

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page v.

 First Edition (September 2020)

 This edition applies to Version 4, Release 4, Modification 0 of Red Hat OpenShift Container Platform.

 This document was created or updated on September 29, 2020.

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 CICS®

 DB2®

 FICON®

 IBM®

 IBM API Connect®

 IBM Cloud®

 IBM Z®

 RACF®

 Redbooks®

 Redbooks (logo)[image:]®

 z/OS®

 z/VM®

 z13®

 z13s®

 z15™

 The following terms are trademarks of other companies:

 The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

 Ansible, OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 This IBM® Redpaper publication provides all the necessary steps to successfully install Red Hat OpenShift 4.4 on IBM Z® or LinuxONE servers.

 It also provides an introduction to OpenShift nodes, Red Hat Enterprise Linux CoreOS, and Ansible.

 The steps that are described in this paper are taken from the official pages of the Red Hat website.

 This IBM Redpaper publication was written for IT architects, IT specialists, and others who are interested in installing Red Hat OpenShift on IBM Z.

 Authors

 This paper was produced by a team of specialists from around the world working at IBM Redbooks, Poughkeepsie Center.

 Subhajit Maitra is a Consulting IT Specialist and member of the IBM America's System Z Hybrid Cloud Technical Sales team based in Hartford, CT. In addition to Red Hat OpenShift on System Z, his expertise includes zCX, IBM App Connect Enterprise, IBM Operational Decision Manager, IBM Integration Bus, IBM MQ, IBM Event Streams (Kafka), IBM API Connect®, IBM DB2®, and CICS® on Systems Z. Subhajit, who has worked in IT for over 27 years, has been an IBM Global Technical Ambassador for Central and Eastern Europe, where he helped IBM clients implement business-critical solutions on IBM Z servers. He has written several IBM Redbooks® publications about z/OS® Container Extensions, IBM Middleware, CICS, and DevOps. He holds a master’s degree in computer science from Jadavpur University, in Kolkata, India, and is an IBM zChampion.

 Eric Marins is a Senior IT Architect in Brazil, focused on hybrid cloud solutions, Infrastructure and Platform solutions and competencies, including High Availability, Disaster Recovery, Networking, Linux, and Cloud. Eric works with CIO Private Cloud designing and implementing complex hybrid cloud solutions involving Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) capabilities. Eric has co-authored several IBM Redbooks publications, including Advanced Networking Concepts Applied Using Linux on IBM System z, SG24-7995; Security for Linux on System z, SG24-7728; Scale up for Linux on IBM Z, REDP-5461; Getting Started with Docker Enterprise Edition on IBM Z, SG24-8429, and Getting started with z/OS Container Extensions and Docker, SG24-8457.

 Thanks to the following people for their contributions to this project:

 Lydia Parziale
IBM Redbooks, Poughkeepsie Center

 Robert Haimowitz
IBM WW Client Experience Center, Poughkeepsie

 Sandor Imes, Yuri Gelfand, Fernando Aragao Costa. Livio Sousa, Anderson Augusto, Wilhelm Mild, Stev Glodowski and Silke Niemann
IBM

 Murthy Garimella
Red Hat

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an IBM Redbooks residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our papers to be as helpful as possible. Send us your comments about this paper or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Introduction

 Before you install an OpenShift cluster, you must understand some architectural components and how they interact with each other. In this chapter, we describe the nodes that are installed and configured during the OpenShift cluster installation process.

 This chapter includes the following topics:

 •1.1, “Overview” on page 2

 •1.2, “Red Hat Enterprise Linux CoreOS” on page 3

 •1.3, “Red Hat OpenShift architecture” on page 3

 •1.4, “Bootstrap host” on page 4

 •1.5, “Control plane hosts” on page 4

 •1.6, “Compute nodes” on page 5

 •1.7, “Bastion node” on page 5

 1.1 Overview

 Application modernization is a term that describes the process of transitioning existing applications to use new approaches on the cloud. Customers today are seeking innovative, efficient approaches that help them make this transition that is based on business and application complexity.

 Business pressures demand faster time to market. Your existing estate includes not only applications, but data, processes, business logic, and user interfaces, all of which must adapt to keep up with new business demands.

 Application modernization has the following benefits:

 •Improved developer productivity

 •Increased operational efficiency

 •Reduced cost to build new capabilities

 •Expanded capacity that is delivered in a short time

 The Red Hat OpenShift Container Platform is a platform that is designed to orchestrate containerized workloads across a cluster of nodes. The platform uses Kubernetes as the core container orchestration engine, which manages the container images and their lifecycle.

 Red Hat OpenShift Container Platform 4.2 was released for IBM Z and IBM LinuxONE servers in February of 2020. Since then, organizations can use enterprise server capabilities, such as security features, scalability, and reliability to run cloud-native applications and accelerate their digital transformation.

 Red Hat OpenShift is a container-based application platform that is built on open source technologies and principles, such as Kubernetes. You can now deploy and manage applications by way of a centralized web interface (portal) that is managed by OpenShift clusters. Also, your application operations can be automated and have 24 x 7 global support.

 Running Red Hat OpenShift on IBM Z brings many advantages to your application, such as:

 •Vertical and horizontal scalability

 •99.999% availability

 •Great performance

 •Reduced latency

 Application developers and operations teams can use OpenShift as a powerful tool to easily manage their container environment and see how they are organized. In fact, Red Hat OpenShift makes their lives easier by providing an intuitive web interface.

 Use the built-in Red Hat OpenShift, Kubernetes, and IBM Z features to make your OpenShift cluster more highly available and protect your application from downtime.

 Some restricted networks might not have access to the internet, even by way of proxy servers. However, you can still install OpenShift Container Platform in these environments. You must download that required software and images and make them available to the disconnected environment. For more information about air-gap installation (disconnected), see this web page.

 If your OpenShift nodes have direct internet access, they can:

 •Access the OpenShift Infrastructure Providers page to download the installation program.

 •Access quay.io to obtain the packages that are required to install the cluster.

 •Obtain the packages that are required to perform cluster updates.

 •Access Red Hat’s software as a service page to perform subscription management.

 1.2 Red Hat Enterprise Linux CoreOS

 The OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented operating system. RHCOS is specifically designed for running containerized applications from OpenShift Container Platform and works with new tools to provide fast installation, operator-based management, and simplified upgrades.

 This RHCOS technology combines the advantages of Red Hat Enterprise Linux 8 (RHEL) and core libraries with the automated, remote upgrade features from containers to build a robust cloud infrastructure for your applications. The use of RHCOS is advantageous, as shown in the following examples:

 •Red Hat OpenShift on Z supports RHCOS for all nodes.

 •Red Hat OpenShift is never managed directly; the OpenShift client or web console is used to manage it.

 •Red Hat OpenShift is provisioned from a virtual machine image template, or installed by way of ISO that is provided by Red Hat.

 •Red Hat OpenShift is managed entirely by the OpenShift cluster. You do not create more accounts on it.

 •RHCOS updates are performed during OpenShift upgrades as part of an amazingly seamless and hands-off upgrade process.

 •Red Hat OpenShift is more secure. You do not have direct access by using a root ID, even on the virtual machine (VM) console.

 1.3 Red Hat OpenShift architecture

 The Red Hat OpenShift architecture that is shown in Figure 1-1 on page 4 provides an application platform for developing and managing containerized applications. Control, worker, and bootstrap nodes are deployed as Linux guests on the IBM Z platform.

 The minimum OpenShift architecture consists of five Linux guests (bootstrap, three control nodes, and one worker node) that are deployed on top of IBM z/VM® 7.1. In our scenario, we installed a bastion node to provide DNS, FTP, and load balancer functions because these services were not available in our network.

 [image:]

 Figure 1-1 OpenShift architecture

 For more information about Red Hat OpenShift software and hardware requirements, see Chapter 2, “Planning the environment” on page 7.

 Starting with Red Hat OpenShift releases 4.2, IBM Z supports RHCOS only as an operating system for the entire cluster. Therefore, the bootstrap, control plane, and compute nodes are be installed by using RHCOS, not Red Hat Enterprise Linux.

 1.4 Bootstrap host

 The bootstrap node host uses RHCOS. This host is responsible for deploying the OpenShift Container Platform cluster on the control-plane machines. The node is a temporary node that is used to create the controller nodes that make up the control-plane. The control-plane nodes then create the worker nodes. After the cluster initializes, the bootstrap node can be released if you need to use the resources to perform another installation or increase cluster capacity.

 1.5 Control plane hosts

 The control-plane hosts (also known as controller hosts) are using Red Hat Enterprise Linux CoreOS (RHCOS), a container-oriented operating system designed for running containers.

 These nodes use Kubernetes services in the background and they are responsible for managing and controlling the entire OpenShift cluster while taking advantage of this new OS technology to deploy container workloads on IBM Z.

 A list of the essential functionality provided to the cluster includes:

 •API server

 •Authentication

 •Replication

 •Schedulers

 •etcd

 •Monitoring

 Although you can run containers on these machines, you should not run pods on the controller nodes. A pod is a group of containers that operate together and are deployed on the same host. The terms controller and control-plane are used interchangeably.

 For the controller API endpoints, a load balancer is needed to expose the api and api-int functions on ports 6443 and 22623. We chose HAProxy to act as a load balancer for our cluster. Appliance-based load balancers can be used, such as F5 or Datapower.

 HAProxy is an open source Transmission Control Protocol (TCP) or HTTP load balancer. You can use HAProxy to add load balancing capabilities to your OpenShift architecture if you do not have an appliance acting as a load balancer available.

 HAProxy is an operating system package that you must install by using a tool such, as YUM. For more information about installing HAProxy, see Chapter 3, “Installation” on page 15.

 For more information about HAProxy, see this web page. this web page

 1.6 Compute nodes

 The compute node hosts (also known as worker nodes) also use Red Hat Enterprise Linux CoreOS (RHCOS).

 The compute nodes are known as the worker nodes, where the Kubernetes workloads are deployed. They are responsible for running workloads for the cluster users.

 A load balancer is configured on the bastion node to spread load across these VMs for ports 80 and 443, which exposes the wildcard DNS and *.apps.

 The compute nodes make their capacity known to the control-plane nodes.

 1.7 Bastion node

 The bastion node can be any Linux distribution (SLES, RHEL, or Ubuntu) and it can be on any platform (x86, Power or Z). Also, it is not mandatory if the required services are from the enterprise FTP, load balancer, or DNS.

 In our architecture, we chose to use the bastion node to enable the build process. It is accessed by way of SSH and It also hosts some network services to help build the OpenShift cluster process.

 In our lab environment, the bastion node runs Red Hat Enterprise Linux 8 (RHEL8) on an IBM Z server, and it is used to host the scripts, files, and tools to provision the bootstrap, control-plane, and compute nodes.

 After the deployment, we recommend keeping the bastion node for the following reasons:

 •Administrative node for the cluster

 •Load balancer capability (HAProxy)

 •Local DNS (named)

 •Share Files (FTP)

 Within the OpenShift environment, a load balancer is required for accessing the controller nodes and the worker nodes. The HAProxy is enabled on a bastion node to use load balancing and is configured with load-balancing to point to the OpenShift control-plane and OpenShift workers.

 A load balancer is configured to spread load across these VMs for ports 6443 and 22623, which exposes the api and api-int functions, while ports 80 and 443 are configured to point to the compute nodes (see Figure 1-1 on page 4).

[image:]
[image:]

Planning the environment

 This chapter provides general guidance for planning the installation of Red Hat OpenShift on an IBM Z or LinuxONE platform. To effectively plan an installation, you must select the hardware, number of nodes and network, and prepare your environment for the OpenShift installation.

 This chapter includes the following topics:

 •2.1, “Required virtual machine resources” on page 8

 •2.2, “Users and disks” on page 9

 •2.3, “Required DNS IP addresses and names” on page 13

 2.1 Required virtual machine resources

 The physical infrastructure that is required to deploy a Red Hat OpenShift production instance onto an IBM Z requires the following minimum specifications:

 •For the installation of OpenShift Container Platform version 4.4, ensure use of one of the following IBM servers:

  –	IBM Z: z13®, z13s®, all z14 models, all z15™ models.

  –	LinuxONE: all models.

 Other hardware requirements include:

  –	One LPAR with 3 IFLs that supports SMT2.

  –	One OSA or RoCE network adapter.

 •Operating system: One instance of IBM z/VM 7.1.

 •Network connectivity: A z/VM VSwitch is set up.

 •Minimum OpenShift Container Platform deployment on IBM Z requires several z/VM virtual machines (VMs), between them:

  –	One bootstrap machine

  –	Three control plane machines (master nodes)

  –	Two compute machine (worker nodes)

  –	One bastion server (DNS, FTP, and HAProxy).

 Our environment contains seven Linux guests, as shown in Figure 2-1.

 [image:]

 Figure 2-1 Linux guests

The required hardware resources are listed in Table 2-1.

 Table 2-1 Hardware resources

 	
 Role

 	
 Node number

 	
 Operating system

 	
 vCPU number

 	
 Memory

 	
 Storage

 	
 Bootstrap

 	
 1

 	
 RHCOS

 	
 4

 	
 16 GB

 	
 120 GB

 	
 Control-plane (master node)

 	
 3

 	
 RHCOS

 	
 4

 	
 16 GB

 	
 120 GB

 	
 Compute (worker nodes)

 	
 2

 	
 RHCOS

 	
 2

 	
 8 GB

 	
 120 GB

 	
 Bastion

 	
 1

 	
 RHEL 8

 	
 2

 	
 8 GB

 	
 120 GB

 In addition to the Red Hat OpenShift hardware requirements, you must create persistent volumes in the Red Hat OpenShift environment to store images for the container registry or customer workloads. We added 120 GB for the bastion node to store these files.

 Also, disk storage for the z/VM guest VMs includes IBM FICON® attached disk storage (DASD), full pack minidisks, or dedicated DASD. To reach the minimum size for the RHCOS installations, you need extended address volumes (EAV). If available, use HyperPAV to ensure optimal performance.

 2.2 Users and disks

 On your z/VM instance, you must define the following z/VM user IDs and default Linux profile:

 •RDBKO3M1

 •RDBKO3M2

 •RDBKO3M3

 •RDBKO3W1

 •RDBKO3W2

 •DFLTLNX (default profile)

 z/VM user ID management is not described in this IBM Redpaper publication. Complete the following steps to define the user ID and default Linux profile:

 	
 Note: Use your preferred x3270 terminal to access the z/VM console.

 1.	Connect to your z/VM LPAR by using your x3270 terminal and create the following files by using XEDIT:

  –	RDBKO3M1.DIRECT as shown in Example 2-1 on page 10.

  –	RDBKO3M2.DIRECT as shown in Example 2-2 on page 10.

  –	RDBKO3M3.DIRECT as shown in Example 2-3 on page 10.

  –	RDBKO3W1.DIRECT as shown in Example 2-4 on page 10.

  –	RDBKO3W2.DIRECT as shown in Example 2-5 on page 10.

  –	DFLTLNX.DIRECT as shown in Example 2-6 on page 11.

 	
 Note: Remember to update the NICDEF tags to fit your network. In our environment, we defined VSWITCH1 and VLAN number 0001.

 Example 2-1 RDBKO3M1.DIRECT file

 [image:]

 USER RDBKO3M1 REDHAT 16G 16G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 CPU 02

 CPU 03

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 Example 2-2 RDBKO3M2.DIRECT file

 [image:]

 USER RDBKO3M2 REDHAT 16G 16G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 CPU 02

 CPU 03

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 Example 2-3 RDBKO3M3.DIRECT file

 [image:]

 USER RDBKO3M3 REDHAT 16G 16G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 CPU 02

 CPU 03

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 Example 2-4 RDBKO3W1.DIRECT file

 [image:]

 USER RDBKO3W1 REDHAT 8G 8G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 Example 2-5 RDBKO3W2.DIRECT file

 [image:]

 USER RDBKO3W2 REDHAT 8G 8G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 Example 2-6 DFLTLNX.DIRECT file

 [image:]

 PROFILE DFLTLNX

 CLASS G

 STORAGE 256M

 MAXSTORAGE 2G

 CPU 00 BASE

 CRYPTO APVIRTUAL

 IPL CMS

 MACHINE ESA 120

 OPTION APPLMON

 CONSOLE 0009 3215 T LNXCONS

 SPOOL 000C 2540 READER *

 SPOOL 000D 2540 PUNCH A

 SPOOL 000E 1403 A

 LINK MAINT 0190 0190 RR

 LINK MAINT 019D 019D RR

 LINK MAINT 019E 019E RR

 [image:]

 2.	Use the following DIRM ADD commands to add the new Linux user IDs and default Linux profile into the z/VM directory:

 DIRM ADD DFLTLNX

 DIRM ADD RDBKO3M1

 DIRM ADD RDBKO3M2

 DIRM ADD RDBKO3M3

 DIRM ADD RDBKO3W1

 DIRM ADD RDBKO3W2

 	
 Important: You must create the DFLTLNX profile first. Otherwise, the ID creation fails.

 3.	To check whether the user IDs were successfully created, run the command that shown in Example 2-7.

 Example 2-7 Review the new Linux guest IDs

 [image:]

 dirm for rdbko3m1 review

 DVHXMT1191I Your REVIEW request has been sent for processing to DIRMAINT

 DVHXMT1191I at LNXVM64 via DIRMSAT2.

 Ready; T=0.01/0.01 21:35:27

 DVHREQ2288I Your REVIEW request for RDBKO3M1 at *

 DVHREQ2288I has been accepted.

 DVHREQ2289I Your REVIEW request for RDBKO3M1 at *

 DVHREQ2289I has completed; with RC = 0.

 RDR FILE 0250 SENT FROM DIRMAINT PUN WAS 2626 RECS 0040 CPY 001 A NOHOLD NOKEEP

 [image:]

 The command that is shown in Example 2-7 on page 11 takes the user directory for the guest and puts the results into the reader. Run the peek command to read this file. In our example, the file that was created in the reader has the number 0250. Therefore, we ran the peek 0250 command and received the output that is shown in Example 2-8.

 Example 2-8 Output of peek command

 [image:]

 USER RDBKO3M1 REDHAT 16G 16G G

 DVHRXV3355I The following records are included from profile: DFLTLNX

 PROFILE DFLTLNX

 CLASS G

 STORAGE 256M

 MAXSTORAGE 2G

 CPU 00 BASE CPUID A06400

 IPL CMS

 MACHINE ESA 20

 OPTION APPLMON

 CONSOLE 0009 3215 T LNXCONS

 SPOOL 000C 2540 READER *

 SPOOL 000D 2540 PUNCH A

 SPOOL 000E 1403 A

 LINK $MAINT 0190 0190 RR

 LINK $MAINT 019D 019D RR

 LINK $MAINT 019E 019E RR

 LINK LINUXMON 0291 0192 RR

 LINK LINUXMON 0192 0191 RR

 *DVHOPT LNK0 LOG1 RCM1 SMS0 NPW1 LNGAMENG PWC20070129 CRCèì

 DVHRXV3355I The preceding records are included from profile: DFLTLNX

 CPU 00 BASE

 CPU 01

 CPU 02

 CPU 03

 IPL 100

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 *DVHOPT LNK0 LOG1 RCM1 SMS0 NPW1 LNGAMENG PWC20190604 CRC")

 DVHREV3356I The following are your user option settings:

 DVHREV3356I Links DISABLED Logging ON RcvMsg ON Smsg OFF NeedPW ON

 DVHREV3356I Lang AMENG[image:]

 Run the commands that are shown in Example 2-7 on page 11 and Example 2-8 against each Linux user ID.

 4.	Define an IPL disk for each guest ID. We use a DASD model A that supports large disks. In our example, we used the following commands to define the IPL disk for each OpenShift node:

 DIRM FOR RDBKO3M1 AMDISK 100 3390 AUTOG 271000 MYPOOL

 DIRM FOR RDBKO3M2 AMDISK 100 3390 AUTOG 271000 MYPOOL

 DIRM FOR RDBKO3M3 AMDISK 100 3390 AUTOG 271000 MYPOOL

 DIRM FOR RDBKO3W1 AMDISK 100 3390 AUTOG 271000 MYPOOL

 DIRM FOR RDBKO3W2 AMDISK 100 3390 AUTOG 271000 MYPOOL

 These commands add a virtual disk with 271000 cylinders (approximately 180 GB) to each Linux guest. The disk number that is chosen is 100.

 2.3 Required DNS IP addresses and names

 Red Hat OpenShift depends on a domain name server (DNS) to function correctly. You must define a wildcard zone to register all OpenShift records, which are configured under the bastion server. This wildcard zone resolves all names to the IP address of the Red Hat OpenShift cluster application. This way, all applications that run within Red Hat OpenShift are routed through the load balancer, as needed.

 A wildcard DNS record (in our case, *.apps.rdbk1.pok.ibm.local) points to the load balancer server that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by clients that are external to the cluster and from all the nodes within the cluster. It allows users to access applications inside the OpenShift cluster.

 Choosing a DNS cluster and domain name are important tasks. Therefore, ensure that you use a consistent naming convention when deploying your OpenShift cluster. In this section, you see an example of how to use a good naming convention.

 The physical infrastructure of our OpenShift cluster is shown in Figure 2-2.

 [image:]

 Figure 2-2 Physical Infrastructure

 You can use the following format for DNS naming standards:

 HostName.ClusterName.SubDomain.DomainName

 Where:

 HostName: 	Name of the VM or host, for example, control-plane-1

 ClusterName: 	OpenShift cluster name, for example, rdbk1

 SubDomain: 	Subdomain of the OpenShift deployment, for example, pok

 DomainName: 	Domain name of the OpenShift deployment, for example, ibm.local

 In our example, the fully qualified domain name (FQDN) is:

 control-plane-1.rdbk1.pok.ibm.local

 Table 2-2 lists our example deployment. Use your own values in your deployment.

 Table 2-2 DNS Records for OpenShift implementation

 	
 DNS Description

 	
 DNS Example Name

 	
 DNS Example IP address / CNAME

 	
 DNS Reverse Lookup for OpenShift network		

 	
 N/A

 	
 129.40.23.0/24

 	
 API record

 	
 api.rdbk1.pok.ibm.local

 	
 129.40.23.109 (IP address of Bastion)

 	
 API int record

 	
 api-int.rdbk1.pok.ibm.local

 	
 129.40.23.109 (IP address of Bastion)

 	
 Bastion server (HAProxy)

 	
 rdbkbas3.rdbk1.pok.ibm.local

 	
 129.40.23.109

 	
 Bootstrap Server

 	
 rdbko3b1.rdbk1.pok.ibm.local

 	
 129.40.23.110

 	
 Control plane 1 Server	

 	
 rdbko3m1.rdbk1.pok.ibm.local

 	
 129.40.23.111

 	
 Control plane 2 Server	

 	
 rdbko3m2.rdbk1.pok.ibm.local

 	
 129.40.23.112

 	
 Control plane 3 Server	

 	
 rdbko3m3.rdbk1.pok.ibm.local

 	
 129.40.23.113

 	
 Compute 1 Server	

 	
 rdbko3w1.rdbk1.pok.ibm.local

 	
 129.40.23.114

 	
 Compute 2 Server

 	
 rdbko3w2.rdbk1.pok.ibm.local

 	
 129.40.23.115

 	
 Application Wildcard DNS (Load Balancer)

 	
 *.apps.rdbk1.pok.ibm.local

 	
 129.40.23.109

 (IP address of Bastion)

 	
 etcd Node 0	

 	
 etcd-0.rdbk1.pok.ibm.local

 	
 129.40.23.111

 (IP address of Control Plane 1)

 	
 etcd Node1

 	
 etcd-1.rdbk1.pok.ibm.local

 	
 129.40.23.112

 (IP address of Control Plane 2)

 	
 etcd Node 2

 	
 etcd-2.rdbk1.pok.ibm.local

 	
 129.40.23.113

 (IP address of Control Plane 3)

 	
 etcd Service Record Node 0	

 	
 etcd-server-ssl._tcp.rdbk1.pok.ibm.local

 	
 etcd-0.rdbk1.pok.ibm.local

 	
 etcd Service Record Node 1	

 	
 etcd-server-ssl._tcp.rdbk1.pok.ibm.local

 	
 etcd-1.rdbk1.pok.ibm.local

 	
 etcd Service Record Node 2	

 	
 etcd-server-ssl._tcp.rdbk1.pok.ibm.local

 	
 etcd-2.rdbk1.pok.ibm.local

 As described in “Bastion server setup” on page 16, we use the information that is listed in Table 2-2 to set up our DNS service.

[image:]
[image:]

Installation

 This chapter describes how to install Red Hat OpenShift on IBM Z and Includes the following topics:

 •3.1, “Bastion server setup” on page 16

 •3.2, “Downloading OpenShift files” on page 32

 •3.3, “Passwordless SSH configuration” on page 35

 •3.4, “Installing and creating the ignition configuration files on the bastion server” on page 36

 •3.5, “Creating Red Hat Enterprise Linux CoreOS guests” on page 40

 •3.6, “Post deployment activities” on page 46

 •3.7, “Configuring a persistent volume for use by the OpenShift cluster” on page 49

 •3.8, “Installing an NFS server” on page 51

 •3.9, “Setting up an image registry” on page 59

 •3.10, “Accessing the console” on page 60

 	
 Important: Red Hat OpenShift uses kubelet client log-ins that must be rotated periodically for security purposes. The initial log-ins that are created during the installation process expire 24 hours after they are created. Red Hat OpenShift mainly automates the rotation process and starts the initial log-in rotation. It is important not to restart any of the Red Hat OpenShift cluster virtual machines (VMs) or the bastion VM until the first rotation is complete.

 3.1 Bastion server setup

 The bastion server is an instance that is built with RHEL 8 and can be accessed by using SSH for administrative tasks. After it is set up, the bastion server acts as load balancer front end to the OpenShift APIs (internal and external) and the OpenShift router. Red Hat does not make an official recommendation as to which load balancer to use. Therefore, we selected the IBM HAProxy package that supports Server Name Indication (SNI).

 The first thing that you must do is provision an RHEL 8 virtual machine (VM). This IBM Redpaper publication does not describe this process. For more information about installing RHEL 8 for IBM Z, see this web page.

 After you provision an RHEL 8 VM, we outline bastion server setup, which consists of the following steps:

 •Install a load balancer (HAProxy)

 •Install bind (DNS Server)

 •Install vsftpd (FTP Server)

 3.1.1 Installing a load balancer (HAProxy)

 The load balancer is one of the most important components in the OpenShift Architecture. The HAProxy service that is available with the RHEL 8 distribution is used as a front end to the Red Hat OpenShift APIs (internal and external) and the OpenShift router. The load balancer is configured so that port 6443 and 22623 point to the bootstrap and control-plane nodes, while ports 80 and 443 are configured to point to the worker nodes.

 This service is used to load balance the traffic to the cluster.

 Although you can disable SELinux, we discourage this for security reasons. The steps that are described in this publication provide information about how to enable HAProxy when SELinux service is enabled on RHEL 8 server.

 To install the HAProxy service, complete the following steps after you are connected to the bastion node and have root privileges:

 1.	Run the yum -y install haproxy command, as shown in Example 3-1 with its expected output.

 Example 3-1 Install the HAProxy

 [image:]

 [root@rdbkbas3 ~]# yum -y install haproxy

 Updating Subscription Management repositories.

 Unable to read consumer identity

 This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register.

 Last metadata expiration check: 0:00:57 ago on Tue 30 Jun 2020 09:57:48 AM EDT.

 Dependencies resolved.

 ===

 Package Architecture Version Repository Size

 ===

 Installing:

 haproxy s390x 1.8.15-6.el8_1.1 local-rhn-server-appstream 1.3 M

 Transaction Summary

 ===

 Install 1 Package

 Total size: 1.3 M

 Installed size: 4.5 M

 Downloading Packages:

 [SKIPPED] haproxy-1.8.15-6.el8_1.1.s390x.rpm: Already downloaded

 Running transaction check

 Transaction check succeeded.

 Running transaction test

 Transaction test succeeded.

 Running transaction

 Preparing : 1/1

 Running scriptlet: haproxy-1.8.15-6.el8_1.1.s390x 1/1

 Installing : haproxy-1.8.15-6.el8_1.1.s390x 1/1

 Running scriptlet: haproxy-1.8.15-6.el8_1.1.s390x 1/1

 Verifying : haproxy-1.8.15-6.el8_1.1.s390x 1/1

 Installed products updated.

 Installed:

 haproxy-1.8.15-6.el8_1.1.s390x

 Complete!

 [image:]

 2.	Verify whether SELinux is active by running the sestatus command.

 You should receive the output that is shown in Example 3-2.

 Example 3-2 Output of sestatus command

 [image:]

 SELinux status: enabled

 SELinuxfs mount: /sys/fs/selinux

 SELinux root directory: /etc/selinux

 Loaded policy name: targeted

 Current mode: permissive

 Mode from config file: enforcing

 Policy MLS status: enabled

 Policy deny_unknown status: allowed

 Memory protection checking: actual (secure)

 Max kernel policy version: 31

 [image:]

 3.	Because SELinux is enabled for only the current boolean value, the boot-time default settings must be changed. Use the following SELinux boolean option and make it persistent during reboots by using the -P option as shown in the following example:

 setsebool -P haproxy_connect_any on

 4.	To confirm the haproxy_connect_any parameter was changed, run the following command:

 semanage boolean -lC

 You should receive the output that is shown in Example 3-3.

 Example 3-3 semanage output

 [image:]

 SELinux boolean State Default Description

 haproxy_connect_any (on , on) Allow haproxy to connect any

 [image:]

 5.	Rename the /etc/haproxy/haproxy.cfg file by running the following command:

 mv /etc/haproxy/haproxy.cfg /etc/haproxy/haproxy.cfg.original

 6.	Create the /etc/haproxy/haproxy.cfg file by using the vim editor (or any other Linux text editor). Ensure that you have the content that is shown in Example 3-4.

 Highlighted in red in Example 3-4 are the values that must be updated to fit your OpenShift IP addresses and node names. Use Table 2-2 on page 14 that was created during the planning phase for your values.

 Example 3-4 /etc/haproxy/haproxy.cfg file

 [image:]

 #---

 # common defaults that all the 'listen' and 'backend' sections will

 # use if not designated in their block

 #---

 defaults

 mode http

 log global

 option httplog

 option dontlognull

 option http-server-close

 option forwardfor except 127.0.0.0/8

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 1m

 timeout server 1m

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 3000

 # Enable stats

 frontend stats

 bind *:8404

 stats enable

 stats uri /stats

 stats refresh 10s

 stats admin if LOCALHOST

 # REMEMBER TO UPDATE USER (admin) AND PASSWORD (redhot) BELOW TO PROTECT YOUR PROXY STATS PAGE

 stats auth admin:redhat

 frontend openshift-api-server-6443

 bind *:6443

 default_backend openshift-api-server-6443

 mode tcp

 option tcplog

 backend openshift-api-server-6443

 balance source

 mode tcp

 server rdbko3m1 129.40.23.111:6443 check

 server rdbko3m2 129.40.23.112:6443 check

 server rdbko3m3 129.40.23.113:6443 check

 server rdbko3b1 129.40.23.110:6443 check

 frontend machine-config-server-22623

 bind *:22623

 default_backend machine-config-server-22623

 mode tcp

 option tcplog

 backend machine-config-server-22623

 balance source

 mode tcp

 server rdbko3m1 129.40.23.111:22623 check

 server rdbko3m2 129.40.23.112:22623 check

 server rdbko3m3 129.40.23.113:22623 check

 server rdbko3b1 129.40.23.110:22623 check

 frontend hafrontend-http-80

 bind *:80

 mode tcp

 default_backend habackend-http-80

 option tcplog

 frontend hafrontend-https-443

 bind *:443

 default_backend habackend-https-443

 mode tcp

 option tcplog

 backend habackend-http-80

 mode tcp

 balance roundrobin

 server rdbko3w1 129.40.23.114:80 check

 server rdbko3w2 129.40.23.115:80 check

 backend habackend-https-443

 balance roundrobin

 mode tcp

 server rdbko3w1 129.40.23.114:443 check

 server rdbko3w2 129.40.23.115:443 check

 [image:]

 HAProxy Stats

 HAProxy Stats provides the status of the OpenShift cluster ports, including information about data transfer, total connection, and server state. You can access HAProxy Stats by using the URL that is shown in Example 3-5. Change the <BASTION IP> to your bastion node IP address.

 Example 3-5 Access HAProxy stats

 [image:]

 URL: http://<BASTION_IP>:8404/stats

 Login user: admin

 Login password: redhat

 [image:]

 It is highly recommended that you change the login details of HAProxy Stats. To make this change, edit the configuration file (/etc/haproxy/haproxy.cfg) and update the “stats auth” value that is shown in Example 3-6.

 We added the lines that are shown in Example 3-6 in the /etc/haproxy/haproxy.cfg file to enable the HAProxy Stats page. It was a helpful resource during the installation process and also to monitor the cluster during normal support activities.

 Example 3-6 Enable the HAProxy statistics report page

 [image:]

 # Enable stats

 frontend stats

 bind *:8404

 stats enable

 stats uri /stats

 stats refresh 10s

 stats admin if LOCALHOST

 # REMEMBER TO UPDATE USER (admin) AND PASSWORD (redhot) BELOW TO PROTECT YOUR PROXY STATS PAGE

 stats auth admin:redhat

 [image:]

 Change the user (admin) and password (redhat) configuration for the status page as a security precaution.

 To access the status page, open an internet browser and access the following URL:

 https://BASTION_NODE_IP:8404/stats

 Where BASTION_NODE_IP is the IP address of your bastion node.

 Save the configuration file and restart the HAProxy to update the service. Figure 3-1 shows an example of the HAProxy statistics report.

 [image:]

 Figure 3-1 HAProxy Stats page

 7.	Continuing on with the installation of the load balancer, open any required firewall rules for the local firewall by using the commands that are shown in Example 3-7.

 Example 3-7 Open firewall rules

 [image:]

 firewall-cmd --permanent --add-service=https

 firewall-cmd --permanent --add-service=http

 firewall-cmd --permanent --add-port=6443/tcp

 firewall-cmd --permanent --add-port=22623/tcp

 firewall-cmd --permanent --add-port=443/tcp

 firewall-cmd --permanent --add-port=8404/tcp

 firewall-cmd --reload

 [image:]

 	
 Note: To list all firewall rules, run the firewall-cmd --list-all command.

 8.	Run the following command to enable and start the HAProxy:

 systemctl enable --now haproxy

 The output of the command is shown in Example 3-8. It confirms that the HAProxy was enabled.

 Example 3-8 Enable HAProxy

 [image:]

 [root@rdbkbas3 ~]# systemctl enable --now haproxy

 Created symlink /etc/systemd/system/multi-user.target.wants/haproxy.service → /usr/lib/systemd/system/haproxy.service.

 [image:]

 9.	Run the following command to confirm that the HAProxy is running:

 systemctl status haproxy

 You receive the output that is shown in Example 3-9.

 Example 3-9 HAProxy status

 [image:]

 haproxy.service - HAProxy Load Balancer

 Loaded: loaded (/usr/lib/systemd/system/haproxy.service; enabled; vendor preset: disabled)

 Active: active (running) since Mon 2020-06-08 08:31:09 CDT; 2 weeks 6 days ago

 Main PID: 19042 (haproxy)

 Tasks: 2 (limit: 24483)

 Memory: 13.1M

 CGroup: /system.slice/haproxy.service

 ├─19042 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid

 └─19043 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid

 [image:]

 HAProxy is now configured correctly.

 3.1.2 Installing bind (DNS service)

 The domain name service (DNS) is another service that is required for the OpenShift infrastructure. If you have a DNS infrastructure, it is recommended that you configure the DNS delegation so that queries for hostnames within the OpenShift domain zone are handled by your local DNS server. For redundancy purposes, you can install a second RHEL guest and configure it as secondary DNS server for your OpenShift DNS domain.

 The bastion node is configured with a DNS server. The following DNS components are defined.

 •DNS Forward Lookup Zone

 •DNS Reverse Lookup Zone

 •DNS A Records, with PTR

 •DNS Service record for etcd

 •DNS SRV record for etcd

 For more information about DNS records with examples, see the table that is listed under “User-provisioned DNS requirements” at this web page.

 To install the DNS server, complete the following steps after you are connected to the bastion node and have root privileges. To run the command with the privileges of the root user, you can run the sudo command:

 1.	Install the DNS packages by using the yum -y install bind bind-utils command.

 The output of the command is shown in Example 3-10.

 Example 3-10 Install bind-utils

 [image:]

 [root@rdbkbas3 ~]# yum -y install bind bind-utils

 Updating Subscription Management repositories.

 Unable to read consumer identity

 This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register.

 Last metadata expiration check: 0:54:59 ago on Tue 30 Jun 2020 09:57:48 AM EDT.

 Package bind-utils-32:9.11.4-26.P2.el8.s390x is already installed.

 Dependencies resolved.

 ===

 Package Architecture Version Repository Size

 ===

 Installing:

 bind s390x 32:9.11.4-26.P2.el8 InstallMedia-AppStream 2.1 M

 Transaction Summary

 ===

 Install 1 Package

 Total size: 2.1 M

 Installed size: 4.8 M

 Downloading Packages:

 Running transaction check

 Transaction check succeeded.

 Running transaction test

 Transaction test succeeded.

 Running transaction

 Preparing : 1/1

 Running scriptlet: bind-32:9.11.4-26.P2.el8.s390x 1/1

 Installing : bind-32:9.11.4-26.P2.el8.s390x 1/1

 Running scriptlet: bind-32:9.11.4-26.P2.el8.s390x 1/1

 Verifying : bind-32:9.11.4-26.P2.el8.s390x 1/1

 Installed products updated.

 Installed:

 bind-32:9.11.4-26.P2.el8.s390x

 Complete!

 [image:]

 2.	Update the /etc/named.conf file. Our updates are highlighted in red in Example 3-11.

 Example 3-11 /etc/named.conf file

 [image:]

 //

 // named.conf

 //

 // Provided by Red Hat bind package to configure the ISC BIND named(8) DNS

 // server as a caching only nameserver (as a localhost DNS resolver only).

 //

 // See /usr/share/doc/bind*/sample/ for example named configuration files.

 //

 options {

 // Update with the Bastion node IP address

 listen-on port 53 { 127.0.0.1; 129.40.23.109; };

 listen-on-v6 port 53 { ::1; };

 directory "/var/named";

 dump-file "/var/named/data/cache_dump.db";

 statistics-file "/var/named/data/named_stats.txt";

 memstatistics-file "/var/named/data/named_mem_stats.txt";

 secroots-file "/var/named/data/named.secroots";

 recursing-file "/var/named/data/named.recursing";

 // Use Network address

 allow-query { localhost; 129.40.23.0/24; };

 // Use Network address

 allow-recursion { localhost; 129.40.23.0/24; };

 // Use Network address

 allow-query-cache { localhost; 129.40.23.0/24; };

 // Update the IP addresses below with the official primary and secondary DNS servers of your Network

 forwarders { 129.40.106.1; 129.40.106.2; };

 /*

 - If you are building an AUTHORITATIVE DNS server, do NOT enable recursion.

 - If you are building a RECURSIVE (caching) DNS server, you need to enable

 recursion.

 - If your recursive DNS server has a public IP address, you MUST enable access

 control to limit queries to your legitimate users. Failing to do so will

 cause your server to become part of large scale DNS amplification

 attacks. Implementing BCP38 within your network would greatly

 reduce such attack surface

 */

 recursion yes;

 dnssec-enable no;

 dnssec-validation no;

 managed-keys-directory "/var/named/dynamic";

 pid-file "/run/named/named.pid";

 session-keyfile "/run/named/session.key";

 /* https://fedoraproject.org/wiki/Changes/CryptoPolicy */

 include "/etc/crypto-policies/back-ends/bind.config";

 };

 logging {

 channel default_debug {

 file "data/named.run";

 severity dynamic;

 };

 };

 zone "." IN {

 type hint;

 file "named.ca";

 };

 include "/etc/named.rfc1912.zones";

 include "/etc/named.root.key";

 [image:]

 3.	Update the /etc/named.rfc1912.zones file, as shown in Example 3-12.

 Example 3-12 /etc/named.rfc1912.zones file

 [image:]

 // named.rfc1912.zones:

 //

 // Provided by Red Hat caching-nameserver package

 //

 // ISC BIND named zone configuration for zones recommended by

 // RFC 1912 section 4.1 : localhost TLDs and address zones

 // and http://www.ietf.org/internet-drafts/draft-ietf-dnsop-default-local-zones-02.txt

 // (c)2007 R W Franks

 //

 // See /usr/share/doc/bind*/sample/ for example named configuration files.

 //

 zone "localhost.localdomain" IN {

 type master;

 file "named.localhost";

 allow-update { none; };

 };

 zone "localhost" IN {

 type master;

 file "named.localhost";

 allow-update { none; };

 };

 zone "1.0.ip6.arpa" IN {

 type master;

 file "named.loopback";

 allow-update { none; };

 };

 zone "1.0.0.127.in-addr.arpa" IN {

 type master;

 file "named.loopback";

 allow-update { none; };

 };

 zone "0.in-addr.arpa" IN {

 type master;

 file "named.empty";

 allow-update { none; };

 };

 zone "ibm.local" IN {

 type master;

 file "forward.zone";

 allow-update { none; };

 forwarders {};

 };

 zone "23.40.129.in-addr.arpa" IN {

 type master;

 file "reverse.zone";

 allow-update { none; };

 };

 [image:]

 4.	Create the /var/named/forward.zone file with the content that is shown in Example 3-13. Update the content to fit your OpenShift cluster names.

 Example 3-13 /var/named/forward.zone

 [image:]

 $TTL 1D

 @ IN SOA rdbkbas3.rdbk1.pok.ibm.local. root.ibm.local. (

 2019022400 ; serial

 3h ; refresh

 15 ; retry

 1w ; expire

 3h ; minimum

)

 IN NS rdbkbas3.rdbk1.pok.ibm.local.

 rdbkbas1.rdbk1.pok IN A 129.40.23.109

 ; The api points to the IP of your load balancer

 api.rdbk1.pok IN A 129.40.23.109

 api-int.rdbk1.pok IN A 129.40.23.109

 ;

 ; The wildcard also points to the load balancer

 *.apps.rdbk1.pok IN A 129.40.23.109

 ;

 ; Create entry for the bootstrap host

 rdbko3b1.rdbk1.pok IN A 129.40.23.110

 ;

 ; Create entries for the worker hosts

 rdbko3w1.rdbk1.pok IN A 129.40.23.114

 rdbko3w2.rdbk1.pok IN A 129.40.23.115

 ; Create entries for the controller hosts

 rdbko3m1.rdbk1.pok IN A 129.40.23.111

 rdbko3m2.rdbk1.pok IN A 129.40.23.112

 rdbko3m3.rdbk1.pok IN A 129.40.23.113

 ; etcd records

 etcd-0.rdbk1.pok IN A 129.40.23.111

 etcd-1.rdbk1.pok IN A 129.40.23.112

 etcd-2.rdbk1.pok IN A 129.40.23.113

 ; OpenShift Container Platform also requires an SRV DNS record for etcd server on that machine with priority 0, weight 10 and port 2380. A cluster that uses three control plane machines requires the following records:

 ; _service._proto.name. TTL class SRV priority weight port target.

 _etcd-server-ssl._tcp.rdbk1.pok 86400 IN SRV 0 10 2380 etcd-0.rdbk1.pok.ibm.local.

 _etcd-server-ssl._tcp.rdbk1.pok 86400 IN SRV 0 10 2380 etcd-1.rdbk1.pok.ibm.local.

 _etcd-server-ssl._tcp.rdbk1.pok 86400 IN SRV 0 10 2380 etcd-2.rdbk1.pok.ibm.local.

 [image:]

 5.	Create the /var/named/reverse.zone file, as shown in Example 3-14.

 Example 3-14 Reverse zone file

 [image:]

 $TTL 1D

 @ IN SOA rdbkbas3.rdbk1.pok.ibm.local. root.ibm.local. (

 2019022400 ; serial

 3h ; refresh

 15 ; retry

 1w ; expire

 3h ; minimum

)

 IN NS rdbkbas3.rdbk1.pok.ibm.local.

 ; Create entry for the bastion host

 109 IN PTR rdbkbas3.rdbk1.pok.ibm.local.

 ;

 ; Create entry for the bootstrap host

 110 IN PTR rdbko3b1.rdbk1.pok.ibm.local.

 ; Create entries for the worker hosts

 114 IN PTR rdbko3w1.rdbk1.pok.ibm.local.

 115 IN PTR rdbko3w2.rdbk1.pok.ibm.local.

 ; Create entries for the controller hosts

 111 IN PTR rdbko3m1.rdbk1.pok.ibm.local.

 112 IN PTR rdbko3m2.rdbk1.pok.ibm.local.

 113 IN PTR rdbko3m3.rdbk1.pok.ibm.local.

 [image:]

 6.	Update file ownership and file permissions by using the commands that are shown in Example 3-15.

 Example 3-15 Update file ownership and permissions

 [image:]

 chown named:named /var/named/forward.zone /var/named/reverse.zone

 chmod 640 /var/named/forward.zone /var/named/reverse.zone

 [image:]

 7.	Enable and start the named.service daemon by using the following command:

 systemctl enable —now named.service

 The output of the command is shown in Example 3-16.

 Example 3-16 Enable named service

 [image:]

 [root@rdbkbas3 ~]# systemctl enable --now named.service

 Created symlink /etc/systemd/system/multi-user.target.wants/named.service → /usr/lib/systemd/system/named.service.

 [image:]

 8.	Update the local firewall to accept connections to DNS traffic by using the following commands:

 firewall-cmd --permanent --add-service=dns

 firewall-cmd —reload

 9.	Confirm if DNS forward records are working correctly and responding to OpenShift required DNS entries. Run the commands that are shown in Example 3-17.

 Example 3-17 Verify DNS forward zone

 [image:]

 dig @localhost rdbko3m1.rdbk1.pok.ibm.local +short

 dig @localhost rdbko3m2.rdbk1.pok.ibm.local +short

 dig @localhost rdbko3m3.rdbk1.pok.ibm.local +short

 dig @localhost rdbko3w1.rdbk1.pok.ibm.local +short

 dig @localhost rdbko3w2.rdbk1.pok.ibm.local +short

 dig @localhost etcd-0.rdbk1.pok.ibm.local +short

 dig @localhost etcd-1.rdbk1.pok.ibm.local +short

 dig @localhost etcd-2.rdbk1.pok.ibm.local +short

 [image:]

 If you receive output with the IP address for each OpenShift resource, the DNS forward zone configuration is working correctly.

 10.	Confirm the OpenShift DNS reverse zone by running the commands that are shown in Example 3-18

 Example 3-18 Verify DNS reverse zone

 [image:]

 dig @localhost -x 129.40.23.109 +short

 dig @localhost -x 129.40.23.110 +short

 dig @localhost -x 129.40.23.111 +short

 dig @localhost -x 129.40.23.112 +short

 dig @localhost -x 129.40.23.113 +short

 dig @localhost -x 129.40.23.114 +short

 dig @localhost -x 129.40.23.115 +short

 [image:]

 If you receive output with the node names for each OpenShift resource, the DNS reverse zone configuration is correctly defined.

 11.	Confirm the OpenShift DNS SRV resources by running the command that is shown in Example 3-19.

 Example 3-19 Verify OpenShift DNS SRV

 [image:]

 dig @localhost _etcd-server-ssl._tcp.rdbk1.pok.ibm.local SRV +short

 [image:]

 The output appears similar to the output that is shown in Example 3-20.

 Example 3-20 Output of verify DNS SRV

 [image:]

 0 10 2380 etcd-2.rdbk1.pok.ibm.local.

 0 10 2380 etcd-0.rdbk1.pok.ibm.local.

 0 10 2380 etcd-1.rdbk1.pok.ibm.local.

 [image:]

 The DNS service is now configured.

 	
 Note: If you update the DNS file after you start it, remember to reload the service by running the systemctl restart named command.

 3.1.3 File transfer protocol server

 A file transfer protocol (FTP) server is needed to hold the ignition configuration files and installation images for the installation of RHEL CoreOS. The VSFTPD package that comes with the RHEL distribution is installed on the bastion node to provide this function.

 To install an FTP server, complete the following steps after you are connected to the bastion node and have root privileges:

 1.	Install the FTP operating system package by using the yum:

 yum -y install vsftpd

 The output of the command is shown in Example 3-21.

 Example 3-21 Install vsftpd

 [image:]

 [root@rdbkbas3 ~]# yum -y install vsftpd

 Updating Subscription Management repositories.

 Unable to read consumer identity

 This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register.

 Extra Packages for Enterprise Linux 8 - s390x 95 kB/s | 18 kB 00:00

 Jenkins-stable 589 B/s | 2.9 kB 00:05

 Poughkeepsie Client Center Local RHN - RHEL 8.1 s390x Server RPMs 601 B/s | 2.9 kB 00:05

 Poughkeepsie Client Center Local RHN - RHEL 8.1 s390x Server Supplementary RPMs 157 kB/s | 2.9 kB 00:00

 Poughkeepsie Client Center Local RHN - RHEL 8.1 s390x Server Optional RPMs 171 kB/s | 2.9 kB 00:00

 Dependencies resolved.

 ==

 Package Architecture Version Repository Size

 ==

 Installing:

 vsftpd s390x 3.0.3-28.el8 InstallMedia-AppStream 175 k

 Transaction Summary

 ==

 Install 1 Package

 Total size: 175 k

 Installed size: 370 k

 Downloading Packages:

 Running transaction check

 Transaction check succeeded.

 Running transaction test

 Transaction test succeeded.

 Running transaction

 Preparing : 1/1

 Installing : vsftpd-3.0.3-28.el8.s390x 1/1

 Running scriptlet: vsftpd-3.0.3-28.el8.s390x 1/1

 Verifying : vsftpd-3.0.3-28.el8.s390x 1/1

 Installed products updated.

 Installed:

 vsftpd-3.0.3-28.el8.s390x

 Complete!

 [image:]

 2.	Update the /etc/vsftpd/vsftpd.conf file to allow anonymous connections for FTP server. Update the highlighted section in red that is shown in Example 3-22.

 Example 3-22 update vsftpd.conff

 [image:]

 anonymous_enable=YES

 local_enable=YES

 write_enable=YES

 local_umask=022

 dirmessage_enable=YES

 xferlog_enable=YES

 connect_from_port_20=YES

 xferlog_std_format=YES

 listen=NO

 listen_ipv6=YES

 pam_service_name=vsftpd

 userlist_enable=YES

 pasv_enable=Yes

 [image:]

 3.	Start and enable vsftpd service by using the following command:

 systemctl enable —now vsftpd.service

 The output of the command is shown in Example 3-23.

 Example 3-23 enable vsftpd service

 [image:]

 [root@rdbkbas3 ~]# systemctl enable --now vsftpd.service

 Created symlink /etc/systemd/system/multi-user.target.wants/vsftpd.service → /usr/lib/systemd/system/vsftpd.service.

 [image:]

 4.	Run the commands that are shown in Example 3-24 to update the local firewall to allow FTP connections.

 Example 3-24 Update local firewall

 [image:]

 firewall-cmd --permanent --add-service=ftp

 firewall-cmd --permanent --add-port=21/tcp

 firewall-cmd —reload

 [image:]

 5.	Run the following command to set SELinux ftpd_use_passive_mode. Use the Boolean option to “on” to enable passive FTP and make it persistent during reboots by using the -P option:

 setsebool -P ftpd_use_passive_mode on

 6.	To confirm that the ftpd_use_passive_mode was changed, run the following command:

 semanage boolean -lC

 You should receive the output that is shown in Example 3-25.

 Example 3-25 Output of semanage

 [image:]

 SELinux boolean State Default Description

 ftpd_use_passive_mode (on , on) Allow ftpd to use passive mode

 haproxy_connect_any (on , on) Allow haproxy to connect any

 [image:]

 7.	Create the /var/ftp/pub directory by running the following command:

 mkdir -p /var/ftp/pub

 8.	Set permissions on the /var/ftp/pub folder by running the following command:

 chmod 755 /var/ftp/pub

 9.	Ensuring that this FTP server can be reached by the bootstrap, control plane, and compute machines during installation is an important task before starting downloads. Therefore, access the FTP server by using your preferred browser or run the FTP following command:

 ftp <BASTION_IP_ADDRESS>

 Where BASTION_IP_ADDRESS is the IP address or IP name of your bastion server.

 The configuration for VSFTPD is complete if you can access the FTP server.

 3.2 Downloading OpenShift files

 In this section, we describe the process of downloading the files that are required for a successful installation of Red Hat OpenShift 4.4 and RHCOS.

 To download Red Hat OpenShift 4.4 and RHCOS, complete the following steps:

 1.	Browse to the OpenShift Infrastructure Providers web page (see Figure 3-2).

 [image:]

 Figure 3-2 Red Hat Log on page

 2.	Authenticate by using your Red Hat credentials (or create an account if you do not have credentials yet).

 	
 Note: You must log in to your Red Hat account to download the files.

 3.	Multiple platforms are displayed. Click Run on IBM Z, as shown in Figure 3-3.

 [image:]

 Figure 3-3 Run on IBM Z

 4.	A window opens. In the Download section:

 a.	Download the OpenShift installer (Linux version). Select Linux from the drop-down menu, as shown in Figure 3-4. Click Download Installer (the file name is openshift-install-linux.tar.gz).

 [image:]

 Figure 3-4 Download installer

 b.	Download the pull secret, as shown in Figure 3-5. Save the content to a text file because the OpenShift installer prompts you for a pull secret during the installation process (use pull-secret as the file name).

 [image:]

 Figure 3-5 Download Pull Secret

 	
 Note: This pull secret is used to associate the new OpenShift cluster with your Red Hat account.

 c.	Download the command-line tools if you want to run the commands from a desktop or outside of the bastion server (openshift-client-linux.tar.gz).

 d.	Download the Red Hat Enterprise Linux CoreOS (RHEL CoreOS) image for IBM Z. Go to the bastion server and create a folder called /opt/downloads by running the following command:

 mkdir /opt/downloads

 e.	Browse to /opt/downloads and download the files that are required for OpenShift installation. For DASD installations, download the rhcos-4.4.9-s390x-dasd.s390x.raw.gz file by running the wget command, as shown in Example 3-26.

 Example 3-26 Download rhcos-dasd

 [image:]

 [root@rdbkbas3 downloads]# wget https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.4/4.4.9/rhcos-4.4.9-s390x-dasd.s390x.raw.gz

 --2020-06-30 16:32:56-- https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.4/4.4.9/rhcos-4.4.9-s390x-dasd.s390x.raw.gz

 Resolving mirror.openshift.com (mirror.openshift.com)... 54.173.18.88, 54.172.163.83, 54.172.173.155

 Connecting to mirror.openshift.com (mirror.openshift.com)|54.173.18.88|:443... connected.

 HTTP request sent, awaiting response... 200 OK

 Length: 764659687 (729M) [application/x-gzip]

 Saving to: ‘rhcos-4.4.9-s390x-dasd.s390x.raw.gz’

 rhcos-4.4.9-s390x-dasd.s390x.raw.gz 100%[==>] 729.24M 76.5MB/s in 9.6s

 2020-06-30 16:33:06 (75.8 MB/s) - ‘rhcos-4.4.9-s390x-dasd.s390x.raw.gz’ saved [764659687/764659687]

 [image:]

 For SAN installations, download the rhcos-4.4.9-s390x-metal.s390x.raw.gz file by running the command that is shown in Example 3-27.

 Example 3-27 Download rhcos-SAN

 [image:]

 [root@rdbkbas3 downloads]# wget https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.4/4.4.9/rhcos-4.4.9-s390x-metal.s390x.raw.gz

 [image:]

 f.	Using the same wget command, download the following Linux files, as shown in Example 3-28:

 rhcos-4.4.9-s390x-installer-initramfs.s390x.img

 rhcos-4.4.9-s390x-installer-kernel-s390x

 Example 3-28 Download Linux files

 [image:]

 wget https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.4/4.4.9/rhcos-4.4.9-s390x-installer-initramfs.s390x.img

 wget https://mirror.openshift.com/pub/openshift-v4/s390x/dependencies/rhcos/4.4/4.4.9/rhcos-4.4.9-s390x-installer-kernel-s390x

 [image:]

 5.	At the desktop, copy the following files to your Bastion node in the /opt/downloads directory:

 openshift-install-linux.tar.gz

 pill-secret

 openshift-client-linux.tar.gz

 After completing these steps, the /opt/downloads directory on the bastion server should look like that which is shown in Example 3-29.

 Example 3-29 contents of /opt/downloads

 [image:]

 [root@rdbkbas3 downloads]# ls -ltr

 total 3972504

 -rw-r--r--. 1 root root 56227910 Jun 22 13:11 rhcos-4.4.9-s390x-installer-initramfs.s390x.img

 -rw-r--r--. 1 root root 126365696 Jun 22 13:11 rhcos-4.4.9-s390x-installer.s390x.iso

 -rw-r--r--. 1 root root 5124581 Jun 22 13:11 rhcos-4.4.9-s390x-installer-kernel-s390x

 -rw-r--r--. 1 root root 764676689 Jun 22 13:11 rhcos-4.4.9-s390x-metal.s390x.raw.gz

 --rw-r--r--. 1 root root 764659687 Jun 22 13:12 rhcos-4.4.9-s390x-dasd.s390x.raw.gz

 -rw-r--r--. 1 root root 81947062 Jun 30 15:43 openshift-install-linux.tar.gz

 -rw-r--r--. 1 root root 24695307 Jun 30 15:48 openshift-client-linux.tar.gz

 -rw-r--r--. 1 root root 2731 Jun 30 16:45 pull-secret

 [image:]

 3.3 Passwordless SSH configuration

 During the RHCOS installation process, a user named core is created with the SSH key that is assigned to that user. Direct root access is not allowed by way of server console or SSH. Therefore, the system administrators can log in to the nodes with that user name and SSH key credentials. The following command is an example to access the bootstrap node:

 ssh -i $HOME/.ssh/id_rsa core@129.40.23.110

 To allow internal cluster communications and administrative access to the OpenShift server machines, system administrators can use the ssh-key pair.

 On the bastion server, generate SSH keys for the core user by running the ssh-keygen command. Do not protect the private key with a passphrase. Run the following command:

 ssh-keygen -t rsa -N '' -f $HOME/.ssh/id_rsa

 The output of the command is shown in Example 3-30.

 Example 3-30 Output of ssh-keygen

 [image:]

 [root@rdbkbas3 /]# ssh-keygen -t rsa -N '' -f $HOME/.ssh/id_rsa

 Generating public/private rsa key pair.

 Your identification has been saved in /root/.ssh/id_rsa.

 Your public key has been saved in /root/.ssh/id_rsa.pub.

 The key fingerprint is:

 SHA256:q58dnneTBMaEQdLuGsd1COgC/helloRedbooks root@rdbkbas3.pbm.ihost.com

 The key's randomart image is:

 +---[RSA 3072]----+

 | welcome |

 | to |

 | IBM Redbooks |

 | |

 | . OS= o o |

 | o *.= . |

 | ..=. . . |

 | ..+ o. + |

 | ..o +. . . |

 +----[SHA256]-----+

 [image:]

 	
 Note: The contents of the id_rsa.pub file ($HOME/.ssh/id_rsa.pub) is incorporated in the sshKey section of the install-config.yaml file later during the cluster installation step.

 3.4 Installing and creating the ignition configuration files on the bastion server

 The ignition files contain instructions for the RHCOS installer about how to configure the new Linux server. It facilitates silent or unattended installation. Therefore, you do not need to provide any input during the RHCOS installation.

 We are going to use the bastion server to generate the necessary ignition files for the cluster installation. Without the ignition files, you cannot install RHCOS.

 The openshift-installer that was obtained from the OpenShift Infrastructure Providers page that is found in section 3.2, “Downloading OpenShift files” on page 32 is run to create the ignition configuration files. The openshift-installer expects a YAML-formatted file that is called install-config.yaml to generate the cluster configuration information.

 For installations of OpenShift Container Platform that use a user-provisioned infrastructure, you must manually generate your installation configuration file. The following steps help you to define an install-config.yaml file and create the ignition files.

 Complete the following steps after you are connected to the bastion node and have root privileges:

 1.	Create an installation directory to store the required installation files by running the following commands:

 mkdir /stage

 cd /stage

 2.	Create and customize the /stage/install-config.yaml file, as shown in Example 3-31. The settings that you must update to your values are highlighted in red.

 Example 3-31 /stage/install-config.yaml file

 [image:]

 apiVersion: v1

 baseDomain: pok.ibm.local

 compute:

 - hyperthreading: Enabled

 name: worker

 replicas: 2

 controlPlane:

 hyperthreading: Enabled

 name: master

 replicas: 3

 metadata:

 name: rdbk1

 networking:

 clusterNetwork:

 - cidr: 10.128.0.0/14

 hostPrefix: 23

 networkType: OpenShiftSDN

 serviceNetwork:

 - 172.30.0.0/16

 platform:

 none: {}

 pullSecret: '{"auths":{"cloud.openshift.com":{"auth":"b3BlbnNoaWZ0LXJlbGVhc2UtZGV2K2VtYXJpbnNicmlibWNvbTF6eGRmam1jdTZnb3FseHo2dGdjbXh0MWJ6cjpNV0NSWUFDWlZNOTg2ODIxVVFOWTFTUDVZSk9DMEVXN040NEVITUZXVzBVMkk4RFIyQUZaTlFNSTJUQVdTUUZX","email":"xxxxxx@br.ibm.com"},"quay.io":{"auth":"b3BlbnNoaWZ0LXJlbGVhc2UtZGV2K2VtYXJpbnNicmlibWNvbTF6eGRmam1jdTZnb3FseHo2dGdjbXh0MWJ6cjpNV0NSWUFDWlZNOTg2ODIxVVFOWTFTUDVZSk9DMEVXN040NEVITUZXVzBVMkk4RFIyQUZaTlFNSTJUQVdTUUZX","email":"welcoome"},"registry.connect.redhat.com":{"auth":"xxxxxxlk;ajflsdfoeulnl;u","email":"xxxxxxxx@br.ibm.com"},"registry.redhat.io":{"auth":"Nzg2MjI4M3x1aGMtMVpYREZKTUN1NmdvUWx4ejZ0R0NNWHQxYlpyOmV5SmhiR2NpT2lKU1V6VXhNaUo5LmV5SnpkV0lpT2lKbU9UZzRaRGM1T0dFNE1tUTBObU01T0ROaE56ZzHHKJHHLKJJd1ltUTVaQ0o5LkxLc1BUbTZ6VXZjdktwcUg3aFB3UmpmNTk1b3RvWXhpTWVvU2pZNVB0REJJdHB2NndUdy1pXzEtNkhpalozOU9MQXI3b1JrdWNVSkZZcmIwdG0taEwzSlVicGtuSHQtVHRBTHA2SktOVV9KeG0zcVJRLVUzYzFsTm9PSkpySnRfMUp2U3dqNGdYcm5ubzFMT0Yydm14dTJTRF9DQURleWhUS0lIOThOdk9hZ203eE1YOUlSOWpIU01obWVwZS1VVFNoY29pTGNHUFpvVXczTlRuY3NNTFBRNHcxcDZrR2FhRGVHZGx4SXU2SWVaV3RKRlBHV0QyNzVDejFFWlhxbkZFWFpta0JFQjJFeXZXWGZ3YlpHcWFwZnI5SWppLWpjc0EzR1UyUWF5TTFNakVvWm03Vjh3ODFUZXlOS3ZiUGUtRVpiMTVQMUVRdEVpSlVjSml0MVJRbXFmNmEzanZLR2ZFQ1hYdm9mY0hJVWtBZ1JveWZKbzZnT2ZzUzh5ekFhVEVZRjA3d0k2SzV5X1UxY2l1UERnZTY5LWV4dWM3MzRVbmpBZXdHWVR4RFV0azN2NTZSX3k4YUlURVltcjlyTHFUWFVIYWVvMGU1STAzSXVUcGdOWDRjRGZQdk9Ka252b0ZMZjFZUVF0bFJXenIxbi1NNnUyb2N2SnVpVi1NMkhybGxheHlGaVVkQjR4TEtPUkNxNGJJa1ROTUkxUnExZTVDZmZwckVPUzBzRUs4RzliNmVrbnY2WTg3cFEtcXhzdDdtYl8tVGN0VEFXxxxxXZWXVLSDhlMkozZU0tM280aFoxQ2s5VUoxXzExRDdjT1FwUFZnMWxleDdKQlFHd0h6MUk0alZOSUYtZlFqa09CTGtqNjVhN3lWa1AwSF9naEhEWlNSSzJV","email":"xxxxxx@br.ibm.com"}}}'

 sshKey: 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCrkGIqQjlx3ui6IgG4ioG2pRMYr2HhxXGVsvmACcu06b8u26N1F8Z3Ie0/1CACXxLTHHqcswl8l1IVJ1zTl5vSh2SZIAwK5/xKz7bUjeeWUePnyspZltmJv7IzcRn3KXziXW80mRedbooksyq+xMrQs4Jku5IhvAUEEk2HYomDbPcDngnoKWoQ0sSFrujxL/l6bJIiEzA+HJn9J52iqlugw+jj/vp4Gdc6Xhf68NX3WDD/ysWzP1tO8Zz3mbn5hHGb+ZuhXCfOgymqdgM/qcHPQv1mLKufhsXplLJ2/1CmMwjzQAStGtmu2SUMCpdLWokO5OSW6g6KOAgDnqqdvxqKOk3GP9rJ0cNIq+kaj8JhN2UuMNz2RfmjTq/vXXHhhptijCT2ijve9+A7qaQnlogkoBBvBc1DbxUc+otsvWov4BS2ac22QTBJrDO5+W2gc9wSFiZO5ZxE25ot/ji/eeB0u2vEnoxyve9wT+Ldet4zlZYO8SEgBfodL8TT/TrlLrNrs= redbo@br.ibm.com'

 [image:]

 The values in red in this example represent:

  –	Your baseDomain, metadata.name, pullSecret, and sshKey tags.

  –	The pullSecret that should be updated with your pullSecret.

  –	The sshKey that should be updated with the content of id_rsa.pub.

 3.	Save a copy of the install-config.yaml file so that you can use it to install multiple clusters. The openshift-installer reads the YAML file and deletes the file after the ignition files are created; therefore, you want to ensure that you have a copy of this file:

 cp /stage/install-config.yaml /stage/install-config.yam.bkup

 	
 Important: The install-config.yaml file is deleted during the next step of the installation process. You must back it up now.

 4.	Go to the folder where you put the downloaded Red Hat files (/opt/downloads):

 cd /opt/downloads

 5.	Copy the downloaded OpenShift installer openshift-install-linux.tar.gz to /stage and unpack the OpenShift installer by running the commands that are shown in Example 3-32.

 Example 3-32 Unpack OpenShift install file

 [image:]

 cp /opt/downloads/openshift-install-linux.tar.gz /stage

 cd /stage/

 tar zxf openshift-install-linux.tar.gz com

 [image:]

 6.	Copy the OpenShift client (openshift-client-linux.gz) to /stage:

 cp /opt/downloads/openshift-client-linux.tar.gz /stage

 7.	Unpack OpenShift client file (openshift-client-linux.tar.gz) and run the following command:

 tar zxf openshift-client-linux.tar.gz

 8.	Copy the oc and kubectl files to /usr/local/bin folder:

 cp -a oc kubectl /usr/local/bin/

 9.	Generate the Kubernetes manifests for the cluster, issue:

 ./openshift-install create manifests --dir=/stage

 The output of the command is shown in Example 3-33.

 Example 3-33 Output of OpenShift installation

 [image:]

 [root@rdbkbas3 stage]# ./openshift-install create manifests --dir=/stage

 INFO Consuming Install Config from target directory

 [image:]

 10.	Modify the /stage/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file to prevent pods from being scheduled on the control plane machines by completing the following steps:

 a.	Open the /stage/manifests/cluster-scheduler-02-config.yml file.

 b.	Locate the mastersSchedulable parameter and set its value to False, as shown in Example 3-34.

 c.	Save and exit the file.

 Example 3-34 Change mastersSchedulable parameter

 [image:]

 apiVersion: config.openshift.io/v1

 kind: Scheduler

 metadata:

 creationTimestamp: null

 name: cluster

 spec:

 mastersSchedulable: false

 policy:

 name: ""

 status: {}

 [image:]

 11.	Run the following command to generate the ignition configuration files:

 ./openshift-install create ignition-configs --dir=/stage

 The output of the command is shown in Example 3-35.

 Example 3-35 Create ignition files

 [image:]

 [root@rdbkbas3 stage]# ./openshift-install create ignition-configs --dir=/stage

 INFO Consuming Openshift Manifests from target directory

 INFO Consuming Master Machines from target directory

 INFO Consuming Worker Machines from target directory

 INFO Consuming Common Manifests from target directory

 INFO Consuming OpenShift Install (Manifests) from target directory

 [image:]

 Upon completion, the directories and files that are shown in Example 3-36 are created in the /stage directory.

 Example 3-36 Contents of /stage directory

 [image:]

 [root@rdbkbas3 stage]# ls -ltr

 total 592144

 -rw-r--r--. 1 root root 954 Jun 21 13:54 README.md

 -rwxr-xr-x. 2 root root 75297728 Jun 21 13:54 oc

 -rwxr-xr-x. 2 root root 75297728 Jun 21 13:54 kubectl

 -rwxr-xr-x. 1 root root 348782592 Jun 21 14:29 openshift-install

 -rw-r--r--. 1 root root 3750 Jun 30 17:13 install-config.yaml.44.bkup

 -rw-r--r--. 1 root root 81947062 Jun 30 17:41 openshift-install-linux.tar.gz

 -rw-r--r--. 1 root root 24695307 Jun 30 17:52 openshift-client-linux.tar.gz

 drwxr-x---. 2 root root 50 Jun 30 17:59 auth

 -rw-r-----. 1 root root 1824 Jun 30 17:59 master.ign

 -rw-r-----. 1 root root 1824 Jun 30 17:59 worker.ign

 -rw-r-----. 1 root root 299596 Jun 30 17:59 bootstrap.ign

 -rw-r-----. 1 root root 98 Jun 30 17:59 metadata.json

 [image:]

 The kubeconfig file, found in the /state/auth directory, is used later to set the cluster context for logging in to the cluster by using the command-line interface. In addition, the /stage/auth/kubeadmin-password file includes password information for logging in from a browser. The *.ign files that are obtained are used to start each type of cluster nodes.

 12.	Copy all *.ign files to the /var/ftp/pub/ folder of the FTP server (the bastion server:

 cp /stage/*.ign /var/ftp/pub/

 13.	Ensure that the files have 644 permissions set and SELinux context is updated. Run the following commands:

 chmod 644 /var/ftp/pub/*.ign

 restorecon -R -v /var/ftp/pub/

 14.	We strongly recommend that you perform a backup of the /stage directory. It contains files about your OpenShift installation. Run the following command to back up this directory:

 cp -a /stage /stage.bkp

 3.5 Creating Red Hat Enterprise Linux CoreOS guests

 Before you configure an OpenShift cluster on the IBM Z platform, you must install RHCOS on z/VM guest VMs. The RHCOS installation uses the ignition file to perform the operating system configuration.

 The ignition file is read-only early in the boot process (in the initramfs to be exact) and provides a fully automated install, which reduces the complexity for Linux container administrators. You would perform the install by passing the coreos.inst.<arg> arguments on the parameter file. This section describes the required steps to complete a successful installation.

 The process to generate the ignition files by using the OpenShift installer is described in Example 3.4 and created in the /stage folder.

 Complete the following steps after you connect to the bastion node and have root privileges:

 1.	Copy the downloaded Red Hat Enterprise Linux CoreOS installation files to /var/ftp/pub and run:

 cp /opt/downloads/rhcos-4.4.9-s390x-installer-kernel-s390x /var/ftp/pub/

 cp /opt/downloads/rhcos-4.4.9-s390x-installer-initramfs.s390x.img /var/ftp/pub/

 cp /opt/downloads/rhcos-4.4.9-s390x-dasd.s390x.raw.gz /var/ftp/pub/

 2.	Verify that the Red Hat Enterprise Linux CoreOS Ignition files (*.ign) exists by running the following command:

 ls -l /var/ftp/pub/*.ign

 You should receive output that is similar to the following example:

 -rw-r--r--. 1 root root 295184 Jun 8 08:32 /var/ftp/pub/bootstrap.ign

 -rw-r--r--. 1 root root 1826 Jun 8 08:31 /var/ftp/pub/master.ign

 -rw-r--r--. 1 root root 1970 Jun 8 10:30 /var/ftp/pub/worker.ign

 3.	Create parameter files (parmfiles) for each OpenShift node (bootstrap, controller, and worker nodes). In our environment, the following parmfiles were created:

  –	/var/ftp/pub/bootstrap-0.parm

  –	/var/ftp/pub/master-1.parm

  –	/var/ftp/pub/master-2.parm

  –	/var/ftp/pub/master-3.parm

  –	/var/ftp/pub/worker-1.parm

  –	/var/ftp/pub/worker-2.parm

 Before you can begin the installation, you must configure some boot parameters. When installing through z/VM, these parameters must be configured before you boot by using the parmfiles. Use a Linux editor, such as vim, to add the parameters that are listed in Table 3-1.

 Table 3-1 Parm file parameters

 	
 Parameter

 	
 Description

 	
 Example

 	
 coreos.inst=yes

 	
 Specify whether a coreos will be installed.

 	
 coreos.inst=yes

 	
 coreos.inst.install_dev=sda

 	
 Specify the block device of the system to which to install.

 	
 For example, setting:

 coreos.inst.install_dev=dasda

 Tells installer to extract RHCOS image into a DASDA device. DASDA is the first DASD. We defined only 1 disk.

 	
 coreos.inst.image_url=<image_URL>

 	
 Specify the URL of the RAW image that you uploaded to your server.

 	
 coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz

 	
 coreos.inst.ignition_url=http://example.com/config.ign

 	
 Specify the URL of the Ignition config file for this machine type.

 The location of the Ignition config file that you copied to your FTP server.

 	
 For example, setting:

 coreos.inst.ignition_url=ftp://129.40.23.109/pub/bootstrap.ign

 Tells installation to load bootstrap ignition file by way of FTP

 	
 ip=<dhcp or static IP address>

 	
 Set ip=dhcp or Set an individual static IP address (ip=) and DNS server (nameserver=) on each node.

 	
 For example, setting:

 ip=129.40.23.110::129.40.23.1:255.255.255.0:::none nameserver=129.40.23.109

 Sets:

 Node’s IP address to 129.40.23.110

 Gateway address to 129.40.23.1

 Netmask to 255.255.255.0

 Hostname will get from DNS reverse zone

 The DNS server address to 129.40.23.109

 	
 rd.znet

 	
 Specify a network protocol type, a comma delimited list of subchannels, and, optionally, comma delimited sysfs parameter and value pairs.

 	
 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1

 	
 zfcp.allow_lun_scan

 	
 Option to control LUN disk scanning.

 0 = disable

 1 = enable

 Using DASD, ensure you set it to 0.

 	
 For example, setting:

 zfcp.allow_lun_scan=0

 Disables the automatic LUN scan for FCP devices that run NPIV mode.i

 	
 cio_ignore

 	
 Remove the device from the list of ignored devices and make it visible to Linux,

 	
 cio_ignore=all,!condev

 	
 rd.dasd

 	
 Boot option to activate DASDs early in the boot process.

 	
 For example, setting:

 rd.dasd=0.0.0100

 Tells kernel to activate 100 disk.,

 	
 rd.neednet

 	
 Bring up network.

 	
 For example, setting:

 rd.neednet=1

 Tells kernel to bring network up

 In the following examples, we highlighted in red the values that change from one file to another to help you to quickly create the parm files:

  –	/var/ftp/pub/bootstrap-0.parm file

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/bootstrap.ign ip=129.40.23.110::129.40.23.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

  –	/var/ftp/pub/master-1.parm file

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/master.ign

 .ign ip=129.40.23.111::129.40.23.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

  –	/var/ftp/pub/master-2.parm

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/master.ign ip=129.40.23.112::9.16.8.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

  –	/var/ftp/pub/master-3.parm

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/master.ign ip=129.40.23.113::129.40.23.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

  –	/var/ftp/pub/worker-1.parm

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/worker.ign ip=129.40.23.114::129.40.23.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

  –	/var/ftp/pub/worker-2.parm

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/worker.ign ip=129.40.23.115::9.16.8.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

 	
 Note: Although our installation uses a DASD disk, we included zfcp.allow_lun_scan=0 in the parmfile; otherwise, the installation does not proceed as it tries to scan for LUN disks. Use this option for SAN disks.

 Review all of the files to ensure the IP addresses are correct for each node. We experienced a duplicate IP address problem that we had to address before continuing.

 4.	Run the following commands to create files that use short names. Remember, z/VM has a limitation on the file name length (8 characters). Use following commands to create files in the /var/ftp/pub folder:

 cp -a /var/ftp/pub/rhcos-4.4.9-s390x-installer-kernel-s390x /var/ftp/pub/KERNEL.IMG

 cp -a /var/ftp/pub/rhcos-4.4.9-s390x-installer-initramfs.s390x.img /var/ftp/pub/INITRD.IMG

 5.	Transfer the initramfs (INITRD.IMG), kernel (KERNEL.IMG) and the parameter files to z/VM by completing the following steps. We use the vmur command to accomplish this task:

 	
 Note: Ensure that the vmur command is available. If it is not available, run the following command to install the s390utils-base package on your bastion node:

 yum install -y s390utils-base

 a.	Load the module and activate the required devices by running the following commands:

 /sbin/modprobe vmur

 /usr/sbin/cio_ignore -r c-e

 /usr/sbin/chccwdev -e c-e

 b.	Change directories to the /var/ftp/pub/ directory:

 cd /var/ftp/pub/

 c.	Upload files to the bootstrap server by using the commands that are shown in Example 3-37. We specify the VMID (RDBKO3B1) for the bootstrap node when vmur required.

 Example 3-37 Upload files to bootstrap server

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3B1 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3B1 -N generic.parm /var/ftp/pub/bootstrap-0.parm

 /usr/sbin/vmur pun -r -u RDBKO3B1 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 d.	Upload the files to controller node 1 by using the commands that are shown in Example 3-38 on page 44. We specify the VMID (RDBKO3M1) for controller node 1 when vmur is used.

 Example 3-38 Upload files to controller node 1

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3M1 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3M1 -N generic.parm /var/ftp/pub/master-1.parm

 /usr/sbin/vmur pun -r -u RDBKO3M1 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 e.	Upload files to controller node 2 by using the commands that are shown in Example 3-39. We specify the VMID (RDBKO3M2) for controller node 2 when vmur is used.

 Example 3-39 Upload files to controller node 2

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3M2 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3M2 -N generic.parm /var/ftp/pub/master-2.parm

 /usr/sbin/vmur pun -r -u RDBKO3M2 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 f.	Upload files to controller node 3 by using the commands that are shown in Example 3-40. We specify the VMID (RDBKO3M3) for controller node 3 when vmur is used.

 Example 3-40 Upload files to controller node 3

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3M3 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3M3 -N generic.parm /var/ftp/pub/master-3.parm

 /usr/sbin/vmur pun -r -u RDBKO3M3-N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 g.	Upload files to worker node 1 by using the commands that are shown in Example 3-41. We specify the VMID f(RDBKO3W1) for worker node 1 when vmur is used.

 Example 3-41 Upload files to worker node 1

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3W1 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3W1 -N generic.parm /var/ftp/pub/worker-1.parm

 /usr/sbin/vmur pun -r -u RDBKO3W1 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 h.	Upload files to worker node 2 by using the commands that are shown in Example 3-42. We specify the VMID (RDBKO3W2) for worker node 2 when vmur is used.

 Example 3-42 Upload files to worker node 2

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3W2 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3W2 -N generic.parm /var/ftp/pub/worker-2.parm

 /usr/sbin/vmur pun -r -u RDBKO3W2 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 Example 3-43 shows an example of the output you should receive when the vmur commands are run.

 Example 3-43 Example of vmur output

 [image:]

 /usr/sbin/vmur pun -r -u RHOCPB00 -N kernel.img /var/ftp/pub/KERNEL.IMG

 Reader file with spoolid 1057 created and transferred to RHOCPB00.

 /usr/sbin/vmur pun -r -u RHOCPB00 -N generic.parm /var/ftp/pub/bootstrap-0.parm

 Reader file with spoolid 1061 created and transferred to RHOCPB00.

 /usr/sbin/vmur pun -r -u RHOCPB00 -N initrd.img /var/ftp/pub/INITRD.IMG

 Reader file with spoolid 1065 created and transferred to RHOCPB00.

 [image:]

 6.	Verify that files were successfully uploaded on each z/VM guest. Because the bootstrap is the first server to be installed, log on to the z/VM guest VM that you used for the bootstrap installation (RDBKO3B1). You can use an x3270 or c3270 terminal emulator, which is available in your operating system, and perform the following steps:

 a.	Query the guest reader by running the following command:

 CP QUERY RDR ALL

 The output of the command is shown in Figure 3-6.

 [image:]

 Figure 3-6 cp query reader

 b.	If you notice extra files, you must purge them and move the kernel image to the first position and parm file to the second position in the reader queue. To purge the files, run the purge command with the spool lD 0NNN, as shown in Example 3-44. To re-order the files, run the order command as shown in Example 3-44, where 0YYY is the spool ID.

 Example 3-44 Purge and re-order files

 [image:]

 purge rdr 0NNN

 order rdr 0YYY

 [image:]

 If you receive NO RDR FILES, it means that something went wrong and the files were not uploaded to z/VM. You must upload the files to that z/VM guest again by using the punch commands that are shown in Example 3-42.

 7.	To start the installation, run the following command:

 CP IPL 00c

 The installation starts and we see the output that is shown in Figure 3-7

 [image:]

 Figure 3-7 Start the installation

 8.	After the installation completes, you see the output in the VM console that indicates that the server started, as shown in Example 3-45.

 Example 3-45 Linux is ready.

 [image:]

 Red Hat Enterprise Linux CoreOS 44.81.202006171550-0 (Ootpa) 4.4

 SSH host key: SHA256:u5MCV8ejWu+9h4kosogWvDF8EbaMyOyrkEbJBdy86D8 (ED25519)

 SSH host key: SHA256:kScOYNr5IhCjLJP80ridhEUOpyOcgFIXTMDvFUwDDT4 (ECDSA)

 SSH host key: SHA256:GpyRQzFqXaxMlvCSKL//BQU+dTH9JEXddtb6WkBBlzo (RSA)

 enc640: 129.40.23.110 fe80::1:2ff:fe00:1a

 rdbko3b1 login: [175316.757707] SELinux: mount invalid. Same superblock, different security settings for (dev mqueue, type mqueue)

 [image:]

 Alternatively, to check whether the server is ready, you can run the ping command to check network connectivity.

 9.	Run the following commands to disconnect from the console:

 #CP SET RUN ON

 #CP DISC HOLD

 Installation of the bootstrap is completed.

 Repeat the steps for the other IDs starting with controller node 1 and ending with worker node 2. You should start with the controller nodes and then go to the worker nodes. In our installation, we used the VMIDs that are listed inTable 3-2 for our installation.

 Table 3-2 VMID

 	
 Node

 	
 VMID

 	
 Controller Node 1

 	
 RDBKO3M1

 	
 Controller Node 2

 	
 RDBKO3M2

 	
 Controller Node 3

 	
 RDBKO3M3

 	
 Worker Node 1

 	
 RDBKO3W1

 	
 Worker Node 2

 	
 RDBKO3W2

 We recommend you monitor the bootstrap installation by following the instructions in 3.6, “Post deployment activities” on page 46.

 OpenShift is now deployed.

 3.6 Post deployment activities

 This section describes the activities that must be performed after OpenShift is deployed. Complete the following steps:

 1.	After the VMs bootstrapped, run the following command to monitor the installation:

 cd /stage/

 ./openshift-install --dir=. wait-for bootstrap-complete --log-level debug

 Wait until you see the following message:

 INFO It is now safe to remove the bootstrap resources

 2.	The cluster image registry does not select a storage backend in User Provisioned Infrastructure (UPI) mode. Therefore, the cluster operator continually waits for an administrator to configure a storage backend. A workaround is to point the image-registry to an empty directory to allow the installation to complete by running the following commands:

 mkdir /root/.kube/

 cp /stage/auth/kubeconfig ~/.kube/config

 oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'

 3.	After the installation is complete, change the image registry to a suitable location. Follow the steps that are listed in 3.9, “Setting up an image registry” on page 59.

 4.	Run the following command to monitor the installation:

 ./openshift-install --dir=. wait-for install-complete

 Wait until you see the message that is shown in Example 3-46. The system provides the URL and credentials to log in to the OpenShift console after the installation is complete. Your URL and password are different.

 Example 3-46 Installation complete messages

 [image:]

 INFO Install complete!

 INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/stage/auth/kubeconfig'

 INFO Access the OpenShift web-console here: https://console-openshift-console.rdbk1.pok.ibm.local

 INFO Login to the console with user: kubeadmin, password: my-kube-password

 The password for the user that was created during installation can also be found in the auth subdirectory in the install-dir. It lets you log in through oc login and also gives you access to the web console. The URL for the console is https://console-openshift-console.<cluster>.<base_domain>.

 [image:]

 5.	Run the oc get nodes command and you see the worker nodes. If the worker nodes are not in the Ready state, you must repeatedly check for pending CSRs by using the oc get csr command. Then, approve the CSRs by using the oc adm log in approve <csr_name> command. Continue to check until the configuration is complete and all worker nodes are in the Ready state.

 6.	Run the following command from the /stage/ directory:

 watch -n5 oc get clusteroperators

 Monitor for cluster completion. Sample output is shown in Example 3-47.

 Example 3-47 Sample output from get clusteroperators command

 [image:]

 NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE

 authentication 4.4.9 True False False 25d

 cloud-credential 4.4.9 True False False 25d

 cluster-autoscaler 4.4.9 True False False 25d

 console 4.4.9 True False False 3d14h

 csi-snapshot-controller 4.4.9 True False False 3d14h

 dns 4.4.9 True False False 25d

 etcd 4.4.9 True False False 3d15h

 image-registry 4.4.9 True False False 3d14h

 ingress 4.4.9 True False False 3d14h

 insights 4.4.9 True False False 25d

 kube-apiserver 4.4.9 True False False 3d15h

 kube-controller-manager 4.4.9 True False False 3d15h

 kube-scheduler 4.4.9 True False False 3d15h

 kube-storage-version-migrator 4.4.9 True False False 3d14h

 machine-api 4.4.9 True False False 25d

 machine-config 4.4.9 True False False 3d14h

 marketplace 4.4.9 True False False 3d14h

 monitoring 4.4.9 True False False 3d14h

 network 4.4.9 True False False 25d

 node-tuning 4.4.9 True False False 3d15h

 openshift-apiserver 4.4.9 True False False 3d14h

 openshift-controller-manager 4.4.9 True False False 3d15h

 openshift-samples 4.4.9 True False False 3d15h

 operator-lifecycle-manager 4.4.9 True False False 25d

 operator-lifecycle-manager-catalog 4.4.9 True False False 25d

 operator-lifecycle-manager-packageserver 4.4.9 True False False 3d14h

 service-ca 4.4.9 True False False 25d

 service-catalog-apiserver 4.4.9 True False False 25d

 service-catalog-controller-manager 4.4.9 True False False 25d

 storage 4.4.9 True False False 3d15h

 [image:]

 For more information, see this web page.

 3.7 Configuring a persistent volume for use by the OpenShift cluster

 Persistent data is data that you want to be available, even if the container is removed. Application developers and container administrators naturally want to know how to preserve data for applications and users. They must also understand the requirements of their applications, the types of data that are involved, and how the data is accessed.

 Containers are inherently ephemeral, meaning they last only a short time. They are routinely destroyed and rebuilt from a previously pushed application image. Keep in mind that after a container is removed, all container data is gone. With containers, it is necessary that you take specific actions to deal with this ephemeral behavior. OpenShift offers efficient ways to manage data of an application while respecting the ephemeral nature of containers.

 By default, data that is generated inside the container is available only from within the container and only for the lifetime of the container instance. Persistent storage of data, such as application logs and cluster metrics, are not set up by default.

 Before you get started with provisioning storage, it is important to understand the Kubernetes concepts of a persistent volume and a persistent volume claim and how they work together in a cluster.

 3.7.1 Cluster

 By default, every cluster is set up with a plug-in to provision file storage. You can choose to install other add-ons, such as one for block storage. To use storage in a cluster, you must create a persistent volume claim (PVC), a persistent volume (PV), and a physical storage instance. When you delete the cluster, you can delete related storage instances.

 3.7.2 Persistent volume claim

 A PVC is the request to provision persistent storage with a specific type and configuration. To specify the persistent storage type that you want, you use Kubernetes storage classes. The cluster admin can define storage classes, or you can choose from one of the predefined storage classes in Red Hat OpenShift on IBM Cloud®.

 When you create a PVC, the request is sent to the IBM Cloud storage provider. Depending on the configuration that is defined in the storage class, the physical storage device is ordered and provisioned into your IBM Cloud infrastructure account. If the requested configuration does not exist, the storage is not created.

 3.7.3 Persistent volume

 A PV is a virtual storage instance that is added as a volume to the cluster. The PV points to a physical storage device in your IBM Cloud infrastructure account and abstracts the API that is used to communicate with the storage device. To mount a PV to an application, you must have a matching PVC. Mounted PVs appear as a directory inside the container's file system.

 3.7.4 Physical storage

 Physical storage is an instance that you can use to persist your data. Examples of physical storage in IBM Cloud include File Storage, Block Storage, Object Storage, and local worker node storage that you can use as software-defined storage (SDS) with Portworx or some other storage platform. IBM Cloud provides high availability for physical storage instances. However, data that is stored on a physical storage instance is not backed up automatically. Depending on the type of storage that you use, different methods exist to set up backup and restore solutions.

 Container system administrators can create storage volumes, such as PVCs and PVs, to suit their requirements. The following provisioning options are available:

 •Dynamic provisioning	

 Container system administrators use dynamic volume provisioning to create storage volumes on-demand. It gives developers the freedom to provision storage when they need it.

 •Static provisioning	

 In static provisioning, an administrator creates several PVs, which include information about the storage that is available to each user in the cluster. Container system administrators must make the storage instance available to application developers.

 In this IBM Redpaper publication, we set up dynamic provisioning by way of a Network File System (NFS). For more information, see this web page.

 	
 Note: Only NFS is supported for the OpenShift Container Platform on IBM Z.

 NFS is an open-standard persistent file storage solution that is built into Linux (with RFCs for each different version of NFS). NFS allows client computers to access files from a remote server over a network. For more information, see this web page.

 NFS uses a server that has the NFS server package that is installed with a volume that client computers can access over the network and uses the NFS client package. This approach allows remote clients to mount remote volumes as local volumes, which enables easy access of files across multiple computers. In a clustered system such as Kubernetes, this allows all nodes to keep up-to-date with the same storage. Thus, a pod can start on any worker node in the cluster and read its data. The NFS server must allow mount access from that node in its /etc/exports file.

 We describe how to install an NFS server on the bastion node in 3.8, “Installing an NFS server” on page 51.

 3.7.5 Application

 To read from and write to your storage instance, you must mount the PVC to your application. Different storage types have different read-write rules. For example, you can mount multiple pods to the same PVC for file storage. Block storage comes with a ReadWriteOnce (RWO) access mode so that you can mount the storage to one pod only.

 3.8 Installing an NFS server

 In this section, we describe how to install an NFS server on the bastion node. To start, ensure that you are connected to the bastion node and ran the sudo command to access the system with root privileges.

 The following steps are a simplified version of how to setup an NFS server. For more detailed RHEL instructions, see this web page.

 Complete the following steps:

 1.	Install the NFS server package by running the following command:

 yum install nfs-utils rpcbind

 2.	Create a directory by running the following commands:

 mkdir -p //exports/nfsshare

 chmod 755 /exports/

 chmod 755 /exports/nfsshare

 3.	Add the following lines to the /etc/exports file:

 # NFS auto provisioner

 /exports/nfsshare *(rw,sync,no_root_squash)

 	
 Note: You can add the client hostname or IP address for each of the worker nodes. Also, you can use a wildcard with hostnames, such as rdbko2w* (if that name was the hostname of each of your workers within your network) or an IP subnet mask (for example, 129.40.23/24). For example:

 /exports/nfsshare rdbko2w*(rw,sync,no_root_squash)

 or

 /exports/nfsshare 129.40.23.0/24(rw,sync,no_root_squash)

 4.	Start the NFS server by running the following commands:

 systemctl enable --now rpcbind

 systemctl enable --now nfs-server

 5.	To confirm that the folder is exported, run the following command:

 exportfs -v

 6.	Open the local firewall ports by running the following commands:

 firewall-cmd --permanent --add-service=nfs

 firewall-cmd --permanent --add-service=rpc-bind

 firewall-cmd --reload

 Downloading code from the Kubernetes Incubator

 Complete the following steps to download code from the Kubernetes Incubator GitHub project that contains the Provisioner interface and ProvisionController, which is a custom Kubernetes controller that watches PersistentVolumes and PersistentVolumeClaims:

 1.	Create /opt/nfs-client-provisioner folder:

 mkdir /opt/nfs-client-provisioner

 2.	Go to nfs-client-provisioner:

 cd /opt/nfs-client-provisioner

 3.	Download the file that is named master.zip to a file called kubernetes-incubator.zip by running the following commands:

 curl -L -o kubernetes-incubator.zip https://github.com/kubernetes-incubator/external-storage/archive/master.zip

 4.	Uncompress the downloaded package by running the following command:

 unzip kubernetes-incubator.zip

 5.	Change directories to external-storage-master/nfs-client/:

 cd external-storage-master/nfs-client/

 Configuring a service account and role bindings

 A service account provides an identity for processes that run in a pod. A role binding grants the permissions that are defined in a role to a user or set of users. It holds a list of subjects (users, groups, or service accounts), and a reference to the role being granted.

 Complete the following steps to configure a service account and the necessary role bindings:

 1.	Access the OpenShift cluster by using the kudeadmin user ID.

 You have two options to log in with the kubeadmin account:

  –	Use the KUBECONFIG variable with the following commands:

 export KUBECONFIG=/stage/auth/kubeconfig

 oc get nodes

  –	Use the kubeadmin password. Complete the following steps:

 i.	Get kubeadmin password by running the following command:

 cat /stage/auth/kubeadmin-password ; echo

 ii.	Authenticate to OpenShift by running the following command:

 oc login -u kubeadmin -p KUBEADMIN_PW https://BASTION_IP:6443

 where KUBEADMIN_PW is the password from step i and BASTION_IP is the IP address of your bastion node

 iii.	Test by running the oc get nodes command.

 2.	Create a namespace called nfs-client-provisioner:

 oc create namespace nfs-client-provisioner

 You should receive the following output:

 namespace/nfs-client-provisioner created

 3.	Switch to the nfs-client-provisioner namespace project by running the following command:

 oc project nfs-client-provisioner

 You should receive the following output:

 Now using project "nfs-client-provisioner" on server "https://api.z-east1-int.ciocloud.nonprod.intranet.ibm.com:6443".

 4.	Set the variable to be used during installation by running the following command:

 export NAMESPACE=`oc project -q`

 5.	Check the variable by running the following command:

 echo $NAMESPACE

 You should receive the following output:

 nfs-client-provisioner

 6.	Run the following command to update the deploy/rbac.yaml file:

 sed -i'' "s/namespace:.*/namespace: $NAMESPACE/g" ./deploy/rbac.yaml

 7.	Create the required cluster roles by running the following command:

 oc create -f deploy/rbac.yaml

 You should receive the following output:

 serviceaccount/nfs-client-provisioner created

 clusterrole.rbac.authorization.k8s.io/nfs-client-provisioner-runner created

 clusterrolebinding.rbac.authorization.k8s.io/run-nfs-client-provisioner created

 role.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created

 rolebinding.rbac.authorization.k8s.io/leader-locking-nfs-client-provisioner created

 8.	Allow the nfs-client-provisioned to run as root by running the following command:

 oc adm policy add-scc-to-user hostmount-anyuid system:serviceaccount:$NAMESPACE:nfs-client-provisioner

 You should receive the following output:

 securitycontextconstraints.security.openshift.io/hostmount-anyuid added to: ["system:serviceaccount:nfs-client-provisioner:nfs-client-provisioner"]

 Adding the NFS dynamic provisioner

 Complete the following steps:

 1.	Update the deploy/deployment.yaml file with the NFS share information, as shown in Example 3-48.

 	
 Note: Update values in red to fit your NFS configuration.

 Example 3-48 The deploy/deployment.yaml file

 [image:]

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: nfs-client-provisioner

 labels:

 app: nfs-client-provisioner

 # replace with namespace where provisioner is deployed

 namespace: nfs-client-provisioner

 spec:

 replicas: 1

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app: nfs-client-provisioner

 template:

 metadata:

 labels:

 app: nfs-client-provisioner

 spec:

 serviceAccountName: nfs-client-provisioner

 containers:

 - name: nfs-client-provisioner

 image: docker.io/gmoney23/nfs-client-provisioner-s390x:latest

 #image: quay.io/external_storage/nfs-client-provisioner:latest

 volumeMounts:

 - name: nfs-client-root

 mountPath: /persistentvolumes

 env:

 - name: PROVISIONER_NAME

 value: nfs-client-provisioner/nfs

 - name: NFS_SERVER

 value: 129.40.23.109

 - name: NFS_PATH

 value: /exports/nfsshare

 volumes:

 - name: nfs-client-root

 nfs:

 server: 129.40.23.109

 path: /exports/nfsshare

 [image:]

 2.	Update deploy/class.yaml file with the correct provisioner name (see Example 3-49).

 	
 Note: Update values in red to fit your NFS infrastructure

 Example 3-49 The deploy/class.yaml file

 [image:]

 apiVersion: storage.k8s.io/v1

 kind: StorageClass

 metadata:

 name: managed-nfs-storage

 provisioner: nfs-client-provisioner/nfs # or choose another name, must match deployment's env PROVISIONER_NAME'

 parameters:

 archiveOnDelete: "false"

 [image:]

 3.	Run the command that is shown in Example 3-50 to deploy the new storage class.

 Example 3-50 Creating required resources

 [image:]

 oc create -f deploy/class.yaml

 storageclass.storage.k8s.io/managed-nfs-storage created

 oc create -f deploy/deployment.yaml

 deployment.apps/nfs-client-provisioner created

 [image:]

 4.	To monitor the nfs-client-provisioner pod creation, run the following command:

 watch oc get pods

 Wait until the pod status shows Running. You should receive the following results:

 NAME READY STATUS RESTARTS AGE

 nfs-client-provisioner-74d774fbdb-8kcr5 1/1 Running 0 10s

 Press CRTL+C to quit.

 Optionally, the pod logs can also assist you in verifying the pod status by completing the following steps:

 a.	Get name of the nfs-client-provisioner container by running the following command:

 oc get pods

 You should receive the following output. Highlighted in bold is the name of the container.

 NAME READY STATUS RESTARTS AGE

 nfs-client-provisioner-74d774fbdb-8kcr5 1/1 Running 0 15s

 b.	Check the pod logs for the nfs-client-provisioner container by running the following command:

 oc logs nfs-client-provisioner-74d774fbdb-8kcr5

 Example 3-51 shows a sample of the output.

 Example 3-51 Sample output

 [image:]

 I0603 17:58:08.910496 1 leaderelection.go:187] attempting to acquire leader lease nfs-client-provisioner/nfs-client-provisioner-nfs...

 I0603 17:58:08.917086 1 leaderelection.go:196] successfully acquired lease nfs-client-provisioner/nfs-client-provisioner-nfs

 I0603 17:58:08.917405 1 controller.go:571] Starting provisioner controller nfs-client-provisioner/nfs_nfs-client-provisioner-6595b9c777-kk76g_c87d9f22-a5c3-11ea-9a73-0a580a820216!

 I0603 17:58:08.917427 1 event.go:221] Event(v1.ObjectReference{Kind:"Endpoints", Namespace:"nfs-client-provisioner", Name:"nfs-client-provisioner-nfs", UID:"3848eeee-fe42-405e-b851-71a9aeb3c95f", APIVersion:"v1", ResourceVersion:"12157768", FieldPath:""}): type: 'Normal' reason: 'LeaderElection' nfs-client-provisioner-6595b9c777-kk76g_c87d9f22-a5c3-11ea-9a73-0a580a820216 became leader

 I0603 17:58:09.017563 1 controller.go:620] Started provisioner controller nfs-client-provisioner/nfs_nfs-client-provisioner-6595b9c777-kk76g_c87d9f22-a5c3-11ea-9a73-0a580a820216!

 [image:]

 Testing with a Persistent Volume Claim

 Complete the following steps to test the new dynamic NFS storage class:

 1.	Create a claim resource and test pod to confirm the new storage class:

 a.	Go to the deploy directory:

 cd deploy/

 b.	Check the test-claim.yaml file to confirm that the annotations option points to the new storage class called managed-nfs-storage (see Example 3-52).

 Example 3-52 The test-claim.yaml file

 [image:]

 kind: PersistentVolumeClaim

 apiVersion: v1

 metadata:

 name: test-claim

 annotations:

 volume.beta.kubernetes.io/storage-class: "managed-nfs-storage"

 spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Mi

 [image:]

 c.	Create a PVC resource by running the following command:

 oc create -f test-claim.yaml

 d.	Check the status of your claim resource by running the following command:

 oc get pvc

 You should receive the following output:

 NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

 test-claim Bound pvc-18bba8d9-9a6d-4f35-bb18-7ac3c811baac 1Mi RWX managed-nfs-storage 37s

 	
 Note: If you see Pending for a test-claim resource, it means something is wrong with NFS sharing or nfs-client-provisioner deployment.

 2.	Complete the following steps to deploy a pod to test:

 a.	Edit the test-pod.yaml file with a valid IBM Z container image for the test (see Example 3-53). We updated our file to use the docker.io/busybox:1.31 image.

 Example 3-53 test-pod.yaml file

 [image:]

 kind: Pod

 apiVersion: v1

 metadata:

 name: test-pod

 spec:

 containers:

 - name: test-pod

 #image: gcr.io/google_containers/busybox:1.24

 image: docker.io/busybox:1.31

 command:

 - "/bin/sh"

 args:

 - "-c"

 - "touch /mnt/SUCCESS && exit 0 || exit 1"

 volumeMounts:

 - name: nfs-pvc

 mountPath: "/mnt"

 restartPolicy: "Never"

 volumes:

 - name: nfs-pvc

 persistentVolumeClaim:

 claimName: test-claim

 [image:]

 b.	Create the pod by running the following command:

 oc create -f test-pod.yaml

 c.	Wait for 5 seconds and check the status of your new pod by running the following command:

 oc get pods

 You should receive the following output:

 NAME READY STATUS RESTARTS AGE

 test-pod 0/1 Completed 0 8s

 	
 Note: If you see any other status, it means something is wrong with NFS sharing or the nfs-client-provisioner deployment.

 d.	Check the NFS server sharing for the SUCCESS message that is created by the test pod. Run the commands that are shown in Example 3-54.

 Example 3-54 Checking NFS server sharing

 [image:]

 # ls -la /exports/nfsshare/

 total 12

 drwxr-xr-x. 3 root root 4096 Jun 29 10:55 .

 drwxr-xr-x. 9 root root 4096 Jun 3 11:17 ..

 drwxrwxrwx. 2 root root 4096 Jun 29 10:52 default-test-claim-pvc-18bba8d9-9a6d-4f35-bb18-7ac3c811baac

 # ls -la /exports/nfsshare/default-test-claim-pvc-18bba8d9-9a6d-4f35-bb18-7ac3c811baac/

 total 8

 drwxrwxrwx. 2 root root 4096 Jun 29 10:52 .

 drwxr-xr-x. 3 root root 4096 Jun 29 10:55 ..

 -rw-r--r--. 1 root root 0 Jun 29 10:52 SUCCESS

 [image:]

 Setting default storage class to nfs-client-provisioner

 Storage classes can map to a provisioner to dynamically provision PVs based on the volume claim requests that come in as users deploy workloads and services.

 Some storage providers support the dynamic provisioning and abstract details so that developers do not need to take many steps to acquire, bind, and claim storage for their services.

 A default storage class can dynamically provision storage when a storage class is not specified.

 Complete the following steps to set up a default storage class on an OpenShift cluster:

 1.	Determine which storage class is default by running the command that is shown in Example 3-55.

 Example 3-55 Checking Available Storage Classes

 [image:]

 #oc get storageclass

 NAME PROVISIONER AGE

 managed-nfs-storage nfs-client-provisioner/nfs 60m

 [image:]

 2.	Mark the managed-nfs-storage storageclass as default by completing the following steps:

 a.	Run the oc edit storageclass/managed-nfs-storage command to add the two lines in red in Example 3-56.

 Example 3-56 Running the oc edit storageclass/managed-nfs-storage command

 [image:]

 # Please edit the object below. Lines beginning with a '#' will be ignored,

 # and an empty file will abort the edit. If an error occurs while saving this file will be

 # reopened with the relevant failures.

 #

 apiVersion: storage.k8s.io/v1

 kind: StorageClass

 metadata:

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

 creationTimestamp: "2020-06-03T17:59:07Z"

 name: managed-nfs-storage

 resourceVersion: "12167441"

 selfLink: /apis/storage.k8s.io/v1/storageclasses/managed-nfs-storage

 uid: 5a4d3b19-b80e-42a0-b29e-be1cde4b91cd

 parameters:

 archiveOnDelete: "false"

 provisioner: nfs-client-provisioner/nfs

 reclaimPolicy: Delete

 volumeBindingMode: Immediate

 [image:]

 b.	To save this file, run the :wq command (this command is the same command that is used with the vim editor).

 c.	Run the oc get storageclass -o yaml command to confirm if it was successfully updated. You should receive the output that is shown in Example 3-57 which shows the updates that you made to this file.

 Example 3-57 Updated yaml file

 [image:]

 apiVersion: v1

 items:

 - apiVersion: storage.k8s.io/v1

 kind: StorageClass

 metadata:

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

 creationTimestamp: "2020-06-03T17:06:05Z"

 name: managed-nfs-storage

 resourceVersion: "444482"

 selfLink: /apis/storage.k8s.io/v1/storageclasses/managed-nfs-storage

 uid: d0667b93-5086-4211-a950-c0323da4d8fb

 parameters:

 archiveOnDelete: "false"

 provisioner: default/nfs

 reclaimPolicy: Delete

 volumeBindingMode: Immediate

 kind: List

 metadata:

 resourceVersion: ""

 selfLink: ""

 [image:]

 d.	Optionally, you can also confirm by running the oc command:

 oc get storageclass

 You receive the following output:

 NAME PROVISIONER AGE

 managed-nfs-storage (default) nfs-client-provisioner/nfs 69m

 3.9 Setting up an image registry

 OpenShift clusters include an internal registry to build, deploy, and manage container images locally. By default, your OpenShift cluster’s internal registry is not configured and requires you to manually set it up to store the registry images.

 Complete the following steps to set up an internal registry after you are connected to the bastion node with root privileges:

 	
 Note: This procedure requires that “Installing an NFS server” on page 51 is completed.

 1.	Go to the /opt/downloads directory:

 cd /opt/downloads

 2.	Use the vim editor to create a PVC file for use with the registry. We named our file registry_nfs_pvc.yml. An example of the contents of our file is shown in Example 3-58.

 	
 Note: Ensure your bastion host has at least 120 GB available for the NFS directory (/exports).

 Example 3-58 PVC file for use with the registry.

 [image:]

 apiVersion: v1

 kind: PersistentVolumeClaim

 metadata:

 name: image-registry-storage

 spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 100Gi

 [image:]

 3.	Run the command that is shown in Example 3-59 to create the PV and PVC resources.

 Example 3-59 Create the resources

 [image:]

 # oc apply -f registry_nfs_pvc.yml -n openshift-image-registry

 persistentvolumeclaim/image-registry-storage created

 [image:]

 4.	Complete the following steps to configure the image registry to use the PVC openshift-image-registry:

 a.	Edit the OpenShift image registry object by running the following command:

 oc edit configs.imageregistry.operator.openshift.io

 b.	Update the storage section to use the openshift-image-registry PVC and ManagementState from Removed to Managed:

 	
 Note: You must also edit the Image Registry Operator configuration to switch the ManagementState from Removed to Managed.

 storage:

 pvc:

 claim: image-registry-storage

 c.	Save and Exit by running the :wq command.

 d.	Run the following command to verify private registry pods are running:

 watch -n5 oc get pods -n openshift-image-registry

 Monitor for registry completion. A sample output is shown in Example 3-60.

 Example 3-60 Verify private registry pods are running

 [image:]

 Every 5.0s: oc get clusteroperators

 NAME READY STATUS RESTARTS AGE

 cluster-image-registry-operator-674b45c8b9-lcs2c 2/2 Running 0 2d6h

 image-registry-7b76b55bbd-b9drd			 											1/1 Running 0 2d6h

 node-ca-7228s 1/1 Running 1 2d7h

 node-ca-78hch 1/1 Running 1 2d7h

 node-ca-d6tjx 1/1 Running 1 2d7h

 node-ca-w9qgv 1/1 Running 1 2d7h

 node-ca-xvhz8 1/1 Running 1 2d7h

 [image:]

 The private registry is verified to be running.

 To view volume details, including the storage class and size, run the following command:

 oc describe pvc -n openshift-image-registry image-registry-storage

 3.10 Accessing the console

 Your system must correctly resolve DNS names before you can connect to the Red Hat OpenShift web console. This resolution must occur because the Red Hat OpenShift web console runs as an application within Red Hat OpenShift. Complete the following steps before you open the Red Hat OpenShift console:

 1.	Ensure that the system that you are using to connect to the Red Hat OpenShift web console can resolve hostnames in the DNS zone for your OpenShift cluster.

 As an alternative, you can configure your localhosts file with the entries that are shown in Example 3-61 on page 61, replacing our details with your own. This ensures that you can access the OpenShift web console.

 Example 3-61 /etc/hosts file

 [image:]

 # Redpaper OCP Cluster

 129.40.23.109 console-openshift-console.apps.rdbk1.pok.ibm.local

 129.40.23.109 oauth-openshift.apps.rdbk1.pok.ibm.local

 129.40.23.109 api.apps.rdbk1.pok.ibm.local
[image:]

 2.	Replace the APPLICATION_IP with the bastion node IP address.

 3.	Replace ClusterName, SubDomain, and DomainName with the information you recorded in 2.3, “Required DNS IP addresses and names” on page 13.

 	
 Note: Our cluster uses the following information:

 •ClusterName: rdbk1

 •SubDomain: pok

 •DomainName: ibm.local

 Your localhosts file should contain the following elements:

  –	APPLICATION_IP console-openshift-console.apps.ClusterName.SubDomain.DomainName

  –	APPLICATION_IP oauth-openshift.apps.ClusterName.SubDomain.DomainName

  –	APPLICATION_IP api.apps.ClusterName.SubDomain.DomainName

 4.	Open the following URL in your internet browser:

 https://console-openshift-console.apps.ClusterName.SubDomain.DomainName

 5.	For our environment, we used the following URL to connect to the Red Hat OpenShift web console:

 https://console-openshift-console.apps.rdbk1.pok.ibm.local/

[image:]
[image:]

Hints and tips

 This chapter outlines some hints and tips to diagnose and correct some issues that you might encounter when installing Red Hat OpenShift on IBM Z.

 This chapter includes the following topics:

 •4.1, “Verifying RHEL subscription” on page 64

 •4.2, “Load balancer” on page 64

 •4.3, “Red Hat Enterprise Linux CoreOS” on page 64

 •4.4, “OpenShift commands” on page 64

 •4.5, “Certificate signing requests” on page 65

 •4.6, “Adding a worker to an OpenShift Cluster” on page 66

 •4.7, “OpenShift private registry” on page 70

 •4.8, “Adding disks” on page 73

 4.1 Verifying RHEL subscription

 Verify your RHEL subscriptions by running the following command:

 subscription-manager list --available --all

 4.2 Load balancer

 To check that load balancing is working, run the following command from the bastion node. This command should return a full set of headers. Replace ClusterName, SubDomain, and DomainName with the information you recorded in section 2.3, “Required DNS IP addresses and names” on page 13:

 wget https://api.apps.ClusterName.SubDomain.DomainName:6443

 In our environment, we ran the following command:

 wget --no-check-log in https://api.rdbk1.pok.ibm.local:6443

 or using IP address of Bastion node

 wget --no-check-log in https://129.40.23.109:6443

 Alternatively, you can access the HAProxy page as described in “HAProxy Stats” on page 20

 4.3 Red Hat Enterprise Linux CoreOS

 There should be no need to connect by using SSH to node. However, if you must connect, you can do so by using the bastion node. As root, connect to the bootstrap server by running the following command:

 ssh core@129.40.23.110

 If you receive an error, run the following command that disables checking the fingerprint:

 ssh -o StrictHostKeyChecking=no core@129.40.23.110

 The following example shows how to connect to the control-plane node from the bastion node to view the etcd logs (your directory name might be different):

 ssh -i /root/.ssh/id_rsa core@129.40.23.110

 sudo su -

 cd /var/log/pods/

 ls -ld *etcd*

 4.4 OpenShift commands

 Table 4-1 lists some useful OpenShift commands.

 Table 4-1 OpenShift commands

 	
 Command

 	
 Description

 	
 oc get nodes

 	
 Get a list of nodes and their status

 	
 oc login

 	
 Log in to the cluster

 	
 oc get nodes

 	
 List all nodes and show their roles and status

 	
 oc get all

 	
 Get all resources

 	
 oc get pods --all-namespaces

 	
 Get all PODs in all namespaces

 	
 oc get clusteroperators

 	
 Get cluster operators

 	
 oc logs <POD_NAME> -n <NAMESPACE>

 	
 Show all logs for a specific pod

 	
 oc describe pod <POD NAME> -n <NAMESPACE>

 	
 Show detailed information about a pod

 	
 oc adm node-logs --role=master -u kubelet

 	
 Get adm logs for control-plane nodes

 The Kubernetes command-line tool, kubectl, allows you to run commands against Kubernetes clusters. A kubeconfig file exists behind every working kubectl command. When you use kubectl, a preference takes effect when determining which kubeconfig file is used.

 	
 Note: A file that is used to configure access to clusters is called a kubeconfig file. This term is a generic way of referring or pointing to specific configuration files.

 The following commands are available:

 •Run the --kubeconfig command to specify a file directly.

 For example: kubectl get pods --kubeconfig=file1.

 •Use the KUBECONFIG environment variable, which is an environment variable that is a list of paths to the configuration file.

 For example: KUBECONFIG=file1 kubectl get pods.

 •Use the $HOME/.kube/config file. If you have a $HOME/.kube/config file and it is not listed in your KUBECONFIG environment variable, append it to your KUBECONFIG environment variable.

 For example: export KUBECONFIG=$KUBECONFIG:$HOME/.kube/config.

 Run the following command to export the kubeconfig that is created by the OpenShift Installer to an environment variable:

 export KUBECONFIG=/stage/auth/kubeconfig

 4.5 Certificate signing requests

 Sometimes you might have to approve the worker and control-plane node’s login signing requests (CSRs). If the bootstrap installation process is complete on all nodes and you find that one or more worker nodes are not listed in the command output of oc get nodes, use the following commands to approve the pending CSRs.

 •To view pending CSRs:

 oc get csr

 •To approve all pending CSRs at once:

 oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm log in approve

 •Verify the API log ins. Run the following commands to confirm API log ins are valid:

 Replace ClusterName, SubDomain, and DomainName with the information you recorded in section 2.3, “Required DNS IP addresses and names” on page 13

 echo | openssl s_client -connect api.apps.ClusterName.SubDomain.DomainName:6443 | openssl x509 -noout -text

 Red Hat OpenShift uses kubelet client log ins that must be rotated periodically for security purposes. The initial log ins that are created during installation expire 24 hours after they are created. Red Hat OpenShift mainly automates the rotation process and starts the initial log in rotation.

 	
 Important: Do not restart any of the Red Hat OpenShift cluster virtual machines (VMs) or the bastion VM until the first log in rotation is done.

 If you face an issue with CSRs, you can recover from expired control plane log ins and get the OpenShift cluster operational again. For more information, see this web page.

 4.6 Adding a worker to an OpenShift Cluster

 This section describes how to add a worker node to an OpenShift Cluster. The following process is used to add a worker node:

 1.	Create a virtual machine.

 2.	Create DNS records for the new worker.

 3.	Update the HAProxy.

 4.	Create an ignition file.

 5.	Deploy the new RHCOS.

 6.	Approve any log in signing requests.

 4.6.1 Creating a virtual machine

 Complete the following steps to add a VM on z/VM for the RHCOS installation:

 1.	Connect to the z/VM LPAR by using your x3270 terminal and create the following file: RDBKO3W3.DIRECT.

 Use XEDIT to create this file.

 	
 Note: Remember to update the NICDEF tags to fit your network. In our environment, we defined VSWITCH1 and VLAN number 0001, as shown in red in Example 4-1.

 Example 4-1 Example of creating a worker file-RDBKO3W3.DIRECT file

 [image:]

 USER RDBKO3W3 REDHAT 8G 8G G

 INCLUDE DFLTLNX

 CPU 00 BASE

 CPU 01

 IPL 100

 POSIXINFO UID 100754

 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCH1

 NICDEF 1000 VLAN 0001

 [image:]

 2.	Define an IPL disk for this new guest ID. We use a DASD model A that supports large disks. In our example, we used the following commands to define the IPL disk:

 DIRM FOR RDBKO3W3 AMDISK 100 3390 AUTOG 271000 MYPOOL

 In this example, one disk with 271000 cylinders (approximately. 180 GB) is added. The disk number is 100.

 For more information about how to create a VM, see 2.1, “Required virtual machine resources” on page 8.

 4.6.2 Creating DNS records for the new worker

 Complete the following steps to create the A record and associated PTR record:

 1.	Add the following line into the file /var/named/forward.zone:

 rdbko3w3.rdbk1.pok IN A 129.40.23.116

 	
 Note: In our example, the new worker node uses the following host name and IP address:

 •Host name: rdbko3w3.rdbk1.pok.ibm.local

 •IP address: 129.40.23.116

 2.	Add the following line to the /var/named/reverse.zone file:

 116 IN PTR rdbko3w3.rdbk1.pok.ibm.local.

 3.	Recycle the DNS by running the following command:

 systemctl restart named

 4.6.3 Updating the HAProxy

 Complete the following steps to add the worker node into the load balancer:

 1.	Update /etc/haproxy/haproxy.cfg file with the information that is shown in red in Example 4-2 to add information for the new worker node.

 Example 4-2 Update the haproxy.cfg file to include the new worker

 [image:]

 backend habackend-http-80

 mode tcp

 balance roundrobin

 server rdbko3w1 129.40.23.114:80 check

 server rdbko3w2 129.40.23.115:80 check

 server rdbko3w3 129.40.23.116:80 check

 backend habackend-https-443

 balance roundrobin

 mode tcp

 server rdbko3w1 129.40.23.114:443 check

 server rdbko3w2 129.40.23.115:443 check

 server rdbko3w3 129.40.23.116:443 check

 [image:]

 2.	After making the update, run the following command to recycle the HAProxy service:

 systemctl restart haproxy

 3.	Verify that the new worker was added by using the HAProxy stats page. The new worker node appears under backend sections.

 4.6.4 Creating an ignition file

 Complete the following steps to create an ignition file:

 1.	Go to /var/ftp/pub by running the following command:

 cd /var/ftp/pub

 2.	Create a copy of the worker.ign file by running the following command:

 cp -a worker.ign worker.ign.backup

 3.	Define a variable that is named MCS and assign the API server name and port to it (in our example, api-int.rdbk1.pok.ibm.local):

 export MCS=api-int.rdbk1.pok.ibm.local:22623

 4.	Run the following command to update the ignition file with OpenShift API log in:

 echo "q" | openssl s_client -connect $MCS -showcerts | awk '/-----BEGIN log in-----/,/-----END log in-----/' | base64 --wrap=0 | tee ./api-int.base64 && sed --regexp-extended --in-place=.backup "s%base64,[^,]+%base64,$(cat ./api-int.base64)\"%" ./worker.ign

 5.	Check whether the file changed. If the file changed, proceed with the steps to deploy the new worker. If the file did not change, verify that the API server is up and repeat the steps.

 4.6.5 Deploy the new RHCOS

 Complete the following steps to deploy the new RHCOS:

 1.	Go to /var/ftp/pub folder by running the following command:

 cd /var/ftp/pub

 2.	Create the /var/ftp/pub/worker-3.parm file and populate it with the content that is shown in Example 4-3.

 Example 4-3 Creating the worker parameter file

 [image:]

 rd.neednet=1 coreos.inst=yes coreos.inst.install_dev=dasda coreos.inst.image_url=ftp://129.40.23.109/pub/rhcos-4.4.9-s390x-dasd.s390x.raw.gz coreos.inst.ignition_url=ftp://129.40.23.109/pub/worker.ign ip=129.40.23.116::9.16.8.1:255.255.255.0:::none nameserver=129.40.23.109 rd.znet=qeth,0.0.1000,0.0.1001,0.0.1002,layer2=1,portno=0 zfcp.allow_lun_scan=0 cio_ignore=all,!condev rd.dasd=0.0.0100

 [image:]

 Review the file to ensure that the IP address and URLs are correct. Eliminate any duplicate IP addresses.

 3.	Transfer the initramfs (INITRD.IMG), kernel (KERNEL.IMG), and parameter files to z/VM. We run the vmur command to make this transfer.

 	
 Note: Ensure that the vmur command is available. If it is not, run the following command to install the s390utils-base package on your bastion node:

 yum install -y s390utils-base

 a.	Load the module and activate required devices by running the following commands:

 /sbin/modprobe vmur

 /usr/sbin/cio_ignore -r c-e

 /usr/sbin/chccwdev -e c-e

 b.	Upload files to worker node 3 by running the commands that are shown in Example 4-4. We specify the VMID for worker node 3 when running vmur.

 Example 4-4 Upload files to worker node 3

 [image:]

 /usr/sbin/vmur pun -r -u RDBKO3W3 -N kernel.img /var/ftp/pub/KERNEL.IMG

 /usr/sbin/vmur pun -r -u RDBKO3W3 -N generic.parm /var/ftp/pub/worker-3.parm

 /usr/sbin/vmur pun -r -u RDBKO3W3 -N initrd.img /var/ftp/pub/INITRD.IMG

 [image:]

 4.	Ensure that you verify that the files were successfully uploaded on the target z/VM guest. Log on to the z/VM guest VM that was chosen for the new worker node (RDBKO3W3). You can use a x3270 or c3270 terminal emulator to complete the following steps:

 a.	Query the guest reader by running the following command:

 CP QUERY RDR ALL

 b.	If you notice more files, you must purge them and move the kernel image to the first position and parm file to the second position in the reader queue. To purge the files, run the purge command with the spool lD 0NNN, as shown in Example 4-5. To reorder the files, run the order command, as shown in Example 4-5, where 0YYY is the spool ID

 Example 4-5 Purge and reorder files

 [image:]

 purge rdr 0NNN

 order rdr 0YYY

 [image:]

 If you receive the NO RDR FILES message, it means that something went wrong and the files were not uploaded to z/VM. You must upload the files to that z/VM guest again by running the punch commands that are listed in Example 4-4.

 5.	To start installation, run the following command:

 CP IPL 00c

 The installation starts and we see several Linux kernel messages.

 6.	After you see the Linux log, run the following commands to disconnect from the console:

 #CP SET RUN ON

 #CP DISC HOLD

 The worker node is now installed.

 4.6.6 Approving any log in signing requests

 To provision the new worker, you might have to approve CSRs from the bastion server. Complete the following steps:

 1.	Log in to the bastion as the root user and change to the bastion installation directory.

 Before you can run any commands, you must authenticate to OpenShift.

 If authentication is not configured and you use the default kubeadmin account and password, run the export KUBECONFIG=/stage/auth/kubeconfig command and verify that you are authenticated by running the oc whoami command.

 If other backends or users are authenticated, log in by running the following command:

 oc login -u <user_name> -p <user_password) https://api.rdbk1.ibm.local:6443

 2.	Run the oc get nodes command and you should see the new worker. If it is not yet in the Ready state, you must repeatedly check for pending CSRs by running the oc get csr command and then approve the CSRs by running the oc adm log in approve <csr_name> command. Continue to check until the configuration is complete and the new worked is in the Ready state.

 After the new worker is in Ready state, it can be used by OpenShift.

 4.7 OpenShift private registry

 An OpenShift registry is a storage and distribution system for container images. You can store public images for free and share them with other users.

 Red Hat OpenShift includes an internal registry to build, deploy, and manage container images locally. Because we are using an IBM Z, our required set up was to use NFS to store container images.

 Complete the following steps to work with an OpenShift private registry to pull, push, and view images:

 1.	Log in to one of the controller nodes by way of SSH by running the following command:

 ssh -i $HOME/.ssh/id_rsa core@129.40.23.110

 Where 129.40.23.110 is the IP address of one of your controller nodes.

 2.	Authenticate with your cluster. Use your own user ID, password, and api.clusterName in the following command:

 oc login -u kubeadmin -p <password_from_install> https://api.ClusterName.SubDomain.DomainName:6443

 3.	Log in to the container image registry with your access token (in this case, user ID and password):

 podman login -u kubeadmin -p $(oc whoami -t) image-registry.openshift-image-registry.svc:5000

 4.	Check all image streams in your registry by running the following command:

 oc get imagestreams -A

 You should receive output similar to the output that is shown in Example 4-6.

 Example 4-6 Output of get imagestreams command

 [image:]

 NAMESPACE NAME IMAGE REPOSITORY TAGS UPDATED

 default php-73 image-registry.openshift-image-registry.svc:5000/default/php-73 latest 4 weeks ago

 openshift cli image-registry.openshift-image-registry.svc:5000/openshift/cli latest 8 days ago

 openshift cli-artifacts image-registry.openshift-image-registry.svc:5000/openshift/cli-artifacts latest 11 days ago

 openshift installer image-registry.openshift-image-registry.svc:5000/openshift/installer latest 11 days ago

 openshift installer-artifacts image-registry.openshift-image-registry.svc:5000/openshift/installer-artifacts latest 8 days ago

 openshift must-gather image-registry.openshift-image-registry.svc:5000/openshift/must-gather latest 8 days ago

 openshift oauth-proxy image-registry.openshift-image-registry.svc:5000/openshift/oauth-proxy v4.4 8 days ago

 openshift tests image-registry.openshift-image-registry.svc:5000/openshift/tests latest 8 days ago

 z-apps ubuntu image-registry.openshift-image-registry.svc:5000/z-apps/ubuntu latest 8 days ago

 [image:]

 5.	Optionally, check image streams by running the curl command, as shown in the following example:

 # curl -k -u unused:$(oc whoami -t) https://image-registry.openshift-image-registry.svc:5000/v2/_catalog?n=100

 {"repositories":["default/php-73","openshift/cli","openshift/cli-artifacts","openshift/installer","openshift/installer-artifacts","openshift/must-gather","openshift/oauth-proxy","openshift/tests","z-apps/ubuntu"]}

 6.	To pull an image from the Docker Hub into the local cache, run the following command:

 $ podman pull s390x/ubuntu:latest

 The output should look similar to the following example:

 Trying to pull registry.access.redhat.com/s390x/ubuntu:latest...

 name unknown: Repo not found

 Trying to pull docker.io/s390x/ubuntu:latest...

 Getting image source signatures

 Copying blob b3937ed3ecfe done

 Copying blob 82ded071ccca done

 Copying blob e3d3a3cd4bce done

 Copying blob a2c8c4d2943d done

 Copying config a2973813e5 done

 Writing manifest to image destination

 Storing signatures

 a2973813e5bf0445eaf260dcaf4b393eaa156199106bdd4126804335a03100b8

 7.	Confirm that the image is available locally by running the following command:

 \$ podman images

 The output is similar to the following example:

 REPOSITORY TAG IMAGE ID CREATED SIZE

 docker.io/s390x/ubuntu latest a2973813e5bf 4 days ago 73.6 MB

 8.	Run the podman tag command to tag the new image by using the following format:

 <registry_ip>:<port>/<project>/<image>

 The project name (namespace) must appear in this pull specification for OpenShift Container Platform to correctly place and later access the image in the registry.

 To tag the image, run the following command:

 podman tag docker.io/s390x/ubuntu:latest image-registry.openshift-image-registry.svc:5000/default/ubuntu:latest

 	
 Note: We used default as the <project> in our command.

 9.	Confirm that the new tag was created for the Ubuntu image by running the following command:

 $ podman images

 The expected output should be similar to the following example with your image ID and tag:

 REPOSITORY TAG IMAGE ID CREATED SIZE

 docker.io/s390x/ubuntu latest a2973813e5bf 4 days ago 73.6 MB

 image-registry.openshift-image-registry.svc:5000/default/ubuntu latest a2973813e5bf 4 days ago 73.6 MB

 10.	Push the new image into the private registry by running the following command:

 podman push image-registry.openshift-image-registry.svc:5000/default/ubuntu:latest

 Expected output should be similar to the following example:

 Getting image source signatures

 Copying blob 34f01642c668 done

 Copying blob 7e615b21c648 done

 Copying blob 90826e4d4013 done

 Copying blob 33083667ca19 done

 Copying config a2973813e5 done

 Writing manifest to image destination

 Storing signatures

 11.	List the images to confirm that the Ubuntu image was added into the default namespace by running the following command:

 $ curl -k -u unused:$(oc whoami -t) https://image-registry.openshift-image-registry.svc:5000/v2/_catalog?n=100

 {"repositories":["default/php-73","default/ubuntu","openshift/cli","openshift/cli-artifacts","openshift/installer","openshift/installer-artifacts","openshift/must-gather","openshift/oauth-proxy","openshift/tests","z-apps/ubuntu"]}

 [core@z-master01 ~]$

 4.8 Adding disks

 From time to time, you might find that you must add large disks. z/VM CMS does not support formatting disks with a large size. However, RHCOS includes a utility that is called ignition, which is used by RHCOS to manipulate disks during initial configuration. It completes common disk tasks, including partitioning disks, formatting partitions, writing files, and configuring users.

 You can optionally reduce the time of the RHCOS installation by using the RHCOS ignition utility in the following steps to format the disks in advance:

 1.	Ensure the bastion node (RDBKBAS3) where the disk exists is logged off.

 2.	(Optional) If your z/VM LPAR uses IBM RACF®, run the following commands to allow the bastion node to link to the bootstrap IPL disk and grant privileges:

 # vmcp link rdbkbas3 100 f100 m

 RAC PERMIT RDBKBAS3.100 CL(VMMDISK) ID(RH8SERV1) AC(CONTROL)

 If you do not grant the privileges, you receive the following error:

 RPIMGR032E YOU ARE NOT AUTHORIZED TO LINK TO RDBKBAS3.100

 HCPLNM298E RDBKBAS3 0100 not linked; request denied

 Error: non-zero CP response for command 'link rdbkbas3 100 f100 m': #298

 3.	Connect to your bastion node by way of SSH as the root user.

 4.	Run the cio_ignore command to remove f100 from the exclude device list, as shown here:

 cio_ignore -r f100

 5.	Run the chccwdev command to activate the F100 disk, as shown here:

 # chccwdev -e f100

 Setting device 0.0.f100 online

 Done

 6.	Run the dasdfmt command to format the F100 disk, as shown here:

 # /sbin/dasdfmt -y -b 4096 -m 500 /dev/disk/by-path/ccw-0.0.f100

 The output from this command is shown in Example 4-7.

 Example 4-7 Format the DASD

 [image:]

 Printing hashmark every 500 cylinders.

 ##

 Finished formatting the device.

 Rereading the partition table... ok

 [image:]

 7.	Create first partition by running the following command:

 # fdasd -a /dev/disk/by-path/ccw-0.0.f100

 You should receive output similar to the following example:

 reading volume label ..: VOL1

 reading vtoc: ok

 auto-creating one partition for the whole disk...

 writing volume label...

 writing VTOC...

 rereading partition table...

 8.	Deactivate the disk by running the following command:

 # chccwdev -d f100

 Setting device 0.0.f100 offline

 Done

 9.	Detach the disk from bastion by running 	the following command:

 # vmcp det 100

 DASD 0100 DETACHED

 10.	Remove the RACF privileges that are assigned to the bastion node by running the following command on VM as the MAINT user ID or a privileged user:

 RAC PERMIT RDBKBAS3.100 CL(VMMDISK) ID(RH8SERV1) AC(CONTROL) DELETE

 Repeat these steps for each disk you need to format.

[image:]
[image:]

Updating versions

 This chapter discusses the planning steps that are recommended before upgrading the Red Hat OpenShift cluster. The present environment is considered and what types of upgrade can be handled by the Red Hat OpenShift Container Platform update service.

 It is important to update to the latest version of OpenShift to apply the latest enhancements and bug fixes, which help to improve user productivity and business responsiveness.

 This chapter includes the following topics:

 •5.1, “Overview” on page 76

 •5.2, “Updating your OpenShift cluster” on page 79

 5.1 Overview

 Periodically, you must update your OpenShift cluster with the latest updates to ensure that your system is secure and protected, improve performance, or fix bugs. These updates are released by the OpenShift Container Platform update service and affect the OpenShift Container Platform and Red Hat Enterprise Linux CoreOS (RHCOS).

 You can update your cluster by using the OpenShift client (oc) or web console (https://console-openshift-console.<cluster>.<base_domain>).

 Issues can be resolved by using one of the following methods:

 •Keep your cluster environment up to date.

 •Make sure that your command-line tools are up to date.

 OpenShift Container Platform 4.4 offers the following update channels:

 •Stable: This channel contains releases as soon as their errata are published. Releases are added to the stable channel after a delay of several hours to a day.

 •Fast: This channel is updated with new versions as soon as Red Hat declares that the specific version as a general availability release.

 •Candidate: Release candidates include all the features of the product, but are not supported. Use release candidate versions to test feature acceptance and assist in qualifying the next version of OpenShift Container Platform.

 	
 Note: For production clusters, you must subscribe to the stable-4.x channel.

 This section helps system administrators analyze their entire OpenShift environment to ensure that there are no problems before an update.

 Before beginning your update, it is important to perform these maintenance tasks to ensure that the system is ready and can be rolled back if issues occur. This checklist is meant to identify important, and often time-consuming, pre-update tasks that you can perform before the update to reduce risks and ensure a smooth update. Although these tasks are not mandatory, they are recommended for any update. It can help you to identify any problems with pods or nodes before you perform the update.

 The following tasks are discussed in this section:

 •“Reviewing hardware requirements” on page 77

 •“Confirming OpenShift cluster version” on page 77

 •“Reviewing status for cluster operators” on page 77

 •“Verifying the status of your nodes” on page 78

 •“Verifying the status of your pods” on page 79

 If your cluster is healthy, you can proceed to “Updating your OpenShift cluster” on page 79 and perform the update by completing steps in that section.

 5.1.1 Reviewing hardware requirements

 Check whether the CPU and memory requirements for your control plane and compute nodes changed by completing the following steps:

 1.	See this Red Hat OpenShift web page.

 2.	Select the suitable OpenShift version (in our example, 4.4).

 3.	Review the minimum requirements.

 5.1.2 Confirming OpenShift cluster version

 Complete the following steps:

 1.	Log in to your cluster by running the oc command:

 oc login -u <userid> -p <password> https://api.<clusterid>.<domain>:6443

 2.	Run the following command to verify the current cluster version:

 oc get clusterversion

 The expected output should be similar to the following example:

 NAME VERSION AVAILABLE PROGRESSING SINCE STATUS

 version 4.3.18 True False 16h Cluster version is 4.3.18

 5.1.3 Reviewing status for cluster operators

 Complete the following steps to ensure that you do not have any degraded or progressing operators in your cluster:

 1.	Run the following command:

 oc get clusteroperators

 The expected output is shown in Example 5-1.

 Example 5-1 Checking for degraded or progressing operators

 [image:]

 NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE

 authentication 4.3.18 True False False 99d

 cloud-credential 4.3.18 True False False 99d

 cluster-autoscaler 4.3.18 True False False 99d

 console 4.3.18 True False False 57d

 dns 4.3.18 True False False 58d

 image-registry 4.3.18 True False False 36d

 ingress 4.3.18 True False False 47d

 insights 4.3.18 True False False 99d

 kube-apiserver 4.3.18 True False False 99d

 kube-controller-manager 4.3.18 True False False 99d

 kube-scheduler 4.3.18 True False False 99d

 machine-api 4.3.18 True False False 99d

 machine-config 4.3.18 True False False 47d

 marketplace 4.3.18 True False False 47d

 monitoring 4.3.18 True False False 35d

 network 4.3.18 True False False 99d

 node-tuning 4.3.18 True False False 3d

 openshift-apiserver 4.3.18 True False False 47d

 openshift-controller-manager 4.3.18 True False False 64d

 openshift-samples 4.3.18 True False False 58d

 operator-lifecycle-manager 4.3.18 True False False 99d

 operator-lifecycle-manager-catalog 4.3.18 True False False 99d

 operator-lifecycle-manager-packageserver 4.3.18 True False False 36h

 service-ca 4.3.18 True False False 99d

 service-catalog-apiserver 4.3.18 True False False 99d

 service-catalog-controller-manager 4.3.18 True False False 99d

 storage 4.3.18 True False False 58d

 [image:]

 If you find failed operators, we recommended that they are fixed before starting the update process.

 5.1.4 Verifying the status of your nodes

 Confirm that you have all nodes ready before the upgrade. Complete the following steps to verify the status of your control plane and compute nodes:

 1.	Query all nodes by running the following command:

 oc get nodes -o wide

 The expected output is shown in Example 5-2.

 Example 5-2 Verification of node status

 [image:]

 NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME

 master1.ocp4.ibm.local Ready master 99d v1.14.6-152-g117ba1f 9.16.8.24 <none> Red Hat Enterprise Linux CoreOS 42s390x.81.20200406.0 (Ootpa) 4.18.0-147.el8.s390x cri-o://1.14.12-10.dev.rhaos4.2.git313d784.el8

 master2.ocp4.ibm.local Ready master 99d v1.14.6-152-g117ba1f 9.16.8.25 <none> Red Hat Enterprise Linux CoreOS 42s390x.81.20200406.0 (Ootpa) 4.18.0-147.el8.s390x cri-o://1.14.12-10.dev.rhaos4.2.git313d784.el8

 master3.ocp4.ibm.local Ready master 99d v1.14.6-152-g117ba1f 9.16.8.26 <none> Red Hat Enterprise Linux CoreOS 42s390x.81.20200406.0 (Ootpa) 4.18.0-147.el8.s390x cri-o://1.14.12-10.dev.rhaos4.2.git313d784.el8

 worker1.ocp4.ibm.local Ready worker 99d v1.14.6-152-g117ba1f 9.16.8.27 <none> Red Hat Enterprise Linux CoreOS 42s390x.81.20200406.0 (Ootpa) 4.18.0-147.el8.s390x cri-o://1.14.12-10.dev.rhaos4.2.git313d784.el8

 worker2.ocp4.ibm.local Ready worker 42d v1.14.6-152-g117ba1f 9.16.8.28 <none> Red Hat Enterprise Linux CoreOS 42s390x.81.20200406.0 (Ootpa) 4.18.0-147.el8.s390x cri-o://1.14.12-10.dev.rhaos4.2.git313d784.el8

 [image:]

 2.	Review the output and ensure that all nodes are healthy.

 5.1.5 Verifying the status of your pods

 Run the following command to confirm that all pods are running before the updates:

 oc get pods -A | grep -v "Running\|Completed\|Terminated"

 	
 Note: You can redirect the output of this command to a log file appending /tmp/all_pods_before_update.log to the end of command.

 The following output is expected:

 NAMESPACE NAME READY STATUS RESTARTS AGE

 The pre-check tasks are not mandatory, but it is a best practice to perform them for any update. It can help you to identify if problems with pods or nodes were caused by an update.

 If your cluster is healthy, you can continue and perform the update as described in 5.2, “Updating your OpenShift cluster” on page 79.

 5.2 Updating your OpenShift cluster

 You can use the following options to update OpenShift Container Platform clusters:

 •Graphical user interface by using the OpenShift web console

 •Text interface by using the OpenShift client

 Before you proceed with the upgrade, you can use a bash script that is called ocp4upc.sh to check available upgrade possibilities for your OpenShift cluster. This tool gives you an overview about upgrade paths by using stable and fast production-ready.

 To install OpenShift Container Platform Upgrade Paths Checker (OCP4UPC), complete the following steps after you are connected to the bastion node and have root privileges:

 1.	Install all required packages by using the following command:

 yum install -y curl jq graphviz

 2.	Go to the following FTP directory:

 cd /var/ftp/pub

 3.	Download the OCP4UPC bash script by running the following command:

 curl -o ocp4upc.sh https://raw.githubusercontent.com/pamoedom/ocp4upc/master/ocp4upc.sh

 The expected output is similar to the following example:

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

 100 13334 100 13334 0 0 30865 0 --:--:-- --:--:-- --:--:-- 30865

 4.	Update the file permission on the bash script by running the following command:

 chmod 700 ocp4upc.sh

 5.	Confirm that the file permissions are correct by running the following command:

 ls -la ocp4upc.sh

 The expected is similar to the following example:

 -rwx------. 1 root root 13334 Jul 1 07:09 ocp4upc.sh

 6.	Generate the graph for your current OpenShift 4 version (for example, 4.3.18):

 /var/ftp/pub/ocp4upc.sh 4.3.18 s390x

 Where:

  –	4.3.18 is your current OpenShift 4 version

  –	s390x is the IBM Z platform

 The output of the command looks similar to the output that is shown in Example 5-3. Two files are created (highlighted in blue in Example 5-3).

 Example 5-3 Generating the graph data

 [image:]

 [INFO] Checking prerequisites (curl jq dot)... [OK]

 [INFO] Errata provided (4.x.z mode), targeting '4.4' channels for upgrade path generation.

 [INFO] Checking if '4.3.18' (s390x) is a valid release... [OK]

 [INFO] Result exported as 'stable-4.4_s390x_20200701.svg'

 [INFO] Result exported as 'fast-4.4_s390x_20200701.svg'

 [image:]

 7.	Open the graph by using an internet browser. Use the following URLs:

 ftp://129.40.23.109/pub/stable-4.4_s390x_20200701.svg'

 ftp://129.40.23.109/pub/fast-4.4_s390x_20200701.svg

 Where 129.40.23.109 the IP address of your Bastion node.

 An example of the graph is shown in Figure 5-1.

 [image:]

 Figure 5-1 OCP4 Upgrade Paths Checker Output

 In Figure 5-1, the upgrade is performed from 4.3.18 to 4.3.26 and then to 4.4.10. In our example, the following target versions are used:

  –	Minor target version: 4.3.26

  –	Major target version: 4.4.10

 We chose the stable 4-x upgrade channel to perform an update by using these minor and major target versions.

 After reviewing the possibilities, proceed with the upgrade.

 Using the graphical interface

 Complete the following steps to perform an upgrade by using the OpenShift web console.

 These steps provide information to update your OpenShift Cluster from 4.3.y (for example, 4.3.18) to the latest version available on stable-4.3 channel that is 4.3.26:

 1.	Open the Web console (https://console-openshift-console.<cluster>.<base_domain>) by using an internet browser.

 2.	Log in as the kubeadmin user or as one of the members of the group whose members have cluster-admin privileges.

 3.	Select Administration → Cluster Settings → Overview.

 4.	Check the current version and the message Update Available is shown.

 5.	Keep the channel at stable-4.3.

 6.	Click Update now.

 7.	In the Update Cluster dialog, select as New Version 4.3.29, and click Update.

 8.	Wait until the update completes, which means that all the Cluster Operators are with status Available and with version 4.3.26.

 If the update is successfully applied and the cluster is healthy and running on 4.3.26, you can repeat these steps. Under step 5 on page 81, select the stable-4.4 channel (the target one) and update system to the latest version available in this channel.

 5.2.1 Using the OpenShift client text interface

 Complete the following steps to upgrade by using the OpenShift client (OC):

 1.	Log in to your cluster by running the oc command line interface (CLI) as follows:

 oc login -u <userid> -p <password> https://api.<clusterid>.<domain>:6443

or

 export KUBECONFIG=/stage/auth/kubeconfig

 	
 Note: The latest s390x version of the oc command can be downloaded from this OpenShift web page.

 2.	To run an upgrade from previous minor versions, such as release 4.3.19 to 4.3.26 and applying asynchronous errata updates within a minor version, you can continue with the upgrade without changing the current 4.x channel. To do this, complete the following steps:

 a.	Check the latest updates available to the cluster.

 oc adm upgrade --to-latest

 b.	To monitor the upgrade process, run the following command:

 watch -n10 "oc get clusterversion && echo && oc get co && echo && oc get nodes -o wide"

 Wait until it is 100% complete and then press CTRL+C to exit.

 c.	Continue to step 3 to upgrade the major target from 4.3.26 to 4.4.9.

 3.	Update the OpenShift channel from 4.3 to 4.4 (next version) by running the following command:

 oc patch clusterversion/version -p '{"spec":{"channel":"stable-4.4"}}' --type=merge

 	
 Note: OpenShift uses the .spec.channel field to handle the updates.

 4.	Run the following command to update to the latest version for this channel:

 oc adm upgrade --to-latest

 You receive the following message:

 Updating to latest version 4.4.9

 To monitor the progress of the upgrade, run the following command:

 watch -n10 "oc get clusterversion && echo && oc get co && echo && oc get nodes -o wide"

 Wait until the process is complete and press CTRL+C to exit.

 For more information, see “Related publications” on page 95.

[image:]
[image:]

Ansible and OpenShift

 This chapter provides information about how to automate the steps to install required services, such as DNS, HAProxy, and FTP on the bastion node.

 The topics that are covered in this chapter include installing the prerequisite packages, such as Python and Ansible, downloading and setting up Ansible roles, and configuring Ansible playbook variables for successful installations.

 This chapter includes the following topics:

 •6.1, “Ansible overview” on page 84

 •6.2, “Installing OpenShift by using Ansible” on page 85

 6.1 Ansible overview

 Ansible is an engine that automates multiple tasks, such as cloud provisioning and multitier application deployment. Instead of writing many commands to install OpenShift, Ansible allows you to easily set up DNS, FTP, and HAProxy services on a bastion node.

 Ansible is a configuration management and provisioning tool. Based on Python and YAML language, it is easy to learn and use, and includes an impressive catalog of pre-built content in Ansible Galaxy for provisioning and configuration of open source applications. Galaxy provides pre-packaged units of work that are known to Ansible as roles.

 Ansible connects your nodes and issues programs, called Ansible modules, to them. It starts these modules over SSH and removes them when the execution is complete.

 For more information, see this web page.

 Use Ansible if you want to automate the manual steps you ran when setting up the bastion host.

 Consider the following points regarding Ansible:

 •Built on open source and sponsored by Red Hat.

 •Is a configuration management and provisioning tool, similar to Chef and Puppet.

 •Designed to automate multitier app deployments and provisioning in the cloud.

 •Written in Python.

 •Uses YAML syntax to describe automation tasks, which makes Ansible easy to learn and use.

 •Uses SSH (no agents to install on remote systems).

 An overview of the Ansible architecture is shown in Figure 6-1.

 [image:]

 Figure 6-1 Ansible architecture

 6.2 Installing OpenShift by using Ansible

 In this section, we describe preparing an OpenShift environment. The host name for the bastion node is set in the Ansible inventory file, required packages are installed, and, among other things, properly configured.

 6.2.1 Provisioning a Red Hat virtual machine

 In this section, we guide you through the process to provision a Red Hat virtual machine (VM) on the bastion node.

 This publication does not cover configuring a Red Hat VM; however, you can find more information at this web page.

 Complete the following steps after you are connected to the bastion node and have root privileges:

 1.	Enable the EPEL repository.

 Many options are available to install Ansible. We used the Extra Packages for Enterprise Linux (EPEL) repository to install the Ansible package. We ran the following command:

 yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$(rpm -E %rhel).noarch.rpm

 	
 Note: EPEL 8 s390x repository can be found at this web page.

 2.	Install the Ansible package by running the following command.

 yum -y install ansible

 3.	Create a user ID to be used with Ansible by running the following commands:

 useradd automation

 echo "automation:redhat" | chpasswd

 4.	Grant root privileges to the automation ID by running the following commands:

 cd /etc/sudoers.d

 echo '%automation ALL=(ALL) NOPASSWD:ALL' > automation

 5.	Switch to the automation ID by running the sudo command:

 sudo su - automation

 6.	Create a directory under the automation home directory (/home/automation) for the Ansible files:

 mkdir -p ocp

 7.	Go to the ocp folder:

 cd ocp

 8.	Create the following files with content that is shown:

 a.	ansible.cfg:

 [defaults]

 inventory=/home/automation/ocp/inventory

 roles_path=/home/automation/ocp/roles

 remote_user=automation

 host_key_checking=false

 b.	Inventory file (named inventory):

 [ocp]

 # Put the name of your bastion node here

 rdbkbas3.rdbk1.pok.ibm.local

 9.	Create the SSH keys for the automation ID:

 ssh-keygen -t rsa -N '' -f /home/automation/.ssh/id_rsa

 10.	Deploy the SSH key on the bastion node as an authorized key. Remember to update rdbkbas2.rdbk1.pok.ibm.local with your bastion node name and enter the password for the automation ID (in our example, redhat).

 ssh-copy-id -i /home/automation/.ssh/id_rsa.pub rdbkbas3.rdbk1.pok.ibm.local

 You should receive the following output:

 Number of key(s) added: 1

 11.	Test the access by using the following command:

 ssh rdbkbas3.rdbk1.pok.ibm.local date

 If it returns a date and time, the SSH configuration is correct.

 12.	Create a directory for the Ansible Galaxy role and browse to it:

 mkdir -p /home/automation/ocp/roles

 cd /home/automation/ocp/roles

 13.	Return to the ocp directory:

 cd /home/automation/ocp/

 14.	Download the Ansible Galaxy role that is named emarins.ocp and put it into the /home/automation/ocp/roles/ directory:

 ansible-galaxy install emarins.ocp -p /home/automation/ocp/roles/

 15.	Copy the sample files to the ocp directory by using the following commands:

 cp -a roles/emarins.ocp/globalvars.yml /home/automation/ocp/

 cp -a roles/emarins.ocp/playbook_ocp.yml /home/automation/ocp/

 16.	Check the globalvars.yml file and update each variable to fit your network and cluster settings. The description of each tag is shown in Example 6-1.

 	
 Note: Update all values with the information for your OpenShift environment.

 Example 6-1 globalvars.yml file

 [image:]

 domain_name: pok.ibm.local # OpenShift domain name

 cluster_name: rdbk1 # OpenShift Cluster name

 dns_network: 129.40.23.0/24 # DNS network where bootstrap, controller and worker nodes will

 domain_reverse: 23.40.129.in-addr.arpa # Reverse DNS zone for your network. Ask Network

 defaultgw: 129.40.23.254 # Default gateway for the cluster network. Ask Network team if you

 netmask: 255.255.255.0 # Network subnet mask. Used for the PARM file. Ask Network team

 ipldisk: "0100" # IPL disk address for the RHCOS instances. Disk for RHCOS

 dns1: 129.40.106.1 # Primary DNS Server. Used in the DNS forwarder /etc/named.conf

 dns2: 129.40.106.2 # Secondary DNS Server. Used in the DNS forwarder /etc/named.conf

 vnic_addresses: "0.0.0640,0.0.0641,0.0.0642" # Virtual Network Interface (VNIC). Ask your

 vnic_layer2: 1 # Layer 2 information. Ask network team if you do not know how to get it

 ocp_download_dir: /opt/downloads # Where you need to put the instalation files that were

 rhcos_kernel: rhcos-4.4.9-s390x-installer-kernel-s390x # RHCOS kernel file. Used to build

 rhcos_initrd: rhcos-4.4.9-s390x-installer-initramfs.s390x.img # RHCOS initrd file. Used to build

 rhcos_image: rhcos-4.4.9-s390x-dasd.s390x.raw.gz # RHCOS image name. Used for the PARM

 openshift_installer: openshift-install-linux.tar.gz # OpenShift installer file name. Used to install

 openshift_client: openshift-client-linux.tar.gz # OpenShift Client file name. Used to manage

 worker_replicas: 2 # Number of worker nodes. Recommended is two worker nodes.

 ocp_stage_dir: /stage # Temporary folder that will be used to install OpenShift

 all_nodes: # Master, Worker, bootstrap and other nodes information.

 # Master Nodes

 - id: 1

 name: rdbko3m1 # Update with your value

 ip: 129.40.23.111 # Update with your value

 vmid: RDBKO3M1 # Update with your value

 role: control_node

 - id: 2

 name: rdbko3m2 # Update with your value

 ip: 129.40.23.112 # Update with your value

 vmid: RDBKO3M2 # Update with your value

 role: control_node

 - id: 3

 name: rdbko3m3 # Update with your value

 ip: 129.40.23.113 # Update with your value

 vmid: RDBKO3M3 # Update with your value

 role: control_node

 # Workers Nodes

 - id: 1

 name: rdbko3w1 # Update with your value

 ip: 129.40.23.114 # Update with your value

 vmid: RDBKO3W1 # Update with your value

 role: worker_node

 - id: 2

 name: rdbko3w2 # Update with your value

 ip: 129.40.23.115 # Update with your value

 vmid: RDBKO3W2 # Update with your value

 role: worker_node

 # Bootstrap

 - id: 0

 name: rdbko3b1 # Update with your value

 ip: 129.40.23.110 # Update with your value

 vmid: RDBKO3B1 # Update with your value

 role: bootstrap_node

 # Bastion

 - id: 0

 name: rdbkbas3 # Update with your value

 ip: 129.40.23.109 # Update with your value

 vmid: RDBKBAS3 # Update with your value

 role: bastion_node

 # etcd

 - id: 0

 name: etcd-0 # Do not change etcd-0 name

 ip: 129.40.23.111 # Update with the IP address of Master node 1

 role: etcd_node

 - id: 1

 name: etcd-1 # Do not change etcd-1 name

 ip: 129.40.23.112 # Update with the IP address of Master node 2

 role: etcd_node

 - id: 2

 name: etcd-2 # Do not change etcd-2 name

 ip: 129.40.23.113 # Update with the IP address of Master node 3

 role: etcd_node

 [image:]

 17.	Copy the SSH public key (id_rsa) to the ocp directory. It is used by the Ansible playbook:

 cp /home/automation/.ssh/id_rsa.pub /home/automation/ocp/

 18.	Create the download directory and change the file permission to the automation ID:

 sudo mkdir -p /opt/downloads

 sudo chown automation /opt/downloads -R

 19.	Follow the instructions that are described 3.2, “Downloading OpenShift files” on page 32 to download required files and put them into the /opt/downloads directory.

 20.	Run the following command to set up required services on your bastion server:

 ansible-playbook playbook_ocp.yml

 	
 Note: After your OpenShift cluster is operational, back up the /stage directory by running the cp -a /stage/ /stage.bkp command.

 21.	Confirm that the files that are shown in Example 6-2 were created in the /var/ftp/pub directory:

 ls -l /var/ftp/pub

 Example 6-2 Files created for required services

 [image:]

 total 1385308

 -rw-r--r--. 1 root root 49181833 Apr 27 21:44 INITRD.IMG

 -rw-r--r--. 1 root root 5120485 Apr 27 21:44 KERNEL.IMG

 -rw-r--r--. 1 root root 26 Jan 13 10:34 README

 -rw-r--r--. 1 root root 162 Apr 27 21:44 RHCOS.EXEC

 -rw-r--r--. 1 root root 389 Apr 28 08:38 RHCOS.PARM

 -rw-r--r--. 1 root root 385 Apr 28 07:54 RHCOS.PARM.ORI

 -rw-r--r--. 1 root root 382 Apr 28 07:54 bootstrap-0.parm

 -rw-r--r--. 1 root root 289428 Apr 28 08:39 bootstrap.ign

 -rw-r--r--. 1 root root 379 Apr 28 07:53 master-1.parm

 -rw-r--r--. 1 root root 379 Apr 28 07:53 master-2.parm

 -rw-r--r--. 1 root root 379 Apr 28 07:53 master-3.parm

 -rw-r--r--. 1 root root 1819 Apr 28 08:38 master.ign

 -rw-r--r--. 1 root root 24181127 Apr 27 21:46 openshift-client-linux.tar.gz

 -rw-r--r--. 1 root root 78883637 Apr 27 21:46 openshift-install-linux.tar.gz

 -rwxr-xr-x. 1 root root 272 Apr 27 22:13 punch-bootstrap-0.sh

 -rwxr-xr-x. 1 root root 269 Apr 27 22:13 punch-master-1.sh

 -rwxr-xr-x. 1 root root 269 Apr 27 22:13 punch-master-2.sh

 -rwxr-xr-x. 1 root root 269 Apr 27 22:13 punch-master-3.sh

 -rwxr-xr-x. 1 root root 269 Apr 27 22:13 punch-worker-1.sh

 -rwxr-xr-x. 1 root root 269 Apr 27 22:13 punch-worker-2.sh

 -rw-r--r--. 1 root root 630434101 Apr 27 20:58 rhcos-4.2.18-s390x-metal-dasd.raw.gz

 -rw-r--r--. 1 root root 630368558 Apr 27 20:58 rhcos-4.2.18-s390x-metal-zfcp.raw.gz

 -rw-r--r--. 1 root root 379 Apr 28 07:53 worker-1.parm

 -rw-r--r--. 1 root root 379 Apr 28 07:53 worker-2.parm

 -rw-r--r--. 1 root root 1819 Apr 28 08:38 worker.ign

 [image:]

 The Ansible playbook creates scripts to help you to punch the three required files to the reader of each z/VM guest machine.

 	
 Note: During the installation process, it is critical to monitor the HAProxy to ensure that cluster services are coming up (green state). We recommend that you use the HAProxy stats page that is enabled by way of the Ansible playbook. The address is https://x.x.x.x:8404/stats, where x.x.x.x is the IP address of your bastion server.

 The default user ID is admin and the default password is redhat. If you want to change the user ID or password, change this information in the /etc/haproxy/haproxy.cfg file.

 On the stats page, you might see the bootstrap down after the control nodes take control of the OpenShift Cluster. This outcome is expected.

 Complete the following steps to send the files and start installing RHCOS on each node:

 a.	Load the module and activate the required devices:

 /sbin/modprobe vmur

 /usr/sbin/cio_ignore -r c-e

 /usr/sbin/chccwdev -e c-e

 b.	Go to the /var/ftp/pub/ directory:

 cd /var/ftp/pub/

 c.	Upload files to the bootstrap server by running the command that is shown in Example 6-3. Use the /var/ftp/pub/punch-bootstrap-0.sh script.

 Example 6-3 Upload files to bootstrap server

 [image:]

 # /var/ftp/pub/punch-bootstrap-0.sh

 Reader file with spoolid 1069 created and transferred to RDBKO3B1.

 Reader file with spoolid 1073 created and transferred to RDBKO3B1.

 Reader file with spoolid 1077 created and transferred to RDBKO3B1.

 [image:]

 d.	Upload files to controller node 1 by running the command that is shown in Example 6-4. Use the /var/ftp/pub/punch-master-1.sh script.

 Example 6-4 Upload files to controller node 1

 [image:]

 # /var/ftp/pub/punch-master-1.sh

 Reader file with spoolid 1081 created and transferred to RDBKO3M1.

 Reader file with spoolid 1085 created and transferred to RDBKO3M1.

 Reader file with spoolid 1089 created and transferred to RDBKO3M1.

 [image:]

 e.	Upload files to controller node 2 by running the command that is shown in Example 6-5. Use the /var/ftp/pub/punch-master-2.sh script.

 Example 6-5 Upload files to controller node 2

 [image:]

 # /var/ftp/pub/punch-master-2.sh

 Reader file with spoolid 1093 created and transferred to RDBKO3M2.

 Reader file with spoolid 1097 created and transferred to RDBKO3M2.

 Reader file with spoolid 1101 created and transferred to RDBKO3M2.

 [image:]

 f.	Upload files to controller node 3 by running the command that is shown in Example 6-6 on page 91. Use the /var/ftp/pub/punch-master-3.sh script.

 Example 6-6 Upload files to controller node 3

 [image:]

 # /var/ftp/pub/punch-master-3.sh

 Reader file with spoolid 1105 created and transferred to RDBKO3M3.

 Reader file with spoolid 1109 created and transferred to RDBKO3M3.

 Reader file with spoolid 1113 created and transferred to RDBKO3M3.

 [image:]

 g.	Upload files to worker node 1 by running the command shown that is in Example 6-7. Use the /var/ftp/pub/punch-worker-1.sh script.

 Example 6-7 Upload files to worker node 1

 [image:]

 # /var/ftp/pub/punch-worker-1.sh

 Reader file with spoolid 1117 created and transferred to RDBKO3W1.

 Reader file with spoolid 1121 created and transferred to RDBKO3W1.

 Reader file with spoolid 1125 created and transferred to RDBKO3W1.

 [image:]

 h.	Upload files to worker node 2 by running the command that is shown in Example 6-8. Use the /var/ftp/pub/punch-worker-1.sh script.

 Example 6-8 Upload files to worker node 2

 [image:]

 # /var/ftp/pub/punch-worker-2.sh

 Reader file with spoolid 1129 created and transferred to RDBKO3W2.

 Reader file with spoolid 1133 created and transferred to RDBKO3W2.

 Reader file with spoolid 1137 created and transferred to RDBKO3W2.

 [image:]

 22.	Ensure that files were successfully uploaded on each z/VM guest. Because the bootstrap is the first server to be installed, log on to the z/VM guest virtual machine that was chosen for the bootstrap installation (RDBKO3B1). Use an x3270 or c3270 terminal emulator and complete the following steps:

 a.	Query the guest reader by running the following command:

 CP QUERY RDR ALL

 The output of the command is shown in Example 6-9.

 Example 6-9 Output of the cp query rdr command

 [image:]

 Ready; T-0.01/0.01 09:23:51

 00:

 00: CP QUERY RDR ALL

 ORIGINID FILE CLASS RECORDS	 CPY HOLD DATE TIME NAME TYPE

 RDBKBAS3 0079 A PUN 00064058 001 NONE 07/01 09:23:27 kernel img

 RDBKBAS3 0083 A PUN 00000006 001 NONE 07/01 09:23:32 generic parm

 RDBKBAS3 0087 A PUN 00702849 001 NONE 07/01 09:23:41 initrd img

 [image:]

 b.	If you notice extra files, you must purge them and move the kernel image to the first position and parm file to the second position in the reader queue. To purge the files, run the purge command with the spool lD 0NNN, as shown in Example 6-10. To reorder the files, run the order command, as shown in Example 6-10, where 0YYY is the spool ID.

 Example 6-10 Purge and reorder files

 [image:]

 purge rdr 0NNN

 order rdr 0YYY

 [image:]

 If you receive the NO RDR FILES message, it means that something went wrong and the files were not uploaded to z/VM. You must upload the files to that z/VM guest again by using the punch scripts that are listed in Example 6-3 on page 90 - Example 6-8.

 23.	To start the installation, run the following command:

 CP IPL 00C

 The installation starts and we see the output that is shown in Example 6-11.

 Example 6-11 Output from IPL command

 [image:]

 00: CP IPL 00C

 00: NO FILES CHANGED

 [0.088788] Linux version 4.18.0-147.20.1.el8_1.s390x (mockbuild@s390-018bui

 ld.eng.bos.redhat.com) (gcc version 8.3.1 20190507 (Red Hat 8.3.1-4) (GCC)) #1 S

 MP Wed June 10 19:29:13 UTC2020

 [0.088790] setup: Linux is running as a z/VM guest operating system in 64-bi

 t mode

 [0.088832] setup: The maximum memory size is 16384MB

 [image:]

 24.	After the installation completes, you see the Linux login, as shown in Example 6-12.

 Example 6-12 Linux login prompt

 [image:]

 Red Hat Enterprise Linux CoreOS 44.81.202006171550-0 (Ootpa) 4.4

 SSH host key: SHA256:u5MCV8ejWu+9h4kosogWvDF8EbaMyOyrkEbJBdy86D8 (ED25519)

 SSH host key: SHA256:kScOYNr5IhCjLJP80ridhEUOpyOcgFIXTMDvFUwDDT4 (ECDSA)

 SSH host key: SHA256:GpyRQzFqXaxMlvCSKL//BQU+dTH9JEXddtb6WkBBlzo (RSA)

 enc640: 129.40.23.110 fe80::1:2ff:fe00:1a

 rdbko3b1 login: [175316.757707] SELinux: mount invalid. Same superblock, differ

 ent security settings for (dev mqueue, type mqueue)

 [image:]

 Run the following commands to disconnect from console:

 #CP SET RUN ON

 #CP DISC HOLD

 The installation of the bootstrap node is complete.

 Repeat the steps for the others IDs, starting with controller node 1 and ending with worker node 2. You should start with the controller nodes and then go to the worker nodes. In our installation, we used the VMIDs that are listed in Table 6-1.

 Table 6-1 VMIDs

 	
 Node

 	
 VMID

 	
 Controller Node 1

 	
 RDBKO3M1

 	
 Controller Node 2

 	
 RDBKO3M2

 	
 Controller Node 3

 	
 RDBKO3M3

 	
 Worker Node 1

 	
 RDBKO3W1

 	
 Worker Node 2

 	
 RDBKO3W2

 You must repeat the procedure starting at step on page 89 first for the controller nodes ID and then for the worker nodes ID.

 	
 Note: If you do not see the worker nodes that are listed in the output of the oc get nodes command after the installation process completes, see “Certificate signing requests” on page 65.

 It is recommended that you monitor the bootstrap installation by completing the following steps:

 1.	Perform the steps that are described in 3.6, “Post deployment activities” on page 46.

 2.	Perform the steps that are described in 3.7, “Configuring a persistent volume for use by the OpenShift cluster” on page 49 .

 3.	Perform the steps that are described in 3.8, “Installing an NFS server” on page 51.

 4.	Perform the steps that are described on 3.9, “Setting up an image registry” on page 59.

 5.	Access the console by following the instructions that are described in 3.10, “Accessing the console” on page 60.

 Related publications

 The publications that are listed in this section are considered particularly suitable for a more detailed discussion of the topics that are covered in this paper.

 Online resources

 The following websites are also relevant as further information sources about installing Red Hat OpenShift 4.4 on IBM Z:

 •Installing a cluster on IBM Z and LinuxONE:

 https://docs.openshift.com/container-platform/4.4/installing/installing_ibm_z/installing-ibm-z.html

 •How to install an NFS server;

 https://medium.com/faun/openshift-dynamic-nfs-persistent-volume-using-nfs-client-provisioner-fcbb8c9344e

 •openshift-nfs-provisioner:

 https://github.ibm.com/Garrett-Lee-Woodworth/openshift-nfs-provisioner

 •IBM Cloud Documentation:

 https://cloud.ibm.com/docs/

 •Updating a cluster by using the CLI:

 https://docs.openshift.com/container-platform/4.4/updating/updating-cluster-cli.html?extIdCarryOver=true&sc_cid=701f2000001Css0AAC#update-upgrading-cli_updating-cluster-cli

 •How to Upgrade OpenShift 4 between different minor versions via “oc” CLI:

 https://access.redhat.com/solutions/4606811

 •Upgrade OpenShift 4 clusters with the CLI:

 https://rcarrata.com/openshift/upgrade-ocp4-from-the-cli/

 •For more information about the OpenShift update process, see these websites:

  –	https://docs.openshift.com/container-platform/4.4/updating/updating-cluster-cli.html?extIdCarryOver=true&sc_cid=701f2000001Css0AAC#update-upgrading-cli_updating-cluster-cli

  –	https://access.redhat.com/solutions/4606811

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Back cover

 Acrobat bookmark

 ISBN 0738459054

 REDP-5605-00

 ®

 OPS/images/5605Installation.07.1.050.jpg

OPS/images/5605Installation.07.1.052.jpg

OPS/images/5605Installation.07.1.051.jpg

OPS/images/redhat_logon_page.jpg
& RedHat

Log in to your Red Hat account

One account for all things Red Hat

Red Hat login or email

www.reaha o

View Saved Logins

Don't have an account? Create one now.

OPS/images/5605Installation.07.1.053.jpg

OPS/images/5605Installation.07.1.045.jpg

OPS/images/5605HintsAndTips.08.1.14.jpg

OPS/images/5605Installation.07.1.044.jpg

OPS/images/5605HintsAndTips.08.1.15.jpg

OPS/images/5605Installation.07.1.047.jpg

OPS/images/5605HintsAndTips.08.1.12.jpg

OPS/images/5605Installation.07.1.046.jpg

OPS/images/5605HintsAndTips.08.1.13.jpg

OPS/images/5605Installation.07.1.049.jpg

OPS/images/5605Installation.07.1.048.jpg

OPS/images/5605HintsAndTips.08.1.16.jpg

OPS/images/5605spec.03.1.1.jpg
I d

OPS/images/5605Installation.07.1.041.jpg

OPS/images/5605HintsAndTips.08.1.10.jpg

OPS/images/5605Installation.07.1.040.jpg

OPS/images/5605HintsAndTips.08.1.11.jpg

OPS/images/5605Installation.07.1.043.jpg

OPS/images/5605Installation.07.1.042.jpg

OPS/images/5605Installation.07.1.034.jpg

OPS/images/5605Installation.07.1.033.jpg

OPS/images/5605Installation.07.1.036.jpg

OPS/images/5605Installation.07.1.035.jpg

OPS/images/5605Installation.07.1.038.jpg

OPS/images/5605Installation.07.1.037.jpg

OPS/images/5605Installation.07.1.039.jpg

OPS/images/5605Installation.07.1.070.jpg

OPS/images/5605Installation.07.1.072.jpg

OPS/images/5605Installation.07.1.071.jpg

OPS/images/5605Installation.07.1.074.jpg

OPS/images/5605Installation.07.1.073.jpg

OPS/images/5605Installation.07.1.076.jpg

OPS/images/5605Installation.07.1.075.jpg

OPS/images/5605Installation.07.1.131.jpg

OPS/images/5605Installation.07.1.130.jpg

OPS/images/5605Installation.07.1.067.jpg

OPS/images/5605Installation.07.1.066.jpg

OPS/images/5605Installation.07.1.069.jpg

OPS/images/5605Installation.07.1.068.jpg

OPS/images/5605Installation.07.1.129.jpg

OPS/images/5605Installation.07.1.061.jpg

OPS/images/5605ansible.10.1.08.jpg

OPS/images/5605Installation.07.1.060.jpg

OPS/images/5605ansible.10.1.09.jpg

OPS/images/5605Installation.07.1.063.jpg

OPS/images/5605ansible.10.1.06.jpg

OPS/images/5605Installation.07.1.062.jpg

OPS/images/5605ansible.10.1.07.jpg

OPS/images/5605Installation.07.1.065.jpg

OPS/images/5605ansible.10.1.04.jpg

OPS/images/5605Installation.07.1.064.jpg

OPS/images/5605ansible.10.1.05.jpg

OPS/images/5605Installation.07.1.122.jpg

OPS/images/5605Installation.07.1.121.jpg

OPS/images/5605Installation.07.1.124.jpg

OPS/images/5605Installation.07.1.123.jpg

OPS/images/5605Installation.07.1.126.jpg

OPS/images/5605Installation.07.1.125.jpg

OPS/images/5605Installation.07.1.128.jpg

OPS/images/5605Installation.07.1.127.jpg

OPS/images/5605Installation.07.1.120.jpg

OPS/images/download_installer.jpg
OpenShiftinstaller

Download and extract the install program for your operating system and place the file in the
directory where you will store the installation configuration files. Note: The OpenShift install
program is only available for Linux and macOS at this time.

Linux v Download installer

<> Developer Preview Download pre-release builds

OPS/images/5605ansible.10.1.02.jpg

OPS/images/5605Installation.07.1.055.jpg
&

1BMZ
IBM LinuxONE"

RunonIBMZ

OPS/images/5605ansible.10.1.03.jpg
Ansible Dev
Automation @
Engine T

“
@ Prod
Host Inventory Playbook

10.58.121.51 zookeeper.yml
10.58.121.52
10.58.121.53

OPS/images/5605Installation.07.1.058.jpg

OPS/images/download_pull_secret.jpg
Pull secret

s Download or copy your pull secret. The install program will prompt you for your pull secret during
installation.

Download pull secret B Copy pull secret

OPS/images/5605ansible.10.1.01.jpg

OPS/images/5605Installation.07.1.059.jpg

OPS/images/5605Installation.07.1.010.jpg

OPS/images/OCP4_Upgrade_Paths_Checker_Output.jpg
Key

N,

N DirectPath =

Py S > IndirectPath —) —=)
i

stable-4.4_s390x (2020-07-01)

OPS/images/5605ch04.09.1.8.jpg

OPS/images/5605ch04.09.1.7.jpg

OPS/images/5605ch04.09.1.6.jpg

OPS/images/5605ch04.09.1.5.jpg

OPS/images/5605ch04.09.1.4.jpg

OPS/images/5605ch04.09.1.3.jpg

OPS/images/5605ch04.09.1.2.jpg

OPS/images/5605ch04.09.1.1.jpg

OPS/images/5605Installation.07.1.030.jpg

OPS/images/5605Installation.07.1.032.jpg

OPS/images/5605Installation.07.1.031.jpg

OPS/images/5605Installation.07.1.023.jpg

OPS/images/5605Installation.07.1.022.jpg

OPS/images/5605Installation.07.1.025.jpg

OPS/images/5605Installation.07.1.024.jpg

OPS/images/5605Installation.07.1.027.jpg

OPS/images/5605Installation.07.1.026.jpg

OPS/images/5605Installation.07.1.029.jpg

OPS/images/5605Installation.07.1.028.jpg

OPS/images/5605Installation.07.1.021.jpg

OPS/images/5605Installation.07.1.020.jpg

OPS/images/5605Installation.07.1.019.jpg

OPS/images/5605HintsAndTips.08.1.09.jpg

OPS/images/5605HintsAndTips.08.1.08.jpg

OPS/images/5605HintsAndTips.08.1.07.jpg

OPS/images/5605Installation.07.1.012.jpg

OPS/images/5605HintsAndTips.08.1.06.jpg

OPS/images/5605Installation.07.1.011.jpg

OPS/images/5605HintsAndTips.08.1.05.jpg

OPS/images/5605Installation.07.1.014.jpg

OPS/images/5605HintsAndTips.08.1.04.jpg

OPS/images/5605Installation.07.1.013.jpg

OPS/images/5605HintsAndTips.08.1.03.jpg

OPS/images/5605Installation.07.1.016.jpg

OPS/images/5605HintsAndTips.08.1.02.jpg

OPS/images/5605Installation.07.1.015.jpg
c @ O % 1294023109

HAProxy version 1{3.15, released 2018/12/13
Statistics Report for pid 29144

al process information
intp

gongtom [[sactup £, gong ovn

il 2514 (s #1 s = 1 et =

upime = 0f3nts s DOW. ungap | sy DN, g
e e s i i = 27 b |or it
massock=412. masconn = 00 maxcpes -0 o or backp DONN [t checod
coren cons = 1 coren poes =00, com e = s o o backup DOMN 6 martorarce)
Rumngtaks 123, e =10 % |} civecr b SOFT STOPPED for rarenance
et NOLETDRAIT = UP wih o blancingdisbi
Frtens CI] I)) s B0 0 0
Pt oo ol o sm| 0 o o o o o

0 OB (N0 0
= DI [70 0 0o
P I O] 70 I

OPS/images/5605HintsAndTips.08.1.01.jpg

OPS/images/5605Installation.07.1.018.jpg

OPS/images/5605Installation.07.1.017.jpg

OPS/images/5605ansible.10.1.24.jpg

OPS/images/5605ansible.10.1.25.jpg

OPS/images/5605ansible.10.1.22.jpg

OPS/images/5605ansible.10.1.23.jpg

OPS/images/5605ansible.10.1.20.jpg

OPS/images/5605ansible.10.1.21.jpg

OPS/images/5605ansible.10.1.26.jpg

OPS/images/5605ansible.10.1.27.jpg

OPS/images/5605ansible.10.1.13.jpg

OPS/images/5605ansible.10.1.14.jpg

OPS/images/5605ansible.10.1.11.jpg

OPS/images/5605ansible.10.1.12.jpg

OPS/images/5605ansible.10.1.10.jpg

OPS/images/5605ansible.10.1.19.jpg

OPS/images/5605ansible.10.1.17.jpg

OPS/images/5605ansible.10.1.18.jpg

OPS/images/5605ansible.10.1.15.jpg

OPS/images/5605ansible.10.1.16.jpg

OPS/5605cover.jpg
@ Redbooks

nnnnnnnnnnnnn

Red Hat OpenShift on IBM Z
Installation Guide

Subhajit Maitra

A Cloud
IBM Z

OPS/images/5605Installation.07.1.009.jpg

OPS/images/5605Installation.07.1.008.jpg

OPS/images/5605Installation.07.1.007.jpg

OPS/images/5605Installation.07.1.006.jpg

OPS/images/5605Installation.07.1.005.jpg

OPS/images/5605Installation.07.1.004.jpg

OPS/images/5605Installation.07.1.003.jpg

OPS/images/5605Installation.07.1.002.jpg

OPS/images/5605Installation.07.1.001.jpg

OPS/images/PhysicalInfrastructure.jpg
Load Balancer
(HA Proxy)

Physical Infrastructure

129.23.40.0/24 subnet

OPS/images/5605Planning.06.1.19.jpg

OPS/images/5605Planning.06.1.18.jpg

OPS/images/5605Planning.06.1.11.jpg

OPS/images/5605Planning.06.1.10.jpg

OPS/images/5605Planning.06.1.13.jpg

OPS/images/5605Planning.06.1.12.jpg

OPS/images/5605Planning.06.1.15.jpg

OPS/images/5605Planning.06.1.14.jpg

OPS/images/5605Planning.06.1.17.jpg

OPS/images/5605Planning.06.1.16.jpg

OPS/images/5605Planning.06.1.09.jpg

OPS/images/5605Planning.06.1.08.jpg

OPS/images/5605Planning.06.1.07.jpg

OPS/images/5605Planning.06.1.06.jpg

OPS/images/5605Planning.06.1.05.jpg

OPS/images/5605Planning.06.1.04.jpg

OPS/images/5605Planning.06.1.03.jpg
Compute 1

Compute2

Openshit Custer

OPS/cover.xhtml

 [image: Cover image]

OPS/images/5605Planning.06.1.02.jpg

OPS/images/5605Planning.06.1.01.jpg

OPS/images/5605Installation.07.1.092.jpg

OPS/images/5605Installation.07.1.119.jpg

OPS/images/5605Installation.07.1.091.jpg

OPS/images/5605Installation.07.1.118.jpg

OPS/images/5605Installation.07.1.094.jpg
Ready: 1%0.9170.91 939:23:51
00

00: CP QUERY RDR ALL
ORIGINID FILE CLASS RECORDS

RDBKBAS3 0079 A PUN 00064058
RDBKBAS3 0083 A PUN 00000006
RDBKBAS3 0087 A PUN 00702849

TIME
09:23:27
09:23:32
9:23:41

NAME
kernel
generic
initrd

OPS/images/5605Installation.07.1.093.jpg

OPS/images/5605Installation.07.1.096.jpg

OPS/images/5605Installation.07.1.095.jpg

OPS/images/5605Installation.07.1.098.jpg

OPS/images/cp_ipl_00c.jpg
00: CP
00

[%]
1d.eng
MP Wed
L o
t mode
L o

IPL @0C
NO FILES CHANGED

.288788] Linux version 4.18.0-147.20.1.el18_1.s390x (mockbuild@s390-018.bui
.bos.redhat.com) (gcc version 8.3.1 20190507 (Red Hat 8.3.1-4) (GCC)) #1 S

Jun 10 19:29:13 UTC 2020

.@88790] setup: Linux 1is running as a z/VM guest operating system in 64-bi

.088832] setup: The maximum memory size is 16384MB

OPS/images/5605Installation.07.1.111.jpg

OPS/images/5605Installation.07.1.110.jpg

OPS/images/5605Installation.07.1.113.jpg

OPS/images/5605Installation.07.1.112.jpg

OPS/images/5605Installation.07.1.115.jpg

OPS/images/5605Installation.07.1.114.jpg

OPS/images/5605Installation.07.1.090.jpg

OPS/images/5605Installation.07.1.117.jpg

OPS/images/5605Installation.07.1.116.jpg

OPS/images/5605Installation.07.1.089.jpg

OPS/images/5605Installation.07.1.088.jpg

OPS/images/Openshift_on_z.05.1.1.jpg

OPS/images/5605Installation.07.1.081.jpg

OPS/images/5605Installation.07.1.108.jpg

OPS/images/5605Installation.07.1.080.jpg

OPS/images/5605Installation.07.1.107.jpg

OPS/images/5605Installation.07.1.083.jpg

OPS/images/5605Installation.07.1.082.jpg

OPS/images/5605Installation.07.1.109.jpg

OPS/images/5605Installation.07.1.085.jpg

OPS/images/5605Installation.07.1.084.jpg

OPS/images/5605Installation.07.1.087.jpg

OPS/images/5605Installation.07.1.086.jpg

OPS/images/5605Installation.07.1.100.jpg

OPS/images/5605Installation.07.1.102.jpg

OPS/images/5605Installation.07.1.101.jpg

OPS/images/5605Installation.07.1.104.jpg

OPS/images/5605Installation.07.1.103.jpg

OPS/images/5605Installation.07.1.106.jpg

OPS/images/5605Installation.07.1.105.jpg

OPS/images/5605Installation.07.1.078.jpg

OPS/images/5605Installation.07.1.077.jpg

OPS/images/5605Installation.07.1.079.jpg

OPS/images/Openshift_on_z.05.1.3.jpg

OPS/images/Openshift_on_z.05.1.2.jpg

OPS/images/5605Installation.07.1.099.jpg

