Smarter Data Centers: Accelerating the Move to a Smarter Planet

Mike Ebbers
Matthew Archibald
Carlos F. F. Fonseca
Marc Griffel
Veerendra Para
Michael Searcy

- Improving energy efficiency and reducing costs
- Minimizing stranded space, power, and cooling
- Monitoring, managing, and reporting across operations facilities and IT
Executive overview

“Many CEOs admitted that they felt overwhelmed by data while still being short on insight. They believe a better handle on information and mastery of analytics to predict consequences of decisions could go a long way in reducing uncertainty and in forging answers that are both swift and right.”

- 2010 IBM® Global CEO Study

Meeting the demands of a smarter planet

As we endeavor to use scarce resources wisely and control rising costs, we look for smarter ways to carry out our daily processes. A smarter planet requires a smarter data center.

The trends are unmistakable. As global populations climb, growth markets expand, and as we digitally connect all aspects of our world, the demand for data management and processing continues to skyrocket.

At the same time, technological advances continue to enable more work to be done in a smaller physical footprint. As a result, data center capacity is no longer dictated simply by spatial availability. Power, cooling, networking, storage, and other capacity metrics must be managed as well, and environmental concerns and associated governmental regulations can place additional focus on carbon emissions, water consumption, and waste management.

The exhaustion of any single capacity can leave other capacities stranded, limiting your growth, increasing your operational costs, and resulting in lost opportunities for additional business.

Meanwhile, the expense associated with operating data centers continues to rise, as shown in Figure 1 on page 2. Although new server spending has plateaued, the costs associated with data center management and administration, along with power and cooling, have continued to climb. Despite an economic downturn, global data center power use grew 56% between 2005 and 2010, and data centers now account for between 1.1% and 1.5% of total global power consumption.²

1 http://www.ibm.com/ceostudy
Our data centers must become immensely more efficient and flexible to meet the need for energy while keeping costs in check as the demand for and price of resources continue to rise.

Transforming for efficiency

Achieving efficiency requires a deep and pervasive transformation in how data centers are designed, managed, operated, populated, and billed. Thus a unified and coordinated effort is required across organizational and functional boundaries toward a common set of goals.

It is no longer sufficient to address facilities and IT operations as separate and distinct entities. Although significant efficiency opportunities exist in both facilities and IT, a comprehensive smarter data center strategy must treat the data center as a single, cohesive whole.

Figure 1 New server spending has plateaued while management and cooling costs continue to climb\(^3\)

Developing your strategy with IBM as your partner

You can increase efficiency by applying a number of techniques to your facility and IT data center operations and use various methods to integrate across these operations for a comprehensive view of your data center environment.

This IBM Redguide™ publication lists many of the efficiency techniques that can be applied to your data center facility and IT operations and methods to integrate across them for a comprehensive view of your data center environments. Also included are several case studies where IBM has applied many of these solutions for large-scale, real-world savings, both within IBM and among our customers.

In a companion IBM Redpaper™, The Green Data Center: Steps for the Journey, REDP-4413, you will find many of these techniques described in more detail, along with guidance on creating your own smarter data center strategy and pointers on how IBM can help you succeed.

As the manager of over 8 million square feet of data center space worldwide and with over 100 years in business, IBM can be a vital partner to help you save energy, cut costs, improve utilization, adapt to change, and make your data centers smarter.

Identifying the challenge and the opportunity

Rising demands for data processing, coupled with escalating resource costs, necessitate that data centers become immensely more efficient. Use of physical space, power, and cooling capacity must be managed together to avoid stranding capacity and the resultant higher operational business expenses. Governmental regulations and the need for environmental sustainability introduce additional focus on areas like carbon emissions, water consumption, and waste management. But how do you address all of these requirements at the same time?

Sorting through your options

There are many separate options for improving the efficiency of your data center facility and IT operations from exploiting environmental free cooling to cloud computing. Deciding which ones to implement depends on the specifics of your individual data center environments: the type of work being performed, the age and state of your infrastructure, the environmental conditions inside and outside of your data center, your internal business processes, economic conditions, and so on. There is no one-size-fits-all solution.

A successful efficiency transformation of your data centers requires a comprehensive strategy, one that bridges organizational and functional boundaries, assesses the current state of your data centers, establishes a cost-effective and realistic set of goals, and documents a course to achieve those goals.

In the associated Redpaper, we describe many of your efficiency options in greater detail, provide essential guidelines in creating your smarter data center strategy, and detail how IBM can be a vital partner at every step along the way, enabling you to extend the life of your existing facilities, increase your computing capabilities while maintaining or even lowering your energy consumption, adapt quickly and effectively to change, and gain the analytical knowledge needed for future planning.
Let IBM help you succeed

Services provided by IBM Global Technology Services and the IBM Systems and Technology Group can help you develop your data center strategy, assess the current conditions of your data center, and help you implement new and efficient infrastructure, consolidate sites and servers, transition workloads to IBM cloud computing solutions, and more. New technologies like the IBM zEnterprise System can provide the cornerstone for your high performance and large scale server consolidation needs, and offerings from IBM Tivoli can empower you to monitor, manage, and report across all of your data center operations and beyond.

This Redguide is your launching point, providing an overview of many of your options and examples of how IBM has applied them in our own operations and with our customers. A review of the associated Redpaper provides the next steps with additional detail on what is possible along with what is required. The final step is to contact your IBM representative and allow us to help you develop and implement your own smarter data center strategy for a healthier bottom line and a foundation for the future.

Efficiency methods

There are many efficiency methods that can be applied to your data center IT and facility operations separately and in an integrated fashion to obtain a holistic data center perspective. In this section, we briefly describe several of these methods and provide a high-level assessment of their complexity of implementation, use, and associated payback. Detailed techniques are provided for each case study in this Redguide (see “Monitoring and managing environmental conditions” on page 9).

Note: Assessments of complexity and payback are inherently subjective. The actual complexity of implementation or utilization and associated payback of any particular methodology will be dependent upon the specific characteristics of the operational environment to which it is applied.

IT techniques

In Table 1, we list several IT-related efficiency techniques that can be applied to your data center operations.

<table>
<thead>
<tr>
<th>IT technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server consolidation</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Reduce the total number of physical servers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server virtualization</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Replace physical servers with virtual server images.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud computing</td>
<td>Low</td>
<td>Medium to High</td>
</tr>
<tr>
<td>Utilize services that provide computational capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as needed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Smarter Data Centers: http://www.ibm.com/services/smarterdatacenter
6 IBM zEnterprise System: http://www.ibm.com/systems/z/
Table 2 lists several efficiency techniques that can be applied to your data center facility operations.

Facilities efficiency techniques

<table>
<thead>
<tr>
<th>Facilities technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site consolidation</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Direct rack duct cooling</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Hot and cold aisle configuration</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High or low density zone configuration</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Environmental conditions analysis</td>
<td>Low</td>
<td>Medium to High</td>
</tr>
</tbody>
</table>

Facilities techniques

Table 2 lists several efficiency techniques that can be applied to your data center facility operations.

Facilities technique and description

<table>
<thead>
<tr>
<th>Facilities technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site consolidation</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Direct rack duct cooling</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Hot and cold aisle configuration</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High or low density zone configuration</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Environmental conditions analysis</td>
<td>Low</td>
<td>Medium to High</td>
</tr>
</tbody>
</table>

Facilities technique and description

<table>
<thead>
<tr>
<th>IT technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized liquid cooling</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Rear door heat exchangers</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Storage virtualization</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Hardware power management</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Software power management</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Asset level power and thermal monitoring</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Asset level IT utilization monitoring</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Data storage management</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Deployment of high efficiency IT hardware</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Facilities technique and description</td>
<td>Complexity</td>
<td>Payback</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Deployment of high efficiency facility hardware</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Utilize facility hardware that is particularly efficient for space, power, or cooling.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Autonomic cooling adjustment** | High | Medium |
| Utilize an adjustable facility infrastructure to automatically respond to environmental variations such as temperature and humidity. |

| **In-row cooling** | Medium | Medium |
| Deploy cooling capabilities that are specific to a particular aisle in the data center. |

| **Free cooling** | High | High |
| Take advantage of external environmental conditions to provide supplemental cooling capacity to the data center. |

| **Alternative power supply** | High | High |
| Utilize alternative facility level power supplies such as solar or wind. |

| **Scalable modular data center** | Medium | High |
| Take advantage of a data center infrastructure that enables rapid and simplified scaling of available capacity. |

| **Structured cable management** | Low | Low |
| Provide and use designated cabling pathways to prevent interference with cooling air flow. |

| **High DC voltage** | High | Low |
| Power equipment using high voltage direct current to avoid losses in power transformation. |

Integration techniques

Table 3 lists several efficiency integration techniques for gathering information that spans both your IT and facilities operations, allowing you to gain a comprehensive perspective of your entire data center environment.

<table>
<thead>
<tr>
<th>Integration technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D inventory management</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Track data center asset inventory in three dimensions down to rack slot placement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Branch circuit monitoring** | High | Medium |
| Monitor power consumption down to each branch circuit in the data center. |

| **IPDU level power monitoring** | Medium | Medium |
| Use Intelligent Power Distribution Units (IPDUs) to monitor power consumption at the outlet level. |

| **Integrated facility and IT dashboards** | High | High |
| Generate role-based dashboards that consolidate data gathered from both facility and IT assets contained within the data center. |

| **Integrated facility and IT historical trend reports** | High | High |
| Generate role-based historical trend reports utilizing consolidated facility and IT data from the data center. |
In this section, we detail several real-world case studies from IBM and at our customers' facilities, in which many of the techniques listed in Table 1 on page 4 through Table 3 on page 6 have been applied.

IBM Leadership Data Center, Research Triangle Park, North Carolina, USA

The Leadership Data Center (LDC) at Research Triangle Park (RTP) is the first IBM data center in the United States to achieve Leadership in Energy and Environmental Design (LEED) Gold certification. This cutting edge facility includes 60,000 square feet of raised floor space supporting 6 MW of IT capacity (expandable to 100,000 square feet and 15 MW of IT capacity), featuring the best in IBM energy efficient technology and design.

Associated business needs and challenges

To keep pace with the intense demand for data center capacity by IBM clients, the LDC was designed to optimize the space, power, and cooling systems needed to support a large and diverse IT environment while providing flexibility to increase capacity quickly as needed. To maximize the reuse of materials and infrastructure, the LDC occupies a refurbished RTP manufacturing building that was constructed over 30 years ago.

<table>
<thead>
<tr>
<th>Integration technique and description</th>
<th>Complexity</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset data access from environmental analysis</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Drill down to asset level information from an overall environmental conditions assessment of the data center environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert and event management</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Generate and manage asset and facility level alerts and events based on operational conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring data and service association</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Associate gathered operational data with provision of services.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 4.

Table 4 Efficiency techniques in use at the LDC

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Server consolidation</td>
<td>➤ Site consolidation</td>
<td>➤ 3D inventory management</td>
</tr>
<tr>
<td>➤ Server virtualization</td>
<td>➤ Hot and cold aisle configuration</td>
<td>➤ Branch circuit monitoring</td>
</tr>
<tr>
<td>➤ Cloud computing</td>
<td>➤ High-density and low-density zone configuration</td>
<td>➤ Integrated facility and IT dashboards</td>
</tr>
<tr>
<td>➤ Localized liquid cooling</td>
<td>➤ Environmental conditions analysis</td>
<td>➤ Integrated facility and IT historical trend reports</td>
</tr>
<tr>
<td>➤ Rear door heat exchangers</td>
<td>➤ Deployment of high-efficiency facility hardware</td>
<td>➤ Alert and event management</td>
</tr>
<tr>
<td>➤ Storage virtualization</td>
<td>➤ Autonomic cooling adjustment</td>
<td></td>
</tr>
<tr>
<td>➤ Hardware power management</td>
<td>➤ Free cooling</td>
<td></td>
</tr>
<tr>
<td>➤ Software power management</td>
<td>➤ Scalable modular data center</td>
<td></td>
</tr>
<tr>
<td>➤ Deployment of high-efficiency IT hardware</td>
<td>➤ Structured cable management</td>
<td></td>
</tr>
</tbody>
</table>

Environmental highlights
The following list indicates environmental highlights mentioned in the LDC LEED application package:

- 95% of the original building shell was reused
- 91% of the original materials were recycled (on a tonnage basis)
- 25% of new construction materials were from recycled sources
- LDC roofing was chosen to eliminate a “heat island” effect
- Construction materials used regional materials, minimizing transportation energy
- Rainwater harvesting is used to reduce water consumption
- Landscaping is all water-efficient
- Interior materials (paint, carpet, and so forth) are all low emitters of volatile organic compounds

Benefits and savings
This LEED certified data center showcases IBM technologies and solutions alongside those of our partners while providing strategic outsourcing clients with a highly available and cost-effective infrastructure. With its modular design and hosted cloud computing services, the LDC can quickly scale both physical and logical capacity in response to customer demands.
IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:

- IBM System x® - iDataplex
- IBM and non-IBM equipment based on strategic outsourcing client need
- IBM Scale Out Network Attached Storage
- IBM PowerVM™
- IBM Systems Director
- IBM Tivoli Storage Manager
- IBM ILOG®
- IBM Tivoli Monitoring
- IBM Tivoli Monitoring for Energy Management
- IBM Systems Director Active Energy Manager™
- IBM Maximo® Data Center Infrastructure Management
- IBM Maximo Asset Management for Energy Optimization
- IBM Measurement and Management Technologies (MMT)
- IBM IT Facilities Assessment, Design, and Construction Services: Enterprise modular data center
- IBM Global Technology Services: Worldwide Strategic Outsourcing

Vendor solutions
The following vendor solutions were used in this case study:

- Coolcentric: Coolant Distribution Unit
- Carrier: Redundant chiller solution
- Schneider Electric: Electrical distribution
- Emerson/Liebert: High-efficiency UPS systems
- Caterpillar: High-speed and efficient generators

Additional resources
Listed here are additional resources for information specific to this use case:

- IBM positions itself as a cloud leader with a state-of-the-art data center
- IBM Research Triangle Park Leadership Data Center
 http://www.ibm.com/cio/smarterdc/

Monitoring and managing environmental conditions
Tools like Maximo Asset Management for Energy Optimization⁸, shown in Figure 2, and services like IBM Measurement and Management Technologies (MMT)⁹ can be used to monitor your data center environmental conditions, including temperature, pressure, humidity, air flow, particulate concentration, and computer room air conditioning use, providing insight into cooling optimization options and significantly reducing energy costs.

⁸ Maximo Asset Management for Energy Optimization:

⁹ Measurement and Management Technologies:
https://researcher.ibm.com/researcher/view_project.php?id=2377
Xcel Energy: High-density zone data center, Minneapolis, Minnesota, USA

Based in Minneapolis, Minnesota, Xcel Energy provides electricity and natural gas to millions of customers across eight states in the western and midwestern United States. With a focus on using innovative methods to provide power, Xcel Energy is the nation’s number one provider for wind energy and ranks fifth in solar capacity, reflecting the company’s commitment to natural resource conservation and environmental stewardship.¹⁰

Associated business needs and challenges
Xcel Energy noticed that their data center server and storage infrastructures were outdated. Energy consumption, maintenance, and a high risk of system failures were key points in the company’s decision to rethink their designs and implement technological changes in the data center. The customer decided to consolidate and virtualize their current systems onto high-density blade servers (40 IBM BladeCenter® Server racks) and storage systems. To manage the generated heat while avoiding downtime, a new cooling system was put in place. IBM deployed a high-density zone (HDZ) solution featuring a hot and cold aisle configuration, along with closely coupled chilled water (CCCW) cooling. The project was completed in a three-month period.

Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 5.

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Server consolidation</td>
<td>➤ Hot and cold aisle configuration</td>
</tr>
<tr>
<td>➤ Server virtualization</td>
<td>➤ High and low density zone configuration</td>
</tr>
<tr>
<td>➤ Localized liquid cooling</td>
<td>➤ In-row cooling</td>
</tr>
<tr>
<td>➤ Storage virtualization</td>
<td>➤ Scalable modular data center</td>
</tr>
</tbody>
</table>

Benefits and savings
The entire implementation took place without any downtime of the old system infrastructure. The new configuration enabled Xcel Energy to save 5% on their energy costs, freeing up 2,000 square feet of floor space, and benefit from 5% fewer applications operating in the data center resulting in reduced licensing costs. The modular design also enables the company to adapt to changing demands.

IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:
➤ IBM BladeCenter
➤ IBM System p®
➤ IBM Global Technology Services--Integrated Technology Services
➤ IBM Site and Facilities Services

Vendor solutions
This facility used the APC Schneider vendor solution of In-row cooling

Additional information
In this use case, a solution from IBM helped reduce energy use.
St. Lawrence College: Energy-efficient data center, Ontario, Canada

Since 1967, St. Lawrence College (SLC) has provided its students with a comprehensive educational experience. With campuses in Brockville, Kingston, and Cornwall, Ontario, SLC delivers relevant, in-demand programs across state-of-the-art facilities that are supported by a growing IT infrastructure.11

Associated business needs and challenges
To accompany its rapid 23% growth over a few short years, SLC needed to increase its IT capacity to support its growing student base while minimizing risk, reducing energy costs, and demonstrating a commitment to environmental sustainability. SLC needed to centralize technologies while taking advantage of virtual servers to reduce the total amount of equipment. The college also wanted a modular, scalable solution that would enable it to add more green technology in the future. Finally, to achieve energy savings in a meaningful way, the college needed to bridge the gap between IT and facilities operations.

Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 6.

Table 6 Efficiency techniques in use at St. Lawrence College

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Server consolidation</td>
<td>➤ Site consolidation</td>
</tr>
<tr>
<td>➤ Server virtualization</td>
<td>➤ In-row cooling</td>
</tr>
<tr>
<td>➤ Storage virtualization</td>
<td>➤ Scalable modular data center</td>
</tr>
</tbody>
</table>

Benefits and savings
The built-in efficiency of a Scalable Modular Data Center (SMDC) allows SLC to save energy and capital costs, pay only for what it needs, and easily expand the data center as demand for IT services increases. The built-in flexibility makes adding capacity and equipment fast, inexpensive, and nondisruptive. The energy efficiency resulted in SLC having seven times the power and required a smaller space, allowing it to meet availability needs. In the process, SLC consolidated two data centers into one and reduced the number of servers from 70 to 12. The project was funded from the operating budget with a only a three-year to five-year expected payback window.

IBM systems, software, and services
The IBM IT Facilities Assessment provided by Design and Construction Services was used in this case study.

Additional information
An additional resource for information available to this use case is “St. Lawrence College Goes Green with Energy-Efficient Data Centre.”

IBM Rochester: Solution for Smarter Buildings, Minnesota, USA

The IBM Rochester campus consists of 3.2 million square feet of space and over 35 interconnected buildings, including manufacturing facilities, testing labs, office buildings, and a worldwide data center. It is the sixth highest energy consumer in the IBM global facilities portfolio.

Associated business needs and challenges

With rising energy consumption and the overall economic environment, IBM Rochester had to improve energy conservation and facilities management practices to promote sustainable and cost-effective operations while maintaining reliability and efficiency.

Techniques in use

Several of the efficiency techniques used in this case study are listed in Table 7.

Table 7 Efficiency techniques in use at IBM Rochester

<table>
<thead>
<tr>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Environmental conditions analysis</td>
<td>▶ Integrated facility and IT dashboards</td>
</tr>
<tr>
<td>▶ Deployment of high-efficiency facility hardware</td>
<td>▶ Asset data access from environmental analysis</td>
</tr>
<tr>
<td>▶ Autonomic cooling adjustment</td>
<td>▶ Alert and event management</td>
</tr>
<tr>
<td></td>
<td>▶ Monitoring data and service association</td>
</tr>
</tbody>
</table>

Benefits and savings

The IBM Intelligent Building Management solution¹² delivered new economic, operational, and environmental benefits to IBM facilities. Initial pilot observations have indicated an 8% annual savings in yearly equipment operating costs. IBM Rochester achieved the ability to manage energy use with more efficiency, lower costs, and a decrease in emissions by monitoring and analyzing heat generation, air conditioning utilization, and power consumption. It can also maintain equipment proactively and prevent breakdowns by identifying emerging problems and operational trends. The solution improved staff productivity and asset reliability, provided a longer asset lifespan, and decreased operational costs by streamlining problem diagnosis and resolution. The organization estimates a 5% year-over-year incremental energy savings for a facility that has undergone years of continuous energy efficiency improvements.

IBM systems, software, and services

The following IBM systems, software, and services were used in this case study:

▶ IBM Mashup Center
▶ IBM Maximo Asset Management
▶ IBM Tivoli Access Manager
▶ IBM Tivoli Data Warehouse and Monitoring
▶ IBM Tivoli Netcool/OMNibus
▶ IBM Global Business Services®, Smart Buildings solution implementation

¹² IBM Intelligent Building Management:
Vendor solutions
The following vendor solutions were used in this case study:

- Johnson Controls Metasys Building Management System
- Johnson Controls Sustainability Manager/EnNet
- Johnson Controls Dashboard & Mash-Up Widget
- Johnson Controls Systems & Integration Services
- Johnson Controls Energy & Sustainability Solution Services

Note: This is a broader smarter building application of solutions that also apply to smarter data centers.

Additional Information
The following list indicates additional resources for information specific to this use case.

- IBM Rochester, MN implements solution for Smarter Buildings
- IBM Redguide: Smarter Cities Series: Understanding the IBM Approach to Efficient Buildings, REDP-4735

IBM Poughkeepsie Green Data Center, New York, USA

The IBM Poughkeepsie Green Data Center has experienced enormous growth over the years and has upgraded its existing systems with new higher performance, energy efficient models to keep pace. However, as the data center continued to increase processing capacity and deliver more services, it became apparent that re-assessing hardware placement and cooling capabilities is critical to data center operations.

Associated business needs and challenges
Although new systems provided greater energy efficiency, the overall increase in processing power created a demand for additional cooling capacity within the data center. High temperature alarms from computer room air conditioning units signaled the environment's proximity to its cooling limits, pushing hosted equipment closer to potential failure.

Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 8.

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear door heat exchangers</td>
<td>Environmental conditions analysis</td>
<td>3D inventory management</td>
</tr>
<tr>
<td>Hardware power management</td>
<td>Deployment of high-efficiency facility hardware</td>
<td>IPDU level power monitoring</td>
</tr>
<tr>
<td>Software power management</td>
<td>Autonomic cooling adjustment</td>
<td>Integrated facility and IT dashboards</td>
</tr>
<tr>
<td>Asset level power and thermal monitoring</td>
<td></td>
<td>Asset data access from environmental analysis</td>
</tr>
<tr>
<td>Deployment of high-efficiency IT hardware</td>
<td></td>
<td>Alert and event management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring data and service association</td>
</tr>
</tbody>
</table>
Benefits and savings
Rear door heat exchangers, new cooling distribution units, and the use of IBM and industry best practices for a raised floor data center resulted in a 50% decrease in cooling rack power consumption. This, in turn, lowered the probability of equipment failures and delivered continuous service. An analysis performed using IBM Measurement and Management Technologies (MMT) provided insight into the impact of changes within the environment, and the Integrated Service Management solution for the data center provided holistic visibility, control, and automation of energy usage and environmental conditions. The solution achieved a data center infrastructure efficiency (DCiE) level of 84% and doubled the amount of processing power available without increasing square footage.

IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:

- IBM Cool Blue™ Rear Door Heat Exchangers
- IBM Measurement and Management Technologies (MMT)
- IBM System z®
- IBM Power
- IBM BladeCenter
- IBM System x
- IBM System Storage®
- IBM Systems Director Active Energy Manager
- IBM Tivoli Monitoring for Energy Management
- IBM Tivoli Data Warehouse
- IBM Tivoli Business Service Manager
- IBM Tivoli Netcool/OMNibus
- IBM Systems and Technology Group - Lab Services

Additional Information
An additional resource for information specific to this use case is the IBM Poughkeepsie Green Data Center website.

IBM System z: Ongoing performance improvements

As shown in Figure 3, the IBM System z continues to make large performance gains related to its power consumption and heat generation, making it an ideal option for large scale performance and server consolidation efforts.

Figure 3 System z capacity per watt improvements chart

<table>
<thead>
<tr>
<th>15 years of CMOS: G2 to z196</th>
<th>Net Effect: G2 to z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power increase: 17% per year</td>
<td>Performance increased by: ~300x</td>
</tr>
<tr>
<td>Performance increase: 46% per year</td>
<td>Performance / watt increased by: ~30x</td>
</tr>
<tr>
<td>Power density increase: 13% per year</td>
<td>Performance / floor area increased by: ~190x</td>
</tr>
</tbody>
</table>

Note: Consolidating on IBM System z can save you up to 50% on your applicable IT costs. Obtain more information at the following website.

IBM Products & Solutions Support Center, Montpellier, France

As a green data center, the IBM Products & Solutions Support Center (PSSC) in Montpellier was established to demonstrate how IBM can help customers to address their energy efficiency challenges. This opportunity enables them to expand their IT capabilities and reduce their energy bills while concurrently benefiting the environment.

Associated business needs and challenges

The goal of the PSSC was to demonstrate IBM global solutions by building an energy efficient data center with an innovative, dynamic infrastructure. Considering that energy efficiency is a key factor in influencing many organizational roadmaps worldwide and that physical conditions of a data center directly influence the performance of the IT infrastructure, it is imperative to establish facilities that run efficiently and operate reliably.
Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 9.

Table 9 Efficiency techniques in use at the IBM PSSC

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Server consolidation</td>
<td>► Hot and cold aisle configuration</td>
<td>► Integrated facility and IT dashboards</td>
</tr>
<tr>
<td>► Server virtualization</td>
<td>► High-density and low-density zone configuration</td>
<td>► Integrated facility and IT historical trend reports</td>
</tr>
<tr>
<td>► Rear door heat exchangers</td>
<td>► Environmental conditions analysis</td>
<td>► Alert and event management</td>
</tr>
<tr>
<td>► Hardware power management</td>
<td>► Deployment of high efficiency facility hardware</td>
<td>► Monitoring data and service association</td>
</tr>
<tr>
<td>► Software power management</td>
<td>► Autonomic cooling adjustment</td>
<td></td>
</tr>
<tr>
<td>► Asset-level power and thermal monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Asset-level IT utilization monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>► Deployment of high-efficiency IT hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits and savings
► Improved Power Usage Effectiveness (PUE) rating from 2.5 in 2007 (non-optimized environment) to 1.6 in 2011 (Green Data Center Phase 2)
► Energy savings of 33%
► 590 MW power savings per year
► Average of $510.29 per square meter of savings versus a total yearly cost of $2162.25 per square meter

IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:
► IBM Systems Director with Active Energy Manager
► IBM Tivoli Monitoring for Energy Management
► IBM Tivoli Monitoring
► IBM WebSphere®
► IBM System z
► IBM System p
► IBM System x
► IBM BladeCenter
► IBM Measurement and Management Technologies (MMT)
► IBM Rear Door Heat eXchanger

Vendor solutions
The following vendor solutions were used in this case study:
► APC Schneider: In-row cooling
► Emerson Liebert: Cooling Units
► Ubisense: RFID solution
► Synapsense with Synapsoft solution
Additional information
Here are additional resources for information specific to this use case.

- IBM Design Centers

- IBM Benchmark Centers
 http://www-03.ibm.com/systems/services/benchmarkcenter/

Tivoli role-based dashboards can span facilities and IT
Dashboards from Tivoli Business Service Manager (TBSM) with data provided by IBM Tivoli Monitoring for Energy Management, like the example in Figure 4, can provide insight across both data center facility and IT operations. Facility power consumption can be assessed alongside asset utilization to identify optimization opportunities. Association of conditions with provided services can increase resiliency and availability.

![Tivoli role-based dashboards can span facilities and IT](image)

Figure 4 Energy dashboard using IBM Tivoli Monitoring for Energy Management

13 Tivoli Monitoring for Energy Management:
IBM Chip and Design Data Center, Boeblingen, Germany

The IBM Chip and Design Data Center is a compute cluster for technical applications in a global environment. The cluster is used internally and supplies development resources for chip design, simulation, and verification.

Associated business needs and challenges
The age of the data center and its associated cooling infrastructure resulted in floor and cooling capacities to be consumed near their limits. In addition, computing and storage resources were being underutilized. To address these issues, a technology upgrade became necessary.

IBM decided to optimize the data center floor with several energy efficient infrastructure measures to overcome the cooling problems and save energy. This was followed by the implementation of state-of-the-art IT technologies and solutions that increased hardware utilization without interrupting data center operations. As a final step, a proper monitoring and management system for facility infrastructure and IT systems was established.

Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 10.

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Server consolidation</td>
<td>▶ Direct rack duct cooling</td>
<td>▶ IPDU level power monitoring</td>
</tr>
<tr>
<td>▶ Server virtualization</td>
<td>▶ Hot and cold aisle configuration</td>
<td>▶ Alert and event management</td>
</tr>
<tr>
<td>▶ Rear door heat exchangers</td>
<td>▶ Environmental conditions analysis</td>
<td></td>
</tr>
<tr>
<td>▶ Storage virtualization</td>
<td>▶ Autonomic cooling adjustment</td>
<td></td>
</tr>
<tr>
<td>▶ Asset-level power and thermal monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Hardware power management</td>
<td>▶ Scalable modular data center</td>
<td></td>
</tr>
<tr>
<td>▶ Software power management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Data storage management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Deployment of high efficiency IT hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits and savings
Overall energy consumption at this site was reduced by 12%. As a result of consolidation and virtualization activities, systems and storage utilization increased drastically, freeing floor space for new systems. The implemented monitoring and cooling techniques relieved the cooling bottleneck and made it possible to increase the supplied air temperature from 16.0° C (60.8° F) to 22.5°C (72.5°F).
IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:
- IBM Power Systems™
- IBM System x
- IBM BladeCenter
- IBM System Storage DS®
- IBM Storage Area Networks
- IBM SAN Volume Controller
- IBM Measurement and Management Technologies
- IBM Systems Director Active Energy Manager
- IBM Tivoli Netcool/OMNIbus

Vendor solution
Rittal Rimatrix is the only vendor solution used.

Innovative cooling solutions
The IBM Chip and Design Data Center uses an innovative duct solution, shown in Figure 5, to direct adjustable amounts of cool air directly into the front of installed racks.

IBM India Software Lab, Bangalore, India
Similar to many data centers, the IBM India Software Lab (ISL) faced issues coping with growing compute power and data storage demands, resulting in increasing energy and operations costs. During mid 2008, with its Blue Going Green initiative, ISL pursued optimizing its data center environment.

Associated business needs and challenges
Under this initiative, ISL sought to optimize the use of data center floor space, reduce energy and carbon footprints without adverse impact to business growth, and create a unique showcase of products, technologies, and solutions for green transformation.
Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 11.

Table 11 Efficiency techniques in use at IBM ISL

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Server consolidation</td>
<td>➤ Site consolidation</td>
<td>➤ Integrated facility and IT historical trend reports</td>
</tr>
<tr>
<td>➤ Server virtualization</td>
<td>➤ Hot and cold aisle configuration</td>
<td>➤ Alert and event management</td>
</tr>
<tr>
<td>➤ Cloud computing</td>
<td>➤ High-density and low-density zone configuration</td>
<td></td>
</tr>
<tr>
<td>➤ Rear door heat exchangers</td>
<td>➤ Environmental conditions analysis</td>
<td></td>
</tr>
<tr>
<td>➤ Storage virtualization</td>
<td>➤ Alternative power supply</td>
<td></td>
</tr>
<tr>
<td>➤ Asset level IT utilization monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Deployment of high-efficiency IT hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits and savings
The following list indicates several of the key benefits achieved during this green transformation:

➤ Release of 20,000 square feet of raised floor space
➤ Savings of 27 MWh of energy since project kickoff three years ago
➤ Increased use of Bangalore data center by roughly 15%
➤ Reduced physical server room count by 70%
➤ Reduced ISL data center energy footprint by roughly 1.1 MW
➤ Partial supply of alternate clean energy source in Bangalore green data center
➤ Implementation of a multi-city integrated building management system
➤ Positioning of the Bangalore data center as a unique, innovative data center that showcases IBM technologies and solutions alongside partner solutions

IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:

➤ IBM System p Power 7
➤ IBM System x iDataplex, eX5 enterprise systems
➤ IBM XIV® Storage System, IBM Storwize V7000, IBM System Storage TS7650G
➤ IBM Tivoli Service Automation Manager
➤ IBM Tivoli Monitoring
➤ IBM Tivoli Application Dependency Discovery Manager
➤ IBM Tivoli Storage Manager
➤ IBM Tivoli Storage Productivity Center
➤ IBM COGNOS Business Intelligence

Vendor solutions
The following vendor solutions were used in this case study:

➤ Johnson Controls: Building Management System
➤ Coolcentric: Coolant Distribution Unit
Rear door heat exchangers address data center hot spots
Rear door heat exchangers14 can eliminate data center hot spots by leveraging liquid cooling to efficiently remove heat from densely packed server environments, reducing the workload on computer room air conditioning units. In the example shown in Figure 6, the rear door heat exchanger reduces the rack's interior temperature of 46.9° Celsius (114.8° Fahrenheit) to 25.1°C (77°F) on its outside.

\textbf{Figure 6} Rear door heat exchanger in action

IBM Green Innovation Data Center, Southbury, Connecticut, USA

The IBM Green Innovation Data Center (GIDC) is a 2,000-square-foot installation that hosts several hundred applications for IBM employees. It is also a customer showcase data center presenting the latest in energy efficiency technologies. The GIDC also provides the facilities to develop and test new innovative solutions aimed at creating a smarter data center.

\textbf{Associated business needs and challenges}

In stage 1, four geographically dispersed data centers were running out of power and space, encountering a need for additional capacity. These four data centers were consolidated into a single 2,000-square-foot facility with optimized power and resource utilization.

14 Rack and power infrastructure portfolio:
In stage 2, a network of over 150 sensors was installed to obtain knowledge about how new technology affects energy consumption. These sensors supply energy, thermal, and IT data that is displayed on near real-time dashboards and analyzed for further optimization of energy efficiency.

Techniques in use
Several of the efficiency techniques used in this case study are listed in Table 12.

Table 12 Efficiency techniques in use at the IBM GIDC

<table>
<thead>
<tr>
<th>IT techniques</th>
<th>Facilities techniques</th>
<th>Integration techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Server consolidation</td>
<td>➤ Site consolidation</td>
<td>➤ Integrated facility and IT dashboards</td>
</tr>
<tr>
<td>➤ Server virtualization</td>
<td>➤ Hot and cold aisle configuration</td>
<td>➤ Alert and event management</td>
</tr>
<tr>
<td>➤ Rear door heat exchangers</td>
<td>➤ High-density and low-density zone configuration</td>
<td>➤ Monitoring data and service association</td>
</tr>
<tr>
<td>➤ Storage virtualization</td>
<td>➤ Environmental conditions analysis</td>
<td></td>
</tr>
<tr>
<td>➤ Hardware power management</td>
<td>➤ Deployment of high efficiency facility hardware</td>
<td></td>
</tr>
<tr>
<td>➤ Software power management</td>
<td>➤ Autonomic cooling adjustment</td>
<td></td>
</tr>
<tr>
<td>➤ Asset level IT utilization monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Deployment of high efficiency IT hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits and savings
By consolidating four existing data centers into one with a focus on the use of efficiency techniques spanning the facility and IT, the GIDC freed up over 1,000 square feet of space while providing twice the amount of processing power. The updated facility houses 300 servers, both physical and virtual, within the same physical space previously used for 50 servers. Detailed environmental condition monitoring and autonomic management quadruples server capacity with almost flat power consumption. Environmental data can be used either to improve the energy efficiency of new products or to discuss options with customers for optimizing their own data centers to achieve greater efficiency.

IBM systems, software, and services
The following IBM systems, software, and services were used in this case study:

➤ IBM Power Systems
➤ IBM System x
➤ IBM System x iDataPlex™
➤ IBM BladeCenter
➤ IBM XIV Storage
➤ IBM System Storage DS technology
➤ IBM Maximo Asset Management for Energy Optimization
➤ IBM Systems Director Active Energy Manager
➤ IBM Tivoli Business Service Manager
➤ IBM Tivoli Common Reporting
➤ IBM Tivoli Data Warehouse
➤ IBM Tivoli Directory Server
➤ IBM Tivoli Identity Manager
➤ IBM Tivoli Integrated Portal
➤ IBM Tivoli Monitoring for Energy Management
➤ IBM Tivoli Provisioning Manager
- IBM Tivoli Storage Manager
- IBM Tivoli Storage Productivity Center
- IBM Measurement and Management Technologies (MMT)
- IBM Rear Door Heat eXchanger/Cooling Distribution Unit

Additional information
The following sites provide additional information specific to this use case:

- IBM Green Innovation Data Center provides a showcase for energy efficiency and optimized innovation hosting

- IBM Green Innovation Data Center helps developers build green technology

Summary

In a world of rising costs and increasingly scarce resources, applying efficiency techniques can control costs and save resources. In this Redguide, we have provided a high-level overview of several efficiency methods that can be applied to your IT and facility operations and be utilized to monitor, manage, and report across your entire data center environment. In the case studies, we have documented real world applications of many of these techniques and described the large efficiency gains for both IBM and our customers.

In an associated Redpaper, *The Green Data Center: Steps for the Journey*, REDP-4413, we discuss these techniques in more detail, provide guidance on creating a smarter data center strategy for your own business, and show the ways that IBM can help you succeed.
The team who wrote this guide

This guide was produced by a team of specialists from around the world working at the International Technical Support Organization (ITSO) in the Raleigh and Poughkeepsie Centers.

Mike Ebbers is a Consulting IT Specialist and ITSO Project Leader who has worked for IBM for 37 years. He has published a number of books on various IT solutions. Before joining the ITSO 16 years ago, Mike worked as an Instructor and Developer for IBM U.S. Technical Education.

Matthew Archibald is a Data Center Engineer in IBM Lab Services Data Center Services based out of Research Triangle Park, North Carolina, and Melbourne, Australia. He has been with IBM for eight years and has been working for the last five years in the Lab Services organization. Previous to this, Matt worked as a development engineer in the System x and BladeCenter power development lab doing power subsystem design for BladeCenter and System x servers. Matt is also responsible for the development, maintenance, and support of the IBM System x Power Configurator program and holds 15 patents for various data center and hypervisor technologies. Matt has four degrees from Clarkson University in Computer Engineering, Electrical Engineering, Software Engineering, and Computer Science and a Bachelor of Engineering in Electronics Engineering from Auckland University of Technology.

Carlos Felipe França da Fonseca joined IBM Brazil in 2005. In 2010, he moved to IBM Australia to work exclusively with Tivoli products. He graduated with a degree in Information Technology and has a postgraduate degree in Management of Information Systems. He has over 11 years experience in IT and holds certifications on a number of IBM products and solutions. His areas of expertise also include IBM System x and IBM Systems Director. He co-authored the recent IBM Redbooks® publication, Tivoli Integration Scenarios, SG24-7878.

Marc Griffel is a certified IT Specialist for virtualization and system management in Germany. He has worked for IBM for almost 20 years. He was actively involved in the transition of the IBM Chip and Design Data Center in Boeblingen, Germany toward becoming a state-of-the-art, energy-efficient data center. He works closely with the IBM Briefing Center, where he is involved in customer briefings, providing direction on how to operate a more energy-efficient data center. His areas of expertise include storage and IBM Power systems virtualization, BladeCenter, SAN, and storage management.

Veerendra Para is an IT Specialist for Green IT in IBM India Software labs (ISL) in Bangalore. He has 10 years of experience in IT and has been working for the last three years in greening data centers. His primary role is to transform ISL traditional server labs into energy-efficient smarter data centers by introducing innovative green solutions, creating Green DC architectures, and sharing success stories with customers. In the past, he has worked in the systems management field, mainly on IBM System i® and AIX®, and has co-authored three IBM Redbook publications on System i. He has worked for IBM Global Technology Services and currently works with IBM Software Group in India. He holds a diploma in electronics and communications.

Michael Searcy is a Systems Engineer with IBM Global Technology Services in the United States. He is currently assisting with the implementation of the strategy to make IBM data centers smarter with a personal focus on leveraging Tivoli technologies to provide comprehensive data center views that span both facilities and IT. A recent product of this strategy has been the IBM Leadership Data Center, located at Research Triangle Park, North Carolina, in the United States. During his 17 years in the IT industry, his experience has spanned all aspects of the delivery process, including leading a team in international test and development projects and in business process development. He holds an honors degree in Electrical Engineering from Auburn University.
Thanks to the following people for their invaluable contributions to this project:

Andreas Bieswanger, IBM Germany
Jody Cefola, IBM Poughkeepsie
Steve Cole, IBM Raleigh
Rani Doughty, IBM Australia
Ken Gambon, IBM Boulder
Hendrik Hamann, IBM Yorktown Heights
Mike Hogan, IBM Raleigh
John Miller, IBM Fishkill
Wayne Riley, IBM Beaverton
Jean-Michel Rodriguez, IBM France
Roger Schmidt, IBM Poughkeepsie
Thomas Vogel, IBM Germany
Hans-Dieter Wehle, IBM Germany
Ralf Wohlfarth, IBM Germany

The following authors created the First Edition of this Redguide:

Alvin Galea, Australia Post Corporation
Michael Schaefer, IBM Germany
Marc Tu Duy Khiem, IBM France
David F Anderson PE, IBM Poughkeepsie
Don Roy, IBM Raleigh

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Learn more about the residency program, browse the residency index, and apply online here: ibm.com/redbooks/residencies.html

Stay connected to IBM Redbooks

▶ Find us on Facebook:
 http://www.facebook.com/IBMRedbooks
▶ Follow us on Twitter:
 http://twitter.com/ibmredbooks
▶ Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
- Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

- Stay current on recent Redbooks publications with RSS Feeds:
 http://www.redbooks.ibm.com/rss.html
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
This document REDP-4523-01 was created or updated on October 20, 2011.

Send us your comments in one of the following ways:

► Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks
► Send your comments in an email to:
 redbooks@us.ibm.com
► Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

- AIX®
- BladeCenter®
- Cool Blue™
- Global Business Services®
- IBM Systems Director Active Energy Manager™
- IBM®
- iDataPlex™
- ILOG®
- Maximo®
- Power Systems™
- PowerVM™
- Redbooks®
- Redguide™
- Redpaper™
- System i®
- System p®

The following terms are trademarks of other companies:

- Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

- Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.