

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

 First Edition (March 2011)

 This edition applies to IBM DB2 Version 10.1 for z/OS (program number 5605-DB2), IBM InfoSphere Optim Development Studio Version 2.2.1 (program number 5724-X83), and IBM Data Studio Version 2.2.1, available from: http://www.ibm.com/developerworks/downloads/im/data/index.html

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 AIX®

 DataPower®

 DB2 Connect™

 DB2®

 developerWorks®

 DRDA®

 IBM®

 ILOG®

 Informix®

 InfoSphere™

 iSeries®

 Language Environment®

 MVS™

 Optim™

 OS/390®

 Passport Advantage®

 pureScale™

 QMF™

 Query Management Facility™

 RACF®

 Rational®

 Redbooks®

 Redpaper™

 Redbooks (logo)[image:]®

 System z®

 System/390®

 WebSphere®

 z/OS®

 The following terms are trademarks of other companies:

 Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 Stored procedures can provide major benefits in the areas of application performance, code re-use, security, and integrity. DB2® has offered ever-improving support for developing and operating stored procedures.

 This IBM® Redpaper™ publication is devoted to tools that can be used for accelerating the development and debugging process, in particular to the stored procedure support provided by the latest and fastest evolving IBM product: Data Studio.

 We discuss topics related to handling stored procedures across different platforms. We concentrate on how to use tools for deployment of stored procedures on z/OS®, but most considerations apply to the other members of the DB2 family.

 This paper is a major update of Part 6, “Cool tools for an easier life,” of the IBM Redbooks® publication DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604.

 The team who wrote this paper

 This paper was produced by a team of specialists working at the Silicon Valley Lab, San Jose, California.

 Paolo Bruni is a DB2 Information Management Project Leader at the International Technical Support Organization based in the Silicon Valley Lab. He has authored several Redbooks publications about DB2 for z/OS and related tools and has conducted workshops and seminars worldwide.

 Marichu Scanlon is an Advisory Software Engineer for IBM Application Development Tooling organization, working at the Silicon Valley Laboratory in San Jose, CA, and is a member of the development team for IBM Data Studio. She has over 28 years of experience in the application and software development field. She holds a degree in electrical engineering from the University of the Philippines and an MBA from Ateneo University, Philippines. Her areas of expertise include stored procedures and application development tooling in all platforms. She has given presentations and demonstrations on application tooling at IDUG, regional DB2 Users Groups, and Information Management conferences. She has also co-authored IBM Redbooks publications and written several articles in DeveloperWorks on application tooling.

 Thanks to the following people for their contributions to this project:

 Moira Casey
Clifford Chu
Gary Lazzotti
Hung P Le
Lakshman Sakaray
Mark Taylor
Emily Zhang
Ruiming Zhou
IBM Data Studio, SVL

 Emma Jacobs
IBM ITSO

 Now you can become a published author, too!

 Here's an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our papers to be as helpful as possible. Send us your comments about this paper or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

The IBM Data Studio V2.2.1

 IBM Data Studio is a tool that simplifies database development and administration for IBM data servers. In this chapter we provide information about the packaging, functions, and setup of the tool for use with DB2 for z/OS.

 This chapter contains the following:

 •Introduction

 •Understanding the Data Studio packaging

 •Eclipse Workbench common terminology

 •Installation, configuration, and setup

 •Navigating through the Data Studio workspace

 1.1 Introduction

 In DB2 V7.2 for Linux®, UNIX®, and Windows®, IBM introduced tooling support for stored procedures via the Stored Procedure Builder product. IBM enhanced this tooling with the follow-on tool, Development Center, in DB2 V8.1 for Linux, UNIX, and Windows. With DB2 9 for Linux, UNIX, and Windows, the Developer Workbench was introduced. Developer Workbench is based on Eclipse technology. The stored procedure tooling for DB2 databases is also consistent with the tooling delivered in WebSphere® Application Developer and Rational® Application Developer. On October 30, 2007, IBM announced Data Studio, which builds upon the tooling support of Developer Workbench and other IBM tooling products.

 As of the publication of this paper, there are three products referred to as Data Studio (Table 1-1).

 Table 1-1 Data Studio products

 	
 Product

 	
 COMPID

 	
 Data Studio stand-alone V2.2.1 (no charge version)

 	
 5724-DST00

 	
 Data Studio V2.2.1 (no charge version)

 	
 5724-DST04

 	
 Optim™ Development Studio V2.2.1 (charge version)

 	
 5724-DST01

 Data Studio is a comprehensive data management solution that empowers you to effectively design, develop, deploy, and manage your data, databases, and database applications throughout the entire application development life cycle utilizing a consistent and integrated user interface. Included in this tooling suite are the tools for developing and deploying DB2 for z/OS stored procedures. Unlike Development Center, which was included in the DB2 V8.1 for Linux, UNIX, and Windows Application Development Client (ADC) component, Data Studio is independent of any other product offering and does not require a DB2 client to be installed.

 1.2 Understanding the Data Studio packaging

 Data Studio is made available in two no charge forms:

 •A light weight Rich Client Platform (RCP) Eclipse executable version, called Data Studio stand-alone or RCP

 •An Eclipse Interactive Development Environment (IDE) version, called Data Studio IDE.

 In addition to these two products, a third fee version of Data Studio is also available, which contains more functions. This third product is Optim Development Studio. Throughout this document, we refer to all three product forms as Data Studio. Features that are specific to Optim Development Studio are pointed out when needed.

 Data Studio stand-alone executes as a desktop application on Windows and Linux. Data Studio uses an installer, called Installation Manager, to install, update, and uninstall the product. Both Data Studio IDE and Optim Development Studio sit on top of the Eclipse Framework. Thus, both products have a similar look and feel. Certain versions of products in the InfoSphere™ Optim and InfoSphere Rational, brands also sit on top of the Eclipse framework. As a result, these products are able to share the Eclipse base (shell sharing).

 A description of the supported products that can shell-share with Data Studio or Optim Development Studio is provided in the technote “Shell sharing with InfoSphere Data Architect, Optim Development Studio, and Optim Database Administrator” available from:

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0811khatri/index.html?ca=drs-

 Data Studio supports the entire family of DB2 servers, as well as Informix®. Support for the Oracle data server is available in Optim Development Studio.

 The latest version, Data Studio V2.2.1, supports:

 •Version 9.x of DB2 for Linux, UNIX, and Windows

 •Versions 8, 9, and 10 of DB2 for z/OS

 •Versions 5.3 and later of DB2 for iSeries®

 •Informix Data Servers

 The suite of servers and functions that the Data Studio products support are summarized in Table A-1 on page 136 and Table A-2 on page 137.

 For more information about Data Studio, see:

 http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Data_Studio

 1.3 Eclipse Workbench common terminology

 In this section we introduce the basic Data Studio concepts and terminology.

 Data Studio is based on the open and extensible framework of the Eclipse Workbench.

 The Eclipse Workbench is an Integrated Development Environment. It is the major delivery of a consortium of companies, called eclipse.org, and is an open source development platform. This consortium was initiated by IBM. Eclipse is currently the most successful open source project judging by the number of contributing participants. Eclipse defines extensibility interfaces and integration points, so other projects can contribute, extend, or consume “pieces” of the code, called plug-ins. Several specialized projects extend the basic IDE, such as Web Tools Project, Data Tools Project, and so on.

 The Eclipse Workbench, or Workbench for short, consists of:

 •Workspace

 •Resources

 •Perspectives

 •Views

 •Editors

 •Wizards

 •Task Launcher

 1.3.1 Workspace

 When you open the Workbench, you are asked to choose a workspace. All your resources and settings are saved in this workspace. Only one workspace is active at any given time. You can open a different workspace each time that you open the Workbench. You can also switch workspaces by clicking File → Switch Workspace.

 1.3.2 Resources

 A resource is a collective term for the projects, folders, and files that you created in a workspace. Typically, resources are viewed in a hierarchical format and can be opened for editing. There are three basic types of resources that exist in the Workbench:

 •Files

 A file in Eclipse is comparable to files in the workstation. Each resource in Eclipse is associated with a file. Eclipse persists or saves all resources in the workspace as files in the file system.

 •Folders

 Folders in the Eclipse workspace are comparable to directories in a file system. In the workspace, folders are containers for the various resources that can be created, viewed, or manipulated by the tooling.

 •Projects

 In Eclipse, development is contained in projects. Projects contain folders, which in turn can contain either a set of objects or another folder. Projects have one or more nature associated with them, meaning that the contents and tasks that can be done on the objects within the project depend on the kind of project created.

 A project is either open or closed. When a project is closed, it cannot be changed in the Workbench. The resources of a closed project do not appear in the Workbench, but the resources still reside on the local file system. When a project is open, the structure and contents of the project can be viewed and modified.

 1.3.3 Perspectives

 A perspective is a group of views and editors in the Workbench window. One or more perspectives can exist in a single Workbench window. Each perspective contains one or more views and editors. Each perspective can have a different set of views, but all perspectives share the same set of editors.

 Data perspective

 The Data perspective is the default perspective for Data Studio IDE. The Data perspective provides a set of functions and specialized views for displaying, creating, deploying, and managing application development objects and database objects.

 Database Administration perspective

 The Database Administration perspective displays a set of views that the database administrator can use to manage databases and complete database administration tasks.

 IBM Query Tuning perspective

 The Query Tuning perspective is the default perspective for Data Studio stand-alone. This perspective provides the Administration Explorer view which displays the database objects in a hierarchical form.

 Debug perspective

 The Debug perspective is the primary perspective used by Data Studio when debugging an SQL or Java™ stored procedure. This perspective is used by other products, such as the Rational Developer V7 for System z®.

 Java perspective

 The Java perspective is the primary perspective used by Data Studio when developing pureQuery applications. This perspective is also by other products, such as the Rational Application Developer.

 Other perspectives used by Data Studio are the Team Perspective and the Resource Perspective.

 1.3.4 Views

 A view is a visual component within the Workbench that is used to display a hierarchy of resources in the Workbench, display properties of a resource, and perform tasks on the resource. Modifications made in a view are saved immediately. Only one instance of a particular type of view can exist within a Workbench window.

 In any of the perspectives you can:

 •Open or show a view.

 •Move a view to a different area of the workspace.

 •Reset views.

 •Minimize or maximize a view.

 Several views can share an area of the workspace as in the case when multiple objects are opened in the Editor. The Output view also shows multiple types of output (for example, error log, problems, data output, and so on).

 The views used by a database application developer differ slightly from the views used by a database administration developer. Commonly used views are the Data Source Explorer, Data Project Explorer, Administration Explorer, and Data Output views. More information about these views in Data Studio is given in 1.5, “Navigating through the Data Studio workspace” on page 26.

 1.3.5 Editors

 An editor is a visual component within the Workbench that is used to edit or browse a resource. Modifications made in the editor follow an open-save-close lifecycle model. An editor can be specialized for a function. Multiple instances of specialized editors can exist within a Workbench window.

 1.3.6 Wizards

 A wizard is a visual component within the Workbench that is used to step a user through a series of tasks related to a resource. The purpose of the wizard is to make a task easy for the user.

 1.3.7 Task Launcher

 Available in Data Studio IDE and Optim Development Studio only, the Task Launcher is used to simplify determining which perspective and views should be used when performing a task. Data Studio launches the proper perspective and default views based on what the user wants to do.

 1.4 Installation, configuration, and setup

 For Data Studio to communicate with the z/OS server, ensure that both the client and the server are properly set up. Here we describe the setup steps and areas of consideration for both the client and the z/OS Server.

 •Connectivity and the JDBC driver selection

 •Client setup

 •DB2 for z/OS setup

 •Unicode support

 •Setup for SQL and Java stored procedures

 •WLM application environments and procedures

 •Data Studio actual costs setup

 •Data Studio and JDBC driver selection

 •Java SDK used by Data Studio

 •Overview of routine development with Data Studio

 1.4.1 Connectivity and the JDBC driver selection

 Data Studio uses the JDBC driver specified in the Connection wizard in the following areas:

 •The server connection

 •The generated stored procedure (Only Java SQLJ requires the Driver significance1, which is included in the *.ser file.)

 •The runtime environment for Java stored procedures, both SQLJ and JDBC, which are determined by the WLM SPAS //JAVAENV DD statement

 •The runtime environment for pureQuery applications

 Data Studio V2.2.1 is shipped with the IBM Data Server Driver for JDBC and SQLJ V3.61. Data Studio and Optim Development Studio requires the IBM Data Server Driver for JDBC and SQLJ V3.57 or later for JDBC 3.0 applications, and IBM Data Server Driver for JDBC and SQLJ V4.7 or later for JDBC 4.0 applications.

 For a detailed discussion about DB2 drivers, see DB2 9 for z/OS: Distributed Functions, SG24-6952.

 Build process generates Java stored procedure

 The build process performed by Data Studio generates the connection in the Java stored procedure using the default syntax jdbc:default:connection. This eliminates any JDBC Driver significance in the stored procedure source. Instead, the JDBC Driver significance is included in the *.ser file for Java SQLJ stored procedures during the customization process. No driver significance is included in generated Java JDBC stored procedures. The *.ser file is created during customization for Java SQLJ stored procedures and is performed by Data Studio using DB2SQLJCUSTOMIZE.

 Runtime JDBC driver

 The JDBC driver used at runtime for both Java stored procedures is determined by the JCC_HOME environment variable in the //JAVAENV DD statement of the WLM address space executing the stored procedure. For more information see “Runtime determines JDBC driver” on page 20.

 1.4.2 Client setup

 The client setup is made up of the following steps:

 1.	Obtaining the product.

 2.	Installing Data Studio.

 3.	Installing DB2 Connect.

 4.	Binding JDBC packages.

 Obtaining the product

 Unlike IBM Development Center, Data Studio is a separate installable product. Both the stand-alone and IDE versions are available from the IBM Support website:

 http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/
IBM_Data_Studio

 Data Studio is also available as a downloadable feature from the DB2 for z/OS web page: 	

 http://www.ibm.com/software/data/db2/zos/downloads/

 You can also obtain Data Studio from Passport Advantage® or developerWorks®.

 Installing Data Studio

 After downloading the Data Studio package, follow the steps below for installing Data Studio or Optim Development Studio.

 Installing Data Studio stand-alone

 To do this:

 1.	Extract the product package to a directory in your computer (for example, C:\temp\datastudio).

 2.	Optional: Data Studio ships with a JRE at level 1.6. To use this JRE, update the JAVA_HOME and PATH environment variables to <the directory where you extracted the produce>\eclipse\jre.

 3.	From the directory where you extracted Data Studio, run the executable file:

  –	Windows: install.exe

  –	Linux: ./install.bin

 4.	Follow the installation wizard steps to complete the installation.

 Installing Data Studio IDE or Optim Development Studio

 The downloaded image has the following layout:

 1.	Go to the <drive>:\windows\InstallerImage_win32\install.exe.

 2.	Double-click the install.exe file. The IBM Installation Manager wizard is launched.

 3.	Click the Data Studio and the Version x.x.x check boxes. Click Next.

 4.	Select the radio button for I accept the terms in the license agreement. Click Next.

 5.	In the Shared Resourced Directory, select C:\Program Files\IBM\SDPShared. Click Next.

 6.	In the Installation Directory text box, select C:\Program Files\IBM\DS. Click Next.

 7.	Do not extend the Eclipse IDE. Click Next.

 8.	The default setting is English. Select your language, then click Next.

 9.	A default list of features is preselected for you. Deselect or select features that you want installed. Click Next.

 10.	Verify that the disk space that you have can accommodate the installation size. Click Install.

 11.	Check for a success message, then click Finish.

 	
 Shell share: Data Studio IDE and Optim Development Studio can share a package group with other compatible products that have been installed with IBM Installation Manager. So in step 7 on page 7, you can opt to install the same package group or to create a new one. You can also opt to extend the Eclipse IDE you currently installed in your system. Several InfoSphere products, Optim or Rational, include the Eclipse IDE in their installation. You can significantly reduce your storage requirements if you opt to shell share or share the base Eclipse plug-ins of these products with Data Studio.

 The technote “Information about which IBM Software products can be installed together so together so that they share a common environment” lists the compatible products that can shell-share with Data Studio. It is available from:

 http://www.ibm.com/support/docview.wss?rs=2042&uid=swg21279139

 Data Studio is installed into two default directories:

 •C:\Program Files\IBM\SDPShared

 •C:\Program Files\IBM\Data Studio

 Installing DB2 Connect

 This step is optional. If you are using Data Studio for development purposes, then you do not need to have DB2 Connect™ installed.

 Data Studio ships with the IBM Data Server driver for JDBC and SQLJ2, also called the Universal driver. These include the license jars, db2jcc.jar and db2jcc_license_cisuz.jar, needed to connect to DB2 for z/OS servers.

 You can opt to use the license jars supplied by DB2 Connect. In the Driver Properties of the database connection, specify these jars and their location in the file system (see 2.1.3, “Editing the connection” on page 54). Note, however, that certain features and functions in Data Studio, and in particular Optim Development Studio, require specific levels of db2jcc.jar. You need to verify whether the version of the DB2 Connect license jars is equal to or greater than the version shipped with Data Studio. To verify this, type the command shown in Example 1-1 on a Windows command prompt, where classpath is the directory where db2jcc.jar is located.

 Example 1-1 How to verify the JCC version

 [image:]

 java -cp <classpath> com.ibm.db2.jcc.DB2Driver -version

 [image:]

 Binding JDBC packages

 The JDBC packages in the IBM Data Server driver for JDBC and SQLJ need to be bound to the server. The DB2Binder utility performs this task. This task needs to be done only once per server per collection ID. The DB2Binder utility can be executed from the server side or the client side. Example 1-2 shows the DB2Binder command executed from Windows.

 Example 1-2 Connecting and binding the JDBC packages

 [image:]

 set CLASSPATH=c:\Progra~1\IBM\sqllib\java\db2jcc.jar;c:\Progra~1\IBM\sqllib\java\db2jcc_license_cisuz.jar;c:\Progra~1\IBM\sqllib\java\db2jcc_license_cu.jar;%$CLASSPATH%

 java com.ibm.db2.jcc.DB2Binder -url jdbc:db2://utec730.vmec.svl.ibm.com:446/STLEC1 -user ADMF001 -password C0DESHOP -collection DSNJDBC

 cd C:\Progra~1\IBM\SQLLIB\bnd

 db2 connect to EC730V10 user ADMF001 using C0DESHOP

 db2 bind @ddcsmvs.lst BLOCKING ALL SQLERROR CONTINUE GRANT PUBLIC

 db2 connect reset

 [image:]

 In Example 1-2, -url points to the domain:port//location of the DB2 for z/OS server that you want to connect to. The user is the TSO logon ID, and password is the TSO logon ID password. The bind might need to be repeated after applying a FixPak to Data Studio. If the DB2Binder is not run, and you do not re-execute the bind, you receive -805 at the workstation when trying to connect to the server from Data Studio.

 	
 Note: Both the location and collection IDs should be in uppercase when submitting the DB2Binder command from the client. To continue typing a long line to the next line, type a backslash (\), followed by a space, then continue typing on the next line.

 1.4.3 DB2 for z/OS setup

 Data Studio requires the following minimum prerequisites for:

 •SQL and Java stored procedures:

  –	Language Environment®

  –	Workload Manager

  –	Resource Recovery Services

  –	REXX language

  –	Unicode support

 •External SQL stored procedures

  –	C compiler

 •Java stored procedures

  –	IBM Data Server Driver for JDBC and SQLJ V3.57

  –	IBM SDK for z/OS, Java 2 Technology Edition V1.4 (SDK1.4.2, 5655-I56)

 Data Studio interacts with the DB2 for z/OS subsystems using several DB2-supplied stored procedures. In DB2 10, these stored procedures are installed and configured during installation. Installation job DSNTIJRT installs and configures the DB2-supplied stored procedures that were previously installed by the following customization jobs:

 •DSNTIJSD

 •DSNTIJRX

 •DSNTIJTM

 •DSNTIJMS

 •DSNTEJ6W	

 •DSNTIJSG

 •DSNTIJCC

 Data Studio authorization setup

 General authorities and privileges for using Data Studio follow the regular rules for DB2 for z/OS and are listed in Table 1-2.

 Table 1-2 General authorities and privileges for all platforms using Data Studio

 	
 Task

 	
 Authorities and privileges

 	
 Access target databases.

 	
 CONNECT

 	
 Register stored procedures with a database server.

 	
 CREATE PROCEDURE

 Also requires one of the following privileges:

 •SYSADM or DBADM.

 •CREATEIN for the schema if the schema name of the stored procedure refers to an existing schema.

 •IMPLICIT_SCHEMA authority on the database if the implicit or explicit schema name of the stored procedure does not exist. IMPLICIT_SCHEMA allows you to implicitly create an object with a CREATE statement and specify a schema name that does not already exist. SYSIBM becomes the owner of the implicitly created schema, and PUBLIC is given the privilege to create objects in this schema.

 •CREATE IN privilege on desired collection ID.

 	
 Retrieve rows from a table or view.

 	
 SELECT

 	
 Create a view on a table.

 	
 SELECT

 	
 Run the EXPORT utility.

 	
 SELECT

 	
 Insert an entry in a table or view, and run the IMPORT utility.

 	
 UPDATE

 	
 Change an entry in a table, a view, or one or more specific columns in a table or view.

 	
 UPDATE

 	
 Delete rows from a table or view.

 	
 DELETE

 	
 To use the Data Studio Unified Debugger.

 	
 DEBUGSESSION

 	
 Test a stored procedure.

 	
 SYSADM or DBADM or EXECUTE or CONTROL for the package associated with the stored procedure (for SQL stored procedures or Java stored procedures with embedded SQL)

 	
 Drop a stored procedure.

 	
 You must have ownership of the stored procedure and at least one of the following:

 •DELETE privilege

 •DROPIN privilege for the schema or all schemas

 •SYSADM or SYSCTRL authority

 	
 Update a stored procedure.

 	
 You must have ownership of the stored procedure and at least one of the following:

 •UPDATE privilege

 •ALTERIN privilege for the schema or all schemas

 •SYSADM or SYSCTRL authority

 Data Studio accesses a number of DB2 system catalog tables on z/OS.

 Table 1-3 lists the privileges required to view the objects in the Data Source Explorer. The privileges can be held by any authorization ID of the process, either the primary authorization ID or any secondary authorization ID.

 Table 1-3 Privileges required to view the objects in the Data Source Explorer in Data Studio

 	
 Additional required privileges

 	
 EXECUTE privilege on DSNTPSMP

 	
 SELECT privilege on:

 	
 SYSIBM.SYSCOLAUTH

 SYSIBM.SYSCOLUMNS

 SYSIBM.SYSDATABASE

 SYSIBM.SYSDBAUTH

 SYSIBM.SYSINDEXES

 SYSIBM.SYSJAROBJECTS

 SYSIBM.SYSPACKAGE

 SYSIBM.SYSPACKAUTH

 SYSIBM.SYSPACKDEP

 SYSIBM.SYSPARMS

 SYSIBM.SYSPLAN

 SYSIBM.SYSPLANAUTH

 SYSIBM.SYSRESAUTH

 SYSIBM.SYSROUTINEAUTH

 SYSIBM.SYSROUTINES

 SYSIBM.SYSSCHEMAAUTH

 SYSIBM.SYSSYNONYMS

 SYSIBM.SYSTABAUTH

 SYSIBM.SYSTABLES

 SYSIBM.SYSUSERAUTH

 SYSIBM.SYSVIEWS

 Data Studio also accesses the catalog and non-catalog tables listed in Table 1-4 when creating external SQL stored procedures.

 Table 1-4 DB2 system catalog tables accessed when creating SQL stored procedures

 	
 SELECT privilege on:

 	
 SYSIBM.SYSDUMMY1

 SYSIBM.SYSROUTINES

 SYSIBM.SYSPARMS

 	
 SELECT, INSERT, UPDATE, and DELETE privilege on:

 	
 SYSIBM.SYSROUTINES_SRC

 SYSIBM.SYSROUTINES_OPTS

 SYSIBM.SYSPSM

 SYSIBM.SYSPSMOPTS

 	
 ALL on the global temporary table

 	
 SYSIBM.SYSPSMOUT

 Data Studio accesses the catalog tables listed in Table 1-5 when creating JAVA stored procedures.

 Table 1-5 DB2 system catalog tables accessed when creating Java stored procedures

 	
 SELECT privilege on:

 	
 SYSIBM.SYSROUTINES

 SYSIBM.SYSDUMMY1

 SYSIBM.SYSPARMS

 SYSIBM.SYSJARCONTENTS

 SYSIBM.SYSJAROBJECTS

 SYSIBM.SYSJAVAOPTS

 The user connecting to DB2 for z/OS must hold privileges listed in Table 1-3 on page 11 and Table 1-4 on page 11 for SQL stored procedures, and Table 1-5 for Java stored procedures.

 1.4.4 Unicode support

 Data Studio users creating SQL and Java Stored Procedures experience incorrect codepage translation when Unicode Conversion Services (UCS) is not set up. For more information, see Support for Unicode: Using Conversion Services, SC33-7050, and the following website:

 http://www.ibm.com/servers/s390/os390/bkserv/latest/v2r10unicode.html

 To determine whether UCS is active, issue ‘D UNI,ALL’ from an SDSF screen. If the support is installed, you receive output with the actual CCSID entries that have been defined. If UCS is not installed, the following message is returned:

 CUN2029S CONVERSION ENVIRONMENT IS NOT AVAILABLE

 The installation of Unicode Conversion Services requires:

 •Updating SYS1.PARMLIB member IEASYSxx with UNI=xx

 •Adding SYS1.PARMLIB member CUNUNIxx

 •Defining Conversion Table with CCSID entries in SYS1.PARMLIB (CUNIMGxx)

 •IPLing the system

 •De-activating or activating the conversion table

 Without Unicode Conversion Services set up, you can initially create, view, and modify a Java stored procedure. However, restoring the source from the database of a previously created Java stored procedure returns the source as a single line with red blocks interspersed, which represent line feeds that have not been translated correctly. The Data Studio support for SQL stored procedures handles the code conversion, and UCS is not required.

 1.4.5 Setup for SQL and Java stored procedures

 Data Studio uses DB2-supplied stored procedures to build external SQL and Java stored procedures. In DB2 10 these routines are installed by installation job, DSNTIJRT.

 The DB2-supplied stored procedures listed in Table 1-6 are used by Data Studio.

 Table 1-6 DB2-supplied stored procedures used by Data Studio

 	
 Procedure name

 	
 Description

 	
 SYSPROC.DBG_%MANAGER

 	
 Server routines required by the Unified Debugger to enable debug interaction with Data Studio.

 	
 DSNTPSMP

 	
 Used by Data Studio for creating, modifying, or dropping an external SQL stored procedures.

 	
 SYSPROC.SQL%

 	
 Server routines used by the SQL Wizard when creating SQL Statements within the New Stored procedure wizard in Data Studio. These are also used by the Administrator Explorer view.

 	
 SQLJ.DB2_%_JAR

 SQLJ.DB2_UPDATE_JARINFO

 SQLJ.ALTER_JAVA_PATH

 	
 Server routines used by Data Studio on behalf of the developer, to update the catalog tables with the Java stored procedure jar, class, and other information.

 	
 WLM_REFRESH1

 	
 Used by Data Studio on behalf of the developer to perform a refresh of a specific WLM application environment after a stored procedure is re-deployed to ensure that the latest changes are in effect.

 1 This stored procedure requires RACF® permissions using an authorization ID that has MVS™ command authority.

 Additionally, the RACF class DSNR needs to be activated prior to calling this stored procedure. This is done using the RACF panels listed in Table 1-7.

 Table 1-7 Activate class DSNR

 	
 RACF panel

 	
 Option to select

 	
 RACF Services Option Menu

 	
 5.

 	
 RACF System Security Options Menu

 	
 3.

 	
 RACF Set Class Options Menu, panel 1

 	
 Enter YES in To CHANGE options for SPECIFIC CLASSES field.

 	
 RACF Set Class Options Menu, panel 2

 	
 Enter DSNR in CLASS field and YES in ACTIVE field.

 Setup specific to SQL stored procedures only

 The following setup is needed for Data Studio to create external SQL stored procedures.

 1.	Configure DSNTPSMP.

 The WLM AE used by DSNTPSMP needs to be configured with NUMTCB=1. Create the procedure that runs in this WLM application environment using <hlq>.SDSNSAMP(DSN8WLMP).

 When DSNTPSMP executes, it creates a compiled SQL load module using the C compiler in the data set referenced by //SQLLMOD in its WLM AE. This same data set needs to be included in STEPLIB in the WLM procedure where the user’s SQL stored procedure created by DSNTPSMP runs.

 2.	Optional: Configure CFGTPSMP.

 You can optionally define the data set for the //CFGTPSMP DD statement. This is a DD statement that can be included in the WLM procedure that executes DSNTPSMP. This is a configuration file that externalizes some settings for DSNTPSMP. It is expected that additional options will be added to this data set in future releases.

 Example 1-3 lists the definition of the configuration file that we used on DB9A.

 Example 1-3 Sample CFGTPSMP configuration data set

 [image:]

 ;-THE CONFIGURATION KEYWORDS AND VALUES ARE AS FOLLOWS:

 ;-

 ;- .-CBCDRVR--.

 ;-C_COMPILER--=--+----------+----------------------------|

 ;- |-CCNDRVR--|

 ;- |-CBC320PP-|

 ;- '-EDCDC120-'

 ;-THE NAME OF THE C COMPILER TO USE. ADJUSTMENT OR ADDITIONAL

 ;-CONFIGURATION OF THE WLM ENVIRONMENT IS USUALLY REQUIRED

 ;-WHEN CHANGING THE C COMPILER.

 ;-

 VALIDATE_BIND = DEFAULT

 ;- DEFAULT, PERMIT, ENFORCE

 ;-SPECIFIES INSTALLATION CONTROL FOR ALL BUILDS OVER THE

 ;-USAGE OF THE BIND PACKAGE OPTION VALIDATE(BIND). CHANGING

 ;-THE DEFAULT MAY PROVIDE A PERFORMANCE IMPROVEMENT.

 ISOLATION_DEFAULT = CS

 ;- CS OR RR

 ;-SPECIFIES INSTALLATION CONTROL OVER THE DEFAULT VALUE FOR

 ;-THE BIND PACKAGE OPTION ISOLATION. CHANGING THE DEFAULT

 ;-MAY PROVIDE A PERFORMANCE IMPROVEMENT.

 ;

 CURRENTDATA_DEFAULT = YES

 ;-SPECIFIES INSTALLATION CONTROL OVER THE DEFAULT VALUE FOR

 ;-THE BIND PACKAGE OPTION CURRENTDATA. CHANGING THE DEFAULT

 ;-MAY PROVIDE A PERFORMANCE IMPROVEMENT.

 ;

 DSNTPSMP_TRACELEVEL= LOW

 ;- OFF, LOW, MEDIUM, HIGH

 ;-CONTROLS THE LEVEL OF DSNTPSMP TRACE DATA WRITTEN OUT TO

 ;-THE DD:SYSTSPRT DATASET IN THE WLM ADDRESS SPACE. SETTING

 ;-THE VALUE TO OFF WILL MINIMIZE, NOT ELIMINATE, LOG RECORDS

 ;-WRITTEN TO DD:SYSTSPRT IN THE WLM-SPAS.

 ;

 [image:]

 Setup specific to Java stored procedures only

 The following setup is needed for Data Studio to create Java stored procedures.

 1.	Install JDBC drivers.

 The DB2 JDBC driver needs to be set up in your environment through SMP/E. The DB2 10 for z/OS Program Directory, GI10-8829-00, describes the installation for the JDBC driver in the Receive Sample job DSNRECV3 for ODBC/JDBC/SQLJ.

 2.	Create the JAVAENV data set.

 The WLM procedure where Java stored procedures execute requires a JAVAENV DD. This data set defines the Java environment variables.

 This JAVAENV data set should have the characteristics shown in Table 1-8.

 Table 1-8 JAVAENV definition

 	
 JAVAENV data set characteristics

 	
 LRECL

 	
 255

 	
 This maximum is limited by LE. 245 bytes usable. If more than 245 bytes are included, unpredictable results occur.

 	
 RECFM

 	
 VB

 	

 	
 ORGANIZATION

 	
 PS

 	

 Example 1-4 shows an example of the contents of the JAVAENV data set.

 Example 1-4 Contents of JAVAENV - DB9AU.JAVAENV file

 [image:]

 ENVAR("JAVA_HOME=/usr/lpp/java/J5.0",

 "JCC_HOME=/usr/lpp/db2/db9a/db2910_jdbc",

 "CLASSPATH=/usr/lpp/db2/db9a/db2910_jdbc/userproc",

 "DB2_BASE=/usr/lpp/db2/db9a/db2910_base",

 "RESET_FREQ=-1"),

 XPLINK(ON)

 [image:]

 All the environment variables need to be included in this file. Ensure that the total length of all the entries does not exceed 245 bytes (exclude the blanks)3. In case your entries exceed the 245-byte limit, you need to take a different approach. Example 1-5 shows an alternate form of JAVAENV definitions.

 Example 1-5 Contents of JAVAENV having _CEE_ENVFILE variable

 [image:]

 ENVAR("_CEE_ENVFILE=/usr/lpp/db2/db9a/evnfile.txt",

 "JAVA_HOME=/usr/lpp/java/J5.0",

 "DB2_BASE=/usr/lpp/db2/db9a/db2910_base",

 "RESET_FREQ=-1"),

 XPLINK(ON)

 [image:]

 The _CEE_ENVFILE variable points to an HFS file that contains most of the environment variables, because this file has no limitation of size. The JAVA_HOME variable must be defined in the JAVAENV data set, and not in the HFS file corresponding to _CEE_ENVFILE. Example 1-6 shows the contents of the _CEE_ENVFILE file. This is a standard UNIX file where each line must start in column 1 and the continuation character is a backslash (\).

 Example 1-6 Contents of the _CEE_ENVFILE - /usr/lpp/db2/db9a/envfile.txt

 [image:]

 JCC_HOME=/usr/lpp/db2/db9a/db2910_jdbc

 CLASSPATH=/usr/lpp/db2/db9a/db2910_jdbc/userproc

 [image:]

 You can use _CEE_ENVFILE to overcome the 245-byte limit when specifying other environmental variables that tend to be long or transitory in nature, such as JITC_COMPILING and JITC_COMPILEOPT.

 Environment variables in the JAVAENV data set

 Table 1-9 provides a description of the various environment variables that need to be defined in the JAVAENV data set.

 Table 1-9 Description of JAVAENV variables

 	
 Environment variable

 	
 Description

 	
 JCC_HOME1

 	
 This environment variable is set to the location of the JCC driver, for example, JCC_HOME=/usr/lpp/db2/db9a/db2910_jdbc.

 	
 JAVA_HOME

 	
 This environment variable indicates to DB2 that the WLM environment is for Java routines. The value of JAVA_HOME is the highest-level directory in the set of directories that contain the Java SDK, for example, JAVA_HOME=/usr/lpp/java/IBM/J15.

 	
 DB2_BASE

 	
 The DB2 base directory defaults to /usr/lpp/db2910_base. If you did not use the default location, set this environment variable to the directory where your DB2 base directory is installed.

 	
 CLASSPATH

 	
 The directory where you place your compiled stored procedures. A detailed discussion of CLASSPATH can be found in 13.7, “Making the stored procedure class files available to DB2” on page 201.

 	
 JVMPROPS

 	
 Here you can optionally specify the name of a USS file that contains JVM startup options. See “JVMPROPS” on page 190.

 	
 RESET_FREQ

 	
 Specify a value of -1 to indicate that the JVM is to be started in its non-resettable mode and is never reset.

 	
 HEAP

 	
 When debugging with JDK 1.4a, set this to (8M,2M,ANYWHERE,KEEP). Otherwise, you can code (NONE) or remove this variable.

 	
 WORK_DIR

 	
 Optional: If you do not code a JAVAOUT or JAVAERR DD card in your WLM, you can set this environment variable to a valid HFS directory. This will be the default directory for STDOUT and STDERR. The default file names will be server_stdout.txt and server_stderr.txt.

 1 If the DB2_HOME environment variable is coded in the JAVAENV data set, DB2 for z/OS V8 ignores this. However, in DB2 9 for z/OS, this causes an error when the WLM is started.

 	
 Heap size: When using JVM 1.4.2, the default native heap size is insufficient for debugging Java stored procedures with the IBM Data Studio. The JVM 1.5 and 1.6 default native heap size is sufficient. The JDK1.4.2 heap size therefore has to be increased to (8M,2M,ANYWHERE,KEEP). Do not put this environment variable in the _CEE_ENVFILE. For example, in your JAVAENV file, you can code:

 MSGFILE(JSPDEBUG,,,,ENQ),

 XPLINK(ON),

 HEAP(8M,2M,ANYWHERE,KEEP),

 ENVAR("_CEE_ENVFILE=/u/oeusr05/CEEOPTIONS.txt")

 DB2 9 and 10 for z/OS flag the presence of the environment variable DB2_HOME as an error. DB2 for z/OS V8 ignores this variable.

 JVMPROPS

 JVMPROPS is the environment variable that specifies the name of a z/OS UNIX System Services file that contains startup options for the JVM in which the stored procedure runs. JVMPROPS is the Java stored procedures environment mechanism to set the -Xoptionsfile option.

 Example 1-7 shows the contents of the HFS file.

 Example 1-7 Contents of the JVMPROPS file

 [image:]

 # Properties file for JVM for Java stored procedures

 # Sets the initial size of middleware heap within non-system heap

 -Xms64M

 # Sets the maximum size of nonsystem heap

 -Xmx128M

 #initial size of system heap

 -Xinitsh512K

 [image:]

 For information about JVM startup options, see the BM 31-bit and 64-bit SDKs for z/OS, Java 2 Technology Edition, Version 5 SDK and Runtime Environment User Guide, available at:

 http://www.ibm.com/servers/eserver/zseries/software/java/pdf/sdkguide.zos.pdf

 	
 Note: To enable class sharing in JDK 1.5, code the -Xshareclasses option in this file.

 1.4.6 WLM application environments and procedures

 The DB2-supplied stored procedures needed by Data Studio and installed in DSNTIJRT, require a WLM environment for running them. Installation job, DSNTIJRT defines a set of core WLM environments which can be used by the DB2-supplied stored procedures. These DB2 core WLM environments are intended as a starting point. Over time, you can optimize these environments or create additional WLM environments that are more suited to the routines you run.

 Installation job DSNTIJMV creates an address space procedure for each of the core WLM environments. The WLM environment address space names have the form ssnmWLMsuffix, where ssnm is the DB2 subsystem name specified on panel DSNTIPM in the SUBSYSTEM NAME field, and suffix is a character that differentiates the various WLM environments. Running DSNTIJMV adds these procedures to the system PROCLIB.

 Table 1-10 lists the DB2 core WLM environments and their corresponding procedures used with Data Studio.

 Table 1-10 DB2 core WLM environments and their corresponding procedures

 	
 WLM environment name

 	
 WLM procedure name

 	
 Description/usage

 	
 DSNWLM_GENERAL

 	
 DSNWLMG

 	
 For DB2-supplied stored procedures that support JDBC.

 	
 DSNWLM_JAVA

 	
 DSNWLMJ

 	
 For executing Java stored procedures. This procedure includes a DD statement for the JAVAENV file. See “Create the JAVAENV data set.” on page 14 for details about the JAVAENV file.

 	
 DSNWLM_DEBUGGER

 	
 DSNWLMD

 	
 For executing the DB2-supplied stored procedures used by the Unified Debugger.

 	
 DSNWLM_PGM_CONTROL

 	
 DSNWLMP

 	
 For executing the DB2-supplied stored procedure, WLM_REFRESH.

 	
 DSNWLM_REXX

 	
 DSNWLMR

 	
 For executing the DB2 SQL Procedure Processor routine, DSNTPSMP. However, it can be shared with the other DB2-supplied REXX stored procedures, DSNTBIND and ADMIN_COMMAND_DSN_%/.

 	
 DSNWLM_XML

 	
 DSNWLMX

 	
 For executing the DB2-supplied XML processing routines used in Data Studio’s XML support. These environments require large amounts of memory.

 Creating multiple versions of DSNTPSMP

 Multiple versions of DSNTPSMP for external SQL stored procedures are needed if there are different resource requirements for the same stored procedure needed on the same DB2 system during the stored procedure build process. That is, there might be a test version and a production version where the WLM procedure needs different data sets in either STEPLIB for external SQL stored procedures.

 When multiple versions of either of these DB2-supplied stored procedures are required, first register a new copy of DSNTPSMP with a new schema (SYSPROC is the default). In that registration, specify a new WLM procedure where this copy of DSNTPSMP executes and complete other similar steps for SQL stored procedures as described in “Setup specific to SQL stored procedures” on page 14.

 Selecting a different version of DSNTPSMP

 SQL stored procedures can specify a different schema value, and optionally a different build utility than the DB2-supplied DSNTPSMP REXX stored procedure. Specify the default build utility schema that is used by clicking Window → Preferences → Data Management → SQL Development → Routines → Deploy Options. Figure 1-1 shows an example for setting the build utility, DSNTPSMP, with a different schema value from the SYSPROC default.

 [image:]

 Figure 1-1 DSNTPSMP setting with different schema

 When deploying a new SQL or Java stored procedure using the Deploy wizard, a different build schema and utility (external SQL only) can be selected from the Routine options page → Deploy Options tab → Build utility field (Figure 1-2).

 [image:]

 Figure 1-2 Multiple versions of schema

 1.4.7 Data Studio actual costs setup

 SYSPROC.DSNWSPM is a DB2-supplied stored procedure called by Data Studio from the Routine Editor when initially creating a SQL stored procedure for z/OS. DSNWSPM measures the following areas of a specific SQL statement in your stored procedure:

 •CPU time

 •Latch/lock wait time

 •Getpages

 •Read I/Os

 •Write I/Os

 The installation job DSNTIJRT installs and configures DSNWSPM. A final setup step for actual costs is to ensure that the DB2 accounting trace is running. If it is not, issue the following command to start it:

 -START TRACE(ACCTG) CLASS(1,2,3)

 1.4.8 Data Studio and JDBC driver selection

 Data Studio uses the JDBC driver specified in the Connection wizard in the following three areas:

 •The server connection profile

 •The generated stored procedure (Only Java SQLJ requires the Driver significance4, which is included in the *.ser file.)

 •The runtime environment for Java stored procedures, both SQLJ and JDBC, which are determined by the WLM SPAS //JAVAENV DD statement

 The default JDBC driver that Data Studio uses is the IBM Data Server Driver for JDBC and SQLJ.

 Build process generates Java stored procedure

 The build process performed by Data Studio generates the connection in the Java stored procedure using the default syntax, jdbc:default:connection. This eliminates any JDBC Driver significance in the stored procedure source. Instead, the JDBC Driver significance is included in the *.ser file for Java SQLJ stored procedures during the customization process. No Driver significance is included in generated Java JDBC stored procedures. The *.ser file is created during customization for Java SQLJ stored procedures and is performed by Data Studio using DB2SQLJCUSTOMIZE.

 Runtime determines JDBC driver

 The JDBC driver used for run time for both Java SQLJ and Java JDBC stored procedures is determined by the //JAVAENV DD statement in the WLM SPAS where the stored procedure executes. The JCC_HOME environment variable in this file specifies the location in UNIX System Services (USS) where the Universal JDBC driver is installed.

 The default directory structure for JCC_HOME is /usr/lpp/db2/db2a10/jcc. For more details on the //JAVAENV DD statement, see “Create the JAVAENV data set” on page 13.

 For more information about setting up the IBM Data Server Driver for JDBC and SQLJ, see the section “Installing the IBM DB2 Driver for JDBC and SQLJ” on the DB2 for z/OS Information Center website:

 http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.inst/db2z_installjccintro.htm

 1.4.9 Java SDK used by Data Studio

 When connected to DB2 for z/OS, Data Studio uses the client-side Java Software Development Kit (JDK) to compile and (optionally) translate and customize a Java stored procedure.

 When Data Studio “calls” a Java stored procedure, the Java Virtual Machine (JVM) and Java Runtime Environment, both included with the server-side JDK, are used to execute the program.

 Java methods used at compile time must be available at run time in the Java Runtime Environment (JRE), otherwise an execution error indicating a mismatch occurs in the WLM SPAS. For instance, calling a Java stored procedure that included JDK v1.6 methods fails if it executes in a WLM SPAS referencing a JRE v1.5.

 Data Studio IDE ships with a JDK 1.6 library. This is the default JDK used when developing Java stored procedures and applications. The JDK is found in <Data Studio install directory>\jdk.

 Data Studio stand-alone does not ship any JDK, as Java development is not available in the stand-alone version. However, a Java Runtime Environment is shipped with Data Studio stand-alone in <Data Studio stand-alone directory>\jre, which allows Java stored procedures and applications to execute.

 The user can opt to compile with a lower-level JDK by setting the JDK level in three places:

 •In the workspace Preferences

 •In the Project’s Properties

 •In the stored procedure’s Deploy options

 Overriding the workspace’s default JDK

 Overriding the default JDK used by the Data Studio client is done through the workspace Preferences (Figure 1-3).

 1.	Click Window → Preferences → Data Management → SQL Development → Routines → Deploy Options → SQL -External.

 2.	Click Browse. Point the file browser to the directory where the overriding JDK is located.

 [image:]

 Figure 1-3 Setting preferences

 JDK at run time for a Java stored procedure

 The JDK used at run time is determined by the //JAVAENV DD statement in the WLM SPAS where the stored procedure executes. Specifically, the JAVA_HOME environment variable included in this DD statement determines the JDK that is selected.

 DB2 10 for z/OS supports JDK 1.4 or later. JDBC 4.0 functions require Java Technology Edition V6 (JDK 1.6) or later.

 When using JDK 1.4.1 or later, the XPLINK(ON) parameter is required in the //JAVAENV DD statement. When the XPLINK(ON) parameter is not included in a //JAVAENV DD statement that specifies JDK 1.4.1, the WLM SPAS does not initialize and the following error message is included in the WLM SPAS joblog:

 +DSNX961I DSNX9WLJ ATTEMPT TO PERFORM JNI FUNCTION CreateJavaVM 421

 FAILED FOR STORED PROCEDURE . . SSN= DB8A PROC= DB8AJAV1 ASID=

 008E CLASS= METHOD= ERROR INFO= DSNX9WLS ESTAE ENTERED

 If JSPDEBUG is turned on in the same //JAVAENV DD statement, information like the following is also included, indicating that a call was made from a NOXPLINK-compiled application to an XPLINK-compiled exported function in DLL libjvm.so, and the XPLINK(ON) runtime option was not specified:

 CEE3501S The module libjvm.so was not found.

 From entry point initjvm at compile unit offset +000014A0 at entry off

 Runtime JAVAENV DD statement example

 Example 1-8 shows using JDK 1.4 and the JCC driver in DB2 10.

 Example 1-8 Universal JDBC driver - JDK 1.4.1

 [image:]

 XPLINK(ON),

 ENVAR("JCC_HOME=usr/lpp/db2a10/jdbc/",

 "JAVA_HOME=/usr/lpp/java/IBM/J1.4"),

 MSGFILE(JSPDEBUG,,,,ENQ)[image:]

 1.4.10 Overview of routine development with Data Studio

 When the Data Studio is launched, it asks for a directory to be used for the tooling’s workspace. A default directory is provided, but the user can change this to another directory. Data Studio then checks whether there is a DB2 database directory in the client’s workstation. If there is one, it creates Connection objects for each of the DB2 aliases in the DB2 database directory. Figure 1-4 shows the basic user interface flow to get you started using Data Studio.

 [image:]

 Figure 1-4 Starting Data Studio

 Data Studio creates external SQL and Java stored procedures on z/OS using multiple DB2-supplied stored procedures. The main DB2-supplied stored procedures that perform the processing on z/OS for Data Studio are:

 •DSNTPSMP for SQL stored procedures

 •SQLJ.DB2_INSTALLJAR

 •SQLJ.DB2_REPLACEJAR

 •SQLJ.DB2_UPDATEJARINFO

 When connected to DB2 10 for z/OS, Data Studio can create both external SQL stored procedures and Native stored procedures that no longer require DSNTPSMP. The tooling identifies the type of SQL stored procedure by appending “(external)” or “(native)” to the stored procedure name displayed in the Data Project Explorer.

 External SQL stored procedures built with DSNTPSMP

 DSNTPSMP is a REXX DB2-supplied stored procedure that builds External SQL stored procedures on DB2 for z/OS. Multiple build functions are supported by this stored procedure. Table 1-11 lists the functions that are supported.

 Table 1-11 DSNTPSMP supported functions

 	
 Type

 	
 Name

 	
 Function

 	
 Basic

 	
 BUILD

 	
 Creates a new SQL procedure only.

 	
 ALTER

 	
 Updates (most) stored procedure options.

 	
 REBIND

 	
 Performs Bind Package again (not REBIND command).

 	
 DESTROY

 	
 Removes an existing SQL procedure.

 	
 REBUILD

 	
 Builds an SQL procedure. Destroys the existing one first. Best for changing parameter-declarations.

 	
 Modify

 	
 ALTER_REBIND

 	
 Performs ALTER of collection ID.

 	
 ALTER_REBUILD

 	
 Performs procedure-body updates.

 	
 REBUILD_DEBUG

 	
 Basic function plus Debugger support.

 	
 ALTER_REBUILD_DEBUG

 	
 Hybrid function plus Debugger support.

 	
 Identification

 	
 QUERYLEVEL

 	
 Returns interface and service level of DSNTPSMP.

 Figure 1-5 describes how the Data Studio creates SQL stored procedures on z/OS.

 [image:]

 Figure 1-5 How Data Studio creates SQL stored procedures

 The steps performed by Data Studio to create external SQL stored procedures are:

 1.	Launch Data Studio and select a workspace.

 2.	Create a connection or reconnect to an existing connection to a DB2 server.

 3.	Create a Data Development Project and set the target connection to the above database server.

 4.	Create a new SQL stored procedure using the New Stored Procedure wizard. This is a one-page wizard that presents the user with a choice of templates for the new stored procedure.

 5.	After the stored procedure has been created and edited, the user can choose to deploy the stored procedure using the Deploy wizard.

 6.	The Deploy wizard calls the DB2-supplied stored procedure, DSNTPSMP.

 7.	DSNTPSMP performs the following steps to create the SQL stored procedure on z/OS:

 a.	SQL precompile

 b.	C precompile

 c.	C compile and prelink

 d.	Link

 e.	Bind package

 f.	Registers procedure in the DB2 catalog

 g.	Saves options

 Java stored procedures built on the client

 Data Studio builds Java stored procedures on the client side when connected to the DB2 10 server with the IBM Universal Driver. It no longer supports building Java stored procedures on the server side using DSNTJSPP.

 Figure 1-6 describes how the Data Studio creates Java stored procedures on z/OS.

 [image:]

 Figure 1-6 How Data Studio creates Java stored procedures

 The steps performed by Data Studio to create Java stored procedures are:

 1.	As in SQL stored procedures, use the New Stored Procedure wizard to create a Java stored procedure. Data Studio generates both the DDL and the Java source.

 2.	Deploy the stored procedure.

 For Java stored procedures using dynamic (JDBC) SQL, Data Studio issues javac to compile the stored procedure.

 For Java stored procedures using static (SQLJ) SQL, Data Studio issues sqlj to translate and compile the stored procedure.

 Data Studio also issues db2sqljcustomize, which:

  –	Updates the .ser file created in step 2

  –	Optionally binds the stored procedure

 3.	Then Data Studio issues a jar command to jar the .ser, .class, and optionally the .java files.

 4.	Data Studio calls SQLJ.DB2_INSTALL_JAR to install the jar in the server or SQLJ.DB2_REPLACE_JAR to replace the jar when the stored procedure already exists in the server.

 5.	Data Studio issues the CREATE PROCEDURE DDL to register the stored procedure into the catalog.

 6.	Data Studio calls SQLJ.DB2_UPDATEJARINFO to copy the Java source into the catalog.

 1.5 Navigating through the Data Studio workspace

 This section applies to all platforms supported by Data Studio. Data Studio uses the Data Perspective, which contains the following views that can be rearranged or closed. Additional views can also be opened.

 •Task Launcher view

 •Data Source Explorer view

 •Administration Explorer view

 •Data Project Explorer view

 •Output view

 •Editor view

 1.5.1 Task Launcher view

 The Task Launcher view displays a list of tasks that the user can perform in Data Studio. When a task is selected, Data Studio configures the perspective and views to use for performing the task. Knowing what task you want to do and selecting it is easier than knowing which perspective has the correct views and functions for a specific task (Figure 1-7).

 [image:]

 Figure 1-7 Task Launcher view

 1.5.2 Data Source Explorer view

 The Data Source Explorer displays the connections to database servers that were previously created in the workspace, as well as those in the client DB2’s database directory, if a DB2 for LUW is installed. Each connection shows a hierarchical view of the database and the objects within them. The cataloged stored procedures and user-defined functions (UDFs) are listed under a schema folder in this view (Figure 1-8).

 [image:]		

 Figure 1-8 Data Source Explorer

 In addition to viewing the stored procedures and UDFs that are on the server, the Data Source Explorer allows you to view and work with other database objects such as tables, triggers, views, and so on.

 Data Source Explorer menu bar

 The Data Source Explorer contains a toolbar at the top of the view with icons for doing the following tasks: 	

 •Collapse all folders.

 •Link open editors with content in the Navigator.

 •Create a new SQL script.

 •Show category.

 •Create a New connection profile.

 •Export Connections.

 •Import Connections.

 In addition to the above icons, there is a pull-down menu in the toolbar for additional tasks such as Monitor events and Customize view (Figure 1-9).

 [image:]

 Figure 1-9 Data Source Explorer pull-down actions

 In “Using the SQL and XQuery Editor” on page 59, we discuss the Connection Wizard and the SQL Editor in detail.

 Context menu actions

 Each object in the Data Source Explorer has a context menu that shows the actions that can be performed on this object. To view the actions on a folder or object, right-click the object folder. In this paper, we examine only the context menu actions available for stored procedures. To activate the context menu for stored procedures, expand the database connection and select Schemas → <your schema> → Stored Procedures. Right-click the Stored Procedure folder and select Filter to launch the Filter dialog to view the following context menu actions:

 •Filter

 This action allows you to filter what is displayed in the Stored Procedures folder in two ways (Figure 1-10).

  –	Using an Expression pull-down list allows the user to create clause-like expressions such as NOT LIKE ‘AA%’.

  –	Select from a list of stored procedure names.

 [image:]

 Figure 1-10 Filtering option

 •New

 Alternatively to filter, you can select New. This action creates a new stored procedure using the SQL Editor. You can only create a new SQL Procedure using this action. Right-click the Stored Procedures folder and click New → With SQL Editor to create a blank editor in the Editor view. You can type your CREATE PROCEDURE statement there. See “Using the SQL and XQuery Editor” on page 59 for details about how to use the SQL Editor.

 •Refresh

 This action reloads the latest information for the specific folder, in this case, stored procedures, from the server catalog. Right-click the Stored Procedures folder and click Refresh to refresh the list of deployed or cataloged stored procedures.

 •Deploy

 This action launches the Deploy wizard. Right-click the Stored Procedures folder and click Deploy to redeploy one, some, or all the stored procedures listed in this folder. If you expand the Stored Procedures folder, you can deploy one or mores stored procedures as well. Right-clicking a specific stored procedure and then clicking Deploy allows you to redeploy only the selected stored procedure. Pressing Ctrl and clicking several stored procedures and then right-clicking Deploy allows you to redeploy the selected stored procedures. Figure 1-11 shows the first page of the Deploy wizard. Details on the Deploy wizard are discussed in 2.5, “Deploying a stored procedure” on page 71.

 [image:]

 Figure 1-11 Deploy wizard

 The context menu for a specific stored procedure shows additional actions that can be taken on the stored procedure. Right-click the stored procedure to see a menu with the following options:

  –	Run and Run Settings

 These two actions execute the selected stored procedure. Run Settings allows you to preset parameters and execute SQL statements before and after calling the stored procedure.

  –	Open with SQL Editor

 This action launches the SQL Editor on the Editor view. Data Studio assumes that you are opening the stored procedure for editing. To save your changes, specify a Data Development Project to contain the modified stored procedure.

  –	Debug

 This action is grayed out if the stored procedure is not enabled for debugging.

  –	Drop

 This action issues a DROP PROCEDURE against the selected stored procedure. A confirmation dialog is displayed before the action is sent to the server.

 	
 Note: This action drops all versions of a Native SQL Stored procedure. To drop a specific version, expand the selected stored procedure and click Versions, then select the specific version and activate the Drop action from this version.

  –	Generate DDL

 This action launches the Generate DDL wizard. In the wizard, you can:

  •	Generate the CREATE PROCEDURE DDL.

  •	Optional: Generate the associated DROP statement before the CREATE statement.

  •	Optional: Generate any associated COMMENT ON and LABEL ON statements.

  •	Optional: Generate any GRANT statements based on the current privileges held on this stored procedure.

  •	Execute the generated DDL, or save and edit the generated script. You are asked to specify an existing project to contain the generated script. Data Studio looks at the list of existing projects and defaults the project to one that is using the current server or one that is a “best fit” (that is, same operating system, same version).

 	
 Note: For Java stored procedures, Generate DDL does not create a clone of the Java source associated with the Java stored procedure.

 Figure 1-12 shows the DDL generated for one of our sample stored procedures.

 [image:]

 Figure 1-12 Generated DDL for a stored procedure

  –	Analyze Impact

 This action examines the SYSROUTINESDEP and SYSPACKAGEDEP catalogs and lists the objects that have dependencies on this stored procedure.

  –	New version

 This action is only available when the selected stored procedure is a Native SQL stored procedure. This action launches the New Version wizard. This wizard creates a new version of the selected stored procedure and optionally deploys it.

  –	Refresh

 This action queries the server catalogs and displays all stored procedures in the schema. If the folder is filtered, the filter is applied to the refresh action.

  –	Query Tuner

 This action launches several sub-actions related to single-query tuning. The target database needs to be configured for tuning either explicitly from the Configure for Tuning menu sub-action or implicitly when you try to Start tuning. We discuss the query tuner support in 3.1, “Additional features in Data Studio” on page 86.

  –	Deploy

 This is the same action as in the stored procedure executed against a specific stored procedure.

  –	Open Visual Explain

 This action browses a SQL stored procedure source for the first SQL Statement and attempts to explain the statement. This action is not available for Java stored procedures. Also, this action assumes that the server is configured for single-statement query tuning.

  –	Copy

 This action creates a clone of the stored procedure model. The corresponding Paste action should be done against a Data Development Project’s stored procedure folder.

  –	Properties

 This action displays and organizes the stored procedure’s properties in tabbed pages in the Property Browser.

  –	Generate pureQuery Code (Optim Development Studio only)

 This action allows you to generate the pureQuery code to call this stored procedure. You need to have an existing Java project and an existing Java program where the pureQuery code is embedded. PureQuery is beyond the scope of this book. However, see 3.2, “Additional features in Optim Development Studio” on page 107, for an overview of Data Studio’s pureQuery support.

 Details on the above actions are discussed in 2.1, “Getting started with Data Studio stored procedures development” on page 50.

 1.5.3 Administration Explorer view

 The Administration Explorer view (Figure 1-13) is a hierarchical or flat view of the Data Source Explorer connections.

 [image:]

 Figure 1-13 Administration Explorer

 In the Administration Explorer, against a DB2 for z/OS connection, the subsystem folder expands to a list of object types (a folder) found in the server. In the Administration Explorer, you can do the following types of administration tasks5:

 •Manage the connection to the entire subsystem.

 •For each object type folder (a flat folder), you can create a new object of that type.

 •When you click an object type in the Administration Explorer, a list of objects is displayed in the Object Editor.

 •In the Object Editor, you can do the following types of administration tasks:

  –	Alter, drop, and copy.

  –	Generate DDL.

  –	Manage privileges.

  –	Analyze impact.

  –	Add the object to an Overview diagram.

  –	For tables, materialized query tables (MQTs), synonyms and views, unload and edit data using the Object Data Editor.

  –	For tables only, Load data.

 The Object Editor

 The Object Editor is the main editor used by the Database Administration perspective for managing the database. This editor is launched when an object type (for example, tables) is selected in the Administration Explorer view. The editor then displays an object list of this type.

 As the object list can be very large, Data Studio supports filtering of the objects by a specific attribute. For example, in Figure 1-14, the Tables object list can be filtered by schema. The Refresh context menu action refreshes the object list based on the new filters.

 [image:]

 Figure 1-14 Object Editor - Tables object list filtering

 1.5.4 Data Project Explorer view

 The Data Project Explorer view is the main development view for managing your projects. The main project type for routine and SQL development in the Data Project Explorer is the Data Development Project. In this view, you can:

 •Manage multiple projects.

 •Target a specific connection to a project.

 •Under each project, create and manage objects such as stored procedures, SQL scripts, UDFs, Jars, XML objects, and web services.

 •Copy and paste objects from one project to another.

 •Share a project between teams.

 Each Data Development Project contains the database objects that you can work on, in an object tree structure. Figure 1-15 shows the contents of a Data Development Project.

 [image:]

 Figure 1-15 Data Project Explorer

 Project properties

 A set of project properties associated with the Data Development Project can be used to set default values when creating objects within the project. Right-click the project name and select Properties to launch the Properties dialog.

 •The Database Connection page displays the connection properties of the target connection. In 2.1.2, “Creating a connection profile” on page 51, we discuss how to set the connection properties. This page also allows you to set the current schema (Figure 1-16).

 •A discussion of the current schema versus current SQLID is provided in 2.5.1, “The Deploy wizard” on page 71.

 [image:]

 Figure 1-16 Setting current schema

 •The Routine Development page allows you to set the JDK level to be used for compiling the Java stored procedures that you create. Additionally, you can set the package owner and build owner for SQL and SQLJ stored procedures on this page (Figure 1-17). Both the package and build owner can be set to secondary authorization IDs.

 [image:]

 Figure 1-17 Setting package and build owner

 1.5.5 Output view

 The Output view is used for displaying messages and execution results. Any output-related view in Eclipse is added as a tab to the Output view. We examine five tabs in this view.

 Properties view

 In the Data Source Explorer, when a specific object is selected, the properties of the object are retrieved and displayed on the Output view’s Properties tab (Figure 1-18).

 [image:]

 Figure 1-18 Property Browser for stored procedure

 The Properties tab, in turn, contains multiple tabs that group the stored procedure’s attributes into:

 •General

  –	Name

  –	Label (on)

  –	Result sets returned

  –	Language

  –	Parameter style

  –	External name

  –	Deterministic/Non Deterministic

 •Parameters

  –	Parameter type

  •	IN

  •	OUT

  •	INOUT

  –	Parameter name

  –	Parameter data type

 •SQL or Java source

 •Privileges

  –	Grantee

  –	Grantee type, privilege, Grantor, with grant option

 •Procedure options

  –	Specific name

  –	Package ID, data access type

  –	Collection ID

  –	ASUTIME

  –	External Security

  –	Stay Resident

  –	Program Type

  –	Commit on Return

 •Build options

  –	WLM Environment

  –	Build Utility

  –	Build Owner

  –	Precompile

  –	Compile

  –	Prelink

  –	Link

  –	Bind options

 •Documentation: The text supplied in the Comment on statement for this stored procedure is displayed here

 The fields in the Property Browser are READ-ONLY. To modify an SQL or Java stored procedure, you need to open the procedure with the SQL Editor, then redeploy it.

 Also, the Package and Statistics tabs are not used. To view the package information related to a specific stored procedure, expand the Packages folder for this schema and select the associated package ID from the list. The Properties tab is refreshed with the package information.

 The SQL Results view

 The SQL Results tab of the Output view is used to report execution status and messages for SQL statements and stored procedures. Figure 1-19 shows an example of the SQL Results view.

 [image:]

 Figure 1-19 SQL Results view

 The SQL Results view contains two panes:

 •The Status History

 •The Current Output

 The Status History pane is in turn divided into four columns:

 •The Status column shows the current status of each action, such as error or success.

 •The Operation column shows the type of action, such as deploy, run, export, import, and so on. If an operation involves multiple steps, as in the case of a script, the a higher level node is displayed. The node can be expanded to see the individual steps or statements executed.

 •The Date column shows the timestamp of when the operation was done.

 •The Connection column gives the target connection name.

 The Status History pane displays individual actions or a group of actions (as in when a SQL script is executed). When a specific action in the Status History pane is selected, the Current Output pane is populated with the output details.

 In the Current Output pane, you can select different tabs to view different kinds of output:

 •The Status tab displays the overall status of the action.

 •The Parameters tab displays the name and values of the parameters after a stored procedure is executed. This tab is only shown when the action is run or debug of a routine.

 •The Results tab displays the result sets of an action. This tab is only shown if an action returns one or more result sets. Each result set is a separate tab.

 You can remove an entry or all entries from the Status History list by right-clicking the action and clicking Remove or Remove All.

 Access Plan Diagram view

 The Access Plan Diagram is added to the Output view when you click Open Visual Explain against an SQL statement in a SQL script or SQL stored procedure. Data Studio presents a wizard to determine the default special registers to use for the Explain statement as well as the default schema of the Explain tables to store the results of the Explain.

 Problem view

 The Problem view displays a list of errors and warnings encountered when building a project and is automatically launched when errors are detected. You can click each error and examine the error details of the error. Double-click the message to locate the error in your Java source.

 The Filter button lets you configure the view. You can filter by element, such as the class that you are editing or the working set, the type of problem (such as. java problems, buildfile problems, and so on), and severity.

 Error Log view

 The Error Log view displays Data Studio and Eclipse exceptions, errors, and warnings. This log captures information about the plug-in that caught the exception. This information is high-level and limited to the plug-in name, the line number in the plug-in, and the timestamp of each successive failure.

 The Error Log view is not automatically displayed when Data Studio is first launched. To display this view, click Window → Show View → General → Error Log. The Error Log view is persisted in the workspace’s .metadata folder.

 You can manage the entire log or an entry in the Error Log through the context menu actions (Figure 1-20).

 [image:]

 Figure 1-20 Error Log view

 1.5.6 Editor view

 Data Studio uses this view to present different editors to the user. The editors that are related to routine development are:

 •Routine Editor

 •Integrated Query Editor or SQL Editor

 •Java Editor

 All these editors share the same Editor view space. Any object being viewed shows up as a tabbed page in the Editor view.

 The Routine Editor

 This editor is launched in several ways:

 •From the Data Project Explorer, double-click a stored procedure.

 •From the Data Project Explorer, right-click a specific stored procedure and select Open.

 •At the end of the New Stored Procedure or New Version wizards, the Routine Editor is refreshed with the generated stored procedure DDL.

 Use this editor for viewing and changing the source code and configuration options of a stored procedure that you are working on in the Data Project Explorer. Figure 1-21 and Figure 1-22 on page 45 show the contents of the Routine Editor’s Java and DDL tabs for a Java stored procedure. SQL stored procedures have only one tab, DDL.

 [image:]

 Figure 1-21 Routine Editor - DDL tab

 The Routine Editor’s DDL tab is a rich editor that supports cut, copy, paste, find and replace, menu and keyboard shortcuts, and syntax highlighting. You can change the default look and feel of this page in the Preferences. See 2.1.1, “Starting Data Studio for the first time” on page 50.

 To edit the DDL of an SQL stored procedure:

 1.	In the Data Project Explorer, right-click the routine that you want to modify and click Open. The routine DDL displays in the Routine Editor view.

 2.	Edit the DDL. You can:

  –	Change or add SQL statements directly in the editor.

  –	Press Ctrl+Space bar to launch Content Assist.

 3.	To save your changes, you can:

  –	Click File → Save Object or File → Save All.

  –	Click the Save icon (floppy disk image) or press Ctrl+S.

 For Java stored procedures, the Routine Editor contains a second tab, the Java tab. The Java source of the Java stored procedure is displayed here. It is also editable. Certain changes to the Java source can impact the DDL. Data Studio V2.2.1 attempts to synchronize changes in the Java source with the DDL, but not vice versa. When the modified Java source is saved, Data Studio requests the user to select a method to synchronize with. Click Sync to complete this action.

 After saving your changes, Data Studio replaces the persisted resource corresponding to this stored procedure in the workspace. However, to replace the object in the server, you need to deploy or redeploy the stored procedure. Depending on your deploy options, Data Studio either drops the old routine from the database and creates a routine that reflects the changes that you made or it alters it. Changes to the SQL procedure body rarely cause the procedure to be dropped. Where possible, changes to the source code of SQL stored procedures result in an ALTER command rather than a DROP command.

 Finally, the Routine Editor is also used by the Debug Perspective when debugging SQL routines.

 Integrated SQL and XQuery Editor

 This editor is launched when creating or editing SQL scripts. We discuss this more in 2.1.5, “Creating SQL statements and scripts” on page 57.

 Java Editor

 The Java Editor can be launched from the Data Perspective, the Debug Perspective, and the Java Perspective.

 •From the Data Project Explorer:

 a.	Right-click the stored procedure and select Open. The stored procedure DDL is displayed in the Routine Editor view.

 b.	Click the java tab. The Java source is displayed (Figure 1-22).

 [image:]

 Figure 1-22 Routine Editor - Java tab

 •When a Java stored procedure is deployed with debug enabled, you can debug the Java stored procedure from Data Studio IDE or Optim Development Studio. The Debug Perspective is automatically launched and the Java source is displayed in the source area.

 •From the Java Perspective, select the Project Explorer:

 a.	Open the package or the default package to the .java or .sqlj file.

 b.	Double-click this file.

 In Optim Development Studio, when working with pureQuery, the Java editor is launched at the end of the New Java Class wizard.

 Java routines built by the Data Studio conform to the SQLJ Routines specification. Java objects are defined in the catalog table with LANGUAGE JAVA and PARAMETER STYLE JAVA. Java objects must follow these rules:

 •The method that is mapped to the object must be defined as a public static void method.

 •The object must receive input parameters as host variables.

 •Output and InOut parameters must be set up as single element arrays.

 When editing your source in the Java editor, your changes are dynamically compiled and errors reported immediately. When you add arguments to the .java or .sqlj main method and then save the changes, they are reflected as input parameters in the DDL tab.

 As in SQL stored procedures, changes to the source code of Java stored procedures only change the object in the workspace. To replace the object in the server, redeploy the Java stored procedure.

 To close any object, open it in the Editor, click File → Close Object or File → Close All, or click the X next to the procedure name in the Routine Editor.

 Export wizard

 Use the Export wizard to export routines from your current project to the file system for later deployment. Data Studio supports exporting an entire project or just the stored procedures. You might want to export the entire project to the file system, which can then be imported into another workspace. In this book, we discuss exporting stored procedures only.

 You can export a specific stored procedure or several stored procedures at a time. To export routines using the Export wizard:

 1.	In the Data Project Explorer, right-click the Stored Procedures folder and select Export.

 2.	On the Selection page, click the check boxes for the stored procedures that you want to export. You can also click Select All to select all stored procedures in this folder. Click Next.

 3.	On the Target and Options page, type the file name and directory where the exported script is sent. You can optionally click Browse to launch the file browser.

 4.	Click Next or Finish. The wizard exports the selected routines to the file name and directory that you specified.

 	
 Note: Optim Development Studio supports enterprise deployment through its implementation of server profiles (see 3.2.3, “Server profiles” on page 110) and deployment groups (see 3.2.4, “Deployment groups” on page 111).

 Import wizard

 Use the Import wizard to import routines to your project. To open the Import wizard:

 1.	In the Data Project Explorer, right-click the Stored Procedures folder and click Import. The Import wizard is launched.

 2.	On the Import wizard’s Source page (Figure 1-23), select the location of the object or file that you want to import. You can import from the file system or from another project in this workspace.

 [image:]

 Figure 1-23 Import wizard

 3.	Click Browse to select the directory or project that contains the stored procedure. A file browser is launched. Click OK after selecting the stored procedure.

 4.	If you are importing an SQL stored procedure, you can optionally set the statement terminator used in the imported file. Click Next.

 5.	The next page shows the “discovered” entry points for this stored procedure. You can verify whether the imported stored procedure is correct. Click Next.

 	
 Note: If there are multiple CREATE PROCEDURE statements in the imported file, only the first CREATE PROCEDURE statement is processed and imported by Data Studio.

 6.	The next page shows the parameters of the imported stored procedure. You can change the parameter data types of imported Java stored procedures. You cannot change the parameters of imported SQL stored procedures. Click Next.

 7.	The next page of the Import wizard allows you to specify import options. You can opt to replace stored procedures with the same name and parameter signature that already exist in the project. Click Next or Finish.

 Deploy wizard

 Use the Deployment wizard to deploy routines to a target database. The target database must be compatible with the database for which the object was created.

 The wizard consists of four steps. First, select the target database and enter your user ID and password. Next, select the routines that you want to deploy. Then specify deployment and error handling options. A summary of the deployment options that you specified in the wizard is displayed in the last page.

 To deploy routines to a target database using the Deployment wizard, open the Deployment wizard and:

 1.	In the Data Project Explorer, select a project → Stored Procedures → select a stored procedure.

 2.	Right-click this stored procedure and click Deploy. Alternatively, from the Routine Editor, you can click the Deploy icon.

 3.	Complete the necessary steps of the wizard.

 4.	Click Finish. The wizard deploys the routines to the target database.

 Menu and Task bar

 The Data Studio menu bar includes several selections (Figure 1-24).

 [image:]

 Figure 1-24 Menu and Task Bar

 The main selections used in the tooling are:

 •File: Use this menu item to save or close objects that you are currently editing.

 You can also create new objects from this menu. Eclipse also allows you to switch to a different workspace from this menu.

 •Edit: Use this menu item to work with the object that you are currently editing.

 •Project: Use this menu item to open or close a project and to edit the project’s properties. See “Project properties” on page 36 for details on what the properties are.

 •Script: Use this menu item to issue Run SQL against the currently selected script file.

 •Window: Use this menu item to:

  –	Open additional Data Studio views.

  –	Open, customize, or reset the Data Perspective (or any other perspective).

  –	Launch the Preferences dialog, where you can set various default items. See “Configuring preferences” on page 51 for more details about setting preferences.

 •Help: Use this menu to display online help and product information, and to open the Information Center.

 1 The driver significance pertains to the set of information regarding the JDBC driver being used.

 2 Also called, the IBM Universal Driver for JDBC and SQLJ

 3 The 245-byte limit is a restriction of the Language Environment.

 4 The Driver significance pertains to the set of information regarding the JDBC driver being used.

 5 Not all tasks can be performed on all the objects. See Table A-3 on page 139 for specific tasks that you can perform against a specific object.

[image:]
[image:]

Developing stored procedures with Data Studio

 In this chapter we show how to use Data Studio for developing stored procedures with DB2 10 for z/OS. We define the environment and then proceed to create a stored procedure, then modify, import, deploy, and execute it.

 This chapter contains the following sections:

 •Getting started with Data Studio stored procedures development

 •Creating a new stored procedure

 •Modifying the stored procedure

 •Importing a stored procedure

 •Deploying a stored procedure

 •Executing a stored procedure

 2.1 Getting started with Data Studio stored procedures development

 This section describes the steps for developing stored procedures with Data Studio. We discuss:

 •Starting Data Studio for the first time

 •Creating a connection profile

 •Creating a Data Development Project

 •Creating SQL statements and scripts

 In 2.2, “Creating a new stored procedure” on page 60, after we have created our connection, projects, and scripts, we continue our discussion about creating, building, and executing our stored procedure.

 2.1.1 Starting Data Studio for the first time

 We start Data Studio by selecting Start → Programs → IBM Data Studio → Data Studio V2.2.1.

 The first time that Data Studio is started, a default workspace directory, named workspace, is created for you in C:\Documents and Settings\Administrator\workspace. You can click Browse to launch the File dialog and point to a different directory. The workspace is the main container for all the resources that you use.

 Figure 2-1 shows the Workspace Launcher for Data Studio.

 [image:]

 Figure 2-1 Select a workspace

 The next window that appears is the Data Studio Task Launcher window. To close the Task Launcher window, click the X in the top right corner of the title bar.

 The new window presented is the Data Perspective, which is the default perspective when the Data Studio IDE or Optim Development Studio is launched. For Data Studio stand-alone, the default perspective is the Database Administration perspective. You can change the perspective by selecting the title bar Window → Open Perspective, and selecting from the list presented.

 Configuring preferences

 Each workspace has a set of preferences that is stored in an Eclipse resource. To view the preferences specific to stored procedures, click Window → Preferences → Data Management → SQL Development. Click the following folders to set specific preferences for:

 •SQL Results View Options

  –	Deploy window rendering/display mode

  –	Maximum number of rows to retrieve and maximum number of rows to display

  –	Default display for NULL

 •Routines → Deploy Options

  –	The JDK level used when generating and compiling Java stored procedures

  –	The location of the SQLJ translator used for translating SQLJ stored procedures

  –	Deploy options for Java, External SQL, and Native SQL stored procedures

 •Routines → Process

  –	Commit setting.

  –	Save files after build.

  –	Set tracing on.

 •Routines → Templates

  –	View or create routine templates.

  –	Import a master template.

 You can also set the Unified Debugger preferences in the preferences: Run/Debug → Routine Debugger → IBM to decide on the location of the Session Manager: on the server, on the client (built-in), or launched separately in the server or on another workstation.

 Session Manager information for the Unified Debugger is in 4.1, “The Unified Debugger” on page 116.

 2.1.2 Creating a connection profile

 A connection profile is a Data Studio object that describes a specific connection to a server. So, for example, user A creates a connection profile, DB2z10_A, to connect to his DB2 10 subsystem. User B creates another connection profile, DB2z10_B, to connect to the same subsystem. User A has SYSADM authority and can access any of the databases in the subsystem and create objects in any schema. User B has only BINDADD and schema privileges to certain schemas.

 The New Connection Profile wizard is launched when you click the New Connection Profile icon in the Data Source Explorer (Figure 1-8 on page 28). The wizard can also be launched by right-clicking Database Connections folder and clicking New. The wizard is also embedded in the Deploy and New Project wizards. Figure 2-2 shows the first page of the wizard.

 [image:]

 Figure 2-2 New Connection Profile wizard

 You fill in the location, host, and port number from the DDF information for this subsystem (Figure 2-3).

 	
 LOCATION LUNAME GENERICLU

 STLEC1 USIBMSY.SYEC1DB2 -NONE

 TCPPORT=446 SECPORT=0 RESPORT=5001 IPNAME=-NONE

 IPADDR=::9.30.222.229

 SQL DOMAIN=UTEC730.vmec.svl.ibm.com

 DSNLTDDF CURRENT DDF OPTIONS ARE:

 PKGREL = COMMIT

 DSNLTDDF DISPLAY DDF REPORT COMPLETE

 Figure 2-3 Display DDF output

 The Connection Profile wizard contains three tabs:

 •General

 •Tracing

 •Optional

 The General tab

 This tab contains the name of the JDBC driver to use to connect to the server. Data Studio is delivered with a version of the IBM Data Server driver for JDBC and SQLJ1 in <Install directory>/plugins/com.ibm.datatools.db2_<some version>\driver. The driver and license files are:

 •db2jcc.jar and db2jcc_license_cisuz.jar for JDBC 3.0

 •db2jcc4.jar for JDBC 4.0

 The fields on the first page of the wizard allow you to enter the following information:

 •Connection name: The default is the location name.

 •JDBC driver: This is a combo box that is initialized with the default driver, IBM Data Server Driver for JDBC and SQLJ (JDBC 4.0). IBM strongly suggests using this driver or the JDBC 3.0 version of this driver. This driver uses the server authentication.

 You can select another kind of driver from the JDBC driver’s pull-down list. The current list contains:

  –	IBM Data Server driver for JDBC and SQLJ (JDBC 4.0) using Kerberos security

  –	IBM Data Server driver for JDBC and SQLJ (JDBC 4.0) using LDAP

  –	IBM Data Server driver for JDBC and SQLJ Default

  –	IBM Data Server driver for JDBC and SQLJ using Kerberos security Default

  –	IBM Data Server driver for JDBC and SQLJ using LDAP

  –	Other Default Driver

 If you choose Other Default Driver, you need to provide the JDBC driver class name, class location, and connection URL.

 •Location: Enter the DB2 for z/OS location ID.

 •Host: Enter the domain or FTP address of your DB2 for z/OS server.

 •Port number: Enter the port number of your DB2 for z/OS server.

 •JDBC driver class: When using the IBM Universal driver, this is pre-filled with the value com.ibm.db2.jcc.DB2Driver.

 •Class location: When using the IBM Data Server driver for JDBC and SQLJ (JDBC 4.0), this is pre-filled with the location of the license jar files installed with your Data Studio.

 •Retrieve objects created by this user only: Check this box if you want to work only with objects that you created.

 •User name: Enter your DB2 for z/OS login authorization ID.

 •Password: Enter the password associated with the above user ID.

 •Save password: Check this box if you want to use this ID and password every time that you connect to this server.

 •Connection URL: Data Studio composes this as you enter values for the location, host, and port number. It additionally adds default JDBC properties.

 The Test Connection button allows you to test the connection using the fields that you entered.

 Tracing

 The JDBC tracing options can be set in the connection URL by selecting the trace levels on this tab of the New Connection wizard. For more information about tracing levels and other problem determination tools for Data Studio, see:

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0706scanlon/

 Optional

 Data Studio allows the user to append certain JDBC connection properties in the connection URL. You need to be familiar with the specific JDBC connection properties that you want to set, as well as the format of the specification.

 Click Finish to complete creating the connection.

 2.1.3 Editing the connection

 After you create the connection, you can modify the connection properties by selecting the connection then right-clicking Properties. Data Studio opens a dialog with the Driver Properties page selected (Figure 2-4).

 [image:]

 Figure 2-4 Modifying the Driver Properties

 When you upgrade Data Studio to a new release, you might need to edit the connection properties on your workspace so that you pick up the latest jars. Figure 2-5 shows a typical error that you might get when connecting.

 	
 Connection has failed. The following error was reported:

 java.io.FileNotFoundException:

 C:\Program\IBM\SDP70Shared\plugins\com.ibm.datatools.db2_1.0.100.v200707172230\driver\db2jcc.jar

 Do you want to work offline?

 Figure 2-5 Typical connection error

 Click the Edit driver definition icon. On the Edit driver definition dialog, click the Jar List tab. Click the Add JAR/zip, then use the file browser to point to the directory where the JDBC driver jars are. You can also opt to remove or edit the jar files from this dialog.

 Filtering the connection

 From the connection properties dialog, you can set a default schema filter, a default stored procedure filter, and a default table filter. Filtering the schemas, stored procedure, or table restricts what Data Studio loads into the Data Source Explorer for that connection. You can filter using a where clause-like expression or select from a list. Figure 1-10 on page 30 shows the filter page.

 2.1.4 Creating a Data Development Project

 Click File → New → Data Development Project to launch the New Data Development Project wizard (Figure 2-6). The wizard contains three pages for setting the following:

 •Project name: Enter a meaningful project name. Click Next.

 [image:]

 Figure 2-6 New Data Development Project

 •Select connection: The wizard’s second page lists all the connection profiles available (Figure 2-7). The user can also opt to create a new connection profile by clicking New. The New Connection Profile wizard is launched. The properties of the selected connection are shown in the Properties area of this page.

 [image:]

 Figure 2-7 New Data Development Project - Select Connection page

 The wizard’s third page allows the user to specify the authorization ID for package owner and build owner.

 •Package Owner: Enter a valid primary or secondary authorization ID as the package owner. If blank, the current login ID is used.

 •Build Owner: Enter a valid primary or secondary authorization ID as the owner of the stored procedure created. This is the value in the OWNER column in SYSROUTINES. If blank, the current ID is used.

 Click Finish in the wizard to create a data development project. Figure 1-15 on page 37 shows you the folders contained in a data development project.

 2.1.5 Creating SQL statements and scripts

 Before you develop your stored procedures, you can optionally develop your SQL statements first, contain them in a script, test and optionally tune them, and then import them into the stored procedure. An SQL script can contain one or more SQL statements.

 Data Studio provides you with three tools for developing SQL statements:

 •SQL Query Builder: This is a graphical builder used for creating SELECT, INSERT, UPDATE, DELETE, Full SELECT, and WITH statements.

 •SQL and XQuery Editor: This is a rich text editor that can handle both DML and DDL SQL statements, as well as XQuery statements. It has colorization and content assist capabilities.

 •SQL Wizard: This is embedded in the New SQL Procedure wizard and is similar to SQL Assist in Development Center.

 Using the SQL Query Builder

 Right-click the SQL Scripts folder and select New → SQL or XQuery to launch the New SQL Statement wizard. Figure 2-8 shows the dialog that allows you to select whether to create the SQL statement with either the SQL Editor or the SQL Query Builder. Select the latter.

 [image:]

 Figure 2-8 New SQL or XQuery Script

 The SQL Query Builder populates the Editor view with three panes (the top three icons in Figure 2-9 are the three panes). Choose the the SQL statement view.

 [image:]

 Figure 2-9 SQL Query Builder

 To build the illustrated statement in the SQL Query Builder:

 1.	Right-click the graphical view (middle pane) and select Add table. Expand the DEVL7083 schema and select the PURCHASEORDER table. Add the CUSTOMER table in the same way. This adds the selected tables to the FROM clause of the statement.

 2.	Still in the graphical view, click CUSTID in the PURCHASEORDER table and drag ti to CID in the CUSTOMER table. This creates an inner join between the two tables. You can right-click the join line and select Specify the join type to select another type of join, such as a left outer join.

 3.	Click the POID, STATUS, CUSTID, ORDERDATE, PORDER, and COMMENTS check boxes in the PURCHASEORDER table. This adds those columns to the SELECT clause of the statement.

 4.	Click the INFO and HISTORY check boxes in the CUSTOMER table.

 5.	Click the Conditions tab. Click the first cell, and a pull-down arrow is displayed. Scroll down the list and select PURCHASEORDER.STATUS.

 6.	Click the Value column and type :V-STATUS. This creates a variable in the statement. When you run the query, you are prompted to provide a value for this variable.

 7.	Click Save.

 Using the SQL and XQuery Editor

 In the New SQL or XQuery Statement dialog (Figure 2-8 on page 57), you can opt to use the SQL and XQuery Editor by selecting SQL and XQuery Editor. The editor is started with a blank page in which you can enter any SQL statement.

 The SQL and XQuery Editor has the following features:

 •Multiple statement support

 You can type multiple statements in a .sql file and then run them.

 •Variable statement terminator

 The statement terminator is actually a statement separator. By default, the SQL editor uses a semicolon (;). You can specify a different statement terminator for the statements that you create in the Enhanced SQL Editor. You do not need to specify a statement terminator for the last (or only) statement in your script.

 •Multiple target connection profiles

 You can select the target connection profile where you want the SQL script executed. The combo box contains connections that you have used prior to this execution. Click Select to use another connection profile or to create a new connection profile.

 •Syntax highlighting

 To aid you in differentiating the elements in an SQL statement, syntax highlighting renders different kinds of elements in the text in unique colors.

 •Content assist

 Content assist is an editing tool that provides you with helpful information as you type an SQL or XQuery statement. For example, after you type the dot that follows a schema qualifier in an SQL statement, content assist supplies a list of the tables in the schema.

 As you develop your statement, you can press Ctrl+Spacebar at any time to see a list of available choices in the content assist window. You can filter the list of choices by typing a character, and only the choices beginning with that character are shown.

 •Query parsing and validation

 As you type, the parser checks the syntax of both SQL and XQuery expressions, and provides a visual indication of any errors that it detects in the query.

 The developerWorks article “Creating scripts more efficiently in the SQL and XQuery editor” provides examples and more details about the SQL and XQuery editor. It is available at:

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1011sqlguidetour/index.html?cmp=dw&cpb=dwinf&ct=dwnew&cr=dwnen&ccy=zz&csr=111110

 In Data Studio, you can also use or create code templates. This allows you to skip typing parts of an SQL statement and tab into input fields within the templates. Figure 2-10 shows an example of a template.

 [image:]

 Figure 2-10 SELECT template with two columns

 To use this template and create the SQL statement in the Enhanced SQL Editor, we took the following steps:

 1.	Right-click the SQL Scripts folder and select New → SQL or XQuery script.

 2.	Type SE_Select1 for the statement name. Click Edit using the SQL Editor.

 3.	A blank editor page is created. Press Ctrl+Spacebar to activate the Content Assist.

 4.	Type S to see template choices that start with S. Select SELECT - SELECT statement with two columns template.

 5.	 In the editor the cursor is placed in col1. Type PURCHASEORDER.POID.

 6.	Tab to col2. Type CUSTOMER.INFO.

 7.	Tab to table1. Type PURCHASEORDER.

 8.	Tab to table2. Type CUSTOMER.

 9.	Press Esc to return to the normal editing mode.

 You can create your own SQL statement template in the Preferences of Data Studio. In the menu bar, click Window → Preferences → Data Management → SQL Development → SQL and XQuery Editor → Templates.

 Whether you use the SQL Query Builder or the SQL and XQuery Editor, your created scripts are saved in the SQL Scripts folder.

 2.2 Creating a new stored procedure

 For stored procedures, Data Studio supports:

 •Creating a stored procedure from templates

 •Copying and pasting a stored procedure from the Data Source Explorer

 •Importing a previously written stored procedure from another project or file system

 2.2.1 Creating a new stored procedure using templates

 Right-click the Stored Procedures folder and click New. The New Stored Procedure wizard is launched. This is a one-page wizard. Figure 2-11 shows the wizard’s page.

 [image:]

 Figure 2-11 New stored procedure wizard

 Name

 Specify the name of the stored procedure. You might also qualify the stored procedure name with a schema qualifier (for example, MYSCHEMA.MYPROC).

 	
 Note: Data Studio accepts uppercase and lowercase schema.procname. However, when the SQL or Java stored procedure is built, both schema and procname are converted to uppercase in the DB2 catalog on z/OS. To enter lowercase, enclose the name in quotation marks, for example, “MyProc”.

 Language

 Select from the pull-down menu the language for this stored procedure. Data Studio only supports SQL or Java stored procedures. When you select SQL, you are presented with the default templates for both Native and External SQL stored procedures. If you select Java, the templates list is changed to display templates using dynamic Java (JDBC) or static Java (SQLJ).

 	
 Note: In DB2 for z/OS, the default version for native SQL procedures is V1.

 The template area below the language area contains two tabs describing the template that you have selected.

 Default templates

 Data Studio provides three basic default templates:

 •You specify the SQL statement that returns a result set.

 •The stored procedure has two parameters:

  –	Input

  –	Output

 •The stored procedure returns a result set.

 Template details icon

 A description of the content of this template is shown here. If you create your own templates, the text that you entered to describe the template is what is shown here.

 Template DDL

 This is a preview of the CREATE PROCEDURE DDL. If you are creating a SQL stored procedure, the SQL Body is also shown in this tab.

 When you click Finish from the New Stored Procedure wizard, Data Studio generates the DDL and, in the case of Java stored procedures, the Java source. The DDL is rendered in the Routine Editor, whereas the Java source is rendered in a Java Editor.

 When generating the DDL, Data Studio uses values from Preferences → Routines → Deploy Options.

 •For Java stored procedures, it picks up the bind options and WLM Environment preferences.

 •For External SQL stored procedures, it picks up precompile options, compile options, prelink options, link options, bind options, runtime options, WLM environment, and collection ID.

 •For Native SQL stored procedures, it picks up procedure options and (optionally) the WLM environment, which can be used when debug is enabled. Consult the SQL Reference for details on the procedure options that you can specify in your native SQL stored procedure.

 	
 Note: Although native SQL stored procedures do not require you to specify a WLM environment, you still need to specify a default WLM environment in your DSNZPARM.

 2.2.2 Copying and pasting (or dragging and dropping) from the Data Source Explorer

 In Data Studio, you can copy and then paste or drag and drop a stored procedure that has been previously deployed from the Data Source Explorer to a Data Project Explorer. You can copy an SQL or Java stored procedure from one server, paste it to a project, modify as needed, and then deploy to another server. This can be between like platforms and servers or different platforms and servers. Some syntax errors might occur if the stored procedure contains non-standard (that is, platform-specific) SQL.

 Copying from the Data Source Explorer to a project

 To do this:

 1.	Ensure that the project exists.

 2.	Select the stored procedure from the Data Source Explorer.

 3.	Drag and drop (or right-click Copy and then click Paste) to the Stored Procedures folder of the project.

 2.2.3 Importing the source of a stored procedure from a file

 You can use the Import wizard to copy a SQL stored procedure from the file system or another project to the current project. Section 2.4, “Importing a stored procedure” on page 65, provides more details about the import wizard.

 2.3 Modifying the stored procedure

 The Routine Editor gives the user total control in modifying the DDL, the SQL body of a SQL stored procedure or the Java source of a Java stored procedure. From the Routine Editor, right-clicking whitespace brings up a menu that allows you to:

 •Copy and paste SQL statements and text from another editor.

 •Insert from file SQL statements and text contained in files.

 •Format SQL statements that you typed into the editor so that it is more readable.

 •Validate Syntax of SQL statements that you typed. Data Studio can parse the SQL statement for correctness or validate that the tables exist in the target server.

 •Invoke Content Assist while typing the SQL statement. See “Using the SQL and XQuery Editor” on page 59 for details about how to invoke Content Assist.

 •Set Terminator (SQL) allows you to set different characters for the statement terminator other than the semicolon.

 •Select SQL → Compute Actual Cost, which calls the DB2-supplied stored procedure DSNWPSM and returns a cost value for executing the statement.

 	
 Note: You need to set up this support in DB2 for z/OS beforehand. See 1.4.7, “Data Studio actual costs setup” on page 19.

 •Open Visual Explain against a selected SQL statement. A graphical display of the access path is shown in the Access Plan Diagram view of the Outline View.

 2.3.1 Copying and pasting, and inserting from file

 Data Studio provides menu actions for inserting SQL statements or text into the stored procedure. When you paste in SQL statements, the parser can detect some syntax errors in the SQL statements added. You can copy and paste SQL statements from the SQL Scripts folder or any other open editor.

 You can also insert files containing SQL statements or text from the file system. In previous versions of Data Studio, you were limited to inserting code fragments in certain areas of the stored procedure. For completeness, we define the popular areas where code fragments are usually inserted.

 For SQL and Java stored procedures, examples of code fragments are:

 •Header fragment: This can contain text such as prologs, copyright information, author, modification history, and so on.

 •Imports fragment (Java): This can contain a list of common imported Java packages.

 •Variable / Data declaration fragment: This can contain code for declaring or initializing global variables, local variables that might follow a specific naming convention, and so on.

 •Exception handlers fragment (SQL): This can contain code for handling exceptions encountered when executing the stored procedure.

 •Pre-return fragment: This can contain code for cleanup, “finalize”-ing, logging, reporting, and other end-of-task code that might be common to all your stored procedures.

 •Method fragment: This can contain code for common methods called within a Java stored procedure. You can reference methods in your source that are not coded in the Java stored procedure. Section 3.1.9, “Multiple jar support for Java stored procedures” on page 99, describes how to add a supporting jar that contains these methods.

 	
 Note: The file browser defaults to presenting you with files that have a .sql, .ddl, or .db2 file extension. You can only select one file to insert. You have to position your cursor to the location of where you want the file inserted. When inserting a file containing SQL Statements into the Java source, you are responsible for coding the JDBC APIs and Java-specific code needed to process the SQL statements.

 2.3.2 Editing the Java source

 The Java Editor also allows the user to modify the Java source, and includes features such as:

 •Syntax highlighting and checking

 •Content/code assist

 •Code formatting

 •Import assistance

 •Quick fix

 A word about parameters

 The new stored procedure wizard gives the user the flexibility to add, modify, and remove parameters, including handling of:

 •SQL Exception

 •SQL Message

 •SQLSTATE

 However, if you add, remove, or reorder parameters in a Java stored procedure DDL, you need to update the Java source to map the SQL data types of the parameters with the Java data types of the arguments in the Java source’ main method. Table 31, “Mappings of database server data types to Java data types for retrieving data from database server,” in the DB2 10 for z/OS, Application and Programming Guide for Java maps the SQL data types to Java data types.

 Data Studio now supports XML parameter data types when developing a stored procedure against a DB2 9 or DB2 10 for z/OS server. The SQL data type, XML, maps to java.sql.SQLXML.

 2.4 Importing a stored procedure

 You can import an entire stored procedure into a project using Data Studio’s import wizard. You can import from the file system or another project into the current project’s stored procedure folder.

 2.4.1 Importing an SQL stored procedure

 To import a SQL stored procedure from the file system, right-click the Stored Procedures folder and then select Import to launch the Import wizard. The Import wizard includes the four pages (discussed in this section) for importing a stored procedure.

 Source

 On the Source page, you have the option to import from an existing project or the file system (Figure 2-12).

 [image:]

 Figure 2-12 Import Wizard, Source page

 To import from the file system:

 1.	Click Browse to the right of the Name field. A file browser is launched.

 2.	Use the file browser to locate the file that contains the stored procedure code.

 3.	Click Open to import this file. The file directory appears in the Name textbox.

 4.	Specify the statement terminator used in the file. Because SQL stored procedures can include SQL statements in the SQL body that are terminated by a semicolon, the termination of the CREATE PROCEDURE statement itself is signified by a character other than a semi-colon.

 To import from a project:

 1.	Click the Project radio button.

 2.	Click Browse to the right of the Name field. You are presented with a tree list of projects and stored procedures (Figure 2-13).

 [image:]

 Figure 2-13 Import from a project

 3.	Select the stored procedure that you want to import. Click OK to dismiss this dialog.

 4.	Click Next to go to the next page in the Import wizard.

 Entry Points dialog

 Data Studio opens and parses the imported file and presents you with possible entry points in the file. If the file contains a SQL stored procedure, the CREATE PROCEDURE name and parameter signature is the entry point (Figure 2-14).

 [image:]

 Figure 2-14 Import wizard - SQL stored procedure entry point

 Click Next to go to the next page in the Import Wizard.

 Parameters

 Data Studio displays the parameters and their data types on this page. You can edit the SQL data types of the parameters in a Java stored procedure (Figure 2-15).

 [image:]

 Figure 2-15 Import wizard - Parameters page

 Click Next to go to the next page.

 Options

 On this page, you can set the following options needed to deploy the imported stored procedure (Figure 2-16):

 •Collection ID

 •Replace duplicate routines in the project

 •Deploy on Finish (Automatically deploy the imported stored procedure on finish.)

 •Enable debugging (when you deploy the imported stored procedure)

 [image:]

 Figure 2-16 Import wizard - Options

 Click Advanced to specify additional stored procedure and deploy options, similar to those shown in Figure 2-20 on page 76.

 Click Next to display the Summary page.

 Summary

 The summary page summarizes the above settings. Click Finish to terminate the Import wizard. The imported stored procedure is added to the Stored Procedures folder.

 	
 Note: When importing an SQL stored procedure from the file system to a project that is targeting a DB2 10 for z/OS, if the imported DDL does not contain the FENCED or EXTERNAL keyword, Data Studio constructs the imported SQL stored procedure as a Native SQL stored procedure.

 2.4.2 Importing a Java stored procedure

 As mentioned in 2.2.3, “Importing the source of a stored procedure from a file” on page 63, you can import a SQL stored procedure source from the file system using the Import wizard. The steps to import a Java stored procedure are similar to the steps for a SQL stored procedure.

 Right-click the Stored Procedures folder and then select Import to launch the Import wizard. On the Source page, select the location of a .java file in the file system or a Java stored procedure from another project.

 If the imported stored procedure is a Java stored procedure, Data Studio examines the methods that are included in the file. Data Studio selects as the main entry point the method that is named the same as the file as shown in Figure 2-17.

 [image:]

 Figure 2-17 Import wizard - Entry points for a Java stored procedure

 The Options page when importing a Java stored procedure is slightly different. On this page, you can:

 •Enter the JAR ID.

 •Enter a collection ID.

 •Opt to replace duplicate routines in the project.

 •Deploy on finish importing.

 •Enable debugging when the imported stored procedure is deployed.

 Similar to SQL stored procedures, you can also click Advanced to specify additional deploy and routine options, such as the WLM environment name.

 2.5 Deploying a stored procedure

 To execute or CALL a stored procedure, the stored procedure needs to first be built or deployed to the server. The deploy process differs slightly between external SQL, native SQL, and Java stored procedures. Data Studio assists you in the deploy process through the Deploy wizard.

 2.5.1 The Deploy wizard

 We can deploy the stored procedure under development to the current server from several spots in the workspace. You can launch the Deploy wizard from the context menu of the following:

 •Data Source Explorer → Stored Procedures folder → Deploy

 •Data Source Explorer → a specific stored procedure → Deploy

 •Data Project Explorer → Stored Procedures folder → Deploy

 •Data Project Explorer → a specific stored procedure → Deploy

 •Routine Editor → right-click DDL tab → Deploy

 •Routine Editor → Deploy icon (Figure 2-18)

 [image:]

 Figure 2-18 Routine Editor - Deploy to server

 Let us assume that you clicked the “Deploy the routine to the database server” icon. The Deploy wizard is launched (Figure 2-19).

 [image:]

 Figure 2-19 Deploy wizard - Deploy Options

 2.5.2 Deploy options

 The first page of the Deploy wizard presents you with options for setting the target database, handling errors and duplicates, and specifying what is included when deploying the stored procedure.

 Setting the target database

 Select the Use current database radio button to deploy the stored procedure to the database server configured for the project that contains this stored procedure.

 Select the Use different database radio button if you want to deploy to another database. If you select this radio button, the Database combo box is populated with the list of current active connections. If there are no other active connections, you can click Connection to launch the Select Connection dialog. Click New to create a new connection profile. Click Finish from each dialog to return to the Deploy wizard.

 If the stored procedure is unqualified, you can specify the target schema for this routine. The pull-down menu shows you all schema names used so far within the project. The default schema is the login ID.

 Error and duplicate handling options

 These options specify how you want Data Studio to handle duplicate names or errors when deploying the stored procedure.

 •Duplicate handling

  –	Drop duplicates.

 If a duplicate is found in the server, issue a DROP against this stored procedure, and then proceed to deploy the new stored procedure. This is the default action for handling duplicates.

  –	Treat duplicates as errors.

 If a duplicate is encountered, handle this as an error and follow the action selected under Error Handling.

  –	Ignore duplicates and continue to the next routine2.

 This option is grayed out when deploying a single stored procedure.This option prevents dropping the duplicate stored procedure in the server, and rolls back the deploy of the current stored procedure.

 •Error handling

  –	Stop and roll back on errors.

 If an error occurs during the deploy, abort the deploy and roll back any previous actions.

  –	Stop on errors.

 If an error occurs, stop the current deploy. All previous deploys are not rolled back.

  –	Ignore errors and continue to the next routine3.

 This option only applies when deploying multiple stored procedures. This action skips deploying the current stored procedure and continues to deploy the next stored procedure in the list.

 Other deploy options

 Other deploy options are:

 •Deploy by building source.

 For a first time deploy, this option is selected by default. On subsequent deploys, the user can opt to deploy using binaries.

 •Deploy using binaries if available in the database server.

 This option is grayed out for a first time deploy. If an external SQL stored procedure or a Java stored procedure has been deployed successfully, you can opt to redeploy using binaries. See 3.1.6, “Deploying SQL or Java stored procedures without recompiling” on page 94, for details about this option.

 •Deploy source to server.

 This option always includes the current Java source when the jar file is created for a Java stored procedure. For an external SQL stored procedure, the complete DDL and SQL body is copied into SYSROUTINES_SRC.

 Click Next to display the Routine Options page.

 2.5.3 Routine options

 The Routine Options page contains 1, 2, or 3 tabs, depending on the stored procedure:

 •For native SQL stored procedures, the Routine options is a single page.

 •For external SQL and Java stored procedures, you see the Routine options tab and the Deploy Options tab.

 •For Java stored procedures, you see a third tab, the Java Path tab.

 Routine Options tab

 The fields on the Routine Options page depend on the type of stored procedure being deployed.

 For External SQL and Java stored procedures, you can set the following options:

 •Collection ID

 •Runtime options (External SQL stored procedures only)

 •WLM Environment

 •Procedure options:

  –	ASUTIME

  –	STAY RESIDENT

  –	EXTERNAL SECURITY

 For native SQL stored procedures, you can set the options shown in Figure 2-24 on page 80. When the Enable Debugging check box is selected, you are asked to enter a WLM environment that is used when debugging this stored procedure.

 Native SQL stored procedures are interpreted rather than compiled like an external SQL stored procedure. Specify both procedure and bind options in the Procedure Options field. See 2.5.7, “Setting the bind options in native SQL stored procedures” on page 80, for information about setting these options.

 	
 Note: The Build owner field is the authorization ID that is used to issue the CREATE PROCEDURE statement and hence is the value in the OWNER column of the stored procedure in SYSROUTINES. If there are unqualified objects in the SQL body, these objects are qualified by the value of the CURRENT SQLID, unless the QUALIFIER bind option is specified in the Procedure options.

 Deploy Options tab

 The fields in this tab also depend on the type of stored procedure being deployed.

 For an External SQL stored procedure, you can set the following:

 •Build Utility: Specify the SQL Procedure processor to use to build this external SQL stored procedure. The default is the build utility value specified in the preferences.

 •Build Owner: Specify the authorization ID that is the owner/definer of this external SQL stored procedure. See 3.1.4, “Package owner and build owner” on page 88, for more information about this field.

 •Precompile options: This defaults to MAR(1,80).

 •Compile options: This defaults to NOTEST(block,noline,nopath).

 •Prelink options: Specify any prelink options (default is blank).

 •Link options: Specify any prelink options (default is blank).

 •Bind options: The bind options are specified in two parts. The PACKAGE area is read-only and defaults to PACKAGE(collid), where collid is the collection ID specified in the Deploy Options preference page.

 •Enable debugging: Check this box if you want to use the Unified Debugger later on for debugging this stored procedure.

 For a Java stored procedure, you can:

 •Click the Enable debugging check box to set up the deployed stored procedure for debugging. The compile option -g is automatically generated.

 •Specify a different JDK level for the client by clicking Browse for the JDK home and pointing the file browser to the directory of your JDK. Data Studio interrogates the JDK that you specified and fills in the JDK version field.

 •Add additional bind options in the space to the right of the PACKAGE field. Click the ellipsis to display a text box for typing in your bind options.

 •Display all messages generated during the deploy process by clicking Verbose build.

 Figure 2-20 shows the Deploy Routines dialog.

 [image:]

 Figure 2-20 Deploy Wizard - Routine Options - Deploy options tab

 Java Path tab

 On the Java Path tab, you can add jars from other projects to resolve references in your Java stored procedure. Click Add and specify the jar name (Figure 2-21).

 [image:]

 Figure 2-21 Deploy Wizard - Routine Options - Java Path

 Click Finish to close the Deploy wizard. The Data Output view is refreshed with the status and progress of the deploy.

 2.5.4 Deploying to a different server

 Data Studio supports deploying to an “unlike” DB2 server (that is, to a DB2 server that is running in another type of operating system). Table 2-1 lists the source and target server combinations supported.

 Table 2-1 Deploy source and target server combinations

 	
 Source servers

 	
 Target servers

 	
 DB2 for LUW V8.2 and V9

 	
 DB2 for z/OS V8

 	
 DB2 for z/OS 9 and 10

 	
 DB2 for LUW V8.2, V9

 	
 SQL and Java

 	
 Java

 	
 Native SQL and Java

 	
 Derby

 	
 Java

 	
 N/A

 	
 N/A

 	
 DB2 for iSeries V5.4

 	
 N/A

 	
 N/A

 	
 N/A

 	
 DB2 for z/OS V8

 	
 N/A

 	
 External SQL and Java

 	
 External SQL and Java

 	
 DB2 for z/OS 9 and 10

 	
 N/A

 	
 N/A

 	
 External SQL, Native SQL and Java

 2.5.5 Deploying nested or dependent stored procedures

 You can call stored procedures from within your stored procedures. Deploy the inner or nested stored procedures before the calling stored procedures. In Optim Development Studio, you can specify the order of the deployment using a deployment group. Figure 2-22 shows an example of a deployment group’s artifact list.

 [image:]

 Figure 2-22 Deploying nested stored procedures

 2.5.6 Setting the JDK level for Java stored procedures

 Data Studio V2.2.1 ships with the Java Development Kit Version 1.6. DB2 10 for z/OS typically ships with JDK 1.5 (although both JDK 1.4 and JDK 1.6 can be installed).

 If you compiled your Java stored procedure with a JDK that is higher than what is installed in the DB2 10 for z/OS Server 1.5, then executing this Java stored procedure fails with the following error message:

 17.38.36 STC00108 DSNX961I DSNX9WLJ ATTEMPT TO PERFORM OPERATION

 	 - FindClass

 	 - FAILED FOR ROUTINE . . SSN= V91A PROC= V91AWMJU ASID= 003A

 	 - CLASS= METHOD= ERROR INFO= java.lang.NoClassDefFoundError:

 	 - com/ibm/db2/jcc/DB2Driver

 You can change the JDK level by changing the location of the JDK Home setting in the client. You can set this for all projects, for one project, or for a specific stored procedure.

 •Workspace scope: Go to Window → Preferences → Data Management → SQL Development → Stored Procedures & User-Defined Functions → Deploy options.

 •Project scope: Right-click the project, then select Properties → Routine Development.

 •Stored procedure scope: When deploying the stored procedures, click Routine Options → Deploy Options tab.

 Figure 2-23 shows how to set the JDK home for a specific stored procedure during deploy. Data Studio issues a UDF to determine the JVM level of the DB2 for z/OS server. The JVM level or version can also be determined from the JAVA_HOME environment variable set in DB2 for z/OS UNIX System Services.

 [image:]

 Figure 2-23 Changing the JDK level at deploy time

 2.5.7 Setting the bind options in native SQL stored procedures	

 Native SQL stored procedures process certain bind options as procedure options. The New Stored Procedure wizard allows you to specify non-default bind options in the z/OS Options dialog (Figure 2-24). Click the ellipsis to type the options in a larger text area. These options appear in the CREATE PROCEDURE DDL after the VERSION keyword.

 [image:]

 Figure 2-24 Native SQL z/OS options

 2.5.8 Enabling debug

 Refer to 4.1, “The Unified Debugger” on page 116, for information about how to enable debug using the Unified Debugger.

 2.6 Executing a stored procedure

 After you have deployed your stored procedure, you can execute it from the following areas:

 •Data Source Explorer → a specific stored procedure → Run

 •Data Project Explorer → a specific stored procedure → Run

 •Routine Editor → right-click white space → Run

 •Routine Editor → click the Run icon (green arrow in Figure 2-18 on page 71)

 If there are any input parameters in your stored procedure, the Specify Parameter Values dialog is launched (Figure 2-25).

 [image:]

 Figure 2-25 Specify parameter values at SP execution

 Note that the tooling can recognize that a string was entered even though single quotation marks were not entered. However, double quotation marks are preserved in the input value. To enter FOR BIT DATA, type an X in front of a quoted value (for example, X’F1F2F3’).

 2.6.1 Run Settings dialog

 The Run Settings dialog is launched when executing a stored procedure that contains INPUT or INOUT parameters in its declaration. This dialog can also be launched prior to executing a stored procedure from the stored procedure’s context menu.

 In the Parameter Values tab of this dialog, you can:

 •Enter values for each INPUT or INOUT parameter. Data Studio validates the value against the data type of the parameter. An icon appears and a tooltip message is displayed when you click Ctrl+Spacebar.

 •Set the value of a parameter to NULL by clicking Set to Null.

 •Remember the values that you entered from one execution to another.

 •Save the values that you entered into a file.

 •Load the values from a file that was previously saved.

 You can opt to execute SQL statements before and after calling a stored procedure, as when a stored procedure is manipulating a table. You can do this using the Run Settings dialog (Figure 2-26).

 [image:]

 Figure 2-26 Run Settings dialog

 On the Parameter Values page, specify the parameters that you want to use for running the routine. If a parameter requires a string value, type the value without string delimiters. If the parameter requires binary input, enter the hex string without delimiters.

 2.6.2 Processing information in the Data Output view

 In 1.5.5, “Output view” on page 39, we discussed the two areas in the Data Output view. The actions that you can take on these are as follows:

 •Status History table

  –	Select a cell in the history table. Right-click the cell and then select Remove / Remove All entries.

  –	Select a cell in the history table. Right-click and select Save History to save the status history into a file.

 •Status tab

 Right-click the Status tab and click Select All, then right-click Copy to copy the messages to the clipboard.

 •Results tab

 If you have multiple result sets, the actions below only apply to the result set page in view. Select a cell or a set of cells (by pressing Ctrl+click). Right-click to see the context menu actions shown in Figure 2-27.

  –	Copy Row(s): Saves the selected rows to the clipboard.

  –	Save ... → Current Result / All Results: Saves the result sets into a file within a project. In the Save Result set dialog, you can select the project container of the exported result set, the file type, character encoding, and format of the saved result set (Figure 2-28 on page 84).

  –	Export ... → Current Result / All Results: Saves the results into a file in the file system. Use the Browse button to launch the file browser. You also have the option to set the file type, character encoding, and format of the exported file.

  –	Print ... → Current Result / All Results: Prints the results to a connected printer. Results are printed in a table format.

  –	Convert row(s) to hexadecimal: Converts the column data to hexadecimal.

 [image:]

 Figure 2-27 Output view - Results tab context menu

 [image:]

 Figure 2-28 Output view - Save Results

 1 Also known as the IBM Universal driver.

 2 When launched from the Stored Procedures folder, the Deploy wizard allows you to select multiple stored procedures from the folder. When a stored procedure of the same name exists on the server, this option instructs Data Studio to ignore deployment of this stored procedure. Data Studio continues to process and deploy the other stored procedures in the list. The default is to terminate when a duplicate is found.

 3 When deploying a stored procedure from a list, if the stored procedure has errors (for example, missing objects), then this option instructs Data Studio to ignore these errors and continue deploying the other stored procedures in the list.

[image:]
[image:]

Additional development features in the Data Studio products

 In this chapter we provide a description of additional features used for stored procedures development offered by the Data Studio and Optim Development Studio products.

 This chapter contains the following sections:

 •Additional features in Data Studio

 •Additional features in Optim Development Studio

 3.1 Additional features in Data Studio

 The features in Data Studio discussed in this section do not fall into the mainstream stored procedure development, and are discussed here for completeness.

 3.1.1 Native SQL procedure new version

 You can create new versions of native SQL stored procedures that are still under development in the Data Project Explorer or that have been previously deployed and listed in the Data Source Explorer. From the Data Project Explorer, you can also set which version of the stored procedure is the active version. The active version is the version that DB2 for z/OS executes if a version number is not specified.

 Right-click a stored procedure and select the New Version action menu item. The New Version wizard is launched. This is a one-page wizard that allows you to name the version (Figure 3-1).

 [image:]

 Figure 3-1 New Version wizard

 3.1.2 Developing templates

 Data Studio V2.2.1 ships with a set of default templates for external SQL, native SQL, and Java stored procedures. You can use these templates as the basis for more complicated templates. To create or modify an existing template, go to Window → Preferences → Data Management → SQL Development → Routines → Templates. Click New to launch the New Template dialog (Figure 3-2).

 [image:]

 Figure 3-2 New Template dialog

 Type or copy and paste the CREATE PROCEDURE DDL for either a SQL or Java stored procedure. For Java stored procedures, type or copy and paste the Java source as well.

 Data Studio allows you to insert variables into the template. To insert a variable, position the cursor to where you want the variable inserted, then click Insert Variable. Data Studio allows automatic insertion of the variables listed in Table 3-1.

 Table 3-1 Insertion variables

 	
 Variable name

 	
 Description

 	
 collid

 	
 Collection name (z/OS only)

 	
 date

 	
 Current date

 	
 name

 	
 Routine name

 	
 runOpts

 	
 Runtime options (z/OS only)

 	
 schemaName

 	
 Schema name

 	
 time

 	
 Current time

 	
 timestamp

 	
 Current timestamp

 	
 user

 	
 User name

 	
 wlmEnvironment

 	
 WLM environment (z/OS only)

 	
 year

 	
 Current year

 3.1.3 CURRENT SQLID and CURRENT SCHEMA usage in Data Studio

 The CURRENT SCHEMA value can be predefined in the project’s properties. The value of this special register is used as the default target schema for:

 •A stored procedure deployed without a fully qualified name

 •An unqualified table used in a SQL script

 In the Data Project Explorer, right-click the stored procedure and select Properties → Database Connections → Default Schema to set the CURRENT SCHEMA.

 Table 3-2 summarizes setting the current schema in the project's properties during various tasks in Data Studio. Assume that the connection login ID is PAOLOR5.

 Table 3-2 Current schema behavior

 	
 Current schema1

 	
 Name specified in New SP wizard

 	
 SYSROUTINES

 SCHEMA column value

 	
 blank

 	
 PROC1

 	
 PAOLOR5

 	
 blank

 	
 DEVL4717.PROC1

 	
 DEVL4717

 	
 DEVL4717

 	
 PROC1

 	
 DEVL4717

 	
 DEVL4717

 	
 PAOLOR1.PROC1

 	
 PAOLOR1

 1 This is the value set in the project properties.

 3.1.4 Package owner and build owner

 In Data Studio, the package owner and build owner can also be predefined in your project’s properties. In the Data Project Explorer, right-click the stored procedure and then select Properties → Routine Development → Package owner and Build owner to set these values.

 The Package Owner field is used to define the authorization ID of the owner of the bound packages for a SQL or Java (SQLJ) stored procedure during deployment. The package owner can be overridden during stored procedure deployment by specifying the OWNER bind option in the bind options field. See “Deploy Options tab” on page 74.

 When the Build Owner field is set in the project properties, the routine deployment uses this build owner's authority instead of the connection login IDs. Basically, the CURRENT SQLID is set to the value of build owner before the deployment starts. Therefore, the connection login ID must be able to issue SET CURRENT SQLID to this build owner. Binary deployment is a special case. It cannot use the build owner's authorization. In this scenario, the connection login ID itself must have proper privilege to create the stored procedure in the remote target server.

 3.1.5 Export and deploy stored procedures

 Data Studio allows you to export one or more stored procedures to the file system and deploy these stored procedures outside the tooling to a target server. You can optionally zip the files exported, then port the zip file to another workstation where you can issue the deploy.

 You can export native SQL, external SQL, and Java stored procedures. Note, however, that deploying native SQL stored procedures to another DB2 9 or 10 for z/OS server outside of Data Studio, requires either a DB2 Connect or a DB2 on LUW database system running on the client issuing the deploy.

 Exporting stored procedures

 To export stored procedures:

 1.	In the Data Project Explorer, right-click the Stored Procedures folder and then click Export. The Export Wizard is launched. The first page is the Selection page.

 2.	Select the stored procedures that you want to export (Figure 3-3). Click Next.

 [image:]

 Figure 3-3 Export Wizard Selection page

 3.	On the Target and Location page, enter a file name for the exported xml file. Enter a directory location or click Browse to choose a directory.

 4.	Click the Include DROP statements check box. Figure 3-4 shows the completed page.

 5.	Click Finish.

 [image:]

 Figure 3-4 Export Wizard Target File name and location

 6.	Verify that the export is successful for each stored procedure in the Output view. In our example, we exported four stored procedures. The Output view in Figure 3-5 shows four entries, all of which are successful.

 [image:]

 Figure 3-5 Export wizard, Output View Status table

 Deploying the exported stored procedures

 Data Studio generates several files to facilitate deploying the exported stored procedures and places these files in the directory specified during export.

 Before deploying the stored procedures, ensure that your client’s JAVA_HOME environment variable is pointing to a JDK level that is compatible with the JDK level at the server. The generated ant.bat file uses the JAVA_HOME setting when launching ant.

 Open a DB2 command window and go to the directory that you specified for your exported files.

 Deploying the native SQL stored procedures

 To do this:

 1.	Edit the <target export file>.sql file.

 2.	Uncomment the CONNECT TO statement.

 3.	Update the user ID and password to the login user ID and password that you use to connect to the target server.

 4.	Modify the SET CURRENT SCHEMA statement to set a schema for unqualified database objects.

 5.	Uncomment the CONNECT RESET statement.

 6.	Uncomment the at sign (@).

 7.	Save the file.

 8.	Open a DB2 command window.

 9.	Run the following command:

 db2 -td@ -vf <target export file>.sql

 Deploying an external SQL stored procedure

 To do this:

 1.	Edit the <target export file>_sql.properties file.

 2.	Update the properties where required. For example, the target connection properties are defined in the following properties:

 db.userid=admf001

 db.password=c0deshop

 db.name=STLEC1

 db.hostname=labec4.vmec.svl.ibm.com

 db.port=446

 3.	Save the <target export file>_sql.properties file.

 4.	Run ant.bat to execute the script. Type ant -buildfile <target export file>_sql.xml.

 Example 3-1 shows the output of the above ant command for an external SQL stored procedure.

 Example 3-1 Output of ant deploy of stored procedure

 [image:]

 Buildfile: ITSO_Project_sql.xml

 init:

 builddeploySps:

 [createsp] Debug options:

 [createsp] file:/C:/Export/.options loaded

 [createsp] Could not connect to the target database.

 [createsp] [ibm][db2][jcc][t4][2013][11249] Connection authorization failure occurred. Reason: User ID or Password invalid.

 BUILD SUCCESSFUL

 Total time: 3 seconds

 [image:]

 Deploying a Java stored procedure

 To do this:

 1.	Edit the <target export file>_java.properties file.

 2.	Update the properties where required. The target connection properties are defined in the following properties:

 db.userid=admf001

 db.password=c0deshop

 db.name=STLEC1

 db.hostname=labec4.vmec.svl.ibm.com

 db.port=446

 3.	Save the <target export file>_java.properties file.

 4.	Run ant.bat to execute the script. Type ant -buildfile <target export file>_java.xml.

 Excerpts from the output of the ant deploy of Java stored procedures are shown in Example 3-2.

 Example 3-2 Output of ant deploy of SQLJTEST and JDBCTEST

 [image:]

 Buildfile: ITSO_Project_java.xml

 init:

 builddeploySps:

 [createsp] Debug options:

 [createsp] file:/C:/Export/.options loaded

 [createsp] DEVL7083.SQLJTEST - Deploy started.

 [createsp] DEVL7083.SQLJTEST - Created temporary working directory C:\Export\bld1196747605594.

 [createsp] DEVL7083.SQLJTEST - Translating the SQLJ source file C:\Export\bld1196747605594\marichu\SQLJTEST.sqlj using

 [createsp] SQLJ translator class: sqlj.tools.Sqlj

 [createsp] SQLJ translator location: C:\SQLLIB\java\sqlj.zip;C:\Program...

 [createsp] DEVL7083.SQLJTEST - SQLJ translation completed.

 [createsp] C:\IBM_JDK15\bin\javac -classpath ".;C:\SQLLIB\java\sqlj.zip;C:\Program...

 [createsp] DEVL7083.SQLJTEST - Javac completed.

 [createsp] DEVL7083.SQLJTEST - Class file updated.

 [createsp] C:\IBM_JDK15\bin\javaw -cp ".\;C:\Program... C:\Export\bld1196747605594" com.ibm.db2.jcc.sqlj.Customizer -url jdbc:db2://wtsc63.itso.ibm.com:12347/DB9A -collection DSNJDBC -qualifier PAOLOR4 -user PAOLOR4 -password xxxxxxxx -bindoptions "QUALIFIER PAOLOR4" -rootPkgName S928288 marichu\SQLJTEST_SJProfile0.ser

 [createsp] [jcc][sqlj] Begin Customization

 [createsp] [jcc][sqlj] Set qualifier for online checking to SCHEMA: PAOLOR4

 [createsp] [jcc][sqlj] Loading profile: marichu\SQLJTEST_SJProfile0

 [createsp] [jcc][sqlj] Customization complete for profile marichu\SQLJTEST_SJProfile0.ser

 [createsp] [jcc][sqlj] Begin Bind

 [createsp] [jcc][sqlj] Loading profile: marichu\SQLJTEST_SJProfile0

 [createsp] [jcc][sqlj] User bind options: QUALIFIER PAOLOR4

 [createsp] [jcc][sqlj] Driver defaults(user may override): BLOCKING ALL VALIDATE BIND

 [createsp] [jcc][sqlj] Fixed driver options: DATETIME ISO DYNAMICRULES BIND

 [createsp] [jcc][sqlj] Binding package S9282881 at isolation level UR

 [createsp] [jcc][sqlj] Binding package S9282882 at isolation level CS

 [createsp] [jcc][sqlj] Binding package S9282883 at isolation level RS

 [createsp] [jcc][sqlj] Binding package S9282884 at isolation level RR

 [createsp] [jcc][sqlj] Bind complete for marichu\SQLJTEST_SJProfile0

 [createsp] DEVL7083.SQLJTEST - SQLJ profile customization completed.

 [createsp] C:\IBM_JDK15\bin\jar uf spjar.jar marichu\SPContext.class marichu\SQLJTEST.class marichu\SQLJTEST_Cursor1.class marichu\SQLJTEST_SJProfile0.ser marichu\SQLJTEST_SJProfileKeys.class

 [createsp] DEVL7083.SQLJTEST - Jar file created.

 [createsp] DELETE FROM SYSIBM.SYSJAVAOPTS WHERE JARSCHEMA = 'PAOLOR4' AND JAR_ID = 'SQLJTEST'

 [createsp] Call SQLJ.DB2_REPLACE_JAR (<<C:\Export\bld1196747605594\spjar.jar>>, 'PAOLOR4.SQLJTEST')

 [createsp] DEVL7083.SQLJTEST - SQLJ.DB2_REPLACE_JAR using Jar name PAOLOR4.SQLJTEST completed.

 [createsp] Call ALTER_JAVA_PATH ('PAOLOR4.SQLJTEST', '')

 [createsp] DEVL7083.SQLJTEST - SQLJ.ALTER_JAVA_PATH using Jar name PAOLOR4.SQLJTEST completed.

 [createsp] DEVL7083.SQLJTEST - Supporting Jars installed successfully.

 [createsp] Call SQLJ.DB2_UPDATEJARINFO ('PAOLOR4.SQLJTEST', 'marichu.SQLJTEST', <<C:\Export\bld1196747605594\marichu\SQLJTEST.sqlj>>, 'S928288', 'DSNJDBC', 'ACTION(REPLACE)')

 [createsp] DEVL7083.SQLJTEST - Source saved to the server.

 [createsp] DEVL7083.SQLJTEST - Removed temporary working directory C:\Export\bld1196747605594.

 [createsp] DSNT540I DB9AWLMJ WAS REFRESHED BY PAOLOR4 USING AUTHORITY FROM SQL ID PAOLOR4 : 0

 [createsp] DEVL7083.SQLJTEST - Deploy successful.

 [createsp]

 [createsp] =====================================

 [createsp] DEVL7083.JDBCTEST - Deploy for debug started.

 [createsp] DEVL7083.JDBCTEST - Created temporary working directory C:\Export\bld1196747618983.

 [createsp] C:\IBM_JDK15\bin\javac -classpath "..... -g -source 1.4 -target 1.4 marichu\JDBCTEST.java

 [createsp] DEVL7083.JDBCTEST - Javac completed.

 [createsp] C:\IBM_JDK15\bin\jar uf spjar.jar marichu\JDBCTEST.class

 [createsp] DEVL7083.JDBCTEST - Jar file created.

 [createsp] DELETE FROM SYSIBM.SYSJAVAOPTS WHERE JARSCHEMA = 'PAOLOR5' AND JAR_ID = 'JDBCTEST'

 [createsp] Call SQLJ.DB2_REPLACE_JAR (<<C:\Export\bld1196747618983\spjar.jar>>, 'PAOLOR5.JDBCTEST')

 [createsp] DEVL7083.JDBCTEST - SQLJ.DB2_REPLACE_JAR using Jar name PAOLOR5.JDBCTEST completed.

 [createsp] Call ALTER_JAVA_PATH ('PAOLOR5.JDBCTEST', '')

 [createsp] DEVL7083.JDBCTEST - SQLJ.ALTER_JAVA_PATH using Jar name PAOLOR5.JDBCTEST completed.

 [createsp] DEVL7083.JDBCTEST - Supporting Jars installed successfully.

 [createsp] Call SQLJ.DB2_UPDATEJARINFO ('PAOLOR5.JDBCTEST', 'marichu.JDBCTEST', <<C:\Export\bld1196747618983\marichu\JDBCTEST.java>>, '', 'DSNJDBC', 'ACTION(REPLACE)')

 [createsp] DEVL7083.JDBCTEST - Source saved to the server.

 [createsp] DEVL7083.JDBCTEST - Removed temporary working directory C:\Export\bld1196747618983.

 [createsp] DSNT540I DB9AWLMJ WAS REFRESHED BY PAOLOR4 USING AUTHORITY FROM SQL ID PAOLOR4 : 0

 [createsp] DEVL7083.JDBCTEST - Deploy for debug successful.

 [createsp]

 [createsp] =====================================

 BUILD SUCCESSFUL

 Total time: 24 seconds

 [image:]

 3.1.6 Deploying SQL or Java stored procedures without recompiling

 Some customers want to migrate compiled code and not rebuild the stored procedure on the target server. Data Studio’s Deploy wizard can be used to deploy using binaries—SQL or Java stored procedures between source and target servers of the same platform.

 External SQL stored procedures

 Deploying external SQL stored procedures without rebuilding requires taking the following steps from the tooling:

 1.	Right-click the stored procedure and then click Deploy.

 2.	In the Deploy Wizard, change the target connection to Use Different Database. Select your target database from the pull-down list, or create a new connection to this database (see 2.1.2, “Creating a connection profile” on page 51).

 3.	If the stored procedure is unqualified, select the schema name to be used for this stored procedure.

 4.	Set your duplicate and error handling options.

 5.	Click the Deploy using binaries, if available in the database check box.

 6.	The target load library is enabled. Specify a partitioned data set (PDS) file to receive the load module in the target database.

 7.	Click Next to change the deploy and routine options, as discussed in 2.5, “Deploying a stored procedure” on page 71.

 8.	Click Finish to complete the deploy.

 Figure 3-6 shows the completed Deploy wizard.

 [image:]

 Figure 3-6 Deploy using binaries

 For an external SQL stored procedure, the DBRM, package, and load module are copied from the source database to the target database, and the CREATE PROCEDURE DDL is executed to catalog the stored procedure in the target database. The SQL body is not copied to SYSROUTINES_SRC.

 Native stored procedures

 To deploy native stored procedures using binaries:

 1.	Right-click the stored procedure and then select Deploy.

 a.	In the Deploy Wizard → Target connection, click Use Different Database.

 b.	Select your target database from the pull-down list, or create a new connection to this database (see 2.1.2, “Creating a connection profile” on page 51).

 c.	If the stored procedure is unqualified, select a schema name to be used for this stored procedure.

 d.	Set your duplicate and error handling options.

 e.	Click Deploy using binaries, if available in the database.

 f.	Click Next to change the deploy and routine options, as discussed in 2.5, “Deploying a stored procedure” on page 71.

 g.	Click Finish to complete the deploy.

 Java stored procedures

 Data Studio supports deploying using binaries only if the Java stored procedure was initially built on the client and the connection used the IBM Universal driver. Java stored procedures built using the utility DSNTJSPP are not eligible to be deployed using binaries.

 The steps to deploy Java stored procedures using binaries are the same as those followed for native SQL stored procedures. There is no need to specify a target load library, as there is no load module involved. The stored procedure jar files are obtained from the source database and then installed in the target database. The java source code can be optionally copied if the Deploy source to the database check box is selected.

 	
 Note: Data Studio V2.2.1 supports deploy using binaries from DB2 9 to DB2 10 for z/OS but not vice versa. The DB2-supplied stored procedures used to perform this task were renamed in DB2 10. See APAR IC74104 for more details.

 3.1.7 Managing privileges

 When deploying an existing stored procedure to another database, you might want to set up the same authorizations in the target server. To do this:

 1.	Open the Database Administration perspective and look for the source database connection in the Administration Explorer view.

 2.	Expand the Application Objects folder. Click the Stored Procedures folder. The Object Editor lists all the stored procedures available in the server. You can filter this list as discussed in “The Object Editor” on page 36.

 3.	Right-click the stored procedure that you just deployed to the target database and select Manage Privileges.

 4.	Select the users who you want to give execute privileges to by clicking the corresponding check box (Figure 3-7).

 5.	Click Preview DDL to see the GRANT statements.

 6.	Click Open with SQL Editor to persist the statements into a script in the project. This is suggested, as you are able to run this script against multiple servers.

 7.	Click Run DDL to execute the GRANT statements against the currently connected server.

 [image:]

 Figure 3-7 Manage privileges

 3.1.8 Creating package variations

 Data Studio supports creating packages with different bind options for SQL and SQLJ Java stored procedures on DB2 for z/OS1. The packages are created in different collection IDs. Use the New Package Variation wizard (Figure 3-8) to create a package variation of an existing stored procedure package.

 [image:]

 Figure 3-8 New Package Variation wizard

 Creating a package variation

 To do this:

 1.	Initially deploy the external SQL or SQLJ stored procedure on a DB2 for z/OS server using the NO COLLID option.

 2.	Bind the COLLID that you want the new package to reside in using com.ibm.db2.jcc.DB2Binder. Otherwise, you get a -805 at execution time.

 3.	From the Data Source Explorer, expand the connection to the newly deployed stored procedure.

 4.	Right-click the stored procedure and select Packages → New. The New Package Variation wizard is launched.

 5.	Select a target location. The default is the current database connection.

 6.	Select a collection ID. Click Browse to view a list of available collection IDs.

 7.	Specify the bind options for this package.

 8.	Click Finish to deploy the new package to the server. The new package is added to the Packages folder of the stored procedure.

 Executing a stored procedure using a specific package

 To do this:

 1.	Right-click the stored procedure and then select Run Settings → Options tab.

 2.	Type the collection ID associated with the package version that you want to execute in the Collection ID field. Click Browse to view a list of the collection IDs of the packages associated with this stored procedure. Click OK.

 3.	Right-click the stored procedure and then click Run to execute the stored procedure.

 For more information about package variation, see the article “Create package variations for z/OS DB2 stored procedures” on developerWorks at:

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608parmeshwar/

 	
 Note: If the user did not specify a package ID, the tooling generates a package ID with a value of SQL and a randomly generated number. After deploying the stored procedure, you can browse the deployed stored procedure’s properties in the Data Source Explorer using the property browser. The generated package ID is in the Options tab of the stored procedure’s Properties view. You can also browse the package variation properties in the same manner.

 3.1.9 Multiple jar support for Java stored procedures

 This feature, available starting with DB2 9 for z/OS, allows users to reference classes in supporting jar files. A supporting jar is a jar file that is referenced by another jar file at run time. Java stored procedures can reference classes that are either in the CLASSPATH of the associated Java stored procedure WLM procedure or in the jar in which the stored procedure resides.

 Data Studio associates an installed jar file with a Java path and allows the user to specify this Java path. To include supporting jars into a Java stored procedure, you must first import the jars into the Jars folder of the project.

 Importing a jar file

 To do this:

 1.	In the Data Project Explorer, open the project. Right-click it and then click Jars → Import.

 2.	In the Import wizard, specify the JAR ID. Click Browse.

 3.	A file browser is launched. Point to the location of the jar that you want to import and click OK.

 4.	Check the Deploy check box.

 5.	Optional: Set the current schema for the deployed jar. The default is CURRENT SQLID.

 6.	Figure 3-9 shows the completed page. Click Finish.

 [image:]

 Figure 3-9 Import a jar file

 Creating a Java stored procedure with a supporting jar

 To do this:

 1.	Create a Java Stored procedure using the steps in 2.2, “Creating a new stored procedure” on page 60.

 2.	Select Java from the Language pull-down list of the New Stored Procedure wizard.

 3.	If the imported jar is in a different Java package, click the Java tab of the Preview section and add the necessary import statements in the Java source.

 4.	Click Finish.

 5.	Deploy the stored procedure.

 6.	On the Java Path tab of the Routine Options page of the Deploy wizard, click Add.

 7.	In the Add Installable Jar dialog, select the jar that you previously imported.

 8.	Click Browse next to Class Reference pattern.

 9.	Select the default class and click OK. Figure 3-10 shows the completed Java Path page.

 10.	Click Finish.

 [image:]

 Figure 3-10 Add supporting jar for Java stored procedure

 Data Studio creates a dependency on the added jar file and calls the ALTER_JAVA_PATH DB2-supplied stored procedure during the deploy. The supporting jar is also included in the jar file that is installed in the server.

 You can also add previously deployed jars by dragging and dropping them from the Data Source Explorer into the Jars folder of the Data Development Project.

 From the Data Source Explorer, you can also

 •View or browse all jars installed on the server.

 •View the catalog data and Java path in the Property Browser for each jar.

 •View jars that are dependent on a particular jar.

 •Drop supporting jars.

 From the Data Project Explorer, you can:

 •Deploy a jar to the server.

 •Replace the jar if already installed in the server.

 •Edit the supporting jar characteristics, such as the Java path during deploy.

 •Deploy a Java stored procedure and all its supporting jars into the same jar file.

 3.1.10 Creating a web service from a stored procedure

 Data Studio offers a feature to add a stored procedure to an existing web services that exposes database operations (SQL SELECT and DML statements, XQuery expressions, or calls to stored procedures) to client applications.

 For details, see IBM Data Studio V2.1: Getting Started with Web Services on DB2 for z/OS, REDP-4510.

 To add a stored procedure to a web service:

 1.	Create a new web service. In the Data Explorer, select a project, then right-click the Web Services folder and select New Web Service (Figure 3-11).

 [image:]

 Figure 3-11 Create a new web service

 2.	The New Web Service dialog is displayed (Figure 3-12). Enter a name. You can specify your own namespace or use the default URI for this web service. Click Finish.

 [image:]

 Figure 3-12 Define a new Web service

 3.	To add a stored procedure to this web service, Right-click the stored procedure and then select Add to Web Service (Figure 3-13).

 [image:]

 Figure 3-13 Add a stored procedure call to a web service

 4.	In the Add Operation to Web Services page, select the web service that you previously created in the left panel. Click >. The web service is moved to the right panel (Figure 3-14). Click Next.

 [image:]

 Figure 3-14 Select the web service to add this stored procedure to

 5.	In the Name and Operator page, the name and operation are prefilled with the stored procedure’s name and a generated CALL to the stored procedure. Click Next.

 Data Studio can generate detailed or generic XML schemas for stored procedures that accept non-varying input values and return result sets that are always the same. To make the XML schema as detailed as possible, Data Studio needs to know the structure of these unchanging result sets. This information is obtained by running the stored procedure and capturing the input and result set information. The XML schema is generated from this run.

 6.	In the Generate XML Schema for Stored Procedure page (Figure 3-15), click Generate.

 [image:]

 Figure 3-15 Generate XML Schema for stored procedure

 7.	The call to the stored procedure is executed, and you see the stored procedure result set in the Output view. Click Finish.

 8.	You can now deploy the web service to an application server like WebSphere Application Server or Tomcat. To deploy the web service, right-click the web service and select Build and Deploy from the context menu.

 9.	The Deploy Web Service dialog is launched (Figure 3-16). Click Finish to complete the deploy of the web service.

 [image:]

 Figure 3-16 Specify options for deploying the web service

 Data Studio generates the web service runtime files, such as the WebSphere Definition Language (WSDL) file. The project folder is refreshed and the WSDL is added to the XML folder (Figure 3-17).

 [image:]

 Figure 3-17 Generated WSDL file

 3.2 Additional features in Optim Development Studio

 Optim Development Studio provides you with additional capabilities to bring your stored procedure development into the enterprise level. These are:

 •Configuration repository

 •Enhanced connection error handling

 •Server profiles

 •Deployment groups

 •pureQuery support

 3.2.1 Configuration repository

 As we saw in 2.1.2, “Creating a connection profile” on page 51, you can create and manage database connections to DB2 for z/OS in Data Studio using the New Connection profile wizard. After these connections have been created, you can share these connections by exporting the connection information to the file system and importing them into another (user’s) workspace.

 In Optim Development Studio, you can organized and share these connections using a configuration repository. A configuration repository is a set of database tables that contain the information and properties of the shared connections.

 The developerWorks article “Using common connections with Optim solutions” gives an excellent discussion and demonstration of how to create and manage database connections using configuration repositories. It is available from:

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0812devlin/index.html

 3.2.2 Enhanced connection error handling

 When you create a connection to DB2 for z/OS, this connection is created as a thread in DB2 for z/OS. If the client is not actively using the connection (as in when the user is simply editing or has left their workstation idle), if the idle thread timeout interval, IDTHTOIN, is reached, DB2 for z/OS severs this connection. Data Studio is not aware that the connection thread has been cancelled until a task requiring an active connection is done, such as retrieving an object’s information, or deploying an object.

 With Optim Development Studio 2.2.1, the connection is monitored and polled periodically. You can set the polling interval in Window → Preferences → Data Management → Connectivity → Connection Management (Figure 3-18).

 .[image:]

 Figure 3-18 Preferences - Connection polling option

 If the connection is lost, Optim Development Studio attempts to reconnect to the server. If Optim Development Studio cannot reconnect, it displays a message that the connection to this server has been lost. A dialog is launched to request an action from the user (Figure 3-19). Click OK to attempt to reconnect. Click Cancel to abort attempting to reconnect.

 [image:]

 Figure 3-19 Autoreconnect failure

 If your connection fails due to any other reason other than a lost connection, Optim Development Studio presents a dialog that explains the problem, and also gives you links to support information for debugging the problem (Figure 3-20).

 [image:]		

 Figure 3-20 Standardized2 connection error message

 3.2.3 Server profiles

 The connection profiles that you create in Data Studio refer to connection profiles in the workspace containing the connection information necessary to connect to the server. The same connection can be used by various projects with different deployment needs.

 Optim Development Studio 2.2.1 allows you to create server profiles, which contain not only the connection information but also a customized set of database settings, bind settings, and routine settings.

 For each JDBC connection created in the Data Source Explorer, Optim Development Studio generates a server profile and lists this profile in the Server Profile Manager view (Figure 3-21).

 [image:]

 Figure 3-21 Server Profile Manager view

 In addition, users can create their own non-generated server profiles with the New server profile toolbar button (Figure 3-22). Users can create multiple server profiles against the same connection, using different settings for different deployment needs.

 Right-click a server profile icon and click Open or double-click a server profile to manage the settings for this profile.

 As shown in Figure 3-22, you can set the:

 •Special registers to be used for the database connection

 •Default bind options and pureQuery static bind options

 •Routine options for each type of routine

 [image:]

 Figure 3-22 Multi-tab Server Profile property editor

 The developerWorks article “IBM Optim Development Studio: Test deployment simplified” provides an excellent discussion on the use of server profiles in an enterprise environment. It is available from:

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1010testdeployment/
index.html

 3.2.4 Deployment groups

 In Data Studio, when deploying one or more stored procedures from a project, there is a tight relationship between the target database server and the deployment options. If the user wanted to deploy some stored procedures with one set of options and another set of stored procedures with another set of options, he would have to either create two projects targeting the same server or change the options each time that he redeploys. The deploy options are not persisted.

 Optim Development Studio 2.2.1 introduces the concept of deployment groups. A deployment group is an ordered list of supported deployable artifacts from projects in your workspace. These artifacts include SQL Scripts, stored procedures, and user-defined functions. Deployment groups are associated with one or more server profile objects.

 Deployment groups allow you to deploy artifacts in a repeatable and auditable manner. This is especially advantageous when the deployment order is important because of artifact dependencies and when working with other developers who might want to deploy the same set of artifacts in their environment.

 The Deployment Manager view (Figure 3-23) lists the deployment groups, along with their associated artifacts and server profiles. The Deployment Results folder stores a history of the deployment.

 [image:]

 Figure 3-23 Deployment groups

 As discussed in the previous section, server profiles are used to specify a target database connection, along with specific database, bind, and routine settings for deployment.

 Deployment groups also keep track of the deployment history and status including timestamp information, status for a particular artifact in the group, and error/success results.

 The developerWorks article “IBM Optim Development Studio: Test deployment simplified” provides an excellent discussion on the use of deployment groups in an enterprise environment, along with the discussion on server profiles. It is available from:

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1010testdeployment/
index.html

 3.2.5 pureQuery support

 Included in Optim Development Studio V2.2.1 is support for pureQuery, which provides a high-performance data access platform that makes it easier to develop, optimize, secure, and manage data access. Several articles and tutorials about Optim Development Studio and pureQuery are available in developerWorks and in IBM support sites.

 With Optim Development Studio V2.2.1, you can:

 •Generate Java beans to represent table columns.

 •Develop SQL applications using annotated methods and inline methods. For annotated methods, you can define your own methods in custom interfaces. With inline methods, SQL statements are passed as parameters in method invocations, similar to JDBC and SQLJ.

 •Examine and locate a SQL statement or references to a relational object in the Java source.

 •Run SQL against databases, in-memory collections, and iterator objects by using a single API.

 •Map SQL data to Java types with little developer intervention, or supply customized code for complex mappings.

 •Develop applications that follow the Data Access Object (DAO) pattern by creating data access object using annotated methods.

 •Capture dynamic SQL in a JDBC application, package these statements, and later execute them statically at run time.

 •And so on.

 Several developerWorks articles and tutorials have been written about pureQuery, its benefits, and how to use Optim Development Studio for developing Java applications that use pureQuery. Among them are:

 •“Increase productivity in Java database development with new IBM pureQuery tools, Part 1: Overview of pureQuery tools”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709surange/index.html

 •“Increase productivity in Java database development with new IBM pureQuery tools, Part 2: Detect and fix SQL problems inside Java program”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709surange2/index.html

 •“Increase productivity in Java database development with new IBM pureQuery tools, Part 3: pureQuery rapid application development”

 http://www.ibm.com/developerworks/data/tutorials/dm0711surange/

 •“Increase productivity in Java database development with new IBM pureQuery tools, Part 4: Tour Data Studio and pureQuery for Informix databases”

 http://www.ibm.com/developerworks/data/tutorials/dm0802surange/index.html

 •“What's new and cool in Optim Development Studio, Part 2: Exploring Optim Development Studio and pureQuery Runtime Version 2.2 Fix Pack 3”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1006optimdeveloper2/index.html

 1 This applies to Java stored procedures using SQLJ and external SQL stored procedures, not to native SQL procedures. Native SQL procedures packages are DB2-controlled.

 2 Optim Development Studio continues to standardize error messages for all components in future releases.

[image:]
[image:]

Debugging stored procedures with Data Studio

 The Unified Debugger available in Data Studio V2.2.1 and Optim Development Studio V2.2.1 gives you the ability to debug native SQL, external SQL, and Java stored procedures using an easy-to-use graphical interface.

 In this chapter we discuss the product functions and how to set up and use the Unified Debugger in the following sections:

 •The Unified Debugger

 •Setting up the Session Manager

 4.1 The Unified Debugger

 The Unified Debugger is a single debugger that can be used to debug SQL and Java stored procedures on DB2 for z/OS, DB2 on iSeries, and DB2 on Linux, UNIX, and Windows. It is included in the IBM Data Studio and Optim Development Studio products.

 Users investing in DB2 application development have a need for formal debugging facilities. This need is even intensified when working on DB2 stored procedure development because the code runs in isolation at a DB2 server.

 For classic languages, such as COBOL and C, the compiler products and their associated runtime facilities provide debug capabilities. Conversely, we have interpreted languages such as SQL and Java, where debugging sometimes has caused problems. The Unified Debugger focuses on these newer languages.

 With the Unified Debugger, you can observe the execution of SQL procedure code or Java code, set breakpoints for lines, and view or modify variable values. The Unified Debugger supports external SQL, native SQL, and Java stored procedures.

 The Unified Debugger can debug nested SQL or Java stored procedures sharing the same client application call stack. This means that users debugging a Java routine can step into and debug a called SQL procedure.

 There are three basic elements to the Unified Debugger:

 •The Unified Debugger server library: APIs that provide the interface for the DB2 servers and the supported routine objects.

 •The Session Manager and the Unified Debugger router stored procedures that implement the client interface to the DB2 servers. This layer is independent of any particular platform or DB2 server type. The Unified Debugger in Data Studio v2.2.1 allows the user to bypass the use of a Session Manager by using the built-in Session Manager.

 •A debug client that provides the debugger UI to the user: The debug client is only available on LUW clients.

 4.1.1 Processing overview of the Unified Debugger

 The IBM Data Studio or Optim Development Studio can be used to debug both native and external SQL stored procedures and Java stored procedures against DB2 10 for z/OS.

 The chart in Figure 4-1 describes the processing flow for debugging stored procedures using the Data Studio Unified Debugger.

 [image:]

 Figure 4-1 Processing overview - Unified Debugger with DB2 9 for z/OS

 A quick overview of the process shown in Figure 4-1 follows:

 1.	Decide whether to use the built-in Session Manager or an external Session Manager (SM). If you want to use an external Session Manager, decide whether you want DS to use the SM that is connected to a server or use a SM that is currently active. You can start the SM either on the workstation, such as the client’s workstation, or the z/OS server. Inform DS of this decision in Window → Preferences → Run/Debug → DB2 Stored Procedure Debugger. Select Run the session manager on each connected server or Use already running session manager. In the latter selection, the user must start the SM and capture the IP address or port of the SM.

 2.	Create, edit, and deploy with debug enabled an SQL or the Java stored procedure.

 3.	Debug rather than run the stored procedure. Do this by right-clicking the stored procedure and then selecting Debug.

 4.	The DB2 server hosting the stored procedure engages the SM via the debug server, establishing the debug session.

 5.	 Data Studio (DS) switches the UI to the Debug Perspective, signalling that debugging is underway.

 6.	For Java stored procedures, DS drives the debug session by directly communicating with the JVM at the server.

 7.	For SQL procedure debugging, the SM is the central coordinating agent.

 a.	DS drives the debug session with direct TCP/IP communication to the SM.

 b.	DS drives the debug session via indirect communication to the SM. DS calls the debug router procedures (red 7b), which in turn communicates with the SM (blue 7b) via TCP/IP.

 8.	SQL procedures keep the debug server informed of the program status. The debug server coordinates control from DS via TCP/IP communication with the SM.

 4.1.2 Setting up the Unified Debugger components

 There are a couple of steps that you need to go through to be able to use the Unified Debugger functionality.

 Installing the IBM Data Studio or Optim Development Studio Client

 To install the IBM Data Studio or Optim Development Studio, execute the LAUNCHPAD.EXE file that comes with the product (see 1.4.2, “Client setup” on page 7). Unlike certain other products, there is hardly anything that you need to decide during your installation. See 1.2, “Understanding the Data Studio packaging” on page 2, for details on obtaining a copy of the no-charge IBM Data Studio or the charged product, Optim Development Studio.

 Running install job DSNTIJRT

 The DB2 10 for z/OS installation job DSNTIJRT creates the DB2 server objects required when using the Unified Debugger. Before DB2 10, the required DB2 server objects for the Unified Debugger are created using the post-installation job, DSNTIJSD.

 The Unified Debugger uses the following DB2-supplied stored procedures:

 •DB2DEBUG.DEBUGGERLEVEL

 •DB2DEBUG.CREATE_SESSION

 •DB2DEBUG.DESTROY_SESSION

 •DB2DEBUG.QUERY_SESSION

 •DB2DEBUG.LIST_SESSION

 •DB2DEBUG.PUT_COMMAND

 •DB2DEBUG.GET_REPORT

 •SYSPROC.DBG_INITIALIZECLIENT

 •SYSPROC.DBG_TERMINATECLIENT

 •SYSPROC.DBG_SENDCLIENTREQUESTS

 •SYSPROC.DBG_SENDCLIENTCOMMANDS

 •SYSPROC.DBG_RECVCLIENTREPORTS

 •SYSPROC.DBG_ENDSESSIONMANAGER

 •SYSPROC.DBG_PINGSESSIONMANAGER

 •SYSPROC.DBG_LOOKUPSESSIONMANAGER

 •SYSPROC.DBG_RUNSESSIONMANAGER

 DSNTIJRT also configures the WLM environment for the above stored procedures.

 	
 Note: Stored procedure DBG_RUNSESSIONMANAGER is only available for DB2 9 and 10 on z/OS and must run as an authorized program in an authorized environment.

 Optional setup for the stored procedure WLM environment

 A WLM procedure must be defined for executing the stored procedure. For SQL stored procedures, this WLM procedure optionally includes a DD card for collecting information during the debug session.

 •For SQL stored procedures, a //PSMDEBUG statement can be added in the WLM procedure. The //PSMDEBUG statement defines a physical sequential data set with RECFM=VBA, LRECL=4096. This data set should only be included in the WLM procedure when requested by IBM Level 2, as the //PSMDEBUG statement presence causes records to be written to it for SQL Debugger problems that will impact performance.

 •For Java stored procedures, a //JSPDEBUG statement can be added in the WLM procedure. The data set definition and usage of the file referenced in the //JSPDEBUG statement is the same as that used in the //PSMDEBUG statement.

 4.2 Setting up the Session Manager

 You can have the Session Manager run on any platform that you prefer. The SM is the component that handles the debug session between the debug client and the debug server. We recommend using the built-in Session Manager of Data Studio. There is no setup required for using the built-in Session Manager. In this section we discuss:

 •Session Manager on the z/OS server

 •Session Manager on a client

 •Creating SQL stored procedures for debugging

 •Debugging SQL stored procedures

 •Using the Unified Debugger

 4.2.1 Session Manager on the z/OS server

 This section documents how to set up the SM on the z/OS server.

 Defining the started task to RACF

 The RACF definitions shown in Example 4-1 must be added to your z/OS security system.

 Example 4-1 Define DB2UDSMD to RACF

 [image:]

 //UDBG1 JOB ('RACF'),CLASS=A,MSGCLASS=A,MSGLEVEL=1,

 // USER=********, PASSWORD=*******

 //*--

 //* Define the Unified Debugger Session Manager Started Task to RACF.

 //* A security manager ID must be used to perform the definitions.

 //*

 //* The STARTED task is defined by a RACF profile named DB2UDSMD.**

 //* USRT005 will be the ID associated with this Started Task.

 //* Since the task will run a java program from OMVS, also assign an

 //* OMVS segment definition to the user (UID, home dir, etc.)

 //* Finally, activate the STARTED task definition in current memory.

 //*--

 //RACFDEF EXEC TSOBATCH

 //SYSTSIN DD *

 ALTUSER USRT005 OMVS(UID(5) HOME('/u/usrt005') PROGRAM('/bin/sh'))

 RDEFINE STARTED DB2UDSMD.** STDATA(USER(USRT005))

 SETROPTS RACLIST(STARTED) REFRESH

 END

 [image:]

 The STARTED task is defined by a RACF profile named DB2UDSMD.**.

 	
 Important: It is mandatory to use DB2UDSMD as the started task name. The Session Manager is not tied to a specific DB2 subsystem, nor is it tied to any DB2 subsystem.

 USRT005 was designated to be the ID associated with this started task. Because the task will run a Java program from OMVS, also assign an OMVS segment definition to the user (that is, UID, home dir, and so on). Finally, activate the STARTED task definition in current memory.

 Creating the environment settings

 The job shown in Example 4-2 is used to create a file in the HFS to hold the environment settings used by the Session Manager's started task.

 Example 4-2 Job to create a file in HFS to hold the environment settings

 [image:]

 //UDBG2 JOB 'USER=$$USER','<USERNAME:JOBNAME>',CLASS=A,

 // MSGCLASS=A,MSGLEVEL=(1,1), REGION=4096K,

 // USER=USRT005,PASSWORD=*******

 //*--

 //* Create a file in the HFS to hold the Environment settings used when

 //* the Unified Debugger Session Manager runs as a Started Task on z/OS

 //*

 //* USRT005 is the ID associated with the Started Task.

 //* Place the file in that users home directory.

 //* Name the file DB2UDSMDenvironment

 //*--

 //*--

 //* Create a file in the HFS from inline data using COPY

 //*--

 //OCOPY EXEC PGM=IKJEFT01,DYNAMNBR=30

 //SYSTSPRT DD SYSOUT=*

 //HFSOUT DD PATH='/u/usrt005/DB2UDSMDenvironment',

 // PATHOPTS=(OWRONLY,OCREAT,OAPPEND,OTRUNC),

 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)

 //INLINE DD *

 #--

 # Environment settings for running the Unified Debugger Session Manager

 # * _BPX_BATCH_SPAWN=NO

 # * _BPX_SHAREAS=YES

 # Arrange for the JVM to run in the same address space. This avoids

 # launching 2 additional address spaces for the Started Task.

 # * ENV=

 # Reference this file. Insulates from PATH and CLASSPATH changes

 # present in etc/profile.

 # * PATH=

 # The location of the desired JAVA release, and system binaries.

 # * CLASSPATH=

 # The location of the UDBG Session Manager jar file

 # * JAVA_COMPILER=NONE

 # Disable the JIT. The Started Task runs the Session Manager only

 # one time, so disabling this saves space that will not be used.

 #--

 _BPX_BATCH_SPAWN=NO

 _BPX_SHAREAS=YES

 ENV=/u/usrt005/DB2UDSMDenvironment

 PATH=/usr/lpp/java150/J5.0/bin:/bin

 CLASSPATH=/usr/lpp/db2/db2910_base/classes/db2dbgm.jar

 JAVA_COMPILER=NONE

 //SYSTSIN DD *

 OCOPY INDD(INLINE) OUTDD(HFSOUT) TEXT

 //

 [image:]

 Create a file in the HFS to hold the environment settings used when the Unified Debugger Session Manager runs as a started task on z/OS.

 An ID must be designated to be associated with the started task. Suppose that USRT005 is that ID. Place a file in that user's home directory to serve as an execution environment profile. The file must point to the location of the Session Manager jar file, db2dbgm.jar. Name the file something distinctive, such as DB2UDSMDprofile.

 	
 Note: Ensure that the CLASSPATH points to where the db2dbgm.jar file is installed. Otherwise, the started task, DB2UDSMD, does not come up.

 In both Example 4-1 on page 119 and Example 4-2 on page 120 we used USRT005 as the place holder for the ID associated with started task DB2UDSMD, which you must change to your specific situation.

 The use of a named HFS application profile is suggested for simple setup and segregation of duties. At a minimum, it needs to define the CLASSPATH to the Session Manager Java program. Other settings to tune the Java execution environment can be included. Note that BPXBATCH reads the STDENV file, so no shell script symbol substitution can be utilized here. Symbol substitution processing is only available to the user profile (.profile) for the started task user ID and scripts executed from the shell command line.

 The Session Manager is independent of DB2, so it can run anywhere in the network. But the server platform (that is, the operating system that the stored procedure that you want to debug runs) is often a better default choice than running at the client workstation. The session Manager JAR file is now distributed on all server platforms, so it does not have to be obtained, downloaded, sent, pulled, pushed, or transported by you.

 Creating a started task JCL

 Create the started task JCL for DB2UDSMD and place it in the system proclib (Example 4-3). This is used to launch the Unified Debugger Session Manager on z/OS. USRT005 is the ID associated with this started task, as defined in the RACF STARTED class profile DB2UDSMD.**.

 Example 4-3 Sample started task JCL for the Session Manager on z/OS

 [image:]

 //UDBG3 JOB 'USER=$$USER','<USERNAME:JOBNAME>',CLASS=A,

 // MSGCLASS=A,MSGLEVEL=(1,1), REGION=4096K,

 // USER=********,PASSWORD=*******

 //*--

 //* Create the Started Task JCL for DB2UDSMD. A START command will then

 //* be able to launch the Unified Debugger Session Manager on z/OS.

 //* USRT005 is the ID associated with the Started Task, as defined in

 //* the RACF STARTED class profile DB2UDSMD.**

 //*--

 //*--

 //* Use IEBUPDTE to write a JCL member into SYS1.PROCLIB

 //*--

 //WRITEJCL EXEC PGM=IEBUPDTE,PARM=NEW

 //SYSPRINT DD SYSOUT=*

 //SYSUDUMP DD SYSOUT=*

 //SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB

 //SYSIN DD DATA

 ./ ADD NAME=DB2UDSMD

 //DB2UDSMD PROC PORT=4553,TIMEOUT=60

 //*

 //* DB2 Unified Debugger Session Manager DAEMON FOR OPENEDITION

 //*

 //* This JCL assumes no .profile exists for the user.

 //*

 //* Environment settings (PATH, CLASSPATH) come from STDENV file.

 //*

 //DB2UDSMD EXEC PGM=BPXBATCH,DYNAMNBR=128,REGION=0M,TIME=1440,

 // PARM='SH date;java com.ibm.db2.psmd.mgr.Daemon -timeout

 // &TIMEOUT -port &PORT -log /dev/null;date'

 //STDOUT DD PATH='/tmp/DB2UDSMD.stdout',

 // PATHOPTS=(OWRONLY,OCREAT,OAPPEND,OTRUNC),

 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)

 //STDERR DD PATH='/tmp/DB2UDSMD.stdout',

 // PATHOPTS=(OWRONLY,OCREAT,OAPPEND,OTRUNC),

 // PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIROTH)

 //STDENV DD PATH='/u/usrt005/DB2UDSMDenvironment',

 // PATHOPTS=ORDONLY

 // PATHOPTS=ORDONLY

 ./ ENDUP

 /*

 [image:]

 	
 Note: BPXBATCH does not derive PATH from STDENV. For the Session Manager, PATH only needs to point to the Java run time. One approach is to specify the PATH directly on the command line (Example 4-2 on page 120). Another method requires the use of a shell script profile (.profile) for the started task user, which we have not included in this documentation. Note that the job step options in the JCL shown, which include the OMVS shell command, were carefully arranged to efficiently utilize the limited space available. The space is limited to 100 characters in total. As shown in Example 4-3 on page 121, there are still about 18 characters left to adjust the path specification for Java.

 Considerations when coding the DB2UDSMD started task

 Consider the following information:

 •The PARM field

 When running the above task, you may get the following error:

 IEF642I EXCESSIVE PARAMETER LENGTH IN THE PARM FIELD

 This is because the PARM filed is limited to 100 characters only. To fix this, you can do either of the following options:

  –	If the PARM field does not contain comma-delimited parameters and the PARM field contains less than 100 characters, enter PARM field data through position 71 and then continue exactly in position 16 of the next line and enclose the entire PARM field with apostrophes (Example 4-4).

 Example 4-4 Coding long PARM field into next line

 [image:]

 123456789012345678901234567890123456789012345678901234567890123456789012

 //STEP3___EXEC PGM=IEFBR14,PARM='LONG PARAMETER FIELD WITHOUT COMMA DEL

 //_____________IMITERS - CONTINUED IN COLUMN 16 OF THE NEXT LINE'

 [image:]

  –	If the PARM field does not contain comma-delimited parameters, and the PARM field is greater than 100 characters, use an STDPARM DD card. This workaround is available with APAR OA11699. See:

 http://www.ibm.com/support/docview.wss?uid=isg1OA11699

 The STDPARM file can accept 65.356 bytes.

 So, for example, create the file ADMF001.DB2UDSMD.PARMOMVS, which contains the following data:

 SH date;/ZOS17TC/usr/lpp/java/j1.4_64/bin/java com.ibm.db2/psmd.mgr.Daemon -timeout &TIMEOUT -port &PORT;date

 Code the DB2UDSMD procedure as shown in Example 4-5.

 Example 4-5 DB2UDSMD procedure with STDPARM

 [image:]

 //DB2UDSMD EXEC PGM=BPXBATCH,DYNAMNBR=128,REGION=0M,TIME=1440

 //STDPARM DD DISP=SHR,DSN=ADMF001.DB2UDSMD.PARMOMVS

 [image:]

 •STDERR and STDOUT files

 The HFS files pointed to by STDERR and STDOUT need to have the property access authorizations. Otherwise, the DB2UDSMD task will not start, and the user might see messages similar to those in Example 4-6 in the console.

 Example 4-6 Authorization error

 [image:]

 IEF403I DB2UDSMD - STARTED - TIME=15.52.36

 ICH408I USER(DB2UDSMD) GROUP($STCGRP) NAME(DB2UDSMD

 /app/db2/tmp/DB2UDSMD.stdout

 CL(DIRSRCH) FID(01C1F7D7D9F0F4009621000000000003)

 INSUFFICIENT AUTHORITY TO STAT

 ACCESS INTENT(--X) ACCESS ALLOWED(OTHER ---)

 IEF403I DB2UDSMD - STARTED - TIME=16.05.08

 ICH408I USER(DB2UDSMD) GROUP($STCGRP) NAME(DB2UDSMD

 /app/db2/tmp CL(DIRSRCH) FID(01C1F7D7D9F0F4009621000000000

 INSUFFICIENT AUTHORITY TO CHDIR

 ACCESS INTENT(--X) ACCESS ALLOWED(OTHER ---)

 EFFECTIVE UID(0000000005) EFFECTIVE GID(0000000100)

 IEF403I DB2UDSMD - STARTED - TIME=16.29.18

 ICH408I USER(DB2UDSMD) GROUP($STCGRP) NAME(DB2UDSMD

 /app/db2/tmp/DB2UDSMD.stdout

 CL(DIRACC) FID(00000001000000010000000000000000)

 INSUFFICIENT AUTHORITY TO OPEN

 ACCESS INTENT(-W-) ACCESS ALLOWED(OTHER R-X)

 [image:]

 To fix this, change the permission bits for the /app/db2 directory from 700 to 755. DB2UDSMD does not have the authority to change the directory at the /app/db2 directory. Every directory in the path has to have the permissions in order to change directory.

 To change to /app/db2/tmp, the user ID has to have directory permission to the:

  –	/app directory

  –	/app/db2 directory

  –	/app/db2/tmp directory

 Starting the Session Manager started task on z/OS

 After you have executed all the JCL, you can now test whether the Session Manager is working:

 1.	From the z/OS console, issue a START DB2UDSMD,TIMEOUT=1 operator command to start your Session Manager.

 2.	Wait a few minutes. The Session Manager will time out after 1 minute of inactivity.

 3.	Check the contents of the HFS file in STDOUT, /tmp/DB2UDSMD.stdout. Figure 4-2 shows an example of a good output from the Session Manager.

 	
 Mon Mar 2 12:48:32 PST 2009

 args[0]: -timeout

 args[1]: 1

 args[2]: -port

 args[3]: 4553

 args[4]: -log

 args[5]: /dev/null

 Code Level: 070418

 Debug Session Manager started on IP: 9.30.88.135 - port: 4553

 idleTimeOut: 1

 Mon Mar 2 12:49:37 PST 2009

 Figure 4-2 Example of a successful output from the Session Manager

 Granting DEBUGSESSION privilege

 Grant the DEBUGSESSION privilege to the user that runs the debug client. The DEBUGSESSION privilege is a new system authorization. Refer to the new catalog column DEBUGSESSIONAUTH in table SYSIBM.SYSUSERAUTH to obtain information about who has already been granted this privilege.

 	
 Tip: For more information about the Unified Debugger and DB2 for z/OS, read the following articles in developerWorks:

 •Debugging stored procedures in DB2 z/OS with Optim Development Studio, Part 1: Use the Unified Debugger in a sample scenario

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0811zhang/index.html

 •Debugging stored procedures on DB2 z/OS with Data Studio Developer, Part 2: Configure the stored procedure debug session manager on z/OS

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0903debugdata
studio/

 Preparing your stored procedures for debugging

 After you have successfully set up the environment for debugging your SQL stored procedures, you must now decide for every single stored procedure whether you want to debug it.

 For a native SQL procedure, define the procedure with the ALLOW DEBUG MODE option and the WLM ENVIRONMENT FOR DEBUG MODE option.

 For an external SQL procedure, use DSNTPSMP or the IBM Data Studio to build the SQL procedure with the BUILD_DEBUG option.

 For a Java procedure, define the procedure with the ALLOW DEBUG MODE option, select an appropriate WLM environment for Java debugging, and compile the Java code with the -G option.

 4.2.2 Session Manager on a client

 To set up the Session Manager on a workstation where the IBM Data Studio is installed:

 1.	Open a command window and go to the directory where the IBM Data Studio is installed, for example, C:\Program Files\IBM\SDP70\dwb\bin>. From this directory, run db2dbgm.bat. Note the IP address and port of the Session Manager (Figure 4-3).

 	
 C:\Program Files\IBM\SDP70\dwb\bin>db2dbgm.bat

 args[0]: -port

 args[1]: 4554

 args[2]: -timeout

 args[3]: 50

 Code Level: 070418

 Debug Session Manager started on IP: 9.30.28.113 - port: 4554

 idleTimeOut: 50

 Figure 4-3 Debug Session Manager startup

 2.	Launch the IBM Data Studio. Click Window → Preferences → Run / Debug → DB2 Stored Procedure Debugger. On this page, click Use already running session manager. Fill in the host IP address and port number of the session manager (Figure 4-4 on page 126).

 3.	Click Apply → OK.

 Setting up the Session Manager on the server

 In 4.1, “The Unified Debugger” on page 116, we gave the steps for setting up the Session Manager on the z/OS server. If your client has a firewall, then it might not be feasible for the server to initiate communication with the Session Manager in the client. You might then want to use the Session Manager in the z/OS server.

 To use the Session Manager, in the IBM Data Studio preferences shown in Figure 4-4, click Run the session manager on each connected server.

 [image:]

 Figure 4-4 Preferences for using the client Session Manager

 4.2.3 Creating SQL stored procedures for debugging

 IBM Data Studio can be used to create SQL stored procedures, though it is not required. However, it must be used to build the stored procedure for debug. First, we describe the general steps to create an SQL stored procedure for debugging, followed by our EMPDTLSS case study:

 1.	Start IBM Data Studio from Start → All Programs → IBM Software Development Platform → IBM Data Studio → IBM Data Studio.

 2.	Create a new connection or reconnect to an existing DB2 9 for z/OS server.

 3.	Create a new project or open an existing Data Development Project.

 4.	Optional: Update the Unified Debugger time-out value.

 The default time-out value is 300 seconds. This means that while in debug mode, after 300 seconds of inactivity, the Debugger terminates and any locks held by the stored procedure being debugged are released. The SQL stored procedure will run to completion.

 This value can be changed from the Preferences pages (Figure 4-4 on page 126). On the Preference page, this is the number of seconds of inactivity before the procedure runs to completion. We use the default value for our case study. Click OK to accept the default value.

 5.	Create a new stored procedure. During the creation of the SQL stored procedure using the New Stored Procedure wizard, check the Enable debugging check box on the Deploy Options page. See 2.2.1, “Creating a new stored procedure using templates” on page 61, for detailed steps on how to create a new SQL stored procedure.

 The IBM Data Studio Data Output window includes a message indicating whether the stored procedure performed a build for debug. For an external SQL stored procedure, the build utility reports a BUILD_DEBUG function and whether it was successful (Example 4-7).

 Example 4-7 BUILD_DEBUG function was completed successfully

 [image:]

 Build utility function requested: BUILD_DEBUG

 DSNT540I DB9AWLMR WAS REFRESHED BY PAOLOR5 USING AUTHORITY FROM SQL ID PAOLOR5 : 0

 PAOLOR5.EXTSQL_1101 - Deploy for debug successful.

 [image:]

 For a native stored procedure, the output displays the beginning message Deploy for debug started and ends with the message Deploy for debug successful.

 4.2.4 Debugging SQL stored procedures

 Once the SQL stored procedure is successfully built for debug mode, we can debug the stored procedure. In 4.2.2, “Session Manager on a client” on page 125, we discussed how to launch the Session Manager. It is now ready to handle the communication between IBM Data Studio and the Unified Debugger code on the server. You can start debugging from three launch points:

 •From Data Project Explorer, select the SQL stored procedure and right-click Debug.

 •With the SQL stored procedure opened in the Routine Editor (which can be done by selecting the SQL stored procedure in Data Project Explorer and righting-click Open), click the Source tab. Right-click whitespace → Debug As → Debug.

 •From the Routine Editor → Configuration tab, click Debug (Figure 4-5).

 [image:]

 Figure 4-5 Starting the Debugger from the Routine Editor

 When the stored procedure is launched in debug mode, the user is prompted to switch into the Debug Perspective. Click Yes. In the Debug Perspective, you can set breakpoints in the prefix area to the left of a valid statement, monitor and change the values of variables, and interactively debug.

 	
 Note: When connected to a DB2 9 server, IBM Data Studio assumes that if the imported SQL stored procedure contains a WLM environment, then the stored procedure is an EXTERNAL type, rather than native. You need to manually edit the CREATE PROCEDURE DDL before importing, and add the FENCED keyword to correctly identify this as an External SQL procedure.

 •Summary: The above settings are summarized. Click Finish to build the stored procedure for debug.

 4.2.5 Using the Unified Debugger

 In this section we go through the features and tasks for using the Unified Debugger. See the following website for an IBM developerWorks article that talks about the Unified Debugger and other problem determination tips:

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0706scanlon/

 When a debug session has been established, IBM Data Studio initiates a switch from the Data Perspective to the Debug Perspective.

 The Debug Perspective

 The Unified Debugger launches the Eclipse Debug Perspective (Figure 4-6) when a stored procedure is being debugged. This perspective is the same graphical interface used when debugging an SQL stored procedure, a Java stored procedure, a Java application, or any other resource in Eclipse.

 [image:]

 Figure 4-6 The Debug Perspective

 The Debug Perspective is made up of the following related views and tool bars:

 •Routine Editor view: Shows the SQL code.

 •Breakpoints view: Shows the list of break points currently set.

 •Variables view: Shows the list of defined variables.

 •Outline view: Shows the variables and methods of the stored procedure under execution.

 •Data Output: Shows the status history, execution messages, parameters, and result sets, if any.

 •Execution toolbar: Provides icons to debug or simply execute a stored procedure. Also keeps a list of the most recently executed stored procedures.

 •Debugger toolbar: Provides icons for the various debug execution step commands:

  –	Step into

  –	Step over

  –	Step return

  –	Resume

  –	Pause

  –	Terminate

 These views are connected in the sense that the break points and variables views show the debug data for the stored procedure currently shown in the Routine Editor view. Switching to a different procedure in the Routine Editor causes the break points and variables views to display the debug data for the newly selected stored procedure code. The Debug Perspective also includes a specialized set of toolbars for debugging.

 •Routine Editor view

 The routine editor displays the stored procedures being debugged. Each tab in the Editor view displays an open resource. You can set breakpoints in this view, either during debug or before initiating the debug in the Data Perspective.

 •Execution toolbar

 The Execution toolbar includes three actions (Figure 4-7):

  –	Debug: Executes a stored procedure in Debug mode. The pull-down list next to the icon shows all previously debugged stored procedures. The default is to debug the last executed stored procedure.

  –	Run: Executes a stored procedure. The pull-down list next to the icon shows all previously executed stored procedures. The default is to execute the last executed stored procedure.

  –	External tools: Executes an Ant script or another tool. IBM Data Studio does not use this action.

 [image:]

 Figure 4-7 Debug and Run toolbar

 •Debugger toolbar

 The Debugger toolbar includes the debug step commands illustrated in Table 4-1.

 Table 4-1 Execution toolbar

 	
 Icon

 	
 Command description

 	
 [image:]

 	
 Step into the next line or block of SQL code. If the current statement is a stored procedure call, then the next line is the first line of the called stored procedure.

 	
 [image:]

 	
 Step over to the next line of execution. If the current line is a call to a nested stored procedure or the next line is an indented block of code, then the nested procedure or block of code will be executed as one statement unless a break point was encountered.

 	
 [image:]

 	
 Step return causes execution to resume at the next line in the parent stored procedure of the current nested stored procedure unless a break point is encountered. If the current stored procedure is the only stored procedure in the call stack, then execution will run to completion or the next break point encountered.

 	
 [image:]

 	
 Resume causes the stored procedure being debugged to run and stop or break at the next breakpoint.

 	
 [image:]

 	
 Pause causes the execution of the stored procedure to be suspended. Click Resume or Terminate to continue or terminate execution.

 	
 [image:]

 	
 Terminate causes the execution of the stored procedure to stop. This does not cause the stored procedure to run to completion. This simulates an abort.

 •Variables view

 The Debug Perspective’s Variables view displays the current values of the defined variables in the stored procedures. When debugging a Java stored procedure, the Variables view also lists inherited variables.

 •Outline view

 The Outline view in the Debug Perspective is the same as in the Data Perspective. It shows on a higher level where in the stored procedure code execution is stopped. When debugging a Java stored procedure, this view shows the method where the stored procedure is stopped.

 •Breakpoints view

 The Debug Perspective’s breakpoints view and its associated toolbar allow you to manage the breakpoints that you have set. When you set a breakpoint in the Routine Editor, an entry is added in this view, with the resource name and line number. A check box next to this entry indicates that the breakpoint is active. To disable this breakpoint, but not remove it, uncheck the entry (Figure 4-8).

 [image:]

 Figure 4-8 Breakpoints view

 The Breakpoints view also has a specialized toolbar for managing the breakpoints (Table 4-2).

 Table 4-2 Breakpoints view toolbar

 	
 Icon

 	
 Command description

 	
 [image:]

 	
 Remove a breakpoint. Click an entry or several entries, and click this icon to remove the breakpoint.

 	
 [image:]

 	
 Remove all breakpoints.

 	
 [image:]

 	
 Skip all breakpoints. This causes the execution to complete without stopping.

 	
 [image:]

 	
 Show all breakpoints.

 Valid Unified Debugger breakpoint statements

 The Unified Debugger highlights certain statements during a debug session. The highlighted statements are the only statements that you can step into or put breakpoints on. Certain SQL statements change variables, while other statements do nothing. Table 4-3 summarizes this.

 Table 4-3 Valid SQL Debugger breakpoint and change variable statements

 	
 Category of statements

 	
 Statements

 	
 Statements that change variables

 	
 CALL FETCH <..> INTO

 GET DIAGNOSTICS

 SELECT <..> INTO

 SET

 	
 Statements that do not accept breakpoints and do not impact the Unified Debugger processing

 	
 DECLARE cursor WITH RETURN FOR <sql statement>

 DECLARE CONDITION (CONDITION) FOR SQLSTATE (VALUE) "..."

 DECLARE CONTINUE HANDLER

 DECLARE CURSOR

 DECLARE EXIT HANDLER

 DECLARE UNDO HANDLER (unless they are entered)

 DO

 ELSE

 END CASE

 END IF

 END FOR

 END REPEAT

 END WHILE

 LOOP

 REPEAT (as a keyword alone)

 THEN

 labels, e.g. P1: :

 	
 Statements that accept breakpoints (highlighted statements)

 	
 All SQL statements

 The following SQLPL statements:

 BEGIN

 BEGIN NOT ATOMIC

 BEGIN ATOMIC

 CLOSE CURSOR

 DECLARE var without default

 DECLARE RESULT_SET_LOCATOR [VARYING]

 DECLARE SQLSTATE

 DECLARE SQLCODE (unless there is a default)

 DO (inside a FOR)

 END

 FOR .. END

 FOR select statement...

 GOTO(LABEL)

 IF (EXPRESSION)

 ITERATE

 LEAVE

 OPEN CURSOR

 RESIGNAL

 SIGNAL

 RETURN(value)

 SELECT <..> INTO

 SET (EXPRESSION)

 UNTIL (EXPRESSION)

 WHEN (VALUE)

 WHILE (EXPRESSION)

 Resources

 The following 2-part articles found in developerWorks provide updated information about the Unified Debugger. These articles are updated by the Data Studio development team when needed.

 •“Debugging stored procedures in DB2 z/OS with Optim Development Studio, Part 1: Use the Unified Debugger in a sample scenario”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0811zhang/index.
html?S_TACT=105AGX54&S_CMP=B1113&ca=dnw-945,

 •“Debugging stored procedures on DB2 z/OS with Data Studio Developer, Part 2: Configure the stored procedure debug session manager on z/OS”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0903debugdatastudio/?S_TACT=105AGX11&S_CMP=LP

[image:]
[image:]

Reference material

 In this appendix we provide additional material referenced from the preceding chapters. This appendix contains the following:

 •Data Studio and Optim Development Studio V2.2.1 support features

 •Supported functions of the three Data Studio products

 •Actions on database objects from the Administration Explorer

 Data Studio and Optim Development Studio V2.2.1 support features

 Table A-1 lists the supported data servers for Data Studio and Optim Development Studio.

 Table A-1 Supported servers for Data Studio and Optim Development Studio

 	
 Database

 	
 Version

 	
 Comments

 	
 DB2 for Linux, UNIX, and Windows 1

 	
 9.1	

 	

 	
 9.5	

 	

 	
 9.7

 	

 	
 9.8

 	
 Version 2.2.1 toleration mode.

 	
 DB2 for iSeries	

 	
 V5R4	

 	

 	
 DB2 for z/OSa

 	
 8.1		

 	
 Version 2.2.0.3 and later.

 	
 9.1	

 	
 Version 2.2.0.3 supports compatibility mode and new function mode.

 	
 10.1	

 	
 Version 2.2.1.

 	
 IBM Informix data server

 	
 10.0 b

 	

 	
 11.1 2

 	

 	
 11.5b

 	

 	
 11.7	

 	
 Version 2.2.1.

 	
 Oraclea		

 	
 10g

 	

 	
 10g R2

 	

 	
 11g

 	

 1 Supported for SQL management repository.

 2 Supported for Optim pureQuery Runtime. Not supported for routine development and debugging.

 Supported functions of the three Data Studio products

 Table A-2 summarizes the suite of supported functions of the three Data Studio products introduced in 1.1, “Introduction” on page 2.

 Table A-2 Data Studio and Optim Development Studio V2.2.1 support features

 	
 Product features

 	
 Data Studio

 RCP

 	
 Data Studio

 IDE

 	
 Optim

 Develop. Studio

 	
 Installation options

 	
 Shell-sharing with other Optim and Rational products

 	

 	
 X

 	
 X

 	
 Object and Data Management

 	
 Create, alter, drop, and manage security for DB2 or IDS server objects.

 	
 X

 	
 X

 	
 X

 	
 Create, alter, drop, and manage security for Oracle objects.

 	

 	

 	
 X

 	
 Common DB support including DDL gen, analyze impact, compare and sync data, and property browser.

 	
 X

 	
 X

 	
 X

 	
 Generate DB2 commands and utilities for DB2 for Linux, UNIX, and Windows (LUW).

 	
 X

 	
 X

 	
 X

 	
 Edit, sample, load, and extract data.

 	
 X

 	
 X

 	
 X

 	
 Data distribution viewer.

 	
 X

 	
 X

 	
 X

 	
 Data transforms framework.

 	

 	

 	
 X

 	
 Optim model support: Generate an Optim OEF model and save that model in an OEF file.

 	

 	

 	
 X

 	
 ILOG® JView v8.7 enabled.

 	

 	

 	
 X

 	
 Database support

 	
 Database overview diagrams.

 	
 X

 	
 X

 	
 X

 	
 Informix DB support (v10, v11.1, v11.5).

 	

 	
 X

 	
 X

 	
 Physical database modeling - data design project.

 	

 	

 	
 X

 	
 Connection repository: Organize, store, and share database connection properties.

 	

 	

 	
 X

 	
 Database Administration perspective.

 	
 X

 	
 X

 	
 X

 	
 Database Administration Task assistants included for logging, configuration parameters, automatic maintenance, and so on.

 	
 X

 	
 X

 	
 X

 	
 pureScale™ support in database administration task assistants for DB2 on LUW.

 	

 	
 X

 	
 X

 	
 Visually explore value distributions and relationships between the columns of a table.

 	
 X

 	
 X

 	
 X

 	
 Common logging. Launch integrated data tooling help.

 	
 X

 	
 X

 	
 X

 	
 DB2 database package utilities.

 	

 	

 	
 X

 	
 Integrated Query Editor (IQE) integrated with the Data Design project.

 	

 	

 	
 X

 	
 Application development

 	
 Integrated Query Editor (SQL and XQuery) with query formatting.

 	
 X

 	
 X

 	
 X

 	
 SQL Builder.

 	
 X

 	
 X

 	
 X

 	
 Advanced query formatting.

 	

 	

 	
 X

 	
 Extract and persist SQL results as a text file or an XML file.

 	
 X

 	
 X

 	
 X

 	
 Visual Explain for DB2 databases.

 	
 X

 	
 X

 	
 X

 	
 Visual Explain for Oracle database.

 	

 	

 	
 X

 	
 Single query tuning and statistics advisor.

 	
 X

 	
 X

 	
 X

 	
 SQL query environment capture for serviceability (z/OS only).

 	
 X

 	
 X

 	
 X

 	
 SQL routine editor and debugger.

 	
 X

 	
 X

 	
 X

 	
 Java routine editor and debugger.

 	

 	
 X

 	
 X

 	
 PL/SQL routine editor against DB2 for LUW.

 	

 	
 X

 	
 X

 	
 PL/SQL routine editor against Oracle.

 	

 	

 	
 X

 	
 SQLJ development.

 	

 	
 X

 	
 X

 	
 XML editor, schema editor, and annotated XSD mapping editor.

 	

 	
 X

 	
 X

 	
 Advanced XML editors and document generation.

 	

 	

 	
 X

 	
 Data web services development and deployment.

 	

 	
 X

 	
 X

 	
 Deploy web services on DataPower® appliances and JMS.

 	

 	

 	
 X

 	
 Develop pureQuery applications in a Java environment and execute pureQuery code. Include tooling for Static SQL Binding for Java. Correlate SQL to Java source code. Impact analysis for Java and SQL Execution statistics.

 	

 	

 	
 X

 Actions on database objects from the Administration Explorer

 In 1.5.3, “Administration Explorer view” on page 35, we provide an overview of the capabilities and features of the Administration Explorer.

 Table A-3 lists context menu actions on database objects from the Administration Explorer. These actions are displayed by right-clicking a specific database object in the object editor.

 Table A-3 Context menu actions on database objects from the Administration Explorer

 	
 Database

 object type

 	
 Analyze impact

 	
 ALTER

 	
 DROP

 	
 COPY

 	
 Gener-

 ate DDL

 	
 Manage privil-

 eges

 	
 Add to over-

 view diagram

 	
 Unload load

 edit

 	
 Aliases

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 X

 	

 	
 Packages1

 	
 X

 	

 	
 X

 	
 X

 	

 	
 X

 	

 	

 	
 Stored procedures

 	
 X

 	

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 User-defined functions

 	
 X

 	

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 User-defined types

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	

 	
 Auxiliary tables

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 X

 	

 	
 Constraints

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	

 	

 	
 Databases

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Indexes

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	

 	
 MQTs

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X2

 	
 Schemas

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 Sequences

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Storage groups

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 X

 	

 	

 	
 Synonyms

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 Xb

 	
 Tables

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 Table spaces

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	
 X

 	

 	

 	
 Triggers

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Users and roles

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 	

 	
 Views

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	
 X

 	

 1 The Object List Editor does not list packages yet for DB2 10 for z/OS. APAR 173902 documents this.

 2 Load action not available

 [image:]

 	
 AIB

 	
 Application Interface Block

 	
 AIX®

 	
 Advanced Interactive eXecutive from IBM

 	
 APAR

 	
 Authorized program analysis report

 	
 ASCII

 	
 American National Standard Code for Information Interchange

 	
 BLOB

 	
 Binary large objects

 	
 CCA

 	
 Client configuration assistant

 	
 CCSID

 	
 Coded character set identifier

 	
 CLI

 	
 Call level interface

 	
 CLP

 	
 Command line processor

 	
 CPU

 	
 Central processing unit

 	
 DBAT

 	
 Database access thread

 	
 DBD

 	
 Database descriptor

 	
 DBID

 	
 Database identifier

 	
 DBMS

 	
 Data base management system

 	
 DBRM

 	
 Database request module

 	
 DC

 	
 Development Center

 	
 DCL

 	
 Data control language

 	
 DD

 	
 Distributed Debugger

 	
 DDCS

 	
 Distributed database connection services

 	
 DDF

 	
 Distributed data facility

 	
 DDL

 	
 Data definition language

 	
 DLL

 	
 Dynamic load library manipulation language

 	
 DML

 	
 Data manipulation language

 	
 DNS

 	
 Domain name server

 	
 DRDA®

 	
 Distributed relational database architecture

 	
 DSN

 	
 Data set name

 	
 DT

 	
 Debug Tool

 	
 DTT

 	
 Declared temporary tables

 	
 EBCDIC

 	
 Extended binary coded decimal interchange code

 	
 EDM

 	
 Environment descriptor management

 	
 FTP

 	
 File Transfer Program

 	
 GB

 	
 Gigabyte (1,073,741,824 bytes)

 	
 GBP

 	
 Group buffer pool

 	
 GRS

 	
 Global resource serialization

 	
 GUI

 	
 Graphical user interface

 	
 HPJ

 	
 High performance Java

 	
 I/O

 	
 Input/output

 	
 IBM

 	
 International Business Machines Corporation

 	
 IDE

 	
 Interactive development environment

 	
 IFCID

 	
 Instrumentation facility component identifier

 	
 IFI

 	
 Instrumentation facility interface

 	
 IPLA

 	
 IBM Program Licence Agreement

 	
 IRLM

 	
 Internal resource lock manager

 	
 ISPF

 	
 Interactive system productivity facility

 	
 ISV

 	
 Independent software vendor

 	
 IT

 	
 Information Technology

 	
 ITSO

 	
 International Technical Support Organization

 	
 IVP

 	
 Installation verification process

 	
 JCL

 	
 Job control language

 	
 JDBC

 	
 Java Database Connectivity

 	
 JDK

 	
 Java Development Kit

 	
 JDSD

 	
 Job Data Set Display

 	
 JFS

 	
 Journaled file systems

 	
 JNDI

 	
 Java Naming and Directory Interface

 	
 JRE

 	
 Java runtime environment

 	
 JVM

 	
 Java Virtual Machine

 	
 KB

 	
 Kilobyte (1,024 bytes)

 	
 LEL

 	
 Language Environment

 	
 LOB

 	
 Large object

 	
 LPA

 	
 Link pack area

 	
 LPAR

 	
 Logical partition

 	
 LPL

 	
 Logical page list

 	
 LRECL

 	
 Logical record length

 	
 LRSN

 	
 Log record sequence number

 	
 LUW

 	
 Logical unit of work

 	
 LVM

 	
 Logical volume manager

 	
 MB

 	
 Megabyte (1,048,576 bytes)

 	
 MFI

 	
 Main frame interface

 	
 MQT

 	
 Materialized query table

 	
 NPI

 	
 Non-partitioning index

 	
 ODB

 	
 Object descriptor in DBD

 	
 ODBA

 	
 Open Data Base Access

 	
 ODBC

 	
 Open Data Base Connectivity

 	
 OS/390®

 	
 Operating System/390®

 	
 PAV

 	
 Parallel access volume

 	
 PDS

 	
 Partitioned data set

 	
 PIB

 	
 Parallel index build

 	
 PSID

 	
 Pageset identifier

 	
 PSP

 	
 Preventive service planning

 	
 PTF

 	
 Program temporary fix

 	
 PUNC

 	
 Possibly uncommitted

 	
 QA

 	
 Quality Assurance

 	
 QMF™

 	
 Query Management Facility™

 	
 RACF

 	
 Resource Access Control Facility

 	
 RBA

 	
 Relative byte address

 	
 RECFM

 	
 Record format

 	
 RI

 	
 Referential integrity

 	
 RID

 	
 Record identifier

 	
 RR

 	
 Repeatable read

 	
 RRS

 	
 Resource Recovery Services

 	
 RRSAF

 	
 Resource Recovery Services attach facility

 	
 RS

 	
 Read stability

 	
 SC

 	
 Service class

 	
 SDK

 	
 Software developers kit

 	
 SDSF

 	
 System Display and Search Facility

 	
 SMIT

 	
 System Management Interface Tool

 	
 SPAS

 	
 Stored procedure address space

 	
 SPB

 	
 Stored Procedure Builder

 	
 SQL

 	
 Structured query language

 	
 SQL

 	
 Structured query language

 	
 SQLJ

 	
 Structured Query Language (SQL) that is embedded in the Java programming language

 	
 SU

 	
 Service unit

 	
 UCS

 	
 Unicode Conversion Services

 	
 UDF

 	
 User-defined function

 	
 UOW

 	
 Unit of work

 	
 USS

 	
 UNIX system services

 	
 WLM

 	
 Work load manager

 	
 WSAD

 	
 WebSphere Studio Application Developer

 	
 WSADIE

 	
 WebSphere Studio Application Developer Integration Edition

 	
 WSDL

 	
 WebSphere Definition Language

 	
 WSED

 	
 WebSphere Studio Enterprise Developer

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this paper.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 •DB2 10 for z/OS Technical Overview, SG24-7892

 •Extremely pureXML in DB2 10 for z/OS, SG24-7915

 •DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604

 •DB2 9 for z/OS: Distributed Functions, SG24-6952

 •IBM Data Studio V2.1: Getting Started with Web Services on DB2 for z/OS, REDP-4510

 You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications and Additional materials, as well as order hardcopy Redbooks publications, at the following website:

 ibm.com/redbooks

 Other publications

 Additional information can also be found in the following publications:

 •DB2 10 for z/OS Application Programming and SQL Guide, SC19-2969

 •DB2 10 for z/OS Application Programming Guide and Reference for Java, SC19-2970

 •DB2 10 for z/OS Codes, GC19-2971

 •DB2 10 for z/OS Command Reference, SC19-2972

 •DB2 10 for z/OS Data Sharing: Planning and Administration, SC19-2973

 •DB2 10 for z/OS Installation and Migration Guide, GC19-2974

 •DB2 10 for z/OS Internationalization Guide, SC19-2975

 •DB2 10 for z/OS Introduction to DB2 for z/OS, SC19-2976

 •IRLM Messages and Codes for IMS and DB2 for z/OS, GC19-2666

 •DB2 10 for z/OS Managing Performance, SC19-2978

 •DB2 10 for z/OS Messages, GC19-2979

 •DB2 10 for z/OS ODBC Guide and Reference, SC19-2980

 •DB2 10 for z/OS pureXML Guide, SC19-2981

 •DB2 10 for z/OS RACF Access Control Module Guide, SC19-2982

 •DB2 10 for z/OS SQL Reference, SC19-2983

 •DB2 10 for z/OS Utility Guide and Reference, SC19-2984

 •DB2 10 for z/OS What's New?, GC19-2985

 •DB2 10 for z/OS Diagnosis Guide and Reference, LY37-3220

 Online resources

 These websites are also relevant as further information sources:

 •Data Studio features and benefits

 http://www.ibm.com/software/data/optim/data-studio/features.html

 •Data Studio support portal

 http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Data_Studio

 •Support for Unicode: Using Conversion Services, SC33-7050

 http://www.ibm.com/servers/s390/os390/bkserv/latest/v2r10unicode.html

 •Data Studio stand-alone and IDE versions available from the IBM Support website

 http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Data_Studio

 •Data Studio also available as a downloadable feature from the DB2 for z/OS website

 		http://www.ibm.com/software/data/db2/zos/downloads/

 •Technote: “Information about which IBM Software products can be installed together so together so that they share a common environment”

 http://www.ibm.com/support/docview.wss?rs=2042&uid=swg21279139

 •Section “Installing the IBM DB2 Driver for JDBC and SQLJ” on the DB2 for z/OS Information Center website

 http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z10.doc.inst/db2z_installjccintro.htm

 •JDBC tracing options with Data Studio

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0706scanlon/

 •“Creating scripts more efficiently in the SQL and XQuery editor”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1011sqlguidetour/index.html?cmp=dw&cpb=dwinf&ct=dwnew&cr=dwnen&ccy=zz&csr=111110

 •“Create package variations for z/OS DB2 stored procedures” on developerWorks

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608parmeshwar/

 •“Using common connections with Optim solutions”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0812devlin/index.html

 •“IBM Optim Development Studio: Test deployment simplified”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1010testdeployment/index.html

 •“IBM Optim Development Studio: Test deployment simplified”

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1010testdeployment/index.html

 •Increase productivity in Java database development with new IBM pureQuery tools, Part 1: Overview of pureQuery tools

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709surange/index.html

 •Increase productivity in Java database development with new IBM pureQuery tools, Part 2: Detect and fix SQL problems inside Java program

 http://www.ibm.com/developerworks/data/library/techarticle/dm-0709surange2/index.html

 •Increase productivity in Java database development with new IBM pureQuery tools, Part 3: pureQuery rapid application development

 http://www.ibm.com/developerworks/data/tutorials/dm0711surange/

 •Increase productivity in Java database development with new IBM pureQuery tools, Part 4: Tour Data Studio and pureQuery for Informix databases

 http://www.ibm.com/developerworks/data/tutorials/dm0802surange/index.html

 •What's new and cool in Optim Development Studio, Part 2: Exploring Optim Development Studio and pureQuery Runtime Version 2.2 Fix Pack 3

 http://www.ibm.com/developerworks/data/library/techarticle/dm-1006optimdeveloper2/index.html

 •Unified Debugger

 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0706scanlon/

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Data Studio and DB2 for z/OS Stored Procedures

 Understand IBM Data Studio V2.2.1 packaging

Use Data Studio with DB2 10 for z/OS stored procedures

Take advantage of the Unified Debugger

 Stored procedures can provide major benefits in the areas of application performance, code re-use, security, and integrity. DB2 has offered ever-improving support for developing and operating stored procedures.

 This IBM Redpaper publication is devoted to tools that can be used for accelerating the development and debugging process, in particular to the stored procedure support provided by the latest and fastest evolving IBM product: Data Studio.

 We discuss topics related to handling stored procedures across different platforms. We concentrate on how to use tools for deployment of stored procedures on z/OS, but most considerations apply to the other members of the DB2 family.

 This paper is a major update of Part 6, “Cool tools for an easier life,” of the IBM Redbooks publication DB2 9 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7604.

 Back cover

 Acrobat bookmark

 OPS/images/DS_UDToolbar.gif
5 B0 0w swonssion
= §0 2080 m83N5QL MRS VR
§0 3 ADMF001.80_EXTERNALS

Debug A5
45 Debug,
Organize Favorites..

OPS/images/DS_UDStepInto.gif

OPS/images/DS_GenDDLSP.gif
(& Generate DDL

Save and Run DDL

‘Specfy a path to save the generated DDL scrpt. You can run the DDL sarpt | =44
by providing your database connecton informaton.

e[oo
File name: | Script.sal
revno

=

]

'MODIFIES SQL DATA
"PARAMETER STYLE JAVA
FENCED

WLM ENVIRONMENT WLMENVU;

] m]

ADMFOD 1" DS_20 101215104437 com.marichu marichu. J5P_ActualCst.x_JSP_Ac
LANGUAGE JAVA

@ <Back [mext>

OPS/images/4717ch04.08.1.20.jpg
P o s s o T St e

i fero-ac]s 8v o

e

eSSl e s

OPS/images/DS_Filters.gif
Connection Filter Properties

Specify fiter by selecting a predicate and entering 2 value or by ndicating whether to incude or exclude a selectin of tems.

©expression

¢ % (@ Mest al conditions O Mest any condition

Predcate Value
Does notstart with the characters 1A

al m 1 3

E 1 o

o

OPS/images/DS_DeployWizard.gif
) Deploy Routines

Deploy Options
‘Specify options for the deployment.

Torget database
O Use qurrent database.
@ Use different database

Database:

Target schema for deploying an unqualfied routine

Target schema | ADMFO01

Error handing
(@ stop and roll back on errors.

Ostoponerrors.

O Ignore errors and continue to next routine.
Duplcate handing

(©Drop duplcates

Oreat duplicates as errors.

O1gnore duplcates and continue to the next routine:

@ Deploy by buiing the source:

(O Deploy using binaries if avaiable in the database
Targetload brary:

[Ibeploy source to the database.

Next >

OPS/images/4717ch01.05.1.20.jpg

OPS/images/4717ch04.08.1.14.jpg

OPS/images/4717ch01.05.1.21.jpg

OPS/images/4717ch04.08.1.15.jpg

OPS/images/4717ch01.05.1.22.jpg
Launch Data Studo, creato a now
onnacion: DESA

i devslopman project
aszociier wih DBIA
[Ev—— Hsied i

[

e

A i

Greste anewdata

ommses e Cours | g o
bt -
T =
% e
- s
P
|
S
P)
iy
- " SRR
ey
s oz Crest and dovelo sord prosedres
= | ueing wirc
ow siored precacre
 Now Verson
Now Package Vartion
Doy
“mpor
-t

OPS/images/4717ch04.08.1.12.jpg

OPS/images/4717ch01.05.1.23.jpg
How Data Studio creates external SQL stored procedures

SaL precompile

Y

Ccompile

& Crst Do o Profct

 compilsand pralnk.

Link

PROCEDURE defntion

BIND PACKAGE

CREATE PROCEDURE

Save options and source.
InDB3 catsiog

OPS/images/4717ch04.08.1.13.jpg

OPS/images/4717ch01.05.1.24.jpg
How Data Studio creates Java stored procedures

DB2 for 2/0S.

OPS/images/4717ch04.08.1.18.jpg

OPS/images/DS_TaskLauncher.gif
[TaskLauncher 52

g0 acuacsT |

Develop

Task Overview

o Fl =g

L

Design
Tasks related to database modeling and design.
For example, viewing a physica data model.

Develop

Tasks reated to developing database
applcatons. For example, creating a stored
procedure.

i
Tasks reated to managing and changing
databases. For example, grant or revoke
seauity pivieges.

Tune
Tasks reated to turing performance for SQL. For
‘exampie, visuaizng expian and access plans.

Monitor
Tasks reated to monitoring databases. For
example, you can view information about the
heslthof your databases.

or

[Connect and browse a database

Learn More
&, Downloads, demos, and roadmaps
[Sample database

@ Community and forums

4 support

What's new n Data Studio

nformation Center

Integrated Data Management on the Web

OPS/images/DS_EditorRunDeplyDbg.gif
5 Deploy.
Orn

%5 Detug

OPS/images/DS_DbExplorer.gif
O Data - Task Launcher - [BM Data Studio =) 0Jed]

Fie Edt Novgate Search Project Dats Run Window Hep

(18 Data Source Exporer 53 EEFIEEITT NS
| © & Database Comectons
& 16 08240054 D52 Als]

5 DeMoMyS [D82 Ales]
5 DEMONM. (D52 Als]
6 ECo41v9 D82 ios]

3 Stored Procedures.

3 synonyms.

(3 Tables

3 User-Defined Functions.
{3 User-Defined Types

==

OPS/images/DS_UDPreferences.gif
N =)}

‘Sting Substiuton
“TCP/IP Monitor
View Management

DB2 Stored Procedure Debugger <~

Note: these settings il take effect at the start of the next sest
Number of seconds of nactwity before the procedure runs to co
Maximum number of characters reported n large variables:
Number of characters per e in Variables View Detais Pane:
Diagnostic eror trace level on DB2 server:

DB2 Routine Debug Session Manager Location
(ORun the session manager on each connected server

Port (2aye blark For default valie)

Sesson menager ineout n minutes
(@ Use already running session manager:
Host [.30.28.113
Bort | 4559

[[I0o not use TCPAP socket to communicate with debug sessior

[T

OPS/images/DS_DSE_Menu.gif
databases. For example, grant or revoke

l&' Tasks related to managing and changing
W
| &=

w
% o |[u] @ [edl

<en Connecton rofle

= (& Database Connections formance
6 05240054 052] g i s i
g ez e P Heualzing explan and access par
5 oevooe o2)
6 £Cosw D52 Alss]
ted o montorng datbases, e

-1 &3 EC730V10 (082 for 08 ViD
(32 Health Summry.

B Alrts

OPS/images/4717ch04.08.1.17.jpg

OPS/images/4717spec.03.1.1.jpg

OPS/images/4717ch04.08.1.10.jpg

OPS/images/4717ch04.08.1.11.jpg

OPS/images/DS_Pref_DSNTPSMP.gif
type fter text SQL - External

You can specfy default options for deploying on 0S/330 or /05
[Cspecy settings for debugaing

SQL settings.
Buid utity name: | MY_TPswp]
Buid utity schema: | SYSPROC

Preconpie optons: | MAR(1,80) =
Compile options: | NOTEST(block,noline,nopath) [eed)]
Prelink options: [
Link optons: e
‘Mapping Editor Eind optons:. ACTION(REPLACE) ISOLATION(CS) [eed)]
Mutivariae Value Distributons Expl) ~
Optin Task Launcher Rl TN) o)
Query Tuner LM environment: | WLVENVL
= SQL Development
‘Executon Plan View Optons —
& Routnes e
= Deploy Optons
ava
QL -Extemal
QL -Matve
Process
——

o o] (o)

OPS/images/DS_Deploy_Opts.gif
50 Sore rocebre i e ey ooors |

L O oiousy: [srsmmmamsn -

Buid owner:
lsyseroc.DsiTpse.

Precompie options: | MAR(1,80) [
Compe options: | NOTEST(Block noine,nopath))
prek options: =
Lk options: =
Bind optons: PACKAGE(TEST) ACTIONREPLACE) (=]
[lenable debugong

(Aoply Folder Settngs

® P T e

OPS/images/DS_PreferencesJDK.gif
type fiter text Deploy Options

Javahome

Specify 2 Java Development Kit (1DK) home dectory for compling Java stored procedures.
Digectory: | C:\dk1 6sr2winlick.

s
Specify thelocation and dass name of your SQU translator for deploying SQU) stored
procedures.

Locaton: | C:\Program Fles\EM\SQLULIB\avalsali.2p.

Class name: | saftools Saly

o =

OPS/4717cover.jpg
Data Studio and DB2 for
z/0S Stored Procedures

Paolo Bruni
Marichu Scanlon
Redpaper

OPS/images/4717ch03.07.1.09.jpg

OPS/images/4717ch03.07.1.08.jpg

OPS/images/DS_EWOutputView.gif
] Properties |1 5QL Resuits 3 @] Error Log| (2 Problems|

Type query expression here
Status Operation

=/ Succeeded ExportProj V9.
v Succeeded Export ADMFOOL.TEST.

v/ Succeeded Export ADMFODL.TESTC...

v/ Succeeded Export TEST_NSQLQ

V/ Succeeded Export PROCEDURES(IN .

V/ Succeeded Export PROCEDURELQ
v/ Succeeded Export JAVASP2()
v/ Succeeded Export PROCEDURE2()

LaBECaVs
LagECaYS
LagECavs
LagECavs
LagECavs
LagECavs
LagECavs
LABEC4VS

OPS/images/4717ch01.05.1.10.jpg

OPS/images/DS_EWTargetFile.gif
(© Export Routines

Target and Options

Type a name and path for the scrpt fil for SQL and Java /
oinesand spechy one exertaptons. s

Fienane: | RP TestExport
Drectory: | CrEport
Optons
[lindide RGP statement
Oz al fies

<gack [next> | [_msh J [__cancel

OPS/images/4717ch01.05.1.11.jpg

OPS/images/DS_EWSelection.gif
‘Select the stored procedures that you want
o export.

@l

245 TEST_NSQL 0:v1

45 TESTCOMMENTS Q:v1
] PROCEDURE

&5 1avasp20

£ TEST_NSQL O:MYNEWVERSION

] PROCEDURE2 O

65 PROCEDURES (VARNAVE VARCHAR(125), VARC]

]

(0]

<pack

Enish

0

OPS/images/4717ch01.05.1.12.jpg

OPS/images/DS_NewTemplate.gif
(&) New Template

Neme: [MylavasP | Context: [db2zos_spava

Descripton: | test java sp template

Pattem: [+ DDL Template)
(CREATE PROCEDLRE ${name} 0
'NOT DETERMINISTIC
LANGUAGE Java
'EXTERNAL NAME DS_${tmestamp}:com. ${user}. $user. ${name).x_S{r|
FeNCED

THREADSAFE
PARAMETER STYLE JAVA

= Java Tenpiate SO

package com.s{usery.${user;

import java.sdl.Connection;
import java.sql.DrveriManager;
import java,sqlPreparedtatement;
import java.sal.Resulset;

import java.sql.SQLException;

‘#5d context SPContext;
‘#sdlterator ${name}_Cursor (Gava.lang String);

OPS/images/4717ch01.05.1.13.jpg

OPS/images/DS_NativeSQLNewVersion.gif
(Z) New Version - TEST_NSQL
Identity
Create new version of 2 native SQL stored
procedure. To preserve case, use deimiters

project [Proj 2V
Schema:

Neme: | TEST_nsQL

OPS/images/4717ch01.05.1.14.jpg

OPS/images/4717ch03.07.1.02.jpg

OPS/images/4717ch01.05.1.15.jpg

OPS/images/4717ch03.07.1.01.jpg

OPS/images/4717ch01.05.1.16.jpg

OPS/images/DS_DWRtnOpts2.gif
ObeployRoutines . O

Routine Options
‘Specify routne options and deploy optons. Roultine optons are not saved after the

deployment.

& MG savastored?| o Cavarats]

B et?] [sounecpons Degloy optons | Java Path |
Budutity: =
Compleoptons: | g =

C:Yidk1.6sr2winYjdk

160

PACKAGEQSNIDEC) | | ACTIONREPLACC=S]
| (Apply Folger Setings
@ <Back Next > Einish Cencel

OPS/images/DS_DWOptions.gif
& Deploy Routines

Deploy Options
‘Specify options for the deployment.

Torget database
ke arrent st
O Use different database

Database:

Target schema for deploying an unqualfied routine
Target schema | ADMF001

Defauit path: | SYSIBM,SYSFUN,SYSPROC, ADFO0 1

Duplcate handing
® Drop duplcates.
Oreat duplicates as errors.

@ Deploy by buiing the source:

(O Deploy using binaries if avaiable in the database
Targetload brary:

[Ibeploy source to the database.

OPS/images/DS_RtnEditorIcons.gif
&) 150 wrmearms 53§ e acrualcosTs | =0

ERE EP 3% 0E
Cheatr ERoCToURE sE_WITHERRNS (T VARVAME Coii(l),

1IN TEMPN C|Deploy the routine to
our vRRCODNE TTTEeE

ExreRvan e 1Ds_2010121614302

Lavcuce Java

samaveTER STyiE g

yor perEmMTNTSTIC

[EeE—

W ErTROwEN MBS

om. marichu.mar.

OPS/images/DS_MenuTaskBar.gif
() Data - RP_ProjZV10/JSP_WITHPARMS. spxmi - IBM Data Studio

Fle Edt Navigate Search Project Data Run Sapt Window Hel

T3 @ (@] @k - 1 Q- L9 8- e

OPS/images/DS_NewStoredProc1.gif
(&) New Stored Procedure N= x|

Name, Language, and Template
‘Spesfy & name and language fr thenew sored procedure. You can choose a templte to use o the framenork. The
template code appears i the review window. Clck Frish t open the edior,

Neme: [NativesQL_Test

Selecta template

Tempiate ~ Desaription
‘Custom: (External) You supply the SQL, retu .. You specify the SQL to exeaute and the values are retuned.
‘Custom: (Natve) You supply the SQL, retur a ... You specify the SQL to execute and the values are returned.
Deploy &Run: (External) IN/OUT parameters Returns the count of rows from SYSIBM.SYSTABLES that match the ...

Deploy &Run: (External) Return aresultset Opens a cursor and retrieves values from SYSIBM SYSTABLES.
Deploy &Run: (Native) IN/OUT parameters Retums the count of rows from SYSIBM.SYSTABLES that match the ...
Deploy Run: (Native) Retum a result set ‘Opens a cursor and retrieves values from SYSTEM.SYSTABLES.
Preview:

© rempae betais oL
Deploy & Run: (Native) Return a result set.

‘Opens a cursor and retrieves values from SYSIBM.SYSTABLES.

Avaiablepevie sectons: DL Yo can eate r edt tenplates o the Routnes > Tenpaes Preferences page.

OPS/images/DS_SelTemplate.gif
5] MAX - MAXIVUM sggregate functon with DISTINCT kel
5] MIN - MINUMUM agcreste function

151 MIN - MINUMUM sgoregt functon with DISTINCTkeywe, |
51 XMLAGG - IMLAGG agresate uncton

5] XMLAGG - XMLAGG aggregate uncton with ORDER BY ASI
151 XMLAGG - XVLAGS sggregate unction with ORDER BY DE,
= SELECT - SELECT statement with two.
EJ INSERT -INSERT statement ith two.

ectisal 53§00 NATIVESQUTEST

[FELECT colt, col2
FROM table1, table2
WHERE table.col1 = table2.col2;

[<] m]

OPS/images/DS_IWProjSrc.gif
(5 Select routine to import
[setectastored procedure to mportinto the project.
Avalable Stored Procedures:
& & RPpel.
=€ Stored Procedures
6 soLse w70
5 & RP_Prozve
=€ Stored Procedures
65 SQLSP_2V5 (N VARNAME , OUT VARCOUNT)

OPS/images/DS_IWSource.gif
(S Import a Routine
Source

‘Select a routne to import. You can import a routine from
‘another project or you can mport a routine from the

Sourcefielocation
©Fle system
OProject

Name:

Statement terminator

OPS/images/DS_IWParameters.gif
(Z) Import a Routine

Parameters

You can change the SQL data types for Java stored procedures. You cannot
change the parameters for SQL stored procecures.

=l

Avalable Parameters:
Wode | teme saToe

i AT Swaune

n o recen

n Ream Rea

n Froamm Dot

n =) Dosie

n DECIN DECIMAL(8, 2)

n NUMIN DECIMAL(8, 2)

n CHARIN 'CHAR(26)

n VCHARIN 'VARCHAR(26)

n 'CHARBITIN CHAR(6)

n 'VCHARBITIN VARCHAR(6)

n oarent oare

&] B
Comments:

@ <k)Mot][enen

OPS/images/DS_IWEntryPtsJ.gif
© Import a Routine =%
Entry Points

Selctthe method o routne thatyou want tomapinto the enryport. A (£ 4§
Java stored procedure entry point must be a publc statc void method.

Methods or routies:

Source:

publc dass SPUPA709_1 {
public static void SPHMPH709_1(int VARD1, int VAR02) throws SQLEXceptic
Exception {
‘SPContext cb = null;
oy {
ctx = new SPContext("jdbc:default:connection’, false);
3 catch (SQLException) {
i (ctx 1= null)
cbe.close();
throw e;

OPS/images/DS_IWOptions.gif
& Import a Routine B= X
options
‘Speciy import aptons, and specify whether cbjects
that areadly existin theprojectshouid be replaced with

=M

Collecton ID:

[CIReplace duplicate routines n project
[CIpeploy on Finish
Curent: schere [&

debugging

O

OPS/images/DS_UDShowAllBKP.GIF

OPS/images/4717ch01.05.1.40.jpg
oo fma] SIiii

package com.marichu.marichu;
#import java.sql.Connection:[]

Ppublic class JSP_wichParms {

S public static void x_JSE_withParms (String VARNAME, String TEMPN,
1 SRERRESRREEIETHHITHEEEEEEEEERRRIIEIIIREIEEEEEEEREEEEEE]
71 % Recurns counc of all tables created by ADMFOO1 and like
7 REERERRREEEEEEEEIE IR ERRRRRREIEIEE IR IR EEEEEEEEEREEE]

// Get connection to the database

Connection con = DriverManager.getConnection(*jdbc:default:ce

17 QL to execute

Sctring sql = "SELECT COUNT(®) FROM SYSISM.SYSTABLES WHERE Ci

/1 repaze statement
PrepazedStatement stmc = con.prepareStatement (aql);

11 Execuce statement
stnc.execute () 2
ResultSet rs = stac.gecResultSet();

if (zs.nexc()
VARCOUNT[0] = rs.gecInt(1);

2l

OPS/images/DS_UDRemoveAllBKP.GIF
98¢ |

OPS/images/DS_ImportWizard.gif
(& Import a Routine

Source

‘Select routine to import. You can import a routine from another
project o you can import a outine from the loca ie system.

Soucefielocation
OFie systerd
Oproject

OPS/images/DS_UDSkipAllBKP.GIF

OPS/images/DS_EditorSrc.gif
&9 1sp_acTuALCST £8 sp_AcTuALCOSTS 52 =0
oo | % 0B

CREATE PROCEDURE SP_ActualCosts ()
VERSION V1
ISOLATION LEVEL CS
RESULT SETS 1
LANGUAGE SQL
P1: BEGIN
B R
Returns all cables created by ADMFOOL
P e
Declare cursor
DECLARE cursorl CURSOR WITH RETURN FOR

SELECT NAME FROM SYSIEM.SYSTASLES WHERE CREATOR

- Cursor left open for client application
OPEN cursori;
END P1

OPS/images/DS_SQLBuilder2.gif
fonaTvesp 01 |) tmp37251ml |

SQUeldr_Selecttsal 53 % =0

SELECT PURCHASEORDER.POID, PURCHASEORDER.STATUS, PURCHASEORDER
PURCHASEORDER.ORDERDATE, PURCHASEORDER.PORDER, PURCHASEORDER
CUSTOMER. INFO, CUSTOMER.HISTORY
FROM PURCHASEORDER JOIN CUSTOMER ON PURCHASEORDER.CUSTID = C
WEERE PURCHASEORDER.STATUS = :V_STATUS

m]

Statement: | SQUBIdr_SelectL.sal Oorstmver

Columns | Conditions | Groups | Group Conditions |
Coumn Operator
PURCHASEORDER STATUS =

OPS/images/DS_AdminExplr.gif
G Achinistration Explorer
Bl New -

5 utec3s3.vmec.svlibm.com [a
5 utecs1.svidev.svl.ibm.com
=[5 utec730.vmec.svlibm.com
43 EC730V10 (082 for 2/05 V10 (New-Funct
(3 Aliases
(23 Appicaton Objects
{3 Awxiiary Tables
{3 constraints
{3 Databases
(3 Indexes
O mars

OPS/images/DS_SQLBuilder1.gif
(&) New SQL or XQuery Script

Script and Tool

Name the seript and choose the toolto use to create
it

Name: SQLBIdr_Select

Editusing

(OsQL and XQuery editor (for saipts that contain one or more S

(©EQL Query Buider (for single SL SELECT, INSERT, UPDATE,
Statement type: |SELECT

OPS/images/DS_UDResume.gif

OPS/images/DS_ObjectListFltr.gif
(2> Task Launcher 10 R =
T Fiter the contents ofthe Gbject List
7 neme ike: oo Riple 1d @
Datebase schema Name Loca... | RowCount | Tat[4]
 oswepax DSNBAID CUSTOMER snect oS
 osuepan DSNBAID INVENTORY snec osn
 osuepan DSNBAID PRODUCT snec osn
= osvepary DSBAID SALESFACT snect 6 osn
= osvepary DSBAID CUSTOMERS snect s osn
= osvepary = R -
B osweoary | @ Object List Filter JEE
DDA e coas it v dilod the Objct st]
e n view, you canspec
& osvepary ‘conditions on one or more of the columns to filter the data rows that are.
5 DSNDALY | renmed.
; e ony | Fite conditons
; DSNEDALY. Property Operator Value add
DSNBDALY Schema v | Starts With DSN.
I osweoarr Foene D] 5
= osvepary [Name >
£ oseonrr oo
= [Ron Count @ atch l conditons. O Match any condon
< [reblespnce [

OPS/images/DS_NewDDP_Con.gif
() New Data Development Project m=x)

Select Connection

pomnie NUUORRINIRE,
& [BEcaE] [&] [new...
& tasechvs

e Ce
g momn U G

)

Database Comnections.
STECt

‘com.ibm.db2.jec.DB2Driver

C:\Program Fles\[BM|Ps215hared plugins\com...
idbe:db:Jabecévmec syl bm.com: 446 STLE...
dmfoo1

@ <tk [text> J[_msn]

OPS/images/DS_UDPause.GIF
=

OPS/images/DS_ProjExplorer.gif
= [RP_ProjZy10 (EC730V10:jdbe:db2: futec730.vmec. svl.ibm.com: 446/STLEC LiretrieveMessage
0 3ars.
0 5qsapts
5 (J Stored Procedures
555 ACTUALCET)
50 5 ACTUALCOSTS:V1

03 sat sapts

3 Stored Procedures.

3 User-Defined Functions.

3 web Services
=

OPS/images/DS_NewDDP.gif
(Z) New Data Development Project

Data Development Project
pet s
‘project to store a set of objects that can be deployed.

Projectname: | RP_zProj

OPS/images/DS_UDStepOver.gif

OPS/images/DS_ProjProperties1.gif
() Properties for RP_Projzv10 =X

type fiter text

Database Connection - -

Comectonname: ECTA0VID
Dotabase name: STLECL

Database poduct: D82 205

Ostabase verson: V10 (lewFunctn ode)

Dotabase userid: admfo01

e s M e mec o comGTEC:
Drver dess name: com.bm db2.jec DB2Driver

C:\program Files\[aM)Ds 21Shared pugins\com. bm.datatools. db2_2.1.202.v20100818_0050
\dverdb2icc.jor;

Driver oad dasspath: C:\Program Fies\[EM\DS21Shared\plugins\com. bm. datatooks.db2. 2.1.202.v20100818_0050
\drver db2ce_icense._csuz jar

Defaut schema: | ADMFO01 ~
Ot default schema in generated statements
Defauit path: | SYSIBM,SYSFUN,SYSPROC, ADMF00 1

o J(Ccame]

OPS/images/DS_DriverProps.gif
type fiter text Driver Properties -
Common
Defaut Schema Fiter Drvers: [M Dta Server Drver for J0EC and SQLI Defaut
et Stored Procecire Fiter
‘Default Table Fiter Broperties
Brver Fropertes | General | Traang | optional | Edit driver definition
Version Database: Smect
Host: ‘utec730.vmec. svl.ibm.com
Portrumber: 446
User name: admfo01
Pessuorcs

Saye passiord
Defaut schema:
Connection URL: [jdbcidba: utec730.vmec. vl bm.com: 446/STLECT

‘retrieveMessagesFromServerOnGetiessage=true

[Test Connection

OPS/images/DS_UDStepReturn.gif
=

OPS/images/4717abrv.10.1.1.jpg
Abbreviations and acronyms

OPS/images/DS_ConnectionWizard.gif
(S New Connection

Connection Parameters
‘Select the database manager and 2 JDBC driver, and specfy required comnection parameters.

Connection identification

DB driver: |IBM Data Server Driver for JDBC and SQL) (JDBC 4.0) Defaulf| v

eropertes
General | Tracing | Optional |
Locaton: suec

Host: LABECA ymec.svlbm.com
Portrumber: [416
[Retrieve objects created by this user only.
Username: [admfo01

jdbc:db2:/)LABEC4vmec syl bm. com: 446/STLEC
‘etieveMessagesFromServerOnGethessage=true;e
muateParameterMetaDataForZCals=1;

[Test Connection

OPS/images/DS_UDRemoveBKP.GIF
| 3¢

OPS/images/DS_SPProperties.gif

OPS/images/DS_SetWorkspace.gif
(Z) Workspace Launcher

Select a workspace

1M Data Studo stores your projects in folder called 3 workspace.
Choose 3 workspace folder o use for this session.

Workspace:

Ci\$Datastudo\workspaces DS IDE221

[use this as the default and do not ask again

o J(e]

OPS/cover.xhtml

 [image: Cover image]

OPS/images/DS_OutputView.gif
] 5QResuits 53 O] Error Log| [Properties | fy AccessPlanDiagram| = X % B9 B | 3b.

v =98

Type qwery egresson here ot Resit|
Stas | Operaton | Dote Comecto CUSTOMERID | FRSTNAVE | LASTIAVE
v/ Succeec Deploy ADM... 12/16/109:... EC730V10 11 J0HN
2 2 e
Succeee Saple ont. 12/16/10 15, ECTAOVID
v Sample | 12/16/1 =
i e
Sels ot

[

Total 5 records shown

OPS/images/4717ch02.06.1.02.jpg

OPS/images/DS_UDTerminate.gif

OPS/images/DS_ErrorLog.gif
5 Propertes | £ QL Resuits | sy Access Plan Diagram | ©] Error Log £3 # =08
Workspace Log

type fter text

Message Phgn Date ~

5 & Ahander confict occurred. This may disable some cc org.edipse.ui.workbench

) Confict for 'ALTOGEN::org.apache.geronimo. i, org.ecipse.uiworkbench
& NS unused message: StatusTextProvider_update._cc org.cdipse.osgl
& NLS unused message: StatusTextProvider_update._cc org.cdipse.osgl
& NS unused message: Parameter_constructor_error i org.edipse.0sg)
& NS unused message: StatusLogoer no_bundee in: or org.cdipse.0s0!
& NS unused message: OperationCommand_sction _va org.edipse.0sgl
& NS unused message: OperationCommand_acton_brc org.ecipse.osgl
& NS unused message: StatusTextProvider_operation. org.cdipse.osgl
& NS unused message: StatusTextProvider_acton_tyr org.edipse.0sal
& NS unused message: StatusTextProvider_profle_nai org.cdipse.osgl
& NS unused message: StatusTextProvider_database | org.edipse.0sgl
& NS unused message: StatusTextProvider_time in: on org.edipse.0sg)
& NS unused message: OperationCommand_acton_ex org.ecipse.osgl

20110215 22:1409.171

OPS/images/4717ch02.06.1.01.jpg

OPS/images/DS_UDBreakpoints.gif
Variables %o Breakpoints £3

© EWPDTLSSNe 27,
EVPDTLSSine 46

OPS/images/4717ch03.07.1.10.jpg

OPS/images/4717ch01.05.1.01.jpg

OPS/images/4717ch01.05.1.09.jpg

OPS/images/DS_DWReorder.gif
Routine Options
Speciy routine optons.

= [F1E SQL Stored Procedures (QL -native)

OPS/images/4717ch01.05.1.08.jpg

OPS/images/DS_MJS_JavaPath.gif
ObeployRoutines . O

Routine Options
‘Specify routne options and deploy optons. Routine optons are not saved after the deployment.

& 3o stored Proceds| (ocire o | gl e |
Routne opvons | Degoycptons| Jovaath |
AASP20 P [o

TargetJar | Classreference patiem
GETTERS ST... wsad_scripts helper.Getters...

- L

Move Down

(APl Folder setings

@ P S .

OPS/images/4717ch01.05.1.07.jpg

OPS/images/DS_NativeSQLOptios.gif
© Deploy Routines

Routine Options
‘Speify routine options and deploy options. Routine options are not saved after the
desloyment.
& squ storedprocea i gvionments [111 ¢
TesT.
) e < i L= s =)
Buidaurer:
Asutmelmt [
[JEnable debugging
| Apply Folder Settings.
R ®
oo Fih Cancel

OPS/images/4717ch01.05.1.06.jpg

OPS/images/4717ax01.09.1.2.jpg

OPS/images/4717ch01.05.1.05.jpg

OPS/images/DS_RunSettings.gif
(&) Run Settings - CALLEESP
gefoe Run [Faramets Vaoes | afier | Optos |

Specify the parameter values that you want to use for ruming or
debugaing the stored procedure, or select a column value and dick ‘Set
tonul.

Neme Type Value settohul

VARNAME

[Save Values

=

OPS/images/4717ax01.09.1.1.jpg

OPS/images/4717ch01.05.1.04.jpg

OPS/images/DS_RunVariables.gif
(5 Specify Parameter Values - CALLEESP

Specify the parameter values that you want to use for ruming or
debugaing the stored procedure, or select a column value and dick ‘Set

tonul.

Neme Type Value settohul

VARNAME

5] [save values

OPS/images/4717ch01.05.1.03.jpg

OPS/images/DS_OV_Save.gif
& Save Result

Save Result
The flder s empty. I

Enter or select the parent folder:

Fie type: [PanText (=50 ¥
[—

Output encoding:
Output format: | Column Aligned |
Detmiter: <coham>

File type: | Plain Text (*.txt) v
<+ oJFERTER (.

22 (<)

Output gHTML (*.html)

Ouutouss £S5V File (*.csv)

OPS/images/4717ch01.05.1.02.jpg

OPS/images/DS_OV_Results.gif
Convert Row(s) To Hexadecimal

OPS/images/DS_WS_WSDLFile.gif
5. Data Project Explorer 53 &~ =0
‘T Proj_LUW? (SAMPLE:jidbe:db2: flocalhost: SO000/SAMPLEiretrieveMessagesFromServe
‘-10] Proj_2V10 (EC754V10:jdbc:db2:/futec754.vmec.svl.bm.com: 446/STLEC LiretrieveMess
O s,
03 5qsapts
&3 Stored Procedures
84 BD_ESQL1 (SQL - external)
£ PKGVAR1 (SQL - external)
(£ User-Defined Functons.
503 Web Services.
48 WebServicel
CISE
S0 wsoL
2 DataServerliebServices WebService 1/ metadata WebService
T N Doment
3 xMLschema.
Cxsr
0 Prej 28 (ABECAS:jdbeidb3: isbecd mec svi-bm.com: 446 ST EC TrefieveNisssag:

a m] 3]

OPS/images/DS_WS_DeployWS.gif
(Z) Deploy Web Service

Deploy Web Service
‘Specty the options to use during the deployment of the Web service.

Vieb server

Tvve: iekEghere Aopleation Serves Cammnity Edtan, verson 2 Gl aeases)

Oserver:
(®gid deployable fies only, do not deploy to a Web server

Data hander

Parameters.

= = i
I —— e[=
@ artifact.dataSourceArtifactld STLEC1 Delete
@ artifact.dataSourceGroupld console.dbpool
artfact datasourceVersion 10)
Im] ‘ll

Test

[Clset as defauit project Web service properties

OPS/images/DS_Autoreconnect.gif
& Automatic reconnection has failed

QL4489 A fatal error occurred that resulted n 2 disconnect rom the data source.

SQLCODE=4458.
SQLSTATE=08004

The foloning data source connections are invaii.
Select data sources from the st o attempt o recomect, Unselected data sources wil be disconnected.

[Cssectar) (oot |
o J(Ccanc]

OPS/images/DS_ConnPollPref.gif
Connection Management

Select options for managing connections.
Poling options

to detectinvald comnections
Poling interval (seconds) | 300

Ifaninvald connection s detected:
® Automatically reconnect
O Prompt before reconnecting

oo

OPS/images/DS_NewServerProf.gif
53 DEMONM Fofie (Gen|ew < v prtie
=& GsDB
{1 db2ve7_prod
=& LABECS.
(o EAECa e (i)
=& SAMPLE.
0 v srvate
B v test
& snect

OPS/images/DS_ConnErrMsg.gif
@ Connection unsuccessful

° A connection attempt was unsuccessful. Additional Resources

Summary ™. Explanation | Support

QL4214 A comnection authorizaton faiure has occured.

* SoLa214heb topic
© Search the developeriWorks Intearated Data Management forum

Ty the follwing suggestons t helpsoive the problem: © Search the developerWorks DB2 forum

 Ensure that the user name and password are correct.
These values are defined in the New Connecton wizard
or, for an existing connecton, on the General page in the
Driver Properties section. © [BMSoftwere Support

o further disgnose the problem, return to the Properties.
‘section and use the Traang page to enable racng.
‘Contact the database administrator and provide the trace
‘and other support nformation avaiable.

 Full message content: Local security service non-retryable

— |

OPS/images/DS_DeployGroup.gif
5] Deployment Manager % =0

ERELT

e § D
& (¥ DeploymentGroup.
& Deployment Resuts.
=& Artifacts
LWWwProject: SrptLsdl
£0 LwProject: SQLSP1
90 Wiproject Javase:
=& Server Profies
(G cb2vo7 prod
(B db2vo7 _test
= £ DeployToTest_Proj1
¢ Deployment Resuits
= Artifacts
0 DemoLUW: SQLPROCT
DemoLUVI: VE TestLsdl
=& Server Profies
(B db2vo7._test

OPS/images/DS_ServerProfile.gif
£ renesion [emorsn [uescapote e 7%

5 Comecon] 9 Owtabse st | et §0utnesetis |
vt dstsbess vendorsed verson

T s e s st i e kg crncton e
Gomecton e e LABECS

Duetpe: OB2forz/os

Dot s V8.1 lew FunctionHode)

B renoson_[Bemose |G- e TG

. T

Dutabasesetings
Sty st s e s e

B reneson (B renos: e 1% =0
R g

et e options
et e, s o e o e ot v e
[p—

eurerspopetes

St e s ut e s o ey .
PR — i
St oy res o s e e s by e
vt oty s, ot o e s e, e ey P .
©tee e oy sy bt

& o[mnossn_|iuecspoiegoe % =0)
& Comecion,) s et | 8 s e et

- Genenl-Raitned

Corbose g rasre ceomert cours

Elensiesencong hen e

Ok g

Dopsrians

~ tate S Routnes

Conborenane 5 e deomeotrs. :
e ot
isermine ot st
W eceman o e B

P por: Froeg

Oy srs
Bsdonen:
Dscoateondiomert

» Etemal st Storedprocedures

OPS/images/DS_WS_GenXMLSchema.gif
(& New Operation B= X
Generate XML Schema for Stored Procedure

Y
- {1
e,

Clck Generate to specify the input vaues and generate the default
XML schema,

@ [<Ea Next Einish Cancel

OPS/images/DS_WS_AddOperation.gif
(& New Operation -JEl)

Add Operation to Web Services Y

poiuiebieinl ¢

Avaiable Vieb services: .| Selected Web services:
23 Webservice1™

>

OPS/images/DS_WS_AddSP2WS.gif
5. Data Project Explorer 53 %~ -0
‘=110 Proj_V10 (EC754/10:jdbcdb2: futec754.vmec.svl.ibm | |
0 3ars
0 satsarpts
&3 Stored Procedures
54D ES0L1 (G0L-
5 prevara (s -
(23 User Defined Functor
5C3 Web Services
3 WebService1*
&M
3 wsoL
3 M. Doauments:
03 L schema
gty
-0 Proj_29 (LABEC4V9:idbc]
0 3ars
3 squsarpts
=3 Stored Procedures
90 a2
90 PRocEDUREL
#0 PROCEDURE2

OO L|HE %

8 Data Source Explorer 07
B]
O sars

OPS/images/4717ch04.08.1.09.jpg

OPS/images/4717ch04.08.1.08.jpg

OPS/images/4717ch04.08.1.07.jpg

OPS/images/DS_BinaryDeploy1.gif
S Deploy Routines

Deploy Options
‘Specify options for the deployment.

Torget database
O Use qurrent database.
® Use different database

Database: [LABECTVS

Target schema for deploying an unqualfied routine
Target schema | ADVMF001 M

Defauit path: | SYSIBM,SYSFUN,SYSPROC, ADMF00 1

Duplcate handing
@ Drop duplcates.
Oreat duplicates as errors.

O Deploy by buiding the source
(® Deploy using binaries i avaiable in the database.

Targetload brary: | USER RUNLIB.LOAD

OPS/images/4717ch04.08.1.06.jpg

OPS/images/4717ch03.07.1.11.jpg

OPS/images/4717ch04.08.1.05.jpg

OPS/images/DS_PkgVariation.gif
(& New Package Variation - =l

Bind Package Options
e s smesngnasses [l
database.

Collecton D: [NULLID
Package ID: | PKGUAR1
Version ID:

Target Location Options

locstons [smecs v

Bnd Options: | PACKAGE() | | ACTION(REPLACE) ISOLATION(CS)

OPS/images/4717ch04.08.1.04.jpg

OPS/images/DS_ManagePrivileges.gif
750 80w Esqu 82

Data Object Editor

Data Object Properties
manage privieges for tis data object. Run DDL when you are done.

Use the grid to.
40 <Stored Procedure> BD_ESQLL & previewonL
|
Privileges | X O runonL
AuthorizationD_| Type EXECUTE [
FVTGR1L User [l =
FVTGRP1 User %]
EvTceDy tteer i1 ¥
» Impacted Objects
~ oL
DL statements from the Data Object Properties and Ipacted Object sections can e Previened here.
Alternatvely, they can be Opened with the SQL edtor for further ediing.
< preview DDL
& open withsoL
© runooL

OPS/images/4717ch04.08.1.03.jpg
Workstation

Sewp debug

B2 suppiied
sPs

o

“Sossion Manager can be in sorver or workstation

TCPIP calls

—sPaalls

Debug Library

saL/dave s

——

Execuion

Debug WL

OPS/images/4717ch04.08.1.02.jpg

OPS/images/DS_MJSImport1.gif
© Import JAR File =%]

Name and Location \
Import a new installable JAR file. E bl E
2RD: oetters_stff
38R Locaton: LAWSAD_scrptsihelperlgetiers staffjor [romse]
Clpepoy
Corent schems

OPS/images/4717ch04.08.1.01.jpg

OPS/images/DS_WS_NameIt.gif
(Z) New Web Service

Define a new Web service

Specty 3 ame, type nd trge i snerfor
the new Vieb sérvice.

Project: Proj_2v10
Neme:

Namespace LRI: | um:example

OPS/images/DS_WS_AddNewWebSvc.gif
s b Services|
Sam (G5 New Vieb Servic.
@ weot
23 x00 Doa §8 Underioy

