IBM Content Manager
OnDemand Guide

Hassan A Shazly
Note: Before using this information and the product it supports, read the information in “Notices” on page xi.

First Edition (October 2015)

This edition applies to IBM Content OnDemand Version 9.5.

This document was created or updated on September 1, 2015.
# Contents

Notices ................................................................. xi  
Trademarks ......................................................... xii  
IBM Redbooks promotions ........................................... xiii  

Preface .............................................................. xv  
Authors .............................................................. xv  
Acknowledgement .................................................... xv  
Now you can become a published author, too! ..................... xvii  
Comments welcome .................................................... xvii  
Stay connected to IBM Redbooks ................................... xviii  

Part 1. Basic system concepts and design  ........................................ 1

Summary of changes ............................................................. 3  
October 2015, First Edition .................................................. 3

Chapter 1. Overview and concepts ...................................................... 5  
1.1 Overview of Content Manager OnDemand ....................................... 6  
1.2 Content Manager OnDemand concepts .............................................. 8  
1.2.1 Background information of an example company ............................ 8  
1.2.2 Reports and documents ......................................................... 8  
1.2.3 Application, application group, folder, and cabinet ......................... 10  
1.2.4 Indexing methods .............................................................. 11  
1.3 Content Manager OnDemand server and its components ....................... 12  
1.3.1 Library server and object server ............................................. 12  
1.3.2 Content Manager OnDemand server components ........................... 12  

Chapter 2. Setting up a Content Manager OnDemand instance  .................. 17  
2.1 Introduction ................................................................... 18  
2.2 Architecture and platform ...................................................... 18  
2.2.1 Configuration consideration ................................................... 19  
2.2.2 Library server and object server functions ................................... 19  
2.2.3 Choosing a platform .......................................................... 20  
2.3 Implementing a Content Manager OnDemand instance on a Multiplatform UNIX environment .................................................. 21  
2.3.1 Defining a single instance ..................................................... 21  
2.3.2 Starting and connecting to the new instance ............................... 29  
2.4 Implementing a Content Manager OnDemand instance on IBM i .............. 30  
2.4.1 Configuring the instance ....................................................... 31  
2.4.2 Changing an instance configuration ......................................... 32  
2.4.3 Starting and stopping servers ............................................... 34  
2.5 Implementing a Content Manager OnDemand instance on z/OS ............... 36  
2.5.1 Installation overview .......................................................... 37  
2.5.2 Creating an instance on z/OS ............................................... 38  
2.5.3 Starting and verifying the new instance ...................................... 43

Chapter 3. Administration .......................................................... 45
### Part 2. Data indexing, loading, retrieval, and expiration

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Multiple systems</td>
<td>133</td>
</tr>
<tr>
<td>6.3.2 Multiple object servers</td>
<td>133</td>
</tr>
<tr>
<td>6.3.3 Multiple archive servers</td>
<td>134</td>
</tr>
<tr>
<td>6.4 API access</td>
<td>134</td>
</tr>
<tr>
<td>6.5 Data security</td>
<td>135</td>
</tr>
<tr>
<td>6.5.1 Content Manager OnDemand object-owner model.</td>
<td>136</td>
</tr>
<tr>
<td>6.5.2 Administrative features</td>
<td>136</td>
</tr>
<tr>
<td>6.5.3 SQL macro support</td>
<td>141</td>
</tr>
<tr>
<td>6.5.4 Annotations security</td>
<td>142</td>
</tr>
<tr>
<td>6.5.5 Securing access with ARSSTASH and the stash file</td>
<td>144</td>
</tr>
<tr>
<td>6.6 Data encryption</td>
<td>146</td>
</tr>
<tr>
<td>6.6.1 Encrypting data at rest</td>
<td>146</td>
</tr>
<tr>
<td>6.6.2 Encrypting data in motion: Secure communications</td>
<td>146</td>
</tr>
<tr>
<td>6.7 Security exits</td>
<td>148</td>
</tr>
<tr>
<td>6.7.1 User security and permissions exits</td>
<td>148</td>
</tr>
<tr>
<td>6.7.2 Security systems other than SAF (z/OS only).</td>
<td>151</td>
</tr>
<tr>
<td>6.7.3 Unified logon exit (ARSPTGN): z/OS only</td>
<td>152</td>
</tr>
<tr>
<td>6.7.4 System log user exit</td>
<td>153</td>
</tr>
<tr>
<td>6.8 Summary</td>
<td>153</td>
</tr>
</tbody>
</table>

### Chapter 7. Indexing and loading

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>158</td>
</tr>
<tr>
<td>7.1.1 Loading and indexing files created on another system</td>
<td>158</td>
</tr>
<tr>
<td>7.1.2 Understanding input data types</td>
<td>159</td>
</tr>
<tr>
<td>7.1.3 Choosing an indexer</td>
<td>160</td>
</tr>
<tr>
<td>7.2 Getting started with PDF indexing</td>
<td>161</td>
</tr>
<tr>
<td>7.2.1 Limitations</td>
<td>161</td>
</tr>
<tr>
<td>7.3 Performance considerations</td>
<td>162</td>
</tr>
<tr>
<td>7.3.1 PDF fonts and output file size</td>
<td>162</td>
</tr>
<tr>
<td>7.3.2 Reducing output file size with PDF documents</td>
<td>163</td>
</tr>
<tr>
<td>7.3.3 PDF indexing - Using PDF metadata</td>
<td>163</td>
</tr>
<tr>
<td>7.3.4 PDF indexing - Using the report wizard (graphical indexer)</td>
<td>164</td>
</tr>
<tr>
<td>7.3.5 PDF indexing - Using internal indexes (Page Piece Dictionary)</td>
<td>168</td>
</tr>
<tr>
<td>7.4 Getting started with ACIF indexing</td>
<td>168</td>
</tr>
<tr>
<td>7.4.1 Understanding the input data</td>
<td>169</td>
</tr>
<tr>
<td>7.4.2 The index file</td>
<td>171</td>
</tr>
<tr>
<td>7.4.3 Fully composed AFP input</td>
<td>173</td>
</tr>
<tr>
<td>7.5 OS/390 indexer on z/OS and AIX</td>
<td>174</td>
</tr>
<tr>
<td>7.6 OS/400 indexer on Content Manager OnDemand on IBM i</td>
<td>175</td>
</tr>
<tr>
<td>7.7 Getting started with XML Indexing</td>
<td>177</td>
</tr>
<tr>
<td>7.8 User exits</td>
<td>178</td>
</tr>
<tr>
<td>7.9 Additional references</td>
<td>178</td>
</tr>
</tbody>
</table>

### Chapter 8. User clients

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Choosing the correct client for your implementation</td>
<td>180</td>
</tr>
<tr>
<td>8.1.1 Viewer options</td>
<td>180</td>
</tr>
<tr>
<td>8.1.2 Client infrastructure options</td>
<td>183</td>
</tr>
<tr>
<td>8.1.3 Client compatibility</td>
<td>185</td>
</tr>
<tr>
<td>8.2 Content Manager OnDemand client options</td>
<td>186</td>
</tr>
<tr>
<td>8.2.1 IBM Content Navigator</td>
<td>186</td>
</tr>
<tr>
<td>8.2.2 Content Manager OnDemand Windows client</td>
<td>191</td>
</tr>
<tr>
<td>8.2.3 CICS Client</td>
<td>192</td>
</tr>
</tbody>
</table>
# IBM Content Manager OnDemand Guide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Migration and expiring data and indexes</td>
<td>211</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>212</td>
</tr>
<tr>
<td>10.2</td>
<td>Loading and storing the data</td>
<td>212</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Storing the report (document) data</td>
<td>213</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Storing the index data</td>
<td>216</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Storing the resource data</td>
<td>216</td>
</tr>
<tr>
<td>10.3</td>
<td>Configuring for migration and expiration</td>
<td>217</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Migrating index data</td>
<td>217</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Expiring data and indexes</td>
<td>218</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Expiring document data</td>
<td>219</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Expiring annotations</td>
<td>220</td>
</tr>
<tr>
<td>10.4</td>
<td>Reloading data</td>
<td>220</td>
</tr>
<tr>
<td>10.5</td>
<td>Expiration processing on Multiplatforms and z/OS</td>
<td>221</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Content Manager OnDemand based expiration: ARSMAINT</td>
<td>221</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Expiring indexes</td>
<td>222</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Removing documents from Tivoli Storage Manager archive</td>
<td>224</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Storage Manager-based expiration (z/OS only)</td>
<td>227</td>
</tr>
<tr>
<td>10.6</td>
<td>Expiring data on Content Manager OnDemand for i</td>
<td>230</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Content Manager OnDemand based expiration</td>
<td>230</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Storage Manager-based expiration</td>
<td>231</td>
</tr>
<tr>
<td>11</td>
<td>Exits</td>
<td>233</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction to user exits</td>
<td>234</td>
</tr>
<tr>
<td>11.2</td>
<td>ACIF exits</td>
<td>234</td>
</tr>
<tr>
<td>11.2.1</td>
<td>A new macro for user exits</td>
<td>235</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Input record exit</td>
<td>235</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Index record exit</td>
<td>236</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Output record exit</td>
<td>238</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Resource exit</td>
<td>239</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Debugging input user exit programs</td>
<td>240</td>
</tr>
<tr>
<td>11.3</td>
<td>OS/390 indexer exits</td>
<td>240</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The ANYEXIT exit</td>
<td>241</td>
</tr>
<tr>
<td>11.3.2</td>
<td>The INPEXIT exit</td>
<td>241</td>
</tr>
<tr>
<td>8.3</td>
<td>Client APIs overview</td>
<td>195</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Content Manager OnDemand Web Enablement Kit</td>
<td>195</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Content Management Interoperability Services</td>
<td>197</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Other client-based API options</td>
<td>197</td>
</tr>
<tr>
<td>9</td>
<td>Data conversion</td>
<td>200</td>
</tr>
<tr>
<td>9.1</td>
<td>Overview of data conversion</td>
<td>200</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Why convert data streams</td>
<td>200</td>
</tr>
<tr>
<td>9.1.2</td>
<td>When to convert data streams</td>
<td>200</td>
</tr>
<tr>
<td>9.1.3</td>
<td>How to convert the data</td>
<td>200</td>
</tr>
<tr>
<td>9.2</td>
<td>The generic transform interface</td>
<td>201</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Overview</td>
<td>201</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Configuration</td>
<td>202</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Basic implementation: Executable interface</td>
<td>202</td>
</tr>
<tr>
<td>9.2.4</td>
<td>V9.5 Enhancement: Customizing values returned from ODWEK</td>
<td>203</td>
</tr>
<tr>
<td>9.2.5</td>
<td>V9.5 Enhancement: Application Group and Application specific XML</td>
<td>204</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Advanced implementation: Custom Java interface</td>
<td>206</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Integration with other Enterprise Content Manager products</td>
<td>193</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Federated search with IBM Information Integrator</td>
<td>194</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Integration with IBM FileNet P8.</td>
<td>194</td>
</tr>
<tr>
<td>8.3</td>
<td>Client APIs overview</td>
<td>195</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Content Manager OnDemand Web Enablement Kit</td>
<td>195</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Content Management Interoperability Services</td>
<td>197</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Other client-based API options</td>
<td>197</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Integration with other Enterprise Content Manager products</td>
<td>193</td>
</tr>
</tbody>
</table>
Part 3. Advanced system concepts and design ................................................................. 273

Chapter 12. Scalability, reliability, and availability architectures ........................................ 275
12.1 Scalability, reliability, and availability defined ......................................................... 276
12.2 Scaling a Content Manager OnDemand system ....................................................... 277
  12.2.1 Vertical scalability ............................................................................................... 278
  12.2.2 Horizontal scalability: Library server ............................................................... 279
  12.2.3 Horizontal scalability: Multiple object servers .................................................... 280
  12.2.4 Horizontal and vertical scalability: Storage manager ............................................ 280
  12.2.5 Horizontal scalability: Multiple logical partitions and systems .................................. 282
  12.2.6 Multiple server configuration rules ..................................................................... 282
12.3 High availability ........................................................................................................... 283
  12.3.1 Redundant systems: All platforms ....................................................................... 283
  12.3.2 Multiple LPAR sysplex: z/OS ............................................................................ 283
  12.3.3 High availability: IBM i ..................................................................................... 285
  12.3.4 Horizontal and vertical scalability summary ............................................................ 285

Chapter 13. Performance ........................................................................................................ 287
13.1 Tuning Content Manager OnDemand to enhance performance .................................... 288
  13.1.1 Content Manager OnDemand configuration ....................................................... 288
  13.1.2 System logging ................................................................................................. 288
  13.1.3 System management ......................................................................................... 289
  13.1.4 Storage management ....................................................................................... 289
13.2 Data loading performance ............................................................................................... 290
  13.2.1 Factors that affect the load performance ............................................................. 291
  13.2.2 Recommendations ............................................................................................. 292
  13.2.3 Load testing ...................................................................................................... 293
13.3 Data retrieval performance .............................................................................................. 293
  13.3.1 Data retrieval parameters .................................................................................... 293
  13.3.2 Factors that affect retrieval performance ............................................................. 295
  13.3.3 Retrieval testing .................................................................................................. 296
  13.3.4 System testing .................................................................................................... 297
13.4 Performance issues based on data type ............................................................................ 297
  13.4.1 PDF data ............................................................................................................ 297
  13.4.2 Line data ........................................................................................................... 298
  13.4.3 AFP data ........................................................................................................... 299
  13.4.4 Image data ........................................................................................................ 300

Part 4. Enhancement options ................................................................................................. 303

Chapter 14. Report distribution .......................................................................................... 305
14.1 Introduction to Content Manager OnDemand Distribution Facility ................................ 306
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.1 What documents are needed</td>
<td>308</td>
</tr>
<tr>
<td>14.1.2 Who receives the documents</td>
<td>308</td>
</tr>
<tr>
<td>14.1.3 When are the documents retrieved and delivered</td>
<td>308</td>
</tr>
<tr>
<td>14.1.4 Where are they delivered</td>
<td>309</td>
</tr>
<tr>
<td>14.1.5 Cross platform access</td>
<td>309</td>
</tr>
<tr>
<td>14.2 Defining the objects with the Administrator Client.</td>
<td>309</td>
</tr>
<tr>
<td>14.2.1 Adding a recipient</td>
<td>310</td>
</tr>
<tr>
<td>14.2.2 Adding a recipient list</td>
<td>311</td>
</tr>
<tr>
<td>14.2.3 Adding a report ID</td>
<td>312</td>
</tr>
<tr>
<td>14.2.4 Adding a distribution</td>
<td>313</td>
</tr>
<tr>
<td>14.2.5 Adding a report bundle</td>
<td>315</td>
</tr>
<tr>
<td>14.3 Defining the objects using Batch Administration</td>
<td>317</td>
</tr>
<tr>
<td>14.3.1 Recipient</td>
<td>317</td>
</tr>
<tr>
<td>14.3.2 Report ID</td>
<td>318</td>
</tr>
<tr>
<td>14.3.3 Distribution and Report Bundle</td>
<td>318</td>
</tr>
<tr>
<td>14.4 Customizable user exits</td>
<td>319</td>
</tr>
<tr>
<td>14.4.1 arsodfxa - Spool file data set allocation attributes exit</td>
<td>319</td>
</tr>
<tr>
<td>14.4.2 arsodfxb - Banner, header, and trailer exit</td>
<td>319</td>
</tr>
<tr>
<td>14.4.3 arsodfkm - Bundle manifest exit</td>
<td>320</td>
</tr>
<tr>
<td>14.4.4 ODFProcessDist.java - Processed distribution exit</td>
<td>320</td>
</tr>
<tr>
<td>14.5 Status and monitor tool</td>
<td>321</td>
</tr>
<tr>
<td>14.6 Using full text search in Content Manager OnDemand Clients</td>
<td>325</td>
</tr>
<tr>
<td>15.1 Introduction to full text search in Content Manager On Demand</td>
<td>326</td>
</tr>
<tr>
<td>15.2 Full text search architecture in Content Manager On Demand</td>
<td>326</td>
</tr>
<tr>
<td>15.2.1 Full Text Search Server</td>
<td>327</td>
</tr>
<tr>
<td>15.2.2 Index structure</td>
<td>327</td>
</tr>
<tr>
<td>15.2.3 Indexing document through FTS Exporter</td>
<td>328</td>
</tr>
<tr>
<td>15.2.4 Searching</td>
<td>328</td>
</tr>
<tr>
<td>15.3 Planning and installing FTS</td>
<td>328</td>
</tr>
<tr>
<td>15.3.1 Component overview</td>
<td>329</td>
</tr>
<tr>
<td>15.3.2 Installing FTS Server</td>
<td>329</td>
</tr>
<tr>
<td>15.3.3 Operating system resources</td>
<td>330</td>
</tr>
<tr>
<td>15.3.4 Workload</td>
<td>330</td>
</tr>
<tr>
<td>15.3.5 Memory heap size</td>
<td>330</td>
</tr>
<tr>
<td>15.3.6 Index considerations</td>
<td>331</td>
</tr>
<tr>
<td>15.4 Configuring and operating full text search</td>
<td>332</td>
</tr>
<tr>
<td>15.4.1 Base configuration in Content Manager OnDemand</td>
<td>332</td>
</tr>
<tr>
<td>15.4.2 Configuration of the Full Text Search Exporter</td>
<td>334</td>
</tr>
<tr>
<td>15.5 Running the full text indexing process</td>
<td>336</td>
</tr>
<tr>
<td>15.5.1 Automatically indexing new data during load</td>
<td>336</td>
</tr>
<tr>
<td>15.5.2 Indexing existing data through arsdoc</td>
<td>336</td>
</tr>
<tr>
<td>15.5.3 Indexing existing data through ODWEK</td>
<td>337</td>
</tr>
<tr>
<td>15.5.4 Running the FTS Exporter</td>
<td>337</td>
</tr>
<tr>
<td>15.6 Using full text search in Content Manager OnDemand Clients</td>
<td>337</td>
</tr>
<tr>
<td>15.6.1 Syntax</td>
<td>338</td>
</tr>
<tr>
<td>15.6.2 Boolean searches</td>
<td>338</td>
</tr>
<tr>
<td>15.6.3 Wildcard searches and optional terms</td>
<td>338</td>
</tr>
<tr>
<td>15.6.4 Fuzzy and proximity searches</td>
<td>339</td>
</tr>
<tr>
<td>15.6.5 Weighted searches (boosting terms)</td>
<td>339</td>
</tr>
<tr>
<td>15.7 Troubleshooting tips</td>
<td>339</td>
</tr>
<tr>
<td>15.7.1 Content Manager OnDemand server log</td>
<td>339</td>
</tr>
<tr>
<td>15.7.2 Full Text Search Server log</td>
<td>340</td>
</tr>
</tbody>
</table>
18.2.6 ODWEK ......................................................... 385
18.2.7 Content Manager OnDemand server hangs or crashes ............ 386
18.2.8 Exporting information to a local server .......................... 386
18.3 Content Manager OnDemand trace facility .......................... 389
  18.3.1 Enabling the trace facility .................................. 389
  18.3.2 Setting trace parameters .................................... 390
18.4 Other tracing options ............................................ 391
  18.4.1 ARSLOAD .................................................. 391
  18.4.2 MidServer trace (z/OS only) ................................ 392
  18.4.3 ODWEK trace ............................................... 392
  18.4.4 TCP/IP packet trace ........................................ 393
  18.4.5 Language Environment (z/OS only) .......................... 394
  18.4.6 ARSSUPPORT utility ........................................ 395
  18.4.7 ARSJESD .................................................. 395
  18.4.8 PDF Indexer trace .......................................... 396
  18.4.9 Trace resolver .............................................. 396
  18.4.10 Conclusion ................................................ 396

Related publications .................................................. 397
IBM Redbooks ....................................................... 397
Other publications .................................................... 397
Online resources ....................................................... 398
Help from IBM ....................................................... 399
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (© or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

- AIX®
- CICS®
- Daeja™
- DB2®
- DB2 Universal Database™
- developerWorks®
- FileNet®
- IBM®
- IMS™
- Language Environment®
- Lotus®
- MVS™
- OMEGAMON®
- OS/390®
- OS/400®
- Power Systems™
- PowerHA®
- Print Services Facility™
- RACF®
- Redbooks®
- Redbooks (logo) ®
- System i®
- System Storage®
- System z®
- SystemMirror®
- Tivoli®
- WebSphere®
- z/OS®

The following terms are trademarks of other companies:

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Evolution, and Inc. device are trademarks or registered trademarks of Kenexa, an IBM Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Find and read thousands of IBM Redbooks publications

- Search, bookmark, save and organize favorites
- Get up-to-the-minute Redbooks news and announcements
- Link to the latest Redbooks blogs and videos

Get the latest version of the Redbooks Mobile App

Promote your business in an IBM Redbooks publication

Place a Sponsorship Promotion in an IBM Redbooks' publication, featuring your business or solution with a link to your web site.

Qualified IBM Business Partners may place a full page promotion in the most popular Redbooks publications. Imagine the power of being seen by users who download millions of Redbooks publications each year!
THIS PAGE INTENTIONALLY LEFT BLANK
Preface

This IBM® Redbooks® publication provides a practical guide to the design, installation, configuration, and maintenance of IBM Content Manager OnDemand Version 9.5.

Content Manager OnDemand manages high-volume storage and retrieval of electronic statements and provides efficient enterprise report management. Content Manager OnDemand transforms formatted computer output and printed reports, such as statements and invoices, into electronic information for easy report management. Content Manager OnDemand helps eliminate costly, high-volume print output by capturing, indexing, archiving, and presenting electronic information for improved customer service.

This publication covers the key areas of Content Manager OnDemand, some of which might not be known to the Content Manager OnDemand community or are misunderstood. The book covers various topics, including basic information in administration, database structure, storage management, and security. In addition, the book covers data indexing, loading, conversion, and expiration. Other topics include user exits, performance, retention management, records management, and many more.

Because many other resources are available that address subjects on different platforms, this publication is not intended as a comprehensive guide for Content Manager OnDemand; rather, it is intended to complement the existing Content Manager OnDemand documentation and provide insight into the issues that might be encountered in the setup and use of Content Manager OnDemand.

Authors

This book was produced by a team of specialists from around the world working at the International Technical Support Organization, San Jose Center.

Hassan A Shazly is a Development and QA Manager for Content Manager OnDemand. He has over 37 years of experience in Information Systems, the last seventeen of which have been at IBM. Hassan has written articles, submitted patents, and presented topics at several conferences, including client/server technology, image processing, testing and systems performance. Hassan holds a Ph.D. in Image Processing from the University of South Carolina.

Acknowledgement

Special thanks to the following people for their content contribution:

Ben Boltz is a Senior Software Engineer. He has 32 years of experience in the Software Industry. He has been working on Content Manager OnDemand for Multiplatforms for over 20 years.

Darrell Bryant joined IBM as a manufacturing engineer and had worked as a Systems Engineer specializing in S/36 and AS/400 systems. In 2000, Darrell joined the OnDemand team. He has performed a mix of activities including services, education, support, and testing. Darrell is now the lead tester for OnDemand for i. He also develops and teaches workshops to customers and partners and is the editor of the OnDemand Newsletter.
Nelson Chen is a Software Developer with Content Manager OnDemand. He has over 30 years of experience in software development, among them 27 years at IBM and last 20 years in OnDemand. His areas of expertise include ArsXML, Install and Configurator.

Trang Kim Duong is a Software Developer with Content Manager OnDemand. Among her 17 years of experience in software development, the last eleven years is in Content Manager OnDemand. Trang’s areas of expertise include work-flow for Space Vehicle Design, Content Manager OnDemand Report Distribution, Exporter utility for the CFS-CMOD, and the Content Manager OnDemand back-end database component.

Hubert Hwang is a Software Developer with Content Manager OnDemand. He is a Certified Solutions Expert for Content Manager OnDemand with over 10 years of experience with the product. His areas of expertise include the Content Manager OnDemand Web Enablement Kit Java APIs, Content Navigator, and software test automation. He has extensive experience troubleshooting all aspects of the product and has authored over 200 Technotes on topics such as migration, data collection, and troubleshooting guides for Content Manager OnDemand.

Vicki Miller is a Senior Certified Client Technical Professional at IBM, having worked in the technology industry for 33 years with a focus on Enterprise Content Management (ECM) since 1999. Her area of expertise in the realm of ECM is focused on solution sales consulting and technical account leadership that revolves around the management, processing, and analysis of any type of electronic content to help organizations optimize and protect their business. Vicki has spoken at IBM conferences on critical ECM topics, contributed to the development of technical publications, and led groups within IBM and customer organizations to drive the enhancement ECM solutions and products.

Paula Muir is a Software Developer with Content Manager OnDemand for Multiplatforms in Boulder, Colorado. Her areas of expertise include indexing and loading data, and AFP and PDF architecture.

Nancy O’Brien started at IBM as an applications programmer, then transferred to a branch office where she performed her first Content Manager OnDemand (then known as R/DARS) implementation. After many more implementation service engagements, she joined the Content Manager OnDemand development team and continued to do implementation services, training, support, testing, and technical writing. She currently focuses primarily on technical writing and testing.

Sandi Pond is a Software Developer with Content Manager OnDemand for Multiplatforms. She has 17 years of experience with Content Manager OnDemand working in various areas of the development team. Her area of expertise is the OnDemand Web Enablement Kit (ODWEK).

Debbie Wagner is a Senior Software Engineer at IBM and has over 22 years of experience in content management, specifically, Content Manager OnDemand for Multiplatforms. Her areas of expertise are graphical user interfaces, product administration software, and document retrieval. She has written and co-authored multiple articles relating to Content Manager OnDemand. Debbie is an IBM certified deployment professional for Content Manager OnDemand V9.0.

Additionally, special thanks to the following people who have contributed their time and energy to assist us in producing the book:

Neil Parrott, Sr. Product Marketing Manager - Enterprise Report Management segment, IBM USA
**Stephanie M Wing**, WW Portfolio Marketing Manager, Enterprise Content Management, Content Manager OnDemand, IBM USA


Thanks to the authors of the third edition, IBM Content Manager OnDemand Guide, published in October 2013, were:

Wei-Dong Zhu  
Jim Ilardi  
Deborah Matamoros  
Trina D Morgans  
Paula Muir  
Hassan A Shazly  
Edward E Stonesifer  
Vanessa T Stonesifer  
Sebastian Welter

**Now you can become a published author, too!**

Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at:

[ibm.com/redbooks/residencies.html](http://ibm.com/redbooks/residencies.html)

**Comments welcome**

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

- Use the online **Contact us** review Redbooks form found at:

  [ibm.com/redbooks](http://ibm.com/redbooks)

- Send your comments in an email to:

  redbooks@us.ibm.com

- Mail your comments to:

  IBM Corporation, International Technical Support Organization  
  Dept. HYTD Mail Station P099  
  2455 South Road  
  Poughkeepsie, NY 12601-5400
Stay connected to IBM Redbooks

- Find us on Facebook:
  http://www.facebook.com/IBMRedbooks
- Follow us on Twitter:
  http://twitter.com/ibmredbooks
- Look for us on LinkedIn:
  http://www.linkedin.com/groups?home=&gid=2130806
- Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:
- Stay current on recent Redbooks publications with RSS Feeds:
  http://www.redbooks.ibm.com/rss.html
Part 1

Basic system concepts and design

This part contains the following chapters:

- Chapter 1, “Overview and concepts” on page 5
- Chapter 2, “Setting up a Content Manager OnDemand instance” on page 17
- Chapter 3, “Administration” on page 45
- Chapter 4, “Database structure” on page 77
- Chapter 5, “Storage management” on page 89
- Chapter 6, “Security” on page 129
Summary of changes

This section describes the technical changes made in this edition of the book and in previous editions. This edition might also include minor corrections and editorial changes that are not identified.

Summary of Changes
for SG24-6915-04
for IBM Content Manager OnDemand Guide
as created or updated on September 1, 2015.

October 2015, First Edition

This revision includes the information about IBM Content Manager OnDemand at Version 9.5 level.
Overview and concepts

In this chapter, we provide an overview of the IBM Content Manager OnDemand (Content Manager OnDemand) system. We describe how Content Manager OnDemand manages reports and index data. We also provide information to help you better understand how Content Manager OnDemand works.

In this chapter, we cover the following topics:

- Overview of Content Manager OnDemand
- Content Manager OnDemand concepts
- Content Manager OnDemand server and its components
1.1 Overview of Content Manager OnDemand

To compete in today's global business environment, businesses must increase both the efficiency and effectiveness of their operations. Conflicting business requirements, such as increasing productivity while reducing costs, and increasing personalization yet at the same time expanding to larger customer bases can be achieved only through more streamlined and coordinated processes. Content Manager OnDemand helps address these issues by securely storing information and managing its delivery on demand whenever and wherever it is needed.

Content Manager OnDemand is the leading report archive system used by thousands of organizations worldwide. The high scalability and high speed information archiving and retrieving benefit any organization that requires instant access to information, hardcopy replacement, or long-term archival of data. A Content Manager OnDemand system can support small office environments and large enterprise installations with hundreds or thousands of system users. It can dramatically improve productivity and customer service in many businesses by providing fast access to information that is stored in the system.

Content Manager OnDemand is a robust report management system that enables you to do the following tasks:

- **Capture**: Captures various data types from various sources through a batch capture system or interactively through custom-built interfaces.
- **Store**: Stores data for immediate retrieval.
- **Search**: Indexes data so that users can easily and quickly find the information.
- **Full Text Search**: Allows for searching the full text of stored documents.
- **Integrate**: Organizations can integrate Content Manager OnDemand into their existing software stack using components such as OnDemand Web Ennoblement Kit (ODWEK). Organizations can also enable access through federated searches to other IBM Enterprise Content Management data and third-party products.
- **Display**: Supports multiple viewers for different data types, providing fast access for browsing and printing the retrieved data. For example, using ready-for-use products such as IBM Content Navigator, users can search and access Content Manager OnDemand, other IBM Enterprise Content Management data stores, and third-party products.
- **Distribute**: Distributes data to selected users (through Email or Print).
- **Manage**: Expires or archives data based on defined policies.
- **Archive**: Provides data archives online, near-line, or offline, enabling rapid archiving of data to the storage system.
- **Control**: Controls system and data access, allowing only authorized users to access specified data.

In summary, Content Manager OnDemand enables you to gain control of your information by providing access to your business' data, as needed, regardless of the size of the business or the hardware platform. Content Manager OnDemand improves your organization's bottom line by helping you become more efficient and responsive.

Figure 1-1 presents an overview of the Content Manager OnDemand (OnDemand) system.
Content Manager OnDemand client programs provide authorized users with high speed access to the archived data that runs on the user devices (workstations) that are attached to the network and communicate with the Content Manager OnDemand servers.

A Content Manager OnDemand server consists of multiple components that can be installed on a single system or multiple systems. In all cases, the installation appears to the users as being a single server and is administered by the Content Manager OnDemand administrator as a single system.

The Content Manager OnDemand Server includes the following components:

- A single library server: The library server manages a database that contains the information about the users of the system, and the reports and data that are stored on the system.
- One or more object servers: The object servers manage the data on disk or tape storage devices.
- One or more archive servers: The archive server stores the archived data objects. Depending on the Operating System, the archive servers might be Tivoli® Storage Manager (TSM), Object Access Method (OAM) or Archive Storage Method (ASM).

The library server and the object server can be packaged separately or as a single executable file.

**Content Manager OnDemand client programs** operate on various environments, including personal computers running on Windows, web browsers, and mobile devices. Using the client program, users can search for and retrieve reports that are stored on the system. Specifically, users can construct queries and search for reports, retrieve documents from Content Manager OnDemand, view, print, and fax copies or pages of documents, and attach electronic notes to the pages of a document.

Content Manager OnDemand servers manage control information and index data, store and retrieve documents and resource group files, and process query requests from Content Manager OnDemand client programs. The documents can be on disk and tape storage volumes. New reports can be loaded into Content Manager OnDemand every day. This way,
Content Manager OnDemand can retrieve the latest information that is generated by application programs.

When a user submits a query, and the client program sends a search request to the Content Manager OnDemand library server. The library server returns a list of the documents that match the query to the user. When the user selects a document for viewing, the client program retrieves a copy of the document from the object server where the document is stored, opens a viewing window, and displays the document.

Full text search allows users to search the full content of stored documents. For example users can do wildcard searches, fuzzy (or similar) searches, proximity searches and boolean searches.

Documents or reports can also be automatically distributed to users through email or network printers. The distributions can be scheduled to occur at the time the data is loaded or at specific times during the day.

1.2 Content Manager OnDemand concepts

In this section, we examine some of the basic concepts of Content Manager OnDemand:

- Report and document
- Application, application group, folder, and cabinet

1.2.1 Background information of an example company

As we examine these concepts, we use an example company. Our fictitious company is called AFinancial Co. AFinancial Co is one of the largest custodians of financial transactions in the world. It is one of the leaders in managing customer assets, providing financial services and foreign exchange services. It is also one of the leading credit card providers in the world.

The timely delivery of information and reports is fundamental to maintaining this leadership status. Products and services that provide real-time, online access to a client's account and fund information are key to competitive differentiation and are key to client retention. AFinancial Co’s clients want personalized fund information, in various standard formats, which are delivered through both web and desktop interfaces.

1.2.2 Reports and documents

A report is one or more pages of data that is typically generated on a periodic basis by a computer software system. Content Manager OnDemand documents represent indexed groups of pages from a report. A Content Manager OnDemand document can be a logical section of a large report, such as an individual account statement within a report of thousands of statements. A Content Manager OnDemand document can also represent a physical portion of a large report. For example, if a large report does not contain logical groups of pages, such as transaction logs, Content Manager OnDemand can divide the report into groups of pages. The groups of pages are individually indexed and can be retrieved much more efficiently than the entire report.

Documents are identified (indexed) by date, with one or more other fields, such as customer name, customer number, or invoice number. A date is optional but highly recommended for optimizing document search performance.

Our example fictitious company, AFinancial Co, prints customer credit card statements on a monthly basis. This report, the customer credit card statements (Customer Statements),
consists of thousands of individual customer statements. The company also prints transaction logs on a monthly basis. This second report, the transaction log (Transaction Report), contains thousands of customer transactions per month. The company must load these two reports into Content Manager OnDemand so that their data can be stored, then easily searched, retrieved, and viewed later. Let us look at how these two large reports might be broken up into individual Content Manager OnDemand documents.

Reports are “loaded” into the Content Manager OnDemand system. A Content Manager OnDemand application describes how the report is to be divided into documents. Figure 1-2 on page 9 illustrates two reports, their associated Content Manager OnDemand applications and documents. Let us look at how the associated applications divide the reports into Content Manager OnDemand documents.

The first one we look at is the Customer Statements report. For this example, the report consists of 63,097 individual customer statements. An administrator can define a “Statement application” for this report that breaks the report up into logical documents. The Statement application uses the document indexing method to divide the report into documents that are based on customer name or customer number. Each statement in the report becomes a document in Content Manager OnDemand. Users can retrieve a statement by specifying the date and any combination of customer name and number.

Some reports might not have a logical way of breaking up into individual documents. For example, the Transaction Report is not sorted by customer name or number. The report is generated based on the transactions of the day and time, and the customers that are associated with the transactions. In this case, we can break up the report into groups of pages. An administrator can define a “Trans application” for the report that contains lines of sorted transaction data. The Trans application uses the report indexing method to divide the report into documents. Each group of 100 pages in the report becomes a document in Content Manager OnDemand. Each group is indexed using the first and last sorted transaction values (transaction date and number) that occur in the group. Users can retrieve the group of pages that contains a specific transaction number by specifying the date and the transaction number. Content Manager OnDemand retrieves the document that contains the value that is entered by the user.

To summarize this example, as shown in Figure 1-2:

- Customer Statements report: Contains all customer statements for a month.
  Customer Statements documents: Each customer statement is a document.
- Transaction Report: Logs all transactions as they occur for a month.
  Transaction Report documents: Every 100 pages of the report are a document.
1.2.3 Application, application group, folder, and cabinet

The terms *application*, *application group*, *folder*, and *cabinet* represent how Content Manager OnDemand stores, manages, distributes, retrieves, displays, and prints reports and index data. When you define a report or type of data to Content Manager OnDemand, an administrator must do the following:

- Create an application and assign the application to an application group.
- Create or update a folder to use the application group and application so users can search for and retrieve documents.
- Optionally, create or update a cabinet. Cabinets are containers for collections of folders. They allow users to manage and navigate folders more easily.

**Application**

An *application* describes the physical characteristics of a report to Content Manager OnDemand. Typically, you define an application for each program that produces output to be stored in Content Manager OnDemand. The application includes information about the format of the data, the orientation of data on the page, the paper size, the record length, and the code page of the data. The application also includes parameters that the indexing program uses to locate and extract index data and processing instructions that Content Manager OnDemand uses to load index data in the database and documents on storage volumes.

**Application group**

An *application group* contains the storage management attributes of and index fields for the data that you load into Content Manager OnDemand. When you load a report into Content Manager OnDemand, you must identify the application group where Content Manager OnDemand loads the index data and stores the documents.

An application group is a collection of one or more Content Manager OnDemand applications with common indexing and storage management attributes. You typically group several related reports in an application group so that users can access the information that is contained in the reports with a single query. All of the applications in the application group must be indexed on one or more common fields, for example, customer name, account number, or date.

**Folder**

A *folder* is the user’s way to query and retrieve data that is stored in Content Manager OnDemand. A folder provides users with a convenient way to find related information that is stored in Content Manager OnDemand, regardless of the source of the information or how the data was prepared.

A folder allows an administrator to set up a common query panel for several application groups that might use different indexing schemes so that a user can retrieve the data with a single query. For example, a folder called “Customer Information” might contain customer credit card statements, checking and saving accounts, and mortgage payment information, which represent information that is stored in different application groups, which are defined by different applications, and created by different programs.

**Cabinet**

A cabinet is a container for folders. You can use cabinets to manage folders and enable users to navigate to folders more easily. A folder can belong to one or more cabinets.

Figure 1-3 summarizes these concepts.
1.2.4 Indexing methods

Content Manager OnDemand provides two methods of indexing data:

- Document indexing
- Report indexing

Document indexing

Document indexing is used for reports that contain logical items, such as customer name or number. Each of the items in a report can be individually indexed on values, such as account number, customer name, and balance. Content Manager OnDemand supports up to 128 index values per item. With document indexing, the user is not necessarily required to know about reports or report cycles to retrieve a document from Content Manager OnDemand.

Report indexing

Report indexing is used for reports that contain many pages of the same type of data, such as a transaction log. Each line in the report usually identifies a specific transaction, and it is not cost effective to index each line. Content Manager OnDemand stores the report as groups of pages and indexes each group.

When reports include a sorted transaction value (for example, transaction date and number), Content Manager OnDemand can index the data on the transaction value. This is done by extracting the beginning and ending transaction values for each group of pages and storing the values in the database. This type of indexing lets users retrieve a specific transaction value directly.
1.3 Content Manager OnDemand server and its components

On z/OS® and Multiplatforms systems, the Content Manager OnDemand server can be implemented as a library server and one or more object servers that are on one or more nodes that are connected to an Internet Protocol network. For the Content Manager OnDemand system overview, see Figure 1-1 on page 7.

1.3.1 Library server and object server

A Content Manager OnDemand library server maintains two sets of database tables:

- The first set of database tables contains indexes about the reports that are stored in the Content Manager OnDemand Archive.
- The second set of database tables contain information about the objects that are defined to the system, such as users, groups, printers, application groups, applications, folders, cabinets, and storage sets.

The database manager provides the database engine and utilities to administer the database. The library server processes client logons, queries, and print requests and updates to the database. The major functions that run on the library server are the request manager, the database manager, and the server print manager.

A Content Manager OnDemand object server maintains documents on cache storage volumes and an archive storage manager. Archive Storage Managers such as TSM on MP systems, OAM on z/OS systems, or ASM on IBM i systems allow for hierarchical storage management techniques to be applied to the stored documents. An object server loads data, retrieves documents, and expires documents. The major functions that run on an object server are the cache storage manager, data loading and maintenance programs, and optionally, the archive storage manager.

The basic Content Manager OnDemand configuration is a library server and an object server on the same physical system or node. This single library or object server configuration supports the database functions and cache storage on one system. You can add an archive storage manager to the single library or object server configuration to maintain documents on archive media.

On some platforms, you can also configure your Content Manager OnDemand system with a library server on one node and one or more object servers on different nodes. These nodes can run the same or different operating systems. This configuration is known as a distributed library/object server system. The distributed library and object server configuration supports caching of documents on different servers. You can add an archive storage manager to one or more of the object servers to maintain documents on archive media that are attached to different servers. One of the key requirements in a distributed library or object server system is that all of the distributed components must be at the same Content Manager OnDemand code level.

1.3.2 Content Manager OnDemand server components

A Content Manager OnDemand server environment contains several components:

- A request manager provides client, network, and operating system services, security, and accounting. The request manager is on the library server.
- A database manager maintains the index data for the reports that you store on the system. The database manager is a relational database management product, such as DB2®. The database manager is on the library server.
Database control information is information about the users, groups, application groups, applications, folders, cabinets, storage sets, and printers that you define on the system. The control information determines who can access the system, the folders that a user can open, and the application group data that a user can query and retrieve. The database is on the library server.

A cache storage manager maintains documents in cache storage. If the Archive Storage server is accessed through the network then Cache storage can be used for high-speed access to the most frequently used documents.

An archive storage manager is an optional part of the system. The archive storage manager is for the long-term storage of one or more copies of documents on archive media, such as slower disk or tape storage libraries.

If your Content Management OnDemand System is installed on an MP platform and you need to download documents from a z/OS system, you can use a download facility to automatically transfer spooled files to the MP server. As a preferable practice, use Download for IBM z/OS, a licensed feature of IBM Print Services Facility™ (PSF) for z/OS. Download for IBM z/OS provides the automatic, high-speed download of JES spooled files from an z/OS system to Content Manager OnDemand servers. The download facility is not applicable to the IBM i server.

Data indexing and conversion programs can create index data, collect required resources, and optionally convert line data reports to AFP data. Content Manager OnDemand provides several indexing programs:

- The AFP Conversion and Indexing Facility (ACIF) can be used to index IBM z/OS line data, ASCII data, and AFP files, collect resources necessary to view the reports, and convert line data files to AFP data.
- The IBM OS/390® indexer is a high performance indexer that can be used to index various data types and is available on both IBM z/OS and IBM AIX®.
- The IBM OS/400® indexer can be used to index various data types and is the most common Content Manager OnDemand indexer for IBM i spooled files.
- The Content Manager OnDemand PDF Indexer can be used to create index data for Adobe Portable Document File (PDF) files.
- The Content Manager OnDemand Generic Index File Format can be used to provide index data for almost any other type of data, such as HTML documents, word-processing documents, and TIFF files.
- The XML Indexer allows for rapid increase in XML archiving mandates based on ISO 20022 standards with XML (including SEPA in Europe). The XML indexer is Optimized for high volume batch archiving of XML, Batch PDF, AFP, Line Data and Check Images.
- The Full Text Indexer allows you to index the full text of a document (or report). You can search through an indexed document.

Data loading programs can be set up to automatically store report data into application groups and update the database. The data loading programs can run on any Content Manager OnDemand server.

Report Distribution Facility provides an easy way to automatically group reports and portions of reports and distribute the reports to multiple users. Distributions can be printed, created as an output file, or emailed as an attachment.

Both the archived reports and their resources are stored in the Content Manager OnDemand Archive. The Content Manager OnDemand system manages the stored data throughout its lifetime, it provides authorized users rapid access to the data and allows for the data to be converted into different formats for display or print.
A server print facility allows users to reprint a large volume of documents at high speed. Print servers, such as infoprint (on AIX), can be started to manage the server print devices. These print servers are not part of Content Manager OnDemand and must be purchased separately.

Content Manager OnDemand management programs maintain the Content Manager OnDemand database and documents in cache storage.

A system logging facility provides administrators with tools to monitor server activity and respond to specific events as they occur. The interface to the system logging facility is through the system log folder and the system log user exit.
Optimize Your IBM CMOD Return On Investment

End-to-end services from IBM’s most experienced CMOD partner

Are you getting the maximum return on your IBM® Content Manager OnDemand (CMOD) investment? Is CMOD optimized to meet current and future requirements?

enChoice will ensure your system operates at peak performance. Contact us to learn why companies including Arizona Public Service, US Foods and Winnebago choose enChoice as their preferred partner for:

- Installations/deployments
- Migrations/upgrades
- Support/managed services
- Remote system administration
- Mentoring and V9.X education

FREE DOWNLOAD:
Top 10 Tips for Getting the Most Out of Your CMOD System
Click here to read it now »

enchoice.com | cmodinfo@enchoice.com

THE ABOVE IS A PAID PROMOTION. IT DOES NOT CONSTITUTE AN ENDORSEMENT OF ANY OF THE ABOVE COMPANY’S PRODUCTS, SERVICES OR WEBSITES BY IBM. NOR DOES IT REFLECT THE OPINION OF IBM, IBM MANAGEMENT, SHAREHOLDERS OR OFFICERS. IBM DISCLAIMS ANY AND ALL WARRANTIES FOR GOODS OR SERVICES RECEIVED THROUGH OR PROMOTED BY THE ABOVE COMPANY.
Setting up a Content Manager OnDemand instance

This chapter provides guidelines for implementing Content Manager OnDemand as a single instance.

In this chapter, we cover the following topics:

- Introduction
- Architecture and platform
- Implementing a Content Manager OnDemand instance on a Multiplatform UNIX environment.
- Implementing a Content Manager OnDemand instance on IBM i
- Implementing a Content Manager OnDemand instance on z/OS
2.1 Introduction

A Content Manager OnDemand instance is a logical server environment. The base system components are a library server and one or more object servers. Optional components include one or more Archive managers and one or more Full Text Servers.

2.2 Architecture and platform

Before you begin your installation and configuration, it is important to understand the general architecture of the Content Manager OnDemand server. This helps you determine the type of configuration that meets your business requirements. As illustrated in Figure 2-1, from an architectural perspective, the base Content Manager OnDemand server consists of two components: a library server and one or more object servers. The library server contains the database system tables and the application group data tables. The object server contains the stored reports and documents.

Data is loaded and retrieved from the Content Manager OnDemand server through a network connection (TCP/IP). The advantages of this design include:

- The instance components can be physically distributed across the network.
- System users (client systems) can be located anywhere on the network. By using the Internet, the clients can be located anywhere in the world.
- The “load process” can run either on the library server, the object server, or on any other system (containing the appropriate software) that is network attached to both the library and object server.
- This also allows for the library server and object servers to be placed on the same system (or LPAR) or on two (or more) systems (LPARs).

Even though the various components can be distributed across the network, the Content Manager OnDemand Instance appears as a “single system” to both the Administrator and the users.
2.2.1 Configuration consideration

The basic Content Manager OnDemand configuration is to install the library server and object server on the same machine. This is the default and most common configuration. However, there are conditions under which it might be beneficial to distribute the library server, the object server and the load process to different systems.

The considerations to run one or more of the load processes on one or more separate system include:

- Reducing system resource (processor or memory) consumption competition on the library and object server system
- Reducing the network traffic time by running the load process on the system on which the load data is created
- Better performance for certain index or load process to run on other system
- More convenient in operating and managing the data because the data is in a smaller set

The considerations of having separate object servers include:

- Distributing the workload amongst multiple systems
- Distributing the data storage amongst multiple systems
- Storing the data closer to where it will be accessed from. For example: your main operations (library server and object server) is in the USA but you have many users in China and France, then you could install an object server in France to keep French data and another object server in China to store Chinese data. The original object server would remain in the USA where the US data would be kept.

The considerations for distributed library server, object servers, and load processes include:

- Using different Operation Systems. For example, the library server might be on a z/OS system while an object server can be on an AIX system and another object server can be on a Linux system.
- All the system components must be at the same release level of Content Manager OnDemand, for example CMOD 9.5.

2.2.2 Library server and object server functions

Functionality is distributed between the library server and object servers as follows:

- Library server
  - Manages access to the administration definitions.
  - Provides data integrity.
  - Maintains data archive index information, configuration, and user account information.
  - Controls access to data archives on object servers.
  - Directs query, retrieve, and print requests from the clients.
  - Routes store, retrieve, and delete requests from the clients.
  - Manages the (optional) Report Distribution System.
  - Manages the “interface” to the (optional) Full Text Index system.
  - Performs user authentication through internal security or external security system authorization facility (SAF) calls.
  - Performs logging.
Object server
- Provides the repository for Content Manager OnDemand data archives.
- Stores archive storage policy information.
- Manages the retention of Content Manager OnDemand data archives.
- Controls the transition of Content Manager OnDemand archives.
- Manages the expiration of Content Manager OnDemand archives.

2.2.3 Choosing a platform

A Content Manager OnDemand server can run on many different operating system and hardware environments. It can be set up to run on a workstation and can scale up to an IBM zSeries complex. Here is a list of some of the factors that enter into the decision to implement Content Manager OnDemand on one platform versus another platform:

- Existing hardware platforms
- Future hardware requirements (standardization, consolidation, and others)
- Existing personnel and skill set
- Current workload (number of users, quantity of data, and others)
- Future workload requirements (number of users, quantity of data, and others)
- Interfacing with other systems (software and data)
- Vendor's ability to support the environment (hardware, software, and users over any geographic extent)

Default installation directory paths: The default installation directory path names changed for Content Manager OnDemand for Multiplatforms Server. Here are the default installation paths for CMOD 9.5:

- /opt/IBM/ondemand/V9.5 for AIX and Sun (Note that HP is no longer a supported platform in V9.5.)
- /opt/ibm/ondemand/V9.5 for Linux and Linux on IBM System z®
- C:\Program Files\IBM\OnDemand\V9.5 for Windows
- /usr/lpp/ars/V9R5M0 for z/OS
- /QIBM/ProdData/OnDemand for IBM i

You can install Content Manager OnDemand to the default path or specify a different path. Because this book discusses all Content Manager OnDemand platforms, you see various interchangeable references to these paths. Ensure that you check your own installation for the path name that is implemented and interpret the paths that are identified in the manual.

Starting with Version 9.5, the installation can be performed by a non-root user on UNIX. When installed as a non-root user, the install path is fixed under the home directory of the user:

- $HOME,$HOME/IBM/ondemand/V9.5 for AIX and Sun
- $HOME/ibm/ondemand/V9.5 for Linux and Linux on IBM System z.
2.3 Implementing a Content Manager OnDemand instance on a Multiplatform UNIX environment

In this section, we describe how to set up a single instance in a Content Manager OnDemand for a Multiplatform UNIX environment. Always refer to the product documentation of your release for the specific steps to follow.

2.3.1 Defining a single instance

By default, the initial instance on any library server is named archive.

Creating a single instance can be summarized by the following steps:

1. Creating a user
2. Creating a DB2 instance
3. Installing IBM Global Security Kit
4. Setting up Secure Sockets Layer
5. Storing user IDs and passwords in a stash file
6. Installing and configuring Tivoli Storage Manager
7. Configuring the instance
8. Creating a Content Manager OnDemand database
9. Initializing the system log and system load facility

Creating a user

New installations (instances) of Content Manager OnDemand can be configured to run under a user other than the root user. If you plan to run an instance under a user other than root, you complete the following steps:

1. Create the user for the Content Manager OnDemand instance owner that is a member of the database owners group.
2. Give the user administrator authority to the database.
3. Set permissions for the cache storage file systems.
4. Set permissions for the Content Manager OnDemand configuration and script files.
5. Give the instance owner permission to write to the system console.
6. Specify the instance owner in the ARS.INI file.

If you plan to run a distributed library and object server system, with one or more object servers on different workstations or nodes than the library server, then you should also configure Content Manager OnDemand on the object servers.

To configure Content Manager OnDemand on the object servers, complete the following steps:

1. Create a group and user for the Content Manager OnDemand instance owner.
2. Give ownership of the cache storage file systems that are listed in the ARS.CACHE file to the group and user for the Content Manager OnDemand instance owner.
3. Give permission to read the following files to the Content Manager OnDemand instance owner:
   - ARS.CACHE
   - ARS.CFG
   - ARS.INI
   - ARS.DBFS
4. Give permission to write to the console to the Content Manager OnDemand instance owner.

**Creating a DB2 instance**

When you create a DB2 instance, you must install DB2 on the server. To do so, complete the following steps:

1. Install IBM DB2 Universal Database™ Enterprise Edition.
2. Select **Typical** as the installation type to install all the DB2 components that are required to support Content Manager OnDemand.
3. Create the DB2 instance for Content Manager OnDemand when you install DB2. Use the following values:
   - Instance Owner: archive.
   - Group Name: gname. The group must have SYSADM authority.
   - Auto start DB2 instance at boot time: no.
   - Create a sample database for DB2 instance: no.

**Installing IBM Global Security Kit**

When you install the IBM Global Security Kit (GSKit), you can complete the task by using one of the following methods:

- **SMIT GUI**
- **installp command**

Before you perform the installation, complete the following steps:

1. Content Manager OnDemand is 64-bit application. Validate whether the Content Manager OnDemand Web Enablement Kit (ODWEK) installation is 32-bit or 64-bit.
2. Extract the appropriate GSKit media based on the version that is needed.
   - For the 32-bit version, run the following commands:
     ```
     zcat gskcrypt32-8.0.14.45.aix.ppc.tar.Z | tar -xvf -
     zcat gskssl32-8.0.14.45.aix.ppc.tar.Z | tar -xvf -
     ```
   - For the 64-bit version, run the following commands:
     ```
     zcat gskcrypt64-8.0.13.4.aix.ppc.tar.Z | tar -xvf -
     zcat gskssl64-8.0.13.4.aix.ppc.tar.Z | tar -xvf -
     ```

**Setting up Secure Sockets Layer**

Setting up the Secure Sockets Layer (SSL) is optional. If you decide to use Secure Sockets, then complete the following steps:

1. Create the key database and store it in the config subdirectory of Content Manager OnDemand server installation directory:
   ```
   /opt/IBM/ondemand/V9.5/config
   ```
   To create the key database, run a command similar to the following command:
   ```
   gsk8capicmd_64 -keydb -create -db "ondemand.kdb" -pw "myKeyDBpasswd" -stash -populate
   ```
2. Create a digital certificate.
3. Configure the Content Manager OnDemand for AIX server. Add the following lines to the ARS.INI file:
   ```
   SSL_PORT=port_number
   ```
SSL_KEYRING_FILE=/opt/IBM/ondemand/V9.5/config/ondemand.kdb
SSL_KEYRING_STASH=/opt/IBM/ondemand/V9.5/config/ondemand.sth
SSL_KEYRING_LABEL=IBM Content Manager OnDemand
SSL_CLNT_USE_SSL=0

4. Restart the Content Manager OnDemand server.

Storing user IDs and passwords in a stash file
You can store user IDs and passwords in stash files (encrypted files). Storing passwords in a stash file allows you to improve security because you do not need to specify the password on the command line, where the password might be visible to others.

To store the user IDs and passwords into a stash file, complete the following steps:

1. Create a stash file by running `arsstash`. The command prompts you for the password. For a description of the syntax of the `ARSSTASH` command and example of the command, see "Syntax of the ARSSTASH command" in the IBM Content Manager OnDemand for Multiplatforms - Installation and Configuration Guide, SC18-9232
2. Save the stash file in a directory with limited access to that file. You can set this access by using file permissions.

When you configure the Content Manager OnDemand instance, you modify the `ARS.INI` file to include the `SRVR_OD_STASH` parameter and specify the directory that you specified in step 2:

```
SRVR_OD_STASH=/opt/IBM/ondemand/V9.5/config/ars.stash
```

Installing and configuring Tivoli Storage Manager
Before you begin, you should familiarize yourself with configuring and managing a server storage, as described in the Tivoli Storage Manager for AIX Administrator’s Guide, GC32-0768. In addition, the IBM Tivoli Storage Manager for AIX Administrator’s Reference, SC32-0123 provides information about all of the commands that are used in this section and should be your primary reference when you work with IBM Tivoli Storage Manager. If you encounter problems while configuring Tivoli Storage Manager or if the examples in this section do not provide the information that you need to define your server storage devices, policies, and operations, see these Tivoli Storage Manager publications.

To set up Tivoli Storage Manager for Content Manager OnDemand on an AIX workstation, complete the following steps:

1. Define the Tivoli Storage Manager server options.
2. Define the Tivoli Storage Manager client system options.
3. Define the Tivoli Storage Manager client options.
4. Register the Tivoli Storage Manager licenses.
5. Register the Tivoli Storage Manager administrators.
6. Define other Tivoli Storage Manager server options.
7. Start, halt, and restart the Tivoli Storage Manager server.
8. Increase the Tivoli Storage Manager database and recovery log sizes.
9. Define a storage library.
10. Define policy domains.
11. Register client nodes.
12. Prepare storage pool volumes.
13. Optional: Configure Tivoli Storage Manager to maintain DB2 archived log files and backup image files.

14. Define a backup device for the Tivoli Storage Manager database.

15. Back up the Tivoli Storage Manager database and critical files.

Configuring the instance

Four configuration files must be updated or created. They are installed with Content Manager OnDemand at installation time. For the AIX platform, they are in `/opt/IBM/ondemand/<version>/config`. Here are the configuration files:

- ARS.INI
- ARS.CFG
- ARS.CACHE
- ARS.DBFS

**ARS.INI**

The ARS.INI file contains a section for each instance; each section begins with a header. It is created at installation time, and by default, is configured with information for the archive instance.

Figure 2-2 shows a sample ARS.INI file. In this scenario, OnDemand95 is the header line definition.

```
[@SRV@_ondmd950]
HOST=myServer.boulder.ibm.com
PROTOCOL=2
PORT=1450
SRVR_INSTANCE=ondmd950
SRVR_INSTANCE_OWNER=ondmd950
SRVR_OD_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.cfg
SRVR_DB_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.dbfs
SRVR_SM_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.cache
SSL_KEYRING_FILE=/opt/IBM/ondemand/V9.5/config/ondemand.kdb
SSL_KEYRING_STASH=/opt/IBM/ondemand/V9.5/config/ondemand.sth
SSL_KEYRING_LABEL=IBM Content Manager OnDemand
SSL_CLI_USE_SSL=0
```

*Figure 2-2 ARS.INI file sample*

When you add an instance to an ARS.INI file, each instance must have a unique name. When you have more than one instance, you must identify the instance name when you are running Content Manager OnDemand programs (such as ARSLOAD, ARSDB, and ARSSOCKD).

Figure 2-3 shows an example of an additional instance in the ARS.INI file.
Figure 2-3   Additional instance

[SRV@_ondmd951]
HOST=myServer.boulder.ibm.com
PROTOCOL=2
PORT=1451
SRVR_INSTANCE=ondmd951
SRVR_INSTANCE_OWNER=ondmd951
SRVR_OD_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.v9501.cfg
SRVR_DB_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.v9501.dbfs
SRVR_SM_CFG=/opt/IBM/ondemand/V9.5/config/db2/ars.v9501.cache
SSL_KEYRING_FILE=/opt/IBM/ondemand/V9.5/config/ondmd951.kdb
SSL_KEYRING_STASH=/opt/IBM/ondemand/V9.5/config/ondmd951.sth
SSL_KEYRING_LABEL=IBM Content Manager OnDemand
SSL_CLNT_USE_SSL=0

Note: You must ensure that the ARS.INI file is consistent across all servers that are part of the Content Manager OnDemand system. If you make an update to the ARS.INI file on the library server, you must make the appropriate update to the ARS.INI files on the object server or servers if they are not on the same machines.

**ARS.CFG**

When an instance is started, Content Manager OnDemand reads the ARS.INI file to determine where the server configuration file is. Each instance must have its own ARS.CFG file that is determined by the SRVR_OD_CFG parameter in ARS.INI.

When you configure the parameters, the default values are sufficient for most customers. However, you might need to adjust and tune the values to meet the requirements of your environment.

To update the ARS.CFG file, complete the following steps:

1. Log in to the server as the root user.
2. Change to the /opt/IBM/ondemand/V9.5/config directory.
3. Make a backup copy of the file that is provided by IBM.
4. Edit the ARS.CFG file.

**Note for distributed library and object servers:** Some parameters in the ARS.CFG file are not used on object servers. For example, an object server does not use the license parameters, server print parameters, and database parameters. For more information, see the sections that follow.

For distributed library and object servers:

1. Configure one copy of the ARS.CFG file on each workstation that is part of the Content Manager OnDemand system.
2. Set the ARS_SRVR parameter to the TCP/IP host name alias, fully qualified host name, or IP address of the library server.
3. Set the ARS_LOCAL_SRVR parameter to the TCP/IP host name alias, fully qualified host name, or IP address of the object server.

4. Save the file.
5. Set file permissions on the file to control access. Allow Content Manager OnDemand instance to have read or write.

Figure 2-4 and Figure 2-5 on page 27 show sample ARS.CFG file content, split into two parts for easier reference.

```
# NOTE: See documentation for configuring these parameters.

# OnDemand Parameters #

# Number of client licenses (Library Server Only)
# - This should be set to however many licenses are purchased
ARS_NUM_LICENSE=100

# Language that is used to create the database (Library Server Only)
# - This should be set during installation and should never be changed
ARS.ORIGINAL_CODEPAGE=1208

# ARS_SRVR=
ARS_LOCAL_SRVR=

# The number of Database SubServers to handle connections
to the database
ARS_NUM_DBSRVR=20
ARS_TMP=/arstmp/logs/db2/cmod95
ARS_PRINT_PATH=/arstmp/logs/db2/cmod95

# Database Parameters #

# Database for OnDemand to use (Library Server Only)
ARS_DB_ENGINE=DB2

# Used for arsblsp command and reloading migrated tables (Library Server Only)
# 0 (import) 1 (load w/Tivoli Storage Manager - DB2 only) 2 (load w/DISK - DB2 only, using ARS_TMP)
ARS_DB_IMPORT=0
```

Figure 2-4  ARS.CFG sample (part 1)
Content Manager OnDemand supports cache storage for temporary storage and high-speed retrieval of reports that are stored on the system. Each Content Manager OnDemand instance can have its own cache storage to allow for a complete differentiation between the instance. The ARS.CACHE file identifies the file systems on the object server that can be used by Content Manager OnDemand for the cache storage.

Alternatively, Content Manager OnDemand instance can share cache storage because Content Manager OnDemand separates the cache directories by first placing the instance name at the cache directory that is defined. For the archive instance, however, the cache directory is directly below the defined file system name. For the rest of the instance, the cache directories are separated by the instance name. The SRVR_SM_CFG parameter in the ARS.INI file identifies the cache file systems that are used by the instance. This file can contain one or more file systems.

**Important:** The first line in the ARS.CACHE file identifies the base cache storage file system where Content Manager OnDemand stores the control information. After you define this value, you cannot add or remove it from Content Manager OnDemand or change it in any way.

The cache file system must be owned by the Content Manager OnDemand instance owner. The permissions on these file systems are important. On AIX servers, the cache file system must be owned by the root user and the system group. On Linux, HP-UX, and Sun Solaris, these file systems must be owned by the root user and the root group. You must ensure that no other permissions are set. On AIX, the file system permissions should be similar to the following example:

drwx------ 3 root system 512 Sep 22 13:08 /arscache/cache1
The ARS.DBFS file location is identified in the ARS.INI file. It is read when the instance is started. The ARS.DBFS file contains the file names in which Content Manager OnDemand can store table spaces, and it determines the type of table space that Content Manager OnDemand can create. Storing application group index data in a table space is optional, but recommended. We also recommend that these file systems contain only Content Manager OnDemand data and that each instance on the server has its own file systems on which to store data. In general, the more table space file systems that you define, the better the system performance is. When you use more than one, each of these file systems should have the same allocated disk space.

When you use DB2 as the database, Content Manager OnDemand supports the use of SMS and automatic table space. See the DB2 documentation for using automatic table spaces. Using SMS table space allows the operating system to increase the size of the table space, as required, during a load process.

When you create an instance that uses table space, you must create a ARS.DBFS file. We created ars.dbfs in our scenario. Each line in this file must contain the name of the file system and the type of table space to be stored. The naming convention of these files is as follows:

```
/filesystem SMS
```

The name of the file system should identify the table spaces that can be created in the file system. For example, the following line identifies the SMS table space file system:

```
/arsdb/db1/SMS
```

These file systems must be owned by the database instance owner and the group. In our scenario, it is owned by db2iadm1 and belongs to the sysadm1 group. See the following example for the correct permissions:

```
drwxrws---  4 archive db2iadm1       512 May 17 12:58 /arsdb/db1/SMS
```

We include the SMS in the file system name to indicate the type of data that is stored.

Creating a Content Manager OnDemand database

After the database instance is created, and all the Content Manager OnDemand directories are set up with the appropriate permissions, it is time to create the Content Manager OnDemand database. Verify that the group that the database instance owner (ondtest) belongs to has write access to the database directory names specified in the ARS.CFG file.

The arsdb command performs the following actions:

- Updates the database configuration.
- Verifies the directories for the primary and the archived log files.
- Creates a link to the database user exit program.
- Creates a backup of the database.
- Builds the Content Manager OnDemand system tables and indexes.
- Binds the database to Content Manager OnDemand.

Sign on to the user account that you assigned as the owner of the Content Manager OnDemand instance (in the ARS.INI file). Run arsdb with the following options:

```
/opt/IBM/ondemand/V9.5/bin/arsdb -I ondmd950 -cv
```

In our scenario, -I ondmd950 is the Content Manager OnDemand instance.
After this command completes, you should be able to log in to DB2 and connect to the new instance. List all the tables by running the following command:

db2 list tables for all

**Initializing the system log and system load facility**

After you create the database, you can initialize the system log by running the following command:

```
/opt/IBM/ondemand/V9.5/bin/arssyscr -I ondmd950 -l
```

-I ondmd950 is the new Content Manager OnDemand instance.

Content Manager OnDemand can track loading activity with the system load logging facility. Content Manager OnDemand stores these load messages in the system load log. You can initialize the system load log by running the following command:

```
/opt/IBM/ondemand/V9.5/bin/arssyscr -I ondmd950 -a
```

Again, -I ondmd950 is the new Content Manager OnDemand instance.

The `arssyscr` program creates the application groups, applications, and folders that are required by the system logging facility.

**Note:** The `arsdb` and `arssyscr` commands are located in

```
/opt/IBM/ondemand/V9.5/bin for AIX, HP-UX, and Sun Solaris, and in
/opt/ibm/ondemand/V9.5/bin for Linux.
```

### 2.3.2 Starting and connecting to the new instance

After the instance is created, you can start the new instance and connect to it.

**Starting and stopping arssockd**

To start the instance manually, run the following command and include the instance name after the `arssockd` command:

```
/opt/IBM/ondemand/V9.5/bin/arssockd -I ondmd950 -Sv
```

Run the `ps` command to verify that the instance is started:

```
ps -ef | grep ars
```

If you have more than one instance running, you see more than one `arssockd` process in the display. The instance other than the default instance archive has a `-instancename` after `arssockd` for identification:

```
OnDemand95 65864128        1   0   Jun 11      -  0:00 arssockd-ondmd950:
```

Be sure that when you stop the instance, you stop the correct one. You might stop the instance by running `kill` on the process identifier (PID) of the accepting process or by running the following command:

```
arssockd -I ondmd950 -T
```

**Connecting to an instance**

To connect to an instance, the client must log on to the correct library server. Add a server in the administrative or user client by identifying the name of the library server and the port
number to use. The port number that you specify must be the same port number that you specified in the ARS.INI file.

Running commands
In general, the -h or -I parameters are used to determine the name of the Content Manager OnDemand instance to process. You must specify the parameter and the instance name if any of the following items are true:

- The name of the default instance is not ARCHIVE.
- You are running more than one instance on the same system and you want to process an instance other than the default instance.
- You are running the program on a system other than where the library server is running.

The programs locate the specified instance name in the ARS.INI file to determine the TCP/IP address, host name alias, or fully qualified host name of the system on which the library server is running and other information about the instance. The ARSADM, ARSADMIN, ARSDOC, and ARSLOAD programs support the -h parameter. The ARSDB, ARSLOAD, ARSMAINT, and ARSTBLSP programs support the -I parameter.

For the ARSLOAD program, if both the -h and -I parameters are specified, the value of the last parameter that is specified is used, for example:

arsload -g applicationgroup -u userid -p password -I ondmd950 test.data
arsmaint -cmsv -I ondmd950

2.4 Implementing a Content Manager OnDemand instance on IBM i

Always refer to the product documentation of your release for the specific steps to follow. A Content Manager OnDemand instance is a logical server environment with its own library containing a unique set of database files. An instance is defined in the ARS.INI file by naming the instance (which identifies the name of the library that is used by the instance). All of the database files that belong to an instance are created in only one Coded Character Set ID (CCSID).

You can run multiple instances on the same server, with each instance configured differently:

- To have separate test and production environments
- To have databases using different CCSIDs

In addition, each Content Manager OnDemand for i instance must run in a single Coded Character Set ID.

When you work with more than one instance, you must identify the instance name when you run Content Manager OnDemand commands (such as ADDRPTOND and STRMONOND). You can specify the instance name as a command parameter each time you run a command, or you can set up a data area on your system that identifies the default instance name and then specify only the instance name as a command parameter when you must specify a name other than the default.

Each instance has different security from other instances on the same machine. You define users and groups to each instance and set application group and folder permissions for users in each instance. Each instance has its own system log.
2.4.1 Configuring the instance

To create your Content Manager OnDemand instances, complete the following steps:

1. Your user profile must have its locale set to the locale of the instance you want to create.

   Because the locale is set in the user profile, you might need to change your user profile, then sign off and back on before you create the instance. Use the Change User Profile (CHGUSRPRF) command to change (if necessary) your user profile. You should also make sure that other language-related parameters in your user profile are set correctly. (The Change User Profile (CHGUSRPRF) command does not show the current locale setting; it shows *SAME. Run the Display User Profile (DSPUSRPRF) command to check the locale setting.) The Locale Job Attributes (SETJOBATR) parameter in your user profile is used to determine which values are obtained from the locale. For Content Manager OnDemand, at a minimum, you must use SETJOBATR(*CCSID). For example, if you are located in the US and are using the English language, you enter the following Change User Profile command (all as one command):

   CHGUSRPRF USRPRF(user_profile_name) LANGID(ENU) CNTRYID(US) CCSID(37)
   SETJOBATR(*CCSID *DATFMT *TIMSEP *DATSEP *DECFMT *SRTSEQ)
   LOCALE('/QSYS.LIB/EN_US.LOCALE')

   If you are located in Spain and are using the Spanish language with euro support, you enter the following command (all as one command):

   CHGUSRPRF USRPRF(user_profile_name) LANGID(ESP) CNTRYID(ES) CCSID(1145)
   SETJOBATR(*CCSID *DATFMT *TIMSEP *DATSEP *DECFMT *SRTSEQ)
   LOCALE('/QSYS.LIB/ES_ES.LOCALE')

   For more information about locales, see Chapter 13, “Defining a locale”, in IBM Content Manager OnDemand for i - Common Server Planning and Installation Guide, SC19-2790.

2. Choose a name for the instance or use the default instance name of QUSROND.

   The instance name must be a valid library name for IBM i. The instance name must start with an alphabetic character or @ followed by any of these characters: 0-9, A-Z, @, #, or underscore (_). Ensure that no library, user profile, or authorization list by that name already exists. The instance name must not start with the letter Q (except for QUSROND), and must not be named CONFIG, GUI or WWW. This instance name is referred to as [instance] in the rest of these instructions.

3. Create the instance by using the Create Instance for Content Manager OnDemand (CRTINSTOND) command.

   At a minimum, you must specify the name of the instance (which then uses system values and defaults for the additional parameters, such as *DFT for the PORT parameter, which uses port 1445). You can specify additional parameters to customize the instance to meet your requirements. For example, you can specify a three-character language identifier (using the LANGID parameter), which must match one of the language identifiers that are listed in Chapter 13, “Defining a locale”, in IBM Content Manager OnDemand i - Planning and Installation Guide, SC19-2790. If you specify the LOCALE parameter, the one that you specify should be included in the list of valid locales that are listed in Chapter 13, “Defining a locale”, in IBM Content Manager OnDemand i - Planning and Installation Guide, SC19-2790. If the instance is in a user Auxiliary Storage Pool (ASP), then the user ASP number (2 - 32) must be specified for the ASP parameter and *ASP must be specified for the ASPDEV parameter. If the instance is in an Independent Auxiliary Storage Pool (IASP), then *ASPDDEV must be specified for the ASP parameter and the IASP name (such as IASP2) must be specified for the ASPDEV parameter. For example, the Create instance for Content Manager OnDemand command CRTINSTOND INSTANCE(ONDTEST) LANGID(ENU) LOCALE('/QSYS.LIB/EN_US.LOCALE') creates an instance that is called ONDTEST with a server language of US English, using TCP/IP port 1445.
The **CRTINSTOND** command performs the following actions:

- Creates the `/CONFIG` directory under `/QIBM/UserData/OnDemand` and the default and model files under `/QIBM/UserData/OnDemand` (if they do not already exist).

- Appends the model ARS.INI file (in `/QIBM/ProdData/OnDemand/config`) to the actual ARS.INI file (in `/QIBM/UserData/OnDemand/config`) and uses the name of the instance wherever it finds [instance] in the model file.

- Creates the instance directory `/QIBM/UserData/OnDemand/[instance]`. If the instance is in an Independent ASP, the instance directory path is preceded by the Independent ASP name. For example, if the Independent ASP name is IASP, the instance directory is created in `/IASP/QIBM/UserData/OnDemand`.

- Creates the ARS.CFG, ARS.CACHE, and ARS.DBFS files in `/QIBM/UserData/OnDemand/[instance]` and uses the name of the instance wherever it finds [instance] and the language identifier wherever it finds [language] in the model file. (The model files for these three files are in `/QIBM/ProdData/OnDemand/config`). If the instance is in an Independent ASP, the instance directory path is preceded by the Independent ASP name. For example, if the Independent ASP name is IASP, the ARS.CFG, ARS.CACHE, and ARS.DBFS files are created in `/IASP/QIBM/UserData/OnDemand/[instance]`.

- Creates the library and database tables for the instance. If the instance is in an IASP, you must set the ASP Group before you can work with files in that library. Run the Set ASP Group (**SETASPGRP**) command to set the ASP Group.

- Creates the directories that are needed for the instance as specified in the ARS.CFG and ARS.CACHE files.

- Creates a user profile with the same name as the instance, and adds that user to the instance as a Content Manager OnDemand System Administrator.

- Adds the user QONDADM to the instance as a Content Manager OnDemand System Administrator.

- Creates an authorization list with the same name as the instance.

- If the instance is in an Independent ASP, a record is added to the file QARLCASP in library QUSRDDARS.

### 2.4.2 Changing an instance configuration

To change an instance configuration, you must change the configuration parameters in the ARS.INI and ARS.CFG files.

#### Configuration parameters in the ARS.INI file

You might need to change some of the configuration parameters from the values that you specified when you ran the CRTINSTOND command before you use this instance the first time. If so, you must edit the ARS.INI file in the `/QIBM/UserData/OnDemand/config` directory by running the following command:

```
EDTF '/QIBM/UserData/OnDemand/CONFIG/ARS.INI'
```

You can change the values that are listed below. The instance definition starts with the line [*@SRV@[instance]*], where `[instance]` is the name of the instance. For example, the instance ONDTST starts with the line [*@SRV@_ONDTST*].

The following lines might need to be reviewed:

- **PORT=0**: The port to which the server listens to receive requests from a Content Manager OnDemand client. The value of 0 means to use the default port of 1445. Only one server
can be listening to a particular port at any given time. To run multiple instances concurrently, you must specify an unused port on your system. You can run the Work with TCP/IP Network Sts (WRKTCPSTS) OPTION(*CNN) command to see what ports are in use on your system.

- `SRVR_FLAGS_SECURITY_EXIT=1`: Specifies that you want to use IBM i user IDs and passwords as the Content Manager OnDemand user IDs and passwords. This is the default value and makes it simpler for your users because they do not have to maintain multiple passwords. If your Content Manager OnDemand users do not need to have IBM i user IDs, then you should specify a value of 0 for this parameter. When you do this, your Content Manager OnDemand passwords have no relationship to IBM i passwords. However, if a Content Manager OnDemand user ID and an IBM i user profile match, some Content Manager OnDemand commands and APIs use the IBM i user profile as the Content Manager OnDemand user ID, even if you have chosen not to relate the two. This situation could permit IBM i users to perform Content Manager OnDemand functions that you did not intend for them to perform. Therefore, a Content Manager OnDemand user ID should not match an IBM i user profile name unless the two IDs are used by the same individual. If you change the `SRVR_FLAGS_SECURITY_EXIT` value, you should review the Content Manager OnDemand System Parameters values (defined by the Content Manager OnDemand Administrator Client) for the instance that you changed. For more information, see “OnDemand userid relationship to IBM i user profiles” in IBM Content Manager OnDemand for i - Common Server Administration Guide, SC19-2792.

- `HOST=LOCALHOST`: If you are enabling IPv6 on your IBM i system and need some of your Content Manager OnDemand instances to use IPv4 addressing and others to use IPv6 addressing, you might need to change `HOST=LOCALHOST` to `HOST=IPV6-LOCALHOST` within the ARS.INI stanza for each instance that you want to use IPv6 addresses. You might want some instances to run with IPv6 and others with IPv4. This mixed environment is fully supported. Also, during the transition from IPv4 to IPv6, Content Manager OnDemand Clients that use IPv4 addresses can connect to the server simultaneously with clients that use IPv6 addresses.

### Configuration parameters in the ARS.CFG file

You might need to change some of the ARS.CFG configuration parameters from the default values before you use this instance. To do so, edit the ARS.CFG file in the /QIBM/UserData/OnDemand/instancename directory (where instancename is the name of the instance you want to review). For example, you might use the following Edit File command:

EDTF '/QIBM/UserData/OnDemand/MYINSTANCE/ARS.CFG'

If the instance is created in an IASP named IASP2, the command is the following command:

EDTF '/IASP2/QIBM/UserData/OnDemand/MYINSTANCE/ARS.CFG'

You can change these values:

- `ARS_LANGUAGE=ENU`: Specifies the language in which this instance runs. The 'ENU' value indicates the usage of the English language. Valid languages are listed in the “Locales” section in the IBM Content Manager OnDemand for i - Common Server Administration Guide, SC19-2792.

- `ARS_MSGS_LANGUAGE=ENU`: Specifies the language that is used for server messages. The 'ENU' value indicates the usage of the English language. Valid languages are listed in the “Locales” section in the IBM Content Manager OnDemand for i - Common Server Administration Guide, SC19-2792.

- `ARS_AUTOSTART_INSTANCE=1`: Specifies whether to automatically start the server for this instance when using the Start TCP/IP Server (STRTCPSVR) command. Set this value to 1 to automatically start this instance's server; set this value to 0 if you do not want to
automatically start this instance’s server. For more information about controlling which servers start automatically, see the “Starting and stopping servers” section in *IBM Content Manager OnDemand for i - Common Server Planning and Installation Guide*, SC19-2790.

Do not modify any of the other values in these instance definition files without first consulting with Content Manager OnDemand Support.

You must end and restart the instance server after you make any changes.

### 2.4.3 Starting and stopping servers

You must start a server for an instance before clients can connect to it.

#### Starting the servers

Servers are started by running `STRTCPSVR *ONDMD`. The `INSTANCE` parameter of the `STRTCPSVR *ONDMD` command supports the special values of *DFT, *ALL, and *AUTOSTART, and the specification of the name of an instance. (An instance is set to autostart if the `ars.cfg` file for that instance contains `ARS_AUTOSTART_INSTANCE=1`.) The default value for the `INSTANCE` parameter is *DFT. You can also create a data area named `STRTCPSVR` to further control the behavior of the `STRTCPSVR` command. For more information about the data area, see the *IBM Content Manager OnDemand for i - Common Server Administration Guide*, SC19-2792.

Without the `STRTCPSVR` data area, the values of *DFT and *AUTOSTART work identically. All instances that are set to autostart are started. Using the special value *ALL starts all the instances that are configured on the system. You can also specify the name of a single instance to start, for example:

```
STRTCPSVR SERVER(*ONDMD) INSTANCE(ONDTEST)
```

With the data area, the value of *DFT starts only the instance that is named in the data area. The data area must be named `STRTCPSVR` and in library `QUSRRDARS`. The data area should be type character with a length of 10. To create the data area, run the following command (all as one command):

```
CRTDTAARA DTAARA(QUSRRDARS/STRTCPSVR) TYPE(*CHAR) LEN(10) VALUE(QUSROND)
TEXT('Autostart instance name for STRTCPSVR *ONDMD *DFT')
```

`QUSROND` is the name of the instance to start.

The special values *ALL and *AUTOSTART work the same with the data area as without the data area.

To determine the instances that are started when `STRTCPSVR SERVER(*ONDMD) INSTANCE(*AUTOSTART)` is run, you can look for the `ARS_AUTOSTART_INSTANCE=1` in the `ARS.CFG` file. However, there is an easier way so that you do not have to check the `ARS.CFG` file for every instance.

Run `grep` in Qshell to search the contents of all the `ARS.CFG` files for the string `ARS_AUTOSTART_INSTANCE=1`. For example:

```
$ grep -n 'ARS_AUTOSTART_INSTANCE=1' /qibm/userdata/ondemand/*/*ars.cfg
$qibm/userdata/ondemand/QUSROND/ars.cfg:53:ARS_AUTOSTART_INSTANCE=1
$qibm/userdata/ondemand/ONDDEMO/ars.cfg:53:ARS_AUTOSTART_INSTANCE=1
$qibm/userdata/ondemand/ONDDEU/ars.cfg:53:ARS_AUTOSTART_INSTANCE=1
$qibm/userdata/ondemand/ONDENU/ars.cfg:53:ARS_AUTOSTART_INSTANCE=1
$qibm/userdata/ondemand/QUSROND/ars.cfg:53:ARS_AUTOSTART_INSTANCE=1
$
From the last four detail lines, which are the output of the `grep` command, you can determine that instances ONDDEMO, ONDDEU, ONDENU, and QUSROND are started when `STRTCPSVR SERVER(*ONDMD) INSTANCE(*AUTOSTART)` is run.

Table 2-1 summarizes the behavior of the `STRTCPSVR` command with and without the STRTCPSVR data area.

<table>
<thead>
<tr>
<th>Running STRTCPSVR start</th>
<th>*DFT</th>
<th>*ALL</th>
<th>*AUTOSTART</th>
<th>Named instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without the data area</td>
<td>All instances set to autostart</td>
<td>All instances configured on the system</td>
<td>All instances set to autostart</td>
<td>The named instance</td>
</tr>
<tr>
<td>With the data area</td>
<td>Only the instance named in the data area</td>
<td>All instances configured on the system</td>
<td>All instances set to autostart</td>
<td>The named instance</td>
</tr>
</tbody>
</table>

**Stopping the servers**

Servers are stopped by running `ENDTCPSVR *ONDMD`. The instance parameter of the `STRTCPSVR *ONDMD` command supports the special values of *DFT and *ALL, and the specification of the name of an instance. The default value for the `INSTANCE` parameter is *DFT. You also have the option of creating a data area named STRTCPSVR to further control the behavior of the `ENDTCPSVR` command. Create the data area as described in “Starting the servers” on page 34. For more information about the data area, see *IBM Content Manager OnDemand for i - Common Server Administration Guide*, SC19-2792. Even though the data area is named STRTCPSVR, it controls both the `STRTCPSVR` and `ENDTCPSVR` commands. This is by design so that *DFT starts and ends the same instance.

Without the `STRTCPSVR` data area, the values of *DFT and *ALL work identically. All instances that are active are ended. You can also specify the name of a single instance to end, for example:

```plaintext
ENDTCPSVR SERVER(*ONDMD) INSTANCE(ONDTEST)
```

With the data area, the value of *DFT ends only the instance that is named in the data area. The data area must be named STRTCPSVR and in library QUSRDARS.

Table 2-2 summarizes the behavior of the `ENDCPSVR` command with and without the data area.

<table>
<thead>
<tr>
<th>Running ENDCPSVR ends</th>
<th>*DFT</th>
<th>*ALL</th>
<th>Named instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without the data area</td>
<td>All active instances</td>
<td>All active instances</td>
<td>The named instance</td>
</tr>
<tr>
<td>With the data area</td>
<td>Only the instance that is named in the data area</td>
<td>All active instances</td>
<td>The named instance</td>
</tr>
</tbody>
</table>

**Server work management**

Server jobs are started by using a job description with the name of the instance (which must be found in the instance library). If a job description with that name is not found in the instance library, then job description QOND400 in library QRDARS is used (and can be changed if necessary).
The job description controls the following attributes of the server job:

- JOBQ
- JOBPTY
- OUTPTY
- PRTDEV
- OUTQ
- INLLIBL
- LOG
- LOGCLPGM
- INQMSGRPY
- JOBMSGQMX
- JOBMSGQFL

For example, if you want to change the job queue that instance TEST uses, you create a job description that is called TEST in the TEST library that specifies the job queue you want to use.

To change the run priority of the server jobs, you must add a routing entry to the subsystem. The server job is always submitted with routing data QRLMSERVER.

To change the run priority of all server jobs for all instances to 40, you could add the following routing entry to subsystem QSYSWRK. (You must choose a sequence number (SEQNBR) that is not already in use.)

```
ADDRTGE SBSD(QSYSWRK) SEQNBR(1841) CMPVAL(QRLMSERVER) PGM(QSYS/QCMD)
CLS(QSYS/QSYSCLS40)
```

After making this change, you must stop and restart all your servers.

**Automatically starting instances**

To enable an instance to start automatically each time the system restarts, you must add one of the commands that are described in 2.4.3, “Starting and stopping servers” on page 34 to your QSTRUP program. You can also add the commands to a job scheduler.

### 2.5 Implementing a Content Manager OnDemand instance on z/OS

Instances on z/OS do not differ greatly from those on multiplatforms. The concept is the same. In this section, we explain how to set up a new instance and provide some background information about the UNIX System Services implementation. Always refer to the product documentation of your release for the specific steps to follow.

Before you set up your z/OS instance of Content Manager OnDemand, you should understand the different types of configurations and the components that make up the Content Manager OnDemand instance. A source for determining is *IBM Content Manager OnDemand for z/OS - Introduction and Planning Guide*, SC19-365.

Instances are logical implementations for the separation of administration functions, users, and data on the same server. Instances have the same physical access to the program libraries, but they have different databases with a separate system log and separate file systems. Instances are typically used to separate different customers on one z/OS server to separate the test and production environments, or to use different code pages on different databases.
A Content Manager OnDemand instance on a z/OS server is a separately started task (ARSSTOCKx) using different databases, users, and application groups. Every user on the instance must be defined for the instance. Every instance has its own security if internal security is used. If an external security exit is used, it is common over all the instances.

Figure 2-6 shows an overview of the single instance on z/OS.

![Figure 2-6 Single instance overview on z/OS](image)

### 2.5.1 Installation overview

The path for the Content Manager OnDemand system is `/usr/lpp/ars/V9R5M0` (on z/OS) and `/opt/IBM/ondemand/V9.5` (on UNIX). From the `ars` directory, there are several directories that contain the Content Manager OnDemand files and executable files, such as programs and procedures. The directories are created at the installation time when you run the ARSMKDIR REXX routine from the installation library, `ARS.V9R5M0.SARINST`. The `/usr/lpp/ars/V9R5M0` directory contains the subdirectories that are listed in Table 2-3.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>All executable files, such as <code>arsdb</code> for creating the database</td>
</tr>
<tr>
<td>config</td>
<td>All configuration data sets, such as <code>ARS.INI</code></td>
</tr>
<tr>
<td>locale</td>
<td>All subdirectories for globalization</td>
</tr>
<tr>
<td>MidServer</td>
<td>All configuration files for Structured APIs</td>
</tr>
<tr>
<td>samples</td>
<td>All sample files for updating</td>
</tr>
<tr>
<td>www</td>
<td>All subdirectories for (ODWEK)</td>
</tr>
</tbody>
</table>

**Important:** All path parameters and commands are case-sensitive.

Sometimes when you choose a directory, such as `/usr/lpp/ars/V9R5M0/bin`, you see a different path when you run `pwd` because a symbolic link is set. A symbolic link is a file that contains the path name for another file or directory. Only the original path name is the real
name. An external link is a type of symbolic link; it links to an object outside of the HFS. Typically, it contains the name of an IBM MVS™ dataset.

### 2.5.2 Creating an instance on z/OS

In this section, we explain how to create an instance on z/OS system. To do so, you complete the following steps:

1. Copy the control files.
2. Verify the ARS.INI file.
3. Verify the ARS.CFG file.
4. Modify the ARS.CACHE file.
5. Verify the CLI.INI file.
6. Modify the ARSSOCKD procedure.
7. Modify the ARSLOAD procedure.

You can mount the Content Manager OnDemand installation directory at any mount point other than /usr/lpp/ars/V9R5M0. This flexibility allows you to run at different service levels. For example, SMP might be used to install into SERVICE/usr/lpp/ars/V9R5M0. SERVICE/usr/lpp/ars/V9R5M0 might be copied into /usr/lpp/ars/V9R5M0/maint for testing. When testing is complete, /usr/lpp/ars/V9R5M0/maint might be copied into /usr/lpp/ars/V9R5M0 for production.

#### Copying the control files

To copy the control files, complete the following steps:

1. Create a directory (/etc/ars) for maintaining the updated configuration files.
2. Create a symbolic link from the installed directory /usr/lpp/ars/V9R5M0/config to the /etc/ars directory. For example, `ln -s /etc/ars /usr/lpp/ars/V9R5M0/config`.
3. Set the appropriate access mode of 755.

**ARS.INI**

The ARS.INI file contains a section for each instance; each section begins with a header. It is created at installation time, and by default is configured with information for the archive instance. In this scenario, ARC95037 is the header line definition.

Figure 2-7 shows the content of a sample ARS.INI file.

```ini
[@SRV0_ARC95037]
HOST=MyHost
PROTOCOL=2
PORT=1937
SRVR_INSTANCE=ARSD937
SRVR_INSTANCE_OWNER=ARSSUS937
SRVR_OD_CFG=/usr/lpp/ars/V9R5M0/config/ars937.cfg
SRVR_SM_CFG=/usr/lpp/ars/V9R5M0/config/ars937.cache
SSL_KEYRING_STASH=/usr/lpp/ars/V9R5M0/config/ars937.stash
SRVR_FLAGS_SECURITY_EXIT=0
SRVR_FLAGS_FOLDER_APPLGRP_EXIT=0
SRVR_FLAGS_DOCUMENT_EXIT=0
SRVR_FLAGS_SQL_QUERY_EXIT=0
SRVR_FLAGS_FORCE_SECURITY=0
```

*Figure 2-7 ARS.INI file sample*
**ARS.CFG**

When an instance is started, Content Manager OnDemand reads the ARS.INI file to determine where the server configuration file is. Each instance must have its own ARS.CFG file that is determined by the SRVR_0D_CFG parameter in ARS.INI.

For a distributed library server or object server, you must configure a copy of the ARS.CFG file on each distributed server.

When you configure the parameters, the default values are sufficient for most customers. However, you might need to adjust and tune them to meet the requirements of your environment.

Figure 2-8 on page 39 shows the content of a sample ARS.CFG file.

```
ARS.ORIGINAL_CODEPAGE=
ARS_LOCAL_SRVR=
ARS_NUM_DBSRVR=20
ARS_NUM_LICENSE=1
ARS_NUM_OAMSRVR=20
ARS_OAM_DB2SSID=DSNA
ARS_OAM_PLAN=CBRIDBS
ARS_PRINT_PATH=/ars/tmp
ARS_SRVR=
DB_ENGINE=DB2
ARS_LDAP_ALLOW_ANONYMOUS=TRUE /* Allow anonymous bind connections */
ARS_LDAP_BASE_DN=foo /* Specifies 'foo' as base distinguished name */
ARS_LDAP_BIND_ATTRIBUTE=bar /* Specifies 'bar' as bound attribute */
ARS_LDAP_BIND_MESSAGES_FILE='%ONDEMAND/LDAP/msg_string.txt' /* Specifies location of LDAP message string file */
ARS_LDAP_MAPPED_ATTRIBUTE=foonly /* Specifies attribute 'foonly' returned to OnDemand as user ID */
ARS_LDAP_PORT=389 /* Specifies port on which LDAP listens */
ARS_LDAP_SERVER=127.0.0.1 /* Specifies IP address of LDAP server */
```

*Figure 2-8   ARS.CFG file sample*

**ARS.CACHE**

The ARS.CACHE file identifies the file systems on the server that can be used by Content Manager OnDemand for the cache storage. The file system is in the HFS or zFS storage.

Figure 2-9 shows an example of an ARS.CACHE file that specifies two cache storage file systems.

```
/ars1
/ars2
```

*Figure 2-9   ARS.CACHE file sample*

**Important:** The first line in the ARS.CACHE file identifies the base cache storage file system where Content Manager OnDemand stores the control information. After you define this value, you cannot add or remove it from Content Manager OnDemand or change it in any way.
The **SRVR_SM_CFG** parameter in the **ARS.INI** file identifies the cache file systems that are used by the instance. This file can contain one or more file systems.

### Configuring LDAP (optional)

Optionally, you can configure Lightweight Directory Access Protocol (LDAP) to control the logon access to Content Manager OnDemand. This is needed for multiplatform implementation and IBM i.

Following the configuration of LDAP, you can then configure Content Manager OnDemand to access the LDAP server by modifying the following configuration files:

- **ARS.CFG**
- **ARSLDAP.INI**

For more information, see Chapter 11, “Configure LDAP”, of *IBM Content Manager OnDemand for z/OS Configuration Guide*, SC19-3363.

### Verifying CLI.INI

The **CLI.INI** file contains the information that relates to the ODBC connection that the **ARSSOCKD** program uses to connect to DB2. This is referenced by the **DSNAOINI DD** statement in the PROC JCL or as an HFS file.

Figure 2-10 displays an example of the **CLI.INI**.

```
[COMMON]
MVSDEFAULTSSID=DSNA
[DSNA]
PLANNAME=DSNACLI
```

*Figure 2-10  CLI.INI file sample*

Note the following information in Figure 2-10:

- **MVSDEFAULTSSID=DSNA**: Identifies, to ODBC, the DB2 subsystem name or group attachment name in a data sharing group.
- **PLANNAME=DSNACLI**: If the plan for ODBC is not the default plan DSNACLI, you must specify the plan with **PLANNAME=plan**.

### Modifying the ARSSOCKD procedure

The **ARSSOCKD** started task is used to start the server. You must customize the procedure for your environment and copy it in the **PROCLIB** concatenation. A copy of the procedure is provided in the **SARSINST** library.

### Modifying the ARSLOAD procedure

The **ARSLOAD** procedure is used to start the **ARSLOAD** started task that monitors the spool and loads into Content Manager OnDemand.

A sample **ARSLOAD** procedure is provided in the **SARSINST** library.

### Creating the database for the new instance

The new instance uses its own set of tables. A new database must be created for this new instance. This task can be done by modifying the **ARSDB2** member in the **SARSINST** library, which is used for the initial installation. Several modifications of this job are necessary:

- Change the SQLID to another user, who must have sysadm authority.
Change the Create Storage Group Statement if you want a new storage group for the instance (this is optional).

Change the Create Database Statement.

Run the job.

Creating the table space
The new instance uses its own tables, so table space is needed. You can accomplish this task by modifying the ARSTSPAC member in SARSINST library, which is used for the initial installation. Make the following modifications:

- Change the SQLID to the same user that is used for creating the database in ARSDB2.
- Change the `IN` parameter of the `CREATE TABLESPACE` statement to the database name that you previously created in ARSDB2.
- Change the `USING` parameter to the STOGROUP name that you previously used in ARSDB2.
- Set the appropriate values for the primary and secondary allocation.
- Run the job.

Creating tables for the new instance
After all the DB2 objects are created and the configuration files are updated, the database for the instance (the system tables) must be created. This is done with the `arsdb` program.

**Important:** You must identify the instance name when you run the Content Manager OnDemand programs, such as `arsdb`, `arsload`, and `arssockd`, and for running database commands.

To create the tables, complete the following steps:

1. Go into OMVS to set up the ODBC environment.
2. Switch to the superuser (SU).
3. Set the environment variables to access the DB2 on z/OS by running the following command:
   ```bash
   export DSNAOINI="/etc/ars/cli.ini"
   ```
   The minimum parameters are the DB2 SSID and the interface (DSNCLI).
4. Run `SET` from the OMVS command line.
5. Move to the Content Manager OnDemand executable directory by running the following command:
   ```bash
   cd /usr/lpp/ars/V9R5M0/bin
   ```
6. Run the ARSDB program. This is case-sensitive.
   ```bash
   arsdb -I ARC95037 -c
   ```
7. The ARSDB program generates a series of messages. It acknowledges the successful creation of the tables when all the tables are created without any error; otherwise, it creates error messages.

You might see a message similar to the following example:

```
arsdb: "Unable to determine the database engine"
```
This message might look like a DB2 error, but the ARSDB program cannot read the configuration file. Check the log for any IBM RACF® messages writing to or opening the file system.

Many installations run several DB2 systems on the z/OS logical partition (LPAR). Sometimes, this can lead to errors if the link list contains only the DSNLOAD and DSNXIT library from a different DB2 subsystem. You can add your requested DB2 library by running the `export` command:

```sh
export STEPLIB="SYS1.DSNA.SDNSLOAD:SYS1.DSNA.SDSNLOD2:SYS1.DSNA.SDSNEXIT"
```

This sets the environment.

---

**Tip:** If you exit the shell, the setting is gone. You can add the `export` command to your OMVS login profile. Check your variables by running `SET`.

### Initializing the system log, system load, and system migration

After you create the Content Manager OnDemand system tables, the system log must be initialized with the ARSSYSCR program for this new instance. To do so, complete the following steps:

1. Move to the Content Manager OnDemand executable directory by running the following command:
   ```sh
cd /opt/IBM/ondemand/V9.5/bin
   ```
2. Run the ARSSYSCR program for this instance while using the `-I` parameter:
   ```sh
   arssyscr -I ARC95037 -l
   ```
   Here, `ARC95037` is the name of the instance.

Content Manager OnDemand supports the ability to track loading activity with the system load logging facility. Content Manager OnDemand stores these load messages in the system load log. You can initialize the system load log by completing the following steps:

1. Move to the Content Manager OnDemand executable directory by running the following command:
   ```sh
   /opt/IBM/ondemand/V9.5/bin
   ```
2. Run the ARSSYSCR program for this instance while using the `-I` parameter:
   ```sh
   arssyscr -I ARC95037 -a
   ```
   Again, `-I ARC95037` is the new Content Manager OnDemand instance.

The system migration facility is required if you plan to migrate application group index data from the database to the archive. You initialize the system migration facility by completing the following steps:

1. Move to the Content Manager OnDemand executable directory by running the following command:
   ```sh
   /opt/IBM/ondemand/V9.5/bin
   ```
2. Run the ARSSYSCR program for this instance while using the `-I` parameter:
   ```sh
   arssyscr -I ARC95037 -m
   ```
   Again, `-I ARC95037` is the new Content Manager OnDemand instance.

The ARSSYSCR program creates the application groups, applications, and folders that are required by the system logging, system load, and system migration facilities.
2.5.3 Starting and verifying the new instance

Now that the new instance is set up, you can start it and verify that it is installed correctly.

Starting the new instance

When everything is set up, you can start the new instance by customizing the sample procedure in the SARSINST library to conform to your environment.

Figure 2-11 shows an example of starting the new instance.

```
//ARS95037 PROC PARML=
/**
/* Library: USER.PRIVATE.PROCLIB(ARS95037)
/**
//ARS95037 EXEC PGM=ARSSOCKD,REGION=0M,TIME=NOLIMIT,
// PARM=(`/VERBOSE ARC95037')
//STEPLIB DD DISP=SHR,DSN=ARS.ARSV950.SARSLOAD
// DD DISP=SHR,DSN=DSN.DB2V910.SDSNEXIT
// DD DISP=SHR,DSN=DSN.DB2V910.SDSNL0D2
//ARSBIN DD PATH='/usr/lpp/ars/V9R5M0/bin'
//DSNA0INI DD PATH='/etc/ars/cli937.ini'
//SYSPRINT DD SYSOUT=* SYSPRINT DD SYSOUT=* SYSPRINT DD SYSOUT=*
```

Figure 2-11 Sample Content Manager OnDemand procedure

After this procedure is started, log on to the new instance using the different port number and create users, application groups, applications, and storage sets with the normal procedures.

Running arsload to check the new instance and new file system

After all the configuration work is done and the application group, application, and folder are created, run arsload for installation verification. Figure 2-12 shows the procedure that is used to load data to the new instance. If you see problems in loading the file (writing an object), check the user permissions.
ARSLOAD PROC
//ARSLOAD EXEC PGM=ARSLOAD,REGION=0M,TIME=NOLIMIT,
// PARM=('/-h ARC95037 -C Q')
//STEPLIB DD DISP=SHR,DSN=ARSV950.AE.SARSLOAD
//   DD DISP=SHR,DSN=SYS1.DB1K.SDSNEXIT
//   DD DISP=SHR,DSN=SYS1.DB1K.SDSNLLOAD
//   DD DISP=SHR,DSN=SYS1.DB1K.SDSNLOD2
// DD DISP=SHR,DSN=ACIF.V4R3M0.SAPKMOD1
//******************************************************
//SYSPRINT DD SYSOUT=*,RECFM=FBA,LRECL=121,BLKSIZE=6050
//SYSPRINT DD SYSOUT=*
//******************************************************
//* The following 2 DD statements should be uncommented and
//* customized if the PDF indexer is used.
//******************************************************
//*ADOBERES DD DSN=ADOBE.PDFLIB.RESOURCE.INDEX(ADOBERES),DISP=SHR
//*ADOBEFNT DD DSN=ADOBE.PDF405.PLUSPIC.ADOBEFNT.LST,DISP=SHR

Figure 2-12   ARSLOAD for new instance
Administration

An important aspect of a Content Manager OnDemand system is the effective design and implementation of a strategy regarding system administration from a report administration perspective and from a user authority and responsibility perspective. The focus of this strategy is to ensure that the system is planned to provide the greatest functionality and the best performance as the system matures.

In this chapter, we cover the following topics:

- Report administration
- User and group administration
- XML Batch Administration
3.1 Report administration

Report design and definition are key to a successful implementation of a Content Manager OnDemand system. Knowledge of the data that is to be indexed, loaded, and retrieved, along with knowledge of Content Manager OnDemand best practices, results in the most efficient and easy-to-use system possible. In this section, we consider the processes that are followed when defining a Content Manager OnDemand report and present hints and tips to help in the design and implementation process.

The system components that are required for creating, retrieving, and viewing a Content Manager OnDemand report are a storage set, an application group, an application, and a folder. Optionally, cabinets might be used to organize and simplify folder access. These elements, in combination, allow the Content Manager OnDemand administrator to define and create a report definition that can then be used to index and load data into Content Manager OnDemand. Figure 3-1 illustrates the relationship of these elements in a typical Content Manager OnDemand system.

Figure 3-1   Content Manager OnDemand system components relationship

To help you better understand how to perform report administration, we use the example company that is mentioned in 1.2.1, “Background information of an example company” on page 8 with the Content Manager OnDemand Administrator Client running on Windows to create the required system components. We use the monthly credit card statements that are generated by AFinancial Co in our example. These statements are stored into a single application group in Content Manager OnDemand.

3.1.1 Storage sets

When you define a report, the first component to create is a storage set if one does not exist. A storage set is a named collection of primary storage nodes that support application groups with similar archive storage management requirements. For example, a storage set can be used to maintain data from different application groups that must retain documents for the
same length of time and require the data to be kept on the same type of media. Different storage sets can be created to handle different data retention requirements. One storage set can be set up to maintain data on cache-only storage, and another can be set up to point to an archive storage to maintain data for three years on optical media. Business practices and legal requirements determine the storage management design required.

For most implementations of Content Manager OnDemand for i, a storage set is created by creating a migration policy.

Figure 3-2 shows the window where you add a storage set. When you define a storage set, you must specify the report load type. For our example, we create a storage set, StatementStorage. It stores credit card statements from the customers. The load type is Fixed.

For a more in-depth look into storage management, see Chapter 5, “Storage management” on page 89.

### 3.1.2 Application groups

After you create a storage set, the next object to create is an application group. We create an application group called Credit Card Statements. An application group represents the data that you store in Content Manager OnDemand. It contains a collection of one or more applications that contain common indexing and storage management requirements. The application group contains the database information that is used to load, search for, and retrieve reports. The application group also defines the data that is to be loaded into the database.

Figure 3-3 shows the Add an Application Group window. For our example, we create an application group called Credit Card Statements. All applications that are related to credit card statements are under this application group.
When you define an application group, you also specify the database fields and storage management information. In the following sections, we look closer at different aspects of the application group definition that can contribute to a successful Content Manager OnDemand system implementation.

**Database information**
The Advanced button (shown in Figure 3-3 on page 48) allows you to specify advanced database information for the application group. Figure 3-4 shows the Database Information window.

When you define the database information, you must make decisions about the number of rows (maximum rows) that are stored in each database table and the number of report loads.
that are included in each database table. These values are important to system performance and maintenance.

**Maximum Rows**
Physically, an application group is composed of one or more tables that contain the index data for the stored documents and reports. Each of these tables is referred to as an *application group segment table*. The Maximum Rows value, determines how many data rows are loaded into each of these "segment" tables. When the Maximum Rows value is reached, the currently open segment table is closed and a new segment table is created. The default value of 10 million rows was selected because in most cases, it provides for balancing the performance of data loads and queries.

Factors to consider when specifying the Maximum Rows value are:

- The number of rows that is specified should be large enough to handle the largest possible input report file.
- You should decrease the value if the total number of indexes (documents) stored for the application group will never reach the 10 Million value.
- You should increase the Maximum Rows value if the 10 Million value is too small compared to the number of indexes (documents) to be stored such that many application group segment tables are created and as a result, a single user query results in a search of multiple tables.

**Storage Management**
The Storage Management setting determines how long report data and indexes are kept in cache storage before they are expired. There are also options that determine how soon data is migrated to archive storage after the report load complete.

For a detailed description of the storage management options, see Chapter 5, “Storage management” on page 89.
Field Information

The Field Information tab (Figure 3-5) is used to define the attributes of the database fields that make up the Content Manager OnDemand report index data. These attributes determine the characteristics of the index data and control many aspects of loading and processing data in the system. A database field must be added for each index value that is required by applications to be part of the application group.

![Figure 3-5  Application group's Field Information tab](image)

Note: You can update the application group to add a database field.

When you define a field, you specify the field name, field type, data type, whether it is a segment field, the expiration date, and more. In the following sections, we take a closer look at field type, whether it is a segment, or an application ID field.

**Type**

The Type attribute determines the manner in which the database field is used by Content Manager OnDemand. The main types of attributes are index and filter.

A field should have a type of index if it is used to uniquely identify a document or if it is frequently used when searching for documents in the application group. Designating a field as an index serves to enhance query performance but increases the required processing during loading and database maintenance. A separate index table is created and maintained for application group fields that are designated as indexes. These index tables are searched first when a folder query is run to quickly pinpoint the documents that are to be included in the document hit list.

A field should have a type of filter if it does not uniquely identify a document. A filter is used with an index field during folder queries.
A thorough understanding of the way that users search for documents in the system is required before making decisions about which fields should be indexes and which fields should be filters. Only fields that are going to be heavily used when searching for and retrieving documents should have a type of index. An index field should always be included in a folder query.

**Note:** Date fields are almost always defined as filters, not indexes.

**Segment**
Segment is the date or date and time field that is used to limit the number of tables that are searched during a folder query. By using a segment date to limit folder queries to a single table or a limited set of tables, performance is improved. The segment date is especially important for application groups that contain a large amount of data.

If the expiration type is segment, then Content Manager OnDemand also uses the segment field to determine when to delete data from the application group. You might specify only one segment field per application group.

**Note:** The date field that is used for the segment date should always have a type of filter. By default, an index is created for the segment date, and setting the segment date to a type of index creates unnecessary processing.

**Application ID field**
The application ID field is used to identify an application within an application group when you create an application group that contains more than one application. The database mapping fields are used to map the value to be stored in the database as the label that is displayed for folder queries and in the subsequent query hit list. A query can be made against a specific application in an application group or against all of the applications in an application group.

### 3.1.3 Applications

An application defines the data that is to be indexed and loaded. An application associates the data with an application group and specifies the type of indexing process to be performed on the data. It also defines any logical views to be put in place for users and determines any special print options to be used with the data. In this section, we consider some of the load information attributes that are defined for an application.

**Load Information**
The Load Information tab specifies the processing and resource information that the Content Manager OnDemand loader uses to load the input data onto storage volumes and to load the associated index data into the database. The File Format, Preprocessor Parameters, and Postprocessor Parameter (Figure 3-6) are defined as part of the load information:

- **File Format:** Provides settings that control how the Content Manager OnDemand system compresses and stores documents and resources.
- **Preprocessor:** Specifies processing that is carried out on database fields before indexing data.
Postprocessor: Specifies a system command or exit program that runs against an index file before the index records are loaded into the database.

![Figure 3-6 Application Load Information](image)

**Large object**

In the File Format section, you can set support for large objects. Content Manager OnDemand large object support provides enhanced usability and better retrieval performance for reports that contain large documents.

For example, suppose that a report contains statements that typically exceed 1000 pages. With large object support, the statements can be divided into parts of, say, 100 pages. When a user views a statement, Content Manager OnDemand retrieves and uncompresses the first part of the statement. To view a specific page of a statement, the user can choose the Go To command in the viewer window and enter the page number. Content Manager OnDemand automatically retrieves and uncompresses the part of the statement that contains the requested page. When the user moves from page to page of a statement, Content Manager OnDemand automatically retrieves and uncompresses parts of the statement as needed.

When you use large object support, users should experience consistent response time when moving from page to page of the document. There are several factors that you must consider when using large object support:

- The report must be indexed with an indexing program that generates a large object by dividing large documents into smaller parts and defining the indexing information that is used to retrieve the documents.

- The amount of data per page and the number of pages that you divide documents into has an impact on retrieval and viewing response time. The number of bytes per page typically dictates the number of pages that you can divide documents into. In general, the larger the page size in bytes, the smaller the number of pages that you can divide your documents into. For example, if the average page in the document contains 2.5 KB of data, then choose 100 - 1000 pages per Large Object (LO) segment; if the average page in the document contains 50 KB of data, then choose 1 - 100 pages per LO segment.
The capacity of your network and the traffic in the network might determine the number of pages that you should divide your documents into. Larger documents sizes (large byte size even when compressed) require more network bandwidth (or more time if the bandwidth is not available) to transfer from a Content Manager OnDemand server to a client. The number of users concurrently accessing Content Manager OnDemand and the sizes of documents being retrieved determine the overall load in the network.

Response time requirements. The goal of Content Manager OnDemand large objects is to provide better performance and usability. Large object support clearly provides enhanced usability. However, you must implement large object support so that dividing your documents into parts provides better overall performance than other methods of segmenting the input data.

When you choose a large object, Content Manager OnDemand displays the Number of Pages field. Specify the number of pages that you want Content Manager OnDemand to divide documents into in the Number of Pages field.

To generate large objects, the indexer that is specified on the Indexing Information page must be ACIF, OS/390, or OS/400. When you select the Large Object check box, Content Manager OnDemand automatically adds the `INDEXOBJ=ALL` parameter to the indexing parameters (which causes the indexing program to generate the large object indexing information).

**Exporting an application**

It is not possible to export an application to application groups that have different database fields or attributes. However, it is possible to export applications to a different server if the application group on the target server is identical to the application group on the source server (the server on which the applications are defined).

There should not be an existing application that has the same application ID in the target application group. For more information, see *IBM Content Manager OnDemand for Multiplatforms, V9.5, Administration Guide*, SC19-3352. in section “Adding items to a server”.

**Selecting font by line data graphical indexer**

The font that is used by the line data graphical indexer to display a document can be changed from within the line data graphical indexer at the Content Manager OnDemand Administrator Client.

*Note:* For best indexing results, select a monospacing font with the line data graphical indexer.

If the font is changed using the Administrator Client, the selected font is also used by the Windows client the next time that the Windows client is started and a line data document is viewed.

For more information, see Technote #1215957, which is available at the following web address:


### 3.1.4 Folders

A *folder* is the interface that allows a user to search for reports and documents that are stored in the Content Manager OnDemand system. One or more application groups can be defined to a folder. The user enters index search criteria into the folder search fields; under the covers an SQL search is issued for each included application group, the results of the queries are accumulated and a document hit list is constructed and returned to the user. The folder can
be customized to provide the look and feel that is wanted for the users of the Content Manager OnDemand system. The Content Manager OnDemand administrator can also grant specific permissions for users and groups to use the folders.

Figure 3-7 shows the Add a Folder window.

![Add a Folder window](image)

**Figure 3-7  Folder general information**

**Display Document Location**

The Display Document Location setting (Figure 3-7) determines whether the client shows the storage location of each document in the document list by placing an icon next to each entry. The possible locations are cache storage (on the library server or an object server) or archive storage.

**Important:** Use care when enabling this feature. The Display Document Location function can result in degraded search performance because the storage location information for every document that is returned must be retrieved from the Content Manager OnDemand object server.

**Display Document Hold**

The Display Document Hold setting determines whether the client shows a column that indicates whether a hold is placed on the document. For more information, see Chapter 16, “Enhanced Retention Management” on page 343.

**Note Search**

If the annotation parameter (annotation flags in document database table) in the application group is set to “No”, the Note Search parameter determines when Content Manager OnDemand searches the database for annotations and notifies the user of the annotations. Here are the possible options:

- **Hit list:** When a folder query is run, Content Manager OnDemand searches for annotations, and a note icon is displayed next to each document in the resulting hit list, which contains an annotation. The hit list option has a direct performance impact on the generation of the document list.
Retrieve: Content Manager OnDemand searches for annotations when the user selects a document for display. This is the default and preferred option.

Note: Content Manager OnDemand searches for annotations when the user selects the note command when viewing a displayed document.

As a preferable practice, set the annotation parameter in the application group advanced settings to “Yes”. In this case, an annotation flag is set in the database when a user adds an annotation to a document. When the document hit list is displayed, a note icon is displayed next to the documents for which an annotation exists.

**Full Report Browse**

In the Permission tab of the folder definition window (Figure 3-9 on page 57), the Full Report Browse option allows a user of the Content Manager OnDemand Windows Client to select a document, retrieve that document, and view the entire report to which the document belongs.

If the user has Full Report Browse authority for a specific folder (which can be configured in the Administrator Client), then the Windows client has a new View Full Report button. When the user clicks it, Content Manager OnDemand retrieves the entire report so that the user can view it. If the user does not have Full Report Browse authority, the button is not visible in the Windows client.

If you click View Full Report, the entire report (with the same load ID) that is associated with the selected document is viewed, rather than the individual document. If a Full Report document is displayed and the entire document is printed to a server printer, the entire report is printed as a single job.

**Maximum Hits**

Maximum Hits (Figure 3-8 on page 55) sets the maximum number of document hit list entries that are returned by a folder query. Limiting the number of hits that can be returned from a query prevents performance degradation that might be experienced if a large result is
returned from a query. If a query results in a large hit list that takes a long time to create, the cancel operation function on the Content Manager OnDemand client can be used to stop the creation of the hit list.

**Secondary Folder**
The Secondary Folder parameter (Figure 3-8 on page 55) is used to manage the number of folders that a user is presented with when they log on to the Content Manager OnDemand system and their list of folders is displayed. By default, Content Manager OnDemand presents a list of the primary folders that a user is authorized to access. Marking a folder as a secondary folder reduces the size of the initial folder list. All folders that the user is authorized to view might be displayed by selecting the show all folders option in the Content Manager OnDemand client.

**Server Based Sorting**
The Server Based Sorting option is used to sort the document hit list on the server before it is returned to the client.

**Important:** Some sorting might still occur on the client if any of the following items are true:
- Multiple application groups are searched (the folder contains multiple application groups).
- The search query is too long or too complex for a single SQL statement.
- The user specifies the Append option.

**Text Search**
Text Search is used to search documents that contain a specific word or phrase before the document hit list is built. Only documents that contain the specified word or phrase are returned as part of the hit list. The search takes place on the server.

Figure 3-9 shows the Text Search option in the Field Definition tab of the Add a Folder window.
Using Text Search allows a user to further qualify a search without adding the processing that is associated with adding and maintaining additional index fields to the database. Text search is performed on the documents that match the criteria for the other query fields. For example, if the other query fields are date and account number, a text search is performed on the documents that match the specified date and account number. If the document contains the text search string, it is returned as part of the hit list. Text Search fields are not mapped to database fields.

A text search string can be a word or a phrase. Only one text search field can be defined per folder. The only valid search operator is EQUAL. Wildcard searches and pattern searches are allowed. Text search is not case-sensitive.

### 3.1.5 Cabinets

A cabinet is a container for folders. You can use cabinets to manage folders and enable users to navigate to folders more easily. A folder can belong to one or more cabinets.

### 3.1.6 The report wizard

So far, we described how to use Content Manager OnDemand reporting tools to create an application group, an application, and a folder as separate actions. There are two ways to define a report to Content Manager OnDemand:

- Add a separate application group, an application, and a folder.
- Use the report wizard.

This section briefly describes what the report wizard can do.

The report wizard defines a report to Content Manager OnDemand by combining the tasks of adding an application group, an application, and a folder into one task. Information for the application, application group, and folder is gathered by answering a series of questions and
by using the graphical indexer to define the indexing parameters, the database fields, and the folder fields. Alternatively, database fields and folder fields can be defined without using the graphical indexer.

To start the report wizard, you click the report wizard icon on the main window of the Administrator Client, as shown in Figure 3-10.

![Figure 3-10 Report wizard button on the Administrator Client](image)

**Report wizard settings**

As you move through the report wizard, standard options are selected for you. You should use the defaults unless you have a clear reason not to. Depending on how you use the Report Wizard, you might not see all of the windows described.

**Introduction window**

The Introduction window provides a brief explanation of the report wizard. Your first step is to select the indexer that you want to use to index the data. For all indexers, you specify the type of data that you want to store. For indexers other than Generic and XML, you specify the location of the sample data.

Choose the Indexer and type of data and then set up the sample data, as shown in Figure 3-11 on page 59.
Note that on z/OS or Multiplatform implementations, if AFP is selected as the data type and the report data is line data, it is converted to AFP before it is loaded into Content Manager OnDemand. The report wizard cannot be used to define a report to Content Manager OnDemand if it is already AFP data.

**Report window**

The Report window (Figure 3-12) displays the sample data and provides easy-to-use tools to help you define indexing information, database fields, and folder fields. Press F1 key to display the online help for options and commands available from the Report window. Use the online help to learn how to define triggers, fields, indexes, database fields, and folder fields.

**Important:** When you finish defining the indexing, database, and folder information, save your changes.
View information window
if you specify User Defined as the data type, you must specify a file extension. If you specify line as the data type then you must specify the code page, carriage control, and record format. See Figure 3-13.

Managing fields window
When you select the Generic indexer or the XML indexer, you add and remove database and folder fields.

When you click Add or Properties (Figure 3-14), the report wizard displays a window where you specify the properties of a field.
Managing data window
When you load a report into the system, you can specify that you want report data to be stored using large object support. You also need to specify how you want Content Manager OnDemand to manage annotations that users attach to pages of the report. See Figure 3-15.

Application identifier window
When you use the report wizard to add an application to an existing application group, you must specify the name of the application and select a value that uniquely identifies the application within the application group. See Figure 3-16.
Storage management window

The storage management window (Figure 3-17) determines where the storage manager maintains copies of reports and also determines how and when Content Manager OnDemand deletes report data from the system.

![Figure 3-17 Storage management](image)

Applications in the application group window

If the report that you are defining is one of several that will be stored in the same application group, then you can use the report wizard (Figure 3-18 on page 63) to define the following for the report:

- The database field that contains the values that identify an application within the application group.
- The folder field that users use to search a specific application.
- The length of the application ID field.

If you select **Document Size**, Content Manager OnDemand adds a field to the application group and folder. Content Manager OnDemand stores the size of the document in the application group field when data is loaded.

If you select **Page Count**, Content Manager OnDemand adds a field to the application group and folder. Content Manager OnDemand stores the number of pages in the document in the application group field when data is loaded.

You must provide the folder names for both fields (Document Size and Page Count). You do not need to specify the names for the application group fields because they are predefined.
Enhanced Retention Management and Interoperate with FileNet P8 Platform window

In this window (Figure 3-19), you can configure the application group to work with the following feature:

- Enhanced Retention Management feature of Content Manager OnDemand
- Interoperability between Content Manager OnDemand and FileNet®@P8
Full Text Index window

If Full text indexer is installed, specify the name of the Content Manager OnDemand full text indexing server and optionally, add Full Text Index Folder fields (Figure 3-20).
Name window
In this window (Figure 3-21), you specify the names of the application group, application, and folder. After you enter the names, Content Manager OnDemand queries the library server to make sure that the names are valid and unique.

![Figure 3-21 Specifying names](image)

Wizard complete window
In this window (Figure 3-22 on page 66), you confirm the selections that you make for the report. Click Display to view a summary of the application group, application, and folder definitions. From the summary window, choose the Print icon from the toolbar to print a copy of the definitions.

When you are satisfied with the selections that you made for the report, click Finish to complete defining the report. Content Manager OnDemand adds the application group, application, and folder to the library server, closes the report wizard and returns to the administrator window.
3.2 User and group administration

When you design a Content Manager OnDemand system, you must decide what is the best way to implement the many authority structures that are available for users and administrators of your system. The span of control for the administration of the system must be considered along with the level of user access to the data stored in the system. How many different administrators are required? Will all administrators have system administrator authority or will different administrators have different levels of authority? What is the most effective way to restrict a user’s access to only the data that is necessary to do their jobs?

The answers to these questions depend on the size of the system, the degree of centralization to be exercised over system administration, and the nature of the data and the business needs of the users.

**Centralized or decentralized**

In a system design that exercises centralized control, one or a few administrators are granted system administrator authority. A centralized system typically is used when the number of reports and users to be added to the system are small. Centralized administration is also appropriate where resources are limited and only one person might have the skills and knowledge to perform the system administration tasks, or where one user group performs all the administration tasks.

In a system design with decentralized control, different users are granted different levels of administrative authority. For example, you might have users that have the authority to create users and groups. Other users might have the authority to create application groups and folders, and others might be given full system administration authority.
The skill level of the users might be a determining factor in the degree of authority that is granted. It takes a more skilled user to define indexes and report parameters than to set up users and groups. A decentralized system is typically used when data from different sources is stored on the same Content Manager OnDemand system but must be maintained independently of other data. Decentralization also makes sense when report loading and processing needs are limited to a specific group of users for security purposes or when administrators that add users and groups must be prevented from accessing report data.

The decision about whether to use a centralized or a decentralized administration model is best made before any data is set up in the system. Even though the type of administration that is chosen can be changed at a later date, the amount of work that is involved in making that change is greater than the amount of work that is necessary to study the requirements of the system and put into place the most appropriate administration policies from the beginning.

In this section, we describe different types of users, followed by a description of a decentralized administrative plan. We also introduce a new administrative tool, the Content Manager OnDemand XML Batch Administration, which is a command-line program that is run on the Content Manager OnDemand server.

### 3.2.1 User types, authorities, and functions

There are four different types of users in a Content Manager OnDemand system. Each has a different level of access, authority, and responsibility in the system:

- User: Logs in and queries the system to retrieve documents and reports for viewing.
- User administrator: Adds users or other user administrators to the system.
- Report administrator: Defines the application groups, applications, folders, and cabinets to be part of the system. The report administrator is responsible for understanding the report and document data and for defining the indexes to be extracted from the data and stored. A report administrator is also responsible for designing the user interface to the reports through the folder definition process and for controlling access authority to the reports that he designs, indexes, and loads.
- System administrator: Has the highest level of authority in a Content Manager OnDemand system. The system administrator has authority for all system functions and can grant other users the authority to perform various tasks. The system administrator is the only level of authority that can create storage sets, and define system printers.

When the administrative tasks and levels of authorities are understood, decisions must be made concerning the span of control in the system. Is it better to have one user control all access and functions in the Content Manager OnDemand system, or is it better to spread the administrative tasks among several users to smooth the workload based on system requirements? The answer to this question depends on whether you have centralized or decentralized administrative control.

As stated earlier, a centralized administrative plan is best suited for a Content Manager OnDemand system with a small number of users and relatively few reports that must be defined. In the next section, we focus on the decentralized system and describe the different aspects of a decentralized administrative plan.

### 3.2.2 System administration

Content Manager OnDemand can centralize or decentralize the administration of the system. A centralized environment means that one type of user, a system administrator, controls the
creation and access to all of the objects that are defined on the system. A decentralized environment means that the tasks of the system administrator are divided and assigned to other users. The responsibilities of the other users might vary from user administration, group administration, application group administration, folder administration, or any combination of the administrative tasks.

The decision to centralize or decentralize the administration of the system should be made before objects are added to the system. Although the decision is reversible, the amount of work that is required to change from one type of administration to the other can be significant if many users, groups, folders, and application groups have already been defined to the Content Manager OnDemand system.

There are many ways to decentralize the administration of the system because of the various user types and the additional authority levels that can be specified for users. Two specific models are described in this section: the Object Type model and the Object Owner model.

**Object type model**

In the object type model, which is shown in Figure 3-23, all of the objects on the system are logically grouped into administrative domains according to the type of the object. The administrator of a domain maintains all of the objects within the domain. For example, an application group, folder, or cabinet administrator maintains all of the application, application group, folder, and cabinet objects on the system.

In this model, the system administrator defines two new users. One user is responsible for administering applications, application groups, and folders, and is defined as an application group, folder, and cabinet administrator. The second user is responsible for administering users and groups and is defined as a user administrator with the Create Groups authority.

Table 3-1 shows the administrative users and the tasks that are assigned to the users.

**Table 3-1  Administrator roles in object type model**

<table>
<thead>
<tr>
<th>Administrator type</th>
<th>Administrative tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>System administrator</td>
<td>Creates report administrators.</td>
</tr>
<tr>
<td></td>
<td>Creates user administrators with create groups authority.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains storage sets.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains system printers.</td>
</tr>
</tbody>
</table>
When maintaining application groups and folders, the application group, folder, and cabinet administrator must give other users access to the application groups, folders, and cabinets. The recommended and simplest way to do this task is to give access to a group, rather than to individual users. No additional work is required by the application group, folder, and cabinet administrator when another user needs access to the application group, folder, or cabinet. When a new user is added to the group, the user automatically gets access to the application group, folder, or cabinet. Adding the user to the group is the responsibility of the user administrator because the user administrator owns all of the groups in this model.

Another reason for giving groups rather than individual users access to application groups and folders is that the application group, folder, and cabinet administrator does not have access to the users and groups in this model. Because the application group, folder, and cabinet administrator must first be granted access to any users or groups that require access to application groups, folders, or cabinets, it is simpler and less time-consuming to give access to a few groups rather than hundreds or even thousands of users. The application group, folder, and cabinet administrator is given access to a group by adding the application group, folder, and cabinet administrator to the group. This task is done by the user administrator with the Create Groups authority. As a group member, the application group, folder, and cabinet administrator can see the group in the list and can grant group access to any application groups and folders on the system.

To give an application group, folder, and cabinet administrator access to a user, the user administrator with the Create Groups authority must update each user and give the application group, folder, and cabinet administrator access to the user. After access is granted, the application group, folder, and cabinet administrator can see the user in the list and can grant the user access to any application groups, folders, and cabinets on the system. Again, this is not the recommended approach because this task must be repeated each time that a user is added to the system.

**Object owner model**

In the object owner model, which is shown in Figure 3-24, the objects on the system are logically grouped into administrative domains according to the creator or owner of the object. An administrator maintains only the objects that they create. For example, a user with Create Application Groups and Create Folders authority can maintain only the applications, application groups, and folders that they created.

<table>
<thead>
<tr>
<th>Administrator type</th>
<th>Administrative tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application group, folder, and cabinet administrator</td>
<td>Creates and maintains application groups.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains applications.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains folders.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains cabinets.</td>
</tr>
<tr>
<td>User administrator with Create Groups authority</td>
<td>Creates and maintains users.</td>
</tr>
<tr>
<td></td>
<td>Creates and maintains groups.</td>
</tr>
</tbody>
</table>

When maintaining application groups and folders, the application group, folder, and cabinet administrator must give other users access to the application groups, folders, and cabinets. The recommended and simplest way to do this task is to give access to a group, rather than to individual users. No additional work is required by the application group, folder, and cabinet administrator when another user needs access to the application group, folder, or cabinet. When a new user is added to the group, the user automatically gets access to the application group, folder, or cabinet. Adding the user to the group is the responsibility of the user administrator because the user administrator owns all of the groups in this model.

Another reason for giving groups rather than individual users access to application groups and folders is that the application group, folder, and cabinet administrator does not have access to the users and groups in this model. Because the application group, folder, and cabinet administrator must first be granted access to any users or groups that require access to application groups, folders, or cabinets, it is simpler and less time-consuming to give access to a few groups rather than hundreds or even thousands of users. The application group, folder, and cabinet administrator is given access to a group by adding the application group, folder, and cabinet administrator to the group. This task is done by the user administrator with the Create Groups authority. As a group member, the application group, folder, and cabinet administrator can see the group in the list and can grant group access to any application groups and folders on the system.

To give an application group, folder, and cabinet administrator access to a user, the user administrator with the Create Groups authority must update each user and give the application group, folder, and cabinet administrator access to the user. After access is granted, the application group, folder, and cabinet administrator can see the user in the list and can grant the user access to any application groups, folders, and cabinets on the system. Again, this is not the recommended approach because this task must be repeated each time that a user is added to the system.

**Object owner model**

In the object owner model, which is shown in Figure 3-24, the objects on the system are logically grouped into administrative domains according to the creator or owner of the object. An administrator maintains only the objects that they create. For example, a user with Create Application Groups and Create Folders authority can maintain only the applications, application groups, and folders that they created.
The object owner model can be used to separate the objects on the system into logical parts, such as a department, a company, or some other entity. Each part is independent of the other and should be maintained separately. Each part typically requires two administrative users. One user has the responsibility for creating and maintaining users and groups. The other user has the responsibility for creating and maintaining applications, application groups, and folders. However, you can also define one user with the authority to create and maintain users, groups, applications, application groups, and folders. In effect, the one user is the system administrator for a logical part of the system.

In the object owner model, the system administrator defines two users for each logical part of the system. One user is responsible for maintaining the users and groups for a logical part of the system. The other user is responsible for maintaining the applications, application groups, folders, and cabinets for a logical part of the system. The object owner model allows you to store data from several sources on one Content Manager OnDemand system and let only one set of users access each set of data. Table 3-2 shows the administrative users and the tasks that are assigned to the users.

**Table 3-2  Administrator roles in the object owner model**

<table>
<thead>
<tr>
<th>Administrator type</th>
<th>Administrative tasks</th>
</tr>
</thead>
</table>
| **System administrator** | Creates a report administrator with Create Application Groups and Create Folders authority.  
                            | Creates a user administrator with Creates Groups authority.  
                            | Creates and maintains storage sets.  
                            | Creates and maintains system printers.  |
| **Report administrator** | Creates and maintains application groups.  
                            | Creates and maintains applications.  
                            | Creates and maintains folders.  
                            | Creates and maintains cabinets.  |
To illustrate how the object owner model can be used, assume that a company installs a Content Manager OnDemand system to provide data archival and retrieval services for other organizations. The company provides the hardware and software that are required to administer the system and archive and retrieve the data. An administrator from each organization defines application groups and folders for their data. Another administrator defines the users that can access the data. The system must be able to limit access to an organization’s application groups and folders. Only users that are defined by an organization should have access to the application groups and folders that are owned by the organization. The system must also be able to limit access to the data. Only users that are defined by an organization should have access to the data that is owned by the organization.

Summary
Choosing the correct administration model is an important decision in the design of a Content Manager OnDemand system. Table 3-3 contains general guidelines to take into account when deciding on an administration model.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of reports and users to add to the Content Manager OnDemand system is small (less than 100).</td>
<td>Centralized system administration</td>
</tr>
<tr>
<td>Resources are limited and only one person performs system administrative tasks.</td>
<td>Centralized system administration</td>
</tr>
<tr>
<td>All of the system administration tasks are performed by one group.</td>
<td>Centralized system administration</td>
</tr>
<tr>
<td>Data from several independent sources is maintained on the same Content Manager OnDemand system. The data must be kept independent of other data in the system. Data must be isolated and access is allowed only for users who must view the data.</td>
<td>Decentralized system administration using the object owner model</td>
</tr>
<tr>
<td>Report processing and loading must be limited to a group of users for security reasons.</td>
<td>Decentralized system administration using the object type model</td>
</tr>
<tr>
<td>The administrator that adds and maintains users must not have access to the report data. A separate administrator performs report administration and loading.</td>
<td>Decentralized system administration using the object type model</td>
</tr>
</tbody>
</table>

3.3 Content Manager OnDemand XML Batch Administration

In addition to the Administrator Client that runs under Windows, Content Manager OnDemand provides an administrative program that uses Extensible Markup Language (XML). The XML Batch Administration program (XML batch program) is run on the Content Manager OnDemand server and provides the same functionality as the Administrator Client.

The difference between the two programs is that for the Administrator Client, the user must provide input through the graphical user interface (GUI) while the XML batch program receives input through the XML interface.
In this section, we describe the following items:

- Benefits of using the XML batch program
- Using the XML Batch Administration program
- Special features of the XML batch program
- Tips on using the ARSXML command

**Benefits of using the XML batch program**

There are many benefits of using the XML batch program:

- It provides another way to perform the Content Manager OnDemand system administrative tasks.
- It can process different types of objects, such as updating users in a group and application group permission at the same time.
- The Administrator Client is not needed.
- It is useful for replicating the same objects to multiple Content Manager OnDemand servers, and can even replicate the object when there is no network connection between the servers.
- It makes automation of system administrative tasks easy.
- For Content Manager OnDemand support purposes, the output XML file can be used to provide information to the support team for problem determination.

### 3.3.1 Using the XML Batch Administration program

This section provides a brief explanation of how to use the new XML batch program. For more information, see *IBM Content Manager OnDemand for Multiplatforms - Administration Guide*, SC19-3352.

The Batch Administration program is called `arsxml`. With this XML batch program, you can export, add, delete, and update Content Manager OnDemand objects.

To use the program, you must have the following files:

- The schema file, `ondemand.xsd`
- An input XML file (for example, `exportusers.xml`)
- A password stash file

In XML, the definition and syntax of the markup language is defined in a *schema file*. For the Content Manager OnDemand XML batch program, the schema file is called `ondemand.xsd`. It contains the definitions for the Content Manager OnDemand objects: users, groups, applications, application groups, storage sets, folders, printers, and others. Each Content Manager OnDemand object definition contains one or more child objects. For example, a user object has a child object for permissions, and a group object has a child object for users in the group. The schema file (`ondemand.xsd`) should not be changed in any way by the user.

The *input XML file* for the XML batch program is parsed to ensure that it is valid according to the schema file. Each object within the file is examined to ensure that the attributes are valid according to the object type. The XML batch program generates XML when Content Manager OnDemand objects are exported. The XML that is generated can be used as an input for the subsequent `arsxml` command.

Example 3-1 shows a sample of the file `exportusers.xml` from the XML samples directory. You can change the names of the users to the users that you want to export.
Example 3-1  Sample XML input file for exporting users

```xml
<?xml version="1.0" encoding="UTF-8"?>
<onDemand xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:noNamespaceSchemaLocation="ondemand.xsd">
   <user name="SAMPLEUSER0" />
   <user name="SAMPLEUSER1" />
   <user name="SAMPLEUSER2" />
   <user name="SAMPLEUSER3" />
   <user name="SAMPLEUSER4" />
</onDemand>
```

You can export objects by running `arsxml export`. The following command exports the users that are listed in the `exportusers.xml` file, from the server `odserver1`, to an output file named `users.xml`:

```
arsxml export -u oduser1 -p /my/stash/pwfile -h odserver1 -i exportusers.xml -o users.xml -v
```

You can import objects by running `arsxml add`. The following command imports the users from the `users.xml` file (which is generated from the previous command) to server `odserver2`:

```
arsxml add -u oduser2 -p /my/stash/pwfile -h odserver2 -i users.xml -v
```

You can delete objects by running `arsxml delete`. The following command deletes the users from `odserver2`, based on the users that are listed in the `users.xml` file:

```
arsxml delete -u oduser2 -p /my/stash/pwfile -h odserver2 -i users.xml -v
```

For deletion, you are prompted before each object in the XML is deleted, unless the `-x` parameter is used.

You can update objects by running `arsxml update`. For example, you want to update the description of the user `User1` with a new description and add the authority to create users. In this case, you construct the XML input file that is shown in Example 3-2.

Example 3-2  Input file to update user - `updateUser.xml`

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<onDemand xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:noNamespaceSchemaLocation="ondemand.xsd" >
   <user name="User1" description="User1" createUsersAuth="Yes" />
</user>
</onDemand>
```

Here is the command to update user `User1`:

```
arsxml update -u oduser2 -p /my/stash/pwfile -h odserver2 -i updateUser.xml -v
```

Some attributes are not allowed to be updated, such as the data type of an application group field or folder field. If you specify to ignore and continue, the XML batch program produces a warning message and the rest of the attributes continue to be updated.

You can validate the input XML file by running `arsxml validate`. When the validate command is used, only the lines in the input XML file are checked. No call to the Content Manager OnDemand server is made. Here is the command to validate the input XML file:

```
arsxml validate -i sample.xml
```
3.3.2 Special features of the XML batch program

You can add user or group permissions to an application group or folder by adding a permission child object to the respective application group or folder group object.

Dependent objects, such as all users that belong to a group, can be exported together when you choose to export the group rather than having to add a user object to the XML file for every user in the group. You do this by specifying the \texttt{arsxml} command option \texttt{-r d} on the command line.

In a case when there is no network connection between two servers, the XML batch program can be used to export Content Manager OnDemand objects to an XML file from one server and later import to another server.

If an error occurs during the processing of one of the objects in the input XML file, the remainder of the XML file is not processed unless option \texttt{-e c} is used on the \texttt{arsxml} command line.

Note: Objects must be specified in the correct order. For example, when you add application groups and applications in the same XML file, you must first specify all the application groups and then specify the applications.

3.3.3 Tips on using the ARSXML command

If you are not familiar with the syntax of the \texttt{ARSXML} command, an easier way to begin is to perform an export of the object. By doing so, you get a working XML input file that you can modify to suit your needs. Make sure that the export is successful without any errors; otherwise, the output XML file might be incomplete.

Adding objects to the Content Manager OnDemand server is straight forward. If you are doing more advanced operations, such as updating the permission of an existing user for an application group or folder, and you are not getting the results that you are expecting, then you might have missed the \texttt{task} attribute. You should include this attribute when you want to update an existing object, such as removing a user's permission from an application group or updating a user's permission to an application group. The values for the task attribute are add, delete, and update.

For example, if you want to remove the permission of the user User1 from an application group, you must use the following line in the input XML file:

\begin{verbatim}
<permission user="User1" task="delete" />
\end{verbatim}

Another example is when you want to update the query restriction of the user User1 for the application group CreditCardAG. In this case, you must use the following line in the input XML file, with the task attribute set to \texttt{update}.

\begin{verbatim}
<permission user="User1" task="update" queryRes="account='000-000-000'" />
\end{verbatim}

The previous line is incorporated in Example 3-3 for the input file \texttt{updateag.xml}.

\begin{verbatim}
Example 3-3 Input file updateag.xml

<?xml version="1.0" encoding="UTF-8"?>
\end{verbatim}
Here is the command to update the query restriction for user User1:

arsxml update -h odserver -i updateag.xml -v -u User1 -p /my/stash/pwfile

Example 3-4 shows the output from the previous command.

Example 3-4 Successful output of updating the query restriction for user User1

ARS6822I Attempting login for userid 'User1' on server 'odserver'
Updating applicationGroup, CreditCardAG
Update of applicationGroup, CreditCardAG was successful.
Updating applicationGroup-permission, CreditCardAG-User1
Update of applicationGroup-permission, CreditCardAG-User1 was successful.
Finished processing file updateag.xml.

The operation is successful. If you do not specify task="update" in the input XML file, you see a message indicating that the object exists, as shown in bold in Example 3-5. In this scenario, user User1 is not updated with the new query restriction.

Example 3-5 Output of updating the user without using task="update"

ARS6822I Attempting login for userid 'User1' on server 'odserver'
Updating applicationGroup, CreditCardAG
Update of applicationGroup, CreditCardAG was successful.
An applicationGroup-permission object named 'CreditCardAG-User1' already exists.
Finished processing file updateag.xml.
Database structure

In this chapter, we describe the IBM Content Manager OnDemand (Content Manager OnDemand) database structure and relationships between the tables. We list the system control tables and the important data table structures. We explain the relationship between the tables when loading data, show how a search is performed on the database tables, describe the system log, and describe special considerations for DB2 on z/OS.

In this chapter, we cover the following topics:

- System control tables
- Main data table structures
- Relationship between tables when loading data
- Search sequence
- System log
- Database creation and relationships on z/OS
4.1 System control tables

Content Manager OnDemand creates and uses two sets of tables, a set of system control tables and a set of application group data tables. All system control tables are created by the \texttt{arsdb} command (except for the ASM tables that are used by Content Manager OnDemand for i). The application group data tables are created when you load data (reports and documents) into the Content Manager OnDemand system.

Table 4-1 shows the Content Manager OnDemand system control tables with their descriptions.

\textbf{Note:} For a multiplatform or z/OS server, the complete table name is composed of the owner name, which can be the database name or the instance name, and the table name. For example, the application group table ARSAG that belongs to the ODARCH instance has a complete table name of ODARCH.ARSAG.

For the IBM i server, the complete table name is in the format of library/table, where the library name is always the same as the instance name. For example, the application group table ARSAG that belongs to the default QUSROND instance has a complete table name of QUSROND/ARSAG.

\begin{table}[h]
\centering
\begin{tabular}{|l|p{12cm}|p{12cm}|}
\hline
\textbf{Table name} & \textbf{Purpose} & \textbf{Description} \\
\hline
ARSAG & Application group table & One row for each application group \\
\hline
ARSAG2FOL & Field mapping table & One row for each application group field that is mapped to a folder field \\
\hline
ARSAGFLD & Application group field table & One row for each field that is defined in an application group \\
\hline
ARSAGFLDALIAS & Application group field alias table & One row for each database (internal) and displayed (external) value in an application group \\
\hline
ARSAGINDEX & Application group composite index table & One row for each composite index on application group fields. \\
\hline
ARSAGPERMS & Application group permissions table & One row for every user granted specific permission to an application group \\
\hline
ARSANN & Annotation table & One row for each annotation added to a database \\
\hline
ARSAPP & Application table & One row for each application that is defined to Content Manager OnDemand \\
\hline
ARSAPPUSR & User logical views table & One row for each logical view that is defined for a specific user \\
\hline
ARSCAB & Cabinet table & One row for each cabinet that is defined to Content Manager OnDemand \\
\hline
ARSCAB2FOL & Cabinet to Folder table & One row for every cabinet that is defined for a folder \\
\hline
ARSCABPERMS & Cabinet permissions table & One row for every user granted specific permissions to a cabinet \\
\hline
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th>Table name</th>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSCFSODWORK</td>
<td>Catalog of work between Content Manager OnDemand and Content Federation Services for Content Manager OnDemand</td>
<td>One row for the catalog of work between Content Manager OnDemand and Content Federation Services for Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSFOL</td>
<td>Folder table</td>
<td>One row for every folder that is defined in Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSFOLFLD</td>
<td>Folder field table</td>
<td>One row for every folder field that is defined for a folder</td>
</tr>
<tr>
<td>ARSFOLFLDUSR</td>
<td>Folder user field table</td>
<td>One row for every field that is provided for a user granted specific field information for a folder</td>
</tr>
<tr>
<td>ARSFOLDPERMS</td>
<td>Folder permission table</td>
<td>One row for every user granted specific permissions to a folder</td>
</tr>
<tr>
<td>ARSFTIWORK</td>
<td>Full text search work table</td>
<td>One row for every application group for full text search</td>
</tr>
<tr>
<td>ARSGROUP</td>
<td>Group table</td>
<td>One row for each group that is defined to Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSHOLD</td>
<td>Hold table</td>
<td>One row for every hold that is defined in Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSHOLDMAP</td>
<td>Catalog of documents to hold table</td>
<td>One row for every catalog of documents to hold</td>
</tr>
<tr>
<td>ARSHOLDPERMS</td>
<td>Hold permissions table</td>
<td>One row for every catalog of hold permissions</td>
</tr>
<tr>
<td>ARSHOLDWORK</td>
<td>Hold work table</td>
<td>One row for every catalog of hold work</td>
</tr>
<tr>
<td>ARSLOAD</td>
<td>Load table</td>
<td>The load_ID table</td>
</tr>
<tr>
<td>ARSNAMEQ</td>
<td>Named query table</td>
<td>One row for each private and public named query that is defined to Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSNODE</td>
<td>Node table</td>
<td>One row for each storage node that is defined</td>
</tr>
<tr>
<td>ARSPRT</td>
<td>Printer table</td>
<td>One row for each printer that is defined in Content Manager OnDemand</td>
</tr>
<tr>
<td>ARSPRTOPTS</td>
<td>Printer options table</td>
<td>One row for each printer option</td>
</tr>
<tr>
<td>ARSPRTUSR</td>
<td>Printer user table</td>
<td>One row for each user that has access to a specific printer</td>
</tr>
<tr>
<td>ARSRES</td>
<td>Resources table</td>
<td>One row for each resource ID</td>
</tr>
<tr>
<td>ARSSESEG</td>
<td>Segment table</td>
<td>One row for each segment of application group data</td>
</tr>
<tr>
<td>ARSSET</td>
<td>Storage set table</td>
<td>One row for each storage set</td>
</tr>
<tr>
<td>ARSSYS</td>
<td>System parameters table</td>
<td>One row for the entire system</td>
</tr>
<tr>
<td>ARSUSER</td>
<td>User table</td>
<td>One row for each user that is defined to Content Manager OnDemand</td>
</tr>
</tbody>
</table>
4.2 Main data table structures

The Content Manager OnDemand data tables can grow rapidly. You should understand the structure of the data tables and the relationship between them.

There are two important tables that you must examine here: the segment table (ARSSEG) and the application group data table (ag_internal_id). The segment table contains one row for each segment of each application group data table. Table 4-2 shows the first four columns of the ARSSEG table structure.

**Table 4-2  ARSSEG table structure**

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agid</td>
<td>Application group ID</td>
</tr>
<tr>
<td>table_name</td>
<td>Application group segment table name</td>
</tr>
<tr>
<td>start_date</td>
<td>Segment start date</td>
</tr>
<tr>
<td>stop_date</td>
<td>Segment stop date</td>
</tr>
</tbody>
</table>

The ARSEG table points to the application group data table name (second column of the table, table_name). The application group data table is created or updated during the arsload process. It contains a row for each item that is stored in the application group.

The name of the application group data table is ag_internal_id, which is the identifier that Content Manager OnDemand assigns to the application group when it is created with the Administrator Client. The three-digit application group identifier is listed in the Storage Management window of the Administrator Client, as shown in Figure 4-1. In this case, the application group identifier is WBA, AGID 5185.
Table 4-3 shows the first five columns of the application group data table structure.

**Table 4-3  AG_internal_id table structure**

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Size</th>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_1</td>
<td>Varies</td>
<td>Varies</td>
<td>N</td>
<td>First user-defined field in the application group.</td>
</tr>
<tr>
<td>field_n</td>
<td>Varies</td>
<td>Varies</td>
<td>N</td>
<td>Last user-defined field in the application group. You can have up to 128 index fields defined in Content Manager OnDemand.</td>
</tr>
<tr>
<td>doc-name</td>
<td>varchar</td>
<td>11</td>
<td>Y</td>
<td>Document name (object name).</td>
</tr>
<tr>
<td>doc_off</td>
<td>integer</td>
<td>4</td>
<td>N</td>
<td>Document that is offset in the object.</td>
</tr>
<tr>
<td>doc_len</td>
<td>integer</td>
<td>4</td>
<td>N</td>
<td>Document length</td>
</tr>
</tbody>
</table>

The application group data table is indexed on one or more of the user-defined fields, from field_1 to field_n.

Four major factors influence the amount of storage that is needed for the Content Manager OnDemand database:

- The number of index and filter fields
- The size of the index and filter fields
- The number of indexed items per month
- The number of months (years) Content Manager OnDemand keeps the indexes in the database

Three more tables might grow rapidly during the lifetime of a Content Manager OnDemand system:

- The annotation table (ARSANN) grows in proportion to the volume of the annotations that are added to the documents. The system creates one row for every annotation. This means every yellow sticker and every graphical annotation adds one row to this table.
The resource table (ARSRES) grows in proportion to the volume of AFP data that is archived and the resources’ (such as formdef, page segments, and overlays) frequency of change.

The load table (ARSLOAD) grows in proportion to the number of arsload jobs/tasks that are run. The Content Manager OnDemand system creates one row for each load job/task that is run. The load table (see Table 4-4) can grow to a multimillion row table during the lifetime of a Content Manager OnDemand system.

Table 4-4 shows the first four columns for the ARSLOAD table structure.

### Table 4-4  ARSLOAD table structure

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Size</th>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agid</td>
<td>integer</td>
<td>4</td>
<td>Y</td>
<td>Application group identifier</td>
</tr>
<tr>
<td>pri_nid</td>
<td>smallint</td>
<td>2</td>
<td>N</td>
<td>Primary storage node identifier</td>
</tr>
<tr>
<td>sec_nid</td>
<td>smallint</td>
<td>2</td>
<td>N</td>
<td>Secondary storage node identifier</td>
</tr>
<tr>
<td>name</td>
<td>varchar</td>
<td>11</td>
<td>Y</td>
<td>Name of the load</td>
</tr>
</tbody>
</table>

### 4.3 Relationship between tables when loading data

In this section, we present an example that shows the relationships between the Content Manager OnDemand tables when loading data to a Content Manager OnDemand system. This example is based on a check application that has four index fields that are defined as customer_name, account_nbr, check_nbr, and balance. There is a one-to-one relationship between the application group and the application.

After the application group and the application are defined, the application group gets an application group identifier, agid, in the ARSAG table and an internal application group identifier, agid_name. Figure 4-2 shows the data that is created in the ARSAG table; the agid is 5018, and the agid_name is HAA.
This application group creates an application group data table every 10 million rows (based on the seg_rows value in the ARSAG table, not shown in Figure 4-2). During the data loading process, Content Manager OnDemand uses the agid and the agid_name to add a row into the segment table (ARSESEG) for every 10 million rows that are created in the application group data table. When the first data load occurs into HAA application group, the index values for the stored documents are inserted into table HAA1. There is a row for each document loaded. When table HAA1 reaches its max_rows value (in this case 10 million rows) table HAA1 is closed and table HAA2 is opened.

The important pointer in the ARSESEG table is the name of the application group data table, table_name, where the index values (in this case, the four defined index values) are stored. The table_name is composed of the agid_name from the ARSAG table plus a counter.

Figure 4-2 on page 83 shows the two rows that are created in the ARSESEG table: one row with table_name HAA1, another row with HAA2. Both HAA1 and HAA2 are the actual names of the application group data tables that are created.

The application group data table contains the doc_name, which is the actual container (storage object) for the individual document. The offset and the document length are also kept in this table. Figure 4-2 on page 83 shows that the first row has an offset of 0, and the second row has an offset of the document length of the first row.

Figure 4-2 on page 83 shows the relationship between the tables.

The architecture of relating one application group to one or more application group data tables allows Content Manager OnDemand an unlimited growth of index space. The maximum table size is a limitation of the database subsystem and should be configured for optimal performance. Because this architecture enables a system to create tables when the maximum table size is reached, there is no logical limitation to the system; rather, the...
limitation is on the physical resources, such as processing power, disk space, object servers, and storage hardware.

4.4 Search sequence

To better understand the relationship between the various Content Manager OnDemand tables, we describe a search sequence within a Content Manager OnDemand system in this section. A search sequence scans through multiple Content Manager OnDemand tables. We describe the logical flow that the system goes through during a Content Manager OnDemand search.

Using the Content Manager OnDemand standard Windows client, you can open a search criteria window (see Figure 4-3). In our example, there are four index fields: Name, Account, Statement Date, and Balance. The example shows a search for a specific date and a balance amount.

![Figure 4-3 Content Manager OnDemand client search criteria window](image)

After you enter these values, Content Manager OnDemand uses the date information and searches the segment table ARSEG to find the application group data table that contains that date. Content Manager OnDemand then searches the identified table_name (in our example HAA1) for the index values (1994-03-07 and 104.18) and finds the matching Statement_date and the Balance and returns these values to the client in a search result list.

Any individual document from within this result list can then be retrieved for display on the client. Content Manager OnDemand locates the document in the Archive using the object name, document offset and length. Under the covers the document data is automatically decompressed before being displayed.

Figure 4-4 on page 85 shows the details of this search sequence from a folder.
4.5 System log

The system log is used to keep track of all activities in the Content Manager OnDemand Instance. Examples of such activities include logon and document retrieve. The system log is created as an application group. It is created by using the ARSSYSCR program. The application group identification name is SL and a 4-byte agid is added. You find SLXX in the ARSEG table depending on how large your system log is growing. The creation of a new system log table is based on the number of rows on the Storage Management setting. The default is 10 million rows. This configuration can be modified.

### System tables for Content Manager OnDemand z/OS

For the Content Manager OnDemand z/OS DB2 database environment, standard database backup and recovery procedures can be used for the Content Manager OnDemand -created databases, table spaces, and tables. To minimize the effort of creating and monitoring the Content Manager OnDemand data tables, several automated table creation and space allocation procedures are implemented into the product.
All system tables, as mentioned in 4.1, “System control tables” on page 78, are created by the arsdb program. Each table is created in its own table space. During installation, the table space is created by member ARSTSPAC in dataset V9R5M0.SARSINST. The size of each table space is specified there. Before you run ARSTSPAC to create the Content Manager OnDemand table spaces, you must create the storage group and the database. The CREATE for the storage group and database is in member ARSDB2 in dataset V9R5M0.SARSINST. The owner of the database (the submitter of the job or the user ID that is set by the “Set current SQLID ="username") must match the entry SRVR_INSTANCE_OWNER in the ARS.INI file.

The arsdb program provides an interface between the database manager and Content Manager OnDemand. Several parameters are used in the creation and dropping of tables. For more information about arsdb, see IBM Content Manager OnDemand for z/OS - Configuration Guide, SC19-3363.

The arsdb program is in the UNIX System Services file system /usr/lpp/ars/V9R5M0/bin. When you create the Content Manager OnDemand tables or indexes, the arsdb command can build the tables and indexes in the default table space or in table spaces that you create by using the ARSTSPAC member.

When you run the arsdb command, Content Manager OnDemand validates the existence of the table space. If the table space does not exist, the arsdb command creates the Content Manager OnDemand system tables in the default table space. After creating the Content Manager OnDemand table spaces, if changes must be made, the best way to change the table space is by running the ALTER TABLESPACE command.

### 4.6.2 Data tables for Content Manager OnDemand z/OS

The data tables in Content Manager OnDemand are created under the control of DB2 on z/OS. Like the system tables, this is done dynamically during the arsload process. It is important to understand how Content Manager OnDemand on z/OS is allocating space for these tables because they can grow large.

During the creation of an application group, a parameter limits the maximum rows for a data table. If this limit is reached, Content Manager OnDemand creates another data table during the arsload process. Using the Administrative Client, you can set the maximum row value for an application group data table. This value is located on the Advanced section of the General tab in the application group configuration. The field is called Maximum Rows.

The space allocation is done automatically. No further action needs to be performed by the DBA except to set up the backup of the newly created tables and plan for the new resources that are needed for the next couple of months.

For more information about space requirements, see IBM Content Manager OnDemand for z/OS - Introduction and Planning Guide, SC19-3651.

Content Manager OnDemand for z/OS allocates its table space during the creation of a new table based on the following space allocation parameters:

- **DBSIZE** / two for primary allocation
- **Primary allocation** / four for the secondary allocation

The allocation of the database is done in kilobytes. The allocation values depend on the maximum row limit that is set when you create the application group. The DBSIZE depends on the number of index fields that are defined in the application.

In general, here is how DBSIZE is calculated:
Maximum number of rows * Default Table Factor / records per page

The Default Table Factor is set to “1,2” by the program. The records per page value is a DB2 parameter. For more information about records per page, see Chapter 8, “Estimating Disk Storage”, in DB2 Version 10 for z/OS Administration Guide, SC19-2968.

**Note:** Based on this calculation, when you define the application group, make sure that you select the appropriate number for Max_Rows.

- If you expect the number of documents and indexes stored to be low, then reduce the default value of 10 million rows.
- If you expect the number of documents and indexes stored to be high, then increase the default of 10 million rows.
- If you leave the 10-million-row default unchanged, Content Manager OnDemand allocates 6 million rows as the primary allocation.
Storage management

In this chapter, we explore the storage management options that are available to the different IBM Content Manager OnDemand (Content Manager OnDemand) platforms. Content Manager OnDemand itself can manage the usage of local disk-based storage or cache. Additionally, it supports the usage of various archive storage managers that support external storage devices. These devices are used to manage long-term copies of data but with the development of new disk-based archive devices, different options are now available to users of Content Manager OnDemand.

In this chapter, we cover the following topics:

- Content Manager OnDemand cache storage
- IBM Tivoli Storage Manager for Multiplatforms
- Object access method for z/OS
- Archive Storage Manager for IBM i
5.1 Content Manager OnDemand cache storage

Content Manager OnDemand has a built-in cache storage management that is used to store documents on locally mounted disk subsystems. These subsystems can be NAS, SAN, or any type of locally addressable disk that is available to the supported operating system. The cache storage manager uses a list of directories or file systems that are available to determine where there is available space for storing and maintaining documents.

Each Content Manager OnDemand object server in the system has a defined set of cache storage devices on which you can maintain the report data for a period of time to provide the fastest access times for system users.

Some implementations of Content Manager OnDemand use an all cache system to maintain data for its full retention. While other implementations store to both cache and archive storage and yet other implementations store only to the Archive.

You can configure Content Manager OnDemand in such a way that at load time:

- Data is stored in cache and at a later date is automatically migrated from the cache subsystem to an archive system or
- Data is stored to both local cache and archive storage.
- Data is stored directly to archive storage.

These options are described in the following sections.

5.2 IBM Tivoli Storage Manager for Multiplatforms

Content Manager OnDemand for Multiplatforms integrates with Tivoli Storage Manager and a license for this usage is included with Content Manager OnDemand. Within Tivoli Storage Manager, documents can be archived on various media, such as disk, optical, tape, and Content Addressable Storage (CAS) devices. These archive storage devices must be defined to the Tivoli Storage Manager system. Content Manager OnDemand uses the archive API that is provided by Tivoli Storage Manager to store and retrieve documents.

To store application group data to the Tivoli Storage Manager archive storage manager, the application group must be configured within Content Manager OnDemand to a defined storage set. This storage set contains a storage node that is defined within Tivoli Storage Manager and points to a specific storage area or media.

The application group definition allows you to specify if and when the data will be migrated to archive storage. For example, you can specify that the data be migrated to archive storage when the document is originally loaded into the system; or that the data migration occurs the next time that the migration maintenance process is run; or after a certain number of days pass from the date the data was loaded; or never.

In this section, we describe the following two scenarios:

- The steps that you follow to set up and configure Tivoli Storage Manager as the archive manager for a Content Manager OnDemand for Multiplatforms system.
- The configuration of IBM System Storage® Archive Manager to store Content Manager OnDemand data. It provides data retention policies that help meet regulatory requirements and uses storage devices such as EMC Centera, IBM N Series, or NetApp Snaplock. You must verify that a particular device is supported on the platform of choice.
Starting with Tivoli Storage Manager V6.1, Tivoli Storage Manager uses DB2 for its database instead of the built-in B-tree database. Typically, the Tivoli Storage Manager Server is installed on a separate system but for smaller implementations, it is possible for the Tivoli Storage Manager server to coexist on the same system as your Content Manager OnDemand object server.

5.2.1 Tivoli Storage Manager overview

Before we describe the configuration process, we describe a few of the components that make up a Tivoli Storage Manager system. For a complete description of Tivoli Storage Manager, see the appropriate Tivoli Storage Manager documentation. For example, on Windows, see Tivoli Storage Manager for Windows Administrator’s Guide V6.3.4, SC23-9773.

Figure 5-1 represents a typical Tivoli Storage Manager system. A short description of each component follows.
Management class: Determines where data is stored and how it is managed.
Archive copy group: Used to copy data to Tivoli Storage Manager for long-term storage.

Storage devices and media
Storage devices and media consist of the following items:
Library: One or more drives with similar media mounting requirements. Only defined when you have an external library.
Drive: Tivoli Storage Manager -defined drive mechanism in an optical or tape library or stand-alone device.
Device class: Specifies the device type and how the device manages media.
Storage pools and volumes: A named collection of storage volumes of the same media type that is associated with a device class.

Tivoli Storage Manager installation
For help with installing and configuring a Tivoli Storage Manager Version 7.1.1 for Windows, see the installation guide at the following website:

Using this guide, complete the steps that are listed for installing the Tivoli Storage Manager server, Tivoli Storage Manager Licenses, Tivoli Storage Manager backup archive client, and Tivoli Storage Manager Device driver.

When these installations are complete and the Tivoli Storage Manager Server is running, go to 5.2.2, “Configuring Content Manager OnDemand for Tivoli Storage Manager archive management” on page 92. There are also additional optional components that can assist you in supporting your Tivoli Storage Manager Server that are covered in the guide, such as a Tivoli Storage Manager Administration Center.

5.2.2 Configuring Content Manager OnDemand for Tivoli Storage Manager archive management
To enable Content Manager OnDemand to use Tivoli Storage Manager as the archive manager for the system, you must set Content Manager OnDemand options to allow the system to recognize that Tivoli Storage Manager is configured for archive storage. In a Content Manager OnDemand for Windows system, the Content Manager OnDemand configurator is used to set this parameter. In a Content Manager OnDemand for UNIX or Linux -based system, the ars.cfg configuration file is updated to specify that Tivoli Storage Manager is used.

In this section, we describe how you can configure Content Manager OnDemand to use Tivoli Storage Manager on both Windows and UNIX / Linux systems.

Content Manager OnDemand for Windows Tivoli Storage Manager configuration
If you are configuring a Content Manager OnDemand for Windows system to use Tivoli Storage Manager for archive storage, the Content Manager OnDemand configurator is used. Either during the creation of the instance or after the instance is created, you can select Tivoli Storage Manager (TSM) as the storage option (Figure 5-2 on page 93). Click TSM, click TSM
Options, and then enter the path to the Tivoli Storage Manager program files and the path to the Tivoli Storage Manager options file.

Content Manager OnDemand for UNIX or Linux Tivoli Storage Manager configuration

If you are configuring a Content Manager OnDemand for UNIX system to use Tivoli Storage Manager for archive storage, you must be sure that the ars.cfg file (Figure 5-3 on page 94) is updated to reflect that Tivoli Storage Manager is used as the storage manager. The file must also include valid paths for the Tivoli Storage Manager options files and all of the Tivoli Storage Manager components that are used. The parameters in the file are used to reference the first Tivoli Storage Manager Server. A single object server can reference multiple Tivoli Storage Manager servers.
5.2.3 Content Manager OnDemand storage management

The storage management criteria that you specify for the Content Manager OnDemand library server determines where and when Content Manager OnDemand stores reports and how those reports are maintained.

Figure 5-4 on page 95 illustrates Content Manager OnDemand storage object relationships. When a report is loaded into Content Manager OnDemand, it is assigned to an application group. The application group is associated with a storage set. The storage set contains one or more storage nodes that can be used by several application groups that have the same archive storage requirements.

---

Note: For the Tivoli Storage Manager client that is used by Content Manager OnDemand, you should set COMPRESSION NO in the Tivoli Storage Manager client option file (dsm.opt for Windows or dsm.sys for UNIX). Content Manager OnDemand objects are compressed before they are sent to Tivoli Storage Manager for archival; therefore, compression by Tivoli Storage Manager is not required.
For example, a storage set can be used to maintain data from different application groups that must retain documents for the same length of time and require the data to be kept on the same type of media. Different storage sets can be created to handle different data retention requirements. One storage set can be set up to maintain data on cache only magnetic storage. Another can be set up to point to a Tivoli Storage Manager client node that stores a copy of the report in archive storage.

If Tivoli Storage Manager is used as the archive storage manager, the same storage management criteria should be specified for both Content Manager OnDemand and Tivoli Storage Manager. That is, the Life of Data and Indexes in Content Manager OnDemand and the retention period in Tivoli Storage Manager should have the same value.
5.2.4 Storage set definition

A storage set can contain one or more primary storage nodes. A primary storage node is used to manage reports and resources that are stored in an application group. A storage node is associated with a specific Content Manager OnDemand object server. When Tivoli Storage Manager is used for archive storage, each storage node that is associated with Tivoli Storage Manager -managed storage must be registered as a client node in a Tivoli Storage Manager policy domain. The Tivoli Storage Manager policy domain properties determine the type of storage devices that are used to maintain the archived data and the length of time that the data is maintained.

Content Manager OnDemand systems can be set up to run as cache-only hard disk drive systems with no migration of the data or indexes, or with an archive system using Tivoli Storage Manager to maintain and manage the archive of Content Manager OnDemand documents and indexes over a predetermined period.

When Content Manager OnDemand is installed and the system is initialized, a default cache only storage set is created. Additional cache storage sets can be defined. Storage sets that are associated with Tivoli Storage Manager client nodes that are tied to specific management policies on the Tivoli Storage Manager servers are used for long-term archive storage.
The Content Manager OnDemand administrator defines and maintains storage sets (Figure 5-5). The load type is the storage set parameter that we examine.

![Add a Storage Set](image)

**Figure 5-5 Storage set definition**

**Load Type**

The Load Type parameter determines where Content Manager OnDemand stores data. There are two possible values (Figure 5-5):

- **Fixed**: Content Manager OnDemand stores data in the primary storage node that has the load data field selected. When Load Type is set to *Fixed*, you must select the load data check box for one primary storage node. Content Manager OnDemand loads data to only one primary storage node regardless of the number of primary nodes that are defined in the storage set.

- **Local**: Content Manager OnDemand stores data in a primary storage node on the server on which the data loading program runs. When load type is *Local*, the load data check box must be selected for a primary storage node on each of the object servers that is identified in the storage set. A storage set can contain one or more primary storage nodes that are on one or more object servers.

On the primary node window (Figure 5-6 on page 98), there are several parameters, which we examine in the following sections.
Storage Node

The Content Manager OnDemand storage node name can be 1 - 60 characters in length and can include embedded blanks. The case can be mixed.

Content Manager OnDemand no longer supports adding auxiliary storage nodes when you create a storage set.

Note: The Content Manager OnDemand storage node name does not tie the storage set to the Tivoli Storage Manager client node. This name is only a label in the Content Manager OnDemand system. The storage node name can be the same as the associated client node name, but it is not required that they are the same.

Logon

If Tivoli Storage Manager is used to maintain archive data, the Logon field is the name of the Tivoli Storage Manager client node. This field is ignored if you are defining a cache only storage node.

Note: The Logon field must be a valid Tivoli Storage Manager client node name. This is the client node that is defined on the Tivoli Storage Manager system through the wizard or command line. The password that follows the logon must be the same as the password that you created for the client node. Content Manager OnDemand uses the Tivoli Storage Manager application programming interface (API) to connect and log on to the Tivoli Storage Manager server when data is being migrated to the Tivoli Storage Manager client node.
Load Data
The Load Data parameter determines the primary storage node into which Content Manager OnDemand loads data. When the load type is fixed, one primary storage node must have load data selected. When load type is local, load data must be selected for one primary node for each object server that is associated with the storage set.

Cache Only
The Cache Only parameter determines whether Content Manager OnDemand uses the archive manager for long-term storage of data.

After you install and configure Tivoli Storage Manager, create a Content Manager OnDemand storage set, and assign it to a Tivoli Storage Manager client node, you are ready to consider how an application group uses the cache storage manager. You must also consider how the archive storage manager stores, maintains, and expires Content Manager OnDemand report data.

Access Method
When you configure Content Manager OnDemand for Multiplatforms Tivoli Storage Manager Support, you can specify access to one or more Tivoli Storage Manager servers from a single object server. Only one Tivoli Storage Manager server can be set up to perform loading at a time using the Load Data flag. To configure the support for multiple Tivoli Storage Manager servers, you specify the client configuration file under the Config File Name section.

Content Manager OnDemand Object Servers on z/OS
Choose from OAM (Object Access Method) or VSAM (Virtual Storage Access Method) for the access method. OAM is the default access method for the primary storage node. If you choose OAM, specify the collection name. If you choose VSAM, specify the high-level qualifier. See Figure 5-7.

![Add a Primary Node dialog box](image)

*Figure 5-7  Content Manager OnDemand Object Servers on z/OS*
Reload Hold Data
You can optionally select the **Reload Hold Data** check box. If it is selected, then all documents on hold are reloaded into the storage node after they reach their expiration date. See Figure 5-8.

![Add a Primary Node](image)

**Figure 5-8  Reload Hold Data**

For each storage set, you can identify only one storage node as the node where the hold data is reloaded. You can change the Reload Hold Data option when a storage node is updated. This grants you control of the type of media that reloaded data is placed on that is technically eligible for expiration but is on hold. The location where the Held data is stored should be managed differently than new data being loaded to the system. You do not want to reload Hold Data to a Storage Set / Pool that is defined for 7 Year Storage.

### 5.2.5 Application group storage management

The application group storage management settings (Figure 5-9 on page 101) determine how long report data and indexes are kept in cache storage before they are expired. There are also choices to be made concerning how soon data is migrated to the archive storage after data is loaded.
Figure 5-9  Application group storage management

Cache Data
The Cache Data setting determines whether the report data is stored in a hard disk drive cache and, if so, how long it is kept in cache before it is expired. You can also choose whether to search cache when retrieving documents for viewing. If you choose not to store reports in cache, you must select a storage set that supports archive storage.

Note: Data that is retrieved often should generally remain in cache until it is no longer needed by 90% of Content Manager OnDemand users.

Life of Data and Indexes
The Life of Data and Indexes settings determine the length of time that report data, indexes, and resources are maintained in the Content Manager OnDemand system before they are deleted from the application group. The report data, indexes, and resources can be maintained indefinitely if set to never expire, or they might be kept for up to 273 years. After the maintenance threshold is reached, the arsmaint command can be used to expire the data from the system.

Expiration Type
The Expiration Type option determines how report data, indexes, and resources are expired. There are three expiration types:

- Load: With this expiration type, a single input file (a Load) at a time can be deleted from the application group. The latest date in the input data and the life of data and indexes determines when Content Manager OnDemand deletes the data. Content Manager OnDemand signals to the storage manager that the data might be deleted.
Figure 5-10 shows the error message that displays when you use Enhanced Retention Management and do not set the expiration type to Load.

Note: Load is the suggested expiration type.

If any application group uses either Enhanced Retention Management feature or IBM Enterprise Records, then this setting is required. This type should also be used if event-based processing is used within Tivoli Storage Manager.

- Segment: With this expiration type, a segment of data at a time is deleted from the application group. The segment must be closed and the expiration date of every record in the segment must be reached. Data that is stored in archive storage is deleted by the storage manager based on the archive expiration date. If a small amount of data is loaded into the application group, and the maximum rows value is high, the segment might be open for a long period of time, and the data is not expired for the period.

- Document: With this expiration type, a document at a time is deleted from the application group. Data that is stored in archive storage is deleted by the storage manager based on the archive expiration date. Storing with an expiration type of document causes the expiration process to search through every document in the segment to determine whether the expiration date has been reached, resulting in long processing times.
When the arsmaint expiration process is run, data is deleted only from the application group if the upper threshold for the size of cache storage is reached. By default, the cache threshold is 80%. A lower threshold can be forced by the expiration command parameters. Unless there is some reason that cache must be cleared, leaving data in cache improves retrieval performance.

5.2.6 Advanced application group storage management

The advanced storage management settings (Figure 5-11) allow you to adjust the size of the load object and to determine when report data, indexes, and resources are migrated to archive storage.

![Advanced Storage Management](image)

**Object Size**
The Object Size parameter determines the size of a storage object in kilobytes (KB). Content Manager OnDemand, by default, segments and compresses stored data into 10 MB storage objects. The default 10 MB is the most commonly used object size value.

**Attention:** Use care when changing the value for Object Size. Setting the value too small or too large can have an adverse effect on load performance. However, increasing this value might be necessary if you load large files and run out of Object IDs during the loading process.

**Note:** The object size, defined here, must be equal to or larger than the size of the compressed storage objects that are defined in any application that is assigned to the application group.

**Application Group Identifier and the Application Group ID**
Application Group Identifier and the Application Group ID are unique identifiers that are used by Content Manager OnDemand to identify the Application Group in system tables.
Migrate Data from Cache
The Migrate Data from Cache value determines when documents and resources are migrated to archive storage. A storage set that is associated with a Tivoli Storage Manager client node must be selected to enable migration to archive storage. Here are some possible values:

- **No**: Data is never migrated from cache. This option is unavailable when a storage set that is associated with a Tivoli Storage Manager client node is selected for the application group.
- **When data is loaded**: Data is migrated to archive storage when the data is loaded into the application group.
- **Next cache migration**: Data is migrated to archive storage the next time that **ARSMAINT** is run with the `-m` option. The `-m` option indicates that data and resources are copied from cache to archive storage.
- **After ___ days in cache**: This value specifies the number of days that data remains in cache storage. After reaching the prescribed number of days in cache storage, the data is copied to archive storage the next time that **ARSMAINT** is run with the `-m` option for data migration.

5.2.7 IBM System Storage Archive Manager
Some regulations require data to be stored in devices that are read only. In the past, physical storage devices, such as tapes and optical disks that are Write Once Read Many (WORM), were used.

WORM disks, such as the NetApp Snaplock or EMC Centera, can be used to store data, just like WORM tapes or optical platters. IBM System Storage Archive Manager allows critical data to be retained for a mandated period without the possibility of being rewritten or erased.

In this section, we describe System Storage Archive Manager and how Content Manager OnDemand can be configured to use this subsystem to support these WORM disk devices.

**Note**: Verify support for any particular device on a particular platform through the Tivoli Storage Manager Device support matrix before you plan your implementation.

For more information about Tivoli Storage Manager support of WORM disk devices, such as NetApp Snaplock, IBM N Series, or EMC Centera, see the following publications:

- **Tivoli Storage Manager for AIX Administrator's Guide**
- **Tivoli Storage Manager for Windows Administrator's Guide**

You can find these two publications from TSM Knowledge Center at the following web address:

http://www.ibm.com/support/knowledgecenter/SSGSG7/welcome?lang=en:

IBM System Storage Archive Manager
The IBM System Storage Archive Manager feature is sold as a separately licensed software product that is integrated into Tivoli Storage Manager Server software. It requires a stand-alone Tivoli Storage Manager Extended Edition server to be dedicated for its use. It is accessible solely through the Tivoli Storage Manager API by various content management or archive software applications.

For more information about the IBM System Storage Archive Manager, go to the following website:

IBM System Storage Archive Manager provides support in the following key areas:

- Data retention protection (DRP): Data is not deleted until the retention criteria for the object is satisfied. This feature affects Content Manager OnDemand on loads, unloads, application groups deletes, and expiration of data.

- Event-based retention policy: Data is retained based on a time interval after the occurrence of a retention-initiating event. For Content Manager OnDemand, this is a call to delete the data. A load, an unload, application group delete, or expiration of data triggers the retention event.

- Deletion hold: Data is not deleted or modified until the deletion hold is released. Content Manager OnDemand does not take advantage of this feature. Content Manager OnDemand uses its own built-in deletion hold mechanism called Enhanced Retention Management.

- New device support: Support is available for all the devices that Tivoli Storage Manager Extended Edition supports.

Content Manager OnDemand operation with the Tivoli Storage Manager server API

With the new event-based retention policy, the object expiration can now be event-based instead of creation-based. There is a new option in the archive copygroup definition called RETINIT. It determines the time when the retention time specified by the RETVER attribute is initiated. There are two possible values:

- Creation: This value specifies that the retention time specified by the RETVER attribute is initiated at the time an archive copy is stored on the Tivoli Storage Manager server.

- Event: This value specifies that the retention time specified in the RETVER parameter is initiated at the time a client application notifies the server of a retention-initiating event for the archive copy. If you specify RETINIT=EVTN, you cannot also specify RETVER=NOLIMIT.

We compare the behavior of Tivoli Storage Manager when Content Manager OnDemand data is deleted with the previously listed two options together with the setting of data protection.

Table 5-1 shows the action by Tivoli Storage Manager when a Content Manager OnDemand object is deleted, unloaded, or during deletion of application group when data protection is turned OFF.

<table>
<thead>
<tr>
<th>Tivoli Storage Manager RETINIT</th>
<th>Content Manager OnDemand action: Unload</th>
<th>Content Manager OnDemand action: Delete Application group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation</td>
<td>The Delete Object command is issued through the Tivoli Storage Manager API. Objects are deleted during the next Tivoli Storage Manager expiration.</td>
<td>The Delete Filespace command is issued. Objects are immediately deleted along with the file space.</td>
</tr>
</tbody>
</table>
**Table 5-2** shows the action by Tivoli Storage Manager when data protection is turned ON.

<table>
<thead>
<tr>
<th>Tivoli Storage Manager RETINIT</th>
<th>Content Manager OnDemand action: Unload</th>
<th>Content Manager OnDemand action: Delete Application group</th>
</tr>
</thead>
</table>
| Event                         | Content Manager OnDemand issues an event trigger command through the Tivoli Storage Manager API.  
                             | The status of the objects that are affected is changed from PENDING to STARTED and is expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, the objects never expire. | The **Delete Filespace** command is issued.  
                             | Objects are immediately deleted along with the file space. |
| Creation                      | Content Manager OnDemand issues no commands to Tivoli Storage Manager.  
                             | The objects are effectively orphaned by Content Manager OnDemand and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, the objects never expire. | Content Manager OnDemand issues no commands to Tivoli Storage Manager.  
                             | The objects are effectively orphaned by Content Manager OnDemand and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, the objects never expire. |
| Event                         | Content Manager OnDemand issues an event trigger command through Tivoli Storage Manager API.  
                             | The status of the objects that are affected are changed from PENDING to STARTED and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, the objects never expire. | The **Delete Filespace** command cannot be used with DRP ON, so the operation is treated the same as though a delete were indicated and the status of all the affected objects is changed from PENDING to STARTED. They are expired by Tivoli Storage Manager based on their retention parameters. This unfortunately leaves the file space entries in Tivoli Storage Manager. These entries can be manually deleted after the file space is empty even with DRP ON. |

**Content Manager OnDemand Version 9 setup recommendations**

The following recommendations are applicable to Content Manager OnDemand V9.0 and later:

- Application groups should be set up to expire by load. Doing this enables you to use the Enhanced Retention Manager document hold feature.
- Tivoli Storage Manager archive copy groups should be defined to be event-based. This is done by setting the `RETMIN` and `RETVER` parameters. The `RETMIN` parameter should be set to the minimum number of days a document must be retained. For a legal 7 year document, this setting should be 2557. For others, where you want Content Manager OnDemand to
be 100% in control and able to delete documents at anytime, set RETMIN=0. Content Manager OnDemand then issues a delete based on its life of data and indexes or when an administrator performs an unload command.

- Tivoli Storage Manager Inventory expiration should be run regularly to ensure that expired data is cleaned up.

### 5.2.8 The arsmaint command

We have referenced the Content Manager OnDemand arsmaint command many times in previous sections, but we now look closer at this command. The arsmaint program maintains application group data that is stored in the Content Manager OnDemand database and in cache storage. It maintains the system using the storage management values that are specified for application groups. It is typically run in a regular schedule to migrate documents from cache storage to archive storage, migrate index data to archive storage, and delete documents from cache storage and index data from the Content Manager OnDemand database.

The arsmaint command uses the application group expiration type to determine how to delete index data from an application group. This command can expire a table of application group data at a time (segment expiration type), an input file of data at a time (load expiration type), or individual documents (document expiration type).

| Note: | When expiring cache data, by default the data is not expired until the cache storage file system exceeds 80% of capacity. Keeping data in cache as long as possible improves retrieval and viewing performance. You can force the expiration of cache data before the cache is 80% full by using the minimum and maximum parameters to override the percentage full default. |

For a detailed explanation of the arsmaint command and its associated parameters, along with all other Content Manager OnDemand commands, see *IBM Content Manager OnDemand for Multiplatforms, V9.5, Administration Guide*, SC19-3352.

### 5.3 Object access method for z/OS

In this section, we provide an introduction to object access method (OAM) and show its relationship with Content Manager OnDemand in a z/OS environment. For more information about setting up OAM, see the following documentation:


OAM is a hierarchical data management system (disk → optical → tape) that is used for archive storage.

| Note: | When using OAM as the storage manager, Content Manager OnDemand can retrieve the stored object directly from disk, optical drive, or tape. |

OAM uses the OSREQ macro interface, and uses DB2 both for its internal (indexing) tables and for online storage objects. OAM is the DFSMSdfp component that manages a class of
data, called objects, in a z/OS environment. Objects are bit strings that are handled as one large byte string rather than processing them as records, as is done with data sets. The content of this byte string is not known to OAM. There are no restrictions on the data type of this object; it can be an image, compressed data, or coded data.

How to handle this data is left up to the application. OAM handles an unlimited number of objects, which can be stored on magnetic disk, magnetic tape, or optical storage. Objects are different from data sets, which are handled by existing access methods. The following characteristics distinguish them from traditional data sets:

- Lack of record orientation: There is no concept of individual records within an object.
- Broad range of size: An object might contain less than 1 KB or up to 256 MB of data.
- Volume: Objects are much smaller than data sets; however, they can use much more external storage, depending on the type of application creating them, such as image applications.
- Access time requirements: Reference patterns for objects change over time, allowing less critical objects to be placed on lower cost, slower devices, or media.

5.3.1 OAM components and SMS terminology

In this section, we describe the three components of OAM and the OAM terminologies.

OAM components

The functions of OAM are performed by three components:

- Object Storage and Retrieval (OSR) component
  This component provides an API for OAM. All OAM API functions are requested through the OSREQ assembler macro. Applications use this interface to store, retrieve, query, and delete objects, and to change information about objects. OSR stores the objects in the storage hierarchy and maintains the information about these objects in DB2 databases. OSR functions started through the API require the OAM Thread Isolation Support (OTIS) application for administrative processing.

- Library Control System (LCS) component
  This component writes and reads objects on tape and optical disk storage. It also manipulates the volumes on which the objects are stored. The LCS component controls the usage of optical hardware resources that are attached to the system.

- OAM Storage Management Component (OSMC)
  This component determines where objects should be stored in the OAM storage hierarchy. It manages object movement within the object storage hierarchy and manages expiration attributes that are based on the installation storage management policy that is defined through SMS. OSMC also creates the requested backup copies of the objects and provides object and volume recovery functions.

SMS terminology

To provide a better understanding of OAM, we explain some SMS terms in the following sections.

**SMS storage class**

A storage class is a collection of performance goals and availability and accessibility requirements that are defined to SMS. It is used to select a device to meet those goals and requirements.
Usually, three storage classes are set up for OAM where the names of the storage classes are set up by the storage administrator based on the naming convention in the Enterprise. These storage classes are:

- **OAMDASD**: Objects are stored in a DB2 table on fast magnetic disk.
- **OAMTAPE**: Objects are stored on magnetic tape, including tape robots.
- **OAMOPTIC**: Objects are stored on a 3995 optical device.

**Note:** The Content Manager OnDemand cache storage on a hierarchical file system (HFS) is not part of these SMS constructs.

**SMS storage group**

An SMS storage group is a collection of storage volumes and attributes that are defined by the installation. Storage groups, along with storage classes, help reduce the requirement for users to understand the physical characteristics of the storage devices that contain their data.

In an OAM environment, object storage groups allow the storage administrator to define an object storage hierarchy. The object storage hierarchy classifies storage areas according to location and, therefore, according to retrieval response time. Each object storage hierarchy must contain an object directory, containing control information about each object. Additionally, the hierarchy can have the following items:

- DB2 object storage tables on a hard disk drive
- Optical volumes that are associated with optical libraries (real or pseudo), and stand-alone or operator-accessible optical disk drives
- Tape volumes that are associated with tape libraries or stand-alone tape drives

**SMS management class**

Management classes define the space and availability requirements for data sets. Class attributes control backup, migration, retention of data, and release of unused space. OSMC uses information from the management classes to determine which automatic management processes should be performed upon corresponding OAM objects.

**Automated Class Selection routine**

Automated Class Selection (ACS) routines are used to assign class and storage group definitions to data sets and objects. ACS routines are written in the ACS language, which is a high-level programming language that is similar to the one that is used for the construction of TSO CLISTs. The ACS translator is used to convert the routines to object form so that they can be stored in the SMS configuration.

**OAM collection**

A collection is a group of objects that typically have similar performance, availability, backup, retention, and class transition characteristics. A collection is used to catalog many objects, which, if cataloged separately, can require a large catalog. Every object must be assigned to a collection. Object names within a collection must be unique; however, the same object name can be used in multiple collections. Each collection belongs to only one object storage group. Each storage group can contain from one to many collections.

**Important:** A collection is the only interface that is used by the administrator to determine how to store objects in OAM. It is used when you create a storage set.
5.3.2 OAM configuration recommendations

This section provides a list of recommendations for you to review and consider when you configure OAM for Content Manager OnDemand. They are classified in the following categories:

- General
- DB2
- Devices
- Tapes
- Maximum Object Size (MOS)
- Optical platters
- ARS.CFG setting

**General**

Here is a list of general recommendations when you work with OAM for Content Manager OnDemand:

- Define a user catalog exclusively for collection names.
- Cache the user catalog in VLF.
- Migrate objects to optical or tape (OSMC) during non-peak hours.
- Spread OAM collections over multiple DB2/disk/channels.
- Spread out the application groups to different collection names:
  - OAM collections → storage groups → DB2 database
- Group your applications based on retrieval expectations:
  - Collect small, frequently used applications together.
  - Isolate your important applications so that the other applications do not get in the way.

**DB2**

Here is a list of recommendations that are related to DB2:

- Ensure that there are enough DB2 connections available to support the OAM requests.
- Run `REORG`, `RUNSTATS`, and `REBIND` as appropriate.
- Partition OAM tablespaces larger than 2 GB.

**Devices**

Here is a list of recommendations that are related to devices:

- Determine and set the Initial Access Response Seconds (IARS) option.
- Assign objects to storage classes that have an adequate IARS defined and to management classes that do not cause a transition to a slower storage class until the frequency of retrieving the objects is reasonably low.
- Determine whether to place the object on disk or removable (optical or tape) media.
- If REMOVABLE media is opted for by the IARS, determine whether to place the object on optical or tape.
- Verify that the required Sustained Data Rate is achieved based on the selected object placement.
Tapes

Here is a list of recommendations that are related to tapes:

- Modify (CBROAMxx) **MAXTAPERETRIEVETASKS** and **MAXTAPESTORETASKS** (if using tape retrieves because the default=1). Both these parameters are configured at the global level and at the storage group level.

- The global level **MAXTAPERETRIEVETASKS** (tasks) is defined by **SETOAM**. This specifies the total number of concurrent tape retrievals possible at a time (it controls the maximum number of tape drives that can be concurrently allocated to the OAM address space for reading object data from tape). This number must be less than or equal to the number of tape drives on the system. Do not specify a number greater than the number of tape drives available to OAM for the **MAXTAPESTORETASKS** or the **MAXTAPERETRIEVETASKS** subparameters because it can cause a system to go into allocation recovery and attempt to allocate tape drives after all tape drives are in use causing system problems.

- The storage group level **MAXTAPERETRIEVETASKS** (tasks) specifies the maximum concurrent tape retrievals that are possible for a specific storage group. Unless this is set, the default for each storage group is 1. This value must be set for each storage group that requires a value larger than the default of 1. For a single storage group, you must set this parameter if you must retrieve documents from two or more tapes concurrently.

- Set the OAM cataloged procedure parameter **MABS** (the number of storage groups that the storage management cycle processes concurrently) to an appropriate value. As **MABS** increases above 10, the effectiveness of concurrency is diminished and can severely constrain processing in OAM or cause OAM processing to be unsuccessful. (If concurrent processing includes OBJECT storage groups writing to tape volumes, the correct corresponding (global level) **MAXTAPERETRIEVETASKS** and **MAXTAPESTORETASKS** values on the **SETOAM** statement must be specified.

- If you are using optical platters or tapes, set the tape **DEMOUNTWAITTIME** time parameter appropriately. This parameter determines how long OAM leaves a tape volume mounted in anticipation of another retrieval request from that device.

Maximum Object Size (MOS)

OAM now supports storing object sizes up to 256 MB. APAR OA03623 lists the PTF that is available for each release of z/OS. To enable support for object sizes up to 256 MB, you must specify the maximum object size by adding **MOS =256** to the OAM subsystem definition parameter **INITPARM** in the SYS1.PARMLIB(IEFSSNxx) member.

The Maximum Object Size (MOS) can be viewed by running the following command:

D SMS,OAM

Here are the results of that command:

| OAM1 Parms: TIME=GMT MSG=EM UPD=N QB=Y MOS=256 OTIS=N LOB=N DP=N |

If the MOS is too small, Content Manager OnDemand returns an error similar to “OAM Store Failed with an OSREQ RC=8 and Reason=24020202”. You should increase the MOS size. For more information, review the following document that is found at the following website:


Optical platters

When you work with optical platters, check and adjust the values for the following parameters in SYS1.PARMLIB(CBROAMxx):

...
- **MOUNTWAITTIME**: Specifies the amount of time (in minutes) that can pass while a volume is waiting to be mounted on an operator-accessible drive within an optical library. After this time expires, message CBR4426D is issued to allow the operator to try again or to cancel the volume mount request. This value can be any numeric value 1 - 9999. If the operator retries the mount request, the value that is specified in the **MOUNTWAITTIME** parameter is used for the retry. The default value of this parameter is five minutes.

- **OPTICALDISPATCHERDELAY**: Specifies the number of seconds that the OAM optical dispatcher delays processing of certain requests to minimize flipping of optical disk cartridges in an automated optical storage library expecting that another read request for the currently mounted optical disk volume will arrive within this delay interval. The OAM optical dispatcher delays processing of a unit of work for a specific period, when all of the following conditions are true:
  - A read request for an object on a currently mounted optical disk volume has just been completed.
  - There is no request for the currently mounted optical disk volume waiting to be processed on the OAM optical dispatcher queue.
  - The OAM optical dispatcher has found a read request for another optical disk volume (either the opposite side of the currently mounted volume or an unmounted optical disk volume) and is about to dispatch this unit of work.
  - A nonzero optical dispatcher delay value is specified with the **OPTICALDISPATCHERDELAY** keyword on the SETOPT statement in the CBROAMxx PARMLIB member.

If another read request for the currently mounted optical disk volume arrives within the delay interval, that unit of work is dispatched immediately upon arrival. If no read request for the currently mounted optical disk volume arrives within the delay interval, another request for a different optical disk volume (either the opposite side of the currently mounted optical disk volume or an unmounted optical disk volume) is dispatched.

Valid values for seconds are decimal numbers 1 - 60. If usage of this parameter is necessary, use of a low value 1 - 5 is suggested.

**ARS.CFG setting**

If you are configuring a Content Manager OnDemand for z/OS system to use OAM for archive storage, you must be sure that the ars.cfg file is updated to reflect that OAM is used as the storage manager. Example 5-1 shows an example of the settings to configure for OAM archive storage enablement for Content Manager OnDemand.

**Example 5-1  ars.cfg OAM parameter setting**

```
# OAM Parameters (Object Server Only) #
# Number of OAM SubServers.
# 0 - OAM is not used
# Otherwise - The number of OAM SubServers to handle
# connections to OAM
ARS_NUM_OAMSRVR=20
ARS_OAM_DB2SSID=DB2T
ARS_OAM_PLAN=CBRIDBS
```
5.3.3 Defining a storage set

When the Content Manager OnDemand administrator defines a new storage set, the Add a Storage Set window opens as shown in Figure 5-12.

![Adding an OAM storage set](image)

The administrator must define values for the following fields to add a storage set:

- **Name**: The name of the storage set.
- **Description**: The storage set description, up to 120 characters.
- **Load Type**: Where Content Manager OnDemand stores data. There are two choices:
  - **Fixed**: Content Manager OnDemand stores data in the primary storage node that has the load data field selected. When you set load type to Fixed, you must select the Load Data check box for one primary storage node. A storage set can contain one or more primary storage nodes. There can be several different collection names. Content Manager OnDemand loads data in one primary storage node regardless of the number of primary nodes in the storage set.
  - **Local**: Content Manager OnDemand stores data in a primary node on the server on which the data loading program runs. This applies to z/OS.

Then, the administrator clicks **Add** to add a primary storage node to this storage set. The Add a Primary Node window opens, as shown in Figure 5-13 on page 114.
The object server is the TCP/IP host name alias, fully qualified host name, or IP address of the server on which the storage node is. Select a name from the list or enter the name of a Content Manager OnDemand object server. Select Content Manager OnDemand if the storage node is on the Content Manager OnDemand library server.

The load data check box indicates that the data is loaded to this collection. You must select the OAM check box. The Logon, Password, and Verify Password fields are used only when Tivoli Storage Manager is selected for the access method.

There is a one-to-one relationship between a collection and a storage set. You can add more primary storage nodes to one storage set, but only one can be active at a time.

Figure 5-14 on page 115 shows the relationship between the creation of storage sets and OAM.
Object naming conventions

The object name identifies the object within a collection. The object name is unique within a collection and is provided by the Content Manager OnDemand application. Currently, no installation exits allow for any customization of these names. The object name is composed of the application group name and the load identifier within the application group portion of the load ID. The load identifier within the application group is composed of a numeric sequence number followed by a character string, such as FAAA. This string is then converted into two qualifiers of the object name:

- L indicates that the object contains document data.
- R indicates that the object contains resource data.

The application group name is added, and an object name looks like the following syntax:

A BDA.L1.FAAA

The maximum size of an object is specified through the Content Manager OnDemand Administrator Client when you define an application group. The default value is 10 MB. Currently, the maximum size for an OAM object is 256 MB. The Content Manager OnDemand administrator must be careful not to specify a value exceeding this limit.

Attention: In the current implementation, Content Manager OnDemand is not aware that an object was deleted by OAM based on the management class criteria that are set by the Storage Management component. A user can search for data that is no longer available. There is no synchronization between OAM object expiration and index expiration. Be sure to define the index expiration correctly when defining the application group.

Figure 5-15 on page 116 shows the window in which you can set up the index expiration for Storage Management when defining or updating an application group.
Another way to store data on the z/OS system is through the Virtual Storage Access Method (VSAM). Content Manager OnDemand can create objects that are stored in VSAM data sets. All storage management issues for VSAM data sets, such as allocation, backup, and migration, apply for these object data sets.

To create a storage set that stores in VSAM data sets, the Content Manager OnDemand administrator must provide the first level qualifier for the defined cluster statement. In the example that is shown in Figure 5-16 on page 117, VSAMTST is the high (first) level qualifier.

Tip: Content Manager OnDemand and OAM can run in different DB2 subsystems (different DB2 subsystem identifiers (SSIDs)).
Based on these parameters, Content Manager OnDemand creates VSAM data sets during the \texttt{arsload} program. A catalog entry is created, as shown in Example 5-2.

\textit{Example 5-2} \hspace{1em} \textbf{VSAM dataset name}

\begin{verbatim}
VSAMST.FAA.L1.FAAA
\end{verbatim}

This is done automatically by the Content Manager OnDemand system. The only part that you can create for yourself is the first level qualifier. The space allocation during the Define Cluster is done by the Content Manager OnDemand code as well. The default object size that is set when you define the application group influences the number of bytes for the primary and the secondary allocation. The number of bytes is divided by 16 for the primary allocation. Every time an \texttt{arsload} command is run with this storage set, this amount of data is allocated even if the objects are much smaller.

Every load creates two VSAM data sets, one for the data, and one for the index. Every Define Cluster of a VSAM dataset is a catalog entry. If you have several million loads with this storage set, your catalog can grow large.

You can browse the VSAM dataset, but if the compression is on, you cannot see much. For test purposes, compression can be switched off and then the content of the VSAM dataset is viewable. Compression can be switched off on the load information in the application window.

If you store Advanced Function Presentation (AFP) data to VSAM, the resources are stored in a different VSAM dataset.
5.4 Archive Storage Manager for IBM i

The Disk Storage Manager of Content Manager OnDemand for i maintains a copy of documents on disk. Disk Storage Manager migrates documents from cache to the Archive Storage Manager. Archive Storage Manager then migrates documents to archive media.

Archive Storage Manager maintains one or more copies of documents on archive media, such as disk pool, optical (physical or virtual), or tape. The Content Manager OnDemand administrator decides which type of archive media is required, configures the storage devices on the systems, and defines the storage devices to Archive Storage Manager. To store application group data on archive media, the application group must be assigned to a storage set that is managed by the Archive Storage Manager.

When creating an application group, the Content Manager OnDemand administrator specifies how long the documents should be maintained on the system and whether the index data should be migrated from the database to archive media. Content Manager OnDemand system management programs use this information to migrate documents from cache to Archive Storage Manager, delete documents from cache, migrate index data from the database to archive media, and delete index data from the database. Content Manager OnDemand can then reclaim the space that had been used by the migrated and expired data.

Disk Storage Manager expires data based on the Life of Data and Indexes setting. You can find this setting by clicking Application Group → Storage Management. Archive Storage Manager deletes data from the archive media when it reaches its storage expiration date. The Content Manager OnDemand administrator defines management information to the Archive Storage Manager for the Content Manager OnDemand data that is managed. This management information includes storage volumes that can contain Content Manager OnDemand data, the number of copies of a report to maintain, and the amount of time to keep data in the archive management system.

5.4.1 Migration policy

Migration policies and storage sets must be defined before you can define reports to Content Manager OnDemand or load data into the system. Migration policies contain migration and storage media characteristics for data archived using Content Manager OnDemand. The information is used by Archive Storage Manager to determine if and when archived data should be moved through a hierarchy of storage media, such as disk, optical, or tape. Each step in the movement of data through this storage hierarchy is referred to as a migration policy storage level. Each migration policy must contain at least one storage level. Additional levels might be defined to meet your storage and retrieval requirements.

The Cache Only - Library Server storage set is no longer created automatically with the installation of Content Manager OnDemand for i. The “Cache Only” storage set is limiting because you cannot add any storage levels to it. A better alternative is to define a disk pool and create a migration policy instead. This provides the flexibility of adding additional storage levels to the policy at a later date.

When you create a migration policy, a storage set of the same name is automatically created by Content Manager OnDemand. If you plan to keep all your archives on disk, the best approach is to create a disk pool and a migration policy that specifies “No Maximum” for the duration level. Disk Storage Manager expires data and indexes whenever the number of days is reached in the Life of Data and Indexes in the application group, or whenever an expiration level in the migration policy is encountered, whichever comes first. If there is no expiration level in the migration policy, data is only expired according to the Life of Data in the application group.
If you plan to add a virtual optical level later to take advantage of improved save and restore times or to use the WORM (write once, read many) option, you can initially specify 90 days, for example, for the disk pool level, with no other storage levels defined. When a virtual optical level is added later, the archives are moved from the disk pool level to the virtual optical level. With this technique, never add an expiration level after the disk pool level because if that level is encountered, the archives are expired.

In the status report that is created by Archive Storage Manager, you might see messages indicating that the number of days in the ASP01 disk pool level has been exceeded because there is no level available after 90 days in this example. You can ignore these messages.

If you choose the default in the application group to migrate data from cache when data is loaded, then a copy of the data is archived to the integrated file system (IFS) CACHE directory and to the ASMREQUEST directory. When you run Disk Storage Manager, the data is deleted from cache after the Cache Data for Days duration ends. When you run Archive Storage Manager for the first time after loading data, the data is moved to the first level of the migration policy, ASP01 in our example. If aggregation is used, the data is not migrated until the appropriate object size is aggregated, or until the number of days to aggregate has passed. The data remains in ASP01 until the number of days in the Life of Data and Indexes is reached or an expiration level in the migration policy is encountered, whichever comes first.

Most administrative functions for Content Manager OnDemand for i can be carried out with the Content Manager OnDemand Administrator client. The objects that are necessary for Content Manager OnDemand archive storage management on IBM i are created by using the Content Manager OnDemand component of the web-based IBM Navigator for i (Figure 5-17).

To create a migration policy to be used by the archive storage management process, there must be storage devices that are defined for the types of archive media that are required by the Content Manager OnDemand system. For our scenario, we created a disk pool storage group and an optical storage group.

**Figure 5-17  IBM Navigator for i**

**Disk pool storage group**

A disk pool storage group is used to identify an IBM i auxiliary storage pool that Archive Storage Manager uses as disk storage media when migrating archived data. Use IBM Navigator for i to add a disk pool storage group (Figure 5-18 on page 120).

Provide the following information for Disk Pool definition:

- A pool number that corresponds to an existing auxiliary storage pool
- A description of the storage group
- The type of data, primary or backup

Figure 5-18  Content Manager OnDemand for i Disk Pool definition

**Optical storage group**

Optical storage groups are used by Content Manager OnDemand to group sets of optical volumes for the storage of related data. Optical storage groups are used to group physical optical volumes and virtual optical volumes. Each optical storage group should only contain one type (physical or virtual). By using a specific storage group in the migration policy, the administrator can control which sets of reports are stored on a particular set of optical volumes. Use IBM Navigator for i to define the optical storage group (Figure 5-19).

Figure 5-19  Content Manager OnDemand for i Optical Storage Group

When defining the optical storage group, you provide the following information:
- Storage group name
- Description of the storage group
- Volume full reset when optical volumes are rewritable and you want to reuse the storage space (only available with LAN-attached optical jukeboxes)
- Free space threshold percent (the percent at which Content Manager OnDemand starts storing to rewritable volumes again if the volume full reset parameter is checked)
- Storage group type, primary or backup

After you define the optical storage group, use IBM Navigator for i to define the optical volumes to the Content Manager OnDemand system (Figure 5-20 on page 121).
Figure 5-20  Content Manager OnDemand for i Optical Volume

When defining optical volumes, provide this information:

- **Volume name:** Your volume name
- **Volume type:** Primary or backup
- **Capacity in megabytes:** Capacity of one side of the optical media after it is initialized
- **Optical media family:** Rewritable (REWT), WORM, Universal Disk Format single-sided (UDF1) used by DVD RAM drives, Universal Disk Format or double-sided (UDF2), Virtual Rewritable (VRWT), or Virtual WORM (VWRM).
- **Optical storage group:** Your optical storage group.
- **Optical library:** Library name, which can be provided for documentation.
- **Volume is full:** Set when the optical volume reaches its capacity.
- **Opposite side volume name:** For the other side of the optical platter (applies only required for REWT, WORM, and UDF2)

After the storage groups are established, use IBM Navigator for i to define the migration policy that is needed to use the storage groups (Figure 5-21 on page 122).
The migration policy definition includes the following items:

- **Policy name and description**: This field is for the policy name and its description.

  **Tip**: It is a preferable practice to put information such as the length of time and where data is located in the description rather than in the policy name field. This is because you can change, add, and delete levels, but you cannot change the name. If your requirements change, you do not want to have a name that is no longer accurate.

- **Enable aggregation**: If this item is selected, Archive Storage Manager combines individual archived objects into larger objects to provide a more efficient process. Archive objects are appended to the same file until the aggregate is closed.

- **Maximum size**: The value of this field determines the maximum size of the aggregate file. Archive Storage Manager closes the existing aggregate and opens a new aggregate when the maximum value is reached.

- **Close aggregate only when maximum size reached**: If this item is selected, the aggregate stays open until the maximum is reached.

- **Close aggregate after specified time period**: The value in this field specifies the number of days before an aggregate closes. Archive Storage Manager closes the aggregate after the specified number of days or when the specified maximum size is reached, whichever occurs first.

  **Important**: The aggregation process occurs before the migration of the object from disk to the first Archive Storage Manager storage level. Only aggregate files that are closed are eligible for migration by Archive Storage Manager. If the specified maximum file size is large and the size of the archived objects is small, the aggregate file can remain open for long periods. Also, the Content Manager OnDemand objects might remain on disk longer than the period that is specified by the application group. Choosing to close the aggregate after a specified period addresses this problem.
Tape backup requested and media type: The Tape backup requested field indicates whether a one-time tape backup should be made of the data before it is archived. The Media type field indicates the type of tape to use for the backup.

Storage levels in this policy: This section determines the path that the archived data follows through the different archive storage media. The order of the levels determines the migration sequence. Storage levels are created by placing the cursor on an existing storage level (if one exists) and clicking **Add Before** or **Add After**. The New Policy Level window (Figure 5-22) opens.

![Figure 5-22 Content Manager OnDemand for i New Policy Level](image)

In the New Policy Level window (Figure 5-22), you provide the following information for the new storage level:

- **Level identifier**: This field distinguishes the different storage levels within the migration policy. The value must be unique within the storage levels of the migration policy. Archive Storage Manager uses the level identifier to determine the current level of the migration hierarchy and to determine the next level to which the data should be moved. The identifier can be numeric (for example, 10, 20, and 30) or descriptive (for example, ASP or OPT).

- **Disabled**: Specifying this option causes Archive Storage Manager to skip this level in the storage hierarchy. The Disabled option can be used in a situation where an optical unit is added to the system later, but the administrator wants to add an optical policy level and disable it. This option can also be used when migration to a policy level is discontinued, such as a tape unit. A policy level cannot be removed if data is archived to it, but it can be disabled so that no more data gets migrated to that level.

- **Description of the policy level**: Use this field to provide a description of the policy level.

- **Media type**: The types from which you can choose are optical, tape, disk, or expire. If you select expire as the last policy level, when data reaches this level in the migration sequence, it is removed from the archive system even if the retention period that is specified in the application group is not exceeded. It is not necessary to specify an expire level. Instead, you can let the data expire when it exceeds the number of days that are specified in the Life of Data and Indexes in the application group.
- Duration at this level: In this field, you specify either no maximum or a specified number of days before Archive Storage Manager moves the data to the next level in the migration sequence.
- Primary storage group: Select the storage group that you want to use to store the data at this level.
- Create backup copy and backup storage group: You select these options if you want Archive Storage Manager to create a backup copy of the data when it moves to this policy level. The backup storage group must be created with a type of backup.
- Stage to disk if retrieved from tape and duration on disk: Choose these options to cache data that is returned from tape to disk for the number of days that is specified.

In our scenario, we created a policy level that stores data for 100 days on disk by using the disk pool storage group that is assigned to auxiliary storage pool 1. We also created a policy level that stores data on optical indefinitely and uses the REPORTS optical storage group. We did not include an expire level, so the data always expires according to the Life of Data and Indexes in the application group. We can use this migration policy for all application groups if we choose. Documents that are in application groups with Life of Data set to 100 days or fewer are never migrated to optical because the disk pool storage level specifies 100 days. This approach is easy to manage.

Figure 5-23 shows the final migration policy structure.

![Figure 5-23 Content Manager OnDemand for i migration policy hierarchy](image)

Note that when the migration policy is created, a corresponding storage set is created for the Content Manager OnDemand instance with which the migration policy is associated. The storage set is displayed in a listing of storage sets using the Content Manager OnDemand Administrator Client but can only be viewed. No updates can be made to existing storage sets, and no new storage sets can be added using the Administrator client. Storage sets in the Content Manager OnDemand for i system can be created and modified only by using IBM Navigator for i migration policies.
5.4.2 Application group storage management

The application group storage management settings (Figure 5-24) determine how long report data and indexes are kept in cache storage before they expire. All documents in the application group are loaded on the media that is part of the storage set to which the application group is assigned. All documents in the application group migrate according to the rules that are defined for the application group's migration policy. When defining the application group, choices are made concerning how soon data is migrated to archive storage after the report load is completed.

![Image of application group storage management settings](image)

**Figure 5-24  Content Manager OnDemand for i Application Group Storage Management**

**Cache Data**

The Cache Data setting determines whether the report data is stored in disk cache, and if so, how long it is kept in cache before it expires. If the Cache Data for n Days option is selected, then the search cache is always selected.

Search cache determines whether Content Manager OnDemand searches cache storage when users retrieve documents from the application group. When you set Cache Data to No, you can configure Content Manager OnDemand to retrieve existing documents from cache storage while preventing new documents from being copied to cache storage. If you choose not to store reports in cache, you must select a storage set that supports archive storage.

**Life of Data and Indexes**

The Life of Data and Indexes settings determine the length of time that report data, indexes, and resources are maintained in the Content Manager OnDemand system before they are deleted from the application group. The report data, indexes, and resources can be maintained indefinitely, if set to never expire, or they can be kept for up to 273 years. If your retention requirements change, the Life of Data and Indexes value can be changed. The change affects data already archived as well as new data stored to the application group.

Note that Disk Storage Manager maintains documents on disk. It is initiated by the Start Disk Storage Management (STRDSMOND) command. Disk Storage Manager can delete
documents after they exceed the cache data or life of data periods. For more information about running the STRDSMOND command, see IBM Content Manager OnDemand for i - Common Server Administration Guide, SC19-2792.

Expiration Type
The Expiration Type determines how report data, indexes, and resources are expired. There are three expiration types:

- **Load**: If the expiration type is Load, an input file at a time can be deleted from the application group. The latest date in the input data and the Life of Data and Indexes determines when Content Manager OnDemand deletes the data. Data that is stored in archive storage is deleted by the storage manager based on the archive expiration date. Load is the recommended expiration type.

- **Segment**: If the expiration type is Segment, a segment of data, which is a database file that contains index values for an application group, at a time is deleted from the application group. The segment must be closed and the expiration date of every record in the segment must be reached. If small amounts of data are loaded into the application group, and the maximum rows value is high, the segment might be open for a long period of time, and the data is not expired for the period.

- **Document**: If the expiration type is Document, a document at a time is deleted from the application group. Storing with an expiration type of Document causes the expiration process to search through every document in the segment to determine whether the expiration date has been reached, resulting in long processing times.

Note that Expiration Type Load is not allowed when using the ARSLOAD ADD API or when using the workstation APIs. If you plan to use these APIs with an application group, specify the Expiration Type as Document.

5.4.3 Advanced application group storage management

The advanced storage management settings (Figure 5-25) allow you to adjust the size of the load object and to determine when report data, indexes, and resources are migrated to archive storage.
Figure 5-25  Content Manager OnDemand for i Application Group Advanced Storage Management

Object Size
The Object Size parameter determines the size of a storage object in kilobytes. Content Manager OnDemand, by default, segments and compresses stored data into 10 MB storage objects. The default of 10 MB is the recommended object size value.

**Attention:** Setting the value too small or too large can have an adverse effect on load performance.

**Note:** The object size, defined here, must be equal to or larger than the size of the compressed storage objects that are defined in any application that is assigned to the application group.

Migrate Data from Cache pane
This section of the Advanced Storage Management window determines when documents and resources are migrated to archive storage. A storage set that is associated with a migration policy using archive media must be selected to enable migration to archive storage. Here are the possible values:

- **No:** Data is never migrated from cache. This option is unavailable when a storage set that is associated with archive storage is selected for the application group.

- **When Data is Loaded:** Data is migrated to archive storage when the load process runs because of one of the store commands, such as Add Report (ADDRPTOND), Start Monitor (STRMONOND), or ARSLOAD.

- **Next Cache Migration:** Data is migrated to archive storage the next time that Disk Storage Manager is run.
- After Days in Cache: This value specifies the number of days that data is to remain in cache storage. After reaching the prescribed number of days in cache storage, the data is copied to archive storage the next time that Disk Storage Manager is run.

Note that the Archive Storage Manager is started with the STRASMOND command. The command should be run only in batch. For more information about running the STRASMOND command, see IBM Content Manager OnDemand for i - Common Server Administration Guide, SC19-2792.
Chapter 6. Security

This chapter describes the security features that are provided by IBM Content Manager OnDemand (Content Manager OnDemand). It also provides examples of available components and their usage to create a secure environment.

In this chapter, we cover the following topics:

- Content Manager OnDemand security overview
- Data separation
- API access
- Data security
- Data encryption
- Security exits
6.1 Content Manager OnDemand security overview

The amount of security that is employed by an organization varies by organization and is normally proportional to the cost of data loss because of security leaks or other issues.

For any system, the first layer of security is its environment. Here are some of the attributes that are included in a secure environment:

- Physical security: Controlling physical access to the system and ensuring that the system is protected from both natural and man-made disasters.
- Data security: Controlling access to online data using both authentication and authorization techniques; controlling access to offline data, including all backup copies of the data, data storage sites, and encryption of the backup copies of data.
- Personnel security: Hiring trusted employees, limiting employee access based on employee role, and job redundancy.

Although environmental security is beyond the scope of this book, it is important to be aware of and prepare for providing security in these areas.

In this section, we focus what Content Manager OnDemand can provide from a security perspective.

Content Manager OnDemand is a flexible and scalable system. This flexibility allows for the deployment of multiple security features using multiple methodologies. The descriptions within this chapter are examples of the available components and their usage to create a secure environment.

Figure 6-1 on page 130 outlines many of the components that are part of Content Manager OnDemand's security features.
The complete security cycle begins with code creation through data loading, storage, and access, and ends with data (and index) expiration. The following list outlines the different types of security that are described in this chapter. Within each type, different security techniques can be implemented.

- **Code creation**
  - Controlled environment
  - Code scanning
  - Quality assurance testing

- **Data separation**
  - Multiple systems: Allowing users access only to the system that contains data that is relevant to them
  - Multiple object servers
  - Multiple archive subsystems
  - API access: Web server, web services, and CMIS

- **Data security**
  - Administrative features: Login inactivity, disabling user, lockout user, and password rules
  - Content Manager OnDemand data model: Application groups and folders
  - Query restrictions
  - Annotation security
  - Securing access to Content Manager OnDemand commands (stash file)

- **Data encryption**
  - Data at Rest
  - Data in Motion: Secure communication between the server and the clients (SSL)

- **Security exits**
  - User security and permissions exit (**ARSUSEC**)
  - Unified logon exit (**ARSPTGN**)
  - System log exit

## 6.2 Code security

The Content Manager OnDemand code is developed in a secure environment that follows IBM guidelines. The Content Manage OnDemand development lab follows multiple preferable practices methodologies to ensure the highest possible code and security standards. The goal is to ensure that the code “works as designed”, does not perform any malicious actions, and is resistant to external security breach attempts. In this section, we describe examples of some of the practices followed.

### 6.2.1 Controlled environment

During development, all code is reviewed by two or more developers and passes through a structured process within the development organization to ensure the integrity of the code. The code is periodically scanned to ensure that no foreign code is included and to ensure that safe programming techniques are applied. The following are a few practices applied:
6.2.2 Code scanning

The code is scanned three times, once at the beginning of the release or fixpack, once during the middle of the development process, and last time at the end of the development process. Each time three different types of scans are performed:

- Code scan: This type of scanning searches for code that is external to the Content Manager OnDemand developed code. The goal is to ensure that there is no code that is unknowingly inserted into the source and to verify that all the external code that exists is properly licensed and will not result in any future lawsuits.

- Appscan source: This type of scanning search for “bad code”. It verifies that all variables and pointers are properly initialized and that during program operation the values of variables and pointers can only be changes through the “correct” code path and cannot be altered by external sources.

- Appscan Web: This is a penetration testing program that is run against the common gateway interface (CGI) code to identify any potential security flaws.

6.2.3 Quality assurance testing

The Quality Assurance (QA) testing is run in parallel with the code development through the development cycle. When developers create new code, they perform their own unit test to ensure that the code works as intended. These unit test are then “handed over” to the QA team for automation. The QA team automates these tests and adds then other newly automated tests to the regression bucket.

Every time there is a new build (which is nightly during peak development time) automated regression and performance tests are run. These automated tests are run on the multiple operating systems supported by Content Manage OnDemand (Windows, Linux, AIX, IBM i, zLinux, and z/OS). The goal is to detect any defects or performance impact so that it can be corrected during the following day.

Periodically, endurance and stress tests are run to ensure that the code can run for long periods of time and under heavy workloads.

A specialized subset of these tests and “Cloud specific” tests are run against the Cloud release of Content Management OnDemand.

6.3 Data separation

Content Manager OnDemand allows for the separation (compartmentalization) of the organization’s data into multiple separate partitions with specific groups of users having access to only the partitions that contain data that is relevant to their operations. The
separation of data can be at the system level, the object server level, and the archive server level.

### 6.3.1 Multiple systems

The organization's data can be spread over two or more separated systems. As illustrated in Figure 6-2, User Group A has access only to Content Manager OnDemand server A and has no access to any other Content Manager OnDemand system and any other Content Manager OnDemand data. If necessary, it is possible to create a super user group who has access to multiple systems.

System access restrictions can be implemented by one or more of the following means:

- A web server
- Firewalls, switches, or other network devices
- Defining only the appropriate user group to the system's authentication mechanism

![Figure 6-2  Data separation at the system level](image)

#### 6.3.2 Multiple object servers

Data can also be separated at the object server level. In this case, the Application Group (AG) data table that contains the indexes that point to separated data are also separated. Thus, access to the AG data table is allowed only to users who need that data. As illustrated in Figure 6-3, User Group A of AG data tables Part A is pointed to (allow access to) the data on object server A and User Group B of AG data tables Part B is pointed to the data on object server B.
6.3.3 Multiple archive servers

Data can be separated at the archive level. Typically, in this implementation, as illustrated in Figure 6-4 on page 134, the Application Group (AG) data tables remain separate and the User Group A’s data is stored on the Tivoli Storage Manager system A server, and the User Group B’s data is stored on Tivoli Storage Manager system B server. The two Tivoli Storage Manager servers are separate systems. This same type of separation is also possible using Object Access Method (OAM) on z/OS systems. OAM enables the separation of data by placing the data in different OAM collections on different storage devices.

6.4 API access

An important component of Content Manager OnDemand is the Content Manager OnDemand Web Enablement Kit (ODWEK) Java APIs. These APIs are used to build applications that access the Content Manager OnDemand server. Various applications can be built using the APIs. Examples of applications include IBM Content Navigator (ICN) and CMIS. Using the ODWEK APIs, you can also build your own application server or web services applications.
All of these types of applications allow for the following situations:

- Users communicating and interacting with a mid-tier, custom-built access mechanism that controls access to the Content Manager OnDemand server. For example, the mid-tier application can control whether a Content Manager OnDemand user request is accepted or rejected, and if it is accepted, which Content Manager OnDemand server the request is routed to.

- The network transmissions between the ODWEK Java APIs and the Content Manager OnDemand server use a proprietary Content Manager OnDemand protocol and optionally can be encrypted using SSL.

- The network transmissions between the mid-tier custom application and the users can optionally be encrypted using SSL.

- An optional user proxy implementation allows for multiple users to share a user ID and password, thus allowing for a reduction in the number of actual logons to the Content Manager OnDemand server while still maintaining secure access to the system through the custom built access mechanism.

- The Java APIs allow for a security token to be passed through to the Content Manager OnDemand server. This token can then be captured by the security exit and the exit can perform whatever special processing is required.

Figure 6-5 shows controlling access at the web server.

![Figure 6-5 Data separation at the web server (mid-tier)](image)

### 6.5 Data security

Access to the Content Manager OnDemand data tables is secured through various methods. These methods include a secure data model, user authentication, SQL Query support, annotation security, and securing access to the Content Manager OnDemand commands. These methods are described in further detail in this section.
6.5.1 Content Manager OnDemand object-owner model

Content Manager OnDemand internal security is based on an object-owner model, which is illustrated in Figure 6-6. Details regarding the object-owner model can be found in *IBM Content Manager OnDemand for Multiplatforms, V9.5, Administration Guide*, SC19-3352. In this context, a Content Manager OnDemand instance is an implementation of the library server, one or more object servers, the data access, and the storage model. The data access and storage is implemented in the form of objects. Users, groups, application groups, folders, cabinets, application, holds, storage set, and printers are all Content Manager OnDemand objects.

The Content Manager OnDemand object-owner model design allows for the following situations:

- A single system administrator to control one or more Content Manager OnDemand instances through a single Administrator Client interface.
- Flexibility to create user administrators who manage users and groups for a specific Content Manager OnDemand instance.
- Flexibility to create report administrators who manage application groups, folders, and cabinets for a specific instance.
- Implementing report security based on limiting object access to selected groups of users.
- Elimination of Content Manager OnDemand objects access unless explicit permission is granted.

In summary, this model allows organizations to separate and isolate report (data) ingestion and access to various users and groups. Additionally, organizations that provide billing, payroll, accounting, and bill presentment services for a number of other companies (their clients) also benefit from this model, as users from one company would be isolated from the data and users of another company. Furthermore, large systems can decentralize system administration so that report and user administrators can be delegated for the management of components of the overall Content Manager OnDemand system.

6.5.2 Administrative features

The Administrator Client allows for the control of user logon parameters. These parameters are set in the Login Information tab in the System Parameters window, as shown in Figure 6-7.
We describe these parameter settings in the following subsections.

**Check Previously Used Passwords**
This setting specifies whether you want users to be able to reuse a previous password. You can make users create up to 10 unique passwords before they can reuse a previous password. Use this setting to enforce security policies. For example, you can force the user to not reuse the eight most recent passwords.

**Disable Or Lock Out After Failed Logins**
This setting specifies whether you want to limit the number of failed login attempts by a user. If you want to limit the number of login attempts, specify how many failed attempts you want to permit and whether to disable or lock out the user after the user exceeds that number of attempts.

If you choose to disable a user, the user must request that the system administrator to re-enable the user ID.

If you choose to lock out the user, the user must wait to attempt another login. You specify how many minutes to wait in the Number Of Minutes To Lock Out User field.

**LDAP authentication**
LDAP allows you to store authentication values on a separate organizationally centralized server that is remote from Content Manager OnDemand. LDAP can be used in place of the user security exit to manage basic login authentication. Figure 6-8 shows how Content Manager OnDemand works with LDAP.
You can specify whether you want to use Lightweight Directory Access Protocol (LDAP) authentication in your Content Manager OnDemand server.

When you enable LDAP authentication, the Content Manager OnDemand server makes an authentication request to the LDAP server every time it receives a login request from the client. The Content Manager OnDemand server processes the client request only after the user information is verified by the LDAP server.

If you are using LDAP, you must take several scenarios into consideration:

- The LDAP server is running on another system and it is connected to Content Manager OnDemand through TCP/IP.
  In this scenario, there is a time delay between when the verification request is issued by Content Manager OnDemand and the result is returned to Content Manager OnDemand. The length of this time depends on the Internet Protocol network connection, the response time of the LDAP server, and the current LDAP workload.

- Users with admin level security bypass LDAP.
  You can compare an admin user’s response time to a production user’s response time to determine the LDAP impact.

- The LDAP server or the connection to the LDAP server fails.
  When this scenario happens, users cannot log in to Content Manager OnDemand, except for users with admin level security.

**Login Processing (case sensitivity)**

The parameter allows you to specify whether user IDs and passwords are case-sensitive. By default, user IDs and passwords are case-insensitive. When you add a user, Content Manager OnDemand converts lowercase letters in the user ID to uppercase.

A person can type letters in a user ID in uppercase, lowercase, or mixed case letters. For example, if you add the user LaGuarde, a person can enter LAGUARDE, laguarde, or LaGuarde to log on to the server.

If you select User ID to be case-sensitive, then a user must type the user ID exactly as it was entered when the user was added. For example, if you add the user ID LaGuarde, then the user must enter LaGuarde to log on to the server.

If you set a password as case-sensitive, then a user must enter the password exactly as it was entered when the user was added.
**Maximum Password Age**

This setting specifies a time limit for passwords and determines when Content Manager OnDemand prompts users to change passwords. The default setting is Password Never Expires, meaning that passwords do not expire and Content Manager OnDemand never prompts users to change passwords.

If you click **Password Always Expires**, then users must change to new passwords each time that they log on to a server. To set a specific time limit for passwords, select **Expires In ___ Days** and enter the number of days that passwords are valid in the space provided. The value can be 1 - 365.

**Minimum Password Length**

This setting specifies whether passwords are required. If passwords are required, it specifies the minimum number of characters that passwords can contain. The default value is At Least 8 Characters, meaning that passwords must contain at least eight characters.

If you click **Permit Blank Password**, meaning that passwords are not required, then the valid password length is 0 - 128.

To set a specific minimum password length, click **At Least ___ Characters** and enter a number in the space that is provided. The value can be 1 - 128.

When a user changes a password, the client checks the number of characters that the user entered. The new password must contain the minimum number of characters. Otherwise, the user receives an error message.

**Password Expiration Notification**

This setting specifies whether to notify users that their password expires within the specified number of days.

**Changing an Expired Password**

Content Manager OnDemand provides password expiration processing to help you manage security on the system. You can set a value that represents the time in days that passwords that are assigned to users remain valid. After a user's password reaches the value that you specify, the user must change the password.
After a password reaches the expiration value, the next time the user logs on to a server, Content Manager OnDemand prompts the user to enter a new password. The user must enter the current password, a new password, and verify the new password by reentering the new password.

**Session Inactivity Time Out**
This setting specifies when Content Manager OnDemand terminates sessions between inactive clients and the server. The default setting is Time-out in 60 minutes. Never Time Out means that Content Manager OnDemand does not terminate a session, regardless of how long the client remains inactive.

To set a specific inactivity timeout, click **Time Out In __ Minutes** and enter the number of minutes in the space provided. The value can be 1 - 1440 (24 hours). The period of inactivity is measured between requests to a server. For example, when a user enters a query, Content Manager OnDemand searches the database and builds the document list. This completes a request to the server. If the user does not work with the items in the document list, open another folder, or start another query before the inactivity timeout occurs, Content Manager OnDemand automatically terminates the session with the client.

Use caution when you set the inactivity timeout. Choose the correct amount of time when you specify this setting. For example, assume that you set the inactivity timeout to 10. You log on to Content Manager OnDemand to add an application group. Creating the application group might take you 15 minutes to complete. After entering all of the information about the application group, you click **OK** to create the application group. Content Manager OnDemand issues a message that a timeout occurred. You must log off the server, and you cannot save the information that you entered about the application group.

**System Logging**
This setting specifies the messages that Content Manager OnDemand saves in the system log. Content Manager OnDemand provides the system log to help you track activity and monitor the system. Content Manager OnDemand saves messages that are generated by the various programs, such as the **ARSLOAD** program. Content Manager OnDemand can save a message in the system log when the following events occur:

- A user logs on to the system.
- A user logs off the system.
- A user logon fails.
- Application group data is queried, retrieved, loaded, updated, deleted, or maintained.

**System Log Comments**
This setting specifies whether the Administrator Client displays the System Log Comments window when you perform an add, update, or delete operation.

You can enable comments and also specify whether the comments are required. If the comments are required, then the user must enter one or more characters in the Comments field.

**User Login Inactivity**
This setting specifies whether you want to disable users who do not log in after the specified number of days. Users must contact the system administrator to enable their user IDs.

**Query Restriction**
This setting specifies the restriction access to folder and application groups based on index values. It is specified on the Application Group/permissions tab, as shown in Figure 6-9.
restriction can be done with the internal Content Manager OnDemand security. The access restriction for an application group is controlled through internal or external permissions (for example, RACF).

When a user is given access to the application group, access can be further restricted to a subset of the AG data through a Query Restriction setting to the Application Group. The query restriction is added to an SQL “where clause” that enforces the restriction.

Figure 6-9 is an example of a query that is restricted to statements with balance exceeding 200. This query restriction is for all users with access to the application group (*PUBLIC) that do not have a separate query restriction.

6.5.3 SQL macro support

Macros support can be used in SQL statements, including the query restriction. The macro support allows the macro to be substituted by the appropriate value. This allows for the creation of SQL statements that include current object values, such as Application Group Name or user ID. The available macros are listed in Table 6-1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ODUSERID</td>
<td>The user ID that is used to log in to Content Manager OnDemand.</td>
</tr>
</tbody>
</table>
6.5.4 Annotations security

Content Manager OnDemand allows for the secure creation and viewing of annotations (notes). This is enabled through the Administrator Client window, as shown in Figure 6-10.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ODALIAS</td>
<td>The alias that is defined to Content Manager OnDemand for the user's session.</td>
</tr>
<tr>
<td>$ODAGNAME</td>
<td>The application group name.</td>
</tr>
<tr>
<td>$ODAGID</td>
<td>The application group internal identifier.</td>
</tr>
</tbody>
</table>

The substitution does not include any necessary quotes for the macro, so you must ensure that you correct quote the macro if required.

For example:
WHERE ag_field in (SELECT value FROM <customer_table> where userid = '$ODUSERID')

If you log on to Content Manager OnDemand as USER1, the SQL changes to the following syntax:
WHERE ag_field in (SELECT value FROM <customer_table> where userid = 'USER1')
Controlling annotations creation
In Figure 6-10, in the Add Authority section, specify which types of annotations (referred to as “notes” in the Content Manager OnDemand client) can be added by a user. This selection applies to all users with authority to add annotations in the system.

Here are the types of annotations that you can select:

- **Allow Public**: Allows the user to add public annotations. Public annotations of a document can be viewed by anyone who opens that document.
- **Allow Private to User**: Allows the user to add private annotations to a document. These annotations can be viewed only by the user that created the note, application group administrators, and system administrators.
- **Allow Private to Group**: Allows the user to add annotations to a document. These annotations can be viewed only by a specific group of users.
- **Allow Text Annotations**: Allows the user to add text annotations.
- **Allow Graphic Annotations**: Allows the user to add graphic annotations.

Controlling annotations viewing
In the Annotations section of the Permissions tab of the Add an Application Group window, specify the default viewing scope for all annotations, as shown in Figure 6-11.

![Figure 6-11  Annotation viewing](image)

Here are the scopes that you can select:

- **View**: Lets the user view annotations.
6.5.5 Securing access with ARSSTASH and the stash file

Stash files and the ARSSTASH command let you securely store and pass a password to Content Manager OnDemand commands without the passwords appearing in the clear (unencrypted text). The ARSSTASH command is used to encrypt the password by using AES-128 encryption and storing it in a file that is called a stash file (an encrypted password file). The path to that stash file is then specified with the -p parameter to those commands that require a password. The stash file is retrieved and decrypted, and the password that is stored in the stash file is used. This means that the -p parameter that is stored in JCL or other scripts or programs does not have to contain a clear text password.

Special case for z/OS and IBM i

If you are using a z/OS server, consider using the z/OS unified login mechanism instead of the stash file. Unified login provides the same functionality as stash files, meaning that the passwords are not stored unencrypted when at rest (for example, in JCL or scripts) but without the additional burden of having to manage stash files. For example, when a password is changed for a user, stash files containing the encrypted password for that user must also be changed.

If you are using an IBM i server, then you might not need to use stash files because if you are signed on to the IBM i server with a user profile that is defined to Content Manager OnDemand and has enough authority to perform the function you are running, then Content Manager OnDemand uses the IBM i user profile for that function (such as ARSDOC or ARSLOAD). The -u and -p parameters are not required, thus relieving you of the need to show or store a password in clear text.

Accessing the stash file

Access to the stash file should be restricted by using file system permissions and other security as appropriate. The stash file that is used by an instance is specified in the ARS.INI file (or in the registry on Windows) with the SRVR_OD_STASH parameter. For example,

```
SRVR_OD_STASH=/opt/IBM/ondemand/V9.5/config/ars.stash
```

At IBM i Version 7.2 and later, the following commands support the optional password stash file (STASHFILE) parameter:

* ADDRPTOND
* MRGSPLFOND
* STRMONOND
Using the stash file

The stash file can be used by these commands:

- `arsadmin`
- `arsdoc`
- `arsload`
- `arsmaint`
- `arsrd`
- `arsxml`

In our example, we use `arsload`. The supported values for the `-a` parameter are available in the `arsstash help` output.

The preferred method is to set a user ID and password for each command in the stash file. After you do so, the `arsload` command can be run without specifying the `-u userid` or the `-p password` parameters. This method is always recommended when running the `arsload` command as a daemon. To use this method, first run the `arsstash` command to store the user ID and password for the `arsload` command:

```
arsstash -a 3 -s ars.stash -u <userid>
```

Then, enter and verify the password when prompted. When you run `arsload`, omit the `-u` and `-p` parameters. The `arsload` command obtains the `arsload` user ID and password from the stash file.

A second method is to specify the `-u` parameter for another Content Manager OnDemand user ID that exists in the stash file. To use this method, first run the `arsstash` command to store the user ID and password in the stash file:

```
arsstash -a 1 -s ars.stash -u <userid>
```

Then, enter and verify the password when prompted. When you run `arsload`, specify the `-u <userid>` and `-p <stash file>` parameters. The `arsload` command obtains the password for the specified user ID from the stash file.

Notes:

- You can continue to run the `arsload` command with the password in clear text. However, the `arsload` command generates a warning that specifying the password in clear text is being deprecated and to use the stash file instead.
- The stash file works with Content Manager OnDemand security, LDAP, and IBM i security.
- After you save the user ID and password in the stash file, remember to change the password any time that you change the user's password in Content Manager OnDemand; otherwise, the load fails. The `ARSLOAD` program can accept an expired password. However, the `ARSLOAD` program fails if an incorrect password is specified.

Stash file information for z/OS

To use `arsstash` with Content Manager OnDemand for z/OS, the Integrated Cryptographic Service Facility (ICSF) must be available on the z/OS system to provide AES-128 encryption. The encryption can be performed in either software or hardware.

In the examples, a started task name of CSF is used. If CSF is not running, when you try to create a stash file, you get the following message, which does not identify the problem.

```
Verify OnDemand Password:
ARS1602E The stash file >/u/myuser/prodstash.stash< is invalid.
```
To verify that you have CSF up and running so that Content Manager OnDemand V9.5 can use it, use the MODIFY command against ARSSOCKD.

On a system where ICSF is up and running, run the following command:

```
F ARSSOCKD,D,ICSF
ARS0438I 15.21.18 DISPLAY ICSF
CSFIQF RC=00, RSN=00000000, AES=3, FMID=HCR7780
```

On a system where CSF is not running, run the following command:

```
F ARSSOCKD,D,ICSF
ARS0438I 15.28.36 DISPLAY ICSF
CSFIQF RC=12, RSN=00000000, AES=0, FMID=N/A
```

### 6.6 Data encryption

Encrypting data is a way of providing security and protection to your Content Manager OnDemand data.

#### 6.6.1 Encrypting data at rest

Depending on how the database tables and archived data are stored, it is possible to encrypt the data using either DB2 encryption or device encryption. The advantage of encrypting the data is to make it “unintelligible” to unauthorized access even if it is accessed (as an extreme example, the storage device is stolen). The cost of encrypting the data is increased processor consumption and slower response time. This cost varies based on the device and encryption methods that are used.

Backup data should always be encrypted because it is more susceptible to unauthorized access.

#### 6.6.2 Encrypting data in motion: Secure communications

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) allow for secure communication between the Content Manager OnDemand server and the Content Manager OnDemand Clients. Since Content Manager OnDemand Version 8.5, support for SSL and its successor, TLS, is enabled for all transmissions between the Content Manager OnDemand servers and clients. When this section mentions SSL, the same information applies to TLS, unless otherwise noted.

SSL is the standard technology for creating secure connections between servers and clients. The secure connection allows for authentication and verification, and data encryption. Authentication and verification allow both the client and server to verify that they are communicating with the intended receiver. Data encryption prevents the packets of information traveling through the network to be viewed by anyone who has access to the network.

During an SSL handshake, a client and server securely exchange digital signatures and encryption keys by using a public-key algorithm (usually RSA). The client and server establish a secure connection with this identity and key information. After the client and server establish a secure session, they transmit the data to each other, encrypting it with a symmetric algorithm, such as Advanced Encryption Standard (AES).
Trusted parties, called certificate authorities (CA), issue digital certificates to verify the identity of an entity, such as a client or a server. The digital certificate serves the following purposes:

- Verifies the identity of the owner.
- Makes the public key of the owner available.

The IBM Global Security Kit (GSKit) provides libraries for data encryption and Secure Sockets Layer (SSL) communication.

The GSKit package also installs the iKeyman key management utility (gsk7ikm), which you can use to create key databases, public-private key pairs, and certificate requests. For information about the iKeyman utility and the GSKCmd command-line interface, see the *IBM Developer Kit and Runtime Environment, iKeyman 8.0 User's Guide* at the following website:


**Note:** Implementation of SSL is optional. The Content Manager OnDemand server can be configured to listen on either a non-SSL port or an SSL port, or it can listen on both types of ports. To implement SSL, click **New server**. In the **Add a Server** window that opens, select **User Secure Sockets Layer**. If your server does not support SSL, SSL is not used even if you select this check box.

After a Content Manager OnDemand client (for example, the Content Manager OnDemand Windows client, ARSDOC, or ODWEK Java API) is configured to log on to a Content Manager OnDemand library server with SSL, all communication to and from that client is done using SSL:

- Between the client and the library server
- Between the client and the object servers

To use SSL, it must be enabled on both the server and the client components of Content Manager OnDemand.

There are important considerations when using SSL. We describe them in the following subsections.

### Separate port number

In addition to the standard (non-SSL) port, a separate port number is identified on the Content Manager OnDemand server to support the secure connection. This allows for both SSL and non-SSL connections to operate concurrently. When a client connects to the SSL port, it negotiates a connection through a handshake procedure during which the client and server agree on the session parameters to be used to maintain a secure connection. Session keys are generated that allow for the encryption and decryption of the data that is sent between the client and server.

### Processor consumption

SSL improves security by encrypting and decrypting data across the network. The encryption and decryption are done at the application layer. This consumes additional processing cycles on both the sending and receiving systems. Therefore, you should consider using SSL only for sessions where it is needed. Consider adding additional processor resources on the Content Manager OnDemand server or clients to manage the increased overhead processing.
Digital certificates
With SSL, the identities of the parties are verified through the usage of digital certificates. Digital certificates have expiration dates. After a digital certificate expires, Content Manager OnDemand will not be able to establish connections through SSL. Therefore, always be aware and plan ahead to avoid expired certificates.

ODWEK
The support of SSL and ODWEK refers specifically to the transfer of data between ODWEK and the Content Manager OnDemand servers and does not imply a level of support from the browser to ODWEK. Using SSL from the browser to ODWEK has always been allowed and does not require any support from ODWEK. It is the application and the web developer's responsibility to enable such support.

arsload
GSKIT is initialized once per arsload invocation. When loading multiple documents:
- It is more effective to concatenate the documents (such as TIFF images) and generic index files and load multiple documents at a time.
- Use arsload as daemon.

6.7 Security exits
The Content Manager OnDemand security exits allow customers to implement their own customized security methods based on their internal requirements and needs. You can use the security exit to customize and enhance the security functions within a Content Manager OnDemand system.

6.7.1 User security and permissions exits
Content Manager OnDemand provides a user exit that allows you to implement your own user exit program to identify and authenticate users that log on to the system. If you are using only Content Manager OnDemand internal security, then the security exit is not needed.

You can use the security user exit to authenticate a user's password. For example, you might want to enforce some sort of password uniqueness or allow only logons to occur at specific times in the day. You can also build a user proxy mechanism to allow users that are not already in the Content Manager OnDemand user database to access the system.

The permission exit is called during login if the permission exit is turned on for folder and application groups. It is also called during a search when the permission exit is turned on for an SQL query string or document.

The user security exit and the permissions exit allow you to augment the security-related processing of the following activities or events:
- User authentication (checking user security)
  - Logon.
  - Change password.
  - Add a user ID.
  - Delete a user ID.
- Resource authorization (checking user permissions)
  - Access to a Content Manager OnDemand folder.
  - Access to a Content Manager OnDemand application group.
– Restrict access to specific documents.
– Control the SQL search criteria that are used for searching folders.

The user-written exit routine (or set of exit routines) can interact with another security system to determine whether the activity is allowed or disallowed.

**Important:** When you implement your own security user exit program, you bypass the logon verification processing that is built into the base Content Manager OnDemand product. We advise caution when you bypass the Content Manager OnDemand user and password restrictions. The security of the system could easily be subverted by malicious or defective code. Only use code that you trust.

When setting the user security exit:

- Set the Maximum Password Age parameter to the value that best matches the main logic of the user exit program (permit / deny). The Maximum Password Age parameter is set on the System Parameters dialog box, which is accessed by using the Administrator Client.
- Set the Maximum Password Age parameter to Never Expires so that users are not prompted to change their passwords. If you are restricting the change password function to a limited number of users, then this is probably the best overall setting because most users are never automatically prompted to change their password.

**Content Manager OnDemand for Multiplatforms**

The security user exit runs the ARSUSEC program when a user attempts to log on to the system. A sample C program is provided in the EXITS directory. To implement your own security user exit program, you should add your specific code to the sample that is provided (for example, you could call another program from the ARSUSEC program). For more information about functions, parameters, and return codes, see the ARSCSXIT.H file. Then, compile the ARSUSEC program and move or copy the executable program to the BIN directory. Then, restart the library server to begin using the security user exit program.

The arsuperm (permissions exit) can be modified in the same way and should be placed in the /opt/IBM/ondemand/V9.5/exits directory.

**Content Manager OnDemand for i**

By default, the Content Manager OnDemand for i server activates the security exit and uses IBM i security. If the security exit is not enabled, then the Content Manager OnDemand user ID and password have no relationship to the IBM i user ID and password and all the Content Manager OnDemand system parameter settings are honored. Enabling or disabling this exit can be done at an individual instance level.

**User Security Exit (ARSUSEC, z/OS only)**

On z/OS, the ARSUSEC exit invokes the ARSUSECZ security exit module. The security exit allows the communication with an external security manager, such as RACF, which then determines whether the given activity is allowed.

When enabling the exits to implement the required level or type of security, the user ID must be defined for both TSO and Content Manager OnDemand.

Figure 6-12 is an overview of the security system exits interface.
The **ARCCSXIT_SECURITY_OKAY_BUT_VALIDATE_IN_OD** return code option allows a user to perform some action on a request and then allows Content Manager OnDemand to perform the standard security processing. An example of this is to not allow a new password to match an old password in a change-password request; the password must be changed.

Table 6-2 lists the z/OS modules or executable files that are shipped with Content Manager OnDemand.

### Table 6-2 Security exit modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSUPERM</td>
<td>This c-module provides the interface between the Content Manager OnDemand system and the <strong>ARUSECX</strong> module.</td>
</tr>
<tr>
<td>ARUSEC</td>
<td>This c-module provides the interface between the Content Manager OnDemand system and the <strong>ARUSECX</strong> module.</td>
</tr>
<tr>
<td>ARUSECA</td>
<td>The mapping of the data structure that is presented to the exit routine is associated with the exit point that is defined by <strong>ARUSEC</strong> in Assembler.</td>
</tr>
<tr>
<td>ARUSECH</td>
<td>The mapping of the data structure that is presented to the exit routine is associated with the exit point that is defined by <strong>ARUSEC</strong> in C.</td>
</tr>
<tr>
<td>ARUSECJ</td>
<td>This is a sample JCL stream for assembling and binding <strong>ARUSECX</strong> and <strong>ARUSECZ</strong>.</td>
</tr>
<tr>
<td>ARUSECX</td>
<td>This is the interface module for the MVS Dynamic Exit Facility.</td>
</tr>
<tr>
<td>ARUSECZ</td>
<td>This is the Security Exit Module Sample.</td>
</tr>
</tbody>
</table>

All modules are found in the SARSINST library. The sequence of this exit, using the MVS Dynamic Exit Facility, is different from the classical interface with exit modules or a security exit in an IBM CICS environment. The kernel code was updated to allow external security. The Content Manager OnDemand Kernel code calls a dynamic link library (DLL) as an
interface to the exit. Modules ARSUSEC and ARSUPERM are provided as C source code modules and as executable files. There is no need to change and recompile them.

The source is delivered mainly for understanding the entire security system exit. If you want to change them, they must be recompiled and bound as a C DLL. These modules communicate with the ARSUSECX module, which is an interface to the MVS Dynamic Exit Facility. The security exit module ARSUSECX is the delivered sample that shows how to perform security checks with a Security Exit Facility (SAF) interface. RACF is a program that uses SAF. The ARSUSECH is a C source code module that passes the data structure as input for every exit (ARSUSECZ) that is provided. The ARSUSEA provides the same in assembly language.

**Note:** You can have more than one security exit that is defined to the MVS Dynamic Exit Facility. For example, you can define a different security exit for each instance.

**Tip:** The only module that you must change is the provided source code ARSUSECZ to meet your requirements. It must be assembled and linked into a library that is accessible for the MVS Dynamic Exit Facility.

### 6.7.2 Security systems other than SAF (z/OS only)

The sample that is provided with the Content Manager OnDemand installation is an SAF sample. However, there are installations that use their own security system or use it as an enhancement together with SAF environment. These systems can be accessed if they provide a correct assembler callable interface. The security exit sample code contains an example for every function. These functions can be changed or updated in the sample code.

For example, if your folder permissions are stored in an external security system without any Security Exit Facility interface, this part must be updated to call this external security system.

### Content Manager OnDemand SAF resource classes

You must define SAF resource classes ARS1FLDR and ARS1APGP for the folders and application group. For more information about the resource classes, see the section “OnDemand SAF resource classes” in *IBM Content Manager OnDemand for z/OS - Configuration Guide*, SC19-3363.

**Important:** Even if the security exit can check the user ID and password against SAF or other security systems, every user must be defined in Content Manager OnDemand in every instance. You can use the ARSXML program to create users in batch mode, and use it as a command from the UNIX System Services command line and using a file as input.

### Activating the security and permission exits (ARS.INI)

Activation of the security exit is controlled by settings in the ARS.INI file. The settings and their corresponding events are listed in Table 6-3.

**Table 6-3  ARS setting and the corresponding enabled events**

<table>
<thead>
<tr>
<th>ARS.INI statement</th>
<th>Enabled event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRVR_FLAGS_SECURITY_EXIT=1</td>
<td>Logon.</td>
</tr>
<tr>
<td>(This is the default for Content Manager OnDemand for i. If you do not want to use IBM i security for the new instance, change the security setting to 0.)</td>
<td>Changing the password.</td>
</tr>
<tr>
<td></td>
<td>Adding or deleting a user ID through the Content Manager OnDemand administrator interface.</td>
</tr>
</tbody>
</table>
Implementing the security exit in a z/OS environment

The module ARSUSECX interfaces with the MVS Dynamic Exit Facility:

- It defines the logical exit point name, ARS_SECURITY.
- It routes the control to a set of associated exit routines and processes the results of their execution.

**Note:** The sample processes the feedback of the exit one at a time, even if you are running more than one exit.

An exit routine must be eligible for execution, which is done by associating a logical exit point (ARS_SECURITY). In this example, the MVS Dynamic Exit Facility provides several methods performing this association. You can use the PROGXX statement in Sys1.Parmlib to define exits to the Dynamic Exit Facility at IPL time (Exit statement for PROGXX).

Here is an example of the exit statement for PROGXX:

```
EXIT ADD EXITNAME(ARS_SECURITY) MODNAME(ARSUSECZ)
```

In addition, you can use the following operator command to add the exit:

```
SETPROG EXIT,ADD,EXITNAME=ARS_SECURITY,MODENAME=ARSUSECZ
```

**Important:** The load module must be found in an LPA or an LNLKLIST dataset.

### 6.7.3 Unified logon exit (ARSPTGN): z/OS only

The Content Manager OnDemand unified login exit (ARSPTGN) enables you to run the Content Manager OnDemand command-line utilities (such as ARSLOAD) without requiring a specified user ID and password. This facility to log on without specifying a password specifies a PassTicket as a password when using a RACROUTE REQUEST=VERIFY call. Figure 6-13 shows the unified logon exit. CMOD in the figure stands for Content Manager OnDemand.

<table>
<thead>
<tr>
<th>ARS.INI statement</th>
<th>Enabled event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRVR_FLAGS_FOLDER_APPLGRP_EXIT=1</td>
<td>Activates the folder or the application group permission.</td>
</tr>
<tr>
<td>SRVR_FLAGS_SQL_QUERY_EXIT=1</td>
<td>Activates the SQL query exit.</td>
</tr>
<tr>
<td>SRVR_FLAGS_DOCUMENT_EXIT=1</td>
<td>Activates the document permission exit.</td>
</tr>
</tbody>
</table>
To enable PassTicket in a security manager such as RACF, you must complete the following steps:

1. Activate the PKTDATA class.
2. Define a secured sign-on application key for each application.
3. Run `SETROPTS RACLIST(PTKTDATA)`.

### 6.7.4 System log user exit

Content Manager OnDemand generates messages about the various actions that occur on the system. For example, when a user logs on the system, Content Manager OnDemand generates a message that contains the date and time, the type of action, the user ID, and other information. Unless you specify otherwise, certain messages are automatically saved in the system logging facility. You can configure the system to save other messages in the system logging facility.

The system log user exit allows access to all of these messages. The exit can then use these messages for further processing. For example, an email can be generated when a load fails, or when a user's system access pattern is not normal and requires attention. For more information about the system log, see 11.4.1, “System log exit for Multiplatforms” on page 242 and 11.4.2, “System log exit for z/OS” on page 245.

### 6.8 Summary

In summary, Content Manager OnDemand provides a secure environment. Security features within Content Manager OnDemand allow access control to the data and the APIs that access the data. The data itself is controlled at rest and in motion (SSL). Additional exits external to Content Manager OnDemand can be created that allow for the creation of customized extensions to the Content Manager OnDemand internal security.
Data indexing, loading, retrieval, and expiration

This part contains the following chapters:

- Chapter 7, “Indexing and loading” on page 157
- Chapter 8, “User clients” on page 179
- Chapter 9, “Data conversion” on page 199
- Chapter 10, “Migration and expiring data and indexes” on page 211
- Chapter 11, “Exits” on page 233
Indexing and loading

In this chapter, we describe the various indexers that are available for IBM Content Manager OnDemand (Content Manager OnDemand).

In this chapter, we cover the following topics:

- Introduction
- Getting started with PDF indexing
- Getting started with ACIF indexing
- OS/390 indexer on z/OS and AIX
- OS/400 indexer on Content Manager OnDemand on IBM i
- User exits
- Additional references
7.1 Introduction

Before documents can be loaded into Content Manager OnDemand, they must be indexed. These indexes can be created during the load process (OS/390 indexer), directly before the load process (AFP Conversion and Indexing Facility (ACIF), OS/400, XML, and PDF Indexers), or before the load process (generic indexer). When the indexes are not created as part of the load process, they are stored in an index file. The index file contains the index values that are associated with the document and “pointers” to the documents. It is not possible to load documents into Content Manager OnDemand without index values.

The index values are text strings that occur in the documents, for example, “John Doe”, or “Account 1234”. One or more index values identify a unique document in Content Manager OnDemand.

An indexer extracts the index values and optionally stores them in the index file. It does this by examining the documents and copying the index values into the index file according to criteria that are specified by the user. Depending on the indexer used, the data and indexes are either directly loaded into Content Management OnDemand or are stored in a set of files that are then read by the load process to store the data to Content Manager OnDemand. The indexer creates the following files:

- Output file (.out file extension), which contains the documents to load
- Index file (.ind file extension), which contains the index values for the documents

The indexer might also create a resource file with a .res extension, which contains the resources that are extracted from the documents.

Operationally, the loading process arsload calls the indexer that is specified on the Indexer Information tab for the specified Application. Depending on the indexer type, arsload performs one of the following tasks:

- Create a set of files that are then loaded by the arsload program into the Content Manager OnDemand System.
- Directly pass the indexing and document information to the arsload program so that they can be loaded into the Content Manager OnDemand System.

On Content Manager OnDemand for i, arsload is embedded within the (ADDPRPTOND) user interface. Thus, run the Add Report to Content Manager OnDemand (ADDPRPTOND) command instead of ARSLOAD.

It is possible for the indexing to complete successfully but for the load to fail. The most common reasons for a loading failure include the following ones:

- Insufficient system resources
- Connecting to the wrong database
- Extracting the wrong index value from the document

For information about investigating and resolving common load failures, see 18.1.2, “Indexing and loading issues” on page 368.

7.1.1 Loading and indexing files created on another system

Reports and documents are often created on a platform other than the platform on which the Content Manager OnDemand Instance is installed. There are generally two ways to load these reports and document files:

- Transfer the files from the remote system to the system that contains the Content Manager OnDemand Instance and then index and load the documents on that system.
There are many applications available for transferring files. For example, if your reports are generated on a z/OS system and you would like to load them from a Windows system, you can:

- On the z/OS side, use the “Download for z/OS” application to automatically download the files from the z/OS system. “Download for z/OS” is a utility included as part of the Print Services Facility for z/OS.

- On the receiving side (in this case Windows), you can use the Content Manager OnDemand utility “ARSJESD”. ARSJESD runs as a service on Windows, and runs as a daemon on other platforms.

For more information about ARSJESD, see IBM Content Manager OnDemand for Multiplatforms Administration Guide, SC19-3352.

- Run the indexing and load program on the remote system. In this case, the load program sends the documents and indexes to the Content Manager OnDemand System through the TCP/IP network. To run the index and load programs on the remote system, you must copy the appropriate Content Manager OnDemand product code to that system.

You can choose to use either or both of these methods for your remote data loading.

### 7.1.2 Understanding input data types

It is important to know the data type of the documents that you load into Content Manager OnDemand. **By data types, we mean document formats, such as line data, SCS, AFP, or PDF.** In addition to knowing the data type, if you are loading line data, it has the following characteristics:

- Fixed length or variable records.
- If variable, stream or 2 byte length prefix.
- If stream, what is the record delimiter.
- Whether carriage controls are present.
- Type of carriage control, ANSI or machine.
- Whether TRC codes (Table Reference Character codes) are present.
- Code page of the data.

Run **arsafpd** to determine the input data type of your file. Knowing the input data type determines which indexer that you can use, and also help you determine some of the indexing parameters that you need.

To run **arsafpd** from the command line, enter the following command:

```
arsafpd -s -i <input file>
```

Figure 7-1 shows some examples of running the **arsafpd** command and the output that is produced.
You can also run `arsafpd` to display the contents of an AFP document, index, or resource file. For more information about ARSAFPD, see *Content Manager OnDemand for Multiplatforms Administration Guide*, SC19-3352.

### 7.1.3 Choosing an indexer

You choose the indexer to use based on multiple factors including the data type of the documents, the platform on which you are running the indexer, and other criteria. The main factors are listed in Table 7-1. There are many other factors, such as cross-platform compatibility, advanced indexing functions, and expertise.

#### Table 7-1 Indexers that are available for use with Content Manager OnDemand

<table>
<thead>
<tr>
<th>Indexer</th>
<th>Input data type</th>
<th>Available platforms</th>
<th>Conversion</th>
<th>Resource collection</th>
<th>Large object support</th>
<th>Floating triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic</td>
<td>All</td>
<td>All</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ACIF</td>
<td>Line, AFP</td>
<td>All, except IBM i</td>
<td>Line to AFP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PDF</td>
<td>PDF</td>
<td>All, except z/OS</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>OS/400</td>
<td>Line, AFP, SCS, and SCS-Ext</td>
<td>IBM i</td>
<td>SCS to AFP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OS/390</td>
<td>Line, AFP</td>
<td>z/OS and AIX</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>XML</td>
<td>XML</td>
<td>All</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

There are several things to note in Table 7-1 on page 160:

- Generic indexer requires that the user manually creates an index file in the generic index format before starting the load process. The Generic indexer allows for the capturing of documents, index values, and resources that are identified to it. These documents, index values, and resources are then loaded into the Content Manager OnDemand archive and stored in the same manner as though they were loaded through any of the other indexers. An existing resource file can be loaded with a generic index file.
For more information about the generic index format, see *IBM Content Manager OnDemand - Indexing Reference*, SC19-3354.

- The ACIF, PDF, XML, and the OS400 indexers all generate intermediate files. These files are then used to load the indexes and data into the Content Management OnDemand System.
- The OS/390 indexer creates the index data as it is loading the indexes and data into the Content Management OnDemand System.
- Conversion refers to a conversion that is done by the indexer. There are other products that integrate with Content Manager OnDemand that also do data conversion.
- Because of the architecture of PDF documents, large object support for PDF documents is not possible.
- Starting with V9.5, the PDF Indexer runs in the PASE environment on IBM i. PASE is a prerequisite on IBM i for V9.5.
- Starting with V9.5, the PDF Indexer is no longer supported on z/OS.

### 7.2 Getting started with PDF indexing

PDF is a standard that is specified by Adobe Systems, Incorporated, for the electronic distribution of documents. PDF files are compact, can be distributed globally through email, the web, intranets, or CD-ROM, and can be viewed with AdobeReader.

PDF is a data type or file format that is platform (hardware, operating system) independent. A PDF file contains a complete PDF document composed of text, graphics, and the resources that are referenced by that document.

There are two different PDF file layouts possible:

- **Non-Linear (not “optimized”)**
  
  This file layout is optimized for space savings. Storing a PDF file using a Non-Linear layout consumes less disk space than storing the same PDF file linearly. It is slower to access or display this type of layout because portions of the data required to assemble pages of the document are scattered throughout the PDF file, so the whole PDF file must be downloaded and accessed before the file can be displayed.

- **Linear (“optimized” or “web optimized”):**
  
  In this file format, the PDF file is created in a linear (in page order) fashion. This allows the PDF viewer to start displaying the PDF document pages when they are downloading without having to wait for the whole PDF file to be downloaded.

#### 7.2.1 Limitations

The maximum input file size that the PDF Indexer supports is 4 GB. The amount of data that can be processed from an input file is also limited by the amount of memory that is available on the server on which you are running the PDF Indexer. The maximum size of a single document within the input file that can be loaded into Content Manager OnDemand is 2 GB; however, we suggest that the size of a single PDF document does not exceed 50 MB.

Secure PDF documents are not supported. PDF Digital Signatures are not supported. If a PDF document contains a digital signature, after indexing, the .out file does not contain the digital signature. To load a file containing a PDF Digital Signature, create a generic index file for it, and load the file as one document.
7.3 Performance considerations

The best performance of the PDF Indexer is on the Windows platform. For best practices of performance, see 13.4.1, “PDF data” on page 297.

7.3.1 PDF fonts and output file size

The fonts that are used in a PDF document are one of the factors that determines the indexing's output file size.

The base 14 Type 1 fonts
The base 14 Type 1 fonts are a core set of fonts that are always available to the Acrobat program. Because they are available on the system, they are not embedded in the document. Therefore, documents that are created with these fonts are more compact. The base 14 fonts are:

- Courier
- Courier-Bold
- Courier-BoldOblique
- Courier-Oblique
- Helvetica
- Helvetica-Bold
- Helvetica-BoldOblique
- Helvetica-Oblique
- Times-Roman
- Times-Bold
- Times-Italic
- Times-BoldItalic
- Symbol
- ZapfDingbats

Fonts that are not members of the base 14 fonts might be embedded in the document, or they might be stored in a font directory.

Images and bar code fonts are also embedded in the document.

The PDF Indexer collects resources such as fonts and images, removes them from the document, and places them in a resource file. The number of embedded fonts in the document directly affects the size of the resource file.

We recommend using only the base 14 fonts when you create PDF documents. Because these fonts are not embedded in the document, documents that are created with these fonts are smaller, and the resource file is also smaller.

Accessing fonts
If a document references fonts that are not embedded, and are not available on the system, then the document does not display correctly in the report wizard, and the PDF Indexer cannot index it. In the report wizard, the document might display as a series of dots instead of letters; the PDF Indexer fails with the “Trigger not found” message.

If your documents contain Asian fonts, make sure that you install them when you install Adobe Acrobat.

If the fonts are not imbedded in the document, use the FONTLIB parameter to tell the PDF Indexer the location of font files.
Listing fonts in a PDF file
If you want to know which fonts are contained in a PDF document, there is a simple way within the Adobe viewer to list the fonts in your data.

To list the fonts in a PDF (for example, for Adobe Reader XI, Version 11.0.3):
1. Display your PDF document in the Adobe viewer (or reader).
2. Click **File** → **Document Properties** → **Fonts...** You should see a list of fonts for the document.

The path to see the fonts might be different depending on your viewer version.

7.3.2 Reducing output file size with PDF documents
When indexing PDF data, you might be surprised by the size of the output file that the PDF Indexer creates after it indexes the data. In some cases, the PDF file that is loaded into Content Manager OnDemand is many times larger than the source PDF file.

When the input file is indexed, it is split into multiple PDF documents. Each PDF document contains its own set of PDF structures that are required by the PDF architecture. This is why the multiple PDF documents that are created by the indexing can be larger than the original PDF document.

One way to reduce the size of the output file is using the base 14 fonts. In addition, the following PDF parameter settings can help reduce the size of the output file:

- **RESTYPE=ALL**
  The PDF Indexer removes fonts and images from the input file and places them into a separate resource file. Without this option, each PDF document that is created by the indexing contains its own set of duplicate resources. You should *always* use this parameter.

- **BOOKMARKS=NO**
  If a PDF document contains bookmarks, each PDF document that is created by the indexing process contains the complete set of bookmarks for the input file. Because the input file is now split into separate documents, most of these bookmarks are invalid. This option prevents the PDF Indexer from copying any bookmarks to the new PDF files.

- **REMOVERES=YES**
  This option causes the PDF Indexer to remove unused resources and their supporting structures from the input file before indexing. Otherwise, the PDF Indexer puts unused resources (along with those that are used) into the resource file.

7.3.3 PDF indexing - Using PDF metadata
When the PDF file is originally created, the user or application must place the metadata (indexes) in the PDF file. The metadata (indexes) within the document can be modified at any time after which a new copy of the document can be reloaded into Content Manager OnDemand.

Setting **INDEXMODE=METADATA** (for the Application) causes the PDF indexer to extract fields from the Document Information Dictionary that correspond to the specific metadata keywords (if they exist) and place the extracted values into the .ind file for loading into Content Manager OnDemand. The metadata keywords are:

- **Title**
- **Author**
The main advantage of using metadata is the increased speed during the index process. The main disadvantage of using this method is that each document needs to be loaded individually; you cannot create large concatenated (multiple document) input data files.

For more information about using PDF metadata, see IBM Content Manager OnDemand - Indexing Reference, SC19-3354

7.3.4 PDF indexing - Using the report wizard (graphical indexer)

The report wizard, also known as the graphical indexer (though technically it is part of the report wizard), processes PDF input files.

If you plan to use the report wizard, you must first install Adobe Acrobat on the Windows workstation from which you plan to run the Administrator Client. You must purchase Adobe Acrobat from Adobe.

Installation
Content Manager OnDemand provides the ARSPDF32.API file to enable PDF viewing from the client.

If you install the client after you install Adobe Acrobat, then the installation program copies the application programming interface (API) file to the Acrobat plug-in directory.

If you install the client before you install Adobe Acrobat, then you must copy the API file to the Acrobat plug-in directory manually.

If you upgrade to a new version of Acrobat, then you must copy the API file to the new Acrobat plug-in directory.

The default location of the ARSPDF32.API file is C:\Program Files (x86)\IBM\OnDemand Clients\V9.5\PDF

The default Acrobat plug-in directory is C:\Program Files (x86)\Adobe\Acrobat x.y\Acrobat\plug_ins. Where, x.y is the version of Acrobat, for example, C:\Program Files (x86)\Adobe\Acrobat 10.0\Acrobat\plug_ins.

Using the graphical indexer example
Using the graphical indexer, you can define triggers, fields, and indexes for PDF reports within the application component of Content Manager OnDemand in a similar way as you do for line data. This section serves as an introduction to the PDF graphical indexer by stepping through an example of indexing a PDF document.

The example describes how to use the graphical indexer from the report wizard to create indexing information for an input file. The indexing information consists of a trigger that uniquely identifies the beginning of a document in the input file and the fields and indexes for each document. Our intention here is to elaborate on this example by clarifying some of the instructions, and throughout each step, adding important hints, tips, and explanations.

Here is the process:
1. Start the Administrator Client and log on to a server.
2. Start the report wizard. Click the report wizard icon on the toolbar.
3. In the Sample Data window, select PDF from the drop-down list of data types, and then click Select Sample Data.
4. In the Open window, enter the name or full path name of your file in the space that is provided or use the Browse option to locate your PDF file.
5. Click Open. The graphical indexer opens the input file in the report window.
   If the PDF data fails to display, or an error message such as the one shown in Figure 7-2 is displayed, then you must follow the steps in “Installation” on page 164 to verify that the API file is in the correct Acrobat plug-in directory.

![Figure 7-2 Error message if PDF does not display](image)

6. Press the F1 key to open the main help topic for the report window.
   The main help topic contains general information about the report window and links to other topics that describe how to add triggers, fields, and indexes. For example, to get help with defining a trigger, click Adding a trigger (PDF). You can also use the context help tool to display information about the icons on the toolbar.
7. Close any open help topics and return to the report window.
8. To define a trigger, complete the following steps:
   a. Find a text string that uniquely identifies the beginning of a document, for example, Account Number, Invoice Number, Customer Name.
   
   **Note:** To create trigger values in hexadecimal, select the Output Hexadecimal Strings check box in the Indexer Properties window before defining a trigger.

   b. Using the mouse, draw a box around the text string. Start just outside of the upper left corner of the string. Click and then drag the mouse towards the lower right corner of the string. As you drag the mouse, the graphical indexer uses a dotted line to draw a box. When you have enclosed the text string inside of a box, release the mouse. The graphical indexer highlights the text string inside of a box. If the string is not highlighted, try again and make the box larger.
   
   **Important:** Make the box that you created around the text string, which you are trying to collect, as large as possible to ensure that the field is collected at load time.

   Figure 7-3 on page 166 shows an example of a box that is intended to capture the text string Content. You can see that the box is much larger than the text string, and it overlaps onto text that we do not want to collect. However, notice the Add a Trigger box that is displayed; only the string Content is shown in the Value entry field, which means that only the string Content is fully encapsulated in the box. Overlapping other text might seem like an unnecessary precaution. However, when we are capturing data with
the PDF graphical indexer, it is an excellent way to ensure that we have encapsulated all of the text string that we must capture.

c. Click the Define a Trigger icon on the toolbar.

d. In the Add a Trigger window (Figure 7-3), verify the attributes of the trigger by confirming that the text string in the Value field for Trigger 1 is correct. For trigger 1, there are no options or values that you can specify. For other triggers, click Help for assistance with the other options and values. Click OK to define the trigger.

e. To verify that the trigger uniquely identifies the beginning of a document:
   i. On the toolbar, click the fourth icon from the right to place the report window in display mode.
   ii. Click the Select tool.
   iii. In the Select window, under Triggers, double-click the trigger. The graphical indexer highlights the text string in the current document.

   Double-click the trigger again. The graphical indexer should highlight the text string on the first page of the next document.
IV. Use the Select window to move forward to the first page of each document and return to the first document in the input file.

f. On the toolbar, click the fourth icon from the right to place the report window back into add mode.

9. Define a field and an index as follows:

a. Find a text string that can be used to identify the location of the field. The text string should contain a sample index value. For example, if you want to extract account number values from the input file, then find where the account number is printed on the page.

b. Using the mouse, draw a box around the text string. Start just outside of the upper left corner of the string. Click and then drag the mouse toward the lower right corner of the string. As you drag the mouse, the graphical indexer uses a dotted line to draw a box. When you have enclosed the text string inside of a box, release the mouse. The graphical indexer highlights the text string inside of a box.

**Important:** Use the same principles for collecting fields as collecting the trigger text string in step 8b on page 165. If the fields that must be collected are close together, overlap them with adjacent fields to ensure that the box is as large as possible and to ensure that the data is collected at load time.

c. Click the Define a Field icon on the toolbar.

d. In the Add a Field window, complete the following steps:

i. On the Field Information tab, verify the attributes of the Index field. For example, the text string that you selected in the report window should be displayed under Reference String and the trigger should identify the trigger on which the field is based. Click Help for assistance with the options and values that you can specify.

ii. On the Database Field Attributes tab, verify the attributes of the database field. In the Database Field Name field, enter the name of the application group field into which you want Content Manager OnDemand to store the index value. In the Folder Field Name field, enter the name of the folder field to display in the client search window. Click Help for assistance with the other options and values that you can specify.

iii. Click OK to define the field and index.

e. To verify the locations of the fields, complete the following steps:

i. Place the report window into display mode. The fields should have a blue box that is drawn around them.

ii. Click the Select tool.

iii. In the Select window, under Fields, double-click Field 1. The graphical indexer highlights the text string in the current document. Double-click Field 1 again. The graphical indexer should move to the next document and highlight the text string.

iv. Use the Select window to move forward to each document and display the field. Then, return to the first document in the input file.

f. Place the report window back into add mode.

10. Click Create Indexer Parameters and Fields Report to create the indexer parameter report that the PDF Indexer uses to process the input files that you load into the application. At a minimum, you must have one trigger, one field, and one index. For more information about the indexing parameters, see IBM Content Manager OnDemand - Indexing Reference, SC19-3354.
11. When you finish defining all of the triggers, fields, and indexes, press Esc to close the report window.

12. Click Yes to save the changes to the indexer parameters.

13. In the Sample Data window, click Next to continue with the report wizard.

7.3.5 PDF indexing - Using internal indexes (Page Piece Dictionary)

When the PDF document is created, the user or application must insert indexes into the Page Piece Dictionary. For Content Manager OnDemand, the Page Piece Dictionary (PPD) must be named "IBM-ODIndexes" to allow the PDF indexer to find the PPD and collect the index values.

Setting INDEXMODE=INTERNAL (for the Application) causes the PDF indexer to segment the input file into the individual documents, gather the various PDF resources (fonts, images, forms), and then load the PDF indexes, documents and resources into Content Manager OnDemand.

There are multiple advantages to using internal indexes, such as:

▶ Fast indexing: A single PDF file can contain many PDF documents. Extracting the indexes for these documents is now fast because Content Manager OnDemand is now scanning the documents and reading the index values directly from the Piece Page Dictionary (there is no search for the indexes within the document data).

▶ Different formats can exist in a single PDF input file. This is possible if the indexes are similar (because the indexes are the only thing that is being read and processed by Content Manager OnDemand)

▶ The indexed PDFs can be either static or dynamic: Static PDF forms render once and are displayed on the client in the Adobe Acrobat® or Adobe Reader. Static PDF forms are not rerendered in response to user interactions. Dynamic PDF forms render on the client in Adobe Reader and, depending on the user interactions, can rerender on the client several times. Rerendering causes the content of the form to change (all objects including text and image)

Both the static and dynamic PDFs can be indexed because the PDF indexer is only looking at the Page Piece Dictionary. There is no examination or processing of the PDF document data.

For more information about using internal indexes (Page Piece Dictionary), see IBM Content Manager OnDemand - Indexing Reference, SC19-3354.

7.4 Getting started with ACIF indexing

The AFP Conversion and Indexing Facility (ACIF) consists of three separate but related functions. ACIF can do the following tasks:

▶ Convert line data to AFP.
▶ Index line or AFP data.
▶ Collect resources.

ACIF accepts either line data or AFP as input and can produce three output files:

▶ The output file, called the “out” file, which is either line data or AFP.
▶ The index file, called the “ind” file, which is an AFP file.
▶ The resource file, called the “res” file, which is an AFP file.
There are three “modes” of running ACIF:

1. Line data input to ACIF creates line data output.
   - Specify the ACIF parameter CONVERT=NO.
   - ACIF does not create a resource file.
   - Files produced: .out and .ind.
2. Line data input to ACIF creates AFP output.
   - Specify the ACIF parameter CONVERT=YES.
   - ACIF creates an AFP resource file.
   - Files produced: .out, .ind, and .res.
3. AFP input to ACIF creates AFP output.
   - Specify the ACIF parameter CONVERT=YES.
   - ACIF creates an AFP resource file.
   - Files produced: .out, .ind, and .res

A subset of mode 2 is mixed mode input, which is line data records mixed with AFP records. In this case, ACIF creates AFP output.

- Specify the ACIF parameter CONVERT=YES.
- ACIF creates an AFP resource file.
- Files produced: .out, .ind, and .res

**Types of ACIF parameters**

Because ACIF has so much functionality, it has many parameters. There are four logical sets of ACIF parameters:

- ACIF parameters that describe the format of the data: CC, CCTYPE, TRC, FILEFORMAT, and CPGID
- ACIF parameters for line data to AFP Conversion: CONVERT, MCF2REF (we recommend using CF instead of CPCS), IMAGEOUT (we recommend using ASIS instead of IOCA), FORMDEF, and PAGDEDF
- ACIF parameters for Indexing: TRIGGER, FIELD, INDEX, INDEXOBJ, and INDEXSTARTBY
- ACIF parameters for collecting resources: RESTYPE and EXTENSIONS=RESORDER

For a description of the parameters, see the section “ACIF reference” in IBM Content Manager OnDemand for Multiplatforms Indexing Reference, SC19-3354 or “ACIF reference” in IBM Content Manager OnDemand for z/OS Indexing Reference, SC19-3368.

**Tools for working with ACIF**

Consider using the following tools when working with ACIF:

- The Administrator line data graphical indexer
- A hexadecimal editor to display the input file
- The `arsafpd` utility, run with the -d and -t options

The `arsafpd` utility can display the .out file (if it is AFP), .ind file, and the .res file that are created by ACIF.

**7.4.1 Understanding the input data**

On every platform except z/OS, the FILEFORMAT parameter is used to describe the format of the input data. Before setting the FILEFORMAT parameter, it is important to understand the difference between the carriage control and the delimiter:

- The delimiter separates the records. The most common delimiters are x'0A' and x'0D0A'.
The carriage control, if it exists, is the first byte of each record. The carriage control follows the delimiter, except at the beginning of the file, where the carriage control is the first byte. (Therefore, to search in a hexadecimal editor for the beginning of the next page of a file that uses x'0A' as the delimiter, search for x'0AF1' or x'0A31').

**FILEFORMAT parameter**

For AFP data, the `FILEFORMAT` parameter is not needed, unless the file is AFP in record format. For a description of record format, see “AFP Structured Fields” on page 171.

The `FILEFORMAT` parameter has the following values:

- **record,n**
  - For example: `FILEFORMAT=record,100`.
  - Fixed-length line data.
  - This type of file has no delimiter.

- **stream**
  - For example: `FILEFORMAT=stream,(newline=X'0A')` or `FILEFORMAT=stream,(newline=X'0D0A')`.
  - For variable record files created on UNIX platforms.
  - Specify the delimiter in the `FILEFORMAT` parameter.

- **record**
  - For example: `FILEFORMAT=record`.
  - Each record has a 2-byte prefix, which contains the length of the record. This length is exclusive, meaning it does not include the length of the 2-byte prefix itself. Download for z/OS adds this prefix when it downloads files.
  - This type of file has no delimiter.

**Carriage controls**

It is important to set the ACIF parameters `CC` and `CCTYPE` correctly. Table 7-2 describes the ANSI carriage controls. The encoding columns show what you see if you look at the document in a hexadecimal editor.

<table>
<thead>
<tr>
<th>Carriage control</th>
<th>Description</th>
<th>Encoding in ASCII</th>
<th>Encoding in EBCDIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New page</td>
<td>x'31'</td>
<td>x'F1'</td>
</tr>
<tr>
<td>&lt;space&gt;</td>
<td>Space one line</td>
<td>x'20'</td>
<td>x'40'</td>
</tr>
<tr>
<td>0</td>
<td>Space two lines</td>
<td>x'30'</td>
<td>x'F0'</td>
</tr>
<tr>
<td>-</td>
<td>Space three lines</td>
<td>x'2D'</td>
<td>x'60'</td>
</tr>
<tr>
<td>+</td>
<td>Suppress space</td>
<td>x'2B'</td>
<td>x'8F'</td>
</tr>
</tbody>
</table>

**Machine carriage controls**

Machine carriage controls are found in data that is created on z/OS.

Because machine carriage controls are binary values, if a file contains them, it must always be transferred as binary. Machine carriage controls cannot be converted to ASCII. For a list of machine carriage control values, see the following website:
AFP Structured Fields

AFP, also called MODCA, is a printing architecture that is designed and created by IBM. The beginning of each AFP record is called the AFP Structured Field Introducer. Here is an example and description of an AFP Structured Field Introducer (shown in the hexadecimal):

5A 00 10 D3 A8 A8 00 00 00

- The first byte is always x'5A'.
- The second and third bytes are the length (maximum length of 32767).
- The fourth byte is always x'D3'.
- The fourth, fifth, and sixth bytes are the Structured Field Identifier, for example, x'D3A8A8' or x'D3A8AF'.
- The seventh byte is the flag byte, and the last two bytes are reserved, and are usually zeros.
- What follows the reserved bytes depends on the Structured Field.
- The length does not include the x'5A'.

For more information, see the Mixed Object Document Content Architecture (MO:DCA) Reference, AFPC-0004-08 at the following website:

http://afpcinc.org/afp-publications/

Here are two examples in hexadecimal of the AFP Structured Field Introducer of the most common Structured Fields that you might see at the beginning of an AFP file:

5A 00 10 D3 A8 A8 00 00 00       Begin Document (BDT)
5A 00 5B D3 A8 C6 00 00 00      Begin Resource Group (BRG)

An AFP Structured Field can begin with the 2-byte length prefix (this is called record format):

00 11 5A 00 10 D3 A8 A8 00 00 00       Begin Document (BDT)
00 11 5A 00 5B D3 A8 C6 00 00 00      Begin Resource Group (BRG)

The length in the 2-byte prefix is one greater than the length in the Structured Field because the 2-byte prefix includes the x'5A', but does not include itself.

When working with ACIF, it is important to know the format of the data. Use the arsafpd utility or look at the input in a hex editor to be sure.

7.4.2 The index file

ACIF creates the index file. It contains the index values that are extracted from the document, and also the offsets and lengths of the documents in the .out file.

The index values in the index file become the values that display in the Content Manager OnDemand Search Results window. The indexes are used to retrieve the document. This is why the index file is so important, and why no data can be loaded without indexes.

Usually the index file is created and used to load the documents into Content Manager OnDemand and you never see it. However, there are times when it might be useful to look at the index file. This section describes the format of the index file and what it can tell you.

Run arsafpd to display an index file. The first Structured Field in the index file is a Begin Document Index (BDI), which contains the code page of the index names and values. Most of
the file consists of the two AFP Structured Fields IEL and TLE. There are two kinds of IELs, Page Group and Page. The index file must contain Page Group IELs in order for arsload to load the data.

A Page Group IEL is identified by the text “Begin Page Group Reference” in the arsafpd output. Each Page Group IEL indicates where the group starts and its length in bytes. Example 7-1 shows part of a Page Group IEL.

**Example 7-1 Part of a Page Group IEL**

```
2  IEL Index Element                              005D D3B2A7
   IEL Object Byte Extent Triplet (57)
      IEL Extent = 1614 (64E)  <- LENGTH OF GROUP
   IEL Object Byte Offset Triplet (2D)
      IEL byte offset = 201 (C9)  <- WHERE IT STARTS IN THE .OUT FILE
   IEL Object Structured Field Extent Triplet (59)
      IEL Extent = 18 (12)
   IEL Object Structured Field Offset Triplet (58)
      IEL Offset = 1 (1)
   IEL Medium Map Page Number Triplet (56)
      IEL sequence number of page = 1 (1)
   IEL Fully Qualified Name Triplet (02)
      IEL 0D Begin Page Group Reference  <- PAGE GROUP IEL
         IEL Name = 'Smith Cyclery Co  00000001'
```

If you look at offset 201 in the .out file, you find a BNG structured field (if the .out file is AFP), which indicates the start of a document.

You might see Page IELs in the Index file. These are created by setting the ACIF parameter INDEXOBJ=ALL. They are needed (and are required) only if the document is being loaded as large object. Example 7-2 shows part of a Page IEL.

**Example 7-2 Part of a Page IEL**

```
7  IEL Index Element                              0044 D3B2A7
   IEL Object Byte Extent Triplet (57)
      IEL Extent = 1342 (53E)  <- LENGTH OF PAGE
   IEL Object Byte Offset Triplet (2D)
      IEL byte offset = 456 (1C8)  <- WHERE IT STARTS IN THE .OUT FILE
   IEL Object Structured Field Extent Triplet (59)
      IEL Extent = 11 (B)
   IEL Object Structured Field Offset Triplet (58)
      IEL Offset = 7 (7)
   IEL Medium Map Page Number Triplet (56)
      IEL sequence number of page = 1 (1)
   IEL Fully Qualified Name Triplet (02)
      IEL 87 Begin Page Reference  <- PAGE IEL
         IEL Name = '00000001'
```

Example 7-3 shows a TLE containing index information.

**Example 7-3 TLE containing index information**

```
3  TLE Tag Logical Element                        0032 D3A090
   TLE Fully Qualified Name Triplet (02)
      TLE Name = 'NAME'
```
TLE Attribute Value Triplet (36)
TLE Value = 'Smith Cyclery Co'
TLE Attribute Qualifier Triplet (80)
TLE sequence number = 0 (0)

Summary of index file information
Here is the summary of index file information:

- **arsload** uses the code page value in the BDI to convert the index names and values to the code page of the database. For example, the index names and values are in EBCDIC, but the database might be in ASCII.
- TLEs contain the index values that display in the Search Results window.
- Group IELs contain the offset of where the group starts in the .out file and the length of each group.
- All this information is loaded into OD tables and the index file is discarded.

### 7.4.3 Fully composed AFP input

ACIF can process an input file in AFP format that contains TLEs and BNG/ENG pairs. This data is called **fully composed AFP**.

Example 7-4 shows a portion of the **arsafpd** output of a fully composed AFP file in the correct format for loading into Content Manager OnDemand.

**Example 7-4  Portion of the arsafpd output of a fully composed AFP file**

1 BDT Begin Document
2  BNG Begin Named Page Group 00000001
3   TLE Tag Logical Element
4   TLE Tag Logical Element
5   TLE Tag Logical Element
6   TLE Tag Logical Element
7   IMM Invoke Medium Map ABBB
8   BPG Begin Page 00000001
9    BAG Begin Active Environment Group
10       MCF2 Map Coded Font2
11       NOP No Operation
12       PGD Page Descriptor
13       PTD2 Presentation Text Desc2
14       EAG End Active Environment Group
15       BCT Begin Composed-Text Block
16       PTX Presentation Text Data
17       ECT End Composed-Text Block
18       EPG End Page
19       ENG End Named Group
20   BNG Begin Named Page Group 00000002
...
4590   ENG End Named Group
4591 EDT End Document

Each group is surrounded by BNG/ENG structured fields, and each group contains TLE structured fields that occur after the BNG but before the BPG.
When an input file contains TLE structured fields, do not specify indexing parameters such as \texttt{TRIGGER}, \texttt{FIELD}, or \texttt{INDEX}. They are not needed because the file already contains index information.

ACIF processes a file containing TLE structured fields in the following way:
1. For every BNG in the input, ACIF creates a group IEL structured field in the index file.
2. ACIF makes a copy of the TLE structured fields from the input and places them into the index file. The original TLE structured fields are also placed into the output file.

If the input file does not contain the correct number of TLEs in each group, ACIF might complete, but \texttt{arsload} might fail with the following message:

\textit{x fields submitted, n expected}

The \textit{n} is the number of fields that are defined to Content Manager OnDemand.

After ACIF processes an input AFP file, you might find that the output file is larger than the input. Why, you might wonder, because the input was an AFP file? The answer is because ACIF changes the AFP, “improves it”, and usually ends up increasing the file size. Some of the changes to the AFP include the following ones:

- Creating or adding comments to the BDT Structured Field
- Creating or adding group names to the BNG - ENG Structured Fields
- Changing obsolete Structured Fields to current ones (for example, MCF1 to MCF2, or PTD1 to PTD2)

### 7.5 OS/390 indexer on z/OS and AIX

The OS/390 indexer is supported on both the z/OS and AIX implementations of Content Manager OnDemand. The indexing parameters are the same for both implementations. If you are migrating from z/OS to AIX, or from AIX to z/OS, you can continue to use the OS/390 indexer and not have to change your indexing parameters.

You can use the OS/390 indexer to extract index data from line data and AFP reports. In addition, other data types, such as TIFF images, can be captured using the ANYSTORE Exit (ANYEXIT is described in 11.3, “OS/390 indexer exits” on page 240).

The OS/390 indexer is a single pass indexer (it does not create an intermediate file). It thus provides better performance than ACIF. The COBOL Runtime Library is required on AIX to run the OS/390 indexer and is included in the Content Manager OnDemand Multiplatform software.

The OS/390 indexer is enhanced to allow for the storage of documents (or large object segments) that exceed 2 GB. A report might contain multiple documents (or large object segments) each of which exceeds 2 GB in size. This enhancement does not affect the limitations imposed by other indexers. The limitations on the document size are based on the available hardware and any other limitations placed on the operating environment.

For more information about using the OS/390 indexer, see \textit{IBM Content Manager OnDemand - Indexing Reference}, SC19-3354.
The OS/400 indexer is a powerful tool for indexing the print data streams of IBM i application programs. Supported data streams include SCS, AFP, and the less common SCS-Extended and Line data.

The OS/400 indexer provides three major functions:

1. Processing of print data streams: The OS/400 indexer processes the output print data streams of application programs, for example, SCS, AFP, and Line data reports. The output can be viewed, printed, and archived by Content Manager OnDemand.

2. Sophisticated indexing functions: The OS/400 indexer can logically divide reports into individual items, such as statements, policies, and bills. You can define up to 32 index fields for each item in a report if you are running a Content Manager OnDemand server version earlier than Version 9.0.0.1. Beginning at Version 9.0.0.1 of the server, 128 index fields can be defined.

3. Collection of AFP resources: For AFP spooled files, the OS/400 indexer determines the resources that are necessary to view, print, and archive the print data stream and collect the resources (except for fonts, which are not stored but are mapped by the client during display). Resources allow users to view the report as it displayed in the original printed version, regardless of when or where the report was created.

The OS/400 indexer supports many advanced features:

- Multi-key indexes
- Spool File Archive compatibility
- Start Indexing on Page
- Translate Print Control
- AFP support with or without TLEs
- Large object support

The OS/400 indexer processes three input sources:

1. Indexing parameters that specify how the data should be indexed. The indexing parameters are created when you define a Content Manager OnDemand application.

2. AFP resources that are required to view and print the data, if the application created an AFP print data stream.

3. The print data stream, which can be in a spooled file (all data types) or in a physical file (Line data or SCS data that has been converted to Line data with First Character Forms Control (FCFC) characters in column one of the data).

The output of the OS/400 indexer consists of an output file containing the text of the spooled file, an index file containing the index values extracted from the spooled file, and for AFP, a resource file containing the AFP resources that are used by the spooled file (except for fonts, which are not stored but are mapped by the Content Manager OnDemand client during display). To create a resource file, the OS/400 indexer must have access to the resources that are required by the input data stream. Content Manager OnDemand stores the resources, and then later retrieves the resources that are associated with a specific document when a user selects the document for viewing.

The OS/400 indexer indexes input data based on the organization of the data:

- Document organization. For reports made up of logical items, such as statements, policies, and invoices, the OS/400 indexer can generate index data for each logical item in the report.
Report organization. For reports that contain lines of detail with sorted values on each page, such as a transaction log or general ledger, the OS/400 indexer can divide the report into sets of pages and generate index data for each set of pages.

Before you can index a report with the OS/400 indexer, you must create a set of indexing parameters. The indexing parameters describe the physical characteristics of the input data, identify where in the data stream the OS/400 indexer can locate index data, and provide other directives to the OS/400 indexer.
Indexing parameters include information that allows the OS/400 indexer to identify key items in the print data stream, tag these items, and create index elements pointing to the tagged items. The OS/400 indexer uses the tag and index data for efficient and structured search and retrieval. You specify the index information that allows the OS/400 indexer to segment the data stream into individual items called groups. A group is a collection of one or more pages. You define the bounds of the collection, for example, a bank statement, insurance policy, phone bill, or other logical segment of a report file. A group can also represent a specific number of pages in a report. For example, you might decide to segment a 10,000 page report into groups of 100 pages. The OS/400 indexer creates indexes for each group. Groups are determined when the value of an index changes (for example, account number) or when the maximum number of pages for a group is reached.

Figure 7-4 illustrates the data indexing and flow control for OS/400 indexer. More information about the OS/400 Indexer, see IBM Content Manager OnDemand - Indexing Reference, SC19-3354.

7.7 Getting started with XML Indexing

The XML indexer enables the high volume archiving of XML data in a scalable and extensible manner.

The XML indexer was developed to support the growing need to efficiently and effectively store large quantities of XML data. For example:

- The European Unions implementation of a Single Euro Payments Area (SEPA). SEPA has replaced the existing domestic retail credit transfers and direct debits with standardized European payments based on XML ISO 20022 messages. ISO 20022 provides a more efficient way of developing and implementing messaging standards that financial institutions and clients use to exchange massive amounts of transactional information.

- Other XML standards exist and continued to be developed, such as ACORD (Insurance industry), AgXML (Agriculture), and Health Level Seven (Health industry).
XML document formats have been developed, such as Office Open XML (OOXML) and Open Document (OASIS).

XML indexing enables you to automatically batch index and archive XML transactional messages and statements into the Content Manager OnDemand repository. Documents are identified and extracted during indexing. Resources are extracted, and, together with the data, compressed and archived. Multiple style sheets can be specified to meet device and accessibility requirements.

XML stylesheet (resource) archiving is critical. Content Manager OnDemand optimizes the storage of XML data by only storing a single version of a resource and then associating it with all the archived documents. Document resources can be automatically collected and managed.

XML data is loaded into Content Manager OnDemand using the `arsload` command. For example, the following statement loads the bamboo.in file and its .res file (if found):

```
arsload -I localhost -u userName -p load.stach -g ci_stmts bamboo,in
```

The XML indexer utilizes the “Generic XML Index File Format” (GXIFF). The GXIFF format is functionally similar to the Generic Index File Format in that it allows for the loading of any type of data into Content Manager OnDemand.

For more information about using the XML indexer, see *IBM Content Manager OnDemand - Indexing Reference*, SC19-3354.

### 7.8 User exits

A user exit is a point during processing where control is handed from the indexer program to a user-written program. After the user-written program is finished, the control is handed back to the indexer program.

The ACIF indexer and the OS/390 indexer support multiple user exits. The OS/400, PDF, XML, and Generic Indexers do not support any user exits.

For a description of the ACIF user exits in detail, see 11.2, “ACIF exits” on page 234.

For a description of the OS/390 indexer user exits, see 11.3, “OS/390 indexer exits” on page 240.

### 7.9 Additional references

For more information, see the following IBM developerWorks® articles:


User clients

In this chapter, we provide an overview of the clients that are available for IBM Content Manager OnDemand (Content Manager OnDemand), including the various web client offerings that are based on the Content Manager OnDemand Web Enablement Kit (ODWEK). We describe the differences between web and Windows based clients and their viewing options.

In the later sections, we focus on the integration and API client options of Content Manager OnDemand, such as the ODWEK API, the Content Management Interoperability Services (CMIS) web services, the mid-server SAPI, and integration with other IBM Enterprise Content Manager products, such as IBM Information Integrator and IBM FileNet P8. We describe how to use the existing API to build your own web client interface for Content Manager OnDemand.

In this chapter, we cover the following topics:

- Choosing the correct client for your implementation
- Content Manager OnDemand client options
- Client APIs overview
8.1 Choosing the correct client for your implementation

Customers are faced with challenges in choosing the interface to Content Manager OnDemand that makes the most sense for their implementation. Content Manager OnDemand has many different user interfaces. Many aspects come into play when considering the best design for access to Content Manager OnDemand to meet all of your requirements and your customers needs in the most cost effective manner. Licensing costs, hardware costs, performance, and maintainability are just a few, but the most important is meeting the business needs for the many different user types.

The Content Manager OnDemand client choices enable the product to meet the ever changing world of information technology and the way content is delivered. For example, delivering documents that are stored in Content Manager OnDemand to a mobile device was not relevant a few years ago. However, it is an important consideration for enterprise content delivery today. Technology drives change with the current Content Manager OnDemand customer base and IBM delivers options to meet current and future business requirements. A customer's goal is to use a single user interface for access to all of its ECM content. IBM has met that goal with the IBM Content Navigator user interface, but continues to retain more than one Content Manager OnDemand client interface so as to meet the various needs of its customer base.

When you choose the correct client for your implementation of Content Manager OnDemand, two primary considerations are the client functionality and the client architecture.

Concerning the client functionality, the most powerful client is the Windows client. All other clients contain only a subset of features of the Windows client. The most prominent differentiation is the viewer capabilities.

You should determine whether your users require functionality that is specific to the Windows client only. If not, see the range of viewer options that are described in 8.1.1, “Viewer options” on page 180, which compares the different viewers across the various client options.

8.1.1 Viewer options

Different viewer options for the data that is stored within a Content Manager OnDemand system exist. The following are general types of viewers:

▶ The viewing capabilities that are provided by the Windows client.
▶ The web viewers that are shipped with ODWEK.
▶ Generic web viewers that are available in Content Navigator or other third-party web viewers. The built-in viewers of Content Navigator are described in 8.2.1, “IBM Content Navigator” on page 186.
▶ Conversion and transformation services that are started by ODWEK.
▶ External applications that are opened according to their associated document types (for example, Microsoft Word for .doc or .docx files).
▶ Special client applications, such as the CICS client, the Structured APIs or Java API access.

The content that is being displayed by some of these viewers can be changed by either transforms (ODWEK) or exits. For more information about exits, see Chapter 11, “Exits” on page 233.
**Windows client viewers**

The Content Manager OnDemand Windows client contains native capabilities for viewing typical archive data types:

- Line data and SCS
- AFP
- Images

The Windows client reflects the richest set of capabilities in terms of viewing these data types. As it directly communicates with the Content Manager OnDemand server, it is the reference for all its features regarding document display.

The line data viewer of the Windows client is the most sophisticated viewer that is available for Content Manager OnDemand from the selection of readily available viewers.

The viewing of these primary data types happens within the same application. The Windows client provides other features as well, such as thumbnails, and configurable and saveable views.

The Content Manager OnDemand Windows client also contains other capabilities for viewing archive data types, such as “PDF” and “User Defined”.

Starting with Content Manager OnDemand Version 9.5, for both DocType=PDF and user-defined PDF, the Windows Client will attempt to view PDF document with Adobe® Acrobat®, if it is installed. If Adobe Acrobat is not installed, for DocType=PDF, Adobe Acrobat Reader will be used instead when viewing PDF document.

Before Content Manager OnDemand version 9.5, PDF documents can be viewed by the Windows client in two ways:

- If they are configured in the application as data type “PDF”, the rich feature set of the AFP and line data viewer applies, but Adobe Acrobat Professional is required.
- If the data type is configured as “User Defined” and “.pdf” as extension, then the documents are started externally, thus being viewed with the no-charge Adobe Acrobat viewer or any other installed PDF viewer.

Any data type can be specified as “User Defined”, for example, Word documents ( .docx). User defined data is viewed by invoking their associated application.

**Web-based viewing options**

The web-based viewing options for Content Manager OnDemand are provided primarily by ODWEK. It comes with different viewers that are dedicated to Content Manager OnDemand documents that can use Content Manager OnDemand specific functions, such as the segment-wise retrieval of large objects or annotations. These viewers are used in web applications like Content Navigator or any other custom-developed web client:

- Line data applet
- Browser plug-in for image viewing
- AFP browser plug-in
- AFP Transforms
- Generic Transforms

Detailed information about ODWEK’s viewers and transforms can be found in *IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond*, SG24-7646. Only a brief overview is provided in this chapter.
The **line data applet** is a Java applet that is provided by ODWEK. It is similar to the line data viewing capabilities of the Windows client, but does not contain all the parallel functionality for viewing line data within the Windows client. For example, the applet does not support saving and selecting custom views.

The **plug-ins for AFP and images** are shipped as setup packages, which must be installed on the user's computer. The plug-ins integrate themselves with Mozilla or Firefox browsers and Microsoft Internet Explorer. The AFP plug-in provides similar viewing capabilities to the Windows client.

The image plug-in can view image files, with the added benefit of displaying TIFF images (which current web browsers usually cannot display).

**Conversions and transforms**

In addition to the viewers, ODWEK uses conversion or transformation engines, which convert the document into another data type. ODWEK allows for the integration of AFP Transform components for converting AFP into HTML or PDF documents, and it provides a generic transform interface, which can be used to plug in any conversion or transformation engine.

The transforms apply only to documents that are served by ODWEK. They are available to web clients based on ODWEK (such as Content Navigator) and to any other application written using the ODWEK Java API. They are not available on the Windows client.

**Web viewing considerations**

When you choose a viewer strategy in web clients, it is important to know the difference between the different viewer architectures.

- Java applet viewers, such as the line data applet or Content Navigator's generic applet viewer, are downloaded automatically to the user's computer and run within the browser. There is no need for any deployment, but a Java installation must be present on the PC. They are effectively cached on the user computers and can provide sophisticated functionality. On the downside, each Java applet requires a JVM to be run. On terminal servers, serving multiple users at once, this might lead to larger memory consumption.

- Plug-in viewers are native applications that must be installed through a setup routine on the user's computer. They integrate with the browser and provide their own viewing logic, which can be sophisticated (for example, with the AFP plug-in).

- The generic and Ajax viewers that are provided by Content Navigator provide limited capabilities in terms of rendering and viewing functionalities. They do not require any rollout or JVM.

- Transforms such as Ricoh's AFP2PDF or other vendor provided transforms result in a PDF document that is viewed in the Acrobat viewer. Although this viewer is deployed on most user PCs, the rendering consumes processing power on the mid-tier system. Also, large documents cannot be rendered into PDFs. As the PDF is displayed by an external application, it cannot communicate with the Content Manager OnDemand server as, for example the line data applet does.

Depending on the data that you are dealing with, consider these options:

- For line data:
  - The line data applet supports annotations. It can deal with large reports (LOB) if the large object functionality is employed at load time.
  - Ajax viewer and direct rendering capabilities of Content Navigator work only on shorter reports. Additionally, the viewing of annotations and large object documents is not supported.
For AFP data:

- The AFP plug-in is the best choice, as it is almost identical to the client. However, it does not provide support for annotations.

The only viewers that use this functionality are the line data applet, the AFP Plug-in viewer, and the Content Manager OnDemand Windows client.

- AFP to PDF is a choice that does not require a plug-in rollout at the user computers if their workstations have the Acrobat plug-in installed. Font mappings must be configured at a central location. The additional workload on a rendering system and additional license costs must be considered. Large reports might not be able to be rendered or viewed.

**Note:** The AFP viewer plug-in, which is available with ODWEK and Content Manager OnDemand, is a version of the AFP viewer plug-in from the InfoPrint Solutions Company. Although the standard InfoPrint viewer can be used for viewing AFP, the version that is provided by ODWEK uses a direct communication with the Content Manager OnDemand server, enabling segmented document transfer for large object documents.

### Annotations

Only the native ODWEK viewers and the Windows client support annotations. These viewers and Windows client support annotations in the following ways:

- Line data applet: Supports text. Starting with Version 9, the viewer can work with graphical annotations as well.
- Windows Client: Supports maximum capabilities for all data types.
- Other viewers, for example, the AFP plug-in viewer: Do not support and are not aware of annotations.

Web clients, such as Content Navigator, or the ODWEK Java API, can work with annotations and provide access to them through the hit list. Graphical annotations cannot be accessed that way because they are not exposed through the Java API.

### Large object support

Large object (LOB) support is the methodology for dealing with large reports. For more information about how LOB affects your reports, see “Large object” on page 52.

From a viewer perspective, if a large document is being transferred, it generates high network traffic, resource consumption, and long wait times for users. If the viewer supports LOB documents, it communicates with the server to transfer only the chunk of data that the user is looking at (for example, a 200 page chunk out of a 10,000 page report). If the user scrolls to a different chunk of pages, it downloads only that relevant portion of the document that the user scrolled to.

The ODWEK Java API provides line of business operations. For more information, see *IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond*, SG24-7646.

### 8.1.2 Client infrastructure options

There are a few basic architectural options: Windows client, Content Navigator, or API-based client integration into your line of business application.
Windows client
Consider the following items when you are planning a Windows client infrastructure:

- It is faster than the web clients and is more powerful.
- It requires native installation on each user’s workstation or notebook. Server version upgrades might also require a new client installation.
- This client supports Citrix and Terminal services environments.
- It does not support the Transforms interface for transforming and converting data formats because they are provided by ODWEK only.

Content Navigator
When choosing an ready-for-use web client, consider IBM strategic client, IBM Content Navigator, because it represents the most complete, most recent web client.

Special use cases might require the development of a custom client application for Content Manager OnDemand. For more information about development APIs, see "Client APIs overview" on page 195.

Content Navigator allows you to run a cross-repository search, which enables you to search for content across multiple types of repositories including Content Manager OnDemand. For example, Content Manager OnDemand search results can be included in the same hit list as search results from other supported repositories to help provide a 360 degree view of content.

When you create a cross-repository search, you can:

- Specify the scope of the search on each repository. You can specify the search or the classes that you want to include in the cross-repository search by using IBM Content Manager OnDemand. On IBM FileNet Content Manager and IBM Content Manager, you also can limit the search to a specific folder.
- Specify how properties from each repository are related to each other.
- Specify any default search criteria that you want displayed when users open the search.

For further information about how to configure Cross Repository Search, see IBM Content Navigator Knowledge Center at the following web address:

http://www.ibm.com/support/knowledgecenter/SSEUEX_2.0.3/contentnavigator_2.0.3.htm

Consider the following items when you choose Content Navigator or other clients:

- The viewers that are provided by Content Navigator are limited compared to the Windows client.
- A Content Manager OnDemand specific client, focusing only on Content Manager OnDemand, is probably the easiest to maintain.
- A general Enterprise Content Manager client, such as Content Navigator, with setup specifications that support the Content Manager OnDemand model and capabilities, might increase the dependency footprint of the client tier while providing access to other systems through the same user interface.

Developing your own client
When you develop your own applications (web client), you might use the ODWEK Java APIs. For more information about the ODWEK APIs, see "Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond", SG24-7646.
If you are developing a Windows application, you have the option of using the OLE (ActiveX Control) API, which is provided by the Windows client. This API requires a Windows client installation.

Another option is to use an intermediate API that is based on ODWEK’s Java API for the Content Manager OnDemand access portion. CMIS or other web services can be used as the intermediate API. The web service application uses ODWEK to access Content Manager OnDemand and relays this access through its own web services to any other application. In this case, the Windows application only needs to talk to the web service. For more information about CMIS and its limitations, see 8.3.2, “Content Management Interoperability Services” on page 197.

The usage of an intermediate API increases complexity and potentially decreases performance, but decouples a Windows application and Content Manager OnDemand in terms of API versioning and requiring a Content Manager OnDemand installation.

8.1.3 Client compatibility

During the development history of Content Manager OnDemand, features were added and internal API schemes were changed. Therefore, not every client level can work with every server level. When you choose a client infrastructure for your Content Manager OnDemand environment, you must take version dependencies into consideration.

Client compatibility matrix

At the API level, all user clients share a common API core that is based on the Windows client and ODWEK. Almost all other client and API implementations are based on these common APIs. An up-to-date overview of the compatibility matrix, showing which client and ODWEK level can work with which server level, is available at the following website:


Determining version levels

Especially on IBM i and IBM System z, the server release level might not be obvious, as it is set by PTFs. The most convenient way to determine the server level of your Content Manager OnDemand system is to log on to either the Administrator Client or the user Windows client. After you are logged on, the clients show the server version in the status bar, as shown in Figure 8-1.

Figure 8-1  Server version is displayed in the client
Every `ars` command on the server displays its current server software version as well.

You can view the version of the Windows client by clicking **Help → About**.

To determine the version of ODWEK, you can either look for the readme file in the ODWEK application directory or use a client. If you are running a web client (for example, Content Navigator), open a line data report by using the line data applet viewer. As this viewer is directly provided by ODWEK, it shows the current ODWEK version level in the About dialog box under the Help menu.

**Cross-server calls with server console commands**

Some of the `ars` commands that are provided by the server software installation, for example, the `ARSDOC` and `ARSLOAD` commands, can work with remote servers. This applies to cross-platform calls, for example, loading data with the `ARSLOAD` command running on Linux to a Content Manager OnDemand server running on the mainframe.

For more information, see “Server commands” on page 198.

**Multiple versions at the same time**

Before Version 9.5, only one installation of the Content Manager OnDemand Windows client (user and administrative) could be installed on a workstation concurrently. Multiple different versions could not coexist.

Starting with Version 9.5 and moving forward, it is now possible to support multiple versions of the Content Manager OnDemand Windows client (at the release level only, not the ptf level) on a single workstation. The client code is now installed at the `c:\Program Files (x86)\IBM\OnDemand Clients\V9.5` directory.

For ODWEK, it is possible to run multiple versions of ODWEK on a single system. Although this might not be a preferred scenario from a maintenance point of view, it can be helpful during upgrades and existing system access scenarios. Each application using the ODWEK API must point to the correct installation path and load the correct corresponding libraries.

For more information, see the Technote found at the following website:


### 8.2 Content Manager OnDemand client options

In this section, we describe the common client options for Content Manager OnDemand, including web and non-web clients.

#### 8.2.1 IBM Content Navigator

Content Navigator is the strategic client for IBM Content Manager, IBM FileNet P8, and Content Manager OnDemand. Access to Content Manager OnDemand servers is through the ODWEK Java API. Content Navigator is a Web 2.0 based web client and requires a web application server, such as IBM WebSphere® Application Server.

Content Navigator can be used to access documents from multiple content repositories:

- IBM Content Manager Enterprise Edition repositories
- IBM Content Manager OnDemand repositories
- IBM FileNet P8 repositories
- OASIS Content Management Interoperability Services (CMIS) repositories
With Content Navigator, users can search documents from any of the content repositories, view documents side-by-side, edit document properties, add annotations to documents, send documents and document links through email, and print and download documents.

You can use Content Navigator to build a customized user experience. It supports many configuration options and includes a powerful API toolkit that you can use to extend the web client and build custom applications.

Figure 8-2 shows Content Navigator browsing a folder in Content Manager OnDemand.

Figure 8-2  Searching a Content Manager OnDemand folder with Content Navigator

Content Navigator is a full-feature client for Content Manager OnDemand. Its interface follows modern user interface styles, with a browser pane on the left, showing the available Content Manager OnDemand folders, and a search and result pane on the right. All components and data are dynamic and can be resized and changed.

**Note:** Content Navigator is a “Web 2.0” Ajax based client. These web applications rely on an up-to-date JavaScript engine, which is only available in newer browsers. Older browsers such as Microsoft Internet Explorer Version 8 might not work correctly with Content Navigator.

Content Navigator, Version 2.0.2 and beyond, provides many additional Content Manager OnDemand capabilities, including AFP Viewer plug-in support, External Data Services (EDS) support, favorites support for folders and documents, and single and multiple AFP files download as PDF (with AFP2PDF enabled), highlighted search result terms in full text searches, a Line2PDF conversion viewer, and an XML viewer. Starting with Content Manager OnDemand V9.0 Content Navigator provides SSO token pass-through Client side, date validation is no longer required and support is provided for ‘t’ date expression and federated search across Content Manager OnDemand, FileNet P8, and IBM Content Manager repositories. Content Navigator is also the new CMIS packaging for Content Manager OnDemand.

**Installing Content Navigator**

Content Navigator is a product that must be installed natively along with ODWEK and IBM WebSphere Application Server (or any other applicable web application server). Typically, Content Navigator is installed on a separate system in the web tier, and not on the same system as the Content Manager OnDemand server.
Here are the prerequisites for a Content Navigator installation for Content Manager OnDemand:

- Native installation of the Content Navigator base software
- A database to store the Content Navigator configuration
- Web application server
- ODWEK
- Optional: AFP Transforms for AFP to PDF rendering
- JDBC drivers (if not already present)

The Content Navigator database is relatively small, so a collocation with the Content Manager OnDemand database might be possible in small deployments. The installation manual provides SQL statements for creating the database and its table spaces.

After you install all the components, run the Content Navigator Configuration and Deployment Tool to create a preconfigured web application and deploy it to the web application server.

The Configuration and Deployment Tool provides a wizard that leads you through the base setup process. You must provide details about your web application server and connection information to the configuration database. For the Content Manager OnDemand configuration, you must provide the location of your ODWEK installation. Run the deployment scripts at the end for deploying Content Navigator on your application server.

The installation is described in detail in the “Planning, installing, and configuring IBM Content Navigator” section of the Content Manager OnDemand information center, found at: http://www.ibm.com/support/knowledgecenter/SSEUEX_2.0.3/com.ibm.installingeuc.doc/eucao000.htm

Accessing the native libraries

The ODWEK Java API uses native libraries. To run Content Navigator (or any other web client that is based on the Java APIs), make sure that the web application server can access these libraries. To achieve this task, add the ODWEK directory into the PATH environment variable. On Windows platforms, you also must add the lib64 subdirectory of ODWEK into the PATH.

For example, in Windows, here is the path to the directory:

PATH=%PATH%;C:\Program Files\IBM\OnDemand\V9.5\www;C:\Program Files\IBM\OnDemand\V9.5\bin

On Linux and UNIX platforms, it is necessary to expand the LD_LIBRARY_PATH (LIBPATH on AIX) to include the ODWEK directory. This must be done in the environment on which the web application server is running by editing the start scripts.

For example, on Linux, here is the command that you run:

export LD_LIBRARY_PATH="/opt/ibm/ondemand/V9.5/www:$LD_LIBRARY_PATH"

The Content Navigator installer creates a shared native library in WebSphere Application Servers. You can review this library in the Integrated Solution Console in the Environment, Shared libraries section. There should be a library that has the class path set to the location of the ODApi.jar (for example, /opt/ibm/ondemand/V9.5/www/api/ODApi.jar) and the Native Library Path set to the ODWEK directory (for example, /opt/ibm/ondemand/V9.5/www). If you hit any errors, make sure that these paths are valid.
Administering Content Navigator

Content Navigator administration is done in the admin desktop of the Content Navigator web application. For more information, see the “Administering IBM Content Navigator” section of the Content Manager OnDemand information center, found at:


Adding a Content Manager OnDemand repository to Content Navigator

Multiple Content Manager OnDemand repositories can be added to a Content Navigator installation, exposing each repository to a defined set of users through the configuration of different desktops. For the configuration of Content Manager OnDemand repositories, you need the following parameters:

- **Display name**: The depository name that is displayed to the users.
- **Server name**: IP or host name of the Content Manager OnDemand server.
- **Port number**: Instance port (the default is 1445).
- **If you want to have an encrypted connection between ODWEK and the Content Manager OnDemand server, enable SSL and provide an SSL keyring database and stash file. Enabling SSL consumes additional resources on both systems (Content Manager OnDemand and web tier).**

**Note:** This option does not affect the SSL security of the web application itself (for example: between the web server and the browser); it is just the encryption of the API communication between the web tier and the Content Manager OnDemand server.

- If you want to use AFP Transforms or another transform filter through generic transforms, you must specify the path to the respective configuration files.

You could specify additional configuration parameters, for example, in the ODConfig class in the Java API. For more information, see the Javadoc of ODApi or IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond, SG24-7646.

Content Navigator viewer options

For each Content Navigator Desktop, a different viewer map can be active. Within a viewer map, for each content type, a different viewer can be configured. There are several viewers that are available to Content Manager OnDemand repositories in Content Navigator:

- **Content Navigator uses the viewers that are shipped with ODWEK, for example, the line data applet. Repository-specific features can be handled only by ODWEK’s viewers.**

- **ODWEK does conversions, for example, AFP to PDF conversion**

- **Built-in viewers for Content Navigator:**
  - Ajax viewer and a simple PDF and HTML conversion
– Web browser pass-through
– PDF-inline viewer for addressing the Adobe Acrobat viewer browser plug-in
– Generic Applet viewer
– IBM Daeja™ ViewONE Virtual viewer

For a full listing of the viewer, see Knowledge Center at:
c.doc/eucco002.htm?lang=en

➤ Content Manager OnDemand Plug-in viewers for Content Navigator:
  – AFP Viewer plug-in
  – FileNet Content Federation Services Viewer plug-in
  – XML Viewer plug-in

➤ Third-party viewers can be integrated into Content Navigator. For IBM Production Imaging Edition, for example, a third-party viewer is integrated with Content Navigator. You can have your own viewer that is integrated by using the Content Navigator plug-in architecture.

The generic applet viewer (“applet viewer”) is a Java applet, which can handle various types of documents, such as PDF and Microsoft Office documents (which it renders), images, line data, and AFP documents. It might be an option if you are dealing with images that are stored in Content Manager OnDemand.

If you want to avoid using Java applets, and your content is viewable by browsers (for example, some image types or textual data), try the browser pass-through viewer, which lets the browser handle the data natively. If you are working with AFP and must use the AFP browser plug-in, register the Content Navigator plug-in, AFPViewerPlugin.jar, and configure the viewer map that is assigned to your Content Navigator desktop to use the AFP viewer for the application/afp MIME type. The AFPViewerPlugin.jar file is shipped with Content Navigator. You must choose the web browser pass-through viewer.

The Ajax viewer is a Web 2.0 JavaScript based application that provides basic document functions, such as page-wise browsing, rotation, or zoom. It is not a Java applet.

The generic applet viewer, the built-in PDF and HTML conversion, and the Ajax viewer can all deal with various data types, including images (such as TIFF, JPEG, and DICOM), Office documents, PDF, most line data documents, and some AFP data. However, they all use a rendering engine to display Office, PDF, and AFP data into an image. This rendering might work well with some Office and PDF files, but fails on most non-basic AFP data streams.

For more information, see 8.1.1, “Viewer options” on page 180.

Note: Content Navigator is a Web 2.0 client and relies on HTML 5 and JavaScript for its core client functionality and especially for the Ajax based viewers. Not all browsers are suitable for running Content Navigator fast and efficiently, especially for Microsoft Internet Explorer browsers before Version 9. Test Content Navigator with your user browser thoroughly before considering a deployment.

Extending Content Navigator

Content Navigator is not designed as a client that is dedicated solely to Content Manager OnDemand, so a more complex configuration is necessary than with simpler client options. Content Navigator provides many configuration and customization options through its API and plug-in methodology. For more information about the customization options of Content Navigator, see Customizing and Extending IBM Content Navigator, SG24-8055.
8.2.2 Content Manager OnDemand Windows client

The Content Manager OnDemand Windows client is a full function, feature-rich client that meets the needs of line of business application areas and customer service representatives. The Windows client displays content in its native format and is considered a corporate internal access client. There are many technical aspects of the Windows client, which are described in 8.1.1, “Viewer options” on page 180 and 8.1.2, “Client infrastructure options” on page 183.

Figure 8-3 shows a user that is logged in to a folder that performed a search and received the results list. The figure also shows the indication of a note or hold and also the location of the document. On the right side of the hit list, the load date and document size is displayed.

![Figure 8-3 Content Manager OnDemand results list in the Windows client](image)

As the full function client for Content Manager OnDemand, the Windows client provides various business functions and features that can be selected at the document level, as shown in Figure 8-4.
You also can show the pages within a document or report as thumbnails, which provide you with a visual representation of the report.

### 8.2.3 CICS Client

The CICS 3270 based interface was the original user interface for Content Manager OnDemand z/OS. It was the predecessor to the Windows and web technology clients that are used today by most Content Manager OnDemand customers. There are still requests from some customers to use it to meet some of their production needs typically as they migrate their user base (and applications) from a host based environment to a client server or web based architecture. The CICS client was developed to meet this need. The CICS client provides a functional subset of the windows and web based clients. The CICS Client is English only. It is included in the Content Manager OnDemand maintenance. It does not ship in the Content Manager OnDemand package, so it must be downloaded and installed separately.

The CICS Client can be downloaded from the following website:


Figure 8-5 shows the Content Manager OnDemand CICS Client login panel, which requires the standard login credentials.
The CICS Client provides viewing capabilities for line data reports and a best fit model for fully composed AFP documents. Viewing a standard line data report is shown in Figure 8-6.

8.2.4 Integration with other Enterprise Content Manager products

Content Manager OnDemand provides integration points with other IBM Enterprise Content Manager software on many different levels. This can be integration on the client level (for example, using another product's UI as the client for Content Manager OnDemand) or an
infrastructural integration in which another product is accessing Content Manager OnDemand and information is exchanged between them at a lower level.

For more information about the most common integrations, see *Federated Content Management: Accessing Content from Disparate Repositories with IBM Content Federation Services and IBM Content Integrator*, SG24-7742.

### 8.2.5 Federated search with IBM Information Integrator

Information Integrator is an IBM Enterprise Content Manager product that is available for all Enterprise Content Manager customers. Although it has many functions, it is primarily a federation system.

It can connect to various different systems, such as Content Manager OnDemand, Content Manager, FileNet P8, and other non-IBM content management systems. You can create a virtual archive, spanning across all connected systems and document models. Users can search in one system and the search is propagated to multiple back-end repositories. Information Integrator does the mapping of virtual fields to folder fields in Content Manager OnDemand (or respective models in other systems) and delivers a consistent hit list of documents to the user.

Content Integrator might be an option for you if you have separate Content Manager OnDemand systems (instances or physical systems) and must provide a cross-system search (for example, for eDiscovery or legal inquiries). Another use case is to provide repository-neutral services with access to multiple content management systems.

**Note:** Information Integrator is an abstraction layer. You lose Content Manager OnDemand specific functionality, as the virtual archive provides only the common functionality that is implementable by all archives. Always check your use case to verify that a virtual archive meets your needs for functional compatibility and performance.

### 8.2.6 Integration with IBM FileNet P8

Integration exists between IBM FileNet P8 and Content Manager OnDemand through FileNet Content Federation Services. Content Manager OnDemand documents can be federated into FileNet P8, making them accessible like any other FileNet P8 documents for FileNet P8 users.

This federation is different compared to Information Integrator. In Content Federation Services, for each Content Manager OnDemand document, a virtual document is created in FileNet P8 (resulting in database records in FileNet P8). So, these documents act as FileNet P8 documents from a FileNet P8 user perspective. Information Integrator does not have its own database and does not create virtual documents, but instead calls Content Manager OnDemand for searches and passes on the result list. A search in FileNet P8 never kicks off a search in Content Manager OnDemand, but can find only federated Content Manager OnDemand documents, which are cataloged in the FileNet P8 database.

If you have a FileNet P8 system in place that serves as your primary content management system and want to make some reports available to those users without them knowing that those reports are in a different system, this integration might suit your needs. The same situation applies to the usage of FileNet P8 Records Management, which can be applied to Content Manager OnDemand documents as well, thus bringing a level of federated records management capability to your documents.
When you are planning your integration with FileNet P8, remember that this is an active federation: Content Manager OnDemand actively publishes document links into a FileNet P8 system. You must consider both volumes (FileNet P8 systems usually are smaller than Content Manager OnDemand systems) and the active federation process.

For more information about Content Manager OnDemand and FileNet P8 Integration, see *IBM FileNet Content Federation Services for Content Manager OnDemand*, SC19-2711-00.

### 8.3 Client APIs overview

Along with the various client options, there are multiple API options for navigating through the system and accessing Content Manager OnDemand documents. Although the Java API that is provided by the Content Manager OnDemand Web Enablement Kit is the API that is used by most clients and the basis for most development projects, the API is available and used for a limited range of scenarios.

The following list shows the APIs that are available for Content Manager OnDemand:

- Content Manager OnDemand Web Enablement Kit: The Java API for Content Manager OnDemand
- SOAP and REST web services following the CMIS standard
- Windows OLE (ActiveX control) provided by the Windows client
- XML-based administrative API through the ARSXML server command
- Structured APIs on z/OS environments
- The standard Content Manager OnDemand server commands that serve as a console-based API for working with Content Manager OnDemand documents

#### 8.3.1 Content Manager OnDemand Web Enablement Kit

The ODWEK provides a Java API for accessing Content Manager OnDemand servers and their documents. It is the strategic client API that provides the largest feature set of any Content Manager OnDemand API. It is used by web clients, such as Content Navigator or WEBi, and by abstractions layers, such as Information Integrator, or API components, such as CMIS.

The ODWEK Java API and how it can be used to develop Content Manager OnDemand Clients is described in detail in *IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond*, SG24-7646. This section covers only a basic overview and focuses on client consideration topics around ODWEK. Developers are encouraged to read the referenced book before planning a client development that is based on ODWEK.

**Scope**

ODWEK is a Content Manager OnDemand component that can be used by all Content Manager OnDemand customers. It is focused around the typical client use cases, providing the ability to search for and access data that is stored in a Content Manager OnDemand archive. It also has web viewers, such as the line data applet and Content Manager OnDemand AFP viewer. For more information about ODWEK viewers and conversion support, see “Windows client viewers” on page 181.

Before Content Manager OnDemand Web Enablement Kit (ODWEK) Java API V9.5, the only API that allowed documents to be added to the Content Manager OnDemand (CMOD)
archive was the ODFolder.storeDocument API, which resulted in an archive request to the CMOD server for each document. This is suitable for low-volume ad hoc storage.

In ODWEK V9.5, new APIs were introduced to allow documents to be loaded in bulk, this allows for high volume storage similar to the ARSLOAD command. To accomplish bulk loading using the ODWEK Java API, perform the following:

1. Call the ODServer.loadInit API to initiate the load process.
2. For each document to load, call the ODServer.loadAddDoc API, passing the number of pages, a Hashtable of index values to store, and the document data.
3. Call the ODServer.loadCommit API, specifying the application group and application to send the load data and load request to the CMOD server.

For special client needs, the Java API provides access to the object model (Application Group and Application) of Content Manager OnDemand and facilitates an ARSXML pass-through, which can be used to operate on administrative tasks.

Native library dependency
Because of the nature of the Content Manager OnDemand architecture, ODWEK requires the use of native libraries.

In addition to the physical presence on the system, Java applications must be aware of the native libraries. The ODWEK native libraries are loaded as shared memory objects and cannot be reloaded multiple times. If you are running multiple ODWEK-based applications in one web applications server, this must be considered.

For a description about how the native library reference is managed for the ODWEK-based client IBM Content Navigator in IBM WebSphere Application Server, see “Accessing the native libraries” on page 188.

ODWEK web client design considerations
When you design a web client for Content Manager OnDemand based on ODWEK, consider the following items:

- Dependency on a native shared library affects deployment and some general options, such as the message language, which can be set only for the whole environment.
- Special care must be taken for multithreading document access. Access to a single session with Content Manager OnDemand server must be done in a single-threaded fashion. Only one thread can access objects of a specified Content Manager OnDemand session at a time.
- Every session that is established with a Content Manager OnDemand server consumes memory on the ODWEK system. For high usage applications that support many concurrent users, for example web clients that work with non-named users, the usage of connection pooling is suggested.
- Make sure that a timeout concept is implemented in your application that meets the Content Manager OnDemand user activity timeout. Sessions that do not time out might lead to memory leaks or high memory consumption on Content Manager OnDemand and ODWEK machines.

Note: Starting with Version 9 of ODWEK, additional functions were added to reset the inactivity timeout counter of a user session. This simplifies designing connection pooling and timeout scenarios.
For a connection pooling sample that covers the topics of thread safety, resource consumption, and timeouts in detail, see Chapter 6, “Connection pooling and connection handling”, in *IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond*, SG24-7646.

### 8.3.2 Content Management Interoperability Services

CMIS is an open standard for accessing content management repositories. It is an OASIS specification and is supported by various applications from different vendors, including IBM (with FileNet P8, Content Manager, and Content Manager OnDemand).

CMIS is providing a common access interface for searching, retrieving, and in the case of document management systems, modifying and deleting documents. It is a web services interface that is implemented in either SOAP web services and REST (Atom) services.

For more information about CMIS, visit the CMIS page on the OASIS website, the CMIS overview page at the IBM Enterprise Content Manager website, and see the technical documentation that is available:

- [https://www.oasis-open.org/committees/cmis/](https://www.oasis-open.org/committees/cmis/)
- Implementing Web Applications with CM Information Integrator for Content and OnDemand Web Enablement Kit, SG24-6338
- Content Management Interoperability Services for Content Manager OnDemand is installed as part of the IBM Content Navigator installation. For more information, see “Installing Content Navigator” on page 187.

When you consider implementing your own software on CMIS, remember that CMIS is used for accessing document management systems, but not necessarily high-volume report archives such as Content Manager OnDemand. The methodology of accessing documents is based on folder and subfolders with documents in it (such as in a file system) and partially emulated by Content Manager OnDemand with its different object model. The usage of CMIS must be considered as an abstraction layer that might have an impact on throughput and feature exposure. Also, much of the CMIS API is not supported by Content Manager OnDemand (such as the storage and deletion functions).

### 8.3.3 Other client-based API options

Other client-based API options include Windows ActiveX API, structured API on z/OS, server commands, and XML Administration interface (ARSXML).

**Windows ActiveX API**

The Windows client ships an ActiveX control, which can be used in its own application for accessing Content Manager OnDemand servers and documents through the functions that are provided by the Windows client. It is a development API that enables the development of custom applications that use an installed Windows client as the API provider. The ActiveX API covers only a basic operation subset.

For more information about the Windows client-based API, see *Windows Client Customization Guide*, SC19-3357.
Structured API on z/OS

In z/OS environments, Content Manager OnDemand includes Structured APIs that provide custom applications in CICS, IBM IMS™, TSO, or batch environments with the ability to connect to Content Manager OnDemand servers. The Structured APIs support only the basic read operations (Logon, open folder, search, and retrieve documents and annotations).

Structured APIs are handled by a dedicated component of Content Manager OnDemand that is called MidServer. The MidServer relies on ODWEK and its API to access the Content Manager OnDemand server.

Structured APIs are available only on z/OS and are called from COBOL or C applications in the same manner as MVS calls. As ODWEK is used as the access path to the Content Manager OnDemand server, the Structured APIs can be used to access non-z/OS Content Manager OnDemand servers as well.

Server commands

In addition to the API options, which are exposed through Java, OLE, or Web Services, Content Manager OnDemand provides console (command-line) applications that provide specific functions, such as searching, retrieving, or deleting documents, and sophisticated functions, such as placing holds and working with the full text engine. Most of this functionality is exposed through the ARSDOC application.

Simpler custom applications, for example, shell scripts, can use these server console applications to interact with Content Manager OnDemand systems. The applications are available only as part of a Content Manager OnDemand server installation. Because most of them (namely ARSDOC) communicate with the server through TCP/IP, you can connect and interact with Content Manager OnDemand servers remotely on other platforms. When you call remote servers, make sure that the local installation that provides the ARS-applications and the actual Content Manager OnDemand server are on the same version level.

For more information about the administrative commands, see the specific command descriptions in the Content Manager OnDemand information center, found at:


XML administration interface: ARSXML

In addition to the user client APIs, there is the ARSXML server command, which provides an interface for administrative users and applications to access the Content Manager OnDemand data model. Using ARSXML, folders, application groups, applications, users, and others can be exported, created, deleted, and modified. It works on XML documents by describing the change, action, or selection criteria and the resulting output XML document.

ARSXML is a console application that is available on the Content Manager OnDemand server. It can work with remote servers if they are at the same release level.

XMLs can be passed to and from ARSXML through the ODWEK Java API, which enables Java applications to programmatically call ARSXML and obtain access to administrative data model functions.
Chapter 9. Data conversion

In this chapter, we provide information about data conversion for IBM Content Manager OnDemand (Content Manager OnDemand). We describe the reasons for data conversion and describe the interface that Content Manager OnDemand uses to convert data.

In this chapter, we cover the following topics:

- Overview of data conversion
- The generic transform interface
9.1 Overview of data conversion

To work with data conversion, you should understand which data conversions are required, and when and how to convert the data. Perform detailed planning before you build your solution so that you achieve a design that remains efficient for many years to come.

In this section, we describe why there might be a need for data conversion, when to convert the data stream, and how to make the conversion.

9.1.1 Why convert data streams

There are many reasons why you might want to convert data streams:

- Some data streams, such as Hewlett-Packard (HP) Printer Command Language (PCL) or Xerox metacode, are printer-specific and are not displayable. Before archiving or displaying the documents, these data streams must be transformed into a compatible format.

- The archived data stream might have to comply with a company's internal rules or regulations. Therefore, the produced data streams must be transformed into the defined and required final format before archiving.

- The documents might need to be accessible by user from outside the company. The document should be displayable through standard tools that are available on any or at least most of the clients, such as an internet browser or Adobe Acrobat Reader.

- The documents might need to be manipulated so that only part of them are displayed in a personalized way.

9.1.2 When to convert data streams

The decision of when to convert data streams relies mainly on the usage of the system. Typically, converting data at load time requires more time to process the print stream file, and converting data at retrieval time causes the user retrieval to be a little slower. The decision might depend on how many documents are retrieved, compared to how many documents are loaded on a daily basis. It might also depend on legal requirements about the format of stored data.

**AFP to PDF**

If there is a requirement to present AFP documents in the PDF format over the web, from a storage perspective it is more efficient to store the documents in their native format and then convert them to PDF at retrieval time. This is because AFP documents are stored much more efficiently than PDF documents.

The PDF print stream, when it is divided into separate customer statements, is larger than AFP because each individual statement contains its own set of structures that are required by the PDF architecture to define a document.

Elapsed time and processor time are also essential factors in the decision-making process. The amount of time (elapsed and cpu) that is needed to convert the document depends on how large it is and how many resources or fonts are associated with the document.

9.1.3 How to convert the data

Content Manager OnDemand uses the Generic Transform Interface to integrate Content Manager OnDemand with third-party transform solutions.
Here are some considerations for target flows:

- HTML might be used with the same intent, but an HTML document is not always displayed identically depending on the web browser that is used. Additional testing that accounts for your needs and the encountered environments might be necessary for validation before the implementation.

- PDF might be used as a way to make documents available through standard and no-charge tools such as Adobe Acrobat Reader. The transformed documents should be displayable, saveable, and printable the same way regardless of the environment on which the user is working.

- XML is an intermediate text-based data format that allows for the manipulation of documents, regardless of the source data stream, and displays them totally or partially in a personalized way. The usage of XML usually involves additional developments, including scripts and style sheets.

9.2 The generic transform interface

Content Manager OnDemand uses the Generic Transform Interface to manage third-party data transforms for the Content Manager OnDemand Web Enablement Kit (ODWEK) application programming interface (API) set. This interface is used with the document retrieval APIs.

The ODWEK Java API provides industry-standard Java classes that can be used by a customer to write a custom web application that can access data that is stored on the Content Manager OnDemand server. This custom application can, for example, permit the user to log on to a Content Manager OnDemand server, get a list of folders, search a specific folder, generate a hit list of matching documents, and retrieve those documents for viewing. There are also many APIs providing advanced functionalities.

For more information, see the following resources:

- IBM TechDoc Best practices for building Web Applications using IBM Content Manager OnDemand Java APIs, found at:
  https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101203
  This document, which is prepared by the Content Manager OnDemand development team, provides recommendations about how to use the ODWEK Java APIs. Use this document to understand how the ODWEK Java APIs interface with the JVM and Content Manager OnDemand systems to avoid common coding mistakes.

- IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond, SG24-7646
  This publication provides basic and advanced information about how to use ODWEK Java APIs to develop custom applications.

9.2.1 Overview

Before Version 8.5.0.0, the ODWEK Java APIs provided a tight integration with only a few specific transforms: AFP2PDF, AFP2HTML, and AFP2XML. These transform engines were used by ODWEK clients to generate different document types for display purposes. Although this provided invaluable functionality, it meant that new transform engines cannot be readily integrated into ODWEK.

To meet this requirement, a highly flexible interface was added to the ODWEK Java APIs that allows a developer to easily implement a third-party document transform solution.
The new ODWEK Interface allows a client developer to implement an external program to transform a document in one of two ways:

- If the transform vendor provides a basic command-line executable file, it is implemented in an XML interface, which supports retrieving all of the document details that are stored in Content Manager OnDemand, and also allows specific options to be passed to the transform.
- The ODWEK Java APIs also provide a Java interface that a client developer can use to add even more flexibility to their client solution. The Java interface allows a client developer to get the document byte stream from ODWEK, then use any methods that they want to convert the document. This can include calls to web services that allow remote transformation. After the document is transformed, the resulting data can be returned to ODWEK, where it is passed back to the client that made the request.

### 9.2.2 Configuration

To enable the Generic Transform Interface in ODWEK, an XML document must be created and defined in the ODConfig.Properties object. This is identified by the `<ODConfig.TransformXML>` key name and must include the fully qualified path to the XML file where the transforms are defined.

After you configure your XML configuration for the Generic Transform Interface, as described in 9.2.3, “Basic implementation: Executable interface” on page 202, you can enable this functionality in your ODWEK environment, as shown in Example 9-1.

**Example 9-1   Enabling Generic Transform in ODWEK environment**

```java
Properties props = new Properties();
props.setProperty(ODConfig.TRANSFORMS_XML, "transform.xml"); /*Fully qualified path to XML file containing transform details.*/
ODConfig odConfig = new ODConfig(ODConstant.PLUGIN, //AfpViewer
ODConstant.APPLET, //LineViewer
null, //MetaViewer
10, //MaxHits
"", //AppletDir
"ENU", //Language
null, //TempDir
"c:\tracedir", //TraceDir
4, //TraceLevel
props); //Additional properties
```

### 9.2.3 Basic implementation: Executable interface

The basic implementation of the Generic Transform interface involves an XML configuration to define a transform to ODWEK that uses the command-line (`cmdline`) executable functionality. With this configuration, you can request details that Content Manager OnDemand stored for the document to be passed in the specified `cmdline` options and also pass through transform-specific options, as specified in the `ODTransform.xml` file.

Example 9-2 on page 203 shows a sample of the `ODTransform.xml` file that can be used in this implementation.
Example 9-2  ODTransform.xml sample

```xml
<Transforms>
  <transform>
    <TransformName>MyTXFRM_EXE</TransformName>
    <TransformDescription>Transform Cmdline Executable</TransformDescription>
    <OutputMimeType>application/pdf</OutputMimeType>
    <OutputExtension>pdf</OutputExtension>
    <CmdParms>
      <RECORDLENGTH>-lm</RECORDLENGTH>
      <CARRIAGECONTROL>-x</CARRIAGECONTROL>
      <CODEPAGE>-a</CODEPAGE>
      <OUTPUTFILE>-o</OUTPUTFILE>
    </CmdParms>
    <CmdLineExe>c://opt//txfrm.exe</CmdLineExe>
    <Passthru>
      <!-- Use tag cmdlineparm to declare additional cmdline variables that the transform
           might require -->
      <Cmdlineparm>-r PDF</Cmdlineparm>
    </Passthru>
  </transform>
</Transforms>
```

In this example, you can see that we defined a transform named `MyTXFRM_EXE`, which calls the transform command `txfrm.exe`, which is defined in the `<CmdLineExe>` tag.

The `<TransformName>` is used as the viewer name when calling the ODWEK Retrieve APIs. From this configuration, ODWEK knows that the transform requires `RECORDLENGTH`, `CARRIAGECONTROL`, `CODEPAGE`, and `OUTPUTFILE` information from Content Manager OnDemand, and can set it on the `cmdline` by using the options that are specified in each related XML tag.

Also, the `txfrm.exe` requires some additional information to be passed along on the `cmdline` as well. The `-r` that is specified in `<Cmdlineparm>` tag has no meaning to Content Manager OnDemand, so it is passed through and set on the `cmdline` call to the `txfrm.exe`.

In the custom Java code, the call to retrieve the data from ODWEK includes the `<TransformName>` specified in the XML and look like the following line:

```java
"byte[] transformedDocument = ODHit.retrieve("MyTXFRM_EXE");
```

From this example definition, ODWEK calls the specified transform with the following `cmdline` executable file. Details for the items within "< >" are provided by ODWEK from the Content Manager OnDemand data definitions.

```
c:/opt/txfrm.exe -lm <record len> -x <carriage control> -a <codepage> -o <output file name> -r PDF
```

9.2.4 V9.5 Enhancement: Customizing values returned from ODWEK

For some transforms, values returned from ODWEK might not be consistent with the command line values expected by the transform. For example, a transform might have a fixed set of options to specify a carriage control type. The values returned by ODWEK when the `<CARRIAGECONTROL>` tag is included in the `<CmdParms>` are 'A' (ANSI), 'M' (Machine), and 'N' (None). Recall that the command produced by the XML in Example 9-1 on page 202 is

```
c:/opt/txfrm.exe -lm 133 -x A -a 500 -o <outputfilename> -r PDF <datafilename>
```

Because the `<CARRIAGECONTROL>` tag is present, ODWEK returns the document's corresponding value - "-x A", or "-x M", or "-x N" depending on the CC Type defined in this document's Application definition. If the transform defines a different set of acceptable values,
for example 2, 4, and 0, to specify the document's carriage control, mapping those values can be accomplished by substituting the following XML as shown in Figure 9-1.

```xml
<Transforms>
  <transform>
    <TransformName>MyTXFRM_EXE</TransformName>
    <TransformDescription>Transform Cmdline Executable</TransformDescription>
    <CFileExt>L</CFileExt>
    <OutputMimeType>application/pdf</OutputMimeType>
    <OutputExtension>pdf</OutputExtension>
    <CmdParms>
      <RECORDLENGTH>-1m</RECORDLENGTH>
      <CCANSI>-x 2</CCANSI>
      <CCMACHINE>-x 4</CCMACHINE>
      <CCNONE>-x 0</CCNONE>
      <CODEPAGE>-a</CODEPAGE>
      <OUTPUTFILE>-o</OUTPUTFILE>
    </CmdParms>
    <CmdLineExe>c:\opt\txfrm.exe</CmdLineExe>
    <Pass thru>
      <!-- Use tag cmdlineparm to declare additional cmdline variables that the tran
      might require -->
      <cmdlineparm>-r PDF</cmdlineparm>
    </Pass thru>
  </transform>
</Transforms>
```

Figure 9-1  Sample XML with Custom Options

Note that the <CARRIAGECONTROL> node was replaced by three values. When the CC Type returned by ODWEK matches ANSI, rather than an 'A', the command includes "-x 2".

This type of substitution can be used to specify the RECFM (Record Format), PRMode, TRC, and CC Type.

### 9.2.5 V9.5 Enhancement: Application Group and Application specific XML

In version 9.5.0.2, ODWEK now provides additional options under the <transform> node that allow the transform command parameters to be generated based on an Application Group or Application Group and Application pair.

Figure 9-2 on page 205 shows a sample transform.xml that can be used in this implementation.
Figure 9-2  Sample XML with <ApplicationGroup><Application> tags

Figure 9-3 shows the transform command that are generated based on the sample XML and Application Group and Application of the document being retrieved.

<table>
<thead>
<tr>
<th>Doc's AG</th>
<th>Doc's Appl</th>
<th>XML Match for AG</th>
<th>XML Match for Appl</th>
<th>Command generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>FinancialReports</td>
<td>Ledgers</td>
<td>Yes</td>
<td>No</td>
<td>c:/opt/bfrm.exe -x A -c 850 -o &lt;outputfilename&gt; -h 612 \w 1008 &lt;datafilenames&gt;</td>
</tr>
<tr>
<td>SalesReports</td>
<td>Forecasts</td>
<td>Yes</td>
<td>Yes</td>
<td>c:/opt/bfrm.exe -x N -c 500 -t 1 -o &lt;outputfilename&gt; -h 1008 -w 612 &lt;datafilenames&gt;</td>
</tr>
<tr>
<td>SalesReports</td>
<td>WeeklySummaries</td>
<td>Yes</td>
<td>No</td>
<td>c:/opt/bfrm.exe -x A -c 500 -o &lt;outputfilename&gt; &lt;datafilenames&gt;</td>
</tr>
<tr>
<td>Accounting</td>
<td>Payables</td>
<td>No</td>
<td>No</td>
<td>c:/opt/bfrm.exe -im 133 -x M -a 500 -o &lt;outputfilename&gt; &lt;PDF &lt;datafilenames&gt;</td>
</tr>
</tbody>
</table>

Figure 9-3  Table of Generated Commands
The advanced implementation of the Generic Transform Interface allows client developers to write a Java interface to ODWEK that can handle the transform requests in a programmatic way, allowing for the most application flexibility. Developers can create a class and implement the `transformData()` method to accept document data and details from Content Manager OnDemand and transform the data in any way they see fit.

Example 9-3 shows a sample of the `ODTransform.xml` files that can be used in this implementation.

**Example 9-3   Sample ODTransform.xml file**

```xml
<Transforms>
  <transform>
    <TransformName>MYTXFRM</TransformName>
    <TransformDescription>GENERIC Transform Engine.</TransformDescription>
    <ClientClass>com.companyA.corp.TransformClient</ClientClass>
    <OutputMimeType>application/pdf</OutputMimeType>
    <OutputExtension>pdf</OutputExtension>
    <CmdParms>
      <AG_NAME>agName</AG_NAME>
      <APPL_NAME>applName</APPL_NAME>
      <RECORDFORMAT>recfmt</RECORDFORMAT>
      <RECORDLENGTH>LineLength</RECORDLENGTH>
      <CARRIAGECONTROL>CC</CARRIAGECONTROL>
      <CODEPAGE>CodePage</CODEPAGE>
    </CmdParms>
  </transform>
</Transforms>
```

As with the basic implementation, this XML stanza allows the developer to set up which details are required for document transformation and how those details are passed to the Java transform interface. Example 9-4 shows an example of how the Java interface can be used with the XML stanza to make a document transform request. The example is a code snippet of how the Client Class that is defined in Example 9-3 might be written to transform data.

**Example 9-4   Client Class code snippet for transform data**

```java
//*******************************************************************
// Testcase:  CustomTransform
//
// This class tests the ODWEK Generic Transform's Custom Java Interface by implementing the required transformData method.
//
// transformData is called by ODWEK when its corresponding custom viewer is called via ODHit.retrieve.
//*******************************************************************
```

**Note:** Inheritance is not supported. If an `<ApplicationGroup>` node is matched then only those options within that node are used for the transform, no parameters found for a parent transform node are used. Similarly, if an `<Application>` node is matched within an `<ApplicationGroup>` node, only those options are used for the transform, nothing from the `<ApplicationGroup>` node is used.

### 9.2.6 Advanced implementation: Custom Java interface

The advanced implementation of the Generic Transform Interface allows client developers to write a Java interface to ODWEK that can handle the transform requests in a programmatic way, allowing for the most application flexibility. Developers can create a class and implement the `transformData()` method to accept document data and details from Content Manager OnDemand and transform the data in any way they see fit.

Example 9-3 shows a sample of the `ODTransform.xml` files that can be used in this implementation.

**Example 9-3   Sample ODTransform.xml file**

```xml
<Transforms>
  <transform>
    <TransformName>MYTXFRM</TransformName>
    <TransformDescription>GENERIC Transform Engine.</TransformDescription>
    <ClientClass>com.companyA.corp.TransformClient</ClientClass>
    <OutputMimeType>application/pdf</OutputMimeType>
    <OutputExtension>pdf</OutputExtension>
    <CmdParms>
      <AG_NAME>agName</AG_NAME>
      <APPL_NAME>applName</APPL_NAME>
      <RECORDFORMAT>recfmt</RECORDFORMAT>
      <RECORDLENGTH>LineLength</RECORDLENGTH>
      <CARRIAGECONTROL>CC</CARRIAGECONTROL>
      <CODEPAGE>CodePage</CODEPAGE>
    </CmdParms>
  </transform>
</Transforms>
```

As with the basic implementation, this XML stanza allows the developer to set up which details are required for document transformation and how those details are passed to the Java transform interface. Example 9-4 shows an example of how the Java interface can be used with the XML stanza to make a document transform request. The example is a code snippet of how the Client Class that is defined in Example 9-3 might be written to transform data.

**Example 9-4   Client Class code snippet for transform data**

```java
//*******************************************************************
// Testcase:  CustomTransform
//
// This class tests the ODWEK Generic Transform's Custom Java Interface by implementing the required transformData method.
//
// transformData is called by ODWEK when its corresponding custom viewer is called via ODHit.retrieve.
//*******************************************************************
```
import java.util.*;
import com.ibm.edms.od.*;

public class CustomTransform {
    public static HashMap transformData(HashMap odMap) throws Exception {
        System.out.println("Inside transformData method");
        // List this transform name from the XML file
        System.out.println("  Transform name: " +
            (String)odMap.get(ODTransform.TXFRM_REQ_NAME));

        // List the property keys and values ODWEK read from the transform XML
        // file and provided to this Custom Class
        System.out.println("  Transform properties:");
        Properties gtProps = (Properties)odMap.get(ODTransform.TXFRM_REQ_PROPS);
        Enumeration<?> enumeration = gtProps.keys();
        List<String> list = new ArrayList<String>();
        while (enumeration.hasMoreElements()) {
            list.add((String)enumeration.nextElement());
        }
        Collections.sort(list);
        for (String key : list)
            System.out.println(String.format("%25s = %-25s", key,
                gtProps.getProperty(key)));

        // Retrieve the native document from ODWEK
        byte[] inDoc = (byte [])odMap.get(ODTransform.TXFRM_REQ_DATA);
        System.out.println("  Native document size: " + (inDoc == null ? null:
            inDoc.length));

        // Retrieve the document resources from ODWEK
        byte[] inRes = (byte [])odMap.get(ODTransform.TXFRM_REQ_RES);
        System.out.println("  Native doc resource size: " + (inRes == null ? null:
            inRes.length));

        // Normally this is where you do the transform or do something with the
        // byte data.
        // Let's just concat the resources if there are any to the doc
        byte[] transformedDoc;
        if (inRes != null) {
            transformedDoc = new byte[inRes.length + inDoc.length];
            System.arraycopy(inRes, 0, transformedDoc, 0, inRes.length);
            System.arraycopy(inDoc, 0, transformedDoc, inRes.length,
                inDoc.length);
        } else
            transformedDoc = inDoc;
        System.out.println("  Concatenated resources to doc size: " +
            transformedDoc.length);

        // Send the transformed data back to ODWEK
        HashMap rtnMap = new HashMap();
        rtnMap.put(ODTransform.TXFRM_RESP_DATA, transformedDoc);
        return rtnMap;
    }
}

Example 9-4 on page 206 shows how to set up the HashMap to pass document byte arrays in
and out of this custom interface, and how to define a custom Java class that contains the
transformData() method. This code retrieves the raw document data from ODWEK, gathers
all the document details that Content Manager OnDemand might have stored from the
loading of the data, and then transforms the document data. The transformed document data
can be passed back through ODWEK to the original client request.

Table 9-1 lists the XmlTagNames for the transformation specification.

Table 9-1 (XmlTag names for the transform specification)

<table>
<thead>
<tr>
<th>XmlTagName</th>
<th>ODConstant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransformName</td>
<td>TransformName</td>
<td>Name of the transform. It is used as the viewer argument that is passed to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODWEK Retrieve APIs.</td>
</tr>
<tr>
<td>TransformDescription</td>
<td>TRANSFORM_DESC</td>
<td>Description of the transform.</td>
</tr>
<tr>
<td>ClientClass</td>
<td>TRANSFORM_CLIENTCLASS</td>
<td>The class name of the custom interface class.</td>
</tr>
<tr>
<td>CmdLineExe</td>
<td>TRANSFORM_CMDLINEEXE</td>
<td>Fully qualified name of the transform executable file.</td>
</tr>
<tr>
<td>OutputMimeType</td>
<td>TRANSFORM_MIMETYPE</td>
<td>The MIME type of the data as it is returned from the transform.</td>
</tr>
<tr>
<td>OutputExtension</td>
<td>TRANSFORM_OUTPUTEXT</td>
<td>The extension of the data that is returned from the transform.</td>
</tr>
<tr>
<td>CmdParms</td>
<td>TRANSFORM_PARMS</td>
<td>These are the mappings of OD Values to custom variables. See the constant key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>words shown in Table 9-2 on page 208.</td>
</tr>
<tr>
<td>Passthru</td>
<td>TRANSFORM_PASSTHRU</td>
<td>These values are passed through ODWEK directly to the transform.</td>
</tr>
<tr>
<td>CmdLineparm</td>
<td>TRANSFORM_PASSTHRU_CMDLINE</td>
<td>These values are passed through ODWEK directly to the transform command line.</td>
</tr>
</tbody>
</table>

Table 9-2 on page 208 provides information about the XMLTags. These XML tags are used to
pass specific values to the transform command line, and allows for mapping of the
command-line option where the specified value can be passed.

Table 9-2  (XmlTags detail information)

<table>
<thead>
<tr>
<th>XmlTagName</th>
<th>ODConstant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORDFORMAT</td>
<td>DOCUMENT_RECORD_FORMAT</td>
<td>The record format of the document as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>RECORDLENGTH</td>
<td>DOCUMENT_RECORD_LENGTH</td>
<td>The record length of the document as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>CARRIAGECONTROL</td>
<td>DOCUMENT_CARRIAGE_CONTROL</td>
<td>The carriage control of the document as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>TRC_EXIST</td>
<td>DOCUMENT_TRC_EXIST</td>
<td>The TRC settings as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>DOCROTATION</td>
<td>DOCUMENT_ROTATION</td>
<td>The rotation of the document as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>AG_NAME</td>
<td>AGNAME</td>
<td>The Content Manager OnDemand application group where the document is stored.</td>
</tr>
<tr>
<td>XmlTagname</td>
<td>ODConstant</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>APPL_NAME</td>
<td>APPLNAME</td>
<td>The OnDemand application where the document is stored.</td>
</tr>
<tr>
<td>CODEPAGE</td>
<td>DOCUMENT_CODEPAGE</td>
<td>The code page of the document as stored in OnDemand.</td>
</tr>
<tr>
<td>LINEDELIMITER</td>
<td>DOCUMENT_LINE_DELIMITER</td>
<td>The line delimiter of the document as stored in OnDemand.</td>
</tr>
<tr>
<td>INPUTFILE</td>
<td>TXFRM_INPUT_FILE</td>
<td>The Inputfile parameter to be used by the transform.</td>
</tr>
<tr>
<td>OUTPUTFILE</td>
<td>TXFRM_OUTPUT_FILE</td>
<td>The OutputFile parameter that is used by the transform.</td>
</tr>
<tr>
<td>DOCUMENT_CC_ANSI</td>
<td>DOCUMENT_CC_ANSI</td>
<td>Used instead of &lt;CARRIAGECONTROL&gt; to define the command line option and value when the document's CC Type is “ANSI” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>DOCUMENT_CC_MACHINE</td>
<td>DOCUMENT_CC_MACHINE</td>
<td>Used instead of &lt;CARRIAGECONTROL&gt; to define the command line option and value when the document's CC Type is 'Machine' as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>DOCUMENT_CC_NONE</td>
<td>DOCUMENT_CC_NONE</td>
<td>Used instead of &lt;CARRIAGECONTROL&gt; to define the command line option and value when the document's CC is “No” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>RECORDFORMATFIXED</td>
<td>DOCUMENT_RECORDFORMAT_FIXED</td>
<td>Used instead of &lt;RECORDFORMAT&gt; to define the command line option and value when the document's RECFM is “Fixed” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>RECORDFORMATVARIA</td>
<td>DOCUMENT_RECORDFORMAT_VARIABLE</td>
<td>Used instead of &lt;RECORDFORMAT&gt; to define the command line option and value when the document's RECFM is “Variable” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>RECORDFORMATSTREAM</td>
<td>DOCUMENT_RECORDFORMAT_STREAM</td>
<td>Used instead of &lt;RECORDFORMAT&gt; to define the command line option and value when the document's RECFM is “Stream” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>PRMODENONE</td>
<td>DOCUMENT_PRMODENONE</td>
<td>Used instead of &lt;PRMODE&gt; to define the command line option and value when the document's PRMode is “None” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>PRMODESOSI1</td>
<td>DOCUMENT_PRMODESOSI1</td>
<td>Used instead of &lt;PRMODE&gt; to define the command line option and value when the document's PRMode is “SOSI1” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>PRMODESOSI2</td>
<td>DOCUMENT_PRMODESOSI2</td>
<td>Used instead of &lt;PRMODE&gt; to define the command line option and value when the document's PRMode is “SOSI2” as stored in Content Manager OnDemand.</td>
</tr>
</tbody>
</table>
Table 9-3 on page 210 provides information about the OnDemand client hashmap keys that are used for advanced Java implementation.

**Table 9-3  OnDemand client hashmap key and descriptions**

<table>
<thead>
<tr>
<th>XmlTagname</th>
<th>ODConstant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRC_YES</td>
<td>DOCUMENT_TRCYES</td>
<td>Used instead of &lt;TRC_EXISTS&gt; to define the command line option and value when the document's TRC is “Yes” as stored in Content Manager OnDemand.</td>
</tr>
<tr>
<td>TRC_NO</td>
<td>DOCUMENT_TRCNO</td>
<td>Used instead of &lt;TRC_EXISTS&gt; to define the command line option and value when the document's TRC is “No” as stored in Content Manager OnDemand.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hashmap key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXFRM_RESP_DATA</td>
<td>This is the Hashmap key for the transformed data byte[] to be returned to ODWEK.</td>
</tr>
<tr>
<td>TXFRM_REQ_NAME</td>
<td>Name of transform for this request.</td>
</tr>
<tr>
<td>TXFRM_REQ_METHOD</td>
<td>The method name that is used in the custom Java class. The transformData() method must exist in the client class.</td>
</tr>
<tr>
<td>TXFRM_REQ_DATA</td>
<td>The original Content Manager OnDemand Document data that is contained in this request.</td>
</tr>
<tr>
<td>TXFRM_REQ_PROPS</td>
<td>The document details as specified or requested in the transform.xml file.</td>
</tr>
</tbody>
</table>
 Migration and expiring data and indexes

IBM Content Manager OnDemand (Content Manager OnDemand) provides multiple methodologies for expiring report data (documents) and their indexes. In this chapter, we describe the overall lifecycle of report data, including loading, storage, migration, and expiration.

In this chapter, we cover the following topics:

- Introduction
- Loading and storing the data
- Configuring for migration and expiration
- Reloading data
- Expiration processing on Multiplatforms and z/OS
- Expiring data on OnDemand for i
10.1 Introduction

For the purposes of this chapter, unless explicitly stated otherwise, the term “data” is used to refer to the report data, the extracted documents or segments, and their related indexes and the extracted resources.

A Content Manager OnDemand system logically stores data in application groups. An application group is defined by the Content Manager OnDemand administrator and consists of data that has the same indexing, data storage, and expiration requirements. The application group definition also specifies where the report and document data is stored, for how long the data is stored, and how the data expires. The method or methods that can be used to expire the data are a function of the application group parameters that are defined before the data is loaded into Content Manager OnDemand. In a Content Manager OnDemand system, data typically goes through a lifecycle of loading, storing, migration, and an expiration process.

10.2 Loading and storing the data

The Content Manager OnDemand architecture allows for control and management of the data throughout its lifecycle. The data lifecycle begins with the running of an efficient load process. Each load process invocation ingests report data for a specified application group.

During a load process, Content Manager OnDemand stores report (document) data, its resources, and index data, as shown in Figure 10-1.

The Content Manager OnDemand load process identifies, segments, and compresses groups of documents into storage objects that are then stored in the Content Manager OnDemand archive, as illustrated in Figure 10-1 on page 212. To improve the efficiency of the storage process, Content Manager OnDemand aggregates the stored documents (typically a few kilobytes in size) into storage objects. This aggregation provides efficient, high-volume storage, retrieval, and expiration performance.

The object size is defined by clicking Advanced on the Storage Manager tab of the Application Group window. This is the size of a storage object in kilobytes (KB). By default, Content Manager OnDemand segments and compresses report data into 10 MB storage objects. For most use cases, the default value is appropriate. Valid values are 1 KB - 150 MB.
The storage objects are stored in **storage sets**. The storage sets contain one or more primary **storage nodes**. The storage node points to the location where the data is stored. This can be cache, the storage manager (Tivoli Storage Manager, OAM, or ASM), or some combination of both.

The primary storage nodes can be on one or more object servers. When the Load Type is Local, Content Manager OnDemand loads data on the server on which the data loading program runs in the primary storage node that has the Load Data property specified. If the Load Type is Local, and the storage set contains primary nodes on different object servers, then you must select the **Load Data** check box for one primary node on each object server.

The storage set must support the number of days that you plan to maintain reports in the application group. For example, if you must maintain reports in archive storage for seven years, then the storage set must identify a storage node (or migration policy on an IBM i server) that is maintained by the archive storage manager for seven years.

A detailed description of adding storage sets and storage nodes can be found in Chapter 5, “Storage management” on page 89 and the OnDemand Administrative Guide.

### 10.2.1 Storing the report (document) data

To improve efficiency and scalability, stored documents are embedded within storage objects. The storage objects are then stored in cache or a storage manager (OAM, Tivoli Storage Manager, or ASM). The storage objects are eventually expired from the system based on values that are defined by the Content Manager OnDemand administrator. In this section, we describe each scenario and how it is implemented. The parameters that are described in this section are located on the Storage Manager tab of the Application Group window unless specified otherwise.

There are three different sets of data that are stored when you load a report:

- Index data (extracted by the indexing program and used by the search process).
- Resources (such as overlay and fonts, used to customize the viewed data).
- Documents (or report segments) that will be viewed.

Figure 10-2 shows these data sets and illustrates four scenarios of their storage and expiration.

---

**Object size value:** Exercise caution when you change the object size value. Specifying too large or too small a value can adversely affect performance when loading data.
Figure 10-2 Data, resources, and indexes storage and expiration scenarios

Scenario 1: Cache only, then expiration
In this scenario, the storage object is stored to cache only and it is expired from cache after a predetermined period. Typically, this methodology is employed under the following circumstances:

- The life of the data is short and there is no need for hierarchical storage management.
- The life of the data is long and there is a backup process for the data in cache.
- The cache device is large enough to hold the totality of the archived data, and it is reliable and performs well.

This method is enabled by selecting a cache-only storage set and entering a number in the Cache Data for __ Days field.

When you select a cache-only storage set, Content Manager OnDemand automatically sets Migrate Data from Cache to No and sets the Expire in __ Days field to the same value as the Cache Data for __ Days field. (The default value is 90 days.)

Selecting a cache-only storage set requires the creation of backup and data management systems that are external to the Content Manager OnDemand system.

Cache-only storage: If the storage set contains cache-only storage nodes, ensure that the Cache Data value and the Life of Data and Indexes value are the same. Otherwise, the add or update operation cannot be completed.

Scenario 2: Cache, then migration to storage, and then expiration
In this scenario, the storage object is first stored to cache for a short time period, after which it is migrated to a storage manager for long-term storage. Typically, this methodology is employed under the following circumstances:

- Most of the data access occurs during the initial time period. After that time period, the data is infrequently accessed, if ever. So, after this initial time period, the data is migrated to the storage manager.
There is a performance advantage to retrieving the data from cache versus retrieving it from the storage manager (which can occur if the storage manager is on a device that is separate from the Content Manager OnDemand object server, or the storage manager is local but the storage device is relatively slow, such as tape or an optical disk).

**Migrating data from cache**
This function, which can be accessed by clicking Advanced on the Storage Manager tab of the Application Group window, determines how long the data is kept in cache before it is migrated to archive storage (on a potentially slower archive storage device).

The data should be kept on a high performance storage device for the period during which it is frequently retrieved. The storage set must support the type of media that is required to hold reports that are stored in the application group. For example, if you must maintain reports in cache storage for 90 days and in archive storage for seven years, then the storage set must identify a storage node (or migration policy) that causes the archive storage manager to maintain the data for seven years, and you must select **Cache Data for ___ Days** and enter 90 in its field.

From a user perspective, there is no procedural difference in retrieving the data from either cache or archive storage. The only user-perceivable difference is the response time. Various archive storage mechanisms provide different performance profiles. For example, when you use OAM and the data is stored in DB2 tables on disk, the response time is as fast as the cache response time. The main difference in response time is based on the type of disk that is used by either method. Conversely, if the OAM data is stored on optical disks or tape, then the response time is increased dramatically. If you use a network-attached Tivoli Storage Manager server, then the retrieval rates (throughput and response times) are governed by the Tivoli Storage Manager device and the TCP/IP connection to that device.

Typically in a z/OS environment, data is not stored in cache. Content Manager OnDemand for z/OS customers typically use OAM as their storage manager. OAM supports storing the data directly in DB2 where the storing and retrieval rates are exceptionally fast, which eliminates the need to maintain and monitor cache file systems in the zSeries File System (zFS) or the Hierarchical File System (HFS).

### Scenario 3: Storage manager only, then expiration
The storage object is stored directly to the storage manager. Typically, this methodology is employed under the following circumstances:

- The performance of the storage manager equals the performance of the local file system, which implies that the storage manager is storing data to a relatively fast device, such as local disk.
- Hierarchical storage management is beneficial. An example is z/OS systems where storing directly to OAM is the most popular solution.

If you do not need to maintain reports in cache storage, then select a storage set that identifies a storage node (or migration policy) that is maintained by the archive storage manager and set Cache Data to No. Content Manager OnDemand automatically sets Migrate Data from Cache to When Data is Loaded.

### Scenario 4: Both cache and storage manager, then expiration
The storage object is stored directly to both cache and the storage manager. After a short time period, the data is expired from cache. Then, after a much longer time period, the data is expired from the storage manager. Typically, this methodology is used under the following circumstances:

- The cache file system allows for more efficient data retrieval.
There is a need to keep the data for a longer period.
- The hierarchical storage management (or other features) of the storage manager are required.

The Cache data field determines whether Content Manager OnDemand stores data in cache storage. If the storage set is a Cache only storage set, then Yes is the only selection. If the storage set is an archive manager-controlled storage set (OAM, Tivoli Storage Manager, or ASM), then you have the option of additionally storing the data in cache.

**Note:** Whether the data is stored in cache or in a storage manager, the main performance differences are a result of the following items:
- The hardware speed (and I/O channels and interfaces) on which the data is stored
- The location of the hardware device with respect to the object server.

If the hardware device is connected over a TCP/IP link, then that link can possibly form a bottleneck depending on the link's throughput and the data retrieval rate that is required.

### 10.2.2 Storing the index data

The Content Manager OnDemand load process extracts document indexes from the report data and stores the indexes in the Content Manager OnDemand database application group data tables. These indexes allow users to efficiently locate, select, and retrieve documents. Typically, indexes are expired when the document data is expired.

Each application group is segmented into multiple physical tables by using a date or date and time field. The size of each physical table is determined by the max rows setting. Each row in the table contains a set of user-defined and system-defined indexes that enable the search for a report segment or a document. Index data is loaded into a table. When the max rows value is reached, the table is closed and a new table is created. The number of physical tables that represent an application group might grow from 1 to n.

### 10.2.3 Storing the resource data

If caching of data is enabled, Content Manager OnDemand stores resources in the cache. There are two locations on the storage management tab that affect how resources are stored:

- Resource Data
- Document Data

**Resource Data**

For resource data the selections are:

- **Always Maintain in Cache,** in which case the resource data stays in cache forever, and does not expire.
- **Cache Resource Data for xxx Days,** in which case the resource data stays in cache for xxx number of days before the data expires.
- **Restore Resources to Cache,** in which case if the resource data is not in cache and there is a request for the resource data the resources are restored to cache from the storage manager.

The **ARSLOAD** program saves one copy of a resource on each node for each application group. The resource can be stored multiple times, depending on how the **ARSLOAD** program compares.
the data. **ARSLOAD** compares the last 50 resources against the resource that is generated by the load. If a match is not found, then a new resource is stored.

When it processes a resource group file, the **ARSLOAD** program checks the resource identifier to determine whether the resource is present on the system.

If the storage node identifies a client node in OAM or VSAM, then the storage manager copies the resources to archive storage.

**Document Data**
For document data, the selections are:

- **Yes** for Cache Data, then you can cache document data and resource data or resource data only.
- **No Cache**, then document data is not stored in cache.
- **Cache Document Data for xxx Days**, then document data is stored in cache for xxx number of days before the data expires.

### 10.3 Configuring for migration and expiration

Many customers choose to expire their document data and indexes somewhere in the 5 - 10 year range. In one extreme, document and index data might be expired on a daily basis, while in another extreme, document and index data might never be expired. There are four typical lifecycle scenarios. The Content Manager OnDemand administrator selects which of these scenarios is implemented through various parameters (as shown in this section), which can be found in Storage Management tab of the Application Group window. These four scenarios are illustrated in Figure 10-2 on page 214.

#### 10.3.1 Migrating index data

Index migration is the process by which Content Manager OnDemand moves index data from the database to archive storage. Index migration optimizes database storage space while allowing you to maintain index data for a long time period. You typically migrate index data only after users no longer need to access the reports, but, for legal or other requirements, you still must maintain the data for a number of months or years. If a user queries the index data that was migrated, then an administrator must act to import a copy of the migrated table or tables by running **ARSADMIN** (Multiplatforms or z/OS) or **Start Import into Content Manager OnDemand** (**STRIMPOND**) on IBM i. After maintaining the imported index data in the database for the number of days that is specified in the Keep Imported Migrated Indexes field, Content Manager OnDemand deletes the data from the database.

**Migration of indexes**
This configuration is set up by clicking **Advanced** on the Storage Manager tab of the Application Group window.

This field determines when Content Manager OnDemand migrates index data to archive storage. Choose from **No Migration** or **Migrate After ___ Days**. As a best practice, do not migrate indexes to archive storage. Indexes that are migrated cannot be searched until after they are imported by an administrator. This capability should be used only under limited circumstances.
The index data should be migrated only after users no longer need to access the data. If a user must access data in the migrated tables, then the process of importing the data into the database requires administrator intervention, and usually results in a significant delay in completing the query. Additional space is required in the database and in temporary storage areas to import the data.

To enable migration of index data, you must define a storage set that identifies a storage node that is maintained by the archive storage manager and update the System Migration application group to use the storage set.

### 10.3.2 Expiring data and indexes

In all four of the storage and expiration scenarios, the index data is stored in the Content Manager OnDemand database in Application Group data tables. Typically, these indexes are expired when the document data is expired from the system.

#### Life of data and indexes

This field determines when Content Manager OnDemand deletes documents, resources, and index data from the application group.

Here are the available options:

- **Never Expires**: Content Manager OnDemand maintains application group data indefinitely.
- **Expires in ____ Days**: After reaching this threshold, Content Manager OnDemand can delete data from the application group the next time that ARSMAINT (with Content Manager OnDemand for Multiplatforms or z/OS) or Disk Storage Management (DSM, with IBM i) is run. The default value is 2555 (seven years). The maximum value that you can use is 99999 (273 years).

**Note**: If you plan to maintain application group data in archive storage, then the length of time that the archive storage manager maintains the data must be equal to or exceed the value that you specify for the Life of Data and Indexes field.

Life of Data and Indexes can be used only if ARSMAINT (with Multiplatforms or z/OS) or Disk Storage Management (DSM, with IBM i) is handling the expiration.
10.3.3 Expiring document data

Document data expiration is affected by the document expiration type.

Expiration type
The document expiration type determines how data is deleted from the application group. The expiration type option is on the Storage Management tab of the Application Group window.

There are four different expiration types:
- Load
- Storage Manager
- Segment
- Document

Expiration type: Load
When the expiration type is set to Load, the system deletes an input file (a load) from the application group. Load is the default expiration type. The latest date value from the input file and the Life of Data and Indexes field determines when the data is eligible to be deleted.

Note: The application group must have an expiration type of Load if any of the following circumstances are true:
- You are or plan to use the Enhanced Retention Management feature.
- You are or plan to use the full text search feature.
- You are or plan to integrate with the FileNet platform.

For those that have expiration types of Document, Segment, or Storage Manager, utilities exist to convert such application groups to Load.

Consider engaging IBM Lab Services to provide these services.

With Content Manager OnDemand for Multiplatforms or z/OS, when the expiration type is set to Load, if your object server is on z/OS, and your storage manager is OAM, you can allow OAM to handle the data expiration and Content Manager OnDemand to handle the index expiration by using ARSEXOAM.

With Content Manager OnDemand for i, when the expiration type is set to Load, you can still allow Archive Storage Manager (ASM) to handle the data and index expiration by creating an expiration level in the migration policy.

Expiration type: Storage Manager (z/OS)
The storage manager (OAM, or VSAM) determines when data is deleted from the system. Storage Manager expiration works with either the ARSEXPIR or the ARSEXOAM program. For more information about how to configure the system to use the ARSEXPIR and ARSEXOAM programs, see the IBM Content Manager OnDemand for z/OS Administration Guide, found at:


Storage Manager expiration is supported only on Content Manager OnDemand for z/OS systems.
Expiration type: Segment
The system deletes a segment (table) of data from the application group. The system can delete a segment of data only after the segment is closed and every record in the segment reaches its expiration date:

With Multiple Loads per Database Table enabled, the system uses the maximum number of rows to determine when to close a table. A segment likely contains the data from more than one input file. If the maximum rows setting is too large, the segment is not expired until all the documents in the table reach their expiration date. If the maximum rows setting is too small, then segments are created constantly and potentially deleted (based on the expiration date). This large number of tables imposes a performance impact during search query time and expiration time.

The system derives the expiration date from the Segment field (or the date that the data was loaded, if there is no Segment field) and the Life of Data and Indexes field. If the Segment field contains a date in the MMYY format, data is eligible to be deleted on the first day of the month (MM).

To specify the Segment field, complete the following steps:
1. Click the Field Information tab.
2. Select a date or date and time field.
3. Select the Segment check box.

Expiration type: Document
When the expiration type is set to Document, the system deletes a document from the application group. To determine when to delete a document, the system uses the value of the Expire Date field and the Life of Data and Indexes field. If the Expire Date field contains only the month and year (MMYY format), the system deletes documents on the first day of the month (MM).

To specify the Expire Date field, complete the following fields:
1. Click the Field Information tab.
2. Select a date or date and time field.
3. Select the Expire Date check box.

Performance note: Individual document deletion is the most costly in terms of processor consumption and run time.

10.3.4 Expiring annotations
Annotations for all application groups are kept in a single application group data table, which allows for the expiration of annotations to be controlled at a system-wide level. The Life Of Annotations field setup is on the System Parameters General tab. Annotations can be set to never expire or to expire after N days. After the number of days (N) passes and ARSMAINT is run, Content Manager OnDemand removes the annotation.

10.4 Reloading data
If you are migrating data by unloading and then reloading the data, then you should consider what you want your future expiration policy to be.
Reloading to change the expiration type

For example, if your current expiration policy is set to Storage Manager but at some point you want to perform holds on the data, then during the migration process (when creating the application group and before loading any data), change your expiration policy from Storage Manager to Load.

When you use the Enhanced Retention Management feature with Content Manager OnDemand or IBM Enterprise Records (formerly IBM FileNet Records Manager), Content Manager OnDemand must be in complete control of expiration processing. Therefore, if you are using Tivoli Storage Manager or OAM, you must disable the ability for either of these storage managers to expire data. Also, it is only possible to use Enhanced Retention Management and Content Federation Services for Content Manager OnDemand with application groups that have an expiration type of Load. For those application groups that have expiration types of Document, Segment, or Storage Manager, utilities exist to convert such application groups to Load.

Consider engaging IBM Lab Services to provide these services.

Reloading ad hoc stored documents

If you choose not to take advantage of the ability of Content Manager OnDemand to aggregate documents but instead you choose to load documents ad hoc by using the storeDocument Java API, StoreDoc OLE API, or CommonStore, you must migrate the data later.

If you choose not to take advantage of the ability of Content Manager OnDemand to aggregate documents into 10 MB storage objects, this might result in millions of small objects that are stored in your storage manager. This might further result in the storage manager having performance problems when migrating these small objects to tape.

**Note:** Consider aggregating these smaller objects into larger ones for performance reasons.

For you to aggregate all these tiny objects into larger objects after they are stored individually requires that you retrieve and reload them as larger objects. This is something that you might want IBM Lab Services to assist you with.

Another option is to not migrate objects to tape, but to use some other random access hardware device instead.

10.5 Expiration processing on Multiplatforms and z/OS

This section goes into detail about the expiration process on Multiplatforms and z/OS.

10.5.1 Content Manager OnDemand based expiration: ARSMAINT

The ARSMAINT program manages application group data in the Content Manager OnDemand database and in cache storage.

You typically run ARSMAINT on a regular schedule to do the following tasks:

- Migrate files from cache storage to archive storage.
- Delete files from cache storage.
- Optionally, migrate index data from the database to archive storage.
- Delete index data from the database.
The application group data and the data that you stored in cache are all managed by the **ARSMAIN** program. It is managed by using the storage management values from the application groups that are defined to the system.

Here are the storage management field values that are used:

- Life of Data and Indexes
- Length of Time to Cache Data on Magnetic
- Length of Time Before Copying Cache to Archive Media
- Length of Time Before Migrating Indexes to Archive Media
- Length of Time to Maintain Imported Migrated Indexes
- Expiration Type

### 10.5.2 Expiring indexes

The **ARSMAIN** program uses the Expiration Type field value to determine how to delete index data from an application group. **ARSMAIN** can expire a table of application group data at a time, a load at a time, or individual documents. Make sure that the **ARSMAIN** program command runs periodically (for example, daily) so that Content Manager OnDemand deletes indexes and cache data (and the storage manager deletes archive data if applicable) when it is time to do so. This ensures that the expired documents can no longer be retrieved.

Additionally, manual expiration processing can be started by running the **ARSMAIN** program from the command line. For example, to run expiration processing, run the following command at the command line:

```bash
arsmaint -d
```

When the **ARSMAIN** program removes indexes, it saves the following message in the system log:

```
128 ApplGrp Segment Expire (ApplGrp) (Segment)
```

One message is saved in the system log for each table that was dropped during expiration processing.

**When to run the maintenance processes:** Most maintenance processes should run when no other applications are updating the database or need exclusive access to the database and when you are sure that no one is retrieving documents from the system. For example, you should not perform maintenance of the database while loading data into the system.

The relationship between **ARSMAIN** and **ARSSOCKD** processing is illustrated in Figure 10-3.

![Figure 10-3 Relationship between ARSMAIN and ARSSOCKD programs](image)

**Collecting statistics**

Content Manager OnDemand provides two programs to collect statistics on database tables: the **ARSDB** program and the **ARSMAIN** program.
When you run the ARSMAINT program to collect statistics, it collects statistics on all of the tables in the database that changed since the last time that you collected statistics. You can automate the collection of statistics by scheduling the ARSMAINT program to run with the appropriate options.

You can use the ARSDB program to collect statistics on the Content Manager OnDemand system tables. The Content Manager OnDemand system tables include the user table, the group table, and the application group table. For most systems, the Content Manager OnDemand system tables require little maintenance. You can probably schedule the ARSDB program to collect statistics once a month (or less often).

The syntax for ARSDB is:

```
/opt/IBM/ondemand/V9.0/bin/arsdb <options>
```

The options are:

- `e` Drop configuration indexes.
- `r` Create configuration indexes.
- `s` Collect statistics.

**System log messages**

When you run the ARSMAINT program, it saves messages about its activities in the system log. The types of messages that are saved in the system log depend on the options that you specify when you run the ARSMAINT program.

The number of messages that are saved in the system log each time that expiration processing runs depends on the following factors:

- The options that you specify for the ARSMAINT program.
- The number of application groups and segments of data that are processed.
- The number of cache storage file systems that are defined on the server.

**Note:** You see one set of messages for each object server on which you run the ARSMAINT program.

For example, when expiration processing is starting on a specified server, you might see the following message:

```
109 Cache Expiration (Date) (Min%) (Max%) (Server)
```

Migration processing uses the specified date (the default is “today” in internal format). Expiration processing begins on each cache file system that exceeds the Max% (default 80%) and ends when the free space that is available in the file system falls below the Min% (default 80%).

There is one of these messages for each storage object that is deleted from cache storage. A storage object is eligible to be deleted when its “Cache Document Data for n Days” or “Life of Data” period passes (whichever occurs first).

A storage deletion message looks similar to the following message:

```
196 Cache Migration (ApplGrp) (ObjName) (Server)
```

There are also information only messages that report the percentage of space used in the file system.

An information message looks similar to the following message:
124 Filesystem Statistics (filesystem) (% full) (server)

Load table (ARSLOAD)
The ARSLOAD table can be used to track loads for expiration. This table maintains a record of all successful loads to application groups with the “expire by load” expiration type.

10.5.3 Removing documents from Tivoli Storage Manager archive

Removing a document from archive storage means that the backup (if the primary document copy is in cache) or long-term copy (if the primary document copy is in archive) of the document is deleted from the system. You remove documents from archive storage when you no longer have a business or legal requirement to keep them.

A management class contains an archive copy group that specifies the criteria that makes a document eligible for deletion. Documents become eligible for deletion under the following conditions:

- Administrators delete documents from client nodes
- An archived document exceeds the time criteria in the archive copy group (how long archived copies are kept)

The archive storage manager does not delete information about expired documents from its database until expiration processing runs. You can run expiration processing either automatically or manually by command. Make sure that expiration processing runs periodically to allow the archive storage manager to reuse storage pool space that is occupied by expired documents.

When expiration processing runs, the archive storage manager deletes documents from its database. The storage space that these documents used to occupy then becomes reclaimable. For more information, see “Reclaiming space in storage pools” on page 225.

You control automatic expiration processing by using the expiration processing interval (EXPINTERVAL) in the server options file (dsmserv.opt). You can set the option by editing the dsmserv.opt file. (For more information, see the Content Manager OnDemand Installation and Configuration Guide), found at:

http://pic.dhe.ibm.com/infocenter/cmod/v9r0m0/index.jsp

You can find more information in the “Running expiration processing automatically” section at the following website:


If you use the server option to control when expiration processing occurs, the archive storage manager runs expiration processing each time that you start the server. Afterward, it runs expiration processing at the interval that you specified with the option, which is measured from the start time of the server.

You can manually start expiration processing by running the EXPIRE INVENTORY command. Expiration processing then deletes information about expired files from the database. You can schedule this command by running the DEFINE SCHEDULE command. If you schedule the EXPIRE INVENTORY command, set the expiration interval to 0 (zero) in the server options so that the archive storage manager does not run expiration processing when you start the server. You can control how long the expiration process runs by using the DURATION parameter with the EXPIRE INVENTORY command.
Reclaiming space in storage pools
Space on a storage pool volume becomes reclaimable as documents expire or are deleted from the volume. For example, documents become obsolete because of aging.

The archive storage manager reclaims the space in storage pools based on a reclamation threshold that you can set for each storage pool. When the percentage of space that can be reclaimed on a volume rises above the reclamation threshold, the archive storage manager reclaims the volume. The archive storage manager rewrites documents on the volume to other volumes in the storage pool, making the original volume available for new documents.

The archive storage manager checks whether reclamation is needed at least once per hour and begins space reclamation for eligible volumes. You can set a reclamation threshold for each storage pool when you define or update the storage pool.

During reclamation, the archive storage manager copies the files to volumes in the same storage pool unless you specified a reclamation storage pool. Use a reclamation storage pool to allow automatic reclamation for a storage pool with only one drive. See your archive storage manager documentation for details.

After the archive storage manager moves all documents to other volumes, one of the following actions occur for the reclaimed volume:

- If you have explicitly defined the volume to the storage pool, the volume becomes available for reuse by that storage pool.
- If the volume was acquired as a scratch volume, the archive storage manager deletes the volume from its database.

**Important:** For more information about reclamation processing, including choosing a reclamation threshold, reclaiming volumes in a storage pool with one drive, reclamation for WORM optical media, reclamation for copy storage pools, and reclamation of off-site volumes, see your Tivoli Storage Manager documentation.

Managing Tivoli Storage Manager storage
For each automated library, Tivoli Storage Manager tracks in its volume inventory for the library whether a volume has scratch or private status:

- A *scratch volume* is a labeled volume that is empty or contains no valid data, and can be used to satisfy any request to mount a scratch volume. To support Content Manager OnDemand, you define scratch volumes to Tivoli Storage Manager. Tivoli Storage Manager uses scratch volumes as needed, and returns the volumes to scratch when they become empty (for example, when all data on the volume expires).

- A *private volume* is a volume that is in use or owned by an application, and might contain valid data. Volumes that you define to Tivoli Storage Manager are private volumes. A private volume is used to satisfy only a request to mount that volume by name. When Tivoli Storage Manager uses a scratch volume, it changes the volume’s status to private. Tivoli Storage Manager tracks whether defined volumes were originally scratch volumes. Volumes that were originally scratch volumes return to scratch status when they become empty.

Secondary storage of storage volumes
For instructions that describe how to handle physical storage volumes and remove them from the library, see the documentation that is provided by the library manufacturer.
For instructions about documentation that you might need to complete when you remove storage volumes from a library and where to store them for safekeeping, see your organization's media storage guide.

Protecting data with the data retention protection (DRP) protocol

To avoid the accidental erasure or overwriting of critical data, Content Manager OnDemand supports the Tivoli Storage Manager APIs that are related to data retention. The data retention protection (DRP) prohibits the explicit deletion of documents until their specified retention criterion is met. Although documents can no longer be explicitly deleted, they can still expire.

Important notes:

- DRP is permanent. After it is turned on, it cannot be turned off.
- Content Manager OnDemand does not support deletion on hold data. This feature prevents held data from being deleted until the hold is released.

Tivoli Storage Manager supports two different retention policies:

- In creation-based retention, the policy becomes active when the data is stored (created) on the Tivoli Storage Manager server. This is the default retention policy method and is used with normal Backup/Archive clients.

- In event-based retention, the policy becomes active when the client sends a retention event to the Tivoli Storage Manager server. The retention event can be sent to the server at any time after the data is stored on the server. Until the retention event is received, the data is indefinitely stored on the Tivoli Storage Manager server. For Content Manager OnDemand, the retention event is the call to delete the data. A load, unload, application group delete, or expiration of data triggers the retention event.

If you decide to use these policies in Tivoli Storage Manager, then the Content Manager OnDemand scenarios that are described in the rest of this section are supported.

Turning data retention protection off

When you turn off data retention protection, the following descriptions explain what happened when you use creation-based object expiration policy and event-based retention object expiration policy:

- Creation-based object expiration policy: Content Manager OnDemand issues a delete object command through the Tivoli Storage Manager API. Objects are deleted during the next inventory expiration. If a Content Manager OnDemand application group is being deleted, a delete filespace command is issued instead, and the objects are immediately deleted along with the file space.

- Event-based retention object expiration policy: Content Manager OnDemand issues an event trigger command through the Tivoli Storage Manager API. The status of the objects that are affected are changed from PENDING to STARTED, and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, then the objects never expire. If a Content Manager OnDemand application group is being deleted, a delete filespace command is issued instead, and the objects are immediately deleted along with the file space.

Turning data retention protection on

When you turn on data retention protection, the following descriptions explain what happens when you use creation-based object expiration policy and event-based retention object expiration policy:
Creation-based object expiration policy: Content Manager OnDemand issues no commands to Tivoli Storage Manager. The objects are effectively orphaned by Content Manager OnDemand and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, then the objects never expire.

Event-based retention object expiration policy: Content Manager OnDemand issues an event trigger command through the Tivoli Storage Manager API. The event status of the objects that are affected are changed from PENDING to STARTED and are expired by Tivoli Storage Manager based on their retention parameters. If the retention parameters are set to NOLIMIT, then the objects never expire. If a Content Manager OnDemand application group is deleted, then a delete filespace command cannot be used with DRP; the operation is treated the same as though a delete is indicated. The status of all the affected objects is changed from PENDING to STARTED, and they are expired by Tivoli Storage Manager based on their retention parameters. Because this leaves the file space entries in Tivoli Storage Manager, you must manually delete these entries when the file space is empty (even with DRP on).

Recommendations
Here are a list of best practices for when you work with data retention protection:

- Set up the application groups to expire by load.
- Define the Tivoli Storage Manager archive copy groups to be event-based, and retain data for 0 days.
- Run the Tivoli Storage Manager inventory expiration regularly to ensure that expired data is removed.

The following devices are supported by Content Manager OnDemand:

- IBM DR450 and DR550
  This device is a disk-based system that contains a Tivoli Storage Manager that runs DRP.
- EMC Centera
  This device is a disk-based system that is treated as a device by Tivoli Storage Manager. Tivoli Storage Manager must run DRP.

10.5.4 Storage Manager-based expiration (z/OS only)

The ARSEXOAM and ARSEXPIR programs are used for storage-manager-based expiration.

ARSEXOAM
The ARSEXOAM program is used to process the rows in the ARSOAM_DELETE table that indicate that Content Manager OnDemand OAM objects have expired, and have the associated table entries for those objects removed. This program works for z/OS only.

Figure 10-4 shows how the ARSEXOAM program deletes the index entries for object stores in OAM.
Figure 10-4  How ARSEXOAM deletes index entries for object stores in OAM

Notes:
- If one object for a load ID is deleted, all of the index entries for that load ID are deleted.
- Index entries of all OAM objects that are recorded as being deleted by rows in the ARSOAM_DELETE table are deleted regardless of the settings in the Life of Data and Indexes section on the Storage Management tab of the application group.
- If you plan to use Storage Management expiration, ensure that you set the expiration type of all application groups to Storage Manager.
- The recommendation expiration type for Content Manager OnDemand is Load. Content Manager OnDemand supports expiration type of Load with the use of ARSEXOAM for expiring the indexes in Content Manager OnDemand.
- Storage Manager expiration is incompatible with Enhanced Retention Manager and Content Federation Services for Content Manager OnDemand.

Here are the parameters that are related to the ARSEXOAM program:

- **COMMITCNT:**
  Specifies the number of fetches from the ARSOAM_DELETE, ARSOD, and ARSODIND tables that are to be done between COMMITS.
  If this parameter is not specified, 1000 is used. If 0 is specified, no commits are done while fetching. The ARSOD and ARSODIND table are only processed if Content Manager OnDemand for OS/390 Version 2 migrated index rows are being deleted.

- **UNLOADMAX:**
  Specifies how many objects to hold in memory at any one time. The default is 100,000.

- **REQLIMIT**
  Specifies the maximum number of objects to send to the server in each request. This number defaults to the ARS_EXPIRE_REQLIMIT parameter in the ars.cfg, or 100 if ARS_EXPIRE_REQLIMIT is not specified. Load IDs for the same application group can be
grouped up to the **ARS_EXPIRE_REQLIMIT** value. All load IDs in a single expiration request must belong to the same application group. For example, adding `ARS_EXPIRE_REQLIMIT=100` allows up to 100 load IDs for an application group to be processed at a time. The optimum value to use is a function of multiple variables, including table size. Suboptimal values might lead to table scans. EXPLAINs with various SQL using the type of SQL that is involved help determine whether an index or a table scan occurs.

**ARSEXPIR**

The **ARSEXPIR** program can be used to process System Management Facility (SMF) records that indicate Content Manager OnDemand objects have expired, and have the associated index entries for those objects removed.

Figure 10-5 illustrates two methods that the **ARSEXPIR** program uses to expire OAM and VSAM objects.

![Figure 10-5 Two ways ARSEXPIR expires OAM and VSAM objects](image)

The **ARSEXPIR** program uses the SMF type 65 (for VSAM objects) or SMF type 85 (for OAM objects). The installation must collect and install `ARSSMFWR` as the CBRHADUX OAM auto-delete exit. For more information, see “Deleting OAM and VSAM Objects” in the *IBM Content Manager OnDemand for z/OS: Administration Guide*, SC19-1213.

**ARSSMFWR** determines which objects were deleted. The **ARSEXPIR** program then instructs the Content Manager OnDemand server to remove the index entries.

**Notes:**

- If one object for a load ID is deleted, all of the index entries for that load ID are deleted.
- Index entries of all objects that are recorded as being deleted by the SMF records are deleted regardless of the settings in the Life of Data and Indexes section on the Storage Management tab of the application group. If you want to use Storage Management expiration, make sure that you set the expiration types of all application groups to Storage Manager.
Important keywords that affect the expiration performance are COMMITCNT, REQLIMIT, UNLOADMAX, and USERSMF:

- **COMMITCNT**
  Specifies the number of fetches from the ARSOD and ARSODIND table that are to be done between COMMITS. If this number is not specified, 1000 is used. If this number is 0, no commits are done while fetching. This parameter is used only if Content Manager OnDemand for OS/390 Version 2 migrated index rows are being deleted.

- **REQLIMIT**
  Specifies the maximum number of objects to send to the server in each request. This defaults to the ARS_EXPIRE_REQLIMIT parameter in the ars.cfg, or 100 if ARS_EXPIRE_REQLIMIT is not specified.

- **UNLOADMAX**
  Specifies how many objects to hold in memory at any one time. The default is 100,000.

- **USERSMF**
  Specifies the SMF record type that is written by the ARSSMFWR exit (if used). This parameter can be omitted if ARSSMFWR is omitted. For more information about the ARSSMFWR exit, see IBM Content Manager OnDemand for z/OS Configuration Guide, SC19-3363

### 10.6 Expiring data on Content Manager OnDemand for i

In most circumstances, you must run Disk Storage Management (DSM) and Archived Storage Management (ASM) to expire data from Content Manager OnDemand for i.

#### 10.6.1 Content Manager OnDemand based expiration

Disk Storage Management (DSM) is the process for performing Content Manager OnDemand based expiration. DSM performs the following functions:

- Controls the expiration of indexes and data from Content Manager OnDemand (if you do not use storage manager-based expiration).
- Migrates data from cache to the storage manager (if the Migrate Data from Cache option is not set to When data is loaded).
- Expires data from cache if Cache Data is set to Yes.

If you do not run DSM, your disk storage requirements for Content Manager OnDemand might be higher than expected. The number of objects that are stored in the Integrated File System (IFS) might also be higher than necessary, which results in longer save and restore times.

**Note:** If you have never run DSM, the first execution of the Start Disk Storage Management (STRDSMOND) command might last for an extended period.

If you want to configure Content Manager OnDemand so that DSM is not required in the future, see the section “Eliminating the need to run Disk Storage Manager (DSM)” in the latest Content Manager OnDemand for i Common Server Administration Guide, SC19-2792.
10.6.2 Storage Manager-based expiration

Archived Storage Management (ASM) is the process for performing Storage Manager-based expiration. ASM performs the following functions:

- Controls the expiration of indexes and data from Content Manager OnDemand (if you use Storage Manager-based expiration).
- Aggregates data before migrating it to archive media (if you select the Aggregation option in the migration policy).
- Moves data between storage levels of the migration policy.

If you do not run ASM, your disk storage requirements for Content Manager OnDemand are probably higher than expected. The number of objects that is stored in the IFS are also higher than necessary, which results in longer save and restore times.

If you have never run ASM, the first execution of the Start Archived Storage Management (STRASMOND) command or the Start Disk Storage Management (STRDSMOND) command with the STRASMOND parameter set to YES might last for an extended period.

For more information about expiring archives using ASM, see the document titled *Expiration processing in Common Server Archive Storage Manager (ASM)* found at: http://www.ibm.com/support/docview.wss?uid=swg21317082
Exits

In IBM Content Manager OnDemand (Content Manager OnDemand), it is possible to use exit points to customize and enhance the standard functionality within the product. This chapter introduces various exit points within the Content Manager OnDemand product. By using working sample code, we present some examples of the types of operations and enhanced functions that are possible.

In this chapter, we cover the following topics:
- Introduction to user exits
- ACIF exits
- OS/390 indexer exits
- System administration
- Customized functions (Multiplatforms and z/OS only)
11.1 Introduction to user exits

A user exit is a point during processing that enables you to run a user-written program and return the control of processing after your user-written program ends. There are a few different kinds of exits. In this chapter, we describe the exits based on the following categories:

- ACIF Indexing
  The ACIF indexer contains user exit points for increased flexibility. There are four points during ACIF processing at which user programs can be configured:
  - Input record exit
  - Index record exit
  - Output record exit
  - Resource exit

- OS/390 indexer exits
  The OS/390 indexer supports three exits to assist with indexing and loading documents into Content Manager OnDemand.
  - Anystore exit
  - Input exit
  - Index exit

- System administration
  - System log exit
  - Print exit

- Customized functions
  - User exit
  - Load exit
  - Client Retrieval Preview exit
  - Report specifications archive definition exit
  - table space create exit
  - ARSYSPIN and sample APKACIF exit on z/OS

Content Manager OnDemand provides data at each exit that can serve as input to the user-written programs. Using these exits, it is possible to perform functions such as sending emails based on events in the system, updating index values through a print request, and cleaning up data as it is loaded into Content Manager OnDemand. There are infinite examples of what is possible from the Content Manager OnDemand exits. We provide some samples here that act as a guide for creating customized user exits programs.

**Note:** Always make a point to recompile all the customized user exits after upgrading the Content Manager OnDemand software because the header files might have changed with different versions.

**PDF Indexer:** The PDF Indexer does not support any user exits.

11.2 ACIF exits

The ACIF user exit is a point during the ACIF processing where control is handed from ACIF to a user-written program. After the user-written program is finished, the control is handed back to ACIF. There are four points during ACIF processing at which user programs can be configured: input, indexing, output, and resource.
In Multiplatforms, ACIF user exits must be written in C. In z/OS, ACIF user exits can be written in C, COBOL, or ASSEMBLER. For more information, see the section “Special considerations for APKACIF exits written in COBOL” in IBM Content Manager OnDemand for z/OS, V9.0, Administration Guide SC19-3364. ACIF exits do not exist in Content Manager OnDemand for i.

For detailed documentation about each of these exit points, see IBM Content Manager OnDemand for Multiplatforms - Indexing Reference, SC19-3354 and IBM Content Manager OnDemand for z/OS and OS/390 - Indexing Reference, SC27-1375.

11.2.1 A new macro for user exits

Because the default installation directory changed for Content Manager OnDemand V9, the arsload program supports a new macro to make user exits more portable.

For example, instead of specifying the exit as
INPEXIT=/opt/IBM/ondemand/V9.0/exits/acif/asciinpe, specify the following items in the indexing parameters:
INPEXIT=$(OD_ACIF_EXIT_DIR)asciinpe

arsload substitutes the correct path for the platforms.

This macro works for all four ACIF user exits. The macro is not supported if ACIF is run outside of arsload.

11.2.2 Input record exit

ACIF provides the input record exit that enables you to add, delete, or modify records in the input file before they are processed by ACIF. The primary purpose of this exit is to modify input records before ACIF sees them. The exit program is started by the ACIF inpexit parameter.

The input exit can be used to insert indexing information. More common uses are to remove null characters, truncate records, add carriage control, and change code pages. In general, indexer parameters should reflect what the input record looks like after the input exit runs. The only exception is the FILEFORMAT indexer parameter, which should correspond to the input record before it is passed to the input exit. For example, if the file contains ASCII data and uses the ASCII stream delimiter x'0A', specify (NEWLINE=x'0A'), not (NEWLINE=x'25'), even if you are using the apka2e exit to convert ASCII to EBCDIC. Otherwise, ACIF does not pass the correct record to the apka2e input exit.

Content Manager OnDemand provides three input record exits:

- apka2e
- asciinp
- asciinpe

You can either use these as samples to build from, or you can compile them and run them as is. These programs are documented in IBM Content Manager OnDemand for Multiplatforms - Indexing Reference, SC18-9235, and are described briefly in the following sections.
The apka2e exit

The **apka2e** exit translates data that is encoded in ASCII (code set IBM-850) into EBCDIC (code set IBM-037). *If you are converting line data to AFP, consider converting the data to EBCDIC.* There is a much wider selection of EBCDIC coded fonts than there are ASCII, and many customers find it easier to use ones that are supplied by IBM than to create their own character sets and code pages. To use these predefined EBCDIC coded fonts, the data must be in EBCDIC.

When you use the **apka2e** exit, you must manually change your indexing parameters:

- Change an ASCII CPGID to an EBCDIC one, for example, change `CPGID=850` to `CPGID=500`.
- Change the HEX codes for the triggers and index names from ASCII to EBCDIC. If you do not do this, you receive ACIF return code 16, stating that it cannot find trigger1 or any fields.

We used a hex editor to determine the new EBCDIC values and typed them by keyboard edit into the parameter file. If you do not have a hex editor, you can find conversion tables on the Internet.

For more information about how to update indexing parameters, see 11.2.6, “Debugging input user exit programs” on page 240.

The asciinp exit

The **asciinp** exit program is used when the data does not contain carriage controls but contains ‘PC style’ carriage returns and form feeds `X'0D0A'` and `X'0D0C'`. This IBM provided program transforms the ASCII data stream into a format that contains a carriage control character in byte 0 of every record.

The **asciinp** exit performs the following actions:

- Inserts a new page command (X'31') at the top of the first page.
- Removes the ASCII carriage return (X'0D').
- Inserts an ASCII new line (X'20') carriage control at byte 0 of each line, except the first line on a new page.
- Replaces the ASCII form feed (X'0C') with an ASCII new page command (X'31').
- Leaves X'0A' in the file.

**Note:** Because **asciinp** inserts carriage control characters in byte 0 of your document, and leaves X'0A', it changes the position of the triggers and fields. If you use this exit, you must add 1 to the column offsets for the triggers and fields.

The asciinpe exit

The **asciinpe** exit performs a combination of the previous two exits. It converts the data from ASCII to EBCDIC and inserts EBCDIC carriage control characters. For full documentation about this sample program, see the **asciinpe.c** source code.

11.2.3 Index record exit

The index record exit allows you to modify or ignore the records that ACIF writes in the index object file. The program, which specified in the ACIF *indxexit parameter*, receives control just before a record is written to the index object file. The user-written program can tell ACIF to
use the record, not to use the record, or to perform some sort of editing on the record before inserting it into the index object file.

A good use of this program is for an application that must pull an index from a source other than the document. The application group can be set up with a default index; then, the user exit program can grab the appropriate index from this secondary source and replace the default value that was in the index record. The record is then sent back to ACIF.

Another example is to modify the format of an existing index. Example 11-1 shows a sample index exit C program to update the date format from `mmddyy` to `mm/dd/yy`.

**Important**: The ACIF index file is in AFP format. It is important to understand the structure of AFP before writing or modifying an index exit.

**Example 11-1  Sample ACIF index exit program**

```c
#define _c_APKIND

/********************************************************************
/*                                                               */
/* MODULE NAME: UPDATE.C                                         */
/*                                                               */
/* SYNOPSIS: ACIF Sample Index Exit                              */
/*                                                               */
/*                                                               */
/* DESCRIPTION: This module converts the date format             */
/*               from mmddyy to mm/dd/yy before adding the         */
/*               record to the index object file                   */
/*                                                               */
/********************************************************************

#include "apkexits.h"/* standard acif exit header file */

long
INDEXEXIT( INDXEXIT_PARMS *exitstruc )
{
    int i;

    if ( exitstruc->eof != IDX_EOFLAG )
    {
        /********************************************************************
        /* Look for TLE with attribute name "mmddyy" */
        /********************************************************************
        if ( (exitstruc->record[13] == 0x6D) &&
             (exitstruc->record[14] == 0x6D) &&
             (exitstruc->record[15] == 0x64) &&
             (exitstruc->record[16] == 0x64) &&
             (exitstruc->record[17] == 0x79) &&
             (exitstruc->record[18] == 0x79))
        {

            /********************************************************************
            /* TLE length is now 40 (was 38) */
            /********************************************************************

            exitstruc->record[ 2] = 0x28;

            /********************************************************************
            /* Attribute value count is now 12 (was 10) */
            /********************************************************************
        }
    }
}
```
exitstruc->record[19] = 0x0C;

/**************************************************
/* Relocate attribute qualifier triplet X'80'   */
/**************************************************
for (i=40; i>30; i--)
    exitstruc->record[i] = exitstruc->record[i-2];

/**************************************************
/* Change mmddyy to mm/dd/yy                    */
/**************************************************
exitstruc->record[30] = exitstruc->record[28];
exitstruc->record[29] = exitstruc->record[27];
exitstruc->record[28] = 0x61;
exitstruc->record[27] = exitstruc->record[26];
exitstruc->record[26] = exitstruc->record[25];
exitstruc->record[25] = 0x61;

/**************************************************
/* record length has increased to 41 (was 39) */
/**************************************************
exitstruc->recordln = 41;
}
exitstruc->request = IDX_USE;
}
return( 0 );
}

11.2.4 Output record exit

The output record exit allows you to modify or ignore the records that ACIF writes to the output document file. The program is started by the ACIF outexit parameter, and it gives control to the user program before a record (which can be a structured field or can be line data) is written to the output (.out) file.

Example 11-2 shows a sample output exit program that deletes records from the output file. This program checks each structured field to determine whether it is an AFP record. If the record does not begin with Hex 5A, the exit program tells ACIF not to use this record.

Example 11-2 Sample ACIF output exit program

```c
#define _c_ACCT_OUT
/*********************************************************************/
/*                                                                   */
/* MODULE NAME: ACCT_OUT.C                                           */
/*                                                                   */
Important: The ACIF output file can be in either line data or AFP format. If the ACIF output file is in AFP format, it is important to understand the structure of AFP before writing or modifying an output exit.

Example 11-2 Sample ACIF output exit program

```
11.2.5 Resource exit

If you want to prevent ACIF from collecting a specific type of resource, such as overlays, you can control this with the ACIF `restype` parameter. However, if you want to prevent ACIF from writing a specific resource to the resource file, use the resource exit.

The resource exit is best used to control resources at the file name level. For example, suppose that you want to exclude particular fonts from the resource file. You can code this exit program to contain a table of the fonts that you want to exclude and filter them from the resource file. The program that is invoked at this exit is defined in the ACIF `resexit` parameter.

ACIF does not start the exit for the following resource types:

- Page definitions: The pagedef is a required resource for converting line data to AFP and is never included in the resource file.
- Form definitions: The formdef is a required resource for processing print files. If you do not want the formdef to be included in the resource file, specify `restype=none` or explicitly exclude it from the restype list.
- Coded fonts: If you specify `MCF2REF=CF`, ACIF writes coded fonts to the resource file if they are included in the `restype` list. By default (`MCF2REF=CPCS`), ACIF does not write coded fonts to the resource file.
11.2.6 Debugging input user exit programs

When working with an input exit, it is necessary to know how the exit changed your data before you load it. A way to determine how the exit changed the data is to set up ACIF to run in stand-alone mode (not called from arsload).

To set up ACIF to run in stand-alone mode, create an indexing parameter file with no triggers, fields, or indexes that are defined, and use the value CONVERT=NO. Include your input file, output file, and the input exit routine in the parameter file. Then, run arsacif from a command line while pointing to this parameter file. Example 11-3 shows our ACIF parameter file, parmfile. Use the following command to run stand-alone ACIF:

arsacif parmdd=parmfile

This command starts ACIF with the user exit, runs the exit, and writes the output to the file specified by the OUTPUTDD parameter. You can inspect the output file to make sure that the exit did what you expected. You can also use this output file in the graphical indexer to index your post-exit file because the exit routine might change the location of your triggers and fields.

Example 11-3  ACIF parameter file

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>YES</td>
</tr>
<tr>
<td>CCTYPE</td>
<td>Z</td>
</tr>
<tr>
<td>CONVERT</td>
<td>NO</td>
</tr>
<tr>
<td>CPGID</td>
<td>850</td>
</tr>
<tr>
<td>FILEFORMAT</td>
<td>STREAM,(NEWLINE=X'OA')</td>
</tr>
<tr>
<td>INPUTDD</td>
<td>C:\temp\billing_input.txt</td>
</tr>
<tr>
<td>OUTPUTDD</td>
<td>C:\temp\billing_input.txt.out</td>
</tr>
<tr>
<td>RESTYPE</td>
<td>NONE</td>
</tr>
<tr>
<td>INPEXIT</td>
<td>C:\Program Files\IBM\OnDemand for Windows\V9.0\exits\acif\asciinp.dll</td>
</tr>
</tbody>
</table>

Important: Specify the complete path in the inpeexit, indxexit, resexit, or outexit parameters. There is nothing more frustrating than trying to debug an exit that is never called because another exit with the same name is being invoked because of the PATH environment variable.

Another method is to run arsload with the -i option, which runs only the indexer and does not load any files. In this case, it is not necessary to add INPUTDD or OUTPUTDD to the indexing parameters in the application. Running arsload with the -i option creates the .ind and .out files, and leaves them on the system for you to view.

11.3 OS/390 indexer exits

The OS/390 indexer can be used to extract index data from and generate index data about line data and AFP reports. In addition, other data types, such as TIFF images, can be captured by using the anystore exit. The OS/390 indexer is available on the z/OS platform for all versions and on the AIX platform beginning with Content Manager OnDemand V9.0. The OS/390 indexer supports the following exits to assist with indexing and loading documents into Content Manager OnDemand.

- The ANystore exit (ANYEXIT) can be used to capture any type of data. The exit is responsible for reading the load file and returning the index values and documents to the indexer. A sample exit is provided which loads TIFF images.
- The INPUT exit (INPEXIT) can be used with line print data. It allows for the load file contents to be modified by the exit before being stored into Content Manager OnDemand.
The INDEX exit (INDXEXIT) can be used with any data type. It allows for the index values for a document to be modified before being stored into Content Manager OnDemand.

11.3.1 The ANYEXIT exit

ANYEXIT is the anystore exit, which captures any type of data. The exit reads the data to be captured, breaks it into documents, and determines the index values. The sample anystore exit captures TIFF images by using a pre-generated set of indexing instructions that are read from a separate file.

The anystore batch capture exit can be used to provide all segment and index data to the report capture program. This exit program is called from the report capture process.

The exit is called dynamically during the capture process. The capture program calls the exit when the indexing instructions for the application include the ANYEXIT parameter. The report administrator provides a program name for the anystore exit.

The report capture program expects the anystore exit to pass back all segment data and the associated index information. The capture program performs only the data management functions that are required for the capture process (document compression, document store, index management and store, and so on).

A sample COBOL exit is provided in ARSEXANY, which is found in member SARSINST(ARSEXANY) along with the COBOL copy book ARSANYBK. A sample C exit is provided in ARSECANY, which is found in member SARSINST(ARSECANY) along with the C header files ARSANYBH and ARSZ390H.

11.3.2 The INPEXIT exit

INPEXIT is the input exit, which is provided to allow more processing of the report input before the report is stored. This exit can be used only when the INDEXSTYLE is not set to AFP and when the ANYEXIT is not specified. The exit is called dynamically during the report capture process. The report capture routine calls the exit when the indexing parameters specify an input exit name in the INPEXIT parameter.

The report administrator provides a program name for this parameter.

There are no restrictions as to the type of processing that can be performed in an input exit with the exception that the exit must pass the standard parameter list back to the report capture program. Values must be supplied for all parameters.

Beginning with Content Manager OnDemand for z/OS V8.4 or later, a line print file can have a fixed record length greater than 512 or a variable record length. To support this capability, a new parameter format is provided. The old parameter format is still supported for compatibility with earlier versions.

To lean more about creating an input exit, details concerning the new parameter format, and how Content Manager OnDemand determines whether to use the old or new parameter format, see IBM Content Manager OnDemand Version 9 Release 5 - Indexing Reference, SC19-3354-01.

11.3.3 The INDEXEXIT exit

INDEXEXIT is the index exit, which is provided to allow the report indexes to be modified before insertion into the Application Group data table. This exit can be used with any type of report that is captured by the OS/390 indexer. The exit is called dynamically during the capture
process. The capture program calls the exit when the indexing instructions for the application include the **INDXEXIT** parameter.

The report administrator provides a program name for the index exit.

There are no restrictions as to the type of processing that can be performed in an index exit with the exception that the exit must pass the standard parameter list back to the capture program. A sample COBOL exit is provided in ARSEXNDX, along with the COBOL copy book ARSINDBK. A sample C exit is provided in ARSECNDX along with the C header file ARSINDBH.

For more information about the OS/390 indexer, see *IBM Content Manager OnDemand for z/OS and OS/390 - Indexing Reference*, SC27-1375.

### 11.4 System administration

In this section, we describe exits that are used for system administration: system message logging and server printer configuration. These exits are in the *bin* directory of the Content Manager OnDemand installation.

#### 11.4.1 System log exit for Multiplatforms

The Content Manager OnDemand system log is a tool that is used by administrators. You can use the Content Manager OnDemand Administrator Client to configure Content Manager OnDemand to record information, warning, and error messages in the system log. Content Manager OnDemand records messages, such as when users log on and log off the system. Content Manager OnDemand also records messages for application group activity, such as when clients query and retrieve data. Each operation that is performed by a user that involves a connection to the Content Manager OnDemand server can be logged. The detail that is captured within the system log can be configured so that only certain messages are retained, and others can be discarded.

In addition, you can configure Content Manager OnDemand to send these messages to the **arslog** exit. The system log exit is supplied in the *arslog* file that is in the *bin* directory of the Content Manager OnDemand installation root for each respective platform. If the *arslog* file is opened in a text editor, it simply contains comments that provide a brief description of the exit and the order of the parameters that Content Manager OnDemand hands to this exit. By default, the system log exit is not initialized within Content Manager OnDemand. Therefore, if you edit the *arslog* file to capture information, the exit does not run automatically.

To activate the system log exit, complete the following steps:

1. Start the Administrator Client and log on to the server on which you intend to use the system logging exit.
2. Right-click the name of the server in the list and select **System Parameters**, as shown in Figure 11-1.
3. To choose a User Exit Logging option, select the option.

**Tip:** The arslog exit file is run by the same user that owns the arssockd process that is calling this exit. A common reason for getting no response from this exit is *access permissions* on either the arslog file itself or files and directories that are being accessed within arslog.

Content Manager OnDemand provides an exit for each of the four system logging event points. These exits allow you to filter the messages and take action when a particular event occurs. For example, you can provide a user exit program that sends a message to a security administrator when an unsuccessful logon attempt occurs.

**System log exit samples**

To demonstrate some of the most common uses for the system log exit, we provide two typical examples:

- Capturing failed logon attempts (AIX)
- Notifying another system when a load completes (AIX)

For simplicity, we have not demonstrated the system log exits across all supported platforms. We recognize that the scripting languages between platforms do vary, but the principles that we describe here are uniform across all supported platforms; only the syntax differs.

**Capturing failed logon attempts (AIX)**

Example 11-4 is an extract from a simple system logging exit that captures *message code 31* (a failed logon attempt) and writes the user ID that was used and some information about the network address of this user to a file. In this case, the file name is a combination of the system date and the string failedlogon.log. This system log exit writes all of the failed logon attempts for each day to a file that can then be sorted and analyzed by other utilities to alert for possible security risks.

**Example 11-4  Capturing failed logon attempts (AIX)**

```
# $1 - OnDemand Instance Name
# $2 - Time Stamp
```
# $3 - Log Identifier
# $4 - Userid
# $5 - Account
# $6 - Severity
# $7 - Message Number
# $8 - Message Text
#
case $7 in
  31) echo $4 $8 >> /home/archive/'date +%d-%m-%Y''failedlogon.log;;
  *) echo $@ > /dev/null;;
esac
exit 0

For the exit sample that is provided in Example 11-4 on page 243, we also have provided a small sample of what the output of this exit might look like (Example 11-5). For example, you can see in the output that is provided that several unsuccessful attempts were made from the same machine and different user IDs were used for each attempt. In this example, by adding parameter 2 ($2) to the output and resorting the file, we can further establish the time of these attempts.

**Example 11-5   Sample exit output**

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MARTIN</td>
<td>Failed login: GB55102K3.myServer.ibm.com 9.9.9.9</td>
</tr>
<tr>
<td>FRED</td>
<td>Failed login: GB55102K3.myServer.ibm.com 9.9.9.9</td>
</tr>
<tr>
<td>USER1</td>
<td>Failed login: GB55102K3.myServer.ibm.com 9.9.9.9</td>
</tr>
<tr>
<td>USER2</td>
<td>Failed login: GB55102K3.myServer.ibm.com 9.9.9.9</td>
</tr>
</tbody>
</table>

**Notifying another system when a load completes (AIX)**

This sample is used in a production environment where the number of load jobs that are sent to Content Manager OnDemand must be controlled so that the next load job is sent only when the previous one completed successfully. In this case, this is because there is a limited amount of disk space in the location on the Content Manager OnDemand server where the load files are received from the remote machine, and because the load files are large.

Example 11-6 shows how the exit collects virtually all of the available information when it receives message number 87 (a successful load). This information is then used as the input for another script, which notifies the remote machine that the load is complete and the next report file can be sent.

**Example 11-6   Controlling load jobs (AIX)**

# $1 - OnDemand Instance Name
# $2 - Time Stamp
# $3 - Log Identifier
# $4 - Userid
# $5 - Account
# $6 - Severity
# $7 - Message Number
# $8 - Message Text
#
# if [ $6 = "3" ]; then
# print $@ >> /home/archive/InfoMsg.log
# fi

case $7 in
Chapter 11. Exits

11.4.2 System log exit for z/OS

Content Manager OnDemand can be configured to record information, warning, and error messages. You can set up Content Manager OnDemand to record these messages by using the system log exit that is named the ARSLOG installation exit. The implementation of the system log exit on z/OS is different from those on Multiplatforms. Like other z/OS exits, it uses the MVS Dynamic Exit Facility.

The configuration of the system log exit is done with the Administrator Client in the Systems Parameters window (see Figure 11-2).
Figure 11-2  System Parameters window with User Exit Logging selected

Make the selections for the system logging and set up the exit. The sample in Example 11-7 routes the messages to the system log with the WTO Macro.

Example 11-7  System log exit setup sample

```plaintext
ARSLOG   title 'Issue a message to syslog' 00010000
              *************** START OF MODULE SPECIFICATIONS *************** 00020000
*              * 00030000
*              * 00040000
*              * 00050007
*              * 00060000
*              * 00070000
*              * 00080000
*              * 00090000
*              * 00100000
*              * 00110000
*              * 00120000
*              * 00130000
*              * 00140000
*              * 00150000
*              * 00160000
*              * 00170000
*              * 00180000
*              * 00190000
*              * 00200000
*              * 00210000
```
**Register**

* Convention: R1 points to the Parameter list
  R12 base register

* Patch Label: PSPACE

* Input: Parameter list pointed to by Register 1
  Parameter list contains addresses of:
  - message length
  - message text

* Output: None

* Return codes:

  **NORMAL:** R15 = return code from WTO

* Exits: Return to caller via BR 14

* External References:

* Change Activity: See below

* Ver Rel Mod Date Description of Change

|    |    |    | 04/05/00  |

-----------  END OF MODULE SPECIFICATIONS  00500000

ARSLG csect
ARSLG rmode any
ARSLG amode 31
using *,r15
b pastcopy
      dc C'ARSLG &sysdate'
      dc C'5622-662 (C) COPYRIGHT IBM CORP. 2013'
      dc C'ALL RIGHTS RESERVED'
      dc C'LICENSED MATERIALS-PROPERTY OF IBM'
pastcopy ds 0h
stm 14,12,12(r13)
lr r12,r15
lr r2,r1
using plist,r2
drop r15
using ARSLG,r12
storage OBTAIN,length=workl,loc=ANY,cond=YES
ltr r15,r15
jnz bagit
st r13,4,(r1)
st r1,8,(r13)
lr r13,r1
using workarea,r13

* Determine the message length

  slr r1,r1 Number of bytes
  l r15,msgtxta get starting address
nullloop ds 0h
cli 0(r15),x'00' Is it zero?
je nomore Yes - quit
la r1,1(r1)         Bump count          00820005
la r15,1(r15)       bump address        00830005
j nullloop          And try next         00840005
nomore ds 0h         00850005
lr r3,r1            Save length of message 00860005
mvc msgtxt+2(3),=c'XXX' Set the prefix 00870007
la r14,msgtxt+5     Start to place number 00880005
l r15,msgnum        Get start of message number 00890005
numloop ds 0h        00900005
cli 0(r15),x'00'     Null?                00910005
je nomove           00920005
mvc 0(0,r14),0(15)   move it              00930005
la r14,1(r14)       next destination      00940005
la r15,1(r15)       next source           00950005
j numloop           go do next            00960005
nomove ds 0h         00970005
cli 0(r15),c'1'     Is it Alert           00980005
jne tryerror        No skip               01000005
mvi 0(r14),c'E'      Set error severity    01010005
j donesev           01020005
tryerror ds 0h       01030005
cli 0(r15),c'2'     "Error" severity?      01040005
jne trywarn         No - skip              01050005
mvi 0(r14),c'E'      Set error             01060005
j donesev           01070006
trywarn ds 0h        01080005
cli 0(r15),c'3'     Is it Warning          01090005
jne setinfo         01100005
mvi 0(r14),c'W'      Set Warning           01110005
j donesev           01120005
setinfo ds 0h        01130005
mvi 0(r14),c'I'      Indicate info         01140005
donesev ds 0h        01150005
mvi 1(r14),c' '      Put in blank          01160005
la r14,2(r14)       Skip                    01170005
l r3,f'60'           More than 60 chars    01180005
jnh singlwto        No - issue it          01190005
lhi r3,60           Only first 60 chars     01200005
* We only need to issue a single WTO

singlwto ds 0h        01210005
la r4,msgtxt+2       Get start of text      01220005
lr r15,r14           Get where we stopped    01230005
sr r15,r4            Get how much we've done 01240005
ar r15,r3            add length of text      01250005
stcm r15,b'0011',msgtxt Set the length      01260005
bcatr r3,0           subtract 1              01270005
l r15,msgtxta       Get source address      01280005
ex r3,mvcsins       Move it                  01290005
mvc wtoe,wto1        init the execute form   01300005
la r3,msgtxt        01310005
slr r0,r0           01320005
wto text=(r3),mf=(E,wtoe)
jl exit             exit                    01330005

When the exit routine is assembled and link-edited to a library, it must be associated with the exit in one of two ways:

- Use the exit statement in PROGXX parmlib member. For more information about the PROGXX parmlib member, see z/OS MVS Initialization and Tuning Reference, SA22-7592.

- Use the SETPROG EXIT operator command. For more information about the SETPROG EXIT command, see z/OS MVS System Commands, SA22-7627.

To activate the exit routine, run the following command:

```
SETPROG EXIT,ADD,EXITNAME=ARSLOG,MODENAME=ARSLOG, DSN=TEAM5.LOADLIB
```
The exit was link-edited to a normal library that is not AFP authorized.

11.4.3 Print exit for Multiplatforms

A Content Manager OnDemand printer is an interface between the user and a print device that is controlled by a server. There are multiple ways to print a document that is stored in Content Manager OnDemand:

- **Local printing:** This is accomplished through a LAN attached PC printer.
- **Server printing:** This is accomplished by submitting a print job to print server queue, for example an IBM Infoprint Server print queue. Infoprint is an intelligent printer driver that provides AFP capabilities for Content Manager OnDemand servers.

A server print device can be physically connected to the library server or attached to another workstation in the network. Server print devices are managed by Infoprint.

Content Manager OnDemand provides a print exit for Multiplatforms that can be used only for documents that are printed through a **server printer**.

There are two print exits that are available for Multiplatforms, which are in the bin directory of the Content Manager OnDemand installation root for each platform:

- **arsprt:** Content Manager OnDemand User Exit Printing Facility
- **arsrdprt:** Content Manager OnDemand User Exit Printing Facility for Report Distribution

If either of the files are opened in a text editor, notice that they contain comments that provide a brief description of the exit and the order of the parameters that Content Manager OnDemand gives to this exit.

Example 11-8 shows an arsprt file, which updates application group indexes for a certain document type each time it is sent to a server printer. This is a real example from a customer where the requirement is for Content Manager OnDemand to keep a record of when a document is reprinted. This file is achieved by using the print exit to update the indexes of a document to show the last time that the document was reprinted and a counter is incremented to log the number of times the document has been reprinted. Comments are inserted into the sample script in Example 11-8 that explain what each part of the script is doing. The customer name and the IP addresses either have been altered or removed for reasons of confidentiality.

*Example 11-8  Sample arsprt print exit file*

```bash
#!/bin/ksh
#
#  arsprt - OnDemand User Exit Printing Facility
#
#  5622-662 (C) COPYRIGHT IBM CORPORATION 2013
#  All Rights Reserved
#  Licensed Materials - Property of IBM
#
#  US Government Users Restricted Rights - Use, duplication or
#  disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#  This program sample is provided on an as-is basis.
#  The license of the OnDemand product is free to copy, revise,
#  modify, and make changes to this sample program
#  as see fit.
#
#  Function added to update a document each
```
# time a reprint is done. Index 'reprint' is updated with a 'I'
# and index 'log' is updated with a date and a counter of 001 (if the
# document has already been reprinted, the counter is added up by 001.

set -a
set -u
set -m
#set -x

##################
# 3 stmt's added #
# for debugging  #
##################
#RANDOM=$$
#set -x
#exec 2> /usr/lpp/ars/bin/debug1.log.$RANDOM

RM=/bin/rm
SED=/bin/sed

OS=$(uname)

if [[ ${OS} = AIX ]] ; then
    BASE_DIR=/usr/lpp/ars/bin
elif [[ ($OS) = HP-UX ]][[ ($OS) = SunOS ]] ] ; then
    BASE_DIR=/opt/ondemand/bin
    ARSPRT_HOSTNAME=
else
    print "Cannot determine operating system"
    exit 1
fi

# $1 - Printer Queue Name
# $2 - Copies
# $3 - Userid
# $4 - Application Group Name
# $5 - Application Name
# $6 - Application Print Options
# $7 - Filename to Print

# NOTE: It is up to this script to make sure the file is deleted.
# example( -r option on /bin/enq )

FILE=$7
OPTS_FILE=${FILE}.opts
NOTES_FILE=${FILE}.notes
if [[ -f ${OPTS_FILE} ]] ; then
    DEL=1
    PRT_OPTIONS="-o PASSTHRU=fax_file-${FILE}-"
    # Since I am faxing, make sure messages are not produced.
    # If debugging is needed, then this parameter should be blank.
    # EXTRA_OPTIONS="-o MSGCOUNT=0"
    EXTRA_OPTIONS="-o MSGCOUNT=0"
else
    DEL=0
    PRT_OPTIONS=

EXTRA_OPTIONS=
fi

TITLE=$(print "$3 $4 $5" | ${SED} 's/-/ /g')

if [[ ${OS} = AIX ]]; then
/bin/enq -r -P "$1" -N $2 -T "${TITLE}" $6 ${EXTRA_OPTIONS} ${PRT_OPTIONS} ${FILE}
else
${BASE_DIR}/lprafp -p "$1" -s "${ARSPRT_HOSTNAME}" -o "COPIES=${2}" -o "JOBNAME=${TITLE}" -o "TITLE=${TITLE}" $6 ${EXTRA_OPTIONS} ${PRT_OPTIONS} ${FILE}
fi

RC=

if [[ ${RC} = 0 ]]; then
if [[ ${OS} != AIX ]]; then
${RM} -f ${FILE}
else

####################################
# Test if filename ends up with .0 #
# If not, skip around code to update #
# index. This prevents update of #
# same index several times as only #
# one .cntl file is created #
# when server print is made for #
# multiple documents and this #
# script is called one time for #
# each doc to print. #

ext=${7##*.
}
if [[ ${ext} = 0 ]]; then

####################################
# Compute .cntl filename from #
# supplied parameter $7 #

fil=${7}
mine=${fil%.*}.cntl

####################################
# Double check if .cntl file exist #
if test ! -f $mine
then echo "File $mine not found"
exit 1
fi

####################################
# Set static variables #

host=9.99.99.99
nohit=no
applgrp1=ICAlog
folder1=ICAlog
applgrp2=applg2
folder2=folder2
applgrp3=applg3
folder3=folder3

# Read info from .cntl file
cat $mine |grep -v APPLICATION|while read a1 a2 a3 a4 a5 a6 a7 a8 a9
do
applgrp=$a2
applgrp=${applgrp##*=}

# Set the folder name depending on what the application group name is
if [[ ${applgrp} = ${applgrp1} ]]
then
  folder=$folder1
else
  if [[ ${applgrp} = ${applgrp2} ]]
  then
    folder=$folder2
  else
    if [[ ${applgrp} = ${applgrp3} ]]
    then
      folder=$folder3
    else
      nohit=yes
    fi
  fi
fi

# If nohit=no, get Account-number and log info
if [[ ${nohit} = no ]]
then
  account-number=$a4
  account-number=${account-number##*=}

  log=$a8
  log=${log##*=}
  if [[ $log = "" ]]
  then
    log=001
fi
fi

# Not an application group we are looking for. Set nohits=yes to skip to remove the .cntl file
else
  nohit=yes
  fi
# If not first time for reprint, #
# then add up old count by 1 #

else

    let log=$log+001
    typeset -Z3 log

fi

# Set date after log count #

datum=`date +%Y-%m-%d`

# Update this document with count #
# of reprints and current date #

arsdoc update -h $host -g $applgrp -f $folder -n log="$log$blank$datum" -n reprint=I -u admin -p ondemand -i "where account-number='$account-number'" -v

fi

# Done, remove the .cntl file #

done

rm $mine

fi

else

    if [[ ${OS} = AIX ]]; then

        echo /bin/enq -r -P "$1" -N $2 -T "${TITLE}" $6 ${EXTRA_OPTIONS} ${PRT_OPTIONS} $FILE

    else

        echo ${BASE_DIR}/lprafp -p "$1" -s "${ARSPRT_HOSTNAME}" -o "COPIES=${2}" -o "JOBNAME=${TITLE}" -o "TITLE=${TITLE}" $6 ${EXTRA_OPTIONS} ${PRT_OPTIONS} $FILE

    fi

    echo "$(date)-->

    &gt; OnDemand Failed Print File &gt;$FILE&lt; to Queue &gt;$1&lt;"

) &gt;/dev/console

exit $RC

fi

# If there is an options file, wait until the file has been
# printed before removing it.
#
if [[ ${DEL} != 0 ]]; then

    while(( 1 ))

    do

        if [[ -f "${FILE}" ]]; then

            sleep 30

        else

            ${RM} -f ${OPTS_FILE} ${NOTES_FILE}

            break

        fi

    done

fi

exit 0
11.5 Customized functions (Multiplatforms and z/OS only)

The user exits provide customized ways of performing tasks in Content Manager OnDemand. You can use it to customize logins, retrieve data from external locations, or send a notification when a document is loaded. Programming of the user exits is an IBM Lab Services offering; for more information, contact IBM Lab Services. You can also use the sample exit source code to write your own exits. In this section, we describe each of the sample exits that are provided in the standard Content Manager OnDemand installation to give you a better understanding of what they can do.

The sample source code for the Content Manager OnDemand user exits is provided for all the platforms. They are placed in the directories or libraries of Content Manager OnDemand that are listed in Table 11-1. These sample user exit modules provide a skeleton for you to program the exits.

Table 11-1  Exits and their initial locations

<table>
<thead>
<tr>
<th>Module</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>arsuload</td>
<td>Content Manager OnDemand V8.5</td>
</tr>
<tr>
<td>arsuprep</td>
<td>Windows: C:\Program Files\IBM\OnDemand for Windows\bin\exits</td>
</tr>
<tr>
<td>arsuupdt</td>
<td>AIX: /usr/lpp/ars/bin/exits</td>
</tr>
<tr>
<td>arsutbl</td>
<td>Solaris, HPUX, and Linux: /opt/ondemand/bin/exits</td>
</tr>
<tr>
<td></td>
<td>z/OS: /usr/lpp/ars/exits or ARS.V8R5M0.SARSINST</td>
</tr>
<tr>
<td></td>
<td>Content Manager OnDemand V9.0</td>
</tr>
<tr>
<td></td>
<td>Windows: C:\Program Files\IBM\OnDemand for Windows\V9.0\bin\exits</td>
</tr>
<tr>
<td></td>
<td>AIX, Solaris, and HPUX: /opt/IBM/ondemand/V9.0/bin/exits</td>
</tr>
<tr>
<td></td>
<td>Linux and Linux on System z: /opt/IBM/ondemand/V9.0/bin</td>
</tr>
<tr>
<td></td>
<td>z/OS: /usr/lpp/ars/v9rom0/exits or ARS.V9ROM0.SARSINST</td>
</tr>
<tr>
<td></td>
<td>Content Manager OnDemand V9.5</td>
</tr>
<tr>
<td></td>
<td>Windows: C:\Program Files\IBM\OnDemand for Windows\V9.5\bin\exits</td>
</tr>
<tr>
<td></td>
<td>AIX, Solaris, and HPUX: /opt/IBM/ondemand/V9.5/bin/exits</td>
</tr>
<tr>
<td></td>
<td>Linux and Linux on System z: /opt/IBM/ondemand/V9.5/bin</td>
</tr>
<tr>
<td></td>
<td>z/OS: /usr/lpp/ars/v9r5m0/exits or ARS.V9R5M0.SARSINST</td>
</tr>
</tbody>
</table>

The header file provides information about how to turn on the user exits. If it is not specified in the header file, then place the compiled user exit program into the bin/exits directory of the Content Manager OnDemand installation root.

The source code must be compiled before use. For UNIX platforms, you can compile the source code by using the sample makefile that is provided. The makefile is in the same exits directory as the sample exits source code.

Table 11-2 provides the functions and usage of the user exit modules.

Table 11-2  User exits module

<table>
<thead>
<tr>
<th>Module</th>
<th>Function</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>arsuload</td>
<td>LOADEXIT</td>
<td>To obtain load information for notification</td>
</tr>
<tr>
<td>arsuprep</td>
<td>PREPEXIT</td>
<td>To preprocess document data before document retrieval</td>
</tr>
<tr>
<td>arsuupdt</td>
<td>ARSUUPDT</td>
<td>To alter parameters when document data is being captured by ARSLOAD</td>
</tr>
<tr>
<td>arsutbl</td>
<td>TBLSPCRT</td>
<td>To customize creation of table space, tables, and indexes</td>
</tr>
</tbody>
</table>
11.5.1 The user exit header file (arscsxit.h)

Before you write the user exit, it is important to study the header file arscsxit.h. This file is in the same exits directory as the sample user exit source code. It contains the structure and function declarations for the customized Content Manager OnDemand user exits. There are also instructions about how to activate the user exits after it is compiled.

The first part of the header file is a declaration of all the structures and variables that are used. Example 11-9 shows some of the common structures that are used in the functions declarations.

Example 11-9  Common structure that is defined in the arscsxit.h header file

```c
/*****************************************************************************/
/* COMMON STRUCTURES                                                        */
/*****************************************************************************/
#define ARCCSXIT_MAX_SRVR_MESSAGE_SIZE 1024

#if defined(AIX) || defined(HPUX) || defined(OS390) || defined(CICS)
#define ARCCSXIT_PATH_MAX 1023
#elif defined(LINUX)
#define ARCCSXIT_PATH_MAX 4096
#elif defined(SUNOS) || defined(__OS400__) 
#define ARCCSXIT_PATH_MAX 1024
#elif defined(WIN32)
#define ARCCSXIT_PATH_MAX 260
#endif

typedef struct _ArcCSXitApplGroup 
{
    char   *name;
    ArcI32 agid;
    char   *agid_name;
} ArcCSXitApplGroup;

typedef struct _ArcCSXitApplGroupU 
{
    ArcChar *name;
    ArcI32  agid;
    ArcChar *agid_name;
} ArcCSXitApplGroupU;

typedef ArcU8 ArcCSXitDocType;
#define ARCCSXIT_DOC_TYPE_AFP     (ArcCSXitDocType) 0x41
#define ARCCSXIT_DOC_TYPE_BMP     (ArcCSXitDocType) 0x42
#define ARCCSXIT_DOC_TYPE_EMAIL   (ArcCSXitDocType) 0x45
#define ARCCSXIT_DOC_TYPE_GIF     (ArcCSXitDocType) 0x47
#define ARCCSXIT_DOC_TYPE_JFIF    (ArcCSXitDocType) 0x4A
#define ARCCSXIT_DOC_TYPE_DJDE    (ArcCSXitDocType) 0x4B
#define ARCCSXIT_DOC_TYPE_LINE    (ArcCSXitDocType) 0x4C
#define ARCCSXIT_DOC_TYPE_META    (ArcCSXitDocType) 0x4D
#define ARCCSXIT_DOC_TYPE_NONE    (ArcCSXitDocType) 0x4E
#define ARCCSXIT_DOC_TYPE_ODDOC   (ArcCSXitDocType) 0x4F
#define ARCCSXIT_DOC_TYPE_PCX     (ArcCSXitDocType) 0x50
#define ARCCSXIT_DOC_TYPE_PDF     (ArcCSXitDocType) 0x52
#define ARCCSXIT_DOC_TYPE_PNG     (ArcCSXitDocType) 0x51
#define ARCCSXIT_DOC_TYPE_SCS     (ArcCSXitDocType) 0x53
#define ARCCSXIT_DOC_TYPE_SCS_EXT (ArcCSXitDocType) 0x58
#define ARCCSXIT_DOC_TYPE_TIFF    (ArcCSXitDocType) 0x54
#define ARCCSXIT_DOC_TYPE_USRDEF  (ArcCSXitDocType) 0x55
```
typedef ArcU8 ArcCSXitDocFormat;
#define ARCCSXIT_DOC_FORMAT_FIXED (ArcCSXitDocFormat) 0x00
#define ARCCSXIT_DOC_FORMAT_VARIABLE (ArcCSXitDocFormat) 0x01
#define ARCCSXIT_DOC_FORMAT_STREAM (ArcCSXitDocFormat) 0x02

typedef ArcU8 ArcCSXitCarCtl;
#define ARCCSXIT_CC_ANSI    (ArcCSXitCarCtl) 'A'
#define ARCCSXIT_CC_MACHINE (ArcCSXitCarCtl) 'M'
#define ARCCSXIT_CC_NONE    (ArcCSXitCarCtl) 'N'

typedef ArcU8 ArcCSXitPrMode;
#define ARCCSXIT_PRMODE_NONE   (ArcCSXitPrMode) 'N'
#define ARCCSXIT_PRMODE_SOSI1  (ArcCSXitPrMode) '1'
#define ARCCSXIT_PRMODE_SOSI2  (ArcCSXitPrMode) '2'
#define ARCCSXIT_PRMODE_SOSI3  (ArcCSXitPrMode) '3'

typedef struct _ArcCSXitAppl
{
    char *name;
    ArcI32 aid;
    ArcCSXitDocType doc_type;
    ArcCSXitDocFormat doc_fmt; /* Document Format for Linedata */
    union
    {
        ArcI32 fixed; /* Fixed - Record Length */
        char stream;
    } u;
    ArcU8 trc_present; /* 0 = no, 1 = yes */
    ArcI32 line_count; /* Lines per page for line data */
    ArcI32 code_page;  /* Code Page for line data */
    ArcCSXitCarCtl cc_type; /* CC type for line data */
    ArcCSXitPrMode prmode; /* PRMode for line data */
} ArcCSXitAppl;

typedef struct _ArcCSXitApplU
{
    ArcChar *name;
    ArcI32 aid;
    ArcCSXitDocType doc_type;
    ArcCSXitDocFormat doc_fmt; /* Document Format for Linedata */
    union
    {
        ArcI32 fixed; /* Fixed - Record Length */
        char stream;
    } u;
    ArcU8 trc_present; /* 0 = no, 1 = yes */
    ArcI32 line_count; /* Lines per page for line data */
    ArcI32 code_page; /* Code Page for line data */
    ArcCSXitCarCtl cc_type; /* CC type for line data */
    ArcCSXitPrMode prmode; /* PRMode for line data */
} ArcCSXitApplU;

typedef ArcU8 ArcCSXitFieldType;
#define ARCCSXIT_FIELD_TYPE_BIGINT     (ArcCSXitFieldType) 0x42
#define ARCCSXIT_FIELD_TYPE_DATE       (ArcCSXitFieldType) 0x61
#define ARCCSXIT_FIELD_TYPE_DATETIME   (ArcCSXitFieldType) 0x62
#define ARCCSXIT_FIELD_TYPE_DECFLOAT16 (ArcCSXitFieldType) 0x38
#define ARCCSXIT_FIELD_TYPE_DECFLOAT34 (ArcCSXitFieldType) 0x39
#define ARCCSXIT_FIELD_TYPE_DECIMAL    (ArcCSXitFieldType) 0x44
#define ARCCSXIT_FIELD_TYPE_INTEGER (ArcCSXitFieldType) 0x49
#define ARCCSXIT_FIELD_TYPE_SMALLINT (ArcCSXitFieldType) 0x4E
#define ARCCSXIT_FIELD_TYPE_STRING (ArcCSXitFieldType) 0x53

typedef ArcU8 ArcCSXitFieldTypeQual;
#define ARCCSXIT_FIELD_TYPE_QUAL_BASE (ArcCSXitFieldTypeQual) 0x42
#define ARCCSXIT_FIELD_TYPE_QUAL_DATETIME (ArcCSXitFieldTypeQual) 0x43
#define ARCCSXIT_FIELD_TYPE_QUAL_DATE (ArcCSXitFieldTypeQual) 0x44
#define ARCCSXIT_FIELD_TYPE_QUAL_TIME (ArcCSXitFieldTypeQual) 0x54
#define ARCCSXIT_FIELD_TYPE_QUAL_TZ_DATETIME (ArcCSXitFieldTypeQual) 0x5A

typedef struct _ArcCSXitField
{
    char                  *db_name;
    ArcCSXitFieldType     type;
    ArcCSXitFieldTypeQual qual;
    union
    {
        ArcI16        n;
        ArcI32        i;
        ArcI64        b;
        double        d;
        char          *str;
        ArcDateTime   dt;
        ArcDecimal64  d64;
        ArcDecimal128 d128;
    } u;
} ArcCSXitField;

typedef struct _ArcCSXitFieldU
{
    ArcChar               *db_name;
    ArcCSXitFieldType     type;
    ArcCSXitFieldTypeQual qual;
    union
    {
        ArcI16        n;
        ArcI32        i;
        ArcI64        b;
        double        d;
        ArcChar       *str;
        ArcDateTime   dt;
        ArcDecimal64  d64;
        ArcDecimal128 d128;
    } u;
} ArcCSXitFieldU;

typedef struct _ArcCSXitDocFields
{
    ArcI32        flds_num;
    ArcCSXitField *flds;
} ArcCSXitDocFields;

#define ARCCSXIT_DOCNAME_SIZE 11

typedef struct _ArcCSXitDocHandle
{
    char    name[ARCCSXIT_DOCNAME_SIZE + 1];
    ArcU32   doc_off;
    ArcU32   doc_len;
}
From the previous example, the *ArcCSXitApplGroup* structure consists of the application group name, the application group identifier (agid), and the AGID name (agid_name). This information is important because it indicates the input to the functions. There are structures that are specific to a function itself that are also included in the header file.

In the following sections, we examine each exit and describe its usage and functionality.

### 11.5.2 Load exit

The load exit is used to send a notification after a document is loaded. The header file in Example 11-10 shows the information that can be incorporated into the notification message.

**Example 11-10  Header file of the load exit**

```c
typedef struct _ArsCSXitLoadExit
{
    char              *hostname;   /* OnDemand Library Server Hostname */
    char              *load_id;    /* Load Id */
    ArcU32            deprecated;  /* was bytes. Use report_bytes */
    ArcU32            res_bytes;  /* Number of resource bytes stored */
    ArcCSXitApplGroup *appl_grp;  /* Application Group Info */
    ArcCSXitAppl      *appl;       /* Application Info */
    char              *file;       /* File containing all rows */
    char              *user_def;   /* User Specified string to load */
    ArcCSXitField     *reference;  /* Reference column defined for ODF */
    char              *file_l;     /* File containing rows in non-UTF8 */
    ArcU32            cp;          /* codepage file_l is in */
    void              **hndl;      /* pointer to anchor for arsuload */
    char              ColDelim;    /* Character used to delimit columns*/
    ArcI64            report_bytes; /* Number of bytes in report */
    char              *instance;   /* OD Instance name */
} ArsCSXitLoadExit;
```
You can use the sample exits program to insert the action that you prefer. The input to the program is in the structure `ArsCSXitLoadExit`. This structure contains the load information, such as the load identifier and the application group name. Based on the load information, you decide whether to send a notification, to whom to send the notification, and the type of information you want to provide when loading is successful.

### Activating the load exit

To activate the exits, place the compiled exit program `arsuload` in the `bin/exits` directory of the Content Manager OnDemand installation root.

### Client retrieval preview exit

The client retrieval preview user exit allows for the modification of document data before the data is presented to a client. It is called during the retrieval of a document.

You can use the client retrieval preview exit to add, remove, or reformat data before the document is presented to the client. For example:

- You can remove pages from the document, such as banner pages, title pages, or all pages except for the summary page.
- You can remove specific words, columns of data, or other information from the document, that is, you omit (“white out”) sensitive information, such as salaries, social security numbers, and birth dates.
- You can add information to the document, for example, a summary page, data analysis information, and Confidential or Copy statements.
- You can reformat data that is contained in the document. For example, you can reorder the columns of data.

The client retrieval preview exit point might be enabled for specific applications. However, to enable the client retrieval preview exit for a specific application, ensure that the Use Preview Exit option is selected on the Miscellaneous Options page of the application.

The input to the exit program is captured when the user tries to retrieve the document. Based on the input, such as application group name and the indexes, you can then use your program to create an output file with the name from `pOutFileName`.

Example 11-11 shows the header file of the client retrieval preview exit.

### Example 11-11   Header file of client retrieval preview exit

```c
/__________________________________________________________________________/
/*     PREPEXIT - Client Retrieval Preview Exit                             */
/*     *                                                               */
/*     This exit is used to modify the contents of a document prior      */
/*     retrieving the document                                        */
/*     *                                                               */
/*     INPUT:                                                        */
/*     *                                                               */
/*     pInFileName                                                      */
/*     *                                                               */
/*     pOutFileName                                                     */
/*     *                                                               */
/*     pUserParms                                                       */
/*     *                                                               */
/*     pApplGrp                                                         */
```
typedef struct _ArsCSXitPrepExit {
    char               *pUserid;     /* Logged on userid */
    char               *pInFileName; /* File name for document data */
    char               OutFileName[ARCCSXIT_PATH_MAX + 1]; /* File name for modified data */
    char               *pUserParms;  /* User defined parms from appl */
    ArcCSXitApplGroup  *pApplGrp;    /* Appl Grp info */
    ArcCSXitAppl       *pAppl;       /* Application info */
    ArcCSXitDoc        *pDoc;        /* Doc handle, field info */
    char               *instance;    /* OD Instance name */
} ArsCSXitPrepExit;

ArcI32
ARSCSXIT_EXPORT
ARSCSXIT_API
PREPEXIT( ArsCSXitPrepExit *prep );

For example, you can arrange it so that when a user retrieves a document from a particular application group, you can check the name of the account number (the indexes from the Doc handle) and place a watermark for that document. When the document is retrieved by the user, the user sees the document with the watermark.

**Activating the client retrieval preview exit**

To activate the client retrieval preview exit, select the Use Preview Exit option on the Miscellaneous Options page of an application and place the exit in the bin/exits directory of the Content Manager OnDemand installation root. When the option is selected, the user-written program is called any time that a request is made to retrieve a document.

Any information that is specified in the Parameters field is passed to the user-written program. Place the arsuprep program in the bin/exits directory.

The client retrieval preview user exit can be enabled for all data types, except for None.

For more information, see *IBM Content Manager OnDemand for Multiplatforms - Installation and Configuration Guide*, SC18-9232.

**11.5.3 Report specifications archive definition exit**

The Content Manager OnDemand report specifications archive definition exit allows an installation to change some of the parameters that are used by Content Manager OnDemand when document data is loaded by the ARSLOAD program. ARSUUPDT is a DLL module that is written in the C programming language.
The first call modifies the names process for parameters, such as application group, application, object server, storage node, DB field date format, and DB field name. The second call modifies the indexing parameters and input file parameters. Example 11-12 shows the header file of the Report specifications archive definition exit.

Example 11-12  Header file of the report specification archive definition exit

```c
/*******************************************************************************
/* UPDTEXIT - Report Definition Update Exit                                  */
/*                                                                            */
/*  This exit is for specialized applications and is not normally            */
/*  used.                                                                     */
/*                                                                            */
/* INPUT:                                                                    */
/*        pFileName                                                          */
/*        Function                                                          */
/*        ApplGrpName                                                       */
/*        ApplName                                                          */
/*        ObjServer                                                         */
/*        StorageNode                                                       */
/*        pJES                                                               */
/*        IndexerParms                                                      */
/*        CCType                                                            */
/*        LRECL                                                             */
/*        RECFM                                                            */
/*        Delim                                                            */
/*        instance                                                        */
/*                                                                            */
/* OUTPUT:                                                                   */
/*        ApplGrpName                                                       */
/*        ApplName                                                          */
/*        ObjServer                                                         */
/*        StorageNode                                                       */
/*        IndexerParms                                                      */
/*        CCType                                                            */
/*        LRECL                                                             */
/*        RECFM                                                            */
/*        Delim                                                            */
/*        DbFieldName                                                      */
/*        DbFieldDateFormat                                                */
/*                                                                            */
/* RETURN_CODE:                                                             */
/*        0         -> Successful                                           */
/*        Otherwise -> Failed                                              */
/*                                                                            */
/*******************************************************************************/
#if defined(OS390)
typedef struct _ArsCSXitUpdtExit_JES
{
    void *JES_SSS2p; /* pointer to SSS2 (SAPI SS08 ext) */
    char JES_DDÝ8¨;  /* DD name allocated to spool file */
} ArsCSXitUpdtExit_JES;
#endif

typedef struct _ArsCSXitUpdtExit
{
    char              *pFileName;
    ArcI32            Function;
```

char            ApplGrpName[ARCCSXIT_MAX_NAME_SIZE + 1];
char            ApplName[ARCCSXIT_MAX_NAME_SIZE + 1];
char            ObjServer[ARCCSXIT_MAX_SERVER_SIZE + 1];
char            StorageNode[ARCCSXIT_MAX_NAME_SIZE + 1];
void            *pJES;
char            IndexerParms[ARCCSXIT_MAX_INDEXER_SIZE + 1];
ArcCSXitCarCtl  CCType;
ArcI32          LRECL;
ArcCSXitDocFormat    RECFM;
ArcI32          UpdateAppl;
char            Delim[ARCCSXIT_MAX_DELIMITER_SIZE + 1];
char            *instance;
char            DbFieldName[ARCCSXIT_MAX_DBCOL_NAME_SIZE + 1];
char            DbFieldDateFormat[ARCCSXIT_MAX_DATEFMT_SIZE + 1];
} ArsCSXitUpdtExit;

typedef struct _ArsCSXitUpdtExitU
{
    ArcChar           *pFileName;
    ArcI32            Function;
    ArcChar           ApplGrpName[ARCCSXIT_MAX_NAME_SIZE + 1];
    ArcChar           ApplName[ARCCSXIT_MAX_NAME_SIZE + 1];
    ArcChar           ObjServer[ARCCSXIT_MAX_SERVER_SIZE + 1];
    ArcChar           StorageNode[ARCCSXIT_MAX_NAME_SIZE + 1];
    void              *pJES;
    ArcChar           IndexerParms[ARCCSXIT_MAX_INDEXER_SIZE + 1];
    ArcCSXitCarCtl    CCType;
    ArcI32          LRECL;
    ArcCSXitDocFormat    RECFM;
    ArcI32          UpdateAppl;
    ArcChar           Delim[ARCCSXIT_MAX_DELIMITER_SIZE + 1];
    ArcChar           *instance;
    ArcChar           DbFieldName[ARCCSXIT_MAX_DBCOL_NAME_SIZE + 1];
    ArcChar           DbFieldDateFormat[ARCCSXIT_MAX_DATEFMT_SIZE + 1];
} ArsCSXitUpdtExitU;

ArcI32
ARCSXIT_EXPORT
ARCSXIT_API
UPDTEXIT( ArsCSXitUpdtExit *updt );

Activating the report specifications archive definition exit
The report specifications archive definition exit is implemented by a single DLL, ARSUUPDT. ARSUUPDT is a DLL module that is written in the C programming language. The samples that are shipped (ARSUUPDT and ARSUUPDC) initialize the ARSUUPD structure and call the ARSUUPDX ARS.RSADUPDT exit driver.

The ARSUUPDT DLL invokes module ARSUUPDX. Module ARSUUPDX interfaces with the MVS Dynamic Exit Facility to perform the following actions:

- Define the logical exit point name: ARS.RSADUPDT.
- Route control to a set of MVS associated exit routines and process the results of their execution.

Module ARSUUPDZ is implemented as an MVS associated dynamic exit routine. An exit routine is eligible for execution after it becomes associated with the logical exit point. The MVS Dynamic Exit Facility provides several methods for performing this association.
When the exit routine is assembled and link-edited to a library, it must be associated with the exit in one of two ways:

- Use the exit statement in PROGXX parmlib member. For more information about the PROGXX parmlib member, see z/OS MVS Initialization and Tuning Reference, SA22-7592.
- Use the SETPROG EXIT operator command. For more information about the SETPROG EXIT command, see z/OS MVS System Commands, SA22-7627.

Use the following command to activate the exit routine and associate ARSUUPDZ with the logical exit point name. (The example assumes that ARSUUPDZ can be found in the LPA or an LNKLST dataset.)

SETPROG EXIT,ADD,EXITNAME=ARS.RSADUPDT,MODNAME=ARSUUPDZ

Enabling the report specifications archive definition exit

To enable the exit in Content Manager OnDemand, run the ARSLOAD program with the -E parameter.

**Note:** The -E parameter must be specified in uppercase.

For more information about the report specifications archive definition exit routines, see Chapter 40, “Report specifications archive definition exit”, in Content Manager OnDemand for z/OS Configuration Guide, SC19-3363.

### 11.5.4 table space creation exit

The Content Manager OnDemand table space creation exit allows an installation to take action when Content Manager OnDemand creates a table space, table, or index tables that are used to store application index data. The exit is not called for the Content Manager OnDemand system tables. The table space creation exit is used to modify the way Content Manager OnDemand creates table spaces, tables, or indexes. For table and index creation, the installation can alter the SQL that is used to create the table or index.

You can also use this exit to perform other actions during a table space creation. This is useful if you must change default parameters for the table space, the table, or the indexes. The changes affect only new creations. Example 11-13 shows the header file of the table space creation exit.

**Example 11-13  Header file for the table space create exit**

```c
/******************************************************************************/
/* TBLSPCRT - table space Create Exit                                       */
/*                                                                          */
/*  To activate the table space creation exit, set the following            */
/*  variable in the appropriate OnDemand instance ars.cfg file:             */
/*                                                                          */
/*  ARS_DB_TABLESPACE_USEREXIT=<absolute_dll_path_name>                     */
/*                                                                          */
/* INPUT: appl_grp                                                          */
/*  tblsp_name                                                              */
/*  table_name                                                              */
/*  idx_name                                                                */
/*  sql (allocated with 16384 bytes)                                        */
/*  action                                                                 */
/*  instance                                                               */
/*                                                                          */
```
1) OnDemand will invoke the exit with action == 1 so that the exit can create the table space (tblsp_name) using (sql) *created -> 0 exit did not create the table space, OnDemand needs to create the table space using (sql), which can be left unchanged or modified by the exit *created -> 1 exit created the table space

2) OnDemand will then invoke the exit with action == 2 so that the exit can create the table (table_name) inside of the table space (tblsp_name) using (sql) *created -> 0 exit did not create the table, OnDemand needs to create the table using (sql), which can be left unchanged or modified by the exit *created -> 1 exit created the table

3) OnDemand will then invoke the exit with action == 3 so that the exit can create the table indexes (idx_name) inside of the table space (tblsp_name) for table (table_name) using (sql). This will be invoked based on the number of indexes to create for the appl_grp *created -> 0 exit did not create the index, OnDemand needs to create the index using (sql), which can be left unchanged or modified by the exit *created -> 1 exit created the index

4) OnDemand will then invoke the exit with action == 4 so that the exit can perform any additional work *created -> Is not used sql -> If sql is not an empty string, OnDemand will issue (sql) to the database

If ARS_DB_TABLESPACE_USEREXIT_EXTRA=1 is defined in ars.cfg, then the following actions will also be invoked when OnDemand needs to do further actions:

5) OnDemand will invoke the exit with action == 5 so that the exit can drop the table space (tblsp_name) using (sql) *created -> 0 exit did not drop the table space, OnDemand needs to drop the table space using (sql), which can be left unchanged or modified by the exit *created -> 1 exit dropped the table space

6) OnDemand will invoke the exit with action == 6 so that the exit can drop the table (table_name) using (sql) when OnDemand needs to drop a table *created -> 0 exit did not drop the table, OnDemand needs to drop the table using (sql), which can be left unchanged or modified by the exit *created -> 1 exit dropped the table

7) OnDemand will invoke the exit with action == 7
You can use SQL code to customize the following actions:

- Creating a table space
- Creating a table
- Creating an index
- Other additional action

If you do not customize the action, Content Manager OnDemand uses the defaults.

Example 11-14 shows a sample program flow.

Example 11-14  Sample program flow

Action 1
Is there a need to customize the creation of the table space?
   If yes
      create the tablesce
      return( created = 1)
   Else
      OnDemand create the tablesce
      return( created = 0)

Action 2
Is there a need to customize the creation of the table?
create the table (in the tablespace)
return( created = 1 )
Else
OnDemand create the table
return( created = 0 )

Action 3
Is there a need to customize the creation of the indexes?
If yes
create the indexes
return( created = 1 )
Else
OnDemand create the indexes
return( created = 0 )

Action 4
Final call, is there additional work, clean up or update on parameters?
If yes
perform the additional action.
return( created = not used )
Else
OnDemand do nothing
return( created = not used )

Activating the table space creation exit
The exit is turned on by setting the following parameter in the ARS.CFG file, which is in the config directory of the Content Manager OnDemand installation root.

The following statement must exist in the ARS.CFG file that is associated with the instance so that the ARSUTBL DLL can be invoked:
ARS_DB_TABLESPACE_USEREXIT=absolute path name

Where “absolute path name = ... /bin/exits/arsutbl”

For more information about the table space creation exit, see IBM Content Manager OnDemand for Multiplatforms - Installation and Configuration Guide, SC18-9232.

11.5.5 ARSYSPIN and sample APKACIF exit on z/OS
The JES Spool Capture facility ARSYSPIN and the sample APKACIF exit are provided on z/OS. ARSYSPIN provides a means to collect and consolidate the JES spool (SYSOUT) dataset into one or more files so they can be archived by Content Manager OnDemand. The facility runs as a started task in its own address space. A control statement file is used to provide ARSYSPIN parameters. These parameters specify JES Spool file selection criteria (for example, the sysout class that is taken for capture output) and other operational characteristics.

ARSYSPIN creates an intermediate output file that contains one or more spool files from one or more jobs. The intermediate output file is indexed and stored in Content Manager OnDemand using the ARSLOAD program. ARSYSPIN invokes ARSLOAD when sufficient data is captured in the intermediate output file. ARSLOAD calls the indexer program (APKACIF) to extract the index values from the data and store them in an index file. ARSLOAD adds these index values to the database and stores the data object. If you want, you can use ARSYSPIN exits to augment the data stream.
In particular, the **ARSYPIN** Input Exit (UX03) and Separator Exit (UX06) provide substantially more information about the job that produced the spool file being processed than what is available at the time when **APKACIF** (or another indexer program) is driven by Content Manager OnDemand. In addition, the processing impact of driving **ARSYPIN** exit routines is lower than that associated with indexer exit routines, **ARSSPVIN**.

**ARSSPVIN** is a sample **APKACIF** input exit that is provided with **ARSYPIN** to introduce additional index values into the data stream, using a “trailer” record. Trailer records are inserted at the end of the JESMSGSLG data, and reflect the highest severity condition (this can be a step completion code, an ABEND code, or other type of problem, such as a JCL error) that is observed in messages that are contained within these spool files.

**Special considerations for APKACIF exits written in COBOL**

The provided sample exit is written as a COBOL main program. To prevent the IBM Language Environment® from creating and destroying the COBOL runtime environment each time **ARSSPVIN** is called, a CEEUOPT CSECT must be assembled and link-edited with the COBOL object code.

Constructing a CEEUOPT CSECT is documented in *z/OS Language Environment Customization*, SA22-7564. A sample CEEUOPT CSECT is included in dataset CEE.SCEESAMP(CEEUOPT). You can use this sample as a model, but you must be sure that the following option is specified:

```c
RTEREUS=(ON)
```

CEEUOPT CSECT must be assembled and link-edited with the COBOL object code. In addition, you must be sure that the resulting module is link-edited as NOT RE-ENTRANT and NOT REUSEABLE. This is required to allow the local variables within the COBOL exit code to retain their values. This exit is invoked several times during an ACIF run. The sample source code can be found in the SARSINST library member ARSSPVIN. Example 11-15 shows a sample CEEUOPT CSECT.

**Example 11-15  CEEUOPT CSECT**

```c
CEEUOPT CSECT ,
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
CEEOPT
ABPERC=(NONE) , +
ABTERMENC=(ABEND) , +
AIXBLD=(OFF) , +
ALL31=(ON) , +
ANYHEAP=(16K , 8K , ANYWHERE , FREE) , +
BELOWHEAP=(8K , 4K , FREE) , +
CBLOPTS=(ON) , +
CBLPSHPOP=(ON) , +
CBLQDA=(OFF) , +
CEEDUMP=(60 , SYSOUT=* , FREE=END , SPIN=UNALLOC) , +
CHECK=(ON) , +
COUNTRY=(US) , +
DEBUG=(OFF) , +
DEPTHCONDLMT=(10) , +
DYNDUMP=("USERID , NODYNAMIC , TDUMP") , +
ENVAR=('') , +
ERRCOUNT=(0) , +
ERRUNIT=(6) , +
FILEHIST=(ON) , +
FILETAG=(NOAUCVT , NOAUTOTAG) , +
HEAP=(32K , 32K , ANYWHERE , KEEP , 8K , 4K) , +
```
Activating the exit

To activate the exit, you must add the executable file to a loadlib in the Steplib (ARSLOAD) procedure. You must also supply the ACIF control statement INPEXIT = ARSSPVIN to the indexing parameters. You can do this task when you add an application in the Indexer Information window.

Complete the following steps:

1. Open the Add an Application window and click the Indexer Information tab, as shown in Figure 11-3.
2. Click **Modify**.

3. Click the **Exit Information** tab, as shown in Figure 11-4.

4. In the Input Records field, enter the name of the exit.

5. Click **OK**.

The exit is added to your indexing parameters.
Editing the indexer parameters

Figure 11-5 shows the Edit Indexer Parameters window.

```
CCTYPE=A
CFGID=580
USERLIB=ACIF.V4R3MO.SAPKULIB
FIELD1 = 0.9.3
FIELD2 = 1.50.32
FIELD3 = 3.23.8
FORMDEF = P1A18D1
IMAGEOUT = ASIS
INDEX1 = 'REPORT NUMBER',FIELD1
INDEX2 = 'REPORT TITLE',FIELD2
INDEX3 = 'DATE',FIELD3
INDEXOBJ= ALL
PAGEDEF = P1A18D
RESTYPE = SEQ
RESTYLE = ALL
TRIGGER1 = .1.'I'
TRIGGER2 = 0.'UPDATE'
INPEXIT=ARSSPVIN (-------UPDATE!!!
/* Test */
```

Figure 11-5  Edit Exit Information

If you have an existing application, edit your indexing parameters and add the following line, as in shown in Figure 11-5:

```
INPEXIT=ARSSPVIN
```

For more information about activating this exit, see Content Manager OnDemand for z/OS Version 9.0 Administration Guide, SC19-3364.
Part 3

Advanced system concepts and design

This part contains the following chapters:

- Chapter 12, “Scalability, reliability, and availability architectures” on page 275
- Chapter 13, “Performance” on page 287
Chapter 12. Scalability, reliability, and availability architectures

IBM Content Manager OnDemand (Content Manager OnDemand) is a lightweight process, that is, the Content Manager OnDemand code itself does not require extensive system resources to perform the functions that are required of it. Content Manager OnDemand installations scale to handle both large quantities of data and many users. The total quantity of data being stored or retrieved at any one time is the main contributor to the resource consumption on the server. This chapter focuses on the scalability, reliability, and availability of Content Manager OnDemand systems.

In this chapter, we cover the following topics:

- Scalability, reliability, and availability defined
- Scaling a Content Manager OnDemand system
- High availability
12.1 Scalability, reliability, and availability defined

This section defines scalability, reliability, and availability and how they pertain to a Content Manager OnDemand system.

Scalability
Scalability is the ability of a Content Manager OnDemand system to handle a growing amount of work with no degradation in performance. A Content Manager OnDemand system's performance improves with the addition of hardware and network resources and is thus deemed to be a scalable system. There are two types of scalability:

- **Horizontal scalability** (or scale out): This is achieved by adding more nodes, systems, or LPARs to a Content Manager OnDemand instance. An example of horizontal scalability is adding more object servers to a Content Manager OnDemand instance.
- **Vertical scalability** (or scale up): This is achieved by adding more resources to a single node in a Content Manager OnDemand instance. Typically, this involves faster processors, more processors, memory, disks, or networking hardware.

Content Manager OnDemand is both horizontally and vertically scalable.

Reliability
Reliability is the ability of Content Manager OnDemand to perform and maintain functionality during regular workloads and during peak workloads. Peak workloads might occur regularly (for example, when everyone signs on at 9:00 a.m.) or periodically (at the end of the month when more processing than usual occurs) or sporadically (for example, when a special event occurs, such as a sales drive that results in more users using the system).

Availability
Availability is a measure of the time that a Content Manager OnDemand server or process is functioning normally, and a measure of the time that the recovery process requires after a component failure. It is the downtime (unavailability) that defines system availability. Availability is the amount of system uptime when the system is fully functional and accessible by all users.

Availability requires that the system provides some degree of redundancy to eliminate single points of failure (SPOF). The greater the redundancy that is provided, the higher the availability of the system. A single physical machine is still a single point of failure. For this reason, a high availability system topology typically involves horizontal scaling and redundancy across multiple machines.

High availability
High availability implies that no human intervention is needed to restore operation if there is a failure or outage. A highly available system has an availability limit of at least 99%, which allows for an average of 15 minutes per day to perform maintenance tasks (during which period the system is inaccessible to users). The degree of high availability that is achieved is a function of the amount of redundancy within the system and the degree to which this redundancy is automatically enabled. There are basically two redundancy techniques:

- **Passive redundancy**: This redundancy is achieved by including enough excess capacity in the design to accommodate a performance decline, such as two Content Manager OnDemand servers (known as ARSSOCKD on z/OS and Multiplatforms) accessing the same system tables and archive. If one server fails, then the other server is available to take on the workload.
Active redundancy: This redundancy is used to achieve high availability with no performance decline. In this case, at least double the required resources are allocated to the Content Manager OnDemand system. For example, if the peak workload requires 1.5 Content Manager OnDemand servers, then three Content Manager OnDemand servers are configured to work in parallel. If one of the servers fails, then the other two servers can take on the full workload with no performance degradation.

Systems typically become unavailable because of the lack of one or more of the following activities:

- Change control procedures (a failure to implement the appropriate procedures from installation verification through performance testing before placing the system into production).
- Monitoring of production system components (including total system workload, hardware, and network issues).
- Implementing high availability solutions (redundant systems and network connections).
- A comprehensive backup (and restore) process that is tested on a routine basis.

There is a cost to implementing highly available high performance systems. This cost must be weighed against the cost of not implementing such systems.

The following sections provide more information about example system implementations that allow for high performance, scalability, reliability, and availability.

### 12.2 Scaling a Content Manager OnDemand system

A Content Manager OnDemand instance can be scaled from a single system image that performs all of the required tasks (data loading, library storage, and object storage) to a multiple system / multiple logical partition (LPAR) configuration, allowing for higher levels of performance and availability. When a Content Manager OnDemand instance is distributed among multiple systems, these systems might be of the following configurations:

- Single technology systems: The Content Manager OnDemand instance consists of systems that are of the same architecture. For example, all systems might be AIX systems.
- Multiple technology systems: The Content Manager OnDemand instance might consist of systems of different architectures. For example, the library server and an object server might be on a z/OS system, two other object servers might be on AIX systems, and another object server might be on a Windows system.

In both of these scenarios, the configuration results in a single Content Manager OnDemand instance view from both the administrative and user perspectives.

This flexibility and scalability allows Content Manager OnDemand systems to be configured so that they meet a wide range of both workload and operational requirements.

Examples of these configurations are illustrated in the figures in this section. These figures are only a sample of the possible configurations that are used to illustrate the basic scalability features.

Figure 12-1 illustrates a single Content Manager OnDemand instance. In this figure, the Content Manager OnDemand server supports the library server, one or more object servers, and one or more load processes. The following sections provide examples of how the Content Manager OnDemand server can be scaled both vertically and horizontally.
12.2.1 Vertical scalability

You can scale Content Manager OnDemand vertically by expanding the system, using a larger system, through application design, or through parallel archive access.

**Expanding the system**

Content Manager OnDemand is vertically scalable if the system that it is running on is scalable. Vertical scalability is achieved by adding more hardware to the system. This might be in the form of faster processors, more processors, memory, disks, I/O, or network capacity.

The limit to the amount of possible vertical scalability is the architectural hardware constraints of the system. For example, if the system supports only 24 GB of memory, then that memory limitation can be overcome only by buying a larger system.

**Using a larger system**

You can scale a Content Manager OnDemand system vertically using a larger system in one of two ways:

- Installing a larger system within the same family and architecture. For example, moving from an entry level AIX system to an enterprise level AIX system.
- Installing a larger system from a different architecture and family. For example, moving a Content Manager OnDemand server from a Windows system to an AIX system.

**Application design**

Modern computer systems contain multiple cores and are capable of multithreaded processing. Modern computer system operating systems allow for parallelism in operations. To take advantage of these hardware and software features, an application must be designed so that it can run in parallel at multiple levels. Content Manager OnDemand can take advantage of both.

At the process level, the Content Manager OnDemand server runs multiple processes:

- A library server
- One or more object servers
- One or more load jobs
- The expiration process

---

**Figure 12-1** Scalability - a single instance (simple client/server) setup
At the thread level:

- The library server is designed so that it is multithreaded and can service multiple incoming data requests on different threads and perform multiple database queries in parallel.
- The object server is also multithreaded. This allows multiple users to concurrently retrieve data from the Content Manager OnDemand archive.

**Parallel archive access**
When you access the Tivoli Storage Manager or OAM archives, a store or retrieve request is sent to the archive storage manager. The archive storage manager then either stores or retrieves the data and returns the result to the Content Manager OnDemand server. If this process is conducted in a serial fashion, then the archive storage access mechanism becomes a bottleneck at high transaction rates. To overcome this potential bottleneck, Content Manager OnDemand implements connection pooling to the storage archives.

Content Manager OnDemand maintains a pool of connections to the archive. When an archive store or retrieve request is received, an available connection from the pool is selected to perform the request. This allows for both faster access to the archive (by eliminating the start process each time a connection is requested) and for the parallel execution of the store or retrieve operations.

On IBM i, when accessing the ASM archives, connection pooling is not required for store requests. When a store request is made, ASM opens a connection and keeps it open until the data store request is complete. In addition, ASM allows aggregation of objects, sending fewer objects to storage media than otherwise is sent without aggregation.

On Multiplatforms and z/OS, it is also possible to aggregate documents that are loaded from ODWEK before storing them in the archive. The document is stored to cache where it is appended to the storage object until the object reaches the 10 MB (defined storage object size), at which point it is migrated to a storage manager, such as Tivoli Storage Manager. For more information about this topic, go to the following website:

http://www.ibm.com/support/docview.wss?uid=swg21587507

**12.2.2 Horizontal scalability: Library server**

Even though Content Manager OnDemand allows for a single library server per instance, this library server can be scaled horizontally. The library server is scaled horizontally using one or both of the following methods:

- The database tables (both the system and the application group) can be placed in different databases (z/OS) or different table spaces (Multiplatforms and z/OS) at the table level.
  
  Thus, each of these tables can scale to the maximum practical size that is supported by the database within the operational constraints of maintenance and performance. There is no Content Manager OnDemand imposed limitation.

- The application group data table design facilitates the following actions:
  - As many application groups can be created as are needed to support the required data to be archived.
  - Each application group can be segmented into multiple tables where the table segmentation is based on size.
  - Each of these application group data tables can be placed in a separate database (z/OS) or table space (Multiplatforms and z/OS).
12.2.3 Horizontal scalability: Multiple object servers

For Multiplatforms and z/OS, you can scale a Content Manager OnDemand system horizontally by using multiple object servers.

In the example that is shown in Figure 12-2, the Content Manager OnDemand system is horizontally scaled by placing the library server, object servers, and load processes on multiple systems.

This form of horizontal scalability provides better performance, reliability, and scalability by distributing the storage and retrieval workload over multiple systems.

From a Content Manager OnDemand perspective, there is no limit to the number of object and load process servers. Each of the servers can run to its maximum capacity. Operational limitations are imposed by the TCP network bandwidth that connects all the servers and by the available data center floor space. Both of these constraints can be reduced by placing multiple servers in a rack-mounted configuration.

In this example and all the following examples, from an external perspective this is a single Content Manager OnDemand instance. The fact that the system is composed of multiple distributed systems is transparent to both of the following groups:

- The Content Manager OnDemand administrator, who continues to administer the system through the Content Manager OnDemand Administrator Client as though it is a single physical system.
- The Content Manager OnDemand users, who continue to access the whole system through a single IP address (that of the library server) and from their perspective see only a single system.

12.2.4 Horizontal and vertical scalability: Storage manager

This form of horizontal scalability provides better performance, reliability, and scalability by distributing the storage and retrieval workload over multiple storage subsystems within each object server.

An object server controls the storage and retrieval of the archived data. The archived data is stored in a storage subsystem. The number and architecture of these subsystems can be scaled to the limitations of the subsystem. Each object server can support one or more storage subsystems and each storage subsystem can be composed of multiple storage devices, as shown in Figure 12-3.
Figure 12-3  Horizontal and vertical scaling - multiple storage managers

Each object server can have multiple storage subsystems of different types:

- **Cache**: The cache storage subsystem is controlled directly by the object server. Data is written and read directly from cache. Cache consists of one or more cache file systems. Each cache file system can be mounted on a different device in its own directory. Each device can be placed on its own independent I/O interface / channel. There is no Content Manager OnDemand imposed limit on the number of devices.

- **Tivoli Storage Manager**: Tivoli Storage Manager is an archive storage subsystem. The Content Manager OnDemand object server sends data to and requests data from Tivoli Storage Manager. Each Tivoli Storage Manager server can be installed on its own system (for example, an AIX server). The Content Manager OnDemand object server allows for the connection of multiple Tivoli Storage Manager servers. So, for example, if the Content Manager OnDemand object server is an AIX system and the data that is managed by that object server is stored in three Tivoli Storage Manager archives (all of which are AIX systems), then the total processing capacity for that object server is four AIX systems. Each of the AIX systems can be configured with as many processors, memory, disks, and I/O as needed, up to its architectural limitation. If more capacity is needed, then more Tivoli Storage Manager servers or object servers can be added.

- **Object Access Method (OAM)**: OAM is a z/OS-only archive storage subsystem. There is only one OAM archive per system. Scalability within the archive is achieved by increasing the number of storage groups. A z/OS system can grow by increasing the number of processors, memory, disks, and I/O. If more capacity is needed than can be provided by a single system, then z/OS allows for multiple systems to be connected in a parallel sysplex. All of these systems then can access the same OAM subsystem, thus providing unparalleled scalability, reliability, availability, and performance.

Both Tivoli Storage Manager and OAM provide hierarchical data management facilities. This allows data to be stored on different devices based on the age or predicted frequency of data access. For example, frequently accessed data might be placed on high speed disk and infrequently accessed data might be placed on tape. When the data is requested by a user, the location of the data is transparent to the user. The only perceived difference from a user perspective is the response time, which is mainly a factor of the type of device on which the data is stored. In this example, tape access is slower than disk access.
In summary, better performance is achieved by distributing storage and retrieval workload over multiple systems and multiple devices.

### 12.2.5 Horizontal scalability: Multiple logical partitions and systems

This scenario is similar to the multiple object server scenario where each object server is running on a separate system. In this case, the library server and one or more object servers are installed in separate logical partitions (LPARs) on one or more physical systems.

![Horizontal and vertical scaling - multiple LPARs](image)

This scenario is found in organizations that have large systems that are installed (such as AIX or z/OS) and have enough capacity available to support the Content Manager OnDemand workload that is required. One of the advantages of this configuration is that it is possible to control the priority of work and computer resource distribution to each of the LPARs, such as the number of processors or the processing priority (depending on the computer system / operating system architecture) that is allocated to each of the LPARs. So, for example, load jobs can be assigned a low priority during the day when the focus is on data retrieval and a high priority during the night when the focus is on data loading.

This setup supports horizontal scalability by using multiple technologies as appropriate. The main constraint is that clients must have access to all systems through TCP/IP.

### 12.2.6 Multiple server configuration rules

Here are a set of generalized rules to follow when configuring multiple Content Manager OnDemand servers. In all cases, refer to the appropriate Content Manager OnDemand documentation or contact Content Manager OnDemand Lab Services for additional guidance.

- Each Content Manager OnDemand server has its own set of configuration files.
- The parameters in all configuration files must be set so that all the servers are part of the same instance.
- The Content Manager OnDemand clients connect to the IP address listening port of the Content Manager OnDemand server (library server module).
- The documents are retrieved from the various object servers based on the location information that is returned by the library server. This is transparent to the client systems.
- Parallel load processes must have separate temp directories.
12.3 High availability

The concept of high availability roughly equates to a system and its data being available (accessible by users) almost all the time, 24 hours a day, 7 days a week, and 365 days a year. In truth, 100% availability is not a cost-effective reality today for most implementations; rather, it is a goal. The goal is to design and build systems that are highly available by minimizing both planned and unplanned outages that can be caused by single points of failure.

12.3.1 Redundant systems: All platforms

There are various techniques that are employed on all platforms that can achieve near high availability. These techniques are based on creating as much redundancy as possible within the system and the data they include.

- Preventing data loss: Employing various levels of RAID to store the data on disk.
- Duplicating the data: Creating near real-time copies of the data on backup devices that replace the online devices if they fail.
- Duplicate systems: A duplicate system (hardware, software, and data) is maintained (either locally or remotely), and when the main system fails, users are automatically directed to the duplicate system.
- Network redundancy: Creating multiple paths through the network so that if one path (or router) fails, the network continues to function.

All of these techniques work well and provide various levels of near real-time high availability based on the degree to which the redundant systems are created and are kept in active-standby mode.

12.3.2 Multiple LPAR sysplex: z/OS

The z/OS operating system has a high availability architecture that is built into it. A z/OS parallel sysplex is a tightly coupled cluster of independent z/OS systems that are connected
through a Internet Protocol network. A cluster is 2 - 32 independent systems that are locally or geographically dispersed. Communication between the z/OS systems in the sysplex is handled through the cross-system Coupling Facility (XCF). A z/OS parallel sysplex implementation provides the highest level of high availability in the industry.

Figure 12-6 illustrates a Content Manager OnDemand implementation of a two-system highly available z/OS sysplex system.

![Figure 12-6](scalability-parallel-sysplex-multiple-lpars-z-os.png)

Figure 12-6 illustrates an example of a two-system Content Manager OnDemand parallel sysplex implementation. z/OS system A contains a library server and an object server. These can be either combined in a single executable file (most common z/OS implementation) or separated into two executable files, in which case they are installed in separate LPARs. z/OS system B shows a multiple LPAR system with a combined library / object server that is installed in each of the LPARs.

Both of these systems (all LPARs and all instances of the Content Manager OnDemand server) access a single set of Content Manager OnDemand database tables through DB2 data sharing. They also access a single OAM archive system through an OAMPlex. Not shown in the figure is the access to a single JES spool and a shared file system (composed of a set of HFS or zFS file systems). The term “single” is used to imply that the same set of data is available to all systems concurrently. Each of these single systems is composed of highly redundant components and therefore do not represent a single point of failure.

The z/OS parallel sysplex technology enables the Content Manager OnDemand servers to share configuration files, database, JES, HFS, and archive. For performance reasons, all HFS read/write directories that are used for temporary storage of data are configured as being unique to each Content Manager OnDemand server.

From a client perspective, the “cluster” is a single IP address. Incoming client requests are received by the sysplex distributor / Work Load Manager (WLM). The WLM monitors the various systems in the parallel sysplex and selects the appropriate Content Manager
OnDemand server to forward the request to based on the current system workload and availability, such that the system that is more available (less busy) receives the request.

### 12.3.3 High availability: IBM i

IBM PowerHA® SystemMirror® for i is the integrated IBM storage-based clustering solution for high availability and disaster recovery. Data and applications are deployed into storage pools (called independent auxiliary storage pools (IASPs)). IASPs can be deployed by using either internal or external storage. At any time, the nodes in the cluster can switch roles and become either a primary or backup node. PowerHA SystemMirror can be used for on-demand role swap operations.

The IBM Power Systems™ Capacity BackUp (CBU) offerings support disaster recovery and high availability needs. The Capacity BackUp offerings recognize that true high availability or disaster recovery solutions require at least two systems. If one system is not available, the other one takes over. The CBU offering provides flexible and economic options for deploying business continuity operations.

In a high availability environment on IBM i, you might not want to replicate the following directories because OnDemand places only temporary data in them, and this data might occupy a large amount of space:

- Do not replicate the temporary IFS directories for your instances. For example, do not replicate `/QIBM/UserData/OnDemand/QUSROND/TMP` or `/QIBM/UserData/OnDemand/QUSROND/PRTTMP`, where QUSROND is your instance name.
- Do not replicate the home directory for the user storing data. For example, if JOHNDOE is the name of the user profile that stores data into Content Manager OnDemand, do not replicate `/home/JOHNDOE`.
- Do not replicate the `/tmp` directory.

### 12.3.4 Horizontal and vertical scalability summary

The architectural flexibility of Content Manager OnDemand (Figure 12-7) allows you to select the appropriate sized system based on your needs. A Content Manager OnDemand implementation can be scaled both vertically (by using larger and larger systems) and horizontally (by increasing the number of systems that are part of the Content Manager OnDemand instance).

![Figure 12-7 Horizontal and vertical scalability](image-url)

**Figure 12-7  Horizontal and vertical scalability**
A Content Manager OnDemand server can scale from a Windows server up to a cluster of z/OS systems. It is important to initially select an installation that meets the following requirements:

- Is appropriate for your current workload in terms of the following items:
  - Performance.
  - Reliability.
  - Availability.
  - Scalability.

- Can support your future growth requirements if you do the following tasks:
  - Increase the number of users that are accessing the system.
  - Increase the quantities of data that is stored in the system.

Change the types of data that is archived or pre-processing requirements.
Performance

In this chapter, we describe the ways in which the various components within IBM Content Manager OnDemand (Content Manager OnDemand) might be configured or tuned to enhance performance. In most cases, it is not possible to give specific parameter values; however, we provide broad concepts and recommendations in areas where tuning for performance is possible.

In this chapter, we cover the following topics:

- Tuning Content Manager OnDemand to enhance performance
- Data loading performance
- Data retrieval performance
- Performance issues based on data type
13.1 Tuning Content Manager OnDemand to enhance performance

There are two components to performance: throughput and response time.

► Throughput: The number of transactions (Content Manager OnDemand requests) that can be satisfied per unit of time. The more transactions that are run per unit of time, the higher the throughput. Higher throughput implies that more users can be served concurrently and more load jobs can be run in parallel. If the throughput values are low, then the system might not be able to support the required number of users.

► Response time: The amount of time it takes to service a single transaction (Content Manager OnDemand request). Faster response times imply that the users are able to retrieve their data faster from the archive, which in turn leads to more satisfied users. If the response time is slow, then users are dissatisfied with the system.

A high performance system, such as Content Manager OnDemand, provides both high throughput and short response times.

The following sections describe the various components of a Content Manager OnDemand system and its architecture, and provide guidance about parameters and configurations that you can change to improve performance.

The ability to separate the object server from the library server has two main advantages:

► The ability to share workload by dedicating machines to individual tasks
► The ability to reduce the impact of retrieving a large piece of data over a network that is either slow or overloaded

13.1.1 Content Manager OnDemand configuration

How reports are defined, indexed, and stored within Content Manager OnDemand greatly influences the speed at which Content Manager OnDemand can retrieve them. There are various hints and tips for the optimum way of defining reports within Content Manager OnDemand that are described in Chapter 3, “Administration” on page 45.

13.1.2 System logging

Content Manager OnDemand system logging can be used for usage monitoring, chargeback, or troubleshooting. Because system logging involves writing all of the selected log messages to disk, you incur an increase in both resource usage and response time. Logging increases both the amount of processor that is used and the amount of I/O to disk. For this reason, select only the types of logging that you want performed for a particular application group. Depending on your system usage requirements, you might decide to perform any of the following tasks:

► Turn off all system logging.
► Record a minimal amount of information (only the information that is needed for reporting functions).
► Record all transactions.
► Record the log information to one or more external files using the System Log exit.
► Turn on system logging only while troubleshooting the system.
► Turn on system logging once every time period to sample the system usage patterns.
13.1.3 System management

For effective system management, set the appropriate value for **ARS_NUM_DBSRVR** and correct file systems for various Content Manager OnDemand components.

**ARS_NUM_DBSRVR**

The **ARS_NUM_DBSRVR** parameter is set in the `ars.cfg` file. This is the maximum number of threads that are concurrently opened between the Content Manager OnDemand library server and DB2. Typically, this is set to a number 4 - 30. This number must be large enough to support all of the concurrent database requests from all users / clients and Content Manager OnDemand commands and daemons, such as **ARSLOAD**, **ARSDOC**, **ARSDB**, **ARSMaint**, and **ARSADMIN**. This number must not exceed the number of DB2 batch connections (**MAXDBATS** for z/OS and **MAXAPPLS** for MP). The number of DB2 batch connections should be greater than the **ARS_NUM_DBSRVR** plus all the other connections that are required by all DB2 applications that you have defined in your DB2 configuration.

For systems that are running several large load jobs in parallel, or for systems that have large numbers of active users, increase this parameter from the default of 4.

**File systems on UNIX**

During the installation and setup of Content Manager OnDemand, one of the tasks is to create the file systems that are required to contain the various Content Manager OnDemand components.

For performance reasons, when the Content Manager OnDemand file systems are created, the following components *should not* be on the same physical media:

- The cache file system
- The database file system
- The primary logs file system
- The secondary logs file system
- The load / indexing file system
- The Content Manager OnDemand temporary space file system

13.1.4 Storage management

Regardless of the platforms, storage management with Content Manager OnDemand can be divided into two areas: cache storage that is managed by Content Manager OnDemand and archive media that is managed by an external product, such as Tivoli Storage Manager, object access method (OAM), Virtual Storage Access Method (VSAM), or Archive Storage Manager (ASM).

For effective storage management, one of the key performance features with Content Manager OnDemand is its ability to load data to archive media, but simultaneously retain a temporary cached copy of the most recent archived data on fast access media (such as the hard disk drive). The expiration and management of this cached copy of the data is done by Content Manager OnDemand. After a certain predefined period elapses, the data is removed from cache and the only remaining copy is held on the much slower archive media that is managed by either TSM, OAM, VSAM, or ASM, depending on the platform.

If performance problems are encountered at the storage manager level, the issue is almost always related to the inherent qualities of the slower media types (such as optical platters and tape volumes) or how the archive media manager is configured.
Some of the parameters that affect storage management are **ARS_NUM_OAMSRVR**, **ARS_NUM_OAMSRVR_SLOW_RETRIEVE**, and **ARS_OAM_SLOW_RETRIEVE_THRESHOLD**.

**ARS_NUM_OAMSRVR**

This parameter specifies the maximum number of concurrently attached threads between the Content Manager OnDemand object server and OAM for z/OS. Typically, this is set to a number 4 - 30, depending on client access patterns and object storage locations (disk versus tape). This parameter has a maximum value of 30. Any value larger than 30 result in a U0039 abend.

**ARS_NUM_OAMSRVR_SLOW_RETRIEVE**

This parameter determines the number of task control blocks (TCBs) that the Content Manager OnDemand server starts to handle connections to OAM for retrievals from objects with a slow retrieval time as defined by the **ARS_OAM_SLOW_RETRIEVE_THRESHOLD** parameter. The **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** parameter applies to all object servers. If the value specified for this parameter is zero, no TCBs are dedicated for slow retrievals and all retrievals are processed by the TCBs that are associated with the **ARS_NUM_OAMSRVR** parameter. The default is zero. The **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** TCBs are in addition to the **ARS_NUM_OAMSRVR** TCBs and use additional DB2 connections.

**ARS_OAM_SLOW_RETRIEVE_THRESHOLD**

This parameter specifies the threshold at which OAM retrievals are processed by the TCBs that are associated with the **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** parameter. If the estimated retrieval time for an object (as indicated by QELQERRT) is greater than or equal to the value of the **ARS_OAM_SLOW_RETRIEVE_THRESHOLD** parameter, the OSREQ RETRIEVE is processed by an **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** TCB. The default value is 12000. For other valid QELQERRT values, see the Object Access Method Application Programmer’s Reference, SC35-0425-08. An **ARS_OAM_SLOW_RETRIEVE_THRESHOLD** value of zero along with a non-zero **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** value causes all OAM retrieve requests to be processed by the **ARS_NUM_OAMSRVR_SLOW_RETRIEVE** TCBs, while the **ARS_NUM_OAMSRVR** TCBs process store, query, and delete requests.

### 13.2 Data loading performance

The data loading process is illustrated in Figure 13-1. The process begins with the Content Manager OnDemand Administrator Client defining the application group and application parameters for the reports to be loaded. These parameters are stored in the Content Manager OnDemand system tables on the library server.
During the load process, in addition to any command-line parameters that are supplied, the application group and application parameters are retrieved from the library server, and then, based on the parameter definitions, the load process completes the following steps:

1. Selects the indexer to be used for indexing the report data and retrieves the indexing parameters.
2. Reads in the report data from the identified source location. The input report data can be of any data type.
3. Indexes the report data based on the defined indexing parameters.
4. Segments the report into "documents".
5. Compresses the documents.
6. Stores the compressed documents in storage objects (10 MB by default).
7. Sends the storage objects to the object server where they are stored in the identified archive (storage node).
8. Sends the index data for the stored objects to the library server where the indexes are stored in the appropriate application group data table.

### 13.2.1 Factors that affect the load performance

There are many factors that affect load performance:

- **Hardware**: The quantity and speed of processors, disks, I/O channels, and memory
- **Network bandwidth and throughput**
- **The speed and capacity of the available hardware** (processors, memory, disks, network, and so on)
- Operating system tuning components: DB2, TCP/IP, and Language Environment
- Content Manager OnDemand tunable components
- Storage management tunable components: UNIX System Services, zFS, HFS, OAM, Tivoli Storage Manager, and ASM
- Data components:
  - Report file size, document file size (or in the case of large objects, report segment size), and number of documents per report.
  - Number and distribution of triggers, fields, and indexes per document.
  - Data type and required data conversion (if any).
  - Resource collection for AFP and PDF.
  - Document compressibility, which is a function of document data complexity and data type. Text (such as Line Data or SCS) is typically more compressible than AFP, which is typically more compressible than PDF.
  - Storage object size (10 MB default): Contains 100 KB compressed object, which contains a compressed document.
  - Exit routines/programs.

### 13.2.2 Recommendations

For the most optimal performance in loading, we recommend the following practices:

- For Multiplatforms and z/OS, run parallel load jobs to take advantage of multi-processors, large memory pools, multiple data paths, and multiple disk drives.
- Ensure that each parallel load is loading to a different application group.
- Ensure that you set up a different temp directory for each of the parallel loads. The `-c indexer` parameter (which specifies the directory in which the indexer stores temporary data) should always be specified for `ARSLOAD` and should be unique for each running `ARSLOAD` process.
- For IBM i, start multiple output queue monitors over a single output queue to improve throughput and take advantage of multi-processors, large memory pools, and multiple disk drives.
- Each Content Manager OnDemand process is limited by the performance of a single processor. For example, the OS/400 indexer uses only one processor when indexing a document. Having two or more processors in your system or LPAR does not improve the performance of the OS/400 indexer. However, having two or more processors in your system or LPAR might allow you to run multiple loads jobs simultaneously. You can start multiple output queue monitors over a single output queue to improve document load performance.
- For IBM i, the usage of the Merge Spooled Files (`MRGSPLFOND`) command can provide significant performance improvements when you load SCS spooled files.
- For IBM i, depending on your retrieval patterns and system hardware configuration, it might be advantageous to **not** store a duplicate set of documents in the Content Manager OnDemand cache when using ASM because ASM might already be using disk space. If the application group uses ASM, caches the data, and specifies the migration of data at load time, two copies of the data are stored during the load. One copy is stored in cache and one copy is stored in the `ASMREQUEST` directory.

To avoid storing a duplicate set of documents in cache for non-AFP data, change Cache Data to No on the Storage Management tab of your application group definition.
accomplish this for AFP data, you might change Document Data to No Cache but leave Resource Data in cache for faster retrieval.

- For IBM i, every user loading data should have a home directory. If they do not have a home directory, the temporary files are stored in the root directory of the IFS.
- If the data source is on a remote system, it is possible to either load the data into Content Manager OnDemand on the remote system and directly store the export data to the specified Content Manager OnDemand library and object server, or upload the data to the specified Content Manager OnDemand server through FTP and then load the data on the selected Content Manager OnDemand system.
- For Multiplatforms and z/OS, all file systems should be dedicated file systems that are mounted on their own mount points.
- For z/OS, when loading PDF reports (using the PDF Indexer), placing the input report in the HFS or zFS causes the load to run nearly 50 times faster as compared to the input report being placed in a VSAM file.

13.2.3 Load testing

The goal of load testing is to verify that, under stressful system conditions, the required amount of data can be loaded into the Content Manager OnDemand system within a time window.

Here is general approach to load testing a system:

- Parallel loads: Run a single load and measure the load throughput. If the throughput does not meet the requirements, then run two loads in parallel and measure the throughput. As the loads are run, collect system statistics to determine the system resources being used and any potential bottlenecks. Tune or acquire additional system resources as needed. Progressively increase the number of parallel loads until the required throughput is met.

**Note:** For most users, a single load process meets the ingestion throughput requirements.

- Data types and exits: A different data type, and whether an exit is invoked during the load process, affects the load throughput. Test samples of the different types that represent the general loads.

13.3 Data retrieval performance

All Content Manager OnDemand clients (such as the Windows client, CICS client, IBM Content Navigator, ODWEK APIs, and structured APIs) retrieve data from the Content Manager OnDemand server by using a standard proprietary Content Manager OnDemand protocol. From a Content Manager OnDemand server perspective, there is no difference between one client and another.

13.3.1 Data retrieval parameters

Various parameters affect data retrieval performance.

**Folder parameters: General tab**

In the Content Manager OnDemand Administrator Client, under the Folder parameter and on the General tab, you have the following option:
Note Search: If the Annotation flags in a document database are set to No in the Advanced tab of General window of the Application Group, then this option determines when Content Manager OnDemand searches the database for annotations and notifies users that annotations exist for the documents that match a query. Content Manager OnDemand provides three search and notification methods:

- **Hit List**: Content Manager OnDemand searches for annotations when the user runs a query. When annotations exist for a document, the client programs display a note icon next to it in the document list. This method has a direct performance impact on the generation of the document list.

- **Retrieve**: Content Manager OnDemand searches for annotations when the user selects a document for viewing. This is the default and recommended value.

- **Note**: Content Manager OnDemand searches for annotations when the user chooses the Note option while viewing a document.

**Folder parameters: Permissions tab**

In the Content Manager OnDemand Administrator Client, under Folder parameters and on the Permission tab, you have the following option:

- **Max Hits**: Determines the maximum number of hits that are retrieved and transmitted to the client. By reducing the maximum number of hits, users are forced to enter queries that better match the documents that they are searching for. This results in a more optimum usage of the system resources both in performing the queries and in downloading the resulting document list.

**TCP/IP considerations**

There is a known Windows configuration setting that might affect performance when connecting to a Content Manager OnDemand server. During repeated searches and retrievals on a Content Manager OnDemand server, many Windows sockets are opened and closed. Two default Windows settings might impact heavy traffic between the client and the Content Manager OnDemand server:

- When an application closes a Windows socket, Windows places the sockets port into TIME_WAIT status for 240 seconds; during this time, the port cannot be reused.

- Windows limits the number of ports that an application can use to 5000.

To avoid the problems that might result, change the values for the timeout wait time and number of ports by editing the Windows registry:

- Change the value of the timeout wait time from 240 seconds to a lower number (valid values are 30 - 300 seconds). The key's name is HKEY_Local_Machine\System\CurrentControlSet\services\Tcpip\Parameters\TcpTimedWaitDelay.

- Increase the maximum port number from its default of 5000 to a higher number (valid values are 5000 - 65534). The key's name is HKEY_Local_Machine\System\CurrentControlSet\services\Tcpip\Parameters\MaxUserPort.

For more information about TcpTimedWaitDelay and MaxUserPort, consult your Windows documentation.

Verify with your network personnel that the values that are appropriate for your environment are being set correctly.
### 13.3.2 Factors that affect retrieval performance

Figure 13-2 shows the data retrieval performance testing, which is an illustration of the methodology that is used by the Content Manager OnDemand lab for its internal performance testing. On the client side (where the cTest program is), both throughput and response time are recorded. They are defined as follows:

- **Throughput**: The amount of work that is performed over a period of time (how many transactions can the Content Manager OnDemand server (CMOD SERVER) run at the same time).
- **Response time**: The time that is elapsed between when a request is submitted and when the response from that request is returned (how long does it take for a transaction to run).

Maximizing performance is a balancing act between optimizing throughput (which is based on keeping the computing resources busy) and optimizing response times (which requires the computing resources to be available when they are needed). As the throughput increases, so does the response time.

![Performance Tuning Diagram](image)

**Performance Tuning**

Same or different system ( z/OS, zLinux, AIX, IBM i, Windows)

- cTest (Java client) → Induce load → CMOD SERVER (Arssockd)

**What is happening**

- cTest output (Platform independent)
- Transaction
  - Averages
  - Details

**Why is it happening**

Tools: SMF, Omegamon
Strobe, db2pm
topas, iostat, vmstat
perfmon, netstat

Analysis: number of Apps, Ags, folders.. Number of users, resource availability, which DASD is the data on

Figure 13-2  Data retrieval performance testing

The concepts that are shown in Figure 13-2 are described here for your reference.

The retrieval performance is mostly limited by the resources that are available to the Content Manager OnDemand server.

For example, for disk and I/O capacity, each retrieve requires that the data be obtained from the archive (Tivoli Storage Manager, QAM, ASM, and cache). This data is on a disk or some other storage device. The storage device retrieval rate is part of the total response time that is observed at the client, and both of them are affected by the following resources and system demand:

- **Real memory**: The data that is retrieved from disk must be stored in memory in order for it to be processed. Virtual memory allows for large amounts of data to be swapped in and out of real memory, but does not remove the need for real memory.
- **Processing**: Any data transformations that are performed on the Content Manager OnDemand server require available processing capability. If the capability is not available, the server waits until it becomes available. This causes the total response time to the client request to be lengthened.
- **Concurrent retrievals**: Each retrieval requires resources on the server. The higher the number of concurrent retrievals, the larger the amount of resources that are needed to complete the work in an acceptable amount of time.
Network bandwidth: The retrieved data is sent to the clients over the Internet Protocol network. If the network bandwidth is not wide enough to satisfy all the concurrent requests, then the response time to the clients is slower and data is queued up in the server buffers, further slowing down the system.

13.3.3 Retrieval testing

The goal of retrieval testing is to verify that, under stressful system conditions, the maximum number of concurrent users can still be served while meeting the business requirements. Here is a general approach to retrieval testing the system:

- **Transaction type:** Different types of transactions present different types of workloads on the system. For example, logon, document query, and document retrieval all use different components of the Content Manager OnDemand system. For each transaction type, measure the throughput and response time for a number of concurrent users that exceed the maximum predicted number. Tune and add resources to the system as needed until the system exceeds the SLA requirements.

- **Data types:** The stored documents might be of different sizes and data types (and might invoke preview exits). Multiple document retrieval tests must be run to verify the performance for the various types of stored documents.

- **User workloads:** The users that access the system might all exhibit the same usage patterns or there might be two or more usage patterns. Here is an example usage pattern:
  
  a. Log on.
  b. Wait five seconds.
  c. Issue a document query with a maximum hit list size of 12 documents.
  d. Wait five seconds.
  e. Retrieve a 10 KB document.
  f. Wait 40 seconds.
  g. Retrieve a 20 KB document.
  h. Wait 60 seconds.
  i. Log off.

There might be a total of 50 concurrent users that are following this pattern. There also might be other patterns that are being run at the same time. So, the user workload test should model this behavior and be able to meet the business requirements at peak loads.

- **Test driver location:** The code that is generating the retrieval workload can be installed on either of the following machines:
  
  - The same server on which the Content Manager OnDemand system is installed.
    
    If this is the case, it is possible to maximize the stress on the Content Manager OnDemand system by eliminating the network connection and by using system processing cycles to generate and measure the response time and throughput.
  
  - A network connected workstation.
    
    This situation simulates either a web server that is connected to the Content Manager OnDemand server or a user that is connected to the Content Manager OnDemand server.

- **Number of test drivers:** The number of systems issuing the requests can be increased so that the number of concurrent requests reaching the Content Manager OnDemand server exceeds the maximum expected number of requests.

- **Test measurement:** There are two sets of measurements. The first is at the test driver, which represents the user or Content Manager OnDemand client. At this location, both throughput and response time on a transaction basis should be collected. Also, it is important to check that the system that is issuing the retrieve requests is not overloaded.
and thus is not the performance bottleneck. In addition, at the Content Manager OnDemand server, request service times can be observed in the Content Manager OnDemand system log. System performance measurements should be collected using operating system-specific tools.

13.3.4 System testing

After the load and retrieval tests are performed individually, it is important to perform an overall system test. This test should include running *everything* in parallel up to the maximum expected system usage. Everything includes load, retrieval, expiration, migration, duplication, and backup operations. The goal is to ensure that under the most possible stressful condition, the system meets business requirements.

**Note:**
- The performance tuning process demands great skill, knowledge, and experience, and it cannot be performed by only analyzing statistics, graphs, and figures.
- The goal is to tune the Content Manager OnDemand Server. You can only “see” the bottlenecks in the server only if both the client and the network are clear of bottlenecks.

13.4 Performance issues based on data type

This section describes issues that are related to individual data types that can have significant effects on the overall performance of Content Manager OnDemand. Some of these issues can be addressed by selecting or clearing certain functions and features within Content Manager OnDemand. Some of the issues that we describe can be addressed only by changing the way in which the data is produced from the source.

13.4.1 PDF data

Portable Document Format (PDF) data is an increasingly common data type that can be archived within Content Manager OnDemand. Here are the key advantages of using this data type as a document format:

- It is a read-only format that does not require any external resources, such as images or fonts. It is self-contained.
- The viewer for PDF can be downloaded at no charge from the Adobe website and the browser plug-ins for PDF are also available at no charge.

During PDF document creation, resources such as images and custom fonts are placed in the data stream once and then referenced many times from within the PDF file. If a large report is produced from many small documents, then that report requires only one copy of the resources.

However, when the PDF is indexed, the PDF Indexer creates many PDF documents from the input file. Each of these documents requires a certain number of PDF structures, which define a document. These documents are concatenated together in the `.out` file, and then loaded into Content Manager OnDemand as separate documents. Because the resources are extracted and placed into a separate resource file, they are not included in each document. For an illustration of the process, see Figure 13-3.
If no resource collection is done, then the size of the `.out` file, which contains all the individual documents, might be larger than the original file. For tips about how to reduce the size of the output file, see 7.3.5, “PDF indexing - Using internal indexes (Page Piece Dictionary)” on page 168.

The size of the input and output file can create problems during the load process:

- The temporary space that is used during indexing can be too small and the load fails.
- The maximum input file size that the PDF Indexer can process is 4 GB, but the recommended maximum size for a single document (after indexing) is 50 MB. If this size is exceeded, the system might run out of disk space or memory.

Create PDF data with the base 14 fonts, which do not need to be included in the PDF file. Because they are not included in the PDF file, they are not extracted during resource collection, which improves performance. For more information about the PDF data stream and fonts, see 7.3.1, “PDF fonts and output file size” on page 162.

### 13.4.2 Line data

Line data (ASCII or EBCDIC text-based reports) is the most common type of data that is stored in Content Manager OnDemand. The type of line data that we describe here is a special form of transaction style report, where it is necessary to search on a value that appears on every line of the report. This transaction data has a transaction number that appears on every line and must be sorted either by column or row and either ascending or descending.

When indexing transaction data, if each transaction number from each line of the report is treated as a database index, such as date or customer name, then the database becomes
large in a short period. Content Manager OnDemand has a special type of field for transaction data, which is illustrated in Figure 13-4 by the boxed data on the left of the window.

<table>
<thead>
<tr>
<th>INCOMING</th>
<th>OUTGOING</th>
<th>KB</th>
<th>ENDPOINT</th>
<th>DT</th>
<th>ITEM</th>
<th>CASH LETTER</th>
<th>ROUTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ NO.</td>
<td>ID</td>
<td>SEQ</td>
<td>ID</td>
<td>AMOUNT</td>
<td>AMOUNT</td>
<td>TRANSIT</td>
<td></td>
</tr>
<tr>
<td>P000000072</td>
<td>21593.34</td>
<td>1</td>
<td>0000-0032</td>
<td>TR</td>
<td>50.00</td>
<td>21593.34</td>
<td>0000-0375</td>
</tr>
<tr>
<td>P000000073</td>
<td>2151.39</td>
<td>1</td>
<td>0000-0194</td>
<td>TR</td>
<td>50.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000074</td>
<td>2151.39</td>
<td>2</td>
<td>0000-0194</td>
<td>TR</td>
<td>20.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000075</td>
<td>2151.39</td>
<td>3</td>
<td>0000-0194</td>
<td>TR</td>
<td>10.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000076</td>
<td>2151.39</td>
<td>4</td>
<td>0000-0194</td>
<td>TR</td>
<td>40.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000077</td>
<td>2151.39</td>
<td>5</td>
<td>0000-0194</td>
<td>TR</td>
<td>256.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000078</td>
<td>2151.39</td>
<td>6</td>
<td>0000-0194</td>
<td>TR</td>
<td>77.33</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000080</td>
<td>2151.39</td>
<td>7</td>
<td>0000-0194</td>
<td>TR</td>
<td>127.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000081</td>
<td>2151.39</td>
<td>8</td>
<td>0000-0194</td>
<td>TR</td>
<td>75.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000082</td>
<td>2151.39</td>
<td>9</td>
<td>0000-0194</td>
<td>TR</td>
<td>135.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000084</td>
<td>2151.39</td>
<td>10</td>
<td>0000-0194</td>
<td>TR</td>
<td>300.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000085</td>
<td>2151.39</td>
<td>11</td>
<td>0000-0194</td>
<td>TR</td>
<td>25.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000086</td>
<td>2151.39</td>
<td>12</td>
<td>0000-0194</td>
<td>TR</td>
<td>11.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000089</td>
<td>2151.39</td>
<td>13</td>
<td>0000-0194</td>
<td>TR</td>
<td>206.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000091</td>
<td>0175.12</td>
<td>1</td>
<td>0000-0720</td>
<td>TR</td>
<td>264.75</td>
<td>0175.12</td>
<td>0000-7083</td>
</tr>
<tr>
<td>P000000093</td>
<td>2151.39</td>
<td>14</td>
<td>0000-0194</td>
<td>TR</td>
<td>233.00</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000094</td>
<td>2151.39</td>
<td>15</td>
<td>0000-0194</td>
<td>TR</td>
<td>56.90</td>
<td>2151.39</td>
<td>0000-0040</td>
</tr>
<tr>
<td>P000000095</td>
<td>1802.24</td>
<td>1</td>
<td>0000-0302</td>
<td>TR</td>
<td>638.00</td>
<td>1802.24</td>
<td>0000-1544</td>
</tr>
<tr>
<td>P000000097</td>
<td>21593.34</td>
<td>2</td>
<td>0000-0032</td>
<td>TR</td>
<td>341.54</td>
<td>21593.34</td>
<td>0000-0509</td>
</tr>
</tbody>
</table>

Figure 13-4   Transaction data in graphical indexer

The transaction data field selects the first and last values from a group of pages and only these group level values are inserted into the database. Content Manager OnDemand queries the database by comparing the search value that is entered by the user to two database fields, the beginning value and the ending value. If the value entered by the user falls within the range of both database fields, Content Manager OnDemand adds the item to the document list.

From a performance perspective, using the transaction data field for transaction style line data optimizes indexing performance by reducing the number of index values to be inserted into the database. This means that loading and retrieving these large reports is faster and the Content Manager OnDemand database is many times smaller.

### 13.4.3 AFP data

Advanced Function Presentation (AFP) data is a multi-part data type. This means that in addition to the variable data itself, there are also external resources, such as images, fonts, and logos, which are referenced by the AFP data stream. When Content Manager OnDemand stores AFP, the resources are also archived. When the data is viewed, the referenced resources are displayed.

It is a common misconception that if fonts are collected when the data is loaded, they are available for viewing in the Windows client. The fact is that Windows does not recognize AFP Fonts. It is not possible to use these fonts even if they are sent to the client as part of the resource. Windows clients require a mapping from AFP Fonts to ATM or TT fonts. Content Manager OnDemand provides this mapping for most standard fonts. For more information about mapping custom fonts, see *IBM Content Manager - Windows Client Customization Guide and Reference*, SC27-0837.

One possibly useful implementation of storing fonts with the resource group is when server reprint is necessary. If the fonts are stored with the resource group, they can be retrieved from Content Manager OnDemand and used by AFP printers. However, if fonts are collected, they are also sent to the client as part of the resources group and then discarded. Storing the fonts
with the resource group serves only to increase network traffic when transferring the resource to the workstation. A more practical option for server printing is to store the font in a fontlib and to keep only the reference (path) to the fontlib. Although the font is accessible on the server, Print Services Facility (PSF) or InfoPrint does not need the font to be inline (stored in the resource group). Using this approach also allows all AFP data that references the font to use the single instance of the font without redundant inline storage.

Figure 13-5 shows the indexer information in the application where you can select the resources to collect with the Restype= parameter. Unless reprints to AFP printers with 100% fidelity is a requirement, do not collect the fonts.

![Figure 13-5 Collecting AFP Fonts](image)

The Content Manager OnDemand for i server does not collect the fonts and does not give the administrator that option. The Resource Information window (under Indexer Properties) is not available to the Content Manager OnDemand for i administrator. If you are reprinting to an AFP printer, the fonts must be available on the IBM i server, or font substitution is done.

### 13.4.4 Image data

To optimize performance with storing and retrieving image formats, such as TIFF, GIF, and JPEG, do not compress the data because the file sizes might increase. To turn off compression, select the **Disable** option from the Load Information tab within the application. See Figure 13-6.
Figure 13-6  Disabling compression

There are two ways to turn off data compression:

- **Disable**: Content Manager OnDemand does not compress the input data. Choose this option when the input data, such as PDF and compressed TIFFs, is already compressed. Documents are extracted by the appropriate viewer on the client (for example, Adobe Acrobat Reader).

- **None**: Content Manager OnDemand does not compress the input data when loading it into the system. When the user selects a document for viewing, Content Manager OnDemand compresses the document before transmitting it over the network and extracts the document at the client.
Part 4

Enhancement options

This part contains the following chapters:

- Chapter 14, “Report distribution” on page 305
- Chapter 15, “Full text search” on page 325
- Chapter 16, “Enhanced Retention Management” on page 343
- Chapter 17, “Content Federation Services for Content Manager OnDemand and IBM Enterprise Records” on page 355
Report distribution

Content Manager OnDemand Distribution Facility (ODF) is an optional report distribution feature for IBM Content Manager OnDemand. ODF provides an easy way to automatically group reports and portions of reports and distribute the reports to multiple users. ODF distributions can be printed, created as an output file, or emailed as an attachment.

ODF can distribute reports that are stored in a Content Manager OnDemand server on any platform that is supported by Content Manager OnDemand.

In this chapter, we cover the following topics:

- Introduction to Content Manager OnDemand Distribution Facility
- Defining the objects with the Administrator Client
- Defining the objects using Batch Administration
- Customizable user exits
- Status and monitor tool
14.1 Introduction to Content Manager OnDemand Distribution Facility

Before Content Manager OnDemand Version 9.5, there were two report distribution components:
- OnDemand Distribution Facility for z/OS
- Report Distribution Facility of multiplatform

Both of these components had certain strengths and weaknesses. In V9.5, the strengths of both of these components were merged into a single component named OnDemand Distribution Facility (ODF). The advantages of the V9.5 ODF are:
- It runs on all Content Manager OnDemand supported platforms.
- It can run on a platform that is separate from where the Content Manager OnDemand Server is installed.
- Its operation can be monitored through a new graphical monitor.
- It includes transform support that allows content from Content Manager OnDemand to be transformed from one data type to another before it is sent as part of an ODF distribution.

This chapter describes ODF V9.5. For any new installations (on z/OS or AIX) before Version 9.5 of Content Manager OnDemand, we suggest that you install ODF.

Figure 14-1 shows the evolution and merger of ODF 9.5 from its predecessors ODF9.0 and RDF 9.0.

When you load documents into Content Manager OnDemand, you might need to print these documents or send them to various people in your organization.

Content Manager OnDemand automates the process of sending the documents that are loaded into Content Manager OnDemand to print (or the JES spool), a file (or a z/OS dataset), to a recipient as an email attachment, or to a recipient as an email notification.
Another benefit to using ODF is that you can select and combine documents from different reports and organize them by defining their order and separating them using banner pages.

Figure 14-2 is an overview of the OnDemand Distribution Facility and it interaction with the Content Manager OnDemand server.

The first thing we notice in Figure 14-2 is that there is no change to the Content Manager OnDemand server and its operation. Reports and documents are loaded into the server and system users continue to view and print their documents as normal. The only addition to the Library server is a set of ODF tables that define which documents are to be distributed to which users and when. The ODF process reads the ODF tables and collects the required documents and bundles them for each recipient. ODF then sends out the “bundles” to the appropriate destinations (email, file, and print). Alternatively, (based on system definitions) ODF can send each recipient an email notification that the report and document was loaded and is available for viewing.

Different Organizations have different report and document load and retrieval patterns. In some cases documents are loaded and never retrieved. In other cases, a loaded document is retrieved multiple times by multiple users. In other cases, it is known that when a specific report or document is loaded that one or more copies should be distributed to one or more destinations. What benefit does automating this distribution process provide?

The biggest benefit is that as reports are loaded into Content Manager OnDemand regularly, they can be delivered automatically to one or more users as they are loaded. Also, after the distribution is set up, no other changes are required, such as changing the document selection criteria to identify the latest data that is loaded.

For example, suppose that your organization generates monthly statements for your customers. You must store these documents into Content Manager OnDemand, and you must print the statements and mail them to the customers. ODF allows you to set up a distribution that automatically retrieves these documents as they are loaded into Content Manager OnDemand and sends them to a spool file for printing. Another example is that your sales team generates a monthly sales report for each person on the sales team. The sales
manager needs a copy of these reports. A distribution can be set up to email the documents to the appropriate sales manager.

The applications for using ODF are endless, but the basis for using it is the same: Documents are loaded regularly and are needed by one or more users as they become available in Content Manager OnDemand. Let us look at a specific example from our fictitious company that was introduced in 1.2.1, “Background information of an example company” on page 8.

AFinancial Co generates monthly credit card statements for all its customers. Their customers can choose to receive a hardcopy of the statement or have the statement sent to them as an email attachment.

In this example, even though there are separate customer statements per month, they are loaded into the system at the same time, so there is only one load per month. This information is important when you are determining the best way to set up the distribution. Before a distribution is set up, you should ask yourself the following four questions:

- What documents are needed?
- Who receives the documents?
- When are the documents retrieved and delivered?
- Where are they delivered?

### 14.1.1 What documents are needed

In our example, we identified our documents as the customer statements. How do you identify the customer report that you need from the hundreds of thousands of documents that are stored in Content Manager OnDemand? Some of the customers might have multiple monthly statements.

In general, you identify the documents by creating an SQL query using index fields and values that uniquely identify the documents that you want to retrieve when they are being loaded. The distribution can then be defined to include multiple report bundles with different SQL queries for each one. If the SQL must retrieve the document that is the same except for a value that identifies the recipient, a single distribution can be used with a recipient list. In this case, the SQL specifies a wildcard value. When processing, ODF fills in the recipient ID in the SQL statement. For example, a recipient list containing recipients 100001, 100002, and 100003 and an SQL statement of "where branch_id = '$ODF_RECIPIENT'". When processed, recipient 100002 will receive a distribution containing all reports where branch_id = '100002', and so on.

### 14.1.2 Who receives the documents

In our example, each of the customers needs a copy of their statement every month. To identify the customers to Content Manager OnDemand, an ODF recipient must be created for each customer. Depending on how the documents are delivered, a destination must be set up. For example, if a set of documents are to be delivered to a recipient using email, then an email address must be specified in the recipient definition.

### 14.1.3 When are the documents retrieved and delivered

ODF operates throughout the 24-hour day. You can schedule your distributions to be processed at a specific time of day or processed as they are loaded. To specify when the distribution is delivered, choose the method, which is either Loaded, All Ready, Time of Day, Time of Print, or external.
ODF operates on a 24 hour clock. 00:00 to 23:59. If a time of distribution (TOD) of 01:00 is specified and documents are loaded at 23:30, the documents are processed immediately and not wait until the next day because the TOD specified has been reached for that 24 hour day.

14.1.4 Where are they delivered

You can have the distribution delivered to a printer (or the JES spool on z/OS) for printing, a file (or TSO dataset on z/OS), an email notification or an email attachment. Alternatively, you can specify that the documents do not be distributed at all and that an email notification that the documents were loaded be sent to the specified recipients. In our example, some customers have specified that they want their statements to be delivered by email, others have specified that they want a hardcopy.

14.1.5 Cross platform access

ODF (running on any supported platform) can access a Content Manager OnDemand instance running on any platform (local or remote) that is supported by Content Manager OnDemand. For more information about how to configure ODF, see “Configuring ODF”, in OnDemand Distribution Facility Installation and Reference Guide, SC19-3358.

14.2 Defining the objects with the Administrator Client

After you have set up the Content Manager OnDemand objects (application group and application), you are ready to set up the ODF objects. This section describes the definition of the ODF objects by using the Content Manager OnDemand Administrator Client (Figure 14-3).

![Administrator Client ODF objects](image-url)
14.2.1 Adding a recipient

The recipient object contains all the information about the recipient of the distribution. The only required field is the recipient ID, which, when combined with the distribution name, uniquely identifies the distribution.

Figure 14-4 shows the window where you add a recipient.

![Add a Recipient](image)

Figure 14-4   Add a Recipient

Recipients who receive a printed copy of the distribution can choose to have a banner page included in the distribution by selecting the **Use Banner Page** check box. You can specify up to eight header lines to include in the banner page, as shown in Figure 14-5.
14.2.2 Adding a recipient list

If several recipients must receive the same reports at the same time, you can create a recipient list. This list allows you to create a single distribution that is sent to every recipient in the list.

Recipients are added to the list by selecting the ID on the left and clicking **Add**, as shown in Figure 14-6.
14.2.3 Adding a report ID

The next step is to define the reports to ODF. The report ID identifies the application group and application to which the report belongs. Figure 14-7 shows the window where you add the report ID.

To create a report ID, specify the identifier and then choose the application group and application from the drop-down selection.

The reference field allows you to control when a report is available for distribution. The value that you enter in this field is used with a marked index column in the Content Manager.
OnDemand application group. When a reference value is available, the reference value is matched with the index value of the report. If there is a match, the report is made available for distribution. This is useful if you have several drafts of a report and want to distribute only the final version.

### 14.2.4 Adding a distribution

Now that you have the recipients and report IDs set up, it is time to create the distributions. In the distribution definition. You specify when, where, and how the distribution is delivered. In our example, we create a distribution that is processed as the documents are loaded with the output sent as an email. For a sample of distribution definition, see Figure 14-8.

![Figure 14-8 Adding a distribution](image)

**Distribution Name**

With the recipient or recipient list name, the distribution name uniquely identifies the distribution. For our example, we name this distribution CREDIT CARD STATEMENTS.

**Recipient/List**

Choose your recipient. For our example, we add the newly created recipient from the drop-down menu.

**Status**

There are two status values:

- Active indicates that the distribution is processed as documents are loaded.
- Inactive indicates that the distribution is not processed as documents are loaded.

**Job Name**

To improve ODF performance, you can use a submitted job and the persistence feature. When you use a job name on distributions, ODF uses a feature of z/OS that allows jobs to run
in created address spaces. The ODF distribution runs under the jobname that is specified. For our example, we leave the job name value blank.

**Location**

Specifies where the distribution is delivered. We select **Email document** for our distribution.

Here are the available options for the Location field:

- **Print**: The output is sent to a JES spool file.
- **File**: The output is sent to a GDS dataset if a dataset value is specified. Otherwise, it is sent to a TSO dataset.
- **None (with “Notify by e-mail” selected)**: An email is sent to the recipient notifying them that the distribution is available.
- **Email**: The output is sent as an attachment in an email to the recipient.

**Note**: The “Notify by e-mail” check box is available for use with Location values of Print, File, or None and causes an email is sent to the recipient, notifying them that the distribution is available.

**Customer Variables**

This field contains any information that you might need to pass to the customizable user exits. For example, if this distribution requires special spool file allocation options, you can enter the information in this field. The preallocation exit can then use the information to change the spool file allocation parameters. For our example, we leave this blank.

**Account**

This is an optional field. It specifies the name to use on the JCL job card. For our example, we leave this field blank.

**Distribution Method**

The distribution method controls the scheduling and processing of the distribution. Because we want the distribution to be processed as the documents are loaded, we select the **Loaded** method.

Here are the available distribution methods:

- **Loaded**: The distribution is scheduled for processing when the first report bundle is archived or stored in Content Manager OnDemand. The distribution is submitted for print processing when all the report bundles in the distribution with a Wait/Ignore Indicator of Wait are loaded.
- **All Ready**: The distribution is scheduled for processing when the ODF address space is started. The distribution is submitted for print processing when all the report bundles in the distribution with a Wait/Ignore Indicator of Wait are loaded.
- **External**: A process outside of ODF schedules the distribution. The distribution is submitted for print processing when all report bundles that are defined with a Wait/Ignore Indicator of Wait are loaded.
- **Time of Print**: The distribution is scheduled when the first report bundle of the distribution is archived or stored in Content Manager OnDemand. Before the Time of Print time, the distribution is submitted for print processing whenever all the report bundles with a Wait/Ignore Indicator of Wait are loaded. If all the required reports are not available at the time that is specified, then when the Time of Print time is reached, the distribution is submitted for print processing with whatever report bundles are available.
Time of Day: The distribution is scheduled at the specified time of day. It is submitted for print processing when all the report bundles defined with a Wait/Ignore Indicator of Wait are loaded.

Time: The time when the distribution is processed. The default value is the current time. This field displays only if the distribution method is set to Time of Day, or Time of Print.

**Continue/Wait indicator**

This option is valid only when the Distribution Method is Time of Day or Time of Print. From the drop-down list, select either **Continue** to continue processing report bundles as they are available after the Time is reached, or select **Wait** to wait until the next Time occurrence to print any report bundles that become available.

**Continue Max Tries**

This value controls how many times processing is continued for available report bundles.

**Manifest Indicator**

Indicates whether a manifest page that lists the report bundles that are included in the distribution should be created. The manifest defaults to a separate file. If you want the manifest to be in the same file as the report bundles, specify Manifest in Sysout.

**Report Break Indicator**

Indicates whether the report bundles should be included in the same file or broken up into separate files.

**Print Options**

The Print Options tabs allow you to specify the allocation values that should be used for the JES spool file. These options do not apply to our example distribution.

### 14.2.5 Adding a report bundle

After you define the distribution, you must define the report bundles that are included in the distribution. To add a report bundle, right-click the distribution that you added and then select **Add Report Bundle**. See Figure 14-9.
Distribution Name and Recipient/Recipient List
The report bundle is created as a child object of the distribution. The values are not modifiable and are disabled in the window.

Sequence
This value identifies the sequence that the report bundles are included in the distribution. The default is 10, and each new report bundle increments the sequence by 10. This allows for flexibility to add report bundles without having to renumbering any other report bundles.

Report ID
This identifies the report to be included. For our example, we select the previously added report ID from the drop-down menu.

Wait/Ignore Indicator
When more than one report bundle is specified in the distribution, this value tells ODF whether this report bundle must be available before the distribution is processed. A value of Wait indicates that you wait until this report is loaded before processing. A value of Ignore indicates that the distribution is processed even if this report bundle is not available. This function is useful if you have documents that are loaded at different times but you want them to be processed and included in a single distribution instance.

Report Build
Indicates whether the distribution should include the full report or if a query should be performed and only a portion of the report included. When Query is selected, the SQL source option is available to build the query. You can either type in the query using the Keyboard option or build the SQL, as shown in Figure 14-10. For our example, we build a query to include only the statements for John Doe.
Additionally, users can specify a wildcard with substring in the SQL statement. Upon execution, ODF will substitute in the correct portion of the recipient or recipient list name.

The format of the wildcard is as follows:

- $ODF_RECIPIENT(start pos:length) where start pos is the number of the character to start and length is the number of characters to use. (start pos:length) is optional.
- $ODF_RECIPILIST(start pos:length) where start pos is the number of the character to start and length is the number of characters to use. (start pos:length) is optional.

**Job Name, Location, Dataset Name, and Print Options**

These fields can be used to override the values that are specified in the distribution definition. This allows you to specify the values at the distribution level that apply to most of your report bundles and still customize for individual report bundles.

### 14.3 Defining the objects using Batch Administration

ARSXML provides a batch interface to add, update, delete, or export a list of ODF objects. We show the `arsxml` command and a sample XML file that is used to create each of the objects that we added earlier.

#### 14.3.1 Recipient

Run the following command to add a recipient:

```
Arsxml add -h myod -u myuser -p mypwd -v -i /recipientAdd.xml
```

Example 14-1 shows the content of our example `recipientAdd.xml` file.
Example 14-1  recipientAdd.xml

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<onDemand xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ondemand.xsd">
<odfRecipient name="00001"
  fullName="John Doe"
  email="JohnDoe@aninternet.com"
  addr1="123 Anywhere Place"
  addr2="Anytown, AA 11111"
  banner="true"
  header1="/*************************/"  
  header2="/*
  header3="/*************************/"
  />
</onDemand>
```

14.3.2  Report ID

Run the following command to add a report ID:

```bash
Arsxml add -h myod -u myuser -p mypwd -v -i /reportIDAdd.xml
```

Example 14-2 shows the content of our example reportIDAdd.xml file.

Example 14-2  reportIDAdd.xml

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<onDemand xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ondemand.xsd">
<odfReportId name="CREDIT STATEMENTS"  
  status="Active"
  applicationGroup="Credit Card Statements"
  application="Credit Card Statements"
  />
</onDemand>
```

14.3.3  Distribution and Report Bundle

Run the following command to create a distribution and report bundle:

```bash
Arsxml add -h myod -u myuser -p mypwd -v -i /distributionAdd.xml
```

Example 14-3 shows the content of our example distributionAdd.xml file.

Example 14-3  distributionAdd.xml

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<onDemand xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ondemand.xsd">
<odfDistribution name="CREDIT CARD STATEMENTS"
  recipient="00001"
  status="Active"
  location="E-mail document"
  manifest="Manifest"
  reportBreak="false"
  distMethod="Loaded"
  >
<odfReportBundle sequence="10"
  reportId="CREDIT STATEMENTS"
```
14.4 Customizable user exits

ODF provides several user exits with which you can tailor the system to meet your installation’s requirements. You have the option of using the sample exits that are provided or customize the exit to meet your specific needs.

14.4.1 arsodfxa - Spool file data set allocation attributes exit

You can use the arsodfxa spool file data set preallocation exit to modify the currently-defined ODF JES spool file data set output parameter definitions that are used for dynamic allocation of the report and manifest JES spool file data sets. The arsodfxa exit is called when ODF detects a non-blank Customer Variables field in either the ODF distribution or report bundle definitions, but only if the field value is not set to DO NOT SCHED or NOSCHED.

The output parameters that are specified in the report bundle definition and the output parameter string are passed to arsodfxa exit. The exit can modify the output parameter string. The string that is returned from the user exit are used to allocate the JES spool file data sets for the report bundle and manifest JES spool file data sets.

14.4.2 arsodfxb - Banner, header, and trailer exit

On z/OS, the arsodfxb exit enables you to customize the banner information that is written out to the JES spool file data sets. Banner information is written to the JES spool file data set when the recipient definition requests a banner to be printed and the location of the report bundle is print. ODF calls the arsodfxb exit for three different types of banner data:

- **Banner Page**
  Information to be written out before the first report bundle in the distribution is written out to the JES spool file data set. The exit is called at the start of processing the first report bundle within the distribution with ODFBANER-REQUEST-TYPE = 1 to process banner information.

- **Header Page**
  Information to be written out before the second and each subsequent report bundle in the information. The exit is called before each subsequent report bundle within the distribution with ODFBANER-REQUEST-TYPE = 2 to process the header information.

- **Trailer Page**
  Information to be written out to the JES spool file data set after the report bundle was written out. The exit is called after each report bundle is processed with ODFBANER-REQUEST-TYPE = 3. The exit is passed information about the report bundle and recipient and uses this information to format the lines to display.

The exit returns a buffer of data. The maximum size is 10240 bytes. The exit formats the data and adds a new line character x’15’ wherever the data should start on a new line in the spool file.
**Example 14-4  Banner header page sample output**

```
/********************************************/
/* My Reports                               */
/********************************************/

******   *****    ******      ******    *******
**   **  **   *   **          **   **   **
**   **  **   **  *****        *****     *******
**   **  **   **  **          **   **         **
*****   ******   **           ******     *******
*****BANNER  PAGE*****
```

```
**********************************************************************
*                                                                    *
*  REPORT INFORMATION                                                *
*                                                                    *
*  REPORT ID: CREDIT STATEMENTS                                      *
*  REPORT:                                                           *
*  REPORT DATE: 2013-06-20                                           *
*                                                                    *
*  PRODUCED FOR:                                                     *
*                                                                    *
*  RECIPIENT: 0001                                                   *
*  REQUEST DATE: 2013-06-20                                          *
*  REQUEST TIME: 07:46:55                                            *
*                                                                    *
**********************************************************************
```

### 14.4.3 arsodfxm - Bundle manifest exit

On z/OS, the sample `arsodfxm` user exit is a COBOL program that enables you to customize the manifest output. The manifest consists of Header and Detail Lines. ODF calls the bundle manifest exit with two different functions, one to process the header section of the manifest and the other to process the detail lines.

When the request type is Header, the exit returns a buffer of data. The maximum size is 1024 bytes. The exit formats the data and adds a new line character of x’15’ wherever the data should start on a new line in the spool file.

### 14.4.4 ODFProcessDist.java - Processed distribution exit

The `ODFProcessDist.java` user exit program enables you to customize the ODF output in several ways. You can customize the email attachment or email notification content, the print and file output on platforms other than z/OS. In particular, you can:

- Customize the details and format of the outgoing emails that contain distributions when the value of the distribution location field Location is set to **E-mail** or for any Location value with the **Notify by e-mail** selected. For each distribution location type, you can customize the email content and the maximum size for email attachments within a single email.
- Customize the details of distribution output for all other distribution types on Content Manager OnDemand for Multiplatforms servers, and for all distribution types on z/OS.
except when the Location value is set to **Print**. Specify your SMTP server name to use for outgoing email.

- Specify whether or not to enable the secure sockets layer (SSL) when using the SMTP server to send email.
- Specify trace parameters.
- On Content Manager OnDemand for Multiplatforms servers, specify the name of the command to use to submit ODF print requests and the name of the printer queue to use.

The ODFProcessDist.java program uses the **ARSODF.XML** file as input. **ARSODF.XML** allows customization of the ODF output without modifying the ODFProcessDist.java program. ODF includes a compiled version of the sample ODFProcessDist.java program. You can use the sample program as-is, or you can modify the sample program and recompile it to further customize outgoing distribution details.

### 14.5 Status and monitor tool

The OnDemand Monitor is an interactive workstation client program that allows you to check the status of distributions submitted for processing and to monitor ODF activity on Content Manager OnDemand servers beginning at Version 9.5. This tool allows you to issue a reprint or initiate distributions as needed.

Figure 14-11 shows the Overall view of the OD monitor.

![Overall view of the OD monitor](image)

Figure 14-11  Overall view of the OD monitor

Figure 14-12 shows a snapshot of ODF activity.
The filter reflects the selection values used to populate the rows in the tab section (Figure 14-13 on page 322).

Figure 14-14 show all defined distributions and most recent request information.
Figure 14-14  Defined distributions

Figure 14-15 on page 323 shows all distributions that match filter criteria.

Figure 14-15  Requested distributions

Figure 14-16 shows all the reports were loaded and are available for processing.
Figure 14-16  Scheduled reports

Figure 14-17 shows all the report bundles that are being or have been processed.

Figure 14-17  Processed Report bundles
Full text search

In this chapter, we describe the full text search (FTS) feature of IBM Content Manager OnDemand (Content Manager OnDemand), which enables users to build an index of the document content and to search within this full text.

In this chapter, we cover the following topics:

- Introduction to full text search in Content Manager OnDemand
- Full text search architecture in Content Manager OnDemand
- Planning and installing FTS
- Configuring and operating full text search
- Running the full text indexing process
- Using full text search in Content Manager OnDemand Clients
- Troubleshooting tips
15.1 Introduction to full text search in Content Manager OnDemand

Content Manager OnDemand users primarily search on the metadata (extracted index values) that is associated with documents. Using FTS, you can intelligently search through actual document content. To enable FTS, the documents are first parsed and an index is built. This index can then be queried by a full text engine.

The FTS feature in Content Manager OnDemand comes with a new server, the Full Text Search Server (FTS Server), which handles the text extraction, indexing, and searching of the indexed data. This allows the processing of full text data to be offloaded to a machine other than your Content Manager OnDemand library and object servers.

The full text engine is the same search services engine that is used by other IBM products, such as DB2 or FileNet P8. It is based on the Lucene engine and allows for advanced and flexible queries. Users can do wildcard searches, fuzzy (or similar) searches, proximity searches, Boolean searches, and other complex queries.

The full text feature can handle many formats, including Microsoft Office documents, XML files, and typical Content Manager OnDemand formats, such as AFP, line data, and PDF.

The FTS feature supports full text indexing of both new and existing data. For new data, the FTS server is configured to index the newly loaded reports using the Administrator Client. For existing data, indexing is invoked by means of the Content Manager OnDemand command-line utilities or the Content Manager OnDemand Web Enablement Kit (ODWEK) Java API.

FTS is enabled through the Content Manager OnDemand folder and allows all clients to take advantage of full text queries after the server configuration is complete. Several new Content Manager OnDemand folder field types are defined in support of FTS. Search score, highlight, and summary are returned, aiding the user in determining whether the document is a good match.

Note: Before the release of the FTS option in Content Manager OnDemand, a document content based search was possible by using the server-based text search functionality. However, this functionality is limited to AFP, Line, SCS, and PDF documents. It does not use an index, but instead the server retrieves the documents then scans those documents for the index values. This limits the capabilities of the functions to exact matches of a query string and might cause workload problems on the Content Manager OnDemand server. FTS eliminates these issues and limitations by introducing new processing components.

15.2 Full text search architecture in Content Manager OnDemand

The process of full text indexing can be lengthy in terms of time and processor consumption. Therefore, an integration architecture is required, which decouples the full text engine from the Content Manager OnDemand server and keeps the different workloads separate.

The components and their basic communication are shown in Figure 15-1.
15.2.1 Full Text Search Server

The Full Text Search Server (FTS Server) provides a full document processing pipeline that includes text extraction from binary formats, a wide range of encoding support, and language processing in various languages. The flow of data during indexing depends on the configuration and environment. For example, in a single server configuration:

- Document contents and properties are sent from the Content Manager OnDemand repository through FTS Exporter to the FTS Server.
- The FTS then preprocesses the data, including text extraction, language identification, tokenization, and language analysis on the documents.
- After preprocessing, the document content is stored in the FTS index.

The FTS Server comes with text extractors for many varied document types, including Microsoft Office formats and XML. However, for AFP and Line data, text extraction occurs within the FTS Exporter. Images do not contain text and are not supported in FTS.

15.2.2 Index structure

FTS Server creates a binary Lucene index that is stored on the FTS Server. The index is segmented into logical groupings called Collections. The segmentation model is designed to parallel the data table segmentation model in Content Manager OnDemand. For each Application Group data table, which has data that is indexed in the FTS Server, a Collection is created on the FTS Server. This means FTS Collections maintain a one to one relationship with Content Manager OnDemand data tables. Collections are created with the following naming convention:

\[ \text{InstanceName} \_ \text{TableName} \]

This naming convention allows the FTS index to scale horizontally without impacting the performance of the Content Manager OnDemand server. During a query operation, you can narrow the scope of documents that must be searched. If the user specifies a date range in addition to the FTS criteria, the Content Manager OnDemand segment tables are referenced to determine which Collections must be queried.

As the full text index contains the processed text of each indexed document, the index can become large. For more information about size calculation, see 15.3.6, “Index considerations” on page 331.
15.2.3 Indexing document through FTS Exporter

New documents that are to be full text indexed are retrieved from Content Manager OnDemand by the FTS Exporter component. These documents are then pushed into the full text engine of the FTS Server. The detailed process is shown in Figure 15-2.

![Figure 15-2 The role of the FTS Exporter in full text indexing](image)

To support the FTS server, a new table (*arsftiwork*) was created in the Content Manager OnDemand database. The arsftiwork table is used to hold full text indexing work items. Whenever a new document is to be indexed, a work item record is created in the arsftiwork table. This is done as part of the Content Manager OnDemand load process. For existing data, this is done explicitly by using the command-line tools or the ODWEK Java API.

To index new documents, the FTS Exporter connects to the arsftiwork table and works through the records, retrieving the associated documents from the Content Manager OnDemand server and pushing them into the FTS Server to be indexed. Documents that are to be removed from the full text index follow the same process. The FTS Exporter handles all tasks that are related to adding, updating, and deleting documents to and from the full text index.

The FTS Exporter application is a Java application that communicates with the Content Manager OnDemand server to retrieve the documents from the Content Manager OnDemand server and push the to the FTS.

15.2.4 Searching

Search queries are handled by the Content Manager OnDemand server directly communicating with the FTS Server. When an FTS string is specified during a query in a Content Manager OnDemand folder, a query is issued to the FTS Server for all applicable collections that match the date range. If no date range is specified in the query, then all collections for the specified application group are queried.

15.3 Planning and installing FTS

The following section describes the main aspects of the FTS component installation and configuration.
15.3.1 Component overview

FTS in Content Manager OnDemand consists of the FTS Server, the Full Text Search Exporter (FTS Exporter), and a Content Manager OnDemand server that uses both components to provide FTS to the users.

Full Text Search Server
The FTS feature in Content Manager OnDemand is a separately licensed component that must be downloaded and installed. It contains the FTS Server. Full text Indexing and Search functionality can be implemented on any Content Manager OnDemand platform (z/OS, IBM i, and Multiplatform). The FTS Server itself runs only on Multiplatforms systems. The FTS Server can and is typically installed on a different system than the Content Manager OnDemand server because of the difference in workload types and the amount of processing that is required for high performance and throughput.

Full Text Search Exporter
The FTS Exporter is a Java application, which is available as a JAR file (ODFTIExporter.jar), that comes with the Content Manager OnDemand server installation (starting with Version 9.0). It can be found in the jars subdirectory.

The FTS Exporter relies on the following components:

- JDBC database drivers for your Content Manager OnDemand database (DB2, Oracle, or SQL server on Windows)
- A Java runtime environment. JRE (Java 1.7.0) or later can be used to run the ODFTIExporter.jar file.

The FTS Exporter communicates with the Content Manager OnDemand server to retrieve the documents that are sent to the FTS Server. It uses a JDBC connection to the Content Manager OnDemand database to read the arsftiwork table.

The FTS Exporter can be run on the Content Manager OnDemand server system or from any other TCP/IP connected system. The FTS Exporter does not require the existence of the Content Manager OnDemand database on the same system. The FTS Exporter obtains the instance configuration from the Content Manager OnDemand server.

For more information, see 15.4.2, “Configuration of the Full Text Search Exporter” on page 334.

Note: Make sure that you apply the latest Content Manager OnDemand version and fix pack to the Content Manager OnDemand server and the FTS Server component before using FTS.

15.3.2 Installing FTS Server

The FTS Server is installed on a Multiplatforms system by running its setup program. Use the command-line parameter \(-i \text{ console}\) for a console mode setup.

The setup creates a set of directories under the FTS_Home (Installation target) directory. Most of these directories are not modified after the installation. Special attention must be taken regarding the following directories:

- bin: Contains all the executable files.
- config: Contains the configuration and the index structures.
15.3.3 Operating system resources

For better throughput results during the indexing process on AIX, Linux, and Solaris servers, ensure that the operating system resource limits are set correctly.

The values of the `fsize` (maximum file size) and `nofiles` (maximum number of files that are allowed for a process) parameters must be set to unlimited (-1) or 65536 to ensure correct system operation. The FTS Server startup script checks these settings and tries to correct them for the session. They can be set permanently by modifying the `/etc/security/limits` or `/etc/security/limits.conf` files.

15.3.4 Workload

Processor consumption depends on the following items:

- The number of collections
- The number of documents per collection
- The number of concurrently indexed collections
- The required indexing throughput
- The query load

For more information, see the capacity planning topics in the introduction and planning guides for Multiplatforms and z/OS, which can be found in the Knowledge Center at:


and


A minimum of one processor, 2 GB of RAM, and 8 GB of swap space should be assigned to the FTS Server. For more information, see the Hardware and Software Requirements at:


15.3.5 Memory heap size

During indexing and searching, FTS Server consumes heap memory for storing the indexed documents, preprocessing and indexing queues, and indexing memory structures. To optimize the performance of FTS Server, it is important that the maximum heap memory size in the JVM, the queue size, and file size limits are configured correctly. You can configure the maximum heap size by using the configuration tool.

The `maxHeapSize` parameter sets the maximum heap size for the FTS Server. The default is 1.5 GB. This value must be a number between 1.5 GB and the amount of available memory.

The maximum file size that can be processed is a function of the heap size. When you set the maximum heap size to a value greater than 2 GB, file size limits for text, XML, and binary
documents must be increased for new collections. For each 8.3 MB of heap memory over 2 GB, the values of the file size limits (60 MB by default) must be increased by 1 MB (up to 400 MB), as demonstrated by the following formula:

\[
\text{Max file size} = 60 \text{ MB} + \frac{\text{heap memory} - 2 \text{ GB}}{8.3}
\]

For example, a 2 GB maximum heap size result in 60 MB as the maximum size of a file that can be processed.

### 15.3.6 Index considerations

The most significant sizing option for the FTS Server system is the hard disk requirements for the full text index. The FTS Server requires a fast disk subsystem, and as the textual representation of each indexed document is stored there, a considerable amount of disk space might be needed.

#### Index size calculation

Although the disk space usage depends on the text in each document, this usage is linear to the original size of the indexed data. Typically, the size of the index on the disk is 50 - 150% of the original text size as illustrated in the following formula

- minimum disk space = \( \text{Number of documents} \times \text{document size} \times 50\% \)
- maximum disk space required = \( \text{Number of documents} \times \text{document size} \times 150\% \)

The actual percentage, 50% through 150%, is data dependant. So an exact number can only be obtained by testing with your data.

For example, 100,000 documents of 20 KB each can require about 1500 MB \((100,000 \times 20 \text{ KB} \times 75\%)\) of disk space.

**Tip:** To determine the text size for AFP and Line data documents, extract a sample document and use the `arsview` server command to determine the text size.

The size of the index is not limited. However, when data is added to or removed from a text index, the text index structure is merged to improve query performance. The processing time required to complete the merger depends on the index size. Together with absolute throughput, which depends on data type and index format, this results in practical limits on the total text index size.

For query performance, the biggest impact is the number of matching results, not the size of the text index.

#### Temporary disk storage

During the indexing process, the server requires additional disk space for temporary storage. The maximum required disk space is approximately four times the total size of the text of the documents that are indexed.

#### Index location

The full text index is stored within the installation directories of the FTS Server. The default directory is the following one:

\[<\text{FTS\_Home}>/\text{config/collections/<collection\_name>/data/text}\]

If you want to place the configuration and the index structures into a different file system path, use the `configTool` command-line utility in the `FTS\_Home/bin` directory. You must perform this
action right after the installation, that is, before you start the FTS Server and create any full text indexes using Content Manager OnDemand. After an index is created, the index structures cannot be changed.

The configuration and index location is stored in the defaultDataDirectory parameter. First, show the current value of the parameter by running the following command:

```
configTool.sh list -system -defaultDataDirectory
```

Then, you can change the value by running the following command:

```
configTool.sh set -system -defaultDataDirectory <new value>
```

On Windows platforms, `configTool.sh` is available as `configTool.cmd`.

After changing `defaultDataDirectory`, you must restart the FTS Server.

15.4 Configuring and operating full text search

The FTS Server can be operated by the startup and shutdown scripts in the `FTS_Home/bin` subdirectory. The FTS Server must be running to perform indexing and full text searches.

After the FTS Server is started, by default it listens on TCP port 8191. Content Manager OnDemand and the FTS Exporter must know this port to communicate with the FTS Server. The port can be changed by using the port parameter with the `configTool`. For more information about how to use this command, see “Index location” on page 331.

The following command-line tools are installed in the `bin` directory, and are used to manage the FTS Server:

- `adminTool`: Used to manage collections, set trace options, and check statuses.
- `configTool`: Used to review and change most system and collection parameters.
- `startup` and `shutdown` scripts.
- `stopwordTool`: Used to add or modify the list of stop words (common words that are not indexed).
- `synonymTool`: Used to add or remove synonym dictionaries from the index.
- `dumpIndex`: Used to dump documents from the index.

15.4.1 Base configuration in Content Manager OnDemand

To enable FTS in Content Manager OnDemand, it must be enabled for each of your Content Manager OnDemand instances. In Windows, this is done in the Content Manager OnDemand Configurator by selecting the `Enable Full Text Index and Search` check box on the Server (Advanced Options) window.

On all other platforms, the `ars.cfg` file of your Content Manager OnDemand instance must be edited. You must add the following line:

```
ARS_SUPPORT_FULL_TEXT_INDEX=1
```

You must restart the instance after this configuration. It enables the FTS option in the Content Manager OnDemand Administrator and enables you to configure FTS options on the Application Groups and Folders.
Configuring Application Groups for full text search

FTS support must be configured for each Application Group for which you plan to perform full text index and search.

To FTS index an application group, configure the Application Group for FTS by completing the following steps:

1. Click **Application Group** → **General tab** → **Advanced** and select **Yes** under Full Text Index. Specify the FTS Server name and port. The default port is 8191. Choose whether to automatically index all new loads. Figure 15-3 shows these settings. The setting **Full Text Index documents automatically** indexes new documents after they are loaded.

![Full Text Index](image)

*Figure 15-3  Enable full text indexing in an application group*

2. Add an FTS field to the Application Group in the Field Definition tab (its name does not matter). On the Field information tab, set the field data type to **Small Int (2)** and select the **Full Text Index attribute** option.

3. Modify the permissions and add the **Full Text Index** permission to users and groups who must be able to index documents (users who perform loading and running a full text indexing request through **arsdoc** or the API).

Configuring a folder for full text search

The Content Manager OnDemand folders must be configured before any full text searching can occur. Four new folder field types were added in support of FTS:

- **Full Text Index Search**
  
  This field is required. It is the field that the users use to specify their FTS criteria. This field can only be queried.

- **Full Text Index Score**
  
  This field is optional. It represents the score of the hit, relative to the other matching hits. It can be queried and displayed in the hit list.
15.4.2 Configuration of the Full Text Search Exporter

FTS Exporter requires configuration parameters for connecting to Content Manager OnDemand, its database, and the FTS Server. These parameters can either be specified on the command line or written into a config file. The usage of the config file is recommended, as your JDBC connection password is part of the required parameters and is stored along with the other password parameters encrypted in the config file.

To create the config file, run the FTS Exporter with the configure parameter:

```
Java -jar ODFTIExporter.jar configure -configFile <file>
<all configuration parameters>
```

The following parameters are required:

- `-dbEngine <db engine>` DB engine (DB2, MSSQL, or ORACLE)
- `-dbHostname <server>` Database server host name
- `-dbPort <port>` Database port
- `-dbUser <user>` Database user ID
- `-dbPassword <passwd>` Database password
- `-dbName <db name>` Database name
- `-dbOwner <db owner>` Database owner
- `-odInstance <instance>`
- `-odUser <user>` OnDemand user ID
- `-odPassword <password>` OnDemand user password
- `-odInstallDir <path>` Where OnDemand is installed
- `-pollDelay <seconds>` Number of seconds between polling (optional)
- `-ftiToken <FTI authentication token>` Optional
- `-tempDir <path>` Temporary work directory (optional)
- `-traceDir <path>` Directory to store trace files (optional)
- `-traceLevel <export trace level>`

Table 15-1 describes the purpose of each parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbEngine</td>
<td>The engine of the database that is being used. Defines the JDBC class that is used by the FTS Exporter. It must be either DB2, MSSQL, or ORACLE.</td>
</tr>
</tbody>
</table>
A call to configure the FTS Exporter is similar to the one shown in Example 15-1.

**Example 15-1  Configuring the FTS Exporter**

```
java -jar ODFTIExporter.jar configure -configFile odfts.cfg -dbEngine DB2
   -dbHostname localhost -dbPort 60004 -dbUser ondemand -dbPassword ondemand -dbName
   ondemand -odInstallDir /opt/ibm/ondemand/V9.0 -pollDelay 60 -tempDir /tmp
   -traceDir /tmp -ftiToken "fIqBxTQ=" -odUser admin -odPassword ondemand -dbOwner
   ondemand -odInstance ONDEMAND
```

Example 15-1 writes the configuration file odfts.cfg and configures a connection to the Content Manager OnDemand instance ONDEMAND with the user admin and to the Content Manager OnDemand instance DB2 database ondemand. The FTS Exporter polls for work items in the arsftiwork table every 60 seconds and processes them against the FTS Server that is configured with this Content Manager OnDemand instance.

Content Manager OnDemand supports running the FTS Exporter on a system other than your library and object server. In some instances, this is highly recommend. If the FTS exporter is installed on a remote system, then the Content Manager OnDemand server code must be installed on this system because the FTS Exporter requires some of the binary and supporting files from the Content Manager OnDemand server installation. The FTS Exporter also gets some of its connection information from the ars.ini file that is installed with the Content Manager OnDemand server or, from the Windows registry.
The JDBC connection user that is used by the FTS Exporter must have the SELECT, UPDATE, and DELETE authority on the arsftiwork table and the SELECT authority on the arsseg table of each Content Manager OnDemand instance it is working with.

To connect to your Content Manager OnDemand database using JDBC, additional driver JAR files are required. The FTS Exporter is built to reference two additional JAR files in its directory by default: jdbc1.jar and jdbc2.jar. To use JAR file execution capability, you should link (or copy) your required JDBC driver JAR files to these locations so that they are automatically loaded by the FTS Exporter.

For example, when using DB2 on AIX or Linux, the following commands can be issued in the jars subdirectory of the server to create these two links:

```
ln -s /opt/IBM/db2/V9.7/java/db2jcc.jar  jdbc1.jar
ln -s /opt/IBM/db2/V9.7/java/db2jcc_license_cu.jar  jdbc2.jar
```

For the connection with Content Manager OnDemand, the FTS Exporter automatically references the Java API ODApi.jar.

**Note:** Each instance of the FTS Exporter can connect to one Content Manager OnDemand instance. Only a single instance of the FTS Exporter per Content Manager OnDemand database is supported.

### 15.5 Running the full text indexing process

Both the FTS Server and the FTS Exporter must be running for the full text indexing requests to be completed.

If the FTS Exporter and the FTS Server are not running, all full text indexing requests are written to the arsftiwork table, but not processed until the FTS Exporter processes them and hands the documents over to a running FTS Server.

#### 15.5.1 Automatically indexing new data during load

Indexing new data is simple with Content Manager OnDemand and FTS. When FTS is configured correctly, the result of an arsload operation automatically creates work items in arsftiwork. Each Application Group that the FTS is enabled for must be configured appropriately. For more information, see “Configuring Application Groups for full text search” on page 333.

#### 15.5.2 Indexing existing data through arsdoc

The arsdoc command is enhanced with two new options. The first new option is fti_add. Parameters for this option control whether the resulting documents are queried through SQL (the -i parameter) or if an entire load is to be full text indexed (the -X parameter).

The second new option added to arsdoc is fti_release. This option takes the same parameters as fti_add to determine which documents should have their indexes removed from the full text index.

Both of these options result in work items being created in the arsftiwork table. Example 15-2 shows an example of the command that is used with Bank1.
Example 15-2  Full text indexing all (SQL WHERE 1=1) documents of Bank1

arsdoc fti_add -f "Bank1" -h localhost -i "where 1=1" -u admin -v -G Bank1

15.5.3  Indexing existing data through ODWEK

The ODWEK Java API contains two new methods that support FTS. The first is `ODFolder.FTIAddHits()`. This method has a single parameter, which is a Vector of ODHits. The Vector of ODHit objects can be produced by using the `search()` methods of the ODFolder. All hits that are contained in the Vector parameter to `FTIAddHits()` are sent to FTS Exporter for full text indexing.

The second new method of the ODFolder object is `FTIReleaseHits()`. This method also takes a Vector of ODHit objects as a parameter and is used to remove the indexes from the FTS Server.

Both of these calls produce work items in the arsftiwork table.

For more information about the ODWEK Java API, see IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond, SG24-7646.

15.5.4  Running the FTS Exporter

Processing of the work items in the arsftiwork table is done by the FTS Exporter. The FTS Exporter begins processing work items, starting with the oldest items. It continues to process these work items until the table is empty. Then, it goes to sleep for a specified amount of time before waking up and looking for more work items.

After configuring the FTS Exporter, as described in 15.4.2, “Configuration of the Full Text Search Exporter” on page 334, you must run it with the config file as a parameter. The FTS Exporter requires a reference to the ODWEK native libraries that are shipped with Content Manager OnDemand to work correctly. The easiest way of achieving this task is to add this reference to the start command line when running Java with the FTS Exporter JAR file.

Example 15-3 shows how to start the exporter with `odfts.cfg` as the configuration file and `/opt/ibm/ondemand/V9.0/lib64` as the directory where the native library is installed.

Example 15-3  Running the FTS Exporter

```bash
java -Djava.library.path=/opt/ibm/ondemand/V9.0/lib64 -jar ODFTIExporter.jar index -configFile odfts.cfg
```

In Windows environments, make sure to enclose the ODWEK path with quotation marks if it contains spaces.

15.6  Using full text search in Content Manager OnDemand Clients

All Content Manager OnDemand Clients use the same process and procedure when searching the full text index. The query is first sent to the Content Manager OnDemand server for processing. If the Application Group being searched contains a segment date, and if the
search criteria specified a date range, that range is used to narrow down which collections on
the FTS Server must be searched.

15.6.1 Syntax

The FTS Server supports a rich query language that enables fuzzy searches, proximity
searches, weighted searches, and Boolean searches.

Queries can contain terms and operators. A term is a single word, such as “united”. A phrase
is a group of words that are contained in quotation marks, such as “computer software”.
Phrases are searched as exact expressions; stop words are not removed, no lemmatization is
done, and Boolean operators (such as AND) or wildcards (such as * or ?) are treated as literal
characters.

Without quotation marks, the query is parsed and the syntactical options that are described in
the following sections are allowed.

15.6.2 Boolean searches

Boolean operators allow terms to be combined through logical operators. The following
Boolean operators are supported: AND, OR, NOT, and “-”.

Boolean operators must be specified in all uppercase characters. For example, when
searching for documents about dogs or cats while specifying the OR Boolean operators,
specify the query as dogs OR cats, not dogs or cats.

Precede a term with a minus sign (-) to indicate that the term must be absent from a
document for a match to occur. For example, the following query returns documents that
include the term computer and not the term hardware:

computer -hardware

Use parentheses to control the Boolean logic in a query. For example, the following query
finds documents that contain either WebSphere or IBM Lotus® and website:

(WebSphere OR Lotus) AND website

15.6.3 Wildcard searches and optional terms

FTS supports wildcard searches. You can place wildcard characters before, within, or after a
term.

Use a question mark (?) to perform a single character wildcard search. For example, the
following query finds documents that contain the terms mare, mere, mire, and more:

m?re

Use an asterisk (*) to perform a multiple character wildcard search. A multiple character
wildcard search looks for zero or more alphanumeric characters.

Use a percent sign (%) to indicate that a search term is optional. For example, the following
query finds documents that include the term log and optionally include the term file:

log %file
15.6.4 Fuzzy and proximity searches

A fuzzy search query searches for character sequences that are not only the same but similar to the query term. Use the tilde symbol (~) at the end of a term to do a fuzzy search. For example, the following query finds documents that include the terms analytics, analyze, and analysis:

analytics~

An optional parameter can be used to specify the required similarity. Specify a value greater than 0 and less than 1. The value must be preceded by a 0 and decimal point, for example, 0.8:

analytics~0.8

A value closer to 1 matches terms with a higher similarity. If the parameter is not specified, the default is 0.5.

A proximity search finds documents that contain terms within a specified number of words of each other. Use the tilde symbol (~) to do a proximity search. For example, the following query finds documents that contain “IBM” and “WebSphere” within seven words of each other:

"IBM WebSphere"~7

Proximity search is supported for individual terms, not phrases. Also, a word after a sentence break is considered 10 positions apart from the last word of the previous sentence.

15.6.5 Weighted searches (boosting terms)

Follow a search term by a boost value to influence how documents that contain a specified term are ranked in the search results. Use the caret symbol (^) with a number (the boost factor) at the end of the term. For example, the following query finds documents that include the terms IBM and Germany and increases the relevance of these documents by a factor of five in the search results:

ibm Germany^5.0

Note: Special character, such as punctuation marks, are not alphanumeric characters and are not supported in fuzzy or proximity searches, or are not hit by a wildcard (*) operator.

15.7 Troubleshooting tips

If you encounter any problems during full text indexing and searching, you should investigate the issue by looking at the different logs or by using the trace options.

15.7.1 Content Manager OnDemand server log

Each full text indexing operation is registered at the Content Manager OnDemand system log. Example 15-4 lists a few message numbers with their text.

Example 15-4 Content Manager OnDemand system log messages that are related to full text search

Message 397: Document Full Text Index Add: ApplGroupName(Adobe PDFs) Agid(5021) Full Text Index Notified(1) Count(16) Time(0.069)

Note: Special character, such as punctuation marks, are not alphanumeric characters and are not supported in fuzzy or proximity searches, or are not hit by a wildcard (*) operator.
Message 398: Document Full Text Index Add Failed: ApplGroupName(Adobe PDFs) Agid(5021) Full Text Index Notified(0) Count(16) Time(0.001)

Message 399: Document Full Text Index Delete: ApplGroupName(Adobe PDFs) Agid(5021) Full Text Index Notified(1) Count(16) Time(0.025)


Message 439: FTS Error: IQQS0032E The query lunch~x cannot be processed because it has incorrect syntax. Causes of the problem: IQQP9014E The query [lunch~x] cannot be parsed because there is a syntax error at position 7. The fuzzy argument value [x] is not valid because its data type is not float or double. -- File=arsfti.cpp, Line=394

Messages 397, 398, and 399 are viewable and contain the list of documents (their metadata) that are affected by this operation. In the case of message 398 (fail), the failure reason is documented as well.

Each time the FTS Server reports an error, message 439 is issued, and contains the error message that was returned by the FTS Server. In this case, the query that is entered by the user contained a wrong syntax for a proximity or fuzzy search.

15.7.2 Full Text Search Server log

You can troubleshoot the FTS Server by configuring and viewing the FTS server logs. The FTS Server generates logging information during server startup, indexing, and searching. The log files contain configuration information, warnings, errors, and debugging information that can be useful for monitoring the server and troubleshooting specific issues. The command-line tools also generate log files. By default, log files are stored in the FTS_Home/log directory. You can run the configTool with the list -logFolder command to see your log directory.

Every message in the log file has an associated level that indicates the message type. Logging levels, in descending order of severity, are defined as follows:

- **SEVERE**: Errors and exceptions that occur during the running of the server. Typically, SEVERE messages include detailed information with the stack trace.
- **WARNING**: Mild problems that might require the attention of an administrator, such as a missing value for a setting with a default value, or the truncation of a document during indexing.
- **INFO**: Informational messages that are generated during system operation
- **FINE**: Detailed messages for debugging purposes. Includes parsed queries.
- **FINER**: More details, for example, results of document parsing.
- **FINDEST**: The most detailed level.

The default logging level is INFO, which means that messages of levels SEVERE, WARNING, and INFO are generated. To view the current logging level, run the FTS server adminTool with the printLogLevel command. To change the logging level at run time, run the adminTool with the configureTrace -logLevel command.
15.7.3 Full Text Search Exporter trace

When you have issues with the FTS Exporter, enable tracing by using the `-traceDir` and `-traceLevel` parameters. Set the `-traceLevel` parameter to FINE when troubleshooting a problem. A trace file is created and named `ftiexport_0.0_DDMMYYHHMM.log` in the directory that is specified by the `-traceDir` parameter.

Enabling trace within the FTS Exporter also enables trace in ODWEK. This results in the creation of an ODWEK trace files named `arswww.trace`. This trace file is also written to the `traceDir` directory. The FTS Exporter trace files can be read with any text editor, but the ODWEK trace files are viewable only by using the Content Manager OnDemand `arstfmt` command.

If you are running the FTS Exporter by using a configuration file, you must create a separate configuration file with the trace level set to a different level because the command-line parameter is ignored when you use a configuration file.

15.7.4 Authentication and FTS Exporter errors

Here are some tips to help you to troubleshoot authentication and FTS Exporter-related errors.

Authentication errors

If you are encountering any errors about authentication in the FTS Exporter trace, FTS Server log, or message 439 in the Content Manager OnDemand system log with the following message text, you might be using the wrong authentication token:

FTS Error: IQQ00040E The client specified the wrong authentication token. -- File=arsfti.cpp, Line=394

The default authentication token of `fIqBxTQ=` can change because of a reinstallation of the FTS Server or other severe incidents. You can discover the current authentication token by running the `configTool` of FTS Server with the parameter `printToken`. See Example 15-5.

Example 15-5   Displaying the currently active token

```
# /opt/ibm/odfts/V9.0/bin/configTool.sh printToken
The authentication token is printed below. This token is used to communicate with the server. Store the token if applicable.
fIqBxTQ=
```

You can configure the authentication token that is used by Content Manager OnDemand through a configuration setting in the `ars.cfg` file of your instance:

```
ARS_FULL_TEXT_INDEX_TOKEN=fIqBxTQ=
```

The same applies to the configuration parameter and the parameter file of the FTS Exporter application.

If you are writing down the default token (for example, as a parameter to FTS Exporter), be aware that the second character of the token value is an upper-case letter I, as in like in IBM.

Exporter errors

If you are encountering issues with the FTS Exporter, increase the trace level as described in 15.7.3, “Full Text Search Exporter trace” on page 341. Also, make sure to review the
configuration file by opening it in a text editor. Check whether all settings are reflected correctly.

If you are encountering errors about ars3wapi in the FTS Exporter output or trace, the FTS Exporter cannot find the native library reference to the ODWEK system libraries. To see how the -D parameter of Java can be used to include the native library path upon application start, see 15.5.4, “Running the FTS Exporter” on page 337.

If the error is related to a java.lang.UnsatisfiedLinkError error not finding the ars3wapi32, you are running on a 32-bit JVM. The Java classes of the FTS Exporter try to load the libars3wapi64, which is found in the lib64 subdirectory of your Content Manager OnDemand installation. If they cannot load these, a 32-bit version is searched (which is not present in the lib64 folder) and if both fail, it fails with the respective error message.

Make sure that you are running the FTS Exporter with a 64-bit JVM that can load the 64-bit share library libars3wapi64.

For more information about ODWEK native libraries, see “Accessing the native libraries” on page 188.
Enhanced Retention Management

In this chapter, we describe Enhanced Retention Management, which is a feature for IBM Content Manager OnDemand.

In this chapter, we cover the following topics:

- Enhanced Retention Management overview
- Configuring Enhanced Retention Management
- Applying and releasing holds
- Enhanced Retention Management use cases
16.1 Enhanced Retention Management overview

The Content Manager OnDemand Enhanced Retention Management feature helps you manage and enforce retention of documents in a Content Manager OnDemand system. In a Content Manager OnDemand system, you retain documents for a specific period. Retaining documents for a certain period is commonly referred to as retention management. On the other hand, Records management describes the process of retaining and deleting documents under a set of circumstances that are not necessarily bounded by time, for example, until the end of litigation. Consider the following important points when you select the correct retention solution:

- Records management requires that you have control over individual documents. Content Manager OnDemand manages application groups, not individual documents, and it works with a storage manager to delete (expire) documents.
- Records management requires flexibility in defining when to delete documents. Content Manager OnDemand defines the time to delete applications with fixed time ranges, for example, five years after Content Manager OnDemand loads the documents.

To overcome these limitations, implement the Content Manager OnDemand Enhanced Retention Management feature. With the Enhanced Retention Management feature, you control individual documents by introducing holds. Holds are a way to identify the documents that you want to keep for a period of time. To expire the document, you must remove the hold. Holds give you the flexibility to choose when to delete documents because you control when to remove a hold. You can manage holds through any of the following interfaces:

- Content Manager OnDemand Windows client, Content Navigator, WEBi, the ARSDOC command, or the Content Manager OnDemand Web Enablement Kit (ODWEK) Java APIs that are provided by Content Manager OnDemand.
- FileNet P8, when integrated with Content Manager OnDemand by enabling the FileNet Content Federation Services for Content Manager OnDemand feature. Content Federation Services for Content Manager OnDemand allows you to federate Content Manager OnDemand repositories, which connect your Content Manager OnDemand content to business processes in IBM Case Foundation and IBM Enterprise Records features of FileNet P8.

The Enhanced Retention Management feature requires that you disable the expiration processes that the Content Manager OnDemand storage manager has on the documents that you want to hold. Disabling the expiration process prevents the Content Manager OnDemand storage manager from deleting these documents.

16.2 Configuring Enhanced Retention Management

You must configure Content Manager OnDemand to identify documents in application groups that you want to retain (hold) and also identify the users who can manage holds. You must disable expiration processes by the storage manager so that it cannot expire data. You must also convert application groups with an expiration type of DOCUMENT, SEGMENT, or STORAGE MANAGER to an expiration type of LOAD.

To configure Enhanced Retention Management, you must:

- Enable Enhance Retention Management
- Identify the application groups where Enhanced Retention Management is applied
- Specify the application group “lockdown” field
- Enable hold permission for the application group
Assigning hold permissions to users
Creating holds using the Administrative Client
Specifying folder hold display

These items are described in more detail in the following sections

16.2.1 Enabling Enhanced Retention Management

To enable Enhanced Retention Management, modify the \texttt{ars.cfg} file and add the following line:

\texttt{ARS\_SUPPORT\_HOLD=1}

In Content Manager OnDemand for Windows, you can enable Enhanced Retention Management by using the Content Manager OnDemand Configurator, as shown in Figure 16-1. Select the \textbf{Enable Enhanced Retention Management} check box.

![Figure 16-1 Enabling Content Manager OnDemand for retention management](image)

Clearing this configuration setting has no effect on any documents that were placed on hold by Enhanced Retention Management. Documents continue to be held until all holds are removed.

16.2.2 Identify the application groups

Using the Content Manager OnDemand Administrator, you specify whether you want to use Enhanced Retention Management at the application group level, as shown in Figure 16-2.
When you create an application group, the default for Enhanced Retention Management is No. By selecting Yes, you can also define whether you want to define implied holds. By selecting an implied hold, all the data that is loaded into the application group is inherently held. The implied hold on the documents within the application group can be removed only by calling either ARSDOC or the ODWEK Java API to remove the implied hold. Implied holds are used in solutions where the retention of documents is maintained outside of Content Manager OnDemand.

16.2.3 Specify the application group lockdown field

When you use Enhanced Retention Management, you must define an application group field, as shown in Figure 16-3 on page 347. This field must be marked as “Lockdown” and is used to maintain the hold status of individual documents. To mark the field as “Lockdown” type, you must choose the field Data Type as “Small Int (2)”.

Figure 16-2 Configuring the application groups
The Lockdown field is used to maintain a count of the number of holds being held on the document. If no holds exist, its value is 0. If an implied hold exists for the document, the value is 16384. Any additional holds that are applied or released increase or decrease this number by 1.

### 16.2.4 Enabling hold permission for the application group

To apply a hold to or release a document, you must have the appropriate permissions. A new permission of type Hold exists under the permissions for a document in the application group permissions, as shown in Figure 16-4.
16.2.5 Assigning hold permissions to users

To manage holds in Content Manager OnDemand, you must have the appropriate permission. Figure 16-5 shows you how to define a user type of Hold Administrator and provide an authority type of Create Holds.
16.2.6 Creating holds using the Administrative Client

Hold definitions can be created and removed by using the Administrator Client. To define the hold definition, go to the Administrator Client, select the Hold tab, and provide a name and description for the hold that you are creating under the General tab (see Figure 16-6). Select the Permissions tab to grant the permissions that are required for your hold.
16.2.7 Specifying folder hold displays

At the folder level, a new check box was added that allows you to specify whether you want to see an icon in the client that indicates whether a document is locked down. Figure 16-7 shows you how to configure a folder for hold capabilities.
16.3 Applying and releasing holds

The Enhanced Retention Management feature allows you to quickly and efficiently apply and release holds. When you apply a hold to a document or multiple documents, they cannot be expired. If your documents are part of a large batch load, only the documents in a hold status are expired when they reach their expiration date. After a document is released from a hold status, it can be expired based on its original retention management policy.

16.3.1 Managing holds

You can apply and release holds by using the Windows client, Content Navigator, WEBi, the ODWEK Java API, and ARSDOC. As shown in Figure 16-8, when you select documents from the hit list and right-click, options for applying, releasing, and showing holds display.

16.3.2 Applying holds

Users can apply holds to a document or documents that are defined to an application group that enabled the Enhanced Retention Management feature. To apply a hold, select a document and click Actions → Holds → Apply Hold, as shown in Figure 16-8. This prevents deletion of the documents in Content Manager OnDemand regardless of its expiration date.
16.3.3 Creating and removing custom holds

Users can assign previously created holds to documents or create a hold that can be used privately or publicly, as shown in Figure 16-9 on page 352.

When you want to remove a previously enabled hold, highlight the documents and click **Actions → Holds → Remove Hold**, as shown in Figure 16-10.
Note: When a document is on hold, a hold icon is displayed to the left of the document.

16.3.4 Search for hold documents

Hold capabilities were developed as part of the Content Manager OnDemand database structure as a field that can be indexed. This allows users to search on selective holds that might be applied by another user, as shown in Figure 16-11.
16.4 Enhanced Retention Management use cases

Enhanced Retention Management provides two methods that allow users to place documents in a hold status:

- **Ad hoc**: The ad hoc method allows you to put documents in a hold status selectively based on their search criteria.
- **Load**: The Load method places documents in a hold status at load time.

The following sections present two use cases that provide examples of both methods.

16.4.1 Ad hoc holds

A healthcare firm receives frequent ongoing requests to find documents that must be gathered and protected from deletion because of a legal case involving the firm's customers. Historically, retention management was a paper-based world of file folders, filing cabinets, and off-site warehouses with elaborate and costly storage requirements. Retention management changed dramatically with the rapid proliferation of digital information.

The challenges of locating and retaining documents quickly was a problem for the firm until they set up Content Manager OnDemand as its standard tool for capturing documents. Content Manager OnDemand can capture high volumes of content and quickly search and retrieve documents with multiple client solutions for both desktop and standard web browsers. By using Content Manager OnDemand, the firm was able to enable Enhanced Retention Management and have a business solution to easily select, hold, and prevent expiration of documents within seconds. The return on investment (ROI) easily justified the investment in Enhanced Retention Management.

16.4.2 Load holds

A financial firm has a business requirement to review transactions for the day before a releasing them for viewing by their customer base. Content Manager OnDemand is used as the enterprise report capture solution. The firm wants to use Content Manager OnDemand to build a simplistic workflow. The solution also must be able to put the documents back in a hold status quickly to prevent any expiration rules that are assigned by the Content Manager OnDemand application from running.

By enabling Enhanced Retention Management and its “hold on store” feature, the firm has a solution that meets its business requirements. By placing every document on hold in a specific application group in Content Manager OnDemand, the process is controlled by entitlements. User A (the reviewer) has administrator rights to apply and remove holds on documents. After the document is reviewed, User A releases the hold, which signifies to his or her application area that the document was reviewed.
Content Federation Services for Content Manager OnDemand and IBM Enterprise Records

In this chapter, we describe enabling records management for an IBM Content Manager OnDemand (Content Manager OnDemand) solution. By default, report and document expiration are controlled by the storage managers that are integrated with Content Manager OnDemand. By using the storage managers, you can assign a retention period at data capture time. IBM Enterprise Records enhances retention capabilities with the flexibility to assign event-based retention and make a report or document an official compliant record to meet numerous government regulations.

In this chapter, we cover the following topics:

- Content Federation Services for Content Manager OnDemand and IBM Enterprise Records overview
- Administration of Content Federation Services for Content Manager OnDemand for Enterprise Records
- Content Federation Services for Content Manager OnDemand architecture overview
- Deployment considerations
17.1 Content Federation Services for Content Manager OnDemand and IBM Enterprise Records overview

IBM FileNet Content Federation Services enables organizations to access content from numerous heterogeneous repositories anywhere in the enterprise and federate this information to provide a single enterprise source for critical business content. Content Federation Services for Content Manager OnDemand specifically enables enterprises to perform federation, search, retrieve, and records management functions across Content Manager OnDemand repositories.

IBM Enterprise Records positions your business to provide legally compliant records that meet government regulations at the time of inquiry that follow your corporate record policy file plan.

Content Manager OnDemand handles a high volume of document ingestion to the system, typically of a static nature, such as credit card or bank statements. Each document ingestion might contain thousands of individual documents or pages. Content Manager OnDemand offers a retention feature that allows you to set the document retention for a fixed period at the document ingestion time, for example, an investment company that applies a simple retention policy of eight years on all of their customer statements.

Content Manager OnDemand does not apply an event-based retention policy that is based on, for example, the date that the customer closed an account. In this scenario, the clock does not begin the eight-year period until the customer closes the account. By enabling records federation services by using Content Federation Services for Content Manager OnDemand, you can manage Content Manager OnDemand content in a manner that is consistent with your organization’s records retention policies.

When federated and declared as a record in Enterprise Records, Content Manager OnDemand content can be tied to dynamic retention policies, such as account closure, policy termination, contract execution, or any other event. In these circumstances, records federation services can allow your organization to retain content for a certain amount of time starting on the date of the event. Companies must take into account special design considerations to correctly manage a large collection of data when the company deals with various regulatory policies and litigation.

When it comes time to expire data, with federated and declared content using Content Federation Services for Content Manager OnDemand, Content Manager OnDemand can delete the original load (which contained multiple documents) and at the same time reingest those documents that must be retained.

When you use Enhanced Retention Management, you enable the holding documents immediately and prevent expiration. Although this is a powerful feature, it does not position your business to make a Content Manager OnDemand captured report or document a compliant record to meet government regulations. You must enable the feature that meets your business requirements:

- Use Enhanced Retention Management in Content Manager OnDemand to hold documents and prevent expiration.
- Use Enterprise Records to make documents compliant records and enable them for event-based expiration.

There might be a situation where you have both features enabled because of the many different line of business requirements.
17.2 Administration of Content Federation Services for Content Manager OnDemand for Enterprise Records

Configure Content Manager OnDemand for content federation enables you to declare records by using Enterprise Records. You must disable expiration processes by the storage manager so that it cannot expire data. You must also convert application groups with an expiration type of DOCUMENT, SEGMENT, or STORAGE MANAGER to an expiration type of LOAD.

To configure Content Federation services for Content Manager OnDemand, you must perform the following steps:

- Enable Content Federation Services for Content Manager OnDemand.
- Identify the application groups where Content Federation is to be enabled.
- Specify the application group field.
- Enable Content Federation permissions for the application group.
- Federate document metadata to Content Federation Services for Content Manager OnDemand.

These items are discussed in more detail in the following sections.

17.2.1 Enabling Content Federation Services for Content Manager OnDemand

All the steps in this section assume that IBM FileNet P8 and FileNet Content Federation Services are installed correctly.

In this section, we describe the components in Content Manager OnDemand to enable the federation capabilities to allow for record declaration in Enterprise Records. We assume that you are familiar with Content Manager OnDemand administration, so detailed steps are not provided in this chapter.

For more information about the installation and configuration of FileNet P8 and FileNet Content Federation Services, see Federated Content Management: Accessing Content from Disparate Repositories with IBM Content Federation Services and IBM Content Integrator, SG24-7742.

To use IBM FileNet P8 Content Federation Services for Content Manager OnDemand, you must enable the feature in Content Manager OnDemand. This can be done by modifying the ars.cfg file and adding the following line:

ARS_SUPPORT_CFSOD=1

In Content Manager OnDemand for Windows, you can enable IBM FileNet P8 Content Federation Services for Content Manager OnDemand by using the Content Manager OnDemand Administrator Client Configurator, as shown in Figure 17-1.
Disabling this configuration setting has no effect on any existing documents that were placed on hold by Enterprise Records. Documents continue to be held until Content Manager OnDemand is notified by Enterprise Records that the documents should be deleted.

17.2.2 Identify the application groups where Content Federation is to be enabled

For each application group, specify whether you want to enable FileNet P8 Content Federation Services for Content Manager OnDemand by using the Content Manager OnDemand Administrator Client, as shown in Figure 17-2.
When creating an application group, the Content Federation Services (CFS-CMOD) is disable by default. To enable, you select Yes for the “Use Content Federation Services (CFS-CMOD)” option. You also have the option of defining whether you want to federate documents automatically and whether to enable Enterprise Records (previously known as IBM FileNet Records Manager) automatically.

Selecting **Federate documents automatically** means that when data is loaded into Content Manager OnDemand, the metadata also is sent to Content Federation Services for Content Manager OnDemand to be made available to FileNet P8.

The **Enable FileNet Records Manager to records declare automatically** option is used as a performance option. Setting this flag means that Content Manager OnDemand assumes that Enterprise Records now have control over expiration processing. Not setting this option means that every time a document is put under Enterprise Records control, FileNet P8 then notifies Content Manager OnDemand to lock down the document. This could result in many requests coming to Content Manager OnDemand. By choosing to do this task automatically, Content Manager OnDemand can avoid this impact.

### 17.2.3 Specifying the application group field

When using FileNet P8 Content Federation Services for Content Manager OnDemand, you must define an application group field, which must be marked as **CFS-CMOD**, as shown in Figure 17-3 on page 350. To mark the field as “CFS-CMOD” type, you must choose the field Data Type as **Small Int (2)**. This field is used to maintain the Content Federation Services for Content Manager OnDemand status of individual documents.
Figure 17-3 Configuring the application group field to enable Content Federation Services for Content Manager OnDemand

The CFS-CMOD field is used to maintain the status of Content Federation Services for Content Manager OnDemand. If the document is not given to Content Federation Services for Content Manager OnDemand, the value is zero. If the value is negative, then the document is eligible for deletion. Otherwise, the flag is logically OR'd with the following values:

- 0x0001: If federated to Content Federation Services for Content Manager OnDemand
- 0x1000: If declared in Enterprise Records
- 0x2000: If the metadata for the document cannot be updated

17.2.4 Enable Content Federation permissions for the application group

To federate a document, you must have the appropriate permission to do so. A new permission of type CFS-CMOD now exists under the permissions for documents in the application group permissions, as shown in Figure 17-4.
17.2.5 Federating document metadata to Content Federation Services for Content Manager OnDemand

There are two steps to federate Content Manager OnDemand documents to FileNet P8:

1. Mark the documents by using the Content Manager OnDemand Windows Client, ODWEK Java APIs, or ARSDOC. If the option to federate documents automatically is set, then the documents are marked automatically when they are loaded.

2. Push the metadata of the documents to FileNet P8 by using the Content Federation Services for Content Manager OnDemand Exporter utility. It is important that after pushing the document metadata using CFS-CMOD Exporter utility, you must not make any changes to the Application Group ID or Application ID of the CMOD source as they are parts of the document identifier of the virtual document created in FileNet P8. As the result, the previously federated documents’ content is no longer accessible from FileNet Content Platform Engine.

For more information about this task, see section 4.5.4, “Configure and run the CFSOD exporter utility”, in Federated Content Management: Accessing Content from Disparate Repositories with IBM Content Federation Services and IBM Content Integrator, SG24-7742.
If the option to automatically federate is not set, data can still be federated by using the Windows client, ODWEK Java APIs, or ARSDOC. Figure 17-5 shows where you can select an option to federate selected metadata to FileNet P8.

Figure 17-5  Selecting Content Manager OnDemand documents to become records

17.3 Content Federation Services for Content Manager OnDemand architecture overview

Content Federation Services is based on the federation implementation strategy for managing distributed content. The distinguishing feature of this strategy is the global catalog. The global catalog is a searchable database that contains information about content that is stored in various repositories and repository types in separate locations throughout the enterprise that are identified for federation. Enabling Content Federation Services for Content Manager OnDemand does not change the architectural design of Content Manager OnDemand. Content Federation Services for Content Manager OnDemand is a mid-tier process that enhances your ability to manage content more efficiently.

Figure 17-6 shows the high-level access path to declare records from Content Manager OnDemand, Content Navigator, and Content Manager OnDemand Clients.
17.4 Deployment considerations

Understanding the difference between Enhanced Retention Management and IBM Enterprise Records is critical to choosing the correct solution:

- Enhanced Retention Management provides for the lockdown of documents and prevents expiration.
- Enterprise Records declares documents as records that immediately become part of a corporate file plan. Enterprise Records notifies the Content Manager OnDemand repository when it reaches its event-based expiration. This passes control to Content Manager OnDemand to delete the document unless Enhanced Retention Management is also enabled for the same document. If Enhanced Retention Management is also managing the document, it waits until the hold is released before being eligible for deletion.

When using Enhanced Retention Management or Enterprise Records, Content Manager OnDemand must be in complete control of expiration processing. Therefore, if you are using IBM Tivoli Storage Manager or OAM, you must disable the ability for either of these storage managers to expire data. Also, it is only possible to use Enhanced Retention Management and FileNet P8 Content Federation Services for Content Manager OnDemand against application groups that have an expiration type of LOAD. For those application groups that have expiration types of DOCUMENT, SEGMENT, or STORAGE MANAGER, there are utilities to convert those application groups to LOAD. We recommend that you engage IBM Lab Services to provide these services.

A new parameter was added to the arsmaint -d and arsadmin unload commands. This parameter, -D <pct_max>, tells the Content Manager OnDemand expiration process at what percentage threshold that the reloading of documents happens. For example, a value of 0 (the default) means that if any documents are being held by either Enhanced Retention Management or IBM Enterprise Records, reloading never occurs. If all the documents in a load are being held, then it makes no sense for Content Manager OnDemand to reload the data, so reloading never occurs. However, if the percentage of documents in the load being...
held is less than the \(-D \text{ <pct}\text{\_max}}\) value, then Content Manager OnDemand reloads the data, reaps any existing holds, and deletes the original load.

In cases where both Enhanced Retention Management and IBM Enterprise Records are being used, a document is not deleted until IBM Enterprise Records has notified Content Manager OnDemand that it should delete the document and all Content Manager OnDemand holds are removed from the document. With Content Manager OnDemand and FileNet P8 Content Federation Services for Content Manager OnDemand, you cannot update any metadata fields (for example, application group fields), nor recreate the application used in federated document, and you cannot load documents that might have identical metadata. This is highly unusually given that most documents either have a date or some other uniquely distinguishing value to identify them. When reloading occurs, a configuration option exists that tells Content Manager OnDemand whether to preserve any existing annotations. Keeping existing annotations does incur additional processing impact in the reload process. The option to control annotations is in the ars.cfg file:

ARS_HOLD_CFSOD_RELOAD_ANNOTATIONS=\([0 \mid 1]\) defaults to 0

There are various options regarding managing content to meet business challenges. Architectural design is critical in supporting an enterprise vision for content. We recommend consulting with your local IBM Enterprise Content Management architects to implement the solution that meets your needs.
Part 5

Troubleshooting, hints, and techniques

This part contains the following chapter:

- Chapter 18, “Troubleshooting and tracing” on page 367
Troubleshooting and tracing

A problem can manifest itself in many different ways, and often the root cause of the problem is not obvious. This chapter describes an approach to problem determination for the IBM Content Manager OnDemand (Content Manager OnDemand) system administrator. It guides you through the initial steps in problem diagnosis. In addition, this chapter helps you gather the most common documentation that is required by IBM Support Center for further diagnosis.

In this chapter, we cover the following topics:
- Troubleshooting common problems
- Information collection
- Content Manager OnDemand trace facility
- Other tracing options
18.1 Troubleshooting common problems

While working with Content Manager OnDemand systems, administrators and users might encounter various problems. There are several main areas where problems can occur. We classify them into the following categories:

► Indexing and loading issues
► Content Manager OnDemand maintenance issues
► Monitoring the main server task arssockd
► Installation and migration issues
► Common server messages

In this section, we describe some of the common problems and provide possible solutions to them. At the end of the section, we also include a list of common server messages.

**Tip for determining the cause of the problems:** For the UNIX platform, the console message might help determine the cause of the problem. However, if you use Telnet from your PC, you might miss the important console message. For AIX, you can switch the console to your current terminal by running `swcons ‘tty’`. To switch it back to the console, run `swcons`.

18.1.1 Client issues

The following problems are some of common ones that are encountered while running client side applications:

► **Problem:** Client connection received the error “Server failed while.”
  
  **Reasons:** Server is not up, or is up but not responding to request; or TCP/IP problems between Windows and the OnDemand host; or protocol problem; or firewall problem.
  
  **Resolution:** Check the following:
  
  – OnDemand library server is up, and is accepting request. For example, log on to OnDemand host and issue a `arsdoc` query against the OnDemand system log.
  – The OnDemand host can be pinged. If not, consult with your OS support.
  – The port OnDemand server is listening and ready for a supported protocol. For example, issue the command `netstat -tulpn`.
  – The Linux firewall is not on. For example, use the command `systemctl status firewalld` to turn off the firewall by issuing `systemctl disable firewalld`.

► **Problem:** Content Navigator or custom application encounters error with OnDemand.
  
  **Resolution:** Test the scenario with OnDemand Windows client first. If the problem cannot be reproduced, turn on ODWEK trace (see 18.2, “Information collection” on page 379). After the ODWEK API in question is identified from the trace, run a stand-alone program (sample can be requested from IBM) to test the API.

18.1.2 Indexing and loading issues

The following problems are some of common ones that are encountered while performing indexing or loading:

► **Problem:** When you attempt to index a report with a large record length, you see the error message that is shown in Figure 18-1.
Reason or resolution: You might have exceeded the maximum record length for Advanced Function Presentation (AFP) Conversion and Indexing Facility (ACIF), which is 32 KB.

Return Code 310 Explanation: An attempt to read a dataset failed. This message is informational and further action takes place in higher level modules if required. The file format is not valid.

– Problem: The arsload program is performing progressively slower over time.

Reason or resolution: Performance problems can be caused by various reasons and require careful examination. Content Manager OnDemand issues an SQL DELETE against the ARSLOAD table before it adds that same information to the ARSLOAD table to guarantee uniqueness. There cannot be duplicated information in the ARSLOAD table. This SQL DELETE is a single action against the ARSLOAD table and uses an index that is formed from AGID and NAME.

The ARSLOAD table has two indexes:

– ARSLOAD_NAME_IDX, which contains AGID and NAME
– ARSLOAD_IDX, which contains columns AGID and EXP_DATE

Without the ARSLOAD_NAME_IDX, each load performs a complete table scan of the ARSLOAD table.

Check to see whether you already have these indexes. In addition to index creation, gather statistics by running the following command:

arsdb -I <INSTANCE_NAME> -mv

Problem: The arsload program terminates when an unrecoverable error occurs during index, database, or storage manager processing.

Reason or resolution: Open the Content Manager OnDemand system log folder and view the messages that the arsload program generated during the load process. Search for message number 88 in the system log.

If the arsload program failed during indexing, correct the problem and then restart the load process from the beginning. Common causes of problems during indexing include invalid input files, invalid indexing parameters, indexing parameter files, and insufficient temporary space.

If the failure occurred during database processing or storage manager processing, check the database or storage manager for errors.

Check the message log for a load ID that the arsload program saved in the system log. Before you attempt to reload the input data, you must remove the data that was created during the failed load process by using the UNLOAD function of the arsadmin program.

Restart the load process from the beginning.

Problem: Content Manager OnDemand indexing fails when only one field is defined for an application group.

Reason or resolution: The Content Manager OnDemand file name indexing feature needs at minimum one index and field value that are defined in the application indexer parameters.
Verify that you are using a file name index with one field that is defined in the application group and no field or indexing parameter that is defined for the application. If this is true, then you must use a field. You can define a dummy literal index and field value in the application indexing parameter as a placeholder. This dummy value is not processed, but allows the file name to be indexed successfully.

Problem: Content Manager OnDemand does not break up the PDF file into separate reports when TRIGGERS are defined correctly and indexing is successful. For some reports, the trigger is not honored and the reports are grouped.

Reason or resolution: The field value must change for Content Manager OnDemand to indicate a report break. In Figure 18-2, there are several pages of a document; Page 1 is the TRIGGER, and the name is the field that is placed into the index.

<table>
<thead>
<tr>
<th>Page 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Page 1</td>
</tr>
<tr>
<td>John Doe</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Figure 18-2 Sample document for indexing

In this example, because the string Page 2 does not match the TRIGGER, it is ignored, and that page is included in report 1. Moreover, the report does not break until the name John Smith is read because it is different from the name John Doe.

Problem: When viewing a document loaded with LOB, the client receives the message:

Viewer Page count does not match Load Page Count. Viewing may be adversely affected. Contact your system administrator.

If the OK button is pressed, the document can be viewed in its entirety, except that the page number is incorrect.

Reason or resolution: When a document is loaded as LOB, the Loader must count the pages, because a certain number of pages go into a LOB segment. When the client retrieves a LOB segment, the client also counts the pages that it receives from the server. The user will receive the message “Viewer Page count does not match Load Page Count.” when the two page counts do not match.

This problem is usually caused by the user running ACIF to load a document that contains the form feed character x'0C'. ACIF does not support the form feed character as the start of a new page, but the line data viewer does. Therefore, the viewer ends up with a different count of pages than the loader.

If you use the asciinp exit, make sure that the exit was not modified and recompile the exit.

If you use any other exit besides asciinp, do not use the exit so that the troubleshooting will be easier.

If the file was transferred as text from a Windows system to an AIX system, the x'0D0A' will be changed to x'0A', and this could affect the indexing.

Check your input file in a hex editor to verify if the delimiter is x'0D', and that the file contains x'0C'.
18.1.3 Content Manager OnDemand maintenance issues

The following problems are related to Content Manager OnDemand maintenance:

- **Problem:** One of the Content Manager OnDemand database file systems is reaching 100% usage, and there is no way to increase the file system size. How do you determine whether an application group is using this file system?

**Reason or resolution:**

a. Run `arstblsp` to list the open table for the application group. For example, the application group that you want to find is called `AppGrpName`. Use the following command:

```
arstblsp -a 3 -g AppGrpName
```

The command returns table name `CAA1` as follows:

```
Table still open for loading: App1Group(AppGrpName) Agid(5016) Table (CAA1)
```

b. List the table space ID, table space, and table name for the application group data table that is opened. For example:

```
su - archive
db2 connect to archive
db2 "select tbspaceid, tbspace, tabname from syscat.tables where tabname='CAA1'"
```

The command returns the following output for table space ID 3:

```
TBSPACEID  TBSPACE   TABNAME
3   ROOT_CAA1 CAA1
```

c. Determine the containers for this table space ID by running the following command:

```
db2 "list tablespace containers for 3"
```

The command returns with the table space containers for tablespace 3, as shown in Figure 18-3.

```
Tablespace Containers for Tablespace 3

<table>
<thead>
<tr>
<th>Container ID</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/arsdb/db1/SMS/ARCHIVE/root/CAA1.0.0</td>
<td>Path</td>
</tr>
<tr>
<td>1</td>
<td>/arsdb/db1/SMS/ARCHIVE/root/CAA1.1.0</td>
<td>Path</td>
</tr>
<tr>
<td>2</td>
<td>/arsdb/db1/SMS/ARCHIVE/root/CAA1.2.0</td>
<td>Path</td>
</tr>
<tr>
<td>3</td>
<td>/arsdb/db1/SMS/ARCHIVE/root/CAA1.3.0</td>
<td>Path</td>
</tr>
</tbody>
</table>
```

*d. Check whether any of the containers that were listed previously belong to the file system, which is full:

Figure 18-3 Output of `db2 list tablespace 3` command*
If they do, close the opened application group data table by using the following command:

```
arstblsp -a 1 -g AppGrpName
```

The following message indicates that the table closed successfully:

```
Closed table successfully: App1Group(AppGrpName) Agid(5016) Table(CAA1)
```

If they do not, continue to find the next application group.

When the application group data table is closed, Content Manager OnDemand creates a table on a file system as defined in `ARS.DBFS` when data is next loaded. It also searches for the file system with more free space to create the new table.

**Problem:** The `arsmaint` program fails to complete.

**Reason or resolution:** The problem that is most commonly encountered is that the cache file system is full or a link is broken.

For a full cache file system, check which file system is full, and expand the file system if possible.

For a broken link problem, the system log displays errors relating to `arsmaint`.

If neither situation is the case, check to see whether `arsload` is running at the same time. If `arsload` is running at the same time when you run the `arsmaint -r` command, `arsmaint` might fail.

**Problem:** When creating new application groups, you see the error that is shown in Figure 18-4.

![Figure 18-4 Error message SQLCODE 497](image)

**Reason or resolution:** The following actions can help decrease the internal limits:

- If the DBID limit is exceeded, **DROP** all unused databases and issue a **COMMIT**.
- If the OBID limit is being exceeded, **DROP** all unused objects in the database and issue a **COMMIT**. Specify a different database or run the **MODIFY** utility to reclaim unused OBIDs.
- Consider dropping indexes on application group data tables for indexes that are not frequently used for access. Review NODX reports as a possibility of indexes that can be dropped.
- Find any obsolete application groups and related data whose definitions can be deleted by using the Administrator Client.
- Analyze application group data tables that have gone into multiple segment tables, and change the MAX_ROWS column of the current table in the ARSSEG table to be a larger value so that another table is not created.
- Check your application group expiration settings and make sure that your expiration processes are being performed on a timely basis and are completing successfully so that application group data segment tables, table spaces, and indexes also must be dropped in DB2 at the same time as expiration processing occurs, in a timely manner.
- Begin consolidating applications into fewer application groups, if possible.
– Create another database and modify the ARSUTBL exit (for more information, see Chapter 11, “Exits” on page 233) to change the default created table space to a new database.
– Use Content Manager OnDemand Administrator Client to define application groups to go to different databases.

18.1.4 Monitoring the main server task arssockd

**Problem:** At start, you need more information about the main server task named arssockd

**Reason or resolution:** You can now monitor the main server started task arssockd by displaying the process usage information for the instance. Using the parameter /-I ARC900 -x -p for z/OS you, add the following PARM statement to the arssockd started task:

```
PARM='/-I ARC900 -x -p'
```

-p displays the process information.

For Content Manager OnDemand, you can monitor the library server from any machine with Content Manager OnDemand installed on it by running the following command:

```
arssockd -I <INSTANCE> -p -x
```

The object servers also can be monitored from the object server itself by running the following command:

```
arsobjd -I <obj_hostname,port> -p -x
```
If you want to see all the parameters that are available for arssockd, run arssockd with -p without any other parameters. You receive the output that is shown in Figure 18-5.

```
/usr/lpp/ars/V9ROMO/bin>arssockd -p
ARS0980I Usage: arssockd [options]
Version: 9.0.0.1
-h <od_inst> OnDemand instance name or host name (same as -I)
-I <od_inst> OnDemand instance name or host name (same as -h)
-p Display process usage information for the given instance
-P Ping the OnDemand Instance
-q Display configuration and version information for the given instance
-r <iterations> Number of iterations (defaults to 1)
-s <seconds> Number of seconds between iterations (defaults to 1)
-S Start the OnDemand server for the given instance
-T Stop the OnDemand server for the given instance
-v Verbose output
-x Extended information (when used with -p)
-1 <trace_file> Trace file
-2 <trace_level> Trace level
```

Figure 18-5   Options of running arssockd with the -p parameter

### 18.1.5 Installation and migration issues

The following problems are some of the common ones that are encountered while installing or migrating Content Manager OnDemand systems:

- **Problem**: Various errors occur during the installation of Content Manager OnDemand for Multiplatforms V9.5.

  **Reason or resolution**: The first place to look is the **installation directory.** The new installer does not change the directory location to where the installation occurs as in the previous release, and this might cause installation errors.

  Before performing the installation, note the installation directory location because changing the directory location affects upgrade instructions. In Version 9.0 and earlier releases, the installer removes the previous version of Content Manager OnDemand.

  For special installation and configuration instructions, see the installation readme file.

  Table 18-1 shows the new default installation directory locations.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Content Manager OnDemand server installation directory</th>
<th>ODWEK installation directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX, HP-UX, Solaris</td>
<td>/opt/IBM/ondemand/V9.5</td>
<td>/opt/IBM/odwek/V9.5</td>
</tr>
<tr>
<td>Linux (both x64 and System z)</td>
<td>/opt/ibm/ondemand/V9.5</td>
<td>/opt/ibm/odwek/V9.5</td>
</tr>
<tr>
<td>Windows</td>
<td>C:\Program Files\IBM\OnDemand for Windows\V9.5</td>
<td>C:\Program Files\IBM\OnDemand Web Enablement Kit\V9.5</td>
</tr>
</tbody>
</table>

- **Problem**: During the start of Content Manager OnDemand, you see the error message that is shown in Figure 18-6.
**Figure 18-6**  Error message ARSSOCKD DB error

**Reason or resolution:** For Version 8.5.0, there is a new `ars.cfg` parameter, `ARS_ORIGINAL_CODEPAGE`, which is now required.

When using Content Manager OnDemand for z/OS V8.5.0 to access a pre-Version 8.5 Content Manager OnDemand database, this parameter must be set to the code page that the **pre-Version 8.5 server** was running in. Failure to set it prevents the Content Manager OnDemand server from starting. Setting it incorrectly results in data corruption. This information also can be found in the Content Manager OnDemand z/OS 8.5 readme file.

For information about the correct setting for `ARS_ORIGINAL_CODEPAGE`, run `arsdb -u` without `ARS_ORIGINAL_CODEPAGE` in the `ars.cfg` file. For example:

```
arsdb: Unable to initialize environment. The return code is -1 -
Define ARS_ORIGINAL_CODEPAGE in the ars.cfg file as follows:
- If this is a new instance, use the following setting:
  ARS_ORIGINAL_CODEPAGE=37
- If this is an existing instance, use the following setting:
  ARS_ORIGINAL_CODEPAGE=1047
```

*Note: After it is defined, ARS_ORIGINAL_CODEPAGE must never change.*

For an existing instance (created before Version 8.5), the code page that is displayed must match the code page in the ARS0220I message that is issued by the pre-Version 8.5 server when it starts regardless of the setting of `ARS_ORIGINAL_CODEPAGE`. For example:

ARS0220I Server code page is 1047

Note: An 8.5 server will always display ARS0220I Server code page is 1200

**Problem:** During the running of `arsload`, you encounter an error, as shown in Figure 18-7.

**Figure 18-7**  ARSLOAD error message

**Reason or resolution:** This issue could be related to an incorrect `ARS_ORIGINAL_CODEPAGE` setting. Check that the value is correct by using the following method. For more information, see Technote 1616768.

- For UNIX servers:

  For information about the correct setting for `ARS_ORIGINAL_CODEPAGE`, run `arsdb -u` without `ARS_ORIGINAL_CODEPAGE` in the `ars.cfg` file. For example:

  `arsdb -u -I <OD_INSTANCE>`
You might receive this message:

arsdb: Unable to initialize environment. The return code is -1.

Define `ARS_ORIGINAL_CODEPAGE` in the `ars.cfg` file as follows:

- If this is a new (created in Version 8.5) instance, use the following setting:
  
  `ARS_ORIGINAL_CODEPAGE=819`

- If this is an existing instance (created before Version 8.5), use the following setting:
  
  `ARS_ORIGINAL_CODEPAGE=923`

After it is set, `ARS_ORIGINAL_CODEPAGE` must never change.

Edit the `ars.cfg` file and add the `ARS_ORIGINAL_CODEPAGE` parameter, set to the appropriate value by the `arsdb` command.

For Windows servers:

For information about the correct setting for `ARS_ORIGINAL_CODEPAGE`, run `arsdb.exe -u -I <OD_INSTANCE>`. For example:

```
arsdb.exe -I <OD_INSTANCE> -u
```

You might receive the following output:

arsdb: Unable to initialize environment. The return code is -1.

Define `ARS_ORIGINAL_CODEPAGE` in `ars.cfg` as follows:

- If this is a new (created in Version 8.5) instance, set `ARS_ORIGINAL_CODEPAGE` with a value of 1208 in the registry.

- If this is an existing instance (created before Version 8.5), set `ARS_ORIGINAL_CODEPAGE` with a value of 5348 in the registry.

The registry setting should be in the `HKEY_LOCAL_MACHINE\SOFTWARE\IBM\OnDemand for Windows\<SRV\_<OD_INSTANCE>\CFG` registry key.

After it is set, `ARS_ORIGINAL_CODEPAGE` must never change.

Run `regedit.exe` and update the Windows registry key that is specified in the output of the `arsdb` command and add the `ARS_ORIGINAL_CODEPAGE` string value, set to the appropriate value by the `arsdb` command.

Problem: When you run `arsdb -I ARCHIVE -vu` command from a BPXBATCH job, you see errors in `STDOUT` or in the output of `arsdb -c`, as shown in Figure 18-8.

```
DB Error: {DB2 for OS/390}{ODBC DRIVER} SQLSTATE=58004 ERRLOC=2:170:9
CAF “CONNECT” failed using DB2 system=DB2K
RC=08 and REASON=00f30002 -- SQLSTATE=58004, SQLCODE=-99999
arsdb: Unable to connect to DB2 ARSDBASE database
or
arsdb: Unable to determine the database engine
```

Figure 18-8  ARSDB error

Reason or resolution: Put in an `export` command for `DSNAOINI` in the BPXBATCH job or be sure that you have `export DSNAOINI="/etc/ars/cli.ini"` defined. Verify that this is the directory that your `cli.ini` file is in. Also, check that your `cli.ini` file references the correct DB2 subsystem. For example:

```
[COMMON]
MVSDEFAULTSSID=DB1M
[DB1M]
```
Problem: During installation and migration, when you run `arsdb -u -I` or `arsdb -I ARCHIVE -vx ARSSYS`, you receive an error similar to Figure 18-9.

```bash
arsdb -u -I
CEE3204S The system detected a protection exception (System Completion Code=0C4).
From entry point u_file_write_44_arsxh at compile unit offset +00000054 at entry offset +00000054 at address
```

Figure 18-9  ARSDB error during installation and migration

Reason or resolution: There are multiple resolutions to attempt when you encounter this error:

- Check the `ARSSOCKD` region parameter. We recommend using `region=0`. Also, check your TSO logon region size. Increase TSO, log out of TSO, and log back in.
- When you run `export (x)`, the contents of the ARSxxx table are exported to a flat file. The command attempts to write the file to the directory that `arsdb` command runs in. Be sure that the user has write permissions for the file. Also, be sure that the user has permissions for intermediate file `ARS_TMP`.
- Check the OMVS size to see whether it can be increased to system limit (D OMVS,L). Check your OMVS limits MAXMMAPAREA and MAXSHAREPAGES.
  
  We have found that Version 8.5 requires at least 3646 for the value of MAXMMAPAREA.
  
  In the following example, 3107 + 3646 = 6753, which is more than 4096.

  ```
  MAXMMAPAREA 3107 3107 4096
  This value is based on the example output of the D OMVS,L. For this example, increasing your MAXMMAPAREA from 4096 to 40960 resolves the problem.
  ```

Problem: When you run `/usr/lpp/ars/V9R0M0/bin/arsdb -I ARCHIVE -iv arsag`, you receive an error message similar to Figure 18-10.

```bash
unable to import table arsag. err=1904
```

Figure 18-10  ARSDB error message 1904

Reason or resolution: The `arsdb` command is having a problem opening a temporary file for messages. `ARS_TMP` from the ARCHIVE instance is not being used. If `ARS_TMP` is not present, then root `/` is used. To resolve this error, define the directories correctly so that they are pointed to by the `ARS_TMP=` parm in the `ars.cfg` file.

18.1.6 Common server messages

Here are some of the more common messages that occur in a Content Manager OnDemand environment:

- ARS0066I message

  ```
  ARS0066I Application Group Document Get: Name(appl_grp_name) Agid(agid) ApplName(appl_name) Aid(aid)NodeName(node_name) Nid(nid) Server(server) Time(time) Flds(fields)
  ```
This message is received during document retrieval from a specific application group. You can find this message in the Content Manager OnDemand System Log. The message is for your information only.

This message is valuable because it records the document that was retrieved and other information about the document and the retrieval time.

Example:

```
ApplGroup DocGet: Name(QPJOBLOG) Agid(5081)
ApplName(QPJOBLOG)Aid(5082)NodeName(-CACHE-)Nid(1)Server(-LOCAL-)
Time(0.322)
Flds()
```

▶ ARS0067I message:

```
ARS0067I Application Group Resource Get: Name(appl_grp_name) Agid(agid)
nodeName(node_name) Nid(nid)Server(server) Time(time)
```

This message is received when a resource is retrieved from a specific application group. You can find this message in the Content Manager OnDemand System Log. The message is for your information only.

This message is valuable because it records the name of the application group that the resource is associated with and the time of the resource retrieval.

Example:

```
ApplGroup ResGet: Name(INS) Agid(6843) NodeName(-CACHE-) Nid(25)
Server(-LOCAL-) Time(0.069)
```

▶ ARS0087I message:

```
ARS0087I Application Group Load: Name(appl_grp_name) LoadId(load_id) File(file)
InputSize(input_size)OutputSize(output_size)
```

This message is received during the running of `arsload`. A report is loaded into the system. The message identifies the application group, the input file, and the load ID. This message is for your information only.

This message is valuable because it records information about the load, such as the application group name, load-id, file name, and sizes of the files at load time.

Example:

```
ApplGroup Load: Name(MOSUNPO)LoadId(5535-2-0-1FAA-12349-12349)
File(/QIBM/USERDATA/ONDEMAND/QUSROND/TMP/SP_MOSUNPO_WTH7HTWCXA_DBRYANT_064315_00009_RDR400M_1031023_210136) InputSize(225789) OutputSize(16380)
```

▶ ARS0088E message:

```
ARS0088E Application Group Failed Load: Name(appl_grp_name) LoadId(load_id) File(file)
```

This message is received when the load process fails. You can find this message in the Content Manager OnDemand System Log.

This message is valuable because it records the name of the application group, load-id, and file name of the failed load.

Example:

```
ApplGroup Failed Load: Name(LATECHARGE) LoadId()
File(/QIBM/USERDATA/ONDEMAND/QUSROND/TMP/QPQRSTJOB_DBRYANT_001467_00022_RDR400M_1021226_132052)
```

Response:
To correct the problem, see the other messages that were generated by the ARSLOAD program and see the messages in the Content Manager OnDemand System Log, and then resubmit the command.

18.2 Information collection

If the guidance in 18.1, “Troubleshooting common problems” on page 368 does not help you determine and resolve your problem, then you should speak to IBM Support. In this section, we explain the information to gather for IBM Support so that they can help you more efficiently.

When you report a problem to IBM Support, you must provide the version of the software that you are using. For Content Manager OnDemand, this might include numbers of the operating system, DB2, Oracle, Tivoli Storage Manager, Content Manager OnDemand, and ODWEK. This information helps IBM support determine whether the software version is still supported and whether there are known issues with that software version.

We also advise that you have the latest maintenance level applied to Content Manager OnDemand to ensure that you are not experiencing a problem that is resolved.

Table 18-2 shows the different commands that used to determine the version of Content Manager OnDemand on different operating systems.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Example of the command to determine the version</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM AIX</td>
<td>`lslpp -l</td>
</tr>
<tr>
<td>Sun Solaris</td>
<td><code>pkginfo -l ondemand</code></td>
</tr>
<tr>
<td>HP-UX</td>
<td>`swlist -l product</td>
</tr>
<tr>
<td>Linux</td>
<td>Look for the highest version for the package name in the list: `rpm -qa</td>
</tr>
<tr>
<td>Windows</td>
<td>From the Content Manager OnDemand configurator, click Help → About.</td>
</tr>
<tr>
<td>Windows client</td>
<td>From the Windows client, click Help → About OnDemand</td>
</tr>
<tr>
<td>odwek</td>
<td>Check the logon message</td>
</tr>
<tr>
<td>CMOD Commands</td>
<td>Starting in CMOD 8.5, the response to all CMOD commands include the release and fixpack level</td>
</tr>
</tbody>
</table>

After you obtain the correct version number of the software that you are using, you must collect information that is specific to the problem.

There are several main areas where problems can occur. We divide them into the following areas in this section:

- Indexing or loading
- Database
- Tivoli Storage Manager
- Content Manager OnDemand client logon
- Performance
- ODWEK
- Content Manager OnDemand server hangs or crashes
In 18.2.8, “Exporting information to a local server” on page 386, we demonstrate how to export Content Manager OnDemand information, such as an application group, application, and folder, to a local server.

18.2.1 Indexing or loading

This section describes the logs to be collected that relate to indexing or a loading problem.

Common loading issues

Table 18-3 shows the information to collect if there is a problem with loading.

| Table 18-3  Information to collect for loading issues |
|-------------|------------------------------------------------------|
| File        | Description                                                                 |
| ARSSOCKD.ERR| This is the log file for the arssockd daemon process. The process is instance-dependent if multiple instances are running. |
| ARSLOAD error message | The ARSLOAD error message shows whether it failed at the indexing or loading phase. (See ARSLOAD common error messages in 18.1.6, “Common server messages” on page 377.) |
| ARS.INI     | This is the Content Manager OnDemand instance configuration file. Each instance has a section in the ARS.INI file. |
| Content Manager OnDemand System log | This is the Content Manager OnDemand system log in the system log folder. There are various message numbers regarding warnings or errors at the time of failure. |
| Export of folder, application group, and application files and sample data | The export files are used to import to the test server for problem replication. |
| CORE        | This file holds the core memory dump that is generated by the operating system. |
| Version or level of DB2, Oracle, or SQL server and Content Manager OnDemand | This file name contains the version or level of software that the server is using. Sometimes a problem might be resolved by upgrading to the latest PTF or maintenance level. |

IBM Content Manager OnDemand - Messages and Codes, SC19-3356 describes the error message codes that are found in the Content Manager OnDemand system log.

Common AFP indexing problems

Content Manager OnDemand cannot load AFP data without indexes; therefore, you must first make sure that your AFP data is already indexed. This means that the AFP must have TLEs.

Table 18-4 shows the information to collect when you have problems with AFP.

| Table 18-4  Information to collect for common AFP problems |
|-------------|----------------------------------------------------------|
| File        | Description                                                                 |
| Export of folder, application group, and application files and sample data | The export files are imported to the test server for problem replication. |
Before you log a problem with IBM support, use the information in Table 18-4 to look for clues for your problem. You can check the error codes from the ACIF indexer in IBM Content Manager OnDemand - Messages and Codes, SC19-3356. You might find the solution right away. If you have an AFP memory dump tool, you can also dump the AFP data file to check for an invalid AFP data stream, which is a common problem.

**Note:** Because the AFP data stream can be printed by an AFP printer, it does not necessarily have the correct AFP structure for loading into Content Manager OnDemand. The loading of AFP data requires more specific AFP structure than printing. IBM Content Manager OnDemand for Multiplatforms - Indexing, SC19-3354 provides information about the correct AFP data stream structure.

### 18.2.2 Database

For DB2 problems, collect the information that is in Table 18-5 for problem determination.

**Table 18-5 Information to collect for DB2**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>db2diag.log</td>
<td>This is the DB2 diagnosis file. It is in the <code>$HOME/sqllib/db2dump</code> directory, where <code>$HOME</code> is the home directory of the DB2 instance.</td>
</tr>
<tr>
<td>CLI trace (ODBC)</td>
<td>This file contains the call level interface (CLI) trace file for diagnosing SQL statements. The CLI trace option must be turned on to collect the file. (See “Setting the CLI trace for DB2” on page 382.)</td>
</tr>
<tr>
<td>Text Summary</td>
<td>Collect a text summary of the application group and folder that has the database problem by logging on to the Content Manager OnDemand server through the Content Manager OnDemand Administrator Client.</td>
</tr>
<tr>
<td>Content Manager OnDemand System Log</td>
<td>Gather the Content Manager OnDemand System Log messages 10 minutes before and after the database problem.</td>
</tr>
<tr>
<td>SQLCODE error message</td>
<td>If it is available, collect this information to determine whether the problem is from Content Manager OnDemand or the database.</td>
</tr>
</tbody>
</table>
Setting the CLI trace for DB2

We list two methods to turn on the CLI trace for DB2. One method is to do direct editing of the `db2cli.ini` file. The other method is to use the DB2 command line. The examples show the common options for the DB2 CLI trace. The support team might have a different option to collect information that is appropriate to your situation. Modify these options as advised.

In both cases, the trace file that is collected (shown in Example 18-1 and Example 18-2 on page 382) is in the `/tmp/db2trace.dmp` file.

### Method 1: Setting up the trace by editing the `db2cli.ini` file

You can set up trace by editing the `db2cli.ini` file by completing the following steps:

1. Add a section similar to the one shown in Example 18-1 or Example 18-2 on page 382 in to the `db2cli.ini` file, depending on your platform.

   For Windows, this file is in the `\sqllib` path, for example, `C:\Program Files\IBM\SQLLIB`. For UNIX, it is placed in the `/sqllib/cfg` path of the home directory of the instance owner, such as `/home/archive/sqllib/cfg`. For z/OS, is it in the UNIX System Services `/tmp` file.

**Example 18-1  Common section of the `db2cli.ini` file**

```
[COMMON]
TRACE=1
TRACEREFRESHINTERVAL=5
TRACEFILENAME=/tmp/db2trace.dmp
TRACEFLUSH=1
TRACECOMM=1
```

**Example 18-2  Common section of the `cli.ini` file for DB2 z/OS**

```
[COMMON]
MVSDEFAULTSSID=DB1X
```
Chapter 18. Troubleshooting and tracing

For z/OS, there are also controls for the diagnostic trace:

DIAGTRACE=1
DIAGTRACE_BUFFER_SIZE=6291456
DIAGTRACE_NO_WRAP=1

The full path of the TRACEFILENAME should be a valid directory with permission for everybody to write.

For z/OS, be sure that you have a reference to the following file:

//DSNAOINI DD PATH=`/usr/lpp/ars/V9R0M0/config/cli.ini`

2. Restart the application (in this case arssockd) for the changes to take effect.

3. Re-create the DB2 problem and capture the trace information.

4. To turn off the trace, modify the db2cli.ini file again and set TRACE=0.

5. Restart arssockd.

Method 2: Setting up the trace by using the DB2 command line

Alternatively, you can use the DB2 command line to activate the trace by completing the following steps:

1. In the DB2 instance, run the DB2 commands that are shown in Example 18-3.

   Example 18-3   Turning on the trace through the DB2 command line
   __________________________________________________________
   db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 1
   db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceRefreshInterval 5
   db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceFileName /tmp/db2trace.dmp
   db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceComm 1
   db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceFlush 1
   __________________________________________________________

2. Restart the application (in this case arssockd) for the changes to take effect.

3. Re-create the DB2 problem and capture the trace information.

4. Run the following command to turn off the traces:

   db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 0

5. Restart arssockd.

18.2.3 Tivoli Storage Manager

For Tivoli Storage Manager-related Content Manager OnDemand problems, collect the information that is shown in Table 18-6. For specific Tivoli Storage Manager errors, see Collecting Data: Read First for Tivoli Storage Manager Products, reference number 1263547.

Table 18-6   Information to collect for Tivoli Storage Manager

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Group Report</td>
<td>The Summary information for Storage Management shows the Storage Set name, which is related to Tivoli Storage Manager.</td>
</tr>
<tr>
<td>Storage Set Report</td>
<td>This information provides the node name at Tivoli Storage Manager.</td>
</tr>
</tbody>
</table>
You can gather the various object reports, such as the application group report and storage set report, by right-clicking the object and selecting **Summarize**.

### 18.2.4 Content Manager OnDemand client logon

If a Content Manager OnDemand client fails to log on to the server, check that `arssockd` is running on the server. Then, check the network connectivity by performing a ping test from the command window of the client. Open the command window and ping the host name or the IP address of the Content Manager OnDemand server.

Collect the files that are listed in Table 18-7 on page 384 for client problems, such as logging in to Content Manager OnDemand.

**Table 18-7  Information to collect for client logon problems**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tivoli Storage Manager</td>
<td>This log shows the events in the Tivoli Storage Manager server. You can</td>
</tr>
<tr>
<td>activity log</td>
<td>retrieve the log by running the <strong>query actlog</strong> command.</td>
</tr>
<tr>
<td>Tivoli Storage Manager</td>
<td>Tivoli Storage Manager error messages are prefixed with ANS, ANR, and</td>
</tr>
<tr>
<td>error message</td>
<td>so on. This error is generated by Tivoli Storage Manager storage manager</td>
</tr>
<tr>
<td></td>
<td>and can be used for Tivoli Storage Manager support for further diagnosis.</td>
</tr>
</tbody>
</table>

### 18.2.5 Performance

For Content Manager OnDemand performance issues, gather the information that is shown in Table 18-7.

**Table 18-8  Information to collect for performance issues**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application group report</td>
<td>It is useful to check these fields in the report, whether they are indexed</td>
</tr>
<tr>
<td></td>
<td>or filters. Simply reviewing this report might resolve the issue.</td>
</tr>
<tr>
<td>Text Summary</td>
<td>Collect a text summary of the application group and folder that has the</td>
</tr>
<tr>
<td></td>
<td>performance problem by logging on to the Content Manager OnDemand server</td>
</tr>
<tr>
<td></td>
<td>through the Content Manager OnDemand Administrator Client.</td>
</tr>
<tr>
<td>CLI trace (ODBC)</td>
<td>This file contains the call level interface (CLI) trace file for diagnosis SQL</td>
</tr>
<tr>
<td></td>
<td>statements. The CLI trace option must be turned on to collect the file.</td>
</tr>
</tbody>
</table>
For ODWEK problems, gather the information that is shown in Table 18-9. Depending on the environment and the specific failure, some of the information might not be present in your environment. See MustGather: ODWEK Java API terminating without warning, found at: http://www.ibm.com/support/docview.wss?uid=swg21243419

Table 18-9  Information to collect for ODWEK

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODWEK trace</td>
<td>This is the arswww.trace file.</td>
</tr>
<tr>
<td>WebSphere</td>
<td>WebSphere MustGather crash files.</td>
</tr>
<tr>
<td>HTTPd log</td>
<td>This is the IBM HTTP Server log file.</td>
</tr>
<tr>
<td>Test case</td>
<td>This is a skeleton test case that can re-create the crash.</td>
</tr>
<tr>
<td>Core</td>
<td>This is the core file that is generated by the operating system.</td>
</tr>
<tr>
<td>Screen captures of the problem</td>
<td>Provide a file that contains screen captures of the error message or document. This is also useful for non-English error message and documents.</td>
</tr>
</tbody>
</table>
18.2.7 Content Manager OnDemand server hangs or crashes

For Content Manager OnDemand server hang or crash problems, there are a few MustGather technotes that you can search for by going to the following website:

http://www.ibm.com/software/data/ondemand/mp/support.html

Search this website using the keyword MustGather to find the following technotes:

- MustGather: Content Manager OnDemand Server for Windows - Hang or performance degradation, reference #1223907
- MustGather: Content Manager OnDemand Server for Windows - Crash, reference #1226443
- MustGather: IBM Content Manager OnDemand server hang or performance degradation on AIX, reference #1222374
- MustGather: IBM Content Manager OnDemand server crash on AIX, reference #1223109

Follow the instructions from the technotes to gather information for when the server hangs or crashes.

18.2.8 Exporting information to a local server

IBM Support might require information about the Content Manager OnDemand application group, application, and folder for problem determination.

To create a local server to export object information, complete the following steps:

1. Create a local server on your workstation:
   a. From your Content Manager OnDemand Administrator Client, select OnDemand Servers and then click File → New Server. See Figure 18-11.
b. From the Add a Server window that opens, for the Protocol field, select **Local**, and enter the information that is shown in Figure 18-12. Click **OK**. A local server with the name ODlocal is created.

![Add a Server window](image)

*Figure 18-12 Add a Server window*

2. The local server cannot be used until it is set up. Right-click the ODlocal server and select **Setup**, as shown in Figure 18-13.

![Setting up the local server](image)

*Figure 18-13 Setting up the local server*

When you see the prompt “Are you sure?”, click **OK**.

When the setup is done, the local server is ready to use. By default, the local server has a user named admin without any password.

3. Export the requested information from your server to the local server. Right-click the object and select **Export**. For example, if you want to export the application group with the name Redbk, right-click the object **Redbk** and select **Export**, as shown in Figure 18-14.
Figure 18-14  Export Application Group

4. In the Export Application Groups window (Figure 18-15 on page 389) that opens, export your application groups by completing the following steps:
   
a. From the Server list, select the server to be exported.

   b. Click **Export**. The information of the application group that you chose starts transferring to ODlocal.

   c. Check the message at the end of the export to make sure that the export is successful.

   d. You can select either of the following options:

      • Select **Ignore Warnings** if you want Content Manager OnDemand to add an item regardless of any warnings. Otherwise, Content Manager OnDemand stops transferring the item when the first warning is encountered. For example, if the application group has users and groups permission that are defined in the source server, but the users and groups are not present in the local server, the export fails. If the item to be exported exists on the destination server, the export also fails.

      • Select **No Storage Set** if you do not want Content Manager OnDemand to assign a storage set to the application group.
5. When all the requested information is exported to the local server, compress the entire directory from the directory of the local server. In this example, it is C:\ODlocal, as shown in Figure 18-12 on page 387.

**Tip:** When exporting, we recommend this order:

- Printers
- Users and groups
- Storage sets
- Application groups, applications, and folders

### 18.3 Content Manager OnDemand trace facility

Content Manager OnDemand has incorporated a trace facility to help IBM Support perform problem determination. In this section, we show you how to enable trace. The trace impacts Content Manager OnDemand server performance and it should be enabled only when requested by IBM Support. The trace is enabled to gather documentation and it should be disabled afterward.

**Note:** The information from the Content Manager OnDemand trace facility is for informational purposes only and should be used only under the direction of IBM Support personnel. How tracing is enabled and what gets traced is subject to change at any time and is not to be used as a programming interface.

#### 18.3.1 Enabling the trace facility

This information is also covered in the Technote *How to enable trace in Content Manager OnDemand server*, 1330810.

To enable the server trace facility, complete the following steps:

1. Locate your `trace.settings` file.
   - On AIX, it is in `/opt/IBM/ondemand/V9.5/config`.
   - On Sun, it is in `/opt/IBM/ondemand/V9.5/config`.
   - On Windows, it is in `C:\Program Files\IBM\OnDemand Server\V9.5\config`.
– On z/OS, it is in /SYSTEM/etc/ars.
– On other platforms, it is in /opt/ondemand/v9.5/config.

2. Edit the trace.settings file to trace server for trace server startup routines by setting the following trace parameter:
   
   ```
   TRACE_LEVELS=ALL=15
   ```

3. Edit your ars.cfg file by adding the ARS_TRACE_SETTINGS parameter and referencing the full path to your trace.settings file:
   
   ```
   ARS_TRACE_SETTINGS=/usr/lpp/ars/V9R0M0/config/trace.settings
   ```

   For Windows, the ars.cfg configuration is in the registry. Edit the registry settings for the registry key HKEY_LOCAL_MACHINE\SOFTWARE\IBM\OnDemand\WinNT\@SRV@_ARCHIVE\CFG, where ARCHIVE is the name of your Content Manager OnDemand instance. Create a string value ARS_TRACE_SETTINGS and set the value to the full path to your trace.settings file.

   After you enable tracing, start the Content Manager OnDemand Administrator Client.

### 18.3.2 Setting trace parameters

After you enable tracing, you can set the appropriate option for a runtime trace by using the Content Manager OnDemand Administrator Client.

Log on to the Content Manager OnDemand Administrator Client and configure tracing by completing the following steps:

1. Right-click the server name and select **Trace Parameters**, as shown in Figure 18-16.

   ![Configure trace parameters](image)

   **Figure 18-16** Configure trace parameters

2. In the System Trace Setting window (Figure 18-17 on page 391), complete the following steps:
   
   a. Select the **Activate System Trace** check box to turn on tracing for the whole system.
   
   b. Enter information in the trace parameters entry field. The trace parameters can be name=value pairs that are separated by commas to define the trace level. These name=value pairs are provided by IBM. For an example, see Figure 18-17.
Chapter 18. Troubleshooting and tracing

18.4 Other tracing options

In addition to Content Manager OnDemand tracing, there are other traces that you can run for additional diagnosis as needed. They are enabled to focus on specific areas and gather the necessary documentation. They should be disabled afterward.

18.4.1 ARSLOAD

The ARSLOAD program is the main Content Manager OnDemand data loading and indexing program where you can trace data loading and indexing issues.

In most cases, trace parameters can be specified on the command line when you run arsload.

With the ARSLOAD command, the trace is enabled by the -1 and -2 parameters:

- `-1 <trace_file>` (fully qualified trace file name)
- `-2 <level>` (trace level number)

> The trace level number values are additive. (The default is 3.)

- 1: Errors
- 2: Warnings
- 4: Info
- 8: Flow

These trace levels provide entry and exit information for functions.

The trace level numbers are added up, and the default level is 3, which is used to report errors and warnings that occur during loading.
You can also use name=value pairs that are separated by commas to define the trace level. The name=value pairs are provided by IBM Support when they request the trace. For example:

```
-1 trace.out -2 ALL=15,ARSRD=3,ARSLOAD=3
```

The trace no longer generates textual output, so it performs better. The output is now in binary format and requires the usage of the `arstfmt` command, which is found in the `bin` directory of your Content Manager OnDemand server (Version 8.5 and later). You can format the output in either text or XML format.

To produce a text formatted trace file, run the following command:

```
/usr/lpp/ars/V9R0M0/bin/arstfmt -i /tmp/arswww.trace -o /tmp/arswww.trace.txt
```

To produce an XML formatted trace file, run the following command:

```
/usr/lpp/ars/V9R0M0/bin/arstfmt -x -i /tmp/arswww.trace -o /tmp/arswww.trace.xml
```

**Limitation:** Use the `-1` and `-2` parameters only under the supervision of IBM Support because they might affect performance.

### 18.4.2 MidServer trace (z/OS only)

To collect data that processed by the MidServer, complete the following steps:

1. Locate the MidServer configuration file `arsMSVR.cfg`. The file can be found in the following directory:
   
   `/MountPoint/config/midserver`

2. Turn on MidServer tracing by setting `MIDSERVERTRACE=1`.

   To collect the input data that is returned to the application, set `traceLevel to 2 before issuing the logon function request. This indicates that a full trace by the C stub is requested.

3. Run the application to re-create the problem.

4. Send the following files to IBM Support for further analysis. All of these files that are sent must be from the same test.

   **File name** | **Location**
   --- | ---
   `arswww.ini` | `/MountPoint/config/midserver`
   `arswww.trace` | As specified in the `arswww.ini` TraceDir= file
   `arsMSVR.err` | STDERR path in the MidServer start procedure
   `arsMSVR.out` | STDOUT path in the MidServer start procedure
   `MVS job output` | SDSF `arsMSVR` job

### 18.4.3 ODWEK trace

Collecting data for IBM Content Manager OnDemand Web Enablement Kit (ODWEK) is necessary sometimes. Gathering this information before contacting IBM Support aids in the troubleshooting process.

Remember IBM Support cannot debug custom application code. The purpose of this information is to collect diagnostic test results to help identify a possible problem in ODWEK.
and provide additional documentation to IBM Support. This information can be found in IBM Technote 1240220, found at:

Using the ODConfig class, you can set the trace as shown in Example 18-4.

Example 18-4   Setting up trace in OD Config class

```java
ODConfig cfg = new ODConfig(
   /*AfpViewer*/           ODConstant.PLUGIN,
   /*LineViewer*/          ODConstant.APPLET,
   /*MetaViewer default*/  null,
   /*MaxHits*/             500,
   /*AppletDir*/           "/applets",
   /*Language*/            "ENU",
   /*TempDir*/             "c:\temp",
   /*TraceDir*/            "c:\path\to\trace",
   /*TraceLevel*/          4);
```

Your ODWEK application must be recompiled and restarted for the changes to take effect.

After tracing is enabled, re-create the issue and send all arswww.trace* files to IBM Support.

In ODWEK V8.5.0.0 and later, the trace file is written in binary. To convert the trace file from its binary format, use the arstfmt command that is found in the bin directory of your Content Manager OnDemand server (Version 8.5 and later). Here is a sample command to convert the ODWEK trace file:

```
/usr/lpp/ars/v9.5/bin/arstfmt -i arswww.trace -o arswww.trace.txt
```

Tracing can be set to different levels with the trace parameter. When troubleshooting an ODWEK issue, set the trace level to the highest level, unless otherwise instructed by IBM Support.

Setting the trace at lower levels, such as Trace=1, creates a minimal impact while alerting you only about error conditions. Setting the lower trace levels are ideal for monitoring an ODWEK application that is in a steady state, while higher levels are used for troubleshooting an ODWEK issue.

18.4.4  TCP/IP packet trace

If there is a problem with TCP/IP, a TCP/IP packet trace might be helpful in troubleshooting.

Example 18-5 show a procedure for tracing to an external writer.

```
//CTWTR1 PROC
//IEFPROC  EXEC PGM=ITTTRCWR
//TROUTOUT DD DSNAME=SYS1.CTRACE1,VOL=SER=xxxxxx,
//         UNIT=xxxxx,SPACE=(CYL,(100),,CONTIG),
//         DISP=(NEW,CATLG)
//SYSPRINT DD SYSOUT=*  
```

To obtain a TCP/IP packet trace, complete the following steps:

1. Start your CTRACE external writer procedure by running the following command:
2. Start and connect a packet component trace to your writer procedure by running the following command:

```
TRACE CT,ON,COMP=SYSTCPDA,SUB=(TCPIP_Proc) reply,WTR=CTWTR1,END
```

3. Start and connect a SYSTCPIP component trace to your writer procedure by running the following command:

```
TRACE CT,ON,COMP=SYSTCPIP,SUB=(TCPIP_Proc) reply,WTR=CTWTR1,JOBNAME,(RM_Jobname) reply,WTR=CTWTR1,OPTIONS=(socket,pfs,tcp,sockapi),END
```

4. Check whether the component trace is ready to gather data by running the following command:

```
D TRACE,WTR=CTWTR1
```

The display should show a status of ACTIVE.

5. Set packet trace filters by running the following command:

```
V TCPIP,TCPIP_Proc,PKT,clear        # resets filters to none
V TCPIP,TCPIP_Proc,PKT,ON,ip=10.253.0.35 (client IP address)
```

6. Run your recreation scenario.

7. Stop the packet trace by running the following command:

```
V TCPIP,TCPIP_Proc,PKT,clear              # resets filters to none
```

8. Disconnect SYSTCPIP CTRACE from the external writer by running the following command:

```
TRACE CT,ON,COMP=SYSTCPIP,SUB=(TCPIP_Proc) reply,WTR=DISCONNECT,END
```

9. Disconnect SYSTCPDA CTRACE from the external writer by running the following command:

```
TRACE CT,ON,COMP=SYSTCPDA,SUB=(TCPIP_Proc) reply,WTR=DISCONNECT,END
```

10. Stop the CTRACE external writer by running the following command:

```
TRACE CT,WTRSTOP=CTWTR1,FLUSH
```

Send non-formatted packet trace dataset information to IBM Support.

### 18.4.5 Language Environment (z/OS only)

Many of the Content Manager OnDemand utilities use the Language Environment, and it offers its own customized traces.

To start the trace, rerun the job with the following DD statement. Set the CEE environmental variable in the JCL (or use env var for the UNIX System Services command line)

```
//STDENV   DD *
_CEE_RUNOPTS='HEAPCHK(ON),HEAPPOOLS(OFF)'
```

The output writes to the job log.

This trace is good for problems with starting a service:

```
//CEEDUMP DD
```
//ARSSOCKD EXEC ...,PARM='TRACE(ON,8M,,LE=1)/'

18.4.6 ARSSUPPORT utility

You can use ARSSUPPORT to gather log entry diagnostic information. The ARSSUPPORT utility is in the arssupport.jar file. To run the utility, run the following command:

```
java -jar arssupport.jar
```

Here are the prerequisites for using the command:

- Ensure that you have Java runtime Version 1.5 or higher to run this program.
- Ensure that you are logged on to the operating system using an ID that has administrator authority on Windows or root authority on UNIX.
- On Windows systems, run ARSSUPPORT from the Content Manager OnDemand command prompt.
- To retrieve system log entries, ensure that the Content Manager OnDemand server is running.
- The data is collected from the computer where ARSSUPPORT is run.

ARSSUPPORT generates information about a Content Manager OnDemand server. This information includes information about its configuration and system environment. ARSSUPPORT archives all files into one compressed file, arssupport.zip, and places this file in the odsupport subdirectory of the output directory.

When you get the compressed file, send it to IBM Support.

18.4.7 ARSJESD

The ARSJESD program is the server component of Download. Download can be used to transmit output data sets of application programs automatically from the JES spool to Content Manager OnDemand server file systems. If there are problems during the transmission of ARSJESD, complete the following steps:

1. Stop arsjesd.
2. Add the -t parameter. For example:

   ```
   arsjesd -d /tmp/1 -d /tmp/2 -p 6001 -t
   ```

3. If you are using Windows, add the -t parameter to the following entry in your registry, and then uninstall and reinstall the arsjesd service by using the Configurator:

   ```
   HKEY_LOCAL_MACHINE\SOFTWARE\IBM\OnDemand for Windows\@SRV@_ARCHIVE\Services\arsjesd (ARCHIVE)\ProgramParms
   ```
   The example is from an instance named ARCHIVE. Go to the registry key for your respective instance.

4. Start the arsjesd service.

   The trace file is named trace.log.<port #> and is written to the first arsjesd directory that is specified by the -d parameter. In the example from step 2, this directory is /tmp/1.

5. Re-create the issue.
18.4.8 PDF Indexer trace

If a problem occurs during indexing and loading of PDF documents, you might want to run the PDF Indexer trace.

PDF Indexer tracing can be done by using either of two methods:

- Add the following lines to the indexing parameters:
  
  ```
  TRACEDD=<trace file name>
  TRACELEVEL=PDF=15
  ```

  For example:
  ```
  TRACEDD=\temp\pdf_tracefile.bin
  TRACELEVEL=PDF=15
  ```

- Run the PDF Indexer from the command line and add the trace parameters:
  ```
  arspdoci parmdd=filen.parms inputdd=filen.pdf outputdd=filen.out
  indexdd=filen.ind tracedd=filen.trace tracelevel=pdf=15
  ```

  Where:
  - `arspdoci`: Name of the command-line version of the PDF Indexer program.
  - `parmdd`: Specifies the name of the input file that contains the indexing parameters.
  - `inputdd`: Specifies the name of the PDF input file to process.
  - `outputdd`: Specifies the name of the output file that contains the indexed PDF documents that are created by the PDF Indexer.
  - `indexdd`: Specifies the name of the output file that contains the index information that is loaded into the database.
  - `tracedd`: Specifies the name of the output file that contains the trace information

18.4.9 Trace resolver

The trace resolver output is useful and can be used by IBM Support and programmers and networking system programmers to diagnose problems in resolving IP host names to IP addresses or IP addresses to IP host names.

The trace resolver helps determine the values of the `TCPIP.DATA` statements and where the values were obtained.

The details of collecting this trace can be found in IBM Technote II13398, found at:


18.4.10 Conclusion

The traces are enabled for troubleshooting and information gathering. When the task is done, do not forget to disable the traces.
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

- Content Manager OnDemand Backup, Recovery, and High Availability, SG24-6444
- Federated Content Management: Accessing Content from Disparate Repositories with IBM Content Federation Services and IBM Content Integrator, SG24-7742
- IBM Content Manager OnDemand Web Enablement Kit Java APIs: The Basics and Beyond, SG24-7646
- IBM System Storage DR550 Setup and Implementation, SG24-7091
- Image and Workflow Library: Content Manager for ImagePlus on OS/390 Implementation and EIP, SG24-4055
- Implementing Content Manager OnDemand Solutions with Case Studies, SG24-7511
- Implementing Web Applications with CM Information Integrator for Content and OnDemand Web Enablement Kit, SG24-6338
- OS/390 Version 2 Release 6 UNIX System Services Implementation and Customization, SG24-5178

You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

- IBM Content Manager OnDemand Messages and Code SC19-3356
- IBM Content Manager OnDemand - Distribution Facility Installation and Reference, SC19-3358
- IBM Content Manager OnDemand - Web Enablement Kit Implementation Guide, SC19-3353
- IBM Content Manager OnDemand - Windows Client Customozation Guide, SC19-3357
- Content Manager OnDemand for i - Planning and Installation Guide, SC19-2790
Online resources

These websites are also relevant as further information sources:

- DB2 11 for z/OS information
  http://www.ibm.com/software/db2zos/library.html
- IBM Content Manager OnDemand production information
- IBM Content Manager OnDemand Knowledge Center
  http://www.ibm.com/support/knowledgecenter/
- Content Manager OnDemand for i Knowledge Center
  http://www.ibm.com/support/knowledgecenter/SSB2EG/welcome
- Content Manager OnDemand for Multiplatform Knowledge Center
- Content Manager OnDemand for z/OS Knowledge Center
  http://www.ibm.com/support/knowledgecenter/SSQHWE/welcome
- Ricoh website for Infoprint product information
  http://rpp.ricoh-usa.com/
- IBM System i Navigator and IBM Navigator for i information
  http://www.ibm.com/systems/i/software/navigator/
- IBM Tivoli Storage Manager home page
- z/OS information
  http://www.ibm.com/systems/z/os/zos/

**Help from IBM**

IBM Support and downloads
ibm.com/support

IBM Global Services
ibm.com/services
To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. An example is a 250 page book using Plainfield opaque 50# smooth which has a PPI of 526. Divided 250 by 526 which equals .4752". In this case, you would use the .5" spine.

Special>Conditional Text>Show/Hide>SpineSize(-->Hide:)>Set

Move the changed Conditional text settings to all files in your book by opening the book file, then saving. Click on the Conditional text, then select the Spine width for the book and hide the others. Special>Conditional Text>Show/Hide>SpineSize(-->Hide:)>Set.
To determine the spine width of a book, you divide the paper PPI into the number of pages in the book. For example, a 250-page book using Plainfield opaque 50# smooth which has a PPI of 526, divided by 250, equals a spine width of 0.4752". In this case, you would use the .5" spine. Now select the spine width for the book and hide the others:

Special>Conditional Text>Show/Hide>SpineSize(-->Hide:)>Set
