
Redpaper

In partnership with
IBM Academy of Technology

Front cover

Modernize SAP Workloads
on IBM Power Systems

Dino Quintero

Christian Bartels

Stefan Diederichs

Joerg Droste

Joachim Rese

Jochen Röhrig

Isgandar Valizada

IBM Redbooks

Modernize SAP Workloads on IBM Power Systems

May 2021

REDP-5577-00

First Edition (May 2021)

This edition applies to Version:
� ABAP SDK for SAP NetWeaver 7.50 and higher.
� SAP HANA 2.0 SPS 02.
� IBM Watson Machine Learning Accelerator 1.2.1.
� Red Hat OpenShift 3.11.
� TensorFlow Core v2.4.1.

This document was created or updated on May 19, 2021.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.
© Copyright International Business Machines Corporation 2021. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

 iii

iv Modernize SAP Workloads on IBM Power Systems

Contents

Notices . vii
Trademarks . viii

Preface . ix
Authors. ix
Now you can become a published author, too! . xi
Comments welcome. xi
Stay connected to IBM Redbooks . xi

Chapter 1. Hybrid system landscapes with SAP Business Suite and SAP S/4HANA
introduction . 1

1.1 Introduction . 2
1.2 IBM Cloud . 2
1.3 IBM Watson. 3

Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 5
2.1 General considerations . 6

2.1.1 IBM Watson AI Services introduction . 6
2.1.2 Integration of IBM Watson services into SAP applications 9
2.1.3 Network considerations. 10
2.1.4 Licensing considerations. 10
2.1.5 Administering credentials . 11
2.1.6 ABAP SDK for IBM Watson . 11

2.2 SAP system configuration . 12
2.2.1 SAP profile parameters. 12
2.2.2 Setting up secure Internet communication . 12

2.3 Installing the ABAP SDK for IBM Watson . 20
2.3.1 Introduction to abapGit . 21
2.3.2 Installing the ABAP SDK for IBM Watson . 28

2.4 Using the ABAP SDK for IBM Watson . 32
2.4.1 ABAP SDK for IBM Watson API overview . 32
2.4.2 Credentials . 33
2.4.3 Configuration table . 33
2.4.4 Identity and Access Management authentication . 34
2.4.5 Using classes, methods, and data types of the ABAP SDK 35

Chapter 3. Cloud App connecting to SAP. 41
3.1 Introduction . 42
3.2 IBM Secure Gateway . 42
3.3 OData and CDS Views . 46

3.3.1 Sample data table . 46
3.3.2 Creating Core Data Services View . 47
3.3.3 Testing the OData service . 48

3.4 Building a node.js application on IBM Cloud. 51
3.4.1 Installing and running application locally. 57

3.5 Using OData and IBM Watson services . 59
3.5.1 Creating the back-end application . 59
3.5.2 Node.js server code . 59
3.5.3 Creating front-end code . 60
© Copyright IBM Corp. 2021. All rights reserved. v

3.5.4 Creating HTML index page . 60

Chapter 4. Machine Learning on IBM Power Systems. 63
4.1 IBM Watson Machine Learning Accelerator . 64

4.1.1 Installing on Red Hat Enterprise Linux . 64
4.1.2 Installing on Red Hat OpenShift 3.11 . 64

4.2 Use case scenario and implementation . 69
4.2.1 Naming scheme . 69
4.2.2 Installing SAP HANA. 69
4.2.3 Target [A] machine . 72
4.2.4 Adding EML to the installed SAP HANA . 72
4.2.5 Installing SAP HANA Studio . 73
4.2.6 Connecting SAP HANA Studio to your SAP HANA database. 74
4.2.7 Checking the EML installation. 75

4.3 Preparing AI model for deployment. 77
4.3.1 Preparing a TMS instance . 79
4.3.2 Communicating with TMS . 80
4.3.3 Updating model configuration . 80
4.3.4 Checking connectivity from SAP HANA . 81
4.3.5 Preparing input images . 81
4.3.6 Encoding input images as BASE64 . 82
4.3.7 Creating input and output types and a parameters table 83
4.3.8 Creating EML procedure wrapper . 83

4.4 Conclusion . 85

Chapter 5. Benefits of modernizing SAP applications with IBM AI 87
5.1 Enterprise agenda. 88
5.2 IBM Watson Studio . 88
5.3 IBM Watson OpenScale . 89

5.3.1 Monitors . 89
5.3.2 Data sets . 90
5.3.3 Checking model drift . 90
5.3.4 Trust in AI and IBM Watson OpenScale . 90
5.3.5 Open Source Initiatives. 91

5.4 AutoAI . 91
5.4.1 AutoAI in data science process. 91
5.4.2 AutoAI benefits . 92
5.4.3 Creating a machine learning model by using AutoAI . 92

Appendix A. node.js server code . 105
node.js server code . 106

Abbreviations and acronyms . 117

Related publications . 119
IBM Redbooks . 119
Other publications . 119
Online resources . 119
Help from IBM . 120
vi Modernize SAP Workloads on IBM Power Systems

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2021. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Db2®
IBM®
IBM Cloud®
IBM Cloud Pak®

IBM Watson®
IBM Z®
OpenScale™
POWER®

Redbooks®
Redbooks (logo) ®
Watson OpenScale™

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

OpenShift, Red Hat, RHCE, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the
United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Modernize SAP Workloads on IBM Power Systems

http://www.ibm.com/legal/copytrade.shtml

Preface

The goal of this IBM® Redpaper® publication is to describe how to modernize SAP
workloads and run them on IBM Power Systems. By using theoretical knowledge, team
experiences, and new technologies, the authors document sample scenarios to show such
benefits.

This publication uses any available documentation, hardware, and software resources to
accomplish the following tasks:

� Document guidelines to help the reader modernize SAP workloads to run on IBM Power
Systems.

� Document guidelines to help provide an optimal system configuration and implementation
to run the SAP workloads.

� Conduct and document an implementation case study.

This publication is targeted to architects, brand specialists, distributors, resellers, and anyone
who wants integrate and run SAP workloads on IBM Power Systems. Moreover, this
publication provides information to transfer the how-to-skills to the technical and sales teams.

Authors

This paper was produced in collaboration with the IBM SAP International Competence Center
(ISICC) in Walldorf, SAP Headquarters in Germany and IBM Redbooks®.

Dino Quintero is an IT Management Consultant and an IBM Level 3 Senior Certified IT
Specialist with IBM Redbooks in Poughkeepsie, New York. He has 24 years of experience
with IBM Power Systems technologies and solutions. Dino shares his technical computing
passion and expertise by leading teams developing technical content in the areas of
enterprise continuous availability, enterprise systems management, high-performance
computing, cloud computing, artificial intelligence including machine and deep learning, and
cognitive solutions. He also is a Certified Open Group Distinguished IT Specialist. Dino holds
a Master of Computing Information Systems degree and a Bachelor of Science degree in
Computer Science from Marist College.

Christian Bartels is the team lead of the joint SAP and IBM development team for SAP on
IBM i in Germany. He has 23 years of experience with SAP on IBM i and 30 years of
experience with the IBM i platform, formerly known as AS/400. He holds a Diplom
(comparable to a master's degree) in Electrical Engineering from the Technische Universität
Braunschweig, Germany. He has been working in different areas of the SAP NetWeaver
development, including the database interface for IBM Db2® for i, the SAP Computing Center
Management System (CCMS), performance monitoring, performance analysis, and third-level
customer support and education.
© Copyright IBM Corp. 2021. All rights reserved. ix

Stefan Diederichs started his career in 1987 in the IBM® development Lab in software
development for banking after studying Electrical Engineering at the University of Cooperative
Education with IBM. In 1999, Stefan joined SAP development in Walldorf and was responsible
for porting the SAP Application Server to IBM mainframe running Linux. In 2001, he became
a member of the technical pre-sales team in the Systems Innovations Center for SAP Proof of
concepts and customer benchmarks. In 2016, Stefan joined the IBM Client Center
Boeblingen, leading the Machine Learning and PowerAI team as an IT architect in the Europe
region. Since 2018, he is part of SAP on IBM Z® and Analytics team, supporting SAP on IBM
Platforms. Currently, he focuses on the area of IBM Cloud® Pak for data running on Red Hat
OpenShift.

Joerg Droste is a Senior Software Engineer in Beaverton OR, US. He has more than 25
years of experience in systems performance and SAP software processing. His areas of
expertise include hardware, operating system and SAP application administration, analysis,
and tuning on-premise and in the cloud. He holds a bachelor’s degree in computer science
and business administration from the Berufsakademie Mannheim.

Joachim Rese is a Senior Software Engineer in Germany. He has more than two decades of
experience in the field of enabling data driven processes with SAP. His areas of expertise
include database technologies, analytics, artificial intelligence, and IBM Watson®. He holds
degrees in Mathematics and Computer Science from the University of Paderborn, Germany.

Jochen Röhrig is a Senior Software Engineer in the joint IBM/SAP platform team for SAP on
IBM Systems at SAP in Walldorf, Germany. Having worked on enabling SAP software on
traditional IBM systems in the past, he is focusing on emerging topics, such as running SAP
systems on Red Hat OpenShift, the use of IBM Watson services in ABAP, or connecting SAP
systems to IBM Blockchain. Having worked for IBM for over 20 years, Jochen has experience
in Linux and over 16 years of experience in SAP on IBM platforms. He holds a German and a
French master’s degree in Computer Science, and a Ph.D. in Computer Science from the
Saarland University, Saabrücken, Germany. He is a Red Hat Certified Engineer (RHCE,
2004) and holds certificates LPIC-1 (2006) and LPIC-2 (2008) of the Linux Professional
Institute. His areas of expertise include emerging technologies, such as cloud computing,
containerization, AI, and blockchain, and traditional topics, such as software development,
open source software, operating systems, parallel computing, and SAP on IBM platforms.

Isgandar Valizada is a Software Engineer in IBM Germany since January 2016. He joined
IBM after working for 4 and a half years as a Software Developer and Researcher in the area
of Digital Preservation at the University of Freiburg. His areas of expertise include software
architectural design and implementation, full stack development, algorithm analysis, and
artificial intelligence. He holds a B.Sc. degree in Mathematics from Azerbaijan State Oil and
Industry University and M.Sc. in Computer Science from the University of Freiburg in
Germany.

Thanks to the following people for their contributions to this project:

Suraj Bharadwaj, for his work in Chapter 4, “Machine Learning on IBM Power Systems” on
page 63

Wade Wallace
IBM Redbooks®, Poughkeepsie Center

Katharina Probst, Walter Orb, Tanja Scheller, Suraj Bharadwaj
IBM Germany

Reinaldo Katahira
IBM Brazil
x Modernize SAP Workloads on IBM Power Systems

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xii Modernize SAP Workloads on IBM Power Systems

Chapter 1. Hybrid system landscapes with
SAP Business Suite and SAP
S/4HANA introduction

This chapter provides an introduction to hybrid system landscapes.

This chapter includes the following topics:

� 1.1, “Introduction” on page 2
� 1.2, “IBM Cloud” on page 2
� 1.3, “IBM Watson” on page 3

1

© Copyright IBM Corp. 2021. All rights reserved. 1

1.1 Introduction

Traditionally, applications were written by using procedural or object-oriented models that use
functions, modules, and includes. These applications provide clearly defined functions. The
source code defines every intended execution option. The data for these applications must be
stored in defined data stores that provide specific access methods and ensure data integrity.

SAP is a leader in business application processing for many years. The core of SAP’s
applications is deeply embracing this computing paradigm and providing exceptional
functions and data security for thousands of customers.

Over the last 5 - 10 years, a new type of computing emerged. To solve problems the
traditional procedures and functions with many if/then/else structures cannot process, the
rejuvenated area of Artificial Intelligence (AI) grew rapidly. The fundamental change in the
computing methodology is not to tell the computer exactly what to do, but to show it examples
of how things were seen or measured in the past and use smart algorithms to let the
computer figure out how to use insight from these examples to solve a new or different
problem.

The area of AI is not new; it has been around for some time. However, limitations in the
availability of data and the amount of required compute cycles inhibited the broad adoption of
AI.

The emergence of big data made vast amounts of data available that in most cases is
unstructured and therefore difficult to digest for traditional applications. Rapid advances in the
processing power of computer servers, including the use of graphics chips that are well suited
for large matrix operations, made a wide adoption of AI possible today.

A second shift in the traditional computing landscape is the move of enterprise application
processing to the cloud. Traditionally, companies purchase a server and some software, and
hire consultants to create a solution that addresses a need in the customer’s business. This
effort required maintaining servers, infrastructure, software, and applications, and retaining
skilled administrators.

The requirement of accessing enterprise functions from everywhere in the world with an
increasing number of different devices, such as cell phones, tablets, and laptops fueled a
move of more applications into the cloud. Cloud computing is a fundamental shift in the way
applications are deployed. Large monolithic applications are broken up into micro-services
that are easy to deploy and govern.

With enterprise customers increasingly moving their IT strategy toward cloud computing and
AI, this document shows options to use these new technologies to create modern
applications on-premises or in the cloud that are seamlessly integrated with SAP systems
running mission critical business applications.

1.2 IBM Cloud

Although companies are moving workloads to the cloud, some of their mission-critical
applications still run in monolithic applications in their data center. Some do not want to
expose confidential data to the internet. The fact that many companies provide cloud
infrastructure makes it difficult for businesses to choose a provider and effectively move the
cloud.
2 Modernize SAP Workloads on IBM Power Systems

IBM’s strategy is to provide a hybrid cloud with open standards and full control over when and
where to run applications: on-premises, in IBM Cloud, or on any other cloud.

Cloud computing includes the following terms:

� Public cloud: A broad set of computing options, including server infrastructures, serverless
computing, and support for a large number of services.

� Private cloud: A large number of containerized services to create, operate, and maintain
cloud native applications and services on-premises.

� Hybrid cloud: An integrated environment that includes public and private cloud services
that are integrated with multi-cloud management tools.

IBM Cloud features the following benefits:

� Open platform: Build one Kubernetes container infrastructure for public and private cloud
and run applications and workloads wherever they run best.

� Integration solutions: Use cloud tools, such as messaging, gateways, and API
Management to bring together new applications with existing applications and workloads.

� DevOps: Accelerate the development and deployment of hybrid applications with
synchronous deployment of multiple components on public and private cloud.

1.3 IBM Watson

IBM Watson is an IBM suite of enterprise-ready AI services, applications, and tools. It enables
companies to unlock the value of their data in an entirely new and profound way. By using
insights from IBM Watson, the shape of future business outcomes can be predicted, at the
same time rethinking existing practices and workflows.

Many companies focus on developing applications that are infused with AI to solve specific
problems. When developing world-class, enterprise-ready applications, it became clear that
the main focus is not on the machine learning (ML) algorithm, but all of the lifecycle tasks that
make up an enterprise application.

The following components must be in place to develop modern applications:

� Data collection: Data is key because it must be readily available to the application.

� Feature extraction: With large amounts of data, the information that is required for
processing must be identified and defined so that it can be used by the application.

� Data verification: After the model is trained, the data that is processed by the application
must be validated to ensure that it matches the data that is used for training.

� Machine resource management: No matter where an application is deployed, it must be
run somewhere, and the required resources must be defined, identified, and allocated.

� Analysis tools: After the application is running, analysis must be done to ensure the
correct execution; for example, ensure that no drift or bias exists.

� Process management tools: From design to customer deployment, the process of
developing the application must be supported by the infrastructure, and the workflow must
be clear and documented.

� Serving infrastructure: No matter where execution occurs (on-premises, in the IBM Cloud,
or any other cloud), the application must be designed to run anywhere.

� Monitoring: When running an application, it is necessary to watch its execution and
results. Sophisticated monitoring tools are required to ensure seamless operation.
Chapter 1. Hybrid system landscapes with SAP Business Suite and SAP S/4HANA introduction 3

In addition, these components of ML span multiple teams, including the following examples:

� Data Engineers
� Data Scientists
� Machine Learning Engineers
� Production Engineers

To address these enterprise requirements, IBM Watson was designed as an AI platform and
full workflow orchestrator.
4 Modernize SAP Workloads on IBM Power Systems

Chapter 2. SAP connecting with cloud
services: ABAP SDK for IBM
Watson

Advanced Business Application Programming (ABAP) describes a programming language,
development, and runtime environment that is used widely by SAP applications. It allows
customers and Business Partners to modify and extend standard SAP applications.

IBM developed a software development kit (SDK) for ABAP to simplify the access of IBM
Watson services from within applications that are written in ABAP and published it under an
open source license.

This chapter describes the ABAP SDK for IBM Watson and provides an example of how to
use it.

This chapter includes the following topics:

� 2.1, “General considerations” on page 6
� 2.2, “SAP system configuration” on page 12
� 2.3, “Installing the ABAP SDK for IBM Watson” on page 20
� 2.4, “Using the ABAP SDK for IBM Watson” on page 32

2

© Copyright IBM Corp. 2021. All rights reserved. 5

2.1 General considerations

With the introduction of the product SAP R/3 in 1992, SAP provided enterprise resource
planning (ERP) software for large enterprises and reached out to small and medium
businesses. Over time, these customers collected large amounts of data in their ERP
systems and applied much business knowledge in their processes within their SAP systems.

Although they are interested in new technologies and want to apply those technologies for
their benefit, they do not want to give up their existing systems and start over. As a
consequence, customers and Business Partners are implementing hybrid solutions in which
ERP systems exchange information with new services to use artificial intelligence (AI) and
other modern technologies.

With the ABAP SDK for IBM Watson, customers can develop programs or extend business
applications in their ERP systems (ABAP) so that they can use IBM Watson services with
their business data. In this approach, the application logic is run in the SAP system based on
SAP NetWeaver ABAP and accesses IBM Watson services through the HTTPS protocol. The
new application components are integrated in the authorization model, user interface, and
process flow of the accustomed, well-established SAP business applications. The application
programmers continue to use their ABAP skills in their familiar environment.

The opposite approach, where most of the application logic is run in the cloud and accessing
only the data from the SAP application, is described in Chapter 3, “Cloud App connecting to
SAP” on page 41.

2.1.1 IBM Watson AI Services introduction

IBM Watson services can be accessed easily in the public cloud at this website (log in
required).

In this section, we describe managed services for AI, which can be found in the services
catalog of IBM Watson (see Figure 2-1).

Figure 2-1 IBM Watson services catalog
6 Modernize SAP Workloads on IBM Power Systems

https://cloud.ibm.com/

To use a service, you must create a resource for that service. The attributes of the resource
depend on the access control method. Historically, IBM offered Cloud Foundry services that
were linked to an organization and a space and required a username and password to
connect. Meanwhile, all IBM Watson services for AI support IBM Cloud Identity and Access
Management (IAM) access control. For IAM services, the following attributes must be
selected:

� Region

The region defines the data center for deployment of the service resource. Some services
are not available in all data centers. When creating the resource, you can select the
deployment region for your service from a pull-down menu. Here, you can choose a region
that is close to your location.

The region defines the data center for deployment of the service resource. Some services
are not available in all data centers. When creating the resource, you can select the
deployment region for your service from a pull-down menu. Here, you can choose a region
that is close to your location.

� Pricing plan

Each service offers various pricing plans. Most of the services that are supported by the
ABAP SDK for IBM Watson offer a Lite plan at no cost. It includes limitations in supported
methods, number of calls, and amount of data that is processed, but can be used for first
trial versions.

For productive use, the services typically offer a Standard, Advanced, or Tiered plan. With
these plans, charges are applied based on usage. The exact prices are shown in the
pricing plan selection view. In addition, some services offer a Premium plan with special
features for data privacy, high availability, and a single tenant environment.

� Resource group

The resource group is part of IBM Cloud Identity and Access Management (IAM) concept.
A Default resource group always is available. Unless you have a Lite account or a 30-day
trial, you can create resource groups. You can assign a specific resource group to your
service resource to manage quota and view billing usage for a set of resources.

When the IBM Watson service resource is created with the selected attributes, its credentials
are assigned. For IAM access control, the credentials consist of an API key and a URL. The
API key is a character string that consists of uppercase and lowercase letters, digits, and
special characters, similar to a password.

The URL is generated from the service name, selected region, and unique identifier. For
example, for the Language Translation service in the region Frankfurt, you can get a URL as
shown in the following example:

https://api.eu-de.language-translator.watson.cloud.ibm.com/instances/2ae347e6-3545
-469a-99b3-fbbecdd7afd9

The structure of the URL can change over time, but you can copy and use whatever URL is
generated when you create the service resource.

Note: To connect to the service resource from your application, you need the API key and
the URL provided with the resource, not the IBM Cloud account and password of the
owner.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 7

You can display the main attributes of your service resource through the IBM Cloud browser
interface, as shown in Figure 2-2.

Figure 2-2 Service attributes of Language Translation resource

You can select Show Credentials to see the API Key value in clear text. In this view, you also
find links to the service documentation, a Getting started tutorial with an introduction to the
service features, and an API reference with detailed information about authentication,
versioning, error handling, data handling, and the supported methods.

IBM Watson AI services are following the representational state transfer (REST) architectural
style. Communication with the services is done through HTTP methods GET, POST, and
DELETE. Data is exchanged between the service and its caller in the JavaScript Object
Notation (JSON) format. You can easily use services interactively by using the curl utility,
which is included as part of Microsoft Windows 10, Apple Mac OS X, and other operating
systems. It also is available for download at this website.

For example, to translate a sample sentence from English into German by using the
Language Translator service, run following command:

curl --user apikey:UZ5El7jKADciPoRYIvwjWakFUCysfk-HjRxJa_C8Fdpf --request POST
--header "Content-Type: application/json" --data "{\"text\":[\"This is a sample
sentence in English language\"],\"model_id\":\"en-de\"}"
https://api.eu-de.language-translator.watson.cloud.ibm.com/instances/2ae347e6-3545
-469a-99b3-fbbecdd7afd9/v3/translate?version=2018-05-01

This request returns the translated sentence plus some statistics in JSON format:

{
 "translations" : [{
 "translation" : "Dies ist ein Mustersatz in englischer Sprache"
 }],
 "word_count" : 8,
 "character_count" : 45
}

8 Modernize SAP Workloads on IBM Power Systems

https://curl.haxx.se

The IBM Watson services contain versioning information. When significant changes to the
services are implemented, a new version of the service is supplied. By providing the version
information with the REST call, applications that were created for earlier versions of the
service still can be run.

2.1.2 Integration of IBM Watson services into SAP applications

Since the introduction of SAP NetWeaver Application Server 6.20 in 2002, SAP applications
that were written in the ABAP programming language can communicate with web
applications. The ABAP REST Library can be used to communicate with IBM Watson
services from within an ABAP application server. To use the ABAP REST Library, an HTTP
client object of type CL_HTTP_CLIENT must be created. An HTTP connection cab be
established by using one of the following methods:

� Provide a URL by using the CL_HTTP_CLIENT → CREATE_BY_URL method.

� By using a predefined HTTP connection (transaction SM59) through the
CL_HTTP_CLIENT → CREATE_BY_DESTINATION method.

The ABAP SDK for IBM Watson services uses the first method because it offers more
flexibility. Through interface IF_REST_CLIENT, the ABAP REST Library offers the methods
GET, POST, DELETE, and others to communicate with RESTful web services, such as the
IBM Watson services.

Exchanging data between the SAP application server ABAP and the IBM Watson services
poses a challenge. ABAP programs process data in elementary data types or composite data
types, such as structures or internal tables. IBM Watson services exchange data in JSON
format, which is a flexible, text-based format that follows a standardized grammar (ECMA-404
or IETF RFC 8259). The main differences between the properties of ABAP data and JSON
data are shown in Table 2-1.

Table 2-1 Properties of ABAP and JSON data

Conversion from JSON to ABAP and vice versa can be done in different ways. A convenient
way is provided through ABAP class /UI2/CL_JSON, which is available through the UI2
Add-on and can be applied from SAP NetWeaver 7.0 onwards. As of SAP NetWeaver 7.40, it
is part of the standard SAP NetWeaver shipment.

For more information about this class, see in the SAP Community Wiki.

Note: In the previous example, an invalid value was provided for the apikey. If you paste
the command, you receive the following error information:

{"code":401, "error": "Unauthorized"}

To run the example on your own, create your own resource for the Language Translator
service and use its credentials (API key and URL).

ABAP data types and data objects JSON grammar

Case-insensitive names Case-sensitive names

Strict types (numeric, character, and Boolean) Unicode character string representation

Static data types (fields, structures, and internal
tables), Runtime Type Information (RTTI)

Dynamically generated character string

Maximum name length: 30 characters Unlimited name length
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 9

http://wiki.scn.sap.com/wiki/display/Snippets/One+more+ABAP+to+JSON+Serializer+and+Deserializer

When the ABAP SDK is used for IBM Watson services, you do not need to be concerned with
HTTP communication details and ABAP to JSON conversion. The SDK manages those
issues by encapsulating all necessary detail operations in the methods that are provided with
the SDK.

The HTTP protocol defines status codes to indicate the success of an operation. A status
code of 200 is sent upon successful completion of the request. Other status code values
indicate some type of abnormal processing, but not necessarily an error. The ABAP REST
library provides an exception class CX_REST_CLIENT_EXCEPTION, which turns the HTTP
status code into an error text.

2.1.3 Network considerations

The communication between SAP NetWeaver ABAP and the internet is processed by the
Internet Communication Manager (ICM), which is running in the application server as a
separate process. ICM supports HTTP and HTTPS as protocols, and a proxy configuration, if
required. It is configured through profile parameters and can be controlled and monitored
through the ICM Monitor, which is available in SAP transaction SMICM.

HTTPS is based on the Transport Layer Security (TLS) protocol, also known as Secure
Sockets Layer (SSL). SSL employs certificates to encrypt communication. In the SAP system,
certificates are maintained through the Trust Manager, which is available in SAP transaction
STRUST.

For more information about setting up your network and SAP system, see 2.2.2, “Setting up
secure Internet communication” on page 12.

2.1.4 Licensing considerations

When developing and using applications in your SAP system that use IBM Watson services,
you must consider the licensing terms and conditions of SAP and IBM. Many on-premises
SAP applications that are based on the SAP NetWeaver platform include a user-based
license model, in which the license costs depend on the number of named users that use the
SAP application.

With the growing number of hybrid scenarios in which SAP systems exchange data with
non-SAP applications, the concept of licenses that are based on named SAP users reached
its limit. Access from a non-SAP front-end system to the SAP business data was often
authorized through a technical user so that many users accessed the SAP system with only
one named SAP user. Because of this issue, SAP introduced the concepts of Indirect Access
Licensing and the SAP NetWeaver Foundation for Third-party Applications.

You must check with SAP if the development of your own application is included in your
license agreement or requires another license agreement with SAP. Technically, you do not
notice whether you violate the license agreement with SAP.

IBM offers various pricing plans for the IBM Watson AI services in the public cloud. Most
pricing plans are based on a subscription model in which you pay license fees that are based
on the number of calls or amount of data that is being processed.

The IBM Cloud account that owns the service resource is charged with the accumulated fees.
If you change your plan, the service resource must be restarted, and you receive new
credentials for your service resource.
10 Modernize SAP Workloads on IBM Power Systems

Some pricing plans, especially in the Premium section, cannot be selected online and require
assistance by the IBM sales organization. If your plan does not allow a specific method, or if
you exceeded the number of calls that was allowed in your plan, you receive an HTTP status
code of 403: Forbidden.

2.1.5 Administering credentials

Credentials are assigned when you create an IBM Watson service resource with your
account. Several sets of credentials can exist for a single service resource.

Through the credentials that are used when connecting to a service, fees are charged to the
account that owns the service resource. You do not need individual credentials for each SAP
application user, but you can use one set of credentials for all your SAP application users.

If you want to split up fees (for example, between different departments), you can create
separate accounts for each department. In each account, you create a service resource with
its own separate credentials. Based on the application user’s department, you then pick the
credentials for the department’s service resource.

Although the service credentials do not include sensitive, personal data, they must be kept
secret to avoid unauthorized access to IBM Watson services, which can produce costs for the
owner of the service.

However, you do not want to require each user of your application to memorize the
credentials and enter them when accessing the service. Therefore, you must store the
credentials somewhere in your system.

Because the credentials are processed in ABAP in clear text, anyone with debug authority in
the SAP system can see the credentials in the debugger. If you store the credentials in an
unencrypted format in a file or database table, anyone with access to that file or table can
access the data.

For legal reasons, you cannot use the secure storage that is provided by SAP to store the
credentials in an encrypted way. Instead, you can use the Secure Store & Forward (SSF)
mechanism with a third-party security product. However, even if you encrypt the credentials
externally before saving them, it is still possible to see them in clear text in the ABAP
debugger.

Consider regenerating new credentials periodically to reduce the opportunity of credential
fraud.

2.1.6 ABAP SDK for IBM Watson

Various SDKs are offered to use the IBM Watson services with your own applications. The
following programming environments are supported:

� Android
� Go
� Java
� Node.js
� Python
� Ruby
� .NET
� Salesforce
� Swift
� Unity
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 11

In 2019, an SDK for SAP ABAP was added into the section Community SDKs. The SDKs are
available at this web page.

The ABAP SDK for IBM Watson provides a set of ABAP classes that hide complexity when
accessing IBM Watson services. One ABAP class is available for each supported service and
one ABAP method for each corresponding method of the service.

The SDK also provides ABAP fields, data structures, and internal tables to hold the data that
is sent to or received from the service. The conversion between ABAP data types and the
JSON format and the execution of the REST calls is done within the classes and is hidden
from the user. The ABAP SDK also provides token management for authentication, which is
described 2.4.4, “Identity and Access Management authentication” on page 34.

2.2 SAP system configuration

To install and use the ABAP SDK for IBM Watson, you must configure your SAP system so
that it supports the secure HTTPS protocol. This includes the configuration of the Internet
Communication Manager (ICM) through SAP profile parameters, the installation of
certificates through the SAP Trust Manager and, if required by your network configuration, the
definition of a proxy server. In this section, we describe the necessary configuration steps.

2.2.1 SAP profile parameters

To use ABAP SDK for IBM Watson services, the SAP profile parameters that are shown in
Table 2-2 are recommended in the application server.

Table 2-2 SAP recommended profile parameters

2.2.2 Setting up secure Internet communication

Secure internet communication is used during the installation of the ABAP SDK for IBM
Watson and when connecting to IBM Watson services through the ABAP SDK. Secure
communication is established by way of the encrypted HTTPS protocol.

HTTPS is based on the Transport Layer Security (TLS) protocol, also known as Secure
Sockets Layer (SSL). SSL uses certificates to encrypt communication. Therefore, you must
ensure that HTTPS is enabled in your SAP system and that all required certificates are
installed on the SAP application server in the Personal Security Environment (PSE).

Parameter Recommended value

icm/HTTPS/client_sni_enabled TRUE

ssl/ciphersuites 135:PFS:HIGH::EC_P256:EC_HIGH

ssl/client_ciphersuites 150:PFS:HIGH::EC_P256:EC_HIGH

wdisp/ssl_ignore_host_mismatch TRUE
12 Modernize SAP Workloads on IBM Power Systems

https://cloud.ibm.com/docs/services/watson?topic=watson-using-sdks

Enabling HTTPS
You must verify that the HTTPS service were started on your SAP system. To display the
status of the services in your SAP system, run transaction SMICM and select Goto →
Services. A window opens that is similar the example that is shown in Figure 2-3.

Figure 2-3 ICM Monitor: Service Display

If the HTTPS service is unavailable, you can configure it by selecting Service → Create.
Alternatively, you can set the following SAP profile parameter:

icm/server_port_<n> = PROT=HTTPS,PORT=443$$,PROCTIMEOUT=600,TIMEOUT=60

Replace <n> with the next available number. For example, if profile parameters
icm/server_port_1 and icm/server_port_2 are defined, choose, icm/server_port_3.

Setting up SSL certificates
To use the encrypted HTTPS protocol, you also must install the required SSL certificates in
your SAP system. The certificates can be downloaded from trusted sources on the internet.

In the SAP system, certificates are maintained through the Trust Manager (transaction
STRUST). If your system was configured to use SSL before, you likely need only to install the
DigiCert Global Root CA certificate. Otherwise, you must check whether specific personal
security environments (PSE) exist and create them if necessary, in particular the System PSE
and the SSL Client PSE.

Downloading required certificates
Download the following certificates and save them locally:

� DigiCert High Assurance EV Root CA (needed during installation of the ABAP SDK)

� DigiCert SHA2 Extended Validation Server CA (needed during installation of the ABAP
SDK)

� DigiCert Global Root CA (needed when accessing IBM Watson services through the
ABAP SDK)

If the direct download links do not work, see this web page, search for the certificates by the
provided certificate name, right-click the download link, and then, save the certificate on the
local file system.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 13

https://dl.cacerts.digicert.com/DigiCertHighAssuranceEVRootCA.crt
https://dl.cacerts.digicert.com/DigiCertSHA2ExtendedValidationServerCA.crt
https://dl.cacerts.digicert.com/DigiCertGlobalRootCA.crt
https://www.digicert.com/digicert-root-certificates.htm

Installing required certificates
To install the downloaded certificates, you need to add them to your SAP system’s Standard
SSL Client Personal Security Environment (PSE). Complete the following steps:

1. Call transaction STRUST.

2. Switch to edit mode (click the toolbar).

3. If a local PSE file does not exist (which is indicated by X), create it by right-clicking SSL
client SSL Client (Standard) → Create, as shown in Figure 2-4.

Figure 2-4 Create local PSE file

4. Keep all default settings that are shown in the next window and press Enter or click
Continue to create the standard SSL client PSE.

5. Click Import certificate in the Certificate section of the standard SSL client PSE.
Alternatively, select Certificate → Import (see Figure 2-5).

Figure 2-5 Import certificate

6. Choose the certificate file that you downloaded and import the certificate.
14 Modernize SAP Workloads on IBM Power Systems

7. Add the certificate to the certificate list by clicking Add to Certificate List, as shown in
Figure 2-6.

Figure 2-6 Add to certificate list

8. Click Save or press F3 \ to save the newly added certificate.

9. Repeat steps 5- 8 to create the two other certificate files.

The certificate list of the standard SSL client PSE contains the newly imported certificates, as
shown in Figure 2-7.

Figure 2-7 Certificate list
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 15

Restarting the Internet Communication Manager (ICM)
It is recommended to restart the ICM after a new SSL certificate is applied to the PSE.
Complete the following steps:

1. Call transaction SMICM.

2. Select menu item Administration → ICM → Restart → Yes as shown in Figure 2-8 on
page 16.

Figure 2-8 Restart ICM

Determining required certificates (identify missing certificates)
It is possible that in the future, more or other certificates are needed to install the ABAP SDK
for IBM Watson or connect to IBM Watson services through the SDK.

If a call to an IBM Watson service fails because of a missing SSL certificate, you can check
the ICM trace file to find the required certificate. To do so, call transaction SMICM and select
Goto → Trace File → Display End.

Alternatively, call transaction AL11 and browse to file DIR_HOME/dev_icm. Find the last entry in
trace file that indicates error SSSLERR_PEER_CERT_UNTRUSTED, as shown in Figure 2-9.

Figure 2-9 Certificate errors in trace file
16 Modernize SAP Workloads on IBM Power Systems

The SSL error stack shows the SSL certificate chain, which in Figure 2-9 looks as listed in
Table 2-3.

Table 2-3 SSL certificate chain

Download the certificates from a trusted source and install them as described in “Setting up
SSL certificates” on page 13.

Configuring proxy server
If your network configuration uses a proxy server, you can configure your SAP system to use
the proxy server. To define the proxy server in your SAP system, complete the following steps:

1. Call transaction SICF and click Execute (or press F8), as shown in Figure 2-10.

Figure 2-10 SICF entry window

Certificate authority type Certificate authority

End-user *.watsonplatform.net

Intermediate CA GeoTrust RSA CA 2018

Root CA DigiCert Global Root CA
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 17

2. Select Client → Proxy Settings, as shown in Figure 2-11.

Figure 2-11 Jump to proxy settings

3. Complete the following steps in the Proxy Configuration for HTTP Client window:

a. On the Global Settings tab, select the Proxy Setting is Active and No Proxy Setting
for Local Server options, as shown in Figure 2-12.

Figure 2-12 Activate proxy
18 Modernize SAP Workloads on IBM Power Systems

b. On the HTTP Protocol and HTTPS Protocol tabs, specify the proxy Host Name and
Port. If the proxy server requires log-in credentials, also specify the User Name and
Password, as shown in Figure 2-13.

Figure 2-13 Proxy settings

4. Click Execute (or press F8) and then, click OK (see Figure 2-14) to save the changed
settings.

Figure 2-14 Confirmation of proxy settings

Debugging network communication
If communication errors occur, you can see detailed error messages in the ICM trace file
dev_icm, which is in the work directory of the instance. To display the trace file, run transaction
SMICM (ICM Monitor) and click Goto → Trace File → Display All.

For enhanced debugging of your own application, you can lock an SAP work process
exclusively and increase the trace level for component ICF to 3. At that level, all
communication between the application server and the IBM Watson service is logged in the
ICM trace file. To increase the trace level for your tests, run ABAP program RSTRC000
through transaction SE38 and make the following selections (as shown in Figure 2-15):

� Increase the trace level value to 3.
� Mark the field Keep Work process with the letter x.
� Clear the trace components Taskhandler and VM Container.
� Select the trace component ICF.
� Click the Save icon or press F5 to activate your changes.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 19

Figure 2-15 Activate trace level 3 for the Internet communication

If you now run your application in the same GUI window, all network traffic between your
application and the internet are logged in the ICM trace file. To reset the trace level to its
defaults, run ABAP program RSTRC000 in the same GUI session again. Then, click Defaults
and then, click the Save icon.

2.3 Installing the ABAP SDK for IBM Watson

The ABAP SDK for IBM Watson is provided under an open source license (Apache License
2.0) in GitHub. For technical reasons, it is available in the following versions:

� ABAP SDK for SAP NetWeaver 7.50 and higher, such as SAP ECC or SAP S/4HANA
on-premises

� ABAP SDK for the SAP Cloud Platform ABAP Environment (“Steampunk”)

From a programmer’s perspective, both versions provide the same functions and interfaces.
The system setup is different for the two versions. All the information that is in this document
is related to the ABAP SDK for SAP NetWeaver 7.50 and higher, such as SAP ECC or SAP
S/4HANA on-premises.
20 Modernize SAP Workloads on IBM Power Systems

https://github.com/watson-developer-cloud/abap-sdk-nwas
https://github.com/watson-developer-cloud/abap-sdk-scp

2.3.1 Introduction to abapGit

To install the ABAP SDK for IBM Watson in an SAP system, the abapGit1 tool is used. The
abapGit tool is a Git2 client for ABAP and offers an alternative to the traditional SAP transport
system to import packages into an SAP system. All relevant information about an SAP
package (including its source code) is stored in a Git repository; for example, on GitHub3.

The abapGit tool can be configured to remotely connect to a Git repository, pull the
repository’s content into the target SAP system, and install it into a package on the target
system.

The abapGit tool is an open source tool and is freely available on GitHub at this GitHub web
page. The documentation is accessible at this web page.

For Application Development Tools (ADT) in Eclipse users, an abapGit plug-in for Eclipse is
available at this web page. The use of ADT and the plug-in is required for the SCP ABAP
version of the SDK. For the on-premises versions of the SDK, the SAP GUI-based abapGit
version provides more functions and is preferred.

Installing abapGit
Complete the following steps to install abapGit:

1. Call transaction SE38 and create report ZABAPGIT_FULL, as shown in Figure 2-16.

Figure 2-16 Creating full report ZABAPGIT_FULL

2. In the ABAP: Program Attributes pop-up window, choose abapGit as the Title,
Executable Program as the Type, and leave the rest of the fields unchanged. Click Save,
as shown in Figure 2-17 on page 22.

1 http://www.abapgit.org
2 https://git-scm.com
3 https://github.com
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 21

http://www.abapgit.org
https://git-scm.com
https://github.com
https://github.com/larshp/abapGit
https://github.com/larshp/abapGit
https://docs.abapgit.org
https://eclipse.abapgit.org/updatesite/

Figure 2-17 Attributes for program ZABAPGIT_FULL

3. In the Create Object Directory Entry window, click Local Object to create the report, as
shown in Figure 2-18.

Figure 2-18 Package selection for program ZABAPGIT_FULL
22 Modernize SAP Workloads on IBM Power Systems

An empty editor window opens, as shown in Figure 2-19.

Figure 2-19 ABAP editor for ZABAPGIT_FULL

4. Download the abapGit code and save it to a local file.

5. In the editor window, click Utilities → More Utilities → Upload/Download → Upload and
upload the downloaded abapGit code into the editor, as shown in Figure 2-20.

Figure 2-20 ABAP editor upload function
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 23

https://raw.githubusercontent.com/abapGit/build/master/zabapgit.abap

6. Save, activate, and run the ZABAPGIT_FULL report, as shown in Figure 2-21.

Figure 2-21 Final program ZABAPGIT_FULL

7. The abapGit home window is displayed, as shown in Figure 2-22.

Figure 2-22 abapGit entry window
24 Modernize SAP Workloads on IBM Power Systems

Updating the abapGit tool to the latest release level
Before importing the ABAP SDK for IBM Watson, the abapGit tool must be updated to the
latest release level. Complete the following steps:

1. Call transaction SE38 and start program ZABAPGIT_FULL, as shown in Figure 2-23.

Figure 2-23 ZABAPGIT_FULL execution in SE38

2. Click +Online in the abapGit home window, as shown in Figure 2-24.

Figure 2-24 Add online project

3. In the New Online Project window, enter the following settings:

– Git clone URL: https://github.com/larshp/abapGit.git
– Package: $ABAPGIT
– Display name: abapGit

Click Create package (see Figure 2-25).

Figure 2-25 Add project abapGit
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 25

4. In the Create Package window, set a Short Description to abapGit and click Continue, as
shown in Figure 2-26.

Figure 2-26 Create $ABAPGIT

5. In the New Online Project window, click OK. abapGit now starts to fetch information about
the latest abapGit code from GitHub. An announcement is displayed that can be safely
closed by click the X in the upper right corner, as shown in Figure 2-27.

Figure 2-27 abapGit change overview

The state of the abapGit installation on your SAP system compared to the state of the
abapGit repository at GitHub is displayed.

6. Click Pull to download the latest version of the abapGit code to your SAP system, as
shown in Figure 2-28.

Figure 2-28 abapGit pull request
26 Modernize SAP Workloads on IBM Power Systems

It can take several minutes until abapGit finishes downloading the code and installing it
into package $ABAPGIT.

7. In the Inactive Objects window, click Continue to activate all of the abapGit objects, as
shown in Figure 2-29.

Figure 2-29 abapGit activation window

Again, it can take some time until abapGit finishes activating the objects.

Now, abapGit is installed into package $ABAPGIT on your SAP system. Also, you do not have
to start abapGit by way of SE38; instead, you can call it directly by way of the transaction
ZABAPGIT.

Your system is now prepared for installing the ABAP SDK for IBM Watson.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 27

2.3.2 Installing the ABAP SDK for IBM Watson

After abapGit is installed on your SAP system, the ABAP SDK for IBM Watson can be
installed on the system by completing the following steps:

1. Call transaction ZABAPGIT and click + Online in the abapGit home window, as shown in
Figure 2-30 on page 28.

Figure 2-30 Add project abap-sdk-nwas

2. In the New Online Project window, enter the following settings:

– Git clone URL: https://github.com/watson-developer-cloud/abap-sdk-nwas.git
– Package: ZIBMC
– Display name: ABAP SDK for IBM Watson

Click Create package, as shown in Figure 2-31.

Figure 2-31 Specify project path and package name ZIBMC
28 Modernize SAP Workloads on IBM Power Systems

3. In the Create Package window, set a Short Description to ABAP SDK for IBM Watson,
and leave all other fields unchanged. Then, click Continue, as shown in Figure 2-32.

Figure 2-32 Create package ZIBMC

4. When prompted for a transportable workbench request, create one by clicking Create
Request, as shown in Figure 2-33.

Figure 2-33 Assign transport request
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 29

5. In the Create Request window, set a Short Description to ABAP SDK for IBM Watson
and leave all other fields unchanged. Click Save to create the request, as shown in
Figure 2-34.

Figure 2-34 Create new transport request

6. In the Prompt for transportable Workbench request window, click Continue, as shown in
Figure 2-35.

Figure 2-35 Confirm transport request selection

7. In the New Online Project pop-up window, click OK.

abapGit now fetches information about the latest ABAP SDK for IBM Watson code from
GitHub.

The state of the ABAP SDK for IBM Watson installation on your SAP system compared to
the state of the abapGit repository at GitHub is displayed. Because the SDK is not yet
installed on your system, all components are marked as new.
30 Modernize SAP Workloads on IBM Power Systems

8. Click Pull to download the latest version of the ABAP SDK for IBM Watson code to your
SAP system, as shown in Figure 2-36.

Figure 2-36 abapGit project overview before pull

9. When prompted for a workbench request, confirm the request that you created, as shown
in Figure 2-37.

Figure 2-37 Confirm previous transport request selection

It can take some time until abapGit finishes downloading the code and installing it into
package ZIBMC.

When abapGit finishes, the ABAP SDK for IBM Watson is ready for use on your system.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 31

2.4 Using the ABAP SDK for IBM Watson

This section describes the use of ABAP SDK for IBM Watson.

2.4.1 ABAP SDK for IBM Watson API overview

The ABAP SDK for IBM Watson is delivered as package ZIBMC. After the Git Repository is
cloned to the SAP system, an IBM Watson service instance is wrapped by an ABAP class
instance.

Figure 2-38 shows the ABAP SDK for IBM Watson class hierarchy.

Figure 2-38 IBM Watson SDK class hierarchy

The box in the lower right of Figure 2-38 includes the ABAP classes that map to IBM Watson
services. The other classes are base classes in the class hierarchy, helper classes
(ZCL_IBMC_UTIL), and exception classes (ZCX_IBMC_SERVICE_EXCEPTION).

Instances of the IBM Watson service classes are created by using the
zcl_ibmc_service_ext → get_instance() method, which is provided by class
ZCL_IBMC_SERVICE_EXT, as described in 2.4.5, “Using classes, methods, and data types
of the ABAP SDK” on page 35.

Referring to the service classes (the box in the lower right in Figure 2-38), the IBM Watson
services that are listed in Table 2-4 are supported by the ABAP SDK for IBM Watson.

Table 2-4 Supported IBM Watson services with ABAP SDK

Service ABAP class name

Compare and Comply ZCL_IBMC_COMPARE_COMPLY_V1

Discovery ZCL_IBMC_DISCOVERY_V1
32 Modernize SAP Workloads on IBM Power Systems

For more information about ABAP classes, see this web page.

2.4.2 Credentials

All supported services support IAM authentication (see 2.4.4, “Identity and Access
Management authentication” on page 34). Service credentials consist of an API Key and a
URL. The API Key and the URL are character values that can be viewed through the IBM
dashboard and must be provided as parameters i_apikey and i_url to method
zcl_ibmc_service_ext → get_instance().

You can store the values with your application, but it is suggested to do so in an encrypted
format. The use of cloud services often creates costs that are based on the use for the owner
of the service instance. Also, anyone with the credentials can use the service instance at the
owner’s expenses. If you want to distribute the costs over multiple cost centers, you must
create a service instance and provide service credentials for each cost center separately.

2.4.3 Configuration table

Service credentials and other parameters that must be specified at IBM Watson service
wrapper ABAP class instantiation can also be provided in table ZIBMC_CONFIG. This table
includes the keys that are listed in Table 2-5.

Table 2-5 ZIBMC_CONFIG table

Language Translator ZCL_IBMC_LANG_TRANSLATOR_V3

Natural Language Classifier ZCL_IBMC_NAT_LANG_CLASS_V1

Natural Language Understanding ZCL_IBMC_NAT_LANG_UNDRSTND_V1

Personality Insights ZCL_IBMC_PERSONAL_INSIGHTS_V3

Speech to Text ZCL_IBMC_SPEECH_TO_TEXT_V1

Text to Speech ZCL_IBMC_TEXT_TO_SPEECH_V1

Tone Analyzer ZCL_IBMC_TONE_ANALYZER_V3

Visual Recognition ZCL_IBMC_VISUAL_RECOGNITION_V3

ZCL_IBMC_VISUAL_RECOGNITION_V4

Watson Assistant ZCL_IBMC_ASSISTANT_V1

ZCL_IBMC_ASSISTANT_V2

Service ABAP class name

Table key Description

SERVICE The ABAP class name without prefix ZCL_IBMC_.

INSTANCE_UID ID chosen by application developer that must be provided by application as
parameter to method zcl_ibmc_service_ext → get_instance().

PARAM The parameter name.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 33

https://watson-developer-cloud.github.io/abap-sdk-nwas

The list of configuration parameters in table ZIBMC_CONFIG are listed in Table 2-6.

Table 2-6 Configuration parameters

2.4.4 Identity and Access Management authentication

Identity and Access Management (IAM) is a token-based authentication method. For more
information about IAM, see this IBM Cloud Docs web page.

You use the API key to generate a token, which is then used to authenticate the REST calls to
the IBM Watson service. The token is valid for 60 minutes. When it expires, you must
generate a new one by using the API key again.

Although the ABAP SDK provides a mechanism to manage the token generation and
expiration automatically, you can also choose to manage the token manually.

If the apikey is provided for method zcl_ibmc_service_ext=>get_instance(), the ABAP SDK
automatically generates a bearer-token when needed and refreshes it when it is about to
expire. This procedure is hidden from the SDK user. You get an instance of the service class
as shown in Example 2-1.

Example 2-1 Service class instance

data lo_lang_translator type ref to zcl_ibmc_lang_translator_v3.

 zcl_ibmc_service_ext=>get_instance(
 exporting
 i_url = 'https://api.eu-de.language-translator.watson.cloud.ibm.com' &
 '/instances/2ae347e6-3545-469a-99b3-fbbecdd7afd9'
 i_apikey = 'UZ5El7jKADciPoRYIvwjWakFUCysfk-HjRxJa_C8Fdpf'
 i_version = '2018-05-01'
 importing
 eo_instance = lo_lang_translator).

The method zcl_ibmc_service_ext=>get_instance() also supports input parameters
i_username and i_password for Cloud Foundry services. However, all IBM Watson services
that are supported by the ABAP SDK support the IAM authentication method; therefore, they
are no longer needed.

Parameter name Default value Description

URL IBM Watson service URL.

APIKEY IBM Watson service API keys.

PROXY_HOST Proxy server (optional).

PROXY_PORT Proxy server port (optional).

AUTH_NAME IAM Authorization, IAM, or basicAuth.

SSL_ID CLIENT SSL Identity, defines PSE for SSL certificates: CLIENT or
ANONYM.

Note: The API key that is shown in Example 2-1 on page 34 is provided to show the
method call only. It is not a valid key, and its usage results in an error.
34 Modernize SAP Workloads on IBM Power Systems

https://cloud.ibm.com/docs/services/watson?topic=watson-iam

Neither the user name and password nor apikey are provided for method
zcl_ibmc_service_ext=>get_instance(), the ABAP SDK user must implement an individual
token management.

Before a service method is called for the first time, a valid bearer-token must be generated by
accessing https://iam.cloud.ibm.com/identity/token and providing the API key. The
returned token can then be specified in the IBM Watson service wrapper ABAP class instance
as shown in the following example:

lo_service_class->set_bearer_token(i_bearer_token = '...').

Where lo_service_class is the instance of the class in question that was created by calling
zcl_ibmc_service_ext=>get_instance() without API key.

Later, service methods can be called if the provided token is valid. When the token expires,
the method that is shown must be called again with a new (refreshed) bearer-token as
parameter.

2.4.5 Using classes, methods, and data types of the ABAP SDK

By using the IBM Watson Language Translator service as an example, we show some
principles when the ABAP SDK is used in an application. The Language Translator service is
supported through ABAP class ZCL_IBMC_LANG_TRANSLATOR_V3 in the current version
of the SDK.

The class is providing methods, such as TRANSLATE, IDENTIFY, or
LIST_IDENTIFIABLE_LANGUAGES and data types, such as T_TRANSLATE_REQUEST,
T_TRANSLATION_RESULT, or T_IDENTIFIED_LANGUAGES.

For more information about the function of the methods and the meaning of the data types,
see the online documentation for the IBM Watson service.

At that web page, you get information about the supported methods, and how to start them.
Required and optional parameters, and the format of the response, also are explained, and
an example call in different programming languages is provided, as shown in Figure 2-39.

Figure 2-39 API documentation for translate method
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 35

https://iam.cloud.ibm.com/identity/token
https://cloud.ibm.com/apidocs/language-translator

For each method in the API documentation, one corresponding method in ABAP class
ZCL_IBMC_LANG_TRANSLATOR_V3 is available. The method name can be shortened in
ABAP because ABAP allows only method names up to 30 characters in length. Typically, an
example for the method execution with the expected result is shown to the right of the
parameter description. By default, the example is showing curl syntax with the parameters
that are provided in JSON notation.

An example call for the Translate method in curl syntax is shown in Figure 2-40.

Figure 2-40 Example request

The method expects some text in string format as input. You can provide multiple text strings
in an array and receive an array with the translated texts in return. In addition, you can provide
a model ID to indicate source and target language of the translation. In Figure 2-40, the
model ID “en-es” indicates that a translation from English to Spanish is requested.

In ABAP class ZCL_IBMC_LANG_TRANSLATOR_V3 and the data type
T_TRANSLATE_REQUEST is provided with the following declaration:

types:
 begin of T_TRANSLATE_REQUEST,
 TEXT type STANDARD TABLE OF STRING WITH NON-UNIQUE DEFAULT KEY,
 MODEL_ID type STRING,
 SOURCE type STRING,
 TARGET type STRING,

 end of T_TRANSLATE_REQUEST.

To run the example, you enter the internal table TEXT with the text to be translated and the
field MODEL_ID with the requested model. The other fields are optional and can remain
empty.
36 Modernize SAP Workloads on IBM Power Systems

The returned data for the documented example is shown in Figure 2-41.

Figure 2-41 Example response

In ABAP class ZCL_IBMC_LANG_TRANSLATOR_V3, the data type
T_TRANSLATION_RESULT is provided with the following declarations:

types:
 begin of T_TRANSLATION,
 TRANSLATION type STRING,
 end of T_TRANSLATION.
 types:
 begin of T_TRANSLATION_RESULT,
 WORD_COUNT type INTEGER,
 CHARACTER_COUNT type INTEGER,
 TRANSLATIONS type STANDARD TABLE OF T_TRANSLATION WITH NON-UNIQUE DEFAULT KEY,
 end of T_TRANSLATION_RESULT.

All classes of the ABAP SDK for IBM Watson services use a common exception class
ZCX_IBMC_SERVICE_EXCEPTION. With that exception class, the example from the
documentation in ABAP syntax can be implemented as shown in Example 2-2.

Example 2-2 ABAP syntax

data:
 lv_apikey type string value '...', " replace ... with credentials
 lo_lang_translator type ref to zcl_ibmc_lang_translator_v3,
 lo_service_exception type ref to zcx_ibmc_service_exception,
 ls_request type zcl_ibmc_lang_translator_v3=>t_translate_request,
 lv_text type string,
 ls_trans type zcl_ibmc_lang_translator_v3=>t_translation_result.

 zcl_ibmc_service_ext=>get_instance(
 exporting
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 37

 i_url = 'https://api.eu-de.language-translator.watson.cloud.ibm.com' &
 '/instances/2ae347e6-3545-469a-99b3-fbbecdd7afd9'
 i_apikey = lv_apikey
 i_version = '2018-05-01'
 importing
 eo_instance = lo_lang_translator).

 lv_text = 'Hello'.
 append lv_text to ls_request-text.
 ls_request-model_id = 'en-es'.

 try.
 lo_lang_translator->translate(
 exporting
 i_request = ls_request
 i_contenttype = 'application/json'
 importing
 e_response = ls_trans).
 catch zcx_ibmc_service_exception into lo_service_exception.
 message lo_service_exception type 'E'.
 endtry.

At times, IBM Watson services require to upload a file or document as input. You must provide
an image if you want to perform image recognition. Also, the Language Translation service
offers a method to translate complete documents with one service call.

The method Translate Document supports several document types. In the curl example of the
API reference documentation, the input data is provided in the Portable Document Format
(PDF), as shown in Figure 2-42.

Figure 2-42 Example for document translation
38 Modernize SAP Workloads on IBM Power Systems

To provide the document in an ABAP program, you must first upload the document into a field
of type XSTRING (for example, with the help of ABAP function module GUI_UPLOAD), which
is part of the GUI front-end services. The method call in ABAP for document translation is
shown in Example 2-3.

Example 2-3 Method called in ABAP

data:
 lo_lang_translator type ref to zcl_ibmc_lang_translator_v3,
 lo_service_exception type ref to zcx_ibmc_service_exception,
 lv_binarydata type string,
 lv_model_id type string,
 ls_responsedoc type zcl_Ibmc_Lang_Translator_v3=>t_Document_Status.

* lv_binarydata has been filled prior to the method call

 lv_model_id = 'en-fr'.
 try.
 lo_lang_translator->translate_document(
 exporting
 i_file = lv_binarydata
 i_filename = 'en.pdf'
 i_file_content_type = zif_ibmc_service_arch=>c_mediatype-appl_pdf
 i_model_id = lv_model_id
 importing
 e_response = ls_responsedoc).
 catch zcx_ibmc_service_exception into lo_service_exception.
 message lo_service_exception type 'E'.
 endtry.

The file name en.pdf has no direct meaning in the method execution. Instead, it is used as
place holder. The document \ and the translated document are identified by using a document
ID, which is part of the returned structure ls_responsedoc.
Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson 39

40 Modernize SAP Workloads on IBM Power Systems

Chapter 3. Cloud App connecting to SAP

Business processes can be implemented in multiple ways within an SAP environment. This
chapter implements an application with the common programming language JavaScript. The
application runs outside the SAP system and retrieves operational data that originates from
an SAP system. Interfaces for data transfer must be defined and made available in the SAP
system.

This chapter includes the following topics:

� 3.1, “Introduction” on page 42
� 3.2, “IBM Secure Gateway” on page 42
� 3.3, “OData and CDS Views” on page 46
� 3.4, “Building a node.js application on IBM Cloud” on page 51
� 3.5, “Using OData and IBM Watson services” on page 59

3

© Copyright IBM Corp. 2021. All rights reserved. 41

3.1 Introduction

Data from marketing campaigns that were performed by a Portuguese banking institution is
used. The data set can be downloaded from the UCI Machine Learning Repository1. It is
assumed that a model was built and trained based on the data. The model is deployed by an
IBM Watson Machine Learning service instance, as described in Chapter 4, “Machine
Learning on IBM Power Systems” on page 63.

An application Marketing Campaign Advisor is implemented. The application reads all
customer data that applies to specified filter criteria from the SAP system and predicts for
each record at which probability the according customer subscribes a term deposit. The
application calls an SAP OData service to retrieve the customer data and uses the machine
learning model that was deployed by the IBM Watson Machine Learning service. It is run
locally and as Cloud Foundry application.

3.2 IBM Secure Gateway

The SAP system often is separated from the public internet by a firewall. Therefore, a secured
and controllable communication channel is essential. The IBM Secure Gateway establishes a
secure connection between the IBM Cloud and the SAP NetWeaver Gateway.

To set up the IBM Secure Gateway, the SAP NetWeaver Gateway host and the port for
inbound HTTP requests is needed. To get this information, run transaction SMICM
(transaction code that is used for ICM Monitor in SAP) and press shift+F1 or click Goto →
Services, as shown in Figure 3-1.

Figure 3-1 Gateway Services

The IBM Secure Gateway is a service that must be instantiated in the IBM Cloud. Complete
the following steps:

1. Log on to the IBM Cloud. Click Create Resource, then, click Integration in the navigation
window on the left. Find and click Secure Gateway, as shown in Figure 3-2 on page 43.

1 UCI - Machine Learning Repository - Bank Marketing Data Set
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
42 Modernize SAP Workloads on IBM Power Systems

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

Figure 3-2 IBM Cloud Secure Gateway

2. Choose a pricing plan. You can start with a no-cost plan and update it later, if needed.
Click Create to instantiate the Secure Gateway service.

3. Click Add Gateway. Enter SAPGateway for the Gateway Name and then, click Add
Gateway, as shown in Figure 3-3.

Figure 3-3 Secure Gateway add gateway

4. A destination must be defined:

a. On the IBM Secure Gateway Manage view, click Add Destination and then, select the
Advanced Setup tab.

b. Select the On-Premises Destination option and enter a name for the destination.
Chapter 3. Cloud App connecting to SAP 43

c. Specify SAP NetWeaver Gateway as the host name and HTTP port. Select protocol
HTTPS Server Side. In section TLS options, select None for Resource Authentication.
Finally, click Add Destination, as shown in Figure 3-4.

Figure 3-4 Secure gateway destination

The IBM Secure Gateway service requires a gateway client host. It is recommended that
this host is in a firewall configuration for securing local area networks (DMZ) at your site.

5. Click Add Client. Download the client package that matches the operating system of the
gateway client host. Follow the instructions to install and start the IBM Secure Gateway
client on the gateway client. Guidelines are available at this web page.

6. During the installation procedure, you are prompted to provide an access control list
(ACL), which is a file. Create an ACL that contains at least the following line, where
hostname and port must be adjusted such that it matches the HTTP port and host name of
the SAP NetWeaver Gateway:

acl allow myhost.domain.com:50200

7. The destination is shown on the IBM Secure Gateway Manage view. Click the settings icon
(gearwheel) to find the destination URL and port to which the connection to the SAP
NetWeaver Gateway is assigned. An access to the destination URL is rerouted to the SAP
NetWeaver Gateway, as shown in Figure 3-5 on page 45.
44 Modernize SAP Workloads on IBM Power Systems

https://cloud.ibm.com/docs/services/SecureGateway?topic=securegateway-client-install

Figure 3-5 Secure Gateway parameters

8. To test the connection, open a web browser and start SAP service /sap/bc/ping by way of
the IBM Secure Gateway connection, for example:

https://cap-sg-prd-3.securegateway.appdomain.cloud:17857/sap/bc/ping

If the SAP service /sap/bc/ping is activated, the message Server reached is returned.
Otherwise, the error message Service cannot be reached is displayed. In both cases, the IBM
Secure Gateway connection was set up correctly. If an error message occurs that is not
originated by the SAP Internet Communication Manager, check and correct the IBM Secure
Gateway setup.
Chapter 3. Cloud App connecting to SAP 45

3.3 OData and CDS Views

The application retrieves data that is in the SAP system. Sample data must be created and an
OData service to access the sample data must be implemented. Complete the following
steps:

1. Start ABAP Development Tools (ADT) in Eclipse and create a project. System connection
refers to your SAP system.

2. Log on to your system.

3. All ABAP objects must be assigned to a dedicated ABAP Package. Therefore, in ADT,
select File → New → ABAP Package and enter ZDEMO for Name.

4. Click Finish.

3.3.1 Sample data table

The customer data records that are to be stored in the SAP System must include fields for all
features of the data set that were used for model training. Therefore, create table
ZDEMO_MARKETING to store all features (but not the label). Add a column for record
number that forms a unique key. Use field names as specified in the training data set;
however, add an underscore all field names that are reserved ABAP names.

To allow lowercases for character types, it is recommended to create suitable data types on
domains that feature the case-sensitive flag set. For example, create and use three domains
and data types of 5, 10, and 15 characters.

The layout looks as shown in Table 3-1.

Table 3-1 Table layout

Field Key Data type Length

RECORDNO INT4

AGE INT4

JOB CHAR 15

MARITAL CHAR 10

EDUCATION CHAR 15

DEFAULT_ CHAR 5

BALANCE INT4

HOUSING CHAR 5

LOAN CHAR 5

CONTACT CHAR 15

DAY_ INT4

MONTH_ CHAR 10

DURATION INT4

CAMPAIGN INT4

PDAYS INT4
46 Modernize SAP Workloads on IBM Power Systems

Populate the table with data. Throughout this document, we assume that table
ZDEMO_MARKETING contains the records that are shown in Figure 3-6.

Figure 3-6 Table content

3.3.2 Creating Core Data Services View

Customer data that is inserted into table ZDEMO_MARKETING must be made available for
access from outside the SAP system. Therefore, an OData service must be created that
operates as an interface to the data.

An OData service can be created by using several methods. Operations to read and modify
data can be implemented specifically by using ABAP language. Alternatively, an OData
service can be generated from an SAP BW query, a BAPI, or a Core Data Services (CDS)
view. Use the latter option to generate a suitable OData service.

First, a CDS view must be defined on the data. Complete the following steps:

1. Start ADT.

2. In the project explorer windows, navigate to and right-click package ZDEMO and then,
select New → Other ABAP Repository Object.

3. Select Core Data Services → Data Definition, as shown in Figure 3-7.

Figure 3-7 ADT new CDS

PREVIOUS INT4

POUTCOME CHAR 10

Field Key Data type Length
Chapter 3. Cloud App connecting to SAP 47

4. Click Next and enter ZDEMO_MARKETING_DATA for a name. Enter an arbitrary description and
click Next, as shown in Figure 3-8.

Figure 3-8 ADT new CDS data definition

5. Specify a suitable transport request and then, click Finish. The CDS view definition with
default annotations appears in the editor window.

6. Modify annotations @AbapCatalog.sqlViewName to specify a database view name and add
annotation @OData.publish to generate an OData service when the CDS view is activated.

7. Add an asterisk (*) as a field list to the view definition. Therefore, the CDS view
ZDEMO_MARKETING_DATA features the same layout as underlaying table
ZDEMO_MARKETING and can be accessed in the same way as the table.

CDS data definition looks as follows:

@AbapCatalog.sqlViewName: 'ZDEMO_MARKETINGV'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'CDS View on table ZDEMO_MARKETING'
@OData.publish: true
define view ZDEMO_MARKETING_DATA as select from zdemo_marketing {
 *
}

8. Activate the CDS view (press Ctrl+F3). A database view and an OData service for
accessing view ZDEMO_MARKETING_DATA is generated.

3.3.3 Testing the OData service

Complete the following steps to add the OData service on the CDS view
ZDEMO_MARKETING_DATA to the catalog of the back-end services:

1. Open OData service maintenance (transaction /IWFND/MAINT_SERVICE) from ADT:

a. Select Run → Run ABAP Development Object (or press Alt+F8).

b. Enter search string /IWFND/MAINT_SERVICE and then, select the matching item.
48 Modernize SAP Workloads on IBM Power Systems

c. Click Add Service and enter ZDEMO* for the Technical Service Name. Press Enter to
see the search result, as shown in Figure 3-9.

Figure 3-9 Add service

d. Click ZDEMO_MARKETING_DATA_CDS and enter ZDEMO for the Package
Assignment. Press Enter and choose a suitable transport request for all generated
objects.

e. In the OData service maintenance tool (transaction /IWFND/MAINT_SERVICE), mark
service ZDEMO_MARKETING_DATA_CDS in the Service Catalog and click SAP
Gateway Client in the ICF Nodes section, as shown in Figure 3-10.

Figure 3-10 OData Service Catalog

2. The SAP Gateway Client can be used to test OData services. For example, enter
/sap/opu/odata/sap/ZDEMO_MARKETING_DATA_CDS/$metadata for the Request URI and click
Execute. You see the metadata of the Entity Data Model of the OData service, which in
this case is equal to the layout of the CDS view.
Chapter 3. Cloud App connecting to SAP 49

3. To retrieve all records for customers of age 40 in table ZDEMO_MARKETING_DATA as
JSON format, run the following URI, as shown in Figure 3-11:

/sap/opu/odata/sap/ZDEMO_MARKETING_DATA_CDS/ZDEMO_MARKETING_DATA?$filter=AGE eq
40&$format=json

Figure 3-11 Gateway Client

To test the same query from an external system, open a shell on your local PC and connect to
the OData service by using the curl command. Do not forget to URL-encode the query
parameters. Considering that the HTTPS protocol is used, you must install the suitable TLS
certificate on your local PC or use --insecure option:

curl -u "<sap user>:<sap password>" --insecure "
https://cap-sg-prd-3.securegateway.appdomain.cloud:17857/sap/opu/odata/sap/ZDEMO_M
ARKETING_DATA_CDS/ZDEMO_MARKETING_DATA?$filter=AGE%20eq%2040&$format=json"

Now, the SAP system is prepared and the data can be retrieved by an external application.
50 Modernize SAP Workloads on IBM Power Systems

3.4 Building a node.js application on IBM Cloud

Create a node.js script that functions as a web server application. It accepts requests from a
front end and delivers the requested data in response.

IBM Cloud provides starter kits that are boilerplates for standard application schemes. When
deployed, a starter kit forms a self-contained web application that can be used as a template
for an individual application.

Complete the following steps:

1. Log on to the IBM Cloud.

2. Click Create Resource and then, select the Developer Tools category from the
navigation window. Find and click Node.js Express.js App, as shown in Figure 3-12.

Figure 3-12 IBM Cloud Node.js Starter Kit
Chapter 3. Cloud App connecting to SAP 51

3. Enter Marketing Campaign Advisor for the App name and click Create, as shown in
Figure 3-13.

Figure 3-13 IBM Cloud Initial App

The application accesses the model that was trained and deployed by an IBM Watson
Machine Learning service instance. This service instance must be connected to the
application. When run in the IBM Cloud, credentials of all connected service instances are
provided to the application by environment variables.

4. In the Connections section, click Create connection.

5. Select the IBM Watson Machine Learning service instance that you want to connect to the
application and click Connect. The service instance is bound to the application, and new
service credentials are created and displayed in the section in the App details view.

6. Click Configure continuous delivery.

7. In the next window, select the Deployment target. The application can be deployed in a
container that is deployed on an IBM Kubernetes cluster.

Alternatively, the application can be deployed on a Red Hat OpenShift cluster.

As a third option, it can be run as a Cloud Foundry application.

When an IBM Kubernetes or a Red Hat OpenShift cluster is chosen as deployment target,
a corresponding cluster service must be instantiated first.
52 Modernize SAP Workloads on IBM Power Systems

8. If you select Cloud Foundry as Deployment target, change the hostname if the default is
no longer available (likely). Keep default values for all other parameters. Click Create to
create a delivery pipeline, as shown in Figure 3-14.

Figure 3-14 IBM Cloud Continuous Delivery

9. If the error message Continuous Delivery service required appears, select the link Add
the service.
Chapter 3. Cloud App connecting to SAP 53

10.You are requested to choose a pricing plan. Start with a no cost Lite plan. You can
upgrade to a professional plan later. Click Create to instantiate the Continuous Delivery
service. Return to your delivery pipeline and refresh the browser page. The error message
disappears, as shown in Figure 3-15.

Figure 3-15 Node.js App Toolchain

11.Wait until the status of the delivery pipeline turns to Success. The application is now
deployed.

If the application runs on Cloud Foundry, it can be started by clicking Visit App URL. In our
example, the application is available at the following website (see Figure 3-16 on page 55):

https://marketing-campaign-advisor.mybluemix.net
54 Modernize SAP Workloads on IBM Power Systems

https://marketing-campaign-advisor.mybluemix.net

Figure 3-16 WebApp window

If the application runs as a container on an IBM Kubernetes cluster, the URL must be
concatenated from the cluster worker's public IP and the application service node port. To
compile this information, complete the following steps:

1. On the IBM Cloud dashboard, open the application and select View Kubernetes cluster
on the App details view. On the cluster dashboard, select the Worker Nodes tab. The
node information contains the Public IP, as shown in Figure 3-17.

Figure 3-17 Kubernetes dashboard
Chapter 3. Cloud App connecting to SAP 55

2. Go to the Kubernetes dashboard. In the overview view, scroll down to the Service section
and click the service that corresponds to your application. In the Details section, find the
port of the last entry of the Internal endpoints, as shown in Figure 3-18.

Figure 3-18 Kubernetes dashboard details

The application URL looks like the following example:

http://184.173.1.71:32282
56 Modernize SAP Workloads on IBM Power Systems

3.4.1 Installing and running application locally

The generated application is stored in a Git repository. Find the URL to the repository on the
application overview, section Continuous deliver, which is next to the Git icon, as shown in
Figure 3-19.

Figure 3-19 GitHub repository

Complete the following steps:

1. Open a shell on your local PC and clone the code:

…> git clone https://us-south.git.cloud.ibm.com/rese/MarketingCampaignAdvisor
Cloning into ' MarketingCampaignAdvisor'
Username for 'https://us-south.git.cloud.ibm.com': <your-email>@domain.com
Password for 'https://<your-email>@domain.com@us-south.git.cloud.ibm.com':
warning: redirecting to
https://us-south.git.cloud.ibm.com/rese/MarketingCampaignAdvisor.git/
remote: Enumerating objects: 113, done.
remote: Counting objects: 100% (113/113), done.
remote: Compressing objects: 100% (104/104), done.
remote: Total 113 (delta 4), reused 113 (delta 4)83.00 KiB/s
Receiving objects: 100% (113/113), 1.12 MiB | 177.00 KiB/s, done.
Resolving deltas: 100% (4/4), done.

2. Change directory to the location of the cloned code (cd ./MarketingCampaignAdvisor).

3. To install all depended node.js modules, run:

…/MarketingCampaignAdvisor> npm install

4. If vulnerabilities are found, check details and perform the recommended action:

…/MarketingCampaignAdvisor> npm audit
 === npm audit security report ===
Run npm install --save-dev nyc@14.1.1 to resolve 7 vulnerabilities
[…]
…/MarketingCampaignAdvisor> npm install --save nyc@14.1.1
[…]
Chapter 3. Cloud App connecting to SAP 57

found 0 vulnerabilities

5. Start the application locally:

…/MarketingCampaignAdvisor > npm run start
[2019-12-05T13:06:57.829] [INFO] nodejswebapp - nodejswebapp listening on
http://localhost:3000

If (and only if) you are on Windows, you might experience an error that indicates that variable
$npm_package_config_entrypoint is unknown. This variable must be replaced by the
Windows scheme for environment variables in file package.json; for example,
%npm_package_config_entrypoint%.

However, when the application is deployed in the IBM Cloud, variables in the file
package.json start with the US dollar sign ($). You can change all variable names in local file
package.json and remove that file from Git tracking, or, you add an entry, as shown in the
following example:

"startwin": "node %npm_package_config_entrypoint%"

This entry is added to the section scripts in file package.json and starts your local application
by starting:

…/MarketingCampaignAdvisor> npm run startwin

Start a web browser and navigate to the URL that was printed by the node.js application; for
example, http://localhost:3000. It displays the same page as seen when the application is
run on the IBM Cloud.

IBM Watson Machine Learning service credentials
Credentials for the IBM Watson Machine Learning service instance that were connected to
the application are provided as environment variables. For Cloud Foundry applications,
service credentials are available in environment variable VCAP_SERVICES. On Kubernetes,
an individual environment variable for each credential parameter is set.

When running locally, these environment variables are not available. Instead, create a file
server/localdev-config.json and paste service credentials into it as provided on the App
details view on the IBM Cloud dashboard. Use the copy icon that is displayed next to the
credentials to ensure that the apikey gets copied correctly.

The various locations of the service credentials must be specified in file
server/config/mappings.json. The following file contents can be used for the example
application:

{
 "version": 1,
 "watson_machine_learning_credentials": {
 "searchPatterns": [
 "cloudfoundry:$.*[0].credentials",
 "file:/server/localdev-config.json:$.machinelearning[0].credentials"
]
 }
}

The application can start function getDictionary of node.js module ibm-cloud-env. This
function references file mappings.json to find the service credentials and returns those.
58 Modernize SAP Workloads on IBM Power Systems

The chart that is shown in Figure 3-20 provides an overview of the various credentials
locations and how they are consolidated.

Figure 3-20 Credentials schema

3.5 Using OData and IBM Watson services

This section describes how to use OData in IBM Watson services.

3.5.1 Creating the back-end application

The node.js sample application that was deployed is used as a skeleton for an example
application.

The application uses some node.js modules that are not included in the default sample.
Therefore, install the following modules:

…/MarketingCampaignAdvisor> npm install --save https yamljs ibm-cloud-env

To enable the application to access the OData EntitySet by way of the SAP OData service
that were deployed in the SAP system before, create the file sap-credentials.yml and store
the OData service credentials in this file.

Copy the following lines into the file and adapt those lines according to the credentials of your
individual OData service:

url: "cap-sg-prd-3.securegateway.appdomain.cloud"
port: 17857
user: "<sap user>"
password: "<password for sap user>"
path: /sap/opu/odata/sap/ZDEMO_MARKETING_DATA_CDS/ZDEMO_MARKETING_DATA

3.5.2 Node.js server code

The Node.js server program performs the following steps:

1. Gets model metadata and access token as an initialization step.

2. Provides an API that accepts a POST request that contains a set of filter criteria from a
client.

3. Calls the SAP OData service to retrieve customer data that applies to the filter criteria.

4. Calls the IBM Watson Machine Learning Endpoint to get predictions for the customer data.

5. Returns the customer data that is enriched by the predictions to the calling client.
Chapter 3. Cloud App connecting to SAP 59

File server/server.js contains comment line // Add your code here. Place your code
immediately after that line. For more information about the example node.js application code,
see Appendix A, “node.js server code” on page 105.

3.5.3 Creating front-end code

The front-end application must run a simple logic:

1. Compile user input to a filter object.

2. Post the filter to the back-end server application and retrieve customer data with
predictions.

3. Display the data as HTML table.

Create folder public/js. Within that folder, implement the front-end application as JavaScript
file frontend.js. For more information about example JavaScript code, see Appendix A,
“node.js server code” on page 105.

3.5.4 Creating HTML index page

The HTML index page is the landing page for your application. This page includes the
front-end JavaScript code (js/frontend.js) by a <script> tag. It also provides an input form
where the user can enter various filter criteria. Also, it has an empty <div> section where the
front-end code places the output.

Replace the file public/index.html with the example index page that is available in
Appendix A, “node.js server code” on page 105.

The implementation of the example application is now complete. To run the application locally,
enter:

…/MarketingCampaignAdvisor> npm run start
[…]
[2019-12-05T13:06:57.829] [INFO] nodejswebapp - nodejswebapp listening on
http://localhost:3000
[2019-12-05T13:06:59.696] [INFO] nodejswebapp - Metadata loaded, access token
expires in 3600 seconds.

The node.js program prints the URL (host and port) to which it is listening.

Open that URL and enter some filter criteria (or keep the defaults) and click Predict.

The application connects to the SAP system to get the list of customers that apply to the filter
criteria, calls the IBM Watson Machine Learning service to enrich that data with a probability
that the customer subscribes a term deposit, and displays the result in the browser, as shown
in Figure 3-21 on page 61.
60 Modernize SAP Workloads on IBM Power Systems

Figure 3-21 Market Campaign Advisor

After the application runs locally, commit and push the changes to the Git repository:

git add sap-credentials.yml
git add server/config/mappings.json
git commit -a -m "<description>"
git push

Immediately after the changes are pushed to the repository, the delivery pipeline starts to
rebuild the application and deploys the updated application on IBM Cloud, as shown in
Figure 3-22.

Figure 3-22 Market Campaign Advisor | Delivery Pipeline

After all stages of the delivery pipeline are performed successfully, the updated application is
available by way of the public URL.

Start the application in a web browser.
Chapter 3. Cloud App connecting to SAP 61

62 Modernize SAP Workloads on IBM Power Systems

Chapter 4. Machine Learning on IBM Power
Systems

This chapter focuses on an approach of connecting Artificial Intelligence (AI) models that are
hosted on a TensorFlow Model Server (TMS) to SAP HANA. Such a scenario allows you to
use powerful AI capabilities, which are not supported by SAP HANA immediately.

The data contained in your SAP HANA in the form of relational tables that can serve as a
direct input to the AI model of your choice, and deployed on an external TMS instance.

Achieving the same functions without direct connectivity between SAP HANA and a model
requires exporting database tables to an outside location and then, calling the inferencing
methods of an externally deployed model. This configuration provides the exported data as
an input.

In real-world scenarios that involve big data, choosing the latter approach might introduce
scalability issues.

Starting with SAP HANA 2.0 SPS 02, SAP introduced a component under the name of
External Machine Learning (EML), which is meant to serve as a direct connection module
between SAP HANA and TMS.

EML is delivered in form of an Application Function Library (AFL) for SAP HANA.

Such AFLs contain application logic in the form of functions that are implemented with C++
and are callable by way of plain SQL, much like any stored procedure.

This chapter includes the following topics:

� 4.1, “IBM Watson Machine Learning Accelerator” on page 64
� 4.2, “Use case scenario and implementation” on page 69
� 4.3, “Preparing AI model for deployment” on page 77
� 4.4, “Conclusion” on page 85

4

© Copyright IBM Corp. 2021. All rights reserved. 63

4.1 IBM Watson Machine Learning Accelerator

The Community edition of IBM Watson Machine Learning Accelerator provides open source,
deep learning frameworks, such as TensorFlow, for running on IBM POWER® hardware. It is
an end-to-end, deep learning platform for data scientists.

IBM Watson Machine Leaning Accelerator can be installed by using one of the following
methods:

� Installing on Red Hat Enterprise Linux.

This installation is the standard method that can be found in the product installation guide.

� Installing on Red Hat OpenShift 3.11.

Deploy IBM Watson Machine Learning Accelerator as a Docker container in Red Hat
OpenShift 3.11. This is a modern way to provide services; for example, TensorFlow.

This section describes this installation method and verifies the installation by calling a
hello tensorflow application.

4.1.1 Installing on Red Hat Enterprise Linux

The IBM Watson Machine Learning Accelerator 1.2.1 installation process features the
following overall tasks:

� Planning
� Completing prerequisites
� Installing the operating system
� Opening necessary ports
� Ensuring user access of client machines to cluster hosts
� Setting the suitable heap size
� Logging in by using a root permission
� Mounting a shared file system
� Completing further setup steps and starting the installation

For more information, see this IBM Documentation web page.

4.1.2 Installing on Red Hat OpenShift 3.11

The official Docker images for IBM PowerAI are available at this web page.

Complete the following steps:

1. Use the following commands to pull and install the Docker images:

docker pull ibmcom/powerai
Using default tag: latest
Trying to pull repository registry.redhat.io/ibmcom/powerai ...
Trying to pull repository docker.io/ibmcom/powerai ...
latest: Pulling from docker.io/ibmcom/powerai
Pull complete
Status: Downloaded newer image for docker.io/ibmcom/powerai:latest

docker run -ti --env LICENSE=yes ibmcom/powerai:latest bash
(wmlce) pwrai@501ce9522cd7:/$ uname -a
Linux 501ce9522cd7 3.10.0-1062.el7.ppc64le #1 SMP Thu Jul 18 20:29:07 UTC
2019 ppc64le ppc64le ppc64le GNU/Linux
64 Modernize SAP Workloads on IBM Power Systems

https://hub.docker.com/r/ibmcom/powerai
https://www.ibm.com/support/knowledgecenter/SSFHA8_1.2.1/wmla_auto_install_setup.html

docker ps | grep 501ce9522cd7

501ce9522cd7 ibmcom/powerai:latest
"bash" 2 minutes ago Up 2 minutes
clever_knuth

docker save --output powerai.tar ibmcom/powerai:latest

ls -al powerai.tar

-rw-------. 1 root root 15411359232 Nov 22 16:37 powerai.tar

2. Load it in to the local Docker repository on the Red Hat OpenShift cluster:

docker load -i powerai.tar

Loaded image: ibmcom/powerai:latest

3. Verify that the Docker image was loaded:

docker images

4. Copy the log-in command from the Red Hat OpenShift console, as shown in Figure 4-1.

Figure 4-1 Copy the login command from Red Hat OpenShift Console

5. Log in to Red Hat OpenShift:

oc login https://lsv3060.ibm.com:8443 --token=<token>
Chapter 4. Machine Learning on IBM Power Systems 65

6. Log in to https://lsv3060.ibm.com:8443 as admin by using the provided token.

For more information about deploying applications from images in Red Hat OpenShift by
using the web console, see this web page.

7. Deploy the image (see Figure 4-2).

Figure 4-2 Deploy image
66 Modernize SAP Workloads on IBM Power Systems

https://blog.openshift.com/deploying-applications-from-images-in-openshift-part-one-web-console/

Figure 4-3 shows that the deployed image of powerai was created.

Figure 4-3 PowerAI has been created
Chapter 4. Machine Learning on IBM Power Systems 67

Figure 4-4 shows powerai is available on the application console.

Figure 4-4 PowerAi Application Console

8. Log in to the powerai container and verify that TensorFlow is working:

docker run -ti --env LICENSE=yes ibmcom/powerai:latest bash

(wmlce) pwrai@51ce1cbd72af:/$uname -a
Linux 51ce1cbd72af 3.10.0-1062.el7.ppc64le #1 SMP Thu Jul 18 20:29:07 UTC
2019 ppc64le ppc64le ppc64le GNU/Linux
(wmlce) pwrai@51ce1cbd72af:/$python
Python 3.7.5 (default, Oct 25 2019, 16:29:01)
[GCC 7.3.0] :: Anaconda, Inc. on linux
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
b'Hello, TensorFlow!'
68 Modernize SAP Workloads on IBM Power Systems

4.2 Use case scenario and implementation

To easily understand all steps of the deployment, connection, and use of the AI model by way
of EML and SAP HANA, this section focuses on a popular use case of an object detection
network that is similar to YOLO1. This use case implements the architecture that is shown in
Figure 4-5.

Figure 4-5 Connection and use of an external AI model by way of EML and SAP HANA

4.2.1 Naming scheme

We differentiate between a server, which hosts SAP HANA with EML denoted as [A] and a
server, where a TMS model is stored, denoted as [B].

For practical reasons, test this scenario uses only one IBM Power Systems machine, in which
case [A] denotes the same server as [B], but such a scenario is not always feasible in a
real-world application. Therefore, we recommend using the set up that is described in
Figure 4-5, which features distinct [A] and [B] servers.

4.2.2 Installing SAP HANA

Start by getting the SAP HANA, Express Edition Download Manager (DM). This application
helps to download the installers for SAP HANA and the EML component.

Now, you can use your own workstation to run DM and later move the SAP HANA and EML
installation artifacts that are fetched by DM to server [A].

For more information about registering your account and to getting the download, see the
SAP website.

After running the DM executable file in your workstation, an installation wizard starts, as
shown in Figure 4-6 on page 70.

1 Joseph Chet Redmon: YOLO: Real-Time Object Detection
Chapter 4. Machine Learning on IBM Power Systems 69

https://www.sap.com/
https://www.sap.com/

Complete the following steps:

1. Set the target platform to Linux/PowerPC (little endian) and specify the download directory,
which is used to store the real installation artifacts, as shown in Figure 4-6.

Figure 4-6 SAP HANA, Express Edition Download Manager - Package selection

2. Select the box that corresponds to SAP HANA External Machine Learning Library. Then,
click Download.

Note: The Platform field specifies the platform on which SAP HANA and its components
are intended to be installed. This platform is not the same platform on which the Download
Manager is running.
70 Modernize SAP Workloads on IBM Power Systems

The DM tool fetches the installation artifacts and places them into the specified save
directory. The result of this operation looks similar to the example that is shown in
Figure 4-7 on page 71.

Figure 4-7 SAP HANA, Express Edition Download Manager - Progress detail

3. Transfer hxe.tgz and eml.tgz from your Save directory (/home/user/Downloads in our
example) to /sapmnt on [A] server, on which SAP HANA with EML is to be installed.
Chapter 4. Machine Learning on IBM Power Systems 71

4.2.3 Target [A] machine

Complete the following steps:

1. Extract the archive hxe.gz SAP HANA installation artifacts and run the installation script.
The installation script requires you to run it as a root user:

$ cd /sapmnt && tar -xf hxe.tgz && ./setup_hxe.sh

2. During the installation process, you can select preset defaults (except for the master
password) by leaving input fields empty and confirming this input by pressing Enter. The
resulting window before confirming the installation is shown in Figure 4-8.

Figure 4-8 Summary before execution

After confirming, the installation starts and can take some time to complete, depending on
your hardware and system load.

4.2.4 Adding EML to the installed SAP HANA

Complete the following steps:

1. Extract the EML component installer and run the installation.

2. Assuming from here on that your SAP HANA administrator in the underlying operating
system is hdladm, switch to that user by using the following command:

$ su - hdladm

Followed by:

$ cd /sapmnt && tar -xf eml.tgz && cd HANA_EXPRESS_20 && ./install_eml.sh

Note: If required, grant corresponding read/write access rights to the /sapmnt directory
(and subdirectories) to hdladm.
72 Modernize SAP Workloads on IBM Power Systems

3. After confirming the installation, wait for the process to complete, at which point the output
looks similar to the example that is shown in Figure 4-9.

Figure 4-9 Summary after installation

4.2.5 Installing SAP HANA Studio

In the following sections, you run SQL queries in the SAP HANA database that is hosted on
[A]. The easiest way to do so involves the use of SAP HANA Studio (HS), which represents a
convenient IDE for viewing, modifying, and administering your databases.

For more information about SAP HANA Studio instance, see the SAP website.

Note: If you decide not to use SAP HANA Studio, you can use the command-line
application hdbsql as an alternative for performing SQL queries. This application is part of
the SAP HANA Express installation and available through the command line if you log in as
the SAP HANA user administrator.
Chapter 4. Machine Learning on IBM Power Systems 73

https://www.sap.com

4.2.6 Connecting SAP HANA Studio to your SAP HANA database

Complete the following steps:

1. After opening SAP HANA Studio, click Add System to add a new connection.

2. Click Next to proceed to the authorization. Enter SYSTEM as a username and your
installation password to establish and save this connection in your Systems view, as
shown in Figure 4-10.

Figure 4-10 Connections in your system view
74 Modernize SAP Workloads on IBM Power Systems

4.2.7 Checking the EML installation

Now that you a working connection was created to HANA on server [A], the EML installation
must be checked.

SAP HANA places meta-information of installed AFLs into the following views:

� sys.afl_areas
� sys.afl_packages
� sys.afl_functions

Therefore, it is recommended to check those views by running the following SQL commands:

SELECT * FROM SYS.AFL_AREAS WHERE AREA_NAME = 'EML';
SELECT * FROM SYS.AFL_PACKAGES WHERE AREA_NAME = 'EML';
SELECT * FROM SYS.AFL_FUNCTIONS WHERE AREA_NAME = 'EML';

Complete the following steps:

1. In the menu of the newly added system, open an SQL console, as shown in Figure 4-11.

Figure 4-11 Open SQL Console

2. Enter the three SQL queries and run them by pressing F8. Each result set of the SELECT
queries must contain EML-related information and not be empty if the EML installation
was performed correctly.

Also, check if the SAP HANA ScriptServer is running for HDL and enable it if it is not. The
ScriptServer is required for the correct functioning of AFL procedures.
Chapter 4. Machine Learning on IBM Power Systems 75

One way to check whether it is running is by using the Linux shell of server [A] by running
the following line as a hdladm user:

$ ps ax -u hdladm | grep hdbscriptserver

The resulting list contains the operating system process of the ScriptServer that is running
under the hdladm user, as shown in Figure 4-12.

Figure 4-12 ScriptServer running under the hdladm user

If the ScriptServer is inactive, connect to the SYSTEMDB by using SYSTEM as a username
and the SAP HANA administrator password that was chosen during the installation (see
Figure 4-9).

Figure 4-13 System database
76 Modernize SAP Workloads on IBM Power Systems

3. Open the SQL console in SYSTEMDB as a SYSTEM user and run the following SQL
query:

ALTER DATABASE HDL ADD 'scriptserver';

After a successful execution, the corresponding ScriptServer operating system process on
server [A] appears.

For more information about the activation procedure, see SAP Note 1650957 (SAP login
required).

4.3 Preparing AI model for deployment

In this section, we assume that your model expects the input as a single BASE64 encoded
string of bytes that contain the image to be analyzed.

As of the current version, EML supports the output tensor of a form (-1, N) or a subset of it,
(K, N), where K and N are fixed values. If you have an AI model, the output of which does not
correspond to the shapes, you must modify the output (-s) of your network to match the shape
supported by EML.

Model output modification example
In our testing, we used a pre-trained Keras model that was serialized as an H5 file. The
pre-trained model has two distinct output tensors of the following shapes:

� Output Tensor 1. Shape: (-1,), denotes the class of identified object, as shown in
Table 4-1.

Table 4-1 Object ID list

� Output Tensor 2. Shape: (-1, 4), denotes bounding boxes for the corresponding objects
that are identified in the Output Tensor 1, as shown in Table 4-2.

Table 4-2 Output Tensor 1

Note: -1 denotes a tensor dimension of variable length.

Object iD

7.0

8.0

4.0

...

Top Left Width Height

259.45 238.27 76.12 23.93

320.34 331.12 95.31 51.43

119.12 213.90 30.45 46.56

...
Chapter 4. Machine Learning on IBM Power Systems 77

https://launchpad.support.sap.com/#/notes/1650957

EML is expecting an output of shape compatible with (-1, N). One way to achieve compatibility
in this case is to concatenate the output layers into one tensor of five fields per detected
object, as shown in Example 4-1.

Example 4-1 Concatenate the output layers into one tensor of five fields per detected object

x0 = Reshape(target_shape = (1,), input_shape =
model.output[0].shape)(model.output[0])
x1 = model.output[1]
merged = Concatenate(axis = 1)([x0, x1])

tf_input = tf.saved_model.utils.build_tensor_info(model.input)
tf_output = tf.saved_model.utils.build_tensor_info(merged)

model_signature =
(
 tf.saved_model.signature_def_utils.build_signature_def
 (
 inputs = {"input": tf_input},
 outputs = {"output": tf_output},
 method_name = signature_constants.PREDICT_METHOD_NAME
)
)

This process transformed two output tensors with the same number of rows into a single
output tensor, as shown in Table 4-3.

Table 4-3 Object ID, top, left, width, and height

This output tensor is compatible with the EML supported output shape (-1, N).

Object ID Top Left Width Height

7.0 259.45 238.27 76.12 23.93

8.0 320.34 331.12 95.31 51.43

4.0 119.12 213.90 30.45 46.56

...
78 Modernize SAP Workloads on IBM Power Systems

4.3.1 Preparing a TMS instance

Recent versions of IBM Watson Machine Learning Accelerator include a PowerAI Docker
image, which contains TMS for IBM POWER® architecture. We deploy it to our
object-recognition neural network.

Complete the following steps:

1. Transfer the object-detection model imagerec to server [B] and place it into a chosen
directory; for example, /models.

The next line starts the PowerAI Docker container that is included in the IBM Watson
Machine Learning Accelerator product. It mounts the host directory /models on [server B]
into the container under a similar location /models. We also make available port 8500 to
the host system. This configuration is required to connect to TMS’ gRPC interface:

$ docker run -d --name tms -ti --env LICENSE=yes -v /models:/models -p
8500:8500 ibmcom/powerai:latest bash

Now, the container starts and detaches from the terminal, running permanently in the
background.

2. Open a bash shell inside the container:

$ docker exec -it tms bash

3. Using the conda package manager, install and activate the TMS application that is
provided by PowerAI:

$ conda create -n tf_serving_env tensorflow-serving=*=gpu*
$ conda activate tf_serving_env

4. After the installation and activation finishes, start TMS with the object-recognition model
that was deployed and fork the process into the background:

$ tensorflow_model_server --port=8500 --model_name=imagerec –
model_base_path=/models/imagerec &

5. Create the EML user in SAP HANA and grant permissions.

6. As a SYSTEM user on HDL, create the EML user for the experiments. Specify a password
in double quotes instead of password placeholder:

CREATE USER EML PASSWORD “password” NO FORCE_FIRST_PASSWORD_CHANGE;

The next commands let the EML user register, then unregister and run EML-related
procedures:

GRANT CREATE REMOTE SOURCE TO EML;
GRANT AFLPM_CREATOR_ERASER_EXECUTE TO EML;
GRANT SELECT, UPDATE, INSERT, DELETE ON _SYS_AFL.EML_MODEL_CONFIGURATION TO EML;
GRANT AFL__SYS_AFL_EML_EXECUTE TO EML;

Note: For more information about installing and the use of the PowerAI Docker image, see
4.1.2, “Installing on Red Hat OpenShift 3.11” on page 64, which includes details about the
IBM Watson Machine Learning Accelerator product.

Note: The subsequent commands in this section must be run inside the bash shell of
the TMS container.
Chapter 4. Machine Learning on IBM Power Systems 79

After the user is created and permissions are granted, use the same process as described in
4.2.6, “Connecting SAP HANA Studio to your SAP HANA database” on page 74 to log in as
EML user on HDL and open the SQL console in that user’s context.

From this point on, we assume that all subsequent SQL queries are performed in the EML
user’s context.

4.3.2 Communicating with TMS

Now that TMS is deployed model on server [B], we can connect to it from SAP HANA hosted
on [A].

The communication between EML and TMS occurs by way of Google RPC protocol (gRPC).
The EML component is responsible for retrieving data from its input tables and propagating it
by way of gRPC to the TMS instance. It waits for the execution to complete and returns the
result in form of a table.

To bind SAP HANA to a TMS instance, we add a Remote Source in SAP HANA that can be
done in the following way (remember to replace myhostB with your own host name that is
specified by the fully qualified domain name or IP address of server [B]):

DROP REMOTE SOURCE “TMS”;
CREATE REMOTE SOURCE "TMS" ADAPTER "grpc" CONFIGURATION
'server=myhostB;port=8500';

4.3.3 Updating model configuration

Update the SAP HANA configuration as described in SAP HANA External Machine Learning
Library2 and shown in Example 4-2.

Example 4-2 Updating SAP HANA configuration

DROP TABLE UPDATE_CONFIGURATION_PARAMS;
DROP TABLE UPDATE_CONFIGURATION_RESULT;
DROP PROCEDURE UPDATE_CONFIGURATION;

CREATE TABLE UPDATE_CONFIGURATION_PARAMS ("Parameter" VARCHAR(100), "Value"
VARCHAR(100));
CREATE TABLE UPDATE_CONFIGURATION_RESULT ("Key" VARCHAR(100), "Value" INTEGER,
"Text" VARCHAR(100));
CREATE PROCEDURE UPDATE_CONFIGURATION() AS
BEGIN
 DECLARE CURSOR CUR FOR
 SELECT VOLUME_ID FROM SYS.M_VOLUMES WHERE SERVICE_NAME = 'indexserver';
 FOR CUR_ROW AS CUR DO
 EXEC 'CALL _SYS_AFL.EML_CTL_PROC(''UpdateModelConfiguration'',
UPDATE_CONFIGURATION_PARAMS, UPDATE_CONFIGURATION_RESULT)'
 || ' WITH OVERVIEW WITH HINT(ROUTE_TO(' || :CUR_ROW.VOLUME_ID || '))';
 END FOR;

Note: We named the remote connection “TMS”, specifying that the communication is
carried out by way of gRPC and pointed to a network location and port of our TMS
instance.

2 SAP HANA External Machine Learning Library, SAP HANA Platform 2.0 SPS 03, Document Version: 1.1 –
2018-10-31
80 Modernize SAP Workloads on IBM Power Systems

https://help.sap.com/doc/0371001e16574f11be4e9e309c6616cb/2.0.03/en-US/SAP_HANA_External_Machine_Learning_Library_Guide_en.pdf
https://help.sap.com/doc/0371001e16574f11be4e9e309c6616cb/2.0.03/en-US/SAP_HANA_External_Machine_Learning_Library_Guide_en.pdf

END;
TRUNCATE TABLE UPDATE_CONFIGURATION_RESULT;
CALL UPDATE_CONFIGURATION();

Restart SAP HANA to check that the changes are correctly applied by running the following
command as a root user:

$ su - hdladm -c ‘HDB stop && HDB start’

4.3.4 Checking connectivity from SAP HANA

To check the connectivity to your TMS model after all the performed steps, run the SQL
statements (as described in: SAP HANA External Machine Learning Library) as shown in
Example 4-3.

Example 4-3 Check the connectivity to your TMS model

DROP TABLE TEST_TMS;
CREATE TABLE TEST_TMS ("Parameter" VARCHAR(100), "Value" VARCHAR(100));
INSERT INTO TEST_TMS VALUES ('RemoteSource', 'TMS');
INSERT INTO TEST_TMS VALUES ('Model', 'imagerec');
CALL _SYS_AFL.EML_CHECKDESTINATION_PROC(TEST_TMS, ?);

The SQL statements produce the output as shown in Figure 4-14.

Figure 4-14 Remote source TMS healthy for model imagerec

4.3.5 Preparing input images

The following SQL commands create a table that contains the input images in BASE643
format:

DROP TABLE DATA_IMAGES;
CREATE TABLE DATA_IMAGES ("ID" INT, "NAME" CHAR(20), "DATA" CLOB);

The DATA column contains the encoded images.

3 RFC 4648: https://tools.ietf.org/html/rfc4648
Chapter 4. Machine Learning on IBM Power Systems 81

https://tools.ietf.org/html/rfc4648
https://help.sap.com/doc/0371001e16574f11be4e9e309c6616cb/2.0.03/en-US/SAP_HANA_External_Machine_Learning_Library_Guide_en.pdf

4.3.6 Encoding input images as BASE64

Standard GNU/Linux command-line tools can be used to encode input images in BASE64
format. Because an image is on server [A] under /images/image.jpg, the command in
“Web-safe encoding” on page 82 produces a BASE64 representation of this image. Then, it
builds an INSERT statement that contains it in the third field, as described in “Standard
encoding” on page 82.

Web-safe encoding
The following command produces a BASE64 representation of an input image:

$ base64 -w0 /images/image.jpg | tr '/+' '_-' | sed "s/.*/INSERT INTO DATA_IMAGES
VALUES (1, 'image.jpg', '&');/" > /images/image.sql

Standard encoding
The following command builds and INSERT statement of an input image:

$ base64 -w0 /images/image.jpg | sed "s/.*/INSERT INTO DATA_IMAGES VALUES (1,
'image.jpg', '&');/" > /images/image.sql

It is not convenient to paste a long INSERT statement into SAP HANA Studio. Therefore, use
a command-line client application, such as hdbsql, to move the image into SAP HANA by
using the image.sql file. Use the following command to run the INSERT statement from the
hdladm user:

$ su – hdladm -c ‘hdbsql -u EML -p [mypassword] -i 35 -I /images/image.sql’
SELECT * FROM EML.DATA_IMAGES;

Then, check if SAP HANA contains the newly inserted record. The output is only one row,
assuming that you inserted only one test image (see Figure 4-15).

Figure 4-15 Test image output

Note: if you use standard TensorFlow capabilities to decode the BASE64 string of the
input, you must replace ‘+’ with ‘-’ and ‘/’ with ‘_’, which is considered a web-safe
representation. It is highly probable that you must use the web-safe encoding. For more
information, see the TensorFlow documentation.

Note: Set permissions on the /images/image.sql file for the hdladm user to access its
content.
82 Modernize SAP Workloads on IBM Power Systems

https://www.tensorflow.org/api_docs/python/tf/io/decode_base64

4.3.7 Creating input and output types and a parameters table

The following SQL statements create SQL types that correspond to the input and output of
the imagerec model. The third type corresponds to the parameters that are needed to start
the model, such as a target remote-source, port, and others:

DROP TYPE IMAGEREC_INPUT;
CREATE TYPE IMAGEREC_INPUT AS TABLE ("DATA" CLOB);

DROP TYPE IMAGEREC_OUTPUT;
CREATE TYPE IMAGEREC_OUTPUT AS TABLE ("OBJECTID" FLOAT, "TOP" FLOAT, "LEFT"
FLOAT, "WIDTH" FLOAT, "HEIGHT" FLOAT);

DROP TYPE IMAGEREC_PARAMS;
CREATE TYPE IMAGEREC_PARAMS AS TABLE ("Parameter" VARCHAR(100), "Value"
VARCHAR(100));

4.3.8 Creating EML procedure wrapper

After defining the parameters of the procedure, we can register an AFL wrapper that contains
the model’s input and output signatures. The wrapper-creating API requires placing the
signature and model location-related parameters into a special “configuration table”:

DROP TABLE SIGNATURE;
CREATE COLUMN TABLE SIGNATURE (
 POSITION INTEGER,
 SCHEMA_NAME NVARCHAR(256),
 TYPE_NAME NVARCHAR(256),
 PARAMETER_TYPE VARCHAR(7)
);

We now populate the wrapper configuration table:

INSERT INTO SIGNATURE VALUES (1, CURRENT_SCHEMA, 'IMAGEREC_PARAMS' , 'in');
INSERT INTO SIGNATURE VALUES (2, CURRENT_SCHEMA, 'IMAGEREC_INPUT' , 'in');
INSERT INTO SIGNATURE VALUES (3, CURRENT_SCHEMA, 'IMAGEREC_OUTPUT' , 'out');

It is only task left is to create the AFL wrapper by using the configuration table and other
parameters.

Here, the first two parameters define the AFL functions for which you are creating a wrapper.
Next, the schema name is determined, in which the wrapper procedure is to be created.
Then, the name of the wrapper procedure is determined, followed by the signature of the
wrapper defined inside SIGNATURE:

CALL SYS.AFLLANG_WRAPPER_PROCEDURE_DROP(CURRENT_SCHEMA, 'IMAGEREC');
CALL SYS.AFLLANG_WRAPPER_PROCEDURE_CREATE('EML', 'PREDICT', CURRENT_SCHEMA,
'IMAGEREC', SIGNATURE);

At this stage, the EML.IMAGEREC procedure is called from SQL and expects an input table
of type IMAGEREC_INPUT, an output table of type IMAGEREC_OUTPUT, and a
configuration table IMAGEREC_PARAMS, which contains TMS-related information.

Completing the input and calling the remote inferencing by way of TMS
The last step is to populate the input and configuration tables and call the EML.IMAGEREC
procedure awaiting for the response from TMS.
Chapter 4. Machine Learning on IBM Power Systems 83

Populate input
Prepare the input by creating a corresponding table and inserting the BASE64 value of a
single row of data from the table DATA_IMAGES into it:

DROP TABLE IMAGEREC_IN_TAB;
CREATE TABLE IMAGEREC_IN_TAB LIKE IMAGEREC_INPUT;
INSERT INTO IMAGEREC_IN_TAB (SELECT "DATA" FROM DATA_IMAGES WHERE
ID = 1);

Preparing output table
This section prepares an empty table that holds the output from the TMS instance:

DROP TABLE IMAGEREC_OUT_TAB;
CREATE TABLE IMAGEREC_OUT_TAB LIKE IMAGEREC_OUTPUT;

Specifying remote-connection details
As described in “Preparing output table” on page 84, the important parameters of the
configuration table specify the created remote connection and the model of interest that are
served by the TMS instance of that remote connection:

DROP TABLE IMAGEREC_PARAMS_TAB;
CREATE TABLE IMAGEREC_PARAMS_TAB LIKE IMAGEREC_PARAMS;
INSERT INTO IMAGEREC_PARAMS_TAB VALUES ('Model', 'imagerec');
INSERT INTO IMAGEREC_PARAMS_TAB VALUES ('RemoteSource', 'TMS');
INSERT INTO IMAGEREC_PARAMS_TAB VALUES ('Deadline', '10000');

Calling the imagerec procedure
Remote processing of the call on TMS is performed by the next line:

CALL IMAGEREC(IMAGEREC_PARAMS_TAB, IMAGEREC_IN_TAB, IMAGEREC_OUT_TAB) WITH
OVERVIEW;

Upon successful execution, you see the output as shown in Figure 4-16, which is similar to
Figure 4-14 on page 81.

Figure 4-16 Calling the imagerec procedure

The last step is to read the result from IMAGEREC_OUT_TAB by running:

SELECT * FROM IMAGEREC_OUT_TAB;

Note: We chose only one row of data as an input to the imagerec model, which is identified
by the ID = 1. Although the corresponding usage is not covered in this chapter, EML also
supports the execution of inferencing on a batch of input data. This process can be done
by registering a PREDICTM AFL wrapper. For more information about PREDICT and
PREDICTM functions and their differencesa, see the EML documentation

a. SAP HANA External Machine Learning Library, SAP HANA Platform 2.0 SPS 03, Document
Version: 1.1 – 2018-10-31
84 Modernize SAP Workloads on IBM Power Systems

4.4 Conclusion

We used SAP HANA Studio to run the SQL code, which triggered input processing by using a
model that was deployed in TMS. This process us a good starting point for understanding
how EML works. However, the usage scenarios are not limited to this example only.

The next step is to implement an SAP application that calls the EML.imagerec procedure from
ABAP code through OpenSQL’s CALL statement. This process enables the ABAP → TMS
scenario and allows for the implementation of client-centric AI applications.
Chapter 4. Machine Learning on IBM Power Systems 85

86 Modernize SAP Workloads on IBM Power Systems

Chapter 5. Benefits of modernizing SAP
applications with IBM AI

This chapter describes the benefits of modernizing SAP applications and includes the
following topics:

� 5.1, “Enterprise agenda” on page 88
� 5.2, “IBM Watson Studio” on page 88
� 5.3, “IBM Watson OpenScale” on page 89
� 5.4, “AutoAI” on page 91

5

© Copyright IBM Corp. 2021. All rights reserved. 87

5.1 Enterprise agenda

Nearly all enterprises are in the process of adapting or already adapted Artificial Intelligence
(AI) into their business processes. With technology maturing and more implementations
across business units, new challenges for companies developed.

It is not enough to develop a working machine learning (ML) model and attach it to a business
application. ML models are moving to the core of the computing landscape. With the
increased usage come problems monitoring, and checking and governing the results of
predictions all across the lifecycle of current deployments. Many enterprise companies are
deeply invested in the following areas:

� Advancing (core) AI: Driven by the pace of the industry, they must learn more, master
language, and develop reasoning.

� Trusting AI: Develop trust through fairness, robustness, explainability, and transparency.

� Scaling AI: Manage, operate, and automate AI throughout its complete lifecycle.

The following section describes a few examples of IBM and IBM Watson offerings that
address these areas and help enterprises build applications quicker and with more
confidence, maintain and monitor their operation, and check that they provide the correct
business outcomes.

5.2 IBM Watson Studio

IBM Watson Studio is an integrated environment to efficiently use data, AI, ML, and deep
learning in any business. It simplifies and accelerates the preparation of data, exploration of
data, and modeling and training of algorithms. IBM Watson Studio realizes the following
benefits:

� Brings AI algorithms to where the data is stored

� increases the productivity of the team of data scientists, analysts, developers, and other
experts

� implements the data science lifecycle from insight to prediction and optimization

IBM Watson Studio is well suited for hybrid clouds. It provides mission critical performance,
security, and governance in public or private clouds, on-premises, and on the desktop,
including IBM Cloud Pak® for Data.

Together with IBM Watson Machine Learning, IBM Watson Studio makes it easy to create,
develop, and deploy AI models. IBM Watson Machine Learning enables businesses to quickly
and simply harness the power of AI.

The strength of IBM Watson Machine Learning includes:

� Deploy AI models that are built with IBM Watson Studio and open source tools.
� Retrain models dynamically.
� Generate APIs automatically to enable AI powered applications.
� Integrate with IBM Watson OpenScale™ to manage models.
� Easy end-to-end management and deployment of models.

IBM Watson Studio is the interface to bring a vast amount of tools (many open source), such
as TensorFlow and PyTorch, into one environment to design and develop ML applications as
individuals, or small or large groups.
88 Modernize SAP Workloads on IBM Power Systems

Many tools and features are included in IBM Watson Studio, for example:

� AutoAI.

Generate a working ML model and test hyperparameters with a few clicks and no code
development.

� Collaborative data science.

Use Jupyter Notebooks, collaboration tools, project features, and version control to enable
teams to find the ideal model for production.

� Enhanced visual modeling.

Use a visual tool with drag functions to optimize data and learning capabilities.

� Automated deep learning.

Use an intuitive interface to automatically enhance the neural network in the modeler
without writing any code.

For more information, see the hIBM Watson Studio web page.

5.3 IBM Watson OpenScale

AI is often seen as a “black box”; that is, some complicated code that provides mysterious
insights and recommendations. People do not trust what they cannot fully debug and trace,
and rightfully so.

IBM Watson OpenScale™ provides a set of monitoring and management tools that help build
trust and implement control and governance structures around AI investments.

ML models are constantly evolving and the quality of data and results change over time, often
AI teams cannot keep up with the pace of these changes. IBM Watson OpenScale is
designed to give a clear and accurate view of running AI systems that are helping to manage,
optimize, and monitor AI applications across their lifecycle.

IBM Watson OpenScale tracks and measures outcomes from AI models and helps ensure
they remain fair, explainable, and compliant wherever they are built or are running. IBM
Watson OpenScale is designed as an open platform that operates with various model
development environments and various open source tools, including TensorFlow, Keras,
SparkML, Seldon, AWS SageMaker, and AzureML.

5.3.1 Monitors

Model monitors allow IBM Watson OpenScale to capture information about the deployed
model, evaluate transaction information, and calculate metrics. It checks for compliance and
puts safeguards in place. The following monitors can be enabled:

� Fairness monitor scans your deployments for biases to ensure fair outcomes across the
population. IBM Watson OpenScale helps organizations maintain regulatory compliance
by tracing and explaining AI decisions across workflows and intelligently detecting and
correcting bias to improve outcomes.

� Quality monitor (previously known as accuracy monitor) establishes how well a model
predicts relevant outcomes. The quality monitor scans the requests that are sent to a
model deployment to establish how well the specific model predicts outcomes. Quality
metrics are calculated hourly, when IBM Watson OpenScale sends manually labeled
feedback data set to the deployed model.
Chapter 5. Benefits of modernizing SAP applications with IBM AI 89

https://www.ibm.com/cloud/watson-studio

� Drift monitor detects changes in accuracy when it starts receiving data that is
inconsistent with how it was trained. The drift monitor scans the requests that are sent to
the model deployment to ensure that the model is robust and does not drift over time. Drift
in model predictions can occur because the requests that are sent to the model are
requests that are similar to samples in the training data where the model struggled, or
because the requests are becoming inconsistent with the training data the model originally
used.

Explainability provides transparency in models by showing what lead the model to make
specific predictions.

5.3.2 Data sets

For many of the monitors that are described in 5.3.1, “Monitors” on page 89, IBM Watson
OpenScale considers the following factors:

� Training data that was used to train the model (optional).

� Transaction data inputs and requests, outputs, and responses that are going to and from
the deployed models that are stored in the payload tables of the data mart.

� Feedback data with labeled predictions to measure the effectiveness of predictions and
when retraining is needed, which is stored in the feedback table of the data mart.

5.3.3 Checking model drift

Over time, the data that is coming into the model can vary from the initial training data, which
affects the accuracy of our model and the business processes that use the model. IBM
Watson OpenScale analyzes transactions to detect drift in model accuracy and drift in data.

Drift in model accuracy occurs if there an increase in transactions that are similar to those
that the model did not evaluate correctly in the training data.

Drift in data estimates the drop in consistency of the data at runtime as compared to the
characteristics of the data at training time.

5.3.4 Trust in AI and IBM Watson OpenScale

IBM Watson OpenScale is designed to de-mystify the process that AI models use and make
them understandable by business users. It was built with the four pillars of trust in mind:

� Explainability: Provides tools and methods to understand why a model features a specific
prediction.

� Fairness: Detect, show, and mitigate bias.

� Accuracy: Identify and combat model drift. Ensure that models are resilient to changing
situations.

� Openness: Build trust through open source community contributions and reviews.

Fundamentally, IBM Watson OpenScale is aligning model performance with required
business outcomes.
90 Modernize SAP Workloads on IBM Power Systems

5.3.5 Open Source Initiatives

IBM Watson OpenScale is sponsoring several open source projects around fairness,
explainability, and management of AI models. These projects can be downloaded and used at
no cost. Enterprise customers find these offerings on the IBM Cloud readily available for quick
development and deployment.

Open-source projects include the following examples:

� AI Fairness 360 open source Toolkit includes over 70 fairness metrics and checkers, 10
bias mitigators, and industry tutorials.

� AI Explainability 360 includes eight explainability algorithms, two metrics, and industry
tutorials.

� Adversarial Robustness Toolkit includes a toolkit to attack and defend AI models.

5.4 AutoAI

AutoAI automates data preparation, model development, feature engineering, and
hyperparameter tuning when implementing an AI application. AutoAI can help with
implementing good ML models but also discover questions to ask of the data. It supports
experimentation, model modification deployment, and governance steps, all integrated into
one user experience in the IBM Cloud or on-premises using the IBM Cloud Pak® for Data
through IBM Watson Studio.

In a sense, it is AI for AI. The AutoAI tool automatically analyzes the data and generates
several candidate model pipelines that are optimized for the prediction problem. These model
pipelines are created over time as AutoAI algorithms learn more about the data set and
discover data transformations, estimator algorithms, and parameter settings that work best for
the specific problem.

Results are displayed on a leaderboard that shows the automatically generated model
pipelines, which are ranked according to the optimization objective and encourage further
experiments.

With AutoAI ML, models can be created and deployed in minutes without writing a single line
of code. However, it is possible for skilled data scientists to interact with AutoAI at any stage to
apply their knowledge and optimize the model to fit their needs.

5.4.1 AutoAI in data science process

AutoAI is helping in the following parts of the data science process:

� Data cleansing: Detect, identify, and eliminate incorrect or inconsistent data.

� Feature engineering: Finding properties and characteristics that are independent and
informative is a difficult part of ML. AutoAI helps identify the most important features.

� Model building and hyperparameter tuning: Create and choose many different ML models,
apply different parameters, and test them all to provide a comprehensive list of well-suited
ML models without human interaction.
Chapter 5. Benefits of modernizing SAP applications with IBM AI 91

5.4.2 AutoAI benefits

AutoAI realizes the following benefits:

� Building models faster: Because AutoAI prepares data, identifies features, performs
optimizations, and generates models much faster than humans can do by themselves, the
best model can be chosen quickly.

� Overcoming the skills gap: ML is not a simple topic. To effectively deploy models, skilled
data scientists are required throughout the entire process. AutoAI is making it possible for
industry specialists to develop insight into the business without relying on experts in ML.

� Uncovering more use cases: Because exploring different models is quicker, more time can
be spent to explore other opportunities in the data.

� Identifying key predictors: The auto-feature engineering option makes it simpler to derive
more insight from existing data.

� Ranking and exploring models: By building and comparing multiple possible model
pipelines, the best and most efficient model can be chosen quickly.

� Deploying models easily through AutoAI-generated pipelines: The deployed models can
be accessed later and used through calls to a REST API.

5.4.3 Creating a machine learning model by using AutoAI

This section shows an example of how to create an ML model with IBM Watson AutoAI
without the need to write a single line of code.

Creating a machine learning service
Complete the following steps to create an ML service:

1. Log in to a cloud account. Then, select Catalog from the top menu, select the AI category
on the left side, and then, click Machine Learning, as shown in Figure 5-1.

Figure 5-1 Catalog select
92 Modernize SAP Workloads on IBM Power Systems

2. Select the location and your plan. Then, enter a name for the Machine Learning Service.
Click Create on the right of the window, as shown in Figure 5-2.

Figure 5-2 Create ML service

To access the new Machine Learning Service, a set of credentials must be created. These
credentials are used to identify and access the service from an outside source. Complete the
following steps:

1. In the Machine Learning Service window, select Credentials from the left menu; then,
click Create Credentials, as shown in Figure 5-3.

Figure 5-3 New credentials
Chapter 5. Benefits of modernizing SAP applications with IBM AI 93

2. Enter a name to identify these credentials and click Add, as shown in Figure 5-4.

Figure 5-4 Add credentials

After the credentials are created, they can be viewed by clicking View Credentials, as shown
in Figure 5-5. Make a note of these credentials because these are needed later by the AutoAI
Experiment Service to use this Machine Learning Service.

Figure 5-5 View credentials
94 Modernize SAP Workloads on IBM Power Systems

Creating an IBM Watson Studio Service and Project
The AutoAI Service is part of IBM Watson Studio. To use AutoAI, an IBM Watson Studio
Service must be created. Complete the following steps:

1. In the initial window, select Catalog from the top menu. Then, select the AI category on
the left side, and click IBM Watson Studio, as shown in Figure 5-6.

Figure 5-6 Create an IBM Watson Studio

2. Select your region and plan; then, enter a name for the IBM Watson Studio Service. Click
Create to create the service, as shown in Figure 5-7.

Figure 5-7 Add IBM Watson Studio
Chapter 5. Benefits of modernizing SAP applications with IBM AI 95

After the IBM Watson Studio Service is ready, it can be started and a new project can be
created. Complete the following steps:

1. From the Home window, select the pull-down menu in the upper left and select Resource
List.

2. In the next window, click the created IBM Watson Studio Service to start IBM Watson
Studio, as shown in Figure 5-8.

Figure 5-8 Start IBM Watson Studio

3. When IBM Watson Studio start page is displayed, click Get Started to start IBM Watson
Studio, as shown in Figure 5-9.

Figure 5-9 IBM Watson Studio: Get started window
96 Modernize SAP Workloads on IBM Power Systems

After IBM Watson Studio is started, a project must be created to hold all the components of
the AutoAI experiment. To create a project, click Create New Project. Then, enter the project
name and click Create, as shown in Figure 5-10.

Figure 5-10 New project

For the sake of simplicity, this scenario uses example data that is supplied with IBM Watson
Studio, although any data set can be imported into IBM Watson Object Storage. Complete the
following steps to add data to the project:

4. Select Explore Gallery at the upper right of the window. Click the filter icon and select
Data Set, as shown in Figure 5-11.

Figure 5-11 Filter data set
Chapter 5. Benefits of modernizing SAP applications with IBM AI 97

5. Scroll down in the list and click UCI: Bank Marketing Data Set - full data set. Click the
data set title and in the next window, select Add to Project. Select the previously created
project and choose Add, as shown in Figure 5-12.

Figure 5-12 Add data to project

6. Return to the project and select the Asset tab. The newly imported data is listed under
Data Assets, as shown in Figure 5-13.

Figure 5-13 Project with data asset
98 Modernize SAP Workloads on IBM Power Systems

Creating an AutoAI experiment
To use AutoAI to create an effective ML model, complete the following steps:

1. Click Add to Project in the upper right of the window, as shown in Figure 5-14. In the next
window, select the AutoAI tile.

Figure 5-14 AutoAI asset type

2. In the next window, enter a name and description for the experiment or accept the
provided text by selecting From Sample, as shown in Figure 5-15.

Figure 5-15 AutoAI experiment definition
Chapter 5. Benefits of modernizing SAP applications with IBM AI 99

Next, the ML instance must be added to the AutoAI experiment. Complete the following steps:

1. Select the link to Associate a Machine Learning Service instance.

2. Use the drop-down list and choose the ML instance that was created during the previous
steps and click Select, as shown in Figure 5-16.

Figure 5-16 Adding Machine Learning Service

3. Click Reload (as shown in Figure 5-15) to import your Machine Learning Service
definition. Then, click Create, as shown in Figure 5-17.

Figure 5-17 Create AutoAI experiment
100 Modernize SAP Workloads on IBM Power Systems

4. As shown in Figure 5-18, select the experiment specifics:

– Select the data set that is available at the lower right.
– Select the column to hold the prediction.
– Verify the prediction type.

Configure the experiment by using the controls at the lower right. When ready, click Run
experiment.

Figure 5-18 AutoAI source file

After a few minutes, the results of the AutoAI experiment are displayed. Review the result
and background information, as shown in Figure 5-18. The experiment can be repeated if
necessary.
Chapter 5. Benefits of modernizing SAP applications with IBM AI 101

5. After a model provides reasonable quality, hover over its row and choose Save Model. In
the next window (see Figure 5-19), enter a name and description for the new ML model.

Figure 5-19 Save model

The model now appears in the project overview as an IBM Watson Machine Learning
Model.

6. The model must be deployed so that it can be used. To deploy this model, select the model
menu and click Deploy, as shown in Figure 5-20.

Figure 5-20 Deploy model
102 Modernize SAP Workloads on IBM Power Systems

7. Click Add Deployment, as shown in Figure 5-21. Enter a name and description for the
deployment and then, click Save.

Figure 5-21 Deployment ready

The model is now deployed and can be used by other applications.

For more information about these IBM technologies, see the following resources:

� Manage production AI with trust and confidence in outcomes
� IBM Cloud Doc
� IBM Watson OpenScale Demos
� Installing Trust
� Explainable AI
� Trust in AI from IBM Research
Chapter 5. Benefits of modernizing SAP applications with IBM AI 103

https://developer.ibm.com/articles/instilling-trust-in-ai/
https://developer.ibm.com/components/watson-openscale/
https://www.ibm.com/demos/collection/IBM-Watson-OpenScale/
https://developer.ibm.com/blogs/explainable-ai-how-do-i-trust-model-predictions/
https://www.research.ibm.com/artificial-intelligence/trusted-ai/
https://cloud.ibm.com/docs/ai-openscale?topic=ai-openscale-gettingstarted
https://developer.ibm.com/components/watson-openscale/

104 Modernize SAP Workloads on IBM Power Systems

Appendix A. node.js server code

This appendix provides the node.js server code.

A

© Copyright IBM Corp. 2021. All rights reserved. 105

node.js server code

Example A-1 shows the node.js server code.

Example A-1 File server/server.js

const appName = require('./../package').name;
const http = require('http');
const express = require('express');
const log4js = require('log4js');
const localConfig = require('./config/local.json');
const path = require('path');

const logger = log4js.getLogger(appName);
logger.level = process.env.LOG_LEVEL || 'info'
const app = express();
const server = http.createServer(app);

app.use(log4js.connectLogger(logger, { level: logger.level }));
const serviceManager = require('./services/service-manager');
require('./services/index')(app);
require('./routers/index')(app, server);

// Add your code here

/********** START: Custom Implementation
***********************************/

// Import modules
const bodyParser = require('body-parser');
const https = require('https');
const yamljs = require('yamljs');
const IBMCloudEnv = require('ibm-cloud-env');

// Initialize cloud environment for credentials
IBMCloudEnv.init();

// Global variables
var Credentials_SAP = {};
var Credentials_Watson = {};
var WatsonScoringEndpoint = '';
var Token = '';
var Fields = {};

// Load configuration, get access token and model metadata
init();

async function init() {
// Load configuration file
Credentials_SAP = yamljs.load('sap-credentials.yml');

// Get Watson service credentials
Credentials_Watson = IBMCloudEnv
 .getDictionary('watson_machine_learning_credentials');
106 Modernize SAP Workloads on IBM Power Systems

// Get IAM access token
// CAUTION: The token is aquired only once. When expires, the server program

must
// be restarted.
var token = await rest_request(

{ method: 'POST',
hostname: 'iam.cloud.ibm.com',
path: '/identity/token',
headers: {

'Accept': 'application/json',
'Content-Type': 'application/x-www-form-urlencoded' },

body: 'grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey='
 + Credentials_Watson.apikey

}).catch(function(err) {logger.error(err); process.exit(8);});

if (token['access_token'] == null) {
logger.error('IAM: Cannot retrieve access token');
process.exit(8);

}
Token = token.access_token;

// Get all deployments of the Watson Machine Learning servie
var deployments = await rest_request(

{ method: 'GET',
hostname: Credentials_Watson.url.replace(/^(https?:\/\/)/,''),
path: '/v4/deployments',
//url: Credentials_Watson.url + '/v4/deployments',
headers: {

'Accept': 'application/json',
'Authorization': 'Bearer ' + Token,
'ML-Instance-ID': Credentials_Watson.instance_id }

}).catch(function(err) {logger.error(err); process.exit(8);});

// Sort deployments by date descending (i.e. most recent first, non-ready last)
deployments.resources.sort((deployment1, deployment2) =>
 { var date1 = (deployment1.entity.status.state === 'ready') ? (
 deployment1.metadata.modified_at !== '' ?
 deployment1.metadata.modified_at :
 deployment1.metadata.created_at) :
 '1000-01-01T00:00:00.000Z';
 var date2 = (deployment1.entity.status.state === 'ready') ? (
 deployment1.metadata.modified_at !== '' ?
 deployment1.metadata.modified_at :
 deployment1.metadata.created_at) :
 '1000-01-01T00:00:00.000Z';
 return (date1 < date2) ? 1 : -1 });
WatsonScoringEndpoint = deployments.resources[0].entity.status.online_url.url
 .replace(Credentials_Watson.url, '');

logger.info(`Using Model ` +
 `${deployments.resources[0].entity.asset.href.replace(/(\?.*)$/, '')}`);
logger.info(`Using WML Scoring Endpoint ${WatsonScoringEndpoint}.`);

// Get metadata of Watson Machine Learning model
Appendix A. node.js server code 107

var model = await rest_request(
{ method: 'GET',

hostname: Credentials_Watson.url.replace(/^(https?:\/\/)/,''),
path: deployments.resources[0].entity.asset.href,
headers: {

'Accept': 'application/json',
'Authorization': 'Bearer ' + Token,
'ML-Instance-ID': Credentials_Watson.instance_id }

}).catch(function(err) {logger.error(err); process.exit(8);});

// Watson Machine Learning service returns model meatadata like
// {... "entity": {...
// "schemas": {
// "input": [
// { "fields": [
// { "name": "age", "type": "int64" },
// { "name": "job", "type": "object" },
// ...] }] } } }
Fields = model.entity.schemas.input[0].fields;

logger.info(`Metadata loaded, access token expires in ${token.expires_in}
secs.`);
}

/* This function performs a REST call. It is being used for calling IBM Watson
 endpoints and the SAP OData service.
 All information needed for the REST call is provided in the options parameter.
*/
function rest_request(options) {

return new Promise(function(resolve, reject) {

var result = "";
var request = https.request(options, function(response) {

response.setEncoding('utf8');

response.on('data', function (data) {
// Called multiple times -> combine chunks to a single result
result += data;

});

response.on('end', function() {
// End of communication
if ((response.statusCode !== 200) && (response.statusCode !== 404)) {

logger.error(`Request to ${options.hostname}${options.path} ` +
 `failed with status ${response.statusCode}`);
// Result contains error message (html or json)
reject(result);

} else {
// Return response to caller
resolve(JSON.parse(result));

}
});

});
108 Modernize SAP Workloads on IBM Power Systems

request.on('error', function(err) {
reject(err);

});

// Send body (if available)
if ((typeof(options.body) === 'string') && (options['body'] !== '')) {

request.write(options.body);
}

// Finish request
request.end();

});
}

/* This function implements the core functionality of the application:
 1. Call OData service to retrieve customer data according to filter
 criteria that are passed as parameter
 2. Build array of feature vectors from customer data
 3. Post array of feature vectors to Watson Machine Learning endpoint;
 get predictions in response
 4. Send merged customer data and predictions to callback function
*/
async function predict(filter, callback) {

// Build OData filter parameter
// Field names in OData service are assumed to be upper-case.
// For example: filter = {age: 45, job: 'management'} is converted to
// url-encode(AGE eq 45 and JOB eq 'manager')
var filterstring = '';
for (var filter_field in filter) {

field = Fields.find(_field => _field.name == filter_field);
if (typeof(field) !== 'undefined') {

filterstring += (filterstring !== '' ? '%20and%20' : '') +
 filter_field.toUpperCase() + '%20eq%20' +
 (!field.type.startsWith('int') ?
 '%27' + filter[filter_field] + '%27' :
 filter[filter_field]);

}
}

// Call OData service to retrieve data from the SAP system
var odata_result = await rest_request(

{ method: 'GET',
hostname: Credentials_SAP.url,
port: Credentials_SAP.port,
path: Credentials_SAP.path + '?$format=json&$filter=' + filterstring,
headers: {

'Accept': 'application/json',
'Authorization': 'Basic ' +
 new Buffer.from(Credentials_SAP.user + ':'
 + Credentials_SAP.password).toString('base64') },

rejectUnauthorized: false,
Appendix A. node.js server code 109

agent: false
}).catch(function(err) {logger.error(err)});

if (odata_result.d.results == 0) {
// No matching record found in the SAP system -> Return empty result set
return callback({fields: [], values: []});

}

/* Build WML request
 For each customer data record that has been received from SAP an array is

build
 that has an entry for every field of the model.
 Values from the OData result are mapped to model fields by name, where
 upper-case and leading underscores are ignorred.
 Default values are used for model fields that do not have an corresponding
 value in the OData result.
 Example:
 Fields: ["age","marital","balance","default"]
 OData: {"d":{
 "results":[
 {"recordno":31, "age":45, "marital":"single",

"default_":"no"},
 {"recordno":67, "age":56, "marital":"married"}]}}
 -> values = [[45, "single", 0, "no"],[56,"married",0,""]]

*/
fields = [];
for (field of Fields) fields.push(field.name);
values = [];
for (var entity of odata_result.d.results) {

entity_values = [];
for (var field of Fields) {

var _value = null;
for (var _fieldname of [field.name, field.name.toUpperCase(),
 field.name+'_', field.name.toUpperCase()+'_']) {

if (entity.hasOwnProperty(_fieldname)) {
_value = entity[_fieldname];
break;

}
}
if (_value != null) {

entity_values.push(_value);
} else {

entity_values.push(field.type.startsWith('int') ? 0 : '');
}

}
values.push(entity_values);

}

// Call IBM Watson Machine Learning endpoint
var body = JSON.stringify({'input_data': [{'fields': fields, 'values':

values}]});
var wml_result = await rest_request(

{ method: 'POST',
hostname: Credentials_Watson.url.replace(/^(https?:\/\/)/,''),
path: WatsonScoringEndpoint,
110 Modernize SAP Workloads on IBM Power Systems

headers: {
'Accept': 'application/json',
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + Token,
'ML-Instance-ID': Credentials_Watson.instance_id },

body: JSON.stringify({'input_data': [{'fields': fields, 'values':
values}]})

}).catch(function(err) {logger.error(err)});

var prediction = wml_result.predictions[0];

// Merge customer data and predictions
// Watson Machine Learning returns prediction and confidence of the two classes
// "no" and "yes" like ["no", [0.68, 0.32]]
// Confidence of class "yes" is used
for (field of prediction.fields) fields.push(field)
for (var i=0; i<Math.min(values.length, prediction.values.length); i++) {

for (var j=0; j<prediction.fields.length; j++) {
if (typeof(prediction.values[i][j]) === 'object') { // type is array

values[i].push(prediction.values[i][j][prediction.values[i][j].length-1]);
} else {

values[i].push(prediction.values[i][j]);
}

}
}

// Sort values descending by probability (last value in arrays)
values.sort((entity1, entity2) =>
 - (entity1[entity1.length - 1] - entity2[entity2.length - 1]));

// Send merged data to callback function
callback({fields: fields, values: values});

}

//Exploit express.js framework to server POST requests against api endpoint
/api/predict
//Use body-parser module to convert request body to javascript objects
app.use(bodyParser.urlencoded({extended: false}));
app.use(bodyParser.json());

app.post('/api/predict', function(request, response) {
predict(request.body, (result) => {const resp = response; resp.json(result); }

);
});

/********** END: Custom Implementation
*************************************/

const port = process.env.PORT || localConfig.port;
server.listen(port, function(){
 logger.info(`nodejswebapp listening on http://localhost:${port}`);
Appendix A. node.js server code 111

});

app.use(function (req, res, next) {
 res.sendFile(path.join(__dirname, '../public', '404.html'));
});

app.use(function (err, req, res, next) {
res.sendFile(path.join(__dirname, '../public', '500.html'));

});

module.exports = server;

Frontend (Web Browser) javascript code

File public/js/frontend.js

/* This function is invokes the node.js application via POST request.
 It renders the response into a table that is added to the DOM. */
function predict() {

// build filter from input elements
var filter = {};
for (var elem of document.querySelectorAll('input')) {

if (elem.value !== '') filter[elem.name] = elem.value;
}

// clear output section
div_out = document.getElementById('div_out');
div_out.innerHTML = 'Processing ...';

// call server to get customer list with preditions
call_server(JSON.stringify(filter)).then(

function(response) {
const div = div_out;

if (response.values.length == 0) {
// empty result set
div_out.innerHTML = 'No matching record found.';

} else {
div_out.innerHTML = '';

// create output table
var table = document.createElement('table');
table.setAttribute('class', 'out');

// create table header
var thead = table.createTHead();
thead.setAttribute('class', 'out');
var row = thead.insertRow();
row.setAttribute('class', 'out');
var cell = row.insertCell();
cell.setAttribute('class', 'out');
cell.innerText = 'action';
for(var property of response.fields) {
112 Modernize SAP Workloads on IBM Power Systems

cell = row.insertCell();
cell.setAttribute('class', 'out');
cell.innerText = property;

}

// create table body
var tbody = table.createTBody();
for (var values of response.values) {

var row = tbody.insertRow();
row.setAttribute('class', 'out');
var cell = row.insertCell();
cell.setAttribute('class', 'out');
// action: just display alert
cell.innerHTML =
 ''
 + 'call customer';
for (var value of values) {

cell = row.insertCell();
cell.setAttribute('class', 'out');
cell.innerText = value;

}
}

}

div.appendChild(table);
});

}

// This function executes a POST request against application endpoint
"/api/predict".
function call_server(body) {

return new Promise(function(resolve, reject) {

request = new XMLHttpRequest();
request.open('POST', '/api/predict');
request.setRequestHeader('Accept', 'application/json');
request.setRequestHeader('Content-type', 'application/json');
request.onreadystatechange = function() {

if (this.readyState == 4) {
if (this.status == 200) {

resolve(JSON.parse(this.response));
}

}
};
request.onerror = function() {

var status = this.status;
reject(status);

};

request.send(body);
});

}

Appendix A. node.js server code 113

Index HTML page

File public/index.html

<!DOCTYPE html>
<html>
<head>
 <title>IBM Demo</title>
 <style>
 table.out { font-family: arial, sans-serif;
 border-collapse: collapse;
 width: 100%; }
 thead.out { background-color: #555555;
 color: #eeeeee; }
 td.out, th.out { border: 1px solid #555555;
 text-align: center;
 padding: 8px; }
 tr.out:nth-child(even) { background-color: #dddddd; }
 .section { border: 1px solid #000000;
 margin-bottom: 10px; }
 .block { width: 100%; }
 </style>
 <script src="js/frontend.js"></script>
</head>
<body>
<header>
 <h1>Marketing Campaign Advisor</h1>
</header>
<main>

 <div id="div_filter" class="section" padding="4px">
 <table cellpadding="8px">
 <tr><th colspan="2" align="left">Filter Criteria</th></tr>
 <tr><td>Age</td><td><input id="input_age" type="number"
 name="age" value="40"
 min="18" max="99" step="1"></td></tr>
 <tr><td>Job</td><td><input id="input_job"
 name="job" value="technician"></td></tr>
 <tr><td>Marital</td><td><input id="input_marital"
 name="marital"
 value="married"></td></tr>
 <tr><td>Education</td><td><input id="input_education"
 name="education"></td></tr>
 <tr><th colspan="2" align="left"><button id="button_predict"
 type="button"
 class="block"
 onclick="predict();">
 Predict</button></th></tr>
 </table>
 </div>
 <div id="div_out">
 <!-- result table comes here -->
 </div>
</main>
</body>
114 Modernize SAP Workloads on IBM Power Systems

</html>
Appendix A. node.js server code 115

116 Modernize SAP Workloads on IBM Power Systems

ronyms
Convention All ABAP Objects that are create for
demos and examples must be
assigned to ABAP Package
ZDEMO.

Convention All ABAP Object names must have
prefix ZDEMO_or ZCL_DEMO_,
respectively.

ABAP Advanced Business Application
Programming

ADT ABAP Development Tools (in
Eclipse)

AFL Application Function Library

AI Artificial Intelligence

API Application Programming Interface

API Application Program Interface

DB Database

DM HANA Express Edition Download
Manager

EML External Machine Learning

ERP Enterprise Resource Planning

FQDN Fully Qualified Domain Name

gRPC Google Remote Procedure Call

GUI Graphical User Interface

HANA High-Performance Analytic
Appliance

HS SAP HANA Studio

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IAM Identity and Access Management

IBM International Business Machines
Corporation

ICM Internet Communication Manager

IP Internet Protocol

JSON JavaScript Object Notation

ML Machine Learning

PDF Portable Document Format

PSE Personal security environment

REST Representational State Transfer

RTTI Runtime Type Information

SAP Systems, Applications and
Products

SAP System SAP Business Suite or S/4HANA

SCP SAP Cloud Platform

Abbreviations and ac
© Copyright IBM Corp. 2021. All rights reserved.
SDK Software Development Kit

SQL Structured Query Language

SSF Secure Store & Forward

SSL Secure Sockets Layer

TF TensorFlow

TLS Transport Layer Security

TMS TensorFlow Model Server

URI Uniform Resource Identifier

URL Uniform Resource Locator

YOLO You Only Look Only (CNN Neural
Network)
 117

118 Modernize SAP Workloads on IBM Power Systems

Related publications

The publications that are listed in this section are considered particularly suitable for a more
detailed discussion of the topics that are covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topic in this
document. Some publications that are referenced in this list might be available in softcopy
only:

� SAP HANA on IBM Power Systems: High Availability and Disaster Recovery
Implementation Updates, SG24-8432

� SAP HANA Data Management and Performance on IBM Power Systems, REDP-5570

� SAP HANA on IBM Power Systems Architectural Summary, REDP-5569

� SAP HANA Platform Migration, REDP-5571

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft, and additional materials, at the following website:

ibm.com/redbooks

Other publications

The following publications are also relevant as further information sources:

� IBM Power Systems - SAP Software Deployed in Red Hat OpenShift, REDP-5619

� Software Defined Data Center with Red Hat Cloud and Open Source IT Operations
Management, SG24-8473

� Red Hat OpenShift V4.X and IBM Cloud Paks on IBM Power Systems Volume 2,
SG24-8486

� Red Hat OpenShift V4.3 on IBM Power Systems Reference Guide, REDP-5599

Online resources

The following websites also are relevant as further information sources:

� IBM Public Cloud:

http://www.cloud.ibm.com

� TensorFlow Core documentation:

https://www.tensorflow.org/api_docs/python/tf/io/decode_base64

� IBM Watson Studio:

https://www.ibm.com/cloud/watson-studio
© Copyright IBM Corp. 2021. All rights reserved. 119

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.cloud.ibm.com
https://www.tensorflow.org/api_docs/python/tf/io/decode_base64
https://www.ibm.com/cloud/watson-studio

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
120 Modernize SAP Workloads on IBM Power Systems

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738459712

REDP-5577-00

®

https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Hybrid system landscapes with SAP Business Suite and SAP S/4HANA introduction
	1.1 Introduction
	1.2 IBM Cloud
	1.3 IBM Watson

	Chapter 2. SAP connecting with cloud services: ABAP SDK for IBM Watson
	2.1 General considerations
	2.1.1 IBM Watson AI Services introduction
	2.1.2 Integration of IBM Watson services into SAP applications
	2.1.3 Network considerations
	2.1.4 Licensing considerations
	2.1.5 Administering credentials
	2.1.6 ABAP SDK for IBM Watson

	2.2 SAP system configuration
	2.2.1 SAP profile parameters
	2.2.2 Setting up secure Internet communication

	2.3 Installing the ABAP SDK for IBM Watson
	2.3.1 Introduction to abapGit
	2.3.2 Installing the ABAP SDK for IBM Watson

	2.4 Using the ABAP SDK for IBM Watson
	2.4.1 ABAP SDK for IBM Watson API overview
	2.4.2 Credentials
	2.4.3 Configuration table
	2.4.4 Identity and Access Management authentication
	2.4.5 Using classes, methods, and data types of the ABAP SDK

	Chapter 3. Cloud App connecting to SAP
	3.1 Introduction
	3.2 IBM Secure Gateway
	3.3 OData and CDS Views
	3.3.1 Sample data table
	3.3.2 Creating Core Data Services View
	3.3.3 Testing the OData service

	3.4 Building a node.js application on IBM Cloud
	3.4.1 Installing and running application locally

	3.5 Using OData and IBM Watson services
	3.5.1 Creating the back-end application
	3.5.2 Node.js server code
	3.5.3 Creating front-end code
	3.5.4 Creating HTML index page

	Chapter 4. Machine Learning on IBM Power Systems
	4.1 IBM Watson Machine Learning Accelerator
	4.1.1 Installing on Red Hat Enterprise Linux
	4.1.2 Installing on Red Hat OpenShift 3.11

	4.2 Use case scenario and implementation
	4.2.1 Naming scheme
	4.2.2 Installing SAP HANA
	4.2.3 Target [A] machine
	4.2.4 Adding EML to the installed SAP HANA
	4.2.5 Installing SAP HANA Studio
	4.2.6 Connecting SAP HANA Studio to your SAP HANA database
	4.2.7 Checking the EML installation

	4.3 Preparing AI model for deployment
	4.3.1 Preparing a TMS instance
	4.3.2 Communicating with TMS
	4.3.3 Updating model configuration
	4.3.4 Checking connectivity from SAP HANA
	4.3.5 Preparing input images
	4.3.6 Encoding input images as BASE64
	4.3.7 Creating input and output types and a parameters table
	4.3.8 Creating EML procedure wrapper

	4.4 Conclusion

	Chapter 5. Benefits of modernizing SAP applications with IBM AI
	5.1 Enterprise agenda
	5.2 IBM Watson Studio
	5.3 IBM Watson OpenScale
	5.3.1 Monitors
	5.3.2 Data sets
	5.3.3 Checking model drift
	5.3.4 Trust in AI and IBM Watson OpenScale
	5.3.5 Open Source Initiatives

	5.4 AutoAI
	5.4.1 AutoAI in data science process
	5.4.2 AutoAI benefits
	5.4.3 Creating a machine learning model by using AutoAI

	Appendix A. node.js server code
	node.js server code

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

