.exe or client user ID BATCH.

 •Production ad hoc queries

 These queries may come from a vendor tool or from end users. The users in this category are all assigned to the group DSSGROUP.

 •Production reports

 These are generated reports built using a vendor tool such as Brio, Cognos, Microstrategy, and so on. They are identified by their executable name. In our example, they run dss.exe.

 •Note that no service class is created for all of Production; it was merely a label for the production subcategories underneath the “Production” heading.

 We began by determining what resources these workloads consumed, how often they run, and when they run. Such information can help us decide whether we need to take any action to protect an individual workload, as well as what actions we might need to take to limit the workload’s impact on other workloads.

 Table 3-1 is a worksheet that shows our starting point. Remember, workload management is a continuous cycle of identification, management, and monitoring, so this is merely a starting point of identification. After we gather more information and knowledge about our workloads, we can develop a more comprehensive plan.

 This worksheet includes all the stages of workload management previously discussed. As you identify your workloads, you can then determine what requirements are needed for managing them, how they are identified in the system, and what actions are needed to mange them.

 Note that this example is a simple one that illustrates the concept of documenting workload in business terms, and not strictly in technical terms. By using a worksheet similar to Table 3-1, management and users can become involved in the workload management process. They can understand and agree on the requirements and actions that are needed from a technical perspective to protect and manage the database resources.

 Table 3-1 Workload identification worksheet

 	
 Task

 	
 Business requirements

 	
 Identification

 	
 Action

 	
 Admin

 	
 Manages the database environment

 	
 groupid = DB2ADM

 	
 Report the times, duration, and frequency of tasks

 	
 Batch

 	
 ETL must be complete prior to primetime shift

 	
 Loads and other ETL process using etl.exe or client userid = ‘BATCH’ and utility LOAD

 	
 Report the times, duration, and frequency of tasks

 	
 Production

 	
 Prime time 8:00 am to 6:00 pm

 	
 Ad hoc queries and reports run under dss.exe

 	
 Identify ad hoc separately from reports

 	
 _Ad hoc queries

 	
 Must complete 90% < 5 minutes

 	
 groupid = dssgroup

 	
 Report the times, duration, and frequency of tasks

 	
 _Analysis Reports

 	
 Must complete all reports daily

 	
 exec = dss.exe

 	
 Report the times, duration, and frequency of tasks

 The headings in this worksheet are explained here:

 •Task

 This indicates the workload that is being uniquely identified. (Note that “Production” is merely a label for the subtasks below and does not have any actions specifically for all of production.)

 •Business Requirement

 This indicates the business requirements or rules that exist regarding this uniquely identified workload.

 •Identification

 This indicates how this workload is identified in the system.

 •Action

 This indicates what task will be done to manage the workload, or what will be reported about the workload.

 Using the information in such a worksheet, WLM definitions can be created. Keep in mind that a table like this is a working document that is drafted, refined, and changed as more is learned about existing workloads, or new workloads are added to the environment.

 3.3 Manage the work

 The WLM management stage can be used to make steady progress toward meeting your business goal, and to identify actions that you can take when there are indications that the goal is not being met. Use the worksheet to build the DB2 WLM objects:

 •Service class

 To collect historical analysis reports for each task, we create service subclasses for each task.

 •Workload

 To assign the task activities for each service classes, we create workloads using Identification.

 •Event monitor

 To collect and store aggregate information in tables, we create a write-to-table statistics event monitor.

 In our basic setup, we want to create historical analysis reports.

 3.3.1 Creating the service classes

 The service classes give us a hierarchy for assigning work. They are the basic building blocks for all workloads. Use the CREATE SERVICE CLASS statement to define the service class. If you want to collect statistics data, specify the COLLECT AGGREGATE ACTIVITY clause.

 Figure 3-2 illustrates the service classes we defined. The service classes address the WLM worksheet column Action, shown in Table 3-1 on page 54.

 We could have altered the default service classes and workloads, but in this case we wanted to establish a foundation to evolve our WLM setup. Our superclass is HIGHLVL, under which all of our subclasses are assigned. Our subclasses are used to describe what action we want to take for all workloads assigned to the particular subclass. Subclasses allow us to be very specific about what action is performed on specific workloads.

 [image:]

 Figure 3-2 WLMDB service classes

 Example 3-1 shows service classes DML. We chose to use aggregate levels of collection, COLLECT AGGREGATE ACTIVITY DATA BASE. This level of data collection has the least impact on the system, and presents a high level of information in our monitoring.

 Additionally, we want both aggregate activity and aggregate request data, but not for the level for all service classes. The type of collection depends on the type of data to be collected. The WLM documentation explains each type of data collection. It is recommended that you collect only the data that will be used to monitor and report on the workloads.

 Notice in the example that Aggregate Request Data is only collected for service class BATCH. For batch workloads, we want to monitor and report their average request execution times, which is collected for Aggregate Request Data.

 Example 3-1 Creating service classes for basic setup

 [image:]

 CREATE SERVICE CLASS highlvl DISABLE;

 CREATE SERVICE CLASS admins UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA BASE DISABLE;

 CREATE SERVICE CLASS batch UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 CREATE SERVICE CLASS prod_rpt UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 CREATE SERVICE CLASS prod_qry UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 [image:]

 	
 Note: When setting up your initial configuration, disable all service classes and workloads until you are ready to use them. This keeps work from being assigned a service class or workload prior to completing the WLM setup. In a script the timing window may be small but when using the Command Line, the exposure is much longer.

 3.3.2 Creating the workloads

 Use the CREATE WORKLOAD statement to define the workloads and specify which subclass is responsible for handling the workload. The workloads address the WLM worksheet column Identification, shown in Table 3-1 on page 54. Each workload is tied to a subclass.

 Figure 3-3 illustrates the sample workloads we defined in our database WLMDB.

 [image:]

 Figure 3-3 WLMDB workloads

 Example 3-2 shows the workloads we set up, again, allowing the WLM setup to evolve. (Note that although SYSDEFAULTUSERCLASS, SYSDEFAULTSYSTEMCLASS, and SYSDEFAULTMAINTENANCECLASS are automatically created, to keep things simple they are not shown here.)

 Example 3-2 Creating workloads

 [image:]

 CREATE WORKLOAD wl_batch CURRENT CLIENT_USERID ('BATCH')

 DISABLE SERVICE CLASS BATCH UNDER highlvl POSITION AT 1;

 CREATE WORKLOAD wl_prod_rpt APPLNAME ('dss.exe')

 DISABLE SERVICE CLASS prod_rpt UNDER highlvl POSITION AT 2;

 CREATE WORKLOAD wl_prod_qry SESSION_USER GROUP ('DSSGROUP')

 DISABLE SERVICE CLASS prod_qry UNDER highlvl POSITION AT 3;

 CREATE WORKLOAD wl_admin SESSION_USER GROUP ('DB2ADM')

 DISABLE SERVICE CLASS admins UNDER highlvl POSITION AT 4;

 [image:]

 	
 Note: The workloads should be sequenced to specify the order of workload assignment. Do not assume they are being assigned based on the order of creation. The default position when adding a workload is LAST. As the WLM setup evolves, it becomes increasingly difficult to keep them in order.

 Set client information

 The workload identification attributes are based either on the server identification or the client identification, as in 3-tier applications.

 The server identifications are:

 •APPLNAME

 •SYSTEM_USER

 •SESSION_USER

 •SESSION_USER GROUP

 •SESSION_USER ROLE

 The client identifications are:

 •CLIENT_USERID

 •CLIENT_APPLNAME

 •CLIENT_WRKSTANNAME

 •CLIENT_ACCTNG

 Prior to DB2 9.5, these were set either using the client db2cli.ini or the set client information API (sqleseti). Starting in DB2 9.5, the client identification can also be set at the server. This adds flexibility to workload identification for work initiated on the server or in a 3-tier environment.

 In our case, we want all batch jobs to be identified by the client_userid BATCH. Example 3-3 shows a batch job using the wlm_set_client_info stored procedure.

 Example 3-3 Batch job using the wlm_set_client_info

 [image:]

 db2 connect to wlmdb

 db2 "call sysproc.wlm_set_client_info('BATCH',NULL,'MQT105',NULL,NULL)"

 db2 -tvf /batchjobs/mqt/refresh_mqt_current_yr_sls.clp

 db2 reset

 [image:]

 	
 Note: Using the call sysproc.wlm_set_client_info stored procedure on the server side extends the flexibility of identifying work.

 3.3.3 Allowing use of the WLM setup

 Before the workloads can be used, permission must be granted. You can grant the USAGE privilege to specific users, groups, roles, or PUBLIC. In our case, we granted all workloads to PUBLIC because there were no security or audit concerns in the test environment; see Example 3-4 on page 60.

 Keep in mind, however, that granting to PUBLIC should be used with caution. Granting to PUBLIC in production environments could allow a knowledgeable user to run work in higher priority service classes by changing their client user ID, client application name, client workstation name, and client accounting string to match a higher priority service class.

 Example 3-4 Grant workload usage

 [image:]

 GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;

 [image:]

 Next, we enabled the service classes and workloads. As stated earlier, we recommend that you create all service classes and workloads using DISABLED in order to prevent premature usage until the entire WLM setup has been completed.

 3.3.4 Creating the event monitor

 The final step in our basic setup is to create the event monitor. Because we chose to collect aggregate statistics for historical analysis, an event monitor is needed.

 As shown in Example 3-5, we decided to write the event monitor data to tables instead of files. Because the amount of data is expected to be small, we wanted the flexibility of tailoring our reports using SQL.

 Example 3-5 Creating event monitor using tables

 [image:]

 CREATE EVENT MONITOR basic_mon FOR STATISTICS WRITE TO TABLE

 SCSTATS (TABLE scstats_basic_mon IN maint),

 WCSTATS (TABLE wcstats_basic_mon IN maint),

 QSTATS (TABLE qstats_basic_mon IN MAINT),

 WLSTATS (TABLE wlstats_basic_mon IN maint),

 HISTOGRAMBIN (TABLE histogrambin_basic_mon IN maint),

 CONTROL (TABLE control_basic_mon IN maint)

 AUTOSTART;

 SET EVENT MONITOR basic_mon STATE 1;

 [image:]

 Example 3-6 shows the event monitor tables created. We appended the event monitor name to the table names to make them unique and to correlate them to the event monitor. We created all the tables even though we were only performing aggregate collection, which uses the tables:

 •SCSTATS

 •WLSTATS

 •HISTOGRANBIN

 The other tables were created in case we needed them later. All the event monitor tables are created in a specific tablespace as a good administration practice. Placing the tables in a specific tablespace allows the DBA to determine their location, tablespace type, and the amount of space allocated so they potentially will not contend with production tables.

 Example 3-6 Event monitor tables

 [image:]

 ->db2 list tables for user

 Table/View Schema Type Creation time

 ----------------------- -------- ----- --------------------------

 CONTROL_BASIC_MON ADMINHM T 2007-08-28-12.54.53.340071

 HISTOGRAMBIN_BASIC_MON ADMINHM T 2007-08-28-12.54.55.518744

 QSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.55.111208

 SCSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.53.931222

 WCSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.54.326150

 WLSTATS_BASIC_MON ADMINHM T 2007-08-28-12.54.54.733324

 [image:]

 3.3.5 Using SYSDEFAULTADMWORKLOAD

 The default administration workload SYSDEFAULTADMWORKLOAD is a special DB2-supplied workload definition that is not subject to any DB2 thresholds. This workload is intended to allow the database administrator to perform work or take corrective actions, as required.

 Because this workload is not affected by thresholds, however, it has limited workload management control and is not recommended for use in submitting regular day-to-day work.

 You can use the SET WORKLOAD command to assign a connection to the SYSDEFAULTADMWORKLOAD, as follows:

 SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

 Note that if this is the first occurrence of creating a workload, or if you are not redoing the entire WLM setup, this statement is not needed. However, if you have a script that is constructed to delete the prior WLM configuration, an SQL4714N error may occur when all WLM service classes are disabled. The reason for this is because if all service classes have been disabled, nothing else in the script can execute until the work is routed to an enabled workload. So, this is where SYSDEFAULTADMWORKLOAD is useful.

 Example 3-7 shows a full script used in the test environment.

 Example 3-7 Script to delete and rebuild WLM setup

 [image:]

 -- set all existing work to default workload

 SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

 -- create WLM environment

 CREATE SERVICE CLASS HIGHLVL DISABLE;

 CREATE SERVICE CLASS ADMINS UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA BASE DISABLE;

 CREATE SERVICE CLASS BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 CREATE SERVICE CLASS PROD_RPT UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 CREATE SERVICE CLASS PROD_QRY UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 -- identify workloads and assign to service classes

 CREATE WORKLOAD WL_BATCH CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS BATCH UNDER HIGHLVL POSITION AT 1;

 CREATE WORKLOAD WL_PROD_RPT APPLNAME ('dss.exe') DISABLE SERVICE CLASS PROD_RPT UNDER HIGHLVL POSITION AT 2;

 CREATE WORKLOAD WL_PROD_QRY SESSION_USER GROUP ('DSSGROUP') DISABLE SERVICE CLASS PROD_RPT UNDER HIGHLVL POSITION AT 3;

 CREATE WORKLOAD WL_ADMIN SESSION_USER GROUP ('DB2ADM') DISABLE SERVICE CLASS ADMINS UNDER HIGHLVL POSITION AT 4;

 -- grant usage of workloads

 GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;

 -- Enable the service classes

 ALTER SERVICE CLASS HIGHLVL ENABLE;

 ALTER SERVICE CLASS ADMINS UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS BATCH UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS PROD_RPT UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS PROD_QRY UNDER HIGHLVL ENABLE;

 ALTER WORKLOAD WL_ADMIN ENABLE;

 ALTER WORKLOAD WL_BATCH ENABLE;

 ALTER WORKLOAD WL_PROD_RPT ENABLE;

 ALTER WORKLOAD WL_PROD_QRY ENABLE;

 COMMIT;

 -- start using the new WLM setup

 SET WORKLOAD TO AUTOMATIC;

 -- setup and turn on the event monitor

 CREATE EVENT MONITOR BASIC_MON FOR STATISTICS WRITE TO TABLE

 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT),

 WCSTATS (TABLE WCSTATS_BASIC_MON IN MAINT),

 QSTATS (TABLE QSTATS_BASIC_MON IN MAINT),

 WLSTATS (TABLE WLSTATS_BASIC_MON IN MAINT),

 HISTOGRAMBIN (TABLE HISTOGRAMBIN_BASIC_MON IN MAINT),

 CONTROL (TABLE CONTROL_BASIC_MON IN MAINT)

 AUTOSTART;

 SET EVENT MONITOR BASIC_MON STATE 1;

 [image:]

 Without the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD command, after all the service classes are disabled, the script cannot continue because we disabled every service class we are using. An SQL4714N appears when the command shown is attempted:

 CREATE SERVICE CLASS HIGHLVL DISABLE;

 3.4 Monitor the work

 The last stage in a workload management cycle is monitoring the activities, analyzing the collected data, and verifying if the customized WLM environment can manage and control the workload as planned. Using monitoring, we can address the WLM worksheet column Business requirements, shown in Table 3-1 on page 54. Are we meeting the business requirements that were documented previously in our worksheet?

 In our case, we collect aggregate data over time and monitor it periodically. From the reports, we learn about our workloads and determine if additional action is needed. The details of monitoring are covered in Chapter 4, “Monitoring DB2 workload management information” on page 75. Here, we discuss only the reports used in our basic WLM setup.

 Since we are set up to collect aggregate statistics (both request and activity), we have data in the following tables:

 •SCSTATS_BASIC_MON

 •WLSTATS_BASIC_MON

 •HISTOGRANBIN_BASIC_MON

 Each table gives us a different perspective of the WLM setup.

 Looking at the SCSTATS_BASIC_MON, we can export and analyze our workload at the subclass level. Example 3-8 shows the export SQL statements.

 Example 3-8 Exporting event monitor data

 [image:]

 EXPORT TO /tmp/exports/scstats_all.csv OF DEL

 SELECT

 DATE(statistics_timestamp) AS stat_date,

 TIME(statistics_timestamp) AS stat_time,

 SUBSTR(service_subclass_name,1,10) AS subclass_name,

 CASE WHEN 0 > INT(SUM(concurrent_act_top))

 THEN 0

 ELSE INT(SUM(concurrent_act_top))

 END AS con_act_top,

 CASE WHEN 0 > INT(SUM(concurrent_connection_top))

 THEN 0

 ELSE INT(SUM(concurrent_connection_top))

 END AS CON_CONN_TOP,

 CASE WHEN 0 > INT(SUM(coord_act_completed_total))

 THEN 0

 ELSE INT(SUM(coord_act_completed_total))

 END AS coord_act_comp,

 CASE WHEN 0 > INT(SUM(coord_act_exec_time_avg))

 THEN 0

 ELSE INT(SUM(coord_act_exec_time_avg))

 END AS avg_c_exe_tm,

 CASE WHEN 0 > INT(SUM(request_exec_time_avg))

 THEN 0

 ELSE INT(SUM(request_exec_time_avg))

 END AS avg_r_exe_tm

 FROM scstats_basic_mon

 WHERE CHAR(DATE(statistics_timestamp)) = CURRENT DATE

 GROUP BY DATE(statistics_timestamp), TIME(statistics_timestamp),

 SUBSTR(service_subclass_name,1,10)

 ORDER BY 1,2,3

 [image:]

 	
 Note: Each column is summed because the SCSTATS table contains a row for each partition, but the columns used contain values from the coordinator partition, so the other partitions will have a zero (0) value and our query would contain an error and not complete successfully.

 From the SCSTATS_Basic_MON table, for each time period, we can analyze:

 •Top concurrent activity

 •Top concurrent connections

 •Top coordinator activity

 •Coordinator activity completed

 •Coordinator execution time (microseconds)

 •Request execution time (microseconds)

 Figure 3-4 shows the requests execution time by subclass on a typical day.

 [image:]

 Figure 3-4 Request execution time by subclass

 This graph shows several interesting observations in a quick and easy-to-identify format:

 •Our BATCH processing is from 5:00 am to 11:00 am, with additional batch processes running between 12:00 pm and 1:00 pm.

 •Production reports begin at 6:30 am and continue all during the prime shift, concluding at 8:00 pm because we have users in several time zones running reports. A heavy CPU demand is placed on our data warehouse during 8:00 am and 9:00 am.

 •Production ad hoc queries begin at 8:00 am and run steadily until 8:00 pm. Again, we have users in several time zones. We also see heavy CPU loads at 9:00 am and 4:00 pm.

 •The Admins appear to be running heavy loads twice a day, from 12 pm to 1:00 pm and from 6:00 pm to 8:30 pm. From our inquiry, we discover that the online table space backups are run during these times daily.

 •We also see an unaccounted-for workload in the SYSDEFAULTSUBCLASS. Someone is placing a very heavy load on the system around 11:30 am. More investigation is needed to determine what is causing the additional load.

 Using the same information, but now formatted as a stacked bar graph, we see the accumulated effect of our workloads on the system as shown in Figure 3-5. This graph gives us the total perspective of how the workloads impact our system CPU consumption. Using this information, workloads can be rescheduled, prioritized, or limited using queues if they consume too much CPU at the same time.

 [image:]

 Figure 3-5 Bar chart - Request execution time by subclass

 We now turn our attention to concurrent top connections to get a sense of the throughput of our work. This may not be an exact measurement of throughput, but it does show how many queries are concurrently running throughout the day.

 With many concurrent queries running, more resources could be needed, such as memory, CPU, and higher disk activity. We get a sense of how many workloads are running during the day, as shown in Figure 3-6 on page 67.

 Using the concurrent_top_connections, we can analyze how many queries are running concurrently throughout the day. We see from this graph that our production ad hoc queries concurrency usually peaks twice a day. Our batch jobs appear to taper off around 11 am.

 We also see activity in the SYSTEMDEFAULTSUBCLASS during the prime shift between 11:00 am and 1:30 pm. As seen in Figure 3-4 on page 65, this has a severe impact on our CPU availability, and further investigation is warranted.

 [image:]

 Figure 3-6 Active connections

 Checking concurrent connections

 Looking at the concurrent connections, we can get a picture of how much workload is contending for resources; see Figure 3-7 on page 68. (Again, this is not a complete picture, but rather a simplistic high level view.)

 We see the production reports and production queries are high during the mornings. The number of production reports and the CPU resources they consume may need to be controlled in order to protect the production query SLA. More analysis is need to confirm that suspicion.

 Again, the SYSTEMDEFAULTSUBCLASS has connections during the peak periods of the day, as well as connections throughout most of the day. This could be causing problems and needs further investigation.

 As you can see, then, through using a simple query and chart we can get a sense of what our system is doing at a high level and what, if any, additional areas need investigating.

 [image:]

 Figure 3-7 Concurrent connections

 Restating the same information but as a stacked bar graph, we get an overall view of the number of connections hitting our system throughout the day, as shown in Figure 3-8 on page 69. We can see the high water mark for connections, and notice that it occurs twice a day during prime shift. We can also see which workloads are part of those peaks.

 [image:]

 Figure 3-8 Connection high water mark

 The spreadsheet shown in Figure 3-9 on page 70 displays the average execution times of the coordinators. Using this information, we can examine the average execution times for our workloads.

 We want to know how long our ad hoc queries are averaging throughout the day to determine whether we are meeting our business requirement that 90% of the queries must complete within 5 minutes.

 [image:]

 Figure 3-9 Average coordinator execution times

 3.5 Summary

 Now that we completed our cycle for the first time, what did we learn? Looking back at our business requirements we see that not all of them are being met.

 Batch ETL must complete prior to primetime (8 am), but we see from our charts that batch runs past 8 am. In fact, batch appears to run until around 1 pm.

 Ad hoc queries must compete 90% in under 5 minutes. If we assume the coordinator execution time is representative of the overall query execution time, we can extrapolate the average query execution time as 3.2 minutes, with only 6 time periods with an average execution time greater than 5 minutes (15:15, 15:30, 15:45, 16:00, 19:00, and 19.30). This appears to be within our business requirement.

 Production reports are completing but they start at 6:30 am and finish at 20:15 pm. So, we need to see why reports are being started so early.

 We also see that there are workloads outside of our definition that need to be more explicitly identified.

 The analysis of the data will be the input for the next cycle using our WLM methodology, as discussed in the following sections.

 Identify

 There are several areas we now want to identify for analysis.

 •Identify what is running in the SYSTEMDEFAULTSUBCLASS. We have already identified all existing categories. Therefore, this work is probably being performed by our report development group because it is the only remaining group allowed access to our example database.

 •Limit the resources for the rouge queries based on execution time

 •The BATCH group runs two types of workloads, LOAD and our ETL tool (etl.exe). We want to identify how much resource is being used for each of these categories.

 Manage

 To reach the new goals we identified, we can alter our setup to the one shown in Example 3-9. The alterations will drop the original BATCH service class and its related workload and create two new services classes and workload in its place.

 This will further divide the BATCH service class into ETL and LOADS for more specific monitoring and reporting. Because aggregate request data is being requested, we can monitor and report on average request execution times to see how long these jobs run.

 A new service class is also created to monitor and report on the activity of the development group’s activity and impact on the data warehouse. Using the additional information, we may want to limit the number of queries, the amount of resource, or both, that they can consume.

 Example 3-9 Altered basic setup

 [image:]

 ALTER WORKLOAD wl_batch DISABLE;

 ALTER SERVICE CLASS BATCH UNDER highlvl DISABLE;

 DROP WORKLOAD wl_batch ;

 DROP SERVICE CLASS batch UNDER highlvl;

 CREATE SERVICE CLASS batch_load UNDER highlvl COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 CREATE SERVICE CLASS batch_etl UNDER highlvl COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 CREATE SERVICE CLASS dev_rpt UNDER highlvl COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 CREATE WORKLOAD wl_batch_etl APPLNAME ('etl.exe') DISABLE SERVICE CLASS batch_etl UNDER highlvl POSITION AT 2;

 CREATE WORKLOAD wl_batch_load CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS batch_load UNDER highlvl POSIION AT 3;

 ALTER WORKLOAD wl_prod POSITION AT 4;

 ALTER WORKLOAD wl_admin POSITION AT 5;

 CREATE WORKLOAD wl_dev_rpt SESSION_USER GROUP ('DEVGRP') DISABLE SERVICE CLASS HIGHLVL POSITION AT 6;

 GRANT USAGE ON WORKLOAD wl_batch_etl TO PUBLIC;

 GRANT USAGE ON WORKLOAD wl_batch_load TO PUBLIC;

 GRANT USAGE ON WORKLOAD wl_dev_rpt TO PUBLIC;

 ALTER SERVICE CLASS batch_etl UNDER highlvl ENABLE;

 ALTER SERVICE CLASS batch_load UNDER highlvl ENABLE;

 ALTER WORKLOAD wl_batch_etl ENABLE;

 ALTER WORKLOAD wl_batch_load ENABLE;

 ALTER WORKLOAD wl_dev_rpt ENABLE;

 COMMIT;

 --

 -- SETUP THRESHOLD AND MONITORING

 --

 CREATE THRESHOLD rouge_dev

 FOR SERVICE CLASS dev_rpt UNDER highlvl ACTIVITIES

 ENFORCEMENT DATABASE

 WHEN ACTIVITYTOTALTIME > 17 MINUTES

 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES

 STOP EXECUTION ;

 --

 -- Create Event Monitor

 --

 CREATE EVENT MONITOR VIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE

 CONTROL (TABLE CNTL_VIOLATION IN MAINT),

 THRESHOLDVIOLATIONS (TABLE THRESHOLD_VIOLATIONS IN MAINT) AUTOSTART;

 SET EVENT MONITOR VIOLATIONS STATE 1;

 [image:]

 Monitor

 We will continue using the same high level reporting and repeating our analysis and the WLM methodology cycle.

[image:]
[image:]

Monitoring DB2 workload management information

 This chapter describes the methodology for monitoring the DB2 workload management information. We discuss the monitoring tools in two categories: real-time monitoring and historical monitoring. For information about the concept, and to learn event monitor-related terminology, refer to the DB2 Information Center:

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

 We discuss the following topics in this chapter:

 •Real-time monitoring

  –	Workload management table functions

  –	Workload management stored procedures

  –	db2pd command for workload management

 •Historical monitoring

  –	Activities event monitor

  –	Threshold violations event monitor

  –	Statistics event monitor

 4.1 Real-time monitoring

 Real-time monitoring is useful because it allows you to see what is happening on your system. This section describes how to use workload management table functions and stored procedures, and it illustrates the use of the db2pd command by examples. These monitoring tools enable you to access information for the new Workload Manager (WLM) objects.

 4.1.1 Workload management table functions

 DB2 9.5 provides new table functions for WLM to collect and report point-in-time workload information. Note that these table functions do not use the existing system monitor or snapshot mechanisms. Instead they access directly in-memory information, and therefore have a minimum impact on performance.

 These table functions offer you the ability to access monitoring data (such as workload management statistics) by using SQL statements. You can write applications to query and analyze data as if it were any physical table on the data server.

 All table functions can return information for either a single database partition or for all database partitions in a partitioned database environment. Those table functions have the dbpartitionnum input parameter. The parameter indicates -1 for the current database partition, or -2 for all active database partitions.

 As described next, DB2 9.5 provides two types of table functions for WLM: one for obtaining operational information, and the other for obtaining statistics.

 Table functions to obtain operational information

 This set of table functions returns information about work that is currently executing on the system.

 •WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

 Table function parameters:

  –	service_superclass_name

  –	service_subclass_name

  –	dbpartitionnum

 You can also use this to list all workload occurrences on the system if the optional service class parameters are not specified. For each occurrence, there is information about the current state, the connection attributes used to assign the workload to the service class, activity statistics indicating the activity volume, and the success rates. Example 4-1 shows how to use this table function to find out which applications are connected to the system.

 Example 4-1 Workload occurrences on the system

 [image:]

 >db2 "SELECT SUBSTR(service_superclass_name,1,19) AS superclass_name, SUBSTR(service_subclass_name,1,19) AS subclass_name,

 SUBSTR(workload_name,1,22) AS workload_name, application_handle, workload_occurrence_state, SUBSTR(application_name,1,10) AS application_name, SUBSTR(client_applname,1,10) AS client_applname

 FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES('','',-2))"

 SUPERCLASS_NAME SUBCLASS_NAME WORKLOAD_NAME APPLICATION_HANDLE WORKLOAD_OCCURRENCE_STATE

 APPLICATION_NAME CLIENT_APPLNAME

 ------------------- ------------------- ---------------------- -------------------- -------------------------------

 - ---------------- ---------------

 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD 9 UOWEXEC

 db2bp.exe test

 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS SYSDEFAULTUSERWORKLOAD 53 UOWWAIT

 java.exe account

 2 record(s) selected.

 [image:]

 Note that the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function does not report applications that have status “connected” because those applications have not been assigned to a workload yet.

 •WLM_GET_SERVICE_CLASS_AGENTS

 Table function parameters:

  –	service_superclass_name

  –	service_subclass_name

  –	application_handle

  –	dbpartitionnum

 You can use this table function to obtain a list of agents working in the database. You can list all the agents running in a specific service class, or all the agents working on the behalf of a particular application. You can also use this table function to determine the state of the coordinator agent and subagents for applications, and determine which requests each agent in the system is working on. For example, if someone complains about a query not running, you can find the workload occurrence and see what agents are working on the query and what state they are in.

 Example 4-2 lists the agents currently working on behalf of the applications identified by application handle 9 and 53.

 Example 4-2 Using WLM_GET_SERVICE_CLASS_AGENTS

 [image:]

 >db2 "SELECT application_handle, SUBSTR(event_type,1,10) AS event_type, SUBSTR(event_object,1,10) AS event_object, SUBSTR(event_state,1,10) AS event_state, SUBSTR(request_type,1,10) AS request_type

 FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', 9, -1)) AS agents"

 APPLICATION_HANDLE EVENT_TYPE EVENT_OBJECT EVENT_STATE REQUEST_TYPE

 -------------------- ---------- ------------ ----------- ------------

 9 PROCESS ROUTINE EXECUTING OPEN

 1 record(s) selected.

 >db2 "SELECT application_handle, substr(event_type,1,10) as event_type, substr(event_object,1,10) as event_object, substr(event_state,1,10) as event_state, substr(request_type,1,10) as request_type

 FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', 53, -1)) AS Agents"

 APPLICATION_HANDLE EVENT_TYPE EVENT_OBJECT EVENT_STATE REQUEST_TYPE

 -------------------- ---------- ------------ ----------- ------------

 53 WAIT REQUEST IDLE COMMIT

 1 record(s) selected.

 [image:]

 •WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

 Table function parameters:

  –	application_handle

  –	dbpartitionnum

 You can use this table function to obtain a list of current activities that are associated with a workload occurrence. For each activity, the available information includes the current state of the activity (for example, executing or queued), the type of activity (for example, LOAD, READ, DDL), and the time at which the activity started.

 Example 4-3 shows all activities on the system from all applications. Two applications are executing a SELECT, VALUES INTO, or XQuery statement.

 Example 4-3 Activities on the system from all applications

 [image:]

 >db2 "SELECT application_handle, local_start_time, activity_state, activity_type FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(null AS bigint), -1))"

 APPLICATION_HANDLE LOCAL_START_TIME ACTIVITY_STATE ACTIVITY_TYPE

 -------------------- -------------------------- --------------- ----------------

 466 2007-08-17-10.18.27.893233 EXECUTING READ_DML

 517 2007-08-17-10.17.08.991668 EXECUTING READ_DML

 2 record(s) selected.

 [image:]

 Example 4-4 shows the total number of LOADs currently running on the system.

 Example 4-4 Number of LOAD activities on the system

 [image:]

 >db2 "select count(*) as load_count from table(wlm_get_workload_occurrence_activities(cast(NULL as bigint), -1)) where activity_type='LOAD'"

 LOAD_COUNT

 5

 1 record(s) selected.

 [image:]

 •WLM_GET_ACTIVITY_DETAILS

 Table function parameters:

  –	application_handle

  –	uow_id

  –	activity_id

  –	dbpartitionnum

 You can use this table function to obtain the details about an individual activity of an application. For example, for SQL activities, the available information includes the statement text, package data, cost estimates, lock timeout value, and isolation level.

 Note that you need to turn on the statement monitor switch or the time stamp switch to collect some elements (for example, CPU times and rows read or modified). The value -1 means that either the statement monitor switch or the time stamp switch is not activated.

 Example 4-5 shows the details for the application with handle 18. It shows details about the activity with unit of work ID 16 and activity ID 1.

 Example 4-5 Capturing the individual activity

 [image:]

 >db2 "SELECT SUBSTR(NAME, 1, 25) AS NAME, SUBSTR(VALUE, 1, 20) AS VALUE FROM TABLE(WLM_GET_ACTIVITY_DETAILS(18,16,1,-2))

 WHERE NAME IN ('COORD_PARTITION_NUM', 'APPLICATION_HANDLE', 'EFFECTIVE_ISOLATION', 'EFFECTIVE_LOCK_TIMEOUT', 'QUERY_COST_ESTIMATE')"

 NAME VALUE

 ------------------------- --------------------

 APPLICATION_HANDLE 18

 COORD_PARTITION_NUM 0

 EFFECTIVE_ISOLATION 3

 EFFECTIVE_LOCK_TIMEOUT 120

 QUERY_COST_ESTIMATE 8

 5 record(s) selected.

 [image:]

 Identify a SQL statement in lock-wait

 In this section, we provide a simple example showing how the table functions can be used. If you want to get the SQL statement that is in lock-wait by using the snapshot monitor, you need to turn on the statement monitor switch. WLM table functions provide you with a way to obtain the running SQL statement without turning the monitoring switch on, because it does not depend on the monitor switch.

 Here we demonstrate how to use the table functions to identify the lock-wait query.

 1.	Identify the application handle using the SNAPAPPL_INFO administrative view, as shown in Example 4-6. The application handle 43 is lock-waited.

 Example 4-6 Identifying which application is lock-waited

 [image:]

 >db2 "select agent_id,appl_status,substr(appl_name,1,10) AS appl_name from sysibmadm.snapappl_info"

 AGENT_ID APPL_STATUS APPL_NAME

 -------------------- ---------------------- ----------

 39 CONNECTED db2stmm

 38 UOWWAIT db2bp.exe

 43 LOCKWAIT java.exe

 42 CONNECTED db2evmg_DB

 41 CONNECTED db2wlmd

 47 UOWEXEC db2bp.exe

 40 CONNECTED db2taskd

 7 record(s) selected.

 [image:]

 2.	Identify the UOW ID and the activity ID using the WLM_GET_SERVICE_CLASS_AGENTS table function. Example 4-7 shows UOW ID and activity ID for application 43, respectively.

 Example 4-7 Identifying the UOW ID and activity ID

 [image:]

 >db2 "SELECT application_handle, uow_id, activity_id, event_object, event_state FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('SYSDEFAULTUSERCLASS','SYSDEFAULTSUBCLASS',43, -1)) as agents"

 APPLICATION_HANDLE UOW_ID ACTIVITY_ID EVENT_OBJECT EVENT_STATE

 -------------------- ----------- ----------- ------------ ------------

 43 3 1 LOCK IDLE

 1 record(s) selected.

 [image:]

 3.	Identify the SQL statement using the WLM_GET_ACTIVITY_DETAILS table function. Example 4-8 shows the query in lock-wait in STMT_TEXT. The STMT_TEXT field only contains the first 1024 characters of the statement text.

 Example 4-8 Identifying the SQL statement

 [image:]

 >db2 "SELECT substr(name, 1, 20) as name, substr(value, 1, 50) as value FROM TABLE(WLM_GET_ACTIVITY_DETAILS(43,3,1,-1)) as actdetail WHERE NAME IN ('coord_partition_num', 'application_handle', 'local_start_time', 'application_handle', 'activity_id', 'uow_id', 'activity_state', 'activity_type', 'entry_time', 'local_start_time', 'stmt_text', 'rows_fetched', 'query_cost_estimate')"

 NAME VALUE

 --

 APPLICATION_HANDLE 43

 COORD_PARTITION_NUM 0

 UOW_ID 3

 ACTIVITY_ID 1

 ACTIVITY_STATE EXECUTING

 ACTIVITY_TYPE READ_DML

 ENTRY_TIME 2007-08-16-12.04.04.744903

 LOCAL_START_TIME 2007-08-16-12.04.04.744927

 STMT_TEXT SELECT NAME FROM STAFF WHERE ID = ?

 QUERY_COST_ESTIMATE 8

 ROWS_FETCHED -1

 11 record(s) selected.

 [image:]

 Table functions to obtain statistics

 This set of table functions returns the detailed workload information since the last time that the statistics were reset. These table functions report only a subset of the statistics event monitor. To view the full set of statistics, you must collect the statistics information. We discuss what statistics are captured and stored in 4.2.3, “Statistics event monitor” on page 107, and explain how they are reset in “Resetting statistics on workload management objects” on page 110.

 	
 Note: The monitoring table functions and stored procedures are activities (like any other SQL) and as such are subject to monitoring. For example, if they are run under a given service class, they will show up in the completed activity counts for that service class.

 If you want the statistics from user applications isolated from the statistics from monitoring activities, consider isolating the user applications from the monitoring activities; that is, run them in different service classes.

 Table functions for obtaining statistics are:

 •WLM_GET_SERVICE_SUPERCLASS_STATS

 Table function parameters:

  –	service_superclass_name

  –	dbpartitionnum

 You can use this table function to show summary statistics across partitions at the service superclass level. For example, knowing the high water marks for concurrent connections is useful when determining peak workload activity.

 Example 4-9 shows the concurrent connections for each service superclass.

 Example 4-9 Using WLM_GET_SERVICE_SUPERCLASS_STATS

 [image:]

 >db2 "SELECT * FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('', -1))"

 SERVICE_SUPERCLASS_NAME DBPARTITIONNUM LAST_RESET CONCURRENT_CONNECTION_TOP

 ------------------------- -------------- -------------------------- -------------------------

 SYSDEFAULTSYSTEMCLASS 0 2007-08-17-08.25.53.703291

 7

 SYSDEFAULTMAINTENANCECLASS 0 2007-08-17-08.25.53.703367

 2

 SYSDEFAULTUSERCLASS 0 2007-08-17-08.25.53.703419

 15

 3 record(s) selected.

 [image:]

 •WLM_GET_SERVICE_SUBCLASS_STATS

 Table function parameters:

  –	service_superclass_name

  –	service_subclass_name

  –	dbpartitionnum

 You can use this table function to show summary statistics across partitions at the service subclass level (all activities run in service subclasses). Statistics includes the number of activities and average execution times. The average execution time is useful to know when looking at general system health and the distribution of activities across service classes and partitions.

 Some statistics (for example, average activity lifetime) are only returned if aggregate activity data collection (specified using the COLLECT AGGREGATE ACTIVITY DATA clause) is enabled for the service subclass. Other statistics (such as request execution time) depend on whether or not aggregate request data collection (specified using the COLLECT AGGREGATE REQUEST DATA clause) is enabled.

 Example 4-10 shows the number of requests (NUM_REQUESTS_ACTIVE) that are executing in the service subclass and the average request execution time (REQUEST_EXEC_TIME_AVG). Notice that for all service subclasses the average request execution time is NULL. This is because the COLLECT AGGREGATE REQUEST DATA clause has not been specified for any of these service subclasses.

 Example 4-10 Using WLM_GET_SERVICE_SUBCLASS_STATS

 [image:]

 >db2 "SELECT substr(service_superclass_name,1,19) as superclass_name, substr(service_subclass_name,1,18) as subclass_name, num_requests_active, request_exec_time_avg FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS('','', -1)) ORDER BY superclass_name, subclass_name"

 SUPERCLASS_NAME SUBCLASS_NAME NUM_REQUESTS_ACTIVE REQUEST_EXEC_TIME_AVG

 ------------------- ------------------ -------------------- ------------------------

 SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0

 -

 SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 5

 -

 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 15

 -

 3 record(s) selected.

 [image:]

 •WLM_GET_WORK_ACTION_SET_STATS

 Table function parameters:

  –	work_action_set_name

  –	dbpartitionnum

 You can use this table function to show summary statistics across partitions at the work action set level; namely, the number of activities of each work class that had a work action from the corresponding work action set applied to them. This is useful for understanding the effectiveness of a work action set and understanding the types of activities executing on the system.

 In Example 5-11, we are using the work action set and work class to determine the number of large read activities running. The work_class_name marked with an asterisk (*) represents all activities that did not fall into the explicitly named work class LARGEREADS_QUERY. The value 3 means that three activities of type LARGEREADS_QUERY had work actions applied to them from the LARGEREADS_ACTIONSET work action set.

 Example 4-11 Using WLM_GET_WORK_ACTION_SET_STATS

 [image:]

 db2 "SELECT substr(work_action_set_name,1,20) as work_action_set_name, substr(work_class_name,1,16) as work_class_name, substr(char(act_total),1,14) as act_total, last_reset FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS (cast(null as varchar(128)), -1)) as wasstats order by work_action_set_name, work_class_name"

 WORK_ACTION_SET_NAME WORK_CLASS_NAME ACT_TOTAL LAST_RESET

 --------------------- ---------------- --------- --------------------------

 LARGEREADS_ACTIONSET * 0 2007-08-24-18.22.02.038311

 LARGEREADS_ACTIONSET LARGEREADS_QUERY 3 2007-08-24-18.22.02.038311

 2 record(s) selected.

 [image:]

 •WLM_GET_WORKLOAD_STATS

 Table function parameters:

  –	workload_name

  –	dbpartitionnum

 You can use this table function to show summary statistics across partitions at the workload level. This includes high water marks for concurrent workload occurrences and numbers of completed activities. Knowing these is useful when you are monitoring general system health or drilling down to identify problem areas.

 Example 4-12 shows the highest number of concurrent occurrences and the highest number of concurrent activities for each workload. The CONCURRENT_WLO_ACT_TOP field is updated by each workload occurrence at the end of its unit of work.

 Example 4-12 Using WLM_GET_WORKLOAD_STATS

 [image:]

 >db2 "SELECT substr(workload_name,1,22) as workload_name, concurrent_wlo_top, concurrent_wlo_act_top FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(null as varchar(128)), -1)) ORDER BY workload_name"

 WORKLOAD_NAME CONCURRENT_WLO_TOP CONCURRENT_WLO_ACT_TOP

 ---------------------- ------------------ ----------------------

 SYSDEFAULTADMWORKLOAD 0 0

 SYSDEFAULTUSERWORKLOAD 16 2

 2 record(s) selected.

 [image:]

 •WLM_GET_QUEUE_STATS

 Table function parameters:

  –	threshold_predicate

  –	threshold_domain

  –	threshold_name

  –	threshold_id

 You can use this table function to show summary statistics across partitions for the WLM queues used for their corresponding thresholds. Statistics include the number of queued activities (current and total) and total time spent in a queue. This is useful when querying current queued activity or validating if a threshold is correctly defined. Excessive queuing might indicate that a threshold is too restrictive. Very little queuing might indicate that a threshold is not restrictive enough, or is not needed.

 Example 4-13 shows the CPU time consumed by each service class. From the output we can learn which service class is consuming the most CPU resources.

 Example 4-13 Using WLM_GET_QUEUE_STATS

 [image:]

 >db2 "SELECT substr(threshold_name, 1, 15) threshname, threshold_predicate, threshold_domain, dbpartitionnum part, queue_size_top, queue_size_current, queue_time_total, queue_assignments_total queue_assign FROM table(WLM_GET_QUEUE_STATS('', '', '', -1))"

 THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN PART QUEUE_SIZE_TOP QUEUE_SIZE_CURRENT QUEUE_TIME_TOTAL QUEUE_ASSIGN

 --------------- --------------------------- ------------------ ------ -------------- ------------------ -------------------- --------------------

 QUEUE_THRESH CONCDBC SB 0 10 10 806299 17

 1 record(s) selected.

 [image:]

 Workload management and snapshot monitor integration

 The snapshot monitor is also useful for capturing the condition of a database system. You can use both snapshot monitor table functions and SQL administrative views with workload management table functions at the same time. There are fields you can use when joining table functions between workload management and snapshot monitor.

 Table 4-1 lists the fields shared between the workload management table functions and the snapshot monitor table functions.

 Table 4-1 WLM and snapshot monitor table functions field mapping

 	
 WLM table function field

 	
 Snapshot™ monitor table function field

 	
 agent_tid

 	
 agent_pid

 	
 application_handle

 	
 agent_id

 agent_id_holding_lock

 	
 session_auth_id

 	
 session_auth_id

 	
 dbpartitionnum

 	
 node_number

 	
 utility_id

 	
 utility_id

 	
 workload_id

 	
 workload_id

 Example 4-14 shows how to identify the CPU consumption of applications by joining the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function and the SNAPAPPL administrative view. In this example, we see that the ACCOUNTING superclass consumes the most CPU resources.

 Example 4-14 Identifying applications consuming CPU resource

 [image:]

 SELECT substr(wlm.service_superclass_name,1,25) as superclass_name, substr(wlm.service_subclass_name,1,25) as subclass_name, sum(s

 nap.agent_usr_cpu_time_s + snap.agent_sys_cpu_time_s) as cpu_time FROM sysibmadm.snapappl snap, TABLE(WLM_GET_SERVICE_CLASS_WORKLO

 AD_OCCURRENCES('','',-1)) wlm WHERE snap.agent_id=wlm.application_handle GROUP BY wlm.service_superclass_name, wlm.service_subclas

 s_name ORDER BY cpu_time DESC

 SUPERCLASS_NAME SUBCLASS_NAME CPU_TIME

 ------------------------- ------------------------- --------------------

 ACCOUNTING SYSDEFAULTSUBCLASS 47

 SALES SYSDEFAULTSUBCLASS 39

 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0

 3 record(s) selected.

 [image:]

 4.1.2 Workload management stored procedures

 DB2 9.5 provides new stored procedures for WLM to manage activities. Each stored procedure offers a specific functionality.

 WLM stored procedures are:

 •WLM_CANCEL_ACTIVITY

 Syntax:

 WLM_CANCEL_ACTIVITY (application_handle, uow_id, activity_id)

 You can use this stored procedure to cancel a running or queued activity. You identify the activity by its application handle, unit of work identifier, and activity identifier. Cancelling an activity will not terminate the connection. It only stops the activity that was cancelled. If an application has several activities running and only one needs to be stopped, cancelling the activity is a gentler approach than forcing the application, which would terminate all activities. The application with the canceled activity receives the error SQL4725N.

 In Example 4-15, from window A, we first tried to cancel application 637 with UOW ID 3 and ACTIVITY ID 1. This is not an existing activity, however, and DB2 returns SQL4702N with SQLSTATE 5U035. We then successfully cancelled application 637, UOW ID 1, ACTIVITY ID 1. In WindowB, we see the application is canceled but the connection stays.

 Example 4-15 Canceling an activity

 [image:]

 WindowA:

 >db2 CALL WLM_CANCEL_ACTIVITY(637,3,1)

 SQL4702N The activity identified by application handle "637 [0-637]", unit of work ID "3", and activity ID "1" does not exist. SQLSTATE=5U035

 >db2 CALL WLM_CANCEL_ACTIVITY(637,1,1)

 Return Status = 0

 WindowB:

 >db2 "SELECT * FROM employee FOR UPDATE"

 EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE JOB

 EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

 ------ ------------ ------- --------------- -------- ------- ---------- --------

 ------- --- ---------- ----------- ----------- -----------

 SQL4725N The activity has been cancelled. SQLSTATE=57014

 >db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected

 Connection mode = SHARE

 Local database alias = SAMPLE

 Database name = SAMPLE

 Hostname =

 Service name =

 [image:]

 •WLM_CAPTURE _ACTIVITY_IN_PROGRESS

 Syntax:

 WLM_CAPTURE_ACTIVITY_IN_PROGRESS(application_handle, uow_id, activity_id)

 You can use this stored procedure to send information about an individual activity that is currently queued or executing to the active activities event monitor. This stored procedure sends the information immediately, rather than waiting until the activity completes. Before you call this stored procedure, you need to activate an activity event monitor. If there is no active activities event monitor, SQL1633W with SQLSTATE 01H53 is returned.

 Example 4-16 shows how to use this stored procedure to collect the estimated cost for a particular activity from the active activities event monitor. SQL1633W is returned on the first stored procedure call because the event monitor was not activated. After the event monitor was activated, the stored procedure ran successfully and we could select data from the active activities event monitor.

 For more information about the activities event monitor, refer to the 4.2.1, “Activities event monitor” on page 95.

 Example 4-16 Capturing an activity

 [image:]

 >db2 CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(660,2,1)

 Return Status = 0

 SQL1633W The activity identified by application handle "660 [0-660]", unit of work ID "2", and activity ID "1" could not be captured because there is no active activity event monitor. SQLSTATE=01H53

 >db2 set event monitor act state 1

 DB20000I The SQL command completed successfully.

 >db2 CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(660,2,1)

 Return Status = 0

 >db2 "select query_card_estimate, query_cost_estimate from activity_db2activities as act where act.agent_id = 660 and act.uow_id=2 and act.activity_id = 1"

 QUERY_CARD_ESTIMATE QUERY_COST_ESTIMATE

 -------------------- --------------------

 1 1530286

 1 record(s) selected.

 [image:]

 •WLM_COLLECT_STATS

 Syntax:

 WLM_COLLECT_STATS()

 You can use this stored procedure to collect and reset statistics for workload management objects. All statistics tracked for service classes, workloads, threshold queues, and work action sets are sent to the active statistics event monitor (if one exists) and then reset. If there is no active statistics event monitor, the statistics are only reset; they are not collected.

 Example 4-17 shows that the data of last_reset field is changed after calling the WLM_COLLECT_STATS stored procedure. The evmon statistical tables show that these tables contain the statistics that previously were being reported by the table function. For more information about the statistics event monitor, refer to “Statistics event monitor” on page 107.

 Example 4-17 calling the WLM_COLLECT_STATS stored procedure

 [image:]

 >db2 "SELECT service_superclass_name, concurrent_connection_top, last_reset FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('SYSDEFAULTUSERCLASS',-1))"

 SERVICE_SUPERCLASS_NAME CONCURRENT_CONNECTION_TOP LAST_RESET

 ----------------------- ------------------------- -------------------------

 SYSDEFAULTUSERCLASS 4 2008-01-01-19.34.00.895855

 1 record(s) selected.

 >db2 "CALL WLM_COLLECT_STATS()"

 Return Status = 0

 >db2 "SELECT service_superclass_name, concurrent_connection_top, last_reset FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS('SYSDEFAULTUSERCLASS',-1))"

 SERVICE_SUPERCLASS_NAME CONCURRENT_CONNECTION_TOP LAST_RESET

 ----------------------- ------------------------- -------------------------

 SYSDEFAULTUSERCLASS 4 2008-01-01-19.34.56.354245

 1 record(s) selected.

 >db2 "select substr(service_superclass_name,1,20) as service_superclass_name, concurrent_connection_top, last_wlm_reset, statistics_timestamp from scstats_db2statistics where service_superclass_name='SYSDEFAULTUSERCLASS'"

 SERVICE_SUPERCLASS_NAME CONCURRENT_CONNECTION_TOP LAST_WLM_RESET STATISTICS_TIMESTAMP

 ----------------------- ------------------------- ------------------------- --------------------------

 SYSDEFAULTUSERCLASS 4 2008-01-01-19.23.18.674420 2008-01-01-19.34.00.895855

 SYSDEFAULTUSERCLASS 4 2008-01-01-19.34.00.895855 2008-01-01-19.34.56.354245

 2 record(s) selected.

 [image:]

 •WLM_SET_CLIENT_INFO

 Syntax:

 WLM_SET_CLIENT_INFO(client_userid, client_wrkstnname, client_applname, client_acctstr, client_workload)

 You can use this procedure to set client information (client's user ID, application name, workstation name, accounting, or workload information) associated with the current connection to the DB2 server.

 Example 4-18 shows how to use this stored procedure to set the client user ID.

 Example 4-18 Setting the client's user ID

 [image:]

 >db2 CALL SYSPROC.WLM_SET_CLIENT_INFO('V95USER', NULL, NULL, NULL, NULL)

 Return Status = 0

 >db2 values(current client_userid)

 1

 V95USER

 1 record(s) selected.

 [image:]

 4.1.3 The db2pd command for workload management

 In DB2 9.5, the db2pd command is enhanced for workload management to return operational information from the DB2 database system memory sets. The db2pd command allows you to display current state information about WLM objects.

 Here we list the db2pd command with various options for workload management:

 •db2pd -workloads [none/workloadID]

 This returns a list of workload definitions in memory at the time the command is run.

 •db2pd -serviceclasses [none/serviceclassID]

 This returns information about the service classes for a database. serviceclassID is an optional parameter to retrieve information for one specific service class. If serviceclassID is not specified, information for all service classes is retrieved.

 •db2pd -workactionsets [none/workactionsetID]

 This returns information about all enabled work action sets, as well as all the enabled work actions in the enabled work action sets.

 •db2pd -workclasssets [none/workclasssetID]

 This returns information about all work class sets that have been referenced by an enabled work action set, as well as all work classes in those work class sets.

 •db2pd -thresholds [none/thresholdID]

 This returns information about thresholds. thresholdID is optional. Specifying a threshold ID returns information about a specific threshold. If thresholdID is not specified, information for all thresholds is retrieved.

 Example 4-19 shows how we used db2pd to retrieve information for service class ID 3 in SAMPLE database. You can see the application handle list associated with the service class.

 Example 4-19 Using the db2pd command

 [image:]

 >db2pd -db sample -serviceclasses 3

 Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 02:30:04

 Service Classes:

 Service Class Name = SYSDEFAULTUSERCLASS

 Service Class ID = 3

 Service Class Type = Service Superclass

 Default Subclass ID = 13

 Service Class State = Enabled

 Agent Priority = Default

 Prefetch Priority = Default

 Outbound Correlator = None

 Work Action Set ID = N/A

 Collect Activity Opt = None

 Num Connections = 3

 Last Statistics Reset Time = 2007-08-17 08:25:53.000000

 Num Coordinator Connections = 3

 Coordinator Connections HWM = 4

 Associated Workload Occurrences (WLO):

 AppHandl [nod-index] WL ID WLO ID UOW ID WLO State

 466 [000-00466] 1 1 116 UOWWAIT

 513 [000-00513] 1 147 11 UOWWAIT

 660 [000-00660] 1 295 3 UOWEXEC

 [image:]

 Example 4-20 shows how we used db2pd to look at the thresholds to see in which queue this agent is actually waiting. You can see the application handle 97 is queuing the QUEUE_THRESH threshold.

 Example 4-20 Check thresholds with db2pd

 [image:]

 >db2pd -db sample -thresholds

 Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:36:13

 Database Thresholds:

 Service Class Thresholds:

 Threshold Name = QUEUE_THRESH

 Threshold ID = 1

 Domain = 30

 Domain ID = 3

 Predicate ID = 90

 Maximum Value = 50

 Enforcement = D

 Queueing = Y

 Queue Size = 0

 Collect Flags = N

 Partition Flags = C

 Execute Flags = C

 Enabled = Y

 Database Threshold Queues:

 Service Class Threshold Queues:

 Queue information for threshold: QUEUE_THRESH

 Max Concurrency = 50

 Concurrency = 50

 Max Queue Size = 0

 Agents Currently Queued:

 EDU ID AppHandl [nod-index] Agent Type Activity ID UOW ID

 660 79 [000-00079] 1 1 1

 [image:]

 4.2 Historical monitoring

 Historical monitoring is useful for seeing what have occurred on your system. DB2 provides three event monitor types, ACTIVITIES, THRESHOLD VIOLATIONS and STATISTICS, for WLM. ACTIVITIES and STATISTICS event monitors store activity information or aggregate information. The THRESHOLD VIOLATIONS event monitor records threshold violations. This section describes how to collect and analyze this information.

 Event monitors are used to collect specified event monitor data while they are active. Typically, event monitors write data to either tables or files. The event monitor file output requires formatting using db2evmon in order to be readable. The event monitor table data can be queried using SQL statements.

 You can use the wlmevmon.ddl script in the sqllib/misc directory to create and enable three event monitor: DB2ACTIVITIES, DB2STATISTICS, and DB2THRESHOLDVIOLATIONS. These event monitors write data to tables. If you execute the script without modification, tables are stored in the USERSPACE1. You can modify the script to change the table space or other parameters.

 The following high level procedure is an example of using an event monitor.

 1.	Create an event monitor using the CREATE EVENT MONITOR statement.

 The event monitor can write output to the following:

  –	Tables ([WRITE TO TABLE]): Event monitor tables are automatically created when creating a event monitor.

  –	A file ([WRITE TO FILE]): Event files are in a directory location to be stored.

 2.	Activate an event monitor using the SET EVENT MONITOR STATE statement.

 SET EVENT MONITOR <event monitor name> STATE [1(ACTIVATE) | 0(DEACTIVATE]

 3.	Applications are run to collect their event monitor data.

 4.	Deactivate an event monitor using the SET EVENT MONITOR STATE statement.

 5.	Refer to event monitor data.

  –	Tables: You can access this data by using SQL SELECT statement.

  –	A file: You can format this data by using the db2evmon command.

 Table 4-2 shows the event monitor types for WLM and event group. If you create an activity event monitor to write data to tables, the database creates four target tables to store records for each of the event groups.

 Table 4-2 Type of event monitor and event monitor group value

 	
 Type of event monitor

 	
 evm-group value

 	
 Activities

 	
 CONTROL

 ACTIVITY

 ACTIVITYSTMT

 ACTIVITYVALS

 	
 Threshold Violations

 	
 CONTROL

 THRESHOLDVIOLATIONS

 	
 Statistics

 	
 CONTROL

 SCSTATS

 WCSTATS

 WLSTATS

 HISTOGRAMBIN

 QSTATS

 	
 Note: Only one of the event monitors ACTIVITIES, STATISTICS, or THRESHOLD VIOLATIONS can be active at any time. If an event monitor of the same type is already active, SQL1631N with SQLSTATE 5U024 is returned.

 For detailed event monitor information, refer to the DB2 Information Center:

 https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.admin.mon.doc/doc/c0005721.html

 4.2.1 Activities event monitor

 This section explains how to use the activities event monitor. The following are a few frequently asked questions about the activities event monitor:

 •Which WLM objects can I collect activity information for?

 You can collect information about individual activities for service subclasses, workloads, work classes (through work actions), and threshold violations.

 •How is this information useful?

  –	This information can be useful as input to tools such as Design advisor(db2advis) or to the explain utility (to obtain access plans)

  –	It can also help you to debug individual activities.

 •When is the information collected?

 The information is collected when the activity completes, regardless of whether the activity completes successfully. When an activity completes, information about the activity is sent to the active ACTIVITIES event monitor, if one exists.

 •How do I collect the information?

 You can collect information about an activity by specifying COLLECT ACTIVITY DATA for the service subclass, workload, or work action to which the activity belongs, or by specifying a threshold that might be violated by such an activity.

 Collecting WLM object activity information

 Follow these steps to collect activities for a given workload management object.

 1.	Create an event monitor.

 Use the CREATE EVENT MONITOR statement to create an ACTIVITIES type event monitor.

 Example 4-21 shows how to create an activities event monitor that writes data to a file.

 Example 4-21 Creating an activities event monitor to a file

 [image:]

 $ db2 "create event monitor wlm_act for activities write to file '/evmon/wlm/activities' autostart"

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 [image:]

 Example 4-22 shows to how to create an activities event monitor that writes data to tables. Four tables are created.

 Example 4-22 Creating an activities event monitor tables

 [image:]

 $ db2 "create event monitor wlm_act for activities write to table activity (table activity_db2activities in userspace1), activitystmt (table activitystmt_db2activities in userspace1), activityvals (table activityvals_db2activities in userspace1), control (table control_db2activities in userspace1) autostart"

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 [image:]

 To obtain a quick reference about the column name or the type name for those event monitor tables, use the DESCRIBE TABLE command:

 db2 describe table activity_db2activities

 For more details about the information collected in the table, refer to the Information Center:

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

 2.	Activate the event monitor.

 Use the SET EVENT MONITOR STATE statement to activate the event monitor.

 Example 4-23 shows how to set the event monitor to active and check its status.

 Example 4-23 Setting the event monitor to active

 [image:]

 $ db2 "SELECT substr(evmonname,1,20) as evmonname, CASE WHEN event_mon_state(evmonname) = 0 THEN 'Inactive' WHEN event_mon_state(evmonname) = 1 THEN 'Active' END FROM syscat.eventmonitors"

 EVMONNAME 2

 -------------------- --------

 DB2DETAILDEADLOCK Active

 WLM_ACT Inactive

 2 record(s) selected.

 $ db2 set event monitor wlm_act state 1

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 $ db2 "SELECT substr(evmonname,1,20) as evmonname, CASE WHEN event_mon_state(evmonname) = 0 THEN 'Inactive' WHEN event_mon_state(evmonname) = 1 THEN 'Active' END FROM syscat.eventmonitors"

 EVMONNAME 2

 -------------------- --------

 DB2DETAILDEADLOCK Active

 WLM_ACT Active

 2 record(s) selected.

 [image:]

 3.	Identify the target objects.

 Identify the objects for which you want to collect activities by using the ALTER SERVICE CLASS, ALTER WORK ACTION SET, ALTER THRESHOLD, or ALTER WORKLOAD statements, and specify the COLLECT ACTIVITY DATA keywords.

 Example 4-24 shows how to alter the default service class to specify the COLLECT ACTIVITY DATA keywords. The COLLECT ACTIVITY DATA clause is only valid for a service subclass. The value W means activity data without details should be collected by the applicable event monitor.

 Example 4-24 Using the ALTER SERVICE CLASS

 [image:]

 $ db2 "SELECT substr(serviceclassname,1,26) as serviceclassname,substr(parentserviceclassname,1,28) as superclassname,collectactdata FROM syscat.serviceclasses"

 SERVICECLASSNAME SUPERCLASSNAME COLLECTACTDATA

 -------------------------- ---------------------------- --------------

 SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS N

 SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS N

 SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS N

 SYSDEFAULTSYSTEMCLASS - N

 SYSDEFAULTMAINTENANCECLASS - N

 SYSDEFAULTUSERCLASS - N

 6 record(s) selected.

 $ db2 "alter service class SYSDEFAULTSUBCLASS under SYSDEFAULTUSERCLASS collect activity data on all without details"

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 $ db2 "SELECT substr(serviceclassname,1,26) as serviceclassname,substr(parentserviceclassname,1,28) as superclassname,collectactdata FROM syscat.serviceclasses"

 SERVICECLASSNAME SUPERCLASSNAME COLLECTACTDATA

 -------------------------- ---------------------------- --------------

 SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS N

 SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS N

 SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS W

 SYSDEFAULTSYSTEMCLASS - N

 SYSDEFAULTMAINTENANCECLASS - N

 SYSDEFAULTUSERCLASS - N

 6 record(s) selected.

 [image:]

 Three levels of activity capture

 You can set the level of activities event monitor by specifying COLLECT ACTIVITY DATA keywords. For each WLM object, you can also activate at different levels and with different settings.

 There are three levels for capturing workload activities:

 •Default (COLLECT ACTIVITY DATA WITHOUT DETAILS option)

 This level collects default information, including WLM identification and basic time statistics.

 •Detailed (COLLECT ACTIVITY DATA WITH DETAILS option)

 This level collects detailed information, including statement text (static and dynamic SQL) and compilation environment.

 •Detailed with input data values (COLLECT ACTIVITY DATA WITH DETAILS AND VALUES option)

 This level collects default information, detailed information, and data values.

 In the following examples, we demonstrate the differences between these three levels.

 In Example 4-25, we create service class, subclasses, and workload to collect Java™ application activity information. Three CREATE WORKLOAD statements are shown for collecting different level details of the activity. Each time, only one of the statements is run. We also create an activity event monitor that writes data to a file.

 Example 4-25 Commands to use COLLECT ACTIVITY DATA keywords

 [image:]

 $ db2 "create service class actservice"

 DB20000I The SQL command completed successfully.

 $ db2 "create service class subactservice under actservice"

 DB20000I The SQL command completed successfully.

 $ db2 "create workload actworkload applname('java.exe') service class subactservice under actservice collect activity data without details"

 or

 $ db2 "create workload actworkload applname('java.exe') service class subactservice under actservice collect activity data with details"

 or

 $ db2 "create workload actworkload applname('java.exe') service class subactservice under actservice collect activity data with details and values"

 DB20000I The SQL command completed successfully.

 $ db2 "create event monitor wlm_act for activities write to file '/evmon/wlm/activities' autostart"

 --------------------A java application is run.-------------------------

 $ db2evmon -path /evmon/wlm/activities > db2evmon.out

 [image:]

 Example 4-26 shows the output of the activities event monitor for workload ACTWORKLOAD with the COLLECT ACTIVITY DATA WITHOUT DETAILS option.

 Example 4-26 COLLECT ACTIVITY DATA WITHOUT DETAILS option output

 [image:]

 6) Activity ...

 Activity ID : 1

 Activity Secondary ID : 0

 Appl Handle : 113

 UOW ID : 1

 Service Superclass Name : ACTSERVICE

 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML

 Parent Activity ID : 0

 Parent UOW ID : 0

 Coordinating Partition : 0

 Workload ID : 3

 Workload Occurrence ID : 2

 Database Work Action Set ID : 0

 Database Work Class ID : 0

 Service Class Work Action Set ID : 0

 Service Class Work Class ID : 0

 Time Created : 2007-08-20 18:20:31.262589

 Time Started : 2007-08-20 18:20:31.262602

 Time Completed : 2007-08-20 18:20:31.262887

 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821000549

 Application Name : java.exe

 Session Auth ID : db2inst1

 Client Userid :

 Client Workstation Name : DB2_COMP

 Client Applname :

 Client Accounting String :

 SQLCA:

 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8

 Query Card Estimate : 1

 Execution time : 0.000284 seconds

 Rows Returned : 1

 [image:]

 Example 4-27 shows the output of the activities event monitor for workload ACTWORKLOAD with the COLLECT ACTIVITY DATA WITH DETAILS option. The activity statement section is added. From Statement text, we can identify which query is being run by Appl Handle 352.

 Example 4-27 COLLECT ACTIVITY DATA WITH DETAILS option output

 [image:]

 5) Activity ...

 Activity ID : 1

 Activity Secondary ID : 0

 Appl Handle : 352

 UOW ID : 2

 Service Superclass Name : ACTSERVICE

 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML

 Parent Activity ID : 0

 Parent UOW ID : 0

 Coordinating Partition : 0

 Workload ID : 3

 Workload Occurrence ID : 1

 Database Work Action Set ID : 0

 Database Work Class ID : 0

 Service Class Work Action Set ID : 0

 Service Class Work Class ID : 0

 Time Created : 2007-08-20 17:58:44.740640

 Time Started : 2007-08-20 17:58:44.740667

 Time Completed : 2007-08-20 17:58:44.741260

 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821044851

 Application Name : java.exe

 Session Auth ID : db2inst1

 Client Userid :

 Client Workstation Name : DB2_COMP

 Client Applname :

 Client Accounting String :

 SQLCA:

 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8

 Query Card Estimate : 1

 Execution time : 0.000592 seconds

 Rows Returned : 1

 6) Activity Statement ...

 Activity ID : 1

 Activity Secondary ID : 0

 Application ID : *LOCAL.DB2_01.070821044851

 UOW ID : 2

 Lock timeout value : -1

 Query ID : 0

 Package cache ID : 103079215105

 Package creator : NULLID

 Package name : SYSSH200

 Package version :

 Section No : 1

 Type : Dynamic

 Nesting level of stmt : 0

 Source ID : 0

 Isolation level : Cursor Stability

 Statement text : SELECT NAME FROM STAFF WHERE ID = ?

 Stmt first use time : 2007-08-20 17:58:44.740640

 Stmt last use time : 2007-08-20 17:58:44.740640

 [image:]

 Example 4-28 shows the output of the activities event monitor for workload ACTWORKLOAD with the COLLECT ACTIVITY DATA WITH DETAILS AND VALUES option. The activity data section is added. We can identify the value of parameter marker. Before DB2 9.5, even if you use the statement event monitor, you cannot collect the value of parameter marker.

 Example 4-28 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES option output

 [image:]

 5) Activity ...

 Activity ID : 1

 Activity Secondary ID : 0

 Appl Handle : 360

 UOW ID : 2

 Service Superclass Name : ACTSERVICE

 Service Subclass Name : SUBACTSERVICE

 Activity Type : READ_DML

 Parent Activity ID : 0

 Parent UOW ID : 0

 Coordinating Partition : 0

 Workload ID : 3

 Workload Occurrence ID : 1

 Database Work Action Set ID : 0

 Database Work Class ID : 0

 Service Class Work Action Set ID : 0

 Service Class Work Class ID : 0

 Time Created : 2007-08-20 18:13:28.207238

 Time Started : 2007-08-20 18:13:28.207265

 Time Completed : 2007-08-20 18:13:28.207860

 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821045412

 Application Name : java.exe

 Session Auth ID : db2inst1

 Client Userid :

 Client Workstation Name : DB2_COMP

 Client Applname :

 Client Accounting String :

 SQLCA:

 SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query is an empty table. SQLSTATE=02000

 Query Cost Estimate : 8

 Query Card Estimate : 1

 Execution time : 0.000595 seconds

 Rows Returned : 1

 6) Activity Statement ...

 Activity ID : 1

 Activity Secondary ID : 0

 Application ID : *LOCAL.DB2_01.070821045412

 UOW ID : 2

 Lock timeout value : -1

 Query ID : 0

 Package cache ID : 103079215105

 Package creator : NULLID

 Package name : SYSSH200

 Package version :

 Section No : 1

 Type : Dynamic

 Nesting level of stmt : 0

 Source ID : 0

 Isolation level : Cursor Stability

 Statement text : SELECT NAME FROM STAFF WHERE ID = ?

 Stmt first use time : 2007-08-20 18:13:28.207238

 Stmt last use time : 2007-08-20 18:13:28.207238

 7) Activity data values...

 Activity ID : 1

 Activity Secondary ID : 0

 Application ID : *LOCAL.DB2_01.070821045412

 UOW ID : 2

 Value position : 1

 Value type : SMALLINT

 Value set by reopt : FALSE

 Value is NULL : FALSE

 Value data : 10

 [image:]

 Importing activity information into the Design Advisor

 The design advisor is a useful tool for tuning SQL statement performance. It recommends indexes for the SQL statements that the user provides. In DB2 9.5, you can provide SQL statements by importing activity information from a workload or a service class into the Design Advisor.

 Before importing activity information into the Design Advisor, the following prerequisites must be satisfied:

 •An activity event monitor table exists and activity information is stored. You cannot import information from activity event monitor files.

 •Activities must have been collected using the COLLECT ACTIVITY DATA WITH DETAILS or COLLECT ACTIVITY DATA WITH DETAILS AND VALUES options.

 •Explain tables must exist. You can use the EXPLAIN.DDL script in the sqllib/misc directory to create the explain tables.

 You can import activity information into the Design Advisor by using the db2advis command, for example:

 db2advis -d sample -wlm db2activities workloadname actworkload

 This example shows how to import activities collected by the DB2ACTIVITIES activity event monitor for the ACTWORKLOAD workload in the SAMPLE database into the design advisor. You can specify the workload or service class name, and the start time and end time.

 4.2.2 Threshold violations event monitor

 This section explains how to use the threshold violations event monitor. The following are frequently asked questions about the threshold violations event monitor:

 •Which WLM objects can I collect threshold violation information for?

 This event monitor collects information about threshold violations, not the information about individual activities. Part of the violation information includes the identity of the activity that violated the threshold.

 •Why is the information useful?

 Threshold violation information is useful for understanding the effectiveness of thresholds (for example, are they stopping too many activities?), learning whether any activities are violating thresholds, and identifying which activities violated thresholds so that you can investigate those activities further.

 •How do I collect the information?

 When a threshold is violated, if there is an active threshold violations event monitor, a threshold volcanos record is written to this event monitor. This record identifies which threshold was violated, the time of the violation, the activity that violated the threshold, and the action taken (whether activity was allowed to continue or stop).

 If you need to know more information about the activity that violated the threshold, specify the COLLECT ACTIVITY DATA clause for the threshold. If COLLECT ACTIVITY DATA is specified for the threshold, detailed information about the activity that violated the threshold will be sent to the active activities event monitor when the activity completes.

 You can optionally have activity information (for example, SQLCODE, SQLSTATE, execution time, and so on) written to an active activity event monitor if the threshold violation is caused by an activity. You need to specify COLLECT ACTIVITY DATA keywords for the activity event monitor.

 •When is the information collected?

 When a workload management threshold is violated, a threshold violation record is written to the active THRESHOLD VIOLATIONS event monitor, if one exists.

 Collecting threshold violations

 Use the following steps to collect threshold violations.

 1.	Create an event monitor.

 Use the CREATE EVENT MONITOR statement to create a THRESHOLD VIOLATIONS event monitor.

 Example 4-29 shows how to create a threshold violations event monitor that writes data to a file.

 Example 4-29 Creating a threshold violations event monitor file

 [image:]

 $ db2 “create event monitor wlm_thresh for threshold violations write to file '/evmon/wlm/thresh'”

 DB20000I The SQL command completed successfully.

 $ db2 "create event monitor wlm_act for activities write to file '/evmon/wlm/activities' autostart"

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 [image:]

 2.	Activate the event monitor.

 Use the SET EVENT MONITOR STATE statement to activate the event monitor.

 Example 4-30 shows how to set the event monitor active.

 Example 4-30 Setting the event monitor active

 [image:]

 $ db2 set event monitor wlm_thresh state 1

 DB20000I The SQL command completed successfully.

 $ db2 set event monitor wlm_act state 1

 DB20000I The SQL command completed successfully.

 $ db2 commit

 DB20000I The SQL command completed successfully.

 [image:]

 3.	Create a threshold object.

 Example 4-31 shows how to create a threshold and specify the COLLECT ACTIVITY DATA keyword.

 Example 4-31 Using the CREATE THRESHOLD command

 [image:]

 $ db2 “create threshold rowsreturnthresh for database activities enforcement database when SQLROWSRETURNED > 10000 collect activity data without details stop execution”

 DB20000I The SQL command completed successfully.

 [image:]

 4.	Run your query.

 We ran an SQL statement that should return over 10000 rows. Due to the threshold restriction, our query was stopped after receiving 10000 rows. The SQL code SQL4712N with SQLSTATE 5U026 was also returned.

 5.	Format the threshold violations event monitor file and see the output.

 Example 4-32 shows the command and output of formatting the threshold violations event monitor.

 Example 4-32 Output of formatting the threshold violations event monitor

 [image:]

 $ db2evmon -path /evmon/wlm/thresh > db2evmon1.out

 $ more db2evmon1.out

 <<extract from db2evmon1.out>>

 5) Threshold Violation ...

 Threshold ID : 1

 Activity ID : 1

 Appl Handle : 337

 Application ID : *LOCAL.DB2_01.070821181355

 UOW ID : 1

 Coordinating Partition : 0

 Time of Violation : 2007-08-21 11:14:21.000000

 Threshold Max Value : 10000

 Threshold Queue Size : 0

 Activity Collected? : Yes

 Threshold Predicate : SQLRowsReturned

 Threshold Action : Stop

 [image:]

 6.	Format the activity event monitor file and see the output.

 Example 4-33 shows the command and output of formatting the activity event monitor. In our example, we only collected default activity information that included SQLCODE, SQLSTATE and reason code. If you want to see which query was violated by the threshold, you need to set COLLECT ACTIVITY DATA WITH DETAILS or COLLECT ACTIVITY DATA WITH DETAILS AND VALUES for the threshold.

 Example 4-33 Output of formatting the activity event monitor

 [image:]

 $ db2evmon -path /evmon/wlm/act > db2evmon2.out

 $ more db2evmon2.out

 <<extract from db2evmon2.out>>

 31) Activity ...

 Activity ID : 1

 Activity Secondary ID : 0

 Appl Handle : 337

 UOW ID : 1

 Service Superclass Name : SYSDEFAULTUSERCLASS

 Service Subclass Name : SYSDEFAULTSUBCLASS

 Activity Type : READ_DML

 Parent Activity ID : 0

 Parent UOW ID : 0

 Coordinating Partition : 0

 Workload ID : 1

 Workload Occurrence ID : 2

 Database Work Action Set ID : 0

 Database Work Class ID : 0

 Service Class Work Action Set ID : 0

 Service Class Work Class ID : 0

 Time Created : 2007-08-21 11:15:01.750519

 Time Started : 2007-08-21 11:15:01.750557

 Time Completed : 2007-08-21 11:16:53.405745

 Activity captured while in progress: FALSE

 Application ID : *LOCAL.DB2_01.070821181355

 Application Name : db2bp.exe

 Session Auth ID : db2inst1

 Client Userid :

 Client Workstation Name :

 Client Applname :

 Client Accounting String :

 SQLCA:

 SQL4712N The threshold "ROWSRETURNTHRESH" has been exceeded. Reason code = "8". SQLSTATE=5U026

 Query Cost Estimate : 6399

 Query Card Estimate : 3869893

 Execution time : 0.037908 seconds

 Rows Returned : 10000

 [image:]

 4.2.3 Statistics event monitor

 This section explains how to use the statistics event monitor and histograms. Compared to statement or activities event monitors, the statistics event monitor is an inexpensive method of capturing historical information because the statistics event monitor deals with aggregate activity information instead of individual activities.

 The following are frequently asked questions about the statistics event monitor:

 •Which WLM objects can I collect statistics information for?

 You can collect information for service classes, work classes, workloads and threshold queues.

 •When is the information useful?

 The information is useful for historical analysis.

 •How do I collect the information?

 Some statistics are always collected for each object. If you want to collect other statistics, you need to specify the COLLECT AGGREGATE option for the service subclass or for a work action applied to the work class.

 •When is the information collected?

 The information is collected:

  –	At regular intervals that are specified by the WLM_COLLECT_INT database configuration parameter.

  –	When the WLM_COLLECT_STATS stored procedure is called.

 The following monitor elements for statistics are collected for each workload management object:

 •Statistics collected by default

  –	Service subclass:

  •	coord_act_completed_total

  •	coord_act_rejected_total

  •	coord_act_aborted_total

  •	concurrent_act_top

  –	Service superclass:

  •	concurrent_connection_top

  –	Workload:

  •	concurrent_wlo_top

  •	concurrent_act_top

  •	coord_act_completed_total

  •	coord_act_rejected_total

  •	coord_act_aborted_total

  •	wlo_completed_total

  –	Work class (through a work action):

  •	act_total

  –	Threshold queues:

  •	queue_assignments_total

  •	queue_size_top

  •	queue_time_total

 •Statistics collected when you specify COLLECT AGGREGATE ACTIVITY DATA BASE

  –	Service subclass:

  •	cost_estimate_top

  •	rows_returned_top

  •	temp_tablespace_top

  •	coord_act_lifetime_top

  •	coord_act_lifetime_avg

  •	coord_act_exec_time_avg

  •	coord_act_queue_time_avg

  •	activity lifetime histogram

  •	activity execution time histogram

  •	activity queue time histogram

  –	Work class (through a work action):

  •	cost_estimate_top

  •	rows_returned_top

  •	temp_tablespace_top

  •	coord_act_lifetime_top

  •	coord_act_lifetime_avg

  •	coord_act_exec_time_avg

  •	coord_act_queue_time_avg

  •	activity lifetime histogram

  •	activity execution time histogram

  •	activity queue time histogram

 •Statistics collected when you specify COLLECT AGGREGATE ACTIVITY DATA EXTENDED

  –	Service subclass:

  •	coord_act_est_cost_avg

  •	coord_act_interarrival_time_avg

  •	activity inter-arrival time histogram

  •	activity estimated cost histogram

  –	Work class (through a work action):

  •	coord_act_est_cost_avg

  •	coord_act_interarrival_time_avg

  •	activity inter-arrival time histogram

  •	activity estimated cost histogram

 •Statistics collected when you specify COLLECT AGGREGATE REQUEST DATA BASE

  –	Service subclass:

  •	request_exec_time_avg

  •	request execution time histogram

 For aggregate activity statistics, if COLLECT AGGREGATE ACTIVITY DATA EXTENDED is specified, all the BASE aggregate activity statistics are also collected.

 If you want to specify both a COLLECT AGGREGATE ACTIVITY keyword and a COLLECT AGGREGATE REQUEST DATA keyword, you can alter a service subclass to add the option.

 Example 4-34 shows how to specify both keywords. In the first statement result, we know that the PROD_QRY service class already specifies the COLLECT AGGREGATE ACTIVITY DATA EXTENTED keyword. After altering the object to add the COLLECT AGGREGATE REQUEST DATA BASE keyword, the COLLECTAGGREQDATA value is changed to B.

 Example 4-34 Commands to alter the service subclass

 [image:]

 >db2 "SELECT substr(serviceclassname,1,19) as serviceclass_name, collectaggactdata, collectaggreqdata FROM syscat.serviceclasses WHERE serviceclassname='PROD_QRY'"

 SERVICECLASS_NAME COLLECTAGGACTDATA COLLECTAGGREQDATA

 ------------------- ----------------- -----------------

 PROD_QRY E N

 1 record(s) selected.

 >db2 "alter service class "PROD_QRY" under "HIGHLVL" collect aggregate request data base"

 DB20000I The SQL command completed successfully.

 >db2 "SELECT substr(serviceclassname,1,19) as superclass_name, collectaggactdata, collectaggreqdata FROM syscat.serviceclasses WHERE serviceclassname='PROD_QRY'"

 SUPERCLASS_NAME COLLECTAGGACTDATA COLLECTAGGREQDATA

 ------------------- ----------------- -----------------

 PROD_QRY E B

 1 record(s) selected.

 [image:]

 Resetting statistics on workload management objects

 There are four events that can reset statistics:

 •The WLM_COLLECT_STATS stored procedure is called.

 The stored procedure collects the current values of the in-memory statistics and resets the statistics. If one user calls the stored procedure, a reset of the workload management statistics applies to all users.

 •The periodic workload management statistics collection and reset process controlled by the WLM_COLLECT_INT database configuration parameter causes a collection and reset.

 WLM_COLLECT_INT enables event monitor to capture statistics automatically at regular intervals.

 •The database is reactivated.

 Every time the database is activated on a database partition, the statistics for all workload management objects on that database partition are reset.

 •The object for which the statistics are maintained is modified and the change is committed.

 For example, if a service subclass is altered, when the ALTER is committed, the in-memory statistics for that service subclass are reset.

 The table functions return the in-memory statistics. So when those statistics are reset (through one of these events), the table functions will be reporting the reset values. You can determine when the statistics were last reset by looking at the last statistics reset time stamp that is included as part of each table function.

 Automatic collecting statistics in a specific timeframe

 Use the following steps to automatically collect statistics for a given workload management object in a given timeframe.

 1.	Create and activate a statistics event monitor.

 Use the CREATE EVENT MONITOR statement to create a STATISTICS event monitor as shown in Example 4-35. This event monitor writes data to file.

 Example 4-35 Creating a statistics event monitor file

 [image:]

 $ db2 "create event monitor wlm_stats for statistics write to file '/evmon/wlm/stats'"

 DB20000I The SQL command completed successfully.

 [image:]

 Use the SET EVENT MONITOR STATE statement to activate the event monitor as shown in Example 4-36.

 Example 4-36 Setting the event monitor active

 [image:]

 $ db2 set event monitor wlm_stats state 1

 DB20000I The SQL command completed successfully.

 [image:]

 2.	Enable the collection of additional statistics.

 This step is optional. By default, only a minimal set of statistics is collected for each workload management object.

 Example 4-37 shows how to alter the default service class to specify the COLLECT AGGREGATE ACTIVITY DATA BASE keyword.

 Example 4-37 Using the ALTER SERVICE CLASS

 [image:]

 $ db2 "alter service class SYSDEFAULTSUBCLASS under SYSDEFAULTUSERCLASS COLLECT AGGREGATE ACTIVITY DATA BASE"

 DB20000I The SQL command completed successfully.

 [image:]

 3.	Specify a collection interval.

 Update the database configuration parameter WLM_COLLECT_INT. Example 4-38 shows how to update the database configuration parameter.

 In this case, statistics information is sent to the statistics event monitor every five minutes. After you perform the preceding steps, workload management statistics are written to the statistics event monitor every wlm_collect_int minute.

 Example 4-38 Updating the wlm_collect_int database configuration parameter

 [image:]

 >db2 get db cfg for wlmdb | grep 'WLM_COLLECT_INT'

 WLM Collection Interval (minutes) (WLM_COLLECT_INT) = 0

 >db2 update db cfg for sample using wlm_collect_int 5 immediate

 update db cfg for wlmdb using wlm_collect_int 5 immediate

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 >db2 get db cfg for sample | grep 'WLM_COLLECT_INT'

 WLM Collection Interval (minutes) (WLM_COLLECT_INT) = 5

 [image:]

 We used five minutes, simply for demonstration purposes. However, a short interval like this can generate too much data. For real usage, you should use a larger number.

 4.	Run your activities.

 5.	Format the statistics event monitor file.

 Example 4-39 shows the formatted output of the statistics event monitor. The statistics collecting interval is 5 minutes, from TIME OF LAST RESET(2007-08-22 09:21:36.238396) to STATISTICS TIMESTAMP(2007-08-22 09:16:36.231024).

 To see the value of Coordinator Activity Estimated Cost Average, Coordinator Activity Interarrival Time Average, you need to specify COLLECT AGGREGATE ACTIVITY DATA EXTENDED option for the service subclass.

 To see the value of Request Execution Time Average, you need to specify COLLECT AGGREGATE REQUEST DATA BASE option for the service subclass.

 Example 4-39 Output of formatting the statistics event monitor

 [image:]

 647) Service Class Statistics ...

 Service Superclass Name : SYSDEFAULTUSERCLASS

 Service Subclass Name : SYSDEFAULTSUBCLASS

 Service Class ID : 13

 Temp Tablespace high water mark : 0

 Rows Returned high water mark : 262

 Cost Estimate high water mark : 1001074

 Coordinator Completed Activity Count : 78

 Coordinator Aborted Activity Count : 0

 Coordinator Rejected Activity Count : 0

 Coordinator Activity Lifetime high water mark : 79

 Coordinator Activity Lifetime Average : 12

 Coordinator Activity Queue Time Average : 0

 Coordinator Activity Execution Time Average : 1

 Coordinator Activity Estimated Cost Average : -1

 Coordinator Activity Interarrival Time Average: -1

 Request Execution Time Average : -1

 Number Concurrent Activities high water mark : 1

 Number Concurrent Connections high water mark : 4

 Statistics Timestamp : 2007-08-22 09:21:36.238396

 Time of Last Reset : 2007-08-22 09:16:36.231024

 [image:]

 Histograms in workload management

 DB2 workload management histograms are useful for analyzing overall activity behaviors in a DB2 system. The histogram information can be collected and sent to a statistics event monitor when you specify COLLECT AGGREGATE keywords for service subclasses or work classes (through work actions).

 You create histogram templates to specify the uppermost bound for the range of data that the corresponding histogram captures. After you create histogram templates, you use these templates to create histograms of statistical data about database activity lifetimes for monitoring purposes. If you do not create histogram templates, the Design Studio uses a default template to create your histograms.

 Histogram templates use multiple bins that individually collect the histograms from each database partition. The histograms in each bin are combined to create one histogram for all of the partitions in the database. You can use this histogram to express statistics such as the average response time per activity for a partition, the standard deviation of the response times for a partition, and the variance of the response times for a partition.

 Every DB2 WLM histogram has 41 bins for the data collected. Each bin has the range from top to bottom. You can see the number (frequency) of the activities or requests within the range.

 Example 4-40 shows the histogram section of a statistics event monitor output. Three activities Number in bin have an execution time in the range zero (Bottom) milliseconds to one (Top) milliseconds.

 Example 4-40 Extract histogram output from statistics event monitor file

 [image:]

 49) Histogram Bin ...

 Top : 1

 Bottom : 0

 Number in bin : 3

 Bin ID : 1

 Service Class ID : 13

 Work Action Set ID : 0

 Work Class ID : 0

 Statistics Timestamp : 2007-08-22 14:09:05.488364

 Histogram Type : CoordActExecTime

 [image:]

 There are two reasons to create or alter a histogram template.

 •Templates are used to get better understanding of distribution.

 For example, if you found all your activities were short and were falling into the first 10 bins, you may want to create a histogram template with a smaller high bin value to get a better sense of histogram distribution.

 •Templates are used to create different histograms with different characteristics.

 For example, you would use a different template for an estimated cost histogram than for a time-based histogram.

 Example 4-41 shows how to create a histogram template LIFETIMETEMP.

 Example 4-41 Creating a histogram template

 [image:]

 >db2 "create histogram template lifetimetemp high bin value 100000"

 DB20000I The SQL command completed successfully.

 >db2 "select binid,binuppervalue from syscat.histogramtemplatebins where templatename='LIFETIMETEMP' order by binuppervalue"

 BINID BINUPPERVALUE

 ----------- --------------------

 1 1

 2 1

 3 2

 4 3

 5 4

 6 5

 7 7

 8 10

 9 13

 10 17

 11 23

 12 31

 13 42

 14 56

 15 74

 16 100

 17 133

 18 177

 19 237

 20 316

 21 421

 22 562

 23 749

 24 1000

 25 1333

 26 1778

 27 2371

 28 3162

 29 4216

 30 5623

 31 7498

 32 10000

 33 13335

 34 17782

 35 23713

 36 31622

 37 42169

 38 56234

 39 74989

 40 100000

 40 record(s) selected.

 [image:]

 There are six types of WLM histograms:

 •Coordinator activity queue time (CoordActQueueTime)

 This is a histogram of the queue times (the amount of time that an activity spends in threshold queues before it starts executing).

 You can obtain this type of histogram by specifying AGGREGATE ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a service subclass or for a work action applied to the work class.

 •Coordinator activity execution time (CoordActExecTime)

 This is a histogram of the time that non-nested activities spend executing at the coordinator partition. Execution time does not include time spent initializing or queued. For cursors, execution time includes only the time spent on open, fetch, and close requests.

 You can obtain this type of histogram by specifying AGGREGATE ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a service subclass or for a work action applied to the work class.

 •Coordinator activity life time (CoordActLifetime)

 This is a histogram of the elapsed lifetime of activities, measured from the time that an activity enters the system until the activity completes execution.

 You can obtain this type of histogram by specifying AGGREGATE ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for a service subclass or for a work action applied to the work class.

 •Coordinator activity inter-arrival time (CoordActInterArrivalTime)

 This is a histogram of the time interval between the arrival of one activity and the arrival of the next activity.

 You can obtain this type of histogram by specifying AGGREGATE ACTIVITY DATA EXTENDED for a service subclass or for a work action applied to the work class.

 •Coordinator activity estimated cost (CoordActEstCost)

 This is a histogram of the estimated cost of non-nested DML activities.

 You can obtain this type of histogram by specifying specify AGGREGATE ACTIVITY DATA EXTENDED for a service subclass or for a work action applied to the work class.

 •Request execution time (ReqExecTime)

 This is a histogram of request execution times. It includes all requests on both coordinator and non-coordinator partitions, including those requests not associated with an activity.

 You can obtain this type of histogram by specifying AGGREGATE REQUEST DATA BASE for a service subclass.

 The difference in histogram between AGGREGATE ACTIVITY DATA BASE and DATA EXTENDED is that DATA EXTENDED will collect more histogram types than DATA BASE:

 •COLLECT AGGREGATE ACTIVITY DATA BASE

  –	CoordActQueueTime

  –	CoordActExecTime

  –	CoordActLifeTime

 •COLLECT AGGREGATE ACTIVITY DATA EXTENDED

  –	CoordActQueueTime

  –	CoordActExecTime

  –	CoordActLifeTime

  –	CoordActInterArrivalTime

  –	CoordActEstCost

 The histogram template defines the range. The default template is SYSDEFAULTHISTOGRAM.

 Example 4-42 shows the range of each bins for the SYSDEFAULTHISTOGRAM. The output shows that the high bin value is 21600000 milliseconds. If you want to increase or decrease the high bin value of the histogram, you can use the ALTER HISTOGRAM TEMPLATE statement or the CREATE HISTOGRAM TEMPLATE statement to create your histogram template.

 Example 4-42 The range of SYSDEFAULTHISTOGRAM

 [image:]

 >db2 "SELECT binid,binuppervalue FROM syscat.histogramtemplatebins WHERE templatename='SYSDEFAULTHISTOGRAM' ORDER BY binuppervalue"

 BINID BINUPPERVALUE

 ----------- --------------------

 1 1

 2 2

 3 3

 4 5

 5 8

 6 12

 7 19

 8 29

 9 44

 10 68

 11 103

 12 158

 13 241

 14 369

 15 562

 16 858

 17 1309

 18 1997

 19 3046

 20 4647

 21 7089

 22 10813

 23 16493

 24 25157

 25 38373

 26 58532

 27 89280

 28 136181

 29 207720

 30 316840

 31 483283

 32 737162

 33 1124409

 34 1715085

 35 2616055

 36 3990325

 37 6086529

 38 9283913

 39 14160950

 40 21600000

 40 record(s) selected.

 [image:]

 To use histograms for a service class, follow these steps.

 1.	Create and activate an event monitor.

 Use the CREATE EVENT MONITOR statement to create a statistics event monitor. Example 4-43 shows how to create a statistics event monitor that writes data to a table.

 Example 4-43 Creating a statistics event monitor table

 [image:]

 >db2 "create event monitor db2statistics for statistics write to table scstats (table scstats_db2statistics in userspace1), wcstats (table wcstats_db2statistics in userspace1), wlstats (table wlstats_db2statistics in userspace1), qstats (table qstats_db2statistics in userspace1), histogrambin (table histogrambin_db2statistics in userspace1), control (table control_db2statistics in userspace1)"

 DB20000I The SQL command completed successfully.

 [image:]

 Use the SET EVENT MONITOR STATE statement to activate the event monitor. Example 4-44 shows how to set the event monitor active.

 Example 4-44 Setting the event monitor to active

 [image:]

 >db2 "set event monitor db2statistics state 1"

 DB20000I The SQL command completed successfully.

 [image:]

 2.	Enable the collection of histograms for the service subclass.

 Example 4-45 shows how to alter the default service class to specify the COLLECT AGGREGATE ACTIVITY keyword. The COLLECT AGGREGATE ACTIVITY DATA BASE option on the service class produces the histogram types coordinator activity life time, coordinator activity execution time, and coordinator activity queue time.

 Example 4-45 Using the ALTER SERVICE CLASS

 [image:]

 >db2 "alter service class sysdefaultsubclass under sysdefaultuserclass COLLECT AGGREGATE ACTIVITY DATA BASE"

 DB20000I The SQL command completed successfully.

 [image:]

 3.	Create a view to make querying the HISTOGRAMBIN_DB2STATISTICS table easier.

 Example 4-46 shows how to create the view for histograms. This view returns histogram data across multiple intervals to produce a single histogram of a given service class.

 Example 4-46 Creating the view of histograms

 [image:]

 >db2 "create view histograms (histogram_type, service_superclass, service_subclass, bin_top, number_in_bin) as select distinct substr(histogram_type,1,24) as histogram_type, substr(parentserviceclassname,1,24) as service_superclass, sub

 str(serviceclassname,1,24) as service_subclass, top as bin_top, sum(number_in_bin) as number_in_bin from histogrambin_db2statistics h, syscat.serviceclasses s where h.service_class_id = s.serviceclassid group by histogram_type, parentserviceclassname, serviceclassname, top"

 DB20000I The SQL command completed successfully.

 [image:]

 4.	Run your activities.

 After the activities have finished, the WLM_COLLECT_STATS stored procedure is called. In this case, the WLM_COLLECT_INT database configuration parameter sets 0.

 5.	Look at the statistics.

 Example 4-47 shows how many rows are stored in the HISTOGRAMBIN_DB2STATISTICS table. The table row count can be used for estimate the sizing disk space. In this case, we collected 246 rows in the HISTOGRAMBIN_DB2STATISTICS table:

 246 rows = 3(types of histogram) x 2(times information is collected) x 41(bins)

 Example 4-47 Counting the HISTOGRAMBIN_DB2STATISTICS table

 [image:]

 >db2 "SELECT count(*) as count FROM histogrambin_db2statistics"

 COUNT

 246

 1 record(s) selected.

 [image:]

 Example 4-48 shows the CoordActExecTime histogram for SYSDEFAULTUSERCLASS. The BIN_TOP value -1 means infinity. If any activity runs over 21600000 milliseconds, the NUMBER_IN_BIN for the infinite bin would not be 0. Six activities had an execution time between 0 and 1 milliseconds.

 Example 4-48 Analyses of the CoordActExecTime for SYSDEFAULTUSERCLASS

 [image:]

 >db2 "SELECT bin_top, number_in_bin FROM histograms WHERE histogram_type='CoordActExecTime' and service_superclass='SYSDEFAULTUSERCLASS' ORDER BY bin_top"

 BIN_TOP NUMBER_IN_BIN

 -------------------- --------------------

 -1 0

 1 6

 2 2

 3 0

 5 0

 8 0

 12 0

 19 0

 29 0

 44 0

 68 0

 103 1

 158 0

 241 0

 369 1

 562 0

 858 0

 1309 0

 1997 0

 3046 0

 4647 1

 7089 0

 10813 0

 16493 0

 25157 0

 38373 0

 58532 0

 89280 0

 136181 0

 207720 0

 316840 0

 483283 0

 737162 0

 1124409 0

 1715085 0

 2616055 0

 3990325 0

 6086529 0

 9283913 0

 14160950 0

 21600000 0

 41 record(s) selected.

 [image:]

 Example 4-49 shows the CoordActLifetime histogram for SYSDEFAULTUSERCLASS. Five activities are counted in the lowest bin. One activity has the longest lifetime between 3046 and 4647 milliseconds.

 Example 4-49 Analysis of the CoordActLifetime for SYSDEFAULTUSERCLASS

 [image:]

 >db2 "SELECT bin_top, number_in_bin FROM histograms WHERE histogram_type='CoordActLifetime' and service_superclass='SYSDEFAULTUSERCLASS' ORDER BY bin_top"

 BIN_TOP NUMBER_IN_BIN

 -------------------- --------------------

 -1 0

 1 5

 2 1

 3 0

 5 0

 8 0

 12 0

 19 0

 29 0

 44 0

 68 0

 103 3

 158 0

 241 0

 369 1

 562 0

 858 0

 1309 0

 1997 0

 3046 0

 4647 1

 7089 0

 10813 0

 16493 0

 25157 0

 38373 0

 58532 0

 89280 0

 136181 0

 207720 0

 316840 0

 483283 0

 737162 0

 1124409 0

 1715085 0

 2616055 0

 3990325 0

 6086529 0

 9283913 0

 14160950 0

 21600000 0

 41 record(s) selected.

 [image:]

 Example 4-50 shows the CoordActQueueTime histogram for SYSDEFAULTUSERCLASS. All 11 activities are counted in the lowest bin because nothing is queued in this example.

 Example 4-50 Analysis for the CoordActQueueTime for SYSDEFAULTUSERCLASS

 [image:]

 >db2 "SELECT bin_top, number_in_bin FROM histograms WHERE histogram_type='CoordActQueueTime' and service_superclass='SYSD

 EFAULTUSERCLASS' ORDER BY bin_top"

 BIN_TOP NUMBER_IN_BIN

 -------------------- --------------------

 -1 0

 1 11

 2 0

 3 0

 5 0

 8 0

 12 0

 19 0

 29 0

 44 0

 68 0

 103 0

 158 0

 241 0

 369 0

 562 0

 858 0

 1309 0

 1997 0

 3046 0

 4647 0

 7089 0

 10813 0

 16493 0

 25157 0

 38373 0

 58532 0

 89280 0

 136181 0

 207720 0

 316840 0

 483283 0

 737162 0

 1124409 0

 1715085 0

 2616055 0

 3990325 0

 6086529 0

 9283913 0

 14160950 0

 21600000 0

 41 record(s) selected.

 [image:]

[image:]
[image:]

WLM sample scenarios - mixed OLTP and DSS environment

 In many customer environments, combining both Online Transaction Processing (OLTP) and Decision Support Systems (DSS) into a single environment is needed for more timely information and for maintaining a competitive advantage. One of the biggest challenges in a mixed OLTP and DSS environment is developing a proactive setup that allows coexistence without sacrificing throughput of the OLTP environment to the larger DDS queries.

 We discuss the following topics in this chapter:

 •The setup environment, which illustrates how to identify, manage, and monitor such a mixed environment by using WLM

 •Using TCP-H benchmark data to build the environment

 •Simple queries that simulate OLTP workloads

 5.1 Business objectives

 The prime objectives typically seen in a mixed OLTP and DSS environment are:

 •Separately identify the OLTP workloads from the DSS workloads.

 •Insulate the OLTP workload performance from the DSS workloads.

 •If needed, target a portion of the non-critical DSS workloads to be deferred until a later time, when the critical resources are no longer constrained.

 •Proactive management of the availability of critical OLTP resources to achieve a consistent OLTP transaction response time.

 In this chapter we demonstrate how to use WLM to achieve these objectives. Following are our business objectives for this exercise:

 •Make sure our OLTP workload meets our expected throughput and is not unduly interrupted by the DSS workload.

 •The DSS workload must also complete in a timely manner.

 •The OLTP workload is an order entry system and requires an average response time of under 1 second.

 •Our DSS workload consists of both ad hoc queries and analysis reports.

 •The ad hoc queries have a higher priority need than the analysis reports.

 •All other workloads, such as administrative tasks, are expected to only be about 50 - 100 tasks a day.

 •Database backups are part of the administrative workload. Several long-running tasks are performed, such as tablespace backups. These are not supposed to run during the prime time shift (8 am - 8 pm) and are not to interfere with the OLTP or DSS workloads.

 5.2 Identify the work

 Using our business objectives, we can identify our workloads and describe the management requirements.

 •Administrative tasks

  –	Identified as all users in the group ID DB2ADM.

  –	Report when backups are run to make sure they do not run into the prime shift.

 •OLTP

  –	Prime time shift is 8:00 am to 8:00 pm.

  –	Runs as executable oltp.exe and runs as highest priority.

  –	Report the average response times to make sure they are under one second on average.

 •DSS (queries and reports)

  –	Prime time shift is 8:00 am to 8:00 pm.

  –	Report workloads statistics for queries and reports separately.

 •DSS queries

  –	Identified as all users in group ID = DSSGROUP.

  –	Report the average response times to make sure that 90% are under five minutes.

 •DSS reports

  –	Run as executable dss.exe and run as lowest priority. If necessary, queue reports to limit their impact on OLTP and DSS queries.

 We are now ready to complete our worksheet for identifying our workloads; see Table 5-1.

 Table 5-1 Workload worksheet - identifying our workloads

 	
 Task

 	
 Business requirements

 	
 Identification

 	
 Action

 	
 Admin

 	
 Manages the database environment

 	
 group ID = DB2ADM

 	
 Report the times, duration, and frequency of tasks, such as backups

 	
 Batch

 	
 ETL must be complete prior to primetime shift

 	
 Loads and other ETL process using etl.exe or client user ID = ‘BATCH’ and utility LOAD

 	
 Report the times, duration, and frequency of tasks

 	
 OLTP

 	
 Prime time shift is 8 am - 8 pm. Queries need to complete in < 1 second

 	
 executable = oltp.exe

 	
 Assign highest priority, report average response times

 	
 DSS

 	
 Prime time 8 am to 8 pm

 	
 Ad hoc queries and reports run under dss.exe

 	
 Identify ad hoc separately from reports

 	
 _ DSS queries

 	
 Must complete 90% < 5 minutes

 	
 group ID = DSSGROUP

 	
 Limit impact on OLTP Report average response times

 	
 _ DSS Analysis Reports

 	
 Must complete all reports daily

 	
 exec = dss.exe

 	
 Limit impact on OLTP and ad hoc queries

 5.3 Manage the work

 Given the worksheet details, we are now ready to build our configuration. Our build process is done in two steps:

 1.	We verify that our configuration is performing the tasks we want.

 2.	Then we can adjust the configuration to queue or stop execution on the workloads that are impacting our business objectives.

 Using our basic monitoring setup in Chapter 4, we can add the additional requirements to our configuration, as shown in Example 5-1.

 Example 5-1 Mixed workload configuration

 [image:]

 CREATE SERVICE CLASS HIGHLVL DISABLE;

 CREATE SERVICE CLASS ADMINS UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA BASE DISABLE;

 CREATE SERVICE CLASS BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 ALTER SERVICE CLASS BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA;

 CREATE SERVICE CLASS PROD_RPT UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 ALTER SERVICE CLASS PROD_RPT UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA;

 CREATE SERVICE CLASS PROD_QRY UNDER HIGHLVL AGENT PRIORITY -5 COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 ALTER SERVICE CLASS PROD_QRY UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA;

 CREATE SERVICE CLASS OLTP UNDER HIGHLVL AGENT PRIORITY -10 PREFETCH PRIORITY HIGH COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

 ALTER SERVICE CLASS OLTP UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA;

 CREATE WORKLOAD WL_OLTP APPLNAME ('oltp.exe') DISABLE SERVICE CLASS OLTP UNDER HIGHLVL POSITION AT 1;

 CREATE WORKLOAD WL_BATCH CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS BATCH UNDER HIGHLVL POSITION AT 2;

 CREATE WORKLOAD WL_PROD_RPT APPLNAME ('dss.exe') DISABLE SERVICE CLASS PROD_RPT UNDER HIGHLVL POSITION AT 3;

 CREATE WORKLOAD WL_PROD_QRY SESSION_USER GROUP ('DSSGROUP') DISABLE SERVICE CLASS PROD_QRY UNDER HIGHLVL POSITION AT 4;

 CREATE WORKLOAD WL_ADMIN SESSION_USER GROUP ('DB2ADM') DISABLE SERVICE CLASS ADMINS UNDER HIGHLVL POSITION AT 5;

 [image:]

 5.3.1 Enabling the instance user ID to alter AIX priorities

 The normal user rights given when creating an AIX user ID by default do not give the needed authority to allow the instance owner to adjust agent priorities. This capability must be added before any agent priorities can be changed by DB2. Two additional capabilities are needed. The following command adds the needed capabilities:

 chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE db2inst1

 	
 Note: Root authority is needed to issue the chuser command. The capabilities are effective at the next user login. Therefore, the instance needs to be restarted from a new login session after the chuser command has been successfully run.

 After the command has been successfully issued, the capabilities are displayed as shown in Example 5-2

 Example 5-2 AIX user capabilities

 [image:]

 # lsuser db2inst1

 db2inst1 id=1200 pgrp=db2adm groups=db2adm,staff,dasgrp home=/db2home/db2inst1

 shell=/usr/bin/ksh login=true su=true rlogin=true daemon=true admin=false

 sugroups=ALL admgroups= tpath=nosak ttys=ALL expires=0 auth1=SYSTEM

 auth2=NONE umask=22 registry=files SYSTEM=compat logintimes= loginretries=0

 pwdwarntime=0 account_locked=false minage=0 maxage=0 maxexpired=-1

 minalpha=0 minother=0 mindiff=0 maxrepeats=8 minlen=8 histexpire=0

 histsize=0 pwdchecks= dictionlist=

 capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE fsize=-1 cpu=-1

 data=-1 stack=-1 core=2097151 rss=65536 nofiles=-1 time_last_login=1189273673

 time_last_unsuccessful_login=1188334437 tty_last_login=/dev/pts/0

 tty_last_unsuccessful_login= host_last_login=9.26.92.65

 host_last_unsuccessful_login=Clyde.itsosj.sanjose.ibm.com unsuccessful_login_count=0 roles=

 [image:]

 5.3.2 Creating the service classes definitions

 Our first service class is our super class, HIGHLVL. Under that, we can create all our subclasses and indicate what level of information we want to capture.

 •ADMINS

 Because we do not plan on imposing any management rules, we collect only the minimal amount of data.

 •BATCH

 Here we are mainly interested in knowing the request execution times. This is collected using the COLLECT AGGREGATE REQUEST DATA BASE setting. This information is viewable in both the SCSTATS table and the HISTOGRAMBIN tables.

 •PROD_RPT

 The reports generated by this subclass can be quit resource-intensive. Therefore, we want more information to assist in their management. The level of information we need is both at the aggregate request and the activity levels. The second collection is added using the ALTER SERVICE CLASS.

 These two levels provide both the request execution times and averages about the activities in this service class, to allow us to quickly analyze our workload. The COLLECT AGGREGATE ACTIVITY DATA EXTENDED was specified to add the average cost and arrival time information. We can use this additional data to understand how the PROD_RPT service class impacts our system.

 •PROD_QRY

 The ad hoc queries needs to be slotted between our production reports and the OLTP transactions. In defining this subclass, we specify the same data collection as for our production reports. Additionally, we indicate that we want these queries to execute ahead of our production reports by setting AGENT PRIORITY -5. This is to satisfy our business requirement.

 •OLTP

 These transactions are very short-lived and need to run at the highest priority in order to insure the business requirement of running in under 1 second can be maintained. The same data collection levels are used as for PROD_RPT and PROD_QRY.

 5.3.3 Creating the workload definitions

 Our setup is similar to Chapter 3, “Customizing the WLM execution environments” on page 49, so we only highlight the additional information here. We need to identify our OLTP workloads so they are separated from the DSS workloads and can be properly monitored and managed.

 •WL_OLTP identifies our OLTP transactions as being run using the APPLNAME = oltp.exe

 •The priorities have been changed to put WL_OLTP at the top so that it can be identified first and reduce the search time to identify our OLTP transactions.

 	
 Note: The workload definitions are searched in the order of their position. To minimize search times, put the most critical workloads at the lowest position number.

 5.3.4 Finalizing the setup

 Lastly, we grant the use to our workloads and enable the service classes and workloads as shown in Example 5-3.

 Example 5-3 Granting WLM permissions and enabling the service classes and workloads

 [image:]

 GRANT USAGE ON WORKLOAD WL_ADMIN TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_BATCH TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_RPT TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_PROD_QRY TO PUBLIC;

 GRANT USAGE ON WORKLOAD WL_OLTP TO PUBLIC;

 ALTER SERVICE CLASS HIGHLVL ENABLE;

 ALTER SERVICE CLASS ADMINS UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS BATCH UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS PROD_RPT UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS PROD_QRY UNDER HIGHLVL ENABLE;

 ALTER SERVICE CLASS OLTP UNDER HIGHLVL ENABLE;

 ALTER WORKLOAD WL_ADMIN ENABLE;

 ALTER WORKLOAD WL_BATCH ENABLE;

 ALTER WORKLOAD WL_PROD_RPT ENABLE;

 ALTER WORKLOAD WL_PROD_QRY ENABLE;

 ALTER WORKLOAD WL_OLTP ENABLE;

 [image:]

 5.4 Monitoring the work

 Having implemented our workload management strategy, we collect and monitor the data. The data from the SCSTATS_BASIC_MON and HISTOGRAMBIN_BASIC_MON tables are the tables we are using to demonstrate what monitoring data is used to measure the effectiveness of our WLM strategy. These two tables give a useful picture of how our workloads are behaving in the system. Additionally, we want to make sure our priorities are in effect and are being used.

 5.4.1 Checking agent priorities and prefetchers

 With DB2 v9.5 being a threaded model, new functionality has been incorporated to allow us to look at the details of the threads. We used the following command:

 db2pd -db wlmdb -serviceclasses

 Example 5-4 displays the service class definitions and shows that the OLTP already is being used (see the highlighted lines).

 Example 5-4 Using db2pd -service classes

 [image:]

 ...

 Service Class Name = PROD_QRY

 Service Class ID = 19

 Service Class Type = Service Subclass

 Parent Superclass ID = 14

 Service Class State = Enabled

 Agent Priority = -5

 Prefetch Priority = Default

 Outbound Correlator = _HighLevel.Prod_QRY

 Collect Activity Opt = None

 Collect Aggr Activity Opt = Extended

 Collect Aggr Request Opt = Base

 Act Lifetime Histogram Template ID = 1

 Act Queue Time Histogram Template ID = 1

 Act Execute Time Histogram Template ID = 1

 Act Estimated Cost Histogram Template ID = 1

 Act Interarrival Time Histogram Template ID = 1

 Request Execute Time Histogram Template ID = 1

 Access Count = 0

 Last Stats Reset Time = 09/12/2007 12:51:02.000000

 Activities HWM = 0

 Activities Completed = 0

 Activities Rejected = 0

 Activities Aborted = 0

 Associated Agents:

 EDU ID AppHandl [nod-index] WL ID WLO ID UOW ID Activity ID

 Associated Non-agent threads:

 PID TID Thread Name

 Service Class Name = OLTP

 Service Class ID = 20

 Service Class Type = Service Subclass

 Parent Superclass ID = 14

 Service Class State = Enabled

 Agent Priority = -10

 Prefetch Priority = High

 Outbound Correlator = None

 Collect Activity Opt = None

 Collect Aggr Activity Opt = Extended

 Collect Aggr Request Opt = Base

 Act Lifetime Histogram Template ID = 1

 Act Queue Time Histogram Template ID = 1

 Act Execute Time Histogram Template ID = 1

 Act Estimated Cost Histogram Template ID = 1

 Act Interarrival Time Histogram Template ID = 1

 Request Execute Time Histogram Template ID = 1

 Access Count = 5

 Last Stats Reset Time = 09/12/2007 12:51:02.000000

 Activities HWM = 10

 Activities Completed = 57

 Activities Rejected = 0

 Activities Aborted = 0

 Associated Agents:

 EDU ID AppHandl [nod-index] WL ID WLO ID UOW ID Activity ID

 37671158153220 16372 [000-16372] 3 92 7 1

 90838558310404 16373 [000-16373] 3 93 5 1

 35407710388228 16374 [000-16374] 3 94 6 1

 339061898215428 16378 [000-16378] 3 98 7 1

 292723496058884 16379 [000-16379] 3 99 0 0

 [image:]

 To check what priorities agents are using, we run the following command:

 db2pd -db wlmdb -agent

 Example 5-5 shows that we are running eight OLTP transactions and they are all running at a priority of -10.

 	
 Note: The agent threads are set to a priority equal to the default priority, plus the value set when the next activity begins.

 In UNIX and Linux systems, the valid values are -20 to +20 (a negative value indicates a higher relative priority). In Windows-based platforms, the valid values are -6 to +6 (a negative value indicates a lower relative priority).

 Example 5-5 db2pd agent priorities

 [image:]

 ->db2pd -agent -dbpartition 1 | grep -v Pooled

 Database Partition 1 -- Active -- Up 0 days 19:09:56

 Agents:

 Current agents: 10

 Idle agents: 0

 Active coord agents: 1

 Active agents total: 10

 Address AppHandl [nod-index] AgentEDUID Priority Type State ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt DBName

 0x078000000023ACC0 67157 [001-01621] 9879 0 Coord Inst-Active 2728214 dssuser db2stmm 0 0 NotSet WLMDB

 0x078000000023EAE0 14189 [000-14189] 5032 0 SubAgent Inst-Active 2928 PESRVUSR db2evmt_ 0 16592 3 WLMDB

 0x0780000000942A00 17010 [000-17010] 10533 -10 SubAgent Inst-Active 2199916 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x0780000000944180 17011 [000-17011] 10790 -10 SubAgent Inst-Active 1679658 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x0780000000940080 17008 [000-17008] 10019 -10 SubAgent Inst-Active 2666978 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x0780000000941540 17009 [000-17009] 3113 -10 SubAgent Inst-Active 606550 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x0780000000945B40 17013 [000-17013] 11051 -10 SubAgent Inst-Active 1626264 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x0780000000947280 17015 [000-17015] 11309 -10 SubAgent Inst-Active 237574 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x07800000009489C0 17016 [000-17016] 11566 -10 SubAgent Inst-Active 2113846 dssuser oltp.exe 2653 0 NotSet WLMDB

 0x078000000023D620 17014 [000-17014] 10289 -10 SubAgent Inst-Active 2146474 dssuser oltp.exe 2653 0 NotSet WLMDB

 [image:]

 To check the prefetchers, we first switch to a data partition then run the db2pd command as follows:

 export DB2NODE=1

 db2 terminate

 db2pd -db wlmdb -edu -dbp 1

 Example 5-6 displays the output.

 Example 5-6 Output from db2pd -edu for prefetchers

 [image:]

 ->db2pd -db wlmdb -edu -dbp1 | egrep "EDU Name|db2pfchr"

 EDU ID TID Kernel TID EDU Name USR SYS

 9658 				2941051 			 5906937 				 	 db2pfchr (WLMDB) 1 										0.001285 0.000531

 9401 9401 2265111 db2pfchr (WLMDB) 1 0.001099 0.000597

 9144 9144 4682099 db2pfchr (WLMDB) 1 0.001664 0.001061

 8887 8887 4853817 db2pfchr (WLMDB) 1 0.002559 0.001224

 8630 8630 4166005 db2pfchr (WLMDB) 1 0.001728 0.001077

 8373 8373 3194901 db2pfchr (WLMDB) 1 0.001910 0.001030

 8116 8116 2793797 db2pfchr (WLMDB) 1 0.002762 0.001750

 7859 7859 5435469 db2pfchr (WLMDB) 1 0.017083 0.012175

 7602 7602 5853695 db2pfchr (WLMDB) 1 0.048361 0.039011

 7345 7345 3690681 db2pfchr (WLMDB) 1 0.058649 0.041682

 7088 7088 5816601 db2pfchr (WLMDB) 1 0.057663 0.044016

 6831 6831 4448321 db2pfchr (WLMDB) 1 0.065778 0.039444

 6574 6574 3068261 db2pfchr (WLMDB) 1 0.066206 0.045546

 6317 6317 3444955 db2pfchr (WLMDB) 1 0.077666 0.054751

 6060 6060 6455555 db2pfchr (WLMDB) 1 0.075359 0.048456

 5803 5803 2044119 db2pfchr (WLMDB) 1 0.094211 0.057868

 [image:]

 5.4.2 Monitoring and analyzing the service classes

 To begin with, we get a high level view of our workloads by looking at the HISTOGRAMBIN_BASIC_MON table. Using a query, we can see the histogram data. Using a query as shown in Example 5-7, we can plot graphs that give us an overview of how our system is performing.

 Example 5-7 Query histogram_basic_mon table

 [image:]

 with hist_reg (bin, subclass, nbr_in_bin) as

 (select BIN_TOP

 , substr(SERVICE_SUBCLASS,1,15)

 , NUMBER_IN_BIN

 FROM histograms

 where HISTOGRAM_TYPE = 'ReqExecTime'

 order by 1,2

),

 hist_colife (bin, subclass, nbr_in_bin) as

 (select BIN_TOP

 , substr(SERVICE_SUBCLASS,1,15)

 , NUMBER_IN_BIN

 FROM histograms

 where HISTOGRAM_TYPE = 'CoordActLifetime'

 order by 1,2

),

 hist_coexec (bin, subclass, nbr_in_bin) as

 (select BIN_TOP

 , substr(SERVICE_SUBCLASS,1,15)

 , NUMBER_IN_BIN

 FROM histograms

 where HISTOGRAM_TYPE = 'CoordActExecTime'

 order by 1,2

),

 hist_coarrive (bin, subclass, nbr_in_bin) as

 (select BIN_TOP

 , substr(SERVICE_SUBCLASS,1,15)

 , NUMBER_IN_BIN

 FROM histograms

 where HISTOGRAM_TYPE = 'CoordActInterArrivalTime'

 order by 1,2

),

 hist_cec (bin, subclass, nbr_in_bin) as

 (select BIN_TOP

 , substr(SERVICE_SUBCLASS,1,15)

 , NUMBER_IN_BIN

 FROM histograms

 where HISTOGRAM_TYPE = 'CoordActEstCost'

 order by 1,2

)

 select r.bin, r.subclass

 , r.nbr_in_bin as ReqExecTime

 , l.nbr_in_bin as CoordActLifetime

 , e.nbr_in_bin as CoordActExecTime

 , a.nbr_in_bin as CoordActInterArrivalTime

 , c.nbr_in_bin as CoordActEstCost

 from hist_reg r, hist_cec c, hist_colife l, hist_coexec e, hist_coarrive a

 where r.bin=c.bin

 and r.bin=l.bin

 and r.bin=e.bin

 and r.bin=a.bin

 and r.subclass = c.subclass

 and r.subclass = l.subclass

 and r.subclass = e.subclass

 and r.subclass = a.subclass

 order by 2,1 ;

 [image:]

 The first chart we want to examine is the request execution times. This gives us a picture of “how are we doing against our execution time objectives”. Figure 5-1 shows the request execution time chart.

 [image:]

 Figure 5-1 Request execute time

 Using the histogram, we can create a graph of the number of queries by request execution times. This give us a quick glance at the types of queries (service class) and how many queries ran within each time slot. Our OLTP is running between .008 and 4.647 seconds. Our objective is to run all of our OLTP transactions under 1 second, but we can see that 346 queries are outside of our business objective.

 Using the request execution times gives a useful picture because the request time is the total time for the query, including any wait times. This objective will need further analysis in order to determine why this is occurring: is it a problem with the OLTP queries themselves, or some outside influence that is causing them to not meet the runtime objectives?

 The production queries (our second highest priority) are running between .029 and 1717.085 seconds (28.6 minutes). Our objective is to complete 95% in under 5 minutes. We completed a total of 21,286 transactions and 21,057 completed in under 5 minutes. Our objective was 95%, we achieved 98.92%. Objective met!

 As for our production reports, we ran 27, 572 reports during the period, with approximately 52% of these queries completing in under 58 seconds. The longest-running reports run in 2616.055 seconds or 43.6 minutes. This appears to be a significant number of reports but with only a limited amount of data, it is difficult to draw any meaningful conclusions. All were completed, but did they interfere with any of our objectives? To determine this, we need more information.

 Next, we turn our attention to the arrival rates of our workloads. Figure 5-2 illustrates the arrival rates.

 [image:]

 Figure 5-2 Arrival rates

 Here we see how “fast” workloads are arriving in our system. So, are we overloading our system at critical times? That is the question we want to answer. Using the coordinator activity arrival times, we can chart how often workloads are hitting the system.

 Due to the large number of reports shown on the previous chart, and because we missed our objective for some of the OLTP queries, our focus is on the Production reports (PROD_RPT). From this graph we can see the PROD_RPTS peak at nearly 200 arrivals that are 25 seconds apart. Is this the expected arrival rate? Does the high arrival rate of PROD_RPTS interfere with our OLTP transactions? The peak arrival rate for OLTP queries is 648 queries arriving 5.6 seconds apart. We need to examine when the PROD_RPT queries arrive by looking at the aggregate service class statistics (SCSTATS_BASIC_MON) table.

 From Example 5-1 on page 126, we can focus in on the request execution times for specific time periods. Here we can see when the request execution times for OLTP missed the targeted business objectives.

 During the time frame of 14:00 to 17:30, the OLTP request times were consistently out of our targeted business objectives of less than one second execution time; see Figure 5-3.

 [image:]

 Figure 5-3 Missing target

 Next, we need to look for the cause of the excessive OLTP request execution times. The queries could be running long for several reasons, including that the queries need tuning or that machine resources could be in short supply at various times.

 We can continue our analysis by looking at how much execution time is being used by the various types of queries. Request execution time can be used for such analysis, but with caution. The request execution time is the total time it takes for a query to complete. This includes wait times as well as CPU time. Nonetheless, we can use request execution times as a preliminary analysis tool.

 From the chart shown in Figure 5-3, we have a clue. The PROD_RPT total request executions times are also quite long, especially during the middle of the day when many OLTP queries might also running. Because the OLTP queries are quite short, they do not show up well on this chart, but our focus is on the PROD_RPT request execution times. Because this represents a total request execution time for all queries within each service class, we cannot tell if the long execution time is the result of a few queries or many queries. So, what else can we analyze to give a clearer picture?

 In Figure 5-4, we look at the arrival times for workloads during the same time frame as the Figure 5-3 chart on request execution times. Using the concurrent activity top, we can create a chart to show when the highest concurrency of activities for each service class is taking place.

 [image:]

 Figure 5-4 Arrival time

 Here we see many workloads arriving at the same time by viewing the concurrent active coordinator active. Notice the larger number of PROD_RPT workloads.

 Taking a closer look at the request execution times, we get a clearer picture of the relationship between OLTP and PROD_RPTS. Using the data from the SCSTATS table, we can construct a spreadsheet as shown in Figure 5-5 on page 140. (Note that ADMIN subclass has been omitted for simplicity.)

 [image:]

 Figure 5-5 SCSTATS table of Request Execution Times

 From this, we see that the OLTP queries are over our objective of one second whenever the total request execution times are greater than 6500 seconds. We also see some of the longest-running PROD_RPT queries during this time.

 Now, we want to learn more about the PROD_RPTS for this time frame. In Figure 5-6 on page 141, we focus on the costs of these reports.

 [image:]

 Figure 5-6 Report cost

 Here we see the PROD_RPT queries cost vary greatly, but the more expensive reports are being run during the same time frame as when our OLTP queries begin to miss our business objectives. The PROD_RPT queries cost is greater than 4,000,000 during our critical times for OLTP. We will want to limit them during this time to lessen the impact on our OLTP queries.

 5.5 Summary

 Looking back at our earlier histogram chart, we see that the PROD_RPTS are running near the top of the costs reported in the histograms. To summarize our analysis so far, we see many PROD_RPTS running at the same time, and these reports are the most expensive reports. At the same time, we see our OLTP transactions begin to run longer and miss our targeted objectives. The cause appears to be the long-running and expensive reports.

 We now need to develop a management strategy to limit the number of expensive reports from running when the number of concurrent coordinators is also high. This will give us a proactive WLM strategy that only is enforced during peak transaction periods.

 We want to take a global approach because PROD_RPTS costs are much higher than any other “known” workload. Based on the information we have collected and analyzed in this chapter, we can develop our next workload management strategy.

 In Figure 5-6 on page 141, we see that we need to limit expensive PROD_RPT queries. These have been identified as queries with a cost greater than 4,000,000 timerons. Additionally, we want to impose this limit based on the total number of concurrent coordinators, so that during off-peak times, these queries can run unlimited.

 In Figure 5-4 on page 139, we see that during our slow OLTP times, we are running in excess of 400 concurrent coordinators. To identify this new WLM requirement we develop a management strategy, as shown in Example 5-8.

 Example 5-8 Global Threshold to limit based on query costs and concurrent workloads

 [image:]

 CREATE WORK CLASS SET LARGE_WORK

 (WORK CLASS BIG_COSTS WORK TYPE READ

 FOR TIMERONCOST FROM 4000000 TO UNBOUNDED) ;

 CREATE WORK ACTION SET LONGRUN FOR DATABASE

 USING WORK CLASS SET LARGE_WORK

 (WORK ACTION TOO_MANY ON WORK CLASS BIG_COSTS

 			WHEN CONCURRENTDBCOORDACTIVITIES > 400

 COLLECT ACTIVITY DATA CONTINUE)

 DISABLE ;

 [image:]

 This additional WLM strategy states that when the number of concurrent database coordinators is > 400, we want to queue any workloads that have a timeron cost >= 4,000,000. No upper bound or maximum number of queued workloads is set at this time. With more data and analysis, we might want to limit the size of the queue.

[image:]
[image:]

AIX Workload Manager considerations

 There are two different kinds of workload management solutions available: operating system (OS)-level workload management solutions, and application-level workload management solutions. DB2 Workload Manager (DB2 WLM) is an example of an application-level workload management solution. AIX Workload Manager (AIX WLM) is an example of an operating system-level workload management system.

 DB2 9.5 Workload Manager supports operating system WLM on AIX only. Integrating DB2 WLM with AIX WLM provides you with even more capability to manage and control the workloads and resources on your database system.

 In this chapter we discuss the following topics:

 •AIX WLM overview

 •Using DB2 WLM and AIX WLM

 6.1 AIX WLM overview

 AIX WLM provides the capability of isolating applications, including DB2, with very different system behaviors. Based on the business objectives, AIX WLM can allocate CPU, physical memory, and I/O bandwidth to the classified applications.

 The database system is usually considered to be the most important application running on the server. AIX WLM is an ideal solution for protecting database applications from being interfered with by the other applications running on the same server.

 For detailed information about AIX WLM, refer to the IBM Redbooks publication AIX 5L Workload Manager (WLM), SG24-5977, which is available at the following site:

 http://www.redbooks.ibm.com/abstracts/sg245977.html

 6.1.1 Service classes

 Conceptually, AIX WLM is similar to DB2 WLM. AIX WLM has workloads and two-level hierarchical service classes. In addition to the predefined service classes, AIX WLM also has user-defined superclasses.

 Each superclass can have both user-defined and predefined subclasses. And no process can belong to a superclass without also belonging to a subclass.

 Every process in the system is mapped to the predefined default subclass, unless it is explicitly defined to another subclass by the administrator.

 Predefined superclasses

 The predefined AIX WLM superclasses are as follows:

 •Default superclass

 All user processes belong to the default superclass, unless they are explicitly defined to map to another superclass.

 •System superclass

 The system superclass is the default superclass for all privileged processes owned by root.

 •Shared superclass

 The shared superclass receives all memory pages that are shared by processes that belong to more than one superclass.

 •Unclassified superclass

 When AIX WLM starts, all processes and memory pages are assigned to certain superclass. The memory pages which cannot be tied to any specific process will be mapped to this superclass.

 •Unmanaged superclass

 This class is reserved for memory pages that are unmanaged by AIX WLM. This superclass does not have any shares or limits for any resources. This superclass does not have any subclasses. No processes will be assigned to this superclass.

 Figure 6-1 illustrates how resources are assigned with a default AIX WLM configuration.

 [image:]

 Figure 6-1 AIX WLM default service classes

 Predefined subclasses

 Subclasses can have only one superclass. There are two predefined subclasses, as explained here:

 •Default subclass

 All processes which are not defined to any other subclass will be assigned to the Default subclass.

 •Shared subclass

 Like the Shared superclass, the Shared subclass contains all the memory pages that contain processes belonging to more than one subclass under the same superclass.

 Tier

 The tier defines the importance of the class. There are 10 levels of tiers, starting from 0 to 9. Tier 0 is the most important level and has highest priority. If the tier level 0 classes take up all the system resources, then tier level 1 classes will not get any resources. If tier level 0 and tier level 1 classes are taking all system resources, there will be nothing left for tier 2, and so on. If no tier value is defined, the default value 0 will be used. Tier is defined both to superclasses and subclasses.

 General class attributes

 A class can have the following attributes:

 •Class name: This can be up to 16 characters in length.

 •Tier: This has values from 0 to 9. The tier value enables you to prioritize groups of classes. The default and highest priority value is zero (0).

 •Inheritance: This defines whether a child process or thread inherits the class assignment of its parent.

 •Authuser and authgroup: This is used give users or groups the right to manually assign processes to a certain class. (These attributes can be used only for superclasses.)

 •Adminuser and admingroup: This is used to delegate administration rights to certain user IDs or groups. (These attributes can be used only for superclasses.)

 •Resource set: This limits the processes in a given class to a subset of the system's physical memory and processors. A valid resource set is composed of memory and at least one processor.

 •Localsmh: This specifies whether memory segments that are accessed by processes in different classes remain local to the class they were initially assigned to, or if they go to the Shared class.

 Class limits and shares for CPU, memory, or disk I/O resource

 A share defines the proportion of a resource that the process in a service class can get. With shares, you can allocate a certain amount of CPU, memory, or I/O resource to each service class. The resources will be allocated to a service class in a relative way, depending on the number of total shares and the number of shares the service class itself has.

 For example, if we have a total of 1000 CPU shares for all superclasses, and individual superclass db2Def has 400 CPU shares, then db2Def will get 40% of all CPU resources. If we increase the number of total CPU shares for all superclasses to 2000, then with its 400 CPU shares, db2Def would have 20% of all CPU resources.

 The resource share principle applies to memory and disk I/O resources, as well.

 You can also define resource limits by percentage for different service classes. The available limits are:

 •min

 This specifies the minimum percentage of a resource that will always be granted to a service class. The default is zero (0).

 •softmax

 This specifies the maximum percentage of the resource that can be assigned to a service class when there is contention, as explained here:

  –	If there is no contention, then the service class can obtain more resources than that specified by this attribute.

  –	If there is contention, it is not guaranteed that the service class will get the percentage of the resource specified by this attribute.

 The default is 100.

 •hardmax

 This specifies the maximum percentage of the resource assigned for a service class when there is no contention. The default is 100.

 Class assignment

 There are two ways to classify processes to different service classes: using manual classification, or using automatic classification. When you want to assign processes manually to certain service classes, you can do it by using the command wlmassign <PID>.

 Automatic classification is done by following certain rules that are defined after service class is defined. These rules can be defined in class assignment rules that can contain following attributes:

 •Order of the rule: This is any number which defines the order of rules.

 •Class name: This defines to which class a process or thread will be mapped.

 •User and Group: These define by which user ID or group ID a process is owned.

 •Application: This defines the full path name of the application, and it can contain wild cards.

 •Tag: A label for identifying processes and threads that will be assigned by the AIX WLM API call. DB2 uses tags to map DB2 WLM service classes to certain AIX WLM service classes.

 You can access class assignment rules either through smitty, or by editing a special rules file. /etc/wlm/current/rules is the rules file for all superclases. For subclasses, rules files are located under the corresponding superclass directory. All superclass directories for running WLM configuration can be found under directory /etc/wlm/current/<superclass name>.

 6.1.2 Monitoring

 There are many AIX WLM-aware operating system monitoring tools to monitor AIX WLM:

 •wlmstat is similar to the use of vmstat or iostat.

 •nmon has AIX WLM enhancements.

 •topas is AIX WLM-aware.

 •ps is AIX WLM-aware: ps -m -o THREAD,class -p <process id>.

 6.1.3 Configuring AIX WLM

 All AIX WLM-related configuration files are located in the /etc/wlm directory. The subdirectories contain different configuration sets, as shown in Example 6-1.

 Example 6-1 Contents of /etc/wlm

 [image:]

 # ls -la /etc/wlm

 total 24

 drwxr-xr-x 7 root system 256 Aug 28 18:11 .

 drwxr-xr-x 19 root system 8192 Aug 27 16:35 ..

 ---------- 1 root system 0 Aug 21 12:35 .lock

 dr-xr-sr-x 3 root system 256 Aug 28 18:11 .running

 lrwxrwxrwx 1 root system 18 Aug 28 18:11 current -> /etc/wlm/standard

 drwxr-xr-x 3 root system 256 Aug 23 15:13 inventory

 drwxr-xr-x 2 root system 4096 Aug 23 11:33 standard

 drwxr-xr-x 2 root system 256 Dec 05 2004 template

 [image:]

 In this section, we describe how to configure AIX WLM by setting up a simple WLM configuration.

 You can use /etc/wlm/template as a template for setting up your own AIX WLM configuration. The steps are:

 1.	Copy the template to your desired directory:

 cp -r /etc/wlm/template /etc/wlm/testenv

 2.	Set the new configuration set as the current configuration:

 wlmcntrl -d testenv

 3.	Create superclass and subclasses.

 AIX WLM can be configured using smitty or by using commands and editing WLM-specific configuration files. Example 6-2 shows commands to create superclasses and subclasses.

 Example 6-2 Creating AIX WLM service classes - sample 1

 [image:]

 mkclass -a inheritance=no -c shares=60 SaleSupClass

 mkclass -a inheritance=no -c shares=35 SaleSupClass.App1

 mkclass -a inheritance=no -c shares=25 SaleSupClass.App2

 mkclass -a inheritance=no -c shares=40 MktSupClass

 [image:]

 In Example 6-3, we created only one superclass HighLevel and gave it 100 CPU shares. Under superclass HighLevel, we created two subclasses: Prod with 60 CPU shares, and Utils with 40 CPU shares.

 If you only have one superclass in the system, by default it obtains all the resource shares (100%). You can set the share limit by giving a different share amount.

 Example 6-3 Creating AIX WLM service classes - sample 2

 [image:]

 mkclass -a inheritance=no -c shares=100 HighLevel

 mkclass -a inheritance=no -c shares=60 HighLevel.Prod

 mkclass -a inheritance=no -c shares=40 HighLevel.Utils

 [image:]

 4.	Map application to superclass.

 You can map application to superclass either by using smitty or by editing the specific rules file. If you prefer to use smitty, use the command smitty wlm to start it, then navigate to “Class assignment rules”.

 In this example, we have two applications:

  –	app1_app:
The binaries are in /opt/App1/bin. Application app1_app has a management requirement that we want to achieve.

  –	app1_batch:
The binaries are in /opt/App1/batch/bin. app1_batch collects the performance statistics of app1_app. app1_batch is not as critical as app1_app and can have less of a share of CPU time.

 We defined our control rules by editing /etc/wlm/testenv/rules, as shown in Example 6-4. We mapped both applications, in directories /opt/App1/bin and /opt/App1/batch/bin, to superclass HighLevel.

 Example 6-4 Superclass mapping

 [image:]

 * IBM_PROLOG_BEGIN_TAG

 * This is an automatically generated prolog.

 *

 * bos530 src/bos/etc/wlm/rules 1.2

 *

 * Licensed Materials - Property of IBM

 *

 * (C) COPYRIGHT International Business Machines Corp. 1999,2002

 * All Rights Reserved

 *

 * US Government Users Restricted Rights - Use, duplication or

 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 *

 * IBM_PROLOG_END_TAG

 * class resvd user group application type tag

 System - root - - - -

 HighLevel - - - /opt/App1/bin/* - -

 HighLevel - - - /opt/App1/batch/bin/* - -

 Default - - - - - -

 [image:]

 5.	Map application to subclass.

 The rules file for subclasses running under superclass HighLevel is /etc/wlm/testnev/HighLevel/rules. This file is always created when you create the superclass. We edited this file as shown in Example 6-5.

 Example 6-5 Subclass mapping

 [image:]

 * class resvd user group application type tag

 Prod - - - /opt/App1/bin/* - -

 Utils - - - /opt/App1/batch/bin/* - -

 [image:]

 6.	Update configuration settings.

 After the service classes and mapping rules are defined, use the following command to update the AIX WLM running configuration:

 wlmcntrl -u

 Our intention was to ensure that the production application app1_app always gets priority over the utility app1_batch. We had set subclass HighLevl.Prod for app1_app and subclass HighLevel.Util for app1_batch. We gave the priority simply by assigning 60 CPU shares for app1_app and 40 CPU shares for app1_batch, for a total of 100 shares.

 Figure 6-2 shows that our system reflects this setting. The x axis represents time and the y axis represents the percentage of CPU that is consumed. The data is from the nmon monitor tool. (We discuss this tool in “nmon” on page 167.)

 In the figure, we see that by setting shares 60/40, subclass HighLevel.Prod gets priority over subclass HighLevel.Util. When using shares, the average CPU time inside the superclass Highlevel will be 60% for HighLevel.Prod and 40% for HighLevel.Util.

 [image:]

 Figure 6-2 CPU by service class

 Because we did not define any min, max, or hardmax values for our service classes, there was no specific CPU usage percentage limits to be forced upon both service classes. When we look at average data in the same time period, we find that the average CPU for HighLevel. Prod was 60%, and the average CPU for HighLevel.Utils was 40%, as illustrated in Figure 6-3.

 [image:]

 Figure 6-3 Average CPU time by service class

 We ran the same test without defining AIX WLM CPU shares. As you can see from Figure 6-4, the result looks much different than when CPU shares were defined.

 [image:]

 Figure 6-4 CPU by service class without CPU shares

 There is a major difference between average values as well, as shown in Figure 6-5 on page 153. On average, there was no difference on consumed CPU time between the applications. In fact, there was no guarantee that app1_app could get the resources it needed. This could have led to poor service quality and a violation of the business objective.

 [image:]

 Figure 6-5 Average CPU time by service class without CPU shares

 6.2 Using DB2 WLM and AIX WLM

 In this section we discuss how to integrate DB2 WLM with AIX WLM. We introduce general guidelines for planning and designing an integrated environment. We also provide useful examples and discuss monitoring tools.

 6.2.1 General guidelines

 For DB2 9.5, the AIX WLM support for DB2 WLM is CPU resource allocation only. If you want to prioritize I/O resource usage, you can set the prefetch priority on the DB2 WLM service class. You can set prefetch priority in DB2 WLM and define CPU prioritization through AIX WLM, simultaneously.

 At the time of writing, AIX WLM does not provide I/O priority at the thread level. When you integrate DB2 WLM with AIX WLM, you can only set AGENT PRIORITY for DB2 service classes to “Default”, because it will prevent setting an outbound correlator to be used with the operating system WLM.

 AIX WLM is capable of using application tags to map processes and threads to desired service classes. You define application tags through the DB2 WLM configuration by setting an outbound correlator for your service classes. After integrating your WLM environments, AIX can manage the CPU utilization for DB2 service classes.

 6.2.2 Mapping schemes

 Before you begin using DB2 WLM and AIX WLM, you need to decide how to map different DB2 service classes with AIX WLM service classes. From the conceptual management point of view, the database system has two hierarchies:

 •Instance

 •Database

 When adding the two DB2 WLM hierarchies (superclasses and subclasses), there is a total of four levels of hierarchy. If AIX WLM, which has a two-level hierarchy, is going to be used to manage the database system from the instance level, then you have to carefully design the mapping between the DB2 instance, database, service classes, and AIX services classes.

 You can choose from two different mapping schemes: the flat mapping scheme, and the 1:1 mapping scheme.

 Figure 6-6 illustrates the flat mapping scheme. This scheme is useful on servers that are used not only as the DB2 database server, but also have other applications running. In such a mixed environment, you would want to separate the application and the database activities from each other to have their own AIX WLM superclasses. All DB2 service classes would be mapped to their own subclasses under the AIX WLM DB2 superclass.

 [image:]

 Figure 6-6 Flat mapping scheme

 When you are running a dedicated database server, we recommend that you use the 1:1 mapping scheme, as illustrated in Figure 6-7.

 [image:]

 Figure 6-7 1:1 mapping

 The main difference between flat mapping and 1:1 mapping is that with 1:1 mapping, you can have identical superclasses and subclasses on both DB2 WLM and AIX WLM. This makes implementation and maintenance much easier. We use a 1:1 mapping scheme for our example in this chapter.

 6.2.3 Integrating DB2 service classes with AIX service classes

 When integrating DB2 WLM with AIX WLM, careful planning and proper design are the keys to success. You should be able to maintain and monitor your environment easily. If you have already implemented DB2 WLM, determine whether your DB2 WLM configuration can be integrated with AIX WLM. You also have to decide whether to use 1:1 mapping or a flat mapping scheme.

 Designing DB2 WLM and AIX WLM integration

 Because we are running a dedicated database server, we use 1:1 mapping as the mapping scheme. Figure 6-8 illustrates our lab DB2 WLM configuration. The database WLMDB has one user-defined superclass, HIGHLVL, which has four subclasses. Four user workloads map those four subclasses.

 [image:]

 Figure 6-8 User workloads and service classes

 In addition to the user-defined workloads and service classes, we have two default DB2 WLM system workloads and three default system service classes. All the system default service classes have one default subclass. So, all together we have four super service classes. We create equivalent service classes on AIX. The following lists DB2 service classes with equivalent AIX service classes:

 •SYSDEFAULTSYSTEMCLASS → db2DefSys

 •SYSDEFAULTUSERCLASS → db2DefUsr

 •SYSDEFAULTMAINTENANCECLASS → db2DefMnt

 •HIGHLVL → db2HighLevel

  –	ADMINS → db2HighLevel.Admins

  –	PROD_QRY → db2HighLevel.Prod_QRY

  –	PROD_RPT → db2HighLevel.Prod_RPT

  –	BATCH → db2HighLevel.Batch

 On AIX WLM, resources will be allocated to service class depending on how many shares the service class has relative to the total number of shares. We have to decide how many CPU shares we are going to give our service classes. Figure 6-9 shows the CPU share allocation for our AIX WLM service classes. It also illustrates how the outbound correlators for each service class are defined. To be easily recognized, all our outbound correlators in this example start with an under score (_) mark.

 [image:]

 Figure 6-9 1:1 mapping from existing DB2 WLM configuration

 Implementing DB2 WLM and AIX WLM integration

 Now that we have designed our mapping scheme, we are ready to implement the mapping. We start by creating new configuration set, production, for AIX WLM; see Example 6-6.

 Example 6-6 Creating new AIX WLM configuration set

 [image:]

 # cd /etc/wlm

 # cp -r template production

 # wlmcntrl -ud production

 [image:]

 Note that using the wlmcntr -ud command requires AIX WLM to be already running. If AIX WLM is not running, use the command wlmcntrl -d product instead.

 Creating classes

 After creating the configuration set, we can start configuring it. The first step is to create four superclasses and four subclasses under superclass db2HighLevel, as shown in Example 6-7.

 Example 6-7 Creating AIX WLM superclasses

 [image:]

 # mkclass -a inheritance=no -c shares=100 db2DefSystem

 # mkclass -a inheritance=no -c shares=20 db2DefMaint

 # mkclass -a inheritance=no -c shares=30 db2DefUser

 # mkclass -a inheritance=no -c shares=200 db2HighLevel

 # mkclass -a inheritance=no -c shares=30 db2HighLevel.Batch

 # mkclass -a inheritance=no -c shares=60 db2HighLevel.Prod_QRY

 # mkclass -a inheritance=no -c shares=50 db2HighLevel.Prod_RPT

 # mkclass -a inheritance=no -c shares=60 db2HighLevel.Admins

 [image:]

 Creating mapping rules

 Because the new AIX WLM configuration set production has been activated and running, we can create superclass mapping rules by editing the rules file in the directory /etc/wlm/current. Example 6-8 shows the contents of /etc/wlm/current/rules. Be aware that entries in the rules file also imply the evaluation order.

 Example 6-8 AIX WLM rules file

 [image:]

 * IBM_PROLOG_BEGIN_TAG

 * This is an automatically generated prolog.

 *

 * bos530 src/bos/etc/wlm/rules 1.2

 *

 * Licensed Materials - Property of IBM

 *

 * (C) COPYRIGHT International Business Machines Corp. 1999,2002

 * All Rights Reserved

 *

 * US Government Users Restricted Rights - Use, duplication or

 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 *

 * IBM_PROLOG_END_TAG

 * class resvd user group application type tag

 System - root - - - -

 db2DefSystem - - - - - _DefSystem

 db2DefMaint - - - - - _DefMaint

 db2DefUser - - - - - _DefUser

 db2HighLevel - - - - - _HighLevel

 db2HighLevel - - - - - _HighLevel.Batch

 db2HighLevel - - - - - _HighLevel.Prod_QRY

 db2HighLevel - - - - - _HighLevel.Prod_RPT

 db2HighLevel - - - - - _HighLevel.Admins

 Default - - - - - -

 [image:]

 	
 Note: Always leave the System class above the user-defined classes, so that system processes will go to their default service classes. Also, leave the Default user class below your user-defined classes.

 Next, we define the mapping rules for subclasses under the db2HighLevel. The corresponding rules file for the db2HighLevel is /etc/wlm/current/db2HighLevel/rules. We edit this file as shown in Example 6-9.

 Example 6-9 Rules for subclasses under superclass db2HighLevel	

 [image:]

 * class resvd user group application type tag

 Batch - - - - - _HighLevel.Batch

 Prod_QRY - - - - - _HighLevel.Prod_QRY

 Prod_RPT - - - - - _HighLevel.Prod_RPT

 Admins - - - - - _HighLevel.Admins

 [image:]

 Testing the classes and rules

 Use wlmcntrl-u command to refresh the running AIX WLM configuration so that all the changes will take effect. We check that all our newly-defined service classes are in the system by using the lsclass -fr command, as shown in Example 6-10.

 Example 6-10 List of service classes

 [image:]

 # lsclass -fr

 System:

 memorymin = 1

 Default:

 Shared:

 db2DefSystem:

 inheritance = "no"

 CPUshares = 100

 db2DefMaint:

 inheritance = "no"

 CPUshares = 20

 db2DefUser:

 inheritance = "no"

 CPUshares = 30

 db2HighLevel:

 inheritance = "no"

 CPUshares = 200

 db2HighLevel.Default:

 db2HighLevel.Shared:

 db2HighLevel.Batch:

 inheritance = "no"

 CPUshares = 30

 db2HighLevel.Prod_QRY:

 inheritance = "no"

 CPUshares = 60

 db2HighLevel.Prod_RPT:

 inheritance = "no"

 CPUshares = 50

 db2HighLevel.Admins:

 inheritance = "no"

 CPUshares = 60

 [image:]

 We test our configuration by checking to which AIX WLM service class the processes and threads with AIX WLM tag _HighLevel.Batch are assigned. The wlmcheck command can be used to check, as shown in Example 6-11.

 Example 6-11 Test mapping rules

 [image:]

 # wlmcheck -a "- - - - - _HighLevel.Batch"

 System

 db2HighLevel.Batch

 [image:]

 As you can see from Example 6-11, all processes or threads which are tagged with AIX WLM tag “_HighLevel.Batch” will be mapped to service subclass db2HighLevel.Batch, unless the process or thread is owned by root. If process or thread is owned by root, then it will be mapped to System Superclass. In our case, all DB2 processes and threads are owned by instance owner db2inst1, which ensures that our mappings will work as expected.

 If your database is partitioned, you must set up AIX WLM on all physical nodes. To set up another node, you only need to copy (using ftp or scp) the AIX WLM configuration directory to that node and activate it. Example 6-12 shows how we set up AIX WLM on the second physical database node Bonnie in our text environment.

 Example 6-12 Copying AIX WLM configuration from node to another

 [image:]

 > scp -r clyde:/etc/wlm/production /etc/wlm/

 ...

 > wlmcntrl -d production

 [image:]

 Note that the wlmcntrl command is executed without the -u flag because the AIX WLM was not running when the command was executed.

 Setting up tags for DB2 service classes

 After the AIX WLM environment is ready and running, the last step is to “link” DB2 service classes to AIX WLM service classes. This is accomplished by altering the DB2 service classes outbound correlator to associate the AIX WLM tags with them.

 Similar to DB2 WLM, every AIX WLM superclass has at least one subclass for processes. On AIX WLM, there are two default subclasses:

 •Default: This is used for all processes that are not mapped to any other subclass.

 •Shared: All memory pages that contain processes belonging to more than one subclass under same superclass will be assigned to this subclass.

 When the outbound correlator for the default DB2 WLM superclasses is set, the default subclass inherits the setting and is mapped to the correct superclass on AIX WLM. The workload management tasks will be done under the default AIX WLM subclass, which inherits all its attributes from its parent superclass. This is why we do not need to define rules for default AIX WLM subclasses, and also why we do not need to create additional subclasses for default AIX WLM superclasses.

 Example 6-13 and Example 6-14 show how to set up an outbound correlator for default and user-defined DB2 WLM service classes.

 Example 6-13 Set outbound correlators for default service classes

 [image:]

 ALTER SERVICE CLASS sysdefaultsystemclass OUTBOUND CORRELATOR _DefSystem;

 ALTER SERVICE CLASS sysdefaultmaintenanceclass OUTBOUND CORRELATOR _DefMaint;

 ALTER SERVICE CLASS sysdefaultuserclass OUTBOUND CORRELATOR _DefUser;

 [image:]

 In Example 6-14, we set an outbound correlator for our HIGHLVL service superclass and the subclasses running under it.

 Example 6-14 Set outbound correlators for user superclass and subclasses

 [image:]

 ALTER SERVICE CLASS highlvl OUTBOUND CORRELATOR _HighLevel;

 ALTER SERVICE CLASS prod_qry UNDER HIGHLVL OUTBOUND CORRELATOR _HighLevel.Admins;

 ALTER SERVICE CLASS batch UNDER highlvl OUTBOUND CORRELATOR _HighLevel.Batch;

 ALTER SERVICE CLASS prod_qry UNDER highlvl OUTBOUND CORRELATOR _HighLevel.Prod_QRY;

 ALTER SERVICE CLASS prod_rpt UNDER highlvl OUTBOUND CORRELATOR _HighLevel.Prod_RPT;

 [image:]

 You can check that the service class outbound correlators are set up properly by looking the system catalog table SYSCAT.SERVICECLASSES, as shown in Example 6-15.

 Example 6-15 Check service class outbound correlator setting

 [image:]

 db2 "select substr(char(SERVICECLASSID),1,2) as ID, substr(SERVICECLASSNAME,1,19) as SERVICECLASSNAME, substr(PARENTSERVICECLASSNAME,1,26) as PARENTSERVICECLASSNAME, substr(OUTBOUNDCORRELATOR,1,19) as TAG from syscat.serviceclasses"

 ID SERVICECLASSNAME PARENTSERVICECLASSNAME TAG

 -- --------------------- -------------------------- ------------------

 1 SYSDEFAULTSYSTEMCLASS - _DefSystem

 2 SYSDEFAULTMAINTENAN - _DefMaint

 3 SYSDEFAULTUSERCLASS - _DefUser

 11 SYSDEFAULTSUBCLASS SYSDEFAULTSYSTEMCLASS -

 12 SYSDEFAULTSUBCLASS SYSDEFAULTMAINTENANCECLASS -

 13 SYSDEFAULTSUBCLASS SYSDEFAULTUSERCLASS -

 14 HIGHLVL - _HighLevel

 15 SYSDEFAULTSUBCLASS HIGHLVL -

 16 ADMINS HIGHLVL _HighLevel.Admins

 17 BATCH HIGHLVL _HighLevel.Batch

 18 PROD_RPT HIGHLVL _HighLevel.Prod_RPT

 19 PROD_QRY HIGHLVL _HighLevel.Prod_QRY

 12 record(s) selected.

 [image:]

 Verifying operating system level mapping

 In addition to verifying that the application tags are set properly, we want to be sure that the actual operating system level mapping really happens. We can check whether the default DB2 system service class is getting mapped to the correct AIX WLM service class by using the ps command, as shown in Example 6-16.

 Example 6-16 Checking that mapping is working for the default system service class

 [image:]

 >ps -ef | egrep "db2sysc|PID"

 UID PID PPID C STIME TTY TIME CMD

 db2inst1 942242 1437962 0 15:48:10 - 1:24 db2sysc 1

 db2inst1 1347754 1839122 0 15:48:11 - 0:09 db2sysc 2

 db2inst1 2912646 1528048 2 15:48:10 - 1:07 db2sysc 0

 >ps -m -o THREAD,class -p 2912646 | egrep "db2DefSystem|PID"

 ... TID ST CP PRI SC ... F ... CLASS

 ... 1249349 S 0 60 1 ... 400400 ... db2DefSystem

 ... 3297525 S 0 60 1 ... 400400 ... db2DefSystem

 ... 3600475 S 0 60 1 ... 400400 ... db2DefSystem

 ... 3727573 S 0 60 1 ... 400400 ... db2DefSystem

 ... 700755 S 0 60 1 ... 400400 ... db2DefSystem

 ... 794987 S 0 60 1 ... 400400 ... db2DefSystem

 ... 1405319 S 0 60 1 ... 400400 ... db2DefSystem

 ... 1782027 S 0 60 1 ... 400400 ... db2DefSystem

 ... 4051391 S 0 60 1 ... 400400 ... db2DefSystem

 [image:]

 The first ps command is used to obtain the process ID for the db2sysc process on partition0. Then we used this process ID to find out whether the DB2 agents are mapped to AIX WLM service classes. This is a easy way to verify if the mapping is working correctly.

 You can also use the same approach to check whether the default maintenance service class is mapped as defined. Before checking if the user-defined DB2 workloads are mapped to correct AIX service classes, first check whether the workloads are mapped to correct DB2 service classes.

 Now we have set up four user super service classes for AIX WLM. Three of them are mapped to default DB2 WLM superclasses, and one is for the DB2 WLM user superclass. Figure 6-10 illustrates how CPU resources are shared by AIX WLM service superclasses.

 [image:]

 Figure 6-10 CPU by classes

 The chart in Figure 6-10 on page 164 shows that our dedicated database server is currently running quite a light load. There seems to be almost no CPU activity for db2DefSystem and db2Defmaint. These classes are 1:1 mapped with DB2 service classes SYSDEFAULTSYSTEMCLASS and SYSDEFAULTMAINTENANCECLASS.

 There is no activity for db2DefUser at all, because currently no workloads are mapped to DB2 WLM service class SYSDEFAULTUSERCLASS. db2HighLevel has some activity, because all DB2 user workloads are running under this service superclass.

 From the chart you can also see that there is a gap between 18:32 and 18:33. Because the chart only shows CPU activity, we should also examine memory and disk usage to find out what caused the gap.

 6.2.4 Monitoring

 AIX offers excellent monitoring tools, and some of them are AIX WLM-aware. These tools provide a quick way to monitor how the workloads are running on their service classes. This gives us the capability to monitor the databases with standard operating system monitoring tools much more effectively than ever.

 Basic AIX WLM monitoring tools

 In this section, we concentrate on the following AIX WLM-aware monitoring tools:

 •topas

 •ps

 •wlmstat

 •nmon

 Note that topas, ps, and wlmstat come with the standard AIX operating system. You can freely download nmon from the following site:

 http://www.ibm.com/collaboration/wiki/display/WikiPtype/nmon

 topas

 The topas tool is useful and user-friendly. You can use it to monitor your system in real time. The topas tool provides a good view of overall system performance, and you can include AIX WLM data. You can specify how many top AIX WLM service classes you want to include in topas output by specifying the number of WLM classes using the -w flag.

 Figure 6-11 illustrates the output of topas -w 10.

 [image:]

 Figure 6-11 Using topas for overall system monitoring

 To view only real time CPU usage between service classes, use topas -W. Example 6-17 shows what the output may look like.

 Example 6-17 Using topas for WLM monitoring

 [image:]

 Topas Monitor for host: clyde Interval: 2 Tue Sep 11 22:37:29 2007

 WLM-Class (Active) CPU% Mem% Disk-I/O%

 System 0 5 0

 db2DefSystem 1 2 0

 db2DefMaint 0 0 0

 db2DefUser 0 0 0

 db2HighLevel 9 12 0

 Unmanaged 8 4 0

 Default 1 5 0

 Shared 0 2 0

 Unclassified 0 4 0

 [image:]

 ps

 The ps command is very useful for obtaining information about processes and threads. In Example 6-15 on page 163, we show how to find the mappings between DB2 service classes and AIX WLM service classes from DB2 side by using the ps command. For more details about the ps command, refer to the AIX manual pages.

 wlmstat

 If you are familiar with iostat and vmstat, you should have no difficulty using the wlmstat command. It displays all the super classes and service classes with current CPU, memory, and disk I/O usage; see Example 6-18. The wlmstat command accepts two numeric input parameters. The first one is interval and the second one is number of cycles. For more detailed usage information about the wlmstat command, refer to the wlmstat manual pages.

 Example 6-18 Using wlmstat for WLM monitoring	

 [image:]

 >wlmstat

 CLASS CPU MEM DKIO

 Unclassified 0 0 0

 Unmanaged 0 16 0

 Default 0 18 0

 Shared 0 11 0

 System 0 5 0

 db2DefSystem 0 0 0

 db2DefMaint 0 0 0

 db2DefUser 0 0 0

 db2HighLevel 0 0 0

 db2HighLevel.Default - - -

 db2HighLevel.Shared - - -

 db2HighLevel.Batch - - -

 db2HighLevel.Prod_QRY - - -

 db2HighLevel.Prod_RPT - - -

 db2HighLevel.Admins - - -

 TOTAL 0 34 0

 [image:]

 nmon

 The nmon tool is a free tool for analyzing AIX performance. It is not part of the standard AIX operating environment and is not officially supported by IBM. The nmon tool has a user-friendly environment that is well-suited for real-time monitoring. Using nmon, you can see your CPU, disk I/O, and memory usage in real time on one screen. The rich monitoring capability has made nmon a very popular tool for monitoring AIX and its resources. Because it has WLM enhancements, we are able to use nmon to monitor AIX WLM.

 Now that we have integrated the DB2 WLM with AIX WLM, we can see how the DB2 workloads are behaving and compare the results with the overall operating system performance. CPU utilization, Workload Manager activities, and memory usage all can be seen real time in one screen, which is very useful in finding bottlenecks and solving performance problems on the database system.

 Figure 6-12 on page 169 presents simple real time monitoring for WLM superclasses and subclasses. With a single glance, we see that currently our four CPUs are utilized with 42.4% for user processes, 1.4% for system processes, and 53.9% for I/O wait. We are using 6345.8 MB physical memory and have 1846.2 MB free physical memory.

 At the time of observation, all our workloads were executed on DB2 service subclass PROD_RPT under HIGHLVL, which is mapped to AIX WLM service subclass db2HighLevel.Prod_RPT. We could examine this data further, because we would probably want to know what our CPUs are waiting for.

 We can also look at the AIX WLM configuration from nmon real time data, and find CPU shares and tiers for different DB2 service classes. By having all this information at one central place, we are able to see how our overall system is performing at a glance.

 [image:]

 Figure 6-12 Real-time monitoring service classes with nmon

 Note that nmon is also capable of saving monitored data to file in a comma-separated values (CSV) format. It is an ideal tool for collecting data for analysis using charts. Many of our AIX WLM-related charts in this chapter were created using nmon.

 In Figure 6-10 on page 164, we present a chart showing CPU usage by service classes. We noticed that there was a gap in CPU usage between 6:32 pm and 6:33 pm. The data was collected with nmon and saved as a CSV format file. The data is then imported to a spreadsheet for plotting charts. When data is collected using operating system tools, then both DB2-related data and the entire operating system-related data is collected.

 Monitoring system using AIX WLM and DB2 WLM monitoring

 In Figure 6-10 on page 164, we presented a CPU usage by service classes chart using data from nmon. We noticed that there was a gap in CPU usage between 6:32 pm and 6:33 pm, and wanted to know the cause of it.

 Because the data was collected with an operating system tool, the chart reflects the activities on the entire system, both DB2 and non-DB2. To investigate the root cause, we first examine the average DB2 query execution time during that time frame. We collect the statistics using an event monitor to table SCSTATS_BASIC_MON, and plot the query average execution time between 6:22 pm and 6:42 pm, as shown in Figure 6-13.

 [image:]

 Figure 6-13 Average execution time

 The CPU gap could have happened if there were no queries at the time, but this was not the case. We see that there was a peak for average execution time on both PROD_RPT and PROD_QRY service classes at 6:32 pm. This peak can imply a lack of operating system resources.

 We then examine the operating system disk I/O activities at the time of this incident by using the same data file collected by nmon. Figure 6-14 shows the disk reads between 6:26 pm and 6:40 pm.

 [image:]

 Figure 6-14 Operating system disk reads

 The disk reads in the chart are average for all the disks that belong to the datavg volume group. This volume group holds all of our database-related data. There was a high disk read period between 6:32 pm and 6:33 pm because the operating system administrator mistakenly started the backup procedure for the volume group, then corrected this action quickly. DB2 queries were in I/O wait and did not consume CPU time.

 We were able to determine the root cause for the relatively short service breakdown by combining the usage of DB2 WLM and AIX WLM monitoring tools. By using AIX WLM, you are also able to prioritize your database-related tasks over other tasks to provide optimal database performance.

[image:]
[image:]

WLM sample scenarios - other usage

 This chapter demonstrates how to use WLM beyond simply managing DB2 workloads. Using the same data captured in the previous scenarios, WLM shows its usefulness in solving other tasks in running a data center.

 In this chapter, we explore two sample scenarios:

 •Capacity planning - how to use WLM to trend and project resource consumption and anticipate future resource needs, such as more CPU power

 •Chargeback accounting- how to use WLM to establish a method of capturing resource utilization for the purposes of charging for resource usage

 7.1 Capacity planning

 Capacity planning has two main objectives:

 •Trending - Establish resource (CPU, memory, DASD) usage and workload trends over an extended period of time

 •Projecting - After trends have been established, project future resource requirements based on historical data capture and analysis

 Effective capacity planning can be very complex in large complex environments, and it can involve trending and projecting many resources. Our example here is not designed to replace existing capacity planning tools, but instead to augment them by providing additional data or insights about how resources are being consumed by DB2 applications.

 For simplicity, our example covers a single resource: CPU. However, the principles can be applied to other resources, such as memory.

 In this case, we want to know how much CPU resource we are using today so that we can project whether we have adequate resources tomorrow, when workloads change. By establishing trends on our DB2 applications, we can determine whether resource needs are changing over time.

 Such projections and trends are needed when business grows and more data is added to our database; when new applications are added and the number of workloads will increase; or when more users are expected to use our database, and the number of queries will increase. These and other questions can be answered by capturing WLM monitoring data.

 To perform capacity planning data trending in our sample scenario, the following DB2 WLM monitoring data is needed for specific time periods:

 •NUMBER of concurrent active connections

 •TOTAL request execution time

 •AVERAGE request execution time

 This information is contained in our event monitor table SCSTATS_BASIC_MON. Using these columns, along with AIX CPU usage data provided by either nmon or vmstat, we can correlate the two monitoring elements to provide a simple trending chart. In our example, we collect the CPU data from each server using nmon, which outputs the needed data using the following command:

 nmon -f -s1800 -c48 -rwlm

 This creates an output file that can be input to nmon analyzer.xls. Both nmon and the nmon analyzer.xls are available for download from the following IBM Wiki Web site:

 http://www.ibm.com/collaboration/wiki/display/WikiPtype/nmon

 7.1.1 The workload environment

 We start our capacity planning scenario by using the environment established in Chapter 3, “Customizing the WLM execution environments” on page 49. Here we are interested in trending and projecting our production workloads for production queries WL_PROD_QRY and production reports WL_PROD_RPT, as shown in Figure 7-1 on page 175. The other workloads are of no immediate concern and are ignored.

 [image:]

 Figure 7-1 Workload environment (from Chapter 3)

 The following monitoring requirements are needed for capacity planning:

 •Retention period: 12 months

 •Intervals for monitoring: 30 minutes

 7.1.2 Collecting the trending data

 During running sample workloads, the statistics information is captured and sent to the statistics event monitor at 30-minute intervals automatically. We use the SCSTATS_BASIC_MON table to monitor the base information for capacity planning.

 For each interval, we want to know the highest number of concurrent queries running, and the combined execution time. The concurrent activity top shows us the highest concurrency of activities (including nested activities) during a specific interval, giving us a sense of how many workloads are taking place in our system for any given time period. Combining that with the total execution time for the same period, along with the nmon CPU usage, we can determine how much CPU is being consumed by our workloads.

 The nmon CPU data must be used to confirm that the request execution times are the result of the queries running and consuming CPU, as opposed to waiting for locks or data from disks. By looking at the time intervals, we can find when our highest workload periods are occurring.

 Assuming a continuance of the same workloads within the same time periods as measured over time, we can then analyze and project our capacity into the future. Again, it must be noted that these are simple techniques for a complex problem—but they can be effective for obtaining a high level view for capacity planning analysis.

 7.1.3 Monitoring and analysis

 To collect the data for our example, we used the query shown in Example 7-1

 Example 7-1 Query to capture capacity planning data

 [image:]

 select

 statistics_date,

 statistics_hour,

 subclass_name,

 con_act_top,

 avg_r_exe_tm,

 decimal(avg_r_exe_tm / con_act_top,9,3) as avg_r_exe_tm_per_act

 from (select

 date(statistics_timestamp) as statistics_date,

 hour(statistics_timestamp) as statistics_hour,

 substr(service_subclass_name,1,15) as subclass_name,

 case when 1 > int(sum(concurrent_act_top))

 then 1

 else int(sum(concurrent_act_top))

 end as con_act_top,

 case when 1 > int(sum(request_exec_time_avg))

 then 1

 else decimal(sum(request_exec_time_avg) / 1000,9,3)

 end as avg_r_exe_tm

 from scstats_basic_mon

 where

 service_subclass_name in ('PROD_RPT', 'PROD_QRY')

 group by date(statistics_timestamp), hour(statistics_timestamp), service_subclass_name

 order by date(statistics_timestamp), hour(statistics_timestamp), service_subclass_name);

 [image:]

 After collecting the data, we can create various charts for analysis. For this example, we have collected three weeks of data, covering the prime time hours.

 Our first chart, shown in Figure 7-2 on page 178, is the total request execution times across all data partitions for both PROD_QRY and PROD_RPT service classes. For ease of viewing, only the prime time hours are shown, because this is our main area of focus.

 From this chart, we can see which hours have the highest request execution times, and whether a trend appears to be established. Here we clearly see that 11 am shows the highest total request execution times. Additionally, we appear to have established an upward trend in request execution times. Notice that the request execution time drops off dramatically after 5 pm, and continues to remain low for the rest of the prime time shift.

 [image:]

 Figure 7-2 Total Request Execution times in seconds, across all partitions

 Next, we compare the CPU utilization across the same time periods to give us a perspective of how our total request executions times related to CPU consumption. In Figure on page 180, we see the total CPU percentage for all our partitions. This can easily be captured using vmstat or nmon.

 [image:]

 Figure 7-3 Total CPU percentages across all partitions

 Now we can put the previous chart into perspective. We see that our peak CPU consumption is at 11 am. We top out at 90% when the total request execution time is 32,635 seconds. Therefore, we can make a basic assumption that we reach maximum consumption at 100% when we reach a total request execution time of 36,261 (32,635/.90) seconds. Other factors play into CPU consumption but for basic planning purposes, this gives a simple model.

 Next, we need to analyze whether any correlation exists between request execution times and the number of active concurrent workloads. Figure 7-4 on page 180 displays a chart showing the number of top concurrent workload activities for the same time periods.

 [image:]

 Figure 7-4 Number of top concurrent workloads activities for time periods

 Here we see a slightly different picture: we have two periods of high workloads, 11 am and 2 pm. The difference must be in the average request execution times for each workload activity. Figure 7-5 on page 181 displays a chart showing the average request execution time for average concurrent workloads.

 [image:]

 Figure 7-5 Average request execution times per active connection

 As you can see, our most “expensive” requests are submitted during lunch time, at 12 pm. We can also confirm that the workloads at 2 pm are slightly more CPU-intensive then those submitted at 11 am.

 All of our charts confirm that a linear correlation exists between Request Execution times and Percentage of CPU. As the total request execution time goes up, so does the total percentage of CPU.

 This is important to establish and understand, because if there is no linear relationship between these two factors, it indicates that other factors may be at play. The other factors could be lock waits or slow disk access times, or perhaps there is not enough memory and paging is occurring. A more comprehensive set of reports with additional information would then be needed in order to effectively analyze these additional factors.

 7.1.4 Capacity planning - summary

 From our simple capacity planning example, you can see that WLM provides a effective means for performing capacity planning. Note that several assumptions were made in doing the analysis.

 First, the linear correlation between the WLM request execution times and CPU utilization exists. When the WLM request executions times go up, so does the CPU utilization. If this relationship is not linear, then more complex mathematical analysis must be used to establish the proper relationship.

 Secondly, a linear correlation exists between the WLM number of concurrent active connections and the WLM request execution times. Otherwise, the averages will be misleading.

 These two important relationships should be monitored and validated periodically. Our example scenario reveals several important facts:

 •Our workload activity is not evenly distributed across our primtime shift.

 •11 am is our highest CPU demand period, due to the high number of requests.

 •12 pm is when our most CPU-intensive workloads are submitted. The workloads in this time period may need to be investigated to see whether the CPU consumption of these workloads can be reduced or moved to a later time period.

 •2 pm is another time period that appears to be growing consistently and may need closer monitoring.

 •Our trending line shows these time periods appear to be growing in total CPU consumption.

 •If we can redistribute work from the middle of our primetime shift to later in the shift, we can possibly forestall the need to expand our capacity.

 7.2 Chargeback accounting

 In many customer environments, a single DB2 server may be shared and running several instances of DB2. Occasionally, a single instance may have multiple databases.

 In order to adequately charge end users for their resource consumption, chargeback accounting is needed. Several techniques are explored in this section to accomplish chargeback accounting.

 The example used in this section shows two instances of DB2, with each instance containing a database. This might be a typical OLTP environment where the two databases are in their own instances to allow for separate configurations. This arrangement also insures stability between databases, as well as the independence to start and stop DB2 when needed. We want each instance and database charged to its respective department.

 Chargeback information by WLM

 Depending on the technique used, the following data is needed for chargeback accounting:

 •DB2 WLM - Total request execution time, from Aggregate Request Data

 •AIX WLM - percentage of CPU utilization for each instance

 This scenario explains how to use DB2 WLM for chargeback accounting. For information regarding AIX WLM, refer to Chapter 6, “AIX Workload Manager considerations” on page 143.

 7.2.1 Business objectives

 In our environment, we have two departments (Sales and Accounting) sharing the same server but running in separate instances. The two areas are responsible for paying for the entire system so the costs are split, based on their proportionate share. This includes times when the entire system may not be busy. This would be typical in a zero cost data center, where all the costs are allocated.

 7.2.2 Defining workload profile

 Example 7-2 shows the workload management configuration for chargeback accounting. Each instance is configured using the same blueprint. For chargeback accounting information, only Request Execution times are needed.

 Example 7-2 WLM configuration for chargeback accounting

 [image:]

 -- instance db2inst01

 CREATE SERVICE CLASS HIGHLVL DISABLE;

 CREATE SERVICE CLASS SALES UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 ALTER SERVICE CLASS SALES ENABLE;

 CREATE EVENT MONITOR BASIC_MON FOR STATISTICS WRITE TO TABLE

 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT)

 AUTOSTART;

 SET EVENT MONITOR BASIC_MON STATE 1;

 -- instance db2inst02

 CREATE SERVICE CLASS HIGHLVL DISABLE;

 CREATE SERVICE CLASS SALES UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA BASE DISABLE;

 ALTER SERVICE CLASS SALES ENABLE;

 CREATE EVENT MONITOR BASIC_MON FOR STATISTICS WRITE TO TABLE

 SCSTATS (TABLE SCSTATS_BASIC_MON IN MAINT)

 AUTOSTART;

 SET EVENT MONITOR BASIC_MON STATE 1;

 [image:]

 7.2.3 Monitoring

 After we have run our WLM setup for a week, we can analyze our data. Using the query in Example 7-3, we can capture the chargeback data from each instance.

 Because the event monitor names are the same but the super class names are unique, we simply run the query in both instances.

 Example 7-3 Query to collect chargeback accounting data

 [image:]

 select

 statistics_date,

 superclass_name,

 decimal(avg_r_exe_tm / con_act_top,9,3) as avg_r_exe_tm_per_act

 from (select

 date(statistics_timestamp) as statistics_date,

 substr(service_superclass_name,1,15) as superclass_name,

 case when 1 > decimal(sum(request_exec_time_avg),9,3)

 then 0

 else decimal(sum(request_exec_time_avg) / 1000,9,3)

 end as avg_r_exe_tm

 from scstats_basic_mon

 group by date(statistics_timestamp), service_superclass_name)

 order by date(statistics_timestamp), service_superclass_name);

 [image:]

 From this data we can create a spreadsheet, as shown in Table 7-1 on page 184.

 Table 7-1 Chargeback accounting spreadsheet

 	
 Total Request Execution Times

 	
 Percentage chargeback

 	
 STATISTICS_DATE

 	
 ACCOUNTING

 	
 SALES

 	
 Grand total

 	
 ACCOUNTING

 	
 SALES

 	
 08/27/07

 	
 98,940.58

 	
 218,744.34

 	
 317,684.93

 	
 31.144

 	
 68.856

 	
 08/28/07

 	
 57,731.21

 	
 221,394.80

 	
 279,126.02

 	
 20.683

 	
 79.317

 	
 08/29/07

 	
 80,126.25

 	
 229,726.85

 	
 309,853.11

 	
 25.859

 	
 74.141

 	
 08/30/07

 	
 111,796.64

 	
 224,795.77

 	
 336,592.41

 	
 33.214

 	
 66.786

 	
 08/31/07

 	
 89,442.65

 	
 235,012.39

 	
 324,455.05

 	
 27.567

 	
 72.433

 Note that the total times vary from day to day, but the percentage calculations are based on the total for the particular day. This way each department is charged for their percentage of use that day, and the sum of the percentages is always 100%. If, for example, SALES was the only instance running that day, IT would be charged 100%. This eliminates having a shortfall or gap in accounting for the machine usage.

 Because we are only using DB2 WLM Request Execution times, we have to assume that the other DB2 processes are not accounted for in WLM. Here is a partial list of entities that do not work within a database and are not tracked by service classes:

 •DB2 system controllers (db2sysc)

 •IPC listeners (db2ipccm)

 •TCP listeners (db2tcpcm)

 •FCM daemons (db2fcms, db2fcmr)

 •DB2 resynchronization agents (db2resync)

 •Idle agents (agents with no database association)

 •Instance attachment agents

 •Gateway agents

 •All other instance-level EDUs

 We can represent the spreadsheet in Table 7-1 on page 184 graphically to illustrate how the departments compare to each other; see Figure 7-6 on page 186.

 [image:]

 Figure 7-6 Chargeback accounting - graphic representation

 7.2.4 Chargeback accounting - summary

 We have demonstrated that chargeback accounting can easily be done using DB2 WLM. Basic assumptions need to be made and validated to insure that processes not included in the chargeback do not adversely change the percentages. If it is determined that the processes which are unaccounted for are out of proportion, then the default super classes can be included in the chargeback accounting.

 As mentioned, AIX WLM can be used on AIX systems for chargeback accounting, and the AIX WLM setup is shown in Chapter 6, “AIX Workload Manager considerations” on page 143.

[image:]
[image:]

DWE Design Studio and DB2 WLM

 IBM DB2 Warehouse Edition (DWE) provides everything you need to effectively implement a flexible and scalable data warehouse for dynamic warehousing. DWE is the premier solution for data warehousing, online transaction processing (OLTP), and mixed workloads. DB2 DWE features include enhanced warehouse management, analytic application development, OLAP, data mining, advanced compression and workload management.

 We discuss the following topic in this chapter:

 •A detailed description of how to create DB2 WLM components using DWE Design Studio

 8.1 DB2 Warehouse Design Studio overview

 DB2 DWE Design Studio in Data Warehouse version 9.5 introduces a new function to create, modify, validate, and execute DB2 WLM objects. Its graphical interface lets you see the hierarchy of the WLM objects and manage them.

 The DB2 DWE Design Studio is based upon the open source Eclipse platform. The Eclipse platform is used for building integrated development environments (IDEs). Eclipse is an open source community of companies that focuses on building development platforms, runtimes, and frameworks providing a universal framework for tools integration.

 The DB2 DWE Design Studio provides the core components to: graphically organize organizational data (data structure); create relationships between data elements (data mining); move and transform data within the data warehouse; analyze data to reveal business trends and statistics; identify relationships and patterns; and create database WLM objects.

 When creating new tools, developers have to only code on their expertise subject area and only need to build the features that comprise their specialty. Other components, such as the runtime environment, user interface, and help systems are part of Eclipse. The additional capabilities that the tools vendors provide are delivered as a plug-in to Eclipse. The plug-in is installed into an existing Eclipse environment. Each of the capabilities that Design Studio provides are packaged together and are installed on the top of the basic Eclipse platform. The basic Eclipse architecture shown in Figure 8-1.

 [image:]

 Figure 8-1 Eclipse basic platform

 8.1.1 Workload management support

 Prior to DB2 9.5, the workload management solution was based on Query Patroller (QP) and DB2 Governor. Query Patroller is a predictive tool that provides a way to monitor, manage, and control work, and provides reports. DB2 Governor is a reactive tool that uses a system monitor to watch the work running on the system and, based on the rules defined, takes reactive steps to correct problematic situations.

 In DB2 9.5, a comprehensive workload management feature is integrated inside the DB2 engine to closely interact, access, and manage workloads so that you can see how your system is running, and gain control over resources and performance.

 DB2 DWE Design Studio 9.5 supports the ongoing development, refinement, validation, and monitoring of a workload management solution, as described here:

 •Reverse engineering on an existing database

 You can use Design Studio to reverse-engineer an existing DB2 WLM object’s definitions, settings, and other information, in order to create a new WLM scheme. This scheme can be changed to suit your needs, and it can be validated. Reverse engineering allows you to: port the current database settings to Design Studio for further editing; port to another system; or use the database settings as the base for a new workload.

 •Create new WLM solutions using templates

 Design Studio provides standard templates that can used to achieve your WLM objectives:

  –	Provide resource sharing

 On a shared system environment, resources have to be shared. Using the WLM solution, you can control and share system resources based on the needs, priority, or other defined agreements. You can explicitly establish limits for the consumption of system resources; prevent the misuse of resources; and track resource usage patterns.

 For example, you can set up CPU sharing on AIX systems and, for other systems, set thread priorities of the agents and control the priority with which agents submit prefetch requests.

  –	Enforce database activity limits

 Limits can be enforced in the database by specifying whether the activities that exceed the boundaries are queued, stopped, or allowed to execute.

  –	Enforce limits for concurrent activities

 You can enforce limits on the number of coordinator activities that run simultaneously. Limits can be enforced in the database, in the superclass, on the specific type of work, or on the specific type of work from a specific source.

 •Manipulate WLM entities

 With Design Studio, the superclass, workloads, work actions, and thresholds can be viewed and changed by using the graphical interface.

 •Validate WLM entities

 After creating a workload management scheme, you can validate it to ensure that you have entered values for the required properties and defined all of the property values correctly.

 If the validation fails, the Design Studio displays error and warning message output to alert you to the problems in the scheme that need to be corrected.

 On successful validation, you can generate the SQL code, review it, and revise the scheme to change the code. This can be repeated until you are satisfied that the scheme is ready to be deployed to the database.

 •Deployment

 After a successful validation, you can deploy the workload management scheme directly from Design Studio by connecting to the database.

 8.2 Getting started

 After Design Studio is started, you are prompted to enter the workspace path as shown in Figure 8-2. A workspace is place where you can store all your Design Studio work and data files. It acts as a central repository for your data files. A workspace may hold multiple projects. You can have more than one workspace, but only one will be active per running instance of DB2 DWE Design Studio.

 [image:]

 Figure 8-2 Workspace location

 To switch between workspaces, select File -> Switch Workspace.

 	
 Note: We recommend that you select a workspace path which will be frequently backed up.

 After you specify the workspace, Design Studio displays the Welcome view, which includes links to the DB2 Warehouse documentation, tutorials, and sample files.

 Design Studio work is stored as projects, files, and folders. A project is a container used to organize resources pertaining to a specific subject area (for example, a data warehouse project). The workspace resources are displayed in a tree structure, with projects containing folders and files. Note that projects may not contain other projects.

 Figure 8-3 shows the DWE Design Studio workbench.

 [image:]

 Figure 8-3 DWE Design Studio workbench

 The perspectives control what the Design Studio displays, including certain menus and tool bars.

 Perspectives

 When you open the Design Studio, it takes you to the default Business Intelligence (BI) perspective. This view contains various resources that can be used to accomplish a particular task or work with a particular resource. Certain menu options are enabled or disabled, based on your current perspective. Additional perspectives can be opened based on your needs. Perspectives provide the functionality required to accomplish a particular task with a particular resource.

 To open additional perspectives, click Window -> Open Perspective -> Other and select the desired perspective.

 To reset a perspective to its original layout, click Window -> Reset Perspective.

 Views

 A view is a visual component of Design Studio used to display properties, tree structure, and access to editors. Views can be used to navigate Data Project Explorer and Database Explorer information trees, open the related editors, or display and review properties. When you modify the information in a view, Design Studio saves it immediately. To open a closed or hidden view, click Window -> Show View and select the view.

 Data Project Explorer view

 This view is open by default in the upper left area of Design Studio. This hierarchical tree displays projects and objects that you can navigate through or use to create new objects. This is a frequently used view, where you select and modify the contents of different projects and objects. Note that this view is not live and does not provide direct access to underlying databases.

 Database Explorer view

 This view is open by default in the lower left area of Design Studio. It is a hierarchical tree of the live databases that you can explore, connect to, create models from, and ultimately modify. You must have a DB2 user account that includes the appropriate authority and privileges to modify a database.

 The DB2 databases (and aliases) are listed automatically in this view, picked up from your local catalog. You can set up connections to other databases as needed.

 Properties view

 This view is open by default in the lower right area of Design Studio. You can use the Properties view to define and modify many of the objects that you create. In addition, from this view you can see other views such as Data Output, Problems, Execution Status and Job Status. To make any of these views active, click the title tab, which brings the Properties view to the foreground.

 You can use the Properties view to define and modify many of the objects that you create. To open the Properties view when it is closed or hidden, click Window -> Show View -> Properties.

 	
 Note: If you cannot find an option or control that you expected to work with, verify that you have opened the correct view.

 Editors view

 The Editors view opens by default in the upper right area of the Design Studio canvas. It also opens up a palette for graphic editors, on the right side of the canvas, based on the object type you are working with.

 An editor is a visual component of the Design Studio that you typically use to browse or modify a resource, such has an object in a project. The available options are Text Editor, System Editor (operating system), and In-line Editor, based on the project scheme or objects.

 	
 Note: There is no automatic save option for these editors, so you must explicitly save the changes.

 Projects

 A project is a set of objects that you create in Design Studio as part of the data transformation or warehouse building processes. You must create a project in Design Studio before creating WLM objects. Each project that you build is represented by an icon in the Data Project Explorer, where you can expand it, explore its contents, and access editors to work with it. You create different types of objects, according to the type of project you are building.

 You can integrate the project file workspace directory with the concurrent versions system (CVS). In a coordinated development environment, this will enable you to share the project with other developers.

 8.2.1 Workload Management Scheme

 Workload Management Scheme supports the ongoing development, refinement, validation, and monitoring of a workload management solution. It contains projects and templates, and provides a sequence of screens to guide you through building DB2 workload management objects. You also can integrate DB2 workloads with operating system workloads. Currently, the supported operating system is AIX workloads.

 There are terminology differences between the Workload Management Scheme on Design Studio and DB2 Workload Management. Table 8-1 lists the mapping of terminologies.

 Table 8-1 Design Studio Workload entity and DB2 Workload Manager objects

 	
 Workload Management entity in Design Studio

 	
 DB2 Workload Manager object created in DB2

 	
 Superclass

 	
 Service superclass

 	
 Subclass

 	
 Service subclass

 	
 Work identity

 	
 Workload

 	
 Work type set

 	
 Work class set

 	
 Work type

 	
 Work class

 	
 Control rule for the database

 	
 Threshold for the database domain

 	
 Control rule for a superclass

 	
 Threshold for the superclass domain

 	
 Control rule for a subclass

 	
 Threshold for the subclass domain

 	
 Control rule for a work identity

 	
 Threshold for the workload domain

 On Design Studio, when you create a new scheme, it can be viewed in more than one way. You can see the DB2 WLM entities using:

 •The tree view

 •The grid view

 Figure 8-4 on page 195 shows a Design Studio tree view with WLM entities.

 [image:]

 Figure 8-4 Design Studio WLM entities - tree view

 Figure 8-5 shows the Design Studio WLM entities in grid view.

 [image:]

 Figure 8-5 Design Studio WLM entities - grid view

 When you create a new scheme, Design Studio automatically creates containers for entities that make up a scheme. The containers created by Design Studio are:

 •Database service classes

 Based on the definition, all of the work for a database is executed in the database service classes.

 •Operating system service classes

 If you run the database on AIX, use operating system service classes to allocate CPU shares for database work. Operating system service classes are created with a new scheme only when reverse engineering is used.

 •Work identities

 Work identities define the work to be controlled based on connection attributes, like user or application name.

 •Work type sets and work types

 Classify the database work into sets of work types, such as DML, DDL, Read, Write, LOAD, CALL and so forth. Work types are then mapped to the database subclasses that execute the work.

 	
 Note: Work type sets and work types are never created for you as part of creating a new scheme; they must be created separately.

 •Histogram templates

 Histogram templates are used to determine the high bin values for a histogram. You can create custom templates for the histograms that display your monitoring data, or use the default templates.

 8.3 Managing database workloads using Design Studio

 You can use Design Studio to perform the DB2 Workload Management methodology to achieve your goal:

 •Plan and design the workload management system

 •Review and finalize your management goals

 •Create and implement baseline monitoring

 •Create execution environment and implement the controls

 •Monitor and repeat the process until you achieve the desired goal

 You can use a data warehouse project for designing and building the DB2 workload management objects. Before starting to do any work, create a project from File -> New -> Data Warehouse Project; see Figure 8-6.

 In this example, we create a new project WLMDB.

 [image:]

 Figure 8-6 Create a new Data Warehouse project

 After creating a data warehouse project, create a new workload management (WLM) scheme. The WLM scheme contains a set of entities that define a workload management solution for a database. When you create and save a WLM scheme for the first time, Design Studio creates a file with a .wlms file extension for the scheme, using the scheme name you specified under the workspace directory. Design Studio displays the complete path in the Overview tab.

 To create WLM Scheme, expand the project tree view (WLMDB, in our example), and then right-click Workload management scheme -> New -> Workload Management Scheme; see Figure 8-7 on page 198.

 [image:]

 Figure 8-7 Creating workload management scheme

 When you select New Workload Management Scheme, it takes you to the New File for Workload Management Scheme panel (Figure 8-8 on page 199), where you can give a scheme name and select one of the three methods to create the scheme:

 •Create a scheme by objective

 •Create a scheme yourself

 •Create a scheme by reverse engineering

 We discuss each scheme creation method in detail in the following sections.

 [image:]

 Figure 8-8 Selecting Create a new workload management scheme method

 8.3.1 Create workload scheme by objective

 When you create a WLM scheme by objective, Design Studio guides you through the configuration process. This method helps to simplify the task of creating a WLM scheme. By using this method, you can create a scheme that resolves three common WLM objectives:

 •Controlling and sharing system resources

 This is for creating a WLM scheme to manage the system resources for database activities based on your resource allocation objectives. If the database runs on the AIX operating system, you can integrate operating system service classes to manage the system resources for the execution environments. For non-AIX systems, you can set the Agent Priority.

 •Creating limits for database activities

 This is for creating a WLM scheme to define and enforce execution limits on the database activities. You can specify whether to stop the activities that reach the limits, or allow them to continue. You can create limits based on work type, activity, source, or combination of these.

 •Creating limits for database activities that run concurrently

 This is for creating a WLM scheme to create and enforce concurrency limits on database activities. You can specify whether to stop activities that exceed the concurrency limits, or allow them to continue.

 Controlling and sharing system resources

 In this section, we demonstrate how to use the Control and Share system resources method to create a workload scheme. The example business problem used here is a database system which has short-, medium-, and long-running queries coming from different business units and competing for resources. We need to define a method so that work is grouped by business unit and shares system resources among each other in a controlled way.

 One solution for this business case is the following:

 •Categorize work and create appropriate work identities.

 •Based on business units, create superclasses.

 •Define relationships and assign different types of work identities to the appropriate superclasses.

 •AIX WLM provides sophisticated management of CPU. If AIX WLM is available and in place, then associate DB2 superclasses with AIX superclasses. For non-AIX systems, use Agent Priority.

 This proposed solution can be achieved by using the Design Studio Controlling and Sharing system resource option.

 To create a WLM scheme using the Design Studio guided steps, we specify WLMDEMO_BY_OBJ as the scheme name and select Create a scheme by objective in the New File Workload Management Scheme panel; see Figure 8-9 on page 201.

 [image:]

 Figure 8-9 Create scheme by objective

 In the Create a Workload Management Scheme by Objective panel (Figure 8-10 on page 201), select Control and share system resources and click Finish.

 [image:]

 Figure 8-10 Control and share system resources

 The Control and Share System Resources panel (Figure 8-11 on page 202) is then presented with four tabs labeled General, Work Identities, Superclasses, and Create Relationships. Each tab allows you to create specific DB2 workload objects.

 	
 Note: Clicking OK at any tab takes you back to the Business Intelligence view, and not to the next tab. Design Studio will create only the default objects for those unvisited tabs.

 So to continue working on the scheme using the guided configuration, select the WLM scheme -> Workload Management, and then select the guided configuration you want.

 [image:]

 Figure 8-11 Control and Share resources - tab view

 We explain the tabs as follows:

 1.	General

 This is an informational tab. Select the Work Identities tab to continue.

 2.	Work Identities

 You can use this tab to add a new DB2 WLM workload, or to delete or modify an existing workload.

 Because there are no existing user-defined workloads, the default workloads SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD are listed. To add a workload, click Add and the Work Identity property view was presented; see Figure 8-12 on page 203. You can identify the connection attributes to be used in your workload.

 To see the description of a field, left-click the field name.

 The capitalized fields in the Work Identity panel match the attributes in the DB2 CREATE WORKLOAD statement. The three authorization fields are for granting workload execution authority.

 In our case, we created a workload WI_PROD to manage application dss.exe. The workload can be used by everyone (public). We selected the Superclasses tab to proceed.

 [image:]

 Figure 8-12 Work Identity

 	
 Notes:

 •If you do not specify a value for a connection property, DB2 matches for all of the values of the property, as if you had specified a wildcard.

 •When you specify values for multiple connection properties (such as application name and system user), then the values are interpreted as the application name and the system user. For example, if you enter ‘dss.exe’ in APPLNAME and ‘Bob’ in SYSTEM_USER, the values are interpreted as ‘dss.exe’ + ‘Bob’ as the connection property.

 •If you type multiple values for the same connection property in a comma-separated list, each value in the comma-separated list is connected to the next by or. For example, if you enter Mary, Bob, John in the SESSION_USER field, the values are interpreted as Mary or Bob or John.

 3.	Superclasses

 Figure 8-13 on page 205 shows the Superclasses tab with three default superclasses: SYSDEFAULTUSERCLASS, SYSDEFAULTSYSTEMCLASS, and SYSDEFAULTMAINTENANCELASS. Use this tab to add new superclasses, or to delete or modify existing superclasses.

 [image:]

 Figure 8-13 Control and Share System Resources - Superclasses view

 To create a new superclass, click Add and the Superclass property view will be presented; see Figure 8-14 on page 206.

 Here you enter the name of the superclass to be created, the agent and prefetch priority, and work action set name, if already known. These fields match the AGENT PRIORITY, PREFETCH PRIORITY in the DB2 CREATE SERVICE CLASS statement.

 [image:]

 Figure 8-14 Superclass properties

 If your operating system is AIX and you are using AIX WLM, you can associate the superclass with the Operating system class by selecting the browse button [image:]. This will take you to Select Operating system Service Class panel (Figure 8-15).

 [image:]

 Figure 8-15 Select Operating system service class

 To create a new operating system service class, expand the WLM scheme, select Superclass, and click Create.... For this example, we created an operating system class DB2SC for DB2 resources; see Figure 8-16. Clicking OK takes you back to the Select Operating System Service Class to allow you to create more operating system service classes.

 [image:]

 Figure 8-16 New Operating System Service Class

 After you have completed creating operating system service classes, select any operating system service class to make the OK button active and then click OK. Design Studio takes you back to Superclass property view showing the new operating system service class associated with DB2 Superclass; see Figure 8-17.

 [image:]

 Figure 8-17 DB2 Superclass with AIX Operating System Service class

 Clicking OK in the Superclass property view takes you back to the Superclasses tab view for creating or editing another superclass. Figure 8-18 shows the DB2 superclass associated with AIX superclass. Clicking OK in this view ends the workload creating process. To continue, click the Create Relationships tab.

 [image:]

 Figure 8-18 DB2 superclass and AIX superclass

 4.	Create Relationships

 By default, workloads are associated with the default superclass. You can use this tab to customize the relationships between the work identities, superclasses, and operating system service classes. Figure 8-19 on page 209 shows all the defined workloads are listed under Work Identity column.

 [image:]

 Figure 8-19 Create Relationships view

 To change the superclass associated to a workload, click the superclass name; a browse button will be shown next to the superclass name. Click the browse button to obtain a list of superclasses you can choose from; see Figure 8-20 on page 210.

 [image:]

 Figure 8-20 Create Relationships - associate with superclass

 If you have a DB2 superclass that is associated with an operating system service class, associating a work identity to the DB2 superclass will automatically map the work identity to the operating system service class.

 In our example, the DB superclass HIGHLVL was associated with the operating system service class DB2SC. After we associate the WI_PROD to HIGHLVL, the operating system service class DB2SC is automatically associated; see Figure 8-21 on page 211.

 [image:]

 Figure 8-21 Control and Share System Resources - Create Relationships view

 When you click OK, Design Studio creates a WLM scheme and takes you back to the default Business Intelligence (BI) perspective.

 In the BI perspective, Design Studio focuses you on the Editors panel and give the overview of the current project created. The project created for this example is WLMDEMO_BY_OBJ, as shown in Figure 8-22 on page 212.

 	
 Note: Design Studio does not save the scheme automatically. To save your scheme, use File -> Save or the [image:] icon.

 [image:]

 Figure 8-22 WLM Scheme created using Create Scheme by Objective

 If you select the Scheme tab in the BI perspective, you can see the tree structure of the WLM scheme you created; refer to Figure 8-23 on page 213. From the tree view, you can further modify the work scheme you created.

 [image:]

 Figure 8-23 WLMDEMO_BY_OBJ Scheme view

 Evaluation order of Work Identities

 There is an evaluation order for DB2 workloads. When a database request arrives, DB2 searches the workload list in sequence to find the first one that matches the required connection properties. The search order is specified when the workload is created.

 In DB2, the default workload position is last. When you create work identities using Design Studio, it generates the code with POSITION AT position, based on the order that the work identities are created. We recommend that you verify the workload sequence before creating the workloads.

 To adjust the evaluation order, open the Work Identities tab by clicking Work Definitions in the Scheme view. Select the work identity in the grid view to the right of the tree view and use the up and down arrows to reposition it in the list.

 Validating

 After the workload scheme is created, you can use the Design Studio Validate option to validate the workload, service classes, and the relationship you just created. Design Studio validates all the resources on the selected project using validation settings.

 To validate the WLM scheme, select Workload Management -> Validate. When the validation of a WLM scheme succeeds, the Design Studio displays a confirmation message as shown in Figure 8-24 on page 214.

 [image:]

 Figure 8-24 Validation successful

 Generating code

 After successful validation, you can generate code using Workload Management -> Generate Code. For each code file generated, Design Studio presents it as a tab in the BI perspective Editors view.

 In our example, two files (WLMDEMO_BY_OBJ.wlmsql and WLMDEMO_BY_OBJ.osclasses) are generated.

 When you save, by default, the code files will be stored in the <workspace>/<schemename>/wlm-models/generated-code folder.

 Figure 8-25 on page 215 shows the generated WLMDEMO_BY_OBJ.wlmsql creating DB2 Workloads.

 Although the Editors view allows you to add, modify, or remove the DB2 WLM statements, we do not recommend that you modify the code directly, because the modifications will not be captured in Design Studio. To capture the modifications in Design Studio, you need to perform reverse engineering after the workload is created in DB2.

 [image:]

 Figure 8-25 Generated code for DB2

 Figure 8-26 on page 216 shows the AIX WLM class generated under WLMDEMO_BY_OBJ.osclasses.

 	
 Note: Any operating system WLM entities that you set up using Design Studio will not be automatically created on the target AIX machine. Users have to manually copy generated operating system code to the AIX machine and run with root authority.

 Only DB2 WLM entities will be automatically created when you perform Execute or Delta Execute from Design Studio.

 [image:]

 Figure 8-26 Code generation for operating system WLM

 Create limits for database activities

 In this section, we demonstrate how to use the Create limits for database activities method to create the WLM scheme to manage poor database activities that degrade overall performance.

 For example, a database system has reports run by a Sales department which usually run in five to ten minutes. On one occasion, a weekly sales report ran for six hours. Your reporting application has a built-in timeout limit. The application waits up to ten minutes for a query to return data, and then displays an error message. You want to stop the query from executing when the application displays this error message. You also want to collect detailed data about the problems that cause the application error.

 One solution is:

 •Categorize work and create appropriate work identities.

 •Categorize the bad queries by defining control rules on work identity.

 •Specify actions for the Control Rules. The actions can be:

  –	STOP EXECUTION

  –	Collect ACTIVITY DATA and CONTINUE

 After creating project, create WLM scheme by Workload Management Schemes -> New -> Workload Management Scheme. In the New File - Create a Workload Management Scheme by Objective panel, select Create a scheme by objective and click Finish. In the Create a Workload Management Scheme by Objective panel, select Creating limits for database activities (see Figure 8-27) and click Finish.

 	
 Note: Design Studio provides you with an alternate way to reach the Create limits for database activities screen. First, select the Database management scheme you want to work on and then go to Workload Management -> Create Limits for Activities.

 [image:]

 Figure 8-27 Create limits for database activities selection screen

 The Create limits for database activities screen will then be presented, showing five tabs; see Figure 8-28 on page 218.

 [image:]

 Figure 8-28 Create limits for database activities - General tab

 We explain the tabs here:

 1.	General

 This is an informational tab. Select the Superclasses tab to continue.

 2.	Superclasses

 Figure 8-29 shows the Superclasses tab with three default superclasses: SYSDEFAULTUSERCLASS, SYSDEFAULTSYSTEMCLASS, and SYSDEFAULTMAINTENANCELASS. Use this tab to add new superclasses, or to delete or modify existing superclasses.

 To add a superclass, click Add and the superclass property view is presented (refer to Figure 8-14 on page 206). Here you enter the name of the superclass to be created, the agent and prefetch priority, and the work action set name, if already known. These fields match AGENT PRIORITY, PREFETCH PRIORITY in the DB2 CREATE SERVICE CLASS statement.

 [image:]

 Figure 8-29 Creating superclass in Create limits for database activities

 3.	Work Identities

 You can use this tab to add a new DB2 WLM work identity, or to delete or modify an existing work identity.

 If there are no previous user-defined work identities created, only the default workloads SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD, are listed.

 To add a work identity, click Add and the Work Identity property view is presented; see Figure 8-12 on page 203. You can identify the connection attributes to be used in your workload. To view the description of a field, left-click the field name.

 The capitalized fields in the Work Identity panel match the attributes in the DB2 CREATE WORKLOAD statement. The three authorization fields are for granting workload execution authority.

 In our case, we created a workload WI_PROD to manage application dss.exe; see Figure 8-30. The workload can be used by everyone (public). We selected the Work Types tab to proceed.

 [image:]

 Figure 8-30 Creating work identities in Create limits for database activities

 4.	Work Types

 You can create a work type to categorize database activities by activity characteristics type such as Read, Write, DML, DDL, Call, Load and All. Then you can manage each work type as a unit. By creating a mapping rule for a database superclass, you can map a work type to the subclass where the database activities execute.

 Figure 8-31 shows the Create Work Type panel. You create a work type set to contain and manage a group of work types. If no suitable work type set is available, you can create one using Create New Work Type Set....

 [image:]

 Figure 8-31 Create work type main screen

 Figure 8-32 shows the Create New Work Type Set property view. In our example, we created a Work type set WTS_ALL.

 [image:]

 Figure 8-32 Create new work type set

 To define and associate a work type with a work type set, select the work type set, enter the work type name (WT_ALL, in our example), select a work type, and click OK; see Figure 8-33 on page 222.

 [image:]

 Figure 8-33 Work type set and work type association

 You need to define the measurement properties for the work type. Work type optionally can include estimates. In our example, we wanted to apply WT_ALL regardless of the measurement, so we choose NONE as shown in Figure 8-34.

 [image:]

 Figure 8-34 Work Type measurement properties

 The capitalized field options in the Work Type Set panel and Work Type panel match the attributes in the DB2 CREATE WORK CLASS SET statement.

 Figure 8-35 on page 223 shows one work type set is created. You can create more type sets by following the same process. After completion, select the Create Limits tab to continue.

 [image:]

 Figure 8-35 Work Type Tab after creating work type set

 	
 Note: Work types in a work type set are ordered objects when work types are evaluated. To specify the evaluation order of a work type in the work type set, open the Work Types tab by selecting the work type set in the Scheme view. Then select the work type and use the up and down arrows to reposition the work type in the list. If you do not specify an evaluation order, the order of the Work Types tab implies the evaluation order.

 5.	Create Limits

 In the Create Limits tab, click Add and then select the type of limit that you want to create; see Figure 8-36.

 [image:]

 Figure 8-36 Creating limits for activities

 There are four options:

  –	Limit all activities in the database

 You can use this option when a limit has to be applied for a database domain, and a specific action has to be performed if the limit is exceeded.

  –	Limit work from one source

 You can use this option if the work identity is associated with a database superclass.

  –	Limit work of one type

 You can use this option when limit has to be associated with only one work type.

  –	Limit work of one source and type

 You can use this option to limit work from a specific workload, of specific types (for example, READ, WRITE, and so on).

 For each option selected, Design Studio adds one entry with the required fields “opened” (not greyed out). In our example, we selected Limit work of one type to control problem queries on the database. Figure 8-37 shows that for domain Work Type, the required fields are Work Type and Condition.

 [image:]

 Figure 8-37 Creating limits using Limit work of one type

 To specify the work type that you want to limit, click <select a work type> and a browse button shows in the field. Click the browse button to select the list of work type sets you can choose from; see Figure 8-38.

 [image:]

 Figure 8-38 Limit work of one type - specify work type

 Click <Create a condition> to specify the Condition for a work type that you want to limit, and a browse button shows in the field; see Figure 8-39.

 [image:]

 Figure 8-39 Creating limits associated with new condition

 Click the browse button to create a Condition to define the limitation condition on the work type domain and the action to take when the limit is exceeded; see Figure 8-40 on page 227.

 [image:]

 Figure 8-40 Limit work of one type - specify condition

 Figure 8-41 shows that one limit is created.

 [image:]

 Figure 8-41 One limit created

 You can continue adding limits. When you are finished, click OK and the Database panel will be presented, allowing you to associate the limits to a work action set. Click the browse button to specify the work action set; see Figure 8-42 on page 228.

 [image:]

 Figure 8-42 Work type set property of the database

 After associating the work action, click OK. Design Studio creates a WLM Scheme and returns you to the default Business Intelligence (BI) perspective.

 In the BI perspective, Design Studio focuses you on the Editors panel and presents the overview of the current project created. Figure 8-43 shows the project we created, WLMDEMO_BY_OBJ, and its control rules.

 [image:]

 Figure 8-43 Control Rule - WLM scheme view

 Validating the WLM scheme and generating code

 After the workload scheme is created, you can use the Design Studio Validate option to validate the workload, service classes, and the relationship you just created. After successful validation you can generate code by using the Generate Code feature. For the details, refer to “Validating” on page 213 and “Generating code” on page 214.

 Figure 8-44 on page 230 shows the generated WLMDEMO_BY_OBJ.wlmsql for creating limits for database activities.

 [image:]

 Figure 8-44 Create limits for database activities - generated code

 The Design Studio guided configuration Create limits on database activities supports the following solution templates, which map to the DB2 CREATE THRESHOLD statement.

 •Create control rule on database

 •Create control rule on superclass

 •Create control rule for a work type (WHEN)

 •Work type on a superclass that maps to a subclass with a control rule

 Design Studio provides the facility to add control rules using the templates.

 Adding control rules

 You can add, delete, or edit control rules for an existing work identity from the Scheme tab in the BI perspective. Control rules can be added or modified for work type sets under the Work Definition, or for a database. In this section, we demonstrate how to add a new database control rule.

 To create a New Control Rule, expand the WLM scheme and Database, then right-click Control rules; see Figure 8-45.

 [image:]

 Figure 8-45 Control Rule Creation using a tree view

 You can complete the fields in the Properties view for the new control rule; see Figure 8-46.

 [image:]

 Figure 8-46 Control Rule for Database

 When you create the Control Rule for Database using Design Studio, it generates code that is equivalent to DB2 CREATE THRESHOLD ...FOR DATABASE ACTIVITIES

 Control rules can also be used for other tasks such as:

 •Force off idle connections after a specified time period.

 •Apply the control rule based on activity type

  –	Stop activity that consumes excessive temporary space.

  –	Allow one activity to take a higher share of resources than other activities. For example, allow LOAD to use more temporary space than others.

  –	Collect activity data only on higher cost queries.

 Create limits for concurrent database activities

 You can use the Create limits for concurrent activities method to create and enforce concurrency limits on database activities. You also specify whether to stop activities that cause the concurrency limits to be exceeded, or allow them to continue to execute.

 For example, suppose a database administrator noticed that there were many simultaneous activities happening on a specific work identity, and wanted to do the following:

 •Create a control rule to limit the maximum number of coordinator and nested activities that can execute concurrently in a workload occurrence

 •Specify the maximum number of concurrent coordinator and nested activities on a database partition for a workload occurrence

 •Define the rule conditions and the actions to take when activities exceed the rule boundaries

 This would be accomplished by selecting the Create limits for concurrent activities from WLM Scheme by Objectives screen, expanding the project tree view (WLMDB, in our example), right-clicking Workload Management Schemes -> New -> Workload Management Scheme. In the New file for Workload Management Scheme panel, give a scheme name and select Create a scheme by objective.

 In the Workload Management Scheme by Objective panel (shown in Figure 8-47), select Create limits for concurrent database activities and click Finish.

 [image:]

 Figure 8-47 Create limits for concurrent database activities

 The Create limits for the concurrent database activities main screen contains five tabs: General, Superclasses, Work Identities, Work Types and Create Limits; see Figure 8-48.

 [image:]

 Figure 8-48 Create limits for concurrent database activities - Main screen

 •General

 This is an informational tab. Select the Superclasses tab to continue.

 •Superclasses, Work Identities, and Work Type sets

 Use the same process described in “Controlling and sharing system resources” on page 200, to create superclasses, work identities, and work type sets.

 •Create Limits

 Use this tab (shown in Figure 8-49 on page 235) to create limits for concurrent activities.

 [image:]

 Figure 8-49 Create limits for concurrent database activities - Create Limits tab

 Click Add and choose the type of limit you want to set, as shown in Figure 8-50 on page 236.

 [image:]

 Figure 8-50 Create limits for concurrent database activities - Create Limit options

 You are provided with five set options to choose from.

  –	Limit concurrent coordinator activities for database

 With this option you can:

  •	Define the condition for a limit on the database domain.

  •	Specify the type of action to be taken when the concurrency limit is exceeded.

  –	Limit concurrent coordinator activities from one source for superclass

 With this option, you can:

  •	Specify the work identity that is the source of the work.

  •	Define the condition for a limit on the superclass domain.

  •	Specify the type of action to be taken when the concurrency limit is exceeded.

  –	Limit concurrent occurrences or activities from one source

 With this option, you can:

  •	Specify the work identity that is the source of the occurrence or activity.

  •	Define the condition for a limit on the work identity domain.

  •	Specify the action to take when the concurrency limit is exceeded.

  –	Limit concurrent coordinator activities of a work type

 With this option, you can:

  •	Specify the work type that you want to limit.

  •	Define the condition for a limit on the work type domain.

  •	Specify the action to take when the concurrency limit is exceeded.

  –	Limit concurrent coordinator activities of a work type from one source

 In this option, you can:

  •	Define the condition for a limit on the subclass domain.

  •	Specify the action to take when the concurrency limit is exceeded.

  •	Specify the work identity and work type combination that you want to limit.

 	
 Note: The help information can be turned on or off using the twist icon [image:] on the top left corner on the Create Limits tab.

 For our example, we selected Limit concurrent coordinator activities for database to restrict concurrent instance of an activity. An entry is added to with required fields “opened” (not greyed out). Design Studio presents a browse button next to the field when you click the “opened” field; see Figure 8-51.

 [image:]

 Figure 8-51 Create limits - Create a condition

 In our example, the Create Condition panel presents where you can specify concurrency control configuration; see Figure 8-52. To see the description of a field, left-click the field name.

 [image:]

 Figure 8-52 Concurrency Control - Create new control

 	
 Note: Setting the value for the maximum number of connections allowed in a queue to unbounded is not recommended. There might be problems if you have limited the number of connections allowed for the database. In this case, unbounded queues let the queued activities to use all of the allowed connections, so unrelated but legitimate work might be locked out unexpectedly.

 After completing the Create Condition screen, click OK. This creates the control rule for concurrency control for database activities, as shown in Figure 8-53.

 [image:]

 Figure 8-53 Create limits for Concurrent database activities showing Control Rule

 You can add additional control rules by using the Add button. After all the control rules are defined, click OK. Design Studio creates a WLM Scheme and returns you to the default Business Intelligence (BI) perspective. The BI Perspective is expanded to show the final output; see Figure 8-54.

 [image:]

 Figure 8-54 Control Rule to limit concurrent coordinator activities for database - tree view

 Validating WLM scheme and generating code

 After the workload scheme is created, you can use the Design Studio Validate option to validate the workload, service classes, and the relationship you just created. After successful validation you can generate code using Generate Code feature. For the details, refer to “Validating” on page 213 and “Generating code” on page 214.

 8.3.2 Create workload scheme by yourself

 You can use workload creating options to create a WLM scheme and work with entities in the scheme by creating everything yourself. This method does not guide you to create work identities, superclass, subclass, work type and work type sets. You need to create everything by yourself using the scheme tree view. You can create a new project for the new WLM scheme, or create the new scheme under an existing project.

 To create a new WLM scheme this way, select Create a scheme yourself and enter the WLM scheme name as shown in Figure 8-55. In this example, we created a WLM scheme WLMDEMO_BY_YRSLF.

 [image:]

 Figure 8-55 Create scheme yourself

 Click Next and the Workload Management Scheme Options panel will be displayed, where you can define a work action set name. By default, it takes the WLM scheme name you provided as the work action set name. In our case, we kept the default work action set name and clicked Finish. The file name created is the scheme name with .wlms under the default workspace defined.

 In addition to the default work identities, Design Studio also shows you these defaults:

 •Default super classes (SYSDEFAULTSYSTEMCLASS, SYSDEFAULTUSERCLASS)

 •Default subclass under every superclass (SYSDEFAULTSUBCLASS)

 •Default histogram (SYSDEFAULTHISTOGRAM)

 Design Studio creates the WLM scheme with only the default work identities, as shown in Figure 8-56 on page 241. Therefore, you have to create all other user-defined entities such as superclass, subclass, work identities, work type, work type sets, control rules and mapping rules by using the tree view.

 [image:]

 Figure 8-56 WLM Scheme created using Create by yourself option

 To create a new entity, right-click the object and select the option. We show here the steps to create a new superclass. For example, right-click Superclasses and select New Superclass, as shown in Figure 8-57.

 [image:]

 Figure 8-57 Create Scheme by Yourself - Create New Superclass

 You are required to enter a unique name in the New Superclass window and provide additional information in the Properties view; see Figure 8-58.

 [image:]

 Figure 8-58 Create by Yourself - New Service Class properties view

 After creating all the superclasses, subclasses, work identities, work type sets and work types, control rules and mapping rules, validate the scheme by Workload Management -> Validate. Use the Generate Code menu option to generate DB2 statements for deployment.

 8.3.3 Create workload scheme by reverse engineering

 This option allows you to extract the information about an existing WLM scheme from DB2 database to Design Studio. You can then modify and add to the new scheme to make it unique.

 When reverse engineering, Design Studio extracts the settings and entities that make up a workload scheme from a database and creates a new WLM scheme. Table 8-2 shows the DB2 objects that map to the Design Studio WLM entities.

 Table 8-2 Mapping between DB2 objects and Design Studio entities

 	
 DB2 WLM objects

 	
 Design Studio WLM entities

 	
 Service superclass

 	
 Superclass

 	
 Service subclass

 	
 Subclass

 	
 Workload

 	
 Work identity

 	
 Work class set

 	
 Work type set

 	
 Work class

 	
 Work type

 DB2 WLM threshold rules and enforcement criteria such as work action sets and corresponding to Design Studio control and mapping rules are shown in Table 8-3.

 Table 8-3 Control rules mapping

 	
 DB2 WLM control criteria

 	
 Design Studio WLM rule

 	
 Threshold for the database domain

 	
 Control rule for the database

 	
 Threshold for the superclass domain

 	
 Control rule for a superclass

 	
 Threshold for the subclass domain

 	
 Control rule for a subclass

 	
 Threshold for the workload domain

 	
 Control rule for work entity

 	
 WHEN ACTION in a WORK ACTION SET for the database

 	
 Control rule for a work type (WHEN)

 	
 MAPPING ACTION in a WORK ACTION SET for service superclass

 	
 Mapping rule for a superclass (MAP ACTIVITY)

 Reverse engineering steps

 The Design Studio workload management reverse engineer steps are:

 1.	In the Business Intelligence perspective, select File -> New -> Workload Management Scheme.

 2.	In the Workload Management Scheme panel (Figure 8-59), type a unique name in the Workload management scheme field, select Create a scheme by reverse engineering, and then click Next.

 [image:]

 Figure 8-59 Workload Management Scheme - reverse engineering a scheme

 3.	In the Select Connection panel (Figure 8-60 on page 246), connect to the database where the collection of information about the scheme exists by using the existing connection, or create a new connection. We selected Create a new connection.

 [image:]

 Figure 8-60 Create a new database connection

 4.	Complete the Connections Parameters (Figure 8-61 on page 247) panel, and click Finish.

 [image:]

 Figure 8-61 New Database Connection parameters

 5.	Design Studio retrieves the information about the scheme from the database, creates the new scheme, and creates a file for the scheme. The file name is <WLM scheme name>.wlms. The output is shown in Figure 8-62 on page 248.

 Now, you can modify the scheme according to your specifications.

 [image:]

 Figure 8-62 WLM schema created from reverse engineering process

 8.4 Execute a workload management scheme

 You can execute a workload management scheme directly from Design Studio to the target database. You can do clean or delta execution without first using the Generate Code function.

 To generate SQL code, perform the following steps:

 1.	In the Data Project Explorer, expand the data warehouse project that contains the scheme that you want to work with, and then expand the Workload Management Schemes folder.

 2.	Select the scheme that you want to work with, then select Workload Management -> Validate.

 3.	Select Workload Management -> Generate Code.

 If you receive errors or warnings, open the Problems view to learn more about the problem description, then use Help topics to learn how to correct the scheme.

 If you incur error and warning messages, correct the definitions as required and then repeat the code generation procedure.

 After the code generation process succeeds, you are ready to deploy the scheme.

 	
 Note: During Workload Management -> Generate Code, if the database does not contain any WLM Scheme, Design Studio will display an information screen stating: No code was generated because the scheme is empty.

 Design Studio provides two approaches to run the WLM scheme: Execute, and Delta Execute.

 Execution

 The execution approach is a clean execution. When you execute a workload management scheme, it begins by wiping off all the exiting WLM configuration on the target and creating the entire scheme fresh in the target. Note, however, that if the execution fails, then the settings for the WLM configuration that exist in the database are lost.

 We recommend using this option only when you want to create a fresh start.

 To execute a workload management scheme:

 1.	With the workload management scheme open, select Workload Management -> Execute.

 2.	In the Generated Code window, review the code that will be executed in the database.

 3.	Select Execute in database, and click Next.

 4.	In the Execution Options window, specify any options and click Next.

 5.	In the Select Connection window, connect to the target database.

  –	You can select Create a new connection, click Next, complete the Connections Parameters window, and click Finish.

  –	Or you can select Use an existing connection, select that connection, and click Finish.

 6.	In the Execution Result panel, review the execution log information. You can also save the execution log information.

 Figure 8-63 shows the execution results panel using Execute.

 [image:]

 Figure 8-63 Workload Management Execute - Execution Result screen

 Delta Execution

 Delta Execution performs ALTER whenever possible, and performs CREATE or DROP of WLM entities only when necessary. It performs reverse engineering on the target database and determines the changes.

 You can use the Delta Execute to alter the database or another workload management scheme to make it identical to the current workload management scheme.

 Using Delta Execute, you can apply scheme settings to the database. Some of the advantages of using Delta Execute are:

 •Each WLM statement has been committed.

 Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements will wait until the current WLM-exclusive SQL statement commits or rolls back.

 If an error occurs during Delta Execution, Design Studio will not make any changes in the database. Your database will be in the same state as before the Delta Execution.

 •Many dependencies between WLM entities.

 On a complex system with many WLM entities, the proper order of execution plays a critical role. Delta Execution figures out a proper order for you.

 •Cannot drop WLM entities that are in use.

 Delta Execution avoids DROP/CREATE of WLM entities where possible. When executing a WLM scheme on a database, Design Studio performs ALTER to match the settings in the workload management scheme, and only performs DROP/CREATE if necessary.

 We recommend Delta Execution for executing WLM entities because the result is the same as the result of using the Execute menu option. However, when you use the Delta Execute option, the Design Studio makes only the minimal number of changes that are required to update the settings of either the database or the other workload management scheme to be identical to the current workload management scheme.

 Delta Execute against database

 Use the following steps to perform Delta Execution on a database:

 1.	In the workload management scheme open panel, select Workload Management -> Delta Execute.

 2.	In the Comparison Options window (Figure 8-64), select Database, then click Next.

 [image:]

 Figure 8-64 Delta Execution - Compare options

 3.	In the Select Connection window, select Create a new connection or Use an existing connection.

 4.	Delta execution compares the current WLM scheme with WLM entities in the database and generates a set of SQL statements; see Figure 8-65.

 [image:]

 Figure 8-65 Delta execution - Generated Code

 5.	In the Generated Code window, select Execute in database and click Next.

 6.	In the Execution Options window (Figure 8-66 on page 252), specify any options and click Next.

 [image:]

 Figure 8-66 Delta Execution - Execute options screen

 •In the Execution Result window (Figure 8-67), verify the result and click Finish.

 [image:]

 Figure 8-67 Delta Execution - Results screen

 Delta Execute against WLM schemes

 Use Delta Execute to compare two WLM schemes. This can be useful in determining what WLM changes have been made on the database if different WLM scheme versions are available.

 To use the Delta Execute option, follow these steps:

 1.	In the workload management scheme open, select Workload Management -> Delta Execute.

 2.	In the Comparison Options window, select Another workload management scheme, then click Next; see Figure 8-68.

 [image:]

 Figure 8-68 Delta Execution - Another workload management scheme

 3.	Choose the .wlm files of the WLM scheme to be compared with; see Figure 8-69.

 [image:]

 Figure 8-69 Delta Execute - Select WLM scheme for comparison

 4.	The delta SQL statement is shown in the Generated Code window (Figure 8-70).

 [image:]

 Figure 8-70 Delta Execute - Compare WLM Schemes results

 8.5 AIX WLM management

 DB2 WLM is integrated with AIX Workload Manager. You can use the Design Studio graphical user interface to set up and maintain both AIX WML and DB2 WLM service classes. As previously noted, in DB2 9.5, you can utilize the AIX WLM to manage only CPU utilization.

 8.5.1 Creating operating system service classes and limits

 Using Design Studio, you can create operating system service classes when a new WLM scheme is created, or by modifying the existing WLM scheme using the tree view.

 Creating operating system service classes on an existing DB2 WLM scheme

 Before you begin using Design Studio to create AIX WLM service classes, it is assumed that you have the following created:

 •A WLM scheme

 •DB2 work identities, superclasses, and subclasses

 Plan the mapping between DB2 and AIX WLM mapping scheme (for example, 1:1 or flat mapping). We recommend that you start with 1:1 mapping and then expand.

 Create operating system superclasses

 Follow these steps to create AIX WLM superclasses:

 1.	In the Data Project Explorer, expand the data warehouse project that contains the scheme that you want to work with.

 2.	Expand the Workload Management Schemes folder.

 3.	Double-click the scheme for which you are creating an operating system service class, then expand the scheme.

 4.	Right-click Operating System, then select New Operating System Superclass.

 5.	In the New Operating System Service Class window (Figure 8-71), type a unique name and click OK.

 [image:]

 Figure 8-71 Create new operating system superclass

 •Define the properties of the operating system superclass by completing the General tab of the Properties view, as shown in Figure 8-72.

 [image:]

 Figure 8-72 Operating system superclass properties

 	
 Note: DB2 service classes cannot work with the AIX Workload Manager inheritance feature. In Design Studio, inheritance attribute was not enabled by default. If inheritance is enabled, the DB2 workload manager cannot change the AIX workload management class of a thread using tagging.

 This restriction makes any integration of DB2 Workload Manager and AIX Workload Manager unusable. The DB2 data server cannot detect whether AIX Workload Manager inheritance is enabled, and does not issue an error message if inheritance is enabled.

 Create operating system subclass

 If necessary, define the operating system subclasses under the superclass. For subclass, you can define any of the following:

 •Process assignment rules

 •Resource usage limits

 •Resource shares

 Follow these steps to create an operating system subclass:

 1.	In the Data Project Explorer, expand the data warehouse project that contains the scheme that you want to work with, and then expand the Workload Management Schemes folder.

 2.	Double-click the scheme for which you are creating an operating system subclass, and then expand the scheme in the Scheme view.

 3.	Expand the operating system and then expand the Superclasses folder.

 4.	Right-click the appropriate superclass and select New Operating System Subclass; see Figure 8-73.

 [image:]

 Figure 8-73 Create new operating system subclass

 5.	In the New Operating System Subclass window, type a unique name and click OK.

 6.	Define the properties of the operating system subclass by completing the General tab of the Properties view; see Figure 8-74.

 [image:]

 Figure 8-74 Operating system subclass - Properties view

 Limiting system resources for operating system service classes

 Follow these steps to create a limit for a system resource:

 1.	In the Data Project Explorer, expand the data warehouse project that contains the scheme that you want to work with, and then expand the Workload Management Schemes folder.

 2.	Double-click the scheme for which you are creating an assignment rule.

 3.	In the Scheme view, expand the scheme, Operating System, Superclasses, and the appropriate superclass. Right-click Operating System Limits at the superclass level, then select the system resource; see Figure 8-75 on page 260.

 [image:]

 Figure 8-75 Operating system limits - superclass

 You also can create the operating system limits on the subclass level by selecting the resource on the subclass level, as shown in Figure 8-76.

 [image:]

 Figure 8-76 Create operating system limits - subclass

 4.	In the prompted window, enter a unique name for the limit and click OK.

 5.	Define the properties of the limit by completing the General tab of the Properties view; see Figure 8-77 on page 261.

 [image:]

 Figure 8-77 Create Operating System limits - Properties view

 Allocating resource shares to operating system service classes

 Follow these steps to create a share of a system resource:

 1.	In the Data Project Explorer, expand the data warehouse project that contains the scheme that you want to work with, and then expand the Workload Management Schemes folder.

 2.	Double-click the scheme for which you are creating an assignment rule.

 3.	In the Scheme view, expand the scheme, Operating System, Superclasses, and the appropriate superclass. Right-click Operating System Shares at the superclass level and select the system resource; see Figure 8-78 on page 262.

 You also can create operating system share on the subclass level by selecting Operating System Shares at the subclass level.

 [image:]

 Figure 8-78 Create Operating System share - Superclass

 4.	In the window, type a unique name for the share and click OK.

 5.	Define the properties of the system resource share by completing the General tab of the Properties view; see Figure 8-79 on page 263.

 [image:]

 Figure 8-79 Create Operating System share - Superclass Properties view

 8.5.2 Configure AIX WLM using Design Studio

 After the operating system superclasses, subclasses, rules, limits, and shares are created, you can associate the DB2 service classes with the operating system service classes.

 In DB2 9.5, only CPU allocation control is supported when integrating the AIX Workload Manager with DB2 workload management. The other parameters, such as memory and I/O settings, are not supported. DB2 database-level memory is shared among all agents from different DB2 service classes; therefore, you cannot divide memory allocation between different service classes. To control I/O, you can use the prefetcher priority attribute of a DB2 service class to differentiate I/O priorities between different DB2 service classes.

 Associate a DB2 superclass with an AIX superclass

 Follow these steps to associate a DB2 superclass with an AIX superclass:

 1.	In the Scheme view, expand the scheme, Database, and Superclasses, and then select the superclass you want to associate with the operating system superclass.

 •In the General tab of the Properties view for the DB2 superclass, associate with the AIX service class by selecting the [image:] button for Operating system service class. Figure 8-80 on page 264 shows an example of associating a DB2 superclass with an AIX superclass.

 [image:]

 Figure 8-80 AIX superclass and DB2 superclass association

 Adding control rules to AIX service classes

 After the service classes association is completed, you can define the control rules on AIX service classes to manage the resource.

 Follow these steps to add the control rules:

 1.	In the Scheme view, expand the scheme and Operating System, right-click Rules at the superclass level, then select New Operating System Superclass Rule; see Figure 8-81 on page 265.

 To add rules for a subclass, expand the view to the subclass level and right-lick Rules at the subclass level.

 [image:]

 Figure 8-81 Create New Operating System Superclass Rule screen

 2.	In New Operating System Superclass Rule, type a unique name for the rule and click OK.

 3.	Define the properties of the rule by completing the General tab of the Properties view.

 4.	To associate the operating system superclass, select the [image:] button for the operating system service class and select the superclass you want.

 Figure 8-82 shows that, in our case, we created aixHighLvl_rule and associated it with operating system superclass AIXHighLevel.

 [image:]

 Figure 8-82 Operating system rule for superclass

 	
 Note: In Design Studio, Application Tag is a read-only field. Design Studio generates a string value for the OUTBOUND CORRELATOR property that DB2 uses.

 Validate and Generate Code

 After creating DB2 service classes and AIX service classes, associating them, and creating rules, you can validate what you have created using Validate and Generate Code function.

 Figure 8-83 shows the confirmation screen from Generate code execution.

 [image:]

 Figure 8-83 Generated Code Information screen

 The Generated Code Information window lists the files that are created and their usage. If you click OK, Design Studio will automatically open the files generated in the Editors view.

 Any of three possible files can be generated:

 •DB2 command code file

 This file is generated and listed in the message when DB2 workload management entities exist in the scheme. The file is created with the Scheme name and a .wlmsql extension (for example, WLMDB_REV.wlmsql).

 Figure 8-84 shows the DB2 SQL generated by Design Studio.

 [image:]

 Figure 8-84 Generated SQL code from Design Studio

 •Classes file

 This file is generated and listed when operating system service classes exist in the scheme. The file is created with the scheme name and .osclasses extension; for example, WLMDB_REV.osclasses.

 Figure 8-85 shows the sample output of the operating system class file.

 [image:]

 Figure 8-85 Generated code for operating system service classes

 •Rules file

 This file is generated and listed when process assignment rules for operating system service classes exist in the scheme. The file is created with the scheme name and .osrules extension; for example, WLMDB_REV.osrules.

 Figure 8-86 on page 269 shows sample output of the operating systems rules file.

 [image:]

 Figure 8-86 Generated code sample for operating system rules file

 	
 Note: DB2 WLM artifact code generated by Design Studio is executed by Design Studio against the target database. AIX WLM artifact code generated by Design Studio (the classes script and the rules file) will not be processed by Design Studio.

 Users need to carry the information in these files over to their target AIX machine manually. To implement the code generated for AIX Services classes and rules, you require root authority.

 The generated code can be executed from the Design Studio with the appropriate connection and authority, or it can be shipped to the target source where you want to execute the WLM scheme.

[image:]
[image:]
[image:]

DB2 Workload Manager and DB2 Performance Expert

 This chapter explains how to use DB2 Performance Expert in coordination with DB2 Workload Manager functions.

 As described in earlier chapters of this book, DB2 9.5 provides various ways to get information about your workload management definitions and statistics about applications running within the workload management scope. You can write your own reporting scripts to call the table functions, stored procedures, and event monitors. DB2 Performance Expert, on the other hand, performs many of these tasks for you, freeing you to spend your time analyzing the results, rather than not writing and maintaining scripts. In this chapter you can learn where DB2 Performance Expert is the same, similar, or differs from the manual approach.

 We discuss the following topics in this chapter:

 •An overview of DB2 Performance Expert (PE)

 •Installing and configuring DB2 PE

 •Monitoring your DB2 environment

 •Monitoring DB2 WLM

 •DB2 PE technical information

 9.1 DB2 Performance Expert overview

 When thinking about monitoring a DB2 system, we can consider several areas:

 •Applications

 •Instance and database statistics

 •Configuration

 •Workload management

 You can monitor your DB2 system’s real time and historical performance behavior using DB2 Performance Expert. DB2 Performance Expert (PE) uses the DB2 snapshot and event monitor capabilities to capture the performance data, and stores the data in DB2 tables on the PE server. You use the DB2 Performance Expert Client to view and work with the data.

 Focus

 This chapter discusses only the use of DB2 Performance Expert to monitor DB2 Workload Manager capabilities. To learn more about general usage of DB2 Performance Expert, consult the following sources:

 •DB2 Performance Expert product information page at ibm.com:

 http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.html

 •DB2 Performance Expert Library page

 http://www-306.ibm.com/software/data/db2imstools/db2tools-library.html#expert

 •DB2 Performance Expert InfoCenter:

 http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.fpeic.doc.ug/peic_home.htm

 •IBM Redbooks publication DB2 Performance Expert for Multiplatforms V2.2, SG24-6470

 How to get DB2 Performance Expert

 DB2 Performance Expert is part of the DB2 V9 Performance Optimization Feature. In DB2 9.1, this included DB2 PE and Query Patroller. In DB2 9.5, the feature includes DB2 PE, Query Patroller, and Workload Manager.

 DB2 Performance Expert is also available to purchase as a standalone product, and has editions for DB2 Content Manager and DB2 Workgroup Edition.

 Consult your IBM sales representative for more information, or refer to the DB2 Performance Expert home page:

 http://www-306.ibm.com/software/data/db2imstools/db2tools/db2pe/db2pe-mp.html

 Installing and configuring DB2 Performance Expert

 We provide the basic steps for setting up DB2 PE in this book. For detailed installation and configuration information, refer to DB2 Performance Expert for Mulitplatforms Installation and Configuration Guide, SC19-1174.

 The basic steps are:

 1.	Install PE Server.

 2.	Install PE Server FixPack, if applicable.

 3.	Configure PE Server.

 4.	Install PE Client.

 5.	Configure PE Client.

 There are no special DB2 Performance Expert setup steps for monitoring DB2 in a multi-partition (DPF) environment, or for monitoring WLM. There are some configuration settings you can modify for frequency of data collection, and they are described in “Viewing workload statistics and histograms” on page 296.

 For more technical information, as well as hints and tips for WLM monitoring with PE, see “DB2 Performance Expert technical information” on page 303.

 	
 Note: At the time of writing, PE V3.1 was the latest version available, and PE V3.1 Fixpack 1 (V3.1.1) was released. PE V3.1 Fixpack 1 has additional features that enhance WLM monitoring and offer additional capabilities for monitoring multi-partition (DPF) environments. We did not rewrite this whole chapter to reflect the new changes, but have called out some enhancements where appropriate.

 Also note that some of the figures in this chapter may no longer match the screen appearance in V3.1.1.

 9.2 Monitoring your DB2 environment

 In this section, we look at a few of the basic monitoring capabilities of DB2 Performance Expert, whether you use workload management or not.

 Monitoring applications

 When you use DB2 Performance Expert to monitor the applications or connections running on your system, you use the Application Summary and Application Details views in the PE Client.

 Application Summary

 As shown in Figure 9-1, you can view various pieces of information about the running applications in your system. This is called the Application Summary view. The third column shows the Workload ID number. At a glance, then, you are able to see what activities are running within which workloads. You can also filter, sort, modify, and rearrange which columns appear in the Application Summary page.

 [image:]

 Figure 9-1 Application Summary page

 Application Details

 To view details about any one application, double-click the application row in the Application Summary view, and a new window called Application Details will open, as shown in Figure 9-2. You can look at the currently executing statement, and even launch the DB2 Visual Explain. Some performance counters which are especially relevant to workload management functions are the timerons and cardinality estimates.

 [image:]

 Figure 9-2 Application Details - SQL Statement and Package page

 The Identification page of Application Details, shown in Figure 9-3, also shows some information that can be useful in troubleshooting your workloads and service classes. The workload ID value is in the top section under the Application Information group heading. The fields named under the heading TP Monitor client are the strings that can be set with the WLM_SET_CLIENT_INFO stored procedure, or on the JDBC™ connection itself. An example of this is described in 3.3.2, “Creating the workloads” on page 57. In Figure 9-3 on page 276, however, they were not set, so they appear as N/P (not present).

 [image:]

 Figure 9-3 Application Details - Identification page

 DPF considerations

 DB2 Performance Expert provides different views of the work running on your DPF system. If PE detects a multi-partition instance, you will have a drop-down list at the top of the window, where you can select the different views. The views are:

 •Individual partition - shows data for a single partition only.

 •GROUP view - show data from each partition.
(This is not related to the DB2 database partition group definitions.)

 •GLOBAL view - shows aggregated data from all partitions (uses GLOBAL snapshot).

 	
 Note: With DB2 Performance Expert V3.1 Fixpack 1, you also have the option of customizing the groups of partitions for monitoring. This is called a Partition Set. The Partition Sets will also appear in the drop-down list.

 In Figure 9-4, we see an example of the GROUP view of all applications, sorted by the Total Sorts column, showing the most sorts at the top. The Group view is useful for comparing performance counters between partitions at a glance. You can display and sort different performance columns quickly see if there are skews.

 [image:]

 Figure 9-4 Application Summary - DPF - Group view

 When you drill down to the Application Details in a DPF application, you can use the Subsections page to view how a query is progressing. Figure 9-5 shows an example.

 [image:]

 Figure 9-5 Application Details - DPF - Subsections

 9.2.1 Monitoring instance and database statistics

 You can use DB2 Performance Expert to monitor the overall instance and system performance by looking at database objects such as buffer pools, table spaces, tables, and so on. We do not show all the features here. We only show typical or important examples that could be relevant to a WLM environment.

 Heavy-hitter tables

 You can use the Statistics Details - Tables view to see which tables are being accessed the most. In Figure 9-6, we see the data for only Partition 1, sorted by Rows Read, and we can see the LINEITEM table is by far the most-read table.

 [image:]

 Figure 9-6 Statistics Details - Heavy-hitter tables for Partition 1

 Most costly statements

 In the Statistics Details - Dynamic SQL view, you can see the statements in the statement cache. By sorting on different columns, you can quickly see which statements are the most costly in CPU time, the most executed, the longest-running and so on. In Figure 9-7, we see the Dynamic SQL page for Partition 1, sorted by the Average time per execution, which shows the longest-running statements at the top.

 [image:]

 Figure 9-7 Dynamic SQL - sorted by Average time per execution - Partition 1

 Buffer pool hit ratio

 In Figure 9-8, we see the buffer pool hit ratios for all the defined buffer pools, across all the partitions. Using the Group view in this case is a quick way to see the partitions at a glance.

 [image:]

 Figure 9-8 Statistics Details - Buffer pool hit ratio - Group view

 9.3 Monitoring DB2 Workload Manager

 DB2 Performance Expert introduces new monitoring capabilities to coincide with the DB2 9.5 workload management features. We describe those capabilities in this section.

 PE V3.1 uses only the Statistics event monitor to capture WLM performance data. The Statistics event monitor captures statistics that are measured over a set period of time. Compared to Statement or Activities event monitors, the Statistics event monitor is an inexpensive method of capturing historical information because this type of event monitor deals with aggregated activity information instead of individual activities, and you can target it to a single service class or work class. Within PE, the Statistics event monitor data is written to tables in the monitored database. PE retrieves the data into the PE performance database, and removes it from the monitored database. You do not have to keep track of the event monitor table growth because PE keeps it cleared out.

 	
 Note: With Fixpack1, PE now also offers the capability to create and run ACTIVITY event monitors. The event monitor data is captured into the PE tables and you can view a report or run queries against the collected data.

 9.3.1 Workload Management Key Performance Indicators

 The DB2 Performance Expert System Overview shows Key Performance Indicators (KPIs) for many common performance counters. Counters are grouped and shown in “perflets” on the System Overview. One of the perflets is for Workload Management. In Figure 9-9, we see the most recent statistics captured for WLM statistics for all partitions. The counters are sorted by the “worst” at the top, which may vary by the type of counter.

 [image:]

 Figure 9-9 System Overview - Workload Manager perflet

 Most PE performance counters are collected from DB2 snapshots. The WLM statistics, however, are collected only via the statistics event monitor and are collected at a different interval than the snapshot counters. This is why you see the time interval shown on the top of the WLM perflet - to let you know the interval over which the statistics data were collected and that it may not match the time stamp shown at the top right side of the window, which is controlled by a different refresh rate.

 In Figure 9-9, we can see the System Overview refresh rate has been set to 1 minute, and this is what controls the time stamp at the top right of the window. The WLM collection interval is, however, specified elsewhere and we can tell it was set to 5 minutes (10:17:27 AM - 10:22:21 AM).

 We discuss how to configure the WLM collection interval in “Monitoring non-default workloads” on page 294.

 By watching the Workload KPIs, you can always have a current view of which workloads are active and busy. If you need to investigate more about the workloads, you can look at the Workload Management screens in PE.

 9.3.2 Viewing workload management definitions

 To view Workload Management detail data in PE, you must click the Workload Management icon on the Toolbar on the System Overview page, as shown in Figure 9-10.

 [image:]

 Figure 9-10 DB2 Performance Expert Toolbar

 The first screen that appears lists each monitored database, with counts of the various WLM objects defined in the database. An example is shown in Figure 9-11. In our lab setup, we are only monitoring one database in the instance. To drill down to more details for the WLMDB, we double-click the WLMDB.

 [image:]

 Figure 9-11 Workload Management Details

 Now we will look at the same WLM definitions as described for the mixed workload in 5.3, “Manage the work” on page 126. Here we have one top-level service class with several subclasses and workloads underneath.

 The definitions for the mixed workload are shown in Figure 9-12. When you select a Service Class in the upper part of the screen, its associated subclasses are highlighted in the lower part of the screen. In our mixed workload, we have several subclasses that all belong to the HIGHLVL service class.

 The columns displayed in the definition view can be rearranged or sorted. In our case we have arranged the subclasses to show the common attributes such as the values that were specified on the COLLECT AGGREGATE clause. It is an easy way to see all our definitions at a glance.

 [image:]

 Figure 9-12 WLM Service class definitions - mixed workload

 Next we want to view the definitions for the workloads, so we select Workloads from the navigation tree on the left side of the window. In Figure 9-13, we can see all the workloads for the WLMDB database, sorted by the evaluation order. In Chapter 5, “WLM sample scenarios - mixed OLTP and DSS environment” on page 123, the OLTP workload was added and placed ahead of the other workloads in the evaluation order, and indeed that is what we see here.

 [image:]

 Figure 9-13 WLM Workload definitions - mixed workload

 To view detail about any WLM definition, double-click it. Figure 9-14 shows an example detail page for the WL_PROD_QRY workload.

 [image:]

 Figure 9-14 Workload definition details

 We can use Performance Expert history mode to see what the definitions were in the past.

 9.3.3 Viewing Workload Management statistics

 Chapter 3, “Customizing the WLM execution environments” on page 49, Chapter 4, “Monitoring DB2 workload management information” on page 75, and Chapter 5, “WLM sample scenarios - mixed OLTP and DSS environment” on page 123 contain examples showing how to capture statistical data for workloads. In this section, we look at how PE can do this.

 Using PE to monitor the default WLM environment

 If you do not configure WLM service classes, workloads, and so on, but you do use DB2 Performance Expert, you will still be able to view the base statistics counts that are available. The manual method is described in “Monitoring the default WLM environment” on page 45, where you can write a query to get information. In PE, you can open the WLM Statistics page. Figure 9-15 shows using PE to view the high watermark, or peak, connections within the default service classes.

 The same screen also displays the service subclasses. When you select the superclass, the associated subclass (or subclasses) will be highlighted.

 [image:]

 Figure 9-15 WLM default Service Class statistics

 To see more detail about the subclass statistics, double-click its entry on the table in the lower portion of the screen. This launches a new tab, as shown in Figure 9-16. Here we see the same information as on the previous screen, but for the single subclass. Because we have not enabled any of the collection parameters on the service classes, many fields are reported as -1, meaning the data is not present.

 Notice also that we also have a section named Histograms. In this case there is no histogram data because no collection has been activated yet. We see more about histograms in “Viewing workload statistics and histograms” on page 296.

 [image:]

 Figure 9-16 WLM default Subclass statistics details

 You can view default workload statistics by selecting Workload from the navigation tree on the Workload Management Details page, as shown in Figure 9-17.

 [image:]

 Figure 9-17 WLM default Workload statistics

 DPF Mode

 When you are using a DPF system, you have other options for viewing the statistics. We look at a default DPF system where, as in the previous examples, we have not configured any WLM settings. In Figure 9-18, we see the same type of information as we saw in Figure 9-15 on page 288, but instead this is showing counts only for the designated partition - PART0.

 [image:]

 Figure 9-18 WLM default Service Class statistics - DPF - Partition 0

 You can choose other views from the drop-down list. Next, we look at the GLOBAL view, shown in Figure 9-19. We selected GLOBAL from the list and in this case, the counts did not change.

 [image:]

 Figure 9-19 WLM default Service Class statistics - DPF- GLOBAL view

 In Figure 9-20, we see the results of choosing the GROUP option from the drop-down list box. In this view, we can see the key counts for each partition. You cannot see all the counts for all partitions on this page, so the most critical ones are shown here.

 [image:]

 Figure 9-20 WLM default Service Class statistics - DPF - GROUP view

 Double-click a Service Class to view the counts for all partitions for that one service class, as shown in Figure 9-21.

 [image:]

 Figure 9-21 WLM default Service Class statistics - DPF - GROUP details view

 Monitoring non-default workloads

 In earlier chapters of this book, we saw how to write queries against the statistics event monitor tables to get information about the workload performance. Now we explain how to do that with DB2 Performance Expert.

 When you monitor the statistics with DB2 PE, you do not need to create and maintain the statistics event monitor yourself, because PE does this. You also do not need to write all your own queries to get at the information.

 Assume we have a workload that is similar to the one that runs against our WLMDB database as described in 5.4.2, “Monitoring and analyzing the service classes” on page 133, or in Chapter 4, “Monitoring DB2 workload management information” on page 75. We are using DB2 Performance Expert to set up and collect the data from the statistics event monitor. The WLM_COLLECT_INT database configuration value has been set to zero (0), which allows PE to control its own data collection. However, we did not create the BASIC_MON event monitor as described in the earlier chapters.

 In the PE monitored instance properties, we define the collection interval to be 5 minutes for both workload definitions and workload statistics, as shown in Figure 9-22.

 	
 Note: We chose a 5-minute interval simply to hasten data collection for the purposes of demonstration. In a real-life scenario, you would choose a longer interval for both WLM statistics and WLM definition.

 [image:]

 Figure 9-22 Setting the WLM statistics collection interval in DB2 Performance Expert

 That is all the setup that is required. PE will create a statistics event monitor in the monitored database, and it will handle the data retrieval. You can read more about the technical details in “DB2 Performance Expert technical information” on page 303.

 The following section contains examples of screens where you can quickly see the WLM statistics without writing the queries as described in earlier chapters of this book.

 Observe running applications by workload ID

 In Figure 9-23, we see the Application Summary showing all the database connections, sorted by the Workload ID. We can see most of them are in either workload 3 or 5. We know from looking at the WLM definitions earlier Figure 9-13 on page 286, that workload 3 is WL_OLTP, and workload 5 is the WL_PROD_RPT workload.

 [image:]

 Figure 9-23 Application Summary - sorted by Workload ID

 Viewing workload statistics and histograms

 In Figure 9-24, we can see a summary view of all the most recently captured WLM statistics data.

 [image:]

 Figure 9-24 WLM Service Class statistics - summary view

 The PROD_RPT service class is the only one with statistics at the moment, so we want to drill down to see more information about that one. We double-click the HIGHLVL.PROD_RPT subclass on the lower part of the window. This opens up another tab, as we see in Figure 9-25. This is more or less the same information as on the summary page, but you can view it for just one subclass. The lower area of the window references some Histogram statistics that are available.

 [image:]

 Figure 9-25 WLM Subclass statistics - HIGHLVL.PROD_RPT

 We double-click the Request execution time (ms) statistic, which opens up another tab where we can view the histogram chart, shown in Figure 9-26.

 The analysis and conclusions about the performance data are the same as were described in earlier sections of this book. The benefit of using DB2 Performance Expert is that you can get at the data more quickly.

 [image:]

 Figure 9-26 WLM Histogram view for PROD_RPT Request execution time

 Viewing long-term WLM statistics through PE GUI

 The DB2 Performance Expert server captures DB2 performance statistics using the snapshot facility, and captures WLM performance statistics using the WLM Statistics event monitor. The performance data is stored in DB2 tables in the PE performance database.

 The detailed short-term history data is what you see on the screens in the PE GUI when you are in history mode, and is the primary way in which you access the short-term data.

 The short-term data is automatically aggregated and stored in different tables in the PE performance database. These tables are what comprise the Performance Warehouse (PWH). Traditionally, the PWH data is only accessible through the reports and queries provided by PE in the PWH screens. With more recent versions of PE, however, you can view many of the DB2 and operating system counters from the GUI screen, in the form of a trend analysis graph.

 To access the PWH trend analysis, right-click the performance counter you are interested in, which brings up the context menu. Not all performance counters can be viewed this way, so if the context menu item is disabled (grayed out), it means that the counter is not available. If it is not grayed out, select the item as shown in Figure 9-27. In this case we are looking at a WLM statistic - the peak value for cost estimate (timerons) for the HIGHLVL.ADMINS service class.

 [image:]

 Figure 9-27 Launching the PWH trend analysis

 When you launch the PWH trend analysis, a new tab opens and a graph is displayed. The graph shows the actual values (in blue), but also calculates a historical trend (dark gray) based on those values, and a future projection (light gray) of the values. In Figure 9-28, we see the trend for the cost estimate WLM counter. You can adjust the view to show longer or shorter time ranges up to one year.

 These trend charts can be helpful in enabling you to quickly recognize when something may be trending out of good performance, or that perhaps a temporary spike has occurred that you can investigate further. Along with the WLM counters we see here, the trend charts are available for operating system and DB2 statistics counters, such as paging space usage, buffer pool hit ratios, table pages used, rows read and so on.

 [image:]

 Figure 9-28 PWH Trend Analysis chart - timerons

 Viewing WLM statistics with PE Performance Warehouse

 To find more detail about long-term performance data, you can use the predefined queries and reports that are in the Performance Warehouse (PWH). You can also create your own queries or modify the ones that come with PE.

 In Figure 9-29, we see a list of the predefined queries that come with PE. We are interested in the WLM-related queries. In this example we execute the query for WLM Workload Definitions.

 [image:]

 Figure 9-29 PE Performance Warehouse - Predefined Queries

 To execute a query as-is, right-click the query and select EXECUTE from the context menu. In many cases, you might want to modify the query slightly to suit your own needs, but we do not explore that in this section.

 	
 Note: To see more examples showing how to use the DB2 Performance Expert Performance Warehouse queries and reports, refer to the IBM Redbooks publication DB2 Performance Expert for Multiplatforms V2.2, SG24-6470.

 After executing the query, the results are displayed in the PE window as shown in Figure 9-30. You can save the results to a text file, or view them in a browser, where you could also save the HTML output.

 [image:]

 Figure 9-30 Performance Warehouse query results - Workload Definition

 9.4 DB2 Performance Expert technical information

 In this section, we discuss a few of the key technical and architectural points that can help you better understand how PE and WLM work together, and how WLM data collection is different from the DB2 snapshot performance data.

 Database Configuration parameter WLM_COLLECT_INT

 If you want to use PE to capture the WLM statistics information, you must set the database configuration parameter WLM_COLLECT_INT to 0. If you set WLM_COLLECT_INT to some other value, and you enable WLM monitoring for PE, then PE will reset it back to 0, because PE manages its own collection.

 In a DPF environment, you should adjust this parameter on the catalog partition.

 Event monitor naming convention

 DB2 Performance Expert uses the STATISTICS event monitor to capture WLM performance data. PE will create the event monitor in the monitored database. The event monitor name will be derived from the name of the PE server host and instance names. You will be able to see the name of the event monitor easily in the DB2 PE Application Summary window, because of how DB2 9.5 exposes the name in the snapshot, as shown in Figure 9-31. In this case the PE Server hostname is CETUS and the PE instance name is PEINST, so the event monitor name is CETUS__PEINST (although the full name is truncated in the snapshot output).

 [image:]

 Figure 9-31 PE Application Summary showing active event monitor

 Notice that there is another event monitor active on this instance that is called VIOLATIONS. This is also a WLM-related event monitor but it is not for Statistics, it is for the workload threshold violations so it is of the Threshold Violations type. The PE event monitor can coexist with activity and threshold violation event monitors you may create manually.

 Event monitor tables

 The PE Statistics event monitor captures the event data into tables in the monitored database. The tables are created under the schema of the user ID that the PE server uses to connect to the monitored database. The user ID is specified during the PE server configuration. The table names themselves will carry the event monitor name along with the table-type as a prefix; see Figure 9-32 for an example.

 [image:]

 Figure 9-32 Statistics Details - Tables view of PE event monitor tables

 Event monitor activation and management

 The PE server will retrieve the event monitor data that has accumulated during the collection interval you specify. When PE retrieves this data, it stores it in its own performance database on the PE server, and deletes it from the event monitor tables on the monitored database. The benefit of this approach is to keep the event monitor table size to a minimum on the monitored database, thus preserving your disk space.

 If you create and enable event monitors outside of PE, you are responsible for ensuring that the event monitor tables do not grow without bound. You can check this quite easily in PE by looking at the Tables information in Statistics Details, as shown in Figure 9-33. In this example we look at the table BASIC_MON_HISTOGRAMS, which was used for examples in earlier sections of this book (when not discussing PE).

 [image:]

 Figure 9-33 PE Table detail for non-PE histogram event monitor table

 In our case, we intentionally did not clear out this table because we were conducting tests, but if you look at Figure 9-34, which is a PWH trend chart of the Data Object Pages counter, you can see how the table has grown over time and would continue to do so unless you took action.

 [image:]

 Figure 9-34 Trend chart of manual event monitor table size

 Compare this to the PE event monitor table size, as shown in Figure 9-35, where you can see the table is much less volatile in its size.

 [image:]

 Figure 9-35 Trend chart of PE event monitor table size

 PE will create and activate the event monitor when you enable history collection for WLM. This is enabled by default, so by default the event monitor and the associated tables are created when you start the PE server.

 WLM collection interval

 We mentioned earlier that PE does not use the WLM_COLLECT_INT parameter to control its WLM statistics collection. Instead, you should set the interval in the PE properties for the monitored instance as shown in Figure 9-36.

 You can set the collection time for the WLM definitions and the WLM statistics. To make reporting easier, it is most convenient to make the intervals the same. PE will check the definitions from the DB2 catalog, and flush the event monitor data at the interval you specify.

 [image:]

 Figure 9-36 PE collection interval properties

 The rest of the DB2 performance data is collected using snapshots, which are controlled by the other interval values on the properties page. These are independent from the WLM collection times.

 Modifying WLM monitoring settings

 In Fixpack1, PE introduces the ability to modify the monitoring settings on an existing WLM object, such as Service Class. You can do this manually using, for example, the ALTER SERVICE CLASS statement, but now you can also control this from within the PE GUI. You can change the level of data collection with the COLLECT AGGREGATE clause, either ACTIVITY DATA or REQUEST DATA.

 DIfference between WLM and DB2 statistics refresh

 On all PE screens except WLM, when you refresh the screen you are asking the PE server to take a snapshot from the monitored database and show you the results. On the WLM screens, however, a snapshot is not used, so when you are using the GUI screens you are only looking at the most recent event monitor data collected by the PE server. Depending on the collection interval you specified, this could be fairly recent—or it could be older data. You can always see the date and time of the data on the screen by looking at the upper right portion of the screen. (This is true for all PE screens, by the way, and not just WLM data.)

 If you are already familiar with PE’s other features, this WLM behavior will seem quite strange. If you consider, however, the underlying architecture of how PE captures, stores, and presents the information to you in the GUI, then you will get more comfortable with PE.

 Coexisting event monitors

 As described in earlier chapters of this book, you can create your own event monitors for capturing WLM data. There are three types of WLM event monitors: statistics, activities, and threshold violations. PE currently only uses the statistics event monitor, so there are no coexistence issues with creating your own activity or threshold event monitor.

 	
 Note: In PE V3.1 Fixpack1, you can now also create and activate Activity event monitors from PE. You run these event monitors on demand, and for a fixed duration. The Activity event monitor can be expensive, so you should not run more than one at a time, but there is no coexistence issue with the Statistics event monitor, or with other event monitors that may be defined but inactive.

 If you create and activate your own statistics event monitor, which also assumes you will modify the WLM_COLLECT_INT parameter, then PE will not collect the WLM data. Your manual event monitor will supersede the PE event monitor.

 However, it is best to avoid this situation altogether and simply allow PE do the work for collecting WLM statistics data. If you do have another statistics event monitor, PE will indicate this on the WLM information page, as shown in Figure 9-37, and tell you to drop it. Although there is no real impact in keeping them both defined, your results may be unpredictable if you try to activate both of them.

 [image:]

 Figure 9-37 PE warning for duplicate event monitor

[image:]
[image:]

Administering a DB2 workload management environment

 This chapter discusses the key points to check in administering a DB2 workload management environment. As you gain familiarity with how DB2 Workload Manager (WLM) works, you will be creating a number of workload management objects, and collecting baseline data and statistics for analysis. After enabling the WLM controls and fine-tuning the WLM monitoring, you will have a working WLM environment that meets your needs. After you migrate all of your WLM settings to full production, you need to periodically purge old data, back up the WLM settings, and take note of the tools needed in problem diagnosis.

 We discuss the following topics in this chapter:

 •WLM logs and maintenance

 •WLM problem diagnosis

 •WLM backup and recovery

 •WLM authorization

 10.1 Workload Manager logs and maintenance

 All WLM object definitions, functions, and data are stored in the WLM-specific DB2 catalog tables and the DB2 event monitor tables and files. To see the WLM-specific messages being written out, check the DB2 diagnostic log, db2diag.log, and the administration notification log, <DB2 instance name>.nfy.

 DB2 activities or statistics event monitors will be deactivated if there is no space for DB2 to write the event monitor information to. If you are using automatic collection of workload management statistics, the event monitor files and tables can be filled up over time. You need to prune your event monitor files or tables periodically to ensure that workload management statistics collection does not stop unexpectedly.

 The workload management statistics table functions report the current values of the in-memory statistics. If you have automatic workload management statistics collection enabled, these values are reset periodically on the interval defined by the WLM_COLLECT_INT database configuration parameter. When looking at the statistics reported by the table functions, you should always consider the LAST_RESET column. This column indicates the last time the in-memory statistics were reset. If the time interval between the last reset time to the current time is not sufficiently large, there may not be enough data collected to allow you to draw any meaningful conclusions.

 A reset of Workload Manager statistics applies to all users.

 10.2 Workload Manager problem diagnosis

 When a problem is encountered in WLM, the symptoms of the problem must first be examined. You can ask the following questions to narrow down the source of the problem:

 •Does the problem have anything to do with how a WLM object was defined?

 WLM problems can result if WLM object definitions are incorrectly created or altered.

 Review the WLM object definitions to ensure that the WLM objects are valid. Using Design Studio is one way to help validate WLM object definitions before they are created or altered. If you have DB2 Performance Expert installed, you also can view the DB2 WLM definitions from PE.

 •Does the problem in WLM occur by itself, or does it occur when other DB2 problems occur?

 Review the diagnostic logs, db2diag.log, and the administration notification log, < DB2 instance name>.nfy, to determine if the WLM problem is related to a DB2 problem, and isolate the source.

 •Is the problem related to a WLM workload or workload occurrence?

 You need to gather the following information about workloads:

  –	Get the list of workload occurrences using the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURENCES table function.

  –	Get the identifier for the workload and workload occurrence using the WLM_GET_WORKLOAD_OCCURENCE_ACTIVITIES table function.

  –	Get the list of all activities and requests running under a workload occurrence using the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function.

  –	Get the workload information in memory by using the db2pd -db <database name> -workloads command.

 •Is the problem related to a WLM service class using more than a fair share of agents?

 One possible cause of a problem is that a data server resource, such as an agent, is overutilized by a group of users or an application. A service class may be using more than its fair share of agents.

 Determine the service class that is overutilizing resources and take action to limit the resources being used by the service class.

 Example 10-1 illustrates the use of the WLM_GET_SERVICE_CLASS_AGENTS table function to determine how many agents are working for each service class.

 Example 10-1 Determine how many agents are working for each service class

 [image:]

 SELECT SUBSTR(agents.service_superclass_name,1,19) AS superclass_name,

 SUBSTR(agents.service_subclass_name,1,19) AS subclass_name,

 COUNT(*) AS agent_count

 FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS('', '', CAST(NULL AS BIGINT), -2)) AS agents

 WHERE agent_state = 'ACTIVE'

 GROUP BY service_superclass_name, service_subclass_name

 ORDER BY service_superclass_name, service_subclass_name

 [image:]

 •Is the problem (a system slowdown) related to the configuration of service classes?

 Use the following principles to address this problem:

  –	Resolve DB2 locking conflicts on the application and environment if they exist.

  –	Increase the thresholds if a service class is running too close to its threshold levels.

  –	In an AIX environment, if the resources allotted to a DB2 service class are being exhausted, determine whether the mapped AIX service classes are not getting sufficient CPU, I/O bandwidth, or other resources.

  –	An increased amount of activity in a service class could lead to abnormal resource consumption. Check the number of completed activities in the service class to determine if the amount of work being done in the service class is reasonable.

  –	More activities in a service class can lead to increased queue times for activities. Check to see if the average activity lifetime for a particular service class has increased. If the increase in average lifetime is unacceptable, allocate more resources to the service class and reduce the concurrency threshold.

 The query in Example 10-2 can be used to get a high level view of what is occurring on a service class. A sharp increase in ACTAVGLIFETIME over time could be an indication that the resources for a service class are being exhausted.

 Example 10-2 Query to get a high level view of activity in a service class

 [image:]

 SELECT SUBSTR(service_superclass_name,1,19) AS superclass_name,

 SUBSTR(service_subclass_name,1,18) AS subclass_name,

 SUBSTR(CHAR(SUM(coord_act_completed_total)),1,13) AS

 actscompleted,

 SUBSTR(CHAR(SUM(coord_act_aborted_total)),1,11) AS actsaborted,

 SUBSTR(CHAR(MAX(concurrent_act_top)),1,6) AS actshw,

 CAST(CASE WHEN SUM(coord_act_completed_total) = 0 THEN 0

 ELSE SUM(coord_act_completed_total *

 coord_act_lifetime_avg) /

 SUM(coord_act_completed_total)

 END / 1000 AS DECIMAL(9,3)) AS actavglifetime

 FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS ('', '', -2)) AS scstats

 GROUP BY service_superclass_name, service_subclass_name

 ORDER BY service_superclass_name, service_subclass_name

 [image:]

 •Is the problem related to not seeing the expected behavior when using AIX WLM with DB2 WLM?

 If you are not seeing the desired behavior, you may need to adjust the AIX WLM configuration. The AIX WLM configuration can be reviewed with the help of AIX WLM tools such as wlmstat, wlmmon. and wlmperf.

 In summary, WLM problem diagnosis requires the use of DB2 diagnostic logs, the WLM table functions such as WLM_GET_SERVICE_CLASS_AGENTS, WLM _GET_SERVICE_CLASS_STATS, and the db2pd utility, to obtain the necessary information about what is happening in the system.

 The db2pd utility

 The db2pd utility is used to retrieve information from DB2 database system memory sets to help in problem diagnosis. In DB2 9.5, this utility has additional options to help you obtain basic information about workloads, work action sets, and work class sets. The db2pd utility can be used to return the following information:

 •A list of workload definitions in memory

 •Service classes including superclasses and the subclasses

 •All enabled work action sets

 •All enabled work actions in the enabled work action sets

 •All work class sets referenced by an enabled work action set

 •All work classes in those work class sets

 •Threshold information

 Example 10-3 shows how to invoke the db2pd options for WLM.

 Example 10-3 Using the db2pd utility to get WLM information

 [image:]

 db2pd -db WLMDB -workloads -workactionsets -workclasssets

 [image:]

 Example 10-4 is a sample portion of the output of db2pd.

 Example 10-4 Sample output from db2pd

 [image:]

 Database Partition 0 -- Database WLMDB -- Active -- Up 0 days 05:23:56

 Workload Definition:

 Address WorkloadID WorkloadName DBAccess ConcWLOThresID MaxConcWLOs WLOActsThresID MaxWLOActs ServiceClassID

 0x07700000AB7B0080 3 WL_OLTP ALLOW 0 9223372036854775806 0 9223372036854775806 20

 0x07700000AB7B0168 4 WL_BATCH ALLOW 0 9223372036854775806 0 9223372036854775806 17

 0x07700000AB7B0250 5 WL_PROD_RPT ALLOW 0 9223372036854775806 0 9223372036854775806 18

 0x07700000AB7B0340 6 WL_PROD_QRY ALLOW 0 9223372036854775806 0 9223372036854775806 19

 0x07700000AB7B0430 7 WL_ADMIN ALLOW 0 9223372036854775806 0 9223372036854775806 16

 0x07700000AB7B0518 1 SYSDEFAULTUSERWORKLOAD ALLOW 0 9223372036854775806 0 9223372036854775806 13

 0x07700000AB7B05E8 2 SYSDEFAULTADMWORKLOAD ALLOW 0 9223372036854775806 0 9223372036854775806 13

 ...

 [image:]

 Only the DB2 instance owner can run the db2pd utility. If you are not the DB2 instance owner, you will get the following error message:

 Unable to attach to database manager on partition 0.

 Please ensure the following are true:

 - db2start has been run for the partition.

 - db2pd is being run on the same physical machine as the partition.

 - DB2NODE environment variable setting is correct for the partition

 or db2pd -dbp setting is correct for the partition.

 10.3 Workload Manager backup and recovery

 WLM information such as service class, workload, work action set, work class set and threshold objects are kept in the DB2 system catalog. Therefore, all WLM settings and vital WLM information are backed up automatically after the DB2 catalog table space is backed up.

 You also can use the db2look utility to save the WLM definitions to a file as a backup or as system documentation. Save the WLM definition in a file allows you to restore the WLM definitions to previous version without restoring the entire database. The following command saves the WLM object definitions in a file:

 db2look -d WLMDB -e -wlm -xd -o wlm.definitions.out

 This saves all the CREATE and ALTER statements for WLM objects, including all WLM CREATE event monitor statement, as well as GRANT USAGE ON WORKLOAD statements.

 10.4 WLM authorization

 DB2 workload management objects do not have owners like regular DB2 database objects. For example, if a resource setting such as prefetch priority for a service class is changed, it affects not only the service class being changed, but other service classes as well. They may result in greater or less amount of that resource. The WLM administrator should have SYSADM or DBADM authority in order to manage WLM objects. If there are many WLM administrators within the organization, these administrators must frequently communicate with each other; otherwise, they can inadvertently cancel or override WLM settings set by other administrators.

 A session user must have the USAGE privilege on a workload before a workload can be associated with its DB2 connection. If the session user, the group, or the role it belongs to, does not have the USAGE privilege on a workload, then the data server will look at other matching workloads that session user, group, or role belongs to, to see if it has the USAGE privilege. You can query the SYSCAT.WORKLOADAUTH catalog view to determine if a user, group, or role has been granted USAGE privilege on a workload.

 The USAGE privilege on the SYSDEFAULTUSERWORKLOAD workload is granted to PUBLIC at database creation time, if the database was created without a RESTRICT option. If the database was created with the RESTRICT option, you must explicitly grant the USAGE privilege on the SYSDEFAULTUSERWORKLOAD workload to all non-SYSADM and non-DBADM users.

 You have an implicit USAGE privilege on all workloads if you have SYSADM or DBADM authority. The USAGE privilege on the SYSDEFAULTADMWORKLOAD workload cannot be granted, since it can only be used by SYSADM and DBADM users.

 Example 10-5 shows the GRANT USAGE statement on the workload CAMPAIGN to user BILL, group SALES, and a ROLE called SALESPERSON. The USAGE privilege on the workload can also be granted to PUBLIC.

 The GRANT USAGE statement takes effect when it is committed.

 Example 10-5 Examples of the GRANT USAGE statement

 [image:]

 GRANT USAGE ON WORKLOAD campaign TO USER bill;

 GRANT USAGE ON WORKLOAD campaign TO GROUP sales;

 GRANT USAGE ON WORKLOAD campaign TO ROLE salesperson;

 GRANT USAGE ON WORKLOAD campaign TO PUBLIC;

 [image:]

 You can use the REVOKE USAGE command to revoke USAGE from a user, group, or role from a workload. However, the REVOKE USAGE command does not work on the SYSDEFAULTADMWORKLOAD.

 Example 10-6 shows how the USAGE privileges granted in Example 10-5 can be revoked.

 Example 10-6 Example of the REVOKE USAGE command

 [image:]

 REVOKE USAGE ON WORKLOAD campaign FROM USER bill;

 REVOKE USAGE ON WORKLOAD campaign FROM GROUP sales;

 REVOKE USAGE ON WORKLOAD CAMPAIGN FROM ROLE salesperson;

 REVOKE USAGE ON WORKLOAD campaign FROM PUBLIC;

 [image:]

[image:]
[image:]

Query Patroller and DB2 Governor

 Prior to DB2 9.5, DB2 workload management consisted of Query Patroller (QP) and the DB2 Governor. With the new offering of the DB2 Workload Manager, you may be wondering why there was a need to build a separate offering. And what happens to all the Query Patroller and Governor installations? How do I migrate a QP or Governor configuration to take advantage of WLM? We address these questions and more in this chapter.

 We discuss the following topics in this chapter:

 •A brief description of QP and Governor features

 •A comparison of differences between workload management solutions of QP and Governor, and what is available in DB2 9.5

 •How DB2 WLM, QP, and the Governor can coexist on the same data server

 •How to approach the task of migrating from QP and the Governor to the new WLM features

 11.1 Query Patroller and DB2 Governor background

 In this section, we provide background information about Query Patroller and the DB2 Governor. We also explain the differences between DB2 WLM, Query Patroller, and DB2 Governor.

 11.1.1 Query Patroller

 Query Patroller was designed as a predictive governing tool to manage query workloads based on who submitted the query and a cost estimate (from the DB2 optimizer) representing a relative measure of resources required to execute the query. The primary management technique is to control the maximum concurrency of queries in these classifications.

 For example, to prevent a single user from monopolizing the data server resources, you could limit that user to running only 10 queries at a time and any queries over that threshold would be queued until one of the running queries completed.

 Even more useful is the concurrency control for queries classified by size (based on the estimated cost for the query, or timeron value). It is the very long queries that cause disruption to the shorter-running queries, so it can be quite effective to limit the number of long-running queries running at any given time.

 Figure 11-1 on page 323 illustrates the Query Patroller environment. As queries enter the data server, some will be managed by QP, and QP will decide when to flow them into the system. Other queries (usually short-running queries) will bypass QP to avoid excess overhead, and those will flow directly into the system.

 [image:]

 Figure 11-1 Query Patroller environment

 In a QP environment, the life cycle of a query looks something like the following:

 •Queries requests are submitted to run on the server.

 •The query is intercepted on the server and QP determines if it is a query to be managed or bypassed. Managing queries requires some overhead, so it is often a good idea to minimize the overhead by selecting a set of queries (such as really short queries or queries from a given application) to bypass QP altogether.

 •Information about each managed query is written to a QP control table. The query attributes (submitter, estimated cost) are evaluated and a decision is made on whether to run the query now, queue the query until other work completes, or to put the query in a hold state (which is basically an error condition saying the query looks like it is too large to run at all, and needs to be looked at and possibly scheduled to run at a more appropriate time).

 •After QP decides a query can be run, it is released to the data server to execute along with everything else on the system.

 •QP is not aware of the query until the execution phase is complete and QP updates that query's control table entry with statistics about the execution results (for example, execution time, time queued, error code, and so on).

 11.1.2 DB2 Governor

 Query Patroller's predictive query management approach is fundamentally based on estimates, and no matter how accurate those estimates may be, they are still estimates—which means they could be wrong. For example, perhaps RUNSTATS has not been run for a while (the optimizer uses statistics to choose an optimal access plan, so they should be kept up to date).

 This is where the DB2 Governor nicely complements Query Patroller with its reactive approach to workload management. After QP lets the query loose to execute, the DB2 Governor then watches for certain thresholds during the execution that can result in events to be triggered.

 The thresholds include:

 •Maximum execution time

 •Maximum number of locks obtained and held

 •Maximum number of rows returned to the application

 •Maximum number of rows read while building a result set

 •Maximum elapsed time since a unit of work became active

 •Maximum connection idle time

 The events that can be triggered include:

 •Modify the agent priority at the operating system

 •Force the application to terminate the connection and the database activity

 11.1.3 Differences between QP, Governor, and WLM

 Although Query Patroller and the DB2 Governor are used successfully by many DB2 customers, as time goes on those customers are looking for more and more features that the existing products were not designed to address. DB2 WLM was built to address those needs in a flexible and scalable manner.

 Table 11-1 highlights some of the main differences between workload management in DB2 9 (with QP and the Governor) and DB2 9.5 (with DB2 WLM).There are many other features in the products (such as concurrency control, or thresholds for elapsed time) that are found in both workload management offerings that are not listed in this table, but that is simply because the function is close to equivalent.

 Table 11-1 Differences in Workload Management in DB2 9 and DB2 9.5

 	
 Query Patroller/DB2 Governor

 	
 DB2 Workload Manager

 	
 Treats the whole database as its execution environment.

 	
 Allows multiple execution environments to be created using workloads and service classes.

 	
 Does not have any mechanism to explicitly control resources.

 	
 Provides mechanisms to explicitly control and influence resources during execution.

 	
 QP only manages DML activities and typically only the subsets of queries that have the biggest resource impact on the system (that is, shorter transactional queries are usually bypassed due to increased overhead).

 	
 All database activities are mapped to a service class. Many more database activities can be explicitly managed (for example, DML, DDL, Load, and so on). The level of workload management is customized for each service class.

 	
 After QP releases an activity for execution, it has no further influence (or information) on the activity until completion.

 	
 Keeps track of, and can continue to manage, activities throughout the life cycle of the work. Many monitoring functions are available to quickly determine the state of the workload.

 	
 Intercepts and keeps track of activities from the coordinator partition perspective.

 	
 Integrated into the engine, which allows for awareness and tracking of activities across partitions.

 	
 QP relies primarily on concurrency control based on query cost estimates for workload management.

 	
 Explicit resource control for a specified execution environment based on estimated and real resource consumption.

 	
 Each managed query has detailed information recorded in a table.

 	
 Configurable as to the level of information to be captured for managed activities.

 	
 QP handles predictive governing, based on estimates. The Governor handles reactive governing based on actual consumption.

 	
 Offers both predictive and reactive governing options.

 	
 When the Governor is set to stop an activity when a threshold is exceeded, the entire application connection is forced.

 	
 Threshold actions can be applied to a specific activity. As well as being able to cancel an activity, a less harsh option is available to simply capture details on the activity for future analysis.

 	
 QP and the Governor sit on top of the DB2 data server engine. QP has to communicate with a QP controller process to make management decisions.

 	
 Integrated into the DB2 data server engine itself, thereby minimizing management overhead.

 11.2 Coexistence

 Switching from a workload management solution using QP and the Governor to one using the WLM features has many benefits, but it is not feasible to assume that this can happen without some thought and effort. We discuss what the environment looks like in DB2 V9.5 and then discuss how to approach the task of moving to a WLM solution.

 	
 Note: To dispel any misconceptions, keep in mind that although QP and the Governor may not be the future strategic direction for workload management in DB2, they are still fully supported in DB2 9.5 and are functionally equivalent to previous versions.

 When you first install DB2 9.5, there is a default workload created to identify all the user database activities and map them to a default user service class. The default user service class is the execution environment where all database user activities will run. There are other database activities, like prefetching or some health monitoring activities, that would be mapped to either a system or maintenance service class. This discussion does not include those activities.

 QP and the Governor only intercept and manage queries assigned and executing in the default user service class. In a “vanilla” install or migration, this includes all database activities, so the life cycle of a query essentially stays the same except that before QP gets to take a look at the query, it is first assigned to the default service class and the Governor will only act on that same set of activities.

 Figure 11-2 illustrates the Query Patroller in a default WLM environment.

 [image:]

 Figure 11-2 Query Patroller in a default WLM environment

 If there are workloads defined to route user activities to service classes other than the default use class, Query Patroller and the Governor will not be able to manage the activities, because they will bypass those tools completely.

 11.3 Transitioning from Query Patroller and Governor

 We just learned how QP and the Governor can, and will continue to, function properly on a data server at the version 9.5 level. In this section, we show how to approach the transition of managing workloads with Query Patroller and the Governor to managing workloads with DB2 Workload Manager.

 11.3.1 No migration tool

 Many Query Patroller customers have achieved success with managing workloads using query classes and other submitter thresholds. A significant amount of time may have been invested in building the configuration, and these customers are comfortable with what they have built. It is only natural that they would hope for a migration tool that would simply map a QP configuration to a WLM configuration.

 However, even though it is certainly possible to map a QP configuration to a WLM one, a migration tool is not provided because the fundamental architecture of the two products is quite different.

 QP relies primarily on concurrency thresholds and query classes to control the maximum number of queries running at any given time, often based on query access plan cost estimates. DB2 WLM, on the other hand, has more concrete control options on actual resources in addition to concurrency controls.

 A migration tool would have resulted in a fairly complex DB2 WLM configuration, when it is quite likely that a more straightforward one would do a better job.

 11.3.2 Reexamining goals

 The critical factor for establishing a successful workload management environment is to fully understand the goals of the system. Now is a good time to take a step back and re-examine why it was that you purchased QP and why you configured it the way you did.

 Here are some common goals of our QP customers:

 •Service level agreement objectives to maintain a certain average response times

 •Service level agreement objectives for blocks of activities (batch loading of data, for example) to complete by a certain time of day

 •Prevent rogue queries from monopolizing system resources and slowing down other database activities

 •Capture database activity information for historical analysis of database object usage (what tables are accessed, for example)

 •Capture database activity information for charge back accounting

 •Simply maximize the throughput of data requests on the system

 11.3.3 Migrating from a QP environment - considerations

 As previously mentioned, to be well-understood and efficiently tuned, effective workload management is based on the following four phases:

 •Understanding of business goals.

 •Ability to identify the work that maps to those goals.

 •Robust management options to execute the workload in order to meet the goal metrics.

 •Ample monitoring options to ensure that you are meeting the business goals.

 Let us assume that the business goals for the workload are understood. The following sections run through some of the Query Patroller and Governor configuration options and some points to ponder when considering how they may map to a WLM configuration.

 Identification

 Query Patroller identifies and classifies database activities in two ways. The first way is based on a range of estimated query cost (for example, group work by small-, medium-, or large-sized queries). The second way is based on the user ID or group ID that submitted the query. There is also an implicit classification of work with QP simply because QP can only intercept DML (that is, all DDL, utilities, and so on will never appear on the QP radar).

 DB2 WLM identifies and classifies work in many more ways. They can be grouped by the following connection attributes:

 •Application name

 •System user

 •Session user

 •A group of session users

 •A role of session users

 •Client user ID

 •Client application name

 •Client workstation name

 •Client accounting string

 These activities can be further classified based on the type of activities, such as:

 •DML

 •DDL

 •LOAD utility

 •READ statements

 •WRITE statements

 •CALL (for stored procedures)

 Rather than simply creating a workload based on the SESSION_USER ID or group of SESSION_USER IDs, consider widening the scope of how you may want to manage the work.

 	
 Migration action: Take advantage of the additional identification options at your disposal in DB2 WLM.

 Management

 In this section, we discuss the major QP management functions and their equivalents in DB2 WLM, and provide migration tips.

 Concurrency threshold

 Query Patroller workload management relies primarily on concurrency thresholds to limit the number of queries that can run at a given time for a given classification. The premise is that queuing some of the activities on a data server that is running over capacity will prevent resource contention that can result in costly paging and thrashing. Indeed, there have been some rather dramatic improvements in workload throughput for some customers.

 The actual concurrency threshold value, however, can be quite difficult to determine. How do you really know when you start to encounter resource contention? For example, is it when a user submits more than five queries? Does it depend on the time of day? Does it depend on the volume of work?

 The process of determining the threshold value often ends up being subjective, and the result is a generalization of the management of the workload across users. This generalization has to be lenient enough to avoid imposing on productivity throughout the day, when there are varying volumes of database activity. Even so, there is still a fair amount of trial and error involved in arriving at that configuration.

 Concurrency thresholds can be useful, though, and they are available through DB2 WLM. But instead of jumping to concurrency thresholds immediately, consider using the resource controls available for a service class. Using these, you can give database activities relative priorities for CPU and prefetching (I/O). Using AIX WLM, you can even configure a more granular level of CPU resource control to make available a certain percentage of the processing power for the service class.

 	
 Migration action: Do not use concurrency thresholds as the first option for workload management. Instead, look at controlling the CPU and prefetch priority options on service classes. If you are on the AIX platform, consider using AIX WLM for a more granular control of CPU.

 Query classes

 Query classes are another form of concurrency control, and one of the most powerful management options inside of QP. The concept behind query classes is to allow the query requests to be grouped by the estimated cost of the query.

 There are often three groups: very short transaction queries; very large report generation queries; and general maintenance or ad hoc queries that fall somewhere in the middle. Each group, or query class, can be configured to limit the maximum number of queries that can run inside that group at a time.

 QP is most effective when you set a low maximum concurrency level for the class of large queries. This prevents large, resource-intensive queries from consuming a disproportionate amount of resources, which would result in slower, unpredictable response times for the transaction query class.

 The same issues of actually trying to determine a proper configuration for query classes also exist for query classes. However, not only do you have to determine a suitable maximum concurrency, but also you have to figure out what defines a small, medium and large query. Remember, QP relies heavily on cost estimates from the optimizer to define the range of cost for each query class. That estimate is very sensitive to statistics on the server and has a reputation of occasionally being inaccurate (which could result in a query being assigned to the wrong query class and hearing complaints from users about a normally short-running query taking much longer because it was assigned to the wrong class).

 It is possible to configure DB2 WLM to have the equivalent to query classes. You would use work classes and work action sets to identify the DML work, and then set up thresholds on the work action set based on the range of query cost.

 This is a prime example of stepping back and reexamining the business goals. Typically, we find that query classes are used to maximize throughput by limiting the longer-running queries. When you think about it, however, these different types of queries rarely come from the same application.

 For example, short queries could be coming from an application executing mass transactions, OLTP, and even ETL activity. Long-running queries might be heavy report generation applications. So, why not create a workload for the applications executing the short transactions, and another workload for the applications driving the heavy reports, and then map the work to separate service classes?

 In this way you can control the resources for each service class where you can keep the large queries throttled back by limiting CPU or I/O, or both. Concurrency thresholds are still available on a service class, so you can continue to limit the number of activities for an application to 5.

 	
 Migration action: Initially, do not try to implement a query class-like environment in DB2 WLM. Instead, pull database activities out into service classes based on the source attributes and control resource consumption (and possibly concurrency) for the service class.

 Cost threshold

 Cost thresholds are set in Query Patroller to identify queries that are either estimated to be quite small or very large.

 There is a minimum cost to managing the setting in QP to exclude the set of short queries from being managed. This cost is required because of the potentially huge volume of short queries all communicating with the query controller, and because all those queries are written to a QP control table. DB2 WLM does not have these issues; the WLM logic is built into the engine (there is no communication layer), and the queries are not required to be written to a table in order to be managed.

 The QP maximum cost threshold, however, is used to identify queries that are estimated to be so large that you do not want to even start executing the SQL. A typical example would be when a user mistakenly issues a query containing a Cartesian join: QP puts such a query in a held state, does not execute it, and returns an error to the submitting application.

 It is very useful to be able to catch those types of queries in a WLM environment as well. A work class set could be created to identify these queries, as shown:

 CREATE WORK CLASS SET "queries"

 	(WORK CLASS "very big query"

 		WORK TYPE DML

 		FOR TIMERONCOST FROM 10000000 TO UNBOUNDED)

 A few actions can be taken against these very large queries. The QP approach was to simply stop the query from running. But, like query classes, the estimated timeron cost is an estimate and has the potential to be wrong. Or, perhaps sometimes it really is necessary to run those big queries. In such cases, stopping the query may be too radical an action. Collecting activity details in the event monitor might be a better solution, so that you can analyze the potential problem later. To do this, create the corresponding work action set as shown:

 CREATE WORK ACTION SET "query handler"

 FOR SERVICE CLASS "North American region"

 USING WORK CLASS SET "queries"

 	(WORK ACTION "collect details"

 		ON WORK CLASS "very big query"

 		COLLECT ACTIVITY DATA WITH DETAILS AND VALUES)

 However, if you really do want to stop those very large queries from ever running, you could create a work action set something like the one shown here:

 CREATE WORK ACTION SET "query handler"

 FOR SERVICE CLASS "North American region"

 USING WORK CLASS SET "queries"

 	(WORK ACTION "do not run"

 		ON WORK CLASS "very big query"

 		PREVENT EXECUTION)

 	
 Migration action: Do not be concerned about trying to implement a minimum cost to manage setting in WLM. Identifying large queries is still very useful, but consider the options of simply collecting detailed information about the very large queries, or limiting the scope of what you collect to a specific service class before taking a harsher action.

 Bypass options

 A number of bypass options were introduced into Query Patroller in order to minimize the overhead of the Query Patroller tool itself. Because each managed query requires communication with the Query Patroller server and an update to the QP control tables, it is best to set up QP to concentrate on the subset of queries that have the most dramatic affect on the performance of the data server as a whole.

 Typically, queries lower than a set minimum estimated cost bypass QP, along with some applications that have a fixed and known workload (for example, batch ETL scripts).

 Queries and applications can bypass QP by either setting the minimum cost to manage in the submitter profile, the “Applications to bypass” settings in the QP system properties, or by setting the DB2_QP_BYPASS_APPLICATIONS, DB2_QP_BYPASS_USERS, or DB2_QP_BYPASS_COST registry variables on the data server itself.

 DB2 WLM is integrated into the DB2 engine and has no separate server application (like the QP server). It also does not (by default) write individual records of activity details to a table. So, WLM does not have the overhead issues of QP, and no option to bypass WLM is provided. (It is also a fundamental architectural point to have all database activities run in a service class.)

 	
 Migration action: There is no migration action. There is no need for a mechanism to allow database activities to bypass WLM.

 Managing with connection pooling

 Connection pooling is a very common practice found in many vendor products that access data from DB2. Basically, the vendor tool maintains a small number of open connections to a data server, typically in a middle tier in a 3-tier environment. Users access the middle tier application and the vendor tool with a client user ID that is authenticated at the middle tier. The vendor application then knows it is permitted to obtain data with one of its open connections to the data server.

 The problem is that QP (and DB2, for that matter) is only aware of the session user ID that connected to the database, which is not the client user ID. This makes it impossible to explicitly manage query workloads based on the client submitter.

 For example, suppose user JOE is using a vendor application to build a report. JOE connects to reportapp.exe with a user ID 'JOE'. The vendor application determines JOE is permitted to run the report, but it uses a DB2 connection from its connection pool that connected with the user ID 'VENDORID' to avoid having to establish and maintain a new connection for the 'JOE' user ID. QP considers the submitter of the report query to be 'VENDORID' because the user 'JOE' is never flowed to the data server. Therefore, there is no way to control Joe's query activity, that is, not without also controlling every other user who is using the connection from the connection pool.

 In contrast, DB2 WLM has the client attributes available for proper identification and management of queries. The application at the middle tier could either make a sqleseti API call or wlm_set_client_info stored procedure call to set one of the client attributes before it issues the SQL.

 In this example, even though the connection is established using the 'VENDORID' session ID, the vendor application can call the sqleseti before the query is run to provide data for the report and set the CURRENT CLIENT_USERID to 'JOE' on the connection. JOE's database activity could then be controlled by limiting this user’s resource consumption, or by setting thresholds on the requests.

 After a client attribute is set on the connection, it can then be used to identify database activities that are coming from the middle tier based on the actual client attributes.

 	
 Migration action: Use the sqleseti API to set client attributes to handle connection pooling in a 3-tier application environment.

 11.3.4 Migrating from a DB2 Governor environment - considerations

 The DB2 Governor has its configuration stored in a control file. There are a few parameters in particular that are of interest when you start migrating to DB2 WLM.

 The AUTHID and APPLNAME parameters are set to identify the session authorization ID and application name that the Governor should be watching. These parameters could be a good indication that there are database activities from these sources that need some attention. To create a workload based on these sources, AUTHID would map directly to the SESSION_USER workload parameter and APPLNAME maps to APPLNAME workload parameter.

 There are several resource events to look at as well.

 The rowssel event is used to indicate that after a certain number of data rows are returned to the application, then some action should be taken. There is a DB2 WLM threshold for maximum rows returned, as well.

 The idle event is used to indicate a connection has remained idle for too long a period of time. There is a DB2 WLM threshold for maximum connection idle time, as well.

 If you create thresholds for the service classes created to map to the same workload that the Governor is watching, consider all the threshold actions you have at your disposal. Typically, the Governor forces the application when a resource threshold is exceeded.

 In DB2 WLM, you can take a much gentler action by stopping execution of a particular activity—but you also have the option of allowing the threshold continue to execute, and then using the information logged in the threshold violation event monitor to further investigate the problem.

 	
 Migration action: In the Governor control file, use the AUTHID and APPLNAME parameters to identify work that could map to a DB2 WLM workload and map to a service class.

 Look at the rowssel and idle resource events to possibly create corresponding WLM thresholds. However, consider the option of logging threshold violations, rather than stopping execution.

 11.3.5 Historical information in QP control tables

 One advantage existing Query Patroller customers have over customers new to WLM is the fact that they already have a (potentially very large) set of query activity. This is a useful start towards understanding the existing workload on the data server.

 The TRACK_QUERY_INFO control table in QP stores a large volume of information about all the queries that have been managed by Query Patroller. There are a number of columns in this table that map directly to connection attributes used to define a workload.

 Table 11-2 displays these columns, along with suggestions about what to consider when identifying database activities through workloads.

 Table 11-2 TRACK_QUERY_INFO columns that map to workload connection attributes

 	
 TRACK_QUERY_INFO Column

 	
 WLM Migration guidance

 	
 USER_ID

 	
 This column would map directly to the SESSION_USER connection attribute on the CREATE WORKLOAD statement. Look for logical patterns.

 	
 APPLICATION

 	
 This column would map directly to the APPLNAME connection attribute on the CREATE WORKLOAD statement. It is quite likely to find that some applications are associated with a certain type of query. For example, ETL applications will usually have very short execution times (EXECUTION_TIME_SECONDS and EXECUTION_TIME_MILLISECONDS columns in the TRACK_QUERY_INFO table).

 	
 CLIENT_USER_ID

 	
 This column would map directly to the CURRENT CLIENT_USERID connection attribute on the CREATE WORKLOAD statement. This column will only contain information if the submitting application invoked the sqleseti API to set this attribute. If this is the case, then this is very useful information to assign client database activities to the proper service class, especially in a multi-tier application using connection pooling.

 	
 CLIENT_ACCOUNT_ID

 	
 This column would map directly to the CURRENT CLIENT_ACCTNG connection attribute on the CREATE WORKLOAD statement. This column will only contain information if the submitting application invoked the sqleseti API to set this attribute. If this is the case, this could be useful to assign database activities to a service class based on account information (or some other custom criteria, depending on how this attribute is being used in the environment).

 	
 CLIENT_APPLICATION

 	
 This column would map directly to the CURRENT CLIENT_APPLNAME connection attribute on the CREATE WORKLOAD statement. This column will only contain information if the submitting application invoked the sqleseti API to set this attribute. If this is the case, this could be useful to assign database activities to a service class based on a custom client application name (sometimes a client process can have multiple invocations with different purposes).

 	
 CLIENT_WORKSTATION

 	
 This column would map directly to the CURRENT CLIENT_WRKSTNNAME connection attribute on the CREATE WORKLOAD statement. This column will only contain information if the submitting application invoked the sqleseti API to set this attribute. If this is the case, this could be useful to assign database activities to a service class based on the actual workstations they are submitted from (for instance, when a shared terminal is used to access data).

 Ideally, you would be able to create new workloads to isolate the database activities based on the analysis of the connection attribute information. Note that after those workload occurrences are assigned to a service class, Query Patroller will no longer be aware of those queries.

 Figure 11-3 illustrates how the workload management environment would look after you start isolating activities based on the QP history.

 [image:]

 Figure 11-3 Establishing user-defined service classes with QP data

 There are a few other columns in the TRCK_QUERY_INFO control table that are of interest, as well. These columns provide information on the type and distribution of the database requests; see Table 11-3.

 Table 11-3 TRACK_QUERY_INFO columns that map to other WLM functions

 	
 TRACK_QUERY_INFO column

 	
 WLM mgration guidance

 	
 TYPE

 	
 QP intercepts all types of DML. This column will indicate if the query was a read (SELECT) or a write (INSERT, UPDATE, or DELETE). If there are patterns (for example, reads are typically very short, the rest may be long), then consider creating a work class or work action set to map a particular type (read or write) to a service subclass so they can be managed separately.

 	
 EXECUTION_TIME_SECONDS,

 EXECUTION_TIME_MILLISECONDS

 	
 These columns will provide the actual time a query spent inside the DB2 engine. This can be useful in determining the overall distribution of the query workload. Analysis can be performed on that distribution to isolate extremely long running queries that could be disruptive to the system. This could be an indication that a threshold should be defined in order to take some action (for example, capture details, stop execution).

 	
 ESTIMATED_COST

 	
 This column provides the estimated cost for each managed query. Like the execution time, this data can be used to analyze the distribution of expected response time of queries. An additional use for this column is to identify queries that may appear to be of a very high cost; you could consider defining a work action set to isolate those requests further and possibly even prevent them from executing. You can even look at the SQL text in these cases to look for patterns; perhaps they all include Cartesian joins and should not be allowed to run.

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 For information about ordering these publications, see “How to get IBM Redbooks” on page 344. Note that some of the documents referenced here may be available in softcopy only.

 •AIX 5L Workload Manager (WLM), SG24-5977

 •DB2 Performance Expert for Multiplatforms V2.2, SG24-6470

 •Leveraging DB2 Data Warehouse Edition for Business Intelligence, SG24-7274

 Other publications

 These publications are also relevant as further information sources:

 IBM - DB2 9.5

 •What's New, SC23-5869

 •Administrative API Reference, SC23-5842

 •Administrative Routines and Views, SC23-5843

 •Call Level Interface Guide and Reference, Volume 1, SC23-5844

 •Call Level Interface Guide and Reference, Volume 2, SC23-5845

 •Command Reference, SC23-5846

 •Data Movement Utilities Guide and Reference, SC23-5847

 •Data Recovery and High Availability Guide and Reference, SC23-5848

 •Data Servers, Databases, and Database Objects Guide, SC23-5849

 •Database Security Guide, SC23-5850

 •Developing ADO.NET and OLE DB Applications, SC23-5851

 •Developing Embedded SQL Applications, SC23-5852

 •Developing Java Applications, SC23-5853

 •Developing Perl and PHP Applications, SC23-5854

 •Developing User-Defined Routines (SQL and External), SC23-5855

 •Getting Started with Database Application Development, GC23-5856

 •Getting Started with DB2 Installation and Administration on Linux and Windows, GC23-5857

 •Internationalization Guide, SC23-5858

 •Message Reference, Volume 1, GI11-7855

 •Message Reference, Volume 2, GI11-7856

 •Migration Guide, GC23-5859

 •Net Search Extender Administration and User's Guide, SC23-8509

 •Partitioning and Clustering Guide, SC23-5860

 •Query Patroller Administration and User's Guide, SC23-8507

 •Quick Beginnings for IBM Data Server Clients, GC23-5863

 •Quick Beginnings for DB2 Servers, GC23-5864

 •Spatial Extender and Geodetic Data Management Feature User's Guide and Reference, SC23-8508

 •SQL Reference, Volume 1, SC23-5861

 •SQL Reference, Volume 2, SC23-5862

 •System Monitor Guide and Reference, SC23-5865

 •Troubleshooting Guide, GI11-7857

 •Tuning Database Performance, SC23-5867

 •Visual Explain Tutorial, SC23-5868

 •Workload Manager Guide and Reference, SC23-5870

 •pureXML Guide, SC23-5871

 •XQuery Reference, SC23-5872

 •DB2 Performance Expert for Mulitplatforms Installation and Configuration Guide, SC19-1174

 IBM - DB2 9

 •What's New, SC10-4253

 •Administration Guide: Implementation, SC10-4221

 •Administration Guide: Planning, SC10-4223

 •Administrative API Reference, SC10-4231

 •Administrative SQL Routines and Views, SC10-4293

 •Administration Guide for Federated Systems, SC19-1020

 •Call Level Interface Guide and Reference, Volume 1, SC10-4224

 •Call Level Interface Guide and Reference, Volume 2, SC10-4225

 •Command Reference, SC10-4226

 •Data Movement Utilities Guide and Reference, SC10-4227

 •Data Recovery and High Availability Guide and Reference, SC10-4228

 •Developing ADO.NET and OLE DB Applications, SC10-4230

 •Developing Embedded SQL Applications, SC10-4232

 •Developing Java Applications, SC10-4233

 •Developing Perl and PHP Applications, SC10-4234

 •Developing SQL and External Routines, SC10-4373

 •Getting Started with Database Application Development, SC10-4252

 •Getting Started with DB2 Installation and Administration on Linux and Windows, GC10-4247

 •Message Reference Volume 1, SC10-4238

 •Message Reference Volume 2, SC10-4239

 •Migration Guide, GC10-4237

 •Performance Guide, SC10-4222

 •Query Patroller Administration and User's Guide, GC10-4241

 •Quick Beginnings for DB2 Clients, GC10-4242

 •Quick Beginnings for DB2 Servers, GC10-4246

 •Spatial Extender and Geodetic Data Management Feature User's Guide and Reference, SC18-9749

 •SQL Guide, SC10-4248

 •SQL Reference, Volume 1, SC10-4249

 •SQL Reference, Volume 2, SC10-4250

 •System Monitor Guide and Reference, SC10-4251

 •Troubleshooting Guide, GC10-4240

 •Visual Explain Tutorial, SC10-4319

 •XML Extender Administration and Programming, SC18-9750

 •XML Guide, SC10-4254

 •XQuery Reference, SC18-9796

 •DB2 Connect User's Guide, SC10-4229

 •DB2 9 PureXML Guide, SG24-7315

 •Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

 •Quick Beginnings for DB2 Connect Servers, GC10-4243

 Online resources

 These Web sites are also relevant as further information sources:

 •DB2 Information Center

 http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

 •Database and Information Management home page

 http://www.ibm.com/software/data/

 •DB2 Universal Database home page

 http://www.ibm.com/software/data/db2/udb/

 •DB2 Technical Support

 http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

 •DB2 online library

 http://www.ibm.com/db2/library

 How to get IBM Redbooks

 You can search for, view, or download IBM Redbooks, Redpapers, Technotes, draft publications and Additional materials, as well as order hardcopy Redbooks, at this Web site:

 ibm.com/redbooks

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 DB2 Workload Manager for Linux, UNIX, and Windows

 DB2 Workload Manager for Linux, UNIX, and Windows

 Achieve business objectives effectively with DB2 Workload Manager

Use Performance Expert and Design Studio with DB2 WLM

Manage DB2 workloads proactively

 DB2 Workload Manager (WLM) introduces a significant evolution in the capabilities available to database administrators for controlling and monitoring executing work within DB2. This new WLM technology is directly incorporated into the DB2 engine infrastructure to allow handling higher volumes with minimal overhead. It is also enabled for tighter integration with external workload management products, such as those provided by AIX WLM. This IBM Redbooks publication discusses the features and functions of DB2 Workload Manager for Linux, UNIX, and Windows. It describes DB2 WLM architecture, components, and WLM-specific SQL statements. It demonstrates installation, WLM methodology for customizing the DB2 WLM environment, new workload monitoring table functions, event monitors, and stored procedures. It provides examples and scenarios using DB2 WLM to manage database activities in DSS and OLTP mixed database systems, so you learn about these advanced workload management capabilities and see how they can be used to explicitly allocate CPU priority, detect and prevent “runaway” queries, and closely monitor database activity in many different ways. Using Data Warehouse Edition Design Studio and DB2 Performance Expert with DB2 WLM is covered. Lastly, the primary differences between Workload Manager and Query Patroller are explained, along with how they interact in DB2 9.5.

 Back cover

 Acrobat bookmark

 OPS/images/Control_Rule_-_Tree_View.gif
L3

) 05 WLMDEMO_BY_0B)
] operating System
L] work Defirition
= 0 patabase

(9 Superclasse.
(9 Histogram Templates.

There i na table view For this entity,

OPS/images/7524ch09.13.1.17.jpg
bt gt s T e 150

elalnin
B =

i
i
§3388§85%

T

OPS/images/WLMDEMO_BY_OBJ2.gif
Business Intelligence (BI) - WLMDEMO_BY_OBJ.wimsq - IBM DB2 Warehouse Design Stu;
Fie Edt Nevigte Search Project DefaWarchousng Data Run Window Help
O EHe B @i (8 iQik- 1@ -

[| [Business Inteligence (81) |

5 wireno_sv_os) SN) vuoevo 5v_om3sdesses =0
CREATE SERVICE CLASS RIGHLVL OUTBOUND CORRELATOR 'DB23¢’ DISABLES
CREATE VORKLORD I_PROD APPLVANE ('des.cxe'| DISASLE SERVICE CLASS SYSDEFAULTUSERCLASS POSITION AT 1;
GRANT USAGE ON WORKLOAD VI_PROD TO PURLIC
CREATE WORKLOAD VI_BATCH CURRENT CLIENT_USERID ('BATCH') DISABLE SERVICE CLASS SYSDEFAULTUSERCLASS POSITION AT 2;
GRANT USAGE ON UORRLOAD WI_BATCR TO PUBLIC;
CREATE VORKLORD VI_ADNIN SESSTON_USER ('DECADH') DISKSLE SERVICE CLASS SYSDEFAVLTUSERCLASS POSITION AT 35
GRANT USAGE ON UORFLOAD WI_ADNIN To PUBLIC;
CREATE VORK CLASS SET TS ALL (UORK CLASS VI_ALL VORK TYPE ALL POSTTION AT 11
CREATE ORK ACTION SET ULEDEWO_BY_OBJ FOR DATABASE USING UORK CLASS SET UTS_ALL (UORK ACTION ROUGE_CONDITION ON VORK ¢
CREATE TRRESHOLD "Control Sad Guerice” FOR DATARASE ACTIVITIES ENFORCEWENT DATABASE DISASLE UREN ACTIVITYTOTALTINE > 1
ALTER SERVICE CLASS RIGALVL ENABLES|
ALTER VORKLOKD VI_PROD ENABLE
ALTER WORKLOKD WIBATCH ENADLE;
ALTER WORKLOKD WI_ADNIN ENABLE,
ALTER VORR ACTION SET VLEDENO_5Y_0BJ ENABLE:
ALTER THRESHOLD "Control Bad_Guerice” ENABLE; 1

< I >

o° o connection ikable Insert 11136

OPS/images/7524ch09.13.1.16.jpg
=TTl

ST

OPS/images/Control_Rule_-_Scheme_View.gif
Business Intelligence (B) - WLMDEMO_BY_OB.J

- &

4[5 susioss e 61 |

ataProject .. 52 | Navigator| = 1
SR
23 Data Diagrams
€ Data Fiows
6 Data Models
@ Fie Defritons
B iingblox Profies
@) Mining Flows
(23 Other Fies
D) Resources.
€D Run Profiles
(8 5oL scrbts
@ subflons
L subprocesses
(B Text Analysis
(& variables
@8 Warehouse Applcation rofes
55 Workioad Management Scheme
5 witDe Rev
5 WLMDEMO_BY_0B)
] | 5
O pateb... 52 |outine Dates... | = O
EEREET T
(3 Connections

3

DEMO_E

EI=ET
j=if
2=

=

0
«®

E-i@ig- 3

oo

1BM DB2 Warehouse Design Studio, V9.5

Fle Edt Navigate Search Project DataWarehousing Workioad Management Data Run Window Help

MDEMO_BY_0B1
Operating System
‘Work Defintion
5 work dentites
5 work Type Sets
0% WIS AL

=0 WT_ALL

= (% Control Rules

Database
Hstogram Templates

There i na table view For this entity,

3 Properties 5% | Data Output Problems

-~ General

Execution Status

Job Status

[<Control Rule> ROUGE_CONDITION

Name: ROLGE_C

ONDITION

Commerts:

Enable

Criteiatype: | ActivtyTotalTme

Maxinum execute and queus tims for an activy: [12

Urit

Activiy data colection:
Dtabase partiion:

Exceed maximum (action):

HOLRS

WITHDETALLS

AL

P v

0

OPS/images/7524ch09.13.1.15.jpg
it g on o ot 50

olasle
S e
o bt [ovsmsin |
" i savecuaes
R ———— — A
e e b e e e e e e

P e et

e e g = oz

i
:
|
i

OPS/images/WLM_MainPage.gif
YDE_DB2INST1 - Workload Management Details

Workload Management View Tools Window Help

0lala @
)& ») ooz
prry S s [Watlos [Wok G ok alrs Tl

7 s 5o

WLMDB 13

OPS/images/7524ch04.08.1.021.jpg

OPS/images/Create_Limits_-_Final_screen.gif
Creates controlsthat can stop and activy when the actviy reaches the resource usage i that you specify E-&

1. General | 2. Superclasses | 3. Work Identites | 4, Work Types | 5. Create Limits

= Information
To createlnits For all of the actviies that run n the database, speciy the Database domain, select the condtion and specfy the i, and select the action to take when an activiy exceeds the it

T creat it For all of the activiies from a specfic source, specfy the work dentity, specky the Superclass domain, select the conditon and specky the i, and select the action to take when an
activity excesds the it

To creat it For all activites of @ specic ype, specify the wcrk type, select the conditon and specky the it and select the acton to take when an activiy exceeds the I,

T creat it For the actvities from a specific source that are of a specfic type, specfy the wark dertity and the wark type, select the condtion and specffy the ik, and select the acton to take when
an activiy exceeds the it

Domain work Identity Superclass Work Type | Condition Moritor

ONDITION] ACTIVITYTOTALTIME > 12 HO

(0] Concel

OPS/images/Toolbar_WLM.gif
&ﬁ%%% 6G:Eni: A O0nCEEO® Q@
Workload Management

OPS/images/7524ch04.08.1.022.jpg

OPS/images/Create_Limits_-_Create_Condition.gif
Create Condition.

Create Condi

ion

Define the condition

ROUGE_CONDITION

Crieria type:

ActivityTotalfime

Maximum execute and queus time for an activity:

Urit

Actviy data colection: | WITH DETAILS

Database partion: AL

Exceed maximum (action): | STOP

OPS/images/7524ch09.13.1.12.jpg
TRELLGADD0 @

o %_~ teeuamEe

=" anesmn =7 T
S i == =
wrnon Do e e
e =TT s =
<o -

L eonman || (i o

s s :
- e =
* v [t “om
v — i

[i o
e T

OPS/images/Create_limits_for_database_activities_-_Condition1.gif
Create limits for, database activities

Create limits for database activities

Creates controlsthat can stop and activy when the actviy reaches the resource usage i that you specify

1. General | 2, Superclasses | 3. Work Identtis | 4. ork Types | 5. Create Lits

nformation

Domain WorkIdentity superclass work Type Condiion Moritor
[Work Type TWT_ALL WI_ALL <Create a condtion>

OPS/images/StatDetails_BPHitRatio_Group.gif
%: CLYDE_DB2INST1 - Statistics Details

Statistics Details View Tools Window Help

(@] & | R stowbsaro: [avoe veanst srove v | B B: | @

1EMSYSTEMBPBKWLMDE]

N7 22732 P \ Zom @, Q
@ < o J | &y owa
i
anar iz
=& intance famaion -
o Buffer Pools Values for Hit Rato (%]
£1 Daabases Bufer PoDasbase] PRTO _ [PARTi[PeRTz_[ParTa_[PeAe
1 Tetle Spaces
BPTMP1EK[WLMDE) 9997 9999 9999 9999 9999
1 Uty nomaton EFTMP_IEKWLMDE) sy @ me wm w9
BP_1BK(WLMDE) 2500 BIEB 9169 9665 9961
IEMDEFAULTBPWLMDE) 99.96 99.98 99.98 9998 9997
IBMSYSTEMBP1EKWLMDE) N/C N/C N/C N/C N/C
IBMSYSTEMBP32KWLMDB) N/C N/C N/C N/C N/C
IBMSYSTEMBP4K[WLMDEB] N/C N/C N/C N/C N/C

OPS/images/7524ch04.08.1.020.jpg

OPS/images/7524ch08.12.1.42.jpg
femtvivimrmircte H

[E=)

OPS/images/7524ch09.13.1.10.jpg
_ﬁu e s o i ot

©18 % momn: “nelo
Oy s serarts
T e S e e |
e : o im
¥ |
R 3

OPS/images/WLM_Default_SubclassDetail.gif
=# CETUS_PEINST - Workload Management Details

Workload Management View Tools Window Help

0iala®@

aa
W & 0w

o[oo D8R S s spEEAMTIRER. |

Service Subclass: Statistics

Neme SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS iy
dertifier # Superclass idertifer
Lastreset 9/18/07 1257:24 P [y

Peak values
Concurrent actvtiss Totals

Coorinator sctivty ifetine (ris)
Cost estimate (imerons)
Rows returned

Coorcinstor actvties
Coorlnator actvties completer
Coorclnator actvties abortect
Coorclnator activties efectect

Temporary tablespace usage (KE)

Histograms

Double-clck staistic to display s histogram.

Statistc Average
Coordinator actviy queus time fms] NP
Coordinator activy execution time (s) NP
Coordinator actviy lfetme (ms) NP
Interarival time ms) NP
Activty cost estimate timerons) NP
Fiequest executon tme (ms) NP

9/18/07 1:0224 P

SYSDEFAULTUSERCLASS
3
DB2PERF

8541
7963
578

ES

OPS/images/7524ch09.13.1.18.jpg
olania

mw_m BTy -

B i e T L
et B i i o Y
I
.

TET

OPS/images/7524ch04.08.1.014.jpg

OPS/images/Create_limits_for_concurrent_database_activities_-_Main_screen.gif
E Create Limits for Concurrent Database Activities

Create limits for concurrent database activities

Crestes s for the number of activiies, occurrences, and connections that can run concurrently n speciic domains

1. General |2, Superclasses | 3. Work Identites | 4. Work Types | 5. Create Linits

Vou can use ths objective ot

Lt the maximum number of coordinator activiies that can execute concurrently inthe detabase and stop any acivties tht violste this
s R e S e e S s o B B

Lt the maximum number of coordinatar actiies from one source of work that can execte concunertly n a superclass. Stap any
activities that violate ths i, For example, it to two the number of coordinator actviies Ehat are submited by the Accaunting User
roup that can execute concurrently n the Finance supercass.

Lt the number of actviies or occurrences that can run concurrently for one source of work. Stop any actvies that vilate tis it For
xampl, it to tua the number of activties that the Accounting user group can run concurtently.

Lt the maximum number of coordinator activiies that can run concurrently or a speciic type of work. Stop any activies that vilate this
lmit, For exampe, it to tuo the number of reads that can run concurently.

Limit the maximum number of coordinator actviies that can run concurrently for a speciic source of work and type of work, and monitor the
activities to pravide detaled iFormation. For example, It the DML actvities that the Accounting User group can rum cancuirently ta two.

OPS/images/WLM_Default_WorkloadStats.gif
CETUS_PEINST - Workload Management Details

‘Workload Management View Tools Window Help
0ial?>®
5/16/07 12:22:24 PH. Zoom @ &
EJ - =B 0.00:20
5
szt
Main Dtoase: DBZFERE
i=-{e Definitions
£ Soniee Caes | Workloads
T Workloads Occurences Compl.. | Coord Activities Compl. | Coord. Activities Abor...| Coord. Actiivities Rejecter | Concurrent Decurrences P._* | Concurment Activities Peak
£ otk Cases -
] Work Actions || [g SDEFAULTUSERWORK. 7.983 578 [El
£ Tl
=@ Statistics.
£ S Cses
=
) otk Clses
< m) 5
o %
E:

The Workioads'table has 2 raws.

OPS/images/7524ch04.08.1.015.jpg

OPS/images/Create_limits_for_concurrent_database_activities.gif
Create a Workload Management Scheme by Objective

Select the cbiective of the new workioad management scheme.

Objectives for a workioad management scheme

Control and share system resources
Create Imits for database activties

Creates it on the nuber of actvites, occurences, and comnections
that can run concurrently in certain domains

I

OPS/images/7524ch04.08.1.012.jpg

OPS/images/ControlRule_-_Control_bad_queries.gif
Business Intelligence (BI) DEMO_BY_OBJ - IBM DB2 Warehouse Design Studio, V9.5

Fie Edi Navigate Search Project DotaWarchousing Workoad Management: Data Run Window Help
[@i A i i@ iF-F s e
5| Business Inteligence D) |

0. %[N 50
£ % 7 || = 5 wmewo_ev_om

@ DataDiagran A | E] Operating System
E | L] work Defirition

o8 Data Flons
9 Data Models = 0 patabase

&) Fie Defitor 5 (5 ControlRules
3 Miningblox Pr

@) Mining Flows: (5 superclasses.
) Other Fies. 9 Histogram Templates

D) Resources.
€D Run Profiles

There i na table view For this entity,

8 5oL scrbts
B Subflows

(8 Subprocesse || [Properties. 3 | Data Output | Problems | Execution Status | Job Status

(B Text Anaysic
9 varisbles

~General | 8 <Control Rule>> New Ctrl Rule

T Werchouse 4 Name: Contral_Bad_Queries
= (% workioad Ma
5 wiroe.. Conments
5 WLMDEN Enable rule
< I 3 Criteriatype: | ActivityTotalTime v
=8
Oio 3o o Maximum execute and queue time For an activity: 12
_ e HOWE v
&)
e Actiy datacolections | WITHDETALS 2
5 4 aod -
] Database partion AL >

(& Connections

Exceed maximum (action): | STOP

i

OPS/images/7524ch04.08.1.013.jpg

OPS/images/7524ch04.08.1.018.jpg

OPS/images/7524ch04.08.1.019.jpg

OPS/images/7524ch04.08.1.016.jpg

OPS/images/7524ch04.08.1.017.jpg

OPS/images/7524ch07.11.1.09.jpg
g 8 8 8 8 8 88
i 8 £ 8 8§ 8 § &

OPS/images/Work_Type_Measurement_Properties.gif
waork Type

Specify values for this work type

Name:

Work type measure:

Schema:

WI_ALL

NONE

OPS/images/Work_Type_Set_and_Work_Type.gif
Create Work Type

Select worktype seti [= 5 wLMDEMO_BY_OBI1
= [work Definition
= (5 Work Typs Sets.
51 WIS _ALL

Create New Work Type Set

Selected work type set: | WTS_ALL

ork type name: WT_ALL

Type: Al

OPS/images/7524ch07.11.1.07.jpg

OPS/images/Create_new_work_type_set.gif
%7 New Work Type Set

New Work Type Set

I

Name:

Commerts:

WIS ALl

work Type set for al

OPS/images/7524ch07.11.1.08.jpg

OPS/images/Create_work_type.gif
Create Work Type

Select warktypeset: | @ 5 Test
= [work Definition
£ work Typs Sets.

Create New Work Type et

Selected wark type set:

Work type name:

Type:

OPS/images/7524ch04.08.1.010.jpg

OPS/images/7524ch07.11.1.05.jpg

OPS/images/Create_limits_for_database_activities_-_Work_Identities.gif
Create limits for, database activities

Create limits for database act ies. 7
Creates contrl thatcan st and sty when the actty reaches theresource usage it thst you spedty =
a

3. Work Idenkitis |4, Work Types | 5. Create Lins

1. General | 2, Superdlasses
You can use any exdsting work identiy that s displayed or you can create new work denkiiss. To crate a new work.
identity, clik Add and use the Work dentty window to name the work dentity and speciy one o more connection

propertiss that identiy the sources of work.

ork Idertites
APPLNAME SYSTEM_USER SESSION_USER SESSION_USER_GROI

dss.exe

Name
WI_PROD
WIBATCH
WI_ADMIN DBZADM
SYSDEFALLTUSERWORKLOAD
SYSDEFALLTADMWORKLOAD.

OPS/images/7524ch04.08.1.011.jpg

OPS/images/7524ch07.11.1.06.jpg

OPS/images/Create_Limits_for_database_activites_-_Database_screen.gif
Database

Vou need to set the work type set property of the database,

§iiork action zef name;

WLMDEMO_BY_OB

Work type set of work acton set or the database:

=

y e JCom]

OPS/images/workloadEnv.gif
Service classes

Viorkloads HIGHLVL

ETLLOADS

userReavests 4ol WL_PROD_QRY|

i

WL_PROD_RPT

WL_ADMIN

i

OPS/images/Create_limits_for_database_activites_-_General_tab.gif
Create limits for, database activities

Create limits for database activities

Creates controlsthat can stop and activy when the actviy reaches the resource usage i that you specify

1. General |2, Superclasses | 3. Work Identites | 4. Work Types | 5. Create Limits

Vou can use ths objective ot

Creste mits for alof the activties that un inthe database: for exampl, it the defaut run time of all activties to one hour, and stop al
activites that exceed the I

Create mits for al of the activties from specfic source: for example, it all activties from Marketing to an estimated SQL costof 100,000
timerans, and stop alactvites from Marketing that exceed the it

Create mits for ol activiies of a specfic type: For example, i the SQL system terporary space for allLOAD activiies to 2 GB, and stop
allLOAD activities that exceed the .

Creste lmis or the activities from a specic source that are of a speciictype: for example, lmi the number of SQL rows returned for READ.
ctivitiesfrom the HR. department to SODK, an stop all READ activties from HR th exceed the .

OPS/images/7524ch07.11.1.04.jpg

OPS/images/Create_limits_for_database_activities.gif
Create a Workload Management Scheme by Objective

Select the cbiective of the new workioad management scheme.

Objectives for a workioad management scheme

Contral and share system resources

Create lmits o concunent database activities

Creates controls that can stop and activity when the activiy reaches
the resource usage it that you speciy

OPS/images/Work_Types_-_Final_screen.gif
Create limits for, database activities

Create limits for database activities

Creates controlsthat can stop and activy when the actviy reaches the resource usage i that you specify

1. General | 2. Superclasses | 3. work Identites | 4. Work Types |5, Create Lmits

Vou can use any existing work type set and wark type combination that i dsplayed ar you can create new wark bype sets and vierk types. To
create a new work type set and wark type, clck Add and use the Create Work Type window. For a work type, specFy the type characteristic
such a5 DL, DML, Read, Write, Cal, and Load, You can ako create wark type that includes allof these type charatteritics

work Types

WorkTypeSet | Name Typs Schema WorkType Measure Lower Bound Upper Bound | Unbounded

s a Twra JJal L oke oo oo e

OPS/images/7524ch07.11.1.01.jpg

OPS/images/Create_Limits_-_Limit_work_of_one_type.gif
Create limits for, database activities

Create limits for database activities

q
Creates controlsthat can stop and activy when the actviy reaches the resource usage i that you specify E-&

1. General | 2. Superclasses | 3. Work Identites | 4, Work Types | 5. Create Lmits

= Information

To creat it For all of the activiies that run n the database, specky the Database domain, select the candtion and specfy the i, and select the action to take when
an activiy exceeds the it

To ceate it For all of the actvies from a speciic source, specify the work dentity, specky the Superclass domain, select he condition and specy the i, and select
the action to take when an actvity exceeds the It

To ceate it For all activities of a speciic type, speciy the work type, select the condition and speciy the i, and select the action to take when an actviy exceeds
the it

To ceate it For the actvites from a specific source that are of a specfic type, specy the work identity and the work type, select the condiion and speciy the i,
and select the acton ta take when an activy exceeds the .

Domain Worklgentty | Superclass WorkType Condition acton | Monitor
[EE) SEeiEcE 3 ok types <Create condtion> S

OPS/images/7524ch07.11.1.02.jpg

OPS/images/7524ch08.12.1.40.jpg
T a

OPS/images/7524ch04.08.1.040.jpg

OPS/images/EVMTables_Historgram_PE_growth_TREND.gif
Ex CLYDE_DB2INST1 - Statistics Details

Statistics Details View Tools Window Help

© & D swowdasia: [pam0

9/13/07 52341 Ak

L« =

10/1/07 5:0431 PM

Tables: HISTOGRAMEIN_B. Tables: HISTOGRAMEBIN_C. Data obiect pages - HISTOGRAMBIN_CETUS_PEINSTWLMDB PESRVUSR

Counterpalt Data obiect pages - HISTOGRAMBIN_CETUS_PEINSTWLMDB PESRVUSR
Data colcted in Performance Warehouss detabsse from Oct 1, 2006 700,00 PM to Dt 1, 2007 600:00 PM

> Show staisial information

s
ES

El

2

2

18

1407 500 A 10757 1160 PH gy

OPS/images/Delta_Execute_-_Compare_options.gif
¥ Workload Management Delta Execution

Gomparison Options
Speciy the comparison option

Compare the existing workoad management scheme to
(@ Database

O nother workload management scheme.

OPS/images/EVMTables_Historgram_noPE_growth_TREND.gif
> CLYDE_DB2INST1 - Statistics Details

Statistics Details View Tools Window Help

© | & D swowdasia: [pam0

9/13/07 52341 AM

De=

10/1/07 5:0431 PM

Tables: HISTOGRAMEIN_B. Data obiect pages - HISTOGRAMBIN_BASIC_MON-WLMDE-ADMINHM

Counterpalt Dats obiect pages - HISTOGRAMEBIN_BASIC_MON-WLMDE-ADMINHM
Data coloted in Performance Warehouss detabsse from Oct 1, 2006 70000 PM to Dt 1, 2007 600:00 PM

> Show staisial information

tm\s
000

1207 1:00 A 1007 BR0PM e

OPS/images/Execute_-_Clean_Execution.gif
B Exjcution Result

Execution Result

Execution successful

Execution Log:

CiRedbookiworkspaceltestrev. bt
DEWSQUIR 2007-08-27 15:28:01 DEBLIG - WLMsettingCleanp:
DEWSQUIR 2007-08-27 15:28:01 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingClean:
DEWSQUIR 2007-08-27 15:28:02 DEBLIG - WLMsettingCleanp:

Database Name

DL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:
DDL under executon:

AIvPLE
Database Connection LRL

jdbc:db2:focalhost:S0000/SAMPLE
LTER WORKLOAD "WL_LTILS" DISABLE"
LTER WORKLOAD "WL_BATCH' DISAEL
LTER WORKLOAD "WL_PROD" DISABLE"
LTER WORKLOAD "WL_ADMI

in_thres'
UTILS' UNDER

DBWSQWR 2007-08-27 15:28:02 INFO. - Execution of Java class com.ibm. datatools.sqw.wi.runtime.runtimerits. WLMSettingCleanp firished successfull.
DBWSQWR 2007-08-27 15:28:02 INFO_- SOWO320L1: com.bm.datatools, s runtime. runtimeuits. WLMSettingCleantp task completed successfuly
DBWSQWR 2007-08-27 15:28:02 DEBLIG - SQWO3BO2I: Exting method handieJAVA n EPG traverser.

DBWSQWR 2007-08-27 15:28:02 DEBLIG - SQWO38O2I: Exting method processactoniiode n EPG traverser.

DBWSQWR 2007-08-27 15:28:02 DEBLIG - SOWO3BDLI: Entering method processActiontiods in EPG traverser

DEWSQUR 2007-08-27 1512802 DEBUIG - Executing Actvity: Graph

OPS/images/EVMTables_Historgram_noPE_growth.gif
Ex CLYDE_DB2INST1 - Statistics Details

Statistics Details View Tools

o { a{ A ShowDetafor

Window Help

PARTO

9/13/07 52341 AM

Des 8

7 105527 A

513 5108150 P10

10/1/07 5:0431 PM

7] Table Recrgarization

Table Detail

Table name
Table space D

DB name

Rows writen
Rows read
Overflowed raws
Table scherma name.
Table fle D

Data partion D
Table type

Page reorg

Parttion

Data object pages
ndex object pages.
LOB object pages.
Long object pages.
XDa object pages

Statistcs febrications
Total staistcs fabricaton tin ()

HISTOGRAMBIN_BASIC_MON
1%
WLMDB

0
1020445
0
ADMINHM
El

NP
Usertable
0

PARTO
539

NP

NP

NP

NP

NP
NP

OPS/images/7524ch04.08.1.043.jpg

OPS/images/7524ch05.09.1.11.jpg

OPS/images/Reverse_Engineer_-_Final_screen.gif
Business Intelligence (BI) - WLM_REVERSE - IBM DB2 Warehouse Design Studio, V9.5
Fle Edt Navigate Project DataiWarehousing Workioad Management Data Run Window Help
o[/ =] B~ i@ ¢ 8- e

=[5 WLM_REVERSE s— rT— m——
L Conolnues | 5bdsse | tappng e | Workdects
=1 operating System I 1

8 superclasses s 4

- e RGP et Prnty ety Dota Colection Aagregteaciy dt._ Aggeqate reqest i <ol
e AL RS Gte | DALT o nore nore
s S bwr how hore s
WL_UITILS, BATCH 32768 DEFALLT HONE HONE BASE.
W sarc o S bwr how BTE00 ore
it o0 s S b how ore s
wsomm
SDAUTUSERWORILOAD
SSDRFAUTAOMWORKL0R0
5 work Type Sets
=0 Database
{5 Control Rules
=5 Superclasses
1] SYSDEFAULTSYSTEMCLASS
1] SYSDEFAULTMAINTENANCECLA
] SYSDEFAULTUSERCLASS

5 subclasses.
5 controlRules
7 Mapping Rules.
= (9 Histogram Templates
[SYSDEFALLTHISTOGRAM

OPS/images/TablesListShowingEVMTables.gif
Ex CLYDE_DB2INST1 - Statistics Details

Statistics Details View Tools Window Help

© | & D swowdssta: [pam0

10/1/07 43650 PH

I« o

g

00020

10107 4:3922 P

5@ Instance Information
7 Fast Commurication
£ dentfication

£ Databases

] Dynamic QL Statement
7 Table Spaces

£ Bulfer Paoks

7] Memoy Pool Usage
£ Uity Information

] DB2 Cornect Server

g m >

Tables

D8 Nome | Tabl Schema

~[TableNane

[TableSpace D | Fows Witen | ows Fesd

[Dverfowsd Fows | Tabe Type | Page Reors

WLMDB_ADMINHM
PESRVUSR
PESRVLSR
PESRVLSR
PESRVLISR
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB SYSIEM
WLMDB _ SYSIEM

CNTL_VIOLATION
CONTROL_CETUS_PEINST
SCSTATS_CETUS_PEINST
WLSTATS_CETUS_PEINST
HISTOGRAMBIN_CETUS_P!

SYSCOLUMNS
SYSPLAN
SYSDBALTH
SYSROUTINES
SYSCOLDIST
SYSEVENTMONITORS
SYSTABLESPACES
SYSTRIGRERS
SYSNODEGROUPDEF
SYSNODEGROUPS
SYSPARTITIONMAPS
SYSBUFFERPOOLS
SYSVERSIONS
SYSEVENTTABLES
SYSXMLSTRINGS
SYSTUNINGINFO

1% 2
2 2
1628
1332
163.904
11

2

0

0

0
87.000
2

EINST

1658
0
1628
132
188,071
9635
145
an

5

2
40500
672
772
116
2376
2376
238
El
297

8

1

an

[

Usertable
Usertable
Usertable
Usertable
Usertable
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €
System €

eceive tabl information

The Tables'table has 32 rows.

OPS/images/7524ch04.08.1.044.jpg

OPS/images/7524ch05.09.1.12.jpg

OPS/images/Reverse_Engineer_-_Connection_parameters.gif
Connection Parameters

Select the database mansger, JDBC driver, and required connection parameters,

Connection identfication
se default narming convention

Connection Name: L

Select a database manager: I8 drver:

160 Data Server Driver for JDEC and 5L

) 082 for Linux, UNIX, and Windows.

Connection LRL detals
AllVersions,

Driver Options | Tracing Options

Database Wiios

Host: Clyde. tsos) sanjose. lbm.com:

Portrumber: [sg001

[Juse cient authentication
IDBC drver dlass:

combm.db2.jcc.DEZDriver

Class location: | C:{DWEDesgntudolyadieclpselplugingicom ibm daatc erowse.

a Comnection LRL [cbeidbzsClyde. tsoshsanjse. bm,com: 50001 WLMDEretrievelessagesFromSer

User information
User ID: [dhzinst1

Passuiord: [wrwemns

Test Connection

OPS/images/AppSummary_PE_EventMon.gif
“& CLYDE_DB2INST1 - Application Summary

Application Summary Selected View Tools Window Help i Bl
o { a{ A ShowDatafor: |PARTO v { ®@
ae
I« = 00020
1071707 42352 PM
FID DB Name | Application Name Workload ID [AuthID___ | Application Status | User CPU Time...| System CPU Time .. | Host Execution Elap... | Seqft | Total Sots | Total Sort Time (sec]
459 WLMDE db2wind 0 ADMINNM cornect conpleted 2724150 5832802 0000000 0000 0 0000000
459 WLMDE cbZbp.ere 7 ADMINMM UIDW waling 0011887 0001323 0168021 00002 0 0000000
459 WLMDE cbZevm VIDLATIONS 0 ADMINHM connect completed 283843 5756795 0000000 0000 0 0000000
459 WLMDE cbaskd 0 ADMINMM cornect completed 0087175 0002957 0000000 0000 0 0000000
4595 WLMDE db2evmt_CETUS_PEINS 0 PESRVUSR cornect completed 4503842 575934 0000000 0000 0 0000000
< >
.
F ®

OPS/images/7524ch04.08.1.041.jpg

OPS/images/Reverse_Engineer_-_New_Connection1.gif
E New File

Select Connection

Chaase to use a new connecton ar select an existing connecton,

(@ Creste a new connection

(O Use an existing connection

Existing connections

Property.

<ot [te>][rrih) [consl

OPS/images/7524ch09.13.1.33.jpg
oo LSRR e e i me

o [e==la=)

RHHHEH
:
H
1
£
H

i
[

OPS/images/7524ch04.08.1.042.jpg

OPS/images/7524ch05.09.1.10.jpg

OPS/images/Workload_Management_Scheme_-_Reverse_Engineer.gif
Workload Management Scheme

Create a new workioad management scheme.

Select a data warehouse project

(B0 WLMDE

Workoad management scherme:

WLMDE _REVERSE.

(O create a scheme by objective

Ocreate a scheme yourselt

(@ Create a scheme by reverse enginesring

OPS/images/7524ch09.13.1.32.jpg
2 e oato
B

P vy
e e
iy

o Tl |

R e T |

OPS/images/7524ch10.14.1.10.jpg

OPS/images/7524ch04.08.1.036.jpg

OPS/images/Delta_Execute_-_Select_Comparision_2.gif
Workload Management Delta Execution

Workload Management Scheme for Comparison

Select the scheme for comparison

Workoad management scheme for comparison: | C{RedbookworkspacelWLMDBwi-modelswL1DB_Rev.wins | [...]

3

OPS/images/7524ch04.08.1.037.jpg

OPS/images/Delta_Execute_-_Compare_options_2.gif
Workload Management Delta Execution
Comparison Options

Specify the comparison option

Compare the existing workoad management scheme to
Obatabase

® Another workload management scheme.

OPS/images/7524ch04.08.1.034.jpg

OPS/images/Delta_Execute_-_Execution_Results.gif
) Execution Result

Execution Result

Execution successful

Execution Log:

CiRedbookiworkspace|WLHDB REV.txt:
DEWSQUIR 2007-08-27 12:42:36 DEBLIG - SOWO308711: Number of rows madied:

DBWSQWR 2007-08-27 1214236 INFO._- SOW03275T: Execution of 5L statement "CREATE SERVICE CLASS
HIGHLYL DISABLE” throuugh JDBC connection finished successfully

DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO3BO2I: Exting method handie DB in EPG traverser.
DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO382I: Exting method processActoiode n EPG traverser.
DBWSQWR 2007-08-27 1214236 DEBLIG - SOWO3BDLI: Entering method processActiontiods in EPG traverser
DEWSQUR 2007-08-27 12142136 DEBLIG - Executing Actviy: Graph

DBWSQWR 2007-08-27 1214236 DEBLIG - SQWO3BDLI; Entering method handleJDBC i EPG traverser
DBWSQWR 2007-08-27 1214236 DEBLIG - SQWO30B03I: Database name: SAMPLE.

DBWSQWR 2007-08-27 1214236 DEBUG - SOWO308711: Nuber of rows modifed: 0

DBWSQWR 2007-08-27 12142136 INFO_- SOW03275T: Execution of SQL staterment "CREATE SERVICE CLASS
UTILS LNDER HIGHLYL COLLECT AGGREGATE REQUEST DATA DISABLE" though JDBC connection irished
successfully

DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO3802I: Exting method handie DBC in EPG traverser.
DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO382I: Exting method processActoiode n EPG traverser.
DBWSQWR 2007-08-27 1214236 DEBLIG - SOWO3BDLI: Entering method processActiontiods in EPG traverser
DEWSQUR 2007-08-27 12142136 DEBLIG - Executing Actviy: Graph

DBWSQWR 2007-08-27 1214236 DEBLIG - SQWO3BDLI; Entering method handleJDBC i EPG traverser
DBWSQWR 2007-08-27 1214236 DEBLIG - SQWO30B03I: Database name: SAMPLE.

DBWSQWR 2007-08-27 1214236 DEBUG - SOWO308711: Nuber of rows modifed: 0

DBWSQWR 2007-08-27 12142136 INFO_- SQW03275T: Execution of SQL staterment "CREATE SERVICE CLASS
BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA DISABLE" through JDBC conmection finished
successfully

DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO3802I: Exting method handie DBC in EPG traverser.
DBWSQWR 2007-08-27 12:42:36 DEBLIG - SQWO382I: Exting method processActoiode n EPG traverser.
DBWSQWR 2007-08-27 1214236 DEBLIG - SOWO3BDLI: Entering method processActiontiods in EPG traverser
DEWSQUR 2007-08-27 12142136 DEBUIG - Eecuting Actvity: Graph

OPS/images/WLMWArning2.gif
Main Datsbases: WLMDB

=@ Definitons
£ Service Classes

Statistics

1] Workoads
1] Wotk Classss
1 Wotk Acons
1] Thisholds

SR oisics |

Senvics lasses

1] Workoads
1 Wotk Classss

B3

7 Workload Management: tatsics

The Statistics pages show deailed activity information for each service class, work class, or workload. In addition, they
statistics for historical analysis

From a table, you can get further defails by double-clicking a table entry. To view history and trend data for a counter, ri
then click Analyze Performance Warehouse History.

7 Moritoring Status

[Exror: WLM statisics on system WLMDB is stopped becavse another event monitor for statistics is already active.

Tip: Please drop the event monitor BASIC_MON.

< | >

Evtor: WLM staiscs on system WLMDB is stopped. See stalisics node for more detals.

OPS/images/7524ch04.08.1.035.jpg

OPS/images/Delta_Execute_-_Execution_Options.gif
Workload Management Delta Execution
Execution Options

Specify the options for execution

Log drectory: | C:\Redbookinorkspace

Log il name: | WLMDE_REV.txt

Overurite existing log fle:

Trace level

[Methods
(Content
ot

OPS/images/Delta_Execute_-_Generated_Code.gif
Workload Management Delta Execution

Generated Code

Select Execute in databass to execute this cods in your database and clck Next. O clk Firish to
extt withast executing the cods.

‘CREATE SERVICE CLASS HIGHLYL DISABLE;
(CREATE SERVICE CLASS UTILS UNDER HIGHLYL COLLECT AGGREGATE REQUEST DATA DISABLE;

(CREATE SERVICE CLASS BATCH LNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA DISABLE;

‘CREATE SERVICE CLASS PROD UNDER HIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;
(CREATE SERVICE CLASS ADMINS UNDER HIGHLVL COLLECT AGGREGATE REQUIEST DATA DISABLE;
(CREATE WORKLOAD WL_UITILS CLRRENT CLIENT_USERID (UTILS) DISABLE SERVICE CLASS UTILS UNDER
HIGHLYL POSITION AT 1

CREATE WORKIOAD WL GATCH CURRENT CLIENT_USERID (SATCH) BISABLE SERVICE LA BATCH
UNDER HIGHLYL POSITION AT 2;

‘CREATE WORKLOAD WL_PROD APPLIAME (dss.ex=') DISABLE SERVICE CLASS PROD UNDER HIGHLL
POSITION AT 3;

(CREATE WORKLOAD WL_ADNIN SESSION_USER GROLP (DB2ADM) DISABLE SERVICE CLASS ADMINS
UNDER HIGHLYL POSITION AT 4;

ALTER SERVICE CLASS HIGHLVL ENABLE;

ALTER SERVICE CLASS LTILS UNDER HIGHLVL ENABLE;

ALTER SERVICE CLASS BATCH UNDER HIGHLVL ENABLE;

ALTER SERVICE CLASS PROD LNDER HIGHLVL ENABLE;

ALTER SERVICE CLASS ADMINS LNDER HIGHLVL ENABLE;

ALTER WORKLOAD WL_LTILS ENABLE;

ALTER WORKLOAD WL _BATCH ENABLE;

ALTER WORKLOAD WL_PROD ENABLE;

ALTER WORKLOAD WL_ADMIN ENABLE;

[Jexecute in database.

OPS/images/7524ch04.08.1.038.jpg

OPS/images/7524ch04.08.1.039.jpg

OPS/images/7524ch09.13.1.28.jpg
%y e

OPS/images/Create_limits_for_concurent_database_activities_-_Final.gif
Business Intelligence (BI) - WLMDEMO_BY_0B.2

Fle Edt Nevgate Search Projct
ti- &

4[5 suiss e o0 |

&

@~

1BM DB2 Warehouse Design Stud

Data Warehousing Workioad Management

Data Run Window Help

@1 5w e

= 5 wivemo_BY_0B12
=B Operating System
£ Superclasses
£ Rules
= L work Definition
= 5 work Identites
= [wiproD
£ Control Rules
(3 wisatcH
£ Control Rules:
[wi_apmm
£ Control Rules
[&) SYSDEFAULTUSERWORKLOAD.
(&) SYSDEFAULTADMWORKLOAD
=05 Work Type Sets
=03 WTs_ALL
0 wWIAL
£ Control Rules

= (5 ControlRules:
3 DB_COORD_CONDITION
= (1 Superclasses
5] 5YSDEFAULTUSERCLASS
] SYSDEFAULTSYSTEMCLASS
5] 5YSDEFAULTMAINTENANCECLASS
= 8] Mg
(5 subclasses
5 control Rules
7 Mapping Rules.
= (9 Histogram Templates
[SYSDEFALLTHISTOGRAM

[ContolRudes | superdosses|

Name
DB_COORD_CONDITION

R

Crieria type
ConcunertDECoordActivies

Exceed Maximum (Acton)
CoNTINLE

Activiy Data Collction
NONE

OPS/images/7524ch09.13.1.27.jpg
o seercun

e 4
o B | R —]

o Bt il S

e e e g o e

=

OPS/images/7524ch06.10.1.08.jpg

OPS/images/Create_limits_for_Concurrent_database_activities_1.gif
Create Limits for, Concurrent Database Activities

Create limits for concurrent database activities

Crestes s for the number of activiies, occurrences, and connections that can run concurrently n speciic domains

1. General | 2. Superclasses | 3. Work Identites | 4, Work Types | 5. Create Lmits

Information

Domain Work dentity Superclass WorkType | Condition Moritor

ONTINLE HONE

OPS/images/7524ch09.13.1.26.jpg
B e s s i gt e Ve ooy tags Top i s (oo
zane pERE ITn OB R
EX
3

OPS/images/7524ch06.10.1.09.jpg

OPS/images/Concurrency_Control_-_Create_condition1.gif
Create Condition.

Create Condition

Define the condition

DB_COORD_CONDITION

Critria type: | ConcurrentDBCoordctivites

Curt

Maxinum cannections in queue: 15

Maximum number of coordinator activities: | 10

Actviy data colection: [NONE,

Database partion: COORDINATOR

Exceed maximum (action): | CONTINUE

OPS/images/PE_PropertiesWLM_interval.gif
Performance Expert Server Properties

Server| History | Diagnostios| Perormance Warshause | Exception| Glabal Setfings

Speciy the setings forrecording history deta.

Erable Fisfor s5iag
Histoy setings
Recording nterval 60 sec

Tinefame 530 | hous

Histor settings per component
Interval mulplier Total

Appication 1] evsec

] Locking confits e

WLM defiiions
System parameters, Gpramic stalement cache, stattcs

05 system & storage 30| 1800 sec

05 staus 5| 30050

[]05 prosesses

OPS/images/7524ch04.08.1.032.jpg

OPS/images/7524ch06.10.1.06.jpg

OPS/images/Create_Limits_-_Concurrent_db_activities.gif
Create Limits for, Concurrent Database Activities

Create limits for concurrent database activities

Crestes s for the number of activiies, occurrences, and connections that can run concurrently n speciic domains

1. General | 2. Superclasses | 3. Work Identites | 4, Work Types | 5. Create Limits

Information

B Uty | Srmies | s | @nitm i e
[oatabase] <Creste a conditon> (D

OPS/images/7524ch09.13.1.24.jpg
ST

OPS/images/7524ch04.08.1.033.jpg

OPS/images/7524ch06.10.1.07.jpg

OPS/images/7524ch08.12.1.55.jpg

OPS/images/7524ch09.13.1.23.jpg
© (8% st s rsll @

i maa

&l

OPS/images/7524ch04.08.1.030.jpg

OPS/images/7524ch06.10.1.04.jpg

OPS/images/7524ch08.12.1.54.jpg

OPS/images/7524ch09.13.1.22.jpg
I —)

" | R 7 S o H
.
—_— e]

e ot

OPS/images/7524ch04.08.1.031.jpg

OPS/images/7524ch06.10.1.05.jpg

OPS/images/Create_limits_for_concurrent_database_activities__-_Create_limit_tab.gif
2>
Crestes s Fo the nurber of activiies, occurrences, and connections that can run concurrently in speciic damains o 4
&3 @

1. General | 2. Superclasses | 3. Work Identites | 4, Work Types | 5. Create Limits

= Information
To limit the maximum number o coordinstor activties that can run concurrently n the database, and stop any activties that violse thi i
1. Create a condition that speies the maximum value or the ConcurrentDBCoordActvies option
2] Select the STOP action,

To it the maximum number of coordinstor activiies that can execute concurrently n a superclass for one source of work, and stop any activiis that vilate this i
1. 5peciy the work dentity. Tt must be associated with a superclass
2. Create condtion that speciiss the maximu value of the ConcurrentDBCoordActivties option.
5. Select the STOP action,

Tolii the nuber of activile o occutences that an run concurentyfor ane source of werk,and sop any activies that vike tis
1. 5peciy the work dentiy.
2. Create a condiion that specifies the maximu valus of the ConcurrentWorkloadActvities or the ConcurrentWorkloadOccurrences option,
5. Select the STOP action,

To limit the maximum number of coordinator activies that can execute concurrently for one type of work, and stop any acivties that violste thi i
1. 5peciy the work type.
2] Create a condtian for the maxinum value of the CancurentDBCoordActivties apton.
5. Select the STOP actian.

o lmit the maximum number of caordinator activies that can execute concurtently for a specic saurce of work and type of wark, and maritor the activiies including detaled information
1. 5peciy the work dentity, which s the source of the work.
2. Specky the work type.
5. Create a condtian for the maxinum value of the CancurentDBCoardActivties apton.
4. Select the MONITOR WITH DETALLS action.

Domain Work Identity Superclass work Type Condiion action Manitor

OPS/images/7524ch09.13.1.21.jpg
.
018 | Aawmvs 0 i;@
| o
el e Wi

" || 3 m ;

*

e o o i] s i o 163
T E3]

OPS/images/7524ch09.13.1.29.jpg
& s

e e

OPS/images/7524ch04.08.1.025.jpg

OPS/images/7524ch06.10.1.02.jpg

OPS/images/Create_by_Yourself_-_Superclass_Properties.gif
Business Intelligence (BI) - WLMDEMO_BY_YRSLF - IBM DB2 Warehouse Design Stut
Fle Edt Navigate Search Project DataWarehousing Workioad Management Data Run Window Help

Ci-@ G- A i i@iE F-wer
5 | [Business Inteligence (61) |
. Data Project Explrer 33 | Navigator| O | [*WLNDEMO_BY _YRSLF 7 | =0
5~ 3 e T T
BS 7| = G weano pomar ControlRules | subasses | Maping Rules | work Lienttes |

S Cga WLvDE]] Operating System

4, Control Flows H L] work Defirition S
&0 Datsbase
CLE o . =) Criteria type Exceed Maximum (Action)
o8 Data Flons (S ControlRules
g Data Models = (1 Superclasses
&) File Definitions] SYSDEFAULTUSERCLASS
3 Miningblox Profiles 1] SYSDEFALLTSYSTEMCLASS
N Mining Flows] SYSDEFAULTMAINTENANCECLASS
3 Other Fes apren
D) Resources. 9 Histogram Templates.
€D Run Profiles
5 sau sarpts verview [scheme |
5 Subprocesses
@ Text analsis “Generd | ©] <Superclass Domain> HIGHLVL
(& varisbes
) Warehouse Appcaton Profes o, HIGHL
& C5 Workload Management Schemes Comments
5 WLMDEMO_BY_0B) v
= enatleyrvice class

04 Databas... 57 |Outine patasta & e =

I refetc ity DEFALT v

(& comnections

Wark action set name: HIGHLYL

Opersting system service class:

arkidertites:

0

OPS/images/7524ch09.13.1.31.jpg
M..mm Fey Ty

0185 mimn e — 10
PR
s e e i i i i |
3 <=
2000
ot
——
roooooy
=
80000, -
| ——
o
a0
h
a0
i
||
arvor o O 0 A e

TET

OPS/images/7524ch04.08.1.026.jpg

OPS/images/7524ch06.10.1.03.jpg
Classos for genoral

‘Spcial classes for
memory usage

Spocial class for
memory pages not
managed by AIX WLI

OPS/images/Create_by_Yourself_-_New_Superclass.gif
Business Intelligence (BI) DEMO_BY_YRSLF. - IBM DB2 Warehouse Design Studi
Fle Edt Navigate Search Project DataWarehousing Workioad Management Data Run Window Help

(i (S AiE-1@if-F-we-
55 5 pusness neligence (&1 |

Dta Project Explorer 07 | Navigator| = 01

BES

= 5 WLMDEMO_BY_YRSLF There i na table view For this entity,
] operating System
al L] work Defirition
= 0 Database
5 control Rules

=
& oo BT

] SYSDEFAULTSYSTENCLA:
5] SYSDEFAULTMAINTENAN
9 Histogram Templates

= (s WLDE

4, Control Flows

25 Data iagrams

€ Data Fiows

5 Data Madels

@ Fie Defritons

® Hiingblox Profies

@) Miring Flows

3 Other Fes

D) Resources.

€D Run Profiles

(8 5oL scrbts

@ subflons

L3 Subprocesses

(@ Text Analysis

(& variables

@ Warshouss Appicaton Prois

(= Workioad Management Schemes
5 WMDEMO_BY_0B)

04 Datebes... 53 |utine | Datasta... | = 0
B B e s s~

(& comnections

= Properties £ |Data Output | Problems | Execution Status | Job status v =0

Properties are not available

0

OPS/images/7524ch09.13.1.30.jpg
08 [shoown sk Ei)

e

= s

OPS/images/7524ch04.08.1.023.jpg

OPS/images/WLMDEMO_BY_YRSLF.gif
Business Intelligence (BI) - WLMDEMO_BY_YRSLF - IBM DB2 Warehouse Design Studio, V9.5
Fle Edt Navgate Search Project DataWarehousing Viorkoad Management Data Run Widow He
(o1~ G- Fote e

25| 3 Business Inteligence (81) |

5. Data Project Explorer 07 | Navigator| =~ £

) [5 WLMDEMO_BY_YRSLF [Control Rules | superclasses

= (g WLMDB 8] operatng System
4, Control Flows {5 superclasses.

(23 Dota Disgrams (5 Rules
Data Flows =0 work Defintion

5 Data Models = CF work Identities

) File Definitions [SYSDEFAULTUSERWORKLOAD.
B Winingblox Profiles [SYSDEFAULTADMWORKLOAD
3 Mining Flows % work Type Sets

) Other Fies. = 0 patabase

(D) Resources {5 Control Rules.

€3 Run Profiles. = (9 Superclasses

2 5oL saripts 1] SYSDEFAULTUSERCLASS

(B Subfows] SYSDEFALLTSYSTEMCLASS
(3 Subprocesses 1] SYSDEFALLTMAINTENANCECLASS
(B Text Analysis = (9 Histogram Templates

() varibles [y SYSDEFAULTHISTOGRAM

@ Warehouse Applcation Profiles

Neme Crieriatype | Exceed Maximum (Action)

Activiy Data Collction

= (5 Workioad Management Schemes

5 WLMDEMO_BY_O1 Overview | scheme.

5 WLMDEMO_BY_YRSLF
5 Properties £3 | Data Output | Problems | Execution Status | Job status

D4 Databas... 52 |Outine Datasts... | = O

= . < Genersl | [<Database> Database
B%) B as & s s

G Comectons Workacionse e WLOEO Y RS

. SAMPLE [DB2 for Linux, UNIX, and Wir

Work type set of work acton set for the database:

. TOOLSDB [DB2 Alas]
. WLMDB [DBZ for Linu, LNIX, and Wi

>

OPS/images/7524ch04.08.1.024.jpg

OPS/images/7524ch06.10.1.01.jpg

OPS/images/Create_Scheme_yourself.gif
Workload Management Scheme

Create a new workioad management scheme.

Select a data warehouse project

(B0 WLMDE

Workoad management scherme:

WLMDEMO_BY_YRSLF

O create a scheme by objective

®create a scheme yourselt

O create a scheme by reverse enginesring

OPS/images/7524ch04.08.1.029.jpg

OPS/images/7524ch04.08.1.027.jpg

OPS/images/7524ch04.08.1.028.jpg

OPS/images/7524ch02.06.1.40.jpg

OPS/images/Operating_System_Rule_-_Superclass.gif
Business Intelligence (BI) - WLMDB_REV - IBM DB2 Warehouse Design Studio, V9.5

Fle Edi Navgate Project DataWarhousng Workiosd Management Data Rum Window Help
Ci- & 0-§-a-
5| Business Inteligence D) |

ata Proj... 57 Navigator — O | [CORIUSNTA Y
B %5 || & G wwoepev Process Options
= (s WLMDB A -] Operating System
- 4
4, Control Flows 8 Supardsses
() Data Diagrams R E:ﬂes
4 Data Flows. =] s HighL vl
g Data Models L] work Defirition
) Fle Defintions =0 patsbase
(3 Miringblox Profies 5 Conolrues N
N Mining Flows = (¥ Superclasses
3 Other Fes J] SYSDEFALTSYSTENCLASS
(D Resources 5] SYSDEFAULTMAINTENANCECLASS
0 Run Profes] SYSDEFALLTLSERCLASS
9 5QL Seripts 2] HIGHLYL
e Subflows 8 Histogram Templates
(3 Subprocesses
(@ Text Analysis
9 varisbles 3 Properties 52 | Data Output | Problems | Execttion Status Job Status =g
(@ Warehause Applation i —
©C5 Workioad Management 51| | - General | 1 <Rule> ighLvl_rule
g = | & Hame: aixighlvl_rule
o LT Commens o Fova
- User:
EIBR T -
= (4 Connections. ronleston
i SAMPLE [082 for Linue, LI o
&, TOOLSDB [DB2 Allas] Tog aixHighLevel
. WLMDB [DB2 for Linux, UNIX|
Operatingsystem superciss; | AotighLore i =
I >

OPS/images/7524ch08.12.1.88.jpg

OPS/images/7524ch02.06.1.42.jpg

OPS/images/7524ch03.07.1.10.jpg

OPS/images/New_Operating_System_Superclass_Rule.gif
Business Intelligence (BI) - WLMDB_REV

Fle Edt Navigate Project DataWarehousing Workioad Management Data Run Window Help

(1~ &

ot Proj... ©3 | Navigator| =

qo

8%
EET)
4, Control Flows
 oata Disgrams
49 Dats Fows
5 Data Madels
) Fie Definitions
B Hiringblox Prfies
) Mining Flows.
) Other Fes
O Resources
 Run rofies
5 s sarts
B Subflows
(3 subprocesses
(B Text Analysis
(& variables
a8 Warchouse dpplcation P
& (2 Workload Management 5 v
< R |

5

B-i@:ig -5 &~

1BM DB2 Warehouse Design Studio, V9.5

= 05 WLMDE_REV
=] operating System
(5 superclasses

= 0 Database
5 control Rules

= (1 Superclasses
5] 5YSDEFAULTSYSTEMCLASS
5] 5YSDEFAULTMAINTENANCECLASS
] SYSDEFAULTUSERCLASS
H] HiGHLL

9 Histogram Templates

There i na table view For this entity,

Odoat... 22 |out., pat,. | = O

858 & s @ o
= (4 Connections
- SAMPLE [DB2 for Linux, UNI>
. TOOLSDB [DB2 Alias]
. WLMDB [DBZ for Linux, UNIX|

= Properties 3 |Data Output | Problems | Execution status

Job Status

Properties are not available

0

OPS/images/7524ch02.06.1.41.jpg

OPS/images/7524ch08.12.1.86.jpg

OPS/images/7524ch02.06.1.33.jpg
Clyde Bonnie

Pations Faritons partions

| —

OPS/images/7524ch02.06.1.32.jpg
Clyde

Bonnie

GPU || CPU || cPU|| CPU

cPU

cPU ‘ cPU H CPU

RAM

RAM

NFS maum

= e

External SAN

OPS/images/7524ch02.06.1.35.jpg

OPS/images/7524ch02.06.1.34.jpg

OPS/images/Operating_System_Rules_file.gif
Business Intelligence (BI) - WLMDB_REV.osrules - IBM DB2 Warehouse Design Stu

Fle Edi Navgate Project DataWarchousng Data Run Window Heh
G-EHa & E-i@ i-§l-e-
5| Business Inteligence D) |

C5 wLMDB REY | [3] WLMDB_REV.wimsal WLMDB_REV.osclasses

Rules for scheme: WLEDE_REV

Global Rules
AixHighlevel AixHighlevel

End of global rules

Rules for superclass: AixHighlevel

veith AixHighlevel.Ucils
Prod Rixkighlevel Prod
Bacch Rixkighlevel.paton

* End of rules for superclass: AixHighLevel

iikable

Insert

16

s

OPS/images/7524ch02.06.1.37.jpg

OPS/images/Operating_System_Commands_file.gif
Business Intelligence (BI) - WLMDB_REV.osclasses
Fie Edt Navigate Project

G-E&

(&

4[5 suiess e o1 |

5 wiLvDBREV | [3) WLMDB_REV.wimsal
#

@i Y-F-e-

1BM DB2 Warehouse Design Studi
Dota Warehousing Data Run Window Help

B wiMDE_RE:

wkclass commands for scheme: ULMDE_REV

#
mkelass
mkelass
mkelass
mkelass
mkelass
mkelass
mkelass

authuser=

authuser:
authuser:
authuser:
authuser:
authuser:

authuser=

root
root
root
root
root
root
root

adminuser=root -c min=0 -c softmax=100 -c hardwax=100 —c shares=60 LixHighLevel

shares=20 AixHighlevel.Utils
shares=60 AixHighlevel.Prod
shares=20 AixHighlevel.Batch
adminuser=raot aixDefSystem
adminuser=root aixDefliaint
adminuser=raot aixDefliser

WLNDB REV.osrules

iikable

Insert

OPS/images/7524ch02.06.1.36.jpg

OPS/images/DB2_Command_code_file.gif
Business Intelligence (BI) - WLMDB_REV.wimsgl

IBM DB2 Warehouse Design Stu

Flo Edt Navigate Project DataWarehousng Data Run Window Help

C-E& BiBiG-
[| 3 Business Inteligence (81) |
[

= (s WLDE a
4, ControlFows
() Data Diagrams
Data Flows
C5 Data Madels
@ Fie Defintions
 Miingblox Profies
) Mining Flows
3 Other Fes
D) Resources.
€D Run Profiles
B sl septs
(B Subfows
L3 Subprocesses
(3 Text Analysis
(& variables
@ Warshouse ApplcationPi
= Workload Management 51
< | &

@ i &-%l- e

REATE SERVICE CLASS HIGHLVL OUTBOUND CORRELKTOR
CREATE SERVICE CLASS UTILS UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA DISABLE;
CREATE SERVICE CLASS BATCH UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA DISABLE;

CREATE SERVICE CLASS PROD UNDER RIGHLVL COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISAELE:
CREATE SERVICE CLASS. ADNINS UNDER HIGHLVL COLLECT AGGREGATE REQUEST DATA DISABLE:

CREATE VORKLOAD VL_VTILS CURRENT CLIENT USERID ('UTILS')
GRANT USAGE ON WORKLOAD WL_UTILS To FULIC:

CREATE VORKLOAD VL _BATCH CURRENT CLIENT USERID ('BATCH')
GRANT USAGE ON WORKLOAD WL_BATCH To FULIC:

CREATE WORKLOAD VL_PROD AFPLNANE ('css.exs!) DISAPLE SERVICE CLASS PROD UNDER HIGHLVL FOSITIC
GRANT USAGE ON WORKLOAD WL_PROD TO PURLIC:

CREATE VORKLOAD VL_ADHIN SESSION USER GROUP ('DBZADI) DI
GRANT USAGE ON WORKLOAD Wl_ADHIN To FUPLIC:

ALTER SERVICE
ALTER SERVICE
ALTER SERVICE
ALTER SERVICE

cLiss
cLiss
cLiss
cLiss

ata Proj... 51 Navigator| = 1| 5 WLMDB_REV. [5) WLMDB_REV.0sclasses | [£] WLMDB_REV.osrules =8
5%~ "hixHighlevel' DISRBLE;

HIGHLVL ENABLE;
UTILS UNDER HIGHLVL ENABLE;
BATCH UNDER HIGHLVL ENABLE;
PROD UNDER HIGHLVL ENABLE;

I3

DISABLE SERVICE CLSS UTILS UNDER HI

DISABLE SERVICE CLSS BATCH UNDER HI

SAELE SERVICE CLLSS ADNINS UNDER HIG

B8 B éas @ds |[En

= (4 Connections.
- SAMPLE [DB2 for Linux, LNI>
1. TOOLSDB [0B2 Allas]
1. WLMDE [DE2 for Linux, UNIX

] |

ALTER SERVICE CLASS ADNINS UNDER HIGHLVL ENABLE;
ALTER WORKLORD WL_UTILS ENABLE;
ALTER WORKLOAD WL BATCH ENABLE:]
] < 3
Odat... £2 |ou.. |pat | £ propettes £ | ata Output Problems | Excution status | Job status v =0
Property value
derived false
edtatle e
lest modied 0127107 11:46 AM
iked false
location C:iRedbookiworkspace|WLHMDE
name LB
path JiLoe
) @
writable Insert 101

o° o connection

OPS/images/7524ch02.06.1.39.jpg

OPS/images/Generated_Code_Information_2.gif
Generated Code Information

1

WLNDB_REV.winsal: The DB2 commands i tis il wil be issued n a D2
database.

WLNDB_REV.osclasses: Run this srpt on the target AIX machine to generate
the operating system service das§s

WLNDB_REV.csrules: Add these rles to the workioad management
canfiguration on the target ALY machine.

OPS/images/7524ch02.06.1.38.jpg

OPS/images/7524ch09.13.1.07.jpg
Ronn S o s Tt e

o\‘ar s i G| O

R oo s)
e s _— ==
[« =
IEX3

OPS/images/AppDetails_DPF_Subsections.gif
D D atio a AD 0.db 070 83040) on P [m]
Application Details View Tools Window Help
0ialr®
5/13/07 1:3342 P Zom @ &
oov

Deoy
;

9/13/07 1:33:42 P

£ Identfication

1 Times. Subsections

7] SO Sttement and|| [seoto. | Subseetion Node.. | Subsecton Status

| Fons Fead | Number o Rows Read fom Tableq.. | Nunber of Fows Wiltn o Tabe

| User CPU Time used by Subsection (sec) |

] SOL Activity 0 3 Subsection execuling
] Locks 5 3 Subsection execution is co.

] Cache 3 3 Subsection execution is co.
7] Memoy Pool Usage

£ Bufer Pocl
£ Sont

£ Workspace

1 Agents
] Miscellaneus

254183 5 0
108 10390 108
2228 0 10,360

0299439
0053220
0199158

e @

The ‘Subsections' table has 3 raws.

OPS/images/7524ch09.13.1.05.jpg
SaL sutmentandPackage
— = £
fromey st) = |
| e i |
P o

OPS/images/OS_Subclass_Properties.gif
Business Intelligence (BI) - WLMDE

EV - IEp DB2 Warehouse Design Studi

Fle Edt Navigate Project DataWarehousing Workioad Management Data Run Window Help

G- &

1[5 sutss e o0 |

GB-i@ig- -3 e

. Data ProjectE... £ | Navigator| ~ O

5 *wLiDe_Rev 3 |

= (s WLDE

4, Control Flows

25 Data Diagrams

€ Data Flows

5 Data Madels

) Fie Defritons

® Hiingblox Profies

) Miring Flows

3 Other Fes

D) Resources.

€D Run Profiles

(8 5oL scrbts

@ subflons

(3 Subprocesses

(@ Text Analysis

(& variables

@ Warchouss Applcaton Prois

(= Workioad Management Schemes
5 witDe Rev

5 55 wivDe_Rev
=B operating System
(1 Superclasses
= (A AixHiohLevel
= (2 subelasses
3 uts
' Rules
5 operating System Limits
{5 Operating System Shares
' Rules
= [work Definition

.08 e vt

3

I

There i na table view For this entiy,

Grervew Schems |

PN Data Output | Problems | Execution Status | Job Status

04 pateb... 53 |outine | Datas... | = 0

B8 B as s
= (4 Connections.
b SAMPLE [DB2 for Linux, UNIX, anc
. TOOLSDB [DB2 Alias]
1. WLMDB [DBZ for Linu, UNIX, anc|

) @

{5 <Subclass> Utils

Name:

Commerts:

Ter: o

[CJtnherit parent class

[Retsin local shared memory

[oelete shared segments on exit

Enforce vitual memory lmi:

Authorized user:

Authorized group:

Resource set:

OPS/images/7524ch09.13.1.06.jpg
05) on PARTO

e st
B - o

OPS/images/New_Operating_System_Subclass.gif
Business Intelligence (BI) - WLMDB_REV - IBM DBRZ Warehouse Design Studio, V9.5
Fle Edt Navgate Froject Deta Warshousing Workoad
N &

4[5 susiss e 60 |

Vihagement Data Run Window Help
GEri@ig- & &

. DataProjectE... £ | Navigator| =~ O

= 05 WLMDE_REV
=B operating System
(2 Superclasses

Sibelasses
S g WLvDE

4, Control Flows

5 Data Disgrams
o8 Data Flons

5 Data Madels

) Fie Definitions
® Hiingblox Profies
) Mining Flows.

3 Other Fles

D) Resources.

€D Run Profiles

8 5oL scrbts

New Operating ystem Subelass Rule:
New CPU Lt
(% pudes | New Memory L

1 WorkDafinti MW DISKIO Lk
£ workzgy New Total CPULmE

9 workyy Now ok Dik i
0 Dotobase | New TotalLogins it
(2 Hotogram 4 New Tota Processes Lnit

e Subflows New Total Threads Limt
g Suhvmce‘sses Hew Class Virtual Memory Limit
Text Analysis

New Process tirtual Memry Lint
New Total Connetion Time Limt
New CPU Share

New Mertory Share.

New Dik IO Share.

(9 Variables
@ Warehouse Application Profies
= (5 Workioad Management Schemes
5 WLMDB_REV

5 Properties 53 |Data

s v =0

~General | (2 <Superclass> AiHighLevel ~

04 pateb... 53 |Outine | Datas... | = 0 Name: Astightevel
eEBe sl e
= (3 Connections T o

5. SAMPLE [DBZ for Linux, UNIX, anc [linherit parent class.
6. TOOL3DB [DB2 Alias]

6 WLMDB [DB2 for Linux, UNIX, anc,

[Retsin local shared memory

[oelete shared segments on exit

Enforce vitual memory ;| PROCESS)

>

I

0

OPS/images/7524ch09.13.1.03.jpg

OPS/images/OS_Superclass_properties.gif
Bitisss bysligeies 191 - VLIUVES - BY sl Ui St
Fie Edt Nevigate Project DakaWarchousing Worklo:

i

5 | [Business Inteligence (61) |

Management Data Run Window Help

AT

5. Data ProjectE... 27 | Navigator

IR N DT Subcleses |l | Links | Shres |

BT = B] Operating System
‘4, Control Flows. = (5 Superclasses
{2 Data Diagrams
& Data Flows % Subclasses
g Data Models (l; Rules.
@ Fie Defritons 5 Operating System Linits
3 Miningblox Profiles {5 Operating System shares
) Miing Flows L5 Bl
) Other Fies

esarces Properties 52 |Data Output | Problems Execution tatus | Job Stats
@ re =] 2 b b v =0
€D Run Profiles
9 5QL Seripts Genersl [fl <Superclass: AixHighLevel
Sublows
(@ Text Anahysis P
() varibles o -
@ Warehouss Application Profes
= (% workload Management Schemes. [CJtnherit parent class

5 wLvDB_REV [Retain local shared memory

[oelete shared segments on exit

Enforce vitual memory ;| PROCESS)

04 pateb... 53 |outine | Datas... | = 0 Authorized user oot
T Authorized grou:
(& Comnectons Resource set
5 SANPLE 082 r L, U, N =
411001508 [DB2 fles]
s WLMDB [DB2 for i, LN, anc adiistrator sroup:

) &

OPS/images/7524ch09.13.1.04.jpg
e

(5 tmome
———
ik e i e (T P . R ST R ‘!‘
BE OEE EEE R BB zmaE
BE O OEE BEE OE B E Z2RE
EE OEE EEE OB B & PR
EE IEE HIE B B B OEEE
BE OEE EEE OE B A E=mE
EE mE & B OEEEE G
[EX]

OPS/images/7524ch02.06.1.31.jpg

OPS/images/New_Operating_System_Superclass.gif
Business Intelligence (BI) - WLMDB_REV

Fle Edt Navgate Prject Data Warshiust
(1~ &

4[5 sustoss e o0 |

1BM DB2 Warehouse Design Studio, V9.5
Workload Menagement Data Run Windon Help

@ iy-F e

5. Data Project xplorer 37 | Navigatr

= (g WiDE
4, Control Flows
25 Data Diagrams
€ Data Fiows
5 Data Madels
@ Fie Defitons
® tiingblox Profies
) Miring Flows
3 Other Fes
D) Resources.
€D Run Profiles
(8 5oL scrbts
@ Subflons
(3 Subprocesses
(@ Text Analysis
(& variables
@ Warchouss Applcaton Profis
(= Workioad Management Schemes
5 witDe Rev

New Operating ystem Superclass Rule

= [work Definition
= (5 work Identities
wi_UTLs
WL_BATCH
WL_PROD
WL_ADMIN
SYSDEFALLTUSERWORKLOAD
SYSDEFALLTADMIORKLOAD
5 work Type Sets
0 Database
9 Histogram Templates.

4 ¢

04 Datebese ... 7 |Outine | Datastage ..| ~ O

B8 B es s
= (4 Connections
b SAMPLE [DB2 for Linux, UNIX, and Window
. TOOLSDB [DB2 Alias]
. WLMDB [DBZ for Linus, UNI, and Windows

(] |

5 Properties £3 |Data Output | Problems | Execution Status

Job Status

Properties are not available

0

OPS/images/7524ch09.13.1.01.jpg

OPS/images/7524ch02.06.1.30.jpg

OPS/images/Delta_Execute_-_Execution_Results_2.gif
Workload Management Delta Execution

Generated Code

Select Execute n databass to execute this cods in your database and clck Next. O clk Firish to ext
wihout executing the cod.

CREATE THRESHOLD “Adrinthrs" FOR WORKLOAD WL_ADVIN ACTIVITIES ENFORCENENT DATAGASE
PARTITION DISABLE WHEN CONCURRENTWORKLOADOGCURRENCES > 5 COLLECT ACTIVITY DATA ON ALL
WITH DETAILS CONTINUE;

COMMENT ON THRESHOLD *Adrinthres* 1 AZfnin Threshald add during Delta Executin';

ALTER THRESHOLD “Admin._thres' ENABLE;

[Jexecute in database.

OPS/images/7524ch09.13.1.02.jpg

OPS/images/7524ch10.14.1.11.jpg

OPS/images/7524ch10.14.1.12.jpg

OPS/images/7524ch10.14.1.13.jpg

OPS/images/7524ch10.14.1.14.jpg

OPS/images/7524ch09.13.1.09.jpg
= i i e] T
e »
L P

T T3]

OPS/images/7524ch02.06.1.29.jpg

OPS/images/7524ch05.09.1.09.jpg

OPS/images/7524ch05.09.1.08.jpg

OPS/images/7524ch05.09.1.07.jpg

OPS/images/7524ch05.09.1.06.jpg

OPS/images/7524ch02.06.1.22.jpg

OPS/images/7524ch05.09.1.05.jpg

OPS/images/7524ch08.12.1.85.jpg

OPS/images/7524ch02.06.1.21.jpg

OPS/images/7524ch05.09.1.04.jpg

OPS/images/Operating_system_share_-_Superclass_Properties.gif
1BM DB2 Warehouse Design Studi

File Edt Navigate Project DataWarehousing Workioad Management

(1~ &

4[5 susioss e 61 |

GBri@ig- & -6

Data Run Window Help

% Data... 53 [Navi,.. | © O
SR

= (s WLDE

4, Control Flows

25 Data Diagrams

€ Data Fiows

5 Data Madels

@ Fie Defritons

® tiingblox Profies

@) Miring Flows

3 Other Fes

D) Resources.

€D Run Profiles

(8 5oL scrbts

@ subflons

(3 Subprocesses

(B Text Analysis

(& variables

(@ Warehouse Applcation

= Workioad Management
5 witDe Rev

x

= 05 WwLMDE_REV
=] operating System
(2 Superclasses
= (7 AixHiohLevel
=(subelasses

{5 operating System Limits
= (5 Operating System Shares

= [work Definition
5 work Identiies
5 work Type Sets
0 Database
5 Histogram Templates.

There i na table view For this entity,

5 Properties 57 |Data Output | Problems | Execution status

Job Status

Genersl [<CPUZ aixHighLevel

S (@ Conetions 7]
- SAMPLE [0B2 for Lily,

] H

] L]
0o, 0. =8 Neme: aixrighevel
- Comments:
share vaue: |60
LB

OPS/images/7524ch02.06.1.24.jpg

OPS/images/7524ch05.09.1.03.jpg

OPS/images/Operating_system_share_-_Options.gif
1BM DB2 Warehouse Design Studi

Fle Edt Navigate Project DataWarehousing Workioad Management Data Run Window Help

£i- &

1[5 suiss e o0 |

GBri@ig- & e

% Data... 53 [Navi... | = O
8%

= (s WiDE

4, Control Flows

25 Data iagrams

€ Data Fiows

5 Data Madels

@ Fie Defritons

B iingblox Proies

@) Miring Flows

3 Other Fes

D) Resources.

€D Run Profiles

(8 5oL scrbts

@ Subflons

(3 Subprocesses

(@ Text Analysis

(& variables

@ Warehause Applcation

= Workioad Management
5 witDe Rev

x

05 WLMDE_REV
=B operating System
= (2 Superclasses
= (7 AixHiohLevel
2 subelasses
' Rules
9 Operating System Limits

There i na table view For this entity,

S ow cpU share

New Mertory Share.
New Dik 0 Share.

5 Rules
= [work Definition
5 work Identiies

5 work Type Sets
0 Database
5 Histogram Templates.

< |
7D, D. =8
e

S (@ Coneions 7]
b SAMPLE [0B2 for Lily,

] »

= Properties £2 |Data Output | Problems | Execution status | Job Status

Properties are not available

OPS/images/7524ch02.06.1.23.jpg

OPS/images/7524ch05.09.1.02.jpg

OPS/images/Create_Operating_System_Limits_-_Properties.gif
Business Intelligence (BI) - WLMDB_REV - IBM DB2 Warehouse Design Studi

Fle Edt Nevgate Project Data
(w1~ &

1[5 susiss e @0 |

GBri@ig- & e

housing Workioad Menagement Data Run Windon Help

% Data... 53 [Navi,.. | © O
8%~

= (s WLDE

4, Control Flows

25 Data iagrams

€ Data Fiows

5 Data Madels

@ Fie Defritons

® Hiingblox Profies

@) Miring Flows

3 Other Fes

D) Resources.

€D Run Profiles

(8 5oL scrbts

@ subflons

(3 Subprocesses

(@ Text Analysis

(& variables

(@ Warehause Applcation

= Workioad Management
5 witDe Rev

J/LNDB_REV X

=B operating System
= (1 Superclasses
= (A AixHiohlevel
= (2 subelasses
= s
5 Operating System Limits
5 Operating System shares

' Rules
= (29 Operating System Lirits.

de=t oo

Operating System Shares

= [workDefinition
5 work Identiies.
5 work Type Sets
0 Database
5 Histogram Templates.

There i na table view For this entity,

5 Properties 57 | Data Output | Problems | Execution status

Job Status

5>

(] | i
D4o. D. =8 General o <CPUZ aixHighLevel
= Mame: aixHighLevel
Conmerts
e i vl o
& (3 Comectons] ot masinam vl | 100
G- SAVPLE [0B2 for iy, Hard maxinum valve: | 100

OPS/images/7524ch02.06.1.26.jpg

OPS/images/7524ch05.09.1.01.jpg

OPS/images/Create_Operating_System_Limits_-_subclass.gif
& 05 wivDg Ry There i no table view For this entity.
=] operating System
(2 Superclasses
= (7 AixHiohLevel
= (2 subelasses
=1 s

. inic
Oparating System shal

ew Memory Limit
New Disk O Lt

New Total CPU Limit

New TotalDisk Lint

New Total Logins Limit

New Total Pracesses Liit

New Total Threads Limt

New Class Virtual Memory Limt
New Process tirtual Memry Lint
New Total Connection Time Limt

2 Prod
f2 Batch
(' Rules

5 operating System Limits
{25 Operating System Shares
5 Rules
= [work Definition
5 work dentiies
5 work Type Sets
0 patabase
5 Histogram Templates

OPS/images/7524ch02.06.1.25.jpg

OPS/images/Create_Operating_System_Limits.gif
& 5 wive
=] operating System
(2 Superclasses
= (7 AixHiohlevel
(9 subdlasses
£ Rules.

)
New CPULimt
€ Rules New Memory Limt

= L1 work Defition ew Disk o
3 work eneties New Total CPU Limit

5 work Type 5 New TotalDisk Lint
0 vatabase New Total Logins Limit

o ew Total Processes Link
3 Hstogram Templates MNew Total Threads Limit
ew Clss Vrtual Memory Linkt
ew Process itual Memary Lt
Hew Total Connection Tme Lt

There i na table view For this entity,

Overview |scheme

OPS/images/7524ch02.06.1.28.jpg

OPS/images/7524ch02.06.1.27.jpg

OPS/images/RequestsExeTimeBySubclass_bar.gif
ovuzoz
g
thibte
gel
i
Bhgre
e
ngyal
i
Bhere
mona
iz
i
iz

Value Ais Major Gridines |

o
ngyal
i
iz
o
it
wos
ity
o
it
i
iz
it
iz
i
iz
i
nsval
i
Bhed
oz
iz
i
fibty
oo
gy
i
o
oD
gy
ahiten
g
g
it
i

O PROD_GFY_GPFOD_FPT B SYSDEFAULT

weATen

[EAmE

4000000

asm00

0000

2sn00

2000000

oo

)

00000

g
o
i
i
it

thihin
w05y
i
g

thihs
iz
i
05

i

OPS/images/RequestsExeTimeBySubclass.gif
nnnnnnn

OPS/images/ConcurrentConnections.gif

OPS/images/ActiveConnections.gif

OPS/images/7524ch03.07.1.27.jpg
[ETAT DATE Jowa0/ze07
Jsrar rue s ATCH oD amy_prop arr_svsoeraut |

OPS/images/Connections_bar.gif
ovosoe
s
wonte
gel
i
e
e
angval
s
iz
mona
iz
e
iz

o
ngal
wmoa
iz

o
sl
wos
ity

s
g
o
iz

o
iz

i
g
g
nsval
i
Jirey
oz
iz
i

g

—— L —— "
=0

e ———

—— o
———L_ L oD
—— L 5rEn

—— i
e — g

s

———_— 0grs0

O PROD_GFY_GPFOD_FPT B SYSDEFAULT

weATen

[EAmE

it
=t |
===
fo

fro]

Gogis

[— i
w30

=

b

it

fro
i
by
o

%0

w
o
0
@
@

Y

Y
0

OPS/images/7524ch03.07.1.29.jpg

OPS/images/7524ch03.07.1.28.jpg

OPS/images/WLM_NewProject.gif
Business Intelligence (BI) - IBM DB2 Warehouse Design Studio, V9.5
Edt Navigate Search Project DataWarehousing Data Run Window Help

= PISETTIN - Frojec

Open Fie.

Cose i
Close Al Cri+shiftw

[swve s
] 5ove i

@ sweal Crleshites
Revert

Mave,
Renare.
Refresh
Convert Line Deliiters To

@i ci+p

Switch Workspace.

3 Import
243 Export

Propertiss Alt+Enter

1 WLMDE_CLYDE wlmsal [WLNDBY...]
2 WLH_REVERSE wins [WLMDB{wim-models]

@ Mnngblo Appcation

o Miing Flow
1 Data Design Project (OLAP)
¥ D:

2 CortrolFow

] sblow

. Dsta Fow

G Data Warehousz Applcation

e Format

(5B Machine Resource Profie
Physical Deta Model

£ subprocess

55 Workioad Managemert cheme.

4 analysis Engine

6 ictonary

[P rues

Frequent Tem Extraction

£ Exanple.

£ other,

Ext

G Comections]
. SAMPLE [DB2 for Linux, L
. SAMPLE1 [DB2 for Linux,

1. TOOLSDB [DB2 Alias]

1. WLM [DB2 for Linux, UNL &
| >

o° 0items selected

OPS/images/WLM_Workload_Management_Scheme.gif
Business Intelligence (BI) - IBM DB2 Warehouse Design Studi

Fle Edt Navigate Search Project
DR

[| 3 Business Inteligence (81) |

Navigator
= (g WLHDE

4, Control Fows

25 Data iagrams
Data Flows

5 Data Madels

@ Fie Defintions
 Miingblox Profies
3} Miing Flows

3 Other Fes

D) Resources.

€D Run Profiles

B sl septs

(B Subfows

L3 Subprocesses

(3% Text Analysis

(& variables

04 atabass Explorer 33 | Outline D3

0% B 4
= (4 Connections.
1. SAMPLE [DBZ for Linux, UNI
1. SAMPLE1 [DB2 For Linux, UNI,
1. TOOLSDE [DB2 Alias]

@ Warehouse Applcation Profiles

Dota Warehousing Data Run Windon Help

Bi-:i8 i@ &

B8°°

valdate

analysis » ties 2 |Data Output | Problems | Execution status | Job Status
Team »

Compare With »

Restore from Local History. Property. value

 and Vindows ¥9.5]

6 WLM DB o Linux, UNI, and Windows ¥9.5]
6. WLMDB [DB2 for Linux, LNIX, and Windows 5.5

0° (5 1 items selected

G-

OPS/images/WLM_Objects_-_Tree_View.gif
= operating System
(2 Superclasses
(5 DB2sC.
5 Rules

= [workDefinition
= (5 work Identities

(&) SYSDEFAULTADMWORKLOAD
£ work Type Sets
=0 Database
£ Control Rules
= (9 superclasses
] SYSDEFAULTUSERCLASS
] SYSDEFAULTSVSTENCLASS
] SYSDEFAULTMAINTENANCECLASS
] HiGHw
= 9 Histogram Templates
[SYSDEFAULTHISTOGRAM

vervenschome]

OPS/images/WLM_Objects_-_Grid_View.gif
) 05 WLMDEMO_BY_0B)
] operating System
L] work Defirition
= 0 Database
5 control Rules
(1 Superclasses
5] 5YSDEFAULTUSERCLASS
] SYSDEFAULTSYSTEMCLASS
5] 5YSDEFAULTMAINTENANCECLASS
H] HiGHLL
= (9 Histogram Templates
[SYSDEFALLTHISTOGRAM

Control Rules | Superclasses

L

Name
SYSDEFALLTUSERCLASS
SYSDEFALLTSYSTEMCLASS
SYSDEFALLTMAINTENANCECLASS
HIGHL!

Agent Prorty
2768
2768
32768

Prefetch Prcrty
DEFALLT
DEFALLT
DEFALLT

I I

Operating System Servi.

OPS/images/Workspace_location.gif
Workspace Launcher

Select a workspace

I6H DB Warehouse Design tudio, V9.5 stores your projects in a folder caled a workspare,
Choose a workspace folder to use for this session.

Workspace: | CiSedishiRedbooklworkspace Bronse.

O Use[%ns ‘asthe defaul and do not ask again

OPS/images/7524ch08.12.1.05.jpg

OPS/images/7524ch03.07.1.21.jpg

OPS/images/7524ch08.12.1.02.jpg

OPS/images/7524ch03.07.1.20.jpg

OPS/images/7524ch08.12.1.03.jpg
Many plug-ins built on top

IDE [Team|
Help |Update| Text | rax; | Compare|Debugfsearcn |(ye"
optons teptona | st
IDE
UI (Generic Workbench)
Resources
JFace o
SWT

Runtime (0SGi)

Eclipse-based products and extensions

OPS/images/7524ch03.07.1.19.jpg

OPS/images/7524ch04.08.1.009.jpg

OPS/images/7524ch04.08.1.008.jpg

OPS/images/7524ch04.08.1.007.jpg

OPS/images/7524ch02.06.1.44.jpg

OPS/images/7524ch03.07.1.12.jpg

OPS/images/7524ch04.08.1.006.jpg

OPS/images/7524ch02.06.1.43.jpg

OPS/images/7524ch03.07.1.11.jpg

OPS/images/7524ch04.08.1.005.jpg

OPS/images/7524ch08.12.1.01.jpg

OPS/images/7524ch02.06.1.46.jpg

OPS/images/7524ch03.07.1.14.jpg

OPS/images/7524ch04.08.1.004.jpg

OPS/images/7524ch02.06.1.45.jpg

OPS/images/7524ch03.07.1.13.jpg

OPS/images/7524ch04.08.1.003.jpg

OPS/images/7524ch03.07.1.16.jpg

OPS/images/7524ch04.08.1.002.jpg

OPS/images/7524ch03.07.1.15.jpg

OPS/images/7524ch04.08.1.001.jpg

OPS/images/7524ch03.07.1.18.jpg

OPS/images/7524ch03.07.1.17.jpg

OPS/images/7524ch06.10.1.24.jpg

OPS/images/7524ch06.10.1.25.jpg

OPS/images/7524ch06.10.1.22.jpg

OPS/images/7524ch06.10.1.23.jpg

OPS/images/7524ch06.10.1.20.jpg
S =TS
w_noum o e
| i oo

OPS/images/7524ch06.10.1.21.jpg
D82, Fuces
st jems, B
=T -

st

E——

CH

E—— .

i

e I

OPS/images/7524ch06.10.1.28.jpg

OPS/images/7524ch06.10.1.29.jpg

OPS/images/7524ch06.10.1.26.jpg

OPS/images/7524ch06.10.1.27.jpg

OPS/images/7524ch06.10.1.13.jpg

OPS/images/UserDefSC_QP.gif
Data Server

Requests

wardoL User-defined
i workload

User-defined
workioad

[
Eo

Default user
workioad

OPS/images/cpuwlmcls.gif
CPU by WLM classes on Clyde

DHighLevel Prod o HighLevel Utils

120

100

80

60

40

20

sbivl
sbivl
sbivl
sbivl
sbivl
sbivl
sbivl
sbivl
sbivl
vl
vl
vl
vl
vl
vl
vl
vl
vl
vl
vl
vl
)
)
)
)
)
)
)
)
)
)
)
)
orivl
orivl
orivl
orivl
orivl
orivl
orivl
orivl
orivl
orivl
orivl

OPS/images/7524ch06.10.1.11.jpg

OPS/images/QP_Env.gif
Requests Data Server

Query Patroler KATH
is bypassed

Query Patroller [——»® ® ®

Query Patroller
tables

OPS/images/7524ch06.10.1.12.jpg

OPS/images/QP_in_Default_WLM.gif
Requests

Data Server

—

Query Patroier s
bypassed

Default user

workioad

Default system
class

Default maintenance
class

OPS/images/7524ch11.15.1.1.jpg

OPS/images/7524ch06.10.1.10.jpg

OPS/images/7524ch11.15.1.2.jpg
11

OPS/images/7524ch06.10.1.19.jpg
B2 nstance axwin
Database Supere
[t Systom Super Class B2 Defaut Syt SuperClass

=

Dotaut User Super Clase

DB Dafaut Usar Super Clase

HahLovel SuperClass

B2 FighLavel Super Chss
[Er=r=]

OPS/images/cpuwlmcsnsavg.gif
CPU by WLM classes on Clyde

vg B WA OMax.

T

OPS/images/7524ch06.10.1.18.jpg
e e

e —
= =

s

£ o

OPS/images/avgcpu.gif
120

100

¥ 328

H
2

CPU by WLM classes on Clyde

o Avg. B WAvg. Olfax.

HighLevel. U1

OPS/images/cpuwlmcsns.gif
CPU by WLM classes on Clyde

OHighLevel Prod O HighLevel.Utils

120

100

80

60

40

20

L1

L1

0Tk

0Tk

0Tk

0Tk

0Tk

0Tk

6LLL

6LLL

6LLL

6LLL

6LLL

6LLL

BLLb

BLLb

BLLb

BLLb

BLLb

BLLb

s

s

s

s

s

s

akLh

akLh

akLh

akLh

akLh

akLh

kb

kb

kb

kb

kb

kb

OPS/images/7524ch03.07.1.09.jpg

OPS/images/7524ch03.07.1.08.jpg

OPS/images/7524ch03.07.1.07.jpg
'WLMDB

WL BATCH

I

‘GLIENT, USERID - BATCH |
()

. wLproD RPT |
| _APPINAVE e

WL_PROD_GRY
'SESSION_USER GROUP - ‘DSSGROUP
ESS\ON USER GROU - DE2ADM

OPS/images/7524ch03.07.1.06.jpg

OPS/images/7524ch03.07.1.05.jpg

OPS/images/ServiceClass.gif
WLMDB

HIGHLVL

ADMIN

BATCH

PROD_RPT

PROD_QRY

SYSDEFAULTUSERCLASS

SYSDEFAULTSYSTEMCLASS.

SYSDEFAULTHAINTENANCECLASS

OPS/images/wlmMgmtCycle.gif
Monitor
Identification
- Business goals met?
~ Any problem? - Whoenter 0B?
© Adjustment needed? - Whattype of work?
Manage

- Howto control
- Control scope

OPS/images/7524ch03.07.1.02.jpg

OPS/images/7524ch03.07.1.01.jpg

OPS/images/7524ch06.10.1.46.jpg

OPS/images/7524ch06.10.1.47.jpg

OPS/images/7524ch07.11.1.14.jpg
£

E

E B 8

[Ra—

H

OPS/images/cpubyclasses.gif
CPU by WLM classes on Clyde

BUnclassified @ Unmanaged O Default 0 Shared m System @ db2DefSystem @ db2DefMaint 0 db2DefUser m db2HighLevel

18

16

14

12

10

el
el
el
ov'el
ov'el
ov'el
6e8)
6e8)
6e8)
se8l
se8l
se8l
g8)
g8)
g8)
%8l
%8l
%8l
sesl
sesl
sesl
vesl
vesl
vesl
egl
egl
egl
8l
8l
8l
le8l
le8l
le8l
[
[
[
628l
628l
628l
sz8l
sz8l
sz8l
1z8l
1z8l
1z8l
9z8l

OPS/images/7524ch07.11.1.13.jpg

OPS/images/7524ch06.10.1.45.jpg
pos Monitor for host
T Sop 12 01:13:20 2007

Kernal
User
Mait
Tiie
Physc

Netuork
oo
0
o

Disk
hdiski
hdsoka
hdiskz
hdiskd
hdioks
hdiske
hdisks
hdsoko

cly
Toterval:

WK-Class (etive) CPUX

Syote
aeTsyston
2DatMaint
dh2afUser.
ooiighl evel
ey

Unélassified

Meat
%

2
5

i

2

Disk-1/0%

EVENTS/QUEUES
307

60
30
15

Couitch
Symcall
Reads
Writes
Forka
Execa

Runqueue.

PAGING
Foults
Steals
Pespln
Psp0ut
Pogeln
Pogedut
Siae

NFS (calla/sec)

Server??.
Clianiv2
ServarVa
ienva

FILE/TY
Readch 19038
Mritech 16787

Rauin o
Toewt 973
Tpets.]
Name1)
Dirblk o
HENORY

Real.M8 g152
XComp 718

X Noncomp 281
Il 24

PAGING SPACE
SizeMs 4096

TUsd .3
st
Presa:

= For help

OPS/images/7524ch07.11.1.12.jpg

OPS/images/7524ch06.10.1.42.jpg

OPS/images/7524ch07.11.1.11.jpg

OPS/images/7524ch06.10.1.43.jpg

OPS/images/7524ch07.11.1.10.jpg

OPS/images/7524ch02.06.1.20.jpg

OPS/images/7524ch06.10.1.40.jpg

OPS/images/7524ch06.10.1.41.jpg

OPS/images/7524ch06.10.1.48.jpg

OPS/images/7524ch06.10.1.49.jpg

OPS/images/7524ch02.06.1.19.jpg
TSR ER RS LEELEOES
P

& 0&
>

LS

P

&

OPS/images/AIX_DB2_WLM.gif
KW

SERWCECLASs
DB2 {GptonsimAi)

SuPERCLASS 1 om_ sopeRcLASS 1

o SUBCLASS 14 _DB2_SUBCLASS 1A

ET==rer ECXT=re

 (woeoos s S
(omooe seonse [omseaisss

e Ol mpErUER

SYSDEFAULTUSERCLASS

o pEr Y

OPS/images/7524ch02.06.1.11.jpg

OPS/images/7524ch02.06.1.10.jpg

OPS/images/7524ch06.10.1.50.jpg
100
CPU Usert Syst HastZ Lozl | | i |
0695 1.0 4.5 0.0IUNUUUUUUUUUIUUUUUOVUUUOUULUHKHHHKHHHKAIH
1190 115 780 1 SIUUUUUURHRANHRANHHAHHAHANAHAOHA
2 815 05 11,0 7.0UUUUVULUVULUUVUUUOUUUUDUUUOUURAN >
G 45 215 9200 Lo
Systen iverogs g " u Y
A1 T204 o4 53,0 2.4 UUUUUULUULULUULOLLRHHHHRHRHRHHRHAHBRARAA \
= Ik 4 u
Clossea—15 CPUNEW 810 CPU KN 10 CPU WEW BI0 Tier Inheritnce
Cloca Name 1--Used-~~11-Desired |1~ Shares-——-IProc'a T T Localshm
Unclassified 0 8% 01100 98300 13 1 0000
Unnanaged 0t B 02100 %10 1 1 1 0000
Dottt oiset 02100 %10 1 1 1 9000
Sharad 01 B11100 %10 1 1 1 0000
Systen o0 40zl 910 1 1 1 2000
dbilofSyston 97 0% 01 $3100100 100 1 1 0000
b2eMaint 0l 01 100100100 20 1 1 0000
b2ofUser 01 0z 02100100100 0 L 1 0000
Gboighlevel 397 02 01 65100100 200 1 1 0000
Gb2ighlovol Defoult 0% 01 0% 100 100 100 0000
2Highlevel Shared 0Z 0 01100 100 100 0000
Gb2ighlovol Batch 0% 0% 0% 100 100 100 50 0000
bHighlevel Prod RY 07 0% 02100100100 60 1 1 0000
GbHighlovol Prod RPT 59% 0% 03 100 100 100 50 G 0000
b2Highlevel Rdnina | OF 0% 01100100 100 60 0000
gerconises o1z 81 191
Physicol Pogospace | pages/sec In Out | FileSystonCoche
Zsed 776 A% | to Paging Space 0.0 0.0 | umpare 3271
3Free 22051 96.9% 1 toFile System 0.0 0.0 | Process 37.1%
WD Used GO5.SWB 47.2M | Page Scana olo | Systen. 771
W Froo 164508 14GB.0MD | Page Cycles 0.0 Ve wlst
Total W) G192.0M5 1536.0MB | Page Steals 0.0 I
| Page Foults 500 1 Total 100,01
| unclient 32.7
WinMorporn 1S/OMBC 19D G314MBC 770 <% of RN | manclient 77.1%
Win/Moxtres 960 1088 Total Virtual 9.568 | lser 8541
Min/Morppanead 2 8 fccessed Virtual 3.668 37.9% Pimed 7.7%

OPS/images/WorkClass_WorkAction_set.gif
DB2

EWCAMPAIGN
VIORKLOAD

CAMPAIGN
VIORKLOAD

SALES
SERVICE SUPERCLASS

DIRECTSALES.
SERVICE SUBCLASS

CHANNELSALES
SERVICE SUBCLASS

PROBLEM_SP_SC
SERVICE SUBCLASS

CALLSTATEMENTS
VIORK CLASS

OPS/images/Figure23DB2WLMThresholdSummary.gif
Scape > Database Database Partition Workload Occurrence
Domain
Database = Concurrent DB Coordinator Activities Total DB Partition A
- Estimated SQL Cost Conmections
- SQL Rows Returred SQL System Temp Space
= Activity Total Time
= Connection Ide Time
Work ActionSet | = Concurrent DB Coordinator Activities SQL System Temp Space | N/A
- Estimated SQL Cost
- SQL Rows Returred
= Activity Total Time
Service Super class | * Concurrent DB Coordinator Activities Total Service Class NA
- Estimated SQL Cost Partition Conections
- SQL Rows Returred SQL System Temp Space
= Activity Total Time
= Connection Ide Time
Service Sub class | * Concurrent DB Coordinator Activities SQL System Temp Space | N/A

- Estimated SQL Cost
- SQL Rows Returred
= Activity Total Time

Workload
Definition

NA

Number of Concurrent
‘Workload Occurrences

= Concurrent Activities in a
‘Workload Occurrence

OPS/images/7524ch02.06.1.15.jpg

OPS/images/7524ch02.06.1.14.jpg

OPS/images/7524ch02.06.1.17.jpg

OPS/images/WLMArchitecture.gif
DB2

> WORKLORD u e

SUPERCLASS 1
SUBCLASS 14

VIORKLOD B -

L(worome |-

{o(or000 J——sf.]

(oo)

OPS/images/7524ch06.10.1.35.jpg

OPS/images/7524ch10.14.1.06.jpg

OPS/images/7524ch06.10.1.36.jpg

OPS/images/7524ch10.14.1.07.jpg

OPS/images/7524ch06.10.1.33.jpg

OPS/images/7524ch10.14.1.04.jpg

OPS/images/7524ch06.10.1.34.jpg

OPS/images/7524ch10.14.1.05.jpg

OPS/images/7524ch06.10.1.31.jpg

OPS/images/7524ch10.14.1.02.jpg
10

OPS/images/7524ch06.10.1.32.jpg

OPS/images/7524ch10.14.1.03.jpg

OPS/images/7524ch06.10.1.30.jpg

OPS/images/7524ch10.14.1.01.jpg

OPS/images/7524ch06.10.1.39.jpg

OPS/images/7524ch06.10.1.37.jpg

OPS/images/7524ch10.14.1.08.jpg

OPS/images/7524ch06.10.1.38.jpg

OPS/images/7524ch10.14.1.09.jpg

OPS/images/Threshold.gif
DB2

sales
NEWCAMPAIGH i
SESSON USER RALE iectsaes
=SESPERSON.
Channelsales
CAMPAIGH
B - et Finance
550N USER GROUP
Accounting
Marketing
Promotions

LMIT_PART_CON
sToPExECUTON

TOTAL CONNECTIONS > 20
COMNECTIONGLEUE S 5

OPS/images/7524ch02.06.1.08.jpg

OPS/images/7524ch02.06.1.07.jpg

OPS/images/workload.gif
DB2

sales
NEWCAMPAIGH | |
SESSON USER ROLE =SALESFERSON plDiectSdles
Channelsales
Finance
Accounting
1% [SYSDEFAULTUSERWORKLOAD
Marketing

= | Promotions

SYSDEFAULTUSERCLASS

SYSDEFAULTSYSTEMCLASS

Maintenance Requests

- [SYSDEFAULTMAINTENANCECLASS

OPS/images/7524ch02.06.1.05.jpg

OPS/images/7524ch02.06.1.04.jpg

OPS/images/WLMServiceClass.gif
DB2

SALES
Directsales Channelsales
SYSDEFAULTSUBCLASS
Finance Marketing
Accounting Promotions
SYSDEFAULTSUBCLASS SYSDEFAULTSUBCLASS
SYSDEFAULTUSERCLASS SYSDEFAULTSYSTEMCLASS | [SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSUBCLASS SYSDEFAULTSUBCLASS SYSDEFAULTSUBCLASS

OPS/images/7524ch02.06.1.02.jpg

OPS/images/7524ch02.06.1.01.jpg

OPS/images/7524ch01.05.1.1.jpg

OPS/images/7524ch06.10.1.51.jpg

OPS/images/avgdiskrkbs.gif
Average Disk read kbis for all datavg disks

W Avg Disk read kbis

90078
9zl
oyl
90'88:8}
9ziie8l
9v'9e8l
90'98:8}
9z:ge8l
oyipeRl
90'pE8
9zieesl
ovizesl
90:z8:8)
9ziie8l
oyl
90:08:8}
926281
9v'8z8l
90'82:81
92181
9v'9z:8

OPS/images/WLMstages.gif
Definition of goals

Identification
of activities

Management

Monitoring

OPS/images/7524ch01.05.1.2.jpg

OPS/images/WLMDEMO_BY_OBJ_scheme.gif
Business Intelligence (BI) - WLMDEMO_BY_OBJ - IBM DB2 Warehouse Design Studio, V9.5
Fle Edt Navigate Search Project

Ci- &

Data Warehousing Workioad Management Data Run Windaw Help

2 2R

%5 Data Project Explorer 03 Navigator =] 5~ O
= g wuvos
, CortrolFlows
= oata Disgrams
Osta Fows
5 Data Madels
&) File Definitions
3 Miingbox Profies
8 Mining Flows
23 Other Fes
O Resources
€ Run rofies
9 sat serpts
e Subflows
(3 subprocesses
(3% Text Analysis
(& variables
@ Warshouse Applcation rfies
= (2 Workoad Management Schemes
5 WLNDEHO_BY_08

= (5 Superclasses
(2 DB25C.

= L work Definition
= 5 work Identites
[&) wr_satcH
[a) wi_aprm
[a wi_proD
&) SYSDEFAULTUSERWORKLOAD
(&) SYSDEFAULTADMWORKLOAD
£ work Type Sets
=0 Database
L5 Control Rules
= (9 superclasses
] SYSDEFAULTUSERCLASS
] SYSDEFAULTSVSTENCLASS
] SYSDEFAULTMAINTENANCECLASS
B HiGHw
= 9 Histogram Templates
[SYSDEFAULTHISTOGRAM

04 Datebase Explorer £ | Outine | DataStage Servers| ~ 0

Superclasses |Rules

Overview |cheme.

BT
= (4 Connections I Properties ©7 | Data Output Problems | Execution Status Job Status.

6. SAMPLE [082 for Linux, UNIX, and Windows 9.5
6. TOOL3DB [DB2 Alas]
. WLMDB [DB2 for Linux, LNIX, and Windows 5.5

Properties are not available

OPS/images/WLMDEMO_BY_OBJ_overview.gif
Business Intelligence (BI) - WLMDEMO_BY_OBJ - IBM DB2 Warehouse Design Studit
Fie Edi Navigate Search Project DotaWarchousing Workoad Mansgement: Data Run Window Help
o[B ihiu B 10 I we-

75| 5 Business nteligence (6D |

5. Data Project xplorer 37 | Navigator

= g0 wos
&, ContolFons
5 vataDinrans e
@ ok Fows
9 Data Models
@ Fie befions
B rermoies Lcation: | jRedbockjorkspace WLHDG i mode WLHDENO_oY_053.is
3 tringFions versors (1000
) other s
D) Resources.
€D Run Profiles
8 50 5ot
@ sbfloms Iy
L3 Subprocesses
(B Text Analysis
(&) variables
a8 WarehauseAgplcation Prfies
= (3 workload Hansgemert schenes
i = propetes £ |Data Qutput Problems Execuion status Job taus

Overview

Name: WLNDEMO_BY_OBL uims

Last modified: | Aug 23, 2007 1:26:48 PM

~Genersl | [<Databasez Database

ark action set name: WLNDEMO_BY_OB

04 Datebase Explorer 53 | Outine | DataStage Servers| ~ 0

BE B es@ss

Work type set of work acton set for the database:

= (4 Connections.
<61, SAMPLE [DB2 for Linux, UNIX, and Windows ¥9.5]
<61, TOOLSDB [0B2 Allas]
1. WLMDE [DEZ for Linux, UNIX, and Windows 9.5]

OPS/images/7524ch08.12.1.25.jpg

OPS/images/Control_and_Share_System_Resources_-_Create_Relationships.gif
Controliand Share System Resources.

Control and Share System Resources

Creates an exection environment far each source of database acth
system resotrces among execution environments

fpes andnstes you o ol andshre

1. General | 2. Work Identiies | 3. Superclasses | 4. Create Relationships

To create the relationships, you relate ach work identity to a superclass. I the superclass is associated with an operating

system service lass, the superclass and operating system service clas are dsplayed n the same row, In ths case, the.
operating system service class is automically part of the relationship betweer the work identiy and the superclass.

Wark Idertty Superclass Opersting System Service Class

WI_BATCH HIGHLYL DeZSC
WIUTIL HIGHLYL DeZsC
WIZPROD HIGHLYL DeZSC
SYSDEFALLTUSERWORKLOAD SYSDEFALLTSUBCLASS [Subclass]
SYSDEFALLTADMWORKLOAD SYSDEFALILTSUBCLASS [Subclass 1

OPS/images/7524ch08.12.1.23.jpg
B e T e

&

(o [

OPS/images/Create_Relationships.gif
Controlland Share System Resources.

Control and Share System Resources
Creates an execution environment for each source of database activities and enables you to control and share system
resources among execuion environments

1. General | 2. Work Identitiss | 3. Superclasses | 4, Create Relationships

T et th e, o e enchverk Byt 3 s, 1the et st wi o v
e e e e S
Erm a1 Aty o s s i AR s o

Wark Idertty Superclass Opersting System Service Class

WI_PROD SYSDEFAULTSUBCLASS [Subelass]
WIBATCH SYSDEFAULTSUBCLASS [Subelass]
WI_ADMIN SYSDEFAULTSUBCLASS [Subelass]
SYSDEFALLTUSERWORKLOAD SYSDEFAULTSUBCLASS [Subelass]
SYSDEFALLTADMIWORKLOAD. SYSDEFAULTSUBCLASS [Subelass]

OPS/images/DB2_Superclass_and_AIX_Service_Class_1.gif
Controliand Share System Resources.

Control and Share System Resourcest

Creates an execution environment for each source of detabase activiies and enables you to control and
share system resources among execution environments

1. General | 2, Work Identiies | 3. Superclasses |4, Create Relationships

You can use any existing superclass that is displayed. Any operating system service class that is associated with
the superclass is also displayed. To create a new superclss, cick Add and use the Superclass windaw ta name the
superclass and specy valuss for the properties

Superclasses

Name Operating System Servic
SYSDEFALLTUSERCLASS

SYSDEFALLTSYSTEMCLASS

SYSDEFALLTMAINTENA,

HIGHLYL

OPS/images/Super_Class_with_AIX_Service_class.gif
Superclass

Superclass

Specify values For the properties that define this superclass

Name:
Agent prorty:
Prefetch prorty:

Wark action set name:

Opersting system service class:

HIGHLYL

278

DEFALLT .

New_Name.

DezsC

OPS/images/WLMDEMO_BY_OBJ_DB2_view.gif
Business Intelligence (BI) - WLMDEMO_BY_OBJ.wimsq - IBM DB2 Warehouse Design Studio, V9.5
Fle Edi Navgate Seach Project DataWarchousing Data Rum Window Hel

(i~ & &
[| 9 Business Inteligence (&) |

% Data Project Ex... 53 |Navigator| = 0| 55 WLMDEMO_BY_03 q x [l =0

% <[CREATE SERVICE CLASS HIGHLUL OUTBOUND CORRELATOR 'DEZSC' DISABLE;
CREATE WORKLOAD WI_BATCH CURRENT CLIENT USERID ('BATCH') DISAELE SERVICE CLASS HIGHLY

GRANT USAGE O WORKLOD WI_BATCH TO PUBLIC:
CREATE WORKLOAD WI_ADNIN SESSION USER ('DEZADN') DISAELE SERVICE CLASS HIGHLUL POSITI
GRANT USAGE O WORKLOAD WI_ADHIN TO PUBLIC:
CREATE VORKLOAD UI_PROD APPLNANE ('dss.cxe'| DISABLE SERVICE CLASS HIGHLVL POSTTION A
GRANT USAGE ON WORKLOAD WI_PROD TO PUBLIC;
ALTER SERVICE CLASS HIGHLUL ENAELE:
ALTER VORKLOAD WI BATCH ENABLE:
ALTER VORKLOAD WI_ ADNIN ENABLE;
ALTER WORKLOAD WI_PROD ENABLE:

= (s WLDE
4, ControlFows
25 Data Diagrams
Data Flows
5 Data Madels
& Fie Defintions
 Miingblox Profies
3} Mining Flows
3 Other Fes
) Resources.
€D Run Profiles 1
sl serpts
(B Subfows
(3 Subprocesses
(3% Text Analysis
(& variables
@ Warshouse Applcation Profies
(= Workioad Management Schemes
3 WLMDEMO_BY_0B)

D Datab... 57 Outine Datast... |~ O
B%) B &4 & ds
= (4 Connections.
- SANPLE [DB2 for L, UNIX, and | 5 properties 33 | Data Output | Problems Execution Status | Job Status
. T00L5DB (B2 Alls]
- WLMDB (082 for Linux, UNIX, and

<

Property. value

] L]

o° o connection wiikable

OPS/images/Validation_Result_-_Success.gif
E Validation Rgsuhk

\‘) Validation succeeded,

OPS/images/WLMDEMO_BY_OBJ_OS_view.gif
Business Intelligence (BI) - WLMDEMO_BY_OBJ.osclasses - IBM DB2 Warehouse Design Studio, V9.5
Fle Edt Navigate Search Project DataWarehousing Data Run Window Help

GrHeBiGi-iiQiE (@ §-we-

125 | 3 Business Inteligence (81) |

% Data Project Ex... 52 |Navigator| = 0|5 WLMDEMO_BY_0B) | 3] WLMDEMO_BY_OB2 wimsal
R
Smwwps || # weeisss comands for scheme: VLEDEHO BY 0B
&, Control Flows #
& e iy wkelass -a authuser=root -a adminuser=root DBZSC
o8 Data Flons
9 Data Models
&) Fie Definitions.
3 Miinghlox Prois
@ Mining Flows.
3 Other Fes
) Resources.
€D Run Profiles
5 sl serpts
e Subfiows
(3 Subprocesses
(B Text Analysis
(9 variables
@ Warchouss Applcaton Prois
= Workload Management Schemes
5 WLMDEMO_BY_0B)

Ofatab... 523
& B

= (4 Connections.

s SANPLE (D62 for Uinux, N, and | I properties 53 | Dats Output
. T00LSDB (B2 Alls]

Problems | Exection Status | Job Status

5. WLNDB [DB2 or e, LTS, and || PYOPEY value

) @

wiikable

OPS/images/Superclass.gif
Superclass

Superclass

Specify values For the properties that define this superclass

Name:
Agent prorty:
Prefetch prorty:

Wark action set name:

Opersting system service class:

HIGHLYL

278

DEFALLT .

New_Name.

R oo

OPS/images/team.gif

OPS/images/Control_and_Share_System_Resources_-_Superclass.gif
Controlland Share System Resources.

Control and Share System Resources

Crestes an execution environment for each source of databass actiities and enables you to control and share system resources among execution environments

1. General | 2, Work Identities | 3. Superclasses |4, Create Relationships

Vou can use any exdsting superclass that is displayed. Any operating system service cass that s ssociated with the superclass s o displayed, To create anen
superclass, clik Add and use the Superclass window £ name the superclass and specy values for the propertes

Superclasses

Name Opersting System Service Class
SYSDEFALLTUSERCLASS

SYSDEFALLTSYSTEMCLASS

SYSDEFALLTMAINTENANCECLASS

OPS/images/Work_Identity_1.gif
Work Identity.
Work Identity

Specify values fo the connection propertis that define this work dentity

Name: [N

APPLIAE
SYSTEM LR

SESSION USER
SESSION_LISER_GROLP:

SESSION LUSER_ROLE:
CLRRENT_CLIENT SERID:
CLRRENT_CLIENT_APPLIAVE:
CLRRENT_CLIENT WRKSTRNAVE:
CLRRENT_CLIENT_ACCTHG
Authorized users:

Authorzed groups:

Authorized roles:

WI_PROD

dss.exe

(0]

OPS/images/Control_and_Share_System_Resources.gif
% Control and Share System Resources.

Control and Share System Resources

Crestes an execution environment for each source of databass actiities and enables you to control and share system resources among execution environments

1. General |2, work Identities | 3. Superclasses | 4. Create Relationships

You can use this objective to share system resources by allocating CPU shares among diferent ALX execution environments, If you are not alocating resources among
ATX execution environents, you can controlsyste resources by diferentiating the thread prioity of the agents working in @ superclass from thoss that are working
in other superclasses, and by speciying the priorty in which the agents n a superclass submi prefetch requests.

Folow these steps to control system resources:

1. Specify the sources of work, which are called work identies.

2 Spaatyth executon enrcntetsForth wory whiar cal surdsse, ou an st th st e5urcecotrolsor eschspercss by specyng the
‘Agent pricrty and the Prefekch priorcy values. When the database runs on ALX, you can share CPLI among superfasses by associating each superclass with an
operating system service class and not setting values for the Agent prioiy and Prefetch priorty properties

3. Creats the relationships between the work identities and the superclasses, IF the sUperclass i assoclated Wth an operating system service cass, the superclass
and operating system service class are displayed n the same row. In this case, the operating system service class s automaically part of the relationstip between the.
workidentiy and the superclass

ork identites tab
Vou can Use any exdsting work identiy that s displayed or you can create new work identiies. To create a new work dentfty, cick Add and use the Work Identity
window to nae the work dentity an speciy one or more connecton properties that identfy the sources of work.

Superclasses tab
Vol can Use any exdsting superclass that is displayed. Any operating system service cass that s associated with the superclass s o displayed, Ta create anew
superclass, click Add and use the Superclass window £ name the superclass and specy values for the propertes

Relatonships tab
To create the relationships, you relate each work identity to a superclass. I the superclass i associated with an operating system service class, the superclass and
operating system service class are displayed in the same row. In this case, the operating system service cass Is automaticaly pat of the elationship betueen the work
identity and the superclass

OPS/images/WLM_Control_and_Share_System_Resources.gif
Create a Workload Management Scheme by Objective

Select the cbiective of the new workioad management scheme.

Objectives for a workioad management scheme

Create Imits for database activties
Create lmits Fo concunrent database activiies

Creates an execution environment for each source of detabase
activities and enables youta cantrol and share system resources among
exection environments

OPS/images/WMS_BY_OBJECTIVE.gif
Workload Management Scheme

Create a new workioad management scheme.

>

Select a data warehouse project

(B0 WLMDE

Workoad menagement scheme: | WLMDEMO_BY_0B)

@ create a scheme by objective
Ocreate a scheme yourselt

O create a scheme by reverse enginesring

OPS/images/WMS_BY_OBJECTIVE1.gif
Workload Management Scheme

Create a new workioad management scheme.

Select a data warehouse project

>

(B0 WLMDE

Workoad management scherme:

@ create a scheme by objective
Ocreate a scheme yourselt

O create a scheme by reverse enginesring

<Bad

OPS/images/New_Operating_System_Service_Class.gif
New Operating System Service Class

New Operating System Service Class

Name:
Commerts:

Ter:

Enforce vitua memary
Authorized ser
Authorized grou:
Resource set

admiistrator user:

Adriistratar group:

DezsC

Service Class for DBZ Database Resources

o

[linherit parent class.
[Retain local shared memory
Dlowtte shydegrtsan s

oot

OPS/images/Select_Operating_System_Service_Class.gif
B Select Operating System Service Class [X]

5 5 WLMDEMO_BY_0B)
=B operating System

OPS/images/7524ch08.12.1.17.jpg

OPS/images/7524spec.03.1.1.jpg

OPS/images/7524ch04.08.1.094.jpg

OPS/images/7524ch04.08.1.095.jpg

OPS/images/7524ch04.08.1.092.jpg

OPS/images/7524ch04.08.1.093.jpg

OPS/images/7524ch04.08.1.098.jpg

OPS/images/7524ch04.08.1.099.jpg

OPS/images/7524ch04.08.1.096.jpg

OPS/images/7524ch04.08.1.097.jpg

OPS/images/7524ch04.08.1.090.jpg

OPS/images/7524ch04.08.1.091.jpg

OPS/7524cover.jpg
e software

DB2 Workload Manager
for Linux, UNIX, and
Windows

Achieve business objectives effectively
with DB2 Workload Manager

Use Performance Expert and
Design Studio with DB2 WLM

" Manage DB2 workloads
proactively

Whei-Jen Chen
Bill Comeau
Tomoko Ichikawa
 Sadish Kumar
Marcia Miskimen
H T Morgan

Larry Pay

Tapio Vittanen

ibm.com/redbooks REdbOOks

OPS/images/7524ch04.08.1.089.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/7524ch04.08.1.061.jpg

OPS/images/7524ch04.08.1.062.jpg

OPS/images/7524ch04.08.1.060.jpg

OPS/images/7524ch04.08.1.065.jpg

OPS/images/7524ch04.08.1.066.jpg

OPS/images/7524ch04.08.1.063.jpg

OPS/images/7524ch04.08.1.064.jpg

OPS/images/7524ch04.08.1.058.jpg

OPS/images/7524ch04.08.1.059.jpg

OPS/images/7524ch04.08.1.056.jpg

OPS/images/7524ch05.09.1.24.jpg

OPS/images/7524ch04.08.1.057.jpg

OPS/images/7524ch04.08.1.050.jpg

OPS/images/7524ch04.08.1.051.jpg

OPS/images/7524ch04.08.1.054.jpg

OPS/images/7524ch05.09.1.22.jpg

OPS/images/7524ch04.08.1.055.jpg

OPS/images/7524ch05.09.1.23.jpg

OPS/images/7524ch04.08.1.052.jpg

OPS/images/7524ch05.09.1.20.jpg

OPS/images/7524ch04.08.1.053.jpg

OPS/images/7524ch05.09.1.21.jpg
AVG_R_EXE_TIME SUBCLASS_NAME
PROD_GRY PROD_RPT

STAT_TME oLTP
200550 PM 323
2:15:50 PM 024,
2:30:50 PM Gl
2:45:50 PM
300550 PM
3:15:50 PM 487
3:30:50 PM 781
3:45:50 PM 849
4:00:50 PM 842
4:15:50 PM ot
4:20:50 PM 925
4:45:50 PM
5:00:50 PM
5:15:50 PM

5:30:50 PM

77493
ar742
329931
671233
876917
12343
74876
89181
7192
61391
81893
581773
41999
0719
671293

583391
3991831
6164480
7731281
5677887
1476008
2225148
2199364
4143294,
4140915
4832833
7371625
9198080
10191323

10822815

TOTAL_PROD
660854
4089573
6494420

1488351
2300024
2288545

4230486
4202306
4914726

OPS/images/7524ch04.08.1.047.jpg

OPS/images/7524ch05.09.1.15.jpg

OPS/images/7524ch04.08.1.048.jpg

OPS/images/7524ch05.09.1.16.jpg

OPS/images/7524ch04.08.1.045.jpg

OPS/images/7524ch05.09.1.13.jpg

OPS/images/7524ch04.08.1.046.jpg

OPS/images/7524ch05.09.1.14.jpg

OPS/images/7524ch05.09.1.19.jpg
£
H
I
1
I

i

OPS/images/7524ch04.08.1.049.jpg

OPS/images/7524ch05.09.1.17.jpg

OPS/images/7524ch05.09.1.18.jpg
T

OPS/images/7524ch04.08.1.083.jpg

OPS/images/7524ch04.08.1.084.jpg

OPS/images/7524ch04.08.1.081.jpg

OPS/images/7524ch04.08.1.082.jpg

OPS/images/7524ch04.08.1.087.jpg

OPS/images/7524ch04.08.1.088.jpg

OPS/images/7524ch04.08.1.085.jpg

OPS/images/7524ch04.08.1.086.jpg

OPS/images/7524ch04.08.1.080.jpg

OPS/images/7524ch04.08.1.102.jpg

OPS/images/7524ch04.08.1.101.jpg

OPS/images/7524ch04.08.1.100.jpg

OPS/images/7524ch04.08.1.078.jpg

OPS/images/7524ch04.08.1.079.jpg

OPS/images/7524ch04.08.1.072.jpg

OPS/images/7524ch04.08.1.073.jpg

OPS/images/7524ch04.08.1.070.jpg

OPS/images/7524ch04.08.1.071.jpg

OPS/images/7524ch04.08.1.076.jpg

OPS/images/7524ch04.08.1.077.jpg

OPS/images/7524ch04.08.1.074.jpg

OPS/images/7524ch04.08.1.075.jpg

OPS/images/7524ch04.08.1.069.jpg

OPS/images/7524ch04.08.1.067.jpg

OPS/images/7524ch04.08.1.068.jpg

