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Executive overview

The growing complexity of electric power grids requires innovative solutions to effectively 
manage power grids and to enhance grid security and stability. Predictive modeling software 
can use the historical data to discover, among other things, failure order, failure relationships 
to components, and predictors associated with failures.

This IBM® Redguide™ publication proposes a dedicated ad hoc synchrophasor network that 
is embedded within the smart grid. This synchrophasor is a device that can measure, 
combine, and analyze the time-stamped measurements from various locations on an electric 
power grid. The proposed Smart Grid Analytics and Sensemaking framework is based upon 
various devices, data, and analytics.

A smart grid is really an ecosystem of large interconnected nonlinear systems. This proposed 
solution instance focuses the use of context-awareness analytics to maintain correct values 
(current and historical) for nodes and edges. Key to the analytics is the use of the Mehta 
Value, which is composed of a base reference, drift, and context-referenced phase angle 
data. Real-time decisions, such as load shedding or pathway selection, can then be made 
based upon the combination of contextually correct data and analytics, such as the Mehta 
Value.1 The streaming data within the electrical grid can be used automatically by various 
Smarter Grid Analytics.

Using the Smart Grid Analytics and Sensemaking framework described in this guide, smart 
grid managers can:

� Provide a context awareness to generate solutions that create an optimal, reliable, and 
stable network

� Reason and make sense of observations as they present themselves

� Make better, more timely business decisions, while the observations are still occurring

� Use the Mehta Value as a base reference to help make real-time decisions, such as load 
shedding or pathway selection

1  The notion of the Mehta Value was introduced at the North American Synchrophasor Initiative (NASPI) 22-24 
October 2013 meeting in Chicago with Dick Dickens, a Design Engineer at Mehta Tech, and Dr. Steve Chan.
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Addressing the growing complexity of electric power grids with 
innovative contextual solutions

As organizations address the growing complexity of electric power grids, context-referenced 
data on phasor2 measurement units (PMUs) is key to any robustly scalable and extensible 
solution for an electric grid. Context is the cumulative history derived from data observations 
about smart grid entities and their attributes (such as voltage, phase angle). This context is a 
critical component of the analytic decision process. Without context, grid network stability 
conclusions and infrastructure modification decisions might be flawed. By using context 
analytics to take advantage of grid big data, grid managers can discover trends, patterns, and 
relationships. Sensemaking can use these insights to help energy producers and sellers to 
make fact-based decisions so as to anticipate and optimally shape business outcomes.

There are more granular real-time streaming data generated by smart sensors and meters 
along energy production, transmission, and distribution system pathways than ever before. 
The data can be aggregated around each of the entities types (network segments, current, 
waves, measuring devices, and source devices) that form an electric grid. This cumulative 
data can provide what is commonly called historical context. Historical data repositories can 
be used to create an understanding of historical behaviors, inter-dependencies, and 
outcomes.

There is a critical need for time-synchronized data recorders that can be used to create 
wide-area visibility and situational awareness to address power grid problems before they 
propagate. Improved historical analytics can create deep forensic understanding of power 
grid behaviors and their inter-relationships. Operators and those who broker electric grid 
output can use the insights gained though forensic analytics to create effective real-time 
monitoring tools. In essence, forensic insight can be used for predictive insight.

The volume and velocity of electric power grid data certainly places the sector in the realm of 
big data. The streaming data generated by phasors will be invaluable for utility management. 
Each and every streaming data element is potentially interesting and should be taken 
advantage of using context-based smart grid analytics, thereby enabling continuous insight.

Context awareness

Context is the cumulative history derived from data observations about entities and includes 
several basic building blocks. Context entities are generically defined as people, places, and 
things. For this use case, entities are both the nodes (for example, substations) and edges 
(for example, transmission lines) in an electric grid. Entities also have attributes, such as 
voltage, wave size, and wave direction, and attributes can have values. Context is defined as 
a better understanding of how entities (for example, nodes and edges within the grid) relate. 
Cumulative context is the memory of how entities relate over time.

2   A phasor is any type of device that measures the electrical waves on an electrical grid.
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The need for accurate context awareness

The electrical utility industry is the predominant provider of electric power within most 
countries. The electric companies control generation, transmission, and distribution of electric 
power. An important concern of utilities has been reliability. A secure, stable, and reliable 
uninterrupted supply can be achieved through the use of protective devices and teleprotection 
systems. These devices and systems prevent damage and preserve the supply systems’ 
stability, so as to avoid failure.

One method to prevent degraded and impeded performance, using teleprotection systems 
(protective relays in conjunction with telecommunication channels) is to provide the optimal 
means of selectively isolating faults (on medium/high/super high voltage transmission lines, 
power transformers, variable shunt reactors, and so on). The teleprotection systems can 
automatically disconnect the faulted section and transfer command signals reliably using the 
most optimal pathway. Given appropriate data, the teleprotection systems can quickly engage 
in tripping (thereby reducing transmission line damage) the faulted section. These systems 
also attempt to avoid overtripping so as to maintain the stability of the power system. The 
amalgam of security, dependability, bandwidth (that is, data rate), and transmission time are 
interrelated and competing conflicting parameters. High security, high dependability, low 
bandwidth, and low transmission time are competing requirements.

Ideally, the decision to modify a power system should be made on the basis of an assessment 
of current grid measurements and the time-stamped history of each of these grid 
measurements. One type of common measurement on the grid is that made by a 
Synchrophasor. Using a specific Synchrophasor’s measurements (current and historical) 
must include the measurements (current and historical) of nearby Synchrophasors. This 
combination of current and historical localized grid Synchrophasor data creates a context for 
the Synchrophasor of interest.

Smart grid analytics can take advantage of contextually correct data and generate solutions 
that create an optimal, reliable, and stable network. Real-time decisions, for example, load 
shedding, can then be made based upon the combination of contextually correct data and 
analytics. The decisions can indicate the need for configuration changes and point out the 
need for additional data collection. Decision making is optimized when context awareness is 
provided by a Sensemaking paradigm.
3



Figure 1 presents a high-level framework for the envisioned Smart Grid Analytics and 
Sensemaking infrastructure, based upon various algorithms, heuristics, methodologies, tools, 
and devices.

Figure 1   High-level operational concept of a Smart Grid Analytics and Sensemaking framework

Context-awareness is critical to grid and network stability monitoring

Transfers of power across the grid are unpredictable due to market price variations and the 
increasing role of power brokers. Power brokers can change the terms of a contract in 
minutes and prices in second. Power brokers are forcing utilities to become more competitive 
and to increase the reliability of their service through smart grid initiatives. The complexities 
and the associated unforeseen instabilities stemming from power providers being swapped at 
a frenetic pace by power brokers can lead to questions of how to maintain the stability of 
power systems and prevent power system blackouts. To mitigate against these instabilities 
and to contribute to the overall stability of the grid, power brokers are implementing 
monitoring systems that can create context-awareness.

The complexity of electrical power grids requires the embedding of innovative systems to 
achieve more secure and stable grids. One solution instance focuses upon Wide Area 
Measurement Systems (WAMS) solutions with their associated context-awareness analytics. 
WAMS and other context-aware solutions, such as IBM InfoSphere® Sensemaking, are 
dependent upon the ingested data, such as accurately time-stamped PMUs of the electrical 
waves on an electric grid. PMUs over time can provide real-time insight into electrical grid 
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stability. A synchrophasor device can measure, combine, and analyze the accurately 
time-stamped measurements from various locations on an electric power grid. The 
measurement integration can enable the identification of stresses/disturbances on the 
system. Most utilities are monitoring and collecting information from grids that pertain to 
network reliability and stability. After all, a collapsing voltage can readily propagate across the 
electric power grid and can cause the grid to fail. The global assessments can provide insight 
into the overall network stability.

Grid and network stability is more than just voltage stability. It is also a function of phase angle 
difference. Phase angle differences across PMUs are indicators of static stress across the 
grid. Greater phase angle differences imply larger static stress, and greater likelihood of grid 
instability. Figure 2 shows phase angle difference reflected in electric current measurement. 
There are strict standards, such as the coordinated universal time, about how to measure the 
phase angle with respect to the global time reference and how to report this phasor 
comparison information.

Figure 2   Phase angle difference
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Interoperability between different PMUs is determined by a standard called Total Vector 
Error, a measure of compliance levels. The reality is that there are major 
time-synchronization issues among measurements with the same time-stamps. Even worse, 
the tools from different vendors create different readings on the same unit. Inaccurate 
readings and differences between vendors make it challenging for utilities to share the 
streaming data generated by the PMUs.

Intelligent electronic devices (IEDs), such as PMU, are used to monitor the stability of power 
systems. PMUs are positioned on the power grid at the substation level. The synchronized 
sampling and ensuing output of synchronized phasors should support the real time phasor 
comparison. The real-time output allows power system operators and planners to assess the 
state of the power system and to manage its stability.

Power system status is a function of rotor angle and rotor speed. While rotor speed deviation 
is used to detect increasing instability, it is the knowledge of rotor angle first swing that is 
needed for the detection of sudden, dynamic instability. The internal rotor angle is typically not 
measured directly, and the PMU approximates the internal rotor angle using the generator 
bus phase angle. When the number of phase angle measurements is increased in each area 
of interconnect power systems, the accuracy of this base vector computation will be 
increased. Concurrently, the enhanced base vector inherently provides better 
context-referenced phase angle data, because both are shaped by the other in a mutually 
recursive fashion.

The center of inertia (COI) is used to determine the interconnection phase angle and quantify 
the extent of phase angle variations away from the “system center.” The generated rotor angle 
estimates are used by the supervisory control and data acquisition/energy management 
systems (SCADA/EMS). However, the calculation of the online, real-time rotor angle stability 
COI measures (by WAMS) is computationally challenging, and there is no assurance that the 
online computational process will be fast enough to produce “real-time” results. As a result, 
there is a move away from various COI to the notion of a simpler, base reference.

The granularity of a phase angle reference is a more accurate measurement than the 
common reference. If the number of phase angle measurements in each area of the 
interconnected power systems is increased, the accuracy of the COI angle reference 
computation can be increased. The accuracy can be further enhanced if a mapping of the 
COI over time is made available. This mapping can also account for COI drift over time. More 
measurements and context allows a better predictor of both the future values for COI and 
future system instability. The various COI, collectively, represent the base reference.

Reliable, accurate, and seamless exchange of streaming data is critical to the accuracy of 
continuous insight and the requisite context-awareness for grid and network stability 
monitoring. Consider the lack of accurate, contextual forensic data, for example the cascading 
failure of the Northeast Blackout of 2003. Establishing the sequence of events that led up to 
the cascading failure and determining where the disturbance began was difficult. Although the 
individual parts that shut down each had data loggers, the clocks on them were not 
coordinated.
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Context analytics: Using the requisite building blocks for gaining insight into 
network stability

Context-awareness as provided by a Sensemaking paradigm, such as a WAMS, is central to 
monitoring network stability. Context-awareness analytics can provide increased insight into 
network stability and reliability. Historical, context rich data can generate forensic lessons 
learned and predictive models which can estimate future reliability. 

Predictive modeling software, such as IBM SPSS® Modeler, can use the synchrophasor 
historical data to discover, among other things, failure order, failure relationships to 
components, and predictors associated with failures. Predictive analytics can take advantage 
of PMU historical data to discover historical patterns, models, predictors, relationships, and 
trends. The exploration portion of the analytics can focus upon the discovery of relationships 
between outcomes of interest and data variables and the values of these variables.

The primary output of the predictive analytics will be patterns or models that are relevant to 
network stability and reliability. These models or patterns can be deployed against real-time 
PMU data to discover the existence of newly formed patterns. When interesting patterns are 
detected, this knowledge can be used to guide real-time, mission-critical decisions.

Framework for Smart Grid Analytics and Sensemaking

There are two critical components to the Smart Grid Analytics and Sensemaking framework:

� Sensemaking analytics
� Decision making

The Sensemaking portion denotes the incremental context accumulators. With each new 
data observation (for example actions, behaviors, locations, activities, or attributes), there is 
the possibility of a new discovery. The decision making portion of the framework assesses 
each newly updated entity to determine if something new has been learned and whether that 
new information is important and requires some sort of action, for example network 
modification or pathway changes. Our Sensemaking approach is divided into three basic 
components: infrastructure, incoming/contextual reasoning, and decision responding.

Critical infrastructure of a dedicated framework

This proposed framework requires the creation of a dedicated ad hoc synchrophasor network, 
embedded within the smart grid. Each of these network units, or PMUs, will collect: voltage, 
phase angle measurements, location, and time stamps. The proposed Sensemaking 
analytics has the following assumptions:

� There are no time-synchronization issues among measurements with the same time 
stamps for phasor measurement units (PMUs). Although readings produced by different 
manufacturers can differ by unacceptable variances, in fact differences ranging up to 
microseconds in the double digits have been observed.

� The measurements of the rotor angle are correct. All the collected measurements will be 
forwarded in real time to a context discovery engine.

The analytic portion of the smart grid Sensemaking requires both a layered technology deck 
and multiple computing infrastructures. Different analytics perform different functions, and the 
data itself varies in volume, variety, and velocity (data streams where data flows over 
constantly running queries). The key enabling infrastructures of IBM Apache Hadoop 
MapReduce and Streams are needed. Within an IBM Hadoop environment, deep analytics 
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can be performed on very large amounts of historical data and data at rest. IBM InfoSphere 
Streams technology enables the continuous analysis of massive volumes of streaming data 
with sub-millisecond response times. The volume and velocity of data associated with 
solutions, such as WAMS, means that real time grid assessment solutions must be 
instantiated in an infrastructure such as IBM InfoSphere Streams. When these infrastructures 
are combined with traditional enterprise data marts, analytics can take advantage of the full 
range of grid data.

Incoming and contextual reasoning support for the Mehta value

Grid systems (a set of elements and relationships) are in the form of networks, which are sets 
of nodes (also known as vertices) joined together in pairs by edges (also known as links). A 
set of binary relations would be used to describe the communication pattern between the 
nodes. A network consists of a set of nodes coupled with a set of binary relations between the 
nodes, which describe their communication pattern.

Grid networks vary in size (from small to large), density (from sparse to plenteous number of 
nodes), and topology (from those with highly modular structure to those with highly 
overlapping structure). The different nodes interact with each other but at different levels of 
strength. The nodes that are adjacent to a specific node have the most important strength of 
interaction. Typically, the strength of interaction between a node of interest and other nodes 
decays the further away a node is. The exact relationship of the strength can be determined 
by the graph analytics, as strength can change over time.

The analytics portion of the environment updates context, as appropriate, with every new 
observation. The real-time portion of the smart grid analytics receives the network stream 
data created by each synchrophasor or collector.

Drift is an important component of the context. If drift is added to the base reference, a more 
accurate version of a base reference is created. If the base reference is combined with the 
compensatory drift aspect and context-referenced phase angle data, it is called a Mehta 
Value, as follows:

Mehta Value =  base reference + drift + context-referenced phase angle data

The Mehta Value can constitute a new de facto currency for utilities.

Decision making and responding

Key to decision making is an understanding of the past. Analytics uses historical data about 
grid edges and nodes to discover historical patterns, models, predictors, relationships, and 
trends that are associated with outcomes of interest, for example transmission line 
degradation. These models, patterns, and rules can be compared against a combination of 
real-time data and contextual history to detect changes in the likelihood of these outcomes or 
partial matches to patterns. When these changes are detected, management controls can 
dynamically modify the network and prevent the occurrence of undesirable outcomes.

Control and orchestration

The real-time portion of the analytics environment must reason and make sense of 
observations as they present themselves. This cumulative, cohesive picture of the nodes and 
the network enables the analytics to use a combination of internal relevance detection 
models, rules, and situational assessment algorithms to make sense of and to evaluate 
different aspects of the smart grid.
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The real-time analytics environment can discover whether the cumulative (new streaming 
data + history) data on that grid location, or Mehta Value, now matches the models and 
patterns that have been developed in the deep analytics portion of the process. The real-time 
assessment can determine if an interesting event, such as COI drift, appears to be occurring 
or if there are interesting changes of parameter values, new evidence for hypothesis 
confirmation, or surprising and relevant events and insights. The analytics environment can 
determine if the addition of this new data point changes the existing scores or the likelihood of 
accuracy for analytics models, trends, behaviors, scenarios, and situations. The analytics also 
compare the current contextual values to different types of algorithms, such as fault location 
algorithms, which use both geography (that is, spatial analysis) and time (that is, temporal 
analysis). Those changes or discoveries deemed relevant and interesting can then be pushed 
to appropriate users. One type of action is that of continual adaptation or reconfiguration of 
system aspects to prevent increased system instability.

As the real-time analytics find discoveries that matter, alerts can be sent to users. Alerts can 
trigger real-time responses or a lengthier replanning event. One type of action is that of 
system adaptation or reconfiguration to prevent increased system instability. Other grid 
parameters can be modified, including security settings, bandwidth allocation, pathway 
selection, and so on. The dynamic modification of these parameters can enhance system 
reliability and stability.

Outgoing decision making

The primary goal of a smart grid decision making process is to make better, more timely 
business decisions, while the observations are still occurring. The decision process must 
enable the achievement of increased reliability, mitigate risk, and recognize opportunity for 
improvement. The process must improve the detection of outages, determine appropriate 
instances for load shedding, and create optimal criteria for condition-based maintenance.

The decision criteria are developed off line, using deep reflection analytics. Deep reflection 
uses predictive analytics to discover how historical data (variables and values) are related to 
outcomes of interest. The time stamped variables of interest here include: phase angle, 
voltage, rotor angle, wave size, and wave direction, and so on. The analytics uses historical 
data to discover historical patterns, models, predictors, relationships, and trends that are 
related to outcomes of interest, for example drift.

Depending on the size of the historical data, this type of analytics can be performed either in 
a traditional data warehouse or in a Hadoop based environment. The exploration portion of 
the analytics typically focuses on the discovery of relationships between outcomes of interest 
and data variables and the values of these variables. An excellent software platform for the 
model discovery is SPSS Modeler Premium. It provides a broad set of analytic capabilities, 
including the following capabilities: visualization and exploration of data, data manipulation, 
cleaning and transformation of data, and deployment of results.

The primary output of deep reflection analytics is the patterns or models that were discovered 
within the modeling process. When the enterprise learns from its historical experience, it can 
take action to apply what it has learned. These models and patterns can be deployed against 
new incoming (real-time) data in a real-time analytics environment. As the real-time 
assessment process discovers variable values, patterns, and so on of interest, this 
information is used to initiate actions or alerts to monitors.
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Summary

The complexity of electric power grids requires innovative solutions to effectively manage the 
power grids and to enhance grid security and stability. Predictive modeling software can use 
the synchrophasor historical data to discover, among other things, failure order, failure 
relationships to components, and predictors associated with failures. The proposed dedicated 
ad hoc synchrophasor network, embedded within the smart grid, focuses the use of 
context-awareness analytics to maintain correct values (current and historical) for nodes and 
edges. Key to the analytics is the use of the Mehta Value, composed of a base reference, 
drift, and context-referenced phase angle data. Real-time decisions, such as load shedding or 
pathway selection, can then be made based upon the combination of contextually correct 
data and analytics, such as the Mehta value.

Resources for more information

For more information about the concepts that are highlighted in this guide, see the following 
resources:

� IBM InfoSphere Sensemaking

https://www-304.ibm.com/industries/publicsector/fileserve?contentid=235174

� Jeff Jonas, IBM Fellow and Chief Scientist of the IBM Entity Analytics Group, blogs on 
Sensemaking and Context Analytics

http://jeffjonas.typepad.com/jeff_jonas/

� Context-Based Analytics in a Big Data World: Better Decisions, REDP-4962

http://www.redbooks.ibm.com/abstracts/redp4962.html?Open

� Analytics in a Big Data Environment, REDP-4877

http://www.redbooks.ibm.com/abstracts/redp4877.html?Open

� IBM Big Data Analytics website

http://www-01.ibm.com/software/data/infosphere/bigdata-analytics.html

� Harness the Power of Big Data: The IBM Big Data Platform (An IBM eBook)

https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swinfomgt&S_PKG=
ov8257&_TACT=109HF53W&S_CMP=is_bdebook3

� Turning Big Data into Actionable Information with IBM InfoSphere Streams, TIPS0948

http://www.redbooks.ibm.com/abstracts/tips0948.html?Open

� IBM SPSS Modeler

http://www-01.ibm.com/software/analytics/spss/products/modeler/
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Notices

This information was developed for products and services offered in the U.S.A. 
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your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
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improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 
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manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results 
obtained in other operating environments may vary significantly. Some measurements may have been made 
on development-level systems and there is no guarantee that these measurements will be the same on 
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