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Preface

The power of IBM® WebSphere® MQ is its flexibility combined with reliability, scalability, and 
security. This flexibility provides a large number of design and implementation choices. 
Making informed decisions from this range of choices can simplify the development of 
applications and the administration of a WebSphere MQ messaging infrastructure.

Applications that access a WebSphere MQ infrastructure can be developed using a wide 
range of programming paradigms and languages. These applications can run within a 
substantial array of software and hardware environments. Customers can use WebSphere 
MQ to integrate and extend the capabilities of existing and varied infrastructures in the 
information technology (IT) system of a business.

This IBM Redpaper™ publication provides an introduction to message-oriented middleware 
to anyone who wants to understand messaging and WebSphere MQ. It covers the concepts 
of messaging and how WebSphere MQ implements those concepts. It helps you understand 
the business value of WebSphere MQ. It provides introductory information to help you get 
started with WebSphere MQ. No previous knowledge of the product and messaging 
technologies is assumed.
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Chapter 1. Concepts of messaging

This chapter discusses the reasons why a business might require a messaging solution and 
different requirements for messaging. This chapter provides some examples of where 
messaging is used. This chapter contains the following sections:

� The business case for message-oriented middleware
� Application simplification
� Example scenarios
� A messaging-based solution

1
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1.1  The business case for message-oriented middleware

Business environments are constantly changing. Applications that were written 20 years ago 
need to exchange data with applications written last week. Examples of this changing 
environment can be one company that merges with another company, a new partner to 
communicate with, an application that is used internally in a company is now exposed to 
customers, or different departments within a company need to share programs.

The growth of Internet banking required services, such as managing payments or querying 
account information, to be made available through a range of channels. The core data can be 
held in a database on a mainframe, but a user of a browser requires a front-end web 
application server to interact with that database. As new delivery channels are created, such 
as smartphone applications, easy ways for that new mechanism to interact are needed. The 
smartphone application must communicate with the same applications and database without 
changing the database.

The evolutionary speed of IT systems makes essential the ability to integrate across many 
environments with multiple applications reliably and quickly.

Messaging is an effective way to connect these systems. It hides many of the details of 
communication from the application developer and gives a simple interface. Simplifying allows 
the developer to concentrate on the business problem instead of worrying about matters such 
as recovery, reliability, and operating system differences.

A further feature of messaging solutions is the decoupling of one application from another. 
Many mechanisms for communicating between applications require that both applications are 
available at the same time. Messaging uses an asynchronous model, which means that an 
application that generates messages does not have to execute at the same time as an 
application that consumes those messages. Reducing the requirements for simultaneous 
availability reduces complexity and can improve overall availability. Messages can be sent to 
specific applications or distributed to many different applications at the same time. 
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Figure 1-1 shows basic patterns for connectivity.

Figure 1-1   Using messaging to connect applications and distribute data

Asynchrony is used in various ways. It can queue large volumes of work, and that work is then 
submitted once a day by a batch process. Or, work can be submitted immediately and then 
processed as soon as the receiving application finishes dealing with a previous request. 

Asynchronous processing does not imply long response times. Many applications were built 
and successfully execute by using messaging for real-time interactive operations.

1.2  Application simplification

One of the key features of messaging is to remove complexity from application code. 
Worrying about reliability or recovery is the job of the middleware product or component, such 
as the messaging provider. Developers can simply focus on writing the business logic.

The following list covers some of the factors that need to be dealt with by middleware, and 
hidden from application developers, regardless of the business application:

Once-only processing Business transactions normally happen exactly once. Middleware 
needs to ensure all the systems that are involved in that transaction 
do their job, exactly once. There must be no loss or duplication. 
Applications must not write complex code for recovery or to reverse 
partially completed operations (compensation) code if individual 
systems fail.

Ubiquity Run your applications on the platform where it makes the most 
sense. Be able to integrate applications seamlessly on a wide 
range of operating systems and hardware environments.

Application to application communication

Event distribution on any scale

Application A

Application B

Application C

Event
Distributor

Application A Application B
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Easy to change Using industry standards can help you become more responsive as 
skills can be maintained and reused across projects. New 
applications can be rapidly written and deployed. 

Easy to extend Scale your applications rapidly to any volume without downtime. 
Add more processing without application change. Roll out new 
applications and features quickly and safely without downtime. 

Compliance Meet enterprise, industry, and regulatory requirements easily, 
especially as those requirements evolve. A middleware 
implementation needs to assist with auditing and other compliance 
objectives, giving a consistent interface for all applications.

Performance and availability
Make the best use of the systems. Provide services for high and 
continuous availability.

Security Provide a secure environment. Data is protected from loss, 
modification, and reading. Losing sensitive data, or failing to 
comply with regulations, costs time, money, and reputation.

1.3  Example scenarios

This section gives examples of where messaging solves a real-world problem.

1.3.1  Retail kiosks

A retailer wants to respond rapidly to online customer needs and have a consistent view of 
data that is shown at 25,000+ self-service kiosks. Data is changing rapidly, and it needs to be 
distributed rapidly to these kiosks.

The kiosks in the network are connected by a messaging service to the central databases 
and changes are pushed out rapidly. More than 14,000 transactions are processed each 
second.

1.3.2  Faster bank payments

Government regulation that limits payment clearing times requires faster payment processes 
through near-instant money transfers between banks.

A high-performance payment solution is developed that uses a messaging solution to route 
message traffic between systems. Many existing components of the older payment system 
were able to be adapted to work with the new messaging layer, preserving investment in 
these programs. The government requirement was to be able to clear payments in under two 
hours. However, this solution is technically capable of completing its processing in seconds. It 
handles millions of transactions every day.

1.3.3  Airport information

At an airport, rapid changes in government regulations are coupled with increasing 
passenger volumes. This airport needs a flexible IT infrastructure that is populated with 
seamlessly integrated systems. The airport currently supports daily business operations with 
an inflexible heterogeneous infrastructure.
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1.4  A messaging-based solution 

A messaging-based solution establishes a shared integration layer, enabling the seamless 
flow of multiple types of data between the customer’s heterogeneous systems. For example, 
airport staff can now easily access important information, such as flight schedule changes 
from multiple systems. A messaging-based solution can also flexibly integrate new systems to 
accommodate evolving government regulations. 

1.4.1  Messaging in a service-oriented architecture

Service-oriented architecture (SOA) is a business-centric IT architectural approach. This 
approach supports business integration as linked, repeatable business tasks or services. 
SOA helps users build composite applications. Composite applications draw upon 
functionality from multiple sources within and beyond the enterprise to support horizontal 
business processes. SOA is an architectural style that makes this possible. For more 
information about SOA, see the following link:

http://www.ibm.com/soa

The most important characteristic of SOA is the flexibility to treat elements of business 
processes and the underlying information technology infrastructure as secure, standardized 
components (services). These components can be reused and combined to address 
changing business priorities. SOA requires that applications can interact with each other.

This book is not intended to discuss SOA in detail, but a critical aspect of implementing the 
architecture is to have connectivity. The seven main attributes of the connectivity 
infrastructure are:

� Reliable
� Secure
� Time flexible and resilient
� Transactional
� Incremental
� Ubiquitous
� Basis for enterprise service bus (ESB)

Any messaging component fitting in the connectivity infrastructure must satisfy and support 
all these capabilities. A flexible and robust messaging backbone is a key component of SOA 
and provides the transport foundation for an ESB.
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Chapter 2. Introduction to WebSphere MQ

This chapter introduces IBM WebSphere MQ and how it implements messaging. Core 
concepts are described, and major features are discussed.

This chapter contains the following sections:

� Messaging with WebSphere MQ
� Core concepts of WebSphere MQ
� Diverse platforms
� Relationships with other products

2
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2.1  Messaging with WebSphere MQ

WebSphere MQ is the market-leading messaging integration middleware product. Originally 
introduced in 1993 (under the MQSeries name), it always focused on providing an available, 
reliable, scalable, secure, and high-performance transport mechanism to address the 
requirements that we discussed in the previous chapter. 

WebSphere MQ always connected systems and applications, regardless of the platform or 
environment. It is essential to be able to communicate between a GUI desktop application 
that is running on Microsoft Windows and an IBM CICS® transaction that is running on IBM 
z/OS®. That value of universality is core to the product, and this value has not changed in all 
the time that it has been available. What has changed is the range of environments in which 
WebSphere MQ can or must live.

There are newer platforms, environments, requirements for qualities of service (QoS), and 
newer messaging patterns. Security has become more important as systems are made 
accessible to more users across an enterprise and beyond it. Performance and scalability 
requirements have increased. Regulators and auditors have imposed more controls on what 
can or must be done. Systems, which need access to enterprise data, have become both 
more powerful (faster, more processors, and so on) and much less powerful (sensors, tablets, 
and mobile phones).Therefore, WebSphere MQ has evolved. 

There are now more ways for applications to reach a WebSphere MQ queue manager and to 
access any existing applications that were already WebSphere MQ enabled. New 
applications can be written that use alternative interfaces and still maximize the reliability and 
performance of WebSphere MQ. Those new applications do not need a complete 
replacement of existing infrastructure. The applications work with what you already have and 
what you know how to manage.

At the same time as adding new interfaces, protocols, and environments, a large amount of 
the WebSphere MQ workload continues to be executed in mainframe-based data centers. 
The efficient use of, and integration with, the capabilities of the IBM z hardware and operating 
systems is critical. As this book shows, WebSphere MQ V7.1 for z/OS significantly improves 
the performance, capacity, and availability that can be achieved when running in a sysplex.
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2.1.1  A history of WebSphere MQ

Figure 2-1 shows a time line of WebSphere MQ versions and some highlights of the features 
and products that have been made available.

Figure 2-1   A history of WebSphere MQ

WebSphere MQ V7.0, in 2008, was a major release with significantly enhanced application 
programming interfaces (APIs) and a fully integrated publish/subscribe component. These 
enhancements made that messaging pattern a first-class way of working. WebSphere MQ 
V7.0.1, in 2009, was primarily an update to improve availability and performance.

Even though there was nearly a 2 ½ year gap before V7.1 in 2011, there were still 
incremental improvements. The improvements were to both the core WebSphere MQ product 
and new products.

WebSphere MQ File Transfer Edition is a solution for the integration of applications that are 
file-based, making it possible to reliably transfer files between systems. WebSphere MQ File 
Transfer Edition provides management, monitoring, and security of those transfers. 
WebSphere MQ File Transfer Edition uses existing skills and infrastructure as it uses 
WebSphere MQ as its backbone transfer medium.

Advanced Message Security (AMS) is a solution to the problem of securing message 
contents, even when those messages are at rest in queues or logs. Several regulatory 
frameworks require data to be protected from viewing, changing, or being stored on disks in 
the clear even during processing. One example of these regulations is the Payment Card 
Industry (PCI) for dealing with credit card data. There are other regulatory bodies for other 
types of data, for example, healthcare, that have similar requirements.

Both WebSphere MQ File Transfer Edition and WebSphere MQ Advanced Message Security 
have been integrated into the WebSphere MQ V7.5 package. WebSphere MQ File Transfer 
Edition has been renamed to Managed File Transfer. There are two variations of V7.5 that are 
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functionally identical but that have different licensing terms. The WebSphere MQ Advanced 
offering can be ordered under a single part number and price and it includes licenses to use 
the Managed File Transfer and AMS features. The original V7.5 offering has these features as 
separately orderable and priced components.

2.2  Core concepts of WebSphere MQ

Data is transferred between applications in messages. A message is a container that consists 
of three parts:

� WebSphere MQ Message Descriptor (MQMD): Identifies the message and contains 
additional control information. Examples of additional information are the type of message 
and the priority that is assigned to the message by the sending application.

� Message properties: An optional set of user-definable elements that describes the 
message without being part of the payload. Applications that receive messages can 
choose whether to inspect these properties.

� Message data: Contains the application data. The structure of the data is defined by the 
application programs that use it, and WebSphere MQ is largely unconcerned with its 
format or content.

The nodes, within a WebSphere MQ message queuing infrastructure, are called queue 
managers. The queue manager is responsible for accepting and delivering messages. 
Multiple queue managers can run on a single physical server or on a wide network of servers 
across a large variety of different hardware and operating system platforms.

Each queue manager provides facilities for reliable messaging.

The queue manager maintains queues of all messages that are waiting to be processed or 
routed. Queue managers are tolerant of failures and maintain the integrity of business-critical 
data that flows through the message queuing infrastructure. In the event of failures, such as a 
failure of the queue manager, machine failures, or a power loss, messages can be recovered. 
Recovery occurs when the queue manager is restarted and any transactions are brought to a 
consistent state.

The queue managers, within the infrastructure, are connected by logical channels over a 
communications network. Messages automatically flow across these channels from the initial 
producer of a message to the eventual consumer of that message based on the configuration 
of the queue managers in the infrastructure. Changes can be made to the configuration of 
queues and channels transparently for the applications. For example, a receiving application 
can be moved to a new machine, and a route to that machine can be defined without needing 
any changes to sending applications.
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Figure 2-2 shows these essential elements.

Figure 2-2   Basic WebSphere MQ components to connect applications

2.2.1  Asynchronous messaging

Two applications that must communicate, whether hosted on the same machine or separate 
machines, might have originally been designed to do so directly and synchronously. This was 
a common messaging technique that was used before the introduction of WebSphere MQ 
and is still used often. For example, using HTTP as a communications protocol is a 
synchronous operation.

In the synchronous model, the two applications exchange information by waiting for the 
partner application to become available and then sending the information. If the partner 
application is unavailable for any reason, including if it is busy communicating with other 
applications, the information cannot be sent.

All intercommunication failures that can occur between the two applications must be 
considered individually by the applications. This consideration happens whether the 
applications are on the same machine or on different machines that are connected by a 
network. The process requires a protocol for sending the information, confirming receipt of 
the information, and sending any subsequent reply.

Placing a WebSphere MQ infrastructure between the two applications allows this 
communication to become asynchronous. One application places information for the partner 
in a message on a queue, and the partner application processes this information when it is 
available to do so. If required, it can then send a reply message back to the originator. The 
applications do not need to be concerned with communication failures or recovery.
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2.2.2  WebSphere MQ clients

A WebSphere MQ client is a lightweight component of WebSphere MQ that does not require 
the queue manager runtime code to reside on the client system. It enables an application, 
running on a machine where only the client runtime code is installed, to connect to a queue 
manager that is running on another machine and perform messaging operations with that 
queue manager. Such an application is called a client and the queue manager is referred to 
as a server.

Using a WebSphere MQ client is an effective way of implementing WebSphere MQ 
messaging and queuing. The following benefits are available by using a WebSphere MQ 
client:

� There is no need for a licensed WebSphere MQ server installation on the client machine.

� Hardware requirements on the client system are reduced.

� System administration requirements on the client system are reduced.

� An application that uses a WebSphere MQ client can connect to multiple queue managers 
on different machines.

There are several implementations of the WebSphere MQ client that allow work in different 
language environments, including Java and .Net classes. There is no client for z/OS. On the 
z/OS platform, applications can only connect to queue managers within the same logical 
partition (LPAR).

2.2.3  WebSphere MQ Telemetry clients

WebSphere MQ Telemetry (or the MQTT protocol) was designed for small footprint, low 
processing, low bandwidth, unreliable networked systems where even a WebSphere MQ 
client was too heavyweight. It has an even simpler API to minimize the processing that is 
needed. The MQTT protocol is public and a number of implementations, which are not from 
IBM, exist. For more information, see the following website:

http://www.mqtt.org

The first implementations of MQTT were in places, such as sensors on pipelines, but it is also 
key to integration with newer environments, such as tablets and mobile phones. In the IBM 
Smarter Planet® vision of interconnected, integrated systems, much of that integration is 
expected to be with MQTT. The MQTT integration can be either as a raw API and protocol or 
working with solutions, such as IBM Worklight, that simplify how you build, deploy, and 
manage applications in the mobile world. 

The WebSphere MQ Telemetry feature brings together several pieces of existing technology 
and simplifies the experience for a seamless integration with WebSphere MQ applications. 

It is critical that the queue managers, to which MQTT devices connect, are able to handle the 
levels of scale that those solutions demand. Many thousands of devices can be generating 
data and require connectivity. Benchmarks have shown that a single queue manager can 
handle 100,000 MQTT connections. Messages from these devices are then passed to 
applications that are enabled with WebSphere MQ for further processing. Solutions, such as 

Important:  Because there must be a synchronous communication protocol between the 
client and the queue manager, WebSphere MQ clients require a reliable and stable 
network.
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smart meters for power utilities, health monitors, and traffic management systems in cities, 
have all been implemented by using MQTT services.

2.2.4  Application programming interfaces (APIs)

Applications can use WebSphere MQ with several programming interfaces. 

In many cases, applications are written (or rewritten) to use these interfaces. However, there 
are circumstances, particularly on z/OS, in which existing applications can be unchanged as 
WebSphere MQ provides bridges to and from their environments. In particular, there are 
bridges for CICS and IBM IMS™ transactions that convert WebSphere MQ messages. The 
messages are converted into input for these transactions and the reverse is done for returned 
responses.

Message Queue Interface
The native interface is the Message Queue Interface (MQI). The MQI consists of the following 
elements:

� Calls or verbs through which programs can access the queue manager and its facilities

� Structures that programs use to pass data to, and get data from, the queue manager

� Elementary data types for passing data to, and getting data from, the queue manager

� Classes in object-oriented languages for accessing data, the queue manager, and its 
facilities

Many programming languages and styles are supported, depending on the software and 
hardware platform, such as C, COBOL, Java, and C#.

Standardized APIs
Using a standardized API can add additional flexibility when accessing services through a 
message queuing infrastructure. This book uses the term standardized API to represent APIs 
that are not proprietary to an individual product, such as WebSphere MQ.

The following list notes examples of standardized APIs that can be used to access services 
that are provided through a WebSphere MQ infrastructure:

� Java Message Service (JMS)
� IBM Message Service Client (XMS)

Wide adoption of these APIs can occur across multiple products. For example, the JMS API is 
an industry standardized API for messaging within the Java Enterprise Edition (Java EE) 
specification.

These standardized APIs generally have less function than the MQI when they use a less 
capable messaging service than WebSphere MQ. The standards were written based on a 
common subset of functions available at the time on all relevant messaging providers.

HTTP
There is a defined mapping between HTTP operations (GET, POST, and DELETE) and a subset of 
MQI functions. A queue manager can be configured to have an HTTP server that is 
associated with it and then process HTTP requests directly. This makes it simple for 
applications to interact with WebSphere MQ systems without needing any WebSphere MQ 
code installed at all. For example, a smartphone has an HTTP interface that user-written 
applications can use, but there might not be a WebSphere MQ client available for that 
machine.
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2.2.5  Reliability and integrity

WebSphere MQ provides a number of features to maintain the reliable delivery of messages.

Persistent and non-persistent messages
Messages that contain critical business data, such as the receipt of payment for an order, 
must be reliably maintained and must not be lost in a failure.

Some messages might contain query data only, where the loss of the data is not crucial 
because the query can be repeated. In this case, performance is considered more important 
than data integrity.

To work with these opposing requirements, WebSphere MQ uses two types of messages. 
The following list shows the message types (persistent and non-persistent) with details:

� Persistent messages: WebSphere MQ does not lose a persistent message through 
network failures, delivery failures, or the restart of the queue manager.

Each queue manager keeps a failure-tolerant recovery log of all actions that are 
performed upon persistent messages. This log is sometimes referred to as a journal.

� Non-persistent messages: WebSphere MQ optimizes the actions that are performed upon 
non-persistent messages for performance.

Non-persistent message storage is based in system memory, so it is possible that the 
non-persistent messages can be lost in situations, such as network errors, operating 
system errors, hardware failure, queue manager restart, and internal software failure.

WebSphere MQ assures once-only delivery of persistent messages and it assures 
at-most-once delivery of non-persistent messages. Both persistence options allow developers 
to write applications with the knowledge that there are no duplicated messages.

Units of work
Many operations that are performed by an application cannot be considered in isolation. An 
application might need to send and receive multiple messages as part of one overall action. 
Only if all of these messages are successfully sent or received are any messages sent or 
received. These actions are considered to be a unit of work (UOW). All WebSphere MQ 
implementations support transactional operations, with sets of messages being committed or 
backed out as a single action.

An application that processes messages might also need to perform coordinated work 
against other resources and the WebSphere MQ infrastructure. For example, it might perform 
updates to information in a database based upon the contents of each message. The actions 
of retrieving the message, sending any subsequent reply, and updating the information in the 
database must only complete if all actions are successful.

Units of work that are performed by applications that access a WebSphere MQ infrastructure 
can include sending and receiving messages and updates to databases. On Distributed 
platforms, WebSphere MQ can coordinate all resources to ensure that a unit of work is only 
completed if all actions within that unit of work complete successfully. On all platforms, 
WebSphere MQ can also participate in global units of work that are coordinated by other 
products. For example, actions against a WebSphere MQ infrastructure can be included in 
global units of work that are coordinated by WebSphere Application Server and IBM DB2®. 
On z/OS, global units of work are often coordinated by CICS, IMS, or Resource Recovery 
Services (RRS).
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Interconnected queue managers
The communication that is performed across channels between queue managers is tolerant 
of network failures. The communication protocol that is used between queue managers 
maintains the once-only or at-most-once delivery that is indicated by the message’s 
persistence level.

2.2.6  WebSphere MQ messaging styles

There are two basic styles of messaging, which are known as point-to-point and 
publish/subscribe.

Point-to-point
The point-to-point style of messaging is built around the concept of message queues. 
Messages are stored on a queue by a source application, and a destination application 
retrieves the messages. This provides the capability of storing and forwarding messages to 
the destination application in an asynchronous or decoupled manner. Synchronous 
Request/Reply designs can also be implemented by using point-to-point asynchronous 
messaging.

The source application needs to know the destination of the message. The queue name is 
usually enough when alias queues, remote queues, or clustered queue objects are used, but 
some designs might require the source application to know the name of the remote queue 
manager.

Point-to-point messaging is normally used when there is known to be a single producer and a 
single consumer of the messages. 

For example, an application running on Linux might inquire about a piece of information in a 
database that is only directly readable by using a CICS transaction. The application sends a 
message with the inquiry details, a CICS transaction reads that message, then reads the 
database, and sends the response back in another message. In this example, a single CICS 
transaction can be processing requests from many instances of the Linux application and 
sending unique responses to each of those instances.

Publish/subscribe
WebSphere MQ publish/subscribe allows the provider of information to be further decoupled 
from consumers of that information. 

In point-to-point messaging, connected applications need to know the name of the queues 
through which they interact. The queue names might not actually be the same in the sender 
and receiver because the WebSphere MQ administrator can define aliases and other 
mechanisms to route to other systems.

In publish/subscribe, the applications agree on the name of a topic. The producer of a 
message is known as a publisher, and the message is labeled with a topic. The consumers of 
messages (subscribers) tell WebSphere MQ that they are interested in a topic, and each is 
sent a copy of the relevant messages. 

A topic is simply a text string, normally with a hierarchical structure, such as 
/Price/Fruit/Apples. A subscriber might use this topic exactly or subscribe to topics with a 
wild card so that there is no need to know all the topics that might be used by the publisher.

There can be a single subscriber, many, or none to any particular topic. The publisher does 
not need to know how many subscribers exist.
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The classic example of publish/subscribe is to distribute stock prices. Many people are 
interested in the price of a particular company’s stock, and there is a single provider 
publishing that price. Traders can join and leave the feed at any time, and the provider does 
not need to know that. Another example might be for a retailer to distribute catalog changes 
from a central site to all branches in a region.

2.2.7  WebSphere MQ topologies

A topology that consists of a single queue manager running on the same machine as its 
applications has limitations of scale and flexibility. WebSphere MQ clients can allow 
applications to run on remote machines. The connections between the applications and the 
queue manager require a reliable and stable network.

The limitations of this topology can be eliminated without alteration to the applications by 
using distributed messaging. Applications that access a service can use a queue manager 
that is hosted on the same machine as the application, providing a fast connection to the 
infrastructure. WebSphere MQ channels extend the connectivity by providing transparent 
asynchronous messaging with applications hosted by other queue managers on remote 
machines using a communications network.

There are two common types of distributed messaging: 

� Hub and spoke
� WebSphere MQ clustering

Hub and spoke 
Applications that are accessing a service connect to their local queue manager. Usually, this 
occurs as a direct connection to a queue manager that runs on the same machine. A client 
connection can also be used to a queue manager on the same machine or to a queue 
manager on a different machine over a fast, reliable network. For instance, an application in a 
branch office needs to access a service at headquarters. Asynchronous communication 
occurs through a local queue manager that acts as a spoke to the service application that is 
hosted on a hub queue manager.

The machine that hosts a hub queue manager can host all the applications that provide the 
central services, for instance, headquarters applications and databases.

This type of architecture is developed by manually defining the routes from the spoke queue 
managers to the hub queue manager or to many hub queue managers. Multiple services that 
are provided by the infrastructure can be hosted on different hub queue managers or through 
multiple queues on the same hub queue manager.
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Figure 2-3 shows a simple hub and spoke design. Messages can be sent from Branch A to 
Branch D, but only by passing through the Corporate Office queue manager.

Figure 2-3   A simple hub and spoke configuration

Manually defined routes do not have to follow a hub and spoke design. It is possible to have 
all the queue managers in the enterprise directly connected one to another. But when the 
number of queue managers grows, maintaining these routes can be a time-consuming 
activity.
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Figure 2-4 shows what happens when direct connections are created between all queue 
managers, and the number of queue managers grows.

Figure 2-4   Any-to-any direct paths without clustering

WebSphere MQ cluster
A more flexible approach is to join many queue managers together in a dynamic logical 
network that is called a queue manager cluster. A cluster allows multiple instances of the 
same service to be hosted through multiple queue managers.

Applications, requesting a particular service, can connect to any queue manager within the 
queue manager cluster. When applications make requests for the service, the queue 
manager to which they are connected uses a workload balancing algorithm to spread these 
requests across all available queue managers that host an instance of that service.
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Figure 2-5 shows an example of workload balancing. The message that is sent from 
Application A can be processed by any instance of Application Z. The cluster chooses one of 
the routes based on various criteria, including knowledge of which route it previously chose 
and which routes are still available. By default, each instance of Application Z must be sent 
the same number of messages from Application A.

Figure 2-5   Workload balancing in a WebSphere MQ cluster

This configuration allows a pool of machines to exist within the WebSphere MQ cluster, each 
of which hosts a queue manager and the applications that are required to provide the service. 
This topology is especially useful in a distributed environment, where capacity is scaled to 
accommodate the current load through multiple servers rather than one high-capacity server. 
A server can fail or be shut down for maintenance and service is not lost.

Using WebSphere MQ cluster technology can also simplify administration tasks because 
most of the message channels for application data transport are maintained by the cluster 
and do not have to be explicitly created.

Cluster:  The word cluster can have many meanings. In particular, it is often used to refer 
to high availability (HA) solutions that are based on failover technology. WebSphere MQ 
clusters can be used effectively with HA clusters, but they are providing different services.
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Figure 2-6 shows the simplified administration that is possible with a WebSphere MQ cluster. 
Messages flow directly between any two queue managers, without needing to pass through a 
hub. Only a single initial definition is required to a designated queue manager that is known 
as a full repository. From that point, relationships are automatically discovered when required 
and the associated channels are defined without intervention.

Figure 2-6   Simplified administration with a WebSphere MQ cluster and automatic definition

2.2.8  Availability

WebSphere MQ provides and integrates with a range of technologies for availability. The 
following list shows some of those technologies and the availability benefits:

� Platform-specific products, such as IBM PowerHA® (for IBM AIX®), Microsoft Cluster 
Services (for Windows), and automatic restart manager (ARM) for z/OS, can be used to 
control the restart and recovery of queue managers in failures.

� On distributed platforms, WebSphere MQ has a feature that is known as multi-instance 
support, which allows the queue manager to restart itself automatically on a backup 
machine.

� On z/OS, WebSphere MQ integrates with operating system and hardware-provided 
services for a sysplex. Shared queues can provide continuous availability, with messages 
being processed even when an entire LPAR fails and takes out a queue manager.

� WebSphere MQ clusters are not a complete answer to availability, but they can often form 
part of a fuller HA solution.

For a more detailed description of WebSphere MQ HA capabilities, see High Availability in 
WebSphere Messaging Solutions, SG24-7839.
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2.2.9  Security

WebSphere MQ has a range of security features to protect against unauthorized access to 
resources and data. The following list is of the most commonly used capabilities:

Access Control WebSphere MQ can be configured to permit only certain users or 
groups to connect or to use resources, such as queues or topics.

The permissions can be granular, for example, a user is permitted to 
put messages to a particular queue, but not to get messages from that 
same queue. New CHLAUTH records are used for controlling access 
through channels.

SSL/TLS The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 
are industry standardized technologies that provide assurance of 
identity and data privacy. SSL and TLS combine with WebSphere MQ 
client applications that connect to queue managers by using a 
communications network infrastructure. These security layers also 
work with queue manager to queue manager distributed queuing and 
clustering using a network.

SSL and TLS provide similar capabilities and build upon similar 
principles for establishing identity. TLS is often considered the 
successor of SSL because it provides some enhanced security 
features. SSL or TLS can be used for all communication that is 
performed over a network within a WebSphere MQ infrastructure.

AMS The Advanced Message Security feature or component supplies an 
additional layer of security on individual messages. It ensures that 
messages cannot be read or changed by unauthorized users, even 
when the message is not being transmitted on a network but is stored 
on a queue or recorded in a recovery log file.

2.2.10  Management and monitoring

WebSphere MQ provides many interfaces and services for configuring, managing, and 
monitoring its operation. 

For example, you can define and alter queue attributes, be sent alerts when a queue gets full 
or a channel stops unexpectedly, and obtain statistics about how much traffic is passing 
through a queue manager or individual applications.

There are two primary ways in which this management is done:

1. You can enter text commands, which are known as WebSphere MQ script commands 
(MQSC), into a console or scripting environment. For example, this command creates a 
queue with specified attributes:

DEFINE QLOCAL(MY.QUEUE) DESCR(‘Test Queue’) DEFPSIST(YES)

2. Programmatic control is done with WebSphere MQ messages that are sent to, or read 
from, well-known queues. The messages have documented formats, which are called the 
programmable command format (PCF), and many tools and products exist to create and 
use them.

Shipped as part of the WebSphere MQ product is an Eclipse-based tool that is called the 
WebSphere MQ Explorer. This graphical interface makes it easy to start using WebSphere 
MQ.
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Figure 2-7 shows the WebSphere MQ Explorer interface.

Figure 2-7   WebSphere MQ Explorer

2.3  Diverse platforms

WebSphere MQ provides simplified communication between applications running on many 
different hardware platforms and operating systems, which are implemented using different 
programming languages. This flexibility enables a business to choose the most appropriate 
infrastructure components for implementing or accessing services within their system. The 
messaging infrastructure understands differences between the underlying hardware and 
software on which individual nodes are running.

Some conversion of character data might be required for the data to be readable across 
different hardware and software platforms. For example, WebSphere MQ can convert 
between ASCII and EBCDIC code pages. It can also convert to and from Unicode characters. 
The messaging infrastructure can be configured to perform this conversion transparently so 
that each message is valid when it is retrieved at the destination.

To learn about supported platforms for WebSphere MQ, see the following IBM web pages:

� WebSphere MQ Product Information, available at:

http://www.ibm.com/support/docview.wss?uid=swg27007431

� WebSphere MQ System Requirements, available at:

http://www.ibm.com/software/integration/wmq/requirements
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2.4  Relationships with other products

One of the strengths of WebSphere MQ is that it does not require the use of any other specific 
products. The WebSphere word at the front of the product name merely indicates a branding 
within IBM, as one of many products that share the WebSphere brand. It does not force the 
use of any other WebSphere brand products. For example, if you want to use another 
vendor’s Java Platform, Enterprise Edition (JEE) application server, WebSphere MQ 
implements standard interfaces to support such a product.

However, there are two products that are frequently used alongside WebSphere MQ:

� WebSphere Message Broker
� WebSphere Application Server

2.4.1  WebSphere Message Broker

Enterprise systems consist of many logical endpoints, such as off-the-shelf applications, 
services, packaged applications, web applications, devices, appliances, custom built 
software, and many more. These endpoints expose a set of inputs and outputs, including:

� Connection protocols, such as WebSphere MQ, TCP/IP, database, HTTP, files, FTP, 
SMTP, and POP3

� Data formats, such as C or COBOL structures, XML, industry-specific (SWIFT, EDI, and 
HL7), and user-defined

An enterprise service bus (ESB) runs at the center of this wide range of connections and 
applications and protocols. It performs tasks, such as routing and data transformation, so that 
any endpoint can communicate with any other endpoint. Traffic passes through an ESB 
without requiring a complex and unmaintainable mesh of individual point-to-point 
connections. 

WebSphere Message Broker is an ESB product that connects these endpoints in meaningful 
ways to simplify application and device integration. It requires that WebSphere MQ is also 
installed on systems where it runs. This is partly because WebSphere MQ enabled 
applications are an important class of connectivity that it must support, but also because it 
uses queue manager-provided services, such as transaction coordination, publish/subscribe, 
and the reliable storage of messages. One of the WebSphere Message Broker administration 
tools (the WebSphere Message Broker Explorer) runs inside WebSphere MQ Explorer to 
provide a single point of control for both products.

One example of how WebSphere Message Broker simplifies integration is to consider a 
typical retail enterprise. Many different endpoints exist both inside and outside the 
organization, with data in multiple formats and protocols, such as TLOG, files, and 
JSON/HTTP. As new capabilities need to blend in (such as support for mobile apps and 
analytics), the flexibility of WebSphere Message Broker makes it simple to add these 
functions without disrupting existing services.

Distributed Platforms:  When it is important to point out platform differences, the term 
Distributed Platforms is often used to cover all of the WebSphere MQ implementations, 
except for z/OS. This term refers to WebSphere MQ on Windows, UNIX, Linux, and i. 
Do not confuse Distributed Platforms with references to Distributed Queueing.
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For more information about WebSphere Message Broker, see the following resources:

� Using WebSphere Message Broker V8 in Mid-Market Environments, SG24-8020:

http://www.redbooks.ibm.com/abstracts/sg248020.html

� WebSphere Message Broker Library:

http://www-01.ibm.com/software/integration/wbimessagebroker/library/

2.4.2  WebSphere Application Server

WebSphere Application Server is a product that hosts and runs applications. At its core, it is a 
JEE environment, implementing and supporting a range of open standards. One such 
standard that JEE applications often use is the Java Message Service (JMS). 

JEE application servers make it possible to use any vendor’s JMS implementation, but there 
is no requirement about how simple it is to use a non-native JMS provider. WebSphere 
Application Server includes both the runtime Java client code and the administration panels 
that make it easy to connect to a WebSphere MQ queue manager. Therefore, web 
applications can reliably send messages to, and get responses from, any other WebSphere 
MQ enabled application that might be running in the enterprise. 

For more information about WebSphere Application Server, see the following resources:

� WebSphere Application Server V8.5: Technical Overview Guide, REDP-4855:

http://www.redbooks.ibm.com/abstracts/redp4855.html

� WebSphere Application Server Library:

http://www-01.ibm.com/software/webservers/appserv/was/library/

 

 

 

24 WebSphere MQ Primer: An Introduction to Messaging and WebSphere MQ

http://www.redbooks.ibm.com/abstracts/redp4855.html
http://www-01.ibm.com/software/webservers/appserv/was/library/
http://www.redbooks.ibm.com/abstracts/sg248020.html
http://www-01.ibm.com/software/integration/wbimessagebroker/library/
http://www.redbooks.ibm.com/abstracts/sg248020.html
http://www.redbooks.ibm.com/abstracts/sg248020.html
http://www-01.ibm.com/software/integration/wbimessagebroker/library/


 

Chapter 3. Getting started with WebSphere 
MQ

This chapter goes into a deeper level of detail than the previous chapter. It shows how to get 
started with configuring a WebSphere MQ environment. Adapted and brought up-to-date from 
the MQSeries Primer, REDP-0021, published in 1999, it shows how the elements described 
in Chapter 2, “Introduction to WebSphere MQ” on page 7 are implemented and used. 

This chapter contains the following topics:

� Messages
� WebSphere MQ objects
� Configuring WebSphere MQ
� Writing applications
� Triggering
� Configuring a WebSphere MQ client
� Security
� Configuring communication between queue managers
� Summary

3
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3.1  Messages

A message is a container that consists of three parts:

� WebSphere MQ Message Descriptor (MQMD): Identifies the message and contains 
additional control information, such as the type of message and the priority that is 
assigned to the message by the sending application.

� Message properties: An optional set of user-definable elements that describes the 
message without being part of the payload. Applications that receive messages can 
choose whether to inspect these properties.

� Message data: Contains the application data. The structure of the data is defined by the 
application programs that use it; WebSphere MQ is largely unconcerned with its format or 
content.

An individual message can contain up to 100 MB of data. There are no constraints on the 
format of this data. It can be readable text, binary, XML, or any combination. 

3.1.1  Message descriptor (MQMD)

The MQMD is a fixed structure that describes the message. The fields within the structure 
have various functions:

� Describe the message format
� Routing
� Describe the sender of the message
� Instruct the queue manager how to process the message 

This list explains the important fields in the MQMD:

� The MsgType describes the high-level purpose of the message. The most frequently used 
values in this field are datagram, request, reply, and report. A datagram is set by the 
sending application when it is not expecting any response from the receiving application.

� MsgID (message ID) and CorrelID (correlation ID) are used to identify a specific request 
or reply message. The programmer can set a value in one or both fields or have 
WebSphere MQ automatically create a unique ID. These fields are 24 bytes long and are 
not treated as characters that can be converted between code pages, such as ASCII to 
EBCDIC. 

A normal pattern for application programs is that the message ID that is generated by 
WebSphere MQ when a message is put to a queue is used to identify responses sent 
back to the designated reply queue. The program that receives the request message 
copies the incoming message ID into the correlation ID of the reply message. This allows 
the originating program (the one that gets the reply) to instruct the queue manager to 
return a specific message in the reply queue instead of just getting the first message from 
the queue. It is particularly important when multiple applications are reading messages 
from the same queue.

� The Persistence flag selects whether the message must be treated as persistent, and 
therefore recoverable in a system failure, or whether the message is non-persistent and 
can be discarded when an error occurs. A programmer can explicitly set persistence to be 
on or off, or allow the value to be controlled by a system administrator.

Queues can hold a combination of persistent and non-persistent messages.

� Messages have a Priority that is set as a value between 1 and 10. An administrator can 
define that messages are retrieved in priority order, rather than true first in first out (FIFO) 
sequencing.
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� The queue manager records the PutTime and PutDate when the message was initially put 
to a queue. These values are in Coordinated Universal Time (UTC), or Greenwich Mean 
Time (GMT), not the local time, to allow a consistent view of time when messages pass 
between systems in different timezones.

� Messages might have Expiry time. After this time has passed, the message cannot be 
returned to any application. This is used for situations where a message is not going to be 
useful after a while. For example, after sending a request message, an application often 
waits a finite period (for example, 10 seconds) for a reply to be returned and shows an 
error if nothing is received in that time. Knowing that, both the request and response 
messages can have a 10-second expiry time set. So, in the event of a system failure, the 
messages are removed from the queues when they are no longer useful and do not waste 
disk or memory space.

� When sending a request message, the responding application must be told where to send 
the reply. This is usually done by providing the ReplyToQ and ReplyToQMgr names in the 
initial request.

� The Format field describes the message data. It is often set to MQSTR (to denote text 
data) or NONE (to denote binary data), but there are other possible values. In some 
cases, the body of the message is itself made up of additional WebSphere MQ-defined 
structures and the format field tells WebSphere MQ what to do with that data. 
User-defined formats can also be used. The format setting causes data conversion to take 
place when it is needed. For example, it causes WebSphere MQ to convert text data 
between ASCII and EBCDIC code pages (the CodedCharSetId field) when the sending 
and receiving applications are on different systems using those character sets.

� Information about the sending application (program name and path) and the platform on 
which it is running are set in the PutApplType and PutApplName fields.

� The Report field is used to request information about the message as it is processed. For 
example, the queue manager can send a report message to the sending application when 
it puts the message in the target queue or when the receiving application gets it off the 
queue.

� Each time a message is backed out, the BackoutCount is increased. An application can 
check this counter and act on it, for example, send the message to a different queue where 
the reason for the backout is analyzed by an administrator.

� Messages can be sent as part of a related group. The receiving application can then wait 
until all messages from the group have arrived before starting its processing. Message 
grouping also guarantees that the order in which the messages are sent is preserved. The 
GroupId and MsgSeqNumber fields in the MQMD define this processing.

3.1.2  Message properties

An application can set arbitrary properties of a message that are not part of the fixed MQMD 
structure. For example, a message can have a color property assigned, and then be 
described as red or green. Properties can be strings, numbers, or boolean values.

These properties are not considered part of the message data, but can optionally be viewed 
and modified by applications. Properties can also be used to select the messages that are 
returned to an application. For example, an application can request to be sent all of the green 
messages but none of the red messages.

Message properties are most commonly used in publish/subscribe applications to provide an 
additional layer of selection beyond just the topic. It is similar to an SQL query using the WHERE 
clause to return specific rows from a database table.
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3.2  WebSphere MQ objects

There are currently 12 types of objects that can be configured in WebSphere MQ, as well as 
various other resources (for example security access controls, or subscriptions) that are 
managed by WebSphere MQ. The most important objects from this set are queues, channels, 
topics, and the queue manager itself. 

Objects have names that are up to 48 characters long (20 characters for channels) and are 
case-sensitive. A queue that is called queue.abc is different from a queue called QUEUE.ABC. 
Both of these queues can be defined on a queue manager, although it is confusing to do so. 
Objects have attributes or properties that define the behavior when they are used. 

Some objects have subtypes, which in turn have different sets of properties. For example, the 
CONNAME is an attribute of SENDER channels but not of RECEIVER channels.

3.2.1  Queue manager

The queue manager is the fundamental resource in WebSphere MQ. Almost all other 
resources are owned by a queue manager. The only resource that is an exception is the 
queue-sharing group, which consists of a set of queue managers on z/OS.

It is the queue manager that manages the storage of data and the recovery after a failure. The 
queue manager coordinates all the applications updating messages on queues, and deals 
with the isolation and locking that are required to maintain consistency. The queue manager 
maintains statistics and status information for reporting, as needed.

A queue manager has many attributes to control its processing. For example, various types of 
events can be enabled or disabled to report an important activity in the system. Resource 
constraints, such as the maximum number of queues that an application can have open 
simultaneously, are defined here. The publish/subscribe capabilities are enabled at the queue 
manager level. 

The first activity for a WebSphere MQ administrator is to create a queue manager. After a 
queue manager is created and started, the other objects can be defined on that queue 
manager by using WebSphere MQ management commands and application programming 
interfaces (APIs). 

3.2.2  Queues

Queues are used either to store messages that are sent by programs or are pointers to other 
queues or topics. There are a number of different queue types and some special uses of 
queues.

Queue types
The following queue types can be defined within a queue manager:

Local queue A local queue is the only place where messages are physically stored. 
All other queue types must be defined to point at a local queue. 

Alias queue An alias queue is usually a pointer to a local queue. Using an alias 
queue definition is a convenient way to allow different applications to 
use different names for the same real queue. An alias queue can also 
be used as a pointer to a topic for publish/subscribe applications.
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Remote queue A remote queue is another type of pointer. A remote queue definition 
describes a queue on another queue manager. When an application 
opens a remote queue, the queue manager to which the application is 
connected ensures that messages are tagged and stored locally in 
preparation for sending to another queue manager. Applications 
cannot read messages from remote queues.

Model queue A model queue is a template that can be used by an application to 
dynamically create a real queue. These templates are often used to 
create a unique queue for reply messages and then the queue is 
automatically deleted when the application ends. 

Dynamic queue These queues are created by the process of opening a model queue. 
They are real local queues, but they cannot be explicitly created 
through administration interfaces. 

There are two subtypes of dynamic queue: A temporary dynamic 
queue (TDQ) is automatically deleted when the application that caused 
it to be created ends. A permanent dynamic queue (PDQ) survives the 
creating application and can be reused by another application.

One common misconception is to talk about persistent queues or non-persistent queues. With 
one exception, there are no such things. Queues can hold both persistent and non-persistent 
messages, although they have an attribute to define the default persistence value for 
messages put to them if the application does not explicitly set the value. The exception to this 
rule is a TDQ that can only be used for non-persistent messages.

Special queues 
Some queues are defined as having particular purposes. This list describes the main uses:

Transmission queue A transmission queue is a local queue with the USAGE(XMITQ) attribute 
configured. It is a staging point for messages that are destined for a 
remote queue manager. Typically, there is one transmission queue for 
each remote queue manager to which the local queue manager might 
connect directly. If the destination is unavailable, messages build up 
on the transmission queue until the connection can be successfully 
completed. Transmission queues are transparent to the application. 
When an application opens a remote queue, the queue manager 
internally creates a reference to the relevant transmission queue and 
messages are put there.

Initiation queue An initiation queue is a local queue to which the queue manager writes 
a trigger message when certain conditions are met on another local 
queue. For example, this is done when a message is put into an empty 
message queue or in a transmission queue. Such a trigger message is 
transparent to the programmer, but it is a powerful mechanism to 
cause applications or channels to start executing only when there is 
work to be processed. For more information about how this process 
works, see 3.5, “Triggering” on page 39.

Dead-letter queue A dead-letter queue (DLQ) is usually defined when a queue manager 
is created. It is used for situations when a queue manager cannot 
deliver a message across a channel. Here are some examples:

The destination queue is full.
The destination queue does not exist.
Message puts have been inhibited on the destination queue.
The sender is not authorized to use the destination queue.
The message is too large.
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When these conditions are met, the messages are written to the DLQ. 
A queue manager has at most one DLQ.

Messages are only sent to the DLQ after they have successfully been 
put to a local transmission queue first. 

If an application putting a message receives an error that indicates the 
output queue is full, the message is not put to a DLQ. The message is 
never accepted by the queue manager for processing. 

Event queue The queue manager generates event messages when certain things 
happen. For example, events can occur when a queue is nearly full or 
when an application is not authorized to open a queue. These event 
messages are written to one of the predefined event queues and can 
then be processed by management tools. All event queues have 
similar names that indicate the type of event that is held there. 
SYSTEM.ADMIN.QMGR.EVENT or SYSTEM.ADMIN.CHANNEL.EVENT are 
examples of queue manager event queues.

Cluster queue A cluster queue is a local queue that is configured to advertise its 
existence within a WebSphere MQ cluster. Applications can refer to 
this queue without needing any additional definitions, and all the 
queue managers in the cluster know how to route messages to it. 
Usually, there are multiple cluster queues of the same name within the 
cluster. The sending queue manager selects which cluster queue to 
use based on a workload balancing algorithm.

3.2.3  Topic objects

WebSphere MQ V7.0 introduced a fully integrated publish/subscribe capability, which 
includes the ability to define topic objects. 

A topic is a character string that describes the nature of the data that is published in a 
publish/subscribe system. Instead of including a specific destination address in each 
message, a publisher assigns a topic to the message. The queue manager matches the topic 
with a list of subscribers who have subscribed to that topic, and delivers a copy of the 
published message to each of those subscribers. 

Although any character string can be used as the topic, it is usual to choose topics that fit into 
a hierarchical tree structure. That structure helps with establishing security policies and 
makes it easy for applications to subscribe to multiple topics in a single step.

Topic objects represent a subset of the topics that are used by applications. 

There can be many thousands of topics that are used, but no administrator wants to create 
definitions of all of them. The topic objects are used as control points in the tree of in-use 
topics where different configurations are needed. 

For example, subbranches of the topic tree have different access control requirements. Topic 
objects are used to assign authorizations to any topic that is lower in the tree. Whenever a 
decision on access control is required, the queue manager finds the topic object that is the 
closest parent in the tree to the application-provided topic string and uses that object’s 
definition. 
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3.2.4  Channels

A channel is a logical communication link. In WebSphere MQ, there are two kinds of 
channels, with various subtypes:

Message channels A message channel connects two queue managers via message 
channel agents (MCAs). These channels are unidirectional, in that 
messages are only sent in one direction along the channel.

An MCA is a program that transfers messages from a transmission 
queue to a communication link, and from a communication link into the 
target queue.

There are subtypes of message channel, with the different types 
distinguished by whether they are used for receiving or sending 
messages, whether they initiate the communication to the partner 
queue manager, and whether they are used within a cluster or not.

A channel definition on one queue manager has to be matched with a 
channel definition of the same name with an appropriate subtype on 
the partner queue manager.

The different subtypes of message channels are known as SENDER, 
RECEIVER, SERVER, and REQUESTER with CLUSTER-SENDER and 
CLUSTER-RECEIVER used for clustered configurations. While other 
combinations are possible, the most common configuration is to have 
a SENDER channel defined on one queue manager with an identically 
named RECEIVER channel on a second queue manager.

When the first versions were released, there was no single dominant 
network protocol. WebSphere MQ was designed to support several 
network protocols for the MCAs, and these other protocols can still be 
used, but it is now rare to find anything other than TCP/IP. 

MQI channels A Message Queue Interface (MQI) channel connects a WebSphere 
MQ client to a queue manager across a network. An MQI channel is 
bidirectional in that one channel can be used for a client to both send 
and receive messages. The two subtypes of MQI channel are SVRCONN 
(a definition used by the queue manager) and CLNTCONN (a definition 
used by the client program).

For two-way messaging between queue managers, there are usually two symmetric pairs of 
message channels defined. One pair is for messages flowing in one direction; the other pair 
handles the reverse traffic. 

Channels are usually configured to start automatically when messages are available on the 
associated transmission queue. This feature uses trigger attributes that are set on the 
transmission queue.

When a WebSphere MQ cluster is in use, it is not necessary to manually define the channels. 
The cluster has enough information to create channels dynamically when needed. 
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Figure 3-1 shows a simple configuration that connects two queue managers and their 
relationship to some of the object definitions that are described in this section.

Figure 3-1   Using a channel to send messages from QMA to QMB

Listeners
One further part of the inter-communications configuration is the concept of a listener. 
Listeners are programs that wait for inbound network connection requests, and then start the 
appropriate channel to handle the communication. 

All queue managers need at least one listener running if they are going to receive messages 
or client connections. A standard configuration is to have a TCP/IP listener waiting for 
connections on port 1414. If multiple queue managers are running on the same system, they 
require individual listeners to be configured on different ports.

3.3  Configuring WebSphere MQ

This section shows some basic steps on getting started with WebSphere MQ. It uses 
Microsoft Windows as the operating system example. Other distributed platforms are similar. 

On z/OS, the initial steps are different and might involve several different administrators. 
These steps are fully described in the WebSphere MQ Information Center:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp

After the queue manager is running, managing the WebSphere MQ object definitions is the 
same regardless of platform. The graphical WebSphere MQ Explorer is an easy way to create 
and modify definitions but the examples that are shown here use the command-line 
mechanisms.

3.3.1  Creating a queue manager

First, a WebSphere MQ administrator creates a queue manager. 
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The crtmqm command creates a queue manager. Figure 3-2 shows an example of creating a 
queue manager called QMA.

Figure 3-2   Creating a queue manager

There are no limits to the number of queue managers that can be created and run on a 
server. It is possible to designate one queue manager as the default for the server, and any 
application or administration task uses that default if no queue manager name is used. 
However, it is clearer to have no default queue manager and always explicitly use the name.

There are default definitions for the objects that every queue manager needs, such as model 
queues. These objects are created automatically. 

To start this queue manager and make it available for applications, use the strmqm command 
as shown in Figure 3-3.

Figure 3-3   Starting the queue manager

It is now possible for applications to start putting and getting messages; the administrator can 
perform additional configuration by using the WebSphere MQ administration tools.

3.3.2  Managing WebSphere MQ objects

On distributed platforms, the runmqsc program provides a console into which management 
commands can be typed. On z/OS, the same commands can be entered through panels, 
System Display and Search Facility (SDSF), or submitted as jobs.

C> crtmqm QMA
WebSphere MQ queue manager created.
Directory 'C:\mqm\qmgrs\QMA' created.
The queue manager is associated with installation 'Installation2'.
Creating or replacing default objects for queue manager 'QMA'.
Default objects statistics : 77 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

Important:  Queue manager names are case-sensitive.

C> strmqm QMA
WebSphere MQ queue manager 'QMA' starting.
The queue manager is associated with installation 'Installation2'.
5 log records accessed on queue manager 'QMA' during the log replay phase.
Log replay for queue manager 'QMA' complete.
Transaction manager state recovered for queue manager 'QMA'.
WebSphere MQ queue manager 'QMA' started using V7.5.0.0.
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The queue manager must be running before you use the runmqsc command. It works in two 
ways:

� Type the commands directly.

� Use input direction to work with a text file that contains a list of commands. For example, 
entering runmqsc QMA < commands.mqsc runs the commands in the file.

The commands in Figure 3-4 are examples that are used to create the local queue QUEUE1. 
They then create a channel to send messages to another queue manager, and they create 
the transmission queue that is associated with the channel. To end the session, type end.

Figure 3-4   Defining objects using runmqsc

There are commands to define, alter, and delete all the properties of all WebSphere MQ 
objects, including queues and channels, and the queue manager. The runmqsc command can 
also be used to modify queue managers on remote machines, but that is beyond the scope of 
this introduction.

3.4  Writing applications

This section is an outline of the WebSphere MQ programming interface, the MQI. It includes a 
brief program that is written in C to give you an understanding of how WebSphere MQ 
programs look. There are many sample programs that are included with WebSphere MQ to 
demonstrate more of the features. These samples are written in a range of languages, 
including C, COBOL, C#, and Java. The Java examples show the use of both the full-function 
MQI (in its object-oriented form) and Java Message Service (JMS).

C> runmqsc QMA
5724-H72 (C) Copyright IBM Corp. 1994, 2011.  ALL RIGHTS RESERVED.
Starting MQSC for queue manager QMA.

define qlocal('QUEUE1')
     1 : define qlocal('QUEUE1')
AMQ8006: WebSphere MQ queue created.
define channel('TO.QMB') chltype(sdr) xmitq('QMB') conname(hostB)
     2 : define channel('TO.QMB') chltype(sdr) xmitq('QMB') conname(hostB)
AMQ8014: WebSphere MQ channel created.
define qlocal('QMB') usage(xmitq)
     3 : define qlocal('QMB') usage(xmitq)
AMQ8006: WebSphere MQ queue created.
end
     4 : end
3 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

C>

Case-sensitive:  Attributes in the runmqsc commands are automatically converted to 
uppercase unless they are enclosed in single quotation marks. WebSphere MQ is 
case-sensitive for object names, and forgetting this is a common mistake. It typically results 
in an UNKNOWN_OBJECT_NAME error when trying to open a queue.
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The MQI
The MQI currently has 26 verbs. There were about 13 until WebSphere MQ V7.0 was 
released, and then the number doubled to support publish/subscribe and message property 
operations. The most commonly used verbs are shown in Table 3-1. Each verb has only a few 
parameters. 

Many of the parameters to these verbs are structures that contain additional fields that are 
used by the verb. New releases of WebSphere MQ typically introduce function that is 
controlled by additional fields in these structures. In order to maintain compatibility with 
existing applications, these structures contain a version number that is incremented whenever 
the structure is extended. Applications compiled against the older definitions have the original 
structure versions, and the queue manager does not reference the newer fields. The number 
of parameters for each verb does not change with new releases, which is done to maintain 
compatibility.

Success or failure of each call is indicated by two parameters that are included in every verb, 
the Reason and CompCode values.

Table 3-1   The main MQI verbs

The following list provides more information about these verbs:

MQCONN and MQCONNX
These verbs create a connection with a queue manager. MQCONN 
was the original verb, but when additional parameters were required, a 
new verb (MQCONNX) was introduced to avoid requiring changes to 
old applications. MQCONNX gives much more control over the 
connection, including the ability to specify everything needed to create 
a client connection to a queue manager on a different machine.

MQI verb Description

MQCONN/MQCONNX Connect to a queue manager

MQDISC Disconnect from a queue manager

MQOPEN Open a specific queue or topic

MQCLOSE Close a queue or topic

MQPUT Put a message on a queue, or publish a message

MQGET Get a message from a queue, or receive a publication

MQPUT1 MQOPEN + MQPUT + MQCLOSE

MQSUB Create a subscription

MQINQ Inquire about the properties of an object

MQSET Set properties of an object

MQBEGIN Begin a globally coordinated (XA) unit of work 

MQCMIT Commit a unit of work

MQBACK Back out
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An application creates the connection when it starts to run, and it does 
not disconnect until the application ends. Creating the connection is 
the most expensive (time-consuming) verb in the MQI, especially if a 
secure socket needs to be created to a remote queue manager. That 
means that it needs to be used infrequently.

MQDISC Disconnects the application from the queue manager. If there is an 
uncommitted transaction, calling MQDISC commits that transaction. If an 
application ends, or abends, without calling MQDISC, the transaction is 
rolled back.

MQOPEN Makes an object, such as a queue or topic, available to the application. 
A queue needs to be opened before an application can put or get 
messages. Parameters to this verb include the object name and an 
indication of how the application intends to use it. For example, flags 
indicate whether the application puts or gets messages (or both). This 
information is used to perform security checks. Applications that are 
not permitted to access the object in the requested way are rejected.

It is possible to open a queue for exclusive use, or to share it with other 
applications. Sharing a queue might improve performance because 
more work can be processed in parallel.

MQCLOSE It is the reverse of MQOPEN. It indicates that the application is no longer 
interested in using this object. Many people believe that MQCLOSE 
commits any transactional work that uses the queue, which is not true. 

MQPUT Puts a message to a queue, or publishes a message on a topic.

MQGET Retrieves a message from a queue. This verb can return immediately, 
or wait a specified time until a message satisfying certain criteria 
arrives on the queues. 

There are also options to retrieve a message non-destructively 
(browse), including the capability of browsing all messages in 
sequence on a queue. 

MQPUT1 This verb is a shorthand combination of MQOPEN, MQPUT, and MQCLOSE. It 
exists because a typical application pattern is to read incoming 
messages, perform some work, and then send a message back to a 
unique reply queue that is owned by another application. If the reply 
queue is only used one time, this verb is more efficient than the three 
verbs that it replaces. 

There is no corresponding MQGET1 verb because the pattern of only 
getting a single message from a particular queue is not common. Even 
applications, which use a unique, dynamically created, reply queue, 
must have opened the model queue before trying to retrieve from the 
queue, so the shorthand does not work.

MQSUB Creates a subscription to a topic. The subscription can include 
wildcards so that multiple topics are referenced by the same 
subscription. Published messages that match the topic are sent to a 
queue that is ready for MQGET to process them. The subscriber’s queue 
can either be named explicitly as a parameter to MQSUB, or 
automatically created.

MQINQ Requests information about the queue manager or one of its objects. 
Not all attributes of queues or queue managers can be inquired about 
by using this verb, but some important ones can be.
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MQSET Changes attributes of an object. It has a similar subset of capabilities 
to MQINQ.

MQBEGIN Begins a unit of work that is coordinated by the queue manager and 
that can involve external XA-compliant resource managers. It is used 
to coordinate transactions that use both queues (MQPUT and MQGET 
under syncpoint) and database updates (SQL commands). This verb 
is not required if only WebSphere MQ resources are updated by the 
application.

This verb is only available on locally connected applications on 
distributed platforms. It is not available on z/OS, and on WebSphere 
MQ clients. On WebSphere MQ clients, an external coordinator, such 
as an application server, is required. On z/OS, applications use 
Resource Recovery Services (RRS) as the coordinator. 

MQCMIT Specifies that a syncpoint is reached. Messages put as part of a unit of 
work are made available to other applications. Messages retrieved as 
part of a unit of work are permanently deleted from the queue. If the 
queue manager is acting as a global transaction coordinator, the XA 
commit process in other resource managers is invoked. 

If the application uses an external transaction coordinator, such as 
WebSphere Application Server or CICS, it must not call MQCMIT. 
Transactional control is performed by using the coordinator’s APIs.

MQBACK  Tells the queue manager to back out all message puts and gets that 
have occurred since the last syncpoint. Messages put as part of a unit 
of work are deleted. Messages retrieved as part of a unit of work are 
reinstated on the queue. If the queue manager is acting as a global 
transaction coordinator, the XA backout process in other resource 
managers is invoked.

If the application uses an external transaction coordinator, such as 
WebSphere Application Server or CICS, it must not call MQBACK. 
Transactional control is performed by using the coordinator’s APIs.

3.4.1  A code fragment

The code fragment in Figure 3-5 on page 38 is a simple example to provide the concept of 
how to write WebSphere MQ applications. 

The example shows the operations that are needed to put a message on one queue and get 
the reply from another queue. The sample program amqsreq0.c, which is shipped with 
WebSphere MQ, contains similar functions. There is no error handling in this fragment.
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Figure 3-5   A code fragment

CompCode and Reason fields:  The fields CompCode and Reason contain completion 
codes for the verbs. CompCode is a simple indicator of success, warning, or failure. The 
Reason variable is a more detailed code and it provides a more precise cause of any failure.

MQHCONN HCon; // Connection handle
MQHOBJ HObj1; // Object handle for queue 1
MQHOBJ HObj2; // Object handle for queue 2
MQLONG CompCode, Reason; // Return codes
MQLONG options;
MQOD od1 = {MQOD_DEFAULT}; // Object descriptor for queue 1
MQOD od2 = {MQOD_DEFAULT}; // Object descriptor for queue 2
MQMD md = {MQMD_DEFAULT}; // Message descriptor
MQPMO pmo = {MQPMO_DEFAULT}; // Put message options
MQGMO gmo = {MQPMO_DEFAULT}; // Get message options

// 1 Connect application to a queue manager.
strcpy (QMName,"QMA");
MQCONN (QMName, &HCon, &CompCode, &Reason);

// 2 Open a queue for output
strcpy (od1.ObjectName,"QUEUE1");
MQOPEN (HCon,&od1, MQOO_OUTPUT, &Hobj1, &CompCode, &Reason);

// 3Open input queue
options = MQOO_INPUT_AS_Q_DEF;
strcpy (od2.ObjectName, "QUEUE2");
MQOPEN (HCon, &od2, options, &Hobj2, &CompCode, &Reason);

// 4 Put a message on the queue
strcpy(mqmd.ReplyToQ,”QUEUE2”);
pmo.Options |= MQPMO_NO_SYNCPOINT;
MQPUT (HCon, Hobj1, &md, &pmo, 100, &buffer, &CompCode, &Reason);

// 5 Close the output queue
MQCLOSE (HCon, &Hobj1, MQCO_NONE, &CompCode, &Reason);

// 6 Get message
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT;
gmo.WaitInterval = 10 * 1000;
buflen = sizeof(buffer - 1);
memcpy (md.MsgId, MQMI_NONE, sizeof(md.MsgId);
memset (md.CorrelId, 0x00, sizeof(MQBYTE24));
MQGET (HCon, Hobj2, &md, &gmo, buflen, buffer, 100, &CompCode, &Reason);

// 7 Close the input queue
options = 0;
MQCLOSE (HCon, &Hobj2,options, &CompCode, &Reason);

// 8 Disconnect from queue manager
MQDISC (HCon, &CompCode, &Reason);
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Comments
The following numbers correspond to the numbers that are shown in Figure 3-5 on page 38:

1 This statement connects the application to the queue manager with the name QMA. If the 
parameter QMName does not contain a name, the default queue manager is used. A handle that 
references the queue manager is stored in the HCon variable. This handle must be used in all 
subsequent verbs that are used on this connection. 

2 To open a queue, the queue name must be moved into the object descriptor to be used for 
that queue. This statement opens QUEUE1 for output only (open option MQOO_OUTPUT). The 
handle to the queue and values in the object descriptor are returned. The handle Hobj1 must 
be specified in the MQPUT. 

3 This statement opens QUEUE2 for input only using the queue-defined defaults. 

For simplicity in this example, a predefined local queue is assumed. In practice, many 
applications use a model queue in the MQOPEN verb. In that case, returned values from MQOPEN 
contain the real name of a dynamically created queue, and that value is put into the ReplyToQ 
field in the MQMD.

4 MQPUT places the message assembled in a buffer on a queue. MQPUT has these parameters:

� The handle of the queue manager (from MQCONN).

� The handle of the queue (from MQOPEN).

� The message descriptor.

� A structure that contains options for the put. The MQPMO_NO_SYNCPOINT flag explicitly 
ensures that the operation does not start a transaction.

� The message length.

� The buffer that contains the data.

5 This statement closes the output queue. Because the queue is predefined, no close 
processing takes place (MQOC_NONE).

6 For the get, the MQGMO_WAIT option is used to wait for up to 10 seconds for the reply 
message. The MQGET needs the length of the buffer as an input parameter. Because there are 
no additional criteria specified, the first message from the queue is read. If no message 
arrives within the timeout, the Reason code is 2033 (MQRC_NO_MSG_AVAILABLE). The application 
must able to handle such failures.

7 This statement closes the input queue.

8 The application disconnects from the queue manager.

3.5  Triggering

Triggering is a mechanism that is used by WebSphere MQ to automatically start applications 
only when there is work available for those applications to process. It can save system 
resources because an application does not need to be permanently running, perhaps sitting 
in a long-running MQGET call, waiting for messages to appear on its input queue.
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Triggering relies on several of the attributes that are set on queues, and on a specialized 
application that is known as a trigger monitor. The trigger monitor’s purpose is to wait until a 
controlling trigger message arrives, and then start the real application. While this might 
sound as though one long-running program has been exchanged for another, a single trigger 
monitor can deal with starting many different applications.

There is usually one trigger monitor running for each type of application that needs to be 
started. For example, CKTI is a trigger monitor that can only start CICS transactions on z/OS 
while runmqdnm is a trigger monitor that starts .Net programs on Windows. For all distributed 
platforms, runmqtrm is the standard trigger monitor that starts local programs or scripts.

Configuring triggering
There are four requirements to trigger an application:

� The target queue used as input by the application to be started must have triggering 
conditions specified:

DEFINE QLOCAL(A_Q) REPLACE +
TRIGGER +
TRIGTYPE(first) +
INITQ(SYSTEM.DEFAULT.INITIATION.QUEUE) +
PROCESS(proc1) +
DESCR(‘This is a triggered queue’)

� The process object that is associated with the target queue defines the name and type of 
the program that needs to be started. The use of WINDOWSNT is a historic artifact but now 
refers to any currently supported Windows platform:

DEFINE PROCESS(proc1) REPLACE +
DESCR(‘Process to start server program’) +
APPLTYPE(WINDOWSNT) +
APPPLICID(‘c:\test\myprog.exe’)

� There must be an initiation queue that is defined. This can be any local queue, and it does 
not need any special attributes. A trigger monitor is the only application that gets 
messages from this queue. If multiple trigger monitors are running, each trigger monitor 
must have its own initiation queue defined.

� The triggered application must be written to expect a defined set of parameters on the 
command line. It must also be written to behave in a certain way. In summary, any 
triggered application must use a short wait-time when retrieving input messages, and to 
loop around its input queue until there are no more messages and the wait-time has 
expired. The application developer must also expect occasions when there are no 
messages available for the program to process. 

Figure 3-6 on page 41 shows the logic that is needed in a triggered application.

 

 

 

40 WebSphere MQ Primer: An Introduction to Messaging and WebSphere MQ



 

Figure 3-6   A triggered application

All triggered applications must loop until the input queue is empty and have a non-zero 
timeout on the MQGET.

How triggering works
Figure 3-7 shows the logic of triggering. Here, Program A sends a message to A_Q to be 
processed by Program B. Program B is not running when the message is sent, and it needs to 
be started.

Figure 3-7   Triggering an application
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The WebSphere MQ triggering mechanism works in the following manner:

1. Program A issues an MQPUT and puts a message into A_Q for Program B.

2. The queue manager processes this verb and puts the message into the application queue.

3. The queue manager also finds out that the queue is triggered. It creates a trigger 
message and looks in the process definition that is named in the queue definition to find 
the name of the required application and then insert it into the trigger message. The 
trigger message is put into the initiation queue.

4. The trigger monitor gets the trigger message from the initiation queue.

5. It then starts the program specified.

6. The application program starts running and issues an MQGET to retrieve the message from 
the application queue.

The trigger type to use depends on how the application is written. There are three choices, 
but the normal recommendation is to use TRIGGER(FIRST) unless there are compelling 
reasons to pick one of the other values:

FIRST A trigger message is put in the initiation queue only when the target queue 
has changed from empty to non-empty. 

EVERY Every time that a message is put in the target queue, a trigger message is 
also put in the initiation queue. 

n messages A trigger message is put in the initiation queue when there are n messages 
in the target queue. For example, it might only be worth starting a batch 
program when the queue holds 1,000 messages.

Regardless of the chosen trigger type, any triggered application must follow the rule about 
looping until there is no more input. Even with TRIGGER(FIRST), no application can assume 
that there is always only a single input message.

3.6  Configuring a WebSphere MQ client

Many WebSphere MQ applications are run as clients, connecting to a queue manager on a 
different machine. This section discusses how to define and test the connection between a 
WebSphere MQ client and its server. 
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Figure 3-8 shows that the WebSphere MQ client is installed in the client machine. Clients and 
servers are connected with MQI channels. An MQI channel consists of pair of definitions, the 
Client Connection (CLNTCONN) and Server Connection (SVCONN) channels.

Figure 3-8   Client/server connection

3.6.1  How to define a client/server connection

There are three client implementations, in C, Java, and .Net, that are suitable for different 
application environments. The principles are the same regardless of the language. The main 
difference is how to define the connection to the queue manager.

C clients
The simplest way to define the client connection channel is to set the MQSERVER environment 
variable, for example: 

set MQSERVER=CHAN1/TCP/9.24.104.206(1414)

where:

� MQSERVER is the name of the environment variable. This name is fixed.

� CHAN1 is the name of the channel to be used for communication between client and 
server. There must be a corresponding SVRCONN channel of this name that is defined on the 
server. 

� TCP denotes that TCP/IP is used to connect to the machine with the address following the 
parameter.

� 1414 is the default port number for WebSphere MQ. It is not required if the listener on the 
server side is also using this default value, but specifying it makes it clearer if changes are 
needed in the future.
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Java clients
For the WebSphere MQ client for Java, equivalents to the environment variables are set in the 
application code. The following example shows the simplest statements to include in a Java 
program:

import com.ibm.mq.*;
MQEnvironment.hostname = "9.24.104.456";
MQEnvironment.channel = "CHAN1";
MQEnvironment.port = 1414;

.Net clients
Like the Java clients, variables can be set in the application program to define the connection:

properties = new Hashtable();
properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
properties.Add(MQC.HOST_NAME_PROPERTY, hostName);
properties.Add(MQC.PORT_PROPERTY, port);
properties.Add(MQC.CHANNEL_PROPERTY, channelName);

More complex configurations
There are many ways to define client configurations, and there are many attributes that are 
possible on these channels. For example, secure configurations might require Secure 
Sockets Layer (SSL)/Transport Layer Security (TLS) definitions. Designs for high availability 
might use groups of definitions and multiple addresses to which to connect.

These additional attributes cannot be set by using the environment variables and are usually 
set by creating the Client Channel Definition Table (CCDT). The CCDT is a file that is created 
by defining CLNTCONN channels in a queue manager. The generated file is then copied to 
the machine where the client program is running and referenced during the connection 
process. An administrator using the CCDT enters the following command:

DEFINE CHANNEL(‘CHAN1’) CHLTYPE(CLNTCONN) + 
TRPTYPE(TCP) + 
CONNAME(‘9.24.104.206(1414)’)

JMS and XMS programs also have the option of using the CCDT or similar definitions that are 
created in a Java Naming and Directory Interface (JNDI) repository.

The CCDT and JNDI mechanisms remove the need for connection information from the client 
application programs. This approach often makes it easier to change connection information 
administratively. But all client environments also have the option of programmatically defining 
the full connection details. 

Configuring the queue manager
On the queue manager, the minimum required definition for the corresponding SVRCONN 
channel is:

DEFINE CHANNEL(’CHAN1’) CHLTYPE(SVRCONN)
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3.7  Security

This document is not the place for a discussion of security; however, there are a few basic 
points to make especially in relation to client connections:

� From WebSphere MQ V7.1 forward, the default configuration blocks most client 
connections. This can be disabled by using the ALTER QMGR CHLAUTH(DISABLED) 
command, but it is discouraged.

� To get started quickly with a WebSphere MQ client, without completely disabling the 
channel security rules, set an explicit user ID for the SVRCONN channel:

DEFINE CHANNEL('CHAN1') CHLTYPE(SVRCONN) MCAUSER('userA')

where userA is a user ID that is defined on the machine where the queue manager is 
running. If it is also the user ID under which the client application is running, this command 
permits client connections:

SET CHLAUTH('CHAN1') TYPE(USERMAP) CLNTUSER('userA') USERSRC(MAP) 
MCAUSER('userA') ADDRESS('*') ACTION(ADD) 

� The userA identity then needs access to the queue manager and resources, such as 
queues. For the program fragment that is shown in Figure 3-5 on page 38, the following 
commands are needed on a distributed platform if it connects as a client:

setmqaut -t qmgr -m QMA -p userA +connect
setmqaut -t q -n QUEUE1 -p userA +put
setmqaut -t q -n QUEUE2 -p userA +get

If connecting to a z/OS queue manager, the external security manager, such as IBM 
RACF®, needs similar definitions. Also, on UNIX and Linux systems, security is 
group-based, so applying authorizations to a user actually results in changes to group 
permissions.

� Client channels can be protected by using SSL/TLS certificates and algorithms. 
Configuring those values is also beyond the scope of this chapter.
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3.8  Configuring communication between queue managers

Figure 3-9 shows the key parts and architecture of WebSphere MQ when sending a message 
between two systems. The application programs use the MQI to communicate with the queue 
manager. The queuing system consists of the following parts:

� Queue manager
� Listener
� Trigger monitor (optional)
� Channel initiator
� Message channel agent (MCA) or mover

Figure 3-9   Sending messages to a remote application

When the application program wants to put a message on a queue, it issues an MQOPEN call 
followed by an MQPUT. The queue manager checks whether the queue that is referenced in the 
MQOPEN is local or remote. 

If it is a remote queue, the subsequent MQPUT of a message is placed into the transmission 
(xmit) queue. The queue manager adds a header that contains information from the remote 
queue definition, such as the destination queue manager name and destination queue name. 

A remote queue definition is not needed if the application explicitly fills in the name of the 
remote queue manager. The queue manager then works out which transmission queue to 
use, or returns an error indicating that there is no suitable transmission queue defined. This 
approach is often used by applications sending reply messages and removes the need for 
explicit definitions of all possible reply queues.
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Transmission is done via channels. Channels can be started manually or automatically. To 
start a channel automatically, the transmission queue must be associated with a channel 
initiation queue. Figure 3-9 on page 46 shows that the queue manager puts a message into 
the transmission queue and another message into the channel initiation queue. This queue is 
monitored by the channel initiator.

The channel initiator is the part of WebSphere MQ that must be running to monitor initiation 
queues. When the channel initiator detects a message in the initiation queue, it starts the 
message channel agent (MCA) for the particular channel. This program moves the message 
over the network to the other machine, by using the sender part of the unidirectional message 
channel pair.

On the receiving end, a listener program must have been started. The listener, which is also 
supplied with WebSphere MQ, monitors a specified port. By default, this is the port assigned 
to WebSphere MQ, 1414. When a connection request arrives from the sending queue 
manager, the listener starts the receiving channel. This receiving MCA moves the message 
into the specified local queue from where the receiving application gets the message.

The program that processes the incoming message can be started manually or automatically. 
Use triggering to start the program automatically.

3.8.1  How to define a connection between two systems

Figure 3-10 on page 48 shows the required objects for connecting two queue managers. The 
definitions assume two applications communicating via fixed queue names. 

Each system needs the following objects:

� A remote queue definition that mirrors the local queue in the receiver machine and links to 
a transmission queue (Q1 in system A and Q2 in system B)

� A transmission queue that holds all messages destined for the remote system until the 
channel transmits them (QMB in system A and QMA in system B)

� A sender channel that gets messages from the transmission queue and transmits them to 
the other system by using the existing network (QMA.QMB in system A and QMB.QMA in 
system B)

� A receiver channel that receives messages and puts them into a local queue (QMB.QMA 
in system A and QMA.QMB in system B)

� A local queue from which the program gets its messages (Q2 in system A and Q1 in 
system B)

In each system, you must define the appropriate queue manager objects. The objects are 
defined in the two columns that are shown in Table 2 on page 48. The queue managers must 
be running before the objects are defined.

Transmission queue:  Each remote queue must be associated with a transmission queue. 
Usually, all messages that are destined for one remote queue manager use the same 
transmission queue. The transmission queue is usually given the same name as the 
remote queue manager.

Important:  Both channel definitions, sender and receiver, must have the same name. 
Create a symmetric set of definitions with a different channel name for the reverse path to 
send a reply back to the original application.
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The channels can then be configured to start automatically or manually.

Figure 3-10   Communication between two queue managers

Table 2   Objects defining the connection between two queue managers

WebSphere MQ clustering:  Using WebSphere MQ clustering removes the need for some 
of these definitions, but it requires more initial setup. Adding new systems to an existing 
cluster is easy, but getting started with a cluster is beyond the scope of this chapter.
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DEFINE QLOCAL(Q1)

DEFINE QLOCAL(QMB) +
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TRPTYPE(tcp)
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Starting communication manually
After the objects are defined on the queue managers, the sender channels in each direction 
must be started. Figure 3-11 shows the commands to start the listener and channel for queue 
manager QMA.

Figure 3-11   Manually starting a queue manager and channels

The first command starts queue manager QMA if it is not already running. The next command 
starts the listener. It listens on behalf of QMA on port 1414. On Windows, the start command 
runs the listener in a separate window. On UNIX platforms, use the ampersand (&) character 
to run the listener in the background. The third command starts runmqsc in interactive mode, 
and the channel QMA.QMB is started. For the other queue manager, issue the equivalent 
commands. Also, start the applications in both systems.

How to start communication automatically
The channel initiator is a special version of a trigger monitor that is used to start channels. By 
default, the channel initiator is automatically started when the queue manager starts. The 
only additional requirement for channels to be automatically started is to set the trigger 
attributes on the transmission queue.

To have the transmission queue triggered, add three more parameters, which are shown in 
bold in the following example:

DEFINE QLOCAL(QMB) REPLACE +
USAGE(xmitq) +
TRIGGER

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(rcvr) +
TRPTYPE(tcp)

DEFINE CHANNEL(QMB.QMA) +
CHLTYPE(sdr) +
XMITQ(QMA) +
TRPTYPE(tcp) CONNAME(machine1)

C> strmqm QMA
WebSphere MQ queue manager started
...

C> start runmqlsr -t tcp -m QMA -p 1414
C> runmqsc QMA
5724-H72 (C) Copyright IBM Corp. 1994, 2011.  ALL RIGHTS RESERVED.
Starting MQSC for queue manager QMA.

start channel(QMA.QMB)
1: start channel(QMA.QMB)

AMQ8018 start WebSphere MQ channel accepted
end

2 : end
1 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

C>

System A (QMA) System B (QMB) 
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TRIGTYPE(first) +
INITQ(SYSTEM.CHANNEL.INITQ)

The channel now starts automatically when there are any messages to be transferred. 

The DISCINT attribute of a channel controls whether a channel must stop if there are no more 
messages to be transferred. This attribute is used to release resources, such as network 
sockets and memory, that might not be needed for a period. Triggering then restarts the 
channel with no manual intervention if a further message arrives on the transmission queue.

3.9  Summary

This chapter provided an outline of many of the core aspects of WebSphere MQ, including 
how to administer it and how to write application programs. There are many more capabilities 
in the product to explore, but understanding these basic components is a good start toward 
learning the next level of detail.
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only. 

� WebSphere MQ V7.1 and V7.5 Features and Enhancements, SG24-8087

� WebSphere MQ V7.0 Features and Enhancements, SG24-7583

� WebSphere MQ V6 Fundamentals, SG24-7128

� Getting Started with WebSphere MQ File Transfer Edition V7, SG24-7760-00

You can search for, view, download or order these documents and other Redbooks, 
Redpapers, Web Docs, draft and additional materials, at the following website: 

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� WebSphere MQ Telemetry, TIPS0876

http://www.redbooks.ibm.com/abstracts/tips0876.html

� WebSphere MQ Library

http://www-01.ibm.com/software/integration/wmq/library/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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