IBM DS8880 and IBM Z Synergy

Bert Dufrasne
Jose Gilberto Biondo Jr.
Orlando Ariel Fernandez
Robert Gensler
Eddie Lin
Marcelo Takakura
Sidney Varoni Jr.
Alexander Warmuth

Storage
International Technical Support Organization

IBM DS8880 and IBM Z Synergy

April 2019
Contents

Notices .. vii
Trademarks ... viii

Preface ... ix
Authors .. x
Now you can become a published author, too! .. xi
Comments welcome ... xi
Stay connected to IBM Redbooks ... xi

Chapter 1. Introduction .. 1
 1.1 IBM DS8000 storage system and IBM Z synergy .. 2
 1.1.1 IBM Z server heritage .. 2
 1.1.2 Disk storage system heritage .. 2
 1.1.3 Connecting layer ... 2
 1.1.4 Putting the pieces together: Synergy .. 3
 1.1.5 Mainframe and storage end-to-end configuration model 3
 1.2 Synergy items ... 4
 1.2.1 Disaster recovery and high availability items .. 4
 1.2.2 Data protection and backup ... 5
 1.2.3 More information .. 5

Chapter 2. Disaster recovery and high availability .. 7
 2.1 DS8880 Copy Services functions ... 8
 2.1.1 Metro Mirror 2-site synchronous volume replication 8
 2.1.2 Global Mirror 2-site asynchronous volume replication 9
 2.1.3 z/OS Global Mirror 2-site asynchronous volume replication 10
 2.1.4 Metro/Global Mirror 3-site solution .. 12
 2.1.5 Multiple Target Peer-to-Peer Remote Copy 3-site solutions 14
 2.1.6 Symmetrical HA/DR 4-site solutions ... 16
 2.2 z/OS HyperSwap ... 18
 2.3 Copy Services Manager and HyperSwap ... 19
 2.3.1 HyperSwap to site H2 ... 22
 2.3.2 Returning to site H1 ... 22
 2.3.3 Summary ... 24
 2.4 Geographically Dispersed Parallel Sysplex ... 24
 2.4.1 GDPS and DS8000 synergy features .. 25
 2.4.2 GDPS and DS8000 synergy summary ... 29

Chapter 3. Data protection and backup .. 31
 3.1 FRBACKUP ... 32
 3.1.1 Storage Management Subsystem construct Copy Pool to support FRBACKUP as input ... 32
 3.1.2 Copy Pool Backup Storage Group for output to FRBACKUP 33
 3.1.3 Combining Copy Pool and Copy Pool Backup Storage Group 35
 3.1.4 The frbackup command ... 36
 3.1.5 FRBACKUP software-based interaction ... 37
 3.2 Using FlashCopy with Db2 and IMS .. 38
 3.2.1 FlashCopy and DB2 for z/OS synergy .. 38
 3.2.2 FlashCopy and IMS for z/OS synergy .. 40
5.13 Transparent Cloud Tiering ... 112

Related publications ... 115
IBM Redbooks ... 115
Other publications ... 116
Online resources ... 116
Help from IBM ... 116
Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

<table>
<thead>
<tr>
<th>AIX®</th>
<th>IBM Cloud™</th>
<th>RMF™</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS®</td>
<td>IBM Z®</td>
<td></td>
</tr>
<tr>
<td>DB2®</td>
<td>IBM z Systems®</td>
<td></td>
</tr>
<tr>
<td>Db2®</td>
<td>IBM z13®</td>
<td></td>
</tr>
<tr>
<td>DS8000®</td>
<td>IBM z13s®</td>
<td></td>
</tr>
<tr>
<td>Easy Tier®</td>
<td>IBM z14™</td>
<td></td>
</tr>
<tr>
<td>ECKD™</td>
<td>IBM zHyperWrite™</td>
<td>z/OS®</td>
</tr>
<tr>
<td>Enterprise Storage Server®</td>
<td>MVSTM</td>
<td>z/VM®</td>
</tr>
<tr>
<td>FICON®</td>
<td>Parallel Sysplex®</td>
<td>z/VSE®</td>
</tr>
<tr>
<td>FlashCopy®</td>
<td>Power Systems™</td>
<td>z10™</td>
</tr>
<tr>
<td>GDPS®</td>
<td>POWER®</td>
<td>z13®</td>
</tr>
<tr>
<td>Geographically Dispersed Parallel Sysplex™</td>
<td>Redbooks®</td>
<td>z13s®</td>
</tr>
<tr>
<td>HyperSwap®</td>
<td>Redpaper™</td>
<td>zEnterprise®</td>
</tr>
<tr>
<td>IBM®</td>
<td>Resource Measurement Facility™</td>
<td></td>
</tr>
</tbody>
</table>

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
IBM® Z has a close and unique relationship to its storage. Over the years, improvements to the Z processors and storage software, the disk storage systems, and their communication architecture consistently reinforced this synergy.

This IBM Redpaper™ publication summarizes and highlights the various aspects, advanced functions, and technologies that are often pioneered by IBM, and that make the IBM Z® and the IBM DS8880 products an ideal combination.

This paper is intended for those users who have some familiarity with IBM Z and the IBM DS8000® series and want a condensed but comprehensive overview of the synergy items up to the IBM z14™ server and the IBM DS8880 Release 8.51 firmware.

Authors

This paper was produced by a team of specialists from around the world.

Bert Dufrasne is an IBM Certified Consulting IT Specialist and Project Leader for IBM System Storage® disk products at the ITSO, San Jose Center. He has worked at IBM in various IT areas. He has written many IBM publications and has developed and taught technical workshops. Before Bert joined the ITSO, he worked for IBM Global Services as an Application Architect. He holds a master's degree in electrical engineering.

Jose Gilberto Biondo Jr. is an IT Specialist in Integrated Technology Delivery, ServerSystems Operations/Storage Management in IBM Brazil. He has nine years of experience in IBM z/OS® and has worked with storage management since 2007. Jose has written several IBM Redbooks® publications. Although he works mainly with IBM storage products (Data Facility Storage Management Subsystem Data Facility Product (DSSMSdfp), Data Facility Storage Management Subsystem Data Set Services (DFSMShsm), Data Facility Storage Management Subsystem Hierarchical Storage Manager (DFSMShsm), and Data Facility Storage Management Subsystem Removable Media Manager (DFSMSmrm)), he also works with OEM software products. Jose's areas of expertise include installing and maintaining storage products, and process automation.

Orlando Ariel Fernandez is an architect and system programmer working for Banco de Galicia in Buenos Aires, Argentina. His roles include Linux support and IBM z/OS and IBM z/VM® System Programming. As an architect, he also provides mainframe support in enterprise and SAP environments.

Robert Gensler is a Senior Software Engineer with the IBM Systems Unit in Tucson. He has 17 years of experience in DFSMSdss and DFSMShsm. He holds a master's degree in computer science from The University of Arizona.

Eddie Lin is a Senior Technical Staff Member with IBM Systems Storage in Tucson, AZ. He is an architect for the DS8000 Enterprise Storage product, specializing in developing enablement and solutions in the realm of cloud storage and cloud computing. Eddie is the lead architect for the DS8880 Transparent Cloud Tiering (TCT) solution. He has over 15 years of experience developing from the original DS8000 storage system to the latest DS8880 line of enterprise storage.
Marcelo Takakura is an IT Specialist with IBM Brazil Lab Services Storage team. He has worked at IBM since 2009 and worked in storage management since 2002. He works mainly with IBM storage products like Data Facility Storage Management Subsystem (DFSMS), TS7700, DS8000 storage system, and z/OS data migration and availability (tape copy, IBM Transparent Data Migration Facility (IBM TDMF), IBM z/OS Dataset Migration Facility (IBM zDMF), IBM Copy Services Manager (CSM), and IBM HyperSwap®). His areas of expertise include installing, configuring, and supporting z/OS storage products.

Sidney Varoni Jr. is a Storage Technical Advisor in Brazil. He has 11 years of experience working with enterprise IT Infrastructure, and he is focused on mainframe and storage areas. He holds a degree in Computer Science. His areas of expertise include high availability (HA) and disaster recovery (DR) solutions, such as Storage Copy Services, IBM Geographically Dispersed Parallel Sysplex™ (IBM GDPS®), and IBM Enterprise Storage Products.

Alexander Warmuth is a Consulting IT Specialist at the IBM European Storage Competence Center. Working in technical sales support, he designs and promotes new and complex storage solutions; drives the introduction of new products; and provides advice to customers, Business Partners, and sales. His main areas of expertise are high-end storage solutions and business resilience for IBM z Systems® and Linux. He joined IBM in 1993 and has worked in storage technical sales support since 2001. Alexander holds a diploma in electrical engineering from the University of Erlangen, Germany.

Thanks to the following people for their contributions to this project:

Lydia Parziale, Project Manager, IBM International Technical Support Organization, San Jose Center

Harry Yudenfriend
IBM Fellow, Storage and I/O Technology, IBM

Thanks to the authors that published the first edition, IBM DS8880 and IBM z Systems Synergy, which was published in January 2017 and started the second edition, IBM DS8880 and IBM Z Synergy:

Werner Bauer, Sherry Brunson, Andre Coelho, Matthew Houzenga, Peter Kimmel, Robert Tondini

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at:
ibm.com/redbooks/residencies.html
Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or other IBM Redbooks publications in one of the following ways:

- Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks
- Send your comments in an email to:
 redbooks@us.ibm.com
- Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

- Find us on Facebook:
 http://www.facebook.com/IBMRedbooks
- Follow us on Twitter:
 http://twitter.com/ibmredbooks
- Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
- Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:
- Stay current on recent Redbooks publications with RSS Feeds:
 http://www.redbooks.ibm.com/rss.html
Introduction

This chapter provides background information about the topics that are covered in this paper and the reasons that make the IBM DS8880 storage system and IBM Z servers an ideal combination.

Although most of the synergy items that are described here apply when the DS8880 storage system is combined with a comprehensive z/OS software level, some of the items also apply to other operating systems that use IBM Z, including Linux on IBM Z, z/TPF, z/VM, and z/VSE®.

This chapter includes the following topics:

- IBM DS8000 storage system and IBM Z synergy
- Synergy items
1.1 IBM DS8000 storage system and IBM Z synergy

This section presents some historical background to show that the strong ties between the IBM DS8000 storage system and IBM Z go back to their origins.

1.1.1 IBM Z server heritage

IBM owns the architecture of the IBM Z hardware and fundamental software, such as IBM z/OS, z/VM, Linux on System z®, z/TPF, or z/VSE with their components and subsystems, such as I/O Supervisor, Channel Subsystem, and access methods to data on connected disk storage systems.

Since the advent of mainframe servers in 1964 with the IBM System/360 server family, this server architecture has been continuously enhanced and developed to provide the most reliable application server on the market while still maintaining operational efficiency. IBM Z today can reach any level of scalability that is needed to run the most demanding workloads.

1.1.2 Disk storage system heritage

With disk storage systems, IBM also has a rich history and extensive experience. IBM created the first randomly accessed disk storage system in 1956, and pioneered many technological breakthrough achievements. IBM invented, developed, and built more advanced disk storage systems, which culminate today with the most advanced disk storage server: IBM DS8000 storage systems, and its flagship, the DS8880 model.

1.1.3 Connecting layer

The piece that brings these products together and helps them interact optimally is a connection technology that IBM also invented and continuously enhances and improves.

The technology’s first appearance was in 1990 when IBM presented a newly created serial I/O protocol between IBM Z and storage systems that was called ESCON. It was implemented to run through optical fiber technology to replace the copper-based bus and tag channel interface technology. It also overcame the performance and distance limitations that were imposed by these parallel channels.

In 1998, this serial I/O interface technology was enhanced to become IBM FICON® technology by using full duplex Fibre Channel and multiplexing capabilities. FICON is the IBM interpretation of Fibre Channel technology that IBM enhanced for IBM Z optimal connection performance, reliability, and security.

In August 2017, IBM announced zHyperLink technology for the z14 server and DS8880 storage system. zHyperLink works with a FICON point-to-point or SAN infrastructure to provide low latency connectivity to FICON storage systems.
1.1.4 Putting the pieces together: Synergy

Because IBM owns all of these building blocks and their respective architectures, integrating these components to get the best overall efficiency from the complete solution is easier. This synergy is based on the fact that each component understands the potential of other components and can make the best use of it. Integrating the DS8880 storage system, IBM Z, and communication components results in a combination that offers more than just the sum of its individual components.

1.1.5 Mainframe and storage end-to-end configuration model

A schematic view of the key layers, which when combined form the end-to-end and integrated IBM Z and DS8880 configuration model, is shown in Figure 1-1.

The key layers include the following major components:

- IBM Z and z/OS operating system, which is also applicable to z/VM, Linux on System z, z/TPF, and z/VSE.
- IBM DS8000 storage system, and in particular the DS8880 storage system with its rich functions.
- Optional SAN fabric devices that support FICON, mostly provided by Brocade and Cisco. This layer includes end-to-end smart and advanced error detection and error recovery. A directly connected configuration also is available.

![Figure 1-1 Synergy potential within the mainframe configuration model](image)
Figure 1-1 on page 3 shows the close and integrated cooperation between the IBM Z server and the DS8000 storage system. It also indicates the main ingredients of each building block within the mainframe configuration model. In particular, the DS8000 storage system includes the following building blocks:

- Comprehensive IBM Power Systems™ servers at the heart of the DS8000 storage system
- Central storage or server memory that provide firmware-assisted caching services
- Host adapters to connect through the front end to application servers
- Device adapters to connect through a switched Fibre Channel fabric to back-end storage
- Rich IBM Copy Services and IBM Easy Tier® functions.

Figure 1-1 on page 3 also shows the foundation upon which the synergy items that are described in this paper are built.

1.2 Synergy items

This paper highlights the most important and popular synergy items of IBM Z server and DS8000 storage system.

1.2.1 Disaster recovery and high availability items

For more information about the following IBM Copy Services functions that the DS8000 storage system provides, see Chapter 2, “Disaster recovery and high availability” on page 7:

- **IBM FlashCopy® with all its options**

 FlashCopy is a popular function and the foundation for solutions, such as the IBM Db2® BACKUP SYSTEM utility. BACKUP SYSTEM is closely interconnected in z/OS with Data Facility Storage Management Subsystem (DFSMS) software constructs, such as Copy Pools and Copy Pool Backup Storage Groups (CPBSGs).

- **Global Copy**

 This function is used to replicate asynchronously volumes without ensuring consistent data at the target site.

- **Global Mirror (GM)**

 This function is used to replicate asynchronously volumes while ensuring consistent data at the target site by combining Global Copy and FlashCopy.

- **Metro Mirror (MM)**

 This popular function synchronously replicates data from a source volume to a target volume. It is managed through IBM Copy Services Manager (CSM) or the IBM Geographically Dispersed Parallel Sysplex (GDPS).

- **IBM z/OS Global Mirror (IBM zGM)**

 This 2-site DR solution is formerly known as Extended Remote Copy (XRC). IBM zGM still requires proper firmware support in the primary or source storage system, but relies mainly on its software-based component, which is the System Data Mover (SDM) within z/OS.
Three-site solutions

These solutions include cascaded Metro/Global Mirror (MGM) and Multiple Target Peer-to-Peer Remote Copy (MT-PPRC), which provide two copies that are based on a single source volume. These copies can be synchronously replicated copies or asynchronously replicated copies, or a mixture of synchronous and asynchronous replications. Another 3-site multi-target volume replication relationship consists of a MM relationship and an IBM zGM replication relationship from the same primary or source volume.

Four-site solutions

These solutions are also known as symmetrical solutions, and provide a high availability (HA) environment within a metropolitan region with an active DR configuration to another region. This configuration takes advantage of cascaded and MT-PPRC functions. In this case, both regions have a symmetrical configuration. Therefore, it has HA and DR protection, regardless of where the system is running.

1.2.2 Data protection and backup

This support is integrated into system-managed storage within z/OS and can be used by any other utility or application.

A user of this software-based support is the BACKUP SYSTEM Db2 utility. Its availability started with z/OS 1.8 and was significantly enhanced in subsequent versions, for example, to include FlashCopy Consistency Groups support.

For more information about the software-based interface to FlashCopy, see Chapter 3, “Data protection and backup” on page 31.

1.2.3 More information

For more information about managing and configuring synergy items, see Chapter 4, “Management and configuration” on page 43.

For more information about DS8880 storage system and z/OS performance synergy items, see Chapter 5, “IBM Z and DS8880 performance” on page 65.
Disaster recovery and high availability

This chapter describes the various data and volume replication techniques that are implemented in DS8000 Copy Services, which provide the foundations for disaster recovery (DR) operations and enable high data availability.

DS8000 Copy Services are complemented by management frameworks and functions that are built directly into the IBM Z software and firmware. This functional complementarity allows a further enhanced automation approach that can handle almost any potential incident, even in an unattended environment that is composed of IBM Z servers and DS8880 storage systems.

This chapter includes the following topics:

- DS8880 Copy Services functions
- z/OS HyperSwap
- Copy Services Manager and HyperSwap
- Geographically Dispersed Parallel Sysplex
2.1 DS8880 Copy Services functions

The DS880 storage system provides broad and rich copy services functions. They can be used for 2-, 3-, or 4-site solutions. These scenarios are described in this chapter.

2.1.1 Metro Mirror 2-site synchronous volume replication

Metro Mirror (MM) is the synchronous volume replication approach that uses DS8880 firmware. The technology that is used is known as Peer-to-Peer Remote Copy (PPRC).

IBM introduced this technology in the mid-1990s and released it to customers in 1996 with the IBM 3990-9 cached storage control unit. Throughout the years, the technology was continuously enhanced, starting with the IBM RAMAC Virtual Array (IBM RVA), followed by the IBM Enterprise Storage Server®, and finally, the DS8000 series.

Figure 2-1 shows the basic sequence of operations. The goal is to ensure the safe and consistent arrival of the data at the receiving site of MM with the least cycles possible between both sites. MM achieves this goal quickly.

![Figure 2-1 Metro Mirror basic operation](image)

A balanced approach between pre-deposited MM writes at the receiving site and occasional feedbacks from the receiving control unit back to the sending control unit allows the use of the Fibre Channel links and MM paths between both sites as efficiently as possible.
2.1.2 Global Mirror 2-site asynchronous volume replication

IBM offers a software-based solution to provide a replication technology that can bridge any distance and still ensure consistent data at the remote site. It was first introduced as Extended Remote Copy (XRC). XRC was rebranded as IBM z/OS Global Mirror (IBM zGM).

The IBM Z software holds the key component of IBM zGM, which is the System Data Mover (SDM). SDM is a part of Data Facility Storage Management Subsystem Data Facility Product (DSSMSdfp) that is included in z/OS and can handle all data that is written by using IBM Extended Count Key Data (IBM ECKD™) channel programs. Otherwise, SDM cannot be used with open system volumes or LUNs.

To cover any storage server volume type, IBM developed a solution that is independent of any host type or volume type, which is known as Global Mirror (GM). The goal was to provide an asynchronous replication technology that can run in an autonomic fashion and provide data currency (within no more than 5 seconds) at a distant site.

The data consistency at a distant site is ensured for a single storage server pair and across as many as up to 16 storage systems. This consistency is made possible without any other constraints, such as imposing time stamps with each single write I/O.

The basic operational sequence of GM is shown in Figure 2-2.

![Figure 2-2 Global Mirror basic operation managed out of the storage system](image)

From a host perspective, the write I/O behaves as though it is writing to a non-mirrored volume. The host receives an I/O completion event when the write data arrives in the cache and non-volatile cache portion of the DS8000 cache. The DS8000 storage system then asynchronously replicates the data and sends it to the remote site. When the data is secured in the remote cache and remote non-volatile cache, the replication I/O is completed.
GM combines the Global Copy and FlashCopy functions. Global Copy performs the data replication and FlashCopy secures the previous data from H2 onto J2 before the respective track on H2 is overwritten by the replication I/O. Therefore, J2 behaves as a journal for H2.

The GM consistency group creation process is solely performed within the DS8000 storage systems. Synergy comes into play when managing such a configuration through IBM Copy Services Manager (CSM) or IBM Geographically Dispersed Parallel Sysplex (GDPS).

2.1.3 z/OS Global Mirror 2-site asynchronous volume replication

IBM zGM essentially is z/OS software-based asynchronous volume replication. The design goal for IBM zGM was to not exceed 5 seconds in remaining current with the primary site. IBM zGM relies on timestamped ECKD write I/Os for each write I/O to each IBM zGM primary Count Key Data (CKD) volume. IBM zGM can manage only CKD volumes.

IBM zGM is a powerful session-based architecture that is based on z/OS system software. This approach allows easy management of IBM zGM based replication configurations. Although IBM zGM is simple to implement and configure, other considerations in fine-tuning the environment are required, especially when bridging long distances between sites and with limited bandwidth. For long distances, the use of channel-extending devices is required.

The basic components of IBM zGM operations are shown in Figure 2-3.

Figure 2-3 IBM zGM basic operation that is managed through IBM Z software
Figure 2-3 on page 10 shows how closely IBM Z software cooperates with the DS8000 storage system:

1. Application write I/Os perform at the same speed as with writing to an unmirrored volume in H1. Each write I/O also contains a unique time stamp. The Parallel Sysplex Timer clock is used.

2. Immediately after successfully storing the data to cache and non-volatile cache storage in the DS8000 storage system, the I/O is complete from an application perspective.

3. SDM is a highly parallel working driver that fetches the data from the H1 site as fast as possible by using particular enhancements in z/OS and its Input/Output Supervisor (IOS). Any bandwidth between sites can be used by the SDM and through its multiple-reader support.

4. SDM internally sorts all write I/Os according to the applied time stamp during application write I/O processing to ensure the same write order to the secondary volumes as they occurred to the primary volumes.

5. To resume operations after an unplanned outage of any component within the remote site, SDM applies first the consistency groups onto a journal. Next, SDM writes the same consistency group (or groups) to the secondary volumes and then frees up the corresponding journal space.

After IBM zGM reaches a balanced system level (combining all involved components), it is a firm solution that runs unnoticed. The key requirement is to provide enough bandwidth between sites and on the storage back end at the recovery site to manage the amount of write data that is arriving at the local site.

A limiting factor is the primary storage system cache size and the number of Storage Control sessions. A Storage Control session is created for each logical control unit (LCU) that holds IBM zGM primary volumes. Here, the maximum number is 40 LCUs at the primary site. Regarding the primary storage cache size, a best practice is to upgrade to the maximum available cache size. The guideline is for an IBM zGM session not to exceed 1500 - 2000 IBM zGM volume pairs.

An SDM instance is a z/OS address space. The level of parallelism within an address space cannot go beyond 255 tasks, which can run in parallel within that address space. These tasks are subdivided between all these SDM functions, such as parallel reading record sets from the primary site, parallel writing to journal and secondary volumes, parallel establishment of volume pairs, and parallel running control tasks.
To overcome the limit within a single SDM instance, IBM zGM scales to up to 182 interconnected SDM instances (as shown in Figure 2-4) and still can provide data consistency across all involved volumes. You might cluster SDM sessions within a logical partition (LPAR) or couple individual SDM instances across LPARs or a combination of clustered SDM instances with individual SDM instances.

![Figure 2-4](image)

For more information about planning and best practices, see *IBM z/OS Global Mirror Planning, Operations, and Best Practices*, REDP-4878.

The performance of SDM highly depends on the amount of real storage that SDM gets, which is ensured in the corresponding z/OS image (LPAR). A best practice is that more is better than less. Approximately 1.7 GB of real storage for an SDM instance is useful in a larger configuration. For more information about precise calculations, see *z/OS DFSMS Advanced Copy Services*, SC35-0428.

IBM zGM is a perfect example of synergy between IBM Z and the DS8000 storage system.

IBM zGM and GM overlap in their goal to provide consistent data at the remote site at any time. Also, the design goal to ensure a gap of no more that 5 seconds, or even less for the recovery point objective (RPO) between both sites, is similar. Each approach has its particular strength. Which solution to choose depends on the individual customer needs and IT environment.

2.1.4 Metro/Global Mirror 3-site solution

Metro/Global Mirror (MGM) is solely based on the DS8000 firmware. It is a cascaded approach that spans over three sites.

The first leg is an MM relationship from site 1 to site 2. Then, it continues to a potentially distant site 3 with GM. The role of site 2 volumes is a cascaded status. The same volume in site 2 is an MM secondary volume in a DUPLEX state. At the same time, it is a Global Copy primary volume with a PENDING status.
The basic components of an MGM configuration are shown in Figure 2-5.

Figure 2-5 Metro/Global Mirror cascaded 3-site solution

Often, site 1 and site 2 are in a campus or metropolitan area within MM acceptable distances. In a typical IBM Z environment, both sites are usually at a distance that is also supported by the Parallel Sysplex architecture and spread the IBM Z server across site 1 and site 2.

Both sites might be only a few kilometers apart from each other to allow an efficient data sharing approach within the coupling facility. MM acceptable distances are often measured from approximately 100 meters (328 feet) to approximately 5 - 6 km (3.10 - 3.72 miles) because the synergy of this configuration relies on Parallel Sysplex functions and MM in combination with IBM HyperSwap.

When coupling facility-based data sharing is not a potential issue, the distance can be as much as the supported distance by the Parallel Sysplex Timer, which is up to 100 km (62.13 miles) between site 1 and site 2. Then, another synergy item plays a significant role. When a HyperSwap occurs and application writes run from site 1 application servers to the site 2 storage systems, the new High Performance FICON for IBM Z (zHPF) Extended Distance II support improves the performance of large write I/Os.

Site 1 and site 2 fulfill the role of DR covering site 1 and site 2 and high availability (HA) when site 1 components fail or the storage server (or servers) experience any type of outage. Site 3 is a pure DR site when site 1 and site 2 are no longer available.

Important: A management framework, such as CSM or GDPS, is required to manage such a 3-site volume replication configuration.
Multiple Target Peer-to-Peer Remote Copy 3-site solutions

Multiple Target Peer-to-Peer Remote Copy (MT-PPRC) is available with DS8880 or DS8870 configurations with firmware levels 7.4 or later. It is also a 3-site Copy Services configuration.

It is called Multiple Target PPRC because it can have two Copy Services that are based on volume copies in site 2 and another in site 3. These Copy Services relationships can be either of the following approaches:

- Two MM relationships of the same site 1 volume
- A combination of an MM relationship between site 1 and site 2 and a second GM or Global Copy relationship from site 1 to another site 3

Both approaches are described next.

MT-PPRC can be used to migrate data from primary or secondary DS8000 storage systems in PPRC configuration. The use of MT-PPRC allows for a migration procedure with little or no periods in which the system is not protected by mirroring.

MT-PPRC 3-site with two synchronous targets
The basic mode of operation and configuration of MT-PPRC with two MM relationships is shown in Figure 2-6.

![Figure 2-6 MT-PPRC with two synchronous targets](image)

With MT-PPRC and two MM relationships, the DS8000 storage system provides another level of DR and, combined with HyperSwap, another level of HA.
The primary storage system schedules two parallel and synchronous replication writes to a target DS8000 storage system in site 2 and to another target DS8000 storage system in site 3. After both replication writes succeed, the application write is considered to be successfully completed by the host server.

Depending on the available SAN infrastructure, site 2 and site 3 also can be connected to potentially allow synchronous replication from site 2 to site 3 or the opposite configuration if a HyperSwap event occurs in site 1. This configuration is indicated by the HyperSwap action that is shown in Figure 2-6 on page 14 and requires FICON connectivity from the IBM Z server in site 1 to site 2 or site 3.

Managing such a 3-site MT-PPRC configuration is supported by GDPS (GDPS/Multi-Target Metro Mirror (MTMM)) or by CSM. This support is also proof of how closely IBM Z based Copy Services software and HyperSwap interact with the connected DS8000 storage systems.

MT-PPRC 3-site configuration with a synchronous and asynchronous target

Another possible MT-PPRC configuration, which implies a Parallel Sysplex configuration across site 1 and site 2, is shown in Figure 2-7.

![MT-PPRC with synchronous and asynchronous target of H1](image)

In this configuration, the storage system in site 1 synchronously replicates disk storage volumes over MM to site 2.
Although the SAN fabric configuration that is shown in Figure 2-7 on page 15 also allows a cascaded configuration from site 2 to site 3, the implication here is that GM is the second Copy Services relationship from site 1 to site 3 and running through a SAN fabric, which might have SAN switches in all three sites. This configuration allows for the highest flexibility.

You must also plan for a useful redundancy in the SAN fabric, which is not shown in Figure 2-7 on page 15.

Similar considerations apply, as described in “MT-PPRC 3-site with two synchronous targets” on page 14. HyperSwap might transfer the active site from site 1 to site 2 and carry the GM relationship from site 1 to site 2. This configuration can keep the GM relationship active and preserve DR capability in site 3 following a potential HyperSwap event.

When returning the active site to site 1 (if the storage system in site 1 is running again), CSM supports an incremental resynch approach: from site 2 to site 1 and returning to site 1 through a planned HyperSwap operation from site 2 to site 1 when H2 and H1 are back in a FULL DUPLEX state.

Another subsequent incremental resynch from H1 to H2, and automatically enabling HyperSwap when H1 and H2 are back in FULL DUPLEX state, establishes the original configuration, including returning GM back to H1 to H3/J3.

This configuration includes some potential to provide a powerful HA and DR configuration.

Again, this configuration combines IBM Z server-based services (such as HyperSwap and hosting Copy Services management software) and combines it with the unique DS8880 Copy Services capabilities.

2.1.6 Symmetrical HA/DR 4-site solutions

Many customers conduct regular failover operations to DR sites to comply with regulation requirements, perform data center maintenance at primary locations, or exercise DR capabilities. In such environments, having the ability of still maintaining HA while systems are running on DR sites is a requirement.
The combination of cascading and MT-PPRC technologies that are present on DS8880 machines can provide 4-site solutions so that clients can have sites spanning two different metropolitan areas while still maintaining HA and DR capabilities between them independent of where their systems are running. How this solution can be accomplished is shown in Figure 2-8.

In this example, sites 1 and 2 are running a production workload on “Metropolitan Area A” while Sites 3 and 4 are a DR environment on “Metropolitan Area B”.

H1 includes an active HyperSwap capable MM relationship with H2, and H2 includes an active GM relationship with H3. H1 also features a “stand-by” GM relationship with H3 (denoted with a dotted line in Figure 2-8).

In this case, if H2 encounters any issues, the GM relationship can be taken over by H1 without the need of a full synchronization to H3. H3 also has an active Global Copy relationship with H4, which allows H4 to be close to a “synchronized state” with H3.

If a planned or unplanned DR situation is declared, the systems can be failed over from Metropolitan Area A to Metropolitan Area B. In this case, an H3 to H4 replication relationship can be then converted from Global Copy to MM and HyperSwap can be enabled between them, which provides data HA.

When Metropolitan Area A is ready to be reactivated, H1 becomes the target site for the GM relationship and features a Global Copy relationship that is started from H1 to H2. After the four sites are synchronized, the systems can remain running on Metropolitan Area B with DR protection on Metropolitan Area A, or can be failed back to Metropolitan Area A making Metropolitan Area B again the DR environment.
This configuration is fully supported by GDPS and can be implemented with CSM by using a combination of different CSM session types. These IBM products can automate all of the management and failover steps that are involved to meet your requirements. For more information, see *IBM GDPS Family: An Introduction to Concepts and Capabilities*, SG24-6374 or contact your IBM representative.

2.2 z/OS HyperSwap

For many years, z/OS provided the capability to swap transparently the access from one device to another device. First uses for disk storage volumes occurred with PPRC dynamic address switching (P/DAS). Through system commands such as `IOACTION` and `SWAP`, transparently switching I/O from a primary MM volume to a secondary MM volume is possible. This capability was implemented in the last editions of IBM 3990-6 and IBM RVA disk storage control units.

For more information, see the following IBM Knowledge Center pages:
- Peer-to-Peer Remote Copy dynamic address switching (P/DAS)
- Steps for using P/DAS in a sysplex environment

The z/OS based swap process that redirects I/Os from device H1 to another device H2 (if these devices are in an MM relationship and in the FULL DUPLEX state) is shown in Figure 2-9.

![Figure 2-9 z/OS swap process](image-url)
The core of this process is to exchange (swap) the content of the two unit control blocks (UCBs), which represent the disk storage devices. Among the many details it contains about a device, the UCB also includes one or more channel paths or one or more CHPIDs that connect to the two devices.

Figure 2-9 on page 18 also shows the status just after the UCB swap operation. Before the swap, all I/O to the device on 123 (which is the MM primary device) ran through channel-path identifier (CHPID) 6E.

Eventually, all I/O traffic to 123 is stopped before the actual swap operation occurs. After all I/O to 123 is quiesced, the swap process exchanges the UCB content of device 123 and device 456. After the swap is completed, IOS resumes I/O operations, and the UCB eventually directs the resumed I/O to CHPID BA, which connects to device 456. An earlier step of the swap process is also to change the MM status of the device on 456 from the SECONDARY DUPLEX to the PRIMARY SUSPENDED state.

IBM enhanced this swap process and raised the number of swap operations that are running in parallel. With today’s processor speed and creating dedicated highly parallel running swap services within the HyperSwap address space, many thousands of swap operations can occur in a single-digit number of seconds. Highly cultivating this swap process to today’s standard is now called **HyperSwap** and performs in its own address space.

In addition to the actual swap operation that the z/OS HyperSwap service provides, certain DS8000 Copy Services commands can be issued during the swap operation to trigger freeze and failover functions within the DS8000 storage system.

Also, IOS understands HyperSwap triggers to perform autonomically a HyperSwap operation after such a trigger is raised, based on an issue to or within the primary storage server in H1.

Because this HyperSwap service is not an externalized interface, another authorized user must enable this service and exercise close cooperation with this z/OS based HyperSwap service.

Currently, authorized users of HyperSwap services are CSM and GDPS. Both solutions manage Copy Services configurations and closely interact with the HyperSwap address space to provide a Copy Services configuration to HyperSwap services after the configuration is in a proper FULL DUPLEX state.

2.3 Copy Services Manager and HyperSwap

CSM, formerly known as IBM Tivoli® Storage Productivity Center for Replication, is required to use HyperSwap within z/OS for an MM configuration. This section does not describe CSM beyond the fact that it manages sessions. Such a session contains all MM volume pairs that are set up and defined within a Parallel Sysplex configuration. From a user perspective, the entity of management is the session only.

CSM is server-based and includes two interfaces: a graphical user interface (GUI) and a command-line interface (CLI). The CSM server often is preinstalled on the DS8880 Hardware Management Console (HMC). It also can run on all common server platforms, such as IBM AIX®, Linux, Microsoft Windows, and on z/OS within the UNIX System Services or UNIX System Services shell.
CSM can handle all z/OS based CKD volumes within its MM session, even when the CSM server is hosted on the HMC or a distributed server. However, a best practice is to use the robust IBM Z server platform and place the CSM server in a z/OS LPAR. Also, when possible, you can host the CSM stand-by server in another z/OS LPAR at the other site.

As shown in Figure 2-9 on page 18, CSM appears disabled because the CSM is not necessary when z/OS performs a HyperSwap operation. This fact is also true when HyperSwap is enabled within a Parallel Sysplex configuration. Therefore, CSM is also disabled, as shown in Figure 2-10.

As shown in Figure 2-10, HyperSwap is represented in an LPAR by the following address spaces:

- HyperSwap API (HSIBAPI) address space that handles the actual swap process
- HyperSwap Management (HSIB) address space that is the communication handler to its peers in other Parallel Sysplex members

Figure 2-10 also shows normal operations with the active I/O paths connected to H1 volumes, which are MMEd to H2 and are all in a healthy FULL DUPLEX state. This requirement must be met to reach the HyperSwap enabled state.
You can also query the HyperSwap status by using the z/OS display command, as shown in Example 2-1.

Example 2-1 Querying the HyperSwap status by using a z/OS system command

```
D HS,STATUS

IOSHM0303I HyperSwap Status 671
Replication Session: MGM

HyperSwap enabled
New member configuration load failed: Disable
Planned swap recovery: Disable
Unplanned swap recovery: Partition
FreezeAll: Yes
Stop: No
```

Example 2-2 shows another z/OS system command that you can use to control HyperSwap and disable or enable HyperSwap when a HyperSwap session exists. Because only one potential HyperSwap session is allowed within a Parallel Sysplex, you do not need to refer to a specific session name in the SETHS z/OS system command.

Example 2-2 z/OS system commands to disable or enable HyperSwap

```
RO *ALL,SETHS DISABLE
RO *ALL,SETHS ENABLE
```

Sometimes, you might want to disable HyperSwap in a planned fashion to avoid a HyperSwap operation during a controlled and planned activity that might trigger a HyperSwap operation. After such a controlled activity, you can again enable HyperSwap so that z/OS HyperSwap regains control.

Example 2-3 shows another z/OS system command that you can use to query a complete HyperSwap configuration. However, that command might not be useful when thousands of MM volume pairs are within the HyperSwap session.

Example 2-3 Querying the complete HyperSwap configuration

```
D HS,CONFIG(DETAIL,ALL)

IOSHM0304I HyperSwap Configuration 495
Replication Session: MGM

Prim. SSID UA DEV# VOLSER Sec. SSID UA DEV# Status
A0 31 DA031 A#A031 40 31 04031
A0 7F DA07F A#A07F 40 7F 0407F
A0 AF DA0AF A#A0AF 40 AF 040AF
A0 72 DA072 A#A072 40 72 04072
A0 A2 DA0A2 A#A0A2 40 A2 040A2
A0 13 DA013 A#A013 40 13 04013
...  ...  ...  ...  ...  ...  ...  ...  ...
```

To see why a HyperSwap session is disabled, a basic approach is to start with another D HS z/OS system command, as shown in Example 2-4.

Example 2-4 Querying HyperSwap for exceptions

```
D HS,CONFIG(EXCEPTION,ALL)

IOSHM0304I HyperSwap Configuration 840
Replication Session: MGM

None Duplex
```
2.3.1 HyperSwap to site H2

A healthy and enabled HyperSwap session is shown in Figure 2-10 on page 20. What happens if this session faces difficulties and HyperSwap cannot remain enabled?

For some reason (planned or unplanned), a HyperSwap trigger changed the HyperSwap configuration to the configuration that is shown in Figure 2-11.

![Diagram showing HyperSwap configuration]

Figure 2-11 After HyperSwap: CSM is still passive

After a planned or unplanned HyperSwap switched the active volumes from H1 to H2, CSM remains passive and not involved. HyperSwap eventually notifies CSM about the session state change after the HyperSwap operation is completed.

During the actual swap operation, HyperSwap is also responsible for issuing all the necessary Copy Services commands to perform the complete failover to H2. This failover also leads to the MM state change of the H2 volumes from secondary DUPLEX to primary SUSPENDED.

2.3.2 Returning to site H1

After the decision is made to return the active site to H1 and if the DS8000 storage system in H1 is recovered and still holds all the data at a level when the HyperSwap occurred, CSM is required to perform the necessary steps.
The first steps to return the active site to H1 are shown in Figure 2-12.

When H2 was the active site, all relevant updates to the H2 configuration were logged within the DS8000 storage system and the corresponding bitmap.

You must return to the corresponding CSM session. There, you discover that the session changed and is no longer in a green OK status. To start the process and to return the active volumes to H1, complete the following steps:

1. Modify the CSM session to allow the volumes to be replicated in the opposite direction that it was using. This action enables the session to replicate from H2 to H1.

2. Start the replication to resynchronize incrementally the volumes from H2 to H1 by using a CSM `START_H2_H1` command.

After the incremental resynchronization process is completed for all volumes within the session and everything is back to DUPLEX, CSM returns the configuration to HyperSwap, which then switches back to enable the session for HyperSwap ready.
To return the active volumes back to H1, complete the following steps:

1. Issue a planned HyperSwap through the CSM or by using the `SETHS_SWAP` z/OS system command. This command again performs a swap operation and puts the active volumes back to H1, including the MM status of primary SUSPENDED.

2. CSM performs the following actions as before:
 a. Allows the session to replicate from H1 to H2.
 b. Resynchronizes all the volume pairs from H1 to H2 through another `START_H1_H2` command.

After all MM pairs are in the full DUPLEX state, CSM again signals the new configuration to HyperSwap, which in turn enables HyperSwap ready and the replication continues now from H1 to H2.

2.3.3 Summary

CSM follows the high IBM standards that also apply for the enhancements that are made to IBM Z and the DS8000 storage system.

CSM is the enabler for z/OS and its HyperSwap function. This synergy allows a 2-, 3-, or 4-site MM-based disk volume configuration to achieve high standards in data availability and DR readiness in a fully transparent fashion to the application I/Os.

2.4 Geographically Dispersed Parallel Sysplex

GDPS is a solution that manages complex multisite DR and HA IBM Z environments. GDPS simplifies DS8000 storage system replication and parallel sysplex management while providing end-to-end application business resilience.

To address an entire site failure, GDPS can perform a site-switch to another local site or to a remote (out-of-region) location that is based on predefined, automated scripts. Various GDPS offerings are available (see Figure 2-13); each addresses specific DR and HA goals that can be customized to meet various RPO and recovery time objective (RTO) requirements.

![Figure 2-13 GDPS offerings](image-url)
One difference between options is in the type of DS8000 Copy Services that are used as a building block for DR and HA design. The following Copy Services are used:

- **GDPS/PPRC HyperSwap Manager (HM)** and GDPS/PPRC are based on DS8000 synchronous data replication MM (known as PPRC).
- **GDPS/GM** is based on the DS8000 GM, which is an asynchronous form of remote copy.
- **GDPS/XRC** uses asynchronous data replication XRC (also known as IBM zGM).
- **GDPS/MGM** uses MM and GM disk replication for a 3-site or 4-site DR and HA environment.
- **GDPS/MTMM** supports MTMM on DS8000 storage systems. GDPS/MTMM provides similar capabilities as the capabilities that are available in GDPS/PPRC while extending PPRC management and HyperSwap capabilities to cover the two replication legs.
- **GDPS/MzGM** uses MM and XRC or IBM zGM disk replication for a 3-site or 4-site DR and HA environment.
- **GDPS Active/Active** is a multisite HA/DR solution at virtually unlimited distances. This solution is based on software-based asynchronous mirroring between two active production sysplexes that are running the same applications with the ability to process workloads in either site.

For more information about GDPS and each option, see *IBM GDPS Family: An Introduction to Concepts and Capabilities*, SG24-6374.

2.4.1 GDPS and DS8000 synergy features

Almost all GDPS solutions (except for GDPS active/active) rely on IBM disk replication technologies that are used in the DS8000 storage family. This section provides more information about the key DS8000 technologies that GDPS supports and uses.

Metro Mirror (PPRC) failover/failback support

When a primary disk failure occurs and the disks are switched to the secondary devices, failover/failback support eliminates the need to perform a full copy when reestablishing replication in the opposite direction. Because the primary and secondary volumes are often in the same state when the freeze occurred, the only differences between the volumes are the updates that occur to the secondary devices after the switch.

Failover processing sets the secondary devices to primary suspended status and starts change-recording for any subsequent changes that are made. When the mirror is reestablished with failback processing, the original primary devices become secondary devices and changed tracks are resynchronized.

GDPS/PPRC transparently uses the failover/failback capability. This support mitigates RPO exposures by reducing the amount of time that is needed to resynchronize mirroring after a HyperSwap. The resynchronization time depends on how long mirroring was suspended and the number of changed tracks that must be transferred.

GDPS now also supports MTMM on the IBM DS8880 and IBM DS8870 storage systems. Initial support is for two synchronous copies from a single primary volume, also known as an MTMM configuration. GDPS/MTMM provides similar capabilities as the capabilities that are available in GDPS/PPRC while extending PPRC management and HyperSwap capabilities to cover the two replication legs.
Global Copy

Global Copy (formerly known as PPRC-XD) is an asynchronous form of the DS8000 advanced copy functions. GDPS uses Global Copy rather than synchronous MM (PPRC) to reduce the performance effect of certain remote copy operations that potentially involve a large amount of data. The replication links are typically sized for steady state update activity, but not for bulk synchronous replication, such as initial volume copy or resynchronization.

Initial copy or resynchronizations by using synchronous copy do not need to be performed because the secondary disks cannot be made consistent until all disks in the configuration reach the duplex state. Therefore, GDPS supports initial copy and resynchronization by using asynchronous Global Copy.

When GDPS starts copy operations in asynchronous copy mode, GDPS monitors the progress of the copy operation. When the volumes are near full duplex state, GDPS converts the replication from the asynchronous copy mode to synchronous. Initial copy or resynchronization by using Global Copy eliminates the performance effect of synchronous mirroring on production workloads.

The use of asynchronous copy allows clients to establish or resynchronize mirroring during periods of high production workload. It also might reduce the time during which the configuration is exposed.

DS8000 Health Message Alert

An unplanned HyperSwap is started automatically by GDPS if a primary disk failure occurs.

In addition to a disk problem being detected as a result of an I/O operation, a primary disk subsystem can proactively report that it is experiencing an acute problem. The DS8000 storage system features a special microcode function that is known as the Storage Controller Health Message Alert capability. It alerts z/OS when hardware events occur and generates a message and Event Notification Facility (ENF) signal, as shown in Example 2-5.

Example 2-5 DS8880 health message alert

```
IEA074I STORAGE CONTROLLER HEALTH,MC=20,TOKEN=1004,SSID=AB01, DEVICE NED=2107.961.IBM.75.000000ABCD1.0100,PPRC SECONDARY CONTROLLER RECOVERY ACTION
```

Problems of different severities are reported by the DS8000 storage system. Those problems that are classified as acute are also treated as HyperSwap triggers. After systems are swapped to use the secondary disks, the disk subsystem and operating system can attempt to perform recovery actions on the former primary without affecting the applications that are using those disks.

One main benefit of the Health Message Alert function is to reduce false freeze events. GDPS Freeze and Conditional Stop actions query secondary disk subsystem to determine whether systems can be allowed to continue in a freeze event.

Metro Mirror (PPRC) suspension (Summary Event Notification)

An MM suspension generates a message aggregation that is also known as Summary Event Notification. This aggregation dramatically reduces host interrupts and operator messages when MM volume pair is suspended.
When GDPS performs a freeze, all primary devices in the MM configuration suspend. This suspension can result in significant *state change interrupt* (SCI) traffic and many messages in all of the systems. GDPS with z/OS 1.13 (and later) and microcode on the DS8000 storage system supports reporting suspensions in a summary message per DS8000 LCU instead of at the individual device level.

When compared to reporting suspensions on a per devices basis, the Summary Event Notification dramatically reduces the message traffic and extraneous processing that is associated with MM suspension events and freeze processing. Examples exist where 10,000 operator messages were reduced to under 200.

Soft Fence

After a GDPS HyperSwap or an unplanned site switch, potential exposures exist to systems that are connected to the original primary MM (PPRC) volumes. As shown in Figure 2-14, after a planned or unplanned HyperSwap, the GDPS changes the secondary volumes to primary suspended; however, the former primary volumes statuses remain unchanged. Therefore, these devices remain accessible and usable to any system within or outside the sysplex that is connected to them. In this way, the possibility exists to update or perform an IPL accidentally from the wrong set of disks, which can result in a potential data integrity or data loss problem.

![Figure 2-14 GDPS and DS8000 Soft Fence feature](image)

GDPS uses a DS8000 capability that is called *Soft Fence* to fence (block access to a selected device). GDPS uses Soft Fence when appropriate to fence devices that otherwise might be exposed to accidental update, for example, after a GDPS HyperSwap event, as shown in Figure 2-14.

Although GDPS includes built-in protection features that prevent an IPL of the systems from the wrong set of disks, the DS8880 Soft Fence function is more protection. If an IPL of any system is done manually (without GDPS), the attempt of an IPL from the wrong set of disks (fenced former primary MM volumes) is prohibited.
Also, other systems that are outside the sysplex and therefore outside GDPS control can access the former primary MM volumes. Soft Fence protection blocks any attempt to update these volumes.

On-Demand Dump

When problems occur with disk subsystems, such as problems that result in an unplanned HyperSwap, a mirroring suspension, or performance issues, a lack of diagnostic data from the time that the event occurs can result in difficulties in identifying the root cause of the problem. Taking a full statesave can lead to temporary disruption to host I/O.

The On-Demand Dump (ODD) capability of the DS8880 storage system facilitates taking a nondisruptive statesave (NDSS) at the time such an event occurs. The DS8000 microcode performs this statesave automatically for certain events, such as generating a dump of the primary disk system that triggers a freeze event, and allows an NDSS to be requested by a user. This feature enables first failure data capture (FFDC) and ensures that diagnostic data can help in problem determination efforts.

GDPS supports taking an NDSS that uses the remote copy pages (or web GUI). In addition to this support, GDPS autonomically takes an NDSS if an unplanned freeze or HyperSwap event occurs.

Query Host Access

When an MM (PPRC) disk pair is being established, the device that is the target (secondary) must not be used by any system. The same is true when establishing a FlashCopy relationship to a target device. If the target is in use, the establishment of the PPRC or FlashCopy relationship fails.

When such failures occur, identifying which system is delaying the operation can be a tedious task. The DS8000 Query Host Access function provides the means to query and identify what system is using a selected device. This function is used by the IBM Device Support Facilities (ICKDSF) utility (for more information, see 4.5, “Volume formatting overwrite protection” on page 56) and by GDPS.

GDPS has the following capabilities:

- Query Host Access identifies the LPAR that is using the selected device through the CPU serial number and LPAR number. For the operations staff to convert this information to a system or CPU and LPAR name is still a tedious job. GDPS performs this conversion and presents the operator with more readily usable information, which avoids this extra conversion effort.

- When GDPS is requested to perform a PPRC or FlashCopy establish operation, GDPS first performs Query Host Access to determine whether the operation is expected to succeed or fail as a result of one or more target devices being in use. GDPS alerts the operator if the operation is expected to fail, and identifies the target devices in use and the LPARs holding them.

- GDPS continually monitors the target devices that are defined in the GDPS configuration and alerts operations that target devices are in use when they should not be in use. This alert allows operations to fix the reported problems in a timely manner.

- With GDPS, the operator can perform *ad hoc* Query Host Access to any selected device by using the GDPS pages (or GUI).
IBM DS8000 Easy Tier Heat Map Transfer

IBM DS8000 Easy Tier Heat Map Transfer (HMT) can transfer the Easy Tier learning from an MM (PPRC) primary to the secondary disk subsystem such that the secondary disk system can also be optimized based on this learning and have similar performance characteristics in the HyperSwap event. For more information, see 5.6, “Easy Tier” on page 86.

GDPS integrates support for HMT. The appropriate HMT actions (such as the starting and stopping of processing, and reversing transfer direction) are incorporated into the GDPS managed processes. For example, if MM is temporarily suspended by GDPS for a planned or unplanned secondary disk outage, HMT is also suspended. If MM direction is reversed as a result of a HyperSwap, the HMT direction is also reversed.

As of GDPS V3.12 and later, HMT is supported for all available GDPS options (2-, 3-, and 4-site environments).

2.4.2 GDPS and DS8000 synergy summary

GDPS is specifically designed for complex multi-site or single-site IBM Z environments. It provides the capability to manage disk remote copy, automate Parallel Sysplex operation tasks, and perform failure recovery from a single point of control in an easy and automated way. Continuous collaboration over many years between IBM Z, GDPS, and DS8000 development teams delivered a robust HA/DR design that is commonly used among IBM Z clients.

With its HyperSwap capability, GDPS is the ideal solution if you target 99.9999% availability. Moreover, it also allows clients to run DR tests more frequently without affecting production. The more you practice your DR process, the more confident you become in recovering your systems and applications if a real disaster strikes.
Data protection and backup

Traditional data protection and backup typically rely on a point-in-time copy, which allows restoring data only from when that copy or backup was created. As the name implies, continuous data protection in contrast to traditional data protection and backup has no defined schedule. However, it is usually an asynchronously created copy, which does not necessarily ensure consistent data at any one time. Utilities and other software or middleware-based functions are available to overcome this shortcoming of continuous data backup.

Massive data backups still rely on a point-in-time backup copy that is combined with serialization efforts. For example, database subsystems can temporarily quiesce databases and related data sets, which forces a buffer flush to permanent storage.

The challenge is then to create a backup copy as quickly as possible to make the database data sets available again. Several solutions were developed over time, but the basic and simplest approach is still to create a consistent backup as quickly as possible that also is instantly reusable.

With the DS8000 storage system, the foundation for this simple backup approach is based on the FlashCopy function. The next step was to develop software that intelligently uses FlashCopy to have a fast process to flash or snap a volume or data set.

IBM Fast Replication Backup (FRBACKUP) enables storage administrators to create backup policies for IBM Db2 and IBM IMS databases with minimum affect on applications. Db2 uses this function for Db2 system-level backup and to control the serialization effort that ensures a consistent set of the complete system-level backup, including all Db2 table space and logs. Db2 also maintains its repository, for example, by updating the bootstrap data set (BSDS) to reflect all backup activity.

This chapter describes FRBACKUP and other backup solutions that use FlashCopy with Db2 and IMS, adding to the list of synergy items between IBM Z server and DS8000 storage systems.

This chapter includes the following topics:
- FRBACKUP
- Using FlashCopy with Db2 and IMS
3.1 FRBACKUP

FRBACKUP is a storage-based solution that uses storage software components of the z/OS Data Facility Storage Management Subsystem (DFSMS) with its components Data Facility Storage Management Subsystem Data Facility Product (DSSMSdfp), Data Facility Storage Management Subsystem Hierarchical Storage Manager (DFSMShsm), and Data Facility Storage Management Subsystem Data Set Services (DFSMXdss). These components can interact and use DS8000 Copy Services functions, and here in particular, DS8000 FlashCopy and its various characteristics.

All of the involved storage components from a hardware perspective and z/OS DFSMS software that is involved are shown in Figure 3-1.

![Figure 3-1 FRBACKUP: Storage associations](image_url)

The configuration shows all important components from a storage perspective. Although the configuration might appear to be a complex solution, it is simple rather than complex. It is logically divided into two parts by a horizontal bar (showing FRBACKUP).

For more information, see DFSMShsm Fast Replication Technical Guide, SG24-7069.

3.1.1 Storage Management Subsystem construct Copy Pool to support FRBACKUP as input

Different types of Storage Groups (SGs) are used to support FRBACKUP input and output. On the input site to FRBACKUP is a copy pool. Another SG type, the Copy Pool Backup Storage Group (CPBSG), supports FRBACKUP on the output site of FRBACKUP.
The Storage Management Subsystem (SMS) construct of the Copy Pool is shown in Figure 3-2. The conventional z/OS volumes are grouped in conventional SMS pool SGs. Two DS8000 storage systems and SMS with two SGs that contain all the relevant logical volumes are used.

![Figure 3-2 New SMS construct: SMS Copy Pool](image)

The example that is shown in Figure 3-2 might represent a Db2 environment with log volumes and database volumes. The log volumes are grouped in SG SG1. All database volumes are grouped in SG SG2.

Tip: Simplify your SMS configuration whenever possible. Typically, reduce the number of SGs to approximately 4 - 6 SGs, reduce the Storage Class (SC) number to no more than 10, and the Management Class (MC) number to less than 20.

Copy Pool 1 incorporates only a single SMS SG (SG SG1). A Copy Pool can contain as many as 256 SMS pool SGs, and all of these SGs are then processed collectively during FRBACKUP processing. In this simple configuration, Copy Pool 2 is defined with another single SG2 SG. Copy Pools serve as input to the FRBACKUP process.

For more information about defining Copy Pools, see *z/OS DFSMSdfp Storage Administration Version 2 Release 3*, SC23-6860-30 or IBM Knowledge Center.

3.1.2 Copy Pool Backup Storage Group for output to FRBACKUP

A second construct is another SMS SG type. The CPBSG is a logical bracket around candidate target FlashCopy volumes. All volumes within a CPBSG are reserved for DFSMShsm FRBACKUP requests and for DFSMShsm use only.

CPBSG is associated with Copy Pools only. When preparing for an FRBACKUP process, DFSMShsm interfaces with SMS to assign to each FlashCopy source volume from the Copy Pool a corresponding FlashCopy target volume in the CPBSG. Therefore, you must have enough eligible FlashCopy target volumes available to map all volumes from a Copy Pool to the CPBSG.
As shown in Figure 3-3, the DS8000 storage systems need enough disk space for FlashCopy target volumes to accommodate all FlashCopy source volumes from the Copy Pool that originates from the same DS8000 storage system. All volumes in Copy Pool 1 and in Copy Pool 2 from DS8000_#1 need at least another FlashCopy target volume in the same DS8000_#1 within a corresponding CPBSG when only one copy is required. FRBACKUP supports up to 85 copies.

When you define a Copy Pool, consider keeping backup versions on tape. DFSMShsm automatic dump processing can create these tape copies.

For more information, see the following resources at IBM Knowledge Center:

- Copy Pool Backup Storage Group (*z/OS DFSMSdfp Storage Administration Version 2 Release 2, SC23-6860-30*)
- Mirrored FlashCopy targets (also known as Preserve Metro Mirror (Preserve MM)) on *z/OS DFSMS Advanced Copy Services, SC23-6847-30*
- Other *z/OS DFSMS* manuals
3.1.3 Combining Copy Pool and Copy Pool Backup Storage Group

Combining Copy Pool and Copy Pool Backup Storage Group is required. A 1:1 mapping of two Copy Pools into two corresponding CPBSGs is shown in Figure 3-4.

To keep the example simple, two Copy Pools are defined in Figure 3-4, each with its own CPBSG. In reality, more flexibility is available, if needed. For example, an SMS pool SG might need to belong to more than one Copy Pool, or a CPBSG might need to be shared by multiple Copy Pools.
3.1.4 The frbackup command

The DFSMSHsm frbackup command starts the process to flash all volumes within the relevant Copy Pool to assign dynamically FlashCopy target volumes in the CPBSG. Figure 3-5 shows this process, which can be started only through the DFSMSHsm FRBACKUP interface.

DFSMShsm interfaces with SMS to select FlashCopy target volumes for each source volume from the Copy Pool. To shorten this FlashCopy volume mapping process, the frbackup command can be issued with the prepare parameter.

The frbackup command that is issued through TSO is shown in Example 3-1. The prepare parameter triggers DFSMSHsm to select a FlashCopy target volume for each Copy Pool-based volume and preserves this mapping until the actual FRBACKUP process issues all the flash copies.

Example 3-1 Issued frbackup command with the prepare parameter

hsend frbackup copypool (cp1) prepare

ARC1000I COPY POOL CP1 FRBACKUP PROCESSING ENDED
ARC1007I COMMAND REQUEST 00000582 SENT TO DFSMSHSM
Another DFSMShsm frbackup command that is issued again through TSO and performs the actual FlashCopy operations is shown in Example 3-2.

Example 3-2 Issued frbackup command with the execute parameter

```
hsend frbackup copypool (cp1) execute
```

```
ARC1000I COPY POOL CP1 FRBACKUP PROCESSING ENDED
ARC1007I COMMAND REQUEST 00000587 SENT TO DFSMSHSM
```

The example that is shown in Figure 3-1 on page 32 implies two versions for each FRBACKUP process with six FlashCopy target volumes in each DS8000 storage system for Copy Pool 2 and two FlashCopy target volumes in each DS8000 storage system for Copy Pool 1.

3.1.5 FRBACKUP software-based interaction

The software-based interaction within z/OS is shown in Figure 3-6. DFSMShsm has the leading role in managing the complete FRBACKUP process and communicates with the key address spaces, which are required to provide support to create successfully FlashCopy based volume copies.

![Figure 3-6 FRBACKUP software interaction within z/OS](image)

The interaction that is shown in Figure 3-6 shows a Db2 based environment with logging volumes and table spaces within a single Copy Pool and its related CPBSG. Because FRBACKUP has a counterpart, Fast Replication Recover (FRRECOV), this FRBACKUP volume set in the CPBSG allows for a recovery on an individual table space (data set level). This capability requires getting all related catalog information during the FRBACKUP process.
To achieve a highly parallel process, DFSMSshsm starts several DFSMSdss instances because DFSMSdss is the actual interface to FlashCopy in the DS8000 storage system. For more information, see *DFSMShsm Fast Replication Technical Guide*, SG24-7069.

As shown in Figure 3-6 on page 37, FRBACKUP is another example of the close synergy between z/OS and DS8000 Copy Services.

3.2 Using FlashCopy with Db2 and IMS

The FlashCopy (point-in-time copy) function in the DS8000 storage system has an extraordinary synergy with IBM Z storage management, which is delivered through a few powerful interfaces. FlashCopy opens many possibilities and several interesting use cases for backups of your entire system. It enhances testing capabilities by quickly cloning environments without application disruption. It also increases the availability of Db2 and IMS utilities.

The following interfaces can be used to configure and control FlashCopy process for z/OS users:

- TSO commands
- IBM Device Support Facilities (ICKDSF)
- ANTRQST application programming interface (API)
- DFSMSdss

This section describes how Db2 and IMS databases use the DS8000 FlashCopy function.

3.2.1 FlashCopy and DB2 for z/OS synergy

IBM DB2® for z/OS utilities frequently are enhanced to use more of the DS8000 FlashCopy function. New Db2 versions included enhancements to use Db2, DS8000 storage systems, and z/OS synergy, as listed in Table 3-1.

<table>
<thead>
<tr>
<th>Db2 version</th>
<th>FlashCopy use</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10 & V11</td>
<td>Data set FC for COPY.</td>
</tr>
<tr>
<td></td>
<td>Data set FC for inline copy in REORG TABLESPACE, REORG INDEX, REBUILD INDEX, and LOAD.</td>
</tr>
<tr>
<td></td>
<td>FC image copies with consistency and no application outage (SHRLEVEL CHANGE).</td>
</tr>
<tr>
<td></td>
<td>FCIC accepted as input to RECOVER, COPYTOCOPY, DSN1COPY, DSN1COMP, and DSN1PRNT.</td>
</tr>
<tr>
<td>V12</td>
<td>Prevent leaving the page set COPY-pending when REORG utility creates inline FlashCopy with no sequential inline image copy and FlashCopy fails.</td>
</tr>
<tr>
<td></td>
<td>Use the COPY_FASTREPLICATION parameter to identify whether fast replication is required, preferred, or not needed during the creation of FC image copy by the COPY utility.</td>
</tr>
<tr>
<td></td>
<td>System-level backup supports for multiple Copy Pools in which you can keep extra system-level backups on disk during upgrades.</td>
</tr>
</tbody>
</table>

Table 3-1 FlashCopy and DB2 for z/OS utilities
The Db2 BACKUP and RESTORE utility

The Db2 BACKUP SYSTEM utility is used to take a fast and minimally disruptive system-level backup. It backs up the entire data sharing group with all Db2 catalog and application data. The advantage of this utility is that you do not need to suspend or quiesce the Db2 logs and hold off the write I/Os. During the backup process, all of the update activities are available. However, you cannot modify several items, for example, you cannot create, delete, and extend a data set.

The BACKUP SYSTEM calls the DFSMShsm `frbackup` command (as described in 3.1, “FRBACKUP” on page 32), which is converted into DFSMSdss copy commands that start FlashCopy at a volume level.

The Db2 BACKUP SYSTEM supports incremental FlashCopy. The `ESTABLISH FCINCREMENTAL` keyword is used for that purpose. This keyword establishes the persistent FlashCopy relationship, and you use it only the first time you start the BACKUP SYSTEM utility.

The next time that you start the BACKUP SYSTEM utility, it takes an incremental FlashCopy from the physical background copy. This persistent incremental FlashCopy relationship can be stopped by using BACKUP SYSTEM `END FCINCREMENTAL` parameter.

After the BACKUP SYSTEM completes, the restore is done by using the RESTORE SYSTEM utility, which can restore a complete system. Similar to the BACKUP SYSTEM utility, RESTORE SYSTEM calls the DFSMShsm `FRRECOV` command, which is converted into DFSMSdss copy commands that start FlashCopy in the background.

Another possibility is to restore an individual Db2 object (table space or index) from the full system backup. Unlike the full BACKUP SYSTEM and RESTORE SYSTEM that use the FlashCopy on the volume level, the data-set-level FlashCopy is used when the single Db2 object is recovered. The `SYSTEM_LEVEL_BACKUPS` parameter should be set to `YES` (default is `NO`).

DFSMShsm is used in the background to extract the data set from the volume level FlashCopy that is taken with BACKUP SYSTEM.

Db2 FlashCopy image copy utility

Db2 features an option to start data-set-level FlashCopy to create image copies. Although the Image Copy utility supports image copies, data-set-level FlashCopy can be used by any Db2 utility that creates an inline image copy, such as a Db2 reorg, load, rebuild index, and reorg index.

By using FlashCopy in the background, the IBM Z CPU is offloaded to the DS8000 FlashCopy process. In addition, the Image Copy utility is completed when the FlashCopy relationship is established.

FlashCopy image copy can be taken concurrently with share-level reference Image Copies, and without any effect on the applications.

Unlike the BACKUP SYSTEM, FlashCopy image copy starts DFSMSdss directly. Because DFSMShsm is not involved, you do not need to plan your data placement (for example, Integrated Catalog Facility (ICF) catalogs). The only requirement is that all Db2 volumes must be SMS-managed.

When the FlashCopy image copy is created, it is available for restoring. When the recover utility restores the FlashCopy image copy object, it starts FlashCopy through DFSMSdss.
The Check Index, Check Data, and Check LOB utilities

Although the Check Index, Check Data, and Check LOB utilities are not used frequently, they are some of the most important utilities regarding data corruption analysis. These utilities can help you find the level of corruption and the best recovery processes.

Here, the FlashCopy synergy with these Check utilities plays an important role. In the situation where you suspect data corruption, a prompt investigation is critical. Running the Check utilities while the application is running can save enormous amounts of time.

FlashCopy provides an option to run a Check utility nondisruptively with share-level change (by using the SHRLEVEL CHANGE parameter) included. The use of this option creates a shadow data set of data, indexes, and large objects (LOBs) that can be checked by the utility that uses the DSFSMdss copy command (FlashCopy).

When the FlashCopy is established (several seconds), the Check utility starts using the shadow data set (FlashCopy target data set). The shadow data set is in read-only mode only while the FlashCopy relationship is being established. After the DFSMSdss confirms that the FlashCopy is established, full read and write access to the data set is restored.

Therefore, without FlashCopy and the Check utility with share-level access, the shadow data set is created with the standard I/O by using the IBM Z resources rather than DS8000 storage system. This process can be disruptive for the application. To avoid this situation, a suggestion is to update the ZPARM FlashCopy fastreplication keyword to REQUIRED rather than PREFERRED, which is default value in Db2 V10 and later. This parameter ensures that FlashCopy is used every time. If problems occur while FlashCopy is started, the Check utility fails, which is a better outcome than any application outage.

3.2.2 FlashCopy and IMS for z/OS synergy

Various IMS utilities, as is the case with Db2, use DFSMSdss to start the DS8000 FlashCopy function. This section provides information about IMS High-Performance Image Copy (IMS HP IC), which is used for IMS backup and restore.

IMS High-Performance Image Copy

IMS HP IC provides fast back up and recovery of database data. Although it includes many services, we focus on Advanced Image Copy Services, which allow IMS HP IC to produce faster image copies and increase availability time for IMS databases.

Advanced Image Copy Services use the DFSMSdss cross-memory API, ADRXMAIA, to process the DFSMSdss DUMP and COPY commands. These commands allow IMS HP IC to use the DS8000 FlashCopy advanced point-in-time copy function.

The FlashCopy and IMS synergy allows you to back up a database or any collection of data at a point in time and with minimum downtime for the database. The database is unavailable only long enough for DFSMSdss to initialize a FlashCopy relationship for the data (data-set-level FlashCopy), which is a small fraction of the time that is required for a complete backup. The copy that is made does not include any update activity. When the FlashCopy relationship is established, DFSMSdss releases all the serialization that it holds on the data, informs the Advanced Image Copy services about it so that update activity can resume, and begins reading the data.
The following Advanced Image Copy Services types are shown in Figure 3-7:

- COPY creates the clone data sets of DB data sets by using FlashCopy.
 The COPY process is used to create Image Copy Data Set (ICDS) quickly and to recover the database faster. This process is possible because FlashCopy is started as a background task.

- FDUMP accesses DB data sets by using FlashCopy and can create ICDS on the tape.
 Similar to the COPY process, FDUMP can be used when you must create a quick shadow of ICDS and dump it to tape.

- DUMP accesses DB data sets by using Concurrent Copy and can create ICDS on the tape.
 The DUMP process does not use FlashCopy, and it is limited only to the Concurrent Copy function.

Management and configuration

This chapter describes enhancements in z/OS that help to simplify storage management, which leaves it to the system to manage automatically and autonomically the storage. The foundation to reach this goal was developed through system-managed storage and has been available since 1989. Enhancements over the past years to today’s z/OS Version 2 level perfected the storage software within z/OS.

The focus of this chapter is on storage pool designs and specific enhancements that were jointly developed by the z/OS and DS8880 storage system development teams to achieve more synergy between both units.

This chapter includes the following topics:
- Storage pool design considerations
- Extended address volume enhancements
- Dynamic volume expansion
- Quick initialization
- Volume formatting overwrite protection
- Channel paths and a control-unit-initiated reconfiguration
- CKD thin provisioning
- DSCLI on z/OS
4.1 Storage pool design considerations

Storage pool design considerations were always a source of debate. Discussions originated in the early days when customers discovered that they could not manually manage the growing number of their disk-based volumes.

IBM responded to this challenge by introducing system-managed storage and its corresponding system storage software. The approach was to no longer focus on volume awareness and instead turn to a pool concept. The pool was the container for many volumes and disk storage was managed on a pool level.

Eventually, storage pool design considerations also evolved with the introduction of storage systems, such as the DS8000 storage system, which offered other possibilities.

This section covers the system-managed storage and DS8000 views, and how both are combined to contribute to the synergy between the IBM Z server and DS8880 storage systems.

4.1.1 Storage pool design considerations within z/OS

System storage software, such as Data Facility Storage Management Subsystem (DFSMS), manages information by creating a file or data set, setting its initial placement in the storage hierarchy, and managing it through its entire lifecycle until the file is deleted. The z/OS Storage Management Subsystem (SMS) can automate management storage tasks and reduce the related costs. This automation is achieved through policy-based data management, availability management, space management, and even performance management, which DFSMS provides autonomically.

Ultimately, it is complemented by the DS8000 storage system and its rich variety of functions that work well with DFSMS and its components, as described in 4.1.4, “Combining SMS storage groups and DS8000 extent pools” on page 48.

This storage management starts with the initial placement of a newly allocated file within a storage hierarchy. It includes consideration for storage tiers in the DS8000 storage system where the data is stored. SMS assigns policy-based attributes to each file. Those attributes might change over the lifecycle of that file.

In addition to logically grouping attributes, such as the SMS Data Class (DC), SMS Storage Class (SC), and SMS Management Class (MC) constructs, SMS uses the concept of Storage Group (SG).

Finally, files are assigned to an SG or set of SGs. Ideally, the criteria for where to place the file should be solely dictated by the SC attributes and is controlled by the last Automatic Class Selection (ACS) routine.

A chain of ACS routines begins with an optional DC ACS routine, and a mandatory SC ACS routine that is followed by another optional MC ACS routine. This chain of routines is concluded by the SG ACS routine. The result of the SG ACS routine culminates in a list of candidate volumes where this file is placed.

Behind this candidate volume list is sophisticated logic to create the volume list. z/OS components and measurements are involved to review this volume list to identify the optimal volume for the file.
Therefore, the key construct from a pooling viewpoint is the SMS SG. The preferred approach is to create only a few SMS SGs and populate each SMS SG with as many volumes as possible. This approach delegates to the system software the control for how to use and populate each single volume within the SMS SG.

The system software includes all of the information about the configuration and the capabilities of each storage technology within the SMS SG. Performance-related service-level requirements can be addressed by SC attributes.

The SMS ACS routines and execution sequence are shown in Figure 4-1. Also shown is a typical SMS environment. The SC ACS routine is typically responsible for satisfying performance requirements for each file by assigning a particular SC to each file. The SC ACS fragment routine (see Figure 4-1) selects, through filter lists, certain data set name structures to identify files that need a particular initial placement within the SMS storage hierarchy. Also shown in Figure 4-1 is the storage technology tiers.

For more information about SMS constructs and ACS routines, see z/OS DFSMSdfp Storage Administration Version 2 Release 2, SC23-6860-02 or IBM Knowledge Center.
How the SG ACS routine assigns one or more SGs to a newly allocated file is shown in Figure 4-2. Also shown is that, in this hypothetical scenario, an SG contains volumes that are based on a homogeneous storage technology only.

Typically, you use this kind of storage pool management when a specific application always needs the fastest available storage. Independently of the I/O rate and size of each I/O, you want to protect the data from being moved to a less powerful storage level.

In this example, you might assign an SC CRIT and place the corresponding files in the FLASH SG. The FLASH SG contains only volumes that are in an extent pool with flash storage exclusively. This case might be extreme, but it is justified for an important application that requires the highest available performance in any respect.

Note: In the newer DS8880 storage systems, a best practice is to create hybrid extent pools and enable Easy Tier on them for systems with multitier hybrid configurations. By doing so, the DS8880 microcode handles the data placement within the multiple storage tiers that belong to the extent pools for best performance results.
4.1.2 z/OS DFSMS class transition

Starting with z/OS 2.1, DFSMS (and specifically Data Facility Storage Management Subsystem Hierarchical Storage Manager (DFSMShsm)) is enhanced to support a potential class transition in an automatic fashion, which enables relocating a file within its L0 storage level from an SG into another SG. This relocation is performed during DFSMShsm automatic space management and is called class transition because ACS routines are exercised again during this transition process.

Based on a potentially newly assigned SC, MC, or a combination of both, the SG ACS routine then assigns a new SG. This group might then be an SG that is different from the previous group based on the newly assigned SC within this transition process. This new policy-based data movement between SCes and SG is a powerful function that is performed during DFSMShsm primary space management and by on-demand migration and interval migration.

Note: During initial file allocation, SMS can select the correct SG. However, the performance requirements might change for this file over time and a different SG might be more appropriate.

For more information, see the following publications:
- z/OS DFSMS Using the New Functions Version 2 Release 1, SC23-6857
- DFSMS Using the New Functions Version 2 Release 2, SC23-6857

With z/OS V2.2, various migrate commands are enhanced to support class transitions at the data set, volume, and SG level. For more information, see IBM z/OS V2R2: Storage Management and Utilities, SG24-8289.

4.1.3 DS8000 storage pools

The DS8000 architecture also understands the concept of pools or SGs as extent pools.

The concept of extent pools within the DS8000 storage system also evolved over time from homogeneous drive technologies within an extent pool to what today is referred to as a hybrid extent pool, with heterogeneous storage technology within the same extent pool. The use of hybrid extent pool is made possible and efficient through the Easy Tier functions.

With Easy Tier, you can autonomically use the various storage tiers in the most optimal fashion, based on workload characteristics. This goal is ambitious, but Easy Tier for the DS8880 storage system evolved over the years.

In contrast to SMS, where the granularity or entity of management is a file or data set, the management entity is a DS8880 extent within Easy Tier. The Count Key Data (CKD) extent size is the equivalent of a 3390-1 volume with 1113 cylinders or approximately 0.946 GB as a DS8000 extent size, when large extents are used.

When small extents are used, these extents are 21 cylinders, or approximately 17.85 MB, but are grouped in extent groups of 64 small extents for Easy Tier management. Automatic Easy Tier management within the DS8880 storage system migrates extents between technologies within the same extent pool or within an extent pool with homogeneous storage technology.

For more information, see IBM DS8000 Easy Tier (for DS8880 R8.5 or later), REDP-4667.
4.1.4 Combining SMS storage groups and DS8000 extent pools

When comparing SMS storage tiering and DS8000 storage tiering, each approach has its own strength. SMS-based tiering addresses application and availability needs through initial data set or file placement according to service levels and policy-based management. It also gives control to the user and application regarding where to place the data within the storage hierarchy.

With DFSMS class transition, files can automatically transition between different SMS SGs. This capability currently requires that the file is not open to an active application. From that standpoint, Easy Tier can relocate DS8000 extents without affecting a file that might be in use by an application.

Easy Tier does not understand an application’s needs when the data set is created. Its intention is to use the available storage technology in an optimal fashion by using flash memory when the performance effect of hard disk drive (HDD)-based technology with its latency might negatively affect an application.

SMS storage tiering and DS8000 storage tiering are compared in Figure 4-3.

<table>
<thead>
<tr>
<th>Movement entity</th>
<th>SMS based tiering</th>
<th>DS8000 based tiering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management scope</td>
<td>Data set or file level</td>
<td>Physical DS8000 extent</td>
</tr>
<tr>
<td>Management level</td>
<td>Across DS8000 storage systems but within a Parallel Sysplex</td>
<td>Within a DS8000 storage system, extent pool</td>
</tr>
<tr>
<td>Access</td>
<td>Closed files only</td>
<td>Open and closed files</td>
</tr>
<tr>
<td>Impact</td>
<td>File must be quiesced</td>
<td>Transparent – no impact</td>
</tr>
<tr>
<td>Costs</td>
<td>Host MIPS</td>
<td>No host MIPS</td>
</tr>
</tbody>
</table>

Figure 4-3 Comparison of SMS tiering and DS8000 tiering

Combining both tiering approaches is possible, as shown in Figure 4-4.
Four potential SMS SGs are shown in Figure 4-4 on page 48. In this example, SG Flash is intended to store crucial and important files that are latency sensitive. Therefore, this SG has its volumes solely defined in a DS8000 extent pool that consists of only flash memory, only solid-state drive (SSD) technology, or both.

Through SMS, class transition storage administration can automatically relocate files according to the application's needs and requirements. This feature might be especially helpful to address important applications that can run only at month-end or quarterly. But then, they must have the best available performance that the configuration can provide.

The Ent SG has all of its volumes defined within DS8000 extent pools that contain enterprise level HDDs (SAS-based 10 K / 15 K RPM). Typically, HDDs provide sufficient performance and IBM Z controlled I/O uses the DS8000 cache storage so efficiently that it can provide good I/O performance because of high cache-hit ratios.

A nearline SMS SG uses high-capacity 7200 RPM SAS-based HDDs. All related volumes are defined in DS8000 extent pools that contain 7.2 K HDDs only. To that storage tier, SMS can direct files that do not need high performance and require the least I/O service time.

The fourth SMS SG has all its volumes defined in DS8000 hybrid extent pools, which might contain SAS HDDs and also some flash technology (see Figure 4-4 on page 48). SMS can allocate files here that show a regular load pattern but with different I/O behavior and I/O skews.

However, Easy Tier in automatic mode can see the I/O skew over time and might start moving extents within the pool. The Easy Tier intratier capability relocates certain extents from overloaded ranks to ranks with less activity within the affected extent pool, which uses a balanced back-end workload as much as possible.

Combining SMS SGs and DS8000 Easy Tier tiering approaches might lead to the best achievable results from a total systems perspective. This combination proves another tight integration between IBM Z and DS8000 storage system to achieve to best possible results in an economical fashion with highly automated and transparent functions serving IBM Z customers.

4.2 Extended address volume enhancements

Today's large storage facilities tend to expand to larger CKD volume capacities. Some installations are nearing or beyond the z/OS addressable unit control block (UCB) 64 KB limitation disk storage. Because of the four-digit device addressing limitation, larger CKD volumes must be defined by increasing the number of cylinders per volume.

Currently, an extended address volume (EAV) supports volumes with up to 1,182,006 cylinders (approximately 1 TB).
With the introduction of EAVs, the addressing changed from track to cylinder addressing. The partial change from track to cylinder addressing creates the following address areas on EAVs:

- **Track-Managed Space:** The area on an EAV that is within the first 65,520 cylinders. The use of the 16-bit cylinder addressing allows a theoretical maximum address of 65,535 cylinders. To allocate more cylinders, you must have a new format to address the area above 65,520 cylinders.

 For 16-bit cylinder numbers, the track address format is CCCCHHHH, where:

 - HHHH: 16-bit track number
 - CCCC: 16-bit track cylinder

- **Cylinder-Managed Space:** The area on an EAV that is above the first 65,520 cylinders. This space is allocated in multicylinder units (MCUs), which currently have a size of 21 cylinders. A new cylinder-track address format addresses the extended capacity on an EAV.

 For 28-bit cylinder numbers, the format is CCCCcccH, where:

 - CCCC: The low order 16 bits of a 28-bit cylinder number
 - ccc: The high order 12 bits of a 28-bit cylinder number
 - H: A 4-bit track number (0 - 14)

The following z/OS components and products now support 1,182,006 cylinders:

- DS8000 storage system and z/OS V1.R12 or later support CKD EAV volume sizes: 3390 Model A: 1 - 1,182,006 cylinders (approximately 1004 TB addressable storage).

- Configuration granularity:

 - 1-cylinder boundary sizes: 1 - 56,520 cylinders
 - 1113-cylinder boundary sizes: 56,763 (51 x 1113) - 1,182,006 (1062 x 1113) cylinders

The size of a Mod 3/9/A volume can be increased to its maximum supported size by using dynamic volume expansion (DVE). For more information, see 4.3, “Dynamic volume expansion” on page 54.

The volume table copy (VTOC) allocation method for an EAV volume was changed compared to the VTOC used for traditional smaller volumes. The size of an EAV VTOC index was increased four-fold, and now has 8192 blocks instead of 2048 blocks.

Because no space remains inside the Format 1 data set control block (DSCB), new DSCB formats (Format 8 and Format 9) were created to protect programs from seeing unexpected track addresses. These DSCBs are known as *extended attribute DSCBs*. Format 8 and 9 DSCBs are new for EAV. The Format 4 DSCB also was changed to point to the new Format 8 DSCB.

4.2.1 Data set type dependencies on an EAV

EAV includes several data set type dependencies.

In all Virtual Storage Access Method (VSAM) sequential data set types, Extended, Basic, and Large format; basic direct-access method (BDAM); partitioned data set (PDS); partitioned data set extended (PDSE); VSAM volume data set (VVDS); and basic catalog structure (BCS) can be placed on the extended addressing space (EAS). This space is the cylinder-managed space of an EAV volume that is running on z/OS V1.12 and later.

EAV includes all VSAM data types, such as key-sequenced data set (KSDS); relative record data set (RRDS); entry-sequenced data set (ESDS); linear data set; and IBM Db2, IBM IMS, IBM CICS®, and IBM z/OS File System (zFS) data sets.
The VSAM data sets that are placed on an EAV volume can be SMS or non-SMS managed.

For an EAV volume, the following data sets might exist, but are not eligible to have extents in the EAS (cylinder-managed space):

- VSAM data sets with incompatible control area sizes.
- VTOC (it is still restricted to the first 64 K - 1 tracks).
- VTOC index.
- Page data sets.
- A VSAM data set with **IMBED** or **KEYRANGE** attributes is not supported.
- Hierarchical file system (HFS) file system.
- **SYS1.NUCLEUS**.

All other data sets can be placed on an EAV EAS.

In the current releases, you can expand all Mod 3/9/A volumes to a large EAV by using DVE. For a sequential data set, VTOC reformat is run automatically if **REFVTOC=ENABLE** is enabled in the **DEVSUPxx** parmlib member.

The data set placement on EAV as supported on z/OS V1 R12 and later is shown in Figure 4-5.

![Figure 4-5: Data set placement on EAV](image-url)
4.2.2 z/OS prerequisites for EAV volumes

The following prerequisites must be met for EAV volumes:

- EAV volumes with 1 TB sizes are supported only on z/OS V1.12 and later. A non-VSAM data set that is allocated with an extended attribute DSCB (EADSCB) on z/OS V1.12 cannot be opened on earlier versions of z/OS V1.12.
- After a large volume is upgraded to 3390 Model volume (an EAV with up to 1,182,006 cylinders) and the system is granted permission, an automatic VTOC refresh and index rebuild are run. The permission is granted by REFVT0C=ENABLE in parmlib member DEVSUPxx. The trigger to the system is a State Change Interrupt (SCI) that occurs after the volume expansion, which is presented by the storage system to z/OS.
- No other hardware configuration definition (HCD) considerations are available for the 3390 Model A definitions.
- On parmlib member IGDSMSxx, the USEEAV(YES) parameter must be set to allow data set allocations on EAV volumes. The default value is NO and prevents allocating data sets to an EAV volume. Example 4-1 shows a message that you receive when you are trying to allocate a data set on a EAV volume and USEEAV(NO) is set.

Example 4-1 Message IEF021I with USEEVA set to NO

IEF021I TEAM142 STEP1 DD1 EXTENDED ADDRESS VOLUME USE PREVENTED DUE TO SMS USEEAV (NO)SPECIFICATION.

- The new Break Point Value (BPV) parameter determines which size the data set must have to be allocated on a cylinder-managed area. The default for the parameter is 10 cylinders, which can be set on parmlib member IGDSMSxx and in the SG definition (SG BPV overrides system-level BPV). The BPV value can be 0 - 65520, where 0 means that the cylinder-managed area is always preferred and 65520 means that a track-managed area is always preferred.

4.2.3 Identifying an EAV volume

Any EAV has more than 65,520 cylinders. To address this volume, the Format 4 DSCB was updated to x'FFFE' and DSCB 8+9 is used for cylinder-managed address space. Most of the eligible EAV data sets were modified by software with EADSCB=YES.
An easy way to identify any EAV that is used is to list the VTOC summary in TSO/ISPF option 3.4. Example 4-2 shows the VTOC summary of a 3390 Model A with a size of 1 TB CKD usage.

Example 4-2 TSO/ISPF 3.4 pane for a 1 TB EAV volume: VTOC summary

When the data set list is displayed, enter either:
"/" on the data set list command field for the command prompt pop-up,
an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
"=" to execute the previous command.

Important: Before EAV volumes are implemented, apply the latest z/OS maintenance levels, especially when z/OS levels below V1.13 are used. For more information, see the Preventive Service Planning buckets for mainframe operating environments page.

4.2.4 EAV migration considerations

When you are planning to migrate to EAV volumes, consider the following items:

➤ Assistance
 Migration assistance is provided by using the Application Migration Assistance Tracker. For more information about Assistance Tracker, see APAR II13752: CONSOLE ID TRACKING FACILITY INFORMATION.

➤ Suggested actions:
 – Review your programs and look for calls for the following macros:
 • OBTAIN
 • REALLOC
 • CVAFDIR
 • CVAFSEQ
 • CVAFDSM
 • CVAFFILT
 These macros were modified and you must update your program to reflect those changes.
– Look for programs that calculate volume or data set size by any means, including reading a VTOC or VTOC index directly with a basic sequential access method (BSAM) or EXCP DCB. This task is important because now you have new values that are returning for the volume size.

– Review your programs and look for the EXCP and STARTIO macros for direct access storage device (DASD) channel programs and other programs that examine DASD channel programs or track addresses. Now that a new addressing mode exists, programs must be updated.

– Look for programs that examine any of the many operator messages that contain a DASD track, block address, data set, or volume size. The messages now show new values.

> Migrating data:

– Define new EAVs by creating them on the DS8880 storage system or expanding volumes by using DVE.

– Add new EAV volumes to SGs and storage pools, and update ACS routines.

– Copy data at the volume level:

 • IBM Transparent Data Migration Facility (IBM TDMF)
 • Data Facility Storage Management Subsystem Data Set Services (DFSMSdss)
 • IBM DS8000 Copy Services Metro Mirror (MM) (formerly known as Peer-to-Peer Remote Copy (PPRC))
 • Global Mirror (GM)
 • Global Copy
 • FlashCopy

– Copy data at the data set level:

 • DS8000 FlashCopy
 • SMS attrition
 • IBM z/OS Dataset Migration Facility (IBM zDMF)
 • DFSMSdss
 • DFSMShsm

All data set types are currently good candidates for EAV except for the following types:

> Work data sets
> TSO batch and load libraries
> System volumes

4.3 Dynamic volume expansion

DVE simplifies management by enabling easier online volume expansion for IBM Z to support application data growth. It also supports data center migration and consolidation to larger volumes to ease addressing constraints.

The size of a Mod 3/9/A volume can be increased to its maximum supported size by using DVE. The volume can be dynamically increased in size on a DS8000 storage system by using the GUI or DSCLI.
Example 4-3 shows how the volume can be increased by using the DS8000 DSCLI interface.

Example 4-3 Dynamically expand CKD volume

```
dsci> chckdvol -cap 262268 -captype cyl 9ab0
CMUC00022I chckdvol: CKD Volume 9AB0 successfully modified.
```

DVE can be done while the volume remains online to the z/OS host system. When a volume is dynamically expanded, the VTOC and VTOC index must be reformatted to map the extra space. With z/OS V1.11 and later, an increase in volume size is detected by the system, which then performs an automatic VTOC and rebuilds the index.

The following options are available:

- **DEVSUPxx** parmlib options

 The system is informed by SCIs, which are controlled by the following parameters:

 - **REFVTOC=ENABLE**

 With this option, the device manager causes the volume VTOC to be automatically rebuilt when a volume expansion is detected.

 - **REFVTOC=DISABLE**

 This parameter is the default. An IBM Device Support Facilities (ICKDSF) batch job must be submitted to rebuild the VTOC before the newly added space on the volume can be used. Start ICKDSF with `REFORMAT/REFVTOC` to update the VTOC and index to reflect the real device capacity. The following message is issued when the volume expansion is detected:

 `IEA019I dev, volser, VOLUME CAPACITY CHANGE,OLD=xxxxxxxx,NEW=yyyyyyyy`

- **Use the SET DEVSUP=xx command to enable automatic VTOC and index reformatting after an IPL or disabling.**

- **Use the F DEVMAN,ENABLE(REFVTOC) command to communicate with the device manager address space to rebuild the VTOC.** However, update the **DEVSUPxx** parmlib member to ensure it remains enabled across subsequent IPLs.

Note: For the DVE function, volumes cannot be in Copy Services relationships (point-in-time copy or FlashCopy, MM, GM, Metro/Global Mirror (MGM), and IBM z/OS Global Mirror (IBM zGM)) during expansion. Copy Services relationships must be stopped until the source and target volumes are at their new capacity, and then the Copy Service pair can be reestablished.

4.4 Quick initialization

Whenever the new volumes are assigned to a host, any new capacity that is allocated to it should be initialized. On a CKD logical volume, any CKD logical track that is read before it is written is formatted with a default record 0, which contains a count field with the physical cylinder and head of the logical track, record (R) = 0, key length (KL) = 0, and data length (DL) = 8. The data field contains 8 bytes of zeros.

A DS8000 storage system supports the quick volume initialization function (Quick Init) for IBM Z environments, which is designed to make the newly provisioned CKD volumes accessible to the host immediately after being created and assigned to it. The Quick Init function is automatically started whenever the volume is created or the existing volume is expanded.
It initializes the newly allocated space dynamically, which allows logical volumes to be configured and placed online to host more quickly. Therefore, manually initializing a volume from the host side is not necessary.

If the volume is expanded by using the DS8000 DVE function, normal read and write access to the logical volume is allowed during the initialization process. Depending on the operation, the Quick Init function can be started for the entire logical volume or for an extent range on the logical volume.

Quick Init improves device initialization speeds, simplifies the host storage provisioning process, and allows a Copy Services relationship to be established soon after a device is created.

4.5 Volume formatting overwrite protection

ICKDSF is the main z/OS utility to manage disk volumes (for example, for the initialize and reformat actions). In the complex IBM Z environment with many logical partitions (LPARs) in which volumes are assigned and accessible to more than one z/OS system, it is easy to erase or rewrite mistakenly the contents of a volume that is used by another z/OS image.

The DS8880 storage system addresses this exposure through the Query Host Access function, which is used to determine whether target devices for certain script verbs or commands are online to systems where they should not be online. Query Host Access provides more useful information to ICKDSF about every system (including various sysplexes, virtual machine (VM), Linux, and other LPARs) that has a path to the volume that you are about to alter by using the ICKDFS utility.
The ICKDSF **VERIFYOFFLINE** parameter was introduced for that purpose. It fails an **INIT** or **REFORMAT** job if the volume is being accessed by any system other than the one performing the **INIT** or **REFORMAT** operation (as shown in Figure 4-6). The **VERIFYOFFLINE** parameter is set when the ICKDSF reads the volume label.

![Figure 4-6 ICKDSF volume formatting overwrite protection](image)

Messages that are generated soon after the ICKDSF **REFORMAT** starts and the volume is found to be online to some other system is shown in Example 4-4.

Example 4-4 ICKDSF REFORMAT volume

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICK00700I DEVICE INFORMATION FOR 8000IS CURRENTLY AS FOLLOWS:</td>
<td>PHYSICAL DEVICE = 3390</td>
</tr>
<tr>
<td>STORAGE CONTROLLER = 2107</td>
<td>STORAGE CONTROL DESCRIPTOR = E8</td>
</tr>
<tr>
<td>DEVICE DESCRIPTOR = 0E</td>
<td>ADDITIONAL DEVICE INFORMATION = 4A00003C</td>
</tr>
<tr>
<td>TRKS/CYL = 15, # PRIMARY CYLS = 65520</td>
<td>ICK04000I DEVICE IS IN SIMPLEX STATE</td>
</tr>
<tr>
<td>ICK00091I 9042 NED=002107.900.IBM.75.0000000xxxxx</td>
<td>ICK31306I VERIFICATION FAILED: DEVICE FOUND TO BE GROUPED</td>
</tr>
<tr>
<td>ICK30003I FUNCTION TERMINATED. CONDITION CODE IS 12</td>
<td></td>
</tr>
</tbody>
</table>

If this condition is found, the Query Host Access command from ICKDSF (**ANALYZE**) or **DEVSERV** (with the **QHA** option) can be used to determine what other z/OS systems have the volume online.
Example 4-5 shows the result of **DEVSERV** (or **DS** for short) with the **QHA** option.

Example 4-5 DEVSERV with the QHA option

```
-DS QD,01800,QHA
IEE459I 10.34.09 DEVSERV QDASD 455
UNIT VOLSER SCUTYPE DEVTYPE CYL SSID SCU-SERIAL DEV-SERIAL EFC
01800 XX1800 2107951 2107900 10017 1800 0175-TV181 0175-TV181 *OK
QUERY HOST ACCESS TO VOLUME
PATH-GROUP-ID FL STATUS SYSPLEX MAX-CYL
80000D3C672828D1626AB7 50 ON 1182006
8000043C672828D16736C2* 50 ON 1182006
8000053C672828D16737CB 50 ON 1182006
**** 3 PATH GROUP ID(S) MET THE SELECTION CRITERIA
**** 1 DEVICE(S) MET THE SELECTION CRITERIA
**** 0 DEVICE(S) FAILED EXTENDED FUNCTION CHECKING
```

This synergy between a DS8000 storage system and ICKDSF prevents accidental data loss and some unpredictable results. In addition, it simplifies the storage management by reducing the need of manual control.

The DS8000 Query Host Access function is used by IBM Geographically Dispersed Parallel Sysplex (GDPS), as described in 2.4, “Geographically Dispersed Parallel Sysplex” on page 24.

4.6 Channel paths and a control-unit-initiated reconfiguration

In the IBM Z environment, the normal practice is to provide multiple paths from each host to a storage system. Typically, four or eight paths are installed. The channels in each host that can access each logical control unit (LCU) in the DS8880 storage system are defined in the HCD or I/O configuration data set (IOCDS) for that host.

Dynamic Path Selection (DPS) allows the channel subsystem to select any available (non-busy) path to start an operation to the disk subsystem. Dynamic Path Reconnect (DPR) allows the DS8880 storage system to select any available path to a host to reconnect and resume a disconnected operation, for example, to transfer data after disconnection because of a cache miss.

These functions are part of IBM z/Architecture® and are managed by the channel subsystem on the host and the DS8880 storage system.

A physical FICON path is established when the DS8000 port sees light on the fiber, for example, a cable is plugged in to a DS8880 host adapter, a processor or the DS8880 storage system is powered on, or a path is configured online by z/OS. Now, logical paths are established through the port between the host and some or all of the LCUs in the DS8880 storage system are controlled by the HCD definition for that host. This configuration occurs for each physical path between an IBM Z host and the DS8880 storage systems.

Multiple system images can be in a CPU. Logical paths are established for each system image. The DS8880 storage system then knows which paths can be used to communicate between each LCU and each host.
Control-unit initiated reconfiguration (CUIR) varies a path or paths offline to all IBM Z hosts to allow service for an I/O enclosure or host adapter. Then, it varies on the paths to all host systems when the host adapter ports are available. This function automates channel path management in IBM Z environments in support of selected DS8000 service actions.

CUIR is available for the DS8880 storage system when it operates in the z/OS and IBM z/VM environments. CUIR provides automatic channel path vary on and vary off actions to minimize manual operator intervention during selected DS8880 storage system service actions.

CUIR also allows the DS8880 storage system to request that all attached system images set all paths that are required for a particular service action to the offline state. System images with the appropriate level of software support respond to such requests by varying off the affected paths, and notifying the DS8880 storage system that the paths are offline or that it cannot take the paths offline. CUIR reduces manual operator intervention and the possibility of human error during maintenance actions, and reduces the time that is required for the maintenance. This function is useful in environments in which many z/OS or z/VM systems are attached to a DS8880 storage system.

4.7 CKD thin provisioning

Starting with DS8880 R8.1.1 (bundles 88.11 and later), the DS8880 storage system allows CKD volumes to be formatted as thin-provisioned extent space-efficient (ESE) volumes. These ESE volumes perform physical allocation only on writes and only when another new extent is needed to satisfy the capacity of the incoming write block.

The allocation granularity and the size of these extents is 1113 cylinders or 21 cylinders, depending on how the extent pool was formatted. The use of small extents makes more sense in the context of thin provisioning.

One scenario to use such thinly provisioned volumes is for FlashCopy target volumes or GM Journal volumes, which allows them to be space-efficient while maintaining standard (thick) volume sizes for the operational source volumes. ESE volumes that are preferably placed on 21-cylinder extent pools are the replacement for the former track-space efficient (TSE) volumes, which are no longer supported.

Another scenario is to create all volumes as ESE volumes. In PPRC relationships, this idea has the advantage that on initial replication extents that are not yet allocated in a primary volume do not need to be replicated, which also saves on bandwidth.

Thin provisioning in general requires a tight control of the capacity that is free physically in the specific extent pool, especially when over-provisioning is performed. These controls are available along with respective alert thresholds and alerts that can be set.

4.7.1 Advantages

Thin provisioning can make storage administration easier. You can provision large volumes when you configure a new DS8880 storage system. You do not have to manage different volume sizes when you use a 3390 Model 1 size, Model 9, or Model 27, and so on. All volumes can be large and of the same size.
At times, a volume or device address is required to communicate with the control unit, such as the utility device for Extended Remote Copy (XRC). Such a volume can include a minimum capacity. With thin provisioning, you still can use a large volume because less data is written to such a volume, its size in actual physical space remains small, and no storage capacity is wasted.

For many z/OS customers, migrating to larger volumes is a task they avoid because it involves substantial work. As a result, many customers have too many small 3390 Model 3 volumes. With thin provisioning, they can define large volumes and migrate data from other storage systems to a DS8880 storage system that is defined with thin-provisioned volumes and likely use even less space. Most migration methods facilitate copying small volumes to a larger volume. You refresh the VTOC of the volume to recognize the new size.

4.7.2 APARs

Check the following APARs for thin provisioning. The initial z/OS support was provided with the corresponding software use of a small programming enhancement (SPE) for z/OS V2.1 and later:

- PI47180
- OA48710
- OA48723
- OA48711
- OA48709
- OA48707
- OA50453
- OA50675

4.7.3 Space release

Space is released when either of the following conditions are met:

- A volume is deleted.
- When a full FlashCopy Volume relationship is withdrawn and reestablished.

Note: This condition is not true when working with data-set- or extent-level FlashCopy with z/VM minidisks. Therefore, use caution when you are working with the DFSMSdss utility because it might use data-set-level FlashCopy depending on the parameters that are used.

A space release is also done on the target of an MM or Global Copy when the relationship is established if the source and target are thin-provisioned.

Introduced with DS8880 R8.2 and APAR OA50675 is the ability for storage administrators to perform an extent-level space release with the new DFSMSdss `SPACEREL` command. It is a volume-level command that is used to scan and release free extents from volumes back to the extent pool. The `SPACEREL` command can be issued for volumes or SGs and uses the following format:

```
SPACERel
  DDName(ddn)  
  DYNam(volser,unit)  
  STORGRP(groupname)  
```
An enhancement was also provided with DS8880 R8.3 to release space on the secondary volume when the SPACEREL command is issued to an MM duplex primary device.

If not prevented by other Copy Services relationships restrictions that are described in this book, the SPACEREL command is now allowed to access primary suspended devices. In this case, the space is released in the primary device and, when the PPRC relationship is reestablished, the extents that were freed on the primary device also are released on the secondary device. The pair remains in the DUPLEX PENDING state until the extents on the secondary device are freed; the sync process resumes later.

To use this enhancement, the source and target DS8880 storage systems must use the R8.3 code or higher.

Note: At the time of writing, Global Copy primary devices must be suspended to allow the use of the SPACEREL command. Global Copy Duplex Pending devices are not supported for the SPACEREL command and devices in FlashCopy relationships.

For Multiple Target Peer-to-Peer Remote Copy (MT-PPRC) relationships, each relationship on the wanted device must allow the SPACEREL command to run for the release to be allowed on the primary device (that is, the primary must be in a Suspended state for Global Copy or GM relationships, and in a Duplex or Suspended state in an MM relationship).

Suspended primary devices in a GM session are supported. Cascaded devices follow the same rules as non-cascaded devices, although space is not released on the target because these devices are FlashCopy source devices.

For more information, see *IBM DS8880 Thin Provisioning (Updated for Release 8.5)*, REDP-5343.

4.7.4 Overprovisioning controls

Overprovisioning a storage system with thin provisioning brings with it the risk of running out of space in the storage system, which causes a loss of access to the data when applications cannot allocate space that was presented to the servers. To avoid this situation, clients typically use a policy regarding the amount of overprovisioning that they allow in an environment and monitor the growth of allocated space with predefined thresholds and warning alerts.

DS8880 R8.3 provides clients with an enhanced method of enforcing such policies so that overprovisioning is capped to a wanted overprovisioning ratio (see Figure 4-7), which does not allow further space allocations in the system.

![Overprovisioning Ratio Formula](image)

Figure 4-7 Overprovisioning ratio formula
As part of the implementation project or permanently in a production environment, some clients might want to enforce an overprovisioning ratio of 100%, which means that no overprovisioning is allowed. Using this ratio does not risk affecting production because of running out of space on the DS8000 storage system. By doing so, the Easy Tier and replication benefits of thin provisioning can be realized without the risk of accidentally overprovisioning the underlying storage. The overprovisioning ratio can be changed dynamically later if wanted.

Implementing overprovisioning control results in the following changes to the standard behavior to prevent an extent pool from exceeding the overprovisioning ratio:

- Prevents volume creation, expansion, and migration.
- Prevents rank depopulation.
- Prevents pool merging.
- Prevents turning on Easy Tier space reservation.

Overprovisioning controls can be implemented at the extent pool level, as shown in Example 4-6.

Example 4-6 Creating an extent pool with a 350% overprovisioning ratio limit

dscli> mkextpool -rankgrp 0 -stgtype fb -opratiolimit 3.5 -encryptgrp 1 test_create_fb
Date/Time: April 19, 2017 2:15:24 AM PDT IBM DSCLI Version: 0.0.0.0 DS: IBM.2107-75xxxxx
CMUC00000I mkextpool: Extent pool P8 successfully created.

An extent pool overprovisioning ratio can be changed by using the `chextpool` DSCLI command, as shown in Example 4-7.

Example 4-7 Changing the overprovisioning ratio limit on P3 to 3.125%

dscli> chextpool -opratiolimit 3.125 p3
Date/Time: April 7, 2017 4:26:39 AM PDT IBM DSCLI Version: 0.0.0.0 DS: IBM.2107-75xxxxx
CMUC00000I chextpool: Extent pool P3 successfully modified.

To display the overprovisioning ratio of an extent pool, use the `showextpool` DSCLI command, as shown in Example 4-8.

Example 4-8 Displaying the current overprovisioning ratio of extent pool P3 and the limit set

dscli> showextpool p3
Date/Time: April 7, 2017 4:26:45 AM PDT IBM DSCLI Version: 0.0.0.0 DS: IBM.2107-75xxxxx
...
%limit 100
%threshold 15
...
opratio 0.76
opratiolimit 3.13
%allocated(ese) 0
%allocated(rep) 0
%allocated(std) 75
%allocated(over) 0
%virallocated(ese) -
Another synergy item between IBM Z and a DS8000 storage system is that you can now install the DSCLI along with IBM Copy Services Manager (CSM) on a z/OS system. It is a regular SMP/E for z/OS installation.

The DSCLI runs under UNIX System Services for z/OS and has a separate FMID HIWN61K. You can also install the DSCLI separately from CSM.

For more information, see the IBM DSCLI on z/OS Program Directory. Search for this publication by entering the publication number (GI13-3563) at the IBM Publications Center website.

After the installation is complete, access your UNIX System Services for z/OS, which can vary among installations. One common way to access these services is by using TSO option 6 (ISPF Command Shell) and the OMVS command. For more information, contact your z/OS System Programmer.

Access to DSCLI in z/OS is shown in Figure 4-8. It requests the same information that you supply when you are accessing DSCLI on other platforms.

```bash
$ cd /opt/IBM/CSM/DSCLI
$ ./dscli
Enter the primary management console IP address: <enter-your-DS8K-machine-ip-address>
Enter the secondary management console IP address:
Enter your username: <enter-your-user-name-as-defined-on-the-machine>
Enter your password: <enter-your-user-password-to-access-the-machine>
dscli> ver -l
...
dscli>
  ===>
  INPUT
  ESC=$  1=Help  2=SubCmd  3=HlpRetrn  4=Top  5=Bottom  6=TSO  7=BackScr  8=Scroll
  9=NextSess 10=Refresh 11=FwdRetr  12=Retrieve
```

Figure 4-8 Accessing DSCLI on z/OS
Some DSCLI commands that are run in z/OS are shown in Figure 4-9.

```bash
dscli> lssi
Name    ID         Storage Unit      Model WWNN      State  ESSNet
----------------------------------------------------------------------------------------
IBM.2107-75ACA91 IBM.2107-75ACA91 IBM.2107-75ACA90 980 5005076303FFD13E Online Enabled
```

```bash
dscli> lsckdvol -lcu EF
Name    ID         acctype   datastate  configstate  deviceMTM  voltype  orgbvols  extpool  cap (cyl)
----------------------------------------------------------------------------------------
ITSO_EF00 EF00 Online Normal Normal 3390-A CKD Base - P1 262668
ITSO_EF01 EF01 Online Normal Normal 3390-9 CKD Base - P1 10017
```

```bash
dscli> mkckdvol -dev IBM.2107-75ACA91 -cap 3339 -datatype 3390 -eam rotateexts -name ITSO_#h -extpool P1 EF02-EF02
CMUC00021I mkckdvol: CKD Volume EF02 successfully created.
```

```bash
dscli> lsckdvol -lcu EF
Name    ID         acctype   datastate  configstate  deviceMTM  voltype  orgbvols  extpool  cap (cyl)
----------------------------------------------------------------------------------------
ITSO_EF00 EF00 Online Normal Normal 3390-A CKD Base - P1 262668
ITSO_EF01 EF01 Online Normal Normal 3390-9 CKD Base - P1 10017
ITSO_EF02 EF02 Online Normal Normal 3390-3 CKD Base - P1 3339
```

```bash
dscli> rmckdvol EF02
CMUC00023W rmckdvol: The alias volumes associated with a CKD base volume are automatically deleted before deletion of the CKD base volume. Are you sure you want to delete CKD volume EF02? Y/n: y
CMUC00024I rmckdvol: CKD volume EF02 successfully deleted.
```

With this synergy, you can use all z/OS capabilities to submit batch jobs and perform DSCLI functions, such as creating disks or LCUs.

For more information about the DS8880 storage system, see the following resources:

- *IBM DS8880 Architecture and Implementation (Release 8.51)*, SG24-8323
- IBM Knowledge Center
Chapter 5. IBM Z and DS8880 performance

This chapter describes the IBM Z and DS8880 synergy features from a performance perspective and how these features contribute to enhanced resiliency of an overall mainframe storage infrastructure.

This chapter includes the following topics:

- Parallel access volume, HyperPAV, and SuperPAV
- Multiple allegiance
- Modified Indirect Data Access Word facility
- Caching algorithm that is optimized for IBM Z
- High-Performance FICON for IBM Z
- Easy Tier
- I/O priority queuing
- I/O Priority Manager and WLM for z/OS integration
- IBM zHyperWrite
- DS8000 Copy Services performance considerations
- DS8000 storage system and z14 I/O enhancements
- IBM zEnterprise Data Compression
- Transparent Cloud Tiering
5.1 Parallel access volume, HyperPAV, and SuperPAV

Parallel access volume (PAV) is an optional licensed function of the DS8000 storage system for the z/OS and z/VM operating systems. The function helps the IBM Z servers that are running applications to share concurrently logical volumes.

The ability to handle multiple I/O requests to the same volume nearly eliminates I/O Supervisor queue (IOSQ) delay time, which is one of the major components that affect z/OS response time. Traditionally, access to highly active volumes involved manual tuning, splitting data across multiple volumes, and more. With PAV and the Workload Manager (WLM), you can almost forget about manual performance tuning. WLM also manages PAVs across all the members of a sysplex.

Traditional z/OS behavior without PAV

Traditional storage disk systems (which allow for only one channel program to be active to a volume at a time to ensure that data that is accessed by one channel program) cannot be altered by the activities of another channel program.

The traditional z/OS behavior without PAV, where subsequent simultaneous I/Os to volume 100 are queued while volume 100 is still busy with a previous I/O, is shown in Figure 5-1.

![Figure 5-1 Traditional z/OS behavior](image)

From a performance perspective, sending more than one I/O at a time to the storage system did not make sense because the hardware processes only one I/O at a time. With this information, the z/OS systems did not try to issue another I/O to a volume (which, in z/OS, is represented by a unit control block (UCB)) while an I/O was active for that volume, as indicated by a UCB busy flag.

Not only did the z/OS systems process only one I/O at a time, but the storage systems accepted only one I/O at a time from different system images to a shared volume.
Parallel I/O capability z/OS behavior with PAV

The DS8000 storage system runs more than one I/O to a Count Key Data (CKD) volume. By using the alias address and the conventional base address, a z/OS host can use several UCBs for the same logical volume instead of one UCB per logical volume. For example, base address 100 might include alias addresses 1FF and 1FE, which allows for three parallel I/O operations to the same volume, as shown in Figure 5-2.

![Figure 5-2 z/OS behavior with PAV](image)

PAV allows parallel I/Os to a volume from one host. The following basic concepts are featured in PAV functions:

- **Base device address**
 The base device address is the conventional unit address of a logical volume. Only one base address is associated with any volume.

- **Alias device address**
 An alias device address is mapped to a base address. I/O operations to an alias run against the associated base address storage space. No physical space is associated with an alias address. You can define more than one alias per base.

Alias addresses must be defined to the DS8000 storage system and to the I/O definition file (IODF). This association is predefined, and you can add aliases nondisruptively. In the static PAV, the relationship between the base and alias addresses is static. Dynamically assigning alias addresses to your base addresses reduces the number of aliases that are required in your system, and are explained next.

For more information about PAV definition and support, see *IBM System Storage DS8000: Host Attachment and Interoperability*, SG24-8887.
5.1.1 Dynamic PAV tuning with z/OS Workload Manager

Predicting which volumes should include an alias address that is assigned and how many is not always easy. Your software can automatically manage the aliases according to your goals. z/OS can use automatic PAV tuning if you are using the z/OS WLM in goal mode.

The WLM can dynamically tune the assignment of alias addresses. The WLM monitors the device performance and can dynamically reassign alias addresses from one base to another if predefined goals for a workload are not met.

z/OS recognizes the aliases that are initially assigned to a base during the nucleus initialization program phase. If dynamic PAVs are enabled, the WLM can reassign an alias to another base by instructing the Input/Output Supervisor (IOS) to do so when necessary, as shown in Figure 5-3.

z/OS WLM in goal mode tracks system workloads and checks whether workloads are meeting their goals as established by the installation.

WLM also tracks the devices that are used by the workloads, accumulates this information over time, and broadcasts it to the other systems in the same sysplex.

If WLM determines that any workload is not meeting its goal because of IOSQ time, WLM attempts to find an alias device that can be reallocated to help this workload achieve its goal.

Figure 5-3 WLM assignment of alias addresses
As Figure 5-4 shows, WLM checks the IOSQ time of volume 100 and allocates free aliases from volume 110.

5.1.2 HyperPAV

Dynamic PAV requires the WLM to monitor the workload and goals. The process of the WLM detecting an I/O bottleneck and then coordinating the reassignment of alias addresses within the sysplex and the DS8000 storage system can take time. In addition, if the workload is fluctuating or is characterized by burst, the job that caused the overload of one volume might end before the WLM reacts. In these cases, the IOSQ time was not eliminated.
With HyperPAV, an on-demand proactive assignment of aliases is possible, as shown in Figure 5-5.

![HyperPAV Diagram](image)

Figure 5-5 Basic operational characteristics of HyperPAV

With HyperPAV, the WLM is no longer involved in managing alias addresses. For each I/O, an alias address can be automatically picked from a pool of alias addresses within the same logical control unit (LCU).

This capability also allows multiple HyperPAV hosts to use one alias to access different bases, which reduces the number of alias addresses that are required to support a set of bases in an IBM Z environment, with no latency in assigning an alias to a base. This function is also designed to enable applications to achieve better performance than is possible with the original PAV feature alone, whereas the same or fewer operating system resources are used.

Benefits of HyperPAV

HyperPAV offers the following benefits:

- Provides more efficient PAV function.
- Assists with the implementation of larger volumes because I/O rates per device can be scaled up without the need for more PAV alias definitions.
- Can reduce the number of PAV aliases that are needed, which takes fewer from the 64-K device limitation and leaves more devices for capacity use.
- Enables a more dynamic response for changing workloads.
- Simplifies alias management.

HyperPAV alias consideration on an extended address volume

HyperPAV provides a far more agile alias management algorithm because aliases are dynamically bound to a base during the I/O for the z/OS image that issued the I/O. When I/O completes, the alias is returned to the pool in the LCU. It then becomes available to subsequent I/Os.
The general rule is that the number of aliases that are required can be approximated by the peak of the following multiplication: I/O rate that is multiplied by the average response time.

For example, if the peak of the calculation that occurs when the I/O rate is 2000 I/Os per second and the average response time is 4 ms (which is 0.004 sec), the result of the calculation is as follows:

\[2000 \text{ IO/sec} \times 0.004 \text{ sec/IO} = 8 \]

This result means that the average number of I/O operations that are running at one time for that LCU during the peak period is eight. Therefore, eight aliases should handle the peak I/O rate for that LCU. However, because this calculation is based on the average during the IBM Resource Measurement Facility™ (RMF™) period, multiply the result by two to accommodate higher peaks within that RMF interval. Therefore, in this case, the advised number of aliases is 16 (\(2 \times 8 = 16\)).

A more precise approach to know how many PAVs are needed is to look at the RMF I/O Queuing Activity LCU report. The report shows the following values:

- HyperPAV Wait Ratio: Ratio of the number of times an I/O did not start and the total number of I/O requests
- HyperPAV Maximum: Maximum number of concurrently in-use HyperPAV aliases

If a value exists for the HyperPAV Wait Ratio, more PAVs are needed. If no waiting (no value) exists, the maximum is the number of PAVs that is needed. Those values must be monitored and evaluated over time, looking for peaks and comparing values for various logical partitions (LPARs).

Depending on the workload, a large reduction in PAV-alias UCBs with HyperPAV occurs. The combination of HyperPAV and extended address volume (EAV) allows you to reduce the constraint on the 64-K device address limit and in turn increase the amount of addressable storage that is available on z/OS. With multiple subchannel sets (MSSes) on IBM Z, even more flexibility is available in device configuration.

For more information, see the following IBM Redbooks publications:

- For EAV specifications, considerations, and implementation guidance, see *IBM System Storage DS8000: Host Attachment and Interoperability*, SG24-8887.
- For MSS, see *Multiple Subchannel Sets: An Implementation View*, REDP-4387.

5.1.3 RMF reporting on PAV

RMF reports the number of exposures for each device in the following reports:

- Monitor/Direct Access Storage Device (DASD) Activity report
- Monitor II and Monitor III Device reports

If the device is a HyperPAV base device, the number is followed by the letter “H” (for example, 5.4H). This value is the average number of HyperPAV volumes (base and alias) in that interval. RMF reports all I/O activity against the base address, not by the individual base and associated aliases. The performance information for the base includes all base and alias I/O activity.
PAV and HyperPAV help minimize the IOSQ Time. You still see IOSQ Time for one of the following reasons:

- More aliases are required to handle the I/O load when compared to the number of aliases that are defined in the LCU.
- A Device Reserve is issued against the volume. A Device Reserve makes the volume unavailable to the next I/O, which causes the next I/O to be queued. This delay is recorded as IOSQ Time.

5.1.4 PAV and HyperPAV in z/VM environments

z/VM provides PAV and HyperPAV support in the following ways:

- As traditionally supported for virtual machine (VM) guests as dedicated guests by using the **CP ATTACH** command or **DEDICATE** user directory statement.
- z/VM supports PAV minidisks:
 - Base and its aliases can be dedicated to only one guest.
 - Base must be dedicated first, and then all required aliases devices.

PAV in a z/VM environment provides linkable minidisks for guests that use PAV (that is, z/OS and Linux), as shown in Figure 5-6.

![Figure 5-6 z/VM support of PAV minidisk](image)

Base minidisks are defined by using the existing **MDISK** or **LINK** user directory statements. Aliases are defined with the **PAVALIAS** parameter of the **DASDOPT** and **MINIOPT** user directory statements or with the **CP DEFINE PAVALIAS** command. z/VM also provides workload balancing for guests that do not use PAV (like Conversational Monitor System (CMS)). Real I/O dispatcher queues minidisk I/O across system attached aliases.

To the z/VM environments, PAV provides the benefit of a greater I/O performance (throughput) by reducing I/O queuing.

Starting with z/VM V5.4, z/VM supports HyperPAV for dedicated DASD and minidisks.

For more information about PAV and z/VM, see *IBM System Storage DS8000: Host Attachment and Interoperability*, SG24-8887.
5.1.5 SuperPAV

SuperPAV was introduced with DS8000 R8.1. DS8000 SuperPAV technology takes PAV technology one step further: With PAV, the base-to-alias bindings are static. HyperPAV allows dynamic alias-to-base bindings to occur, but only from within one control unit (LCU/LSS).

SuperPAV is an extension of HyperPAV in the sense that it uses aliases in an on-demand fashion and allows them to be shared among “like” control units across a set of control unit images that are defined with the same set of host channels in the storage system. The word “like” means that the even LCUs go with other even LCUs, and the odd LCUs go with other odd LCUs.

Aliases are first selected from the home control unit. When no more aliases are available, they are borrowed from a peer control unit. Although the total LCU addresses are still limited to 256, you eventually have more than 256 addresses with SuperPAV because of the SuperPAV internal borrowing process.

A volume 2002 that borrows an alias from another LCU is shown in Figure 5-7.

![Image](image_url)

Figure 5-7 SuperPAV in the DS8880 storage system

For more information, see *IBM DS8880 Provides New Flexibility for Storage Growth, Efficiency and Resilience*. As stated in the article, SuperPAV “allows the z/OS operating system to amortize the use of PAV-alias devices across a larger set of resources, effectively eliminating PAV-alias exhaustion occurrences and the IOS queue time that can cause I/O response time to grow.”
The following advantages also are outlined in the article:

- SuperPAV complements the thin provisioning capability of the DS8880 storage system by allowing the growth in physical data to also grow in I/O rates without the client needing to redefine the I/O configuration, move data between control units, or add hardware resources. This process is accomplished through enhanced virtualization techniques and allowing PAV-alias devices to be shared across control units in the same storage system.

- SuperPAV is autonomically managed by z/OS. The client enables the function by using a setting in SYS1.PARMLIB and the I/O supervisor of z/OS dynamically discovers all the shared resources and auto-configures the system for their use.

- The WLM workload management for I/O ensures that whenever an I/O request finishes for a PAV-alias device, the next I/O started is the highest priority request for all control unit images that share a pool of PAV-aliases.

- With the increased number of PAV-aliases available on average, any workload spikes can be more easily processed with SuperPAV. Also, if any hardware failures and associated I/O recovery processes in the SAN that can delay production work occur, the increased number of PAV-aliases available to process the backlog can reduce the mean-time-to-recovery (MTTR) and mitigate the effect of the failure. Thus, system resilience is improved.

The use of the D M=DEV command shows XPAV, which is the new SuperPAV function when enabled for a device. A device that is named 4E02 with peers out of other control units is shown in Example 5-1.

Example 5-1 SuperPAV peers example: XPAV-enabled

```
D M=CU(4E02)
IEE174I 11.26.55 DISPLAY M 511
CONTROL UNIT 4E02
      CHP  65  5D  34  5E
ENTRY LINK ADDRESS  98 .. 434B ..
DEST LINK ADDRESS  FA  OD 200F 0D
      CHP PHYSICALLY ONLINE Y Y Y Y
PATH VALIDATED Y Y Y Y
MANAGED N N N N
ZHPF - CHPID Y Y Y Y
ZHPF - CU INTERFACE Y Y Y Y
MAXIMUM MANAGED CHPID(S) ALLOWED = 0
DESTINATION CU LOGICAL ADDRESS = 56
CU ND = 002107.981.IBM.75.00000000FXF41.0330
CU NED = 002107.981.IBM.75.00000000FXF41.5600
TOKEN NED = 002107.900.IBM.75.00000000FXF41.5600
FUNCTIONS ENABLED = ZHPF, XPAV
XPAV CU PEERS = 4802, 4A02, 4C02, 4E02
DEFINED DEVICES
  04E00-04E07
DEFINED PAV ALIASES
  14E40-14E47
```

To enable SuperPAV, use DS8880 R8.1 (88.11 bundles) or later code levels. For z/OS (2.1+), APARs OA49090 and OA49110 are needed; for RMF (2.1+), APAR OA49415 is needed.
In SYS1.PARMLIB, set HYPERPAV=YES and HYPERPAV=XPAV in IECl0Sxx, or set the
SETIOS HYPERPAV=YES and SETIOS HYPERPAV=XPAV commands. Specifying both YES and XPAV
in a window where SuperPAV support is not available on all storage systems ensures that at
least HyperPAV is in effect.

New sections of the RMF I/O activity report
Among several new fields, the following important fields in RMF reports can help you
investigate performance problems:

- **Alias Management Groups (AMGs)**
 For each defined AMG, this field shows performance measurements for all channel paths
 that are connected to the LCUs that are grouped into the AMG.

- **LCUs**
 For each LCU with online devices, this field shows performance measurements for all
 channel paths that are connected to the LCU.

- **HPAV WAIT and HPAV MAX:**
 - HPAV WAIT is the ratio of the number of I/O requests that did not start because no
 HyperPAV aliases were available.
 - HPAV MAX is the maximum number of concurrently used HyperPAV alias devices
 (including borrowed aliases) for that LCU or AMG during that interval.

Many other fields were updated. For more information, see z/OS V2R2 RMF Report Analysis,
SC34-2665.
Part of the I/O Queuing Activity is shown in Figure 5-8.

5.2 Multiple allegiance

If any IBM Z host image (server or LPAR) performs an I/O request to a device address for which the storage disk system is processing an I/O that is from another IBM Z host image, the storage disk system sends back a device busy indication. This process delays the new request and adds to the overall response time of the I/O. This delay is shown in the Device Busy Delay (AVG DB DLY) column in the RMF DASD Activity Report. Device Busy Delay is part of the Pend time.
With multiple allegiance, the requests are accepted by the DS8000 storage system and all requests are processed in parallel, unless a conflict occurs when writing to the same data portion of the CKD logical volume, as shown in Figure 5-9.

The DS8000 storage system accepts multiple I/O requests from different hosts to the same device address, which increases parallelism and reduces channel affect. In older storage disk systems, a device has an implicit allegiance (a relationship) that was created in the control unit between the device and a channel path group when an I/O operation is accepted by the device. The allegiance causes the control unit to ensure access (no busy status presented) to the device for the remainder of the channel program over the set of paths that are associated with the allegiance.

Good application software access patterns can improve global parallelism by avoiding reserves, limiting the extent scope to a minimum, and setting an appropriate file mask (for example, if no write is intended).

In systems without multiple allegiance (except for the first I/O request), all requests to a shared volume are rejected, and the I/Os are queued in the IBM Z channel subsystem. The requests are listed in Device Busy Delay and PEND time in the RMF DASD Activity reports.

Multiple allegiance allows multiple I/Os to a single volume to be serviced concurrently. However, a device busy condition can still happen. This condition occurs when an active I/O is writing a certain data portion on the volume and another I/O request comes in and tries to read or write to that same data. To ensure data integrity, those subsequent I/Os receive a busy condition until that previous I/O is finished with the write operation.
Multiple allegiance provides significant benefits for environments that are running a sysplex or IBM Z systems that are sharing access to data volumes. Multiple allegiance and PAV can operate together to handle multiple requests from multiple hosts.

5.3 Modified Indirect Data Access Word facility

The Modified Indirect Data Access Word (MIDAW) facility was designed to improve FICON performance, especially when accessing Db2 on z/OS. This facility offers a method of gathering data into and scattering data from fragmented storage locations during an I/O operation.

The MIDAW facility achieves superior performance for various workloads by improving the throughput and efficiency of the channel subsystem. Although the use of MIDAWs does not cause the bits to move any faster across the FICON link, they reduce the number of frames and sequences flowing across the link, which makes the channel more efficient.

Because MIDAWs are used only by the Media Manager, and MIDAWs benefit only small record sizes, only certain types of data sets are beneficiaries. Some examples of data sets that are accessed through Media Manager are Virtual Storage Access Method (VSAM) data sets (including all linear data sets), Extended Format data sets, and PDSEs. The most benefit occurs with Extended Format data sets that feature small block sizes. Because Db2 depends on Extended Format data sets to stripe the logs or to enable data sets to be larger than 4 GB, Db2 is a major beneficiary.

The DS8000 storage system provides MIDAW support. The MIDAW facility is enabled on z/OS by default. To verify whether the MIDAW facility is enabled, use the following command:

```
DISPLAY IOS,MIDAW
```

If the facility is unavailable, update the IECEIOSxx member with MIDAW=YES.

For more information about the advantages for Db2 with enabled MIDAW, see How does the MIDAW Facility Improve the Performance of FICON Channels Using DB2 and other workloads?, REDP-4201.

5.4 Caching algorithm that is optimized for IBM Z

One main differentiator among available enterprise storage systems today is the internal cache and its algorithm. Cache size and its utilization efficiency is an important factor to consider when sizing the storage to meet a client’s performance requirements.

With the DS8880 storage system and its powerful IBM POWER® processors, managing a large cache with small cache slots of 4 KB becomes possible. Disk systems generally divide cache into fixed size slots. A slot (sometimes known as segment or cache page) is used to hold contiguous data, so randomly read or written blocks are assigned different slots.

The more random the I/Os and the smaller the block sizes, the more cache that is wasted because of large slot sizes. Therefore, the DS8880 small cache slots are the main contributing factor regarding the efficient cache utilization.
The small cache slots are served by sophisticated caching algorithms, which is another significant advantage of the DS8000 storage system from a performance perspective. These algorithms along with the small cache slot size optimize cache hits and cache utilization. Cache hits are also optimized for different workloads, such as sequential workloads and transaction-oriented random workloads, which can be active at the same time. Therefore, the DS8880 storage system provides excellent I/O response times.

The following caching algorithms are used in DS8880 storage systems:

- **Sequential Prefetching in Adaptive Replacement Cache (SARC)**

 The SARC algorithm was developed by IBM Storage Development in partnership with IBM Research. It is a self-tuning and self-optimizing solution for a wide range of workloads with a varying mix of sequential and random I/O streams. SARC is inspired by the Adaptive Replacement Cache (ARC) algorithm and inherits many features of it.

 SARC attempts to determine the following cache characteristics:
 - When and which data is copied into the cache.
 - Which data is evicted when the cache becomes full.
 - How the algorithm dynamically adapts to different workloads.

 The decision to copy data into the DS8880 cache can be triggered from these policies:
 - Demand paging

 Eight disk blocks (a 4 K cache page) are brought in only on a cache miss. Demand paging is always active for all volumes and ensures that I/O patterns with some locality discover at least recently used data in the cache.
 - Prefetching

 Data is copied into the cache speculatively even before it is requested. To prefetch, a prediction of likely data accesses is needed. Because effective, sophisticated prediction schemes need an extensive history of page accesses (which is not feasible in real systems), SARC uses prefetching for sequential workloads.

 Sequential access patterns naturally arise in many IBM Z workloads, such as database scans, copy, backup, and recovery. The goal of sequential prefetching is to detect sequential access and effectively prefetch the likely cache data to minimize cache misses.

- **Adaptive multi-stream prefetching (AMP)**

 In the DS8880 storage system, AMP is an algorithm that was developed by IBM Research that manages the sequential workload. AMP is an autonomic, workload-responsive, and self-optimizing prefetching technology that adapts the amount of prefetch and the timing of prefetch on a per-application basis to maximize the performance of the system. The AMP algorithm solves the following problems that plague most other prefetching algorithms:
 - **Prefetch wastage** occurs when prefetched data is evicted from the cache before it can be used.
 - **Cache pollution** occurs when less useful data is prefetched instead of more useful data.

 By wisely choosing the prefetching parameters, AMP provides optimal sequential read performance and maximizes the aggregate sequential read throughput of the system. The timing of the prefetches is also continuously adapted for each stream to avoid misses and any cache pollution. SARC and AMP play complementary roles.
 Intelligent Write Caching (IWC)
IWC is another cache algorithm that is implemented in the DS8000 series. IWC improves performance through better write cache management and a better destaging order of writes. This algorithm is a combination of CLOCK, which is a predominantly read cache algorithm, and CSCAN, which is an efficient write cache algorithm. From this combination, IBM produced a powerful and widely applicable write cache algorithm.

Adaptive List Prefetch (ALP)
ALP enables prefetch of a list of non-sequential tracks, which provides improved performance for Db2 workloads.

IBM Z workloads, in particular z/OS applications (such as Db2), are modified to provide various hints to the DS8880 storage system on sequential processing in addition to database I/O operations. Optimization of what data is in the DS8880 cache at any point enables clients to optimize the use of cache by improving cache hits and I/O response time.

For more information about DS8000 cache algorithms, see *IBM DS8880 Architecture and Implementation (Release 8.51)*, SG24-8323.

5.5 High-Performance FICON for IBM Z

High-Performance FICON for IBM Z (zHPF) is an enhanced FICON protocol and system I/O architecture that results in improvements in response time and throughput. Instead of channel command words (CCWs), transport control words (TCWs) are used. Any I/O that uses the Media Manager, such as Db2, PDSE, VSAM, z/OS File System (zFS), volume table copy (VTOC) Index (CVAF), Catalog basic catalog structure (BCS) / VSAM volume data set (VVDS), or Extended Format SAM, significantly benefit from zHPF.
The FICON data transfer protocol involves several exchanges between the channel and the control unit, which can lead to unnecessary I/O impact. With zHPF, the protocol is streamlined and the number of exchanges is reduced, as shown Figure 5-10.

Figure 5-10 FICON and zHPF comparison
zHPF was enhanced following its introduction in 2009, as shown in Figure 5-11. Many access methods were changed in z/OS to support zHPF.

Although the original zHPF implementation supported the new TCWs only for I/O that did not span more than a track, the DS8880 storage system also supports TCW for I/O operations on multiple tracks. zHPF is also supported for Db2 list prefetch, format writes, and sequential access methods. With the latest zHPF version, a typical z/OS workload has 90% or more of all I/Os converted to the zHPF protocol, which improves the channel utilization efficiency.

In situations where zHPF is the exclusive access in use, it can improve FICON I/O throughput on a single DS8880 port by 250 - 280%. Realistic workloads with a mix of data set transfer sizes can see over a 90% increase in FICON I/Os that use zHPF. These numbers can vary based on the workload and were seen in real client environments but are not a rule. They should be used as a guideline and can have different metrics on your environment.

Although clients can see a fast completion of I/Os as a result of implementing zHPF, the real benefit is expected to be obtained by using fewer channels to support disk volumes or increasing the number of disk volumes that is supported by channels.

In addition, the changes in architecture offer end-to-end system enhancements to improve reliability, availability, and serviceability (RAS).

IBM z14, IBM z13®, IBM z13s®, IBM zEC12, IBM zBC12, IBM z114, IBM z196, or IBM z10™ processors support zHPF. FICON Express16S+, Express16S, and FICON Express8S cards on the host provide the most benefit, but older cards are also supported.

zHPF is not apparent to applications. However, z/OS configuration changes are required. The hardware configuration definition (HCD) must have channel-path identifier (CHPID) type FC defined for all the CHPIDs that are defined to the 2107 control unit, which also supports zHPF.
The installation of the Licensed Feature Key for the zHPF feature was required for the DS8870 storage system. With the DS8880 storage system, all zSynergy features are bundled and come together in the zSynergy Services (zsS) license bundle. After these zHPF prerequisites are met, the FICON port definitions in the DS8000 storage system accept FICON and zHPF protocols. No other port settings are required on the DS8000 storage system.

For z/OS, after the PTFs are installed in the LPAR, you must set ZHPF=YES in IECIOSxx in SYS1.PARMLIB or issue the SETIOS ZHPF=YES command (ZHPF=NO is the default setting).

To use zHPF for the queried sequential access method (QSAM), basic sequential access method (BSAM), and basic partitioned access method (BPAM), you might need to enable zHPF. It can be dynamically enabled by using SETSMS or by using the entry SAM_USE_HPF (YES | NO) in IGDSMSxx. The default for z/OS 1.13 and later is YES.

Starting with z/OS V2R2, DFSORT can also use zHPF for SORTIN, SORTOUT, and OUTFIL data sets.

5.5.1 Db2 enhancements with zHPF

In 2011, zHPF with the DS8000 microcode delivered significant performance improvements for Db2. Today, all Db2 I/Os, including format writes and list prefetches, are eligible for zHPF. Db2 also can benefit from the DS8880 caching algorithm that is known as List Prefetch Optimizer, which provides even better performance. Although the objective of zHPF list prefetch is to reduce the I/O connect time, the objective of List Prefetch Optimizer is to reduce disconnect time.

Db2 typically performs a maximum of two parallel list prefetch I/Os. With List Prefetch, zHPF sends a list of tracks in a Locate Record command followed by several read commands, which allows many parallel retrievals from disk. Also, the use of the Locate Record command now sends a list of non-contiguous records to prefetch, which increases the cache-hit rate for subsequent read commands.

Depending on the hardware configuration (FICON Express cards 4, 8, and 16 Gb) and Db2 version, performance can vary. Because Db2 10 and later fully uses zHPF along with the FICON Express 8S/16S/16S+ on IBM Z and the DS8000 storage system, the following Db2 functions are improved:

- Db2 queries
- Table scans
- Index-to-data access, especially when the index cluster ratio is low
- Index scans, especially when the index is disorganized
- Reads of fragmented large objects (LOBs)
- New extent allocation during inserts
- Db2 REORG
- Sequential reads
- Writes to the shadow objects
- Reads from a non-partitioned index
- Log applies
- Db2 LOAD and REBUILD
- Db2 Incremental COPY
- RECOVER and RESTORE
- Db2 RUNSTATS table sampling

DB2 for z/OS and DS8000 zHPF synergy provides significant throughput gains in many areas, which result in reduced transaction response time and batch windows.
For more information about Db2 and List Prefetch Optimizer, see *DB2 for z/OS and List Prefetch Optimizer*, REDP-4862.

Note: By making all Db2 workload zHPF capable, users can benefit from reduced batch window for I/O-intensive workloads and maximize resource utilization.

Db2 Castout Accelerator

In Db2, a *castout* refers to the process of writing pages from the group buffer pool to disk. Db2 writes long chains that typically contain multiple locate record domains. Traditionally, each I/O in the chain is synchronized individually, but Db2 requires that only the updates are written in order.

With the DS8880 storage system (bundles 88.11.25.0 and later are required), the Media Manager is enhanced to signal to the DS8000 storage system that a single locate record domain exists even though multiple embedded locate records exist. The entire I/O chain is treated as though this domain is a single locate record domain.

This change was implemented by z/OS Media Manager support and APAR OA49684 for z/OS V1.13 and later. The function is not apparent to Db2 and is used by all releases of Db2.

Typical castout write operations can be accelerated with this function by a considerable degree, and especially when in a Metro Mirror (MM) configuration. For more information about performance results of this function, see *IBM System Storage DS8880 Performance Whitepaper*, WP102605.

5.5.2 Extended Distance and Extended Distance II

Db2 utilities often use significant write I/Os with large blocksize or large record sizes. Values of 256 KB or even 512 KB per I/O are not unusual. These kinds of heavy write I/Os can be handled well by using traditional FICON channel I/O, even over a long distance of up to 100 km (62.13 miles).

As initially introduced, zHPF Extended Distance (ED) does not provide results as good for larger writes over greater distances than conventional FICON I/O. This situation is corrected by Extended Distance II (ED II) support that is available with IBM Z server z13, z14, and the DS8000 storage system with firmware release 7.5 and later.
Such a configuration with MM over a greater distance and with HyperSwap active is shown in Figure 5-12. After a HyperSwap and switching to the distant volumes, the host I/Os service time can degrade and negatively affect the Db2 subsystem.

Figure 5-12 Extended Distance II support in z14 and the DS8000 storage system

ED II is an enhancement to zHPF in z13 and later. ED II addresses these situations of zHPF for large write I/Os over an extended distance.

Similar considerations are applied to MM over Fibre Channel Protocol (FCP). To allow for increased distances of up to 300 km (186.39 miles), MM and its variations introduced the concept of pre-deposit writes, which reduce the number of round trips of standard FCP I/Os to a single round trip.

Although zHPF ED uses the concept of pre-deposit writes, the benefits are limited to writes that are less than 64 KB. zHPF ED II goes beyond the capabilities of the FCP by allowing the channel to burst up to the whole write data length for an operation.

zHPF ED II improves large write I/O performance over longer distances between the IBM z14 to the DS8000 storage system with firmware release 7.5 and later, which reinforces the synergy between IBM Z and the DS8880 storage system.

5.5.3 Enhanced FICON Information Unit pacing

The Information Unit (IU) pacing credit is the maximum number of IUs that a channel sends on a FICON exchange until it receives a command-response (CMR) IU, and that allows the next send.

The FICON standard default for IU pacing credits is 16. At extended distances and greater speed links, this limitation causes relative latency for programs.
Enhanced IU pacing, available with DS8000 storage system Release 8.2 and later, uses the persistent pacing feature to change the operating pacing credit to 64. The following channel programs can see the latency that is reduced by nearly four times:

- CCW chains that contain more than 16 commands
- Db2 log writes in IBM Geographically Dispersed Parallel Sysplex (GDPS) multi-site workload environments

Enhanced IU pacing also benefits the FICON write performance of large writes at long distances and the IBM z/OS Global Mirror (IBM zGM) (Extended Remote Copy (XRC)) initial copy performance. This feature applies only to 16 G Fibre Channel (16 G FC) host bus adapters.

IBM z/OS Global Mirror copy times

This component also benefits from the persistent IU pacing because it allows more CCWs in the chain.

On the System Data Mover (SDM), the `TracksPerRead` parameter is not limited to 15, although it is documented as such. If the necessary resources to use the enhanced IU pacing are in place, a better value for `TracksPerRead` is 61. Those improvements rely on the network until it can keep up. Results can vary depending on your network.

For more information, see IBM Knowledge Center.

5.6 Easy Tier

DS8000 Easy Tier technology enhances performance and balances workloads across different disk tiers. It automatically and without disruption to applications enables the system to relocate data (at the extent level) across up to three storage tiers.

Having the correct data on the correct tier to provide a remarkable quality of service (QoS) (performance and cost) to a client’s data is the main Easy Tier goal. Among IBM Z clients, 10% of T0 drives (Flash / SSD) that are managing 90% of the I/Os is common when considering environments that have predominantly random I/Os.

To move extents, some free space or free extents must be available in an extent pool. For more information about space for Easy Tier, see “Space for Easy Tier” in *IBM DS8880 Architecture and Implementation (Release 8.51)*, SG24-8323.

Easy Tier I/O workload monitoring collects I/O statistics from the physical back end, which means the back-end I/O activity on the DS8000 rank level. The system monitors the stage and destage activities of each extent that is allocated to a logical volume in the extent pool and calculates a temperature (a measure based on I/O activity) metric for each extent, which is also referred to as a *heat map*.

5.6.1 Easy Tier Application

Over time, new and improved Easy Tier functions are developed to integrate client applications with an Easy Tier algorithm, which is also known as Easy Tier Application. The architecture allows IBM Z applications to communicate performance requirements for optimal data set placement by communicating application performance information (hints) to the Easy Tier Application API. The application hint sets the intent, and Easy Tier moves the data set extents to the correct tier.
The Easy Tier architecture for IBM Z applications that provide data placement hints to the Easy Tier API (by using Data Facility Storage Management Subsystem (DFSMS)) is shown in Figure 5-13. Currently, this architecture is limited to DB2 for z/OS. DB2 for z/OS uses specific DFSMS functions to communicate directive data placements to Easy Tier.

![Figure 5-13 Easy Tier Application architecture](image)

The Easy Tier Application software-defined storage data placement API allows Db2 to instruct proactively Easy Tier of the intended use of data sets. This capability removes the requirement for applications and administrators to manage hardware resources directly. The programming must be done only once, and then the application with Easy Tier enforces the policy.

With DS8000 storage system R7.4, z/OS 2.1 or later and Db2 V10 or later (with a small programming enhancement (SPE)), Db2 can query and then set the tier location that you want for data sets that use internal DFSMS functions, which interface with the Easy Tier Application API.

For example, to optimize the target data sets for a Db2 database reorganization, the performance of the target data sets does not need to be learned by Easy Tier. Instead, Db2 communicates information (hints) to Easy Tier Application to model the target data sets that are based on the source data sets so that the tier level of the target data sets approximates the tier level of the source almost immediately.
The effect of the directive data placement during a Db2 reorganization is shown in Figure 5-14.

In addition, Easy Tier automatically rebalances extents among ranks within the same tier. It also removes workload skew between ranks, even within homogeneous and single-tier extent pools.

5.6.2 Heat Map Transfer

Like host operations, DS8000 Copy Services (MM, Global Mirror (GM), and IBM zGM) are unaware of the extent or volume-level relocations that are performed. Easy Tier at the primary DS8000 storage system sees a normal workload, and at the secondary DS8000 storage system sees only the write workloads. This situation means that the optimized extent distribution on the primary system can differ considerably from the one on the secondary system if the Heat Map Transfer (HMT) function is not used.

By using Easy Tier HMT, you can export the data placement statistics that are used at an MM, Global Copy, and Global Mirror (MM, GC, and GM) primary site to reapply them at the secondary site. As such, Easy Tier HMT complements the DS8000 Copy Services Remote Mirroring functions. It also provides automatic tiering solution for high availability (HA) and disaster recovery (DR) environments.

Easy Tier HMT is installed on a separate management server and can work in the following ways:

- Stand-alone server (Windows or Linux)
- Integrated with IBM Copy Services Manager (CSM)
- Integrated with GDPS
In complex, 3-site DR environments with GDPS or CSM management for a Metro/Global Mirror (MGM) configuration, the heat map is propagated to each site, as shown in Figure 5-15. In this cascaded replication configuration, the HMT utility transfers the Easy Tier heat map from H1 to H2 and then from H2 to H3 based on the volume replication relationships.

![Diagram of Easy Tier Heat Map Transfer support for 3-site MGM configuration]

Since Version 3.12, GDPS provides HMT support for GDPS / XRC and GDPS / MzGM (MM and XRC) configurations. Therefore, Easy Tier Heat Map can be transferred to the XRC secondary or FlashCopy target devices.

With DS8000 R7.5 or later, HMT is fully supported for GDPS 3-site and 4-site MGM configurations.

Note: IBM Transparent Data Migration Facility (IBM TDMF) V5.7 and later can also use HMT to place moved data in the same storage tiers where the source data is stored.

For more information about Easy Tier, see the following publications:

- *IBM DS8000 Easy Tier (for DS8880 R8.5 or later)*, REDP-4667
- *DS8870 Easy Tier Application*, REDP-5014
- *IBM DS8870 Easy Tier Heat Map Transfer*, REDP-5015
5.7 I/O priority queuing

The concurrent I/O capability of the DS8000 storage system means it can run multiple channel programs concurrently if the data that is accessed by one channel program is not altered by another channel program.

Queuing of channel programs

When the channel programs conflict with each other and must be serialized to ensure data consistency, the DS8000 storage system internally queues channel programs. This subsystem I/O queuing capability provides the following significant benefits:

- Compared to the traditional approach of responding with a device busy status to an attempt to start a second I/O operation to a device, I/O queuing in the storage disk subsystem eliminates the effect that is associated with posting status indicators and redriving the queued channel programs.

- Contention in a shared environment is minimized. Channel programs that cannot run in parallel are processed in the order in which they are queued. A fast system cannot monopolize access to a volume that also is accessed from a slower system.

Priority queuing

I/Os from separate z/OS system images can be queued in a priority order. The z/OS WLM uses this priority to privilege I/Os from one system against the others. You can activate I/O priority queuing in WLM Service Definition settings. WLM must run in Goal mode.

When a channel program with a higher priority is received and moved to the front of the queue of channel programs with lower priority, the priority of the low-priority programs is increased, as shown in Figure 5-16.

![Figure 5-16 I/O priority queuing](image)
5.8 I/O Priority Manager and WLM for z/OS integration

The DS8000 IOPM provides more effective storage consolidation and performance management that is combined with the ability to align QoS levels to separate workloads in the system. IOPM prioritizes access to system resources to achieve the wanted QoS based on defined performance goals (high, medium, or low) for the volume or single I/O request. The IOPM constantly monitors and balances system resources to help applications meet their performance targets automatically without operator intervention.

For IBM Z, the administrator defines the performance goals of high, medium, or low priority or the no monitor no manage option. z/OS WLM collaborates with SAN Fabric (see 5.11.5, “zHyperLink” on page 106) and IOPM, which provides an end-to-end QoS design by enabling the I/O prioritization at single I/O operation level for IBM Z workloads.

When any transactions or batch jobs are processed on z/OS, these workloads are classified by WLM by assigning to the new workloads a service class. For each service class, a performance goal is assigned, and for each performance goal, a business importance is assigned. According to the definitions and their goal achievement levels of the service classes, WLM passes the following performance metrics to SAN Fabric and DS8000 IOPM:

- I/O importance
- I/O goal achievement

With the performance policies that are assigned to each I/O operation, IOPM determines which I/O requests are more important than others and which I/O requests must be processed faster to fulfill the performance goals for the corresponding workload in z/OS.

When resource contention (that is, DS8000 rank saturation) occurs, the IOPM throttles I/O requests with a lower performance priority to help I/O requests with higher priority. The I/O request handling through the various components from the z/OS through SAN fabric to the DS8000 storage system is shown in Figure 5-17.

Important: Do not confuse I/O priority queuing with I/O Priority Manager (IOPM). I/O priority queuing works on a host adapter level and is available at no charge. IOPM works on the device adapter and DS8000 level and is a licensed function.

![Figure 5-17 I/O request handling and WLM, SAN fabric, and DS8000 IOPM integration](image-url)
This example features two applications: Appl.A and Appl.B. These applications start I/O requests that are directed to the same DS8000 rank. The WLM adds to the channel program of both I/O requests the importance and goal achievement values according to the applications service classes. These requests first arrive at SAN fabric, which gives the appropriate priority within the fabric, and then, eventually, they arrive at the DS8000 storage system. It is here that the IOPM component assigns a performance policy and then a performance group to the two I/O requests. Then, if the rank is overloaded, the IOPM begins throttling the I/O with the lower priority.

Usually when the WLM support is enabled, the volume assignment to a performance group is no longer accounted for by the IOPM. The IOPM assigns a performance group to every I/O operation according to the importance and achievement values. It then sets the proper performance policy to the single I/O operation.

This end-to-end QoS management on each individual I/O request and tight collaboration between zWLM, SAN fabric, and IOPM is unique to the DS8000 storage systems.

For more information, see *DS8000 I/O Priority Manager*, REDP-4760.

5.9 IBM zHyperWrite

IBM zHyperWrite™ technology is provided by the DS8880 storage system. It is used by DFSMS to help accelerate Db2 and IMS log writes in MM synchronous data replication environments when GDPS or CSM and HyperSwap technology are used. zHyperWrite is also supported in Multi-Target Metro Mirror (MTMM) environments and can be used in each relationship independently, depending on the state of the relationship.

When an application sends an I/O request to a volume that is in synchronous data replication, the response time is affected by the latency that is caused by the replication management, in addition to the latency because of the distance between source and target disk control units (10 microseconds per 1 km (0.62 miles)).

Although the latency cannot be avoided (we are limited by the speed of light), an opportunity exists to reduce the latency that is added by managing the synchronous relationship when application usage allows this technique to be used. IBM zHyperWrite combines concurrent DS8000 MM (Peer-to-Peer Remote Copy (PPRC)) synchronous replication and software mirroring through Media Manager (DFSMS) to provide substantial improvements in Db2 and IMS log write latency.

With zHyperWrite, I/O writes to the database logs are replicated synchronously to the secondary volumes by DFSMS. For each write to the primary log volume, DFSMS updates its secondary volume at the same time. Both primary and secondary volumes must be in the MM (PPRC) relationship, but z/OS instructs the DS8000 storage system to avoid the use of MM replication for these specific I/O writes to the logs.
The I/O write to the log with zHyperWrite is completed only when both primary and secondary volumes are updated by DFSMS. All I/O writes that are directed to other Db2 and IMS volumes (table spaces, indexes, and others) are replicated to the secondary volumes by DS8000 MM, as shown in Figure 5-18.

The same logic applies if you do not have dedicated volumes for Db2 logs only (that is, a mixture of Db2 logs and other Db2 data sets on the same volume). Only the I/O writes that are flagged as eligible for zHyperWrite (writes to a Db2 log data set) are replicated by DFSMS Media Manager. The other I/O writes are under DS8000 MM control.

The following prerequisites must be met for zHyperWrite enablement:

- Primary and secondary volumes with Db2 logs must be in MM (PPRC) replication.
- Primary and secondary MM volumes must be in the full duplex state.
- HyperSwap must be enabled, so use CSM or GDPS for replication management.
If the Db2 log volume (primary or secondary) is not in the full duplex state, the zHyperWrite I/O to the eligible Db2 log data set fails. When the I/O fails, DFSMS immediately tries to redrive the failed I/O to the primary volume, but this time without zHyperWrite, which gives full control to the DS8000 storage system to replicate it by using the MM, as shown in Figure 5-19.

Similarly, if any issues exist with FICON channels to the secondary Db2 log volume, DFSMS gives instruction to the DS8880 storage system to start MM replication.

5.9.1 zHyperWrite installation and enablement

IBM zHyperWrite support is provided on DS8000 storage system R7.4 and later. For more information about PTFs and APARs that are related to zHyperWrite, see the IBM Support website.

The zHyperWrite function is enabled by default when the required APARs and PTFs are applied and all other zHyperWrite prerequisites are met. The following zHyperWrite statement is included in the IECI0Sxx member:

```
HYPERWRITE=YES
```

Alternatively, you can enable zHyperWrite by using the following z/OS command:

```
SETI0S  HYPERWRITE=YES
```
Chapter 5. IBM Z and DS8880 performance

Example 5-2 shows the z/OS command that is used to verify the zHyperWrite status and determine whether it is enabled or disabled.

Example 5-2 z/OS command for checking the zHyperSwap status

```
D IOS,HYPERWRITE
IOS634I IOS SYSTEM OPTION HYPERWRITE IS ENABLED
```

However, Db2 provides its own control mechanism to enable or disable the use of zHyperWrite. The required Db2 APAR PI25747 introduced a new **ZPARM** keyword parameter (**REMOTE_COPY_SW_ACCEL**) that was added to the **DSN6LOGP** macro; the valid keywords are **ENABLE** and **DISABLE**. By default, this parameter is disabled.

You can verify whether zHyperWrite is enabled by using the Db2 command that is shown in Example 5-3. The output of the **DSNJ370I** message is updated. The SOFTWARE ACCELERATION status refers to the zHyperWrite software controlled mirroring and it can be **ENABLED** or **DISABLED**.

Example 5-3 Db2 command for checking the zHyperSwap status

```
-DISPLAY LOG
DSNJ370I csect-name LOG DISPLAY
CURRENT COPY1 LOG = dsname1 IS pct % FULL
CURRENT COPY2 LOG = dsname2 IS pct % FULL
H/W RBA = hw-rba ,
H/O RBA = ho-rba
FULL LOGS TO OFFLOAD = nn OF mm ,
OFFLOAD TASK IS status
SOFTWARE ACCELERATION IS ENABLED
```

IBM zHyperWrite as an IBM Z synergy feature is available on DS8880 and DS8870 storage systems only. With the High-Performance FICON ED, it provides overall enhanced resilience for workload spikes. Because of the improved Db2 transactional latency and log throughput improvements, more room is available for workload growth and potential cost savings from workload consolidations.

5.9.2 zHyperWrite and IMS 15

IMS 15 introduced the use of DFSMS Media Manager to write data to the write-ahead data set (WADS). This change enabled IMS to use important I/O features, such as zHPF, which increases I/O throughput, and zHyperWrite, which reduces latency time for synchronous replication products.

The use of zHPF and zHyperWrite can be specially useful for data sets with high write rates, such as WADS, which increases logging speed. You can reduce service times for WADS data sets by up to 50%, depending on your environment.

For more information about WADS performance improvements, see the Storage Solutions page.

For more information about WADS support for zHyperWrite, including migration considerations, see the WADS support for zHyperWrite page.
5.10 DS8000 Copy Services performance considerations

IBM z/Architecture and its channel subsystem provide features to help mitigate the performance implications of DS8000 data replication, especially the synchronous data replication called MM.

How IBM Z I/O architecture and technology that is combined with the DS8000 storage system helps to reduce the overall response time and addresses each timing component uniquely is shown in Figure 5-20. Whether this process is done at the operating system level, channel subsystem, or the DS8000 storage system, each active component interacts with the other components to provide the maximum synergy effect possible.

Some of the basic ideas are also implemented in the DS8000 replication firmware, and include the enhancement to standard FCP. The pre-deposit writes improve the standard FCP and optimize the number of protocol handshakes during an MM I/O operation. Several I/O requests are sent before a handshake signals to the sending storage system that everything arrived safely at the secondary site.

The number of protocol exchanges that is needed to run the I/O chain is minimized compared to standard FCP. The goal here is to combine several aspects, such as how many I/Os to send before the handshake, considering the resources that are needed for buffers, and how smart error detection and error recovery are to run at the maximal speed and performance. This approach provides good performance with the DS8000 storage system when Copy Services functions of up to 300 km (186.41 miles) distance between sites are used.

This technology is used by DS8000 Copy Services functions and zHPF through ED II. For more information, see 5.5, “High-Performance FICON for IBM Z” on page 80.
The use of PAVs and (even better) HyperPAV with DS8000 multiple allegiance and I/O priority queuing functions can help to mitigate the potential performance effect through synchronous MM replication.

However, even without those extra performance improvement features, the MM solution as implemented in the DS8000 storage system is one of the most efficient synchronous replication solutions compared to other storage systems. With a single round trip and considering the speed of light in a non-vacuum environment at approximately 200,000 Kps, the synchronous MM impact is only 10 ms per 1 km (0.62 miles) round trip. That means the synchronous replication impact is about 1 ms when both sites are 100 km (62.13 miles) apart.

Asynchronous often has no affect on application write I/Os.

5.10.1 FlashCopy and performance considerations

FlashCopy with background copy I/Os can sometimes briefly affect application write I/Os. When application writes must be destaged during background copy I/Os, the corresponding ranks can become over committed when the source volumes experience high I/O rates at the same time.

FlashCopy with NOCOPY forces back-end I/Os through copy on writes. Before a source track is updated by an application write I/O, the source tracks are first copied to the FlashCopy target volume to preserve the data status from the last FlashCopy operation. This copy on write occurs once per track until the next FlashCopy NOCOPY operation.

When the FlashCopy target volume is a track space-efficient volume, the management impact might become visible with high write I/O rates to the source volume. Generally, a best practice is to secure performance, avoid space-efficient FlashCopy target volumes, and use a fully provisioned target volume instead. This approach also has an advantage that such a volume is not dedicated only to FlashCopy. This consideration is not applicable to GM.

Experience shows that with GM, a track space-efficient FlashCopy target volume provides sufficient performance to handle the incoming write I/O load at the GM secondary site. You are on the safe side with GM space-efficient FlashCopy target volumes when establishing the FlashCopy target volumes on the fastest DS8000 back-end storage technology. At least define the space-efficient FlashCopy repository in an extent pool with as many ranks as possible, and with them spread across as many device adapter pairs and DA pairs as possible.

Incremental FlashCopy potentially provides the best performance results, but only after a full initial copy at the time of the first FlashCopy operation is completed. After that full initial copy, no data must be moved and changed tracks are recorded as a bitmap until the next FlashCopy operation. Subsequent FlashCopy operations copy only the tracks that changed since the last FlashCopy.
An overview of what a single copy service path can perform is shown in Figure 5-21. In the
days of Enterprise Storage Server Model 800, an Enterprise Storage Server PPRC FCP port
over Fibre Channel links provided the fastest Copy Services function that were available in
the marketplace. How well a single DS8000 FCP port performs for MM data replication today
also is shown in Figure 5-21.

![Single Metro Mirror path throughput](image)

Figure 5-21 Single DS8870 PPRC and MM paths throughput

In the days of Enterprise Storage Server Model 800, a single PPRC FCP port was in the
range of 20,000 IOPS based on 4 KB application write I/Os, and was based on 2 Gbps
technology. With today’s QLogic based adapter technology and 16 Gbps technology, the
improvement is almost 500%. The same range applies to the amount of data that a DS8880
16 Gb FC port can replicate between two MM ports.

These brief considerations show that the performance of DS8880 Copy Services is closely
related to the synergy between IBM Z channel interface technology and the DS8880 storage
system.

5.11 DS8000 storage system and z14 I/O enhancements

The latest 16 Gbps FICON (end-to-end connectivity between IBM z14 and DS8880 storage
systems) provides many host I/O performance enhancements. The faster link significantly
contributes to simplifying infrastructure, and reducing I/O latency for critical applications and
elapsed time for I/O batch jobs. In addition, the synergy elements that were introduced with
16 Gbps FICON adapters enable even higher standards for RAS.

This section describes the following DS8000 storage system and z14 I/O enhancements:
- FICON Dynamic Routing (FIDR)
- Forward Error Correction (FEC)
- Read Diagnostic Parameters (RDP) for improved fault isolation
- SAN Fabric I/O Priority management
- zHyperLink

For information about IBM z13 I/O enhancements, see *Get More Out of Your IT Infrastructure
with IBM z13 I/O Enhancements*, REDP-5134.
5.11.1 FICON Multihop

Planning the FICON connections for mainframe environments can be challenging, especially when your mainframe solution includes multisite requirements for HA and DR purposes and you are limited to only two cascades switches and one hop. This limitation increases the number of switches that are necessary to achieve your solution.

To overcome this limitation, IBM announced the FICON Multihop, which enables the use of up to four FICON switches or directors and up to three hops between your devices. This feature can reduce the number of switches and the complexity of your network configuration. A sample FICON configuration for geographically dispersed data centers with non-cascaded and cascaded FICON switches is shown in Figure 5-22.
When the HCD relationship is defined, you do not define the interswitch link (ISL) connections. All of the traffic management between the ISLs is performed by the directors that are using the Fabric Shortest Path First (FSPF) protocol (see "Fabric Shortest Path First"). The HCD simply assumes that the links are present, and it requires 2-byte addressing that specifies the destination director ID and the port to be used within that director.

Note: Multihop is supported by using traditional static routing methods only. It is not supported by FIDR.

Fabric Shortest Path First
The FSPF protocol is the standardized routing protocol for Fibre Channel (FICON) SAN fabrics. FSPF is a link state path selection protocol that directs traffic along the shortest path between the source and destination that is based on the link cost.

FSPF detects link failures, determines the shortest route for traffic, updates the routing table, provides fixed routing paths within a fabric, and maintains correct ordering of frames. FSPF also tracks the state of the links on all switches in the fabric and associates a cost with each link.

The protocol computes paths from a switch to all of the other switches in the fabric by adding the cost of all links that are traversed by the path, and chooses the path that minimizes the costs. This collection of the link states (including costs) of all the switches in the fabric constitutes the topology database or link state database.

FSPF is based on a replicated topology database that is present in every switching device in the FICON SAN fabric. Each switching device uses information in this database to compute paths to its peers by way of a process that is known as path selection. The FSPF protocol provides the mechanisms to create and maintain this replicated topology database.

When the FICON SAN fabric is first initialized, the topology database is created in all operational switches. If a new switching device is added to the fabric or the state of an ISL changes, the topology database is updated in all of the fabric’s switching devices to reflect the new configuration.

Requirements and support
Several requirements must be met before you can take advantage of multihop, including requirements for IBM Z hardware, DASD/Storage, SAN Hardware, and Network/DWDM requirements.

For more information about the requirements, see the FICON Multihop: Requirements and Configurations page.

5.11.2 FICON Dynamic Routing
Static and dynamic routing policies are available on SAN fabrics; however, only static routing policies are supported for mainframe FICON users.
The SAN fabric routing policy is responsible for selecting a route for each port in the fabric. Various policy options are available from Brocade and Cisco, as listed in Table 5-1.

Table 5-1 SAN Fabric routing policies

<table>
<thead>
<tr>
<th>Routing policy</th>
<th>Brocade</th>
<th>Cisco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Port-based routing (PBR)</td>
<td>N/A</td>
</tr>
<tr>
<td>Static</td>
<td>Device-based routing (DBR)</td>
<td>Default static routing policy</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Exchange-based routing (EBR)</td>
<td>Originator exchange ID routing (OxID)</td>
</tr>
</tbody>
</table>

PBR assigns static ISL routes, based on first come, first served at fabric login (FLOGI) time. The actual ISL that is assigned is selected in round-robin fashion. Even the ports that never send traffic to the cascaded switch are assigned ISL routes. This situation sometimes results in some ISLs being overloaded while other available ISLs are not used at all. The routing can change every time that the switch is initialized, which results in unpredictable and non-repeatable results.

When the access to the remote disks is routed only through one ISL link is shown in Figure 5-23. The remaining ISL ports are not used because other channels do not need access to the remote devices. This result occurs because of the static routing policy that assigns ISL routes to each port as it logs in to the fabric.

Figure 5-23 Static routing policy: Brocade port-based routing

Brocade DBR and the Cisco default routing policy create a set of static routes that are based on a hash of the source and destination Fibre Channel port addresses. Therefore, every flow in the fabric can take different path. For Brocade FICON Directors, DBR is more efficient at spreading the work over all the available ISLs than PBR.
Figure 5-24 shows DBR where the ISL route is assigned based on a hash of the source and destination port addresses. This method is much more likely to spread the work across all the available ISLs.

With z13 and DS8000 storage system R7.5 and later, FICON channels are no longer restricted to the use of static SAN routing policies for cascading FICON directors. The IBM Z feature that supports dynamic routing in the SAN is called FIDR. It is designed to support both the Brocade static SAN routing policies, including PBR and DBR, and the Brocade dynamic routing policy, which is known as EBR.

FIDR also supports both of the Cisco default static routing policies for cascaded SAN switches and the Cisco dynamic routing policy for cascaded SAN switches, which is known as OxID.

Dynamic routing dynamically changes the routes between host channels and DS8880 storage systems that are based on the Fibre Channel Exchange ID. Each I/O operation features its own exchange ID. Therefore, all available ISL ports are evenly used because the host I/O traffic is routed evenly across all ISLs.

The FIDR, which is a new feature in z13 that you use to set up dynamic routing policies in the SAN, is shown in Figure 5-25.

Note: FIDR is supported on IBM z13 and later, DS8000 storage system R7.5 and later, Brocade Fabric OS V7.4 and later, and z/OS 2.1 and later only.
By using the IBM Z support of dynamic routing policy, you can share SAN fabrics between FICON and FCP (PPRC) traffic and reduce overall SAN infrastructure costs. Because the ISLs can be shared between FICON and FCP traffic, extra ISL ports are not needed, and more dark fiber links between sites do not need to be leased.

Shared SAN fabric design provides simplified management, easier problem determination, and improved performance through more efficient and balanced use of ISLs. ISLs can be driven to higher use before incurring queuing delays that might result in longer I/O service times.

Tip: With FIDR, accommodating FCP (PPRC) traffic on the same ISL is possible because you no longer separate virtual fabrics with separate ISLs for FCP and FICON traffic.

This enhancement positions IBM Z and DS8880 storage system for future innovations in SAN technology.

5.11.3 Forward Error Correction

With the latest 16 Gbps Fibre Channel link speeds that were introduced in z13 and DS8880 storage systems, optical signal becomes more sensitive to environmental effects. They also can be degraded because of the poor quality of optical cables (twisting and bending), dust, or faulty optic connectors.

Many clients experienced optical signal sensitivity because of a faulty cabling infrastructure when they migrated to 8 Gbps link speed. This vulnerability increases even more with 16 Gbps. Standard tools sometimes do not reveal problems before production work is deployed. Therefore, deployment of 16 Gbps technology requires mechanisms to prevent faulty links from causing I/O errors to occur.

IBM added FEC technology on z13 and DS8000 storage systems. This technology captures errors that are generated during the data transmission over marginal communication links. The use of FEC is auto-negotiated by the DS8880 storage system and IBM Z channels by using a standard Transmitter Training Signal (TTS). On the SAN fabric switch, you must enable ports that are connected to z13 and DS8880 storage systems to use this standard TTS auto-negotiation.

The Brocade `portcfgfec` command that is used for FEC enablement is shown in Example 5-4.

Example 5-4 Brocade command for FEC enablement

```
switch:admin> portcfgfec --enable -TTS 5
Warning : FEC changes will be disruptive to the traffic
FEC TTS is supported only on F-port.
WARNING: Enabling TTS on E-port, EX-port and D-port will disable the port.
TTS has been enabled.
```

Note: The Brocade `portcfgfec` command includes two parameters (FEC and TTS) that can be used to enable FEC. The FEC parameter is based on the Brocade propriety method, and the TTS method is open-standard-based, which is the same as the DS8880 storage system and z13 FICON host adapters. The TTS parameter must be used to enable end-to-end FEC between z13 and DS8880 storage systems.
By enabling FEC, clients see fewer I/O errors because the errors are corrected by the error correction technology in the optical transmit and receive ports. The end-to-end link should run at the 16 Gbps speed to achieve the maximum latency reduction. Moreover, the full path from the host channel through SAN fabric to the control unit should FEC enabled to minimize the risk of I/O errors.

Note: No configuration is needed for direct links between the DS8880 storage system and z13 channel, or direct PPRC links.

Fibre Channel Framing and Signaling 3 (FC-FS-3) and Fibre Channel Physical Interfaces (FC-PI-5) standards (from the T11.org) are being updated to bring FEC to optical SAN fabric for IBM Z and the DS8880 storage system. These standards define the use of 64b/66b encoding, so the overall link efficiency improves to 97% versus 80% with previous 8b/10b encoding. FEC encoding operates at the same high efficiency and improves reliability by reducing bit errors (errors are less than 10,000 times likely to be seen). Any single bit error or up to 11 consecutive bit errors per 2112 bits can be corrected.

High-level end-to-end FEC enablement is shown in Figure 5-26.

![Figure 5-26](image)

Note: FEC is supported on 16 Gbps links (end to end) for IBM z13 and later, DS8000 storage system R7.5 and later, Brocade FOS V7.4 and later, and z/OS 2.1 and later only.

5.11.4 Read Diagnostic Parameters for improved fault isolation

One of the significant challenges for clients is problem determination that is caused by faulty connections after hardware is added or upgraded. Even when the problem is detected, identifying the real root cause (that is, which part of the link is fault) can be difficult and time-consuming. Is it because of the damaged cable or connector (SFP transceiver)?

1 For more information, see http://www.t11.org/index.html.
The T11 RDP standard defines a method for SAN fabric management software to retrieve standard counters that describe the optical signal strength (send and receive), error counters, and other critical information for determining the quality of the link. After a link error is detected (such as Interface Control Check: Condition Code 3, reset event, or link incident report), software can use link data that is returned from RDPs to differentiate between errors that are caused by failures in the optics versus failures that are the result of dirty or faulty links.

For example, the cable-connector path (including cleanliness of optical connectors) is diagnosed by calculating the ratio of RX LightInputPower to TX LightOutputPower. Receivers rarely fail, and the receiver sensitivity does not change. Therefore, an indicator to clean the connector warns when the receiver optical power is too low for good signal reception and the calculated ratio of RX LightInputPower to TX LightOutputPower is too low. If this RX:TX ratio continues to be low, the cable might be broken.

All of this crucial RDP data is now available in the DS8000 storage system since R7.5.

A partial output of the host port DSCLI command with the RDP data that is listed at the bottom is shown in Example 5-5. Regarding the UncorrectedBitErr and CorrectedBitErr entries, nonzero counts are expected. The counter increases during link initialization while the FEC block lock is occurring. After link init, nonzero corrected bit errors are okay because the FEC is working. Uncorrected bit errors might be an indication of link problems.

Example 5-5 DS8880 showioport command displays the RDP data

dscli> showioport -metrics I0300
ID I0300
Date 11/15/2016 17:28:23 CET
... ...
CurrentSpeed (FC) 16 Gb/s
%UtilizeCPU (FC) 7 Dedicated
TxPower(RDP) -2.2 dBm(607.8 uW)
RxPower(RDP) -3.0 dBm(498.2 uW)
TransceiverTemp(RDP) 50 C
SupplyVolt(RDP) 3328.5 mV
TxBiasCurrent(RDP) 7.66 mA
ConnectorType(RDP) SFP+
TxType(RDP) Laser-SW
FECStatus(RDP) Inactive
UncorrectedBitErr(RDP) -
CorrectedBitErr(RDP) -
The intended use of the RDP to retrieve programmaticaly diagnostic parameters to assist you in finding the root cause for problematic links in the SAN environment is shown in Figure 5-27.

![Figure 5-27 Read Diagnostic Parameters that are used to improved fault isolation](image)

New z/OS health checks occur when the end-to-end link speeds are inconsistent and if all paths to a control unit have inconsistent link speeds. These checks simplify diagnosing performance problems and reduce the number of useless repair actions.

5.11.5 zHyperLink

The business requirements for faster transactions and lower response times for applications drove new technology to reduce the latency that is related to retrieving data from back-end storage, such as Easy Tier and flash storage. Although these solutions help address the time that is required to read the data from your physical media, other parts of your I/O processing can also use valuable amounts of time and affect your latency.

zHyperLink introduced on IBM z14 aims to provide a short distance direct connection of up to 150 meters (492.12 feet). zHyperLink is a new synchronous I/O paradigm. This paradigm eliminates z/OS dispatcher delays, I/O interrupt processing, and the time that is needed to reload the processor cache that occurs after regaining control of the processor when I/O completes. zHyperLink delivers up to 10 times latency improvement. zHyperLink improves application response time, which cuts I/O sensitive workload response time in half without significant application changes.

zHyperLink and zHPF

Although zHyperLink represents a substantial enhancement over FICON connections, it does not replace these connections. Instead, zHyperLink works with FICON or zHPF to reduce application latency, the workload that is transferred by zHPF reduces with zHyperLink implementation. Not all I/Os are eligible for zHyperlink. Additionally, if a zHyperlink I/O is not successful (for example, because of a read cache miss), the I/O is redriven over FICON.

zHyperLink is a PCIe connection and does not reduce the physical number of current zHPF connections.
The different latency times for zHyperLink and zHPF are shown in Figure 5-28.

zHyperLink considerations

A few conditions must be met before you can use zHyperLink. First, zHyperLink is available only to z14 and later hardware. It is not possible to install or use zHyperLink on previous hardware versions.

The zHyperLink hardware is designed for short distance communication of up to 150 meters (492.12 feet), so your DS8880 storage system must be no further than this length from your IBM Z hardware. Additionally, the IBM Z and the DS8880 hardware must have the zHyperLink hardware installed to communicate.

zHyperLink and synchronous I/O

zHyperLink can provide low latency for I/Os, and can deliver an I/O operation in less than 20 microseconds in some scenarios. The time that is spent with interrupt handling, CPU dispatch time, and reload L1/L2 cache can also increase your I/O time (see Figure 5-28).

When an application (in this case, Db2) requests an I/O through zHyperLink, a synchronous I/O operation is requested. Therefore, the task is not dispatched from the CPU while the I/O is performed.
The workflow of an I/O operation that defines whether a zHyperlink synchronous I/O operation is attempted is shown in Figure 5-29.

![Figure 5-29 I/O operation work flow](image)

As shown in Figure 5-29, the I/O process flow includes the following steps:

1. The I/O drivers request a synchronous execution. The system checks whether the I/O is eligible for synchronous I/O, and if so, it is directed for synchronous IOS through zHyperLink.
2. If the I/O is returned in an acceptable amount of time, the I/O is returned to the I/O Driver.
3. If the I/O is not returned in an acceptable amount of time (for example, if the data is not in the DS8880 cache and a prefetch is necessary), the request is returned to the I/O Driver.
4. The I/O driver requests the I/O to be performed through the heritage IOS.
5. When the I/O response is received, it is returned to the I/O driver the same way it is done today.

Note: Because the prefetch is requested when the synchronous I/O is attempted, the subsequent heritage I/O can still perform better than a request that did not attempt a synchronous I/O.
Other considerations
You can have up to 16 zHyperLink Express adapters per z14, for a total of 32 ports. These adapters do not take up fanout slots like short distance coupling. Each port can be shared among up to 16 LPARs, and have a maximum suggested PCIE Function IDs (PFIDs) per zHyperLink per LPAR. As of this writing, the DS8880 storage system can have up to 16 zHyperLink connections. The number of connections depends on the model (number of I/O enclosures and cores, as show in Table 5-2).

Table 5-2 zHyperLink configuration summary

<table>
<thead>
<tr>
<th>System/Model</th>
<th>Cores per processor</th>
<th>zHyperLink supported</th>
<th>Maximum zHyperLink connections (increments of 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS8884 / DS8884F</td>
<td>6</td>
<td>NO</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>YES</td>
<td>4</td>
</tr>
<tr>
<td>DS8886 / DS8886F</td>
<td>8</td>
<td>NO</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>YES</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>YES</td>
<td>12</td>
</tr>
<tr>
<td>DS8888 / DS8888F</td>
<td>24</td>
<td>YES</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>YES</td>
<td>16</td>
</tr>
</tbody>
</table>

A DS8884/F storage system with six cores can be concurrently upgraded to 12 cores by using feature code (FC #4425).

zHyperLink allows the following interconnections:
- One z14 to one DS8880 storage system by using multiple zHyperLink connection pairs
- Multiple z14 mainframes to a single DS8880 storage system
- Multiple DS8880 storage systems to a single z14 mainframe

Initially, only Db2 can use zHyperLink for random 4 KB or smaller reads and writes (Db2 Read and, as of this writing, just Db2 logs are eligible for write operations).

Note: For writes, zHyperwrite is required, meaning that z/OS performs zHyperlink operations in parallel to the DS8000 storage system (see 5.9, “IBM zHyperWrite” on page 92).

Before you can configure and activate your zHyperLink connection in your host, you must also enable the zHyperLink in your DS8000 DASD controller. You activate zHyperLink by logging on with a user with administrator privileges, and select **Settings**, and select **System**.

In the next window, select the **zHyperLink** tab, and then select the **I/O Read Enabled** or **I/O Write Enabled** check box (select both to enable Read and Write). After you enable zHyperLink, you must save the changes in your configuration.
A sample zHyperLink enablement window that uses DS8880 Release 8.51 code and the corresponding GUI is shown in Figure 5-30.

![zHyperLink enablement window (DS8000 storage system R5.1)](image)

IBM zHyperLink is supported on native z/OS operating systems only. It is not supported on guest LPARS under z/VM or other operating systems. It was developed for IBM Db2 for z/OS.

The use of the MISSINGFIX report is required to determine whether any APARs exist that are applicable and are not yet installed. The REPORT MISSINGFIX command checks the zones that are specified on the ZONES operand and determines whether any missing fixes exist based on the fix categories of interest.

Run the `SMP/E REPORT MISSINGFIX ZONES (<your zone names>) FIXCAT (IBM.Function.zHyperLink)` command and install all the fixes that are listed. Example 5-6 shows a sample MISSINGFIX JCL.

Example 5-6 Sample SMP/e control cards with the FIXCAT option

```
SET BOUNDARY (GLOBAL).
REPORT MISSINGFIX ZONES (<your zone names>)
FIXCAT (IBM.Function.zHyperLink).
```

Also, consider checking `IBM.Device.Server.z14-3906*` for z14 and `IBM.Device.Server.z14-3906.zHighPerformanceFicon` for zHPF.
By default, the zHyperLink functions are disabled in z/OS. To enable z/OS for zHyperLink read/write processing, use the SETIOS IBM MVS* system command after an IPL, or use the IECIOSxx parmlib to enable zHyperLink processing during IPL, as shown in Example 5-7.

Example 5-7 zHPF, zHyperLink, and HyperWrite parm on the IECIOSxx parmlib

ZHPF=YES
ZHYPERLINK,OPER=ALL|READ|WRITE|NONE
HYPERWRITE=YES

Note: To activate zHyperLink, IOPM must be disabled. IOPM must be turned off at the storage system level. This feature then is off for all data, even if the data is not eligible for zHyperLink. Therefore, I/O prioritization for IBM IMS data (and other data) might be effected.

To disable IOPM, log in to the DS8000 Storage Management interface as a user with administrator privileges, select the Settings option, select System, click the Advanced tab, click Function Settings, and select Disable for I/O Priority Manager mode, as shown in Figure 5-31.

Figure 5-31 Setting I/O Priority Manager Disable

For more information about the configuration, feature codes, and requirements for zHyperLink on the DS8880 storage system, see the following documents:

- IBM DS8880 Architecture and Implementation (Release 8.51), SG24-8323
- Getting Started with IBM zHyperLink for z/OS, REDP-5493
5.12 IBM zEnterprise Data Compression

Another synergy component is the IBM zEnterprise® Data Compression (zEDC) capability and the hardware adapter zEDC Express, which can be used with z/OS V2.1 and later.

zEDC is optimized to be used with large sequential files (but not limited to such files) and improve disk usage with a minimal effect on processor usage.

zEDC can also be used for Data Facility Storage Management Subsystem Data Set Services (DFSMSdss) dumps and restores and DFSMS Hierarchical Storage Manager (DFSMShsm) when DFSMSdss is used for data moves.

An example of a zEDC compression result is shown in Figure 5-32.

![Figure 5-32 zEDC compression numbers](image)

For more information about zEDC, see Reduce Storage Occupancy and Increase Operations Efficiency with IBM zEnterprise Data Compression, SG24-8259.

5.13 Transparent Cloud Tiering

Good storage management practices are based on the principle that physical space often is configured in logical pools that can be dynamically reconfigured to increase or decrease the storage capacity that is available for use. This reconfiguration should also be transparent to the user.

Storage Cloud on mainframes introduces a new storage tier that can be used to provide extended storage capacity at a lower cost while making the data available from different locations.

The Transparent Cloud Tiering (TCT) function from the DS8880 storage system provides a gateway to convert the DS8880 block storage data to Object Storage format for storing data on private or public clouds (TCT supports IBM Cloud™ Object Storage, Amazon S3 API, and OpenStack Swift).
From a z/OS perspective, there is a MIPS reduction by using direct data transfer from the DS8880 storage system to Object Storage. DFSMSShsm and DFSMSdss are used to store and retrieve data from the cloud, as shown in Figure 5-33.

TCT provides support to migrate and recall data sets to volumes that participate in Simplex, FlashCopy, 2-site MM, GM, and Metro-Global Mirror relationships.

To use TCT, you must fulfill the following requirements:
- Ethernet connections on the DS8880 storage system
- z/OS levels
- DS8880 release level
- Cloud APIs support
- Authentication information from your cloud service provider or administrator
- TLS/SSL considerations

To learn about these requirements and how to configure your system to use TCT, see IBM DS8880 and z/OS DFSMS: Transparent Cloud Tiering, SG24-8381.

TCT services use up to two 10 Gbit or two/four 1 Gb Ethernet ports in each of the DS8880 processors. This Ethernet connectivity is also required from the mainframe to either the DS8880 storage system or the Object Storage cloud server, depending on the cloud type chosen.
Related publications

The publications that are listed in this section are considered suitable for a more detailed discussion of the topics that are covered in this paper.

IBM Redbooks

The following Redbooks publications provide more information about the topic in this document. Some publications might be available in softcopy only:

- *DB2 for z/OS and List Prefetch Optimizer*, REDP-4862
- *DFSMShsm Fast Replication Technical Guide*, SG24-7069
- *DS8000 I/O Priority Manager*, REDP-4760
- *DS8870 Data Migration Techniques*, SG24-8257
- *DS8870 Easy Tier Application*, REDP-5014
- *Enhancing Value to Existing and Future Workloads with IBM z13*, REDP-5135
- *Get More Out of Your IT Infrastructure with IBM z13 I/O Enhancements*, REDP-5134
- *How does the MIDAW Facility Improve the Performance of FICON Channels Using DB2 and other workloads?*, REDP-4201
- *IBM DS8000 Easy Tier (for DS8880 R8.5 or later)*, REDP-4667
- *IBM DS8870 Easy Tier Heat Map Transfer*, REDP-5015
- *IBM DS8870 Multiple Target Peer-to-Peer Remote Copy*, REDP-5151
- *IBM DS8880 Architecture and Implementation (Release 8.51)*, SG24-8323
- *IBM DS8880 High-Performance Flash Enclosure Gen2*, REDP-5422
- *IBM DS8880 Product Guide (Release 8.51)*, REDP-5344
- *IBM DS8880 Thin Provisioning (Updated for Release 8.5)*, REDP-5343
- *IBM GDPS Family: An Introduction to Concepts and Capabilities*, SG24-6374
- *IBM System Storage DS8000: Host Attachment and Interoperability*, SG24-8887
- *IBM z13 and IBM z13s Technical Introduction*, SG24-8250
- *IBM z/OS Global Mirror Planning, Operations, and Best Practices*, REDP-4878
- *IBM z/OS V2R2: Storage Management and Utilities*, SG24-8289
- *IBM Z Connectivity Handbook*, SG24-5444
- *Multiple Subchannel Sets: An Implementation View*, REDP-4387
- *Reduce Storage Occupancy and Increase Operations Efficiency with IBM zEnterprise Data Compression*, SG24-8259
- *System z End-to-End Extended Distance Guide*, SG24-8047

You can search for, view, download, or order these documents and other Redbooks, Redpapers, web docs, draft, and more materials, at the following website:

ibm.com/redbooks
Other publications

The following publications are also relevant as further information sources:

- *IBM System Storage DS8880 Performance Whitepaper*, WP102605
- *z/OS DFSMS Advanced Copy Services*, SC23-6847-02
- *z/OS DFSMS Using the New Functions Version 2 Release 1*, SC23-6857-03
- *z/OS DFSMS Using the New Functions Version 2 Release 2*, SC23-6857-04
- *z/OS DFSMSdfp Storage Administration Version 2 Release 1*, SC23-6860-01
- *z/OS DFSMSdfp Storage Administration Version 2 Release 2*, SC23-6860-02

Online resources

The following websites are also relevant as further information sources:

- IBM Z product page
- IBM DS8000 series product page

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services