

ibm.com/redbooks Redpaper

Front cover

IBM WebSphere DataPower
SOA Appliances
Part III: XML Security Guide

Juan R. Rodriguez
Somesh Adiraju

Adolfo Rodriguez
Srinivasan Muralidharan

Jacqueline Swett

Secure and improve your XML and Web
Services setup and deployment

Integrate DataPower appliances
with WebSphere Message Broker

Provide XML threat
protection in DataPower

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM WebSphere DataPower SOA Appliances: Part III:
XML Security Guide

April 2008

REDP-4365-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2008)

This edition applies to Version 3, Release 6, Modification 0 of IBM WebSphere DataPower Integration
Appliance.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
The team that wrote this paper . vii
Become a published author . ix
Comments welcome. ix

Chapter 1. Web Services security improvements . 1
1.1 Extensible Markup Language threat protection. 2
1.2 Using Multi-Protocol Gateway to address security concerns . 3

1.2.1 Request processing . 4
1.2.2 Response side processing . 8
1.2.3 Summary of the processing in this chapter . 12
1.2.4 Running the service . 14

Chapter 2. Integration with WebSphere Message Broker . 17
2.1 Introduction . 18
2.2 Sample scenarios description . 18
2.3 Configuration of DataPower and WMB for Scenario one . 20

2.3.1 Message flow logic . 21
2.3.2 Configure WebSphere Message Broker . 23
2.3.3 Configure DataPower XML Firewall Gateway. 36
2.3.4 Configure DataPower to add support for Digital Signature 57

2.4 Configuration of DataPower and WMB for Scenario two . 61
2.4.1 Message flow logic . 61
2.4.2 Configure the DataPower Multi-Protocol Gateway . 63
2.4.3 Running the scenarios . 79

Chapter 3. XML threat protection in DataPower . 97
3.1 XML as the new carrier for attacks . 98

3.1.1 XML Denial of Service (XDoS) . 98
3.1.2 Unauthorized access attacks . 99
3.1.3 Data integrity and confidentiality attacks. 99
3.1.4 Summary. 100

3.2 XML threat protection in DataPower . 101
3.2.1 Single message XML Denial of Service protection . 101
3.2.2 Multiple message XML Denial of Service protection. 102
3.2.3 Message tampering protection . 102
3.2.4 SQL injection protection . 103
3.2.5 XML virus protection . 103
3.2.6 Dictionary attack protection. 104

3.3 Summary. 104

Appendix A. Web Services security issues . 105
Curl Tool. 106
Enable Probe for an encrypted request message . 106

Response rule . 114

© Copyright IBM Corp. 2008. All rights reserved. iii

Appendix B. Building message flows in WebSphere Message Broker 119
Introduction to WMB Toolkit . 120
Building the message definition files . 120
Building the host simulation flow . 128
Building message flows for scenario one. 129
Build the message flows for scenario two . 135
Deploying the message sets and message flows . 143

Appendix C. Additional material . 147
Locating the Web material . 147
Using the Web material . 147

System requirements for downloading the Web material . 147
How to use the Web material . 148

Related publications . 149
IBM Redbooks publications . 149
Other publications . 149
Online resources . 149
How to get IBM Redbooks publications . 150
Help from IBM . 150

iv IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. v

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
developerWorks®
CICS®
DataPower®

DB2®
IBM®
IMS™
MQSeries®

Redbooks®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

vi IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Preface

IBM® WebSphere® DataPower® SOA Appliances represent an important element in the
holistic approach of IBM to service-oriented architecture (SOA). IBM SOA appliances are
purpose-built, easy-to-deploy network devices that simplify, help secure, and accelerate your
XML and Web services deployments while extending your SOA infrastructure. These
appliances offer an innovative, pragmatic approach to harness the power of SOA. By using
them, you can simultaneously use the value of your existing application, security, and
networking infrastructure investments.

This series of IBM Redpaper publications is written for architects and administrators who
need to understand the implemented architecture in WebSphere DataPower appliances to
successfully deploy it as a secure and efficient enterprise service bus (ESB) product. These
papers give a broad understanding of the new architecture and traditional deployment
scenarios. They cover details about the implementation to help you identify the
circumstances under which you should deploy DataPower appliances. They also provide a
sample implementation and architectural best practices for an SOA message-oriented
architecture in an existing production ESB environment.

Part three of the series, this paper, describes how to use the DataPower appliance to secure
incoming Web Services within an SOA environment, how to integrate your DataPower
appliance with WebSphere Message Broker, and how to provide protection against security
attacks by implementing the XML Denial of Service (XDoS) provided by DataPower
appliances. The entire IBM WebSphere DataPower SOA Appliances series includes the
following papers:

� IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting Started,
REDP-4327

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and Authorization,
REDP-4364

� IBM WebSphere DataPower SOA Appliances Part III: XML Security Guide, REDP-4365

� IBM WebSphere DataPower SOA Appliances Part IV: Management and Governance,
REDP-4366

The team that wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Juan R. Rodriguez is a Consulting IT Professional and Project Leader at the IBM ITSO
Center, Raleigh. He has an M.S. degree in Computer Science from Iowa State University. He
writes extensively and teaches IBM classes worldwide on Web technologies and information
security. Before joining the IBM ITSO, he worked at the IBM laboratory in Research Triangle
Park, North Carolina, as a designer and developer of networking products.

Somesh Adiraju is currently working as an Integration Architect with Ultramatics Inc., in
Florida. He has nine years of experience in Enterprise Application Integration space in areas
of banking, finance, and telecommunications. His interests include the design, architecture,
and development of enterprise scale applications specializing in the use of WebSphere MQ,

© Copyright IBM Corp. 2008. All rights reserved. vii

Message Broker, and IBM Tivoli® Monitoring. Somesh holds a Bachelors degree in
Technology from Andhra University, India.

Adolfo Rodriguez is a Software Architect within the IBM WebSphere Technology Institute
(WSTI) and an Assistant Adjunct Professor of Computer Science at Duke University, where
he teaches networking courses. At IBM, he leads a team of engineers focusing on emerging
technologies in WebSphere products and, more recently, DataPower SOA appliances. Dr.
Rodriguez’s recent contributions include projects in the areas of Web Services enablement,
XML processing, SOA management, and application-aware networking. His primary interests
are networking and distributed systems, application middleware, overlays, and J2EE™
architecture. He has written 12 books and numerous research articles. Dr. Rodriguez holds
four degrees from Duke University: BS in Computer Science, BA in Mathematics, MS in
Computer Science, and a Ph.D. in Computer Science (Systems).

Srinivasan Muralidharan is an Advisory Engineer with 15 years of industrial experience and
nine years with IBM. He is currently working on DataPower-related projects at the IBM
WebSphere Technology Institute. He is widely experienced in SOA-related technologies in all
tiers of the software development stack. He has studied SOA performance with DataPower
appliances and has investigated integrating DataPower with other mid-tier and back-end
traditional components, such as WebSphere Application Server, MQ, CICS®,and IMS™ in
the SOA context of reusing existing systems and enterprise modernization.

Jacqueline Swett is a Senior WebSphere IT Specialist working for the Federal Software
Sales Group. She has twenty-five years of experience working in the IT Industry, especially
in the application integration and Middleware areas. After she received her degree in
Computer Science in 1982, she worked for a major insurance company for fifteen years as a
developer, database administrator, and system programmer. She joined a software
development firm in 1997 to develop a system monitor for MQSeries®. Since joining IBM in
2000, she has worked as a solution architect for the Software Group, as a lead designer and
developer for a major US Government modernization project, and as a lead WebSphere IT
specialist for the Federal Government accounts since 2004. She is a member of the
WebSphere Application Integration Technical Competencies Leadership team.

Thanks to the following people for their contributions to this project:

Joel Gauci
IBM France

Davin Holmes
IBM Australia

Christian Ramírez-Mora
GBM Corporation, Costa Rica

Joel Gauci
IBM Paris, France

Marcel Kinard, Robert Callaway, John Graham
IBM Research Triangle Park, North Carolina, USA

Peter Crocker, Ben Thompson, Dominic Storey
IBM United Kingdom

Andy Grohman
IBM Charlotte, North Carolina, USA

viii IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publications form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

x IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Chapter 1. Web Services security
improvements

In this chapter, we explain how you can use DataPower appliances to secure incoming Web
Services within a services-oriented architecture (SOA) environment.

When exposing service-oriented systems to Internet access, you must consider various
security issues. Most businesses are used to dealing with the potential for attack against
Web-based sites, but the new and emerging challenge that we face is exposing the
enterprise business logic in the form of Web Services. While this capability provides greater
flexibility and integration with partners, it also exposes businesses to greater risks, because it
necessitates opening the firewall through standard ports.

As a logical evolution, the core sample application that we described in IBM WebSphere
DataPower SOA Appliances Part I: Overview and Getting Started, REDP-4327, will be
fortified by securing incoming SOAP requests against some of these attacks.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Extensible Markup Language threat protection

As the backbone of SOA, the popularity of Web Services has invited a whole new class of
attacks. At a high level in the context of Web Services, we define these as XML threats. That
is, a client system sends an Extensible Markup Language (XML) request (maybe as a SOAP
request) to your systems that in some way intends to do harm.

If a system can be accessed by outsiders (for example, via the Internet), an intruder can
choose to send messages to your system in order to damage it or simply to consume
resources. Depending on the system, it is even possible that these intruders are authorized to
use your system, but are trying to exploit that authorization in some inappropriate way. Also,
you must not discount the possibility of attacks (or other actions that can affect system
response) from behind your own firewalls.

There are four broad classifications of XML threats:

� XML Denial of Service (XDoS): Slowing down or disabling a Web Service so that valid
service requests are hampered or denied. We discuss XDoS in Chapter 3, “XML threat
protection in DataPower” on page 97.

� Unauthorized Access: Gaining unauthorized access to a Web Service or its data

� Data Integrity/Confidentiality: Attacks that strike at the data integrity of Web Service
responses, requests, or underlying databases

� System Compromise: Corrupting the Web Service itself or the servers that host it

These threats are not addressed by traditional firewalls; although, they offer protection at the
transport levels and allow Web Services to effectively tunnel through this layer via standard
HTTP(S) and expose the enterprise applications.

These threats are not addressed either when using traditional Web service gateways that do
not look for most XML threats or limit the traffic.

Do not understate the seriousness of these new threats. The following IBM developerWorks®
article clearly defines the breadth and seriousness of attacks that are possible to any service
exposed using XML:

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_co
l_hines.html

The article concludes with the following comments:

“To truly harden a system using Web Services, you need to perform several important
security steps (recommended by leading consultants), including:

� Inspect messages for well-formedness.

� Validate schema.

� Verify digital signatures.

� Sign messages.

� Implement service virtualization to mask internal resources via XML transformation and
routing.

� Encrypt data at the field level.”

Note: DataPower can act as an application level gateway to protect your enterprise
applications against these attacks.

2 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html

For systems hosting Web Services, particularly public Internet-facing ones, you must
seriously consider the case for hardened gateway devices acting as XML firewalls to protect
your systems from XML threats.

In this chapter, we illustrate how you can use the previously mentioned security options with
the DataPower appliance.

1.2 Using Multi-Protocol Gateway to address security concerns

The graphic shown in Figure 1-1 illustrates the end-to-end scenario, but we only discuss the
highlighted actions in this section.

Figure 1-1 Shows both Rules of ITSO_MPGW Multi-Protocol Gateway

In this section, we use a Multi-Protocol Gateway, which was created in IBM WebSphere
DataPower SOA Appliances Part I: Overview and Getting Started, REDP-4327, as the core
transformation engine. We enhance this Multi-Protocol Gateway to process WS-Sec
messages:

� Request decryption
� Request verification
� Response encryption
� Response signing

In addition, we also show you how to enable transport level Secure Sockets Layer (SSL).

Note: Well-formedness checking and validate schema are discussed in IBM WebSphere
DataPower SOA Appliances Part I: Overview and Getting Started, REDP-4327.
Authentication, Authorization, and Auditing (AAA) are discussed in IBM WebSphere
DataPower SOA Appliances Part II: Authentication and Authorization, REDP-4364.

Note: Before performing the following steps, create a Multi-Protocol Gateway object and
except for the Request-side HTTP port and configure it identically to the Multi-Protocol
Gateway that is described in IBM WebSphere DataPower SOA Appliances Part I:
Overview and Getting Started, REDP-4327.

Chapter 1. Web Services security improvements 3

1.2.1 Request processing

We will start with Request Rule #1, which accepts an encrypted message from the client, but
it does not handle the messages sent by the server to the client. This is enforced by selecting
the client-to-server radio button at the bottom of the rule. A Match action examines the
inbound message and determines whether the rule needs to be run against the message. In
this case, the match action accepts all input messages (as implemented by the asterisk
character (*) criteria in the Match action).

The following subsections detail how the remainder of the security actions are implemented in
this policy.

Decrypt action
A decrypt action performs full or field-level document decryption. Implementation of a decrypt
action requires certain parameters that are supplied during Multi-Protocol Gateway
configuration. Use the following procedure to add a decrypt action to a document processing
rule:

1. Drag and drop the decrypt action icon before the “Extract using XPath” action in the
Request processing rule.

2. Double-click the decrypt action icon to display the basic panel in Figure 1-2.

Figure 1-2 Decrypt action (basic) panel

3. In the sample input file, the whole message is encrypted. Therefore, choose the option
Message Type → Entire Message/Document.

4. Use the Decrypt Key drop-down list to select a Cryptographic Key to use for decrypting the
content. Click + to create a new key. This brings up the Crypto Key panel as shown in
Figure 1-3 on page 5.

4 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 1-3 Crypto Key object creation

5. In this sample scenario, specify itsokey in the name field. You will be associating this
object with the itsodp-privkey.pem key provided in the associated materials. Upload this
file into the appliance by clicking Upload. To complete the configuration, specify a
password, for example, itsopass for the password and confirm password fields.

One interesting point to note here is by clicking Advanced on Figure 1-4, you see under
processing control file store:///decrypt.xsl that DataPower has its own stylesheets for
all actions. You can use this stylesheet as a default or create your own Extensible
Stylesheet Language (XSL) stylesheet for custom processing as shown in Figure 1-4.

Figure 1-4 Decrypt Action (Advanced) panel

6. Click Done to complete the decrypt action.

7. Click Apply to add the decrypt action to the Document Processing Rule.

Verify action
The decrypted SOAP message contains the signer certificate, which can be verified to make
sure that this is an acceptable message. Implementation of the verify action requires certain
parameters that are supplied during the Multi-Protocol Gateway configuration, in this
scenario, ITSO-MPGW.

Use the following procedure to add a verify action to a Document Processing Rule:

1. Drag and drop the Verify action icon after Decrypt action.

2. Double-click the verify action icon to display the verify action panel in Figure 1-5 on
page 6.

Chapter 1. Web Services security improvements 5

Figure 1-5 Verify action panel

3. You first configure the Validation Credential. Click + to create a Validation Credential
object. This action will bring up the Crypto Validation Credentials panel as shown in
Figure 1-6.

Figure 1-6 Creating validation credentials

4. In this scenario, type itsovalid in the name field. Click + in the certificates section. This
will open up the Crypto Certificate panel to configure the crypto certificate as shown in
Figure 1-7 on page 7.

6 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 1-7 Configure crypto certificate

5. For example in this scenario, name the certificate object itsocert. Import the
itsodp-sscert.pem certificate provided in the additional materials into the appliance by
using Upload. Specify the password, for example, itsopass, in the password and confirm
password fields.

6. Click Apply. This takes you back to the Crypto Validation Credentials panel shown in
Figure 1-6 on page 6. To add the newly created Certificate object, click Add. You see the
itsocert certificate listed in the Certificates list box as illustrated in Figure 1-8.

Figure 1-8 After adding itsocert to the certificates

7. Clicking Advanced opens up the Verify action (advanced) panel that is shown in
Figure 1-9 on page 8.

Chapter 1. Web Services security improvements 7

Figure 1-9 Verify action (advanced) panel

8. You can also check a WS-Security Timestamp for expiration. The verify action checks for
a time stamp by default. To disable this action, change the value of the Check Timestamp
Expiration property to off.

9. Optionally, use the Output dialog box to specify the destination context for the verified
document.

10.Click Done to complete the verify action.

11.Click Apply to add the verify action to the Document Processing Rule.

12.The security processing aspect of the incoming WS-Sec message is complete. The
decrypted message still contains WS-Sec tags. The core application processing is based
on the payload only. You will need to strip out the WS-Sec sections from the message so
that the resulting message will be identical to the input message. To strip out the WS-Sec
sections from the message, drag and drop a Transform action after the Verify action of
the previous step. Specify the stripwssec.xsl provided in the additional materials as the
XSL executing the transform.

13.After the previous step, the message is now identical to the input message. To complete
the request side processing, follow, for example, the Markup Language (ML) to COBOL
transformation. For details, see IBM WebSphere DataPower SOA Appliances Part I:
Overview and Getting Started, REDP-4327.

1.2.2 Response side processing

The core application transforms response side COBOL input to XML and converts it into
SOAP. In this section, we will do WS-Sec processing to secure the response message.

8 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Sign action
A sign action digitally signs documents. In our case, it signs the incoming SOAP message
before encrypting the message and sending it back to the client:

1. Drag the Sign icon and drop it next to the action that converts the message to SOAP using
the converttosoap.xsl.

2. Double-click the Sign icon to display the sign action panel as illustrated in Figure 1-10.

Figure 1-10 Sign action panel

3. Use the Input dialog box or values-list (a list of contexts available within this Document
Processing Rule) to specify the source context for the encrypt action. This is the output of
the previous transform action.

Chapter 1. Web Services security improvements 9

4. Select the Envelope Method radio buttons to select the signature type.

5. Select the SOAP Message radio button to select the message type.

6. In this scenario, the same Crypto Key object created for the Decrypt action (see Figure 1-3
on page 5) will be used for signing the message. Select itsokey from the drop-down list in
Key.

7. The same Crypto Certificate object created for the validation action (see Figure 1-7 on
page 7) will be used.

8. Use the Enter Output Context dialog box to specify the destination context for the signed
XML.

9. Click Done to complete the sign action.

10. Click Apply to add the sign action to the Document Processing Rule.

Encrypt action
An encrypt action performs full or field-level document encryption. Implementation of an
encrypt action requires certain parameters that are supplied during service configuration. Use
the following procedure to add an Encrypt action to Document Processing Rule.

1. Drag the Encrypt icon and drop it next to the Sign action.

2. Double-click the Encrypt Icon to display Figure 1-11 on page 11.

3. Use the Input dialog box or values-list (a list of contexts available within this Document
Processing Rule) to specify the source context for the encrypt action. This is the output of
the previous transform action.

Note: When defining a sign action, you can use variables to specify input and output
contexts.

10 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 1-11 Encrypt action (basic) panel

4. Select WSSec Encryption in the Envelope Method.

5. Select SOAP Message in the Message Type.

6. Select Message Only from the Message and Attachment Handling values-list.

7. Select the itsocert object from the Recipient Certificate values-list. In this scenario, we
use the same certificate as in the request message. However, you can use different
certificates in a real deployment. If you want to create a new certificate object, follow the
same procedure as outlined in Figure 1-7 on page 7.

8. Use the Output dialog box to specify the destination context for the decrypted document.
You can create a new one to be used in the results action.

9. Click Done to complete the encrypt action.

10.Click Apply to add the encrypt action to the Document Processing Rule.

Note: Additional certificate and encryption settings are available on the Advanced tab.

Chapter 1. Web Services security improvements 11

Results action
The Results action completes the response rule and the configuration of the policy. For
example, perform the following steps:

1. Drag and drop the Results icon after the Encrypt action.

2. Double-click the Results icon and choose the Input context that was the Output context of
the Encrypt action.

3. Click Done and click Apply to add the Results action to the rule.

1.2.3 Summary of the processing in this chapter

Here is the quick examination of the ITSO_MPGW_Policy that we created in the previous
section. You can either create this ITSO_MPGW_Policy by following steps in the previous
section or import the configuration file provided in the additional materials of this Redpaper as
described in Appendix C, “Additional material” on page 147. There are two rules in this policy,
and they are Request Rule #1 and Response Rule #2.

Figure 1-12 End-to-end scenario

Request Rule #1
Here is an examination of the components of Request Rule #1. Note that this is a Request
rule; it only handles messages that are sent to the service by the client and does not handle
messages sent by the server back to the client. This rule handles encrypted requests.

Match rule
A Match rule examines the inbound message and determines whether or not the rule is run
against the message. In this case, the match rule examines the URL used by the client to
determine a match. In our scenario, we have match *, which means that the gateway accepts
all the incoming messages. See Figure 1-13 on page 13. However, in a typical scenario, you
can have, for example, */SomeBank/someService.

12 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 1-13 Matching Rule

Action one: Decrypt
A Decrypt action decrypts encrypted messages. In this sample scenario, the entire message
has been encrypted. The Decrypt action gets this encrypted message and decrypts it based
on the private key. Figure 1-14 shows an example of an encrypted message.

Figure 1-14 Part of the input encrypted message

Action two: Verify
A Verify action verifies the signature contained in the message. If the signature cannot be
verified, the message is rejected. If the signature is valid, the rule passes on to the next
Action in the processing rule. Because we have a value in the “validation credential”, it points
to a Crypto Validation Credential object (itsovalid). Refer to Figure 1-5 on page 6. That
object has to include the certificate included in the message to validate that certificate.
Additional trust chain checking can also be performed by a Validation Credential object.

Chapter 1. Web Services security improvements 13

Action three: Authentication, Authorization, and Auditing (AAA)
This action is discussed in detail in IBM WebSphere DataPower SOA Appliances Part II:
Authentication and Authorization, REDP-4364. After the message passes through AAA, it
passes on to the Transform Action, which is the next action in the data processing rule.

Action four: Validate
This action is discussed in detail in IBM WebSphere DataPower SOA Appliances Part I:
Overview and Getting Started, REDP-4327. After the message passes through Validate, it
passes on to the Extract using Xpath Action, which is the next action in the data processing
rule.

Action five: Extract using Xpath
This action is discussed in detail in IBM WebSphere DataPower SOA Appliances Part I:
Overview and Getting Started, REDP-4327. After the message passes through Extract using
Xpath action, it passes on to the Transform binary, which is the next action in the data
processing rule.

Action six: Transform Binary
This action is discussed in detail in IBM WebSphere DataPower SOA Appliances Part I:
Overview and Getting Started, REDP-4327. This transform binary uses a WTX Map file for
transformation, which is then sent to a back-end existing application for processing.

Response Rule #2
This section examines the components of Response Rule #2.

Match rule
A match rule examines the inbound message and determines whether the rule is run against
the message. In this case, the match rule examines the URL used by the client to determine a
match. In our scenario, we have match *, which means the gateway accepts all the incoming
messages. However, in an actual implementation, you might indicate something similar to
*/SomeUrl.

Action one: Transform #1
This transform action converts the incoming COBOL message to a SOAP XML message
before sending it to the next action on the data processing rule.

Action two: Transform #2
This transform action converts the XML to SOAP using converttosoap.xsl.

Action three: Sign
The message is signed with the private key itsokey and the cert itsocert.

Action four: Encrypt
This action encrypts the entire body of the message using the WS-Security encryption
standard.

1.2.4 Running the service

This section describes the process to run the service. Follow these steps:

1. The WS-Sec form of the input is the inp-encry-final.xml in the additional materials of this
Redpaper as described in Appendix C, “Additional material” on page 147.

14 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

2. When using Curl, run the following command using the DataPower’s IP address and the
front-side HTTP handler’s port:

curl -X POST --data-binary @inp-encry-final.xml http://<datapower’s
ipaddress>:<port>

Chapter 1. Web Services security improvements 15

16 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Chapter 2. Integration with WebSphere
Message Broker

In this chapter, we explain how to use the IBM WebSphere DataPower SOA Appliances
(DataPower) as a front-end XML and Web services security gateway to off-load the security
processing from the IBM WebSphere Message Broker (WMB). This solution frees the
application developers from the detailed implementation and coding of XML and Web
services security and also reduces the impact of the security processing from WebSphere
Message Broker and the subsystems that support it.

The Redpaper IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting
Started, REDP-4327, shows how DataPower extends its capabilities for complex
transformation, using the WebSphere Transformation Extender, to act as a Multi-Protocol
Gateway and an Enterprise Service Bus (ESB). The ESB provides the protocol switching,
routing, and complex transformation capabilities. Together, DataPower and WebSphere
Transformation Extender provide the solution to integrate existing applications into a
service-oriented architecture (SOA) environment.

Note: In this chapter, we used the information provided by three articles published in
developerWorks. Thanks are due to Peter Crocker, Ben Thompson, and Dominic Storey for
the following technical articles in DeveloperWorks:

� “Integrating WebSphere DataPower SOA Appliances with WebSphere MQ”:

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0
703_crocker.html

� “Integrating WebSphere DataPower XML Security Gateway XS40 with WebSphere
Message Broker”:

http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0
710_crocker.html

� “Integrating DataPower with WebSphere Message Broker using the Broker Explorer”:

http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/07
07_storey.html

2

© Copyright IBM Corp. 2008. All rights reserved. 17

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0703_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0710_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/0707_storey.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/0707_storey.html

2.1 Introduction

The objective of this chapter is to show another option for application integration using
DataPower and WebSphere Message Broker to provide the same integration capabilities.
Unlike the previous option where the DataPower box executes the WebSphere
Transformation Extender code, with this second option, the WebSphere Message Broker
runs in its own runtime environment.

This second option offers a valuable solution to clients who have a message broker and
whose security functions are performed by DataPower. DataPower is the best component
designed to optimize security capabilities and is used to provide the first level of security
protection. It prevents unauthorized access and filters malicious XML messages before
allowing them to flow to the back-end systems. DataPower also allows security functions to
be centralized, administered, managed, and controlled in a DataPower appliance from a
central point of control. The message broker is dedicated to doing what it is best known for: its
advanced and rich application integration capabilities.

We discuss the following major topics in this chapter:

� Scenarios description
� Configuration of DataPower and WebSphere Message Broker for scenario one
� Configuration of DataPower and WebSphere Message Broker for scenario two
� Testing the scenarios

2.2 Sample scenarios description

We will use two major scenarios to illustrate the options for integrating an SOA application
with an existing application using the DataPower appliance and WebSphere Message Broker.
In the first scenario, WebSphere Message Broker is used to provide the interface to the
existing application as a Web service. In the second scenario, WebSphere Message Broker
uses the classic way to provide the interface to the existing application via MQ. These
scenarios use different protocols (HTTP and MQ) to demonstrate the options for integration
between WebSphere Message Broker and DataPower. We use the following components of
DataPower for front-end processing:

� XML firewall and Web service gateway
� Multi-protocol gateway

Both scenarios show an example of a message request and reply processing pattern where
the information, such as the message identifier (MQ), the ReplyToQ, and the ReplyToQmgr
or the HTTP/HTTPS Identifier of the original request, must be persisted on the inbound. This
information is retrieved on the outbound and is used by the message broker to build the reply
message header with routing and correlation information.

The two scenarios use the same data structures, transformation logic, and connectivity to the
back-end CICS application via MQ. The key differences between the two scenarios are the
protocols that they use for communication between DataPower and WebSphere Message
Broker and the DataPower components that are used to provide the front-end services.

In both scenarios, there is a clear separation of concerns where the DataPower performs the
security functions and the message broker acts as an ESB, performing the data

Note: See Appendix B, “Building message flows in WebSphere Message Broker” on
page 119 for information about how to build the WebSphere Message Broker artifacts.

18 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

transformation and connectivity to the back-end system. We will describe these scenarios in
detail.

Scenario one: Integrating DataPower with WebSphere Message Broker
The first scenario uses HTTP/SOAP and HTTPS/SOAP protocols for connectivity between
DataPower and WebSphere Message Broker. WebSphere Message Broker provides the
Web services interface to the existing application. In this scenario, the message traffic goes
through the XML Firewall Gateway within DataPower for Web services security processing.

This scenario has the following characteristics:

� HTTP or HTTPS protocol is used to communicate between DataPower and WebSphere
Message Broker.

� WebSphere Message Broker switches from HTTP/HTTPS to MQ protocol to connect to
the CICS application.

� Request and reply SOAP messages are encrypted, decrypted, and optionally signed.

� DataPower provides the front-end XML/Web services security gateway and message
decryption and signature verification (inbound) and message encryption and digital
signature (outbound) using the XML Firewall Gateway within DataPower.

� WebSphere Message Broker performs the transformation from SOAP to fixed
format/COBOL (inbound) and from fixed format/COBOL to SOAP (outbound). The
WebSphere Message Broker switches to the MQ protocol to connect to the back-end
(CICS) application.

� This scenario uses the Request/Reply processing pattern.

Figure 2-1 shows the end-to-end and round-trip processing sequence for the inbound and
outbound traffic, including the requesting application, DataPower, WebSphere Message
Broker, and the CICS application. Figure 2-1 is also used to configure DataPower and
WebSphere Message Broker to support scenario one.

Figure 2-1 End-to-end processing flow for scenario one

decrypt

encrypt

XML firewall

Processing Policy

Transform to COBOL

Transform to SOAP

WS_Legacy_MF (Request/Reply)
HTTPS (port:7080) /

SOAP

HTTPS (port:7083) /
SOAP

HTTPS (port:12080)
/SOAP

Requesting
Application

DataPower
SOA Appliance

Message Broker Back-end Application
CICS

https://<DataPowerIP>:12080/HTTPNoSec/AccountStatus

https://<DataPowerIP>:12083/HTTPSec/AccountStatus

HTTPS (port:12083)
/SOAP

Simulated
CICS

Message
Flow

MQ/COBOL

MQ/COBOL

Input: HOST_REQUEST

Output: HOST_REPLY

Chapter 2. Integration with WebSphere Message Broker 19

Scenario two: Integrating DataPower Appliance with WMB via MQ
The second scenario uses the MQ protocol for connectivity to DataPower and the message
broker. In this scenario, the message traffic goes through the DataPower Multi-Protocol
Gateway for Web services security processing. This scenario has the following
characteristics:

� MQ protocol used for inbound/outbound communication between DataPower and the
message broker.

� MQ is used to connect to the back-end application.

� The request and reply SOAP message is encrypted.

� DataPower provides the front-end Multi-Protocol Gateway and message decryption
(inbound) and encryption (outbound).

� WebSphere Message Broker performs the transformation from SOAP to fixed
format/COBOL (inbound) and from fixed format/COBOL to SOAP (outbound).

� This scenario uses the Request/Reply processing pattern.

Figure 2-2 shows the end-to-end and round-trip processing sequence for the inbound and
outbound traffic, including the requesting application, DataPower, WebSphere Message
Broker, and the CICS application. This figure is also used to configure DataPower and
WebSphere Message Broker to support scenario two.

Figure 2-2 End-to-end processing flow for scenario two

2.3 Configuration of DataPower and WMB for Scenario one

This section explains the message flows and how to configure DataPower and WebSphere
Message Broker to test the prototype, including simple problem determination. We assume
that you have basic knowledge of the WMB installation, configuration, and development. The
installation and basic configuration of the WMB and DataPower are not included in this
Redpaper.

For your convenience, we provided the completed and working message set and message
flow projects that you can import into your WebSphere Message Brokers Toolkit. You can
build the WebSphere Message Broker artifacts yourself by following the instructions
documented in Appendix B, “Building message flows in WebSphere Message Broker” on

Back-end Application
CICS

Multi-protocol Gateway

Transform to COBOL

Transform to SOAP

MQ_Legacy_MF (Request/Reply)
MQ/SOAP

MQ/SOAP

Requesting
Application

DataPower
SOA Appliance

Message Broker

Input: DP_REQUEST

Output: DP_REPLY

Processing PolicyRFHUtil DPQM

MQ Front Side
Handler

Static
Backend MQ

Broker
QM

Input: SOA_REQUEST

Output: SOA_REPLY

Simulated
CICS

Message
Flow

MQ/COBOL

MQ/COBOL

Input: HOST_REQUEST

Output: HOST_REPLY

20 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

page 119. You can download the WebSphere Message Broker prebuilt artifacts and scripts to
set up MQ and WebSphere Message Broker from the additional materials link.

The prototypes use the following software and hardware:

� IBM WebSphere DataPower SOA Appliances XI50 (licensed for WMQ and TAM)

� IBM WebSphere Message Broker V6.0.0.5

� IBM WebSphere MQ V6.0.2

� IS02 support pack: WebSphere Message Broker Explorer plug-in for WebSphere MQ
Explorer

� IBM DB2® V8.0

WebSphere Message Broker and its dependent software run on Windows® in our sample
scenario environment.

Integrating the DataPower appliance with WMB via HTTP(S)
The main objective of this section is to explain how to configure the XML firewall in
DataPower to provide Web service security and to configure the message broker to integrate
with DataPower using HTTP and HTTPS. WebSphere Message Broker V6.0.0.5 does not
support WS-Security. For that reason, we use DataPower to act as a Web Service security
gateway to allow WS-Security-enabled applications to interface with WebSphere Message
Broker.

First, you will learn the message flow logic, which provides the processing sequence for
transformation and connectivity to the front-end and back-end subsystems. We will explain
how to build the message broker artifacts in Appendix B, “Building message flows in
WebSphere Message Broker” on page 119.

Next, you will learn to perform the following tasks:

� Configure the WebSphere Message Broker.

� Configure DataPower XML Firewall as a Web services security gateway: Use the
DataPower security wizard, which is provided as part of the WebSphere Message Broker
Explorer plug-in support pack IS02, to configure DataPower from WebSphere MQ
Explorer.

� Configure DataPower to add a digital signature to the processing policy.

� Test the configuration using the message flows.

2.3.1 Message flow logic

WebSphere Message Broker is used to provide the integration services; it is important that
you understand the processing logic of the message flows. It requires the following two
message flows to execute scenario one.

Host_Simulation_MF
This flow simulates the CICS COBOL application. It retrieves the message from the
HOST_REQUEST queue, fills in the customer information and status via the
Set_Customer_Info_Status compute node, and sends a reply message to the ReplyToQ
specified in the MQ header MQMD via the MQReply node. This message flow logic is
illustrated in Figure 2-3 on page 22.

Chapter 2. Integration with WebSphere Message Broker 21

Figure 2-3 Host_Simulation_MF message flow

WS_Legacy_MF
This is the main flow that provides connectivity to DataPower and the CICS application. It also
performs the transformation from XML/SOAP to COBOL on the inbound and COBOL to XML
on the outbound. This message flow has two paths and supports both HTTP and HTTPS
requests. The two paths are:

� Inbound path:

a. Receives the SOAP message via the HTTP/HTTPS node. The input message is a
request for customer information (name, address, phone, and so forth) and status
(P = Premium, G = Gold, and S = Silver) based on an account number. The SOAP
message body contains only one field, which is the account number.

b. Transforms the SOAP message from XML into a fixed format via the XML_To_COBOL
compute node.

c. Puts the transformed message to the HOST_REQUEST queue for the CICS
Simulation flow to pick it up. This message flow was created to simulate the CICS
application. It reads the request message, builds the output message with customer
information and status, and sends the output message to the ReplytoQ specified in the
MQMD header. The customer information is hard-coded for simplicity.

d. Builds the second XML message to store the HTTP Identifier/context via the
Set_HTTP_Id compute node. This HTTP Identifier is correlated to the message that
was sent to the existing application.

e. This state message is put to the HTTP_STATEQ queue for later retrieval (see
Outbound path).

� Outbound path:

a. An MQ reply message is put to the HOST_REPLY queue by the CICS Simulation flow.

b. The fixed format message from CICS is transformed into a SOAP message body.

c. The HTTP Identifier is retrieved from the HTTP_STATEQ queue.

d. The reply SOAP message is sent to the original requester via the HTTP Reply node.

The message flow WS_Legacy_MF processing logic is illustrated in Figure 2-4 on page 23.

22 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-4 WS_to_Legacy_MF message flow

Both the WS_To_Legacy_MF and the Host_Simulation_MF use the following common
subflow Error_Handler to catch all the exceptions. It provides the following processing
sequences:

� Parses the exception list to get the last error number and exception text to build the error
message. This processing logic is done in the ExceptionList compute node.

� Puts the error message in the CATCH_ALL_ERRORS queue.

� Throws the exception to back out the transaction.

Figure 2-5 shows the processing sequence of the Error_Handler subflow.

Figure 2-5 Error_Handler subflow

2.3.2 Configure WebSphere Message Broker

We need to set up the environment for WebSphere Message Broker to run the prototype.
WebSphere Message Broker uses many queues that must be defined in the queue manager.

Chapter 2. Integration with WebSphere Message Broker 23

Also, it uses the HTTP over SSL (HTTPS) protocol, which requires the configuration of the
HTTPS connection to the message broker.

The following steps are required to configure the message broker to run the first scenario:

1. Download the artifacts from the Additional Materials link.
2. Define the queues.
3. Deploy the message flows and message sets to a message broker.
4. Configure the HTTP and HTTPS input nodes.
5. Configure the HTTPS connection to the message broker.
6. Install the WebSphere MQ Explorer support pack IS02.

The message broker environment consists of the following components:

� Queue manager: WBRK6_QUEUE_MANAGER

� Message Broker: WBRK6_DEFAULT_BROKER

� Configuration manager: WBRK6_DEFAULT_CONFIGURATION_MANAGER

Step 1: Download the artifacts from the Additional Materials link
We provide all of the necessary artifacts to test both scenarios. You do not have to build
message broker artifacts. However, we provide a section explaining how to build WebSphere
Message Broker artifacts if you want to build them yourself. You can download the artifacts
for this Redpaper from the Additional Materials link:

http://www.redbooks.ibm.com/Redbooks.nsf/pages/addmats

Table 2-1 lists the artifacts.

Table 2-1 Artifacts

Note: See Appendix C, “Additional material” on page 147 to download the artifacts that are
used to configure WMB before you can test the scenarios.

File names Purposes

WMBIntegrationDomain.zip WMBIntegration application domain within
DataPower

DPWMBIntegration.zip Project Interchange that contains message sets,
message flows, and SOA2Legacy.bar file

HTTPS_Conf Commands to configure WMB for HTTPS listener

MQ_Conf Commands to define queues for WMB

Test_GenEncryptSOAP.cmd Command to generate the encrypted SOAP
message for testing the XML Loopback firewall after
you have completed its configuration for message
encryption/decryption. You can skip this step if you
choose to use the prebuilt message provided for
your testing.

Test_GenEncSignSOAP.cmd Command to generate an encrypted and signed
SOAP message after you add a digital signature to
the processing policy of the Loopback XML firewall.
You can skip this step if you choose to use the
prebuilt message provided for your testing.

Test_RegularSOAP_MB_HTTP.cmd Command to test the regular SOAP message with
WMB/HTTP

24 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www.redbooks.ibm.com/Redbooks.nsf/pages/addmats

Step 2: Define queues
The message flows use many queues that are defined using the MQ_Conf.bat script. This
script defines the queues for both scenarios. Table 2-2 lists the names of the queues and their
associated functions.

Table 2-2 Queues used by the WS_To_Legacy_MF and MQ_To_Legacy_MF message flows

Test_RegularSOAP_MB_HTTPS.cmd Command to test the regular SOAP message with
WMB/HTTPS

Test_EncSignSOAP_DP_HTTP.cmd Command to test encrypted and signed SOAP
messages with DataPower/HTTP

Test_EncSignSOAP_DP_HTTPS.cmd Command to test encrypted and signed SOAP
messages with DataPower/HTTPS

Test_EncryptSOAP_DP_HTTP.cmd Command to test encrypted SOAP messages with
DataPower/HTTP

Test_EncryptSOAP_DP_HTTPS.cmd Command to test encrypted SOAP messages with
DataPower /HTTPS

TestEncryptSOAP_IN.xml Data for testing encrypted SOAP messages. This
file is provided for your testing. We used the
Test_GenEncSignSOAP.cmd to generate this
message. You can also generate the encrypted test
message for your environment using the Loopback
firewall that you created.

TestEncSignSOAP_IN.xml Data for testing encrypted and signed SOAP
messages. This file is generated by the
Test_GenEncSignSOAP.cmd. You can use the
message provided for your testing or generate the
encrypted and signed test message yourself using
the Loopback firewall that you created.

TestRegularSOAP_IN.xml Data for testing regular SOAP messages

TestInvalidSOAP_IN.xml Data for testing invalid SOAP messages

Queue name Function

CATCH_ALL_ERRORS Used to store the error message for any errors
encountered in any node in the message flow where
the failure terminal is not wired

DP_GET Queue used by DataPower to retrieve a request
message from an MQ client application

DP_PUT Queue used by DataPower to send a response
message to an MQ client application

CATCH_ALL_ERRORS Queue to catch all errors from message flows

HOST_REQUEST Request queue for CICS application

HOST_REPLY Reply queue for CICS application if a request comes
from WS_To_Legacy_MF message flow

HOST_REPLY2 Reply queue for CICS application if a request comes
from MQ_To_Legacy message flow

File names Purposes

Chapter 2. Integration with WebSphere Message Broker 25

Step 3: Deploy the message sets and the message flows
We provide the prebuilt project interchange that contains the message set and message flow
projects. It also includes the broker archive (bar) file that contains the compiled code to be
deployed into the message broker runtime. You can import the project interchanges into
WebSphere Message Brokers toolkit and deploy them to your message broker. The following
steps show you how to do it:

1. Import the project interchange into the message broker:

a. Click Start → Program File → IBM WebSphere Message Brokers 6.0 → Command
Console.

b. Click File → Import → Project Interchange → Next.

c. Click Browse to select C:\ITSO_DP\Artifacts\DPWMBIntegration.zip, click Select All,
and click Finish as shown in Figure 2-6 on page 27.

HTTP_STATEQ Queue used to store the HTTP context, such as the
HTTP identifier

SOA_REQUEST Request queue to start the MQ_To_Legacy flow

SOA_REPLY Reply queue used by WMB to put the response
message to DataPower

MQGET_ERROR Used to store the error message for the MQGET
when no message returned after the wait interval
has timed out or when the MQGET gets a warning
return code

MQMD_STOREQ Queue used to store the message/correlation
identifier

Queue name Function

26 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-6 Import Project Interchange

2. Deploy the SOA2Legacy.bar file to the message broker:

a. Create a new Execution group called DPSoa.

b. Connect the Configuration Manager to the message broker as shown in Figure 2-7 on
page 28.

Chapter 2. Integration with WebSphere Message Broker 27

Figure 2-7 Connect configuration manager to broker

c. Right-click the message broker, click New and click Execution Group, as shown in
Figure 2-8 on page 29.

28 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-8 Create a new Execution Group

d. Set the Execution Group Name to DPSoa, as shown in Figure 2-9 on page 30.

Chapter 2. Integration with WebSphere Message Broker 29

Figure 2-9 Create a new Execution Group

e. Deploy the Soa2Legacy bar file to DPSoa Execution Group:

i. Drag and drop Soa2Legacy.bar into the DPSoa Execution Group as shown in
Figure 2-10 on page 31.

ii. Verify that the bar has been successfully deployed with the following artifacts
displayed under DPSoa Execution Group: Host_Reply, Host_Request,
Host_Simulation_MF, WS_To_Legacy_MF, Host_Request_Reply_Cobol_MS, and
Host_Request_Reply_XML_MS.

30 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-10 Deploy SOA2Legacy.bar

Step 4: Configure the HTTP and HTTPS input nodes
The message flows used by this sample have two HTTP nodes: one node is configured for
the HTTP protocol and the other node is configured for the HTTP over Secure Sockets Layer
(SSL) protocol. Each of these nodes must be configured to listen on one of the following
URLs:

� HTTP No Security input node: /HTTPNoSec/AccountStatus URL

� HTTP Security input node: /HTTPSec/AccountStatus URL

Figure 2-11 shows the HTTP and HTTPS input nodes.

Figure 2-11 HTTP and HTTPS input nodes

Chapter 2. Integration with WebSphere Message Broker 31

To configure the HTTP input nodes:

1. Configure the HTTP No Security Input node as shown in Figure 2-12 by following these
steps:

a. Right-click the HTTP No Security Input node graphic and select the Properties tab at
the bottom.

b. Click the Basic tab and set the name of the Path suffix for URL to
/HTTPNoSec/AccountStatus.

c. Save the change by pressing the Ctrl + S keys.

Figure 2-12 HTTP No Security node configuration

2. Configure the HTTP Security input node as shown in “HTTP Security input node
configuration” on page 32 by following these steps:

a. Right-click the HTTP Security node graphic and select the Properties tab.

b. Click the Basic tab and set the name of the Path suffix for URL to
/HTTPSec/AccountStatus.

c. Select the check box Use HTTPS.

d. Save the change by pressing the Ctrl + S keys.

Figure 2-13 HTTP Security input node configuration

Step 5: Configure HTTPS connection to the message broker
We explain how to set the broker properties for HTTP over SSL for the HTTPS input node to
work with a message broker. You can set all of these properties by using the commands
supplied by the HTTPS_Conf.bat from the download zip file.

Note: If you choose to build the message flows by yourself or if you imported the
completed project interchange, the configuration of the HTTP input nodes is done in
Appendix B, “Building message flows in WebSphere Message Broker” on page 119.

32 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

First, you have to create a key store to store the broker’s certificates before you can run the
script to configure the HTTPS connection to the broker:

1. Create a key store file to store the broker’s certificates as shown in Figure 2-14.

a. Start → IBM WebSphere Message Broker 6.0 → Command Console to open the
broker command console.

b. Type ikeyman on the command line.

c. On the IBM Key Management panel, click Key Database File → New.

d. Select the Key Database type JKS from the drop-down list box.

e. Enter the File Name: wmb_keystore.jks and click OK.

Figure 2-14 Create keystore

f. Enter the password on the pop-up menu and click OK.

g. This password is used to restrict access to the file. The keystore is now created and is
ready for use by the broker.

2. Create a new self-signed personal certificate:

a. Select Personal Certificates from the drop-down list under Key database content.

b. Click New Self-Signed as shown in Figure 2-15.

Figure 2-15 Personal Certificates creation panel

c. Enter the following values in the field names: Key Label: WMB60, Common Name:
localhost, Organization: IBM, Organization Unit: ITSO, Locality: Raleigh, and
State/Province: NC as shown in Figure 2-16 on page 34.

Note: The common name must match the host name. You can choose other values
for your organization, but we recommend that the common name match your host
name in a production environment. It is not that important to match the common
name to a host name in a test environment.

Chapter 2. Integration with WebSphere Message Broker 33

Figure 2-16 Information used to create a personal self-signed certificate

d. Click OK. The personal certificate WMB60 is now created and stored in the wmb_keystore
as shown in Figure 2-17.

Figure 2-17 WMB60 personal certificate

e. Click Extract Certificate and click OK as shown in Figure 2-18 on page 35.

Note: You only need to perform this step if you want to use the certificate with
DataPower for a two-way authentication. You must upload this certificate into the
DataPower appliance and add it to a trusted server within a client SSL profile. You
can trust that DataPower appliance connects only to trusted servers with this
configuration.

34 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-18 Extract certificate

3. Configure the broker to use SSL on a particular port.

Many broker properties need to be set for HTTP over SSL to work with the message
broker. All of these properties can be set using the following commands supplied by the
HTTPS_Conf.bat script, which executes the following commands:

a. mqsichangeproperties WBRK6_DEFAULT_BROKER -b httplistener -o HTTPListener -n
enableSSLConnector -v true

This command turns on SSL support in the message broker by setting the value
enableSSLConnector to true.

b. mqsichangeproperties WBRK6_DEFAULT_BROKER -b httplistener -o HTTPSConnector
-n keystoreFile -v "C:\IBM\MQSI\6.0\wmb_keystore.jks"

This command specifies the keystore to be used by setting the value keystoreFile to
the previously created keystore: wmb_keystore.jks.

c. mqsichangeproperties WBRK6_DEFAULT_BROKER -b httplistener -o HTTPSConnector
-n keystorePass -v password

This command specifies the password for the keystore file by setting a value for
keystorePass. You have to replace the password in the command with the password
used to create the wmb_keystore.

d. mqsichangeproperties WBRK6_DEFAULT_BROKER -b httplistener -o HTTPSConnector
-n port -v 7083

This command specifies the port to which the message broker listens for HTTPS
messages. We use port 7083 for HTTPS and port 7080 for HTTP.

4. Test the configuration of the HTTPS connection to the message broker.

We must take a checkpoint now to make sure that the message flows and the HTTP and
HTTPS connectors within the message broker are operational. You now submit the scripts
to test the HTTP and HTTPS nodes. You have to follow the instruction in Step one: Test
WMB configuration for HTTP and HTTPS to complete this task.

Step 6: Install the WebSphere MQ Explorer support pack IS02
This support pack allows you to configure WS-Security for DataPower using the DataPower
security wizard within the WebSphere Message Broker Explorer. This wizard simplifies the
configuration of the DataPower appliance security features to provide WS-Security for the
message flow that uses the HTTP/HTTPS input node. You will be able to administer

Important: You must recycle the message broker after executing these commands in
order for the message broker to listen to the HTTPS messages on port 7083. Enter the
command netstat -an to verify that ports 7080 and 7083 show a LISTENING state.

Chapter 2. Integration with WebSphere Message Broker 35

WebSphere MQ V6, WebSphere Message Broker V6, and DataPower SOA appliance
security from a common administrative console.

It is very easy to install this support pack. You can download the support pack and the
installation instruction from the following link:

http://www-1.ibm.com/support/docview.wss?rs=849&context=SSKM8N&dc=D400&uid=swg2401
2457&loc=en_US&cs=UTF-8&lang=en&rss=ct849websphere

This support pack requires the following software:

� WebSphere Message Broker V 6.0.0.1 or later
� WebSphere MQ Explorer V6.0.2 or later
� Eclipse V3.0.2

We will use the security wizard for DataPower within the WebSphere Message Broker
Explorer to configure the WS-security for message encryption and decryption features of
DataPower in this section.

2.3.3 Configure DataPower XML Firewall Gateway

In this section, you configure DataPower XML Firewall Gateway using the security wizard
within WebSphere Message Broker Explorer. The XML firewall within DataPower is the
component that processes the WS-Security for the HTTP and HTTPS protocols. WS-Security
specifications were developed to address the message-level security of Web services
applications. It includes authentication (user name and password validation), confidentiality
(message encryption and decryption), and integrity (signed message). Without an
appropriate level of security, it is not feasible for businesses to exchange messages over the
open network with their clients and external business partners.

This example explains how to use the security wizard within the WebSphere Message Broker
Explorer to configure the XML firewall within DataPower to provide the Web service security
features. The wizard automatically retrieves information about the HTTP input and HTTPS
input nodes in the message flow, creates the cryptographic profiles for SSL communications,
and creates the DataPower encryption and decryption policies. The current version of the
WebSphere Message Broker V6 does not support WS-Security. The DataPower appliance
extends the capabilities of the message broker to meet its requirements for message
encryption and decryption, digital signature, and XML firewall security to protect important
corporate data.

You must perform the initial configuration for DataPower before you can use the security
wizard in the WebSphere Message Broker Explorer, which is provided by the IS02 support
pack. The system administrator normally performs these tasks. However, we will explain the
initial steps for setting up the DataPower appliance in case you want to do it yourself.

Important: You must set up JMS on the broker’s queue manager to use the DataPower
security wizard within WebSphere Message Broker Explorer. The IS02 support pack
provides the instructions in “Setting up JMS for use in IS02” section.

Note: The IS02 DataPower Security wizard provides basic security configurations: XML
firewall within DataPower, entire message encryption and decryption, and SSL connection.
It does not allow you to configure encryption and decryption based on part of the message,
digital signature, authentication, or other type of gateway, such as the Multi-Protocol
Gateway within DataPower.

36 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www-1.ibm.com/support/docview.wss?rs=849&context=SSKM8N&dc=D400&uid=swg24012457&loc=en_US&cs=UTF-8&lang=en&rss=ct849websphere

You will learn how to do the following tasks:

� Set up DataPower in it ally before you can use the DataPower security wizard within
WebSphere Message Broker Explorer:

– Create an application domain.

– Create a user account and make it part of the sysadmin group.

– Create the set of crypto key, crypto identification credential, and crypto profile to use
between DataPower appliance and the message broker.

– Create the set of crypto key, crypto identification credential, and crypto profile to use
between DataPower appliance and the external clients and servers.

� Use the DataPower Security wizard within the WebSphere Message Broker Explorer to
configure the Web services security for the message flows in scenario one:

– Specify the default WS-Security policy sets.

– Define the DataPower connection parameters.

– Define the DataPower firewall and DataPower Policy.

– Perform final security processing.

Currently, the security wizard within WebSphere Message Broker Explorer does not support
digital signature. We will show you how to add the policy rule action to the configuration
created by the security wizard to support digital signature in 2.3.4, “Configure DataPower to
add support for Digital Signature” on page 57.

Initial configuration of DataPower appliance
You will learn how to perform the initial setup of DataPower before you can use the IS02
support pack to configure DataPower to provide WS-security (encryption and decryption of
the entire message) for the message flows in scenario one. The initial tasks are explained in
the following steps.

Step one: Create an application domain
DataPower allows you to create different application domains. The default domain is the only
domain available when the system is initialized. An application domain allows you to isolate
problems to your domain, restrict access to other systems, and to port the configurations
among different domains.

Create an application domain named WMBIntegration:

1. Log on to DataPower default domain.

2. Select ADMINISTRATION → Configuration → Application Domain. Click Add to
display the Configure Application Domain. See Figure 2-19 on page 38.

Note: You must log on to the default domain to be able to create an application domain or
a user account.

Chapter 2. Integration with WebSphere Message Broker 37

Figure 2-19 Create a new application domain

3. Enter the name of the new domain in the Name field and select the options listed in
Figure 2-20 on page 39. Make sure that you select Enable Auditing and Logging. These
options are not turned on by default:

38 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-20 Application Domain Main tab

a. Select the Configuration tab. Set the Configuration Mode to local. See Figure 2-21.

Figure 2-21 Application Domain Configuration tab

b. Click Apply as shown in Figure 2-21 and click Save Config (top right) to save the new
object as shown in Figure 2-22.

Figure 2-22 Save Config

Chapter 2. Integration with WebSphere Message Broker 39

c. Make sure that the WMBIntegration domain Status is saved, Op-State is up, and Admin
State is enabled as shown in Figure 2-23.

Figure 2-23 Application domain report

Step two: Create a user account
This user account will be used to administer WMBIntegration and communicate with
WebSphere Message Broker. We are going to create a user account named wmbadmin. The
user ID is defined in both WebSphere Message Broker and DataPower.

Follow the steps below to create a new user account:

1. Select ADMINISTRATION → Access → New User Accounts, select No, and click Next.
See Figure 2-24.

Figure 2-24 Create a user account

2. Select System Administrator, set User Group to sysadmin as illustrated in Figure 2-25
on page 41, and click Next.

40 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-25 Create a user account (page 1 of 2)

3. Enter the Name and password and click Next as shown in Figure 2-26.

Figure 2-26 Create a user account (page 2 of 2)

4. Click Commit.

5. Click Apply and Save Config to save the configuration.

Step three: Crypto settings for DataPower and WMB connectivity
Follow these steps:

1. Create a Crypto Key to use between DataPower and WebSphere Message Broker in the
WMBIntegration domain.

In the DataPower context, a crypto key is an object that provides an added layer of
security by supplying an indirect reference (or an alias) to a file that contains a private key.
The alias provided by the crypto key object is used to create a Firewall Identification
Credential:

a. Ensure that you are in the WMBIntegration domain.

Note: You must switch to the WMBIntegration domain before performing the remaining
steps.

Chapter 2. Integration with WebSphere Message Broker 41

b. Select System Administration → Crypto Tools as shown in Figure 2-27 on page 42.

Figure 2-27 Crypto Tools

c. Enter the information: Country Name (US), State or Province (NC), Locality (Raleigh),
Organization (IBM), Organizational Unit (ITSO), and Common Name (itsodp), and
select on for Export Private Key to create the crypto key, as shown in Figure 2-28.

Figure 2-28 Crypto Key: itsodp

d. Click Generate key. You can ignore the warning as shown in Figure 2-29 on page 43.

Note: By default, the certificate will expire in 365 days. You can increase or reduce the
life span of the crypto key by adjusting the value of the field Validity Period.

42 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-29 Ignore this warning

e. Click Save Config.

2. Create a Crypto Identification Credential.

A crypto Identification Credentials Set contains a crypto key and crypto certificate. It
identifies the matched public key cryptography for public and private keys used in SSL
authentication. It is used to encrypt, decrypt, or sign a message:

a. From the Control Panel, select Keys & Certs Management. See Figure 2-30.

Figure 2-30 Keys & Certs Management selection

b. Select the Identification Credentials link, as shown in Figure 2-31 on page 44.

Chapter 2. Integration with WebSphere Message Broker 43

Figure 2-31 Identification Credentials link

c. Click Add.

d. Create the identification credential using the recently created crypto key and crypto
certificate. Enter the value for the fields: Name (itsodp), Admin State (enabled), Crypto
key (itsodp - select from the drop-down list), and Certificate (itsodp - select from the
drop-down list). See Figure 2-32.

Figure 2-32 Configure Crypto Identification Credentials: itsodp

e. Click Apply and Save Config to save the configuration.

3. Create the Crypto profile called WmbToDP using the identification credential (itsodp):

44 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

a. Select the link Crypto Profile from the Keys and Certificates Management panel. See
Figure 2-33.

Figure 2-33 Keys and Certificates Management: Crypto Profile

b. Click Add, as shown in Figure 2-34.

Figure 2-34 Create a Crypto Profile

c. Enter the information for Name (WmbToDP), Admin State (click enabled), Identification
Credentials (select itsodp from the drop-down list), and check OpenSSL default
settings, as shown in Figure 2-35 on page 46.

Chapter 2. Integration with WebSphere Message Broker 45

Figure 2-35 Crypto Profile: WmbToDP

d. Click Apply and click Save Config to save the configuration.

Step four: Crypto settings for DataPower and clients connectivity
Follow these steps:

1. Repeat the previous Step 3 to create the following set of crypto key, identification
credential, and security profile. The security profile is used for SSL connections from the
DataPower appliance to external clients. We use the same name, DataPower, for the
crypto key, identification credential, and crypto profile as illustrated in the next three
figures:

a. Create a Crypto key with a Common Name (CN) set to DataPower and fill in the
information as shown in Figure 2-36 on page 47.

46 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-36 Crypto key: DataPower

b. Create an identification credential and set it to DataPower with the information as shown
in Figure 2-37 and click Apply.

Figure 2-37 Crypto Identification Credentials: DataPower

c. Create a crypto profile and set it to DataPower. Fill in the information as shown in
Figure 2-39 on page 48 and click Apply and Save Config to complete.

Chapter 2. Integration with WebSphere Message Broker 47

Figure 2-38 Crypto Profile: DataPower

d. Back to the Configure Crypto Profile panel: You see that the DataPower and
WmbToDP profiles were successfully saved with Op-State listed as up and Admin
State listed as enabled as shown in Figure 2-39.

Figure 2-39 Configure Crypto Profile report

Configure DataPower security for WMB message flows and HTTP(S)
To perform the tasks in this section, you must have deployed and tested the message flows
for scenario one to make sure that they are operational. We cannot use the DataPower
security wizard if the message flows are not deployed and the IS02 support pack is not
installed. We have provided a Broker Archive (bar) file called SOA2Legacy.bar for your
testing. You can also create the SOA2Legacy.bar file yourself if you choose to build the

Note: You must remember to click Apply and Save Config whenever applicable.

48 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

message broker artifacts yourself by following the instructions documented in Appendix B,
“Building message flows in WebSphere Message Broker” on page 119.

Configuring the DataPower appliance using this wizard has four major steps:

� Select the HTTP and HTTPS input nodes to configure your security.

� Define the DataPower connection profile.

� Define the DataPower firewall and policies.

� Specify which specific crypto keys to use from the DataPower appliance.

You will learn how to use the DataPower Security wizard to configure the DataPower XML
Firewall with WS-Security to provide front-end security for the message flows that contain the
HTTP and HTTPS input nodes. You must first deploy the message flows to a message broker
before you can configure the security for DataPower using the security wizard:

1. Invoke the security wizard for DataPower from within the WebSphere Message Broker
Explorer:

a. Start MQ Explorer from Windows: Start → Programs → IBM WebSphere MQ →
WebSphere MQ Explorer.

b. Select the deployed message flow WS_To_Legacy_MF, right-click the flow, select
DataPower, and select Security Wizard.

Figure 2-40 DataPower Security Wizard

c. Fill in the information as displayed in Figure 2-41 on page 50:

i. Select the URLs discovered by the wizard under the section Flow details.

The WS_To_Legacy_MF message flow contains an HTTPInput node and an
HTTPSInput node. The wizard selects all HTTP(S) Input nodes by default. The
URLs are specified in the properties of the HTTPInput and HTTPSInput nodes.
They specify the location from where the message broker retrieves the Web service
requests.

ii. Select the default security policy named WSS10Default-WBRK6_DEFAULT_BROKER_1.
This default security policy is prefilled for you. The WS-Security section shows

Note: If you do not see the menu for DataPower, select Windows →
Preferences → Broker Explorer → DataPower and make sure that the Display
DataPower menu box is checked in the Broker Explorer.

Chapter 2. Integration with WebSphere Message Broker 49

Policy Set Binding and Associated Policy Set. Their names show the
relationship between the Policy Setting and the message broker. You cannot
change this naming convention, but you can edit the Policy Set Binding and its
associated Policy Set parameters. The Policy Set Binding contains information
about the encryption and decryption key.

Figure 2-41 DataPower Security wizard configuration

iii. Click Edit Profiles and add the connection information, such as the User name
(wmbadmin), domain (WMBIntegration), IP address of the DataPower box, and the
Mgmt Port (5550 is the default Mgmt Port set when you create the application
domain). This information is in “Initial configuration of DataPower appliance” on
page 37.

iv. Enter the password for the user ID wmbadmin.

v. Enter the name of security/processing policy used by the firewall to enforce
WS-security between the DataPower appliance and the message broker. The
wizard will create two XML firewalls for the HTTP and HTTPS input nodes and the
associated security policy. We have selected the names DP2WMB_HTTP and
DP2WMB_HTTPS.

vi. Enter the Client Port for the DataPower appliance. By default, the wizard uses the
same port number on which the broker listens. We have selected port 12080 for
HTTP and port 12083 for HTTPS.

vii. Click Next.

viii.In Figure 2-42 on page 51, enter the encryption and decryption keys and security
profiles that will be used by DataPower to enforce WS-security between DataPower
and the message broker, and between DataPower and its clients. The Front End

50 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Client - SSL Crypto Profile is used to configure the front-end communication
profile between the clients and DataPower. The Back End - Broker SSL Crypto
Profile is used to configure the communication between DataPower and the
message broker.

Figure 2-42 DataPower security wizard cryptographic Settings

ix. Click Finish and then click Yes to the question asked in Figure 2-43.

Figure 2-43 Pop-up menu to confirm changes

We have just configured DataPower and the message broker as shown in Figure 2-1 on
page 19. The security wizard makes it easy to configure the XML Firewall and WS-Security
within the DataPower appliance; see Figure 2-45 on page 52 (HTTP) and Figure 2-46 on
page 53 (HTTPS). When the configuration is complete, the security wizard creates the
following components. Follow these steps:

1. Two DataPower XML firewalls: One for the HTTPInput node (DP2WMB_HTTP) and another
for the HTTPS input node (DP2WMB_HTTPS) as shown in Figure 2-44 on page 52.

Chapter 2. Integration with WebSphere Message Broker 51

Figure 2-44 DataPower XML firewalls created by security wizard

Figure 2-45 XML firewall detailed configuration for HTTP

52 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-46 XML firewall detailed configuration for HTTPS

2. A DataPower security/processing policy for the XML firewalls:

a. Click the DP2WMB_HTTP or DP2WMB_HTTPS link to access the DataPower XML Firewall
Gateway for each XML firewall as shown in Figure 2-47 on page 54.

Chapter 2. Integration with WebSphere Message Broker 53

Figure 2-47 XML firewall links

b. Double-click the ellipsis (...) on the right side of the DP2WMB_HTTP Firewall Policy as
shown in Figure 2-48 to view the DP2WMB_HTTP Firewall Policy. It has a pair of
processing rules: request and response rules are listed under the Configured Rules
section as shown in Figure 2-49 on page 55.

Figure 2-48 XML firewall processing policy: DP2WMB_HTTP

54 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-49 XML firewall policy request rule

c. On the inbound request path, the URL specified in the Match Rule for the request
message must match the URL specified in the property of the HTTP node. See
Figure 2-50.

Figure 2-50 XML firewall policy request rule: Match Rule

d. The processing rule for the input message is configured to decrypt incoming traffic.
The Decrypt Action uses the DataPower crypto key, which was created in the initial
configuration of DataPower, to decrypt the message as shown in Figure 2-51 on
page 56.

Chapter 2. Integration with WebSphere Message Broker 55

Figure 2-51 XML firewall policy request rule: Decrypt Action

e. The Results Action is a decrypted message as shown in Figure 2-52.

Figure 2-52 XML firewall policy request rule: Results Action

f. On the outbound traffic, the security rule is configured to encrypt the message from the
message broker before sending it to a client as shown in Figure 2-53.

Figure 2-53 XML firewall policy Reply rule: Encrypt Action

g. The Results Action is an encrypted reply message to be sent to a client as shown in
Figure 2-54 on page 57.

56 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-54 XML firewall processing policy: Response Rule

3. You can repeat step 2 to examine the XML firewall policy created by the wizard for the
HTTPS input node.

Figure 2-55 XML firewall policy: DP2WMB_HTTPS

4. Test the XML Firewall Gateway used in scenario one by following the instructions in 2.4.3,
“Running the scenarios” on page 79.

2.3.4 Configure DataPower to add support for Digital Signature

In this section, we explain how to add a policy rule to an existing XML firewall policy to
support digital signature. Digital signature is an important feature of Web services security
that ensures message integrity. We added this extra step, because the current version of the

Important note: You have completed and verified the configuration of the XML Firewall
Gateway for the HTTP and HTTPS connectivity to WMB using the security wizard. The
XML firewall is configured to encrypt a request message and decrypt a reply message.

You need to shop at this point and start testing this configuration. It is better to test each
configuration as you complete it before moving on to the next configuration.

Chapter 2. Integration with WebSphere Message Broker 57

security wizard, provided by the IS02 support pack, does not let you configure digital
signatures.

You will learn the steps to add the support for a message signature into an existing
DataPower XML Firewall policy:

1. Add a Verify action to verify a signed request message.
2. Add a Sign action to sign a response message.

Add a Verify action to verify a signed request message
On inbound traffic, the XML firewall will be configured to verify the digital signatures contained
in the signed messages and documents by adding the Verify action to the policy:

1. Select the XML Firewall icon from the Control Panel.

2. Select the XMP firewall DP2WMB_HTTP from the Configure XML Firewall pane as shown
in Figure 2-47 on page 54.

3. Select the DP2WMB_HTTP policy under the Firewall Policy section and click the ellipsis
(...) next to it to edit the policy as shown in Figure 2-48 on page 54.

4. Drag the Verify action icon before the Encrypt action from the Configure XML Firewall
Policy pane as shown in Figure 2-56.

Figure 2-56 Configure XML Firewall Policy: Verify action

5. Double-click the Verify icon (highlighted in a yellow box) to display the Configure Verify
Action panel.

6. Select the following options as shown in Figure 2-57 on page 59:

a. Input: auto

b. Validation credential: DataPower

c. Output: auto

7. You can click the Advanced tab to define advanced settings. Refer to the DataPower Web
GUI Guide for instructions about how to configure advanced settings. It is an online
document. You can download it as part of the common documentation from:

http://www-1.ibm.com/support/docview.wss?rs=2362&uid=swg24014405

This sample does not require advanced settings.

8. Click Done to complete the action, as shown in Figure 2-57 on page 59.

58 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www-1.ibm.com/support/docview.wss?rs=2362&uid=swg24014405

Figure 2-57 XML Firewall Policy: Add Verify action

Add a Sign action to sign a response message
On outbound traffic, we will configure the XML firewall to add a Sign action to the processing
policy to attach a digital signature to messages and documents.

1. From the Configure XML Firewall Policy pane, select the Response Rule to highlight it.

2. Drag and drop the Sign icon as shown in Figure 2-58.

Figure 2-58 Configure XML firewall policy: Add Sign action

3. Double-click the Sign icon to display the Sign Action panel and select the following
information as shown in Figure 2-59 on page 60:

a. Envelope Method: WSSec Method

b. Message Type: SOAP Message

Chapter 2. Integration with WebSphere Message Broker 59

c. Key: DataPower

d. Certificate: DataPower

Figure 2-59 Sign action

4. Click Done to complete.

5. Back to the Configure XML firewall policy panel (Figure 2-58 on page 59), click Apply next
to the Rule Actions, because this is the last action that you add to the policy.

6. Click Close in the Select a Policy Name section at the top of the panel.

7. Back to the Configure XML Firewall panel, click Apply.

8. Click Save Config to complete.

9. Test the configuration by following the instruction in “Step 3: Add digital signature to the
loopback firewall and test” on page 86 if you choose to create a Loopback firewall and use
it to generate your own encrypted and signed message. You can go directly to “Step three:
Test XML firewalls with prebuilt, encrypted/signed message” on page 92 if you use the
sample message that is provided for you.

Note: You have added the Sign action to an XML firewall policy. The processing policy is
now configured to handle encryption, decryption, and digital signature. You need to stop at
this point and start testing this configuration.

60 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

2.4 Configuration of DataPower and WMB for Scenario two

In this chapter, we explain the processing logic of the message flows for scenario two. You will
learn how to configure DataPower and WebSphere Message Broker to test the scenario in
which the message broker invokes the service provided by the existing application via MQ.
You will also learn how to test and perform simple problem determination.

We use a DataPower Multi-Protocol Gateway as a front-end security gateway to process the
WS-security and MQ connectivity. We explain how to manually configure DataPower without
using the security wizard, because the current version of the security wizard does not support
the configuration of the Multi-Protocol Gateway that is needed to support MQ connectivity.
The benefit of this manual exercise is to show you all of the steps required to configure
DataPower end-to-end. You will have a better understanding of DataPower after this exercise.

First, you will learn the message flow logic that provides transformation and connectivity to
the front-end and back-end subsystems. Unlike the first scenario where the message flow
uses different protocols to connect to the front-end and back-end subsystems, the message
flow in this scenario uses MQ protocol for connectivity end-to-end.

Next, you will learn to configure DataPower Multi-Protocol Gateway to provide Web service
security for the message flows. This manual configuration does not employ the security
wizard.

2.4.1 Message flow logic

Two main message flows provide the logical processing of scenario two:

� HOST_Request.msgflow
� HOST_Reply.msgflow

The message flows use two subflows:

� SaveOriginalMQMD_Sub.msgflow
� RestoreOriginalMQMD_Sub.msgflow

Similar to the first scenario, the HOST_Simulation_MF message flow is used to simulate a
CICS COBOL application. It monitors the HOST_REQUEST queue for incoming messages,
processes them, and puts the reply message in the HOST_REPLY queue. This message flow
also reuses the Error_Handler subflow for error processing.

HOST_Request.msgflow
This flow, which is shown in Figure 2-60 on page 62, provides connectivity to the DataPower
appliance and the CICS application using MQ. It also transforms messages from SOAP/XML
to fixed format/COBOL to integrate an SOA application with the existing application. It uses
the same input data, data definitions (message sets), and transformation logic as the first
scenario and has the following processing logic:

� Receives a SOAP message via the MQInput node. The input message is a request for
customer information and status. The request contains the customer account number.

� Transforms the SOAP message from XML/SOAP into a fixed format via the
XML_To_COBOL compute node.

� Puts the transformed message to the HOST_REQUEST queue, which is monitored by the
CICS Simulation flow.

� Builds the second state message with MQ Message Descriptor (MQMD) only. There is no
need to store the payload data. The purpose of this second message is to save the

Chapter 2. Integration with WebSphere Message Broker 61

state/context of the MQMD (message identified and ReplyToQ) that is used to build the
reply message.

� Writes this state message to the MQMD_STOREQ for later retrieval (see
HOST_Reply.msgflow). It uses a StoreOriginalMQMD_Sub subflow to persist the store
message to a queue.

Figure 2-60 HOST_Request message flow

HOST_Reply.msgflow
This flow processes the reply message from the CICS application. It transforms data to the
correct format and restores the MQMD context of the original request to build a message
header for the reply message. The message header of the reply message must contain the
ReplyToQ and original message Identifier/correlation ID. It performs the following functions:

� Retrieves the reply message from CICS from the HOST_REPLY2 queue.

� Transforms the SOAP message from a fixed format/COBOL to XML/SOAP via the
COBOL_To_XML compute node.

� Retrieves the state message from the MQMD_STOREQ to restore the original MQMD
using the RestoreOriginalMQMD_Sub subflow.

� Puts the transformed message to the ReplyToQ that is specified in the MQ message
header MQMD.

The message flow HOST_Reply.msgflow processing logic is illustrated in Figure 2-61.

Figure 2-61 HOST_Reply message flow

SaveOriginalMQMD_Sub.msgflow
This subflow is used to save the original MQMD context from the original request message to
the MQMD_STOREQ. It is required in the request and reply processing pattern to preserve
the original message identifier in the reply message to correlate the request and reply
messages. Figure 2-62 shows the SaveOriginalMQMD_Sub.msgflow.

62 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-62 SaveOriginalMQMD_Sub.msgflow

RestoreOriginalMQMD_Sub.msgflow
This subflow, which is shown in Figure 2-63, retrieves the state message from the
MQMD_STOREQ. It uses an MQGET node with the MQGET property set to Get by
correlation ID. The MQGET node has three possible results:

� Successfully get a message from MQMD_STOREQ based on the correlation ID.
� Get a message with a warning.
� Unable to get a message based on the correlation ID.

Figure 2-63 RestoreOriginalMQMD_Sub subflow

2.4.2 Configure the DataPower Multi-Protocol Gateway

In the second scenario, the Multi-Protocol Gateway, a different type of gateway, provides the
Web services security front end and connectivity to MQ. The DataPower Multi-Protocol
Gateway is configured to provide the same XML security service for message encryption and
decryption. You can configure the Multi-Protocol Gateway to process messages from various
protocols (MQ, FTP, HTTP, TIBCO EMS, ODBC, and so forth). However, the scope of this
sample is limited to the MQ protocol. You can expand this sample to include other protocols
to reflect actual use cases. You can optionally add digital signature support to the
configuration as shown in 2.3.4, “Configure DataPower to add support for Digital Signature”
on page 57. We only configure it for message encryption and decryption.

The configuration of WebSphere Message Broker for this scenario is simple. You only need
to define the queues that are used by the message flows. The definitions of these queues are
in the MQ_Conf.bat script. You have already run this script as part of the configuration for
WebSphere Message Broker for scenario one. The list of queues is shown in Table 2-2 on
page 25.

Chapter 2. Integration with WebSphere Message Broker 63

We will configure the DataPower Multi-Protocol Gateway based on Figure 2-2 on page 20.
We can reuse the following artifacts or objects previously created in scenario one:

� Application domain: WMBIntegration
� User ID: wmbadmin
� Crypto Keys
� Crypto Identification Credentials
� Crypto Profile

The steps to perform the configuration are:

1. Create a DataPower Multi-Protocol Gateway.

2. Add the processing and security policy to the gateway.

3. Create DataPower security policies to decrypt inbound messages and encrypt outbound
messages.

4. Configure the back-end URL.

5. Configure the MQ Front Side Handler.

6. Test the sample using RFHUtil.

Step 1: Create a DataPower Multi-Protocol Gateway
The DataPower Multi-Protocol Gateway is integrated with WebSphere Message Broker via
MQ. it is also the front-end gateway for the MQ client that needs the current service provided
by the CICS application:

1. Log on to DataPower application domain WMBIntegration using the user ID wmbadmin.
Make sure that you are in the correct domain.

2. Select the Multi-Protocol Gateway icon and click Add to display the General
configuration panel (Figure 2-64).

Figure 2-64 Control Panel: Multi-Protocol Gateway

3. In Figure 2-65 on page 65, set the Multi-Protocol Gateway Name to WMQ_MulProGW and
accept other default values at this point. At anytime, you can click the Help link for detailed
information about any options on a panel. For simplicity, we use the basic settings. There
are advanced settings that you can explore to meet your specific requirements. Refer to
the DataPower manuals for detailed information about the advanced settings.

64 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-65 Configure Multi-Protocol Gateway

Step 2: Add the processing policy to the gateway
The processing policy defines the rules that are used against the messages that pass
through the gateway. A rule consists of a matching rule and a processing rule. This scenario
uses a URL matching rule that employs a simple URL matching pattern to match incoming
traffic. When the incoming traffic passes the matching rule, processing rules are applied
against the message or document.

In this scenario, we use the same processing rules that are used in the policy configured for
the XML Firewall Gateway in scenario one. The URL Match rules are different, because we
use MQ protocol instead of HTTP/HTTPS. The processing rules encrypt the inbound
messages and decrypt the outbound messages that pass through the gateway. This step
explains how to create the processing policy for the WMQ_MulProGW gateway:

1. Click the plus symbol (+) beside the Multi-Protocol Gateway Policy field as illustrated in
Figure 2-66.

Figure 2-66 Add the processing policy to the Multi-Protocol Gateway

Chapter 2. Integration with WebSphere Message Broker 65

2. Enter the name MQ_ProcessingPolicy in the Multi-Protocol Gateway Processing Policy
Name field and click OK. Click OK again if you receive the warning message “Create your
New Policy Rule, and then Apply to commit changes”.

Figure 2-67 Specify Processing Policy Name

3. From the Configure Multi-Protocol Gateway Policy panel:

a. Click Client to Server (highlighted in red). The default is Both directions. For this
scenario, we have to configure two paths differently: one path for the inbound (Client to
Server) and another path for the outbound (Server to Client).

b. Double-click the Match icon (highlighted in a yellow box in Figure 2-68) to configure a
matching rule.

Figure 2-68 Configure processing policy for request path: match rule

4. Click + to create a new matching rule.

Figure 2-69 Configure a matching rule: Select from an existing matching rule

5. Specify MatchAll as the rule Name and set Admin State to enabled on the Main tab. You
have created the MatchAll rule, as shown in Figure 2-70 on page 67.

66 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-70 Configure Matching Rule Main tab

6. Click the Matching Rule tab and then click Add.

Figure 2-71 Configure Matching Rule: Matching Rule tab

7. In Figure 2-72 on page 68, select url in the Matching Type field, enter an asterisk
character (*) in the Url Match field, and click Save.

Chapter 2. Integration with WebSphere Message Broker 67

Figure 2-72 Matching rule specification

8. Back at the Matching Rule panel, click Apply to finish.

9. Hover your mouse over the Match icon/action to verify that the rule has been successfully
created, as shown in Figure 2-73.

Figure 2-73 Verify Match Rule

10.Drag and drop the Decrypt icon into the configuration path (the horizontal line) and to the
right of the Match rule, as shown in Figure 2-74.

Figure 2-74 Add Decrypt action

11.Double-click the Decrypt icon to display the Decrypt Action panel and enter the
information as shown in Figure 2-75 on page 69. We are reusing the Crypto Key
DataPower created for the XML Firewall Gateway in “Step four: Crypto settings for
DataPower and clients connectivity” on page 46:

a. Select the Message Type radio button Entire Message/Document.
b. Select the DataPower Crypto Key Decrypt Key from the drop-down list.
c. Set Output to auto from the drop-down list.

68 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-75 Configure Decrypt action

12.Click Done to finish and verify that the decryption rule is created as shown in Figure 2-76.

Figure 2-76 Verify Decrypt Action

13.In Figure 2-77 on page 70, drag and drop the Results icon (highlighted in a yellow box)
into the configuration path. The Results Action sends the result to the remote server and
awaits a result from the server.

Chapter 2. Integration with WebSphere Message Broker 69

Figure 2-77 Add Results action

14.Accept the default information as shown in Figure 2-78.

Figure 2-78 Configure Results Action

15.Click Done.

16.Back on the Configure Multi-Protocol Gateway Policy panel (Figure 2-79), click Apply.

17.Click Save Config to save configuration.

Figure 2-79 Apply changes to the processing rule for the request path

70 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

At this point, you have completed the creation of the match and processing rules for the
request message. Next, you are going to create the match and processing rules for the
response message. While messages for inbound traffic are decrypted, messages for
outbound traffic are encrypted.

18.Click New to create a processing path for outgoing traffic (response rules) as shown in the
following Figure 2-80.

Figure 2-80 Add response rule path

19.From the Configure Multi-Protocol Gateway Policy panel (Figure 2-81):

a. Click Server to Client (highlighted in red) for the outbound processing path. The
default is Both Directions.

b. Double-click the Match icon (highlighted in a yellow box in Figure 2-81) to configure the
matching rules.

Figure 2-81 Configure processing rules for request path

20.Double-click the Match icon (highlighted in a yellow box), select the MatchAll rule that
was previously created in Figure 2-72 on page 68, and click Done to finish as shown in
Figure 2-82.

Figure 2-82 Configure a Match Action

Chapter 2. Integration with WebSphere Message Broker 71

21.Back to the Configure Multi-Protocol Gateway Policy panel (Figure 2-83), drag and drop
the Encryption Action into the configuration path.

Figure 2-83 Add Encryption Action

22.Double-click the Encrypt (highlighted in a yellow box) icon to display the Encrypt Action
panel and fill in information as shown in Figure 2-84:

a. Select WSSec Encryption for Envelope Method.

b. Select SOAP Message for Message Type.

c. Set Message and Attachment Handling to Message Only.

d. Select itsodp from the Recipient Certificate drop-down list.

e. Set Output to auto.

Figure 2-84 Configure Encryption action

23.Click Done at the bottom to finish.

72 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

24.Verify that the Encryption rule is created as shown in Figure 2-85.

Figure 2-85 Verify Encrypt Action

25.Create the Results Action as shown in Figure 2-77 on page 70 and Figure 2-78 on
page 70.

26.Back in the Configure Multi-Protocol Gateway Policy (Rule Actions section) panel, click
Apply as shown in Figure 2-79 on page 70 to finish creating the Response policy.

27.Click Close in the Select a Policy Name section at the top of the panel. The Multi-Protocol
Gateway Policy panel shows the two policy rules that you have configured as shown in
Figure 2-86.

Figure 2-86 Multi-Protocol Gateway configured for request and response rules

28.Click Save Config to save the configuration.

Chapter 2. Integration with WebSphere Message Broker 73

Step 3: Configure the back-end URL
DataPower has two types of protocol handlers: front side and back side handlers. The Front
Side Handler handles communication between the client and the DataPower appliance. The
Back Side Handler handles the communication between DataPower and the back-end
systems. They are decoupled to simplify supporting different protocol switching.

These handlers determine network communication protocols, addresses, ports, and other
protocol-specific settings. They support multiple protocols: MQ, JMS, FTP, HTTP, TIBCO
EMS, and more front side handlers and back side handlers. We limited the scope of this
scenario to the DataPower handlers for the MQ protocol.

The Back Side and Front Side Handler settings sections are listed under the General
Configuration section in the Configure Multi-Protocol Gateway panel (Figure 2-87). It is
extremely important to specify the correct communication properties for these handlers. For
simplicity, we use the same queue manager for the front and back ends.

1. In Figure 2-87, click MQHelper under Back side settings to create a URL for the back-end
queue manager. The back-end queue manager is the queue manager to which the
message broker is connected.

Figure 2-87 Configure Multi-Protocol Gateway: Back side settings

2. In Figure 2-88 on page 75, click the plus symbol (+) next to Queue Manager and select
Create a new MQ Queue Manager.

74 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-88 MQ URL Builder

3. Configure the queue manager for the MQ URL Builder. Fill in the information as shown in
Figure 2-89 on page 76:

a. Set Name to WMBQmgr.

b. Set Host Name to the host name or the IP address where your queue manager is
running, followed by a port number in parentheses. This is the port on which your
queue manager is listening.

c. Set Queue Manager Name to your queue manager name. We use the queue manager
name WBRK6_DEFAULT_QUEUE_MANAGER.

d. The Channel Name is prefilled with the system default channel SYSTEM.DEF.SVRCONN.
Optionally, you can create a different server connection channel and use it here.

Chapter 2. Integration with WebSphere Message Broker 75

Figure 2-89 Configure the MQ URL

4. Click Apply at the top of the panel in Figure 2-89.

5. Back in the MQ URL Builder panel (Figure 2-88 on page 75), fill in or select the following
information:

– Queue Manager: WMBQmgr

– URI: URINotUsed

– RequestQueue: SOA_REQUEST

– ReplyQueue: SOA_REPLY

– Transactionality: off

– User Identifier: off

6. Click Build at the bottom of the MQ URL Builder panel to finish and click Apply.

7. Verify that the Backend URL under the Back side settings section is created as shown in
Example 2-1 on page 77.

76 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Example 2-1 Generated Backend URL

dpmq://WMBQmgr/URINotUsed?RequestQueue=SOA_REQUEST;ReplyQueue=SOA_REPLY

Step 4: Configure the Front Side Handler
1. Create a new MQ Front Side Handler by doing the following steps:

– In the Front Side Setting section, click Create new.

– Select MQ Front Side Handler from the drop-down list, as shown in Figure 2-90.

Figure 2-90 Create MQ Front Side Handler

2. Configure the Front Side Handler by entering or selecting the following information in the
Configure MQ Front Side Handler Main tab, which is shown in Figure 2-91 on page 78:

– Enter Name: WMQ_FrontSideHandler.

– Select enabled next to Admin State.

– Set Queue Manager Name to WMBQmgr from the drop-down list.

– Enter Get Queue DP_GET.

– Enter Put Queue DP_PUT.

3. Click Apply.

Chapter 2. Integration with WebSphere Message Broker 77

Figure 2-91 Front Side Handler configuration

4. Add the Front Side Handler to the gateway by clicking Add to gateway (Figure 2-92).

Figure 2-92 Add Front Side Handler to Multi-Protocol Gateway

78 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

5. Back to the Configure Multi-Protocol Gateway panel, click Apply and Save Config to
finish.

6. Verify that the Multi-Protocol Gateway is configured as shown in Figure 2-93.

Figure 2-93 WMB_MulProGW configuration

2.4.3 Running the scenarios

The DataPower appliance and WMB are configured to seamlessly integrate with one another
according to the configuration shown in Figure 2-1 on page 19 or Figure 2-2 on page 20.

Note: You have completed the configuration of the DataPower Multi-Protocol Gateway for
MQ protocol. You must stop here and test scenario two by following the instructions in
“Testing scenario two” on page 92.

Chapter 2. Integration with WebSphere Message Broker 79

In this section, we show you how to test the XML firewall configuration used in scenario one
and two. We explain how to do the following tasks:

1. Review the configuration for DataPower and the message broker.

2. Configure the DataPower XML Loopback firewall used to generate an encrypted message
to test the XML Firewall Gateway created by the security wizard within WebSphere
Message Broker Explorer.

3. Add the Sign action to the processing policy of the DataPower XML Loopback firewall to
generate an encrypted and signed message to test the XML Firewall Gateway after the
sign action was added to its existing processing policy.

4. Set up the DataPower Probe to perform problem determination.

5. Turn on the trace for the Message Broker.

6. Test scenario one and two using the prebuilt messages provided for testing.

Step 1: Review of the configuration for DataPower and WMB
This step ensures that the DataPower appliance and the message broker have the expected
configuration as shown in Table 2-3. According to the table, all requests will go through the
DataPower front end via the URLs set in the DataPower XML firewalls. DataPower connects
to WebSphere Message Broker via the URLs set in the WebSphere Message Broker HTTP
and HTTPS input nodes. We have provided many checkpoints for you to verify your
configuration as you progress. This is more of a review of your configuration.

Table 2-3 Configuration

Step 2: Create the loopback gateway and test scenario one

A loopback firewall processes request messages without a back-end server and does not
require client credentials. A loopback firewall is used to create encrypted and signed
messages using crypto settings configured for the firewalls. We use it to generate an
encrypted and signed message to test the XML Firewall Gateway or the Multi-Protocol
Gateway configuration. The major tasks are:

� Create a loopback firewall using the crypto settings created in initial DataPower settings.

� Create an encrypted message for testing the XML firewall gateway created by using the
security wizard as described in 2.3.3, “Configure DataPower XML Firewall Gateway” on
page 36.

DataPower XML firewalls WMB HTTP and HTTPS input nodes

HTTPS://<DataPowerIP>:12080 http://<wmbIP>:7080/HTTPNoSec/AccountStatus

HTTPS://<DataPowerIP>:12083 https://<wmbIP>:7083/HTTPSec/AccountStatus

Note: External systems always connect to DataPower via HTTP over SSL. Internally,
DataPower connects to WebSphere Message Broker via HTTP or HTTPS.

Note: We provide this section if you want to generate an encrypted and signed message
yourself. You can use the prebuilt test messages to test your configuration. You can skip
this step and go directly to “Testing scenario one” on page 90 to test the configuration of
the XML Firewall Gateway or “Testing scenario two” on page 92 to test the configuration of
the Multi-Protocol Gateway.

80 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

� Create an encrypted and signed message for testing the XML firewall after the Sign action
was added to the XML Firewall Gateway as explained in 2.3.4, “Configure DataPower to
add support for Digital Signature” on page 57.

Perform these steps:

1. Create a loopback firewall:

a. Click Control Panel → XML FireWall → Add Wizard.

b. Select Pass Thru (testing only) and click Next.

c. Enter the name Loopback in the Firewall Name field and click Next.

d. Select the loopback-proxy from the Firewall Type drop-down list and click Next.

e. Accept the default settings shown in Figure 2-94. Make sure that “Do you want to use
SSL?” is off and click Next.

f. Verify the settings as shown in Figure 2-94 and click Commit.

Figure 2-94 Create a Pass Thru XML Firewall Service

g. Click Done in the Create a Pass Thru XML Firewall Service pane.

h. Back on the Configure XML Firewall pane, select unprocessed (drop-down list) under
Response Attachments.

i. Click Apply at the top of the panel and then Save Config to save the configuration.

j. Verify that the Loopback XML Firewall is configured as shown in Figure 2-95 on
page 82.

Chapter 2. Integration with WebSphere Message Broker 81

Figure 2-95 Loopback XML Firewall configuration

2. Add message encryption and decryption to the Loopback XML Firewall policies.

a. In the Configure XML Firewall panel, double-click the ellipsis (...) next to Firewall Policy
to edit the processing policy for the Loopback firewall.

b. Drag and drop the Encrypt action to the configuration path as shown in Figure 2-96 on
page 83.

82 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-96 Add Encrypt action to the request rule

c. Double-click the Encrypt action (highlighted in a yellow box) to add the action rule,
select the information as shown in Figure 2-97, and click Done:

i. Select WSSec Encryption next to Envelope Method.

ii. Select SOAP Message next to Message Type.

iii. Select DataPower from the Recipient Certificate drop-down list.

iv. Set Output to auto from the drop-down list.

Figure 2-97 Encryption action configuration

Chapter 2. Integration with WebSphere Message Broker 83

3. Double-click Results to configure the Results action as shown in Figure 2-98:

a. Select auto from the drop-down list. It will automatically set Input to tempvar1.

b. Click Done.

Figure 2-98 Results action configuration

c. Click Apply next to Rule Actions.

d. Click Close next to View Object Status.

e. Back on the Configure XML Firewall Policy panel, click Apply and click Save Config.

You have configured the loopback XML firewall. You will use this XML firewall to generate
the encrypted message to test the DP2XML_HTTP and the DP2XML_HTTPS XML firewalls,
which were generated by the security wizard.

4. Download curl before you run the scripts. You can download curl from the additional
materials link.

5. Generate an encrypted message to test the XML firewalls created by the security wizard
within WebSphere Message Broker.

Note: curl is a free command line tool for sending files with URL syntax. curl supports
SSL connection with certificates, HTTP, HTTPS, HTTP form-based upload, user and
password authentication, proxies, cookies, and other protocols such as FTP, TELNET,
and so forth.

Note: You must edit the Test_GenEncryptSOAP.cmd to change the IP address
(9.42.170.230) and port (2054) to match the address and the port that were configured
for the loopback firewall gateway that you have just created.

84 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Run the script Test_GenEncryptSOAP.cmd to create an encrypted message in the file
TestEncryptSOAP_IN.xml. This script executes the following command:

curl -v --data-binary @TestRegularSOAP_IN.xml http://9.42.170.230:2054 >
TestEncryptSOAP_IN.xml

The input message, TestRegularSOAP_IN.xml, is shown in Figure 2-99.

Figure 2-99 Input message

The generated output message is encrypted and written to TestEncryptSOAP_IN.xml.
This sample encrypted message is shown in Figure 2-100. The body of the data is
encrypted as highlighted in the red rectangle.

Figure 2-100 Encrypted message

6. Run the script Test_EncryptSOAP_DP_HTTP.cmd to test the XML Firewall DP2WMB_HTTP.
You must edit the script to change the IP address and port to point to your DP2WMB_HTTP
firewall. This script executes the following command:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncryptSOAP_IN.xml
https://9.42.170.230:12080/HTTPNoSec/AccountStatus

Chapter 2. Integration with WebSphere Message Broker 85

7. Run the script Test_EncryptSOAP_DP_HTTPS.cmd to test the XML firewall DP2WMB_HTTP.
You must edit the script to change the IP address and port to point to your DP2WMB_HTTP
firewall. This script executes the following command:

curl -k -v --data-binary @TestEncryptSOAP_IN.xml
https://9.42.170.230:12083/HTTPSec/AccountStatus

Step 3: Add digital signature to the loopback firewall and test
The loopback firewall currently supports message encryption and decryption. Optionally, you
can add the support for digital signature to the loopback firewall and use it to generate an
encrypted and signed message to test the DP2WMB_HTTP and DP2WMB_HTTPS XML firewalls:

1. Add the Sign action to the processing policy of the Loopback XML firewall:

a. Click Control Panel → XML Firewall → Loopback.

b. In the Configure XML Firewall panel, double-click the ellipsis (...) next to Firewall Policy
to edit the processing policy for the Loopback firewall.

c. Drag and drop the Sign action on the configuration path of the processing policy as
shown in Figure 2-101.

Figure 2-101 Add Sign action

d. Double-click the Sign icon (highlighted in a yellow box) to add the action rule.

e. Select the information, as shown in Figure 2-102 on page 87:

i. For Envelope Method, select the signature type: WSSec Method. WSSec means
that the signature is included in a WS Security security header.

ii. Select SOAP Message to set the value of Message Type. SOAP message tells the
Loopback firewall gateway to sign an entire SOAP message.

iii. Set the Crypto Key to DataPower.

iv. Set the Certificate to DataPower.

v. Set Output to auto from the drop-down list.

Note: You must go back to 2.3.4, “Configure DataPower to add support for Digital
Signature” on page 57 if you want to add digital signature to the SOAP message.

86 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-102 Sign Action configuration

f. Click Done.

g. In the Configure XML Firewall Policy panel, click Apply next to the Rule Actions and
click Close.

h. Back on the Configure XML Firewall panel, click Apply and click Save Config to save
the configuration.

2. Generate the encrypted and signed message by executing the
Test_GenEncSignSOAP.cmd script to create an encrypted and signed message.

The Test_GenEncSignSOAP.cmd script executes the following sample command to
generate the encrypted and signed message using the Loopback XML Firewall:

curl -v --data-binary @C:\ITSO_DP\Data\TestRegularSOAP_IN.xml
http://9.42.170.230:2054 > C:\ITSO_DP\Data\TestEncSignSOAP_IN.xml

The command uses the same input message TestRegularSOAP_IN and generates an
encrypted and signed message in TestEncSignSOAP_IN.xml.

Note: You must edit the Test_genEncSignSOAP.cmd script to change the IP address
(9.42.170.230) and Port (2054) to the ones configured for the Loopback XML FireWall.

Chapter 2. Integration with WebSphere Message Broker 87

The generated output message is encrypted and signed. It is written to
TestEncSignSOAP_IN.xml. The encrypted and signed message is shown in Figure 2-103.

Figure 2-103 Encrypted and signed test message

3. Run the script Test_EncSign_SOAP_DP_HTTP.cmd to test the DP2WMB_HTTP firewall with
an encrypted and signed message. This script executes the following command:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncSignSOAP_IN.xml
https://9.42.170.230:12080/HTTPNoSec/AccountStatus

88 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

4. Run the script Test_EncSign_SOAP_DP_HTTPS.cmd to test the DP2WMB_HTTPS firewall
with an encrypted and signed message. This is a sample of the command that it executes:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncSignSOAP_IN.xml
https://9.42.170.230:12083/HTTPSec/AccountStatus

Step 4: Set up the DataPower Probe to trace the messages
It is important to know basic problem determination for DataPower. DataPower provides a
valuable tool called the Probe for testing and problem determination. The Probe traces
messages at each step of the processing rules. For example, it shows you the request,
response, and timestamps before and after encryption and decryption rules, the reason for
the error, and so forth. It is not possible to test the scenario without turning on the Probe.

1. Turn on the Probe by following these steps:

a. Click Control Panel → XML Firewall → XML Firewall Name → Show Probe →
Enable Probe where the XML Firewall Name is DB2WMB_HTTP or DB2WMB_HTTPS.

Figure 2-104 Enable Probe

b. Click Show Probe and click Enable Probe to turn on the Probe. After the Probe is
enabled and a valid or invalid message is sent to DataPower, the request and
response will be shown in the Probe pane as shown in Figure 2-105.

Figure 2-105 Probe report

c. Click the magnifying glass icon under view to see the details.

In addition to the Probe, you can view the system logs:

1. Click the blue link Troubleshooting Enabled (The performance of the device may be
impacted) on the top of the pane.

Chapter 2. Integration with WebSphere Message Broker 89

2. In the Troubleshooting panel, click the magnifying glass in the Logging section to view the
system log.

Step 5: Set up the message broker to trace the message flows
It is also important to know basic problem determination for the message broker in the event
of errors. You can look at the Windows Event Viewer for a WebSphere Message Broker error
log or turn on the message broker trace by entering the following commands:

1. On Windows XP, browse the Event View Application log:

Click Start → Control Panel → Performance and Maintenance → Administrative
tool → Event Viewer → Application.

2. Turn on the message broker user trace by entering the following commands in the
WebSphere Message Broker command console:

a. mqsichangetrace <Broker Name> -u -e DPSoa -l debug

In this command, -u is the user trace, -e is the execution group, and -l is the trace level.

b. mqsireadlog <Broker Name> -u -e DPSoa -o trace.xml

c. mqsiformatlog -i trace.xml -o trace.txt

Browse the trace.txt file to search for errors.

Testing scenario one
We explain how to test the configuration of the DataPower XML Firewall and the integration of
DataPower and WebSphere Message Broker via HTTP and HTTPS protocols. We provide
the scripts to test the scenarios. We use the curl utility to test the Web services provided by
the message broker.

Step one: Test WMB configuration for HTTP and HTTPS
You must first ensure that the message broker is configured correctly for HTTP and HTTPS
connection and is operational before testing the end-to-end connectivity from the requesting
client to DataPower and WebSphere Message Broker.

The input SOAP message is shown in Example 2-2.

Example 2-2 Input non-encrypted SOAP message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:c="http://www.itso.lab.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<c:IN_CustomerStatus>
 <accountNumber>999991</accountNumber>

 <customerInfo>
 </customerInfo>
</c:IN_CustomerStatus>

</soapenv:Body>

Note: You must edit the scripts and change the IP address and port of the DataPower XML
Firewall and WebSphere Message Broker before running them. Both scripts in this step
use the same input message and receive the same output message. None of these
messages is encrypted.

90 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

</soapenv:Envelope>

The correct output message is shown in Example 2-3.

Example 2-3 Output non-encrypted SOAP message

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:tns="http://www.itso.lab.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:mrm="http://tempuri.org/SOA_XML_Request_Reply_MsgSet"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <tns:IN_CustomerStatus>
 <accountNumber>999991</accountNumber>
 <customerInfo>
 <status>P</status>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <street>2345 Harriman Street</street>
 <city>Great Falls</city>
 <state>VA</state>
 <country>USA</country>
 <zipCode>22066</zipCode>
 <phone>703-111-9999</phone>
 </customerInfo>
 </tns:IN_CustomerStatus>
 </soapenv:Body>
 </soapenv:Envelope>

Follow these steps:

1. Run the script C:\ITSO_DP\Scripts\Test_RegularSOAP_MB_HTTP.cmd to test the HTTP
connection and message flow. This script sends a non-encrypted SOAP message to the
HTTP listener (port 7080) running in the message broker via the URL
HTTPNoSec/AccountStatus. The sample script is:

curl --data-binary @C:\ITSO_DP\Data\TestRegularSOAP_IN.xml
http://localhost:7080/HTTPNoSec/AccountStatus

2. Run the script Test_RegularSOAP_MB_HTTPS.cmd to test the HTTP over SSL
connection and message flow. This script sends a non-encrypted SOAP message to the
HTTPS listener (port 7083) running in the message broker via the URL
HTTPSec/AccountStatus. The sample script is:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestRegularSOAP_IN.xml
https://localhost:7083/HTTPSec/AccountStatus

Step two: Test XML firewalls using the prebuilt, encrypted message
This step provides instructions for testing the XML Firewall Gateways within DataPower using
a prebuilt, encrypted message that we have provided:

1. Run the C:\ITSO_DP\Scripts\Test_EncryptSOAP_DP_HTTP.cmd to test an encrypted
SOAP message. This script sends an encrypted SOAP message
TestEncryptSOAP_IN.xml message to the XML Firewall Gateway for the HTTP
connection via the IP address 9.42.170.230 and port 12080. This IP address and port are
configured using the security wizard. On the inbound transaction, DataPower decrypts the
request SOAP message before sending it to WebSphere Message Broker. On the

Chapter 2. Integration with WebSphere Message Broker 91

outbound transaction, DataPower encrypts the response that it gets from WebSphere
Message Broker before sending it to the client. The command used by this script is listed
in the following example:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncryptSOAP_IN.xml
https://9.42.170.230:12080/HTTPNoSec/AccountStatus

2. Run the script C:\ITSO_DP\Scripts\Test_EncryptSOAP_DP_HTTPS.cmd. This script
provides the same functions as the script in step 1, except that it uses the HTTP over an
SSL connection and a different firewall configured for the HTTPS connectivity. The
command used by this script is:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncryptSOAP_IN.xml
https://9.42.170.230:12083/HTTPSec/AccountStatus

Step three: Test XML firewalls with prebuilt, encrypted/signed message
This step provides instructions for testing the XML Firewall gateways within DataPower using
a prebuilt, encrypted, and signed message provided for your testing:

1. Run the script C:\ITSO_DP\Scripts\Test_EncSignSOAP_DP_HTTP.cmd to test a prebuilt,
encrypted, and signed SOAP message. This script sends an encrypted and signed SOAP
message TestEncryptSOAP_IN.xml message to the XML Firewall Gateway for the HTTP
connection via the IP address 9.42.170.230 and port 12080. On the inbound transaction,
DataPower decrypts and verifies the signed SOAP message before sending it to
WebSphere Message Broker. On the outbound transaction, DataPower encrypts and
signs the response that it gets from WebSphere Message Broker before sending it to the
client. The command used by this script is:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncSignSOAP_IN.xml
https://9.42.170.230:12080/HTTPNoSec/AccountStatus

2. Run the script C:\ITSO_DP\Scripts\Test_EncSignSOAP_DP_HTTPS.cmd to test a
prebuilt, encrypted, and signed SOAP message for the HTTPS connection. This script is
similar to the previous script, except that it uses a different port number and HTTPS URL.
The command used by this script is:

curl -k -v --data-binary @C:\ITSO_DP\Data\TestEncSignSOAP_IN.xml
https://9.42.170.230:12083/HTTPSec/AccountStatus

Testing scenario two
We explain how to test the configuration of the DataPower Multi-Protocol Gateway and the
integration of DataPower and WebSphere Message Broker using MQ in this section. We use
the RFHUtil utility to put and get messages from a queue for testing. RFHUtil is a free
support pack that you can download from this Web site:

http://www-1.ibm.com/support/docview.wss?uid=swg24000637

According to Figure 2-2 on page 20, the MQ client application (RFHUtil) communicates with
DataPower via a pair of queues DP_GET (to put a request message to DataPower) and
DP_PUT (to get a response message from DataPower). DataPower is configured to send a
request to WebSphere Message Broker via the SOA_REQUEST queue. DataPower receives
responses from WebSphere Message Broker in the SOA_REPLY queues. The following
steps explain how to test scenario two:

Note: The DataPower XML Firewall for the HTTP connection is configured to listen on
port 12080 and URL /HTTPNoSec/AccountStatus. The DataPower XML Firewall for the
HTTPS connection is configured to listen on port 12083 and URL
/HTTPSec/AccountStatus.

92 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www-1.ibm.com/support/docview.wss?uid=swg24000637

1. Test DataPower Multi-Protocol Gateway with a non-encrypted or encrypted message
using the RFHUtil:

a. Start the RFHUtil utility and enter the following information as shown in Figure 2-106.

i. Queue Manager Name: WBRK6_DEFAULT_QUEUE_MANAGER

ii. Queue Name: DP_GET

iii. Click Read File and select the file name
C:\ITSO_DP\Data\TestRegularSOAP_IN.xml. First, we use a non-encrypted
message, and we will use an encrypted message next. The output is an encrypted
message in both tests.

Figure 2-106 RFHUtil

iv. Click the MQMD tab and set the MQ Message Format to MQSTR and the Replotted to
DP_PUT as shown in Figure 2-107 on page 94.

The Rivulet is used to put a request SOAP message to the DP_GET queue.

v. Back to the Main tab, click Write Q to put the message in the DP_GET queue.

Chapter 2. Integration with WebSphere Message Broker 93

Figure 2-107 RFHUtil: Set MQMD

2. Verify that the message is processed:

a. Use WebSphere MQ Explorer console to check the queue depth of the DP_PUT
queue. You will see a reply message in the DP_PUT queue if it works. Otherwise, the
message is in the DP_GET (if DataPower did not pick it up), CATCH_ALL_ERRORS,
MQGET_ERROR, or Dead Letter queue.

b. Use RFHUtil to read the response message as shown in Figure 2-108 on page 95 by
following these steps:

i. Set the Queue Name to DP_PUT (select from the drop-down list).

ii. Click Read Q.

c. Verify that the message is encrypted:

i. Click the Data tab.

ii. Click XML and verify that the data is encrypted as illustrated in Figure 2-109 on
page 95.

94 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure 2-108 RFHUtil: Read message

Figure 2-109 Encrypted data

Chapter 2. Integration with WebSphere Message Broker 95

Summary
The IBM DataPower for SOA Appliances is well known for its security features. DataPower
has opened the door for clients of WebSphere Message Broker to expose the services
provided by the back-end application in a secured way to their customers over the Internet
and external business partners. Together, WebSphere Message Broker and DataPower offer
an extremely powerful solution to integrate SOA and existing applications where the front-end
security is provided by the best SOA appliance and the back-end connectivity is provided by
the best integration product.

The primary purpose of this chapter was to explain how to configure the IBM WebSphere
DataPower SOA Appliances (DataPower) to serve as a front-end XML and Web service
security gateway to offload the security processing from the IBM WebSphere Message
Brokers (WMB). It also showed how to configure WebSphere Message Broker to integrate
with DataPower via the HTTP and HTTPS protocols.

You have learned how to configure DataPower to provide the front-end XML firewall security
gateway for the message broker using the security wizard within the message broker. This
security wizard automates the configuration of the DataPower XML security gateways and its
processing policies and rules for the HTTP and HTTPS connection with its clients and the
message broker. You have also learned all the steps to configure a Multi-Protocol Gateway
within DataPower to provide support for MQ connectivity to its clients and to the message
broker.

You also learned how to test the scenarios using various testing tools. You learned how to
turn on the DataPower Probe, which is the message broker trace for problem determination.

For your convenience, we provided the prebuilt message broker artifacts for ease of testing.
Optionally, you also learned how to build the message broker artifacts if you choose to build
them yourself. We explained how to build these artifacts in Appendix B, “Building message
flows in WebSphere Message Broker” on page 119. This chapter gives you the fundamental
knowledge to build and configure end-to-end connectivity to the back-end services that are
exposed as Web Services or MQ applications.

96 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Chapter 3. XML threat protection in
DataPower

XML is the new prime target for malicious hackers wanting to harm enterprises. For example:

� It is the common currency of data exchange.
� It passes through firewalls riding on SOAP/HTTP.
� It is the first line of processing and transformation in Enterprise Service Buses (ESBs).
� It is used in plenty of default or non-hardened installations due to lack of experience.

In this chapter, we explore the parameters and properties offered by DataPower for XML
threat protection. These are properties common to all forms of service, and several of the
properties are turned on by default when the service is created.

3

Note: This chapter is based of the developerWorks article at:

http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col
_hines.html

See the original article for more up-to-date information.

© Copyright IBM Corp. 2008. All rights reserved. 97

http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html
http://www.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html

3.1 XML as the new carrier for attacks

A list of possible XML attacks is shown in Figure 3-1.

Figure 3-1 A non-exhaustive list of XML-based attacks

In this chapter, we illustrate how DataPower provides protection against many of these
attacks. XML attacks can be divided into four categories:

� XML Denial of Service (xDoS): Slowing down or disabling a Web Service so that valid
service requests are hampered or denied

� Unauthorized Access: Gaining unauthorized access to a Web Service or its data

� Data Integrity and Confidentiality: Attacks that strike at the data integrity of Web Service
responses, requests, or underlying databases

� System Compromise: Corrupting the Web Service itself or the servers that host it, attacks
that gain control of your system.

3.1.1 XML Denial of Service (XDoS)

XML Denial of Service (XDoS) can be further divided into Single and Multiple XDoS.

Single XDoS
Examples of single XDoS attacks include:

� Jumbo Payloads: Sending a very large XML message to exhaust memory and CPU on the
target system

� Recursive Elements: XML messages that can be used to force recursive entity expansion
or other repeated processing to exhaust server resources

� MegaTags: Otherwise valid XML messages with excessively long element names that can
lead to buffer overruns

� Coercive Parsing: XML messages specially constructed to be difficult to parse to consume
the resources of the machine

� Public Key DoS: Utilizing the asymmetric nature of public key operations to force resource
exhaustion on the recipient by transmitting a message with a large number of long key
length, computationally expensive digital signatures

Example 3-1 on page 99 shows a coercive parsing and recursive element.

98 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Example 3-1 Single XDoS coercive parsing and recursive element

<?xml version="1.0"?>
<!DOCTYPE billion [
<!ELEMENT billion (#PCDATA)>
<!ENTITY laugh0 "ha! ">
<!ENTITY laugh1 "&laugh0;&laugh0;">
<!ENTITY laugh2 "&laugh1;&laugh1;">
...
<!ENTITY laugh127 "&laugh126;&laugh125;">
]> <billion>&laugh127;</billion>

This example is a completely valid, well-formed XML document, which when submitted to
the parser, quickly exhausts memory and CPU.

<billion>

ha! ha!

ha! ha!

ha! ha!

ha! ha!

ha! ha!

....

</billion>

Multiple-message XDoS attacks
Examples of multiple-message XDoS attacks include:

� XML Flood: Sending thousands of otherwise benign messages per second to tie up a Web
Service. Often combined with the Replay Attack to bypass authentication and Single
Message XDoS to increase its impact

� Resource Hijack: Sending messages that lock or reserve resources on the target server
as part of a never-completed transaction. For example, messages that intentionally force
lock contention on resources or similar situations

3.1.2 Unauthorized access attacks

Examples of unauthorized access attacks are:

� Dictionary Attack: Guessing the password of a valid user using a brute force search
through dictionary words

� Falsified Message: Faking that a message is from a valid user, such as by using
Man-in-the-Middle to gain a valid message and modifying it to send a different message

� Replay Attack: Resending a previously valid message for malicious effect, possibly where
only parts of the message, such as the security token, are replayed

3.1.3 Data integrity and confidentiality attacks

Examples of data integrity and confidentiality attacks are:

� Message Tampering: Modifying parts of a request or response in flight, most dangerous
when undetected; less commonly known as Message Alteration

Chapter 3. XML threat protection in DataPower 99

� Data Tampering: Exploiting weakness in the access control mechanism that permits the
attacker to make unauthorized calls to the Web Service to alter data

� Message Snooping: A direct attack on data privacy by examining all or part of the content
of a message. This can happen to messages that are being transmitted in the clear,
transmitted encrypted but stored in the clear, or that are decrypted due to a stolen key or
crypto-analysis.

� SQL Injection: Modifying SQL in XML to obtain additional data than what the service was
designed to return. For example, if XML contains:

SELECT USER_NAME FROM USERS WHERE USER_ID = ‘?1’

the ?1 parameter can be replaced with any of the following statements where user01 is
any valid name:

• user01 OR 1=1

• user01;DROP TABLE USERS

• user011; INSERT INTO USERS (‘user_id’, ‘passwd’, ‘is_admin’) VALUES
(‘hines01’, ‘mypwd’, true)

� XPath/XSLT/XQuery Injection: Injection of expressions into the application logic. Newer
modifications include Blind XPath Injection, which reduces the knowledge required to
mount the attack. No access control built into XPath as there is in SQL, but XQuery can
use XACML.

� WSDL Enumeration: Examining the services listed in the Web Service Definition
Language (WSDL) to guess and gain access to unlisted services. Request a WSDL by
adding ?WSDL to the end of the URL.

� Routing Detour: Using the SOAP routing header to access to internal Web services

System compromise attacks
Examples of attacks that compromise the system include:

� Malicious Include: Causing a Web service to include invalid external data in output or
return privileged files from the server file system. For example, using embedded “file:”
URLs to return UNIX® password files or other privileged data to the attacker

� Memory Space Breach: Accomplished via Stack Overflow, Buffer Overrun, or Heap Error.
Allows execution of arbitrary code supplied by the attacker with permissions of the host
process

� XML Encapsulation: Embedding a system command in the XML payload, such as through
the CDATA tag

� XML Virus (X-Virus): Using SOAP with attachments or other attachment mechanisms to
transmit malicious executables, such as viruses or worms

3.1.4 Summary

As you can see, SOA implementations, which use XML, are prone to several types of attacks.
Traditional systems either offer little by way of warding off these attacks or the offering is
difficult to use.

Note: WSDL is used for defining Web services.

Note: CDATA is a way to include non-legal characters in XML, including script.

100 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

DataPower offers substantial support for protection from malicious XML. Most of these
functions are driven by a property or a parameter and easy to enable.

3.2 XML threat protection in DataPower

XML threat protection parameters are available for every type of firewall. Six categories of
threat protection parameters exist:

� Single Message XML Denial of Service (XDoS) Protection
� Multiple Message XML Denial of Service (XDoS) Protection
� Message Tampering Protection
� SQL Injection Protection
� XML Virus Protection
� Dictionary Attack Protection

In the rest of this section, we describe these categories in detail.

3.2.1 Single message XML Denial of Service protection

Figure 3-2 presents the list of parameters in this category along with their default values.

Figure 3-2 Singe Message XDoS parameters

The parameters are:

� Max. Message Size controls the total size of the XML document in kilobytes. A value of 0
permits documents of any size.

� Max. XML Attribute Count controls the total number of attributes allowed on any XML
element.

� Max. XML Bytes Scanned controls the maximum number of bytes the XML parser will
scan for a XML token (for example, a string value, an element name, and so on).

� Max. XML Element Depth controls the nesting of XML elements allowed.

Chapter 3. XML threat protection in DataPower 101

� Max. XML Node Size controls the total number of bytes allowed in a node (including
attributes and nested nodes).

� Attachment Byte Count Limit controls the maximum size of any single attachment.

3.2.2 Multiple message XML Denial of Service protection

The parameters for this type of protection are shown in Figure 3-3:

� Max. Duration for a Request controls the maximum allowed turnaround time for a request
(the responsiveness of the firewall under load conditions).

� Interval for Measuring Request Rate from Host controls the time interval for DataPower to
measure the Max. Request Rate from Host parameter.

� Max. Request Rate from Host parameter controls the rate at which requests can be
received into the firewall from one IP address.

� Interval for Measuring Request Rate for Firewall controls the time interval for DataPower
to measure the Max. Request Rate for Firewall parameter.

� Max. Request Rate for Firewall parameter controls the rate at which requests can be
received into the firewall from all IP addresses.

� Block Interval controls how long requests will be blocked from the firewall when any of
these parameters evaluate to true (indicating a possible DoS attack).

Figure 3-3 Multiple Message XML Denial of Service (MMXDoS) parameters

3.2.3 Message tampering protection

Message tampering protection (Figure 3-4) requires that a Validate action is included in the
schema to validate the request against a schema. The core application that we used contains
an example of a validate action.

Figure 3-4 Message Tampering Protection

102 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

3.2.4 SQL injection protection

SQL injection protection (Figure 3-5) is checking SQL injection by using a Filter action in the
policy. DataPower provides XSL Transformations (XSLTs), which is a language for
transforming XML documents into other XML documents, which can provide default checking
that can be used in the Filter action. Alternatively, you can use these files as the basis for
creating custom protection files suitable to the request.

Figure 3-5 SQL injection protection

3.2.5 XML virus protection

Viruses in XML are injected using attachments (Figure 3-6). There are two controls to handle
virus threats. At the higher level, you can choose from a range of options from allowing
attachments to pass through fully to completely stripping away attachments. If attachments
are allowed to be processed by the policy, you can further scrutinize the attachment using a
Filter action along with XSLTs supplied by DataPower for that purpose. Of course, you can
customize the XSLTs appropriately as well.

Figure 3-6 XML virus protection

Chapter 3. XML threat protection in DataPower 103

3.2.6 Dictionary attack protection

This is the most complex protection of all. Dictionary attack protection needs the maximum
development effort of all of the categories of XML threat protection that we have discussed.
The accompanying documentation shown in Figure 3-7 provides the details.

Figure 3-7 Dictionary attack protection

3.3 Summary

With the increasing adoption of service-oriented architecture (SOA) comes an increase in the
XML traffic, giving rise to newer and more serious kinds of security issues, which can bring
down the IT infrastructure of the entire company in an extremely short time. Without adequate
means to protect against these attacks, the only viable option is to close the firewall ports that
allow XML traffic. This is not an option, because those ports need to be open in order to
implement SOA successfully. To truly harden a system using Web Services, you must
perform several important security steps. We saw several of these actions in earlier chapters:

� Inspecting messages for well-formedness

� Validating schema

� Verifying digital signatures

� Signing messages

� Implementing service virtualization to mask internal resources via XML transformation and
routing

� Encrypting data at the field level

Even before these steps can be performed in a policy, you need a first line of protection right
at the edge of the XML firewall (of all types). DataPower provides these types of monitoring
functions for the types of attacks right at the front end, as well as configurations to ensure
compliance with service level agreements to protect data, thus preventing expensive
back-end processing.

104 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Appendix A. Web Services security issues

In this appendix, we discuss the usage of the command line tool called Curl for transferring
files with URL syntax supporting FTP, FTPS, HTTP, and HTTPS protocols. We also describe
in detail the usage of Probe in the scenario that we used in Appendix 1, “Web Services
security improvements” on page 1 and trace the messages before and after each action in the
processing rules (Request and Response) using probe.

A

© Copyright IBM Corp. 2008. All rights reserved. 105

Curl Tool

You can use the Curl tool as a Web services client. You can download this tool from the Web
site:

http://curl.haxx.se/download.html

You can use the following commands for sending the encrypted messages to the ITSO_MPGW
Multi-Protocol Gateway:

� curl --data-binary @C:\IBM\Security_Gateway_Artefacts\itso_encry_msg.xml
http://datapower.itso.ral.ibm.com:4000 for sending the encrypted messages

� curl -k -E itsodp-sscert.pem:itsopass --key itsodp-privkey.pem --cacert
itsodp-sscert.pem --data-binary
@C:\IBM\Security_Gateway_Artefacts\itso_encry_msg.xml
https://datapower.itso.ral.ibm.com:4003

Enable Probe for an encrypted request message

The MultiStep Probe displays the contents of contexts and the value of variables at each step
of a document processing rule, which can contain one or many steps. This is an invaluable
tool for developing service applications and a great troubleshooting tool.

You can enable the MultiStep Probe for any service supported by the Probe by clicking the
Probe button on the configuration page of the service. Next, we describe the steps to enable
the probe for the ITSO_MPGW Multi-Protocol Gateway. Select troubleshooting as shown in
Figure A-1.

Figure A-1 Control Panel

106 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://curl.haxx.se/download.html

In Figure A-2, click the Probe tab.

Figure A-2 Probe tab in Troubleshooting Panel

The steps are:

1. Click Add Probe in Figure A-3. The probe will be enabled only for the Multi-Protocol
Gateway named ITSO_MPGW. If you have a number of multi-protocol gateways, you can
choose to enable Probe on a particular Multi-Protocol Gateway or you can enable the
Probe on multiple gateways by repeating the process.

Figure A-3 Add Probe in a Multi-Protocol Gateway

2. Click the magnifying glass icon under Probe in Figure A-4 to open the transaction record
panel, which is shown in Figure A-5.

Figure A-4 Probe enabled for the ITSO_MPGW gateway

Figure A-5 Transaction record

3. The transactions get recorded when the message is sent to the Multi-Protocol Gateway.
We use the curl tool to send a SOAP message using the following command:

curl --data-binary @C:\IBM\Security_Gateway_Artefacts\itso_encry_msg.xml
http://9.42.170.230:4000

4. The command line panel is shown in Figure A-6 on page 108.

Appendix A. Web Services security issues 107

Figure A-6 Command line invocation of Curl tool

5. After the request message is sent, you receive the response message in SOAP response
format in the same command line panel. Because we have now processed a request and
response message successfully, the multi-step probe has detected and captured inputs
and outputs of all the processing rules (request rule and response rule) on ITSO_MPGW, as
shown in Figure A-7.

Figure A-7 Multi-probe transaction detail

6. Clicking the magnifying glass icon shows us input and output messages at each step. The
following six panels, beginning with Figure A-8 on page 109, show us the details.
Figure A-8 on page 109 shows us Step 1, which shows the incoming encrypted message
and subsequent mini-actions that are performed in that decrypt action.

108 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure A-8 Request Processing Rule (Step one of six)

7. In the Figure A-9 on page 110, you can see that the message is successfully decrypted
and the payload is in clear text.

Appendix A. Web Services security issues 109

Figure A-9 Decrypted message (Step two of six)

8. Figure A-10 on page 111 shows the decrypted and successfully verified message.

110 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure A-10 Message successfully verified (Step three of six)

9. Figure A-11 on page 112 shows the message successfully authenticated.

Appendix A. Web Services security issues 111

Figure A-11 Message successfully authenticated (Step four of six)

10.In Figure A-12 on page 113, the ws-sec header is successfully stripped, and now the
entire message is in clear text.

112 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure A-12 Ws-sec headers removed, resulting in all clear text (Step five of six)

11.In Figure A-13 on page 114, you see that the message is converted into binary format for
the back-end application.

Appendix A. Web Services security issues 113

Figure A-13 Message is transformed and sent to the back-end application (Step six of six)

Response rule

After we receive the message from the back-end application, we need to sign and encrypt the
message. We can see the transformation at each step, because we have enabled the Probe:

1. In Figure A-14, we see the incoming message is in binary format, which was received from
the back-end application via WebSphere MQ.

Figure A-14 Binary Message received from the back-end application (Step one of six)

114 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

2. Figure A-15 shows that the message has been successfully converted into clear text. Also,
notice that there is no ws-sec header present in the payload.

Figure A-15 Message in clear text and no ws-sec header (Step two of six)

3. This step adds the ws-sec header to the message, as shown in Figure A-16.

Figure A-16 Ws-sec headers are added using the XSL stylesheet (Step three of six)

Appendix A. Web Services security issues 115

4. Figure A-17 shows that the message is signed using the key certs in the sign action.

Figure A-17 Signed message (Step four of six)

5. The message is successfully encrypted with security credentials that were provided in the
sign action, as shown in the Figure A-18.

Figure A-18 Encrypted message (Step five of six)

116 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

6. Figure A-19 shows the successfully signed and encrypted message that has been sent to
the Web-service client. This is the same response that is shown on the command line
panel.

Figure A-19 Final message sent to client (Step six of six)

Appendix A. Web Services security issues 117

118 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Appendix B. Building message flows in
WebSphere Message Broker

In this appendix, we explain how to build message flows. It is not our intention to provide a
detailed explanation about how to build message sets and message flows, because the
primary objective of this Redpaper is to explain DataPower Integration with WebSphere
Message Broker (WMB). We expect you to have basic knowledge of message broker
development skills using the IBM WebSphere Message Brokers Toolkit. You can get detailed
information about the WMB Toolkit from the WebSphere Message Broker Information center
at this Web site:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

In this section, we explain how to complete the following tasks:

� Create message definition files used by both scenarios
� Build ErrorHandler Flow
� Build Host Simulation Flow
� Build message flows for scenario one
� Build message flows for scenario two
� Deploy message sets and the message flows

B

© Copyright IBM Corp. 2008. All rights reserved. 119

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

Introduction to WMB Toolkit

Based on the Eclipse platform, the WMB Toolkit provides a flexible and rich development
environment for developers to build application integration. It provides two major
perspectives: Broker Administration and Broker Application Development. You use the
Broker Application Development perspective to develop message broker artifacts and the
Broker Administration perspective to deploy code and administer brokers in the domains. You
switch between these perspectives. It is important that you work with the correct perspective,
as instructed.

Before we start, it is essential for you to know where to find the parts of WMB Toolkit.
Figure B-1 shows an overview of the WMB Toolkit V6.0.2. We refer to these parts throughout
this appendix.

Figure B-1 WebSphere Message Brokers Toolkit

You must first create the message definition files that define the data structures that are used
by the message flows in the first step.

Building the message definition files

The WMB Toolkit allows you to define the message definition from scratch or to import
existing COBOL copy books or XML schemas to define the message definition files that are
used for transformation. We use the easier path to import an existing COBOL copy book, an
XML schema, and a Web Services Description Language (WSDL) to create message
definition files for these scenarios.

You must download and unzip artifacts into the directory C:\ITSO_DP\Artifacts as described
in Appendix C, “Additional material” on page 147. The COBOL copy book, the XML schema,
and the WSDL needed to build the message definition files are in that directory.

120 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

The steps to build the message definition files are:

1. Create a message set from the COBOL copy book:

a. Click Start → Program Files → WebSphere Message Brokers Toolkit.

b. Select the Broker Application Development perspective as shown in Figure B-1 on
page 120.

c. Click File → New → Message Set.

Set the Message set name to Host_Request_Reply_COBOL_MS and the Message Set
project name to Host_Request_Reply_COBOL_MS_Proj as shown in Figure B-2.

Figure B-2 Create Message Set project

d. Select Binary Data and click Finish. You can click OK on the Tip pop-up menu.

e. Import the COBOL copy book Customer1.cpy from
C:\ITSO_DP\DataStruc\Customer1.cpy into the project:

i. Right-click Host_Request_Reply_COBOL_MS_Proj, and then click Import →
File System → Next.

ii. Click Browse to select C:\ITSO_DP\Artifacts\Customer1.cpy, and click Finish.

f. Create a message definition file from the COBOL copy book (Figure B-3 on page 122):

i. Right-click Customer1.cpy and click New → Message Definition File From.

ii. COBOL File is preselected. Select Customer1.cpy and click Next.

Appendix B. Building message flows in WebSphere Message Broker 121

Figure B-3 Import COBOL copy book

iii. In the New Message Definition File panel (Figure B-4), select CUSTOMER under
the Source structures section and click the right arrow symbol (>), which is
highlighted in red, to move it to the Imported structures section. Click Next.

Figure B-4 Import COBOL copy book continued

iv. In Figure B-5 on page 123, select Create default values from INITIAL VALUEs
and Create facets from level 88 VALUE clauses where possible.

122 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure B-5 Import COBOL copy book continued

v. Accept all default values and click Finish to complete.

2. Create the SOAP message definition:

a. Click File → New → Message Set.

b. Set the Message set name to SOA_Request_Reply_XML_MS and the Message Set project
name to SOA_Request_Reply_XML_MS_Proj.

c. In Figure B-6 on page 124, select XML documents and click Finish. You can click OK
on the Tip pop-up menu.

Appendix B. Building message flows in WebSphere Message Broker 123

Figure B-6 Create the new message set project for XML and WSDL documents

d. Import Customer.xsd and XML_Legacy_Service.wsdl:

i. Right-click Host_Request_Reply_XML_MS_Proj, and then click Import → File
System → Next.

ii. Click Browse to select the C:\ITSO_DP\Artifacts folder and select Customer.xsd
and XML_Legacy_Service.wsdl as shown in Figure B-7 on page 125.

iii. Click Finish and save (press Ctrl + S keys).

124 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure B-7 Import Customer.xsd and XML_Legacy_Service.wsdl

e. To create the SOAP message definition file from the WSDL, you have to create
message definitions for Customer.xsd (first) and XML_Legacy_Service.wsdl (second):

i. In Figure B-8, right-click Customer1.xsd and click New → Message Definition
File From.

ii. XML Schema File is preselected. Click Next.

Figure B-8 Create message definition for Customer.xsd

Appendix B. Building message flows in WebSphere Message Broker 125

iii. In Figure B-9, click Select All to select everything listed in the Global elements box
and click Finish.

Figure B-9 Create message definition for customer.xsd (continued)

i. In Figure B-7 on page 125, right-click XML_Legacy_Service.wsdl and click
New → Message Definition File From.

ii. WSDL File is preselected. Click XML_Legacy_Service.wsdl on the next panel,
click Next, click Next again, and click Finish.

iii. Press the Ctrl + S keys to save the definitions.

You have created all the message definitions that will be used by the message
flows.

Build the ErrorHandler subflow
This message flow performs error handling processing. This common flow is used by both
scenarios.

In the WMB Toolkit, make sure that you are in the Broker Application Development
perspective:

1. Click File → New → Message Flow Project.

2. Set Project name to Error Handler Message Flow and click Finish.

3. Drag and drop the nodes from the Palette to the Message Flow canvas and rename the
nodes to the names listed under Node name. Table B-1 on page 127 shows you where to

Note: You will see many warnings in the Problems view of the WMB Toolkit. You
can ignore these warnings as long as there are no errors in red.

126 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

find each node by its type from the Palette folder name. Right-click the node and select
rename and enter the new name.

Table B-1 List of node type, Palette folder name, and node name

4. Connect the nodes in the subflow as shown in Table B-2. The name of the node terminal is
in parentheses.

Table B-2 Instructions for wiring the nodes in the ErrorHandler subflow

The subflow you built needs to look like the one in Figure B-10.

Figure B-10 ErrorHandler subflow

5. Right-click the ExceptionList node and select Open ESQL. Replace the existing code in
the BEGIN and END block with the sample code in Example B-1 on page 128. This code
parses the exception list to retrieve the last exception number and error message.

Node type Palette folder name Node name (rename to)

Input Construction Start Subflow

Compute Transformation ExceptionList

Flow Order Construction FlowOrder

Trace Construction Trace

MQOutput WebSphere MQ CATCH_ALL_ERRORS

Node and terminal name Node and terminal name

Input (out) ExceptionList (in)

ExceptionList (out) FlowOrder (in)

FlowOrder (first) CATCH_ALL_ERRORS (in)

FlowOrder (second) Trace (in)

Trace (in) Throw (in)

Appendix B. Building message flows in WebSphere Message Broker 127

Example: B-1 ExceptionList ESQL code

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE Path CHAR;
DECLARE ExpLstPTR REFERENCE TO InputExceptionList.*[1];
SET Path = 'Environment.Variables.BrokerData';
WHILE ExpLstPTR.Number IS NOT NULL do

SET Environment.Variables.BrokerData.LastError.Label =
ExpLstPTR.Label;

SET Environment.Variables.BrokerData.LastError.Number =
cast(ExpLstPTR.Number as char);
SET Environment.Variables.BrokerData.LastError.Text = ExpLstPTR.Text;
SET Path = Path || '.*[<]';
-- Move start to the last child of the field to which it
-- currently points
MOVE ExpLstPTR LASTCHILD;

END WHILE;
SET Path = 'Environment.Variables.BrokerData';
CALL CopyMessageHeaders();
SET OutputRoot.XML.Message.Environment.Variables.UserData =

Environment.Variables.UserData;
SET OutputRoot.XML.Message.Environment.Variables.BrokerData =
Environment.Variables.BrokerData;
RETURN TRUE;

END;

6. Set the properties of the CATCH_ALL_ERRORS node:

a. Right-click the CATCH_ALL_ERRORS node and click Properties.

b. Click the Basic tab and fill in the Queue name CATCH_ALL_ERRORS.

Building the host simulation flow

For the convenience of testing, we provide a host simulation flow for you to test the scenarios
without needing CICS/COBOL running in your environment. The steps to build this message
flow are:

1. In the Message Brokers Toolkit, switch to the Broker Application Development
perspective.

2. Click File → New → Message Flow Project.

3. Set Project name to Host_Simulation_MF and click Finish.

4. Drag and drop the nodes from the Palette onto the Message Flow canvas and rename the
nodes to the names listed under Node name in Table B-3 on page 129.

128 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Table B-3 List of node type, Palette folder name, and node name

5. Connect the nodes as described in Table B-4.

Table B-4 Instructions for wiring the nodes in Host_Simulation_MF flow

6. Set the properties of the HOST_REQUEST node:

a. Right-click the HOST_REQUEST node and click Properties.

b. Click the Basic tab and set the Queue Name to HOST_REQUEST.

c. Select the Input Message Parsing tab.

d. Select MRM from the Message Domain drop-down list.

e. Select Host_Request_Reply_Cobol_MS from the Message Set drop-down list.

f. Select msg_CUSTOMER from the Message Type drop-down list.

g. Select CWF1 for the Message Format from the drop-down list.

Building message flows for scenario one

Follow these steps:

1. Build the message flow WS_To_Legacy_MF.

This message flow has two HTTPInput nodes for receiving request messages from
DataPower via secured or non-secured HTTP connections. It invokes the CICS
application via MQ, gets the response from CICS, and transforms it from COBOL to XML.
A reply message is sent to DataPower via the HTTP Reply node:

a. Click File → New → Message Flow Project.

b. Set Project name to WS_To_Legacy_MF_project and then click Finish.

c. As shown in Figure B-11 on page 130, select SOA_Request_Reply_XML_MS_Proj
and Host_Request_Reply_Cobol_MS_Proj in the Referenced project pane. Click
Finish.

Node type Palette folder name Node name (rename to)

MQInput WebSphere MQ HOST_REQUEST

Compute Transformation Set_Customer_Info_Status

TryCatch Construction TryCatch

MQReply Construction MQReply

Subflow N/A ErrorHandler

Input node and terminal name Output node and terminal name

HOST_REQUEST (out) TryCatch (in)

TryCatch (try) Set_Customer_Info_Status (in)

TryCatch (catch) ErrorHandler subflow

Set_Customer_Info_Status (out) MQReply

Appendix B. Building message flows in WebSphere Message Broker 129

Figure B-11 Set referenced projects

d. Right-click WS_To_Legacy_MF_Proj, and then click New → Message Flow.

e. Set Message flow name to WS_To_Legacy_MF, and then click Finish.

f. Drag and drop the following nodes from the palette onto the Message Flow canvas:

• Two HTTPInput nodes
• Three Compute nodes
• One TryCatch node
• Four Output nodes
• One MQGET node
• One HTTP Reply node

g. Rename the nodes according to Table B-5. To rename a node, right-click the node and
then click Rename. We used the names listed in the table. Optionally, you can use
other names.

Table B-5 List of node type, Palette folder name, and node name

Node type Palette folder name Node name

HTTPInput Node HTTP HTTP No Security

HTTPInput Node Security HTTP HTTP Security

Compute Node 1 Transformation XML_To_COBOL

Compute Node 2 Transformation COBOL_To_XML

Compute Node 3 Transformation Set_HTTP_Id

Output Node 1 WebSphere MQ ERROR

Output Node 2 WebSphere MQ HTTP_STATUS_SAVE

Output Node 3 WebSphere MQ HOST_REQUEST

Output Node 4 WebSphere MQ HOST_REPLY

130 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

h. Connect the nodes and terminals according to Table B-6. The name of the node
terminal is in parentheses.

Table B-6 Instructions for wiring the nodes in WS_To_Legacy_MF message flow

i. After you have connected all nodes, the message flow needs to look like the message
flow shown in Figure B-12 on page 131.

Figure B-12 Completed WS_To_Legacy_MF message flow

Node and terminal name (from) Node and terminal name (to)

HTTP No Security (in) TryCatch (in)

HTTP Security (in) TryCatch (in)

TryCatch (try) XML_To_COBOL (in)

TryCatch (catch) Error_Handler subflow (in)

XML_To_COBOL (out) HOST_REQUEST (in)

HOST_REQUEST (out) Set_HTTP_Id (in)

Set_HTTP_Id (out) HTTP_STATEQ (in)

HOST_REPLY (out) TryCatch (in)

TryCatch (try) MQGET (in)

TryCatch (catch) Error_Handler (in)

MQGET (out) COBOL_To_XML

MQGET (warning) MQGET_ERROR

MQGET (no message) MQGET_ERROR

COBOL_To_XML (out) HTTP Reply

Appendix B. Building message flows in WebSphere Message Broker 131

j. Set the properties of the HTTP No Security Input Node:

i. Click the Basic tab and set URL Selector to /HTTPNoSec/AccountStatus.

ii. Click the Input Message Parsing tab.

iii. Select MRM from the Message domain drop-down list.

iv. Select SOA_Request_Reply_XML_MS from the Message Set drop-down list.

v. Select Envelope from the Message Type drop-down list.

vi. Select XML1 from the Message Format drop-down list.

vii. Click OK.

k. Set the properties of the HTTP Security Input node:

i. Click the Basic tab and set URL Selector to /HTTPNoSec/AccountStatus.

ii. Select Use HTTPS.

iii. Click the Input Message Parsing tab.

iv. Select MRM from the Message domain drop-down list.

v. Select SOA_Request_Reply_XML_MS from the Message Set drop-down list.

vi. Select Envelope from the Message Type drop-down list.

vii. Select XML1 from the Message Format drop-down list.

viii.Click OK.

l. Right-click the XML_TO_COBOL compute node and select Open ESQL. Replace the
existing code in the BEGIN and END block with the sample code in Example B-2 on
page 132.

Example: B-2 Create compute module XML to COBOL

CREATE COMPUTE MODULE XML_To_COBOL
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- Declare namespace after the BEGIN statement
DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE ns NAMESPACE 'http://www.itso.lab.com';

CALL CopyMessageHeaders();
-- Remove HTTP headers - Output is and MQ Message

 SET OutputRoot.HTTPInputHeader = null;

-- Output is legacy, so set wire format and message name
SET OutputRoot.Properties.MessageSet = 'Host_Request_Reply_Cobol_MS';
SET OutputRoot.Properties.MessageType = 'msg_CUSTOMER';
SET OutputRoot.Properties.MessageFormat = 'CWF1';

-- Add an MQMD for output message
CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN 'MQMD';
SET OutputRoot.MQMD.Version = 2;
SET OutputRoot.MQMD.ReplyToQ = 'HOST_REPLY';
SET OutputRoot.MQMD.PutApplName = 'WMB';
SET OutputRoot.MQMD.PutDate = CURRENT_DATE;

 DECLARE CustIn_Ref REFERENCE TO
InputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo;
-- DECLARE CustOut_Ref REFERENCE TO OutputRoot.MRM.CUSTOMER_INFO;

132 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

 DECLARE CustOut_Ref REFERENCE TO OutputRoot.MRM;

-- Transform the message form XML to Cobol to be sent to legacy
 SET OutputRoot.MRM.ACCOUNT_NUMBER =
InputRoot.MRM.tns:Body.ns:IN_CustomerStatus.accountNumber;

RETURN TRUE;
END;

m. Set the properties of the HOST_REQUEST node:

i. Right-click the HOST_REQUEST node and click Properties.

ii. Click the Basic tab and set Queue Name to HOST_REQUEST.

iii. Select the Input Message Parsing tab.

iv. Select MRM from the Message Domain drop-down list.

v. Select Host_Request_Reply_Cobol_MS from the Message Set drop-down list.

vi. Select msg_CUSTOMER from the Message Type drop-down list.

vii. Select CWF1 from the Message Format drop-down list.

viii.Click the Advanced tab and set Transaction Mode to Yes.

ix. Set Message Context to Default.

x. Select the Request tab and select the check box for Request.

xi. Set Reply-to Queue to HOST_REPLY and then click OK.

n. Right-click the Set_HTTP_Id compute node and select Open ESQL. Replace the
existing code in the BEGIN and END block with the sample code in Example B-3 on
page 133.

Example: B-3 Create compute module Set_HTTP_Id

CREATE COMPUTE MODULE Set_HTTP_Id
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- The output message built in this node stores the HTTP context.
-- Any format may be suitable, but we are using a
-- self-defined field in a SOAP Header to do this
-- So the wire format is XML
-- Create the target message set properties
 DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
 DECLARE ns NAMESPACE 'http://www.itso.lab.com';

SET OutputRoot.Properties.MessageSet = 'SOA_Request_Reply_XML_MS';
SET OutputRoot.Properties.MessageType = 'Envelope';
SET OutputRoot.Properties.MessageFormat = 'XML1';

-- Create the MQMD and set the CorrelId
-- The CorrelId needs to be set to the MsgId of the message sent
-- to the legacy application. When the reply from the legacy
-- application is received, we will MQGet from the store
-- queue with correlid equal to the correlid of the legacy reply

SET OutputRoot.MQMD.CorrelId
= InputLocalEnvironment.WrittenDestination.MQ.DestinationData.msgId;

-- Build message to store HTTP context

Appendix B. Building message flows in WebSphere Message Broker 133

SET OutputRoot.MRM.tns:Header.HTTP.RequestIdentifier
 = InputLocalEnvironment.Destination.HTTP.RequestIdentifier;

RETURN TRUE;
END;

o. Set the properties of the HTTP_STATEQ node:

i. Right-click the HTTP_STATEQ node and then click Properties.

ii. Click the Basic tab and set the Queue Name to HTTP_STATEQ.

iii. Click the Advanced tab and set Transaction Mode to Yes if you want to execute
the message flow under a transaction.

iv. Set Message Context to Default.

v. Click OK.

p. Set the properties of the HOST_REPLY input node:

i. Right-click the HOST_REPLY input node, and then click Properties.

ii. Select Basic and set the Queue Name to HOST_REPLY.

q. Set the properties for the MQGet (get saved HTTP state from HTTP_STATEQ) node:

iii. Right-click the MQGet node and click Properties.

iv. Select the Basic tab and set the Queue Name to HTTP_STATEQ.

v. Select the Input Message Parsing tab.

vi. Select MRM from the Message Domain drop-down list.

vii. Select SOA_Request_Reply_XML_MS from the Message Set drop-down list.

viii.Select Envelope from the Message Type drop-down list.

ix. Select XML1 for Message Format from the drop-down list.

x. Click the Advanced tab.

xi. Select Message and LocalEnvironment from the drop-down list.

xii. Select Copy Entire Message from the Copy Message drop-down list.

xiii.Select Request, and select Get by Correlation ID.

xiv.Select Result and set Output Data Location to OutputLocalEnvironment.

xv. Click OK.

r. Set up the COBOL_TO_XML compute node:

i. Right-click the COBOL_TO_XML compute node and click Properties.

ii. Selectthe Basic tab and set Compute Mode to LocalEnvironment and Message.

iii. Click OK (to allow HTTP context to be passed to HTTPReply node).

iv. Right-click COBOL_TO_XML compute node and select Open ESQL. Replace the
existing code in the BEGIN and END block with the sample code in Example B-4.

Example: B-4 Create compute module COBOL to XML

CREATE COMPUTE MODULE COBOL_To_XML
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
-- Declare namespace after the BEGIN statement
DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE ns NAMESPACE 'http://www.itso.lab.com';

134 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

-- Input is CWF, output is SOAP/XML
SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.Properties.MessageSet = 'SOA_Request_Reply_XML_MS';
SET OutputRoot.Properties.MessageType = 'Envelope';
SET OutputRoot.Properties.MessageFormat = 'XML1';
DECLARE CustOut_Ref REFERENCE TO

OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus;
DECLARE CustIn_Ref REFERENCE TO InputRoot.MRM.CUSTOMER_INFO;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.accountNumber =

InputRoot.MRM.ACCOUNT_NUMBER;
SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.status =

InputRoot.MRM.CUSTOMER_INFO.CUSTOMER_STATUS;
SET

OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.firstName =
InputRoot.MRM.CUSTOMER_INFO.FIRST_NAME;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.lastName
= InputRoot.MRM.CUSTOMER_INFO.LAST_NAME;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.street =
InputRoot.MRM.CUSTOMER_INFO.STREET;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.city =
InputRoot.MRM.CUSTOMER_INFO.CITY;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.state =
InputRoot.MRM.CUSTOMER_INFO.STATE;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.country
= InputRoot.MRM.CUSTOMER_INFO.COUNTRY ;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.zipCode
= InputRoot.MRM.CUSTOMER_INFO.ZIPCODE;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.phone =
InputRoot.MRM.CUSTOMER_INFO.PHONE;

-- Set the http reply identifier
SET OutputLocalEnvironment.Destination.HTTP.RequestIdentifier =

 CAST(InputLocalEnvironment.MRM.tns:Header.HTTP.RequestIdentifier AS
BLOB);

RETURN TRUE;
END;

s. Set the properties of the MQGET_ERROR node:

i. Right-click the MQGET_ERROR node and click Properties.

ii. Click the Basic tab and set Queue Name to MQGET_ERROR.

t. Set the properties of the HTTP Reply node:

iii. Right-click the HTTP Reply node and click Properties.

iv. Click the Basic tab. Click Ignore transport failures and Generate default HTTP
headers from reply or response.

Build the message flows for scenario two

In the second scenario, DataPower and the message broker communicate via MQ.
DataPower sends a request to the SOA_REQUEST queue, which is monitored by the

Appendix B. Building message flows in WebSphere Message Broker 135

message broker for incoming requests. The message broker transforms the incoming request
and sends it to CICS for customer information. CICS processes the request and sends the
data to the message broker. The message broker transforms the data, builds the reply
message and sends it to DataPower, which in turn, sends it to the original requester.

Now, you will learn how to build this message flow as just described:

1. Create the message flow project MQ_To_Legacy_MF_Proj to process the request and reply
message via MQ:

a. Click File → New → Message Flow Project.

b. Set Project name to MQ_To_Legacy_MF_Proj, and then click Finish.

c. Select SOA_Request_Reply_XML_MS_Proj and
Host_Request_Reply_Cobol_MS_Proj in the Referenced project pane.

2. Right-click MQ_To_Legacy_MF_Proj, and then click New → Message Flow:

a. Set Message flow name to StoreOriginalMQMD.msgflow, and then click Finish.

b. Drag and drop the following nodes from the palette onto the Message Flow canvas and
rename them as shown in Table B-7 on page 136.

Table B-7 List of node type, Palette folder name, and node name

c. Connect the nodes and terminals according to Table B-8.

Table B-8 Instructions for wiring the nodes

d. Set the properties of the nodes in StoreOriginalMQMD.msgflow:

Set the properties of the MQMD_STOREQ node:

i. Right-click the node MQMD_STOREQ and click Properties.

ii. Click the Basic tab and set Queue Name to MQMD_STOREQ.

e. Right-click the Save_Request_MQMD compute node and select Open ESQL.
Replace the existing code in the BEGIN and END block with the sample code in
Example B-5.

Example: B-5 ESQL code for Save_Request_MQMD compute node

CREATE COMPUTE MODULE Save_Request_MQMD
CREATE FUNCTION Main() RETURNS BOOLEAN

Node type Palette folder name Node name (rename)

Input Construction

FlowOrder Construction

Compute Node Transformation Save_Request_MQMD

MQ Output Node WebSphere MQ MQMD_STOREQ

Output Construction

Node and terminal name (from) Node and terminal name (to)

Input (out) FlowOrder (in)

FlowOrder (first) Save_Request_MQMD (in)

FlowOrder (second) Output (in)

Save_Request_MQMD (out) MQMD_STOREQ (in)

136 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

BEGIN

-- Copy the original MQMD header
CALL CopyMessageHeaders();

-- Copy MsgId to CorrelId per MQ usual programming for request/reply
pattern

-- This allows the MQGet node in the Reply flow to retrieve the
-- corresponding message stored in the MQMD_STOREQ by CorrelId.
-- It also set the ReplyToQ to 'SOA_REPLY' for the Reply flow to know

where to
-- send the reply message. DataPower is configured to pick up the

reply
message

-- from the 'SOA_REPLY' queue.

-- Note: We don't need to store the message body because the MQGET
node only
needs

-- the correlation ID to get the store message.

SET OutputRoot.MQMD.CorrelId = InputRoot.MQMD.MsgId;
SET OutputRoot.MQMD.ReplyToQ = 'SOA_REPLY';

RETURN TRUE;
END;

3. Right-click MQ_To_Legacy_MF_Proj and then click New → Message Flow:

a. Set Message flow name to RestoreOriginalMQMD.msgflow and then click Finish.

b. Drag and drop the nodes from the Palette onto the Message Flow canvas and rename
them as shown in Table B-9.

Table B-9 Node types

c. Connect the nodes and terminals according to the table 4-6.

Table B-10 Connect these nodes and terminals

Node type Palette folder name Node name (rename)

Input Construction

MQGET WebSphere MQ Get_Request_MQMD

Compute Node 1 Transformation Error:MQGET with warning

Compute node 2 WebSphere MQ Error:MQGET no message

Output Construction

Node and terminal name Node and terminal name

Input (Out) Get_Request_MQMD (In)

Get_Request_MQMD (Out) Output (In)

Get_Request_MQMD (Warning) ErrorHandling:MQGET with Warning (In)

Get_Request_MQMD (No Message) ErrorHandling:MQGET No Message (In)

Appendix B. Building message flows in WebSphere Message Broker 137

d. Set the properties of the nodes in the RestoreOriginalMQMD.msgflow:

Set the properties of the MQMD_STOREQ node:

i. Right-click the node MQMD_STOREQ and click Properties.

ii. Click the Basic tab and set Queue Name to MQMD_STOREQ.

e. Build the ESQL for the “ErrorHandling:MQGET with Warning” compute node as shown
in Example B-6 on page 138.

Example: B-6 ESQL Code for MQGET with warning

CREATE COMPUTE MODULE RestoreOriginalReplyToQ_HandleMQGetWarning
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- The MQGet Node received a MQ Warning
-- The Tree will contain just a MQMD and any message content

received
-- in aa BLOB, no parsing will be performed.
-- This could occur if the get options were set to accept truncated
-- messages. We have not set that option here.
-- Throw a user exception
DECLARE reasonStr CHAR;
SET reasonStr = 'MQGet returned warning';
THROW USER EXCEPTION VALUES(reasonStr);
RETURN TRUE;

END;

f. Build the ESQL for the “ErrorHandling:MQGET with No Message” compute node as
shown in Example B-7.

Example: B-7 ESQL Code for MQGET with no message

CREATE COMPUTE MODULE RestoreOriginalReplyToQ_HandleNoStoreMessage
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- The MQGet Node failed to get a message from the Store Queue
-- Throw a user exception
DECLARE reasonStr CHAR;
SET reasonStr = 'MQGet no store queue message retrieved';
THROW USER EXCEPTION VALUES(reasonStr);
RETURN TRUE;

END;

END
MODULE

4. Right-click MQ_To_Legacy_MF_Proj and then click New → Message Flow:

a. Set the Message flow name to Host_Request.msgflow and then click Finish.

b. Drag and drop the following nodes from the Palette onto the Message Flow canvas
and rename them according to Table B-11.

Table B-11 List of node type, Palette folder name, and node name

Node type Palette folder name Node name

MQInput WebSphere MQ SOA_REQUEST

TryCatch Construction

138 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

c. Connect the nodes and terminals according to Table B-12 on page 139.

Table B-12 Instructions for wiring the nodes in HOST_Request.msgflow

d. Verify that your message flow looks like the one in Figure B-13.

Figure B-13 Host_Request message flow

e. Set the properties of the nodes in Host_Request.msgflow:

Set the properties of the SOA_REQUEST node:

i. Right-click the SOA_REQUEST node and click Properties.

ii. Click the Basic tab and set Queue Name to SOA_REQUEST.

iii. Select the Input Message Parsing tab.

iv. Select MRM from the Message Domain drop-down list.

v. Select SOA_Request_Reply_XML_MS from the Message Set drop-down list.

vi. Select Envelope for the Message Type drop-down list.

vii. Select XML1 for Message Format from the drop-down list.

viii.Click the Advanced tab and set Transaction Mode to Automatic.

f. Build the ESQL for the XML_To_COBOL compute node as shown in Example B-8 on
page 140.

Compute Node Transformation XML_To_COBOL

Output Node WebSphere MQ HOST_REQUEST

Node and terminal name (from) Node and terminal name (to)

SOA_REQUEST (out) TryCatch (in)

TryCatch (catch) Error_Handler (in)

TryCatch (try) StoreOriginalMQMD_Sub (in)

StoreOriginalMQMD_Sub (out) XML_To_COBOL (in)

XML_To_COBOL (out) HOST_REQUEST (in)

Node type Palette folder name Node name

Appendix B. Building message flows in WebSphere Message Broker 139

Example: B-8 ESQL code for XML_To_COBOL compute node

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
-- Declare namespace after the BEGIN statement

DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE ns NAMESPACE 'http://www.itso.lab.com';

 -- Copy Message Headers
CALL CopyMessageHeaders();

 DECLARE CustIn_Ref REFERENCE TO
InputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo;
 DECLARE CustOut_Ref REFERENCE TO OutputRoot.MRM;

-- Transform the message from XML/SOAP to Cobol/fixed format before
sending it to legacy
 SET OutputRoot.MRM.ACCOUNT_NUMBER =
InputRoot.MRM.tns:Body.ns:IN_CustomerStatus.accountNumber;

 -- Output is legacy, so set wire format and message name

SET OutputRoot.Properties.MessageSet =
'Host_Request_Reply_Cobol_MS';

SET OutputRoot.Properties.MessageType = 'msg_CUSTOMER';
SET OutputRoot.Properties.MessageFormat = 'CWF1';

-- Set ReplyToQ for the Host_Simulation message flow. This flow sends
the reply to two different

-- queues as follows:
-- - HOST_REPLY if the request comes from the message flow

WS_To_Legacy_MF (first scenario)
-- - HOST_REPLY2 if the request comes from the message flow

MQ_To_Legacy_MF (second scenario)
SET OutputRoot.MQMD.CorrelID = InputRoot.MQMD.MsgId;
SET OutputRoot.MQMD.ReplyToQ = 'HOST_REPLY2';

RETURN TRUE;
END;

5. Right-click MQ_To_Legacy_MF_Proj and then click New → Message Flow:

a. Set Message flow name to Host_Reply.msgflow and then click Finish.

b. Drag and drop the following nodes from the Palette onto the Message Flow canvas
and rename them according to Table B-13.

Table B-13 List of node type, Palette folder name, and node name

c. Connect the nodes and terminals according to Table B-14 on page 141.

Node type Palette folder name Node name (rename)

MQInput WebSphere MQ HOST_REPLY2

TryCatch Construction

Compute Node Transformation XML_To_COBOL

Output Node WebSphere MQ HOST_REQUEST

140 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Table B-14 Instructions for wiring nodes in Host_Reply message flow

d. Verify that your message flow looks like the one shown in Figure B-14.

Figure B-14 Host_Reply message flow

e. Set the properties of the nodes in Host_Reply.msgflow:

Set the properties of the HOST_REPLY2 node:

i. Right-click the HOST_REPLY2 node and click Properties.

ii. Click the Basic tab and set Queue Name to HOST_REPLY2.

iii. Select the Input Message Parsing tab.

iv. Select MRM from the Message Domain drop-down list.

v. Select Host_Request_Reply_Cobol_MS from the Message Set drop-down list.

vi. Select msg_CUSTOMER for the Message Type drop-down list.

vii. Select CWF1 for the Message Format from the drop-down list.

viii.Click the Advanced tab and set Transaction Mode to Automatic.

f. Build the ESQL for the COBOL_To_XML compute node as shown in Example B-9 on
page 142.

Node and terminal name (from) Node and terminal name (to)

SOA_REQUEST (out) TryCatch (in)

TryCatch (catch) Error_Handler (in)

TryCatch (try) COBOL_To_XML (in)

COBOL_To_XML (out) RestoreOriginalMQ_Sub (in)

RestoreOriginalMQ_Sub (out) ReplyToQ

Appendix B. Building message flows in WebSphere Message Broker 141

Example: B-9 ESQL for COBOL_To_XML compute node

CREATE COMPUTE MODULE COBOL_To_XML
CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN
-- Declare namespace after the BEGIN statement
DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE ns NAMESPACE 'http://www.itso.lab.com';

-- Input is CWF, output is SOAP/XML
 CALL CopyMessageHeaders();

SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.Properties.MessageSet = 'SOA_Request_Reply_XML_MS';
SET OutputRoot.Properties.MessageType = 'Envelope';
SET OutputRoot.Properties.MessageFormat = 'XML1';
SET OutputRoot.MQMD.ReplyToQ = 'SOA_REPLY';
SET OutputRoot.MQMD.ReplyToQMgr = 'WBRK6_DEFAULT_QUEUE_MANAGER';
DECLARE CustOut_Ref REFERENCE TO

OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus;
DECLARE CustIn_Ref REFERENCE TO InputRoot.MRM.CUSTOMER_INFO;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.accountNumber =

InputRoot.MRM.ACCOUNT_NUMBER;
SET

OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.status =
InputRoot.MRM.CUSTOMER_INFO.CUSTOMER_STATUS;

SET
OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.firstName =
InputRoot.MRM.CUSTOMER_INFO.FIRST_NAME;

SET
OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.lastName =
InputRoot.MRM.CUSTOMER_INFO.LAST_NAME;

SET
OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.street =
InputRoot.MRM.CUSTOMER_INFO.STREET;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.city
=
InputRoot.MRM.CUSTOMER_INFO.CITY;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.state
=
InputRoot.MRM.CUSTOMER_INFO.STATE;

SET
OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.country =
InputRoot.MRM.CUSTOMER_INFO.COUNTRY ;

SET
OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.zipCode =
InputRoot.MRM.CUSTOMER_INFO.ZIPCODE;

SET OutputRoot.MRM.tns:Body.ns:IN_CustomerStatus.customerInfo.phone
=
InputRoot.MRM.CUSTOMER_INFO.PHONE;

END;

142 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Deploying the message sets and message flows

We have completed building the message flows for testing both scenarios. We must compile
and deploy them to a message broker where they will be instantiated and executed. You will
learn how to deploy the message sets and message flows next:

1. Create a Broker Archive File (bar) to include all of the message sets and flows for both
scenarios. The bar file contains the compile code to be executed in a broker:

a. Click Broker Administration Navigator perspective (Figure B-15).

b. Click Server → new → Message Broker Archive.

Figure B-15 Create a new broker archive file

c. Set the name of the bar file to SOA2Legacy.bar as shown in Figure B-16 on page 144.

Appendix B. Building message flows in WebSphere Message Broker 143

Figure B-16 Create SOA2Legacy bar file

d. Another editor is open to allow you to add the message sets and message flows to the
bar file as shown in Figure B-17 on page 145. Click on the plus sign (+) to add the
following items:

i. Host_Request_Reply_COBOL_MS

ii. SOA_Request_Reply_XML_MS

iii. Host_Simulation_MF

iv. WS_To_Legacy_MF

v. MQ_To_Legacy_MF

144 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Figure B-17 Broker archive editor

e. Click OK. See Figure B-18.

Figure B-18 Build SOA2Legacy.bar

Appendix B. Building message flows in WebSphere Message Broker 145

f. Click OK. See Figure B-19.

Figure B-19 Soa2Legacy.bar

g. Press Ctrl + S to save the bar file.

h. Next, you must create a new Execution Group called DPSoa and deploy the
Soa2Legacy.bar to DPSoa. Refer to “Deploying the message sets and message flows”
on page 143 starting at step 2 to deploy the Soa2Legacy.bar.

146 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Appendix C. Additional material

This paper refers to additional material that can be downloaded from the Internet as
described.

Locating the Web material

The Web material associated with this paper is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/REDP4365

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com

Select the Additional materials and open the directory that corresponds with the IBM
Redpaper form number, REDP4365.

Using the Web material

The additional Web material that accompanies this paper includes the following files:

File name Description
redp4365.zip Zipped Code Samples

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 40 MB minimum
Operating System: Windows
Processor: 1 GH or higher
Memory: 1 GB or higher

C

© Copyright IBM Corp. 2008. All rights reserved. 147

ftp://www.redbooks.ibm.com/redbooks/REDP4365
http://www.redbooks.ibm.com

How to use the Web material

Create a subdirectory (folder) on your workstation and unzip the contents of the Web material
zipped file into this folder.

148 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM Redbooks
publications” on page 150. Note that some of the documents referenced here might be
available in softcopy only:

� Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB,
SG24-7369

� WebSphere Message Broker Basics, SG24-7137

� Enabling SOA Using WebSphere Messaging, SG24-7163

� IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting Started,
REDP-4327

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and Authorization,
REDP-4364

� IBM WebSphere DataPower SOA Appliances Part IV: Management and Governance,
REDP-4366

Other publications

These publications are also relevant as further information sources:

� WebSphere Business Integration Message Broker V5 Overview and Architecture,
REDP-3867

Online resources

These Web sites are also relevant as further information sources:

� Integrating WebSphere DataPower SOA Appliances with WebSphere MQ

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0
703_crocker.html

� Integrating WebSphere DataPower XML Security Gateway XS40 with WebSphere
Message Broker

http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0
710_crocker.html

� Integrating DataPower with WebSphere Message Broker using the Broker Explorer

http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/07
07_storey.html

© Copyright IBM Corp. 2008. All rights reserved. 149

http://www.ibm.com/developerworks/websphere/library/techarticles/0703_crocker/0703_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_crocker/0710_crocker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/0707_storey.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0707_storey/0707_storey.html

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers, Technotes,
draft publications, and Additional materials, as well as order hardcopy IBM Redbooks
publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

150 IBM WebSphere DataPower SOA Appliances: Part III: XML Security Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

®

REDP-4365-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

IBM WebSphere DataPower
SOA Appliances
Part III: XML Security Guide

Secure and improve
your XML and Web
Services setup and
deployment

Integrate DataPower
appliances with
WebSphere Message
Broker

Provide XML threat
protection in
DataPower

IBM® WebSphere® DataPower® SOA Appliances represent an important
element in the holistic approach of IBM to service-oriented architecture (SOA).
IBM SOA appliances are purpose-built, easy-to-deploy network devices that
simplify, help secure, and accelerate your XML and Web services deployments
while extending your SOA infrastructure. These appliances offer an innovative,
pragmatic approach to harness the power of SOA. By using them, you can
simultaneously use the value of your existing application, security, and
networking infrastructure investments.

This series of IBM Redpaper publications is written for architects and
administrators who need to understand the implemented architecture in
WebSphere DataPower appliances to successfully deploy it as a secure and
efficient enterprise service bus (ESB) product. Part three of the series, this
paper, describes how to use the DataPower appliance to secure incoming Web
Services within an SOA environment. It also describes how to integrate your
DataPower appliance with WebSphere Message Broker. This paper also
explains how to provide protection against security attacks by implementing
the XML Denial of Service (XDoS) provided by DataPower appliances. The
entire IBM WebSphere DataPower SOA Appliances series includes the
following papers:

� IBM WebSphere DataPower SOA Appliances Part I: Overview and Getting
Started, REDP-4327

� IBM WebSphere DataPower SOA Appliances Part II: Authentication and
Authorization, REDP-4364

� IBM WebSphere DataPower SOA Appliances Part III: XML Security Guide,
REDP-4365

� IBM WebSphere DataPower SOA Appliances Part IV: Management and
Governance, REDP-4366

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this paper
	Become a published author
	Comments welcome

	Chapter 1. Web Services security improvements
	1.1 Extensible Markup Language threat protection
	1.2 Using Multi-Protocol Gateway to address security concerns
	1.2.1 Request processing
	1.2.2 Response side processing
	1.2.3 Summary of the processing in this chapter
	1.2.4 Running the service

	Chapter 2. Integration with WebSphere Message Broker
	2.1 Introduction
	2.2 Sample scenarios description
	2.3 Configuration of DataPower and WMB for Scenario one
	2.3.1 Message flow logic
	2.3.2 Configure WebSphere Message Broker
	2.3.3 Configure DataPower XML Firewall Gateway
	2.3.4 Configure DataPower to add support for Digital Signature

	2.4 Configuration of DataPower and WMB for Scenario two
	2.4.1 Message flow logic
	2.4.2 Configure the DataPower Multi-Protocol Gateway
	2.4.3 Running the scenarios

	Chapter 3. XML threat protection in DataPower
	3.1 XML as the new carrier for attacks
	3.1.1 XML Denial of Service (XDoS)
	3.1.2 Unauthorized access attacks
	3.1.3 Data integrity and confidentiality attacks
	3.1.4 Summary

	3.2 XML threat protection in DataPower
	3.2.1 Single message XML Denial of Service protection
	3.2.2 Multiple message XML Denial of Service protection
	3.2.3 Message tampering protection
	3.2.4 SQL injection protection
	3.2.5 XML virus protection
	3.2.6 Dictionary attack protection

	3.3 Summary

	Appendix A. Web Services security issues
	Curl Tool
	Enable Probe for an encrypted request message
	Response rule

	Appendix B. Building message flows in WebSphere Message Broker
	Introduction to WMB Toolkit
	Building the message definition files
	Building the host simulation flow
	Building message flows for scenario one
	Build the message flows for scenario two
	Deploying the message sets and message flows

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

