

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

 Second Edition (December 2010)

 This edition applies to Version 1, Release 9 and later of z/OS (product number 5694-A01).

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 DB2®

 IBM®

 Language Environment®

 MVS™

 NetView®

 OMEGAMON®

 Parallel Sysplex®

 RACF®

 Redbooks®

 Redpaper™

 Redbooks (logo)[image:]®

 RMF™

 System i®

 System z®

 VTAM®

 z/OS®

 zSeries®

 The following terms are trademarks of other companies:

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 The IBM® Health Checker for z/OS® (also identified in this book as IBM Health Checker) is a key component of the z/OS operating system, whose objective is to identify potential problems before they impact the system’s availability. To do this it continuously checks many current, active z/OS and sysplex settings and compares them with those suggested by IBM or defined by you.

 The IBM Health Checker for z/OS is made of two parts:

 •A framework that provides check management and execution services. It supports check development by IBM, independent software vendors (ISVs), and users.

 •Individual checks that look for specific z/OS settings and definitions, checking for potential problems.

 Customers can use the IBM Health Checker for z/OS infrastructure to run their own checks, extending the reach of IBM Health Checker for z/OS to environment-specific settings.

 This IBM Redpaper™ publication introduces the IBM Health Checker and describes how to activate and use it. It teaches you how to exploit the IBM Health Checker infrastructure to run custom checks and how to identify good candidates for writing your own checks. This publication also provides a number of sample checks to give you a good start creating custom checks for your environment.

 The team who wrote this paper

 This paper was produced by a team of specialists from around the world working at the International Technical Support Organization, Poughkeepsie Center.

 Mario Bezzi is an IT Specialist with IBM Italy. He has 27 years of experience in MVS™ system programming, both as a customer and in various technical support positions. His areas of expertise include system performance, Parallel Sysplex®, assembler and C language programming, and system and DASD hardware technology. Mario joined IBM in 1999. He now works part-time with the ITSO team in Poughkeepsie, teaching and writing books.

 Neil O’Connor is a Certified Consulting IT Specialist with IBM Australia. He has 37 years of experience supporting mainframe system, in roles that include management, MVS system programming, automation, and operations. His areas of expertise include standardization, automation, assembler, and REXX programming. Neil joined IBM in 1995, has participated in four ITSO residencies, and holds one patent. Neil now leads a global team responsible for standardization across IBM outsourced z/OS customers worldwide.

 Sharon Phillips is an Advisory Programmer with IBM Poughkeepsie Lab. She has 25 years of experience in MVS system programming in various technical positions. She worked on the IBM Health Checker for z/OS since it was made available as a web deliverable with z/OS V1.4. In addition to providing new functions, her main focus has been assisting check writers in developing programming techniques and different ways to use checks, as well as designing checks to have a common look and feel. Sharon's newest assignment is in XES/XCF development.

 Ulrich Thiemann is an Advisory Software Engineer at IBM Rochester, MN, USA. He has 15 years of experience in client and server-side software development. He holds a master’s degree in Mathematics and Computer Science. His areas of expertise include database development, in particular for the query optimizer and other components of the integrated DB2® database of the IBM System i®. He has worked at IBM Rochester since 1999. Ulrich joined the z/OS software development community three years ago and now leads the IBM Health Checker for z/OS component team.

 Helen Tsang is a Senior Software Engineer working in the z/OS System House Installation and Packaging area in Poughkeepsie, New York. An employee of IBM for the last 25 years, her areas of expertise include packaging and installation of z/OS products, ServerPac, and exploiting new installation technologies.

 Thanks to the following people for their contributions to this project:

 Frank Kyne
Richard Conway
Robert Haimowitz
International Technical Support Organization, Poughkeepsie Center

 Peter Relson
Mike Phillips
Geoffrey Miller
Barbara Bryant
Brian Thomas
Robert Gardinor
Peter Fatzinger
IBM USA

 Claudio Zaccardi
BNL Italy

 Now you can become a published author, too!

 Here's an opportunity to spotlight your skills, grow your career, and become a published author - all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and
apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our papers to be as helpful as possible. Send us your comments about this paper or other IBM Redbooks® publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an e-mail to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts

 •Follow us on twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

 Summary of changes

 This section describes the technical changes made in this edition of the paper and in previous editions. This edition may also include minor corrections and editorial changes that are not identified.

 Summary of Changes
for Exploiting the IBM Health Checker for z/OS Infrastructure
as created or updated on December 22, 2010.

 December 2010, Second Edition

 This revision reflects the addition, deletion, or modification of new and changed information described below.

 New information

 •Added information about Health Checker for z/OS policies.

 •Added information on how to use format 1 MGBs.

 •Added information about the MPFX_IMPORTANT_MSG check and the INITCHECK parm.

 Changed information

 •Minor corrections and editorial changes throughout the paper.

[image:]
[image:]

An overview of IBM Health Checker for z/OS

 This chapter provides an overview of IBM Health Checker for z/OS and how this function was developed with two major parts:

 •Framework

 •Checks

 It provides a definition of a check, the types of checks that are currently supported, and check messages.

 It discusses the role of IBM Health Checker for z/OS as compared to automation and monitoring processes. It gives a brief introduction of the new migration checks, which are helpful for customers doing migration planning, and the methods that are useful for identity health checks from the Program Temporary Fix (PTF) service deliverable.

 1.1 Background

 In the early 2000s, a team of IBM developers and testers did studies based on customer system outage reports. The analysis showed that the most common root causes for outages were avoidable bad configuration settings with a single point of failure, or that a less optimal configuration was set that caused performance bottlenecks. One could ask why these customers were not conforming to IBM best practice by implementing and defining their system settings using the recommendations. It was determined that the following trends might have contributed to these bad system performance or outage situations:

 •IBM best practice recommendations are derived from a variety of reference sources. Although these sources are publicly available, defining appropriate recommendations requires time, experience, and specific skills.

 •Recommendations change due to new system requirements introduced in the system.

 •Recommendations change over time based on additional IBM or customer experiences.

 •A bad system setting could be in place for a long time, only surfacing as a problem because new functions were enabled or certain events occurred on the system at the wrong time.

 •Experienced z/OS system skills were limited at the installation.

 Hence, a solution was developed that programmatically checks for adherence to best practices, and that executes in real time on the active system. This provides a common, standard method for the z/OS software stack to check for best practices and recommendations.

 In 2003, the initial function of IBM Health Checker for z/OS was made available as a prototype to a limited number of customers. The prototype was well received by this small group, who provided valuable feedback to IBM. Many enhancements were added to the function, and the first official supported version of IBM Health Checker for z/OS was made available for z/OS V1R4, V1R5, and V1R6 by PTFs and z/OS web download. In z/OS V1R7, the function was integrated in the basic control program (BCP) base element as its own FMID HZS7720. Starting from z/OS V1R8, IBM Health Checker for z/OS becomes a component of BCP and is delivered in the base function modification ID (FMID) of BCP. So far, IBM has provided over 150 IBM Health Checker for z/OS checks. Starting in z/OS V1R10, a new migration health check was introduced to exploit IBM Health Checker for z/OS. See 1.4, “Migration checks” on page 13, for more information.

 1.2 Overview

 IBM Health Checker for z/OS is a tool to help identify potential configuration problems before they impact availability or cause system outages. It programmatically checks the current active z/OS and sysplex settings and definitions for a system and compares them to IBM recommended best practice configuration values or customer-defined settings. It generates output with detailed messages to inform you of any potential problems and suggested actions to take to resolve them. IBM Health Checker for z/OS is a preventative application that can be set up to run continuously on a system to detect potential problems and to alert you if such a situation exists. It is not intended as a monitoring tool.

 IBM Health Checker for z/OS consists of the following two parts:

 •Framework

 The framework is an interface that manages services like check registration, messaging, scheduling, command processing, logging, and reporting. It is an open architecture in support of check development by IBM products, independent software vendors (ISVs), and customers.

 •Checks

 Checks are programs or routines that evaluate component, element, or product-specific settings and definitions, looking for potential problems on a running system. Checks are independent of the framework. The IBM checks are owned, delivered, and supported by the element or component of z/OS.

 1.2.1 What is in a check

 IBM provides a set of checks in IBM Health Checker for z/OS, but vendors, system programmers, and consultants can write and add their own check routines. We discuss the basics of planning, designing, and writing a check in greater detail in Chapter 4, “Planning an informative check” on page 93.

 A check is a program or routine that verifies that the current system environment is the most optimal and alerts an installation if any deviations are detected. When a potential problem (an exception) is detected, it generates a check output, which is a report of messages that can help an installation to analyze the health of a system. Checks are independent of the IBM Health Checker for z/OS framework.

 A check can be written to analyze an installation configuration and look at the following areas:

 •Compliance to standards and consistent operating environments

 •Changes in configuration values and settings that might have been set dynamically over the life of an IPL

 •Threshold levels reaching the upper limit, especially those that might occur gradually

 •Single points of failure in a configuration

 •An unhealthy combination of system settings or configuration values that an installer might not have thought to check

 •Installation-related and migration-related actions

 •Abnormal system behaviors

 •A diagnostic tool running on the system that causes poor performances

 A check is uniquely identified by the check owner, the check name, and the check values:

 •The check owner is the owning component or element. It can have a maximum of 16 characters. For IBM checks, they all start with IBM. For example, IBMCNZ and IBMGRS are two IBM check owners.

 •The check name is the name of the check. It can have a maximum of 32 characters. For example, a console check name is CNZ_CONSOLE_MASTERAUTH_CMDSYS.

 •Each individual check contains a set of predefined check values:

  –	The interval defines how often the check will runs.

  –	The severity of the exception determines how check output is issued.

  –	The check message routing and descriptor codes determine where and how messages are displayed.

 The check values can be overridden by installation updates using SDSF or statements in the HZSPRMxx parmlib member or the MODIFY hzsproc command.

 We discuss how to manage checks using SDSF and the HZSPRMxx parmlib member in Chapter 2, “Using IBM Health Checker for z/OS” on page 19.

 The values used by the IBM Health Checker for z/OS checks come from a number of sources, including product documentation and websites. They are currently available from:

 •z/OS System test team

 •z/OS Service team

 •Parallel Sysplex Availability Checklist

 http://www.ibm.com/servers/eserver/zseries/pso/

 •System z® Platform Test Report for z/OS and Linux® Virtual Servers

 http://www.ibm.com/servers/eserver/zseries/zos/integtst/

 •ITSO Redbooks publications

 http://www.redbooks.ibm.com/

 •Washington System Center Flashes

 http://www.ibm.com/support/techdocs/

 •Parallel Sysplex and z/OS publications:

  –	z/OS MVS Initialization and Tuning Reference, SA22-7592

  –	z/OS MVS Planning: Global Resource Serialization, SA22-7600

  –	z/OS MVS Planning: Operations, SA22-7601

  –	z/OS MVS Setting Up a Sysplex, SA22-7625

  –	z/OS Security Server RACF® Command Language Reference, SA22-7687

  –	z/OS Security Server RACF Security Administrator’s Guide, SA22-7683

  –	z/OS UNIX® System Services Planning, GA22-7800

 1.2.2 Types of checks

 Three types of checks are supported by IBM Health Checker for z/OS:

 •A local check runs in IBM Health Checker for z/OS address space. Most IBM checks provided so far are local checks.

 •A remote check requires a dedicated task and runs in its address space.

 •A REXX check runs in a System REXX address space in an APF authorized environment defined by System REXX. REXX makes it easy to read data sets, parse retrieved information, and issue system commands.

 Local checks

 	
 Note: A sample local check can be found in SYS1.SAMPLIB:

 •HZSSADCK: sample HZSADDCHECK exit routine

 •HZSSCHKR: sample local check routine

 •HZSSMSGT: sample message input

 You can find additional check samples on the IBM Health Checker for z/OS website:

 http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

 Local checks have the following characteristics and usage considerations:

 •Local checks are written in assembler and run in the IBM Health Checker for z/OS address space, created by START hzsproc. These checks must be APF authorized.

 •The check must be registered to IBM Health Checker for z/OS.

  –	Use the ADD | ADDREPLACE CHECK parameter in the HZSPRMxx parmlib member to define the check default values and add the check.

  –	Write an authorized HZSADDCHECK exit routine running in the IBM Health Checker for z/OS address space. The HZSADDCHECK exit routine describes the information for the local check or checks. It invokes the HZSADDCK macro to:

  •	Identify the check, providing the values of check owner, check name, check routine name, and message table name

  •	Specify the default values for the check interval, check parameter, and check severity

 •A local check is called with a parameter that points to the HZSPQE control block and a 4 K dynamic work area. The HZSPQE data area contains all the information that a check routine needs, including the defaults defined in the HZSADDCHECK exit routine and any installation overrides. The PQE_FUNCTION_CODE tells the check why it is being called.

 •Ensure that the local check can access data from the IBM Health Checker for z/OS address space and that it does not require any potentially disruptive actions, such as I/O intensive operations, serializations, or waits.

 •A local check can use the HZSPDATA data set for persistent data that you want to save between restarts of the system or IBM Health Checker for z/OS. HZSPREAD and HZSPWRIT macros are used to read and write persistent data.

 •A local check invokes the HZSFMSG macro to issue messages and check results as described in the message table.

 Figure 1-1 displays a local check. It shows:

 •The IBM Health Checker for z/OS address space, where the framework runs local check routines

 •The HZSPQE data area, which contains all the information that a check routine needs, including default values defined by the check and any installation overrides to those defaults

 •Installation overrides, which are changes that the installation can provide to check default values, such as intervals, parameters, and other values

 •The message table, which contains message data for the check output messages that communicate check results

 [image:]

 Figure 1-1 IBM Health Checker for z/OS: a local check

 For more information about the local checks see IBM Health Checker for z/OS User's Guide, SA22-7994, and Chapter 4, “Planning an informative check” on page 93.

 Remote checks

 	
 Note: A sample remote check can be found in SYS1.SAMPLIB.

 •HZSSMSGT: sample message input

 •HZSSRCHK: sample remote check routine

 You can find additional check samples on the IBM Health Checker for z/OS website:

 http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

 Remote checks have the following characteristics and usage considerations:

 •Remote checks can run in any address space with any authority, and must have access granted by the RACF XFACILIT class profile.

 •The remote check must be registered when IBM Health Checker for z/OS is running.

  –	A check issues the HZSADDCK macro to define it to IBM Health Checker for z/OS. The handle is assigned to the check to identify it for all remote HZSCHECK and HZSFMSG requests.

  –	The check must invoke the IEAVAPE macro to obtain a pause element token (PET), which is input to the HZSADDCK request.

  –	The component might choose to provide a command to enable the check to re-add itself in case it is deleted.

 •The address of the message table is input to the HZSADDCK macro. The message table is loaded in the caller’s address space.

 •A remote check is resumed when it is time to run.

  –	The PET returned from IEAVAPE contains the reason that the check was called (RUN, DELETE, REFRESH, DEACTIVATE, and so on).

  –	The check has access to an HZSPQE, which contains all the information that a check routine needs, including the default values defined in the HZSADDCHECK exit routine and any installation overrides.

  –	It uses HZSCHECK REQUEST=OPSTART to inform the system that the check is running.

  –	It uses HZSCHECK REQUEST=OPCOMPLETE to inform the system that the check has completed.

  –	The check must pause by invoking IEAVAPE and wait to be resumed.

 •A remote check can use the HZSPDATA data set for persistent data that you want to save between restarts of the system or IBM Health Checker for z/OS. HZSPREAD and HZSPWRIT macros are used to read and write persistent data.

 •A remote check invokes the HZSFMSG macro to issue a message with check results:

  –	Must specify REMOTE=YES

  –	Must specify the handle that identifies the check to IBM Health Checker for z/OS

  –	Specifies the location of the message table for the check in the MSGTABLE parameter

 Figure 1-2 displays a remote check. It shows:

 •The IBM Health Checker for z/OS address space, where the framework is running and communicating with the remote check in a separate caller’s address space

 •The HZSPQE data area, which contains all the information that a check routine needs, including default values defined for the check and any installation overrides to those defaults

 •Installation overrides, which are changes that the installation can provide to check default values, such as intervals, parameters, and other values

 •The message table and the remote check routine provided by the check developer

 [image:]

 Figure 1-2 A remote check

 See IBM Health Checker for z/OS User’s Guide, SA22-7994, for more information about the remote checks and how you can write your own remote checks.

 For more details about the types of checks that you can write see 3.1.1, “Summary of execution environments” on page 62.

 REXX checks

 	
 Note: A sample REXX check can be found in SYS1.SAMPLIB.

 •HZSSXCHK: sample REXX check

 •HZSSMGGT: sample message input that is common for all check types

 You can find additional check samples on the IBM Health Checker for z/OS website:

 http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

 REXX checks have the following key characteristics:

 •A REXX check runs in a System REXX address space under the security of IBM Health Checker for z/OS, which makes it easy to issue system commands (using the AXRCMD function) and to analyze the output of the commands issued.

 A REXX check can be run in TSO and non-TSO environments.

 •A REXX check invokes the HZSADDCK macro or the ADD | ADDREPLACE in HZSPRMxx parmlib statement to register in IBM Health Checker for z/OS with a unique REXX keyword. The exec must reside in SYS1.SAXREXEC or any library that is specified in the REXXLIB concatenation (support available in APAR OA26802) in the AXRxx parmlib member.

 •The check is called with the variables HZS_HANDLE, HZS_PQE_FUNCTION_CODE, and HZS_PQE_ENTRY_CODE initialized.

  –	It invokes REXX function HZSLSTRT when the exec check has started to run, initializes the check environment variables, and obtains the 2 K work area. The 2 K check work area is used to retain data through check iterations for the life of the REXX check.

  –	It invokes REXX function HZSLSTOP when the exec check completes, and saves the 2 K work area for the check to run the next time.

 •Non-TSO environment REXX checks can use the REXXIN data set as the input data set and the REXXOUT data set to capture data used to diagnose the check when it is in debug mode.

 •The REXX function HZSLFMSG is invoked to issue messages for the check output. The message table is defined on the HZSADDCK request and loaded by IBM Health Checker for z/OS.

 Figure 1-3 displays a REXX check. The message table and the REXX exec check routine are provided by the check developer.

 [image:]

 Figure 1-3 A REXX check

 See IBM Health Checker for z/OS User’s Guide, SA22-7994, for more information about the REXX exec checks and how you can write your own REXX checks.

 See 3.1, “Selecting a check execution environment” on page 62, for more details about the types of checks that you can write.

 1.2.3 Types of check messages

 When IBM Health Checker for z/OS executes on the system, the checks are run and produce output. The check message output indicates whether the check is successful. The messages are categorized as follows:

 •Information messages

 When a check executes and gets a clean run (no exception found) or a check is not appropriate in the current environment, the message text is written to the message buffer to indicate that the check was successful or that the check was not run.

 •Exception messages

 When a check executes and detects a potential problem, it issues a write to operator (WTO) message, and the message is called an exception. The check exception messages are issued both as WTOs and to the message buffer. The WTO contains only the message text, whereas the message buffer includes the message text, an explanation of the potential problem uncovered, the severity, and a suggestion about what to do to fix the potential problem.

 •Reports

 When a check finds an exception, it also writes a report to the message buffer with additional information for the exception message.

 •Debug

 When a check executes in debug mode (DEBUG=ON), the debug messages are issued. They are useful to diagnose a problem with the check.

 When a health check results in an exception condition, IBM Health Checker for z/OS produces its own HZS messages as follows:

 •HZS0001I: exception information message: low severity or WTOTYPE(INFORMATIONAL). This indicates that the check found a problem that will not impact the system immediately, but that must be investigated.

 •HZS0002E: exception eventual action message: medium severity or WTOTYPE(EVENTUAL). This indicates that the check found a medium severity problem in an installation.

 •HZS0003E: exception critical eventual action message: high severity or WTOTYPE(CRITICAL). This indicates that the check routine found a high-severity problem in an installation.

 •HZS0004I: exception hardcopy message: hardcopy-only informational severity or WTOTYPE(HARDCOPY).

 The output messages written to the message buffer can be viewed using:

 •The SDSF CK panel

 •The HZSPRINT utility

 •A log stream that collects a history of check output

 In 2.4, “IBM Health Checker output” on page 40, we discuss in detail how to view check messages using SDSF, the HZSPRINT program, and from the log stream data set.

 To get the maximum benefit from IBM Health Checker for z/OS, run it continuously on the system so that you will know when the system has changed. When an exception is issued, you must evaluate the check output and resolve the exceptions. You might need to review the exceptions with experts on specific components or products. After you evaluate a check message, you can resolve it in one of the following ways:

 •Update the system parameters as recommended in the check exception message output. You can verify the changes by rerunning the check (use R action in the SDSF CK panel, or MODIFY hzsproc,RUN,CHECK(check_owner,check_name)) and check the output to ensure the exception message is gone.

 •Update the parameter values so that you will no longer receive the check exception message when the check runs.

 •Put the check into inactive state or delete the check.

 1.3 Role of IBM Health Checker for z/OS

 The goal of IBM Health Checker for z/OS is to help identify potential problems before they impact your system availability or, in the worst cases, cause outages. It enables you to maintain a complex system environment that is healthy and well configured based on best practices.

 IBM Health Checker for z/OS enables you to:

 •Check specific system settings and conform to best practices and recommendations.

 •Implement and ensure compliance with company-defined system settings and standard conventions. For example, you can ensure that user IDs are set up consistently based on the company’s requirements.

 •Implement and confirm security compliance and audit. For example, ensure that security-sensitive resources are protected properly.

 •Spot check changed configuration settings since the last IPL. For example, compare the static content in PARMLIB members used at IPL to the current settings in effect that might have been set dynamically over the life of an IPL.

 •Recognize any system exposures.

 •Report exceptions detected at an installation with suggested actions to resolve them.

 1.3.1 Comparison to a monitoring tool

 Monitoring means a regular observation and recording of activities taking place in a system environment. It is a process of routinely gathering information about a system and gives feedback about the progress of the system to system management personnel.

 The monitoring program might be able to provide an overall picture of your system’s current health, system availability, and performance, but it usually does not provide error detection functionality. It does not have the capability to target constantly changing data in an active running system environment and produce an exception message report if errors are detected.

 IBM Health Checker for z/OS is not a monitoring tool. IBM Health Checker for z/OS is shipped as an integrated part of the z/OS operating system. When the IBM Health Checker for z/OS function (the started task) is enabled, the framework is always available on the system. It does not do specific monitoring work, but it checks current system and sysplex configuration parameters and the system environment to help determine deviations on a system before they become potential problems that might impact system availability. It produces structured and informative check output messages with recommended solutions and actions to take. It is beneficial for vendors to be able to exploit the IBM Health Checker for z/OS framework and to develop their own checks for their applications.

 1.3.2 Using automation with IBM Health Checker for z/OS

 Automation can be used for the implementation of IBM Health Checker for z/OS. This section highlights several options that can be used to trigger a check to run:

 •INTERVAL(ONETIME) setting

 •ACTIVE or INACTIVE state

 •HZSCHECK macro request

 •AXRCMD function in System REXX

 The check interval is a parameter used to determine how often a check must be run. The interval value can be set from a minimum of one minute up to a maximum of 999 hours and 59 minutes. When a check is defined with INTERVAL(ONETIME), this means that the check should run only once or run on demand. This option is commonly used for a one-time configuration check that is activated at IPL time.

 When a check is likely to produce an exception the first time that it runs, it might be better to set the check to INACTIVE. When a check is ready to be run, the installation can ACTIVATE it by using the SDSF panel or issuing the MODIFY hzsproc,ACTIVATE command. For example, all migration checks are defined as inactive, with low severity, and with an INTERVAL of ONETIME. These checks are run on demand.

 A product or check can use the HZSCHECK macro request to programmatically control a check when the environmental condition changes. When a system event occurs (for example, a server is down), a check routine produces an exception or a check goes into disable mode because of an environment not applicable (ENVNA) reason. The check can be set to detect when the environment condition changes (for example, a server is back up), so the check can be run successfully, or the check can be run based on an interval because the environment is applicable again.

 Writing a System REXX check can provide an advantage when issuing authorized system commands by using AXRCMD services. It also enables you to analyze easily the output of the system commands issued.

 You can try the following approaches when writing checks for automation:

 •Use a standard convention to define check names so that they are easily identified and managed. For example, XCF_CF_STR* checks can be wild carded on check commands.

 •Use an exception severity level, as shown in Figure 1-4, to alert an installation.

 	
 Severity WTOType

 HIGH CRITICAL HZS0003E

 MEDIUM EVENTUAL HZS0002E

 LOW INFO HZS0001I

 NONE HARDCOPY HZS0004I

 Figure 1-4 Exception severity levels

 •Use Message Processing Facility (MPF) exits to respond to a message from the operator console and initiate a health check to be run.

 •Write System REXX health checks, which can use AXRCMD services to issue authorized operator commands to run checks or to update parms in checks.

 •Set tunable check attributes and parameters to ensure deviations in installation settings will trigger an alert.

 To avoid triggering exception automation:

 •Ship INACTIVE check so that the check will not get started automatically when IBM Health Checker for z/OS initialized. The INACTIVE check will be run on an on demand basis.

 •Create a policy with a severity NONE using the UPDATE command to assign no severity to the check. Exception messages are issued to the hardcopy log, rather than the console.

 In this document we demonstrate how each of the these options are used. We also cover sample checks used in MPF exits, and REXX checks using ARMCMD services.

 1.4 Migration checks

 Starting with z/OS V1R10, a new type of health check was introduced to exploit the IBM Health Checker for z/OS framework. Migration health checks help you determine the appropriateness of various migration actions. Before you migrate to the new z/OS release, you can use these new checks to assist you with your migration planning. After you migrate, you can rerun these checks to verify that the migration actions were successfully performed. These migration checks only report on the applicability of the specific migration actions on your current active system and do not make any updates to the system.

 The migration checks are similar to the other IBM-provided checks. The only differences are:

 •The names of migration checks follow the convention ZOSMIGVvvRrr_component_program_name (or for ICSF, ICSFMIGnnnn_component_program_name). The MIG characters are followed immediately by the z/OS release identifier. This naming convention means that the check is for migration purposes, and it indicates the release in which this migration check was introduced.

 •Migration checks are inactive by default because you might not want to know about the migration actions during the non-migration period.

 The migration health checks are intended to run on your current active z/OS release and then to run again after you have migrated to your new z/OS release. The following steps describe the usage and invocation of a migration check:

 1.	Install the latest migration checks on your current system. These checks are provided in the service stream as PTFs. Like all IBM Health Checker for z/OS checks, migration checks can be found in the functional PSP bucket HCHECKER. You can also find all the IBM Health Checker for z/OS checks at:

 http://www.ibm.com/systems/z/os/zos/hchecker/check_table.html

 2.	Activate the migration checks appropriate to your migration path. The migration check names indicate the release in which the migration actions were introduced. You can just activate the checks appropriate for your particular migration path. If you are migrating from z/OS V1R9 to z/OS V1R10, you must activate the checks for changes that occurred in z/OS V1R10. If you are migrating from z/OS V1R8 to z/OS V1R10, then you must activate the checks for changes that occurred in both z/OSV1R9 and z/OS V1R10. You can activate the migration checks using SDSF or the MODIFY command to make the check active. See Chapter 2, “Using IBM Health Checker for z/OS” on page 19, for more information about how to activate a check.

 3.	Review the migration check output for exceptions and rerun the check if necessary. You must address any exception for your migration planning. After you complete your migration action, you can rerun the migration check to verify that the migration action was completed correctly on your current system.

 4.	Deactivate the migration checks if desired. When you no longer want to have the migration check active on your current system, you can deactivate the check using the MODIFY command.

 5.	Migrate to the new z/OS release.

 6.	Install the latest migration checks on your new system.

 Review the latest migration checks available by using the functional PSP bucket HCHECKER. You can also find all IBM Health Checker for z/OS checks at:

 http://www.ibm.com/systems/z/os/zos/hchecker/check_table/html

 7.	Activate the migration checks appropriate to your migration path. For migration verification, activate the checks appropriate to the release that you are migrating from, migrating through, and migrating to.

 8.	Review the migration check output and rerun the check if necessary. Address any exceptions received from the migration check and rerun the check after the corrections have been made.

 9.	Deactivate the migration checks. After the migration verification is complete, you can deactivate the migration checks using the MODIFY command.

 1.5 Ways to identify IBM Health Checker for z/OS service

 IBM provides several methods to help customers identify the required PTFs to be installed. These methods include:

 •Using the FIXCAT HOLDDATA in PTF service, which is the preferred automated method available so far

 •Using the Preventive Service Planning (PSP) buckets, which is the semi-automated method

 1.5.1 FIX category HOLDDATA

 Beginning with SMP/E for z/OS V3R5 (also in z/OS V1R10), SMP/E has been extended to help simplify the task of verifying that the required PTF services identified in PSP buckets are installed. As mentioned previously, PSP buckets identify required software fixes for new hardware devices, toleration and coexistence of new software releases, and enabling new functions. IBM consolidates the list of required fixes from PSP buckets and produces a new FIX category (FIXCAT) holddata to identify those fixes. For IBM Health Checker for z/OS, the fix category is IBM.Function.HealthChecker.

 SMP/E provides support for the new HOLDDATA constructs (FIXCAT type HOLDDATA) which deliver in the IBM PTF service stream. The FIXCAT HOLDDATA specifies an APAR (REASON) that provides a fix for the held SYSMOD(FMID) that is associated with one or more FIX categories. See Example 1-1 for a sample ++HOLD statement with the FIXCAT operand and in the fix categories of IBM.Function.HealthChecker and IBM.ProductInstall-RequiredService.

 Example 1-1 Sample ++HOLD statement with FIXCAT operand

 [image:]

 ++HOLD(HBB7750) FIXCAT FMID(HBB7750) REASON(AA28708) RESOLVER(UA47249)

 CATEGORY(IBM.ProductInstall-RequiredService,

 IBM.Function.HealthChecker)

 DATE(09139).

 [image:]

 When FIXCAT HOLDDATA statements are received into a global zone, SMP/E dynamically assigns the fix category values as sourceids to the PTFs that resolves the APARs. These sourceids simplify selecting and installing required fixes. Example 1-2 displays the global zone entry for PTF UA47249 with the new sourceids assigned.

 Example 1-2 Global zone entry for resolving PTF

 [image:]

 UA47249 TYPE = PTF

 STATUS = REC BYP APP

 FMID = HBB7750

 DATE/TIME REC = 09.152 15:16:10

 SOURCEID = CORCLOSE

 HIPER

 IBM.Function.HealthChecker

 IBM.ProductInstall-RequiredService

 [image:]

 With the new SMP/E enhancement, you can express an interest in a fix category for it to be used for APPLY and ACCEPT and REPORT processing. There are several ways to express an interest in one or more fix categories:

 •You can explicitly specify one or more fix categories using the FIXCAT operand on APPLY, ACCEPT, or REPORT commands.

 •You can implicitly specify one or more fix categories using the wild card in the FIXCAT operand on APPLY, ACCEPT, or REPORT commands.

 •You can define persistent interest lists in the active OPTIONS entry for either target or DLIB zones. A new administration dialog was added for FIXCAT options to allow you to create a list of fix categories that is to be considered during APPLY, ACCEPT, and REPORT processing.

 •The REPORT MISSINGFIX command can help you analyze the new FIXCAT HOLDDATA and determine which fixes (APARs) identified by the HOLDDATA are not yet installed.

 See SMP/E for z/OS Commands, SA22-7771, for more information about FIXCAT support.

 1.5.2 PSP buckets

 There are three types of Preventive Service Planning (PSP) buckets: the traditional hardware and software buckets and the functional buckets.

 •Hardware buckets identify required and recommended hardware microcode levels and patch levels, as well as required software for device support or hardware function exploitation.

 •Software buckets identify recommended fixes to be installed when you install the product. They also include updates to installation and product documentation. Software buckets are used for all IBM software products.

 •Functional PSP buckets are for high visibility cross-component functions, which usually do not have a unique FMID. These PSP buckets identify recommended services for selected functions.

 A functional PSP bucket named HCHECKER was created specifically for IBM Health Checker for z/OS. Customers can search this functional PSP bucket to find the latest PTFs available on health checks and migration checks.

 Go to the IBM Tech Support website to access the PTF information about IBM Health Checker for z/OS:

 http://www14.software.ibm.com/webapp/set2/psp/srchBroker

 Figure 1-5 shows how you can use this user interface to search for the specific functional PSP bucket HCHECKER.

 [image:]

 Figure 1-5 IBM Tech Support website

 Using the graphical user interface shown in Figure 1-5 on page 17, you can locate the PTF service information about the HCHECKER PSP bucket in the form of an extract file. Figure 1-6 shows that the extract file contains the service maintenance list of all SMP/E installable APAR/PTF references within the subset of HCHECKER.

 	
 /* Preventive Service Planning */

 /* UPGRADE: FUNCTION, SUBSET: HCHECKER */

 /* Updates also available at ftp site: */

 /* ftp site = ftp://ftp.software.ibm.com/s390/pspapartool/ */

 /* ftp file = FUNCTION_HCHECKER.txt */

 /* Last Extract: */

 /* Time = 18:07:23 */

 /* Date = 07/21/2009 */

 APAR(AA07513) FMID(HBB7707) FIX(UA20437) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09276) FMID(HBB7707) FIX(UA20347) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09306) FMID(HBB7707) FIX(UA20252) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09366) FMID(HBB7707) FIX(UA20301) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09367) FMID(HBB7707) FIX(UA20379) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA10830) FMID(HBB7707) FIX(UA19872) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA12219) FMID(HBB7707) FIX(UA20245) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA12777) FMID(HBB7707) FIX(UA29478) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA14022) FMID(HBB7707) FIX(UA23400) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA14576) FMID(HBB7707) FIX(UA24514) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA14637) FMID(HBB7707) FIX(UA26503) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA07513) FMID(HBB7708) FIX(UA20438) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09276) FMID(HBB7708) FIX(UA20348) UPG(FUNCTION) SUB(HCHECKER).

 APAR(AA09306) FMID(HBB7708) FIX(UA20253) UPG(FUNCTION) SUB(HCHECKER).

 Figure 1-6 Sample of extract file for HCHECKER PSP bucket

 1.6 What is next

 The following chapters discuss these topics in detail:

 •Chapter 2, “Using IBM Health Checker for z/OS” on page 19

 •Chapter 3, “Writing checks” on page 61

 •Chapter 4, “Planning an informative check” on page 93

 •Chapter 5, “Techniques for writing informative messages” on page 107

 •Chapter 6, “Debugging health checks” on page 129

 •Chapter 7, “Writing checks using System REXX” on page 147

 •Chapter 8, “Unauthorized health checks written in REXX” on page 177

 •Chapter 9, “Writing health checks using Metal C” on page 195

 The complete version of the sample checks documented in this book is provided in source and executable formats. For information about the machine-readable material provided with this book refer to Appendix A, “Additional material” on page 219.

[image:]
[image:]

Using IBM Health Checker for z/OS

 This chapter focuses on using IBM Health Checker for z/OS. It describes how to set up IBM Health Checker for z/OS and related software components, such as System REXX. This chapter also describes accessing the IBM Health Checker for z/OS checks, check results, and messages.

 2.1 Preparation

 In order to use the IBM Health Checker for z/OS, it must be installed and active. Beginning with z/OS V1R7, the IBM Health Checker for z/OS is shipped as part of z/OS, so it simply must be enabled for use. Prior to z/OS V1R7, the IBM Health Checker for z/OS could be downloaded from an IBM website for use on z/OS V1R4 through V1R6, but this option has been withdrawn. Therefore, using IBM Health Checker for z/OS, z/OS V1R7 or later is required.

 In z/OS V1R7, the IBM Health Checker for z/OS (COMP ID 5752SCHZS) was provided as a separate FMID (HZS7720), but beginning with z/OS V1R8 it is integrated into the z/OS base FMIDs (HBB*).

 If you intend to write your own health checks, we recommend using System REXX if possible. System REXX provides a powerful programming environment, which is fast to code and easy to debug.

 Beginning with z/OS V1R9, System REXX is shipped as part of z/OS, so it simply must be enabled for use. A version of System REXX for z/OS V1R8 can be downloaded from the following IBM website:

 http://www-03.ibm.com/systems/z/os/zos/downloads

 To use IBM Health Checker for z/OS with System REXX, z/OS V1R8 or later is required. To use IBM Health Checker for z/OS with an integrated System REXX, z/OS V1R9 or later is required.

 At a high level, the steps to enable IBM Health Checker for z/OS are:

 1.	Create the HZSPDATA data set.

 2.	Create a log stream (optional).

 3.	Create a HZSPRMxx parameter member (optional).

 4.	Create a HZSPROC started task (STC) procedure.

 5.	Define security access.

 6.	Make HZSPROC start automatically after an IPL.

 7.	Enable System REXX.

 8.	Create HZSPRINT JCL.

 The following sections discuss these procedures in greater detail.

 2.1.1 Create the HZSPDATA data set

 The HZSPDATA data set is used to save check data between restarts. A sample job to do this is provided in SYS1.SAMPLIB(HZSALLCP), shown in Example 2-1.

 Example 2-1 SYS1.SAMPLIB(HZSALLCP)

 [image:]

 BROWSE SYS1.SAMPLIB(HZSALLCP) Line 00000000 Col 001 080

 Command ===> Scroll ===> PAGE

 ********************************* Top of Data **********************************

 //HZSALLCP JOB

 //***

 //* *

 //* $MAC(HZSALLCP) COMP(SCHZS) PROD(HZS7720): *

 //* *

 //* PROPRIETARY STATEMENT: *

 //* *

 //* LICENSED MATERIALS - PROPERTY OF IBM *

 //* 5694-A01 *

 //* (C) COPYRIGHT IBM CORP. 2005 *

 //* STATUS = HZS7720 *

 //* *

 //* ALLOCATE THE HZSPDATA DATASET *

 //* --------------------------- *

 //* *

 //* INSTRUCTIONS *

 //* *

 //* 1. Each system that starts IBM Health Checker for z/OS *

 //* must have a unique HZSPDATA dataset. *

 //* IBM recommends that the system name be included in *

 //* name of the HZSPDATA dataset. *

 //* *

 //* 2. HZSPDATA DD name must reflect the name of the dataset *

 //* to be allocated. The dataset must be FB with an *

 //* LRECL of 4096 *

 //* *

 //* 3. Within the HZSPDATA DD statement, you can use any *

 //* UNIT and VOL values that your system supports to *

 //* indicate where the system is to allocate the *

 //* dataset. *

 //* *

 //* CHANGE-ACTIVITY: *

 //* $L0=HCHECK HZS7720,040401, PDZJ: HEALTH CHECKER *

 //* $L1=ME01048 HZS7720,040901, PDZJ: PROLOGUE *

 //* *

 //***

 //*

 //HZSALLCP EXEC PGM=HZSAIEOF,REGION=4096K,TIME=1440

 //HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=(NEW,CATLG),

 // SPACE=(4096,(100,400)),UNIT=SYSDA,

 // DCB=(DSORG=PS,RECFM=FB,LRECL=4096)

 //SYSPRINT DD DUMMY

 ******************************** Bottom of Data ********************************

 [image:]

 There is no special requirement for the location of the HZSPDATA data set. It can be non-SMS or SMS, whichever suits the system data set layout conventions on your systems.

 If the HZSPDATA data set resides on a DASD that is accessible to multiple systems, then the system name, or another unique qualifier, should be included in the data set name. This is because the HZSPDATA data set cannot be shared between multiple systems. For consistency, we recommend always including the system name as a qualifier in the HZSPDATA data set name.

 The size of the HZSPDATA data set depends on the number of checks that save persistent data and the volume of the data saved. Obviously, this varies from system to system and changes over time. If the data set is initially allocated as shown in the example (100 primary blocks and 400 secondary), it will be more than sufficient to start with. Reviewing multiple systems where IBM Health Checker for z/OS is already active, the HZSPDATA data was observed to be consuming only approximately 30 to 40 records (at z/OS V1R10 level).

 If the HZSPDATA data set allocation is too small, then IBM Health Checker for z/OS handles the HZSPDATA data set full condition by presenting an HZS0012E error message on the operator’s console, as documented in the MVS System Messages manual and shown in Example 2-2.

 Example 2-2 HZS0012E message

 [image:]

 HZS0012E HZSPDATA DATA SET IS FULL. DATA SET NEEDS ROOM FOR n 4096-BYTE RECORDS

 Explanation: The system attempted to write the persistent data but there was not enough room in the dataset. The message text provides information about the size of the dataset needed to hold all the data. In the message text:

 n = the number of records

 System Action: The system writes message HZS0013A or HZS0019A

 Operator Response: Allocate and initialize a new dataset using the HZSALLCP job and provide that dataset in response to message HZS0013A or HZS0019A.

 [image:]

 An example of this scenario is shown in Example 2-3. It demonstrates that the new data set must be pre-allocated and empty.

 Example 2-3 HZSPDATA data set full scenario

 [image:]

 IEC031I D37-04,IFG0554P,HZSPROC,HC,HZSPDATA,048F,TMPSTG, SYS1.SY1.HZSPDATA

 *HZS0012E HZSPDATA DATA SET IS FULL. DATA SET NEEDS ROOM FOR 64 4096-BYTE RECORDS

 *0006 HZS0013A SPECIFY THE NAME OF AN EMPTY HZSPDATA DATA SET

 R 6,SYS1.SY2.HZSPDATA

 IEE600I REPLY TO 0006 IS;SYS1.SY2.HZSPDATA

 HZS0018I READING COMPLETE FOR THE HZSPDATA DATA SET

 *HZS0015E PROBLEM WITH HZSPDATA DATA SET:

 DATA SET IS NOT EMPTY

 *0007 HZS0013A SPECIFY THE NAME OF AN EMPTY HZSPDATA DATA SET

 R 7,SYS1.SY3.HZSPDATA

 IEE600I REPLY TO 0007 IS;SYS1.SY3.HZSPDATA

 HZS0018I READING COMPLETE FOR THE HZSPDATA DATA SET

 [image:]

 The follow-up action is to change the HZSPROC JCL to refer to the new data set so that IBM Health Checker continues to use the new data set after an IBM Health Checker restart.

 Later, when IBM Health Checker for z/OS is active, the F HZSPROC,DISPLAY STATUS operator command (as shown in Example 2-4) can be used to display the number of HZSPDATA records. This information is of interest whenever you are reevaluating or tuning the IBM Health Checker HZSPDATA size.

 Example 2-4 Display status

 [image:]

 F HZSPROC,DISPLAY STATUS

 HZS0203I 00.40.35 HZS INFORMATION 950

 POLICY(DEFAULT)

 OUTSTANDING EXCEPTIONS: 8

 (SEVERITY NONE: 0 LOW: 7 MEDIUM: 0 HIGH: 1)

 ELIGIBLE CHECKS: 73 (CURRENTLY RUNNING: 0)

 INELIGIBLE CHECKS: 38 DELETED CHECKS: 0

 ASID: 008D LOG STREAM: HZS.HEALTH.CHECKER.HISTORY - CONNECTED

 LOG STREAM WRITES PER HOUR: 44

 LOG STREAM AVERAGE BUFFER SIZE: 5775 BYTES

 HZSPDATA DSN: SYS1.SY3.HZSPDATA

 HZSPDATA RECORDS: 33

 PARMLIB: 00

 [image:]

 Never try to externally edit or modify the content of the HZSPDATA data set. The results will be unpredictable (although one can easily predict that it is sure to impact IBM Health Checker in a negative way).

 Now is a good time to consider data set naming conventions. If a log stream is to be used (as discussed in the next section), it is possible to have the HZSPDATA data set and log stream related data sets all sharing the same naming convention. As an example, suppose that you wanted your IBM Health Checker data sets to have a naming structure of SYSU.HZS.**. Then in the HZSPDATA allocation job you can specify a DD, as shown in Example 2-5.

 Example 2-5 Example alternate HZSPDATA naming convention

 [image:]

 //HZSPDATA DD DSN=SYSU.HZS.&SYSNAME..HZSPDATA,DISP=(NEW,CATLG),

 // SPACE=(4096,(100,400)),UNIT=SYSDA,

 // DCB=(DSORG=PS,RECFM=FB,LRECL=4096)

 [image:]

 Data set naming conventions are mentioned again in the next section.

 2.1.2 Create a log stream

 The IBM Health Checker for z/OS only retains the results of the last check iteration in what is called its message buffer. If you want to retain a historical record of check results, then you can optionally use a log stream (either Coupling Facility or DASD-only). Coupling Facility log streams can be shared by multiple systems in a SYSPLEX, enabling a central view of health check results for all sharing systems. DASD-only log streams cannot be shared by multiple systems. A separate log stream is required for each system.

 To assist with the sizing of a Coupling Facility log stream, a web tool called CFSizer is available at:

 http://www-947.ibm.com/systems/support/z/cfsizer/Health+Checker

 The purpose of CFSizer is to provide an easy-to-use interface that calculates structure sizes based on basic input that represents the expected usage of the structure-owning product during peak periods. When the CFSizer tool is invoked, a data entry panel is presented (Figure 2-1).

 [image:]

 Figure 2-1 CFSizer data entry page

 Data is entered for:

 •Number of log streams: This should be 1. Multiple systems in a SYSPLEX should share a single log stream so that the data for all systems is accessible from any system.

 •Number of systems in the SYSPLEX sharing the log stream.

 •Estimated number of writes per hour to the log stream by the busiest system in the SYSPLEX. Later, when IBM Health Checker for z/OS is active and is using a log stream, the F HZSPROC,DISPLAY STATUS operator command (as shown in Example 2-4 on page 23) can be used to display the number of writes per hour. This information will be of interest whenever you are reevaluating or tuning IBM Health Checker CF size.

 •Average BLKSIZE (1024).

 After clicking Submit, the calculation is performed and the results are presented as shown in Figure 2-2.

 [image:]

 Figure 2-2 CFSizer results page

 Use the calculated INITSIZE and SIZE values as input to the STRUCTURE definition statement of the Administrative Data Utility (IXCMIAPU) for DATA TYPE(CFRM). A sample JCL is provided in SYS1.SAMPLIB(IXCCFRMP).

 Two iterations of IXCMIAPU are required to configure a Coupling Facility log stream. The first is TYPE(CFRM) and the second is TYPE(LOGR).

 TYPE(CFRM) is where the values from CFSizer are used to define the HZS_HEALTHCHKLOG structure. The CFRM definition is shared by multiple Coupling Facility users, hence IBM Health Checker cannot be defined independently. Consult whomever is responsible for CFRM definitions in your organization so that IBM Health Checker can be added to the CFRM configuration without impact to other users. Example 2-6 is an example of partial content for an IXCMIAPU TYPE(CFRM) job.

 Example 2-6 Example IXCMIAPU TYPE(CFRM)

 [image:]

 <snip>

 job statement

 </snip>

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=*

 //SYSOUT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //SYSIN DD *

 DATA TYPE(CFRM) REPORT(YES)

 DEFINE POLICY NAME(CFRM3C) REPLACE(YES)

 <snip>

 multiple CF definitions

 </snip>

 CF NAME(FACIL03) TYPE(2097) MFG(IBM) PLANT(02)

 SEQUENCE(00000001DE50)

 PARTITION(0E) CPCID(00)

 DUMPSPACE(2000)

 CF NAME(FACIL04) TYPE(2097) MFG(IBM) PLANT(02)

 SEQUENCE(00000001DE50)

 PARTITION(1E) CPCID(00)

 DUMPSPACE(2000)

 <snip>

 multiple CF definitions

 multiple STRUCTURE definitions

 </snip>

 STRUCTURE NAME(HZS_HEALTHCHKLOG)

 INITSIZE(13312) SIZE(17408)

 DUPLEX(ALLOWED)

 ALLOWAUTOALT(NO)

 PREFLIST(FACIL03,FACIL04)

 <snip>

 multiple STRUCTURE definitions

 </snip>

 [image:]

 TYPE(LOGR) is used to define the log stream. Example 2-7 shows partial content for an IXCMIAPU TYPE(LOGR) job.

 Example 2-7 Example IXCMIAPU TYPE(LOGR)

 [image:]

 <snip>

 job statement

 </snip>

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //SYSIN DD *

 DATA TYPE(LOGR) REPORT(YES)

 DEFINE STRUCTURE

 NAME(HZS_HEALTHCHKLOG)

 LOGSNUM(1)

 AVGBUFSIZE(1024)

 DEFINE LOGSTREAM NAME(HZS.HEALTH.CHECKER.HISTORY)

 STRUCTNAME(HZS_HEALTHCHKLOG)

 LS_SIZE(4096)

 AUTODELETE(YES)

 RETPD(14)

 HIGHOFFLOAD(60)

 LOWOFFLOAD(0)

 [image:]

 Note that:

 •The STRUCTURE NAME in the TYPE(LOGR) job must match the STRUCTURE NAME in the TYPE(CFRM) job. Both names by convention must begin with HZS as the first three characters.

 •LOGSTREAM NAME by convention must begin with HZS as the first three characters.

 •HIGHOFFLOAD must be 60 (percent) and LOWOFFLOAD must be 0 (percent). The 60% high value allows plenty of time for log stream data to be offloaded to data sets without danger of losing data due to the remaining 40% of space being exhausted.

 If a DASD-only log stream is all that is required (such as on a MONOPLEX system), then only a single iteration of the Administrative Data Utility (IXCMIAPU) must be used, specifying TYPE(LOGR) and DASDONLY(YES), as shown in Example 2-8.

 Example 2-8 Example IXCMIAPU TYPE(LOGR) DASDONLY(YES)

 [image:]

 <snip>

 job statement

 </snip>

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //SYSIN DD *

 DATA TYPE(LOGR) REPORT(YES)

 DEFINE LOGSTREAM NAME(HZS.HEALTH.CHECKER.HISTORY)

 DASDONLY(YES)

 LS_SIZE(4096)

 AUTODELETE(YES)

 RETPD(14)

 HIGHOFFLOAD(60)

 LOWOFFLOAD(0)

 [image:]

 When defining a log stream, on the DEFINE LOGSTREAM statement you can specify values for STG_SIZE and LS_SIZE. STG_SIZE relates to the DASD staging data set (used during logging), whereas LS_SIZE relates to the DASD log data sets (used when HIGHOFFLOAD is reached and data is offloaded from the logger). We recommend that you aim to manage these settings such that the staging data set is large enough to hold 24 hours of data, and the log data set is large enough to take a full offload from the staging data set whenever that occurs. So, for example, say that the staging data set is 1000 units in size and HIGHOFFLOAD is set to happen when the log stream is 60% full. If the log data set is defined as 800 units in size then it can take the full 60% offload, with plenty to spare. The reasons for this recommendation are:

 •Offloading is the time when performance might be impacted, so it is desirable to avoid doing it too often. Conversely, you do not want to retain data in the staging data set forever, depending on how you want to access the historical data. Therefore, aiming to offload the staging data once a day is a reasonable compromise.

 •During the offload process, having to stop, close a full log data set, and then allocate a new one has the potential to cause delays. Therefore, it is desirable to ensure that log data sets are large enough to take a full offload without stopping.

 Log stream sizes must be reviewed from time to time to ensure that they are still suitable as the system configuration and workload evolves. The actual sizes that you choose will depend on each system’s environment (for instance, available DASD space, volume of data produced by IBM Health Checker, and so on).

 As mentioned in the previous section, you might be interested in consistent data set naming conventions between the log stream related data sets and the HZSPDATA data set. As an example, suppose that you want your IBM Health Checker data sets to all have a naming structure of SYSU.HZS.**. Then the log stream allocation job that you might code is shown in Example 2-9.

 Example 2-9 Log stream allocation job implementing an alternate consistent naming convention

 [image:]

 <snip>

 job statement

 </snip>

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //SYSIN DD *

 DATA TYPE(LOGR) REPORT(YES)

 DEFINE STRUCTURE

 NAME(HZS_HEALTHCHKLOG)

 LOGSNUM(1)

 AVGBUFSIZE(1024)

 DEFINE LOGSTREAM NAME(HZS.LOGR)

 STRUCTNAME(HZS_HEALTHCHKLOG)

 HLQ(SYSU)

 LS_SIZE(4096)

 AUTODELETE(YES)

 RETPD(14)

 HIGHOFFLOAD(60)

 LOWOFFLOAD(0)

 -or- for DASDONLY(YES)

 <snip>

 job statement

 </snip>

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //SYSIN DD *

 DATA TYPE(LOGR) REPORT(YES)

 DEFINE LOGSTREAM NAME(HZS.AAZT.LOGR)

 DASDONLY(YES)

 HLQ(SYSU)

 LS_SIZE(4096)

 AUTODELETE(YES)

 RETPD(14)

 HIGHOFFLOAD(60)

 LOWOFFLOAD(0)

 [image:]

 The DASDONLY(YES) definition shown in Example 2-9 is for a MONOPLEX system named AAZT. As a result of these definitions you can expect to see data sets with names like those shown in Example 2-10.

 Example 2-10 Alternate consistent naming conventions

 [image:]

 HZSPDATA dataset:

 SYSU.HZS.AAZT.HZSPDATA

 DASD staging dataset:

 SYSU.HZS.LOGR.AAZT *VSAM*

 SYSU.HZS.LOGR.AAZT.DATA

 -or- for DASDONLY(YES)

 SYSU.HZS.AAZT.LOGR.AAZT *VSAM*

 SYSU.HZS.AAZT.LOGR.AAZT.DATA

 DASD log stream datasets:

 SYSU.HZS.LOGR.A0000001 *VSAM*

 SYSU.HZS.LOGR.A0000001.DATA

 SYSU.HZS.LOGR.A0000002 *VSAM*

 SYSU.HZS.LOGR.A0000002.DATA

 SYSU.HZS.LOGR.A0000003 *VSAM*

 SYSU.HZS.LOGR.A0000003.DATA

 -or- for DASDONLY(YES)

 SYSU.HZS.AAZT.LOGR.A0000001 *VSAM*

 SYSU.HZS.AAZT.LOGR.A0000001.DATA

 SYSU.HZS.AAZT.LOGR.A0000002 *VSAM*

 SYSU.HZS.AAZT.LOGR.A0000002.DATA

 SYSU.HZS.AAZT.LOGR.A0000003 *VSAM*

 SYSU.HZS.AAZT.LOGR.A0000003.DATA

 [image:]

 For more information about log streams see Systems Programmer's Guide to: z/OS System Logger, SG24-6898, and MVS Setting Up a Sysplex, GC28-1779.

 2.1.3 Create a HZSPRMxx parameter member

 Alterations to the IBM Health Checker configuration can be made permanent across restarts of IBM Health Checker for z/OS and system IPLs by coding parameters in a HZSPRMxx member located in a suitable PARMLIB (such as SYS1.PARMLIB). This is not mandatory for IBM Health Checker for z/OS to function, but eventually it will be required in order to define policies, modify check parameters, and define any of your own checks that you might develop. If a log stream is used then the LOGGER(ON,LOGSTREAMNAME=logstreamname) parameter must be included in HZSPRMxx.

 A sample parameter member is provided in the z/OS PARMLIB DDDEF as member HZSPRM00 and the syntax is described in IBM Health Checker for z/OS Users Guide, SA22-7994.

 You might be wondering why the HZSPRMxx parameter member is optional. How do checks get defined to IBM Health Checker? IBM Health Checker is designed to exploit Dynamic Exit Services so that any product that provides a health check can plug into the IBM Health Checker framework dynamically via an HZSADDCHECK exit without the need for parameters. If in the future you develop your own health checks, you have the option to also use a HZSADDCHECK exit, or you can choose to simply add statements to a HZSPRMxx member.

 See z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608, for more information about dynamic exit services.

 Note that the HZSPRMxx member supports the use of system symbols (such as &SYSNAME and &SYSCLONE).

 2.1.4 Create a HZSPROC started task (STC) procedure

 A HZSPROC started task procedure must be created in a suitable procedure data set (such as SYS1.PROCLIB). Ensure that the HZSPDATA DDNAME refers to the data set created in 2.1.1, “Create the HZSPDATA data set” on page 21.

 A sample procedure is provided in SYS1.SAMPLIB(HZSPROC), as is shown in Example 2-11.

 Example 2-11 SYS1.SAMPLIB(HZSPROC)

 [image:]

 BROWSE SYS1.SAMPLIB(HZSPROC) Line 00000000 Col 001 080

 Command ===> Scroll ===> CSR

 ********************************* Top of Data **********************************

 //HZSPROC JOB JESLOG=SUPPRESS

 //HZSPROC PROC HZSPRM='00'

 //HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,

 // PARM='SET PARMLIB=&HZSPRM'

 //HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD

 // PEND

 // EXEC HZSPROC

 ******************************** Bottom of Data ********************************

 [image:]

 Note that the sample procedure includes a JOB statement with the JESLOG=SUPPRESS parameter. This is to prevent the IBM Health Checker STC from writing JESLOG messages and possibly filling the spool.

 As mentioned previously, there might be times when you would like to start HZSPROC and temporarily use a different HZSPDATA data set (such as when recovering from a HZSPDATA data set full condition). The IEFRDER facility can be used to make the HZSPROC procedure more flexible by allowing DD parameters to be passed as part of the operator start command.

 We recommend using an enhanced HZSPROC, as shown in Example 2-12, to exploit the benefits of IEFRDER. (Tip: Ensure that the IEFRDR DD DSN matches the HZSPDATA data set name that you have chosen.)

 Example 2-12 Enhanced HZSPROC

 [image:]

 //HZSPROC JOB JESLOG=SUPPRESS

 //*

 //HZSPROC PROC HZSPRM='00'

 //IEFPROC EXEC PGM=HZSINIT,REGION=0M,TIME=NOLIMIT,

 // PARM='SET PARMLIB=&HZSPRM.'

 //HZSPDATA DD DDNAME=IEFRDER

 //IEFRDER DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=SHR

 //SYSABEND DD SYSOUT=*

 // PEND

 //*

 // EXEC HZSPROC

 [image:]

 If you wanted to start the HZSPROC shown in Example 2-12 using an alternate HZSPDATA data set name, then an operator command, such as in the one shown in Example 2-13 could be used. The DSN parameter overrides the DSN on the IEFRDER DD in HZSPROC.

 Example 2-13 Example IEFRDER override data set name

 [image:]

 S HZSPROC,DSN='SYS1.TEMP.HZSPDATA'

 [image:]

 Review the WorkLoad Manager (WLM) configuration and update as necessary to accommodate the HZSPROC STC. We recommend that HZSPROC be assigned to a service class with a priority no less than performance monitoring products (such as RMF™).

 2.1.5 Define security access

 Setting up security for IBM Health Checker for z/OS means addressing the general requirements of an application, but also includes access to resources specific to IBM Health Checker for z/OS. The general security access requirements are:

 •A user ID and group must be associated with the HZSPROC started task.

 •HZSPROC must have UPDATE access to the HZSPDATA data set and READ access to the PARMLIB data set.

 •HZSPROC must have UPDATE access to the log stream if one has been defined.

 •Access to IBM Health Checker for z/OS result and message data is controlled by HZS.** profiles in the XFACILIT class. Users and applications that need access to health check data should have READ access to QUERY and MESSAGES profiles in the XFACILIT class. For additional information refer to “Users and applications” on page 33.

 HZSPROC STC

 The HZSPROC STC must have a user ID and group associated with it. The user ID and group do not have to be dedicated to HZSPROC, but the user ID must have an OMVS segment with the Superuser (UID=0) property. At the time of writing (z/OS V1R10), FACILITY class BPX.SUPERUSER was not sufficient; UID=0 must be used.

 To associate the user ID and group with the HZSPROC STC, create a profile in the STARTED class that includes an STDATA segment.

 Example 2-14 shows the RACF commands required to define a user ID and group for HZSPROC, and associate them to the HZSPROC STC.

 Example 2-14 Definitions for HZSPROC

 [image:]

 ADDUSER hzsuser

 OMVS(UID(0) HOME('/') PROGRAM('/bin/sh'))

 NOPASSWORD

 ADDGROUP hzsgroup OMVS(GID(n))

 CONNECT hzsuser GROUP(hzsgroup)

 RDEFINE STARTED HZSPROC.* STDATA(USER(hzsuser) GROUP(hzsgroup))

 SETROPTS RACLIST(STARTED) REFRESH

 [image:]

 If the STARTED class is not enabled, then the alternative is to define HZSPROC using ICHRIN03.

 Data sets

 The HZSPROC STC must have UPDATE access to write persistent data to the HZSPDATA data set and READ access to read its HZSPRMxx parameters. Example 2-15 shows the RACF commands required to permit HZSPROC to the HZSPDATA and PARMLIB data sets.

 Example 2-15 Example permits for HZSPROC: data sets

 [image:]

 ADDSD 'SYS1.sysname.HZSPDATA' UACC(NONE)

 PERMIT SYS1.sysname.HZSPDATA CLASS(DATASET)

 ID(hzsuser-or-hzsgroup) ACCESS(UPDATE)

 ADDSD 'SYS1.PARMLIB' UACC(NONE)

 PERMIT 'SYS1.PARMLIB' CLASS(DATASET)

 ID(hzsuser-or-hzsgroup) ACCESS(READ)

 [image:]

 Log stream and structure

 The HZSPROC STC must have UPDATE access to the log stream and structure to write health check historical data (results and messages). Example 2-16 shows the RACF commands required to permit HZSPROC to the log stream and structure.

 Example 2-16 Example permits for HZSPROC: log stream and structure

 [image:]

 RDEFINE LOGSTRM hzslogstream UACC(NONE)

 PERMIT hzslogstream CLASS(LOGSTRM)

 ID(hzsuser-or-hzsgroup) ACCESS(UPDATE)

 SETROPTS RACLIST(LOGSTRM) REFRESH

 RDEFINE FACILITY IXLSTR.hzsstructure UACC(NONE)

 PERMIT IXLSTR.hzsstructure CLASS(FACILITY)

 ID(hzsuser-or-hzsgroup) ACCESS(UPDATE)

 SETROPTS RACLIST(FACILITY) REFRESH

 [image:]

 Users and applications

 Access to IBM Health Checker for z/OS result and message data is controlled by HZS.** profiles in the XFACILIT class. The XFACILIT class is like the FACILITY class except that profiles can be up to 246 bytes in length rather than the 39 of the FACILITY class.

 There are multiple IBM Health Checker XFACILIT class profiles structured:

 •HZS.sysname.reqtype

 •HZS.sysname.checkowner.reqtype

 •HZS.sysname.checkowner.checkname.reqtype

 The naming conventions are:

 •sysname is the system name.

 •checkowner is the check owner.

 •checkname is the check name.

 •reqtype is ACTIVATE, ADD, DEACTIVATE, DELETE, MESSAGES, PDATA, QUERY, REFRESH, RUN, or UPDATE.

 The profiles that control access depend on how the data is being referenced. Table 2-1 shows which type of XFACILIT class profile is checked based on whether wildcards are used in the checkowner and checkname fields of the access request.

 Table 2-1 Wildcard checking

 	
 Wildcard usage

 	
 For example

 	
 Owner

 (+ wildcards)

 	
 Chkname

 	
 Chkname

 (+ wildcards)

 	
 HZS.sysname.reqtype

 	

 	
 X

 	
 X

 	

 	
 HZS.sysname.reqtype

 	

 	
 X

 	

 	
 X

 	
 HZS.sysname.owner.reqtype

 	
 X

 	

 	

 	
 X

 	
 HZS.sysname.owner.chkname.reqtype

 	
 X

 	

 	
 X

 	

 Wildcard checking: Part 2

 	
 Wildcard usage

 	
 For example

 	
 Access needed to one profile out of...

 	
 Checkowner is wildcarded

 	
 CHECK(X*,Y)

 or CHECK(*,*)

 	
 HZS.sysname.reqtype

 	
 Checkowner is not wildcarded, Checkname is wildcarded

 	
 CHECK(X,*) or CHECK(X,Y*)

 	
 HZS.sysname.checkowner.reqtype

 	
 Check owner is not wildcarded, Checkname is not wildcarded

 	
 CHECK(X,Y)

 	
 HZS.sysname.checkowner.reqtype

 HZS.sysname.checkowner.checkname.reqtype

 The values for reqtype shown in Table 2-2 also show what permission level is required depending on the activity being performed.

 Table 2-2 Reqtype and permissions required

 	
 Reqtype

 	
 Service

 	
 Activity

 	
 Permission

 required

 	
 ACTIVATE

 	
 HZSCHECK

 	
 Command to ACTIVATE a check

 	
 UPDATE

 	
 ADD

 	
 HZSADDCK

 	
 Registers a check

 	
 CONTROL

 	
 DEACTIVATE

 	
 HZSCHECK

 	
 Command to DEACTIVATE a check

 	
 UPDATE

 	
 DELETE

 	
 HZSCHECK

 	
 Command to DELETE a check

 	
 CONTROL

 	
 MESSAGES

 	
 HZSQUERY

 	
 Requests to read the check message buffer

 	
 READ

 	
 PDATA

 	
 HZSPREAD

 HZSPWRIT

 	
 Reads or writes persistent data

 	
 UPDATE

 	
 QUERY

 	
 HZSQUERY

 	
 Requests information about checks

 	
 READ

 	
 REFRESH

 	
 HZSCHECK

 	
 Command to REFRESH a check

 	
 CONTROL

 	
 RUN

 	
 HZSCHECK

 	
 Command to RUN a check

 	
 UPDATE

 	
 UPDATE

 	
 HZSCHECK

 	
 Command to UPDATE a check

 	
 UPDATE

 If a user wants to produce health check reports for historical data, they require READ access to the log stream, as shown in Example 2-17.

 Example 2-17 Permit access to log stream

 [image:]

 PERMIT hzslogstream CLASS(LOGSTRM)

 ID(user-or-group) ACCESS(READ)

 SETROPTS RACLIST(LOGSTRM) REFRESH

 [image:]

 2.1.6 Make HZSPROC start automatically after an IPL

 The HZSPROC procedure must be made to start automatically after an IPL. This can be done several different ways, depending on the system environment. The recommended way is to add the following start command to SYS1.PARMLIB(COMMNDxx):

 COM='S HZSPROC'

 An alternative is to use an automated operations (AO) tool such as NetView®.

 See also 2.3, “Starting/stopping IBM Health Checker” on page 39.

 2.2 Enable System REXX

 System REXX greatly simplifies the coding of health checks, especially any that you might choose to develop yourself. System REXX provides a powerful programming environment, fast development, and easy debugging.

 The System REXX infrastructure might already be enabled on your system, but if not, perform the steps provided in this section to ensure that System REXX is available to IBM Health Checker for z/OS.

 	
 Note: Some REXX code that IBM provides is compiled and requires runtime support from either the IBM Library for REXX on zSeries® (5695-014 - FMID HWJ9140) or the entitled IBM Library for REXX on zSeries Alternate Library (5695-014 - FMID HQJ9143). Starting with z/OS V1R9 one of these products is included by default in every z/OS order.

 2.2.1 Ensure that System REXX is available

 Beginning with z/OS V1R9, System REXX is shipped as part of z/OS, so it simply needs to be enabled for use. Setup information for System REXX can be found in z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608.

 The REXX language is supplied as part of the TSO component and is documented in the following manuals:

 •TSO/E REXX User’s Guide, SA22-7791

 •TSO/E REXX Reference, SA22-7790

 Ensure that either the SEAGALT or SEAGLPA library is available in the system search order.

 •SEAGALT is provided in z/OS V1R9 and later releases.

 •SEAGLPA is provided in the IBM Library for REXX on zSeries products.

 For more information about SEAGALT and SEAGLPA, see IBM Compiler and Library for REXX on System z: User's Guide and Reference.

 2.2.2 Review System REXX maintenance

 Ensure that APAR OA20393 (IBM Health Checker for z/OS System REXX support) is installed, as summarized in Example 2-18.

 Example 2-18 APAR OA20393

 [image:]

 APAR - OA20393

 NEW FUNCTION

 **

 * USERS AFFECTED: Users of IBM Health Checker for z/OS *

 * release HBB7730 and HBB7740 who are also *

 * using SYSREXX. *

 **

 * PROBLEM DESCRIPTION: Support for SYSREXX *

 **

 * RECOMMENDATION: *

 **

 Support for SYSREXX

 Release 730 : UA34964 available 07/07/10 (F707)

 Release 740 : UA34965 available 07/07/10 (F707)

 Release 73J : UA35026 available 07/07/10 (F707)

 [image:]

 Optionally, ensure that APAR OA25932 (STORAGE function support) is installed, as summarized in Example 2-19.

 Example 2-19 APAR OA25932

 [image:]

 APAR - OA25932

 NEW FUNCTION IN SUPPORT OF SYSREXX

 **

 * USERS AFFECTED: All users of z/OS V1R9 or higher using *

 * System REXX (i.e. SYSREXX). *

 **

 * PROBLEM DESCRIPTION: New Function in support of System REXX. *

 **

 * RECOMMENDATION: *

 **

 New Function in support of System REXX.

 Prior to this support, the REXX STORAGE function was not supported in a System REXX environment.

 With this support and functional corequisite APAR OA26802 from System REXX, REXX execs running under System REXX will be able to use the REXX STORAGE function in read-only mode. This applies to both TSO=YES and TSO=NO System REXX execs.

 Release 740 : UA47482 available 09/05/27 (F905)

 Release 750 : UA47483 available 09/05/27 (F905)

 [image:]

 Optionally, ensure that APAR OA26802 (System REXX functional enhancements) is installed, as summarized in Example 2-20.

 Example 2-20 APAR OA26802

 [image:]

 APAR - OA26802

 NEW FUNCTION

 **

 * USERS AFFECTED: Users of System REXX at HBB7740 *

 * and HBB7750. *

 **

 * PROBLEM DESCRIPTION: New function is provided to *

 * address customer requirements *

 * for System REXX. *

 **

 * RECOMMENDATION: *

 **

 The following new functions are provided by this APAR. Complete documentation can be found at the following web site:

 http://publibz.boulder.ibm.com/zoslib/pdf/OA26802.pdf

 (1) REXXLIB concatenation: We provide the ability for the installation to specify in AXRxx parmlib member(s) a specification of libraries from which System REXX will fetch execs from. Up to 255 datasets may be specified; SYS1.SAXREXEC, the current default library, must be one of them. If not specified, it will be appended to the end of the concatenation. Dataset attributes of members in the concatenation must be consistent with SYS1.SAXREXEC. The AXREXX macro has been modified to provide a function to obtain the REXXLIB concatenation. Refer to z/OS: MVS Authorized ASsembler Services Reference for more details. The MODIFY AXR command has been updated to return the REXXLIB concatenation to the operator. MODIFY AXR,SYSREXX REXXLIB will return the concatenation including the VOLSER's where the individual datasets reside.

 (2) Multiple Parmlib Configurability: A list of AXRnn parmlib members may be specified in IEASYSnn. Additionally, when System REXX is restarted, the operator may specify a list of parmlib members e.g. START AXRPSTRT,AXR=(aa,bb...). For more information, please refer to z/OS MVS: Initialization and Tuning Reference.

 (3) Syscall Host Command Environment: The Syscall Host Command Environment is now supported for TSO=YES requests. Additionally, the REXX built in function USERID will work in this environment, assuming that the exec invoker has a valid userid. When the exec is being submitted from a console, the operator must be logged on. Refer to z/OS MVS: Authorized Assembler Services Reference for additional information. To more easily enable the use of execs that expect mixed case arguments from the operator console, the way MODIFY AXR processes arguments in single quoted strings has been changed. When an exec is issued via the MODIFY AXR,<exec name> <argument>, the optional argument may appear in quotes. Before this support, System REXX did no processing with this argument other than passing it along to the exec. In order to support existing execs which take as input unquoted mixed case arguments, System REXX will remove the outer-most quotes prior to passing the argument to the exec. For example:

 F AXR,<exec> 'A parm' would cause A parm to be passed to the exec. If you need to pass quotes to the exec, two consecutive quotes inside a quoted string will be converted to single quotes: For example: F AXR,<exec> '''Quoted parm''' would cause 'Quoted parm' to be passed to the exec.

 (4) TSO=YES execs will now run in address spaces that use the primary Subsystem instead of MASTER when the primary subsystem is available.

 (5) Two new external functions are provided: AXRWAIT - allows the exec to wait for a specified number of seconds. AXRINFO - allows the invoker to obtain information about the environment in which the exec is running in. Currently the only supported argument is "Subsystem". Refer to z/OS MVS: Authorized Assembler Services Guide for additional details.

 Additionally, the following defects have been addressed at both HBB7740 and HBB7750:

 (1) When the AXREXX invoker specifies SECURITY=BYAXRUSER and the invoking exec issues AXRCMD, the AXRCMD function was passing a UTOKEN containing zeros to MGCRE.

 (2) When the exec uses DYNALLOC (or ALLOC) to concatenate a set of datasets, System REXX exec post-processing would attempt to unallocate DDNAMEs containing blanks. This resulted in a non-zero return code from DYANLLOC

 and a subsequent ABEND050 and dump.

 The following has been addressed at HBB7740:

 (1) When AXREXX is invoked in AR ASC mode, the alets associated with all keywords are verified for correctness.

 Release 740 : UA47439 available 09/07/08 (1000)

 Release 750 : UA47440 available 09/07/08 (1000)

 [image:]

 2.2.3 Create an AXR00 parameter member

 The AXR00 parameter member must be created in a suitable PARMLIB (such as SYS1.PARMLIB). This is not mandatory to enable System REXX, but in the future you might want to change the IBM defaults. A sample parameter member is provided in SYS1.SAMPLIB(AXR00).

 Without AXR00 parameters, the default for the command prefix (CPF, the command prefix used for MVS console invocation of System REXX programs) is REXX&sysclone.. You can choose to implement a single-character command prefix, which requires less typing and is easier to remember, but be careful because usually most single-character command prefixes have already been consumed by existing applications.

 Note that prior to APAR OA26802, any locally written System REXX programs had to be added to SYS1.SAXREXEC. Being an SMP/E-managed data set, this could have been difficult to manage including additional members. Ideally an SMP/E USERMOD will be used. APAR OA26802 introduced the ability to concatenate other data sets to the System REXX SYSEXEC concatenation.

 2.2.4 Define security access

 Setting up security for System REXX means addressing the general requirements of an application, but also includes access to resources specific to System REXX. The general security access requirements are:

 •User ID/group and STDATA/ICHRIN03 for system address spaces called AXR* (AXR for the base component and AXR01-AXR08 for TSO servers). If the AXR address space ever fails and must be restarted, STC AXRPSTRT is supplied in z/OS PROCLIB DDDEF to do this (operator command S AXRPSTRT).

 •A siteuserid user ID/group to provide user/group identity to System REXX programs initiated from environments that do not have a normal identity (such as the MASTER address space). The site user ID is defined via the AXRUSER(siteuserid) parameter in PARMLIB(AXR00), as shown in Example 2-21. If a siteuserid is not coded there is no default, which might cause problems depending on the services used by a System REXX program. The siteuserid must be defined with READ access to the SYSREXX.* profile in the SURROGAT class.

 Example 2-21 Example PARMLIB(AXR00) member

 [image:]

 CPF('@',SYSPLEX)

 AXRUSER(AXRUSER)

 [image:]

 2.3 Starting/stopping IBM Health Checker

 IBM Health Checker for z/OS is started using an operator START (S for short) command. We suggest running the IBM Health Checker all the time. To do this update your COMMNDxx parmlib member to start HZSPROC:

 S HZSPROC

 If you would like to start IBM Health Checker for z/OS using different parameters than the default 00 (suffix for HZSPRM00 parameter member), the HZSPRM= option can be specified on the start command, where parameter member HZSPRMZT is selected instead of HZSPRM00:

 S HZSPROC,HZSPRM=ZT

 If you would like to start IBM Health Checker for z/OS using multiple parameter members, the HZSMPRM option can specify a list of members. In the following example parameter members HZSPRMZT, HZSPRM01, and HZSPRM00 will be used in a concatenation:

 S HZSPROC,HZSPRM=(ZT,01,00)

 Using an enhanced HZSPROC, described in 2.1.4, “Create a HZSPROC started task (STC) procedure” on page 31, provides the flexibility of overriding the HZSPDATA data set name and attributes if that is ever required.

 When starting IBM Health Checker for z/OS the typical messages displayed are shown in Example 2-22.

 Example 2-22 Typical messages produced during HZSPROC start

 [image:]

 IEE252I MEMBER CTIHZS00 FOUND IN SYS1.PARMLIB

 HZS0011E READING THE HZSPDATA DATA SET

 HZS0018I READING COMPLETE FOR THE HZSPDATA DATA SET

 IEE252I MEMBER HZSPRM00 FOUND IN SYS1.PARMLIB

 HZS0403I SET PARMLIB PROCESSING HAS BEEN COMPLETED

 HZS0103I HZSPROC INITIALIZATION COMPLETE

 [image:]

 IBM Health Checker for z/OS is stopped using an operator STOP (P for short) command, as follows:

 P HZSPROC

 When stopping IBM Health Checker for z/OS the typical messages are shown in Example 2-23.

 Example 2-23 Typical messages produced during HZSPROC stop

 [image:]

 HZS0020E WAITING FOR CHECKS TO COMPLETE

 HZS0104I HZSPROC TERMINATION IS COMPLETE

 [image:]

 Stopping HZSPROC should be a very rare event because the operator MODIFY (F for short) command is very powerful for controlling IBM Health Checker. This is described in more detail in 2.5, “Managing IBM Health Checker” on page 54.

 2.4 IBM Health Checker output

 Software vendors might provide health checks with their products. The IBM-provided health checks are documented in IBM Health Checker for z/OS Users Guide, SA22-7994, and at:

 http://www-03.ibm.com/systems/z/os/zos/hchecker/check_table.html

 Note that certain health checks are provided in an inactive state, designed to never run automatically. Health checks related to migration, or software level upgrades, are good candidates for this. When these checks run successfully, it means that the one-time migration activity has been successfully completed and the health check is no longer required. When new levels of software are implemented, be alert to the fact that inactive health checks might have been provided by the vendor, and might need manual intervention in order to perform their intended functions.

 When a health check executes, it produces a result to indicate whether it was successful. If unsuccessful, the check is rated as either low, medium, or high in its severity. These results are documented in the HZSPQE macro, as shown in Example 2-24.

 Example 2-24 HZEPQE results

 [image:]

 PQE_Result_NoExceptions EQU 0

 PQE_Result_LowSeverityExceptions EQU 4

 PQE_Result_MediumSeverityExceptions EQU 8

 PQE_Result_HighSeverityExceptions EQU 12

 [image:]

 This information can be extracted in assembler language using the HZSQUERY macro. See the IBM Health Checker for z/OS Users Guide, SA22-7994, for information about IBM Health Checker macros.

 In addition, a health check produces messages to qualify the result. For instance, a health check should provide an explanation of what it found to justify an exception condition. Similarly, messages should also be produced to justify when no exceptions were found. The message information produced by health checks can also be extracted using the HZSQUERY macro.

 Result and message information from the most recent iteration of a health check is stored in what is called the IBM Health Checker message buffer. Historical result and message information can be saved in a log stream if IBM Health Checker for z/OS has been configured to do so. The HZSQUERY macro can be used to extract information from both the message buffer and the log stream.

 Not everybody has the capacity to write assembler programs to extract health check results and message data, so fortunately there are a number of more user-friendly options available. IBM Health Checker for z/OS itself provides a standard interface called HZSPRINT, whereas products such as z/OS System Display and Search Facility (SDSF - 5694-A01) and IBM OMEGAMON® z/OS Management Console (5698-A38) also have an interface for accessing IBM Health Checker for z/OS result and message data. In addition, there are a number of non-IBM products that offer an interface to IBM Health Checker for z/OS data.

 2.4.1 HZSPRINT

 IBM Health Checker for z/OS provides a batch interface called HZSPRINT for querying and reporting on the data stored in the message table and optionally the log stream.

 HZSPRINT is not required to make IBM Health Checker for z/OS function, but it will be required eventually when you want to produce reports about IBM Health Checker for z/OS operation.

 Create HZSPRINT JCL

 Sample JCL is provided in SYS1.SAMPLIB(HZSPRINT), as shown in Example 2-25. Just COPY the sample JCL to a suitable JCL data set and tailor it for your use.

 The only setup required for HZSPRINT relates to security access, as described in 2.1.5, “Define security access” on page 32.

 Example 2-25 SYS1.SAMPLIB(HZSPRINT)

 [image:]

 //HZSPRINT EXEC PGM=HZSPRNT,TIME=1440,REGION=0M, 1

 // PARM=('CHECK(check_owner,check_name)') 2

 //* PARM=('CHECK(check_owner,check_name)',

 //* 'EXCEPTIONS')

 //* PARM=('LOGSTREAM(logstreamname)')

 //* PARM=('LOGSTREAM(logstreamname)',

 //* 'CHECK(owner,name)')

 //* PARM=('LOGSTREAM(logstreamname)','EXCEPTIONS',

 //* 'CHECK(owner,name)')

 //* PARM=('LOGSTREAM(logstreamname)','EXCEPTIONS')

 //* PARM=('LOGSTREAM(logstreamname)','SYSNAME(sysname)')

 //* PARM=('LOGSTREAM(logstreamname)','SYSNAME(sysname)',

 //* 'CHECK(owner,name)')

 //* PARM=('LOGSTREAM(logstreamname)','EXCEPTIONS',

 //* 'SYSNAME(sysname)',

 //* 'CHECK(owner,name)')

 //* PARM=('LOGSTREAM(logstreamname)','EXCEPTIONS',

 //* 'SYSNAME(sysname)')

 //*

 //* All of the above cases can also use TIMERANGE, such as 3

 //* PARM=('CHECK(check_owner,check_name)',

 //* 'EXCEPTIONS','TIMERANGE(yyy1m1d1h1m1,yyy2m2d2h2m2)')

 //* PARM=('LOGSTREAM(logstreamname)','EXCEPTIONS',

 //* 'CHECK(owner,name)','TIMERANGE(yyy1m1d1h1m1,yyy2m2d2h2m2)')

 //SYSOUT DD SYSOUT=A,DCB=(LRECL=256) 4

 [image:]

 The following notes apply to Example 2-25:

 •1: Even though the utility is called HZSPRINT, the program name is HZSPRNT.

 •2: HZSPRINT parameters. These can be:

  –	CHECK(owner,checkname)

 This identifies one or more checks. Both the owner and the checkname fields support powerful wildcards, with an asterisk (*) representing zero or more characters and a question mark (?) representing a single character. For example:

 CHECK(IBMCEE,CEE_USING_LE_PARMLIB)

 CHECK(IBMCEE,*)

 The owner/checkname syntax is the same as can be used in the operator MODIFY (F) command:

 F HZSPROC,DISPLAY,CHECK=(owner,checkname)

 If CHECK(owner,checkname) is not specified to HZSPRINT the default is CHECK(*,*).

  –	EXCEPTIONS

 This limits the output to health checks that have at least one exception message.

  –	LOGSTREAM(logstreamname)

 If historical data is required and IBM Health Checker has been set up to use a log stream, then the LOGSTREAM parameter can be defined to access data no longer retained in the message buffer. To find out whether a log stream has been configured for health checker, use the F HZSPROC,DISPLAY,STATUS operator command. The response will say either LOG STREAM: NOT DEFINED or list a log stream name.

  –	LOGSTREAM(logstreamname) SYSNAME(sysname)

 A log stream could contain data from multiple systems in a SYSPLEX. To limit the output to a particular system, the SYSNAME parameter can be used (but only if a log stream is in use).

  –	LOGSTREAM(logstreamname) TIMERANGE(startdatetime,stopdatetime)

 Depending on how the log stream has been configured, there could be a huge amount of data available. The TIMERANGE parameter can be used to limit the output to a date/time range.

 •3: If the TIMERANGE parameter is specified with the LOGSTREAM parameter, HZSPRINT reads the entire log stream looking for matching data. It does not matter whether the related health checks are currently active or inactive.

 If the TIMERANGE parameter is specified without the LOGSTREAM parameter, then the related health checks must be currently active. If the related health checks are currently inactive, then no matches are found.

 •4: The HZSPRINT output DDNAME SYSOUT writes 256-byte fixed length records. This could be configured as either RECFM=FBA or RECFM=FBM.

 Using the PARM values shown, HZSPRINT can produce reports about health checks, including when they ran, their rated severity, their results, and explanatory messages.

 IBM Health Checker messages can be:

 •Exception: When the health check detects an exception condition has been found. Exception messages by convention must have an E suffix and they appear as action messages on the operator console. A health check must only produce a single exception message per iteration.

 •Information: When the health check does not find an exception condition. Information messages by convention have an I suffix and they only appear in the health check message buffer.

 •Report: IBM Health Checker produces report messages to include information in the health check message buffer. Report messages can have any format, but using an R suffix is a good convention. These are like information messages except that they do not have a blank line after them, and the message number is not included in the message buffer unless debug mode is turned on.

 •Debug: If DEBUG mode is enabled (usually by the F HZSPROC,UPDATE,DEBUG=ON operator MODIFY command) debug messages are written to the message buffer. Debug messages can have any format, but using a D suffix is a good convention.

 Note that when a health check results in an exception condition, IBM Health Checker for z/OS produces its own additional messages as follows:

 •HZS0001I: exception information message: low severity or WTOTYPE(INFORMATIONAL). This indicates that the check found a problem that will not impact the system immediately, but that must be investigated.

 •HZS0002E: exception eventual action message: medium severity or WTOTYPE(EVENTUAL). This indicates that the check found a medium severity problem in an installation.

 •HZS0003E: exception critical eventual action message: high severity or WTOTYPE(CRITICAL). This indicates that the check routine found a high-severity problem in an installation.

 •HZS0004I: exception hardcopy message: hardcopy-only informational severity or WTOTYPE(HARDCOPY).

 Example 2-26 is an example of HZSPRINT output for a successful health check.

 Example 2-26 HZSPRINT output: SUCCESSFUL

 [image:]

 **

 * *

 * Start: CHECK(IBMASM,ASM_PLPA_COMMON_SIZE) *

 * *

 **

 CHECK(IBMASM,ASM_PLPA_COMMON_SIZE)

 START TIME: 07/17/2009 12:21:24.369124

 CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM

 CHECK PARM: THRESHOLD(100%)

 ILRH0104I The size of CSA and ECSA is approximately 265732096 bytes which corresponds to 64876 auxiliary storage slots. The size of PLPA and EPLPA is approximately 68825086 bytes which corresponds to 16802 auxiliary storage slots. The size of the common page dataset is 134999 slots, the size of the PLPA page dataset is 179 slots. The combined size of the PLPA and common page datasets is 166% of the slots required for all of CSA/ECSA and PLPA/EPLPA. This is within the check threshold of 100%.

 END TIME: 07/17/2009 12:21:24.371761 STATUS: SUCCESSFUL

 **

 * *

 * End: CHECK(IBMASM,ASM_PLPA_COMMON_SIZE) *

 * *

 **

 [image:]

 An example of HZSPRINT output for an exception health check is shown in Example 2-27.

 Example 2-27 HZSPRINT output: EXCEPTION

 [image:]

 **

 * *

 * Start: CHECK(IBMCSV,CSV_LNKLST_SPACE) *

 * *

 **

 CHECK(IBMCSV,CSV_LNKLST_SPACE)

 START TIME: 07/17/2009 12:21:24.245633

 CHECK DATE: 20050720 CHECK SEVERITY: LOW

 CSVH0979I LNKLST set LNKLST00 datasets allocated with secondary space

 VOLUME DSNAME

 MZTP13 SYS1.OZOS.LINKLIB

 * Low Severity Exception *

 CSVH0980E Some LNKLST sets include dataset(s) allocated with secondary space defined.

 Explanation: CSVH0979I has been placed in the message buffer for each LNKLST LNKLST set. It lists all datasets with secondary space defined.

 IBM suggests that partitioned datasets (PDS's) in the LNKLST be allocated with only primary extents, for two reasons. First, a PDS allocated with only primary space defined has only one extent. This makes it easier to stay within the 255-extent limit for an active LNKLST concatenation without having to reallocate datasets with fewer initial extents. Second, if a PDS will be updated while in the LNKLST set, it can be extended if it has been allocated using secondary space. This can cause members to be placed in extents that did not exist when the LNKLST concatenation was activated. An attempt to access a member in a new extent causes the requesting program to abend.

 This suggestion does not apply to partitioned dataset extended (PDSE) program libraries. A PDSE program library counts as only one extent.

 System Action: This check is performed against all LNKLST sets in use by the system. The system continues processing.

 Operator Response: N/A

 System Programmer Response: Correct the problem for each dataset listed in CSVH0979I. Use only PDS's allocated with primary space defined in a LNKLST.

 Problem Determination: See CSVH0979I in the message buffer that identifies LNKLST sets and the PDS's that were allocated with secondary space defined.

 Source: Contents supervision (CSV)

 Reference Documentation: For additional information on configuring the LNKLST concatenation see:

 "Allocating a PDS or PDSE for use with LNKLST" in z/OS MVS Initialization and Tuning Reference

 "LNKLSTxx (LNKLST concatenation)" in z/OS MVS Initialization and Tuning Reference

 Automation: N/A

 Check Reason: PDS datasets in a LNKLST that use only primary space are protected from problems due to extent changes.

 END TIME: 07/17/2009 12:21:27.807458 STATUS: EXCEPTION-LOW

 **

 * *

 * End: CHECK(IBMCSV,CSV_LNKLST_SPACE) *

 * *

 **

 [image:]

 For a health check with an exception result, the user has the choice of either fixing the reported exception condition so that the health check will be successful the next time that it runs, or adding POLICY definitions to PARMLIB(HZSPRMxx) to modify the check. For instance:

 •The goal of IBM Health Checker for z/OS is to draw your attention to a situation that must be corrected. It should not be constantly drawing your attention to a situation that you will not or cannot do anything about. Therefore, a well written health check should provide a way of modifying what is being checked so that a successful outcome is possible. With this in mind, many health checks support an input parameter definition, such as a keyword or threshold, to modify the check processing.

 As an example, CHECK(IBMUSS,USS_FILESYS_CONFIG) accepts a parameter of SYSPLEX or NOPLEX. If the parameter is set to the default SYSPLEX on a MONOPLEX system, then it is likely to flag an exception. Adding a POLICY statement to PARMLIB(HZSPRMxx) changing the parameter to NOPLEX is likely to result in a successful check the next time that it runs.

 If a check is in EXCEPTION status, then review the documentation of the health check to see whether an input parameter is available that better reflects your system environment and makes a SUCCESSFUL status more likely.

 •HIGH and MEDIUM severity health checks produce action messages to the operator console. LOW severity health checks produce informational messages to the operator console. NONE severity health checks produce messages to the hardcopy log. If a HIGH or MEDIUM severity check is deemed to be not so severe on your system, then you can choose to use a POLICY statement in PARMLIB(HZSPRMxx) to reduce the severity.

 •Certain health checks might not be important on your system, or there might be a valid reason for the exception condition that cannot be changed. In this situation you can choose to use a POLICY statement in PARMLIB(HZSPRMxx) to deactivate the check.

 2.4.2 SDSF

 z/OS System Display and Search Facility (SDSF - 5694-A01) is well known as a tool for accessing JES spool data. Given that SDSF now supports JES3, it was chosen as a convenient interface, available on the majority of z/OS systems, for accessing IBM Health Checker for z/OS results and messages.

 If IBM Health Checker for z/OS is configured and active and the user has READ access to the ISFCMD.ODSP.HCHECKER.system profile in the SDSF class, then the CK option appears on the SDSF primary option menu, as shown in Example 2-28.

 Example 2-28 SDSF primary option menu

 [image:]

 Display Filter View Print Options Help

 HQX7750 ----------------- SDSF PRIMARY OPTION MENU --------------------------

 COMMAND INPUT ===> SCROLL ===> CSR

 DA Active users INIT Initiators

 I Input queue PR Printers

 O Output queue PUN Punches

 H Held output queue RDR Readers

 ST Status of jobs LINE Lines

 NODE Nodes

 LOG System log SO Spool offload

 SR System requests SP Spool volumes

 MAS Members in the MAS

 JC Job classes RM Resource monitor

 SE Scheduling environments CK Health checker

 RES WLM resources

 ENC Enclaves ULOG User session log

 PS Processes

 END Exit SDSF

 Licensed Materials - Property of IBM

 5694-A01 Copyright IBM Corp. 1981, 2008. All rights reserved.

 US Government Users Restricted Rights - Use, duplication or

 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 [image:]

 SDSF includes excellent help panels accessed either by the HELP primary command or by pressing PF1. Looking in SDSF HELP for the CK command, you can see that it offers a number of options, as shown in Example 2-29.

 Example 2-29 SDSF CK command and options

 [image:]

 Format: CK (category|E|EH|EM|EL|EN|D|ALL)

 with no parameters displays active checks.

 category shows only checks for that category. The value

 can include * (any string of characters) or %

 (any single character).

 E displays all exception checks, with these variations:

 EH - exception-high

 EM - exception-medium

 EL - exception-low

 EN - exception-none

 D displays deleted checks.

 ALL displays deleted as well as active checks.

 [image:]

 After entering the CK command, a list of health checks is displayed, as shown in Example 2-30. From there, IBM Health Checker results and messages can be viewed, and settings changed by line commands and typing over fields (as per normal SDSF operation).

 Example 2-30 Example CK option in SDSF

 [image:]

 Display Filter View Print Options Help

 SDSF HEALTH CHECKER DISPLAY AAZT LINE 1-36 (111)

 COMMAND INPUT ===> SCROLL ===> CSR

 PREFIX=U701503* DEST=(ALL) OWNER=* SYSNAME=

 NP NAME CheckOwner State Status

 ASM_LOCAL_SLOT_USAGE IBMASM ACTIVE(ENABLED) SUCCESSFUL

 ASM_NUMBER_LOCAL_DATASETS IBMASM ACTIVE(ENABLED) SUCCESSFUL

 ASM_PAGE_ADD IBMASM ACTIVE(ENABLED) SUCCESSFUL

 ASM_PLPA_COMMON_SIZE IBMASM ACTIVE(ENABLED) SUCCESSFUL

 ASM_PLPA_COMMON_USAGE IBMASM ACTIVE(ENABLED) SUCCESSFUL

 CEE_USING_LE_PARMLIB IBMCEE ACTIVE(ENABLED) SUCCESSFUL

 CNZ_AMRF_EVENTUAL_ACTION_MSGS IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_CONSOLE_MASTERAUTH_CMDSYS IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_CONSOLE_MSCOPE_AND_ROUTCODE IBMCNZ ACTIVE(DISABLED) ENV N/A

 CNZ_CONSOLE_ROUTCODE_11 IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_EMCS_HARDCOPY_MSCOPE IBMCNZ ACTIVE(DISABLED) ENV N/A

 CNZ_EMCS_INACTIVE_CONSOLES IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_SYSCONS_MSCOPE IBMCNZ ACTIVE(DISABLED) ENV N/A

 CNZ_SYSCONS_PD_MODE IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_SYSCONS_ROUTCODE IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_TASK_TABLE IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CSTCP_CINET_PORTRNG_RSV_TCPIP IBMCS ACTIVE(DISABLED) ENV N/A

 CSTCP_SYSPLEXMON_RECOV_TCPIP IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSTCP_SYSTCPIP_CTRACE_TCPIP IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSTCP_TCPMAXRCVBUFRSIZE_TCPIP IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSV_APF_EXISTS IBMCSV ACTIVE(ENABLED) EXCEPTION-LOW

 CSV_LNKLST_NEWEXTENTS IBMCSV ACTIVE(ENABLED) SUCCESSFUL

 CSV_LNKLST_SPACE IBMCSV ACTIVE(ENABLED) EXCEPTION-LOW

 CSV_LPA_CHANGES IBMCSV ACTIVE(ENABLED) SUCCESSFUL

 CSVTAM_CSM_STG_LIMIT IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSVTAM_T1BUF_T2BUF_EE IBMCS ACTIVE(DISABLED) ENV N/A

 CSVTAM_T1BUF_T2BUF_NOEE IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSVTAM_VIT_DSPSIZE IBMCS ACTIVE(ENABLED) EXCEPTION-LOW

 CSVTAM_VIT_OPT_ALL IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSVTAM_VIT_OPT_PSSSMS IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSVTAM_VIT_SIZE IBMCS ACTIVE(ENABLED) EXCEPTION-LOW

 GRS_CONVERT_RESERVES IBMGRS ACTIVE(DISABLED) ENV N/A

 GRS_EXIT_PERFORMANCE IBMGRS ACTIVE(ENABLED) SUCCESSFUL

 GRS_GRSQ_SETTING IBMGRS ACTIVE(DISABLED) ENV N/A

 GRS_MODE IBMGRS ACTIVE(DISABLED) ENV N/A

 GRS_RNL_IGNORED_CONV IBMGRS ACTIVE(DISABLED) ENV N/A

 [image:]

 The CK panel can be scrolled up and down to view all the health checks, or right and left to view all the columns containing information about each health check. Certain columns can be overtyped to manipulate health checks depending on the user’s access to the XFACILIT class profiles discussed in 2.1.5, “Define security access” on page 32. Consider how much access each user is authorized to have.

 SDSF submits operator commands in response to line command and overtyped fields. Hence, the SDSF user might need UPDATE access to OPERCMDS class profile MVS.MODIFY.STC.hzsproc.hzsstcid, as shown in Example 2-31.

 Example 2-31 OPERCMDS access for CK user

 [image:]

 PERMIT MVS.MODIFY.STC.HZSPROC.* CLASS(OPERCMDS)

 ID(userid or groupid) ACCESS(UPDATE)

 [image:]

 The State column of the CK output shows whether a check will run at the interval. There are two kinds of states:

 •User-controlled states

 •IBM Health Checker for z/OS controlled states

 User-controlled states are:

 •Active: The health check is ready to run in the next interval (as long as the IBM Health Checker for z/OS controlled state is Enabled).

 •Inactive: The health check will not run in the next interval. This could be because:

  –	The health check was originally added in an inactive state intended to be activated when necessary.

  –	The health check was deactivated by an operator MODIFY command or PARMLIB(HZSPRMxx) definition.

 IBM Health Checker for z/OS controlled states are:

 •Enabled: The health check is ready to run in the next interval (as long as the user-controlled state is Active).

 •Disabled: The health check will not run in the next interval. This is because there is a problem with the health check and so IBM Health Checker for z/OS has disabled it to prevent it from running.

 The Status column of the CK output shows whether a health check was successful, an exception was found, or the health check was not applicable in the current environment. Selecting a successful health check using the s line command shows date and time information about the last execution of the health check, and messages about why the health check was successful. See Example 2-32 for an example.

 Example 2-32 SDSF display of successful health check

 [image:]

 SDSF OUTPUT DISPLAY ASM_LOCAL_SLOT_USAGE LINE 0 COLUMNS 02- 81

 COMMAND INPUT ===> SCROLL ===> CSR

 ********************************* TOP OF DATA **********************************

 CHECK(IBMASM,ASM_LOCAL_SLOT_USAGE)

 START TIME: 07/18/2009 10:06:25.150413

 CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM

 CHECK PARM: THRESHOLD(45%)

 ILRH0106I Slot usage on all local page datasets is below the usage

 warning threshold of 45%.

 END TIME: 07/18/2009 10:06:25.150713 STATUS: SUCCESSFUL

 ******************************** BOTTOM OF DATA ********************************

 [image:]

 Selecting an exception health check using the s line command shows date and time information about the last execution of the health check, and messages about why the health check flagged an exception. See Example 2-33 for an example.

 Example 2-33 SDSF display of exception health check

 [image:]

 SDSF OUTPUT DISPLAY ASM_PLPA_COMMON_SIZE LINE 0 COLUMNS 02- 81

 COMMAND INPUT ===> SCROLL ===> CSR

 ********************************* TOP OF DATA **********************************

 CHECK(IBMASM,ASM_PLPA_COMMON_SIZE)

 START TIME: 05/17/2009 01:05:46.818760

 CHECK DATE: 20041006 CHECK SEVERITY: MEDIUM

 CHECK PARM: THRESHOLD(100%)

 * Medium Severity Exception *

 ILRH0105E PLPA/Common page dataset size is below recommended value

 Explanation: The size of CSA and ECSA is approximately 318095360

 bytes which corresponds to 77660 auxiliary storage slots. The size

 of PLPA and EPLPA is approximately 66969598 bytes which corresponds

 to 16349 auxiliary storage slots. The size of the Common page data

 set is 89999 slots, the size of the PLPA page dataset is 179 slots.

 The combined size of the PLPA and Common page datasets is 96% of

 the slots required for all of CSA/ECSA and PLPA/EPLPA. This is below

 the check warning threshold of 100%.

 System Action: The system continues processing.

 Operator Response: N/A

 System Programmer Response: Consider enlarging the size of the PLPA

 and/or Common page dataset during the next IPL.

 Problem Determination: N/A

 Source: Aux Storage Manager

 Reference Documentation:

 "Auxiliary Storage Management Initialization" in z/OS MVS

 Initialization and Tuning Guide

 Automation: N/A

 Check Reason: To ensure that the PLPA and Common page datasets are

 sized correctly

 END TIME: 05/17/2009 01:05:46.845565 STATUS: EXCEPTION-MED

 ******************************** BOTTOM OF DATA ********************************

 [image:]

 You can control the list of health checks seen in SDSF using the Filter pull-down menu, as shown in Example 2-34.

 Example 2-34 SDSF Filter pull-down menu

 [image:]

 Display Filter View Print Options Help

 -------- +-----------------------------+ --------------------------------------

 SDSF HEA | 1. Filter... | LINE 1-36 (118)

 COMMAND | 2. Prefix of jobname... | SCROLL ===> CSR

 PREFIX=U | 3. Owner... | NAME=

 NP NAM | 4. Destination... | State Status

 ASM | 5. System name... | ACTIVE(ENABLED) SUCCESSFUL

 ASM | 6. Change APPC to OFF | ACTIVE(ENABLED) SUCCESSFUL

 ASM | 7. Replies on the Log... | ACTIVE(ENABLED) SUCCESSFUL

 ASM +-----------------------------+ ACTIVE(ENABLED) SUCCESSFUL

 ASM_PLPA_COMMON_USAGE IBMASM ACTIVE(ENABLED) SUCCESSFUL

 CEE_USING_LE_PARMLIB IBMCEE ACTIVE(ENABLED) SUCCESSFUL

 CNZ_AMRF_EVENTUAL_ACTION IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 CNZ_CONSOLE_MASTERAUTH_C IBMCNZ ACTIVE(ENABLED) SUCCESSFUL

 [image:]

 A panel is presented where you can specify values (including the * and ? wildcards) for the columns, as shown in Example 2-35.

 Example 2-35 SDSF Filter entry panel

 [image:]

 Display Filter View Print Options Help

 -------- +--+ ---------

 SDSF HEA | Filter Row 1 to 9 of 25 |

 COMMAND | Command ===> | ==> CSR

 PREFIX=U | |

 NP NAM | Type filter criteria. Type a / in the Column or Oper | us

 ASM | fields for valid values. Press F11/23 to clear all | ESSFUL

 ASM | filter criteria. | ESSFUL

 ASM | | ESSFUL

 ASM | Filtering is OFF | ESSFUL

 ASM | | ESSFUL

 CEE | AND/OR between columns AND (AND/OR) | ESSFUL

 CNZ | AND/OR within a column OR (AND/OR) | ESSFUL

 CNZ | | ESSFUL

 CNZ | Column Oper Value (may include * and %) | N/A

 CNZ | checkowner eq ibmcs* | ESSFUL

 CNZ | | N/A

 CNZ | | ESSFUL

 CNZ | | N/A

 CNZ | | ESSFUL

 CNZ | | ESSFUL

 CNZ | | ESSFUL

 CST | | N/A

 CST | | ESSFUL

 CST +--+ ESSFUL

 CSTCP_TCPMAXRCVBUFRSIZE_ IBMCS ACTIVE(ENABLED) SUCCESSFUL

 CSV_APF_EXISTS IBMCSV ACTIVE(ENABLED) SUCCESSFUL

 CSV_LNKLST_NEWEXTENTS IBMCSV ACTIVE(ENABLED) SUCCESSFUL

 [image:]

 z/OS SDSF Operation and Customization, SA22-7670, contains information about using the CK command to display health check data.

 2.4.3 IBM OMEGAMON z/OS Management Console

 The OMEGAMON z/OS Management Console provides two workspaces for accessing IBM Health Checker for z/OS:

 •Health Monitor Status

 •Health Monitor Checks

 The Health Monitor Status workspace provides general information about the IBM Health Checker framework and a statistical summary of the health checks. Figure 2-3 is an example of the Health Monitor Status workspace.

 [image:]

 Figure 2-3 Health Monitor Status

 The IBM Health Checker Status frame shows the status of the IBM Health Checker address space and summary statistics about the health checks. The IBM Health Checker Counts frame shows a graph of the health check summary statistics.

 The Health Monitor Checks workspace provides detailed information about the health checks. Figure 2-4 is an example of the Health Monitor Checks workspace.

 [image:]

 Figure 2-4 Health Monitor Checks

 The Exception Check Counts frame shows a graph of the health checks in EXCEPTION status statistics. The Run Counts frame shows a graph of the number of times that each health check has run statistics.

 In the IBM Health Checker Checks frame, each health check is listed along with its status, such as EXCEPTION or SUCCESSFUL. Each health check can be selected to display more detailed message information, as shown in Figure 2-5.

 [image:]

 Figure 2-5 Messages for Check

 To learn more about the IBM OMEGAMON z/OS Management Console product, see the IBM OMEGAMON z/OS Management Console web page at:

 http://www-03.ibm.com/systems/z/os/zos/zmc/

 For more details about configuring and customizing the IBM OMEGAMON z/OS Management Console, see Customizing and Using IBM OMEGAMON z/OS Management Console 4.1.0, REDP-4166.

 2.4.4 Non-IBM software

 A number of independent software vendors (ISVs) provide an interface to access health check data from their products. These include:

 •ASG Software Solutions. TMON for z/OS. Look for “Health Checker Monitor”.

 •CA. SYSVIEW. Look for “HCHECKER”.

 •Fischer International Systems. Interactive Output Facility (IOF). Look for “CHK”.

 •NewEra Software. The Image FOCUS Control Environment (IFO). Look for “HLTHCKR”.

 •Phoenix Software. (E)JES. Look for “HCHECK”.

 •Tone Software. OMC-FLASH. Look for “Health Checker Display Facility (HC)”.

 2.5 Managing IBM Health Checker

 There are multiple ways for health checks to identify themselves to the IBM Health Checker for z/OS framework. The most common way is for software products and components to use a HZSADDCHECK exit routine. This is where dynamic exits services (such as the CSVDYNEX macro) are used to register a load module to an exit named HZSADDCHECK so that IBM Health Checker can execute it automatically during startup. The benefit of this approach is that it makes the definition of vendor-supplied checks automatic and invisible to the user—a very clean configuration. If a HZSADDCHECK exit cannot be added with dynamic exit services (such as might be the case if there is no executing server for the software that provides the health checks), then the HZSADDCHECK exit can be defined with a PARMLIB(PROGxx) member.

 For testing during development, the HZSADDCHECK exit could also be identified with a SETPROG operator command followed by an ADDNEW option on a health check operator MODIFY command. Example 2-36 is an example of adding a health check using operator commands.

 Example 2-36 Adding a check using operator commands

 [image:]

 SETPROG EXIT,ADD,EXITNAME=HZSADDCHECK,MODNAME=xxxxxxxx

 F HZSPROC,ADDNEW

 [image:]

 The other ways to identify a health check to the IBM Health Checker for z/OS framework are:

 •Use a PARMLIB(HZSPRMxx) member. Statements are defined in the HZSPRMxx member, then the member is either specified during HZSPROC startup or dynamically activated via the F HZSPROC,ADD,PARMLIB=(xx) or F HZSPROC,REPLACE,PARMLIB=(xx) operator MODIFY commands.

 If you are providing a group of related checks, concatenated PARMLIBs can be an easy way to add your HZSPRMxx definitions to a system. To do this you need to add your PARMLIB datasets, which are the only ones for which you will need UPDATE authority. See the PARMLIB statement in the LOADxx member, as documented in z/OS MVS Initialization and Tuning Reference, SA22-7592.

 •Use the F HZSPROC,ADD or F HZSPROC,ADDREPLACE operator MODIFY commands.

 	
 Note: We recommend to not use the operator command option to add a check. This is because such a definition is non-persistent and because of the limitations in the command line length.

 Checks already registered with IBM Health Checker for z/OS can be administered a number of different ways:

 •By updating a PARMLIB(HZSPRMxx), then either restarting HZSPROC or using operator MODIFY commands to dynamically activate the changed definitions.

 •By using F HZSPROC operator MODIFY commands to specify the changed definitions.

 •By overtyping fields in columns of the SDSF CK panel. SDSF issues F HZSPROC operator MODIFY commands to act on the requested changes.

 	
 Attention: Updates performed by MODIFY commands are not retained across IBM Health Checker restarts. It is your responsibility to make them permanent before they get lost.

 Note that the syntax between PARMLIB(HZSPRMxx) and F HZSPROC operator MODIFY commands share a common foundation. Almost the same information can be specified in both places (ADD PARMLIB and REPLACE PARMLIB can only be specified as operator MODIFY commands). Both parmlib and operator commands support both the keyword=value notation and the keyword(value) notation, so you can use either notation. For consistency with other documentation the PARMLIB(HZSPRMxx) definition UPDATE CHECK(IBMAA,CHECKA) would be F HZSPROC,UPDATE,CHECK=(IBMAA,CHECKA) as an operator MODIFY command.

 Powerful wildcards are supported in the commands and parameters of IBM Health Checker for z/OS. The asterisk (*) represents none or many characters or qualifiers, whereas a question mark (?) represents a single character. The wildcards can be used in the filters parameters, which are CHECK=(owner,checkname), EXITRTN=exitrtn, and CATEGORY=(category).

 With such flexibility for administering checks, you might be wondering what must be done where. In response to this we recommend that you:

 •Use operator MODIFY commands for any temporary change that you want done once and do not want re-done after a restart or on the next IPL, for example:

  –	ACTIVATE

  –	ADDNEW

  –	DEACTIVATE

  –	DELETE

  –	DISPLAY

  –	REFRESH

  –	RUN

  –	STOP

  –	UPDATE

 •Use PARMLIB(HZSPRMxx) for any permanent change you want to keep across restarts and IPLs, like:

  –	ADD

  –	ADDREPLACE

  –	REMOVE

  –	Any definition or change of POLICY related parameters

 2.6 Tuning health checks using policies

 It is not the intention of IBM Health Checker to produce repetitive exception messages on a system where the current configuration is either deemed best practice by the customer, or the configuration cannot be changed due to some local restriction. Therefore, well written health checks should provide a way to flag that an exception condition detected by the health check is understood and accepted, and that the condition should no longer be reported as being an exception. Typically this is done by setting a parameter (such as a keyword or threshold) that is input to the health check. This is not an automatic part of the IBM Health Checker framework. Each health check must be written to accept such a parameter.

 The way to supply parameters to checks that have been written to accept them is to use policies.

 2.6.1 IBM Health Checker for z/OS policies

 An IBM Health Checker for z/OS policy lets you manage checks by applying persistent changes to checks. A policy is the place to put any check changes you want to make persistent and to have applied to checks you add in the future. You can create multiple policies and switch between them.

 An IBM Health Checker for z/OS policy is a set of policy statements in an HZSPRMxx member or members currently in use for a system. The system applies the information in your active IBM Health Checker for z/OS policy to all existing checks and to any new checks you add. IBM Health Checker for z/OS processes information from the active policy every time checks are added or refreshed, every time you activate a new policy, and whenever you start or restart IBM Health Checker for z/OS.

 You activate a policy using the ACTIVATE POLICY statement in HZSPRMxx or by the command:

 F hzsproc,ACTIVATE,POLICY=policyname

 If you have multiple policies, you can switch between them using the same methods.

 On each policy statement, you update check values for a check or set of checks, specifying updates that you want to apply permanently. You can also use policy statements to permanently delete checks or to remove another policy statement.

 The ADD POLICY directive creates a new policy statement within a policy. You can identify the policy statement name as well as which policy this statement is to be associated with.

 The ADDREPLACE POLICY directive specifies that the system either adds or replaces the following policy statement within the policy, as appropriate. If the policy statement is new within the policy, the system will add it. If the policy statement exists already within the policy, the system will replace it with the one specified.

 The REMOVE POLICY directive removes an existing policy statement from a policy.

 If you do not specify a policy name on your policy statement, the system assigns the statement to the default policy, which is DEFAULT.

 If you do not specify a policy statement name, the system assigns a name (using an ascending numeric format). However, we recommend that you utilize the STATEMENT keyword when adding a policy statement so that the statement name will be meaningful to you, in case you want to display or delete it or see it referred to in a display.

 When you activate an IBM Health Checker for z/OS policy, the system applies the values immediately to the existing checks. Then, when you add new checks that meet the policy statement criteria, the values will be applied to those checks as well.

 When the IBM Health Checker for z/OS starts, it will by default use policy DEFAULT (with which you might or might not have associated any policy statements). If you do not want that behavior, use an ACTIVATE POLICY statement in HZSPRMxx to control which policy you want to be used.

 Note that policy updates are cumulative, starting from the time a check is added or refreshed. For example, if a check is added when POLICY A is active, any applicable updates are applied to the check. If POLICY B is then activated, applicable updates are then applied. The resulting updates for a check are whatever the updates from POLICY A followed by the updates from POLICY B produced. If you want only the updates from POLICY B, then you need to refresh the check. That processing will add the check and then apply the updates from the active policy (POLICY B).

 To make sure your policy persists across IBM Health Checker for z/OS restarts, specify the HZSPRMxx members containing your policy

 2.6.2 HZSPRMxx POLICY statements

 The ADD, ADDREPLACE, and REMOVE POLICY statements can be placed in an HZSPRMxx PARMLIB member. The PARMLIB member can be specified when IBM Health Checker for z/OS is started or by the operator MODIFY command, as shown in Example 2-37.

 Example 2-37 Implementing POLICY statements

 [image:]

 S HZSPROC,HZSPRM=xx

 -or-

 F HZSPROC,ADD,PARMLIB=xx

 -or-

 F HZSPROC,REPLACE,PARMLIB=xx

 [image:]

 With the ADD and ADDREPLACE POLICY statements, you can either UPDATE health check definitions or DELETE the entire health check. The UPDATE parameters that can be changed are those described in the UPDATE command. Both UPDATE and DELETE statements require a REASON and DATE parameter. Example 2-38 shows sample POLICY statements.

 Example 2-38 Sample POLICY statement

 [image:]

 BROWSE SYS1.PARMLIB(HZSPRM00) - 01.06 Line 00000130 Col 001 080

 Command ===> Scroll ===> CSR

 /* */

 ADDREPLACE

 POLICY(ZOS1A0)

 UPDATE

 CHECK(IBMUSS,USS_FILESYS_CONFIG)

 PARM('NOPLEX')

 REASON('This baby aint no SYSPLEX')

 DATE(20090701)

 /* */

 [image:]

 	
 Note: Although not required, it is highly recommended to name your policy statements. Otherwise they are simply numbered and there is no reasonable way to remember which is which and refer to them in subsequent commands. This example shows just naming the policy, not the statement.

 Once the POLICY statement has been implemented, the DISPLAY DETAIL commands can be used to show that the underlying health check has been updated, as shown in Example 2-39.

 Example 2-39 POLICY detail displays

 [image:]

 F HZSPROC,DISPLAY,CHECK(IBMUSS,USS_FILESYS_CONFIG),DETAIL

 HZS0201I 10.13.51 CHECK DETAIL.... 866

 CHECK(IBMUSS,USS_FILESYS_CONFIG)

 STATE: ACTIVE(ENABLED) STATUS: SUCCESSFUL

 EXITRTN: BPXHCADC

 LAST RAN: 07/21/2009 16:49 NEXT SCHEDULED: 07/22/2009 16:49

 INTERVAL: 24:00

 EXCEPTION INTERVAL: SYSTEM

 SEVERITY: MEDIUM

 WTOTYPE: EVENTUAL ACTION

 SYSTEM DESCCODE: 3

 DEFAULT PARAMETERS: SYSPLEX

 USER SUPPLIED PARAMETERS: NOPLEX

 REASON FOR CHECK: Avoid performance problems in Unix System

 services and improve recovery after an outage

 MODIFIED BY: STMT(6)

 REASON FOR UPDATE: This baby aint no SYSPLEX

 DEFAULT DATE: 20040217 USER DATE: 20090701

 ORIGIN: HZSADDCK

 LOCALE: HZSPROC

 DEBUG MODE: OFF VERBOSE MODE: NO

 REQUIRES USS RESOURCES

 F HZSPROC,DISPLAY,POLICY,CHECK(IBMUSS,USS_FILESYS_CONFIG),DETAIL

 HZS0202I 11.46.40 POLICY DETAIL.... 330

 POLICY(ZOS1A0) STATEMENT: 6

 ORIGIN: HZSPRM00 DATE: 20090701

 UPDATE CHECK(IBMUSS,USS_FILESYS_CONFIG)

 REASON: This baby aint no SYSPLEX

 PARAMETERS: NOPLEX

 [image:]

 The DATE of the POLICY UPDATE/DELETE is important because it indicates the chronology of when a policy was last reviewed (or created). Where this comes into play is if a new health check is provided by the health check author that might invalidate the POLICY applied to that health check. If IBM Health Checker for z/OS encounters a POLICY that has a date older than the health check that it relates to, the POLICY is not applied. When this situation occurs, a message is produced, as shown in Example 2-40.

 Example 2-40 Old POLICY with new health check

 [image:]

 HZS0420E 1 CHECKS HAVE BEEN FOUND FOR WHICH AT LEAST ONE MATCHING

 POLICY STATEMENT HAD A DATE OLDER THAN THE CHECK DATE.

 THE POLICY STATEMENTS WERE NOT APPLIED TO THOSE CHECKS.

 THE FIRST CASE IS

 CHECK(IBMUSS,USS_FILESYS_CONFIG),

 MATCHED BY POLICY STATEMENT 16 1

 [image:]

 To correct this, review the relevance of the offending POLICY statement in PARMLIB(HZSPRMxx), then if still relevant, update the DATE parameter to something later than the health check date. In this case having assigned a statement name would come in handy. In our case the only information we get about the rejected statement is its ordinal number 1 within the policy.

 STATEMENT(NOPLEX)

 Example 2-41 Example POLICY specifying statement name

 [image:]

 BROWSE SYS1.PARMLIB(HZSPRM00) - 01.06 Line 00000130 Col 001 080

 Command ===> Scroll ===> CSR

 /* */

 ADDREPLACE

 POLICY(ZOS1A0) STATEMENT(NOPLEX)

 UPDATE

 CHECK(IBMUSS,USS_FILESYS_CONFIG)

 PARM('NOPLEX')

 REASON('This baby aint no SYSPLEX')

 DATE(20090701)

 /* */

 [image:]

 2.6.3 DELETE, UPDATE INACTIVE, or reduce severity

 If a health check is an exception, but it is not something that you can correct at this time, and the health check does not support providing a parameter to result in success, what should be done about it? You do not want IBM Health Checker for z/OS constantly alerting you to a situation that you are aware of but cannot correct. You are confronted with choices for how to resolve the situation. You could DELETE the health check, UPDATE the health check to make it INACTIVE, or UPDATE the health check to reduce its severity.

 How you solve this depends on the situation. Deleting checks is probably not a good idea because it completely removes the health check from view. If the reason for deleting the health check passes, then you might forget to stop deleting it and therefore miss out on the protection that the health check could have been providing for your system. If the health check is one that you wrote and during development you decide that you do not want it any longer, then DELETE might be OK in this situation.

 Making a health check inactive is better than deleting it because at least the health check is still visible. From time to time you might choose to manually reactivate the CHECK to see whether it is still an exception.

 If you want the health check to be in exception status, but in an unobtrusive way, consider reducing the severity (such as to LOW). An even better way to do this is to set the SEVERITY(NONE) and INTERVAL(ONETIME). This means that exception messages are only sent to the hardcopy log and the health check is run only once after HZSPROC starts or is refreshed.

 2.6.4 Deleting a health check

 If a health check is deleted by an operator MODIFY command, then it is possible that the health check will return the next time that HZSPROC is restarted or refreshed. If the health check is registered by PARMLIB(HZSPRMxx), then the health check ADD or ADDREPLACE definition must be removed from HZSPRMxx. If the health check is registered by a HZSADDCHECK exit routine, then a POLICY DELETE statement must be added in PARMLIB(HZSPRMxx).

[image:]
[image:]

Writing checks

 This chapter focuses on issues related to developing and implementing health checks. Topics covered include:

 •A comparison of the available locales or execution environments for a health check

 •Services and programming interfaces available for health checks and their individual environments

 •The mechanics of developing and preparing the pieces that make up a final health check

 As always, the IBM Health Checker for z/OS User's Guide, SA22-7994-09 (identified in the following text as the User’s Guide) is a great reference, and we point out sections of it for more detailed reading throughout this chapter. The hyperlinks point to the copy of the user's guide that is available in the z/OS V1R11 Information Center, which also provides a downloadable PDF version of the user's guide.

 Also, when you are working on a live z/OS system, the shipped assembler service macros, usually in SYS1.MACLIB, provide a good and quick reference in their header section.

 3.1 Selecting a check execution environment

 A health check can run in one of the following three environments:

 •In the IBM Health Checker address space, as a local check. Most checks written by IBM currently fall into this category.

 •In a separate address space, as a remote check, remote from the IBM Health Checker address space.

 •In a System REXX address space. Such a REXX check combines certain properties of a local and a regular remote check, but is technically a special remote check.

 In this section we discuss characteristics that will help you choose the appropriate check execution environment.

 Refer to the section “What kind of check do you want to write?” in the IBM Health Checker for z/OS User's Guide, SA22-7994-09 for further details.

 3.1.1 Summary of execution environments

 The following list summarizes the key characteristics that differentiate checks running in the three available execution environments:

 •Local checks

  –	Local checks run in the IBM Health Checker address space, where their message tables are also loaded.

  –	They receive control APF authorized, supervisor state.

  –	UNIX System Services are supported in local checks. When USS(YES) is specified this check will not be started unless UNIX System Services are available to run the check.

  –	Local checks should not issue ENQs or perform I/O or other long-running services.

  –	The HZSFMSG macro service produces data for the message buffer to create reports and issue an exception message.

  –	Local checks might write into the 2K PQE_ChkWork area to save data between check iterations. They are also provided with a 4K dynamic work area, pointed to by PQE_DynamicAreaAddr, which content is not preserved across check invocations. Finally, for any local check, the system creates a data space, described by PQE_DataspaceALET and PQE_DataspaceSTOKEN, which can be used to contain large amounts of data.

 See SYS1.SAMPLIB members HZSSCHKP and HZSSCHKR for examples.

 •Remote checks

  –	Remote checks can run in any address space. The relevant message table is loaded in the same address space where the remote check runs.

  –	They might run unauthorized.

  –	The HZSFMSG macro service produces data for the message buffer to create reports and issue an exception message.

  –	Remote checks might write into the 2K PQE_ChkWork area to save data between check iterations.

 See SYS1.SAMPLIB members HZSSRCHC and HZSSRCHK.

 •System REXX checks

  –	System REXX checks run as APF authorized execs in a System REXX address space. Their message tables are loaded into the Health Checker address space. If they call an assembler program it would receive control in key 8.

  –	They have the permissions associated with the IBM Health Checker address space.

  –	They might issue REXX functions like AXRCMD(), but AXRWTO functions are discouraged.

  –	They might use EXECIO() to read and write to data sets.

  –	Starting with z/OS V1R9 with APAR OA25932, the REXX function STORAGE() can be used to read storage at a specified address, but cannot write to that storage. For additional information about System REXX maintenance refer to: “Review System REXX maintenance” on page 35.

  –	HZSLFMSG produces data to create reports and issue exception messages.

  –	The HZS_PQE_CHKWORK REXX variable is a 2K buffer to save data between check iterations. HZSLSTOP must be issued to save this variable when the check ends.

  –	TSO services are available to System REXX execs. In this environment the caller is the only check executing in an AXR TSO server address space.

  –	The check writer can provide a REXXTIMELIMIT to identify how long the check might run.

 See the TSO/E REXX Reference Manual, SA22-7790, for additional detail on the REXX language.

  –	System REXX creates a debug data set using the REXXHLQ as the high level qualifier. Messages issued by REXX, TSO, and the SAY command are captured in this data set when the check is placed in DEBUG mode.

  –	IBM Health Checker support for System REXX is available for z/OS V1R8 and later.

 See SYS1.SAMPLIB member HZSSXCHK for an example.

 3.1.2 Security and data access

 Both local checks and System REXX checks require their checks to be Authorized Program Facility (APF) authorized. This usually means that the check's load module or REXX exec must reside in an authorized library (an APF-authorized load library in the case of a local check, or a library that is part of the REXXLIB concatenation for System REXX checks). This gives the checks access to system configuration details, but might be a concern for installations when receiving health checks from a third party, or even from within their own organization. Even from a UNIX System Services perspective, local and System REXX checks run with IBM Health Checker’s access rights, which means superuser authority (UID(0)).

 Remote checks have the advantage of being able to run either way—authorized or unauthorized. In the latter case, they can establish separate access rules, tailored to their specific needs. One of the services such checks would lose access to by default is ENFREQ. ENFREQ allows an authorized program to listen to specific system events via the Event Notification Facility (ENF). One such event would be ENF67, which IBM Health Checker broadcasts for status updates. There usually are ways to code ENF67 alternatives though, if necessary.

 Even when running authorized, local checks or System REXX checks might still not readily have access to all the resources that they require to do their check work, because they are scoped to IBM Health Checker or the System REXX address space. A remote check in the right address space might be the better solution in such cases.

 3.1.3 Performance

 From a performance perspective, anything that runs quickly is a candidate for a local check. Anything else, including those checks that perform disk I/O, that could encounter waits or use ENQs, locks, or other types of serialization, should be written as a remote check or possibly a System REXX check. For very long-running checks, remote execution should be preferred over System REXX to avoid using up the limited System REXX address space task resources.

 3.1.4 Code complexity

 From a coding complexity perspective, local and System REXX checks are easier to implement than remote ones. There are two main reasons for this:

 •Local and System REXX checks are fully managed by the IBM Health Checker framework and must focus on the specific function that they are designed for, whereas remote ones also must implement additional logic to synchronize and interact with the remote IBM Health Checker address space and provide recovery in case of error.

 •The need for a remote check to define itself. Whereas both local and System REXX checks can be defined to the IBM Health Checker using parmlib statements, remote checks must explicitly invoke the HZSADDCK service to register with the IBM Health Checker framework.

 3.1.5 Check implementation languages

 In the past the main programming language used to write both local and remote health checks was assembler. Although assembler lets you produce very efficient code and has a wide range of services available, the number of assembler programmers is diminishing. For this reason, the IBM Health Checker for z/OS now supports the development of health checks using additional languages, namely METAL C and System REXX.

 Metal C is an option of the z/OS XL C/C++ compiler, which only supports a subset of the standard C library functions, but otherwise provides the full set of C language constructs. The important addition it has, compared to regular C, is to allow assembler statements to be embedded in your C source code. This way Metal C allows access to many of the existing assembler services, including the ones that IBM Health Checker provides.

 To demonstrate the strength of this kind of approach we wrote a sample local health check coded in Metal C. Refer to Appendix A, “Additional material” on page 219.

 	
 Note: Formal support for checks written in Metal C is introduced with z/OS V1R12. The sample provided with this book does not rely on the new support and can run on any current version of z/OS.

 Although REXX (System REXX to be exact) is a language that might have certain limitations on what system resources can be accessed or even modified, it is a language that usually makes it easier and quicker to develop code, in particular health checks. It has a number of built-in features that come in handy, including, for example, string manipulation, string parsing, and TSO I/O.

 Note that for local and remote checks, you in theory have the choice of any programming language, as long as the generated executables conform to system linkage conventions and as long as there is a way to call the required IBM Health Checker services.

 Providing support for additional languages demands the creation of a set of header files or layouts to map the required data structures and a set of callable services to interface with the IBM Health Checker framework.

 An alternate way to add your preferred programming language to the list of supported ones would be to provide thin assembler stubs to interface with the IBM Health Checker framework. Assuming that your language supports inter-language calls, your check could be written in that language, whereas the assembler stubs would provide access to any callable services that you might require to communicate with IBM Health Checker.

 As a proof of this concept, during our project, we wrote a set of assembler stubs that enable you to use regular REXX to develop remote checks. Such checks do not require System REXX and can run in any address space. For information about checks written in regular REXX refer to Chapter 8, “Unauthorized health checks written in REXX” on page 177.

 3.1.6 Task structure

 Remote checks require the remote address space to dedicate a subtask to each health check. Running under a dedicated subtask makes it easier to allocate and keep resources that will be tied for the life of the task. However, providing the ability to shut down an address space while a dedicated task is waiting to be woken up by IBM Health Checker requires additional logic.

 On the contrary, there is no guarantee for local and System REXX checks which task they will execute under, just that for any single invocation they will run under one of the available tasks within the IBM Health Checker address space or a System REXX address space, respectively.

 3.1.7 Writing a remote health check

 The remote in remote health check means not in the IBM Health Checker's address space. We already noted that the System REXX checks are special remote checks, which basically run in one of the tasks or address spaces provided by System REXX.

 The ability to run a check remotely is important when you must access data not easily available in the execution environment of a local or System REXX check. For example, let us say that you wrote a software product that runs in its own address space and you want to provide a health check to control the status of internal resources vital for your product. These resources are described by control blocks residing in your private address space. In such a case the easiest and more elegant solution is to write a remote check and run it as a subtask in your address space.

 Another example is the implementation of custom checks. Consider that you want to allow more people in your IT department to be able to write health checks for their specific needs, but you do not want to give them the extended access rights granted to local and System REXX checks. Remote checks can run unauthorized, under the security profile of the submitter, which can be thoroughly tailored to just grant the required access rights.

 Anatomy of a remote health check

 Although remote checks provide more flexibility, they require additional activities and introduce additional complexity. Remote checks do not run under direct control of IBM Health Checker, in the IBM Health Checker address space, so there must be a communication or handshake protocol between IBM Health Checker in its address space and the remote check in its own address space.

 The general scheme is that remote and System REXX checks must acknowledge to IBM Health Checker that they received control, once tapped to run. The same handshake also must happen when the check finishes a single check run. That is what the HZSCHECK REQUEST=OPSTART and HZSCHECK REQUEST=OPCOMPLETE services are for. System REXX checks have corresponding HZSLSTRT and HZSLSTOP functions available.

 In addition, remote checks require the use of a PAUSE element token, which is used to coordinate idle time. Note that System REXX checks do not require this due to the way that they are invoked by IBM Health Checker through System REXX interfaces.

 The following simplified remote check skeleton illustrates the remote check hand shake protocol:

 •One time actions

  –	The remote check allocates a PAUSE element token using the IEAVAPE service.

  –	The check registers itself with IBM Health Checker and passes the PAUSE token to IBM Health Checker.

 •Repeated actions as a continuous loop

  –	The check issues a PAUSE request via the IEAVPSE service and then waits.

  –	When it is time to run the check, according to the schedule that was communicated at register time, IBM Health Checker issues a RELEASE request via the PAUSE token, which awakens the check.

  –	The check acknowledges the release signal via an OPSTART call. From now on the check is active from the IBM Health Checker perspective.

  –	The check does its work.

  –	The check tells IBM Health Checker that it is complete via an OPCOMPLETE call and starts over with a new PAUSE request.

 Because a remote check must pass a live PAUSE token at register (ADD) time, or even more so, it has to be able to receive its remote HANDLE from IBM Health Checker, it can only register itself with IBM Health Checker programmatically via the HZSADDCK service, and not via any of the other, static ways (we come back to this later).

 Also, whereas a local check only must handle function codes INIT, CHECK (“run”), CLEANUP, and DELETE, when it receives control; and System REXX checks only have INITRUN and RUN codes to handle; a remote check might receive additional codes that deal with IBM Health Checker restart and check routine refreshes.

 A remote check must provide its own recovery. For local and System REXX checks IBM Health Checker provides most of that, and in general the checks only must handle return and reason codes.

 IBM Health Checker also handles the message table loading for local and System REXX checks, and keeps the message table available. Remote checks must load their message table on their own and always pass a reference to it on check-message-related services.

 To help understand the coding of a remote check, Example 3-1 is a detailed, but still high-level, outline of a remote check written in pseudo code.

 Example 3-1 Remote check outline

 [image:]

 Get PAUSE token

 TOP:

 Load message table

 HC_DOWN:

 REPEAT

 IF my address space is going away

 THEN GOTO Leave_and_dont_come_back

 Issue RC=HSZADDCK() to add me as a remote check

 IF I'm_an_authorized_address_space THEN

 IF RC = 'HC not active' THEN

 Wait for HC active ENF 67

 ELSE /* Unauthorized address space */

 IF RC = 'HC not active' THEN

 Wait TIME=300

 UNTIL (RC <> 'HC NotActive')

 LOOP:

 Wait for PAUSE token to be released by HC

 SELECT (ReleaseToken_RemoteFunctionCode)

 WHEN(InitRun) /* 01 */

 HZSCHECK REQUEST=OPSTART

 CALL Allocate_check_resources

 CALL First_check_iteration

 HZSCHECK REQUEST=OPCOMPLETE

 ITERATE LOOP

 WHEN(Run) /* 02 */

 HZSCHECK REQUEST=OPSTART

 CALL Subsequent_check_iteration

 HZSCHECK REQUEST=OPCOMPLETE

 ITERATE LOOP

 WHEN(Deactivate) /* 03 */

 HZSCHECK REQUEST=OPSTART

 CALL Free_check_resources

 HZSCHECK REQUEST=OPCOMPLETE

 ITERATE LOOP

 WHEN(Delete) /* 04 */

 HZSCHECK REQUEST=OPSTART

 CALL Free_Check_Resources

 Unload message table

 HZSCHECK REQUEST=OPCOMPLETE

 GOTO Leave_and_dont_come_back

 WHEN(Delete_Term) /* 05 */

 HZSCHECK REQUEST=OPSTART

 CALL Free_Check_Resources

 HZSCHECK REQUEST=OPCOMPLETE

 GOTO HC_DOWN

 WHEN(Delete_REFRESH) /* 06 */

 HZSCHECK REQUEST=OPSTART

 CALL Free_Check_Resources

 Unload Message table

 HZSCHECK REQUEST=OPCOMPLETE

 GOTO TOP

 WHEN(RESTART) /* 07 */

 CALL Free_Check_Resources

 GOTO HC_DOWN

 END - SELECT

 END - LOOP

 Leave_and_dont_come_back:

 Deallocate PAUSE token

 EXIT

 [image:]

 Possible remote check execution environments

 A remote check can run in any address space. The following sections discuss the available options.

 Remote checks as sub-tasks of an existing address space

 If you choose to write a health check as an extension of an existing product or application that you own, it makes sense to run them within the same address space. Doing so ensures that the check will always run when the component that it controls is active, and also simplifies system management. All you must do is to attach another task within the target address space to run the health check. As mentioned previously, you would need one task per health check. Notice that also for remote checks, as for local and System REXX checks, you can use entry codes to combine multiple checks in one check routine for remote checks.

 Standalone remote checks

 A standalone remote check can, for example, run as a started task, a batch job, or a UNIX System Services long-running process. These three execution environments mainly differ from each other in terms of security control and scheduling techniques:

 •Remote checks as started tasks

  –	The check routine is invoked by specifying it in the EXEC statement of the started task procedure, for example:

 //RMTCHECK EXEC PGM=RMTLOAD

 //STEPLIB DD DISP=SHR,DSN=MY.LOADLIB

 //SYSABEND DD SYSOUT=*

  –	Started tasks are usually scheduled using system automation packages.

  –	The security profile of started tasks is defined using a RACF class, not through the USER, PASSWORD, GROUP, and SECLABEL parameters. This could require additional security profile definitions.

 •Remote checks as batch jobs

  –	The check routine is invoked, specifying it in the EXEC statement, as in the started task example given previously.

  –	Unless you are just testing your code, batch jobs are executed under control of a job-scheduling system. If you plan to run the check on a regular basis you must create specific scheduling rules.

  –	With RACF, the security profile of a batch job is usually inherited by the submitting user. There are optional JCL keywords such as USER, PASSWORD, and so on, to associate a batch job with a different security profile if needed (such as non-RACF systems).

 •Remote checks as UNIX System Services processes

  –	For testing purposes it is possible to submit a remote check routine from a shell command line to the background, typically by using the & (ampersand) command suffix. Another option is to use the standard BPXBATCH utility, which makes the process appear as a batch job.

  –	Automatic process scheduling can be achieved by putting the command into the /etc/rc file or using a job scheduling product if you choose to run the process using BPXBATCH.

  –	The security profile of a UNIX System Service process job is usually inherited by the submitting user. In order to access UNIX System Services resources the security profile must have an OMVS segment with proper UID and GID definitions.

 	
 Note: We recommend more research into z/OS UNIX daemons and security. Refer to the z/OS UNIX System Services Planning, GA22-7800.

 To end any standalone started task, job, or UNIX System Service process, simply delete the check, for example, via the P line command on the SDSF CK panel. The check routine gets control with a DELETE function code, and it should run to its end after any required cleanup, letting the host started task, job, or UNIX System Service process terminate normally.

 3.2 Services available to check routines

 IBM Health Checker provides a number of different callable services, which can be accessed through assembler macros or System REXX functions. Among these are:

 •Services for registering (adding) a check with IBM Health Checker

 •Services for communication between a check and IBM Health Checker

 •Services for check utility tasks

 •Services for maintaining and monitoring checks

 3.2.1 Registration (Add) services

 There are a number of ways to register a check with IBM Health Checker. For local and System REXX checks these include:

 •An HZSADDCHECK exit routine, which calls HZSADDCK

 •An HZSPRMxx parmlib member activated by a MODIFY hzsproc ADD PARMLIB or REPLACE PARMLIB system command

 •A MODIFY hzsproc ADD or ADDREPLACE system command

 	
 Note: We recommend to not use the operator command option to add a check. This is because such a definition is non-persistent and because of the limitations in the command line length.

 For remote checks, registration can be done via a direct HZSADDCK call (outside of an exit routine).

 Checks developed for any of the three check execution environments can be registered with, or added to, IBM Health Checker via the HZSADDCK service. Local and System REXX checks can also be added via ADD or ADDREPLACE statements stored in an HZSPRMxx member of a parmlib data set. The ADD/ADDREPLACE command syntax corresponds closely to the one used by the MODIFY HZSPROC,ADD/ADDREPLACE command, which can also be used to add those two kinds of checks. The MODIFY HZSPROC command has the disadvantage of the command-line length limit.

 	
 Note: Any additions or changes made to checks via system commands will be lost on the next IBM Health Checker restart or check refresh. Definition statements in a HZSPRMxx parmlib member, or the programmatic approach via HZSADDCK service, provide better means to permanently keep those checks and their settings in place.

 One way to automate the programmatic approach via the HZSADDCK service is to use an exit routine, which IBM Health Checker runs automatically at startup. The exit routine itself usually just contains one or more calls to the HZSADDCK service.

 To reduce system overhead and simplify maintenance, we suggest that you create one HZSADDCHECK exit routine for all the checks for your component or product. This exit routine then gets registered with the exit point, or just exit, named HZSADDCHECK, provided by IBM Health Checker. To do this you can use the CSVDYNEX service to associate your exit routine with this exit, use the SETPROG EXIT,ADD system command, or use the EXIT ADD statement of PROGxx activated by SET PROG=xx or by a system parameter.

 If IBM Health Checker is already running when your exit routine gets associated with the exit, use the related service HZSCHECK REQUEST=ADDNEW or the corresponding system command MODIFY HZSPROC,ADDNEW to tell IBM Health Checker to execute all the exit routines currently associated with exit HZSADDCHECK. Only the checks not yet defined will be added.

 Notice the different layers added by the automation approach:

 •The exit routine, which contains a HZSADDCK call, which in turn references the check routine and message table

 •The exit point HZSADDCHECK, which the exit routine requires to be registered via CSVDYNEX or SETPROG EXIT,ADD

 •The HZSCHECK REQUEST=ADDNEW service to notify IBM Health Checker about new exit routines at the exit point

 The sample HZSADDCHECK exit routine in SYS1.SAMPLIB(HZSSADCK) and the following sections show examples of the various registration methods.

 Register a check via an HZSADDCHECK exit routine

 For an exit routine example and how to compile and use it, let us look at the sample exit routine SYS1.SAMPLIB(HZSSADCK). As discussed previously, all that an exit routine really does is to call the HZSADDCK service one or more times. The sample HZSSADCK actually registers two local checks, which share the same check routine, HZSSCHKR, but have two different entry codes to distinguish them. This points out again that a single check routine can implement more than a single check, which is why the routine is required to be reentrant—to allow the simultaneous execution of the two checks by IBM Health Checker at the same time.

 After the exit routine has been compiled, we can associate it with IBM Health Checker's HZSADDCHECK exit point. A simple way to try it out is via the SETPROG EXIT system command:

 SETPROG EXIT,ADD,EXITNAME=HZSADDCHECK,MODNAME=HZSSADCK

 Instead of manually executing this command, you can store it in a PROGxx parmlib member and have it referenced in the IPL path for automatic execution.

 A more programmatic approach, which is used by most checks shipped by IBM or independent software vendors, is to use the CSVDYNEX service in the product code to register an exit routine (Example 3-2).

 Example 3-2 Register your check using CSVDYNEX

 [image:]

 CSVDYNEX REQUEST=ADD,EXITNAME==CL16"HZSADDCHECK ", -

 MODNAME==CL8"HZSSADCK",MESSAGE=ERROR, -

 RetCode=HCRetCode,RsnCode=HCRsnCode

 [image:]

 	
 Note: You should avoid using CSVDYNEX REQUEST=DELETE service and the SETPROG EXIT,DELETE system command to unregister your exit routine. A health check that relies on a product that can be shut down should set some indicator in a control structure it owns so that it does nothing if the product it relies on is inactive.

 After the exit routine is associated with the HZSADDCHECK exit point, you still must tell IBM Health Checker to scan the exit point for new exit routines. There is a programmatic interface to do this, the HZSCHECK REQUEST=ADDNEW call. You can add it to the program that also issues the CSVDYNEX service. As an alternative, if you chose to register your exit routine via a SETPROG EXIT,ADD command, you can use a MODIFY HZSPROC,ADDNEW system command.

 An explicit ADDNEW request is not needed if the check was added while IBM Health Checker is inactive. Any exit routine associated with the HZSADDCHECK exit point is invoked during IBM Health Checker startup.

 Register a check via an HZSPRMxx parmlib member

 This is the method of choice for System REXX checks, but can also be used to register a local check. It avoids coding an HZSADDCHECK exit routine. As an example let us build an HZSPRMxx parmlib member to register both a local check and a System REXX check.

 Example 3-3 shows the parmlib statements needed to register the HZSSCHKR sample check routine, which implements two local checks via different entry codes.

 Example 3-3 Register a local check using parmlib statements

 [image:]

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_ONE_TIME)

 CHECKROUTINE(HZSSCHKR)

 MESSAGETABLE(HZSMSGTB)

 ACTIVE

 ENTRYCODE(1)

 DATE(20051031)

 REASON('A sample health check to demonstrate a one time health check')

 PARMS('LIMIT(047)')

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 USS(NO)

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_INTERVAL)

 CHECKROUTINE(HZSSCHKR)

 MESSAGETABLE(HZSMSGTB)

 ACTIVE

 ENTRYCODE(2)

 DATE(20051031)

 REASON('A sample check to demonstrate an interval check')

 SEVERITY(LOW)

 INTERVAL(00:05)

 USS(NO)

 [image:]

 Looking at the definition you can see that:

 •The checks are CHECK(IBMSAMPLE,HZS_SAMPLE_ONE_TIME) and CHECK(IBMSAMPLE,HZS_SAMPLE_INTERVAL.

 •The CHECKROUTINE and MESSAGETABLE keywords indicate the actual name of the check program and of the associated message table.

 •In the example the checks are defined as ACTIVE, which means that they will be eligible to be executed by IBM Health Checker.

 •The REASON and DATE keywords are used to keep track of why and when the check has been defined or updated. REASON specifies the unique reason why the check has been defined. The value for REASON can be 1–126 text characters. DATE specifies when the values for a check were last updated. The date is specified in the format yyyymmdd.

 •The PARMS keyword is used to provide check-specific parameters, whereas the VERBOSE keyword controls the format of the generated report. When specifying VERBOSE(YES) the check can optionally provide additional detailed information.

 •Messages produced when a health check raises an exception reflect the SEVERITY associated with the check. In this case we decided to define a LOW severity.

 •The INTERVAL keyword determines how often the check runs. It can specify ONETIME or an actual interval, which is specified in the format hh:mm. In this case CHECK(IBMSAMPLE,HZS_SAMPLE_INTERVAL) is executed every 5 minutes.

 •The USS keyword indicates whether the check makes use of UNIX System Services. When USS is not available, checks that have indicated that they use those services are not run.

 	
 Note: HZSSCHKR and HZSMSGTB must be available in an APF-authorized load library that is part of the LNKLST concatenation.

 Using parmlib statements to define a System REXX check works in a very similar way. Example 3-4 shows the statements needed to define the two checks implemented by the sample HZSSXCHK REXX exec.

 Example 3-4 Register a System REXX check using parmlib statements

 [image:]

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_REXXIN_CHECK)

 EXEC(HZSSXCHK)

 REXXHLQ(IBMUSER)

 REXXTSO(NO)

 REXXIN(YES)

 MSGTBL(HZSMSGTB)

 ENTRYCODE(1)

 USS(NO)

 VERBOSE(NO)

 PARMS('LIMIT(047)')

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 DATE(20061219)

 REASON('A sample check to demonstrate an ',

 'exec check using REXXIN.')

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_REXXTSO_CHECK)

 EXEC(HZSSXCHK)

 REXXHLQ(IBMUSER)

 REXXTSO(YES)

 REXXIN(NO)

 MSGTBL(HZSMSGTB)

 ENTRYCODE(2)

 USS(NO)

 VERBOSE(NO)

 PARMS('DSN(IBMUSER.HZSSXCHK.DATA)')

 SEVERITY(LOW)

 INTERVAL(0:05)

 EINTERVAL(SYSTEM)

 DATE(20061219)

 REASON('A sample check to demonstrate an ',

 'exec check using TSO services.')

 [image:]

 In these examples we make use of more keywords specific to System REXX checks:

 •The EXEC keyword, which, similarly to the CHECKROUTINE keyword, indicates the actual name of the check routine.

 •The REXXHLQ keyword, which specifies the prefix for input and output data sets to be made available to the check.

 •The REXXTSO keyword, which indicates whether the check exec needs access to TSO functions.

 •The REXXIN keyword, which indicates whether there is a REXX input data set to be made available to the exec. For these two checks the REXXIN data set names would be IBMUSER.HZSSXCHK.REXXIN.E1 and IBMUSER.HZSSXCHK.REXXIN.E2. If you did not define an entry code for this REXX check, the REXXIN data set name would be IBMUSER.HZSSXCHK.REXXIN

 If you want to try running the sample REXX exec do not forget to copy the SYS1.SAMPLIB(HZSSXCHK) member into SYS1.SAXREXEC or any other library added to the System REXX library concatenation via REXXLIB ADD DSN(xxx) in an AXRxx parmlib member. This must be done so that System REXX will be able to find the exec later as requested by IBM Health Checker.

 Now assume that you did all this and you must put the four ADDREP statements into an HZSPRMxx parmlib member. One command to make IBM Health Checker aware of this new parmlib member would be MODIFY HZSPROC,ADD,PARMLIB=(xx). This adds HZSPRMxx to the list of members that IBM Health Checker uses. Then the statements in the HZSPRMxx member will be processed immediately and our four sample checks with owner IBMSAMPLE should show up on the SDSF CK display panel.

 	
 Note: The UNEXPECTED ERROR status for check HZS_SAMPLE_REXXIN_CHECK and the accompanying system log message are expected, as described in the check's source code:

 HZS1002E CHECK(IBMSAMPLE,HZS_SAMPLE_REXXIN_CHECK) AN ERROR OCCURRED, DIAG: 00000001_FFFFFFFD

 As mentioned in the prologue of the SYS1.SAMPLIB(HZSSXCHK) REXX routine, to get the samples running, you require two empty sequential data sets:

 •IBMUSER.HZSSXCHK.REXXIN.E1 for check HZS_SAMPLE_REXXIN_CHECK: You could choose a different high level qualifier (HLQ) from IBMUSER via the REXXHLQ parameter.

 •IBMUSER.HZSSXCHK.DATA, as specified, and changeable, in the PARMS parameter for check HZS_SAMPLE_REXXTSO_CHECK.

 The parmlib statements used by this example and a job to create the needed data sets are available as additional material. For information about the machine-readable material provided with this book refer to Appendix A, “Additional material” on page 219.

 Register a check via a MODIFY HZSPROC system command

 Most of the statements that are allowed in an HZSPRMxx parmlib member have their equivalent as MODIFY HZSPROC system command, in particular the ADD and ADDREP(LACE) statements. The system command alternative is not practical though, because such a definition is non-persistent and because of the system command length limit of 126 characters.

 Register a remote check via a direct HZSADDCK call

 This is the only way that a remote check can register itself. The term direct refers to the HZSADDCK call being issued not from a separate exit routine, but rather directly in the code of the check. The point is that this call must be made from the remote check's dedicated task or thread, which later executes the actual check code when triggered by IBM Health Checker. This allows the check and IBM Health Checker to exchange information about the live PAUSE element token and the check HANDLE.

 A typical remote check has a boot-strap code, which takes care of obtaining the pause token, loading the message table, and calling the HZSADDCK service. Example 3-5 is a code snippet from the sample remote check SYS1.SAMPLIB(HZSSRCHK).

 Example 3-5 Register a remote check using HZSADDCK

 [image:]

 L R10,=V(HZSMSGTB) Address of message table CSECT -

 * within HZSSMSGT

 * Obtain a pause element *

 * Note that it is necessary that the AuthLevel use IEA_UNAUTHORIZED *

 * even if the code is running in some authorized state. *

 MVC theAuthLevel,=A(IEA_UNAUTHORIZED)

 CALL IEAVAPE,(IEAVAPE_ReturnCode, -

 theAuthLevel, -

 thePauseElementToken), -

 MF=(E,CallList)

 ICM R15,B'1111',IEAVAPE_ReturnCode

 JNZ ErrorFound

 * Loop

 HZSADDCK CHECKOWNER=CK_Owner, ... the Owner of the check -

 CHECKNAME=CK_Name, ... the Name of the Check -

 REMOTE=YES, ... This is a remote check -

 HANDLE=CK_Handle, ... The handle for the check -

 PETOKEN=thePauseElementToken, -

 ACTIVE, ... Not Inactive -

 LOCAL, ... Not Global -

 DATE=CK_Date, ... Base date for defaults -

 REASON=CK_Reason, ... Reason for this check -

 REASONLEN=CK_Rsn_Len, and its length -

 PARMS=CK_Parm, ... Default Parameters -

 PARMSLEN=CK_Parm_Len, and their length -

 SEVERITY=LOW, ... Severity of check -

 INTERVAL=TIMER, ... A check that is executed *

 HOURS=CK_Hours, Every this many hours *

 MINUTES=CK_Minutes, and this many minutes *

 USS=NO, ... Check does not use USS -

 VERBOSE=NO, ... Not "VERBOSE" by default -

 Retcode=HZSADDCK_RC, -

 Rsncode=HZSADDCK_RSN, -

 MF=(E,HZSADDCK_PLIST) ... Execute form

 [image:]

 As you can see from the example, the definition of a remote check uses a couple of additional keywords, namely HANDLE and PETOKEN, to identify the software object needed to synchronize and request services to the IBM Health Checker framework.

 For more details consult the User's Guide, specifically the following sections:

 •“HZSADDCK macro — HZS add a check”

 •“Syntax and parameters for HZSPRMxx and MODIFY hzsproc command”

 •“Writing an HZSADDCHECK exit routine”

 •“Creating product code that automatically registers checks at initialization”

 3.2.2 Messaging services

 One of the most important services for a health check is HZSFMSG, which is available for local and remote checks. The equivalent System REXX function is named HZSLFMSG. Using HZS(L)FMSG services provided by the IBM Health Checker framework, a check reports its results to the installation. Each check is required to have at least one success and one exception message for the single configuration detail that it is checking.

 	
 Note: Other message interfaces, such as WTO or AXRWTO for REXX, are discouraged. The goal is to provide a central, unified reporting mechanism through the IBM Health Checker framework.

 HZS(L)FMSG offers request types to:

 •Send predefined messages to tell the installation that the check stopped due to more severe errors or just that the environment on the current system in not applicable for the check:

 HZSFMSG REQUEST=STOP

 •Send messages, predefined by IBM Health Checker, for recoverable error situations, such as check parameter parsing problems:

 HZSFMSG REQUEST=HZSMSG

 •Send check messages as defined in a message table:

 HZSFMSG REQUEST=CHECKMSG

 Using HZSF(L)MSG to stop invoking the check

 You can use HZSF(L)MSG to indicate that the system must stop calling the check. To do this specify REQUEST=STOP and provide a reason. For STOP requests the message text is provided by IBM Health Checker.

 Example 3-6 and Example 3-7 are examples of using HZS(L)FMSG to signal a bad parm condition and stop invoking the check. Example 3-6 is the REXX version.

 Example 3-6 System REXX: HZSLFMSG STOP BADPARM

 [image:]

 HZSLFMSG_REQUEST = "STOP"

 HZSLFMSG_REASON = "BADPARM"

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 Example 3-7 is the assembler version for a local check.

 Example 3-7 Assembler: HZSFMSG STOP BADPARM

 [image:]

 * If a parameter error is detected, stop calling the check.

 * IBM Health Checker for z/OS will write a message.

 *

 HZSFMSG REQUEST=STOP,REASON=BADPARM, -

 MF=(E,HZSFMSG_LIST)

 [image:]

 Using HZSF(L)MSG to issue standard error messages

 HZSF(L)MSG provides the ability to issue standard messages in the case of common error conditions. Standard message formats and texts are provided by IBM Health Checker. Most of these standard messages are related to check parameter parsing errors. For a list of standard messages see section “HZSFMSG macro — Issue a formatted check message” in the User's Guide.

 Example 3-8 is an example of using HZSLFMSG to report a parameter parsing problem.

 Example 3-8 System REXX: HZSLFMSG HZSMSG PARSxxxx

 [image:]

 /***/

 /* Parameters were provided but none were expected, */

 /* Issue HZS1217E message. */

 /***/

 HZSLFMSG_REQUEST = "HZSMSG"

 HZSLFMSG_REASON = "PARS1217"

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 Example 3-9 shows the same function implemented in assembler by a local check routine.

 Example 3-9 Assembler: HZSFMSG HZSMSG PARSxxxx

 [image:]

 * Parameters were provided but none were expected,

 * Issue HZS1217E message.

 *

 HZSFMSG REQUEST=HZSMSG,REASON=PARS1217, -

 MF=(E,HZSFMSG_LIST)

 [image:]

 Using HZSF(L)MSG to issue check messages

 To issue a message with check results in your check, you must use the HZSFMSG macro or, for a System REXX check, the HZSLFMSG function, specifying CHECKMSG as request type. Any invocation of HZS(L)FMSG produces a single message.

 When you issue a HZS(L)FMSG request IBM Health Checker builds the actual message merging text and explanation as defined in your message table with dynamic variables defined by your check routine, if any. Attributes that determine how the IBM Health Checker will format dynamic variables are contained in the message table.

 A message table usually contains multiple messages. When requesting a HZS(L)FMSG service you must identify which message in the check’s message table you want to issue and describe dynamic variables to be inserted in that message. This is done in System REXX using the HZSLFMSG_MESSAGENUMBER and HZSLFMSG_INSERT input variables or, alternatively, for checks using the HZSFMSG macro, filling in the MGB data area mapped by the HZSMGB macro.

 Example 3-10 is an example of a check message with no dynamic inserts.

 Example 3-10 System REXX: HZSLFMSG CHECKMSG with no inserts

 [image:]

 /**/

 /* Write the report header */

 /**/

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_INSERT.0 = 0 /* No inserts are provided */

 HZSLFMSG_MESSAGENUMBER = 2 /* write message 2 */

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 Example 3-11 is the same function implemented in assembler by a local check routine.

 Example 3-11 Assembler: HZSFMSG CHECKMSG with no inserts

 [image:]

 * Write the report header *

 MVC MGB_ID,=F'2' Message with XREFTEXT=002

 MVC MGB_insert_cnt,=F'0' No inserts.

 HZSFMSG REQUEST=CHECKMSG,MGBADDR=Addr_Of_MGB, -

 MF=(E,HZSFMSG_List)

 [image:]

 	
 Note: The request issued by a remote check is very similar to the one shown in Example 3-11 on page 77 with the addition of few parameters:

 •REMOTE=YES to indicate that the caller is a remote check

 •HANDLE=Addr_Of_Handle, which is used to communicate with the IBM Health Checker

 •MSGTABLE=Addr_Of_Message_Table

 Inserts are represented in System REXX by a compound variable, also known as a STEM. Variable HZSLFMSG_INSERT.0 indicates the number of dynamic variables that we want to insert into the message body, with the other members of the array containing their actual value.

 Example 3-12 System REXX: HZSLFMSG CHECKMSG with inserts

 [image:]

 /***/

 /* Write line 1 which has 3 data inserts. */

 /* In the sgml source HZSSMSGT message number 3 has 3 variables */

 /***/

 /***/

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 3 /* write message 3 */

 HZSLFMSG_INSERT.0 = 3 /* 3 values are provided */

 HZSLFMSG_INSERT.1 = "Normal " /* a 7 character value */

 HZSLFMSG_INSERT.2 = '0000000A'x /* a fullword hex value */

 HZSLFMSG_INSERT.3 = '00000020'x /* a fullword hex value */

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 For a local or remote check, inserts are represented in the MGB by an array of pointers to values for the variables. The address for the HZSMGB data area for a check is specified on the MGBADDR parameter of the HZSFMSG macro. At run time, when the HFSFMSG request is issued, IBM Health Checker gets the text of the message variable from the address pointed to in the MGB_MsgInsertAddr field in HZSMGB.

 Example 3-13 Assembler: HZSFMSG CHECKMSG with inserts

 [image:]

 * Write line 1 which has the type, num-avail, num-inuse *

 * Set up the MGB header *

 MVC MGB_ID,=F'3' Message with XREFTEXT=003

 MVC MGB_insert_cnt,=F'3' Three inserts

 * Set up the inserts *

 Push Using

 Use_I1 Using MGB_MsgInsertD,Insert1

 MVC Use_I1.MGB_MsgILen,=AL2(L'Type2)

 MVC Use_I1.MGB_MsgIVal(L'Type2),Type2

 Drop Use_I1

 Use_I2 Using MGB_MsgInsertD,Insert2

 MVC Use_I2.MGB_MsgILen,=AL2(L'Avail2)

 MVC Use_I2.MGB_MsgIVal(L'Avail2),Avail2

 Drop Use_I2

 Use_I3 Using MGB_MsgInsertD,Insert3

 MVC Use_I3.MGB_MsgILen,=AL2(L'Inuse2)

 MVC Use_I3.MGB_MsgIVal(L'Inuse2),Inuse2

 Pop Using

 * Issue HZSFMSG to write the message *

 HZSFMSG REQUEST=CHECKMSG,MGBADDR=Addr_Of_MGB, -

 MF=(E,HZSFMSG_List)

 [image:]

 Finally, we also show the same function implemented in Metal C by a local check routine. In this case, the structure definition for the MGB data area has been translated from assembler to C using a XL/C utility, and put into a member called #hdrhmgb 1. We did so to show the ability to use METAL C also with a pre V1R12 z/OS system. If you are running z/OS V1R12 or later though, we recommend using the official data declaration shipped by IBM.

 Example 3-14 Metal C: HZSFMSG CHECKMSG with inserts

 [image:]

 /***/

 /* Issue HZSFMSG to write the message */

 /***/

 #include <#hdrhmgb.h> 1

 __asm(" HZSFMSG MF=L": "DS"(hzsfmsg_lst));

 . . .

 struct { struct HZSMGB header;

 struct MGB_MsgInsertD *insertd2p;

 struct MGB_MsgInsertD *insertd3p;

 } my_hzsmgb;

 struct { struct MGB_MsgInsertD id; unsigned char data[255]; } my_insertd1;

 struct { struct MGB_MsgInsertD id; unsigned char data[255]; } my_insertd2;

 struct { struct MGB_MsgInsertD id; unsigned char data[255]; } my_insertd3;

 . . .

 my_hzsmgb.header.mgb_id = 3;

 my_hzsmgb.header.mgb_insert_cnt = 3;

 my_insertd1.id.mgb_msgilen = sizeof(Type1)-1;

 memcpy(&my_insertd1.id.mgb_msgival, Type1, sizeof(Type1)-1); 2

 my_hzsmgb.header.mgb_insertaddr = &my_insertd1.id;

 my_insertd2.id.mgb_msgilen = sizeof(Avail1);

 memcpy(&my_insertd2.id.mgb_msgival, Avail1, sizeof(Avail1)); 3

 my_hzsmgb.insertd2p = &my_insertd2.id; my_hzsmgb.insertd2p = &my_insertd2.id;

 my_insertd3.id.mgb_msgilen = sizeof(Inuse1);

 memcpy(&my_insertd2.id.mgb_msgival, Inuse1, sizeof(Inuse1)); 4

 my_hzsmgb.insertd3p = &my_insertd3.id;

 . . .

 __asm(" HZSFMSG REQUEST=CHECKMSG,MGBADDR=(%2),"

 "RETCODE=%0,RSNCODE=%1,MF=(E,(%3))"

 : "=m"(hzsfmsg_rc), "=m"(hzsfmsg_rsn)

 : "r"(&my_hzsmgb_address), "r"(&hzsfmsg_lst));

 [image:]

 Format 0 and format 1 MGBs

 The Assembler and METAL C examples shown previously both use an MGB data structure to pass required information to the HZSFMSG service. An MGB is made of a header, containing control information, and pointers to a variable number of MsgInsertD data structures. Each MsgInsertD data structure contains additional control information and the actual data for a given item to be inserted into the message. This organization requires that actual data to be inserted is copied into the MsgInsertD data structure. You can see it in Example 3-14 on page 79, statements 1, 2 and 3.

 The HZSFMSG service alternatively accepts that required information is passed via an MGB1 data structure, also known as format 1 MGB. A format 1 MGB is made of a header similar to that contained by a format 0 MGB, plus a variable number of contiguous MsgInsertDesc data structures, each describing a data item to be inserted into the message. The MsgInsertDesc data structure holds a pointer to the actual data, which can be anywhere. Using a format 1 MGB removes the need to copy actual data to be inserted into the message from its original location to the MsgInsertD data structure. An example of use of a MGB1 is shown in Example 3-15 on page 80.

 	
 Note: IBM recommends to use format 1 MGBs instead of format 0 ones whenever possible.

 Example 3-15 Metal C: HZSFMSG CHECKMSG making use of a format 1 MGB

 [image:]

 /***/

 /* Issue HZSFMSG to write the message */

 /***/

 #include <#hdrhmgb.h>

 __asm(" HZSFMSG MF=L": "DS"(hzsfmsg_lst));

 . . .

 struct { struct HZSMGB1 header;

 struct MGB1_MsgInsertDesc desc1;

 struct MGB1_MsgInsertDesc desc2;

 struct MGB1_MsgInsertDesc desc3;

 } my_hzsmgb1;

 . . .

 my_hzsmgb1.header.MGB1_ID = 3;

 my_hzsmgb1.header.MGB1_insert_cnt = 3;

 my_hzsmgb1.desc1.MGB1_MsgInsertDesc_Length = sizeof(Type1)-1;

 my_hzsmgb1.desc1.MGB1_MsgInsertDesc_Addr = &Type1;

 my_hzsmgb1.desc2.MGB1_MsgInsertDesc_Length = sizeof(Avail1);

 my_hzsmgb1.desc2.MGB1_MsgInsertDesc_Addr = &Avail1;

 my_hzsmgb1.desc3.MGB1_MsgInsertDesc_Length = sizeof(Inuse1);

 my_hzsmgb1.desc3.MGB1_MsgInsertDesc_Addr = &Inuse1;

 . . .

 __asm(" HZSFMSG REQUEST=CHECKMSG,MGBADDR=(%2),"

 "MGBFORMAT=1,RETCODE=%0,RSNCODE=%1,MF=(E,(%3))"

 : "=m"(hzsfmsg_rc), "=m"(hzsfmsg_rsn)

 : "r"(&my_hzsmgb1_address), "r"(&hzsfmsg_lst));

 [image:]

 Refer to the following sections in the User's Guide for more details:

 •“HZSFMSG macro — Issue a formatted check message”

 •“HZSLFMSG function”

 3.2.3 Communication services

 A number of services are provided to let a check and the IBM Health Checker framework communicate with each other. There are services available to:

 •Synchronize remote checks with the IBM Health Checker address space.

 •Request specific actions from a health check and to exchange general check and environment information.

 Synchronizing with the IBM Health Checker address space

 Check routines running in an address space different from IBM Health Checker’s must synchronize with the framework. There are specific services available to remote and System REXX checks to signal operation started and operation complete. They can be coded for System REXX checks using two specific REXX functions, HZSLSTRT and HZSLSTOP, as shown inExample 3-16.

 Example 3-16 System REXX: synchronizing with the IBM Health Checker address space

 [image:]

 /***/

 /* If HZSLSTRT is not successful all IBM Health Checker for z/OS */

 /* function calls will fail. */

 /***/

 HZSLSTRT_RC = HZSLSTRT()

 . . .

 actual check logic goes here

 . . .

 /***/

 /* End of Check Function */

 /***/

 HZSLSTOP_RC = HZSLSTOP() /* report check completion */

 [image:]

 Or, for a normal remote check through HZSCHECK, use macro calls in the form of HZSCHECK REQUEST=OPSTART | OPCOMPLETE, as shown in Example 3-17.

 Example 3-17 Assembler: synchronizing with the IBM Health Checker address space

 [image:]

 * OpStart: *

 * Indicate "operation start". The system will return the PQE *

 * in the designated area for this routine to use as it chooses *

 OpStart DS 0H

 HZSCHECK REQUEST=OPSTART, -

 REMOTE=YES, -

 HANDLE=CK_Handle, -

 PETOKEN=thePauseElementToken, -

 REXX=NO, -

 PQE=thePQE, -

 Retcode=HZSCHECK_RC, -

 Rsncode=HZSCHECK_RSN, -

 MF=(E,HZSCHECK_PLIST) ... Execute form

 . . .

 actual check logic goes here

 . . .

 * OpComplete: *

 * Indicate "operation complete". *

 OpComplete DS 0H

 HZSCHECK REQUEST=OPCOMPLETE, -

 REMOTE=YES, -

 HANDLE=CK_Handle, -

 REXX=NO, -

 Retcode=HZSCHECK_RC, -

 Rsncode=HZSCHECK_RSN, -

 MF=(E,HZSCHECK_PLIST) ... Execute form

 [image:]

 In addition to signaling operation started, the HZSLSTRT/OPSTART functions also make available to the check the content of the Process Queue Element (PQE), which maps the data for a check routine.

 Similarly, the HZSLSTOP/OPCOMPLETE functions, in addition to signaling operation complete, also make sure that any updated data in the check's 2 KB work area gets stored safely, to be available for future check iterations.

 For additional information about the PQE refer to “Request check action and environment information” on page 82 or see the following sections in the User's Guide:

 •“HZSCHECK macro — HZS Check command request”

 •“HZSLSTRT function”

 •“HZSLSTOP function”

 Request check action and environment information

 Each time that a check gets control, it is able to get access to a copy of its check control structure, the PQE. Internally, IBM Health Checker keeps track of checks via those PQEs and stores a lot of information in there, some of which a check might be interested in as well. The PQE area is mapped via SYS1.MACLIB(HZSPQE) and can be accessed by the check in different ways depending on the check’s execution environment:

 •Via the PQE address passed as the first parameter on the parameter list of a local check routine

 •Via the HZSCHECK REQUEST=OPSTART PQE=thePQE request for remote checks

 •Via HZS_PQE_* REXX variables for System REXX checks

 Two fields that a check typically looks at in the PQE are the PQE_ENTRY_CODE and the PQE_FUNCTION_CODE, presented to System REXX checks by REXX variables HZS_PQE_ENTRY_CODE and HZS_PQE_FUNCION_CODE.

 The entry code tells the check routine which particular check is to be run, in the case where the check routine hosts more than one check, distinguished by different entry codes. If the check routine hosts more than one check, this entry code must be named at check registration time.

 The very next step for a check is to look at the PQE_FUNCTION_CODE. It tells the check with what intent the IBM Health Checker framework called the check. It can be either to initialize the check, to execute its check operation, to do cleanup after a single check run, or to do final cleanup, when a check gets deleted.

 Remote checks have a slightly wider range of function codes to support because the remote check must handle certain maintenance functions that IBM Health Checker can take care of for local checks and to some extent for System REXX checks.

 The function code for remote checks is passed via the release code, which is sent when IBM Health Checker releases the PAUSE element token for which the remote check was waiting. The function code is stored in the first byte of the generic 3-byte release code returned by the PAUSE service, and can have one of the following values, as defined by SYS1.MACLIB(HZSZCONS):

 Hzs_Remote_Function_InitRun EQU 1

 Hzs_Remote_Function_Run EQU 2

 Hzs_Remote_Function_Deactivate EQU 3

 Hzs_Remote_Function_Delete EQU 4

 Hzs_Remote_Function_DeleteTerm EQU 5

 Hzs_Remote_Function_DeleteRefresh EQU 6

 Hzs_Remote_Function_Restart EQU 7

 Other PQE fields and the equivalent System REXX PQE variables (add an HZS_ prefix to the field name) are:

 •PQE_LOOKATPARMS: A flag to tell the check that the check’s PARMS value must be looked at (initially or after an update).

 •PQE_CHKWORK: A 2 KB area of storage that IBM Health Checker maintains for the life of a check (until the check gets deleted or IBM Health Checker restarts) and that the check can use to store information across individual check runs (iterations). This saves most checks the work to obtain and maintain its own piece of local storage.

 •PQE_ENVIRONMENT_XCFLOCAL: Boolean flag to indicate whether the system is in XCF local mode.

 •PQE_ENVIRONMENT_XCFMONOPLEX: Boolean flag to indicate whether the system is in XCF monoplex mode.

 Refer to the following sections in the User's Guide for more information:

 •“HZSCHECK macro — HZS Check command request”

 •(REXX HZSLSTRT) “Output variables”

 3.2.4 Check utility services

 Here we want to point out three sets of utility services provided by IBM Health Checker:

 •Parsing check parameters

 •Maintaining persistent data for a check

 •Checking Single Point Of Failure (SPOF) conditions

 Parameter string parsing

 The HZSCPARS assembler service is available to local and remote checks. It helps to parse the PARMS text that can be passed at ADD CHECK | UPDATE time and is later available as PQE field PQE_PARMAREA. The idea is that the PARMS text string represents not only a single check parameter, but that it can be a series of positional parameter values or a series of keyword=value pairs or keyword(value) pairs.

 	
 Note: As a general user interface design recommendation, positional parameter specification is discouraged because it is more error-prone and less clear.

 A typical HZSCPARS call sequence consists of:

 •REQUEST=PARSE: Tokenizes the input and allocates a work area containing this information.

 For each known parameter you can check its properties using REQUEST=CHECKPARM, with further checking as needed using one of:

  –	REQUEST=CHECKDEC

  –	REQUEST=CHECKHEX

  –	REQUEST=CHECKCHAR

 •REQUEST=CHECKNOTPROC: Check for parameters that have not been processed.

 •REQUEST=FREE: Release the work area that was allocated on the initial REQUEST=PARSE call.

 Besides the actual parsing via HZSCPARS, which already sends parse (error) result messages on its own, you can use the HZSFMSG REQUEST=HZSMSG REASON=PARSxxx service to report problems with the parameter string.

 	
 Note: New in z/OS V1R10 is a sample health check in SYS1.SAMPLIB(HZSSRCHC), which demonstrates certain HZSCPARS features.

 The HZSCPARS service does not come with a System REXX equivalent (contrasted with HZSFMSG and its System REXX counterpart HZSLFMSG). This is because REXX itself provides a very powerful PARSE function.

 Useful references are:

 •z/OS TSO/E REXX Reference, SA22-7790

 •The z/OS Information Center page for the PARSE keyword

 •The Z/OS Information Center page about (REXX) parsing in general, and in particular the parse template

 The sample System REXX health check provided in SYS1.SAMPLIB(HZSSXCHK) uses the REXX PARSE function, in particular the PARSE UPPER VAR variation, which allows a (string) variable to be parsed after having been converted to uppercase text. In the sample the variable to parse is the REXX variable HZS_PQE_PARMAREA, in which IBM Health Checker passes the value of the check's PARMS parameter.

 As an example, assume that the check expects as a parameter a data set name in a syntax like the following:

 PARMS('DSN(IBMUSER.HZSSXCHK.DATA)')

 It could be parsed by a System REXX check using a statement such as:

 PARSE UPPER VAR HZS_PQE_PARMAREA ParmsL "DSN("DataSetName")" ParmsR

 If the passed PARMS value has the expected syntax, the REXX variable DataSetName contains the provided data set name and the REXX variables ParmsL and ParmsR are empty. Otherwise, ParmsL and ParmsR catch any unexpected or extra text, which can be inspected for error checking.

 	
 Note: When you are finished with the parsing, you can still report the results of the parsing using IBM Health Checker functions. Look over all the predefined HZSLFMSG, HZSLFMSG_REQUEST=HZSMSG HZSLFMSG_REASON=PARSxxxx messages to find the most suitable one.

 Refer to the following sections in the User's Guide for more information:

 •“Using the check parameter parsing service (HZSCPARS)”

 •“HZSCPARS macro — HZS Check Parameter Parsing”

 •“Input variables for HZSLFMSG_REQUEST='HZSMSG'”

 •“HZSFMSG macro — Issue a formatted check message”

 Using persistent data to save information across an IPL

 In z/OS V1R10 services HZSPREAD and HZSPWRIT have been provided to read and write persistent data. Persistent data is saved in the data set defined in the started procedure DD statement HZSPDATA. Data saved in the prior IPL can be compared to the current IPL. No hardware I/Os are performed for an HZSPREAD or HZSPWRIT request. Data is hardened on a timer interval.

 	
 Note: HZSPWRIT and HZSPREAD currently do not have an equivalent System REXX function.

 Although it would be possible to write callable assembler stubs to provide equivalent services for System REXX checks, these checks also can use TSO I/O routines to maintain their own persistent data. If you choose to do so remember that such a choice creates a dependency because TSO I/O services could not be available in other check execution environments.

 	
 Note: If your System REXX check makes use of TSO I/O services it must be registered with the REXXTSO(YES) option (the default), which indicates that the REXX exec needs TSO functions and that the exec will execute in a TSO host command environment.

 See the IBM Health Checker for z/OS V1R10 User’s Guide, SA22-7994-07 for more information.

 Persistent data management services provide the following facilities:

 •When the IBM Health Checker for z/OS is started, new persistent data is kept in storage and is not hardened until one hour has elapsed.

 •Persistent data is available to unauthorized tasks when security is satisfied by either of the following XFACILIT resources:

  –	HZS.sysname.checkowner.PDATA

  –	HZS.sysname.checkowner.checkname.PDATA

 •A check does not need permission to read or write to the data set defined by HZSPDATA that contains persistent data for all checks.

 •Data saved by a check remains even if the check is deleted.

 	
 Note: Attempting to remove data directly from the HZSPDATA data set corrupts all the data in the data sets for all the checks.

 •The SECCHECK parameter of HZSPREAD / HZSPWRIT and the XFACILIT class provide authorization.

 Read persistent data: HZSPREAD

 When HZSPREAD issues a request to read saved data it must specify the IPL instance and the name of the check to read data for:

 HZSPREAD 		 			CHECKOWNER=checkowner

 				 	CHECKNAME=checkname

 					IPL=CURRENT|PRIOR

 HZSPREAD can request the time of the referenced IPL:

 					RETIPLTOD=returnSTCK

 HZSPREAD can request the time that the referenced data was saved:

 					RETPTIME=returnSTCK

 Two instances of data can be saved during an IPL period. The first time that a check saves data is the first instance and the check might not change that data. Every subsequent time that the check saves data is called the MostRecent instance. The MostRecent instance is replaced each time that the check saves data.

 HZSPREAD must specify which instance of data should be read:

 					INSTANCE=FIRST|MOSTRECENT

 An HZSPREAD request must always expect the following return and reasons codes. Assembler equates are provided in HZSZCONS:

 HzsPreadRsn_NoMatch Return Code 8, reason code X’xxxx082D’,

 					No persistent data exists for this check

 HzsPreadRsn_DataDoesNotExist Return Code 8, reason code X’xxxx0830’,

 					Data exists for this check, but not for the requested IPL

 Data is returned in a buffer with a length defined by DATALEN. The variable STARTBYTE indicates which byte to begin returning data with. For the first call, the most likely value would be 0 to indicate the first byte. Subsequent calls would most likely use the previous StartByte value plus the value provided by the DataLen parameter when the value returned in the BytesAvail parameter of the previous call exceeded the value provided by the DataLen parameter.

 Save persistent data: HZSPWRIT

 When HZSPWRIT issues a request to save its data, a buffer must be provided containing the data to save and the length of that data. A check can issue multiple HZSPWRIT requests each time that the check run. Persistent data is saved when the check completes.

 The first time that a check saves data for an IPL period is referenced as the first instance by HZSPREAD. Data saved in the first instance is not replaced the next time that the check saves data. Each subsequent time that the check saves data is called the MostRecent instance. The MostRecent instance is replaced each time that the check saves data.

 Persistent data can be saved in the following check phases:

 •Local checks can write data during the init, check, and cleanup phases. Data written during the delete phase is not saved.

 •Remote and System REXX checks can save data during the InitRun or Run phase.

 Persistent data will not be saved in the following circumstances:

 •The check iteration completes with an ABEND.

 •Invocation of HZSPWRIT is not successful.

 •A remote or System REXX check completes unsuccessfully.

 Refer to SYS1.SAMPLIB(HZSSCHKP) for a sample health check that uses the HZSPREAD and HZSPWRIT assembler services. Note that it is just a rough outline of how to code those two services. In particular, you might want to add instructions to set the PWritBytes field to a non-zero value to get anything written to the persistent data set.

 See also “Using persistent data to save check information” on page 162 and the User's Guide, sections:

 •“Allocate the HZSPDATA data set to save check data between restarts”

 •“Creating and using data saved between restarts”

 •“HZSPWRIT macro — Write Check Persistent Data”

 •“HZSPREAD macro — Read Check Persistent Data”

 Checking for a single point of failure

 The IOSSPOF — Check for Single Points of Failure authorized assembler service is an example of services that are and can be provided outside of IBM Health Checker, but that tightly integrate with IBM Health Checker and can be used as the core function of a health check. It has been added to z/OS V1R10 to detect single points of failure in an I/O configuration. A failure of a single hardware component can cause a system to stop functioning. The main objective of this new service is to reduce the number of outages, which fits in perfectly with the goals of IBM Health Checker.

 With the complexity of most I/O configurations, it becomes very complicated to determine whether there are any single hardware components that could cause an outage when they fail. The IOSSPOF macro is used to check for I/O configuration redundancy of DASD devices or pairs of DASD devices. To do this, IOSSPOF verifies that there are redundant hardware components such that failure of a hardware component would not affect the availability of the device.

 IOSSPOF detects whether devices containing critical data sets have common hardware components through all paths. It also detects whether primary and secondary copies of a data set have shared hardware components.

 There are 16 single points of failure conditions that are currently detected by IOSSPOF. Among them are the following conditions:

 •A single DASD device has only one online path.

 •A single DASD device has all online paths go through one switch.

 •A single DASD device has all CHPIDs share a single point of failure.

 •A single DASD device has all control unit interfaces share several common components.

 •A pair of DASD devices share a logical subsystem.

 •A pair of DASD devices share the same physical control unit.

 •A pair of DASD devices have all paths share the same switch.

 •A pair of DASD devices have all CHPIDs share a single point of failure.

 Example 3-18 Check messages produced by IOSSPOF

 [image:]

 IOSPF252I Volumes #@$#X1 (D20F) and #@$#X2 (D30F) share the

 same physical control unit.

 IOSPF209I Volume #@$#X1 (D20F) has all control unit

 interfaces share 2 of 2 common components.

 IOSPF252I Volumes #@$#X2 (D30F) and #@$#X1 (D20F) share the

 same physical control unit.

 IOSPF209I Volume #@$#X1 (D20F) has all control unit

 interfaces share 2 of 2 common components.

 IOSPF252I Volumes #@$#X2 (D30F) and #@$#X1 (D20F) share the

 same physical control unit.

 IOSPF209I Volume #@$#X1 (D20F) has all control unit

 interfaces share 2 of 2 common components.

 IOSPF252I Volumes #@$#X1 (D20F) and #@$#X2 (D30F) share the

 same physical control unit.

 IOSPF209I Volume #@$#X1 (D20F) has all control unit interfaces

 share 2 of 2 common components.

 [image:]

 The IOSSPOF service is intended to be used as a way of determining single points of failure without issuing I/O, and it can be invoked in any addressing mode or storage key. IOSSPOF integrates with IBM Health Checker by providing an HCMSG parameter. This way you simply call the IOSSPOF macro in a local or remote health check routine and IOSSPOF will take care of the checking and the reporting of the results via standard check messages.

 There already is a health check (IBMXCF,XCF_CDS_SPOF) available that exploits this service in z/OS V1R10 to check for single points of failure for devices that contain sysplex CDS data sets, but there is still opportunity to write more health checks for different SPOFs that IOSSPOF can detect.

 For additional information about how to use the IOSSPOF service refer to z/OS V1R10 MVS Authorized Assembler Services Reference EDT-IXG, SA22-7610, and z/OS MVS System Messages, Volume 9 (IGF-IWM), SA22-7639. Also see the article titled “Single Point of Failure Detection” in the August 2008 issue of Hot Topics newsletter.

 3.2.5 Maintenance and monitoring services

 There are services available to:

 •Run or delete a check on demand.

 •Query detailed information about a check and its check results.

 Run and delete a check on demand

 Normally, a check gets scheduled to run based on its INTERVAL setting defined at check add time. If not explicitly added as INACTIVE, the check is scheduled to run right away and, depending on system resources, then runs almost immediately. Depending on the INTERVAL setting this might be the only time (INTERVAL=ONETIME), or IBM Health Checker will reschedule the check to run at fixed intervals.

 You can explicitly request to immediately run an already added check if needed. This request does not reset the check INTERVAL schedule.

 Available interfaces to immediately run a check are:

 •The HZSCHECK REQUEST=RUN Assembler macro

 •The system command MODIFY HZSPROC,RUN

 •The line command R (Run) on the SDSF CK panel

 To delete a check, other than automatically on a shutdown of the IBM Health Checker address space, you can use:

 •The HZSCHECK REQUEST=DELETE assembler macro

 •The system command MODIFY HZSPROC,DELETE

 •The line command P (Stop) on the SDSF CK panel

 •The HZSPRMxx parmlib members statement DELETE or a POLICY statement containing a DELETE statement

 	
 Note: To make the delete take effect permanently across IBM Health Checker address space restarts or a REFRESH request, use POLICY statements. Otherwise, the deleted checks will get added back again by IBM Health Checker when processing the original ADD/ADDREPLACE statement or HZSADDCK request.

 Refer to the following sections in the User's Guide for more information:

 •“HZSCHECK macro — HZS Check command request”

 •“Syntax and parameters for HZSPRMxx and MODIFY hzsproc command”

 Query check information and results

 The HZSQUERY service gives you an interface to query:

 •Attributes of the current instance of IBM Health Checker (REQUEST=GENINFO)

 •Attributes of a single check (REQUEST=CHECKINFO)

 •The content of current and past instances of a check's message buffer (REQUEST=MSGBUFF)

 The data structures to receive such query results are mapped by the HZSQUAA macro.

 Refer to section “HZSQUERY macro — HZS Query” in the User's Guide.

 3.2.6 Create your first check routine

 There are four sample health checks shipped as members of SYS1.SAMPLIB, including one pair of local checks and one pair of remote checks. Note that two of those samples, HZSSCHKP and HZSSRCHC, are new in z/OS V1R10. Let us see how you can turn one of these into a check routine, which could be registered with IBM Health Checker as an actual health check.

 Create your check routine executable

 Pick one of these, let us say HZSSCHKR, which is a local check. It is written in assembler. First of all you must assemble it into an object module and then bind it into a load module, the actual check routine.

 Example 3-19 is a sample job to build a load module from any of the sample local or remote check sources, or even the sample HZSADDCHECK exit routine.

 Example 3-19 Sample job to assemble a check routine

 [image:]

 //HZSLOAD JOB

 //*

 // SET MBRNME=HZSSCHKR

 // SET SRCDSN=SYS1.SAMPLIB

 // SET LODDSN=MY.LOADLIB

 //*

 //ASSEMBLE EXEC ASMACL,PARM.C='RENT',PARM.L='RENT'

 //C.SYSIN DD DISP=SHR,DSN=&SRCDSN(&MBRNME)

 //L.SYSLIB DD DISP=SHR,DSN=SYS1.CSSLIB

 // DD DISP=SHR,DSN=&LODDSN

 //L.SYSLMOD DD DISP=SHR,DSN=&LODDSN(&MBRNME)

 //*

 [image:]

 Interesting considerations about this job are:

 •The SET symbols, which you can modify to use this JOB in your environment. In particular, change LODDSN to define the target where the resulting load module is to be stored.

 	
 Note: This target data set must be APF authorized (unless you are building an unauthorized remote check) and the system should be able to find it, typically via the LNKLST concatenation. Once created, you might have to make the system aware of the new load module by issuing a MODIFY LLA,REFRESH system command, or the more specific version, a selective refresh of the LLA via MODIFY LLA,UPDATE=xx, where xx identifies the CSVLLAxx parmlib member that contains the names of the libraries for which directory information is to be refreshed.

 •The assembler and binder option RENT, because the routine is required to be reentrant.

 •The binder SYSLIB concatenation, which points to SYS1.CSSLIB and the target load library data set. SYS1.CSSLIB includes references to PAUSE element token services used by the remote check routines. The target load library is included because it could contain elements.

 Create your message table

 The check routine that we chose, HZSSCHKR, makes use of a message table called HZSMSGTB, whose SGML source is located in SYS1.SAMPLIB(HZSSMSGT). You must generate a loadable version of the message table from this source.

 How do you get from this SGML text file to the actual message table in load module format? The three basic steps are:

 1.	Convert your message definition file into assembler source with the HZSMSGEN REXX utility exec.

 2.	Assemble the assembler source into an object module.

 3.	Bind (or link-edit) the object module into a load module, the actual message table.

 The sample JCL in Example 3-20 provides a single procedure to do all of this. Just change the SET symbols to the location of the message definition file where you want to have the resulting message table stored. The sample as is builds the message table for the sample SYS1.SAMPLIB(HZSSMSGT) message definition file and puts it into MY.LOADLIB(HZSMSGTB).

 Example 3-20 Sample job to create a message table

 [image:]

 //HZSMSGEN JOB

 //*

 // SET MSGTABLE=SYS1.SAMPLIB(HZSSMSGT)

 // SET MSGTSYMS=SYS1.SAMPLIB(HZSSSYMD)

 // SET MSGTLOAD=MY.LOADLIB(HZSMSGTB)

 //*

 //HZSMSGEN EXEC PGM=IKJEFT01,REGION=256M,PARM='%HZSMSGEN NLSCHECK(N)'

 //SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=FB)

 //SYSPROC DD DISP=SHR,DSN=SYS1.SBLSCLI0

 //SYSTSIN DD DUMMY

 //HZSMDSN DD DISP=SHR,DSN=&MSGTABLE

 //HZSSDSN DD DISP=SHR,DSN=&MSGTSYMS

 //HZSADSN DD DISP=(,PASS),LRECL=80,RECFM=F,SPACE=(CYL,9),UNIT=3390

 /*

 //ASSEMBLE EXEC ASMACL,COND=(0,LT),PARM.L='RENT'

 //C.SYSIN DD DISP=(OLD,DELETE),DSN=*.HZSMSGEN.HZSADSN

 //C.SYSPRINT DD DUMMY

 //L.SYSPRINT DD DUMMY

 //L.SYSLMOD DD DISP=SHR,DSN=&MSGTLOAD

 //*

 [image:]

 Interesting considerations about this sample job are:

 •Notice that the load module itself is not named HZSSMSGT, but HZSMSGTB, after the CSECT name, as defined in the <msglist xreftext=?csectname" tag in the message definition file. Depending on how you, or some of the HZS sample code, reference the message table, you might want to rename it.

 	
 Note: For local and System REXX checks the system is responsible for loading the message table and should be able to find it, typically via the LNKLST concatenation. Once created, you might have to make the system aware of the new load module by issuing a MODIFY LLA,REFRESH system command, or the more specific version, a selective refresh of the LLA via MODIFY LLA,UPDATE=xx, where xx identifies the CSVLLAxx parmlib member that contains the names of the libraries for which directory information is to be refreshed.

 •We provided a default for the optional symbol definition file via the SET symbols MSGTSYM. Leave this symbol as is, or change it, too, if you already have your own symbols.

 •Invoking the ASMACL procedure, we specified the RENT (reentrant) bind option, which is recommended even for the message table.

 Register your check with IBM Health Checker

 Now that all the required ingredients are ready, you must register the check with IBM Health Checker. Example 3-21 on page 92 shows the parmlib statements required to register the two checks provided by the HZSSCHKR sample check routine.

 Example 3-21 Register HZSSCHKR sample checks using parmlib statements

 [image:]

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_ONE_TIME)

 CHECKROUTINE(HZSSCHKR)

 MESSAGETABLE(HZSMSGTB)

 ACTIVE

 ENTRYCODE(1)

 DATE(20051031)

 REASON('A sample health check to demonstrate a one time health check')

 PARMS('LIMIT(047)')

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 USS(NO)

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_INTERVAL)

 CHECKROUTINE(HZSSCHKR)

 MESSAGETABLE(HZSMSGTB)

 ACTIVE

 ENTRYCODE(2)

 DATE(20051031)

 REASON('A sample check to demonstrate an interval check')

 SEVERITY(LOW)

 INTERVAL(00:05)

 USS(NO)

 [image:]

 	
 Note: As discussed in 3.2.1, “Registration (Add) services” on page 69, there are other techniques to register a local check. We just choose the parmlib solution for this example because of its simplicity.

 You now must make IBM Health Checker aware of this new parmlib member via, for example, the following command:

 MODIFY HZSPROC,ADD,PARMLIB=(xx)

 In this command, xx is the suffix of the parmlib member where you added the check definitions.

 This adds HZSPRMxx to the list of members that IBM Health Checker uses. Then the statements in the HZSPRMxx member will be processed right away.

 The two sample checks with owner IBMSAMPLE should show up now on the SDSF CK display panel.

[image:]
[image:]

Planning an informative check

 This chapter discusses check definition, design, and appropriate mechanisms for bringing attention to events that have occurred on a single system and in a sysplex.

 4.1 Things to consider before writing a health check

 A check should verify that system operations are optimal for the current environment and alert the installation to deviations. Once a candidate health check has been identified, the check writer must decide the best place to run the check, what actions to take when an exception is detected, and when the check should be disabled. A check writer must ensure that this programmed communication is suitable to the situation, is minimally intrusive, and does not result in an inappropriate action.

 IBM Health Checker for z/OS encourages check writers to conform to standards that provide a consistent look and feel so that checks are easy to understand and manage. This is best accomplished by adhering to consistent conventions when defining the check and its behavior on a system or sysplex by:

 •Identifying effective check candidates

 •Adopting corporate registration standards for clearly identified products

 •Using techniques able to facilitate automation

 The check’s exception message can be used for automation. We discuss ways of reducing exceptions so that automation does not trigger excessive alerts through the exception process.

 4.2 Identifying effective check candidates

 A check can verify compliance to best practices, recognize new exposures on the system, assist in migration planning, and analyze data that it collects.

 Some suggestions for checks are in the following list, which is by no means comprehensive.ut

 •Compliance to local standards and consistent operating environments: Data set naming conventions and attributes can be validated.

 •Installation or migration actions: Functions that are being retired and will be replaced in a subsequent release. Usually these checks are shipped INACTIVE, run ONETIME or on demand, and have a low severity.

 •Best practices:

  –	Unexpected system configuration settings

 A System REXX check can use AXRCMD to issue a display request and report on the response.

  –	Data sets that are too small or incorrectly defined

 A System REXX check can use TSO functions to perform data set I/O to report on the data set contents or the data set attributes.

  –	Single points of failure

 The IOSSPOF macro service can be used to find a single point of failure between two data sets or DASD devices. This service writes a message for a check routine. For a description of the IOSSPOF service refer to “Checking for a single point of failure” on page 87.

  –	Changes between IPLs

  •	Parmlib settings are as expected

  •	Storage growth

  –	A resource threshold that exceeds a defined limit

  –	A diagnostic tool that impacts system performance when it is unneeded

  –	Functions that have been retired and are replaced in the current environment

 •Preventive failure detection checks can report on detecting abnormal system behavior.

 When a check is placed in an exception state a WTO is issued. Detailed information about the reason for the exception and what actions to take are placed in the check report.

 Check exceptions can be viewed in SDSF and the message report is viewable using the command SDSF CK. Example 4-1 shows a display produced by the SDSF command CK E.

 Example 4-1 Output of a SDSF CK E report

 [image:]

 SDSF HEALTH CHECKER DISPLAY #@$2 LINE 1-26 (26)

 COMMAND INPUT ===> SCROLL ===> CSR

 NP NAME CheckOwner State Status

 ASM_PAGE_ADD IBMASM ACTIVE(ENABLED) EXCEPTION-MED

 ASM_PLPA_COMMON_SIZE IBMASM ACTIVE(ENABLED) EXCEPTION-MED

 CATALOG_IMBED_REPLICATE IBMCATALOG ACTIVE(ENABLED) EXCEPTION-LOW

 CNZ_CONSOLE_MSCOPE_AND_R IBMCNZ ACTIVE(ENABLED) EXCEPTION-LOW

 CNZ_CONSOLE_ROUTCODE_11 IBMCNZ ACTIVE(ENABLED) EXCEPTION-LOW

 CSTCP_SYSPLEXMON_RECOV_T IBMCS ACTIVE(ENABLED) EXCEPTION-LOW

 CSV_APF_EXISTS IBMCSV ACTIVE(ENABLED) EXCEPTION-LOW

 CSV_LNKLST_SPACE IBMCSV ACTIVE(ENABLED) EXCEPTION-LOW

 CSVTAM_VIT_DSPSIZE IBMCS ACTIVE(ENABLED) EXCEPTION-LOW

 DAE_SHAREDSN IBMDAE ACTIVE(ENABLED) EXCEPTION-MED

 RACF_IBMUSER_REVOKED IBMRACF ACTIVE(ENABLED) EXCEPTION-MED

 RACF_SENSITIVE_RESOURCES IBMRACF ACTIVE(ENABLED) EXCEPTION-HIG

 RACF_TAPEVOL_ACTIVE IBMRACF ACTIVE(ENABLED) EXCEPTION-MED

 RACF_TEMPDSN_ACTIVE IBMRACF ACTIVE(ENABLED) EXCEPTION-MED

 SUP_HIPERDISPATCH IBMSUP ACTIVE(ENABLED) EXCEPTION-LOW

 USS_PARMLIB IBMUSS ACTIVE(ENABLED) EXCEPTION-LOW

 USS_PARMLIB_MOUNTS IBMUSS ACTIVE(ENABLED) EXCEPTION-HIG

 VSAMRLS_SHCDS_MINIMUM_SI IBMVSAMRLS ACTIVE(ENABLED) EXCEPTION-MED

 VSAMRLS_SINGLE_POINT_FAI IBMVSAMRLS ACTIVE(ENABLED) EXCEPTION-HIG

 XCF_CDS_SPOF IBMXCF ACTIVE(ENABLED) EXCEPTION-HIG

 XCF_CF_STR_AVAILABILITY IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 XCF_CF_STR_DUPLEX IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 XCF_CF_STR_NONVOLATILE IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 XCF_CF_STR_PREFLIST IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 XCF_SFM_SSUMLIMIT IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 XCF_SYSSTATDET_PARTITION IBMXCF ACTIVE(ENABLED) EXCEPTION-MED

 [image:]

 Eliminate inappropriate candidates

 If you plan to ship a check together with a software component that you own, you should question whether involving the installation to correct a problem is the best solution or whether a given problem is more easily fixed by a change in your component. When choosing a check candidate, consider the following to eliminate checks that are better addressed by a change to the component:

 •Is the check function designed to circumvent a specific system error?

 •Is fixing the component the best solution for most installations?

 •Has the component chosen appropriate behaviors and defaults based on the configured environment?

 •Will the installation be able to respond in time? This is especially important if the problem might result in an outage.

 A check might be useful to explain that system defaults or functions have been changed. It should never be an alternative to fixing a system error.

 4.3 Choosing the correct check environment

 Checks written by IBM generally run in the IBM Health Checker address space. System REXX checks run in an address space created by System REXX. Remote checks can run in any address space on the system. Consider the different characteristics of these three execution environments to determine what type of check to write. Refer to 3.1, “Selecting a check execution environment” on page 62, for a discussion of the available check environments.

 4.3.1 Using standard naming conventions

 The fully qualified reference CHECK(check_owner,check_name) must be unique. Your check is not added if that name already exists. For this reason we recommend IBM and ISVs for use in check names and the component/product prefix, as registered at element@us.ibm.com, so that there will be no name clash.

 Register your component with IBM if needed

 In the SMP/E environment, code for one product must be uniquely distinguishable from code for other products. The best way to keep your code unique is to start the names of all the elements and load modules for that product with a single unique 3-character identifier. This identifier is called a component prefix. If you are a software vendor, IBM is offering to register the component prefix for your products. The registration ensures that your component prefix is not used by other products that are registered.

 Send a note to element@us.ibm.com or ask your IBM representative to contact IBM Poughkeepsie, Department FPLA.

 The check owner

 Sixteen characters are provided to identify the check owner. Checks written by IBM begin with the prefix IBM. We recommend that independent software vendors use the prefix ISV, concatenated to their assigned 3-character component prefix. The rest of the owner field is left blank.

 •An IBM product check where CSV is the component ID:

 IBMCSV

 •An ISV product check where aaa is the component prefix:

 ISVaaabbbbbb where aaa is the prefix and bbbbb (0 to 10 characters) identifies the product

 •An installation can provide its own rules to avoid conflict:

 USERarea

 An installation writing its own checks should consider using a different prefix so that its checks are easy to find.

 The check name or title

 Thirty-two characters are allowed for the check name. We recommend that you begin the check title with your 3-character component prefix. The check name should be a meaningful title for the check:

 CSV_LNKLST_NEWEXTENTS

 Check message identifier

 Check routine messages should always be produced by the HZSFMSG service or the HZSLFMSG REXX function. Certain conventions are enforced by message generation routine HZSMSGEN. Because the exception message produces a WTO it is important that it begins with the registered product component prefix:

 ccccHmmmms

 In this example:

 •cccc

 The 3 or 4 characters component prefix that you use to register your product with IBM should be used. Four characters component prefixes are used by certain IBM components.

 •H

 The letter “H” is a required value.

 •mmmm

 Three or four decimal digits can be used to specify a unique message number.

 •s

 The severity indicator:

  –	E: A high or medium severity exception message indicates eventual action.

  –	I: All other messages, including low severity exceptions, are informational.

 The reason for the check

 One hundred and twenty-six characters are provided for the check reason. The reason is included on the checks detail display and appears in the message buffer when an exception is issued. The reason should give a brief idea of what is being checked and why.

 4.3.2 Make your check tunable

 The installation should always be able to produce a successful outcome based on the current conditions. An installation is encouraged to create a check policy to preserve its own best settings. Two hundred fifty-six (256) characters are available to provide meaningful check parameters.

 HZSCPARS enforces a simple style and issues appropriate messages. A check can also issue parse messages directly using HZSFMSG/HZSLFMSG:

 PARM(‘parm1(val),parm2(val,val)’)

 4.3.3 Determine the check severity

 The installation can override the check severity if they choose to by updating the check attributes:

 •High: A critical event results in system failure or security exposure. Immediate action is recommended.

 •Medium: Eventual action is recommended to improve performance or reduce common errors.

 •Low: The condition should be reviewed.

 •None: The exception message would only appear in the hardcopy log. This severity is only available on the UPDATE command, which could be used in a check policy.

 Check severity determines the WTOTYPE

 WTOTYPE might not be specified on the check definition. It is available for the UPDATE command. The default messages and WTOTypes by severity are shown in Figure 4-1

 	
 Severity WTOType

 HIGH CRITICAL HZS0003E

 MEDIUM EVENTUAL HZS0002E

 LOW INFO HZS0001I

 NONE HARDCOPY HZS0004I

 Figure 4-1 The default messages and WTOTypes by severity

 4.4 Avoid excessive check alerts

 Only the check’s exception message can be viewed by an MPF exit for automation. This section discusses ways of reducing exceptions so that automation does not trigger excessive alerts through the exception process.

 4.4.1 INTERVAL and EINTERVAL

 The check interval can be one minute to 999 hours and 59 minutes. When the check is placed in an exception state the EINTERVAL value provides a shorter interval before the check is run again.

 When automation is designed to run the check, consider using INTERVAL(ONETIME) (Example 4-2). The check can always be RUN on demand.

 Example 4-2 A check might only need to run once

 [image:]

 INTERVAL(ONETIME)

 [image:]

 A check might need to run at a different frequency when an exception is detected (Example 4-3).

 •EINTERVAL = SYSTEM is the default and is the same as the INTERVAL.

 •EINTERVAL = HALF is one half of the INTERVAL.

 •EINTERVAL = TIMER: Hours and minutes must be provided.

 Example 4-3 Einterval allows a check to run more frequently until an exception is cleared

 [image:]

 INTERVAL(8:00)

 EINTERVAL(1:00)

 [image:]

 Consideration for interval checking

 A check that continues reporting the same exception at a given interval, that the customer cannot correct, is misbehaving. One solution is to provide a check parm that allows the installation to determine what is reported.

 •The check should only report an exception for a new condition:

 PARM(‘NEW(value)’)

 	
 Note: We recommend that you supply the date and time as the value, in order to make the parameter value self-documenting. The value must be unique each time NEW is specified.

 A good example of such an implementation is the IBMCSV,CSV_LNKLST_NEWEXTENTS check. For additional information refer to the explanation for message CSVH0985I.

 •The check should only report an exception whenever a bad condition exists:

 PARM(‘ALL’)

 When this method is used, you must save old exceptions so that they are reissued. The HZS_PQE_ChkWork area provides 2 K of storage to save check data. HZSPREAD and HZSPWRIT also provide the resource to save the check data between system IPLs and IBM Health Checker being restarted.

 A product can use HZSCHECK services to programmatically control how often a check is scheduled to run on INTERVAL, request that it begin running, or both.

 Consider the following scenario: Several checks attempt to run but fail because the server is down:

 1.	One check produces an exception because the server is down.

 2.	The other checks disable themselves with an HZSFMSG STOP request for ENVNA.

 3.	Product code detects the server is back up, and can run the checks again:

  –	The check that issued an exception is now successful.

  –	The other checks report the new status and begin running on an interval if that is applicable.

 4.4.2 Avoid reporting the same exception on multiple systems

 When a single event will definitely produce the same result on every system in a sysplex, that exception only must be reported on one system. Indicate that it is a GLOBAL check. When it is viewed on a system where it did not run, it indicates where the check was run. A LOCAL check runs on every system:

 XCF_SFM_ACTIVE GLOBAL-SY2

 4.4.3 Avoid reporting multiple instances of the same event

 Multiple events might be reported in the same check if it is the same type of condition being checked. A check should report only a single exception for these multiple events. A check report should provide additional detail that describes all the events.

 4.4.4 Determine whether your check should be ACTIVE or INACTIVE

 If the check is likely to issue an exception the first time that it runs, consider making it inactive. When an installation is ready to perform the check, it can ACTIVATE the check at that time. Inactive checks can be filtered by SDSF or a unique check name could be used in the check title. A check that is shipped inactive is usually a low-severity check, with an INTERVAL of ONETIME. This check runs on demand when a RUN request is issued.

 A migration check must be activated before it can run. It is a low-severity check with a check interval of ONETIME:

 F hzsproc,ACTIVATE,CHECK(IBMCS,ZOSMIGV1R10_CS_BIND4)

 Example 4-4 Migration checks identify migration actions to be performed

 [image:]

 CHECK(IBMCS,ZOSMIGV1R10_CS_BIND4)

 CHECK DATE: 20070901 CHECK SEVERITY: LOW

 ISTM003I BIND 4.9.3 DNS server function is not in use on this system.

 END TIME: 07/11/2009 19:51:50.478672 STATUS: SUCCESSFUL

 [image:]

 	
 Note: The check name indicates the release for which the migration item is intended.

 4.5 Exploit VERBOSE support to provide additional detail

 If data was not reported because the check PARM indicated that only NEW exceptions should be reported, it might still be desirable to include the data in a check report. The check can be defined with VERBOSE(ON) as a default.

 Another use for VERBOSE would be to show non-exception information. That is how IBM checks typically use it.

 	
 Note: When a check is reporting good status, consider placing that message before a report because it is a short message. When a check is producing an exception, the exception should follow the report because it is a long message.

 The check writer can implement specific logic that, when HZS_PQE_VERBOSE is on, includes additional detail in the message buffer:

 •Use Verbose(on) to report all error instances without issuing an exception when only new instances would present an exception.

 •Use Verbose(on) to report additional detail about the current exception.

 •Use Verbose(on) to report additional detail about similar non-exception conditions.

 Example 4-5 This check reported on all structures in verbose mode

 [image:]

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 START TIME: 07/22/2009 17:20:19.008600

 CHECK DATE: 20090721 CHECK SEVERITY: LOW

 CHECK PARM: NEW

 STRUCTURE POLICY ACTUAL CF STORAGE

 NAME VALUES CFNAME SIZE INCREMENT

 CIC_GENERAL_001

 Initial Size10752K FACIL03 11264K 1024K *

 Maximum Size12288K

 DB8QU_GBP0

 Initial Size100000K FACIL04 100352K 1024K *

 Maximum Size150000K FACIL03 100352K 1024K *

 DB8QU_GBP1

 Initial Size200000K FACIL04 201728K 1024K *

 Maximum Size300000K FACIL03 200704K 1024K *

 DB8QU_GBP3

 Initial Size100000K FACIL04 100352K 1024K *

 Maximum Size150000K FACIL03 100352K 1024K *

 DB8QU_GBP4

 Initial Size100000K FACIL04 101376K 1024K *

 Maximum Size150000K FACIL03 100352K 1024K *

 DB8QU_GBP5

 Initial Size100000K FACIL04 100352K 1024K *

 .

 [image:]

 4.6 Exploiting DEBUG support

 Debug messages are issued when the check is updated with the attribute DEBUG(ON). This option is not available when the check is defined.

 F hzsproc,UPDATE,CH(ckowner,ckname),DEBUG(ON|OFF)

 These messages are intended to report a problem with a data set in the APF list (Example 4-6).

 Example 4-6 CHECK(IBMCSV,CSV_APF_EXISTS) produces a report

 [image:]

 VOLUME DSNAME ERROR

 ZR112B AFOSTER.USER.LOAD DS not found

 D46PK2 D46GRS.BEAST.LINKLIB DS not found

 D46PAK D46GRS.FAVELL.LINKLIB DS not found

 D72CT3 JMAN.ALLOC.REGRESS.LOADLIB Volume not found

 D72665 JOEGEE.USERLIB Volume not found

 DRVPSL MVSSTORE.SRVLIB.ZOS19.LIBS DS not found

 DRVPSL MVSSTORE.SRVLIB.ZOS19.LIBSPDSE DS not found

 DRVPSL MVSSTORE.SRVLIB.ZOS19.LPA DS not found

 DRVPSL MVSSTORE.SRVLIB.ZOS19.NUCLEUS DS not found

 ZR112B TCSHAW.USER.LOAD DS not found

 ZR112B TCSHAW.ZTT.TESTLIB DS not found

 [image:]

 When the check is updated with the attribute DEBUG(ON) and RUN again, diagnostic information is provided regarding the data set. The problem might be a problem with the check or with what is being checked (Example 4-7).

 Example 4-7 CHECK(IBMCSV,CSV_APF_EXISTS) includes diagnostic detail when DEBUG is ON

 [image:]

 HZS1084I D46GRS.FAVELL.LINKLIB was not found on volume D46PAK

 CSVH0001I

 Function: 00000004

 DIAG1: 00000008

 DIAG2: 02290828

 D46PAK D46GRS.FAVELL.LINKLIB DS not found

 IKJ56221I DATA SET JMAN.ALLOC.REGRESS.LOADLIB NOT ALLOCATED, VOLUME NOT

 AVAILABLE+

 IKJ56221I VOLUME D72CT3 NECESSARY TO SATISFY YOUR REQUEST NOT ON SYSTEM,

 AND CANNOT BE MOUNTED

 CSVH0001I

 Function: 00000003

 DIAG1: 02180000

 DIAG2: 00000000

 D72CT3 JMAN.ALLOC.REGRESS.LOADLIB Volume not found

 IKJ56221I DATA SET JOEGEE.USERLIB NOT ALLOCATED, VOLUME NOT AVAILABLE+

 IKJ56221I VOLUME D72665 NECESSARY TO SATISFY YOUR REQUEST NOT ON SYSTEM,

 AND CANNOT BE MOUNTED

 [image:]

 4.7 Error reporting practices

 In this section we discuss error reporting practices.

 4.7.1 Bad check parameter (PARMS) value

 When a check supports passing a PARMS parameter string via the ADD | UPDATE CHECK statement, we recommend reporting bad check parameters as an error and STOP (disable) the check. Assuming defaults for unrecognized parameters can easily lead to confusion and false assumptions. To report the error, use an appropriate call:

 HZSFMSG REQUEST=HZSMSG,REASON=PARSxxxx

 To stop the check until the parameter error is resolved (for example, via an UPDATE CHECK statement) follow this with the following call:

 HZSFMSG REQUEST=STOP,REASON=BADPARM

 In addition, it would be nice to not just use the still somewhat generic standard PARSxxx error messages, but rather another informational message up front, which explains what a good, expected parameter should look like. This is valuable in those cases where not just a specific value for a recognized parameter key in PARMS is wrong, but rather the whole PARMS could not be parsed properly. For example, assume that an expected syntax is PARMS('MIN_SIZE=nnn'), with nnn standing for a number, which is expected to be in a specific range. Then simple out-of-range errors could be covered via:

 HZSFMSG REQUEST=HZSMSG,REASON=PARS1211|1212, VALUE IS TOO SMALL|LARGE,

 However, in other situations, where the PARMS string is unrecognizable or just misspelled, such as PARMS('MIN.SIZE=nnn'), using MIN.SIZE instead of the expected MIN_SIZE, a short information message from the check's message table would help to show the user the expected, correct syntax of the PARMS string.

 4.7.2 Errors detected during the program run

 Here are a few suggestions for how to handle unexpected errors in the code in general and in particular for any service request that returns a non-zero return code:

 •Capture not just return and reason codes, but message IDs and message text, too, if available.

 For any service invoked by the check, be prepared for errors and try to capture as much information as possible and present it in a useful way, explaining the context, instead of just showing plain return codes.

 For System REXX checks consider using OUTTRAP, the REXX function to collect messages and issue the important captured messages as check report messages (which usually do not display their own message ID, so we do not end up with two message IDs). Precede this information with a check info message to explain what you were trying to do when this error occurred. A generic information message could be used to report this detail in the message buffer. Example 4-8 shows how to do this.

 •Avoid reporting unexpected error messages as check exception and use HZSFMSG REQUEST=HZSMSG | STOP,REASON=ERROR instead, along with the aforementioned report and info message, to make it clear that the check has a problem, and it is not necessarily the item that the check is supposed to be inspecting.

 •Also, avoid marking the check “ENVIRONMENT N/A” after such unexpected errors, because the environment probably still applies, it is just the check that for some reason was not able to execute properly in this correct environment.

 For additional information about how to report exceptions see “Techniques for writing reports” on page 117.

 Example 4-8 Using the OUTTRAP REXX function to collect and report internal errors­

 [image:]

 /**/

 /* */

 /* GetBatchDsn: The member name is not returned on LISTDSI so */

 /* use the output from LISTA HI ST to get that */

 /* AllocDsn set this variable to the dataset name */

 /* */

 /* The LISTA history output used this heading */

 /* */

 /* --DSORG--CREATED-----EXPIRES-----SECURITY--DDNAME---DISP-- */

 /* */

 /**/

 GetBatchDsn: Procedure Expose AllocDsn

 Arg BatchDdName

 OutretOn = OUTTRAP('ListAOut.')

 ADDRESS TSO "LISTA ST HI"

 OutRetOff = OUTTRAP('OFF')

 DDNAMEFOUND = "NO"

 DDNAME = ""

 BatchDsnRetcode = 8

 Do I = 1 to ListAOut.0 WHILE DDNAME <> BatchDdName

 Parse var listAOut.I DSORG 10 ,

 CREATE 22,

 EXPIRE 34,

 SECURITY 44,

 DDNAME 53,

 DISP

 DDNAME = STRIP(DDNAME,"B")

 IF DDNAME = BatchDdName THEN

 DO

 J = I-1

 AllocDsn = ListaOut.j

 HZSLFMSG_REQUEST = “CHECKMSG”

 HZSLFMSG_MESSAGENUMBER = 5

 HZSLFMSG_INSERT.0 = 1

 HZSLFMSG_INSERT.1 = “Dataset name: “||ListaOut.j

 BatchDsnRetcode = 0

 END

 END

 Return(BatchDsnRetCode)

 [image:]

 4.8 Techniques to facilitate automation

 Approaches to automation are discussed here, and in detail in the IBM Health Checker for z/OS User's Guide, SA22-7994-09.

 4.8.1 MPF exits can be used to listen for a check alert

 That’s because a WTO is issued for each check’s exception message. A check exception message WTO consists of an HZS header message, followed by the check-specific exception message text, as shown in Example 4-9.

 Example 4-9 WTO issued in case of exception [image:]

 10.47.26 STC01935 HZS0001 CHECK(IBMUSS,USS_MAXSOCKETS_MAXFILEPROC)

 BPXH033E MAXSOCKETS value for AF_INET is too low.

 [image:]

 The HZS header messages issued with exceptions are:

 •HZS0001I: Exception information message: low severity or WTOTYPE(INFORMATIONAL). Indicates that the check found a problem that will not impact the system immediately, but that should be investigated.

 •HZS0002E: Exception eventual action message: medium severity or WTOTYPE(EVENTUAL). Indicates that the check found a medium severity problem in an installation.

 •HZS0003E: Exception critical eventual action message: high severity or WTOTYPE(CRITICAL). Indicates that the check routine found a high-severity problem in an installation.

 •HZS0004I: Exception hardcopy message: hardcopy only informational severity or WTOTYPE(HARDCOPY).

 4.8.2 A check can run on interval

 This usually requires that a check uses a parameter to avoid excessive alerts. If a check reports on multiple conditions that can change, a parm that only reports new exceptions is recommended. For a discussion on how to avoid excessive check alerts see “Avoid excessive check alerts” on page 98.

 4.8.3 A check can be invoked programmatically

 The HZSCHECK macro can be used to request that a check be run by another program when conditions have changed.

 	
 Note: Updating the check parm is not supported on the HZSCHECK macro request because the UPDATE command is scheduled asynchronously. If two instances of the request were scheduled, only one would be processed.

 System REXX could also be used to issue the a command to UPDATE the check.

 	
 Note: We recommend that a program should not be used to update the CHECK PARM(). Using a System REXX command to UPDATE the check parm would result in the same serialization problems previously discussed for HZSCHECK.

 The sample check CHECK(IBMITSO,MPF_HZS0103I) discussed in chapter 7 does include an example of an MPF exit asynchronously updating a check parm using System REXX. This example was only intended to show how to issue an AXREXX request.

[image:]
[image:]

Techniques for writing informative messages

 System checks provide an easy aid for enforcing standards compliance and managing software problems. Properly communicating the outcome of a health check is key to enabling the installation to react to a detected exception. This chapter defines a structured approach for communicating system problems.

 5.1 A structured approach to reporting health check results

 Often the words that best address a problem have already been written, but they must appear at an appropriate time. The goal of a check is to alert an installation when there is an issue in time to prevent a problem and to provide a quick reference to problem resolution. A check should clearly communicate what it is checking and produce a suggestion that is sensitive to product standards and reasonable configurations. Also, to be more effective, message processing should conform to conventions that provide a common look and feel for the IBM Health Checker product.

 This section describes a structured approach to presenting guidance in an exception message. It also covers what information should be provided when the health check succeeds.

 To facilitate the discussion we use a theoretical check that detects when a Coupling Facility Resource Manager (CFRM) policy definition should be updated.

 The problem

 The size of a structure can change over time because of the system configuration or the coupling facility microcode, or because the needs of the owning component have grown. In order to maintain robust sysplex communication, it is important that critical structures are not too large and not too small. A vigilant reminder is useful. It should trigger an exception when a CFRM policy INITSIZE definition is smaller than the size that the system has allocated.

 	
 Note: A coupling facility structure is originally allocated complying with the INITSIZE specified in its CFRM policy definition. In case of a structure rebuild, though, the system ignores the INITSIZE and allocates the new structure with a size large enough to accommodate all the objects currently contained in the old structure. This could lead to an effective size larger than the defined INITSIZE. It would also mean that the current INITSIZE value is not appropriate considering the actual structure usage. When this happens the defined INITSIZE should be updated to reflect the choice made by the system.

 Our theoretical check

 This is a System REXX check that is executed by a companion MPF exit when it detects that a new structure has been allocated. All structures are evaluated when the check’s parameters are null and when the check is initialized. It also runs each time an IXC582I message is issued.

 The check raises an exception if the CFRM policy INITSIZE definition for the structure is smaller than the actual size that the system has allocated. In this case the exception message suggests using the CFSIZER tool to make component-specific recommendations for the structure size, pointing to the CFSIZER website at:

 http://www.ibm.com/systems/z/cfsizer

 The check has verbose support, so even when the check is not reporting an exception, all structures that should be resized are displayed (Example 5-1).

 Example 5-1 Defining the IBMITSO,XCF_CF_STR_INITSIZE

 [image:]

 ADDREP CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 EXEC(ITSOXCFX)

 REXXHLQ(IBMUSER)

 REXXTSO(YES)

 REXXTIMELIMIT(30)

 REXXIN(NO)

 MSGTBL(ITSOHMSG)

 VERBOSE(NO)

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 DATE(20090723)

 REASON('Insure adequate structure capacity by sizing',

 'CF structures for peak usage.')

 [image:]

 5.1.1 The check’s message table

 The message table contains the definitions for all the messages issued by your check routine. It is built using an SGML-based markup language. Example 5-2 shows the simplified structure of a message table.

 Example 5-2 Simplified view of a message table’s structure

 [image:]

 <!-- Comment --> 1

 <lines props="copyright" id=CheckOwner> 2

 . . .

 </lines>

 <msglist xreftext=MsgTbName> 3

 <msg class=MsgClass> 4

 <msgnum xreftext=nnn>MsgId</msgnum> 5

 <msgtext> 6

 . . .

 <mv class=MsgVarClass>MessageVariable</mv> 7

 . . .

 </msgtext>

 <msgitem class=ItemClass> 8

 . . .

 </msgitem>

 . . .

 </msg>

 </msglist>

 [image:]

 A message table is made of:

 •One or more optional comment lines 1. The beginning of a comment starts with the characters “<!--”. The end of a command is identified by the characters “-->”:

 <!-- this is a comment -->

 •A required copyright statement 2, which must appear before the <msglist> tag.

 •A message table definition statement, identified by the <msglist> tag 3.

 •One or more message instances identified by a <msg> tag 4.

 •Any message instance is associated with an identifier, defined using a <msgnum> tag 5.

 •A message instance is made of message text, identified by a <msgtext> tag 6, plus one or more message items identified by a <msgitem> tag 8.

 •Other than plain text, a message can contain message variables identified by an <mv> tag 7 or symbols, whose names are prefixed by an ampersand (&).

 The message class attribute defines the type of message and determines how the message will be managed by the IBM Health Checker. There are currently four message classes:

 •Exception

 Exception messages alert you that the check detected a deviation from an expected condition. Exception messages are made of a message text, which should concisely describe the detected exception, and a detailed explanation. For exception messages the operator is notified via a WTO containing the message text. Both the exception message and the associated detailed explanation are issued in the message buffer, which can be viewed using the HZSPRINT utility or the SDSF CK panel.

 •Information

 Information messages are used to report general non-exception information. The message text is only issued to the message buffer.

 •Report

 Report messages can be used to generate more complex formatted reports. The message text is only issued to the message buffer.

 •Debug

 Debug messages are used to provide detailed diagnostic information, and are only produced when the check is placed in DEBUG mode. The message text is only issued to the message buffer.

 When choosing which information should appear in a message, you should consider that basic information about your check is automatically inserted in the actual message by the IBM Health Checker.

 For additional information about the contents of the message table refer to the IBM Health Checker for z/OS User's Guide.

 5.1.2 Reporting an exception

 A detected exception is reported by your check routine using an exception message. The source for the message begins with the <msg> tag that defines the message as an exception (Example 5-3).

 Example 5-3 Tags used to define an exception message

 [image:]

 <msg class="exception">

 <msgnum xreftext="001">MSGH0011E</msgnum>

 <msgtext>One or more CF structures have an actual size that is

 larger than the policy INITSIZE.

 </msgtext>

 [image:]

 The exception message should be conceived as a training tool that assumes that the user is a novice. Its greatest value is providing guidance the first time that an exception is triggered. If there is a report, the exception message would have no new information, because it appears last in the message buffer.

 Other than the message text, an exception message contains additional details in the form of data sections:

 •An explanation section

 •A system action section

 •An operator response section

 •A system programmer response section

 •A problem determination section

 •A source section

 •A reference documentation section

 •An automation section

 •Three additional sections used for message documentation purposes

 Each of these sections, also known as classes, is briefly described in the following sections.

 The explanation class

 The explanation appears in the message buffer when an exception is issued. It is used to inform you of what triggered the exception and why it is a concern.

 •The first paragraph describes the event that triggered the exception.

 •The second paragraph explains why it is a problem.

  –	The current software standard is stated.

  –	Good programming practices are also stated.

 •Additional information can follow. Our sample check describes the CFSIZER tool (Example 5-4).

 Example 5-4 Explanation section of our exception message

 [image:]

 Explanation: The actual structure size is larger than the INITIAL

 size. It is one indication the initial size is too small and is a

 candidate for review.

 The performance of a sysplex application relies on adequate capacity

 planning. It is generally good practice to produce an INITSIZE that

 is slightly larger than the ACTUAL size that produced the exception.

 IBM suggest you periodically recalculate your structure sizes

 throught CFSizer, based on peak usage.

 The Coupling Facility Structure Sizer Tool (CFSIZER) is a web-based

 application that will return structure sizes based on the latest

 CFLEVEL for the IBM products that exploit the coupling facility,

 which is available online at:

 http://www.ibm.com/systems/z/cfsizer

 System Action: This check is preformed on all allocated structures in

 the system.

 Operator Response: N/A.

 System Programmer Response: Determine if each structure reported is

 sized correctly using component recommendations by CFSIZER.

 [image:]

 Example 5-5 shows the actual tags used to produce the explanation message in the previous example.

 Example 5-5 Tags used to produce the Explanation section

 [image:]

 <msgitem class="EXPLANATION">

 <p>

 The actual structure size is larger than the INITIAL size. It is

 one indication the initial size is too small and is a canidate for

 review.

 </p>

 <p>

 The performance of a sysplex application relies on adequate

 capacity planning. It is generally good practice to produce an

 INITSIZE that is slightly larger than the peak ACTUAL size that produced

 the exception. IBM suggest you periodically recalculate your

 structure sizes throught CFSizer, based on peak usage.

 </p>

 <p>The Coupling Facility Structure Sizer Tool (CFSIZER) is a web-based application that will return structure sizes based on the latest CFLEVEL for the IBM products that exploit the coupling facility,

 which is available online at:

 <lines>

 http://www.ibm.com/systems/z/cfsizer

 </lines>

 </p>

 </msgitem>

 [image:]

 	
 Note: The <lines> tag is provided so you can control short lines of text. The text between the lines is unformatted. Blanks (including blank lines) are retained in the check output.

 Blank lines do not appear in a WTO. Each single line in a WTO is 71 characters long.

 The system action class

 The system action section describes how the system or the interested component reacts to the exception that caused the message to be issued. Appropriate responses are:

 •N/A

 •The system continues processing

 Because our check evaluates all allocated structures each time that it runs, the system action section informs us of this behavior (Example 5-6).

 Example 5-6 System Action section of our exception message

 [image:]

 System Action: This check is performed on all allocated structures in

 the system.

 [image:]

 Example 5-7 shows the actual message definition statements used to produce our System Action section.

 Example 5-7 Tags used to produce the System Action section

 [image:]

 <msgitem class="SYSACT"><p>This check is performed on all allocated

 structures in the system.</p>

 </msgitem>

 [image:]

 The operator response class

 The Operator Response section directs the operator to take actions to manage the exception. It might be Report this problem to the system programmer. It usually is N/A.

 Example 5-8 Operator Response section of our exception message

 [image:]

 Operator Response: N/A

 [image:]

 Example 5-9 shows the actual message definition statements used to produce our Operator Response section.

 Example 5-9 Tags used to produce the Operator Response section

 [image:]

 <msgitem class="ORESP"><p>N/A.</p>

 </msgitem>

 [image:]

 The system programmer response class

 The system programmer is the target audience of our theoretical check (Example 5-10). We could use this space to specify a procedure, but the CFSIZER web tool does that.

 Example 5-10 System Programmer Response of our exception message

 [image:]

 System Programmer Response: Determine if the structure is sized

 correctly using component recommendations in CFSIZER.

 [image:]

 Example 5-11 shows the actual message definition statements used to produce our System Programmer Response section.

 Example 5-11 Tags used to produce the System Programmer Response section

 [image:]

 <msgitem class="SPRESP"><p>Determine if each structure reported is sized

 correctly using component recommendations in CFSIZER.</p>

 </msgitem>[image:]

 The problem determination class

 The problem determination section might contain diagnostic procedures, commands, or reference reports to assist in performing the system programmer’s task, or when an unexpected event occurs.

 Example 5-12 Problem Determination section of our exception message

 [image:]

 Problem Determination: Commands that report the current system

 settings are available.

 Structure detail:

 D XCF,STR,STRNAME=strname

 The current CFRM policy:

 D XCF,POL,TYPE=CFRM

 MaxSystems for CFRM Couple Dataset:

 D XCF,COUPLE,TYPE=CFRM

 The microcode level for the coupling facility:

 D CF,CFNAME=cfname

 CFRM policy reports are available using IXCMIAPU and specifying:

 DATA TYPE(CFRM) REPORT(YES)

 [image:]

 Example 5-13 shows the message definition statements used to produce our Problem Determination section. The <lines> tag is helpful in describing commands because it retains the placement of blanks in the message buffer.

 Example 5-13 Tags used to produce the Problem Determination section

 [image:]

 <msgitem class="PROBD"><p>Commands that report the current

 system settings are available.

 <lines>

 Structure detail:

 D XCF,STR,STRNAME=strname

 The current CFRM policy:

 D XCF,POL,TYPE=CFRM

 MaxSystems for CFRM Couple Dataset:

 D XCF,COUPLE,TYPE=CFRM

 The microcode level for the coupling facility:

 D CF,CFNAME=cfname

 CFRM policy reports are available using IXCMIAPU and specifying:

 DATA TYPE(CFRM) REPORT(YES)

 </lines>

 </p>

 	</msgitem>

 [image:]

 The source class

 This statement identifies the name of the technical authority owning the check.

 Example 5-14 Source section of our exception message

 [image:]

 Source: IBM ITSO International Technical Support Organization [image:]

 Example 5-15 shows the actual message definition statements used to produce our Source section.

 Example 5-15 Tags used to produce the Source section

 [image:]

 <msgitem class="SOURCE"><p>

 IBM ITSO International Technical Support Organization

 </p>

 </msgitem>

 [image:]

 The reference documentation class

 Documentation might include manuals, APARS, and websites that have technical authority (Example 5-16).

 Example 5-16 Reference Documentation section of our exception message

 [image:]

 Reference Documentation:

 "CFRM Parameters for Administrative Data Utility" in

 z/OS MVS Setting up a Sysplex

 A sample of creating a new policy is available:

 SYS1.SAMPLIB(IXCCFRMP)

 The Coupling Facility Structure Sizer Tool (CFSIZER)

 http://www.ibm.com/systems/z/cfsizer

 "Displaying Cross System Coupling Facility (XCF) Information"

 z/OS MVS System Commands

 [image:]

 Example 5-17 shows the message definition statements used to produce our Operator Response section. In this section we make use of user-defined symbols such as “&ieaf100h” and “&ixcsizer”. Symbols are described by entity statements and help provide a consistent interface with the user. See 5.1.4, “Using symbols in the message source” on page 119, for additional information about how to use system or user-defined symbols.

 Example 5-17 Tags used to produce the Reference Documentation section

 [image:]

 <msgitem class="REFDOC"><p>

 <lines>

 "CFRM Parameters for Administrative Data Utility" in

 &ieaf100h;

 A sample of creating a new policy is available:

 SYS1.SAMPLIB(IXCCFRMP)

 The Coupling Facility Structure Sizer Tool (CFSIZER)

 &ixcsizer;

 "Displaying Cross System Coupling Facility (XCF) Information"

 &ieag100h;

 </lines>

 </p>

 </msgitem>

 [image:]

 The text for entities is substituted when the messages are generated by HZSMSGEN.

 The automation class

 When automation is expected to exist for the check, this is mentioned in the automation item. Automation might include tools that should be set up for the check or automated behavior, such as using an HZSCHECK request to run a check when the system environment changes. See Example 5-18.

 Example 5-18 Automation section of our exception message

 [image:]

 Automation: This check is run when IXC582I is issued for structure allocation.

 [image:]

 This message is produced by the tags shown in Example 5-19.

 Example 5-19 Tags used to produce the Automation section

 [image:]

 <msgitem class="AUTOMATION"><p>

 This check is run when IXC582I is issued for structure allocation.

 </p>

 </msgitem>

 [image:]

 Additional classes used for documentation

 The <msgitems> in Example 5-20 never appear in the message buffer. They can be used for commenting the message source.

 Example 5-20 Tags used to produce the documentation classes

 [image:]

 <msgitem class="MODULE"><p>ITSOHMSG</p>

 </msgitem>

 <msgitem class="RCODE"><p>n/a</p>

 </msgitem>

 <msgitem class="DCODE"><p>n/a</p>

 </msgitem>

 [image:]

 Planning for effective automation

 Messages are not always evaluated by human observation. They are expected to be collected by automation, grouped by similar attributes, and assigned to an individual who can perform the tasks required to fix the problem. By following component-defined conventions your new check will be easy to add and manage.

 In the case of our example, XCF already has several checks that control the values assigned to structures in the CFRM policy. When designing our check we tried to be consistent with naming and style conventions used by other XCF checks. See Example 5-21.

 Example 5-21 Choosing a check name consistent with the already existing ones

 [image:]

 XCF_CF_STR_AVAILABILITY

 XCF_CF_STR_DUPLEX

 XCF_CF_STR_EXCLLIST

 XCF_CF_STR_NONVOLATILE

 XCF_CF_STR_PREFLIST

 XCF_CF_STR_INITSIZE

 [image:]

 The messages produced by these checks are very similar, too. They address a single problem with the structure definition in a CFRM policy and indicate that the check might apply to more than one structure. Each check only issues a single exception, even if it detects many structures with a similar problem.

 Observe existing component conventions when writing messages (Example 5-22).

 Example 5-22 Messages produced by existing XCF checks

 [image:]

 IXCH0206E One or more CF structures are not in their preferred location(s).

 IXCH0207E One or more CF structures have an exclusion list violation.

 IXCH0210E One or more CF structures which have DUPLEX specification of either ALLOWED or ENABLED are currently not duplexed.

 [image:]

 Use text similar to other check messages produced by other checks for the same component (Example 5-23).

 Example 5-23 Using a wording consistent with other XCF checks

 [image:]

 One or more CF structures have an actual size that is larger than the policy INITSIZE.

 [image:]

 5.1.3 Stating success

 A success message should state what has been checked and why that is successful (Example 5-24).

 Example 5-24 Check success message

 [image:]

 MSGH0021I NO STRUCTURES WERE FOUND ALLOCATED WITH AN ACTUAL SIZE LARGER

 THAN THE POLICY INITSIZE

 [image:]

 It might also provide additional information. In Example 5-25, if there are structures that require resizing the installation might want to update the check to see the complete list provided by VERBOSE messages.

 Example 5-25 The check reports that the VERBOSE(YES) setting is available

 [image:]

 MSGH0021I STRUCTURES WERE FOUND THAT ARE ALLOCATED WITH AN ACUTAL SIZE

 LARGER THAN THE POLICY INITSIZE. THESE STRUCTURES WERE REPORTED BY A

 PRIOR EXCEPTION INSTANCE.

 MSGH0021I STRUCTURES THAT SHOULD BE CONSIDERED FOR RESIZING MAY BE

 VIEWED BY UPDATING THE CHECK WITH VERBOSE(YES)

 [image:]

 Our check might be successful, but report structures can be evaluated if the VERBOSE option still is set to yes (Example 5-26).

 Example 5-26 Additional information produced by the check when running in VERBOSE mode

 [image:]

 STRUCTURE POLICY ACTUAL CF STORAGE

 NAME VALUES CFNAME SIZE INCREMENT

 --

 DB8QU_GBP1

 Initial Size200000K FACIL04 201728K 1024K *

 Maximum Size300000K FACIL03 200704K 1024K

 DB8QU_GBP4

 Initial Size100000K FACIL04 101376K 1024K *

 Maximum Size150000K FACIL03 100352K 1024K

 IXC_DEFAULT_3

 Initial Size10000K FACIL04 14336K 1024K *

 Maximum Size31232K

 MSGH0021I STRUCTURES WERE FOUND THAT ARE ALLOCATED WITH AN ACUTAL SIZE

 LARGER THAN THE POLICY INITSIZE. THESE STRUCTURES WERE REPORTED BY A

 PRIOR EXCEPTION INSTANCE.

 [image:]

 A generic success message template

 We used a <msg class="information"> to report success because it flows the words correctly onto new lines. Only a single message variable is used to issue the message (Example 5-27).

 The SGML source indicates that an HZSLFMSG exec request should reference the message with a message number of “2.” This message requires that one variable be provided for the message text.

 Example 5-27 Only the msgtext appears in the message buffer when class=information

 [image:]

 <msg class="Information">

 <msgnum xreftext="002">MSGH0021I</msgnum>

 <msgtext><mv>text</mv>

 </msgtext>

 <msgitem class="EXPLANATION"><p>n/a</p>

 </msgitem>

 <msgitem class="SYSACT"><p>n/a</p>

 </msgitem>

 <msgitem class="ORESP"><p>n/a</p>

 </msgitem>

 <msgitem class="SPRESP"><p>n/a</p>

 </msgitem>

 <msgitem class="PROBD"><p>n/a</p>

 </msgitem>

 <msgitem class="SOURCE"><p>n/a</p>

 </msgitem>

 <msgitem class="REFDOC"><p>n/a</p>

 </msgitem>

 <msgitem class="AUTOMATION"><p>n/a</p>

 </msgitem>

 <msgitem class="MODULE"><p>n/a</p>

 </msgitem>

 <msgitem class="RCODE"><p>n/a</p>

 </msgitem>

 <msgitem class="DCODE"><p>n/a</p>

 </msgitem>

 </msg>

 [image:]

 Such a generic information message can be used by your check routine to issue a dynamically generated message, as shown by Example 5-28.

 Example 5-28 Issuing a dynamically generated message

 [image:]

 If ReportSuccess = 1 THEN do

 ReportLine = 'No structures were found '||,

 'allocated with an Acutal size '||,

 'larger than the policy INITSIZE'

 Call WriteSuccessLine ReportLine

 ReportLine = " "

 end

 . . .

 WriteSuccessLine: Procedure Expose HZS_HANDLE HZS_PQE_DEBUG

 Arg ReportLine

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 2 /* write message 2 */

 HZSLFMSG_INSERT.0 = 1 /* one message variable */

 HZSLFMSG_INSERT.1 = reportLine /* Initial input variable */

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 In this example the subroutine WriteSuccessLine:

 •Specifies the message number

 •Indicates the number of variables

 •Initializes the required variables

 •Issues the message

 5.1.4 Using symbols in the message source

 Symbols support is provided for formatting and user-defined substitution of text and symbols. There are also symbols defined by IBM Health Checker itself, that are automatically resolved at run time.

 Predefined symbols

 Symbols are used for formatting and are predefined by IBM Health Checker for z/OS:

 &rbl; 	When an additional blank is needed, or when words should remain together on the same line

 > 	The greater than symbol (>)

 < 	The less than symbol, (<)

 &	The ampersand (&)

 Required blank

 The symbol &rbl; is a required blank. It can be used to simply create blank spaces or it can be used to concatenate two words together so they remain on the same line in the output text (Example 5-29):

 A&rbl;long&rbl;long&rbl;long&rbl;variable

 Example 5-29 The output would appear as one word on the same line

 [image:]

 a long long long variable

 [image:]

 Symbols defined by the user

 Using the same symbols reduces errors and gives the messages a common look and feel. Symbols are often used to describe technical manuals. Symbols can be defined directly in the message source before the <msglist> tag, following the copyright lines, or, if used by multiple groups or components, they might be shared by placing them in a symbol data set.

 The HZSMSGEN exec used to generate a message table makes use of a DD statement, HZSSDSN, which points to a symbol data set.

 •SYS1.SAMPLIB(HZSMSGNJ) is JCL that makes use of the HZSMSGEN exec to generate a message table.

 •SYS1.SAMPLIB(HZSSSYM) is a sample symbol dataset.

 	
 Note: Symbols described by an entity statement in the message source override those described in the data set pointed to by HZSSDSN in the HZSMSGNJ JCL.

 Example 5-30 is an example of symbols defined by the user in the message source.

 Example 5-30 Message source

 [image:]

 </lines>

 <!ENTITY ieaf100h "z/OS MVS Setting up a Sysplex">

 <!ENTITY ieag100h "z/OS MVS System Commands">

 <!ENTITY ixcsizer "http://www.ibm.com/systems/z/cfsizer">

 <!--

 <msglist xreftext="ITSOHMSG rules=2">

 <!--

 <!-- Sample Exception Message MSGH0011E

 [image:]

 The symbols described by entity statements can be used multiple times in the message (Example 5-31).

 Example 5-31 Symbols

 [image:]

 <msgitem class="REFDOC"><p>

 <lines>

 "CFRM Parameters for Administrative Data Utility" in

 &ieaf100h;

 A sample of creating a new policy is available:

 SYS1.SAMPLIB(IXCCFRMP)

 The Coupling Facility Structure Sizer Tool (CFSIZER)

 &ixcsizer;

 "Displaying Cross System Coupling Facility (XCF) Information"

 &ieag100h;

 </lines>

 </p>

 </msgitem>

 [image:]

 The text for entities is substituted when the messages are generated by HZSMSGEN (Example 5-32).

 Example 5-32 Substitution text used in the message buffer

 [image:]

 Reference Documentation:

 "CFRM Parameters for Administrative Data Utility" in

 z/OS MVS Setting up a Sysplex

 A sample of creating a new policy is available:

 SYS1.SAMPLIB(IXCCFRMP)

 The Coupling Facility Structure Sizer Tool (CFSIZER)

 http://www.ibm.com/systems/z/cfsizer

 "Displaying Cross System Coupling Facility (XCF) Information"

 z/OS MVS System Commands

 [image:]

 Standard IBM Health Checker symbols

 Symbols that begin with the characters hzs are owned by the IBM Health Checker component (Table 5-1). They are resolved when the check executes.

 Table 5-1 Symbols

 	
 Symbol name

 	
 Symbol resolves to

 	
 &hzs;

 	
 IBM Health Checker for z/OS

 	
 &hzsproc;

 	
 The procedure name that started IBM Health Checker for z/OS

 	
 &hzssysname;

 	
 The system name

 	
 &hzssysplex;

 	
 The sysplex name

 	
 &hzsreason;

 	
 The user reason or component reason for the check

 	
 &hzsexitrtn;

 	
 The name of the hzsaddcheck exit routine that added the check

 	
 &hzsparmsource;

 	
 Resolves to ‘owner’ or ‘installation’ if the check parms have been modified

 	
 &hzssev;

 	
 The check severity: high, medium, or low

 	
 &hzsparms;

 	
 The check parms

 	
 &hzsckname;

 	
 The check name

 	
 &hzsckowner;

 	
 The check owner

 	
 &hzsdate;

 	
 The date when the check executed

 	
 &hzsgmttime;

 	
 The current system GMT time displayed in the form mm/dd/yyyy hh:mm:ss.tttttt

 	
 &hzslocaltime;

 	
 The current system time adjusted to local time and displayed in the form mm/dd/yyyy hh:mm:ss.tttttt

 5.2 Techniques for writing reports

 On certain occasions (for example, when multiple instances of the same problem are reported by a check) it might be desirable to place a report at the beginning of the check. In our theoretical check we chose to generate a detailed report of structures that need an update of their INITSIZE definition if the check is run in debug mode (Example 5-33).

 	
 Note: This message has been designed to be used to debug the check while it was being written. It is not intended for usability. If you need to conditionally generate additional information you should consider using the VERBOSE option.

 Example 5-33 Sample report produced when in debug mode if PARM() is specified

 [image:]

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 START TIME: 07/24/2009 17:21:14.232326

 CHECK DATE: 20090721 CHECK SEVERITY: LOW

 STRUCTURE POLICY ACTUAL CF STORAGE

 NAME VALUES CFNAME SIZE INCREMENT

 CIC_GENERAL_001

 Initial Size10752K FACIL03 11264K 1024K

 Maximum Size12288K

 DB8QU_GBP0

 Initial Size100000K FACIL04 100352K 1024K

 Maximum Size150000K FACIL03 100352K 1024K

 DB8QU_GBP1

 Initial Size200000K FACIL04 201728K 1024K *

 Maximum Size300000K FACIL03 200704K 1024K

 DB8QU_GBP4

 Initial Size100000K FACIL04 101376K 1024K *

 Maximum Size150000K FACIL03 100352K 1024K

 DB8QU_GBP5

 Initial Size100000K FACIL04 100352K 1024K

 Maximum Size150000K FACIL03 100352K 1024K

 DB8QU_GBP6

 .

 [image:]

 	
 Note: This report makes use of the asterisk to identify structures that require resizing. A legend explaining the meaning of symbols used should follow the report.

 A generic report header template

 A heading or report key should be provided that makes the report easy to understand. We place an asterisk next to structures that require resizing. In debug mode structures that require resizing are clearly distinguished.

 We use <msg class=”report”>, which provides the greatest control when formatting text:

 •The message ID does not appear in the check output

 •Lines that have more than 72 characters wrap

 The following SGML source is the message template used to create the column headings and entries in the report shown in Example 5-33.

 Example 5-34 Only the msgtext is used in the message buffer

 [image:]

 <msg class=Report>

 <msgnum xreftext=005>MSGH0022I</msgnum>

 <msgtext><mv class='NoCompress'>column 1</mv>

 <mv class='NoCompress'>Column 2</mv>&rbl;

 <mv class='NoCompress'>Column 3</mv>

 <mv class='NoCompress'>Column 4</mv>

 <mv class='NoCompress'>Column 5</mv>

 <mv class='NoCompress'>Column 6</mv>

 </msgtext>

 <msgitem class="EXPLANATION"><p>n/a</p>

 </msgitem>

 <msgitem class="SYSACT"><p>n/a</p>

 </msgitem>

 <msgitem class="ORESP"><p>n/a</p>

 </msgitem>

 <msgitem class="SPRESP"><p>n/a</p>

 </msgitem>

 <msgitem class="PROBD"><p>n/a</p>

 </msgitem>

 <msgitem class="SOURCE"><p>n/a</p>

 </msgitem>

 <msgitem class="REFDOC"><p>n/a</p>

 </msgitem>

 <msgitem class="AUTOMATION"><p>n/a</p>

 </msgitem>

 <msgitem class="MODULE"><p>n/a</p>

 </msgitem>

 <msgitem class="RCODE"><p>n/a</p>

 </msgitem>

 <msgitem class="DCODE"><p>n/a</p>

 </msgitem>

 </msg>

 [image:]

 Certain choices made in defining the generic report header template are worth noticing:

 •Message text variables default to a class of ‘nocompress’. Blanks placed in message variables are not removed.

 •There is one space between variables in the message buffer. When variables are specified on different lines with no text between them in the source, as in Example 5-34, only one blank is produced in the message buffer.

 •&rbl; is a required blank that creates an extra space between the policy column and the CF name.

 •A null variable value causes that variable to be removed from the output.

 We chose to use the default class of NOCOMPRESS and to exploit REXX functions to format the data (Example 5-35). Using REXX variables to create the columns makes it easy to interactively adjust and design a report.

 •All REXX variables are text even when they contain numeric data.

 •Size values consist of 10 digits, which are concatenated to a unit character.

 •The NUMERIC function was used to define 10 digits because the REXX default is 9.

 •A nocompress variable can be 256 bytes long, but defaults to the length of text.

 •REXX functions RIGHT, LEFT, and CENTER specify the length.

 Example 5-35 The WriteHeading function

 [image:]

 If WriteHeading = 1 THEN DO

 Call WriteHeading

 WriteHeading = 1

 END

 . . .

 WriteHeading: Procedure Expose HZS_HANDLE HZS_PQE_DEBUG

 H1.Descript = LEFT("STRUCTURE",16)

 H1.Size = CENTER("POLICY",11)

 H1.CFName = RIGHT(" ",8)

 H1.ActualSize = RIGHT("ACTUAL ",11)

 H1.StgIncSize = RIGHT("CF STORAGE",11)

 H1.ERROR = “ “

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 5 /* write message 5 */

 HZSLFMSG_INSERT.0 = 6 /* Five message variable */

 HZSLFMSG_INSERT.1 = H1.Descript /* Initial input variable */

 HZSLFMSG_INSERT.2 = H1.Size /* Initial input variable */

 HZSLFMSG_INSERT.3 = H1.CfName /* Initial input variable */

 HZSLFMSG_INSERT.4 = H1.ActualSize /* Initial input variable */

 HZSLFMSG_INSERT.6 = H1.Error

 HZSLFMSG_RC = HZSLFMSG() /* issue the report message */

 NUMERIC DIGITS 10 /* REXX default is 9 */

 [image:]

 Creating lists

 The <lines> tag is useful to create lists:

 •In the <msgtext>

 •Between paragraph tags in an <msgitem> of an exception msg class

 The small letter o is used to create a bulleted list.

 Each time that a <lines> or </lines> tag is generated a newline is generated (Example 5-36). All the data that appears between the tags appears in the message buffer as it is written in the message source.

 Example 5-36 <line> turns paragraph flows off and preserves blanks

 [image:]

 time are:

 <lines>

 o Collect dumps of RRS and IMS on all systems:

 ROUTE *ALL,DUMP COMM=(title),PARMLIB=(xx,yy)

 o Cancel IMS on this system: F IMS,STOP

 o Cancel RRS once IMS is down: SETRRS CANCEL

 o Start RRS back up: S RRS

 o Start IMS once RRS has finished initializing: S IMS

 </lines>

 It is recommended that automation look for the ATR247E message and take

 the above actions.

 [image:]

 A <lines> tag does not cause a blank line to appear in the message output, unless it is followed by a blank line of text (Example 5-37).

 Example 5-37 Blank lines

 [image:]

 time are:

 o Collect dumps of RRS and IMS on all systems:

 ROUTE *ALL,DUMP COMM=(title),PARMLIB=(xx,yy)

 o Cancel IMS on this system: F IMS,STOP

 o Cancel RRS once IMS is down: SETRRS CANCEL

 o Start RRS back up: S RRS

 o Start IMS once RRS has finished initializing: S IMS

 It is recommended that automation look for the ATR247E message and take

 the above actions.

 [image:]

 <lines></lines> is a special formatting tag that generates a blank line (Example 5-38).

 Example 5-38 <lines> </lines> creates a blank line

 [image:]

 that aid in recovering a detected error.

 <lines></lines>

 ATR246I:

 <lines>

 ATR246I RRS HAS DETECTED A controlblockname CONTROL BLOCK ERROR -

 UNEXPECTED ERROR DUMP REQUESTED

 </lines>

 <lines></lines>

 If message ATR246I is issued, this means that RRS has detected a

 potential problem. RRS

 will take a U/E (Unexpected Error) dump, and continue processing.

 Customers should collect

 this dump, report this issue to the IBM Support Center, and send the

 dump to the appropriate

 destination. This message is simply to alert you that RRS has taken a

 dump, and no further

 action (automation) is necessary.

 [image:]

 Text flow is applied to data that is not placed between <lines> (Example 5-39).

 Example 5-39 interspersing formatted lines and default text flow

 [image:]

 that aid in recovering a detected error.

 ATR246I:

 ATR246I RRS HAS DETECTED A controlblockname CONTROL BLOCK ERROR -

 UNEXPECTED ERROR DUMP REQUESTED

 If message ATR246I is issued, this means that RRS has detected a

 potential problem. RRS will take a U/E (Unexpected Error) dump, and

 continue processing. Customers should collect this dump, report this

 issue to the IBM Support Center, and send the dump to the appropriate

 destination. This message is simply to alert you that RRS has taken a

 dump, and no further action (automation) is necessary.

 [image:]

 5.3 Check message development

 A health check consists of two main parts:

 •The check routine

 •A message table

 The check routine does the checking and reports the results. A message table contains the messages to report such results. The message table is kept separate from the check itself for a number of reasons, for example:

 •To allow for separate message translation to different languages

 •To have a designated place where the message services can look up the message details

 •To allow for message sharing between related health checks.

 The message table is a data only load module. It is built from a message definition file (also called message input data set), which is basically a Standard Generalized Markup Language (SGML) text file that has tags and text that provide the message text and message attributes.

 5.3.1 General notes regarding message source

 Regardless of what release your check will run on, we recommend that you generate your messages using the most recent version of the HZSMSGEN exec shipped with z/OS V1R8 HBB7730 and later. HZSMSGEN is a member of SYS1.SBLSCLI0. Specify the check message rules in the msglist to ensure consistent messages when the release of MVS changes.

 Indicate the support that is required to run the check using message table rules:

 <msglist xreftext=”msgcsect rules= ruleslevel">

 Ruleslevel is a number. Currently supported values are:

 •Ruleslevel 1 must be specified when checks must run on z/OS V1R4 to z/OS V1R7. It also runs on z/OS V1R8 and later.

 •Checks using a message table specifying ruleslevel 2 will not be added on z/OS V1R4 to z/OS V1R7 because this indicates that there must be support for maxlen and fieldsize text attributes as well as required blank, &rbl; which is only available since z/OS V1R8.

 •Ruleslevel 3 was introduced in z/OS V1R10 HBB7750 and provides the same support as ruleslevel 2. In addition, leading blanks are suppressed on new lines when message type 'msgtype=report' is greater than 72 characters.

 5.3.2 Generating a message table

 Let us assume that you wrote your first message definition file. How do you get from this SGML text file to the actual message table in load module format? The usual process to create the message table, is:

 1.	Use a copy of the HZSMSGNJ sample job to invoke the HZSMSGEN REXX exec, which generates assembler source from the message definition file.

 2.	Use the assembler to generate object code from the assembler source.

 3.	Use the binder to generate a load module, the message table, from the object code.

 There is a sample job in SYS1.SAMPLIB(HZSMSGNJ) available for the first step,and the following JCL script (Example 5-40 on page 127) covers all three steps. An additional advantage is that it does not use any permanent data sets for the intermediate results, like the assembler source and the object module. They just get passed along as temporary objects in the JCL.

 Example 5-40 Simplified message generation JCL

 [image:]

 //HZSMSGEN JOB

 //*

 // SET MSGTABLE=SYS1.SAMPLIB(HZSSMSGT)

 // SET MSGTSYMS=SYS1.SAMPLIB(HZSSSYMD)

 // SET MSGTLOAD=ZS9004.LOAD(HZSMSGTB)

 //*

 //HZSMSGEN EXEC PGM=IKJEFT01,REGION=256M,PARM='%HZSMSGEN NLSCHECK(N)'

 //SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,BLKSIZE=132,RECFM=FB)

 //SYSPROC DD DISP=SHR,DSN=SYS1.SBLSCLI0

 //SYSTSIN DD DUMMY

 //HZSMDSN DD DISP=SHR,DSN=&MSGTABLE

 //HZSSDSN DD DISP=SHR,DSN=&MSGTSYMS

 //HZSADSN DD DISP=(,PASS),LRECL=80,RECFM=F,SPACE=(CYL,9),UNIT=3390

 /*

 //ASSEMBLE EXEC ASMACL,COND=(0,LT),PARM.L='RENT'

 //C.SYSIN DD DISP=(OLD,DELETE),DSN=*.HZSMSGEN.HZSADSN

 //C.SYSPRINT DD DUMMY

 //L.SYSPRINT DD DUMMY

 //L.SYSLMOD DD DISP=SHR,DSN=&MSGTLOAD

 //*

 [image:]

 Just change the SET symbols to the location of your message definition file and where you want to have the resulting message table stored. The script as is builds the message table for the sample SYS1.SAMPLIB(HZSSMSGT) message definition file and puts it into ZS9004.LOAD(HZSMSGTB).

 Notice that the load module itself is not named HZSSMSGT, but HZSMSGTB, after the CSECT name as defined in the <msglist xreftext=?csectname" tag in the message definition file. Depending how you, or certain HZS sample code, reference the message table, you might want to rename it.

 In the sample we provided a default for the optional symbol definition file using the SET symbol MSGTSYM. Leave this symbol as is or change it if you already have your own symbols.

 Invoking the ASMACL procedure, we specified the RENT (reentrant) bind option, which we recommend even for the message table.

 This script is also available in Appendix A, “Additional material” on page 219. For information about the machine-readable material provided with this book refer to Appendix A, “Additional material” on page 219.

 You can also refer to the following sections in the user's guide:

 •“Creating the message input for your check”

 •“Creating the message input data set”

 •“Generating the assembler CSECT for the message input data set”

[image:]
[image:]

Debugging health checks

 This chapter focuses on issues related to debugging health checks written both in assembler and System REXX. Debugging is most active during development of a health check. Then after the health check is in production, debugging is only likely to occur when a problem occurs or the environment changes.

 6.1 Health check error reporting techniques

 IBM Health Checker makes use of several error-reporting techniques to signal its inability to satisfy a service request made by a health check routine. When control returns to the health check after the invocation of a IBM Health Checker service, the check routine is provided with a return and a reason code. A well-behaved check should test these return and reason codes and react accordingly. For certain errors a system ABEND 290 is issued.

 System REXX checks and the IBM Health Checker framework make use of REXX variables to exchange information with each other. This technique is also used for error reporting. All of the REXX functions return codes (RESULT variable and HZSLnnnn_RSN variable) and any additional diagnostic data returned by the failed service (HZSLnnnn_SYSTEMDIAG variable).

 6.2 Debugging System ABEND 290

 System ABEND 290 is the main error notification mechanism used by IBM Health Checker when a service request issued by a check routine fails. The explanation of what happened is provided via specific reason codes. For example, when trying to register a newly developed health check to IBM Health Checker for z/OS using the HZSADDCK service, a typical problem is to not have the message table located in the correct place. Remember that there are two components of a health check:

 •The health check program

 •The message table load module

 The message table load module:

 •Must be in an APF-authorized library

 •Must be found by the IBM Health Checker program via the normal program search sequence being LPA (z/OS V1R11 and later only), LNKLST, or the JOBLIB/STEPLIB of the IBM Health Checker for z/OS address space

 If the message table cannot be loaded, the health check ABENDs with a 290 ABEND and reason code 4008. The format of the ABEND 290 reason code is xx-xx-rrrr, where rrrr is the interesting part. As of z/OS V1R11, the IBM Health Checker for z/OS reason codes for ABEND 290 are as shown in Example 6-1.

 Example 6-1 Summary of current ABEND 290 reason codes

 [image:]

 002D

 The HZSCPARS REQUEST=PARSE was issued a second time without freeing the parse area that was obtained for the first HZSCPARS REQUEST=PARSE request.

 0035

 The HZSCPARS REQUEST=FREE was requested for an area which does not match the area returned by REQUEST=PARSE. Action: Verify that the HZSCPARS REQUEST=FREE request is passing the matching area.

 1xxx

 An internal error in the IBM Health Checker for z/OS component.

 4007

 HZSADDCK could not load the specified check routine. Action: Make sure that you specified the proper check routine name. The check routine module must be in an APF-authorized library. The system must be able to locate the check routine within the joblib, or steplib of the IBM Health Checker for z/OS address space, the LPA, or the LNKLST.

 4008

 HZSADDCK could not load the specified message table. Action: Make sure that you specified the proper message table name. The message table module must be in an APF-authorized library. The system must be able to locate the message table within the joblib, or steplib of the IBM Health Checker for z/OS address space, the LPA, or the LNKLST.

 4009

 HZSADDCK found a message table that is not supported on this release, or the message table was not created by HZSMSGEN.

 4016

 The variable defined in the HZSMGB area has a length greater than the value defined by Maxlen in the message table.

 4106

 The HZSMGB data area or the HZSMGB data area variable array is not available or could not be accessed.

 4107

 A variable described in the HZSMGB data area had a bad address or length.

 4108

 The message number provided in MGB_Id does not exist in the message table.

 4109

 The maximum number of variables allowed in a check message is defined by Mgb_MaxInserts.

 410A

 The message table requested a variable that is out of sequence or too few inserts.

 410B

 The message definition requires a variable that does not exist in the HZSMGB data area.

 410C

 The HZSMGB data area contained variables that were not requested in the associated message.

 410D

 A variable described in the HZSMGB data area had a bad address or length.

 410E

 A variable described in the HZSMGB data area had a bad address or length.

 410F

 The HZSFMSG macro parameter was not accessible or not in the caller's key.

 4110

 The HZSFMSG request CHECKMSG requires a valid HZSMGB data area.

 4111

 The HZSFMSG parameter list contained an unsupported version number.

 4112

 The HZSFMSG request was issued by a program that was not a check routine.

 4113

 The HANDLE parameter issued on the HZSFMSG contained an incorrect value.

 4114

 The HZSFMSG macro was requested from a remote routine that was not a check routine.

 4115

 The system could not set the ABENDRESULT parameter on the HZSFMSG macro request.

 4116

 The variable defined in the HZSMGB area has a length greater than the value defined by Fieldsize in the message table.

 4117

 The message table supplied by a remote check is not valid.

 4118

 A remote check issued HZSFMSG other than from the INITRUN or RUN function.

 4FFF

 A check was terminated via DELETE FORCE=YES. Action: A DELETE FORCE=YES command was processed, which terminated the specified checks with this abend reason code.

 [image:]

 These reason codes are documented in MVS System Codes, SA22-7626, for z/OS V1R11 and later only. For previous z/OS levels see DOC APAR OA28193 at:

 http://www-01.ibm.com/support/docview.wss?uid=isg1OA28193

 It is always a good idea to review the IBM Health Checker for z/OS User’s Guide, SA22-7994, which not only documents regular return and reason codes for the various IBM Health Checker services, but also lists all the ABEND 290 reason codes.

 Debug a 290 ABEND using LOGREC

 Did you ever see an ABEND 290 in SYSLOG and wonder which health check was failing? The reason code is helpful, and sometimes you get a module name. But what if the module name is UNKNOWN or is just IBM Health Checker's mainline module HZSINPVT? If only you could get the health check name and just a few more diagnostic details. If you are currently developing a new health check, it might be easy to guess at least the health check name. But in other cases it is harder. Luckily, there is usually additional information available if you know where to find it.

 IBM Health Checker provides this additional information as LOGREC records. To extract and format these LOGREC records, you must use the Environmental Record Editing and Printing (EREP) program (IFCEREP1) with the input parameters TYPE=S and PRINT=PS. Depending on the LOGREC media that your installation uses (data set or logstream), a job similar to those shown in Example 6-2 and Example 6-3, respectively, could be used.

 To know whether the LOGREC is based on a data set or log stream and what the corresponding medium name is, you can use the DISPLAY LOGREC operator command, as shown in Example 6-2.

 Example 6-2 D LOGREC output: the current LOGREC medium is a data set

 [image:]

 D LOGREC

 IFB090I 08.20.42 LOGREC DISPLAY 474

 CURRENT MEDIUM = DATASET

 MEDIUM NAME = SYS1.#@$3.LOGREC

 [image:]

 In this case the current LOGREC medium is the SYS1.#@$3.LOGREC data set, and data can be printed using the sample shown in Example 6-3.

 Example 6-3 Sample job to print LOGREC entries from the data set medium

 [image:]

 //EREP EXEC PGM=IFCEREP1,PARM='CARD'

 //SERLOG DD DSN=SYS1.LOGREC,DISP=SHR

 //ACCDEV DD DUMMY

 //DIRECTWK DD UNIT=SYSDA,SPACE=(TRK,(100,10))

 //TOURIST DD SYSOUT=*,DCB=BLKSIZE=133

 //EREPPT DD SYSOUT=*,DCB=BLKSIZE=133

 //SYSIN DD *,DCB=BLKSIZE=80

 PRINT=PS

 TYPE=S

 DATE=(09198-09198),TIME=(1400-1402)

 ACC=N

 /*

 [image:]

 Besides filtering for software records (TYPE=S), it is usually smart to filter for the date, and possibly time, because a busy system might produce a large number of LOGREC records. In Example 6-3 we filter on just one day (09198–09198) and only a few minutes around 2 p.m. (1400–1402).

 If the filters specified to EREP still produce a large report, you can search for the ABEND sequence number. In Example 6-6 on page 134, the SYSLOG ABEND has SEQ=00032.

 For an installation exploiting the ability to write LOGREC data into a logstream, the D LOGREC command would display something similar to what is shown in Example 6-4.

 Example 6-4 D LOGREC output: the current LOGREC medium is a LOGSTREAM

 [image:]

 D LOGREC

 IFB090I 09.390.11 LOGREC DISPLAY 635

 CURRENT MEDIUM = LOGSTREAM

 MEDIUM NAME = SYSPLEX.LOGREC.ALLRECS

 [image:]

 If the current LOGREC medium is the SYSPLEX.LOGREC.ALLRECS logstream, data can be printed using the sample shown in Example 6-5.

 Example 6-5 Sample job to print LOGREC entries from a logstream

 [image:]

 //EREP EXEC PGM=IFCEREP1,PARM='CARD'

 //ACCIN DD DISP=SHR,DSN=SYSPLEX.LOGREC.ALLRECS,

 // DCB=(RECFM=VB,BLKSIZE=4000),

 // SUBSYS=(LOGR,IFBSEXIT,

 // 'FROM=(2009/239,13:45),TO=(2009/239,14:00),LOCAL',

 // 'SYSTEM=#@$2')

 //ACCDEV DD DUMMY

 //DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,(100,10))

 //TOURIST DD SYSOUT=*,DCB=BLKSIZE=133

 //EREPPT DD SYSOUT=*,DCB=BLKSIZE=133

 //SYSIN DD *,DCB=BLKSIZE=80

 PRINT=PS

 TYPE=S

 ACC=N

 /*

 [image:]

 This produces a listing of all the software records sorted by severity, with ABENDs being listed first.

 The report also includes the System Diagnostic Work Area (SDWA), and in particular the variable recording area (VRA, or in this context the SDWAVRA), which holds component-specific information (in our case the more specific IBM Health Checker diagnostic information). Problems caught by HZSFMSG, the check message service, usually have the most details reported.

 As an example, let us look at a possible ABEND 290 found in SYSLOG, as shown in Example 6-6.

 Example 6-6 Example ABEND 290 reason code 410D

 [image:]

 SYSTEM COMPLETION CODE=290 REASON CODE=020B410D

 TIME=14.00.06 SEQ=00032 CPU=0000 ASID=001D

 PSW AT TIME OF ERROR 070C5001 98D0A382 ILC 2 INTC 0D

 NO ACTIVE MODULE FOUND - PRIMARY NOT EQUAL TO HOME

 NAME=UNKNOWN

 DATA AT PSW 18D0A37C - 58F0D4EC 0A0D90EC D374EBEC

 AR/GR 0: 980E7D66/00000000_0000000B 1: 00000000/00000000_04290000

 2: 00000000/00000008_00000003 3: 00000000/00000000_00000003

 4: 00000000/00000000_00000000 5: 00000000/00000000_00000000

 6: 00000000/00000000_00000000 7: 00000000/00000000_00000000

 8: 00000000/00000000_00000000 9: 00000000/00000000_7EDBC0FF

 A: 00000000/00000000_7F5F74F0 B: 00000000/00000000_18D0C47B

 C: 00000000/00000000_18D0B47C D: 00000000/00000000_7EDBB100

 E: 00000000/00000000_7EDBB006 F: 00000000/00000008_020B410D

 END OF SYMPTOM DUMP

 [image:]

 The IBM Health Checker for z/OS User’s Guide, SA22-7994, tells us that reason code X'410D' indicates an HZSFMSG error and that a message insert address was zero. But the module name is UNKNOWN, because this happens to be for a remote check, so we did not receive a NAME=HZSINPVT or any other kind of clue as to what health check is failing. Perhaps LOGREC has additional information? A sample EREP report for our ABEND is shown in Example 6-7 on page 135.

 Example 6-7 EREP detail report for the 290 ABEND

 [image:]

 TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR

 (SVC 13) REPORT DATE: 198.09

 FORMATTED BY: IEAVTFDE HBB7703 ERROR DATE: 198.09

 MODEL: 2097 HH:MM:SS.TH

 SERIAL: 0ADE50 TIME: 14:00:06.95

 JOBNAME: REXCHK2 SYSTEM NAME: #@$3

 ERRORID: SEQ=00032 CPU=0000 ASID=001D TIME=14:00:06.9

 SEARCH ARGUMENT ABSTRACT

 PIDS/5752SCHZS RIDS/HZSINPVT#L RIDS/HZSPKMGB AB/S0290 PRCS/020B410D REGS/C10FA

 RIDS/HZSMIREC#R

 SYMPTOM DESCRIPTION

 ------- -----------

 PIDS/5752SCHZS PROGRAM ID: 5752SCHZS

 RIDS/HZSINPVT#L LOAD MODULE NAME: HZSINPVT

 RIDS/HZSPKMGB CSECT NAME: HZSPKMGB

 AB/S0290 SYSTEM ABEND CODE: 0290

 PRCS/020B410D ABEND REASON CODE: 020B410D

 REGS/C10FA REGISTER/PSW DIFFERENCE FOR R0C:-10FA

 RIDS/HZSMIREC#R RECOVERY ROUTINE CSECT NAME: HZSMIREC

 OTHER SERVICEABILITY INFORMATION

 RECOVERY ROUTINE LABEL: HZSMIARR

 DATE ASSEMBLED: 07/18/08

 MODULE LEVEL: UA42349

 SUBFUNCTION: HZSFMSG MOD:

 VARIABLE RECORDING AREA (SDWAVRA)

 +000 KEY: 53 LENGTH: 00

 +002 KEY: E1 LENGTH: 08

 +004 020BC084 03050000 |..{D.... |

 +00C KEY: E3 LENGTH: 02

 +00E 020C |.. |

 +010 KEY: E9 LENGTH: 0A

 +012 00200000 0008FF67 8000 |.......... |

 +01C KEY: E9 LENGTH: 0C

 +01E 0023C6E4 D5C37A40 00000002 |..FUNC: |

 +02A KEY: E9 LENGTH: 0C

 +02C 0028C5D5 E3D9E840 00000000 |..ENTRY |

 +038 KEY: E9 LENGTH: 0E

 +03A 002AC381 93938599 40859999 9699 |..CALLER ERROR |

 +048 KEY: E9 LENGTH: 0C

 +04A 002DD4E2 C7D5E4D4 00000003 |..MSGNUM.... |

 +056 KEY: E9 LENGTH: 0C

 +058 002FE3D6 E3C9D5E2 00000003 |..TOTINS.... |

 +064 KEY: E9 LENGTH: 1E

 +066 002AC8E9 E2D4C7C2 408995A2 8599A340 |..HZSMGB INSERT |

 +076 9596A340 81838385 A2A28982 9385 |NOT ACCESSIBLE |

 +084 KEY: E9 LENGTH: 0C

 +086 0030C2C1 C4C9D5E2 00000002 |..BADINS.... |

 +092 KEY: E9 LENGTH: 11

 +094 002FC9D5 E2C5D9E3 C1C4C4D9 40000000 |..INSERTADDR ...|

 +0A4 00 |. |

 +0A5 KEY: E9 LENGTH: 33

 +0A7 0025C9C2 D4E2C1D4 D7D3C56B C8E9E26D |..IBMSAMPLE,HZS_|

 +0B7 E2C1D4D7 D3C56DD9 C5D4D6E3 C56DD9C5 |SAMPLE_REMOTE_RE|

 +0C7 E7E76DC3 C8C5C3D2 40404040 40404040 |XX_CHECK |

 +0D7 404040 | |

 +0DA KEY: E9 LENGTH: 0A

 +0DC 0033F2F0 F0F5F1F2 F0F1 |..20051201 |

 +0E6 KEY: E9 LENGTH: 0A

 +0E8 002B4040 40404040 4040 |.. |

 [image:]

 Notice that the CSECT NAME is HZSPKMGB, which is the processing module for service HZSFMSG. The SUBFUNCTION text also names HZSFMSG directly.

 Most of the information relevant for us is in the VARIABLE RECORDING AREA (SDWAVRA). The VRA is formatted as a sequence of KEY/LENGTH/data items. Certain KEYs are more interesting for the IBM Support Center, whereas KEYs such as E9 contain a user structure, which is more interesting to the health check developer. Let us look at the example KEY E9 user structure shown in Example 6-8.

 Example 6-8 VRADATA E9 key content example

 [image:]

 +048 KEY: E9 LENGTH: 0C

 +04A 002DD4E2 C7D5E4D4 00000003 |..MSGNUM.... |

 [image:]

 There are 12 (X'0C') bytes of data:

 •Starting with a 2-byte subkey value: X'002D'

 •Followed by 6 bytes of descriptive text: 'MSGNUM' (X‘D4E2C7D5E4D4’)

 •Followed by a 4-byte data value: X'00000003'

 Subkey X'002D' stands for the message number field, MGB_MessageNumber, as specified in the message block (HZSMGB), which was provided as input to HZSFMSG. In this case the error occurred when processing the message identified by the “msgnum xreftext=003” tag. Because certain subkeys might only contain descriptive text or just the value, whereas others might have both text and a value, it might not always be so easy to find the value start when paired with text.

 Table 6-1 is an informal and incomplete table that might help you to decode these KEY E9 structures.

 Table 6-1 KEY E9 subkeys and meanings

 	
 Subkey

 	
 Is followed by text

 	
 Is followed by value

 	
 X'0020'

 	

 	
 PQE address

 	
 X'0021'

 	
 PQE_CheckName

 	

 	
 X'0022'

 	
 PQE_CheckOwner

 	

 	
 X'0023'

 	
 optional: “FUNC:”

 	
 PQE_FunctionCode

 	
 X'0024'

 	
 optional: “CKADDR”

 	
 check routine's load module address

 	
 X'0025'

 	
 PQE_CheckOwner,Pqe_CheckName

 	

 	
 X'0028'

 	
 “ENTRY”

 	
 PQE_Entry_Code

 	
 X'002A'

 	
 error description

 	

 	
 X'002B'

 	
 PQE_MsgTableName

 	

 	
 X'002C'

 	
 “MSGTBL VALUES:”

 	
 message table address, message block address, and several other message block related addresses and values

 	
 X'002D'

 	
 “MSGNUM”

 	
 MGB_MessageNumber

 	
 X'002F'

 	
 “TOTINS”

 	
 Mgb_insert_Cnt

 	
 X'002F'

 	
 Type of problematic insert as one of “GMTTOD”, “LOCTOD”, “HEX”, “DEC”, “TEXT”; “INSERT”

 	
 2 byte len of insert + first 8 data bytes of insert

 	
 X'002F'

 	
 “INSERTADDR”

 	
 problematic Mgb1_MsgInsertDesc_Addr(i)

 	
 X'002F'

 	
 “UNUSED INSERTS”

 	
 first few bytes of any unused insert

 	
 X'0030'

 	
 “BADINS”

 	
 1-based index of insert

 	
 X'0030'

 	
 “LINE#:”

 	
 1-based index of console message line

 	
 X'0030'

 	
 “BADLEN” or “LENGTH”

 	
 formatted insert output length

 	
 X'0033'

 	
 PQE_DefaultDate

 	

 With this information we can now understand what this ABEND 290 reason code X'410D' means.

 In Example 6-7 on page 135:

 •The failing check is (IBMSAMPLE,HZS_SAMPLE_REMOTE_REXXCHECK). See subkey X'0025'.

 •The check issued an HZSFMSG call. See SUBFUNCTION or the reason code itself in the manual.

 •On that HZSFMSG call, it requested message number 003 to be issued. See subkey X'002D', “MSGNUM”.

 •It promised three inserts. See subkey X'002F', “TOTINS”.

 •The second insert is bad. See subkey X'0030', “BADINS”.

 •And has a zero address. See subkey X'002F', “INSERTADDR”.

 See the following references for more information:

 •MVS Diagnosis Tools and Service Aids, GA22-7589

 •EREP Reference, GC35-0152

 •EREP User’s Guide, GC35-0151

 6.3 Debugging System REXX health checks

 System REXX health checks are easier to develop than health checks written in assembler because System REXX health checks make more diagnostic data available to the health check author, and it is in a much more accessible and convenient form. Assembler health checks by comparison require dumps or code changes to include WTOs during development.

 Regardless of the language chosen to develop health checks, the speed of development is greatly improved if development can occur in the TSO address space. A user’s own TSO address space has many familiar and comfortable tools available, such as TEST for assembler programs and interactive tracing for REXX programs. IBM Health Checker for z/OS does not support executing local and System REXX checks in a user’s TSO address space, but there are ways to work around the problem. All that is required is to provide an infrastructure such that the health check program running under TSO can believe that it is in an IBM Health Checker environment. For assembler health checks this means writing assembler stub modules to respond to health check service calls; the same can be done in System REXX. But with System REXX there is a much simpler low-tech solution available.

 System REXX health check infrastructure requires a series of specialized REXX functions to be available:

 •HZSLSTRT for starting the health check

 •HZSLFMSG for writing health check messages (exception, information, report, and debug) into the health check infrastructure during execution

 •HZSLSTOP for stopping the health check

 •Optionally, AXRCMD for issuing operator commands and retrieving the responses

 •Optionally, AXRWTO for writing messages to the operator console

 	
 Note: We do not recommend using AXRWTO for any final health check code, not even for DEBUG. Use HZSFMSG instead (there is a DEBUG message class, too) or SAY where HZSFMSG cannot be used.

 During development, you can imbed temporary code inline that mimics these services, then delete the code after the health check development is complete. Example 6-9 provides an example of this imbed code.

 Example 6-9 Sample inline IBM Health Checker service emulation code

 [image:]

 /* - TSO Development --- */

 HZSLFMSG:

 HZSLFMSG_RSN = "99999999"

 HZSLFMSG_SYSTEMDIAG = "99999999"

 select

 when HZSLFMSG_MESSAGENUMBER = 1 /* Information good */

 then do

 say " "

 say "XXXH0001I "HZSLFMSG_INSERT.1

 end

 when HZSLFMSG_MESSAGENUMBER = 2 /* Information bad */

 then do

 say " "

 say "XXXH0002E "HZSLFMSG_INSERT.1

 end

 when HZSLFMSG_MESSAGENUMBER = 3 /* Report message */

 then do

 say HZSLFMSG_INSERT.1

 end

 when HZSLFMSG_MESSAGENUMBER = 7 /* I: Passed */

 then do

 say " "

 say "XXXH0007I "HZSLFMSG_INSERT.1

 end

 when HZSLFMSG_MESSAGENUMBER = 8 /* E: Failed */

 then do

 say " "

 say "XXXH0008E "HZSLFMSG_INSERT.1

 end

 otherwise /* Debug message */

 do

 say " "

 say "XXXH0009I "HZSLFMSG_INSERT.1

 end

 end/*select*/

 return 0

 HZSLSTRT:

 HZSLSTRT_RSN = "99999999"

 HZSLSTRT_SYSTEMDIAG = "99999999"

 HZS_PQE_VERSION = "99999999"

 HZS_PQE_CHECK_COUNT = "99999999"

 HZS_PQE_ENTRY_CODE = "0"

 HZS_PQE_DEBUG = "0"

 HZS_PQE_VERBOSE = "0"

 HZS_PQE_FUNCTION_CODE = "INITRUN"

 /*HZS_PQE_FUNCTION_CODE = "RUN"*/

 /*HZS_PQE_PARMAREA = "NOCHKSYSNAME,NOCHKSMFID"*/

 /*HZS_PQE_PARMAREA = "NOCHKSYSNAME"*/

 return 0

 HZSLSTOP:

 HZSLSTOP_RSN = "99999999"

 HZSLSTOP_SYSTEMDIAG = "99999999"

 return 0

 AXRCMD:

 parse arg axrcmdv1 , axrcmdv2 , axrcmdv3 , z

 axrcn = "###"time("S")

 "CONSOLE ACTIVATE",

 "NAME("axrcn")"

 "CONSOLE",

 "SYSCMD(",

 ||axrcmdv1,

 ||") CART("axrcn")"

 z = GETMSG("vout.","EITHER",axrcn,,99)

 "CONSOLE DEACTIVATE"

 return 0

 AXRWTO:

 parse arg axrwtov1

 say axrwtov1

 return 0

 [image:]

 All the author must do is include this sample $TSODEVL member at the bottom of the System REXX health check being developed. Then the code can be executed in the user’s TSO address space to test it. After development is complete, the $TSODEVL code must be deleted from the health check before the code is moved into the real IBM Health Checker environment.

 Depending on which parameters are passed to the HZSLSTRT(), HZSLFMSG(), and HZSLSTOP() functions, extra code might have to be added to $TSODEVL so that the function receives an expected response. Also, after APAR OA26802 is installed, you might need to add extra stubs for new functions AXRWAIT() and AXRINFO() if you want to use them in your health check.

 If the System REXX health check requires the issuing of operator commands and retrieving of responses, the AXRCMD function is mimicked by a TSO CONSOLE command. Therefore, to use this technique for health checks that use AXRCMD, the TSO user must have appropriate access to use the TSO CONSOLE command.

 	
 Note: As an alternative, a System REXX check could be tested under TSO as a remote REXX check, making use of the stub routines described in Chapter 8, “Unauthorized health checks written in REXX” on page 177.

 6.3.1 DEBUG option

 There is a parameter associated with every health check, called DEBUG, that can be set to ON or OFF. The current value of the DEBUG parameter is made available to System REXX health check programs in variable HZS_PQE_DEBUG (1 = ON, 0 = OFF) after execution of the HZSLSTRT() function.

 The OFF setting is the default and this should be used for normal operation of a health check. If you suspect that there is a problem with a health check the DEBUG option can be turned ON either via an operator MODIFY HZSPROC (F HZSPROC for short) command, by an HZSPRMxx PARMLIB member statement, or by overtyping the DEBUG column in the SDSF CK panel.

 When the DEBUG option is set to ON for a System REXX health check, it has the following effect:

 •If the health check produces any debug type messages (a health check can produce exception, information, report, and debug messages), the debug messages will be visible. If using SDSF to view health check messages then the message IDs are visible.

 •If a REXXOUT data set has been defined for the health check, then additional diagnostic messages might be written there.

 Example 6-10 shows an example of using the operator MODIFY command to enable DEBUG for a health check.

 Example 6-10 Turn on DEBUG for a check

 [image:]

 F HZSPROC,UPDATE,CHECK=(USER01,USER_CHECK_01),DEBUG=ON

 [image:]

 	
 Note: DEBUG mode is intended to be used only while the check is being written, and only to debug the check. Some IBM checks might use DEBUG in a way that more correctly should use VERBOSE because they were implemented before the VERBOSE option was created.

 The DEBUG option cannot be turned ON at check ADD time. If you want to test the first check iteration with DEBUG ON, you can either:

 •ADD the check as INACTIVE and later, after you updated the check to DEBUG =ON, you turn the check to ACTIVE.

 •As a purely temporary measure, leave the INITRUN function code handling section empty and start the first iteration only via the RUN function code handler, after you had time to enable DEBUG, assuming that your check's INTERVAL value is set to long enough.

 6.3.2 VERBOSE option

 There is a parameter associated with every health check called VERBOSE that can be set to YES or NO. The current value of the VERBOSE parameter is made available to System REXX health check programs in variable HZS_PQE_VERBOSE (1 = YES, 0 = NO) after execution of the HZSLSTRT() function.

 The NO setting is the default, which should be used for normal operation of a health check. If you suspect that there is a problem with a health check, the VERBOSE option can be set to YES either via an operator MODIFY (“F” for short) console command, by PARMLIB(HZSPRMxx), by overtyping the VERBOSE column in the SDSF CK panel, or by specifying VERBOSE (YES) on the ADD CHECK statement immediately. When the VERBOSE option is set to YES for a System REXX health check, it causes the additional messages to be created, but only if the health check is written to exploit verbose mode. If the health check is not written to exploit verbose mode then the YES setting has no effect.

 Example 6-11 is an example of using the operator MODIFY command to enable VERBOSE for a health check.

 Example 6-11 Turn on VERBOSE for a check

 [image:]

 F HZSPROC,UPDATE,CHECK=(USER01,USER_CHECK_01),VERBOSE=YES

 [image:]

 We recommend setting VERBOSE=YES whenever DEBUG=ON is set.

 6.3.3 REXXOUT data set

 For a developer of System REXX health checks, the REXXOUT feature is important for diagnosing problems. With a REXXOUT data set, you are able to see:

 •The result of REXX say statements

 •The output from a REXX trace

 •Messages from any TSO commands that produce uncaptured output

 A REXXOUT data set can be used from both a TSO environment (REXXTSO(YES)) and a non-TSO (REXXTSO(NO)) environment. To enable the REXXOUT data set, the health check must be running in DEBUG mode. If the health check is not running in DEBUG mode the data listed previously is not captured anywhere.

 For System REXX health checks the REXXHLQ parameter is required so that IBM Health Checker for z/OS can allocate the REXXOUT data set using that HLQ for the name. IBM Health Checker for z/OS must have ALTER access to create the REXXOUT data sets and the data sets should be SMS managed. There are no parameters to direct data sets to specific DASD volumes.

 The naming convention for the REXXOUT data set is:

 rexxhlq.checkname.REXXOUT

 Example 6-12 shows an example of the REXXOUT data set name when no ENTRYCODE is defined.

 Example 6-12 Example REXXOUT data set name (no ENTRYCODE)

 [image:]

 If a health check is defined like this:

 REXXHLQ(SYSU)

 EXEC(NOCTEST)

 ENTRYCODE()

 Then the REXXOUT data set name will be:

 SYSU.NOCTEST.REXXOUT

 [image:]

 If the health check has an ENTRYCODE defined, then the naming convention for the REXXOUT data set is:

 rexxhlq.checkname.REXXOUT.EEntrycode

 Example 6-13 shows an example REXXOUT data set name when an ENTRYCODE is defined.

 Example 6-13 Example REXXOUT data set name (ENTRYCODE=1)

 [image:]

 If a health check is defined like this:

 REXXHLQ(SYSU)

 EXEC(NOCTEST)

 ENTRYCODE(1)

 Then the REXXOUT data set name will be:

 SYSU.NOCTEST.REXXOUT.E1

 [image:]

 To use the REXXOUT data set, simply set DEBUG mode ON, run the health check, then browse the REXXOUT data set. See Example 6-14 for an example of setting DEBUG to on for a health check.

 Example 6-14 Enable DEBUG or a health check

 [image:]

 F HZSPROC,UPDATE,CHECK=(IBMSAMPLE,SAMPLE_EXEC),DEBUG=ON

 [image:]

 DEBUG mode can also be enabled if the user has the ability to overtype the DEBUG field in the SDSF CK panel. To get the maximum amount of available information about a problem, it is a good idea to enable VERBOSE mode at the same time, as shown in Example 6-15.

 Example 6-15 Enable VERBOSE and DEBUG modes

 [image:]

 F HZSPROC,UPDATE,CHECK=(IBMSAMPLE,SAMPLE_EXEC),VERBOSE=YES,DEBUG=ON

 [image:]

 The content of the REXXOUT data set is much more useful if the techniques described in the next section are implemented.

 6.3.4 Develop debug friendly REXX coding

 When writing a health check it is best to write the code with debug/diagnosis in mind (that is, if something fails, how best to present the problem information so that the failure can be quickly corrected). The health check should be written to handle two situations:

 •Problems in the health check during normal operation

 •Problems setting up the IBM Health Checker framework

 The approach for handling problems in the health check during normal operation is to write messages using the HZSLFMSG() function. The approach for handling problems setting up the IBM Health Checker framework is to use REXX say statements that appear in the REXXOUT data set when DEBUG is turned on.

 When function HZSLSTRT() is executed a return code of 0 means that the IBM Health Checker framework setup completed successfully. Figure 6-16 shows the execution of function HZSLSTRT(). The HZSLSTRT() function is documented in the IBM Health Checker for z/OS User's Guide.

 Example 6-16 Testing HZSLSTRT() result

 [image:]

 call HZSLSTRT

 if RESULT <> 0

 then call HZS_env_good

 else call HZS_env_bad

 -or-

 HZSLSTRT_RC = HZSLSTRT()

 if HZSLSTRT_RC <> 0

 then call HZS_env_good

 else call HZS_env_bad

 [image:]

 If the IBM Health Checker framework is available as a result of a successful HZSLSTRT() function, then the HZSLFMSG() function can be used to write messages as shown in Example 6-17 on page 144. The HZSLFMSG() function is documented in the IBM Health Checker for z/OS User's Guide.

 Example 6-17 Using HZSLFMSG()

 [image:]

 BROWSE SYS1.SAMPLIB(HZSSXCHK) Line 00000922 Col 001 080

 Command ===> Scroll ===> CSR

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 4 /* write message 4 */

 HZSLFMSG_INSERT.0 = 0 /* no input value are provided

 HZSLFMSG_RC = HZSLFMSG()

 [image:]

 If the IBM Health Checker framework is not available as a result of a failed HZSLSTRT() function, then it can be assumed the HZSLFMSG() function is non-functional. Therefore, the health check should use the REXX say statement to write messages to the REXXOUT data set, as shown in Example 6-18.

 Example 6-18 Say statement when HZSLSTRT() fails

 [image:]

 BROWSE SYS1.SAMPLIB(HZSSXCHK) Line 00000314 Col 001 080

 Command ===> Scroll ===> CSR

 HZSLSTRT_RC = HZSLSTRT()

 IF HZSLSTRT_RC <> 0 THEN /* @P2C*/

 DO

 IF HZS_PQE_DEBUG = 1 THEN

 DO /* Report debug detail in REXXOUT */

 SAY "HZSLSTRT RC" HZSLSTRT_RC

 SAY "HZSLSTRT RSN" HZSLSTRT_RSN

 SAY "HZSLSTRT SYSTEMDIAG" HZSLSTRT_SYSTEMDIAG

 END

 EXIT /* Exit, check cannot be performed */

 END

 [image:]

 A good habit to get into is testing the results of the IBM Health Checker REXX functions HZSLSTRT(), HZSLFMSG(), and HZSLSTOP() and displaying the content of the diagnostic variables if they fail using REXX say statements. The messages produced by the REXX say statements are only seen when DEBUG mode is enabled, causing the output to be directed to the REXXOUT data set. If DEBUG mode is not enabled, then the REXX say messages are lost.

 Because DEBUG(ON) is a prerequisite for seeing the say messages, we can then use VERBOSE mode to introduce a second tier of diagnostic information. If we test for both DEBUG(ON) and VERBOSE(YES), then we can use that combination as a switch to turn REXX tracing on. With this technique, the user can control from the outside whether he just wants to see the REXX say messages or he wants to see the say messages plus a full trace of the REXX health check program. See Example 6-19 for an example of debug-friendly coding.

 Example 6-19 Debug-friendly coding

 [image:]

 hzslstrt_rc = HZSLSTRT()

 if hzslstrt_rc = 0 1

 then do

 if HZS_PQE_DEBUG = 1,

 & HZS_PQE_VERBOSE = 1

 then trace r 2

 call main_check_process

 hzslstop_rc = HZSLSTOP()

 if hzslstop_rc = 0 3

 then nop

 else do

 say "HZSLSTOP failed. Diagnostics follow:" 4

 say " HZSLSTOP_RC("hzslstop_rc")"

 say " HZSLSTOP_RSN("HZSLSTOP_RSN")"

 say " HZSLSTOP_SYSTEMDIAG("HZSLSTOP_SYSTEMDIAG")"

 end

 end

 else do

 say "HZSLSTRT failed. Diagnostics follow:" 5

 say " HZSLSTRT_RC("hzslstrt_rc")"

 say " HZSLSTRT_RSN("HZSLSTRT_RSN")"

 say " HZSLSTRT_SYSTEMDIAG("HZSLSTRT_SYSTEMDIAG")"

 say " HZS_HANDLE("c2x(HZS_HANDLE)")"

 say " HZS_PQE_CHECK_COUNT("HZS_PQE_CHECK_COUNT")"

 say " HZS_PQE_CHECKNAME("HZS_PQE_CHECKNAME")"

 say " HZS_PQE_CHECKOWNER("HZS_PQE_CHECKOWNER")"

 say " HZS_PQE_CHKWORK("HZS_PQE_CHKWORK")"

 say " HZS_PQE_CUM_COUNT("HZS_PQE_CUM_COUNT")"

 say " HZS_PQE_DEBUG("HZS_PQE_DEBUG")"

 say " HZS_PQE_ENTRY_CODE("HZS_PQE_ENTRY_CODE")"

 say " HZS_PQE_ENVIRONMENT_XCFLOCAL("HZS_PQE_ENVIRONMENT_XCFLOCAL")"

 say " HZS_PQE_ENVIRONMENT_XCFMONOPLEX("HZS_PQE_ENVIRONMENT_XCFMONOPLEX"

 say " HZS_PQE_FUNCTION_CODE("HZS_PQE_FUNCTION_CODE")"

 say " HZS_PQE_GLOBAL_CHECK("HZS_PQE_GLOBAL_CHECK")"

 say " HZS_PQE_LOOKATPARMS("HZS_PQE_LOOKATPARMS")"

 say " HZS_PQE_PARMAREA("HZS_PQE_PARMAREA")"

 say " HZS_PQE_REASON("HZS_PQE_REASON")"

 say " HZS_PQE_VERBOSE("HZS_PQE_VERBOSE")"

 say " HZS_PQE_VERSION("HZS_PQE_VERSION")"

 end

 [image:]

 The following notes apply to Example 6-19:

 	1 Check whether HZSLSTRT() was successful.

 2 If DEBUG(ON) and VERBOSE(YES), then turn the REXX trace on.

 3 Check whether HZSLSTOP() was successful.

 4 If HZSLSTOP() failed, then use REXX say statements to display the contents of HZSLSTOP()-related variables.

 5 If HZSLSTRT() failed, then use REXX say statements to display the contents of HZSLSTRT()-related variables.

 Use the same kind of technique for the HZSLFMSG() function: test return code, then if the function failed, use the REXX say command to write messages.

[image:]
[image:]

Writing checks using System REXX

 This chapter discusses writing checks to run in a System REXX address space. IBM Health Checker support for System REXX is available on z/OS V1R8 and later.

 7.1 Getting started with a System REXX check

 A check writer might choose an authorized System REXX execution environment because it provides the ability to issue system commands and REXX programming interfaces are easy to use. REXX is an interpreted language designed to interact with command environments without the risks associated with changing storage that is used by the system. IBM Health Checker for z/OS can be used to invoke an exec check routine.

 System REXX execs receive control in problem state, key 8, in an APF authorized System REXX address space, using the security token of IBM Health Checker. Any modules that are loaded, linked, or attached from a System REXX exec must reside in an Authorized Program Facility (APF) authorized library. We discuss services that are appropriate to use when a check runs and those that are not appropriate. Certain behaviors might be enforced by system security or System REXX.

 Assembler routines might be called from a System REXX check. The assembler routine would receive control in problem state, key 8, and must reside in an APF authorized library. APF authorization restricts access to system functions, enabling the installation to identify which routines allow authorized access. Programs running in problem state, key 8, are not able to modify storage in any other key, which protects system control blocks. We include examples of assembler routines invoked to access persistent data for an exec check.

 TSO services are available to System REXX execs when REXXTSO(YES) is specified. Program isolation is provided when a check is defined to execute in a TSO/E host environment. In this environment only a single exec runs in a AXR TSO server address space.

 For our discussion we use the sample check (IBMITSO,XCF_CF_STR_INITSIZE) that detects when an XCF structure policy size should be reevaluated. This check is responsible for monitoring XES/XCF coupling facility structure allocation and reporting peak usage.

 We also demonstrate how the HZSPREAD and HZSPWRIT services can be used by a System REXX check to save persistent data by calling an assembler routine.

 7.2 Considerations when implementing a System REXX check

 Checks are intended to report on system behavior but not modify the system. System REXX allows the use of the REXX storage() function to read system storage, but does not allow its use to alter storage.

 Check security rights are established by the user ID assigned to the hzsproc address space. When the check runs in a System REXX address space this security token is passed to commands when an AXRCMD() request is issued. It is used whenever security validation is needed. A check can call assembler routines that are available in a LNKLST concatenation.

 •System REXX checks are APF authorized execs. If they call an assembler service, that routine would receive control in key 8. They are not able to obtain or modify storage in any other key, which protects system control blocks.

  –	We provide an example of an assembler routine called from a System REXX check. Sample programs ITSOXCFU, ITSOXCFR, and ITSOXCFW can be used to read and write persistent data using the HZSPREAD and HZSPWRIT IBM Health Checker’s services.

  –	The IOSSPOF assembler macro service can be used to find a single point of failure between two data sets or DASD devices. This service optionally writes an HZSFMSG message for a check routine to the message buffer.

 •The message table is an assembler csect that must be link edited into a library available to the hzsproc started task.

 Appropriate check routine behavior in an authorized exec check

 System REXX checks are expected to collect information from display command output, REXX read-only storage(), and Execio(). IBM Health Checker services can be used to present this information in the message buffer and issue alerts when a problem is detected. The following list provides guidelines for check routine behavior:

 •A check should issue only one exception.

 •A check should report on a single problem.

 •A check should not produce excessive output to the system log when issuing display reports.

 •Checks should trap internal errors, so the exec routine is not terminated by System REXX.

 •A REXXTIMELIMIT should be provided to terminate a check that takes too long to run.

 •REXX functions such as AXRCMD() or AXRWAIT() can be used, whereas using the AXRWTO function is discouraged because checks are expected to use HZSFLMSG() to send messages.

 •HZSLFMSG produces data for the message buffer to create reports and issue an exception message.

 •Storage cannot be modified using the REXX storage() function. When the fix for APAR OA25932 is installed, the REXX function storage() is available to the System REXX check in read-only mode, and can be used to read storage at a specified address, but cannot write to that storage.

 •The HZS_PQE_CHKWORK variable is a 2 K buffer to save data between check iterations. HZSLSTOP must be issued to save this variable when the check ends.

 •Execio() can be used to read and write to data sets.

 7.2.1 Defining the System REXX check environment

 In this section we discuss defining the System REXX check environment.

 Check definition parameters that are unique for a System REXX exec

 The HZSADDCK macro and the ADD/ADDREPLACE command identify the attributes of a System REXX check. Parameters included are as follows:

 •EXEC: Describes the name of a member placed in a library known to System REXX, such as SYS1.SAXREXEC or any library concatenated to the REXXLIB DDNAME.

 •REXXTIMELIMIT: The number of seconds that a check should be allowed to run. When the time limit is reached, System REXX invokes halt interpretation (HI) in the REXX environment where the exec is running.

 	
 Note: Compiled execs must be compiled with the %TESTHALT option for the HI to work.

 •REXXTSO YES|NO: YES is the default for this parameter. It provides support for TSO commands, such as LISTDSI(), and program isolation for the check. In this environment only a single exec runs in a AXR TSO server address space. There are eight address spaces available to TSO(YES) execs and 64 tasks for execs that do not need TSO services.

 •MSGTBL: This is the name of a message table generated by HZSMSGEN, compiled and linked into an APF authorized load library, such as a local check. It must be available to the hzsproc address space to be loaded.

 •REXXHLQ: This is the high-level qualifier of data sets that the check can read using the DDNAME AXRINDD or PARSE PULL. System REXX also uses this value to create a REXXOUT data set when the check is run with DEBUG(ON) specified. These data sets use the naming convention:

 rexxhlq.exec.REXXIN or rexxhlq.exec.REXXOUT

 When an entry code is included in the check definition the data set name includes that as a suffix and has the following format:

 rexxhlq.exec.REXXIN.Eentrycode

 The names of data sets that can be used by a given System REXX check are available with the display check detail command (Example 7-1).

 Example 7-1 Detail or DIAG display parameters report the check attributes and resources

 [image:]

 F hzsproc,DISPLAY,CHECK(IBMITSO,XCF_CF_STR_INITSIZE),DETAIL

 HZS0201I 12.48.33 CHECK DETAIL 728

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 STATE: ACTIVE(ENABLED) STATUS: SUCCESSFUL

 EXITRTN: HZS

 LAST RAN: 08/11/2009 12:30 NEXT SCHEDULED: (NOT SCHEDULED)

 INTERVAL: ONETIME

 EXCEPTION INTERVAL: SYSTEM

 SEVERITY: LOW

 WTOTYPE: INFORMATIONAL

 SYSTEM DESCCODE: 12

 THERE ARE NO PARAMETERS FOR THIS CHECK

 REASON FOR CHECK: ENSURE ADEQUATE STRUCTURE CAPACITY BY SIZING

 CF STRUCTURES FOR PEAK USAGE.

 MODIFIED BY: MODIFY COMMAND

 DEFAULT DATE: 20090721

 ORIGIN: HZSPRMJ2

 LOCALE: REXX

 REXXTSO: YES

 REXXOUT DSN: IBMUSER.IBMITSO.REXXOUT

 REXX TIME LIMIT: 0

 DEBUG MODE: ON VERBOSE MODE: NO

 [image:]

 7.2.2 Define the check attributes and register your check

 The sample CHECK(IBMITSO,XCF_CF_STR_INITSIZE) is used to demonstrate a System REXX check that interacts with automation. It can also be RUN on demand. This check uses persistent data to keep track of the peak structure size that is required as input to CFSIZER. The exception suggests using the CFSIZER tool to make component-specific recommendations for the structure size. The installation must know their peak usage to correctly size the structure; the CFSIZER is on the web at:

 http://www.ibm.com/systems/z/cfsizer

 •An exception is reported any time a structure that needs re-sizing is found that has not been reported:

  –	When the MPF exit calls the check only a single structure is reported on.

  –	When the check is run on demand with null parms, all structures are interrogated.

 F hzsproc,UPDATE,CHECK(IBMITSO,XCF_CF_STR_INITSIZE),PARM()

  –	Specifying PARM("RESET") causes the check to reset any save. Any structure that requires resizing will cause an exception to be issued.

 F hzsproc,UPDATE,CHECK(IBMITSO,XCF_CF_STR_INITSIZE),PARM(‘RESET’)

  –	Specifying PARM("strname") causes the check to only report on a single structure.

 F hzsproc,UPDATE,CHECK(IBMITSO,XCF_CF_STR_INITSIZE),PARM(‘strname’)

 •We associated DATE and SOURCE values with the set of definitions that we ship for this check. Should the installation need to change one or more of these definitions, the DATE and TIME values should also be changed to track the updates.

 •When VERBOSE(YES) is specified, all structures that require resizing are reported.

 •Debug support is also available, which reports on all structures, whether or not resizing is needed.

 •PARM() indicates that all allocated structures will be processed.

 •Only 126 bytes are provided for the check reason field, so we used the ‘general good practice’ words from the CFSIZER website. This appears in the DETAIL check DISPLAY and following an exception when check detects a problem.

 •When an exception occurs, the exception condition should be addressed and the check should be RUN again until it reports a successful status. An installation should be able to tune a check for success via specific PARMS if the exception cannot be addressed.

 The exec name is identified on the check definition. The check definition can be placed in an HZSADDCHECK MVS exit or by placing an ADD/ADDREPLACE command in an HZSPRMxx PARMLIB member.

 Example 7-2 The ADDREPLACE statement used to define our check

 [image:]

 ADDREP CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 EXEC(ITSOXCFC) MSGTBL(ITSOXCFM)

 REXXHLQ(IBMUSER)

 REXXTSO(YES)

 REXXIN(NO)

 REXXTIMELIMT(30)

 PARM()

 VERBOSE(YES)

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 DATE(20090723)

 REASON('Insure adequate structure capacity by sizing',

 'CF structures for peak usage.')

 [image:]

 An HZSPRMxx member can be specified in the hzsproc that starts IBM Health Checker or when the ADD PARMLIB command is invoked. If the check is defined as active it will run. See Example 7-3.

 Example 7-3 Use the Modify command, ADD PARMLIB to request the HZSPRMxx member be read

 [image:]

 F hzsproc,ADD,PARMLIB=xx

 [image:]

 Alternatively, request that the check be registered programmatically

 The same check could be placed in an HZSADDCK routine that is identified by a CSVDYNEX request for MVS exit HZSADDCHECK. In this example, subroutine HCEXIT would consist of the HZSADDCK assembler macro request. A sample of an HZSADDCHECK exit is available in ‘SYS1.SAMPLIB(HZSSADCK)’.

 All check definitions are processed when a modify command REFRESH or ADDNEW is issued. If the check does not already exist, it will be added.

 7.3 Coding techniques for Authorized REXX

 To fully take advantage of the System REXX authorized environment, REXX language, TSO services, and IBM Health Checker services, a check routine should:

 •Use the message buffer for all check communication using HZSLFMSG().

 •Establish recovery by trapping internal errors.

 •Specify REXXTIMELIMIT that causes a check to terminate if it runs too long.

 •Consider running with REXXTSO(YES). The TSO host environment option makes available to the check a set of additional TSO/E functions and also provides program isolation when the check is run.

 7.3.1 Functional requests your check will need

 An exec check writer needs these basic services:

 •Services that allow the check to report its data and are provided by IBM Health Checker

 •Services to collect data, which are provided by System REXX and TSO/E REXX

 A sample System REXX check is available in SYS1.SAMPLIB member HZSSXCHK. Table 7-1 summarizes available functions.

 Table 7-1 Functions

 	
 Function

 	
 Description

 	
 Reference documentation

 	
 HZSLSTRT()

 	
 Read the REXX variables that allow the check to write to the message buffer.

 	
 IBM Health Checker for z/OS User’s Guide, SA22-7994

 	
 HZSLFMSG()

 	
 Issue an HZSFMSG request to report an exception or write to the checks message buffer.

 	
 IBM Health Checker for z/OS User’s Guide

 Also see macro HZSFMSG.

 	
 HZSLSTOP()

 	
 An optional request to save data in the REXX variable HZS_PQE_CHKWORK. This requests indicates that the check is no longer running.

 	
 IBM Health Checker for z/OS User’s Guide

 	
 AXRCMD()

 	
 Issue a system command and obtain its response. This is used to display system settings and analyze that data.

 	
 z/OS MVS Authorized Assembler Services Guide, ‘System REXX’

 	
 AXRWAIT()

 	
 Request that the check be placed in wait for a specific time.

 	
 z/OS MVS Authorized Assembler Services Guide, ‘System REXX’

 	
 Execio()

 	
 Read or write to a data set.

 	
 z/OS TSO/E REXX Reference

 	
 parse

 	
 A service for reading the REXXIN source or parsing variable strings.

 	
 z/OS TSO/E REXX Reference

 	
 storage()

 	
 Only reading storage is supported in a System REXX environment.

 	
 z/OS TSO/E REXX Reference

 	
 signal on event

 - or -

 call on event

 	
 Trap unexpected error events and report those errors in the check message buffer.

 	
 z/OS TSO/E REXX Reference

 7.3.2 Variables established in your check by HZSLSTRT()

 Each HZSLxxxx function provides the return and reason codes when it is invoked. The HZSLSTRT function places the check in a running state. The check is unsuccessful if this request is not issued. It has no parameters. See Table 7-2.

 MyRetCode = HZSLSTRT()

 Table 7-2 Variable names and descriptions

 	
 Variable name

 	
 Description

 	
 RC

 	
 The return code for the HZSLSTRT function. For the actual meaning refer to IBM Health Checker for z/OS User’s Guide.

 	
 HZSLSTRT_Rsn

 	
 The reason code explaining a result value of 8 or more. For the actual meaning refer to IBM Health Checker for z/OS User’s Guide.

 	
 HZSLSTRT_SystemDiag

 	
 Diagnostic data returned by the failed service that HZSLSTRT uses.

 	
 HZS_PQE_ChkWork

 	
 Current value of the PQE_CHKWORK area saved by the XZSLSTOP service the last time that the check ran. Maximum of 2048 characters. HZS_PQE_CHCKWORK is set to zero before the check is run for the following reasons:

 •When the check is to run for the first time

 •When the check is REFRESHed

 •When the check becomes either INACTIVE or DISABLED for any reason besides invalid parameters

 	
 HZS_PQE_FUNCTION_CODE

 	
 A function code indicating why the check was called.

 	
 HZS_PQE_ParmArea

 	
 The value of PARM() from the check definition or the UPDATE command.

 	
 HZS_PQE_Reason

 	
 The reason provided in the check definition or UPDATE request.

 	
 HZS_PQE_LookAtParms

 	
 Indicates that the check PARMS() has changed:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Verbose

 	
 Indicates whether the check is running in verbose mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Debug

 	
 Indicates whether the check is running in debug mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Global_Check

 	
 Indicates whether the check is a global check that runs on only one system in a sysplex:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Environment_XCFMonoPlex

 	
 Indicates whether the system is configured in XCF MONOPLEX mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Environment_XCFLocal

 	
 Indicates whether the system is configured in XCF local mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Cum_Check_Count

 	
 Number of times that this check has been called since the check was initialized.

 	
 HZS_PQE_CHECK_Count

 	
 Number of times that this check has been called since the check was initialized or refreshed.

 	
 HZS_PQE_CheckOwner

 	
 The name of the check owner from the check definition.

 	
 HZS_PQE_CheckName

 	
 The name of the check from the check definition.

 	
 HZS_PQE_VERSION

 	
 The PQE format version ('0' so far).

 	
 HZS_PQE_ENTRY_CODE

 	
 The value of the entry code from the check definition.

 7.3.3 Check routine initialization

 Example 7-4 is taken from the sample check to instantiate check variables and establish recovery.

 Example 7-4 Basic check initialization steps

 [image:]

 HZSLSTRT_RC = HZSLSTRT() 1

 IF HZSLSTRT_RC <> 0 THEN /* @P2C*/

 DO

 IF HZS_PQE_DEBUG = 1 THEN

 DO /* Report debug detail in REXXOUT */

 SAY "HZSLSTRT RC" HZSLSTRT_RC

 SAY "HZSLSTRT RSN" HZSLSTRT_RSN

 SAY "HZSLSTRT SYSTEMDIAG" HZSLSTRT_SYSTEMDIAG

 END

 EXIT /* Exit, check cannot be performed */

 END

 IF HZS_PQE_DEBUG = 1 THEN

 TRACE ?R /* Save trace in REXXOUT */

 SIGNAL ON NOVALUE 2 /* NOVALUE signals NOVALUE label */

 SIGNAL ON HALT 3 /* HALT signals HALT label */

 SIGNAL ON SYNTAX 4 /* SYNTAX signals SYNTAX label */

 CALL ON ERROR 5 /* ERROR calls ERROR routine */

 CALL ON FAILURE 6 /* FAILURE calls FAILURE routine */

 NUMERIC DIGITS 10 7 /* Enough for a 10 digit number */

 PARM = STRIP(HZS_PQE_PARMAREA,"B" 8

 PARMLEN = Length(HZS_PQE_PARMAREA)

 [image:]

 Interesting considerations about this piece of code are:

 •HZSLSTRT is called to indicate that the check is running (1).

 •Conditional traps establish recovery using REXX functions ‘SIGNAL ON’ and ‘CALL ON’. (2 to 6).

 •The largest number that this routine is required to handle is 10 digits long. The REXX default is 9. It must be described to REXX (7).

 •Initialize the check PARM(), which can be changed by the UPDATE command (8).

 When the check is put in debug mode a trace is included in REXXOUT.

 Trap and report unexpected events

 If an internal error occurs while running the check, that error should be reported in the message buffer. The check might continue running the event if a system error is reported. This can be accomplished by establishing the SYNTAX subroutine with the SIGNAL ON SYNTAX function.

 Example 7-5 shows how to use HZSLFMSG to report data from a trapped event. In this case if an error occurs in a called function procedure, the SYNTAX label returns control to the function caller with a return value of 4. Check message 3 in ITSOXCFM, which is a report message that has a single variable.

 Example 7-5 Managing a REXX syntax error

 [image:]

 /* **/

 /* */

 /* Syntax and arithmetic errors are reported here */

 /* */

 /* **/

 SYNTAX:

 ERR1 = "A syntax or run-time error occured on line: "sigl

 ERR2 = sourceline(sigl)

 Say Err1

 Say Err2

 HZSLFMSG_REQUEST = "CHECKMSG" /* A message table request */

 HZSLFMSG_MESSAGENUMBER = 3 /* write message 3 */

 HZSLFMSG_INSERT.0 = 1 /* write line one error */

 HZSLFMSG_INSERT.1 = Err1 /* Initial input variable */

 HZSLFMSG_RC = HZSLFMSG()

 HZSLFMSG_INSERT.1 = Err2 /* write line two error */

 HZSLFMSG_RC = HZSLFMSG()

 RETURN 4

 [image:]

 In the code in Example 7-5 we use two REXX special variables:

 •sigl, set by REXX with the line number of the exec that caused the transfer of control (in our case the condition that was trapped by the SIGNAL ON SYNTAX clause)

 •sourceline, which contains the actual statement pointed to by sigl

 	
 Note: In order to issue HZSLFMSG or any IBM Health Checker service, HZS_HANDLE must be exposed to all procedures:

 SaveStrName: Procedure Expose R1. DR1. HZS_PQE_CHKWORK HZS_HANDLE

 Running the check causes a syntax error in the call badroutine statement. This error is trapped by the SIGNAL ON SYNTAX clause. Control is transferred to the SYNTAX label. The piece of code at this label uses HZSFLMSG to report on the error. The final result is shown in Example 7-6.

 Example 7-6 Check message generated by the code in the previous example

 [image:]

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 START TIME: 08/11/2009 12:30:42.370700

 CHECK DATE: 20090721 CHECK SEVERITY: LOW

 DEBUG MODE: ON

 A syntax or run-time error occured on line: 456

 call badroutine

 END TIME: 08/11/2009 12:30:43.080112 STATUS: UNSUCCESSFUL

 [image:]

 If the check is executed after placing it in debug mode, System REXX creates a debug data set using the REXXHLQ as the high-level qualifier. It uses the naming convention:

 rexxhlq.exec.REXXOUT

 Messages issued by REXX, TSO, TRACE, and the SAY command are captured in this data set when the check is placed in DEBUG mode (Example 7-7).

 Example 7-7 Trace output when the check is run in debug mode

 [image:]

 458 *-* call badroutine

 770 *-* SYNTAX:

 771 *-* ERR1 = "A syntax or run-time error occured on line: "sigl

 A syntax or run-time error occured on line: 456

 772 *-* ERR2 = sourceline(sigl)

 call badroutine

 . . .

 [image:]

 7.3.4 Reporting errors in the check

 Each time the check runs, the check parameters should be verified. When the check parms are changed an active check runs. In certain cases a check should disable itself.

 Disabling a check that has nothing to check

 When the system is configured for an XCFLOCAL there are no structures. In this case the check can disable itself using an HZSFLMSG STOP request indicating that the reason for the request is an environmental error, ENVNA (Example 7-8).

 Example 7-8 Disable a check when the environment does not allow the condition that is being checked

 [image:]

 IF HZS_PQE_Environment_XCFLocal = 1 THEN do;

 WriteHeading = 1 /* no heading is needed */

 Call WriteReportLine 'There are no structures in an XCFLOCAL'

 HZSLFMSG_REQUEST = 'STOP' /* Stop will disable the check */

 HZSLFMSG_REASON = 'ENVNA' /* Environment error */

 HZSLFMSG_RC = HZSLFMSG() /* Function message to disable */

 EXIT 0

 END

 [image:]

 This setting cannot change, so there is no need for the check to run again. If it was possible for this setting to change, an MPF exit could be used to RUN the check again.

 When a check is disabled for ENVNA, it can still be RUN explicitly (Example 7-9):

 F hzsproc,RUN,CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 Example 7-9 A check that is disabled for ENV N/A can still be RUN

 [image:]

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 START TIME: 08/11/2009 18:02:34.270382

 CHECK DATE: 20090721 CHECK SEVERITY: LOW

 THERE ARE NO STRUCTURES IN AN XCFLOCAL

 HZS1003E CHECK(IBMITSO,XCF_CF_STR_INITSIZE):

 THE CHECK IS NOT APPLICABLE IN THE CURRENT SYSTEM ENVIRONMENT.

 END TIME: 08/11/2009 18:02:34.292662 STATUS: ENV N/A

 [image:]

 Disabling a check because of a parameter error

 An incorrect parameter error should cause a check to be disabled also. Variable HZS_PQE_LOOKATPARMS is set to “1” when the check parms should be verified.

 The code snippet in Example 7-10 shows how to issue an error message if the PARM string contains more than one space-delimited word. The REXX WORDS function returns the number of blank-delimited words in string PARM, which was set during check initialization, as shown in Example 7-4 on page 155.

 Example 7-10 Managing a parameter error condition

 [image:]

 If HZS_PQE_LOOKATPARMS = 1 THEN

 DO

 /***/

 /* Issue: HZS1209E, PARAMETER parm IS NOT RECOGNIZED. */

 /***/

 IF (WORDS(PARM) > 1) THEN

 DO /* parm is too long */

 HZSLFMSG_REQUEST = "HZSMSG" 1

 HZSLFMSG_REASON = "PARS1209" 2

 HZSLFMSG_insert.0 = 1 /* one insert is required */

 HZSLFMSG_insert.1 = Substr(HZS_PQE_PARMAREA,1,parmlen)

 HZSLFMSG_insert.1 = HZS_PQE_PARMAREA

 HZSLFMSG_RC = HZSLFMSG()

 /* Disable the check */

 HZSLFMSG_REQUEST = "STOP"

 HZSLFMSG_REASON = "BADPARM"

 HZSLFMSG_RC = HZSLFMSG()

 END

 [image:]

 Standard messages are provided by the IBM Health Checker to use in reporting errors parsing the check PARMS.

 In this case the HZSLFMSG service is called, indicating that we want to issue a standard IBM Health Checker message 1. The specific message reason is passed 2, “PARS1209”, which indicates that PARMS were not recognized. For a complete list of available IBM Health Checker messages see macro service HZSFMSG (REASON PARS1201- PARS1219).

 Running the check with an unexpected set of parms (for example, “z b c”) produces the error messages shown in Example 7-11.

 Example 7-11 Running the check with unexpected parms

 [image:]

 CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 START TIME: 08/11/2009 17:14:18.431949

 CHECK DATE: 20090721 CHECK SEVERITY: LOW

 DEBUG MODE: ON

 CHECK PARM: z b c

 HZS1209E CHECK(IBMITSO,XCF_CF_STR_INITSIZE):

 PARAMETER z b c IS NOT RECOGNIZED

 HZS1001E CHECK(IBMITSO,XCF_CF_STR_INITSIZE):

 AN INSTALLATION PARAMETER ERROR WAS DETECTED.

 END TIME: 08/11/2009 17:14:18.481369 STATUS: PARAMETER ERROR

 [image:]

 After being disabled by a HZSLFMSG STOP request, a check only runs again if the parms are changed with an UPDATE command:

 F hzsproc,UPDATE,CHECK(IBMITSO,XCF_CF_STR_INITSIZE),PARM(‘new_structure’)

 Changing the check parm to a new value causes the check to RUN. If the check parm is updated with the same value it does not RUN.

 7.3.5 Make the check behavior tunable

 When designing our check we attempted to facilitate automation by only allowing it to issue an exception the first time that an undesirable condition is detected. There might be times when the installation wants the check to report an exception again. For this purpose we made the check tunable by providing a PARM value of RESET, which clears any prior knowledge of an exception.

 Our CHECK(IBMITSO,XCF_CF_STR_INITSIZE) check supports the following parm options:

 •PARM(‘RESET’)

 This code clears the exception data saved in HZS_PQE_CHKWORK and persistent data. It processes all allocated structures by issuing an XCF display command with AXRCMD(). Any allocated structure that needs resizing is included in a report. A single exception is issued even if more than one structure requires attention.

 •PARM()

 Processes all allocated structures by issuing an XCF display command with AXRCMD(). Any allocated structure that needs resizing is included in a report. A single exception is issued if a structure requires attention that has not been reported on previously. This clears an outstanding exception condition if all structures that require resizing have been reported.

 •PARM(‘strname’)

 Processes a single structure by issuing an XCF display command with AXRCMD(). If this structure requires resizing an exception is issued.

 	
 Note: Beware when using a similar approach. If you put an update for PARM('str1') in HZSPRMxx followed by a RUN followed by an update for PARM('str2') followed by a RUN, it is unpredictable whether you will get 2 runs or just one. This is all due to the asynchronous nature of HZS command processing.

 HZS_PQE_CHKWORK is used to save information about any structure that might have caused an exception to be issued.

 When the check is in verbose mode or debug mode, all structures are processed. See Example 7-12.

 Example 7-12 Managing the PARM options

 [image:]

 /***/

 /* If the check is being reset report on any structure that */

 /* may have an actual size that is larger than the policy INITSIZE. */

 /***/

 IF Parm = "RESET" THEN DO

 HZS_PQE_CHKWORK = ""

 HZS_PQE_CHKWORK = STRIP(HZS_PQE_CHKWORK,"B")

 PARM = ""

 END

 IF Parm = "" | HZS_PQE_VERBOSE = 1 | HZS_PQE_DEBUG = 1 THEN DO

 CommandLine = 'D XCF,STR,STRNM=ALL,STATUS=ALLOCATED'

 END

 ELSE DO

 CommandLine = 'D XCF,STR,STRNM='||PARM

 END

 CmdResult=AXRCMD(CommandLine,'Response.',30)

 IF CmdResult = 0 THEN do;

 [image:]

 7.3.6 Saving information for the next time the check runs

 Data collected when a check runs might be needed the next time that the check runs. Several options are available to a System REXX check to save needed information:

 •Using a standard data set through the REXX Execio() function.

 •Using the HZS_PQE_CHKWORK variable: Up to 2048 characters can be saved in this work area.

 •Using IBM Health Checker’s persistent data management functions: An assembler routine that issues HZSPREAD and HZSPWRIT can be called by the check routine. Persistent data is saved in the FILE indicated by HZSPDATA of the hzsproc started task.

 For additional information about IBM Health Checker’s persistent data refer to “Using persistent data to save information across an IPL” on page 85.

 Saving data in HZS_PQE_CHKWORK

 The HZS_PQE_CHKWORK variable is available to the check routine after HZSLSTRT() is issued. It can be used to save information to be used the next time that the check runs. The maximum length of this variable is 2048 characters. It is cleared if the check is disabled or deleted. The content that you assign to this variable is only saved when your check routine issues a HZSLSTOP() request.

 	
 Note: To make HZS_PQE_CHKWORK available for the next check’s iteration you must assign to it the intended value and issue a HZSLSTOP() request.

 Sample exec routine ITSOXCFC saves the structure name in HZS_PQE_CHKWORK. If an exception has already been reported for this structure, it will not be reported again. Subroutine “SaveStrname” is used to save the structure data.

 Example 7-13 Search for a structure in HZS_PQE_CHKWORK

 [image:]

 /***/

 /* SaveStrName Save the structure name in HZS_PQE_CHKWORK */

 /* which is available the next time the check is run */

 /* RC = 0 Structure is not larger than initsize */

 /* RC = 1 A new structure is larger than initsize */

 /* RC = 2 A reported structure is larger than initsize */

 /***/

 SaveStrName: Procedure Expose R1. DR1. HZS_PQE_CHKWORK HZS_HANDLE ,

 HZS_PQE_CHECKOWNER HZS_PQE_CHECKNAME PARM

 NUMERIC DIGITS 10 /* REXX default is 9 */

 . . .

 Found = 0

 Do Idx = 1 to Length(HZS_PQE_CHKWORK) by 16 ,

 WHILE (Found = 0)

 CompareStrName = SubStr(HZS_PQE_CHKWORK,Idx,16)

 CompareStrname = strip(CompareStrname,"B")

 If CompareStrName = R1.StrName THEN do

 Found = 1 /* Structure alread reported */

 end

 End

 If Found = 0 THEN DO

 HZS_PQE_CHKWORK = HZS_PQE_CHKWORK||LEFT(R1.StrName,16)

 ReSizeStructure = 1

 END

 ELSE

 ReSizeStructure = 2

 . . .

 Return(ReSizeStructure)

 [image:]

 In certain cases the size of the HZS_PQE_CHKWORK might not be large enough for all of the information that you must save. This was also the case with our (IBMITSO,XCF_CF_STR_INITSIZE) check. We do not know how many structures an installation might have. One option is to use Execio(). In this case we would require that the installation pre-allocates a data set for this check to use to save its data. Another solution is to use IBM Health Checker’s persistent data.

 	
 Note: IBM Health Checker’s persistent data management functions are currently available as assembler APIs only. HZSPWRIT and HZSPREAD do not have an equivalent System REXX function. To make these services available to REXX we wrote a couple of REXX user functions that are described in Appendix A, “Additional material” on page 219.

 Using persistent data to save check information

 There is no limit to how much data a single check can save using persistent data. The data that is saved is still available after a system IPL. Persistent data cannot be deleted once it is saved.

 Four instances of check data might exist:

 •Prior IPL

  –	The FIRST instance: Written the first time that the check saved data during the prior IPL. It is the oldest instance of data available.

  –	The MOSTRECENT instance: Written the last time that the check saved data during the prior IPL.

 •Current IPL

  –	The MOSTRECENT instance: Written the last time that the check saved data during the current IPL.

  –	The FIRST instance: Written the first time that the check saved data during the current IPL. It is the oldest instance available since the current IPL.

 	
 Note: Data saved by an HZSPWRIT request is not available until the check completes.

 Using HZSPREAD to read persistent data

 The first time that the (IBMITSO,XCF_CF_STR_INITSIZE) check runs there is no persistent data for the check. Most likely it will be activated and run against all of the allocated structures in the system. If a structure requires resizing its peak size value should be saved.

 When the (IBMITSO,XCF_CF_STR_INITSIZE) check runs, an assembler routine is called to read persistent data. It first attempts to read the most recent data from the current IPL. An abend is reported if an unexpected error occurs.

 To make HZSPREAD available to REXX we wrote a user function called ITSOXCFR(). Example 7-14 provides a snippet of the code that reads persistent data.

 Example 7-14 Reading the most recent data for current IPL using HZSPREAD

 [image:]

 * Request the first byte of data in the Current IPL instance. *

 * The total amount of data will be returned by BYTESAVAIL. *

 HZSPREAD CHECKOWNER=CK_Owner,CHECKNAME=CK_Name, *

 IPL=CURRENT,INSTANCE=MOSTRECENT, *

 REMOTE=YES,REXX=YES, *

 HANDLE=CK_Handle, *

 BUFFER=PREAD_STRDATA,DATALEN=PREAD_DataLen, *

 STARTBYTE=0, *

 BYTESAVAIL=Pread_DataAvail, *

 RETCODE=HZSPREAD_RC,RSNCODE=HZSPREAD_RSN, *

 MF=(E,HZSPREAD_PLIST)

 LTR R15,R15

 JNZ TestForPrior Check Prior IPL

 * Use the value returned by BytesAvail to obtain a buffer *

 . . . calculate buffer length

 . . . and place it into GPR 1

 GETMAIN RU,LV=(R1),SP=0,BNDRY=PAGE Get page Buffer

 ST R1,PREAD_DATA@ Try again with a bigger buffer

 LR PreadBufReg,R1 Initialize strdata buffer

 HZSPREAD CHECKOWNER=CK_Owner,CHECKNAME=CK_Name, *

 IPL=CURRENT,INSTANCE=MOSTRECENT, *

 REMOTE=YES,REXX=YES, *

 HANDLE=CK_Handle, *

 BUFFER=(PreadBufReg),DATALEN=Pread_DataAvail, *

 STARTBYTE=0, *

 BYTESAVAIL=Pread_DataAvail, *

 RETCODE=HZSPREAD_RC,RSNCODE=HZSPREAD_RSN, *

 MF=(E,HZSPREAD_PLIST)

 [image:]

 	
 Note: In order to provide the HZSPREAD service with a large enough data buffer, we must first determine how much data is actually available. To do this we issue a first HZSPREAD request for just the one byte of data. The service returns the total number of bytes that were available to be returned. With this information we obtain the data buffer for the actual HZSPREAD request.

 In the previous example, the first HZSPREAD request could be avoided by allocating a buffer larger than you know you might need and specifying a correspondingly large DATALEN value. The technique used by the example should not be used unless you are concerned about virtual memory.

 Routines that read persistent data must expect two conditions:

 •RC 8 RSN xxxx0830

 Name: HzspreadRsn_DataDoesNotExist. Data does not exist in the specified IPL for this check.

 •RC 8 RSN xxxx082D

 Name: HzspreadRsn_NoMatch. Data does not exist for this check.

 When reason HzspreadRsn_DataDoesNotExist is returned by HZSPREAD, data must exist in the prior IPL data. See Example 7-15.

 Example 7-15 Reading the most recent data from prior IPL using HZSPREAD

 [image:]

 * Use the value returned by BytesAvail to obtain a buffer *

 . . . calculate buffer length

 . . . and place it into GPR 1

 ST R1,PREAD_DataLen

 GETMAIN RU,LV=(R1),SP=0,BNDRY=PAGE Get page Buffer

 ST R1,PREAD_Data@

 LR PreadBufReg,R1 Initialize strdata buffer

 HZSPREAD CHECKOWNER=CK_Owner,CHECKNAME=CK_Name, *

 IPL=PRIOR,INSTANCE=MOSTRECENT, *

 REMOTE=YES,REXX=YES, *

 HANDLE=CK_Handle, *

 BUFFER=(PreadBufReg),DATALEN=Pread_DataAvail, *

 STARTBYTE=0, *

 BYTESAVAIL=Pread_DataAvail, *

 RETCODE=HZSPREAD_RC,RSNCODE=HZSPREAD_RSN, *

 MF=(E,HZSPREAD_PLIST)

 LTR R15,R15

 JNZ ErrorPrior This should have worked

 [image:]

 If persistent data is not available we report that to the REXX caller setting the REXX variable HZSPREAD_MATCH to ‘NO_CHECKDATA’. If this request is not successful an ABEND is issued to report the error.

 The REXX function call to read persistent data

 The REXX routineCheckPersistentData, used to interface our assembler ITSOXCFR() stub, must initialize the variables needed to read the check’s data. An HZSPREAD assembler request requires the name and owner of the check to read. The check token HZS_HANDLE is also required.

 The routine in Example 7-16 uses the name of the structure passed in CK_STRDATA to find the peak structure size in an instance of persistent data. The results are returned in the REXX variable HZSPREAD_MATCH.

 Example 7-16 A REXX procedure using ITSOXCFR()

 [image:]

 CheckPersistentData: Procedure Expose HZS_HANDLE CK_STRDATA,

 HZS_PQE_CHECKOWNER HZS_PQE_CHECKNAME PARM HZS_PQE_DEBUG S1.

 PdataPeak = 0

 v1. = ""

 ITSOXCFR_RC = ITSOXCFR()

 IF HZS_PQE_DEBUG = 1 THEN DO

 say 'ITSOXCFR_RC: '||ITSOXCFR_RC

 say PARM hzspread_match

 END

 If HZSPREAD_MATCH = "" THEN DO

 PdataPeak = 0

 V1.strname = strip(Substr(CK_strdata,1,16),"B")

 END

 ELSE DO

 Parse upper var HZSPREAD_MATCH v1.Strname 17,

 v1.Init 28,

 v1.Actual 39,

 v1.DuplexActual 50,

 v1.Peak

 IF HZS_PQE_DEBUG = 1 THEN

 Say v1.Strname v1.Init v1.Actual v1.DuplexActual v1.Peak

 TestPeak = Strip(V1.PEak,"T","K")

 S1.OldPeak = TestPeak

 IF S1.ActualSize > TestPeak THEN

 PdataPeak = S1.ActualSize

 ELSE

 PdataPeak = TestPeak

 END

 [image:]

 The results of ITSOXCFR() are returned in HZSPREAD_MATCH. When no data is read ITSOXCFR returns nulls if data did not exist for the specified structure or NO_CHECKDATA if data has never been saved for the check.

 Using HZSPWRIT to save persistent data

 The first time that the (IBMITSO,XCF_CF_STR_INITSIZE) check is run we populate persistent data with information for all allocated structures. When there is no structure data or the installation has requested that data be RESET, the most recent instance is created.

 An HZSPWRIT request issued by a non-local check requires only the HZS_HANDLE and the data that you want to save. HZSPWRIT records data for the check routine expected to be in control based on the provided handle. See Example 7-17.

 Example 7-17 Writing persistent data using HZSPWRIT

 [image:]

 * Always write the most recent level of data to the MostCurrent *

 * data instance *

 WriteNewData DS 0H

 HZSPWRIT REMOTE=YES,REXX=YES, *

 HANDLE=CK_Handle, *

 BUFFER=CK_STRDATABUF,DATALEN=PWRIT_DataLen, *

 RETCODE=HZSPWRIT_RC,RSNCODE=HZSPWRIT_RSN, *

 MF=(E,HZSPWRIT_PLIST)

 [image:]

 As for HZSPREAD, our sample assembler interface module to HZSPWRIT, called ITSOXCFW, can be invoked by REXX as a user function.

 Listening for structure size changes

 When a new structure is allocated an IXC582I message is issued. The structure can also be changed by automatic alter processing. In this case IXC590I is issued.

 The (IBMITSO,XCF_CF_STR_INITSIZE) check receives control from an MPF exit that listens for IXC582I and IXC590I messages. It runs the check, including the name of the structure as a parm.

 Because HZSCHECK does not support updating the check parm, the MPF exit invokes a System REXX exec named ITSOXCFE to issue the UPDATE command, passing it the WTOR text containing the name of the structure. See Example 7-18.

 Example 7-18 MPF exit invokes a System REXX exec to update the check parm

 [image:]

 . . .

 AXREXX REQUEST=EXECUTE, X

 SECURITY=BYAXRUSER, X

 TSO=YES, X

 SYNC=NO, X

 NAME=VNAME, X

 REXXARGS=@ARGLST, X

 MF=(E,AXREXXL) INITIATE SYSTEM REXX PGM

 . . .

 VNAME DC CL8'ITSOXCFE' NAME OF SYSTEM REXX PROGRAM

 [image:]

 The ITSOXCFE exec, invoked by the MPF exit, parses the message text and issues an update command to change the check parm, which causes the check routine to get control. See Example 7-19.

 Example 7-19 ITSOXCFE issues a modify command to UPDATE the check parms

 [image:]

 update_check_parm:

 cmd = "F HZSPROC,UPDATE,CHECK=("chko","chkn"),PARM=("chkp")"

 @ = axrcmd(cmd)

 if @ = 0

 then nop

 else @ = axrwto("ITSOXCFE/"msgname" - AXRCMD failed")

 return

 [image:]

 The check routine determines that data has changed for this structure and ITSOXCFU is called to save the peak data (Example 7-20).

 Example 7-20 Update the current instance of persistent data

 [image:]

 If v1.StrName = PARM THEN DO

 ITSOXCFU_RC = ITSOXCFU() /* update most recent data */

 IF HZS_PQE_DEBUG = 1 THEN DO

 say 'ITSOXCFU_RC: '||ITSOXCFU_RC

 END

 END

 If PARM='RESET' |,

 HZSPREAD_MATCH = 'NO_CHECKDATA' THEN DO

 ITSOXCFW_RC = ITSOXCFW() /* replace all recent data */

 IF HZS_PQE_DEBUG = 1 THEN DO

 say 'ITSOXCFW_RC: '||ITSOXCFW_RC

 END

 END

 Drop v1.

 Return(PdataPeak)

 [image:]

 The ITSOXCFU() user function reads the most recent instance of saved data, which contains information for any processed structure, and updates the entry for the changed structure.

 Using a standard data set to retain check data

 Execio() is supported by System REXX execs both in time sharing option (TSO) and in non-TSO execution environments.

 When TSO services are available

 TSO services are available when the check definition specifies REXXTSO(YES).

 •A REXXIN data set is not allowed, but the ALLOCATE command is supported and the check can allocate and access any data set.

 •Only one exec runs in a TSO server space at any given time.

 •If the exec terminates with data sets allocated, System REXX frees the allocations.

 You can read more about services that are available to a TSO/E REXX exec in z/OS TSO/E REXX Reference, SA22-7790.

 When TSO services are not available

 TSO services are not available when the check definition specifies REXXTSO(NO).

 •The ALLOCATE command is not supported. Although you could still allocate data sets using BPXWDYN, this option is deprecated.

 •If you define the check as REXXIN(YES), System REXX allocates a predefined sequential data set when the check runs.

 •Pay attention when using Execio() without TSO services because it might automatically target the MVS console for input and attempt to execute it as a REXX statement.

 •Up to 64 execs can share the non-TSO server space. All of them have access to the allocated data set.

 	
 Note: REXXIN(YES) is only supported when REXTSO(NO) is specified.

 When a check is defined with the parameters REXXTSO(NO) and REXXIN(YES), a data set is required for the check to run. The REXXHLQ, EXEC name, and ENTRYCODE check definition parameters are used. The required data set name has the form:

 rexxhlq.exec.rexxin.Eentrycode

 In Example 7-21 the data set name “IBMUSER.HZSSXCHK.REXXIN.E1” is used.

 Example 7-21 Defining a System REXX check to use a REXXIN data set

 [image:]

 ADDREP CHECK(IBMSAMPLE,HZS_SAMPLE_REXXIN_CHECK)

 EXEC(HZSSXCHK)

 REXXHLQ(IBMUSER)

 REXXTSO(NO)

 REXXIN(YES)

 MSGTBL(HZSSMSGT)

 ENTRYCODE(1)

 USS(NO)

 VERBOSE(NO)

 PARMS('LIMIT(047)')

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 DATE(20061219)

 REASON('A SAMPLE CHECK TO DEMONSTRATE AN ',

 'EXEC CHECK USING REXXIN.')

 [image:]

 	
 Note: If your REXXTSO(YES) check does create a data set, consider using the naming conventions established by IBM Health Checker for REXXIN to form the data set name.

 Using a REXXIN data set

 The REXXIN data set is open for input when the exec gets control. The check can use Execio() or PARSE PULL to read the data set. The REXXIN data set can also be used to save persistent data. Just open it for output, as shown by Example 7-22, and use Execio() to write into it.

 Example 7-22 Using the REXXIN data set for input and output

 [image:]

 /***/

 /* Read the data in REXXIN that System Rexx has allocated */

 /* Populate the stem variable RexxIn and close the dataset. */

 /***/

 "EXECIO * DISKR "AXRINDD" (STEM RexxIn. FINIS"

 /***/

 /* Open the same data for output. Populate the dataset using the */

 /* CkMsgOut. and close the dataset. */

 /***/

 "EXECIO 0 DISKW "AXRINDD"(OPEN"

 CkMsgOut. = ""

 CkMsgOut.0 = 10

 Do Idx = 1 To 10

 CkMsgOut.Idx = "Test Out text "Idx

 End

 "EXECIO 10 DISKW "AXRINDD" (STEM CkMsgOut. FINIS"

 [image:]

 	
 Note: System REXX does not allow the check to run if the required data set name cannot be allocated (Example 7-23).

 Example 7-23 If the required REXXIN data set does not exist this check fails

 [image:]

 f hzsproc,add,parmlib=xc

 HZS0403I ADD PARMLIB PROCESSING HAS BEEN COMPLETED

 IKJ56228I DATA SET IBMUSER.HZSSXCHK.REXXIN.E1 NOT IN CATALOG OR

 CATALOG CAN NOT BE ACCESSED

 [image:]

 Using a REXXOUT data set

 The REXXOUT data set is not intended as a permanent data store for checks, but as a debugging aid for System REXX execs. It is available in both TSO and non-TSO execution environments when the check is in debug mode. For additional information about REXXOUT refer to 6.3.3, “REXXOUT data set” on page 142.

 7.4 Example 1: Using an MPF exit to initiate a health check

 In this example, an MPF exit is triggered by a message, which initiates Health Checks directly. This is a generalized facility to run Health Checks for Owner(IBMITSO) and Checkname(MPF_msgid*), where msgid is the identifier of the message defined to MPF to trigger the event.

 Although this example initiates health checks, our health check does not do anything of note. We only want to prove that the technique is viable.

 We used the IBM Health Checker initialization complete message as the trigger for this example:

 HZS0103I HZSPROC INITIALIZATION COMPLETE

 A health check initiated at this time could be useful to check the configuration of IBM Health Checker.

 7.4.1 MPFLSTxx

 First we must update PARMLIB(MPFLSTxx), as shown in Example 7-24

 Example 7-24 MPFLSTxx example

 [image:]

 BROWSE SYS1.PARMLIB(MPFLSTHC) - 01.06 Line 00000000 Col 001 080

 Command ===> Scroll ===> CSR

 ********************************* Top of Data **********************************

 HZS0103I,SUP(NO),USEREXIT(ITSOHZSX)

 ******************************** Bottom of Data ********************************

 [image:]

 This definition causes a MPF exit named ITSOHZSX to be triggered in response to the HZS0103I message.

 To activate this PARMLIB(MPFLSTxx) definition an operator SET (or “T” for short) command must be issued. Before changing the system MPFLST first check what is in use, as shown in Example 7-25.

 Example 7-25 Checking for what is in use

 [image:]

 Display the message id in the MPF list:

 D MPF

 IEE677I 09.34.40 MPF DISPLAY FRAME 1 F E SYS=SY1

 MESSAGE ID -MPF SUPPRESS RETAIN AUTO TOKEN EXIT

 $HASP420 -ZX NO YES NO MPFYES

 $HASP426 -ZX NO YES NO MPFART

 $HASP441 -ZX NO YES NO MPFYES

 [image:]

 On our test system, the MPFLSTxx member currently in use (as determined by the D MPF operator command) was MPFLSTZX, and those definitions must remain, so we used the T MPF=(HC,ZX) command to add our MPFLSTHC definitions without losing the MPFLSTZX definitions.

 7.4.2 The MPF Exit

 MPF exit ITSOHZSX is a small, simple program that checks to see whether health checks exist for Owner(IBITSO) and Checkname(MPF_msgid*) using the HZSQUERY macro. If so, then ITSOHZSX uses the HZSCHECK macro to initiate running the health checks. See Example 7-26 for code fragments of how this is done.

 Example 7-26 ITSOHZSX fragments

 [image:]

 000002 ITSOHZSX CSECT

 - - - - - - - - - - - - - - - - - - - 80 Line(s) not Displayed

 000083 L R9,0(,R1) POINT TO CTXT

 000084 USING CTXT,R9 ADDRESSABILITY

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000088 L R8,CTXTTXPJ GET ADDRESS OF MAJOR

 000089 USING CTXTATTR,R8 ADRESSABILITY

 000090 LA R7,@ANSAREA POINT TO HZSQUERY ANSWER AREA

 000091 USING HZSQUAAHDR,R7 ADDESSABILITY

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000095 LA R1,CTXTTMSG POINT TO MESSAGE

 000096 LA R2,@MSGID POINT TO OUTPUT (CHECKNAME)

 - - - - - - - - - - - - - - - - - - - 17 Line(s) not Displayed

 000114 HZSQUERY REQUEST=CHECKINFO, X

 000115 ANSAREA=@ANSAREA, X

 000116 ANSLEN=@ANSLEN, X

 000117 CHECKOWNER=VOWNER, X

 000118 CHECKNAME=@NAME, X

 000119 MF=(E,HZSQUERL) SEE IF CHECK EXISTS

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000121 L R1,HZSQUAAHNUMQUAAC LOOK AT NUMBER OF RESPONSES

 000122 LTR R1,R1 ANY CHECKS?

 000123 BZ NOCHECK NO - EXIT

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000125 DOCHECK DS 0H

 000126 HZSCHECK REQUEST=RUN, X

 000127 CHECKOWNER=VOWNER, X

 000128 CHECKNAME=@NAME, X

 000129 MF=(E,HZSCHECL) INITIATE CHECK(S)

 - - - - - - - - - - - - - - - - - - - 22 Line(s) not Displayed

 000152 VANSLEN EQU 4096*4

 - - - - - - - - - - - - - - - - - - - 2 Line(s) not Displayed

 000155 VOWNER DC CL16'IBMITSO '

 - - - - - - - - - - - - - - - - - - - 10 Line(s) not Displayed

 000166 @NAME DS 0CL32

 000167 @MSGHDR DS C'MPF_'

 000168 @MSGID DS CL(L'@NAME-L'@MSGHDR)' '

 000169 ORG @NAME+L'@NAME

 000170 HZSQUERY MF=(L,HZSQUERL)

 000171 HZSCHECK MF=(L,HZSCHECL)

 000172 @ANSLEN DS F

 000173 @ANSAREA DS CL(VANSLEN)

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000177 HZSQUAA ,

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000179 HZSZCONS ,

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000181 HZSPQE ,

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000183 IEZVX100 ,

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000185 END

 [image:]

 The ITSOHZSX program must be assembled, link edited, and located/activated into a LNKLST or LPA.

 For our scenario, when message HZS0103I appears on the operator console, MPF exit ITSOHZSX is triggered, then Health Checks for Owner(IBMITSO) and Checkname(MPF_msgid*) are initiated.

 7.4.3 The health check

 As mentioned earlier, the health check in this example does not do anything useful. Its only purpose is to prove the viability of an MPF exit initiating a health check in response to an operator message. We defined the health check in PARMLIB(HZSPRMxx), as shown in Example 7-27.

 Example 7-27 HZSPRMxx for CHECK(IBMITSO,MPF_HZS0103I)

 [image:]

 ADDREP CHECK(IBMITSO,MPF_HZS0103I)

 EXEC(ITSOHZSC)

 REXXHLQ(AXRUSER)

 REXXTSO(YES)

 REXXIN(NO)

 MESSAGETABLE(ITSOHZSM)

 SEVERITY(LOW)

 INTERVAL(ONETIME)

 DATE(20090701)

 REASON('CHECK MESSAGE HZS0103I')

 ENTRYCODE(0)

 [image:]

 On our test system we were already using the HZSPRM00 member, so the command that we used to register our health check was:

 F HZSPROC,REPLACE,PARMLIB=(00,HC)

 The System REXX health check program named ITSOHZSC was placed in an EXEC data set in the SYSEXEC concatenation for System REXX. All the health check did was produce certain AXWTO messages to identify that it was initiated.

 We stopped and restarted HZSPROC to make the HZS0103I message appear. The result from SYSLOG is shown in Example 7-28.

 Example 7-28 ITSOHZSC SYSLOG

 [image:]

 HZS0103I HZSPROC INITIALIZATION COMPLETE

 ITSOHZSC - Start

 ITSOHZSC - End

 [image:]

 7.5 Example 2: Initiating a System REXX exec from an MPF exit

 In this example, an MPF exit is triggered by a message, which initiates a System REXX program, which initiates a health check. This approach minimizes the amount of assembler programming so that the majority of logic can be more easily managed in a System REXX program.

 Our chosen scenario is initiated by this message:

 IXC582I STRUCTURE structure_name ALLOCATED BY SIZE/RATIOS.

 When the message appears we want to run a health check for Owner(IBMITSO) and Checkname(XCF_CF_STR_INITSIZE). But before doing that, we want to take the structure name from the IXC582I message and update the PARM field for the health check. This is so that the health check only processes the structure of concern, as indicated by the IXC582I message.

 7.5.1 MPFLSTxx

 Because we want this process to start in response to an IXC582I message, first we must update PARMLIB(MPFLSTxx) using:

 IXC582I,SUP(NO),USEREXIT(ITSOXCFX)

 This definition causes an MPF exit named ITSOXCFX to be triggered in response to the IXC582I message.

 To activate this PARMLIB(MPFLSTxx) definition, an operator SET (or “T” for short) command must be issued. On our test system, the MPFLSTxx member currently in use (as determined by the D MPF operator command) was MPFLST00 and those definitions must remain, so we used the T MPF=(HC,00) command to add our MPFLSTHC definitions without losing the MPFLST00 definitions. Example 7-29 displays a D MPF operator command showing definitions from the both MPFLST00 and MPFLSTHC members.

 Example 7-29 D MPF example

 [image:]

 D MPF

 IEE677I 10.21.18 MPF DISPLAY 620

 MESSAGE ID -MPF SUPPRESS RETAIN AUTO TOKEN EXIT

 .NO_ENTRY -00 NO YES YES

 $HASP000 -00 YES YES NO

 $HASP100 -00 YES YES NO

 . . .

 IXC582I -HC NO YES NO ITSOXCFX

 . . .

 GENERAL WTO USER EXIT (IEAVMXIT) ACTIVE

 SUBSYSTEMS RECEIVING FOREIGN MESSAGES AND DOMS:

 . . .

 COMMAND-EXIT -MPF

 MFACMDXT -00

 [image:]

 7.5.2 The MPF exit

 MPF exit ITSOXCFX is a small and simple program that calls a System REXX program named ITSOXCFE, passing the entire message text as an argument. ITSOXCFX does this by passing the message text pointer and message text length to macro AXREXX as an argument for invoking System REXX program ITSOXCFE. The code fragments in Example 7-30 illustrate how this is done.

 Example 7-30 ITSOXCFX fragments

 [image:]

 000002 ITSOXCFX CSECT

 - - - - - - - - - - - - - - - - - - - 82 Line(s) not Displayed

 000085 USING CTXT,R9 ADDRESSABILITY

 000086 L R8,CTXTTXPN WAS THERE A MESSAGE?

 - - - - - - - - - - - - - - - - - - - 2 Line(s) not Displayed

 000089 L R8,CTXTTXPJ POINT TO MAJOR

 000090 USING CTXTATTR,R8 ADDRESSABILITY

 000091 LA R7,@ARGLST POINT TO AXREXX ARG LIST

 000092 USING AXRARGLST,R7 ADDRESSABILITY

 - - - - - - - - - - - - - - - - - - - 8 Line(s) not Displayed

 000101 LA R6,@ARG1 POINT TO ARGUMENT 1

 000102 USING AXRARGENTRY,R6 ADDRESSABILITY

 - - - - - - - - - - - - - - - - - - - 2 Line(s) not Displayed

 000105 LA R1,CTXTTMSG POINT TO WTO

 000106 ST R1,AXRARGADDRLOW SAVE ADDRESS

 000107 LA R1,L'CTXTTMSG POINT TO LENGTH OF WTO

 000108 ST R1,AXRARGLENGTH SAVE LENGTH

 - - - - - - - - - - - - - - - - - - - 2 Line(s) not Displayed

 000111 AXREXX REQUEST=EXECUTE, X

 000112 SECURITY=BYAXRUSER, X

 000113 TSO=YES, X

 000114 SYNC=NO, X

 000115 NAME=VNAME, X

 000116 REXXARGS=@ARGLST, X

 000117 MF=(E,AXREXXL) INITIATE SYSTEM REXX PGM

 - - - - - - - - - - - - - - - - - - - 23 Line(s) not Displayed

 000141 DS 0D

 000142 VNAME DC CL8'ITSOXCFE' NAME OF SYSTEM REXX PROGRAM

 - - - - - - - - - - - - - - - - - - - 10 Line(s) not Displayed

 000153 @ARGLST DS CL(AXRARGLST_LEN) ARGLIST LENGTH

 000154 @ARG1 DS CL(AXRARGENTRY_LEN) ARGENTRY LENGTH

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000158 AXREXX MF=(L,AXREXXL)

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000160 AXRZARG DSECT=YES,AXRARGLST=YES,AXRARGENTRY=YES,AXRDIAG=YES

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000162 IEZVX100

 - - - - - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 000164 END

 [image:]

 The ITSOXCFX program must be assembled, link edited, and located/activated into a LNKLST or LPA.

 For our scenerio, when message IXC582I appears on the operator console, MPF exit ITSOXCFX is triggered and starts System REXX program ITSOXCFE like this:

 ITSOXCFE IXC582I STRUCTURE structure_name ALLOCATED BY SIZE/RATIOS.

 This enables System REXX program ITSOXCFE to parse the entire IXC582I message text.

 7.5.3 The System REXX program

 System REXX program ITSOXCFE could be associated with any message via MPFLSTxx and made to do any processing in response. It is a simple form of automation (that is, it has the ability to do something in response to an event). For example, System REXX program ITSOXCFE could be made to initiate VTAM®-dependent applications (such as TSO) when the message IST020I (VTAM initialization complete) occurs.

 With this in mind, System REXX program ITSOXCFE has been written in the expectation that it could be used for multiple purposes. It uses a SELECT/WHEN/OTHERWISE structure so that additional WHEN statements can be added as needed to respond to different messages. For our health check example scenerio we are only interested in message IXC582I, so our code is as shown in Example 7-31.

 Example 7-31 ITSOXCFE program

 [image:]

 000001 /*REXX*/

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000005 arg msgid msgtext

 - - - - - - - - - - - - - - - - - - - 10 Line(s) not Displayed

 000016 select

 - - - - - - - - - - - - - - - - - - - 10 Line(s) not Displayed

 000027 when msgid = "IXC582I" /* <-------------- IXC582I */

 000028 then do

 - - - - - - - - - - - - - - - - - - - 16 Line(s) not Displayed

 000045 end

 000046 otherwise

 - - - - - - - - - - - - - - - - - - - 2 Line(s) not Displayed

 000049 end/*select*/

 - - - - - - - - - - - - - - - - - - - 3 Line(s) not Displayed

 000053 exit

 [image:]

 System REXX program ITSOXCFE must be made available to System REXX either by moving it into ‘SYS1.SAXREXEC’ or, if APAR OA26802 is installed, adding your REXX EXEC data set to the System REXX SYSEXEC concatenation. See PARMLIB(AXR00).

 Our processing in System REXX program ITSOXCFE in response to message IXC582I is:

 •Ensure that the message content is as expected by looking for the word STRUCTURE as the second word:

 IXC582I STRUCTURE structure_name ALLOCATED BY SIZE/RATIOS.

 •If the IXC582I message content is as expected, see whether there is a health check for Owner(IBMITSO) and Checkname(XCF_CF_STR_INITSIZE). This is done by issuing the following operator command and ensuring that a good response is received:

 F HZSPROC,DISPLAY,CHECKS,CHECK=(IBMITSO,XCF_CF_STR_INITSIZE)

 •If the health check exists, then insert the third word of the IXC582I message into the PARM of the health check using the following command:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,XCF_CF_STR_INITSIZE),PARM=(‘structure_name’)

 Updating a health check in this way also causes the health check to run, so no specific run command is necessary.

 7.5.4 The health check

 The purpose of this health check is to respond to the IXC582I message by analyzing the structure listed in the message to see whether the allocated size is larger than the INITSIZE.

 The health check was defined with the PARMLIB(HZSPRMxx) member shown in Example 7-32.

 Example 7-32 HZSPRMJ2 ITSOXCFC

 [image:]

 ADDREP CHECK(IBMITSO,XCF_CF_STR_INITSIZE)

 EXEC(ITSOXCFC)

 REXXHLQ(IBMUSER)

 REXXTSO(YES)

 REXXIN(NO)

 MSGTBL(ITSOXCFM)

 PARM(ALL)

 VERBOSE(NO)

 SEVERITY(LOW)

 INTERVAL(8:00)

 DATE(20090721)

 REASON('ENSURE ADEQUATE STRUCTURE CAPACITY BY SIZING',

 'CF STRUCTURES FOR PEAK USAGE.')

 [image:]

 On our test system we were already using the HZSPRM00 member, so the command that we used to register our health check was:

 F HZSPROC,REPLACE,PARMLIB=(00,HC)

[image:]
[image:]

Unauthorized health checks written in REXX

 In this chapter we describe a set of REXX functions that we wrote during this project. Our intent was to demonstrate the possibility of developing remote checks with a high-level language not natively supported by the IBM Health Checker framework.

 Being able to write custom remote checks in REXX creates new possibilities for using the IBM Health Checker.

 8.1 Reasons for this exercise

 As discussed in 3.1.7, “Writing a remote health check” on page 65, remote checks are appealing for several reasons:

 •They can run in any address space, making it easier to get access to data private to a given application or software component.

 •They can run un-authorized and non-superuser, while still accessing needed resources under fine-grained security controls.

 •They can execute for a long time and make use of complex and lengthy services such as I/O, enqueues (ENQs), locks, and so on, without impacting overall IBM Health Checker and system performance.

 REXX is appealing as a check implementation language because:

 •For most mainframe users, writing code is easier in REXX than in Assembler.

 •REXX checks can use execio() to read and write to arbitrary data sets.

 •The REXX function storage() can be used to read storage at a specified address and also to write to that storage.

 •A rich set of powerful services is available to REXX execs.

 •Remote functions can be used to test REXX checks before they are placed in authorized System REXX.

 •Remote checks can be temporary. When they terminate their data is not displayed by the SDSF CK command.

 For all these reasons it would be nice to be able to implement remote checks using REXX. As part of the project that led to this book we decided to try and provide the ability to write remote health checks using REXX. We achieved this by writing a set of Assembler stubs that provide the basic interface service with the IBM Health Checker framework, and that can be invoked by a regular REXX exec as a normal REXX function.

 	
 Note: Although the programming language is the same, a remote REXX check differs from a System REXX one. System REXX checks run in a SYSTEM REXX address space as Authorized Program Facility (APF) authorized execs, and inherit the permissions associated with the IBM Health Checker address space. Remote REXX checks are run unauthorized in any address space, under the security profile associated with the hosting address space. Remote REXX checks can make use of all the REXX, UNIX System Services, and system functions available to any standard REXX exec.

 For additional information about the available check execution environments refer to 3.1.1, “Summary of execution environments” on page 62.

 IBM Health Checker functions that a remote check needs

 Additional processing is required to run a remote check beyond that used for a local or System REXX check. This is mainly due to the need to trigger a check’s execution in a foreign address space and to synchronize check processing with the IBM Health Checker framework. Also, for a remote check, initialization must be performed by the hosting address space using the HZSADDCK service.

 A remote check is responsible for loading the message table that it will use to issue messages. In addition it must:

 •Acquire a PAUSE element, which will be used to coordinate with the IBM Health Checker

 •Register itself

 Then the check routine waits for a signal by IBM Health Checker. The signal is shipped, releasing the pause element for which the check is waiting.

 When the PAUSE element is released the remote check acknowledges that it received control and, depending on the function code passed by the IBM Health Checker, starts processing. A similar handshake also happens when the check finishes a single check run. That is what the HZSCHECK REQUEST=OPSTART and HZSCHECK REQUEST=OPCOMPLETE services are for.

 Example 8-1 summarizes the logic flow of a remote check.

 Example 8-1 Simplified flow of a remote check

 [image:]

 Get PAUSE element

 Load message table

 Issue HSZADDCK to add this routine as a remote check

 ITERATE:

 Wait for PAUSE element to be released by Health Checker

 SELECT (Remote Function Code)

 WHEN(RESTART)

 Free_Check_Resources

 Wait for the Health Checker to restart

 WHEN(InitRun, Run Deactivate, Delete, DeleteTerm or DeleteRefresh)

 Issue HZSCHECK REQUEST=OPSTART

 DO whatever is appropriate for the specific Release Code

 (it usually includes issuing messages using HZSFMSG)

 Issue HZSCHECK REQUEST=OPCOMPLETE

 Iterate, ReInitialize or Leave depending on the Release Code

 END - SELECT

 Leave

 Deallocate PAUSE token

 EXIT

 [image:]

 A remote check requires the implementation of:

 •A way to initialize the check: Obtain the PAUSE element, load the message table, and issue the HZSADDCK request.

 •A way to wait for the release signal from IBM Health Checker.

 •A way to handshake with IBM Health Checker using HZSCHECK REQUEST=OPSTART / OPCOMPLETE.

 •A way to interface with the HZSFMSG service to generate messages.

 •A way to access and manipulate IBM Health Checker data structures in REXX.

 Security requirements for unauthorized users

 Remote checks can run in any address space with any authority and must have access granted by the RACF XFACILIT class profile. Security profiles to add the check are required. See 2.1.5, “Define security access” on page 32, for additional information about defining security for users and applications for a complete list of security profiles.

 8.2 The stub functions that we wrote

 To make implementing a remote REXX check easier, we wrote a set of stub functions that can be called as normal REXX functions and that isolate the mere mechanics of communicating with the IBM Health Checker address space. Using these high-level functions, the programmer can focus on the check’s core logic itself.

 There are five stubs available to address the needs mentioned previously. Each implements a specific function:

 •Check initialization: XZSLADCK

 •Synchronization: XZSLSTRT() and XZSLSTOP()

 •Message generation: XZSLFMSG()

 •Cleanup: XZSLCLNP()

 Needed data is passed back and forth as plain REXX variables.

 	
 Note: Although the sample stubs that we provide are fully functional to the best of our knowledge, they are provided in source format so that anybody can extend them to fit specific needs.

 Table 8-1 provides a summary of each of the five functions.

 Table 8-1 Functions your remote REXX check will need

 	
 Function

 	
 Provided services

 	
 System REXX equivalent

 	
 XZSLADCK()

 	
 Load the message table, acquire a PAUSE element, and add the check.

 	
 N/A

 	
 XZSLSTRT()

 	
 Pause waiting for a signal by the IBM Health Checker framework. When received indicates “operation start” through an HZSCHECK REQUEST=OPSTART request.

 	
 HZSLSTRT() provides something similar

 	
 XZSLFMSG()

 	
 Issue an HZSFMSG request to report an exception or write to the checks message buffer.

 	
 HZSLFMSG()

 	
 XZSLSTOP()

 	
 Signal “operation complete” through an HZSCHECK REQUEST=OPCOMPLETE request.

 	
 HZSLSTOP()

 	
 XZSLCLNP()

 	
 Delete the in-storage copy of the message table. Release the PAUSE element.

 	
 N/A

 To accommodate users already familiar with System REXX we used function and variable names similar to those used by IBM Health Checker for System REXX checks.

 Example 8-2 summarizes the logic flow of a remote REXX check using our stub functions.

 Example 8-2 Simplified flow of a remote REXX check

 [image:]

 Issue XSZADDCK() to allocate PAUSE element,

 load message table and

 add this routine as a remote check

 ITERATE:

 Issue XZSLSTRT() to wait and then signal OPSTART

 SELECT (Remote Function Code)

 WHEN(RESTART)

 Free_Check_Resources

 Wait for the Health Checker to restart

 WHEN(InitRun, Run, Deactivate, Delete, DeleteTerm or DeleteRefresh)

 DO whatever is appropriate for the specific Release Code

 It usually includes issuing messages using XZSFMSG()

 Issue XZSLSTOP() to signal OPCOMPLETE

 Iterate, ReInitialize or Leave depending on the Release Code

 END - SELECT

 Leave

 Issue XZSLCLNP() to deallocate PAUSE element and unload message table

 EXIT

 [image:]

 Assembler stubs can be invoked by REXX execs as built-in functions as is usual for a built-in function:

 rc = xzsladck()

 When the function completes, the rc variable contains the return code from the function.

 Minimal recovery capabilities are provided by the sample that we wrote. Any built-in function is protected by an ESTAE-type recovery routine. In case of unexpected return codes/errors/ABENDs the program returns available diagnostic information as presented in the following three REXX variables (Table 8-2).

 Table 8-2 Variables that your check must provide to XZSLADCK()

 	
 Variable name

 	
 Description

 	
 HZSLxxxx_SystemDiag

 	
 Diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by the function.

 	
 HZSLxxxx_RC

 	
 The return code for the XZSLxxxx function. Use the information contained in HZSLxxxx_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLxxxx_Rsn where appropriate.

 For any built-in function but XZSLFMSG, in case of ABEND, HZSLxxxx_RC contains the ABEND code. For XZSLFMSG it has the same content as the RESULT variable for the HZSLFMSG standard function.

 	
 HZSLxxxx_Rsn

 	
 The reason code for the XZSLxxxx function. Use the information contained in HZSLxxxx_SystemDiag and HZSLxxxx_RC to determine the meaning of the reported reason code.

 For any built-in function but XZSLFMSG, in case of ABEND, HZSLxxxx_RSN contains the ABEND reason code. For XZSLFMSG it has the same content as the HZSLFMSG_RSN variable for the HZSLFMSG standard function.

 8.2.1 Define check’s attributes and register your check using XZSLADCK

 The XZSLADCK function initializes the resources needed by the remote check to communicate with the IBM Health Checker framework and registers the check.

 XZSLADCK performs the following key actions:

 •Loads the message table

 •Obtains a pause element via the IEAVAPE service

 •Adds the check via the HZSADDCK service

 Information that your check must provide to XZSLADCK()

 In order to add the check XZSLSTRT requires all the information typically provided when a check is defined. Table 8-3 provides a list of this information. It is passed by the check using a set of REXX variables.

 Table 8-3 Variables that your check must provide to XZSLADCK()

 	
 Variable name

 	
 Description

 	
 HZSLADCK_CHECKNAME

 	
 The name of the check being added.

 	
 HZSLADCK_CHECKOWNER

 	
 The owner of the check being added.

 	
 HZSLADCK_CHECKDATE

 	
 Indicates when the default values for the check were defined. Format YYYYMMDD.

 	
 HZSLADCK_CKREASON

 	
 Indicates what the check routine validates. The text is limited to 126 characters.

 	
 HZSLADCK_SEVERITY

 	
 Indicates the severity assigned to the check. Possible values are “LOW”, “MED”, and “HI”.

 	
 HZSLADCK_INTERVAL

 	
 Specifies the time interval for the next running of the check.

 •“ONETIME” indicates that the check should run once. It will not be rescheduled.

 •“TIMER” indicates that a timer is used to reschedule the check.

 	
 HZSLADCK_CKHOURS

 	
 When INTERVAL=TIMER is specified, this parameter indicates the number of hours before the next scheduled check.

 	
 HZSLADCK_CKMINUTES

 	
 When INTERVAL=TIMER is specified, this parameter indicates the number of minutes before the next scheduled check.

 	
 HZSLFMSG_MSGTABLE

 	
 Specifies the module name of the message table that will be used when generating messages for the check.

 For a detailed explanation of the various parameters refer to the description of the HZSADDCK service in the IBM Health Checker for z/OS User’s Guide.

 Variables set by XZSLADCK()

 When XZSLADCK() returns control to your exec, the REXX variables in Table 8-4 are set.

 Table 8-4 Variables set by XZSLADCK()

 	
 Variable name

 	
 Description

 	
 HZSLADCK_RC

 	
 The return code for the XZSLADCK function.

 Use the information contained in HZSLADCK_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLADCK_Rsn where appropriate.

 	
 HZSLADCK_Rsn

 	
 The reason code for the XZSLADCK function.

 Use the information contained in HZSLADCK_SystemDiag and HZSLADCK_RC to determine the meaning of the reported reason code.

 	
 HZSLADCK_SystemDiag

 	
 Additional diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by HZSLADCK.

 	
 HZS_HANDLE

 	
 The content of HZS_HANDLE is used to synchronize the remote check with IBM Health Checker for z/OS. Your REXX check must not modify HZS_HANDLE.

 	
 HZS_PETOKEN

 	
 The content of HZS_PETOKEN is used to synchronize the remote check with IBM Health Checker for z/OS. Your REXX check must not modify HZS_PETOKEN.

 	
 HZSLFMSG_MSGTBADDR

 	
 HZSLFMSG_MSGTBADDR is used to store the address of the loaded message table, and it is required by XZSFLMSG. Your REXX check must not modify HZSLFMSG_MSGTBADDR.

 For a description of return and reason codes returned by the IAVAPE service refer to the relevant MVS Programming: Assembler Services Reference manual.

 For a detailed explanation of return and reason codes returned by the HZSADDCK service refer to the IBM Health Checker for z/OS User's Guide.

 Example of XZSLADCK() usage

 The code snippet in Example 8-3 shows how to use XZSLADCK() to add a remote REXX check. In Example 8-3 the do forever construct is used to keep trying to add the check if the return code and reason code returned by the HZSADDCK service indicate that the IBM Health Checker is not active.

 Example 8-3 Define check’s attributes and register your check using XZSLADCK

 [image:]

 add_remote_check:

 HZSLFMSG_MSGTABLE = "xzsrrxmt"

 HZSLADCK_CHECKNAME = "XZS_SAMPLE_REMOTE_REXX_CHECK"

 HZSLADCK_CHECKOWNER = "IBMITSO"

 HZSLADCK_CHECKDATE = "20090827"

 HZSLADCK_CKREASON = "A sample remote REXX health check"

 HZSLADCK_SEVERITY = "low"

 HZSLADCK_INTERVAL = "timer"

 HZSLADCK_CKHOURS = "00"

 HZSLADCK_CKMINUTES = "01"

 HZSLADCK_CKPARM = "SAMPLE=ROOTFS"

 do forever

 rc = xzsladck()

 if rc <> 12 then leave

 if HZSLADCK_RC <> '0000000C'X then leave

 if HZSLADCK_RSN <> '00000C01'X then leave

 say time() " Health Checker not active, retrying in 60 secs.."

 address syscall 'sleep 60'

 end

 if rc <> 0 then do

 say " xzsladck rc: " rc

 say " xzsladck systemdiag: " HZSLADCK_SYSTEMDIAG

 say " xzsladck hzsladck_rc: " c2x(HZSLADCK_RC)

 say " xzsladck hzsladck_rsn: " c2x(HZSLADCK_RSN)

 exit

 end

 [image:]

 8.2.2 Signal check start to IBM Health Checker using XZSLSTRT

 The XZSLSTRT function waits for a signal from the IBM Health Checker framework to start executing.

 XZSLSTRT performs the following key actions:

 •Waits to use the IEAVPSE service until the PAUSE element used by the IBM Health Checker to wake up the remote check is released.

 •Issues a HZSCHECK REQUEST=OPSTART request to indicate that the check has started running.

 Variables that your check must provide to XZSLSTRT()

 The XZSLSTRT service does not require an input parameter.

 	
 Attention: XZSLSTRT relies on content from the HZS_HANDLE and HZS_PETOKEN variables set by XZSLADCK. These variables must not be manipulated by the check exec itself.

 Variables set by XZSLSTRT()

 When XZSLSTRT() returns control to your exec, the REXX variables described in Table 8-5 on page 185 are set.

 Table 8-5 Variables set by XZSLSTRT()

 	
 Variable name

 	
 Description

 	
 HZSLSTRT_RC

 	
 The return code for the XZSLSTRT function.

 Use the information contained in HZSLSTRT_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLSTRT_Rsn where appropriate.

 	
 HZSLSTRT_Rsn

 	
 The reason code for the XZSLSTRT function.

 Use the information contained in HZSLSTRT_SystemDiag and HZSLSTRT_RC to determine the meaning of the reported reason code.

 	
 HZSLSTRT_SystemDiag

 	
 Additional diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by HZSLSTRT.

 	
 HZS_PQE_ChkWork

 	
 The current value of the PQE_CHKWORK area saved by the XZSLSTOP service the last time the check ran. Maximum of 2048 characters. HZS_PQE_CHCKWORK is reset before the check is run for the following reasons:

 •When the check is to run for the first time

 •When the check is REFRESHed

 •When the check becomes either INACTIVE or DISABLED for any reason besides invalid parameters

 	
 HZS_PQE_FUNCTION_CODE

 	
 A function code indicating why the check was called.

 	
 HZS_PQE_ParmArea

 	
 The value of PARM() from the check definition or the UPDATE command.

 	
 HZS_PQE_Reason

 	
 The reason provided in the check definition or UPDATE request.

 	
 HZS_PQE_LookAtParms

 	
 Indicates the check PARMS() have changed:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Verbose

 	
 Indicates whether the check is running in verbose mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Debug

 	
 Indicates whether the check is running in debug mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Global_Check

 	
 Indicates whether the check is a global check that runs on only one system in a sysplex:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Environment_XCFMonoPlex

 	
 Indicates whether the system is configured in XCF MONOPLEX mode:

 •1 - TRUE

 •0 - FALSE

 	
 HZS_PQE_Environment_XCFLocal

 	
 Indicates whether the system is configured in XCF local mode:

 • 1 - TRUE

 • 0 - FALSE

 	
 HZS_PQE_Cum_Check_Count

 	
 Number of times that this check has been called since the check was initialized.

 	
 HZS_PQE_CHECK_Count

 	
 Number of times that this check has been called since the check was initialized or refreshed.

 	
 HZS_PQE_CheckOwner

 	
 The name of the check owner from the check definition.

 	
 HZS_PQE_CheckName

 	
 The name of the check from the check definition.

 	
 HZS_PQE_VERSION

 	
 The PQE format version ('0' so far).

 	
 HZS_PQE

 	
 The entire PQE data structure (4096 bytes).

 For a description of return and reason codes returned by the IAVPSE service refer to the relevant MVS Programming: Assembler Services Reference manual.

 XZSLSTRT provides a set of REXX variables to access and manipulate key PQE fields. For consistency reasons, names, content, and formats of these variables are the same as those provided by IBM Health Checker for System REXX interface. In addition to these variables, XZSLSTRT also provides a variable, HZS_PQE, which allows access to the full PQE content.

 For a detailed explanation of return and reason codes returned by the HZSCHECK REQUEST=OPSTART service, and for a description of the content of the PQE data structure, refer to the IBM Health Checker for z/OS User's Guide.

 Example of XZSLSTRT() usage

 The code snippet in Example 8-4 shows how to use XZSLSTRT() to wait for a start signal by the IBM Health Checker. XZSLSTRT() should be placed in a loop, as described in Example 8-1 on page 179.

 Example 8-4 Signal check start to IBM Health Checker using XZSLSTRT

 [image:]

 check_opstart:

 rc = xzslstrt()

 if rc <> 0 then do

 say " xzslstrt rc: " c2x(HZSLSTRT_RC)

 say " xzslstrt rsn: " c2x(HZSLSTRT_RSN)

 exit

 end

 say " xzslstrt FUNCTION CODE:" c2x(HZS_PQE_FUNCTION_CODE)

 say " xzslstrt HZS_PQE_CHECKNAME:" HZS_PQE_CHECKNAME

 say " xzslstrt HZS_PQE_CHECKOWNER:" HZS_PQE_CHECKOWNER

 say " xzslstrt HZS_PQE_REASON:" HZS_PQE_REASON

 say " xzslstrt HZS_PQE_VERSION:" HZS_PQE_VERSION

 say " xzslstrt HZS_PQE_GLOBAL_CHECK:" HZS_PQE_GLOBAL_CHECK

 say " xzslstrt HZS_PQE_VERBOSE:" HZS_PQE_VERBOSE

 say " xzslstrt HZS_PQE_DEBUG:" HZS_PQE_DEBUG

 say " xzslstrt HZS_PQE_CHECK_COUNT:" HZS_PQE_CHECK_COUNT

 say " xzslstrt XCFLOCAL:" HZS_PQE_ENVIRONMENT_XCFLOCAL

 say " xzslstrt XCFMONOPLEX:" HZS_PQE_ENVIRONMENT_XCFMONOPLEX

 say " xzslstrt HZS_PQE_LOOKATPARMS:" HZS_PQE_LOOKATPARMS

 say " xzslstrt HZS_PQE_PARMAREA:" HZS_PQE_PARMAREA

 end

 [image:]

 8.2.3 Issuing messages in your check routine with XZSLFMSG

 XZSLFMSG wraps the services provided by the existing HZSFMSG assembler macro and makes them available to a REXX exec. It mimics the existing System REXX function HZSLFMSG.

 The interface with the check is provided via REXX variables, in a way very similar to HZSLFMSG().

 Variables that your check must provide to XZSLFMSG()

 The XZSLFMSG function requires a number of input parameters used to control the generation of the IBM Health Checker message. The required information is described in Table 8-6.

 	
 Attention: XZSLFMSG relies on content from the HZS_HANDLE and HZSLFMSG_MSGTBADDR variables set by XZSLADCK. These variables must not be manipulated by the check exec itself.

 Table 8-6 Variables that your check must provide to XZSLFMSG()

 	
 Variable name

 	
 Description

 	
 HZSLFMSG_REQUEST

 	
 Set to "CHECKMSG", "HZSMSG", or "STOP"

 	
 HZSLFMSG_REASON

 	
 For REQUEST=CHECKMSG set to "N/A".

 For REQUEST=HZSMSG set to "ERROR" or one of "PARS1201" - "PARS1219"

 For REQUEST=STOP set to one of "ERROR", "BADPARM", and "ENVNA"

 	
 HZSLFMSG_MESSAGENUMBER

 	
 The message number as indicated in the message definition file as part of <msgnum xreftext=nnn>

 	
 HZSLFMSG_INSERT.0

 	
 Number of INSERTs provided

 	
 HZSLFMSG_INSERT.x - 1..n

 	
 The message insert text, with n=XZSLFMSG_INSERT.0, if it was not zero

 For a detailed explanation of the various parameters refer to the description of the HZSFMSG() REXX service in the IBM Health Checker for z/OS User's Guide.

 Variables set by XZSLFMSG()

 When XZSLFMSG() returns control to your exec, the REXX variables in Table 8-7 are set.

 Table 8-7 Variables set by XZSLFMSG()

 	
 Variable name

 	
 Description

 	
 HZSLFMSG_USERRSN

 	
 Variable 'HZSLFMSG_USERRSN' contains:

 •A numeric diag value corresponding to the text in 'HZSLFMSG_SYSTEMDIAG' in bits 32–47.

 •Any non-zero return code from a service that XZSLFMSG called, in bits 48–63.

 	
 HZSLFMSG_ABENDRESULT

 	
 256 bytes of text in case of an ABEND 290 from HZSFMSG, describing the ABEND further. Includes details such as insert number in error.

 	
 HZSLFMSG_DIAG

 	
 Provides internal component diagnostic information for the error occurred.

 	
 HZSLFMSG_RC

 	
 The return code for the XZSLFMSG function.

 Use the information contained in HZSLFMSG_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLFMSG_Rsn where appropriate.

 	
 HZSLFMSG_Rsn

 	
 The reason code for the XZSLFMSG function.

 Use the information contained in HZSLFMSG_SystemDiag and HZSLFMSG_RC to determine the meaning of the reported reason code.

 	
 HZSLFMSG_SystemDiag

 	
 Additional diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by HZSLFMSG.

 For a detailed explanation of return and reason codes returned by the HZSFMSG service refer to the IBM Health Checker for z/OS User's Guide.

 Example of XZSLFMSG() usage

 The code snippet in Example 8-5 shows how to use XZSLFMSG() to generate an IBM Health Checker message.

 The HZSLFMSG_MESSAGENUMBER variable identifies the specific message within the message table. HZSLFMSG_INSERT.0 says that we are going to pass just one message insert text whose value is provided by HZSLFMSG_INSERT.1.

 Example 8-5 Issuing messages in your check routine with XZSLFMSG

 [image:]

 HZSLFMSG_REQUEST = "CHECKMSG"

 HZSLFMSG_MESSAGENUMBER = 2 /* INFO message */

 HZSLFMSG_INSERT.0 = 1 /* One insert */

 HZSLFMSG_INSERT.1 = 'The root file system is mounted READ ONLY, as expected'

 rc = xzslfmsg()

 if rc > 0 then

 say " xzslfmsg rc: " c2x(HZSLFMSG_RC)

 say " xzslfmsg rsn: " c2x(HZSLFMSG_RSN)

 if rc = 8 then do

 say " xzslfmsg SystemDiag: " HZSLFMSG_SYSTEMDIAG

 say " xzslfmsg UserRsn: " c2x(HZSLFMSG_USERRSN

 say " xzslfmsg AbendResult: " HZSLFMSG_ABENDRESULT

 end

 [image:]

 8.2.4 Signal check stop to IBM Health Checker using XZSLSTOP

 The XZSLSTOP function indicates that the check has completed its execution via a HZSCHECK REQUEST=OPCOMPLETE request. When XZSLSTOP is called, the content of HZS_PQE_ChkWork is saved in the PQE_CHKWORK area.

 Variables that your check must provide to XZSLSTOP()

 The service does not require any input parameter.

 	
 Attention: XZSLSTOP relies on content from the HZS_HANDLEvariable set by XZSLADCK. this variable must not be manipulated by the check exec itself.

 Variables set by XZSLSTOP()

 When XZSLSTOP() returns control to your exec, the REXX variables in Table 8-8 are set.

 Table 8-8 Variables set by XZSLSTOP()

 	
 Variable name

 	
 Description

 	
 HZSLSTOP_RC

 	
 The return code for the XZSLSTOP function.

 Use the information contained in HZSLSTOP_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLSTOP_Rsn where appropriate.

 	
 HZSLSTOP_Rsn

 	
 The reason code for the XZSLSTOP function.

 HZSLSTOP_SystemDiag and HZSLSTOP_RC determine the meaning of the reported reason code.

 	
 HZSLSTOP_SystemDiag

 	
 Additional diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by HZSLSTOP.

 For a detailed explanation of return and reason codes returned by the HZSCHECK REQUEST=OPCOMPLETE service refer to the IBM Health Checker for z/OS User's Guide.

 Example of XZSLSTOP() usage

 The code snippet in Example 8-6 shows how to use XZSLSTOP() to signal check execution to the IBM Health Checker.

 Example 8-6 Signal check stop to IBM Health Checker using XZSLSTOP

 [image:]

 check_opcomplete:

 rc = xzslstop()

 IF rc <> 0 then do

 say " xzslstop rc: " c2x(HZSLSTOP_RC)

 say " xzslstop rsn: " c2x(HZSLSTOP_RSN)

 exit

 end

 [image:]

 8.2.5 Releasing internal check resources using XZSLCLNP

 The cleanup function:

 •Deletes the in-memory copy of the message table

 •Deallocates the pause element

 Variables that your check must provide to XZSLCLNP()

 The XZSLCLNP service does not require an input parameter.

 	
 Attention: XZSLCLNP relies on content of the HZS_PETOKEN variable set by XZSLADCK and on the value originally assigned by the check to HZSLFMSG_MSGTABLE. The content of these variables must not be changed during the life of the check.

 Variables set by XZSLCLNP()

 When XZSLCLNP() returns control to your exec, the REXX variables in Table 8-9 are set.

 Table 8-9 Variables set by XZSLCLNP()

 	
 Variable name

 	
 Description

 	
 HZSLCLNP_RC

 	
 The return code for the XZSLCLNP function.

 Use the information contained in HZSLCLNP_SystemDiag to determine the meaning of the reported return code. Additional information is provided by HZSLCLNP_Rsn where appropriate.

 	
 HZSLCLNP_Rsn

 	
 The reason code for the XZSLCLNP function.

 Use the information contained in HZSLCLNP_SystemDiag and HZSLCLNP_RC to determine the meaning of the reported reason code.

 	
 HZSLCLNP_SystemDiag

 	
 Additional diagnostic data in the form of a text message indicating which specific service reported the return code/reason code presented by HZSLCLNP.

 For a description of return and reason codes returned by the IAVRLS and DELETE services refer to the relevant MVS Programming: Assembler Services Reference manual.

 Example of XZSLCLNP() usage

 Example 8-7 provides an example of XZSLCLNP() usage.

 Example 8-7 Releasing internal check resources using XZSLCLNP

 [image:]

 unload_message_table_and_deallocate_pause_token:

 rc = xzslclnp()

 IF rc <> 0 then do

 say " xzslclnp rc: " c2x(HZSLCLNP_RC)

 say " xzslclnp rsn: " c2x(HZSLCLNP_RSN)

 exit

 end

 end

 [image:]

 8.3 A sample check exploiting our stubs

 Now that you know what each of the provided functions does, let us see how you can use them to write a sample remote REXX check.

 The logic flow of a remote REXX check

 Example 8-8 shows the skeleton of a remote REXX check. This example details and extends the functional description provided in Example 8-1 on page 179. The body of the sample check calls REXX subroutines to perform key functions. These subroutines are basically the samples we used in 8.2, “The stub functions that we wrote” on page 180 to demonstrate how to use each of the stubs.

 Example 8-8 The logic flow of a remote REXX check

 [image:]

 call add_remote_check

 do forever

 call check_opstart

 select

 when HZS_PQE_FUNCTION_CODE = '01'X /* InitRun */

 then do

 call allocate_check_resources

 call first_check_iteration

 call check_opcomplete

 end

 when HZS_PQE_FUNCTION_CODE = '02'X /* Run */

 then do

 call subsequent_check_iteration

 call check_opcomplete

 end

 when HZS_PQE_FUNCTION_CODE = '03'X /* Deactivate */

 then do

 call free_check_resources

 call check_opcomplete

 end

 when HZS_PQE_FUNCTION_CODE = '04'X /* Delete */

 then do

 call free_check_resources

 call unload_message_table_and_deallocate_pause_token

 call check_opcomplete

 leave

 end

 when HZS_PQE_FUNCTION_CODE = '05'X /* DeleteTerm */

 then do

 call free_check_resources

 call unload_message_table_and_deallocate_pause_token

 call check_opcomplete

 call add_remote_check

 end

 when HZS_PQE_FUNCTION_CODE = '06'X /* DeleteRefresh */

 then do

 call free_check_resources

 call unload_message_table_and_deallocate_pause_token

 call check_opcomplete

 call add_remote_check

 end

 when HZS_PQE_FUNCTION_CODE = '07'X /* Restart */

 then do

 call free_check_resources

 call unload_message_table_and_deallocate_pause_token

 call check_opcomplete

 call add_remote_check

 leave

 end

 otherwise

 do

 say "UNKNOWN HZS_PQE_FUNCTION_CODE: "

 c2x(HZS_PQE_FUNCTION_CODE)

 end

 end

 end

 Leave_and_dont_come_back:

 exit(rc)

 [image:]

 In addition to the subroutines used to interface with the IBM Health Checker framework, Example 8-8 invokes few additional subroutines to implement actual check logic. There is one, allocate_check_resources, that can be used at check initialization (release code InitRun) to allocate specific resources needed by the check. Among them are variables, storage, data sets, interfaces to other products, and so on. The same resources will be released by a complementary subroutine, free_check_resources, invoked when the check is about to quit.

 The check’s core logic is implemented in subroutine subsequent_check_iteration called for release code Run. The sample also accommodates the implementation of different logic for the first invocation (release code InitRun) should you need it. Example 8-9 shows a skeleton of these additional subroutines.

 Example 8-9 Additional subroutines used by the remote REXX sample check

 [image:]

 allocate_check_resources:

 /* optionally allocates resources needed by the check */

 return

 free_check_resources:

 /* optionally releases resources needed by the check */

 return

 first_check_iteration:

 /* optionally implements a different logic for the first iteration */

 /* in this case we decided to behave as for any other invocation */

 call subsequent_check_iteration

 return

 subsequent_check_iteration:

 /* implements check’s core logic */

 . . .

 return

 [image:]

 Sample remote check execution

 There are several ways to execute a remote check. For a general discussion about the available options refer to “Possible remote check execution environments” on page 68.

 Remote REXX checks that require running inside the address space of an existing component or product can be invoked using the exec processing routines IRXJCL and IRXEXEC. For additional information about how to invoke a REXX exec refer to z/OS TSO/E REXX Reference, SA22-7790.

 For a remote REXX check that does not require being run inside the address space of an existing component or product, the easiest solution is to run it as a started task or batch job.

 Example 8-10 shows how to use a standard batch job to run a remote check. The same JCL slightly modified can also be used to set up a started task.

 Example 8-10 Sample remote check execution

 [image:]

 //*REXXJCL JOB <JOB PARAMETERS>

 //* * *

 //* * THIS JCL WILL RUN THE SAMPLE REXX EXEC REXXSAMP *

 //* * *

 //*

 // SET SYSEXEC=MY.EXECS

 // SET LOADLIB=MY.LOADLIB

 //*

 //IRXJCL EXEC PGM=IRXJCL,PARM='REXXSAMP'

 //STEPLIB DD DISP=SHR,DSN=&LOADLIB

 //SYSEXEC DD DISP=SHR,DSN=&SYSEXEC

 //*

 //SYSTSPRT DD SYSOUT=*

 //SYSABEND DD SYSOUT=*

 //*

 [image:]

 If you run this job, the sample checks with owner IBMITSO and name XZS_SAMPLE_REMOTE_REXX_CHECK should show up on the SDSF CK display panel.

 When done, delete the check with the 'P' line command on the SDSF CK panel. The check routine gets control with a 'Delete' function code and runs to its end, letting the job terminate normally.

[image:]
[image:]

Writing health checks using Metal C

 In this chapter we introduce Metal C, an interesting option for check developers. We provide basic samples of how it can be used, and we describe the MPFX_IMPORTANT_MSG check, written as part of our project as a proof of concept of a Metal C local check.

 9.1 What is Metal C

 Metal C is an execution option of the z/OS XL C compiler, introduced in z/OS V1R9, which allows you to produce freestanding code not relying on Language Environment® runtime support services. Metal C generated code follows MVS linkage conventions and allows assembler statements to be embedded in your C program, facilitating direct use of low-level system services. For an introduction to Metal C capabilities see the “Programming with Metal C” section of the Metal C Programming Guide and Reference manual (SA23-2225).

 Example 9-1 shows a program using system services and embedding assembler code into a Metal C program.

 Example 9-1 A Metal C Hello World

 [image:]

 #include <string.h>

 int main()

 {

 struct

 { unsigned short int								len;

 unsigned short int								code;

 char								text[80];

 } wto_parmlist;

 char *msg_text = "Hi! That's my dynamic WTO message. ";

 memcpy(wto_parmlist.text, msg_text, strlen(msg_text));

 wto_parmlist.len = 4 + strlen(msg_text);

 wto_parmlist.code = 0;

 __asm(" WTO MF=(E,(%0))" ::"r"(&wto_parmlist)); 1

 return 0;

 }

 [image:]

 Example 9-1 is a Metal C version of the Hello World program. The interesting part is where we embed a write to operator (WTO) assembler statement 1 into the C program passing a C structure as a parameter to the WTO macro.

 For a complete description of how to embed assembler statements in your Metal C program see the “Inserting HLASM instructions into the generated source code” section of the Metal C Programming Guide and Reference book.

 Example 9-2 is a snippet of the JCL needed to compile a Metal C program. The output is an assembler source that can then be compiled as any regular assembler program.

 Example 9-2 Compiling a Metal C program

 [image:]

 //CC JCLLIB ORDER=(CBC.SCCNPRC)

 //METALC EXEC EDCC,CREGSIZ='256M',

 // CPARM='SOURCE,METAL,NOSEARCH,SEARCH(/usr/include/metal/)'

 //*

 //COMPILE.SYSIN DD DISP=SHR,DSN=your.metal-c.program

 //COMPILE.SYSLIB DD DISP=SHR,DSN=your.metal-c.include.library

 //COMPILE.SYSLIN DD DISP=SHR,DSN=metal-c.generated.assembler.code

 [image:]

 Metal C generates baseless reentrant code and exploits the most advanced hardware features of System z processors (for example, the decimal floating point format). With Metal C it is also possible to take advantage of the sophisticated code optimization techniques made available by the z/OS XL C compiler.

 9.2 IBM Health Checker and Metal C

 In the context of the IBM Health Checker, Metal C can be considered an alternative to Assembly language when coding a check in REXX is not possible or is not appropriate (for example, for a lightweight LOCAL check running in the IBM Health Checker address space, or for a remote one running as an extension of an existing product/component having its own address space).

 Starting with z/OS V1R12, the IBM Health Checker provides native support for Metal C in the form of C definitions for various data areas used by checks to interact with the IBM Health Checker framework. Note that z/OS V1R12 does not provide any C APIs for IBM Health Checker’s services, which, in the case of a Metal C program, will be invoked using embedded assembler statements.

 Nothing prevents you from writing Metal C checks when using previous z/OS releases until you move to z/OS V1R12, which provides native IBM Health Checker support for Metal C. You can use the DSECT utility to create your own C header files from the existing IBM Health Checker assembler mapping macros.

 	
 Note: Alternatively, you can compile with the Metal C mappings provided with z/OS V1R12 and use the executable program on a previous z/OS release.

 For our sample check, we just needed C structures to map two IBM Health Checker data areas, the message block (described by the HZSMGB macro 1), and the process queue element (mapped by the HZSPQE macro 2). We generated corresponding C structures from the relevant DSECTs using the CCNEDSCT utility, as shown in Example 9-3.

 Example 9-3 Creating a C structure from an assembler DSECT

 [image:]

 //ASSEMBLE EXEC PGM=ASMA90,PARM='ADATA,LIST,NODECK,NOOBJECT'

 //SYSADATA DD DSN=&&PASS,UNIT=3390,DISP=(,PASS),SPACE=(32000,(100))

 //SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB

 //SYSPRINT DD SYSOUT=*

 //SYSIN DD *

 HZSPQE 1

 END

 /*

 //DSECT EXEC PGM=CCNEDSCT,PARM='NOLOWERCASE',COND=(8,LE,ASSEMBLE)

 //STEPLIB DD DSNAME=CBC.SCCNCMP,DISP=SHR

 //EDCDSECT DD DISP=SHR,DSN=your.metal-c.include.library(#HDRHPQE) 2

 //SYSADATA DD DSN=&PASS,DISP=SHR

 //SYSOUT DD SYSOUT=*

 [image:]

 	
 Attention: Beware when translating Assembler DSECTS to C structures because, in our experience, CCNEDSCT doesn’t support zero length fields properly. In our case this problem affected the MGB1 DSECT and we had to manually modify the declares generated translating HZSMGB to fix a wrong definition of the MGB1_insert_structure_Entries field.

 For additional information refer to the “DSECT conversion utility” section of the z/OS XL C/C++ User's Guide, SC09-4767.

 	
 Note: Translating IBM Health Checker data areas from assembler to C generates names that might be different from those used in z/OS V1R12 for the corresponding C structures. For example, the name chosen by z/OS V1R12 for the PQE function code field is “Function_Code,” whereas the name generated by CCNEDSCT is “PQE_Function_code.” This means that should you choose to convert your Metal C programs to make use of the z/OS V1R12 provided C structures, this will require minor editing.

 9.2.1 Basic structure of a Metal C local check

 The code snippet in Example 9-4 shows the main logic of a local check written in Metal C.

 Example 9-4 Main logic flow of a local Metal C check

 [image:]

 #include <#hdrhpqe.h> 1

 void main(struct hzspqe* PQE) 2

 {

 switch(PQE->pqe_function_code) 3

 {

 case pqe_function_code_init:

 perform_check_init();

 break;

 case pqe_function_code_check:

 perform_check_run();

 break;

 case pqe_function_code_cleanup:

 perform_check_cleanup();

 break;

 case pqe_function_code_delete:

 perform_check_delete();

 break;

 default: /* bad value */

 manage_bad_function_code();

 break;

 }

 }

 [image:]

 The program in Example 9-4 is invoked by IBM Health Checker passing it a process queue element 2. This data area is mapped by the hzspqe structure contained, in this case, by the #hdrhpqe header file 1. The code indicating which action the check is expected to perform is contained in the PQE field called pqe_function_code 3.

 9.2.2 Reporting check status

 Reporting check status information is probably the most important activity performed by a health check. This is done using the HZSFMSG service and passing information via the MGB data area. For additional information about HZSFMSG see 3.2.2, “Messaging services” on page 75.

 In Metal C the MGB can be accessed and manipulated using C functions, whereas the HZSFMSG service, for which there is not an equivalent C API, is invoked by embedding appropriate assembler statements. Example 9-5 shows how to use HZSFMSG in Metal C.

 Example 9-5 Reporting check status via HZSFMSG in Metal C

 [image:]

 #include <#hdrhmgb.h> 1

 struct { struct HZSMGB header; struct MGB_MsgInsertD *insertd2p;} my_hzsmgb; 2

 struct { struct MGB_MsgInsertD id; unsigned char data[255]; } my_insertd1; 3

 struct my_hzsmgb* my_hzsmgb_address;

 . . .

 __asm(" HZSFMSG MF=L": "DS"(hzsfmsg_lst)); 4

 int hzsfmsg_rc, hzsfmsg_rsn;

 . . .

 my_hzsmgb.header.MGB_ID = 1; 5

 my_hzsmgb.header.MGB_insert_cnt = 2; 6

 my_insertd1.id.MGB_MsgIlen = 10; 7

 memcpy(&my_insertd1.id.MGB_MsgIval, "ABCDEFGHIJ", 10); 8

 my_hzsmgb.header.Mgb_InsertAddr = &my_insertd1.id; 9

 my_hzsmgb.insertd2p = &my_insertd1.id; 10

 . . .

 __asm(" HZSFMSG REQUEST=CHECKMSG,MGBADDR=(%2)," 11

 "RETCODE=%0,RSNCODE=%1,MF=(E,(%3))"

 : "=m"(hzsfmsg_rc), "=m"(hzsfmsg_rsn)

 : "r"(&my_hzsmgb_address), "r"(&hzsfmsg_lst));

 [image:]

 To issue a CHECKMSG request that generates a check message, you must build a message block (MGB) to describe your request. An MGB is mapped by the HZSMGB structure contained, in this case, by the #hdrhmgb header file 1. The actual message block is created by statement 2, which declares a variable called my_hzsmgb. Message inserts are described by a separate data area, MGB_MsgInsertD 3. A standard message block header contains control information and a pointer to a single optional message insert. If you want to insert more then one variable in your message, append to the MGB as many pointers as needed. In Example 9-5 we have two inserts, so the my_hzsmgb structure, in addition to the standard MGB header, also contains an additional pointer, insertd2p 2.

 You might wonder why we just defined a single MGB_MsgInsertD structure (my_insertd1) in statement 3 if we plan to use two inserts. This is to show a special case: If you must insert the same value several times in your message, you do not need multiple MGB_MsgInsertD data structures, you just must have multiple pointers to the same MGB_MsgInsertD structure. That is what we did in statements 9 and 10. Statement 9 sets the pointer mgb_insertaddr in the MGB header to the address of my_insertd1, and statement 10 assigns the same value to insertd2p. By doing this the string “ABCDEFGHIJ” 8 will appear twice in the generated message.

 To be able to generate a message contained by the in use message table, IBM Health Checker must know the actual message ID and the number of inserts. This information is contained by the header, and is set in Example 9-5 by statements 5 and 6.

 It is now time to prepare your insert. You must specify its actual length, as we did in statement 7, and set its content. In the example the insert contains a string and is set by statement 8.

 After having set the pointers to your inserts, as we did in 9 and 10, you are ready to issue the actual HZSFMSG request. Example 9-5 uses the list and execute formats of the HZSFMSG macro (4 and 11) to guarantee code reentrancy. Statement 11 is the actual invocation of the HZSFMSG service, and is also another interesting example of how assembler statements can be embedded in Metal C code and how C data can be used in assembler statements.

 HZSFMSG allows the use of format 0 MGBs like the one shown in Example 9-5 on page 199, or format 1 MGBs, which are the preferred ways to pass insert data to HZSFMSG.

 Example 9-6 shows how to use HZSFMSG with format 1 MGBs in Metal C.

 	
 Note: For a discussion of the benefits provided by format 1 MGBs refer to “Format 0 and format 1 MGBs” on page 79.

 Example 9-6 Reporting check status using format 1 MGBs in Metal C

 [image:]

 #include <#hdrhmgb.h>

 struct my_hzsmgb1

 {

 struct HZSMGB1 header; 1

 struct MGB1_MsgInsertDesc desc1; 2

 struct MGB1_MsgInsertDesc desc2; 3

 } my_hzsmgb1;

 struct my_hzsmgb1* my_hzsmgb1_address;

 . . .

 __asm(" HZSFMSG MF=L": "DS"(hzsfmsg_lst));

 int hzsfmsg_rc, hzsfmsg_rsn;

 . . .

 char *msg_text1 = "ABCDEFGHIJ";

 char *msg_text2 = "KLMNOPQRSTUVWXYZ";

 . . .

 my_hzsmgb1.header.MGB1_ID = 1; 4

 my_hzsmgb1.header.MGB1_insert_cnt = 2; 5

 my_hzsmgb1.desc1.MGB1_MsgInsertDesc_Length = 10; 6

 my_hzsmgb1.desc1.MGB1_MsgInsertDesc_Addr = msg_text1; 7

 my_hzsmgb1.desc2.MGB1_MsgInsertDesc_Length = 16; 8

 my_hzsmgb1.desc2.MGB1_MsgInsertDesc_Addr = msg_text2; 9

 . . .

 __asm(" HZSFMSG REQUEST=CHECKMSG,MGBADDR=(%2),

 "MGBFORMAT=1,RETCODE=%0,RSNCODE=%1,MF=(E,(%3))" 10

 : "=m"(hzsfmsg_rc), "=m"(hzsfmsg_rsn)

 : "r"(&my_hzsmgb1_address), "r"(&hzsfmsg_lst));

 [image:]

 A format 1 MGB is made of a header, similar to that contained by a format 0 MBG, plus a number of insert descriptors, mapped by the MsgInsertDesc structure. For a format 1 MGB, header and insert descriptors are contiguous in storage, with each insert descriptor holding a pointer to actual data to be inserted and a field defining the amount of data to be inserted. In Example 9-6 we have two inserts, for this reason my_hzsmgb1, in addition to the standard MGB1 header 1, contains two insert descriptors (2 and 3).

 As for format 0 MGBs we fill the header with the message id 4 and the number of inserts 5.

 The major advantage of format 1 MGBs over format 0 MGBs is that you do not need to copy data from its original location into the MsgInsertD structure as we did for Example 9-5 on page 199. With a format 1 MGB you just specify actual data address and length, as shown by 6, 7, 8 and 9.

 Having defined the required inserts we are now ready to issue the actual HZSFMSG request. The only difference in this case is that we specify the use of a format 1 MGB using the MGBFORMAT=1 keyword 10.

 For a complete description of how to embed assembler statements in your Metal C program see the “Inserting HLASM instructions into the generated source code” section of the Metal C Programming Guide and Reference manual.

 In this section we showed you the basics of writing a health check using Metal C. As part of our project we developed a local health check using Metal C. The next section describes what it does and how it works. You can use the source code of this check, provided in Appendix A, “Additional material” on page 219, as an additional resource to better understand the strength of Metal C.

 9.3 The MPFX_IMPORTANT_MSG check

 The MPFX_IMPORTANT_MSG check is an example of a local health check written in Metal C. For more details about the characteristics of a local health check see “Local checks” on page 62.

 9.3.1 The general idea

 IBM Health Checker should be set up to normally run clean and only produce meaningful alerts, which can be properly escalated and managed. Having permanent IBM Health Checker exceptions should not be the rule because it can lead you to underestimate the importance of a new, serious exception condition should one appear.

 IBM provides several checks to detect deviations from the recommended best practices. They usually complement system-generated messages, which are another key method used by z/OS to expose abnormal conditions. Although IBM recommends automating certain system messages to at least convey them into your alerting infrastructure so that the correct people can be informed, currently no standard way is provided by the z/OS operating system to do this. Selecting specific messages requiring such a treatment and using an available local automation package is the customer’s responsibility.

 The sample check described here attempts to address this need, making use of the IBM Health Checker framework to track specific system messages and raising an exception when these messages are detected. The check also keeps track of the last few occurrences of the managed messages, which can be displayed at any time directly from within the check, without the need to scan the entire syslog.

 The value

 Combined with a pre-canned list of important message IDs, this check can help customers set up a basic alerting system for critical messages only relying on standard system functions. The list of messages to be managed can be easily extended to include customer-specific or vendor-specific ones. Allowing IBM Health Checker to raise an alert for potentially hundreds of critical message IDs increases the ability to quickly react to unexpected conditions and reinforces the role of the IBM Health Checker as the controller taking care of your system’s availability.

 9.3.2 Setting up the MPFX_IMPORTANT_MSG check

 MPFX_IMPORTANT_MSG checks are defined via HZSPRMxx parmlib members. The messages that you want to monitor are defined in a MPFLSTxx parmlib member. The check is composed of three load modules:

 •The check itself, MPFHZSCK

 •The message table that it uses, MPFHZSMT

 •A MPF exit, MPFHZS00

 The setup steps required to use this check are:

 1.	Add the MPFHZSCK, MPFHZSMT, and MPFHZS00 modules to a LNKLST dataset or LPA.

 2.	Define the health checks via a set of definitions contained by one or more HZSPRMxx parmlib members.

 3.	Define the companion MPF exit via a new definition in a MPFLSTxx parmlib member.

 4.	Activate the checks.

 The following sections describe in more detail how to set up the MPFX_IMPORTANT_MSG check.

 Adding the required modules to LNKLST

 MPFHZSCK, MPFHZSMT, and MPFHZS00 must be added to a LNKLST dataset or LPA. If you add the modules to an existing load library already included in the active linklist concatenation, just refreshing the LLA after the addition makes the modules available.

 	
 Note: If LNKAUTH=LNKLST is not specified, the relevant loadlib must also be APF authorized.

 If you decided to add a new load library to the LNKLST concatenation you do either of the following procedures:

 •Update the current PROGxx parmlib member and wait for the next IPL.

 •Define a new linklist concatenation, activate it, and update the relevant address spaces to make the required modules available.

 	
 Note: Defining and dynamically activating a new linklib, although possible, is a more complex solution which implies a dynamic LNKLST UPDATE operation. Such an operation is inherently dangerous and can make your system fail. For this reason we recommend against such a procedure. Alternatively, if possible, use a load library that is already a part of the active LNKLST concatenation, or put the required modules into LPA.

 Dynamically changing the linklist concatenation requires the use of functions provided by the SETPROG command. A sample list of the required commands is:

 •SETPROG LNKLST,UNDEFINE,NAME=LNKLSTHC

 •SETPROG LNKLST,DEFINE,NAME=LNKLSTHC,COPYFROM=your.current.linklist.set

 •SETPROG LNKLST,ADD,NAME(LNKLSTHC),DSN(your.new.load.library)

 •SETPROG LNKLST,ACTIVATE,NAME(LNKLSTHC)

 •SETPROG LNKLST,UPDATE,JOB=CONSOLE

 The example assumes that the IBM Health Checker address space will be recycled, that a LNKLST set named LNKLSTHC is not in use, and that only the CONSOLE address space must be dynamically updated.

 	
 Attention: Be careful when using the SETPROG LNKLST,UPDATE command. Updating an address space while a program in that address space is fetching a module can cause the fetch to fail or to locate an incorrect copy of the module.

 At this point the three load modules should be available. It is now time to define the health check.

 Defining the health checks

 MPFX_IMPORTANT_MSG checks are defined via a set of statements contained in an HZSPRMxx parmlib member. Define a separate check for each message that you want to monitor. This allows you to tailor the check behavior, basing it on the importance each given message has in your specific environment.

 The message ID you want to monitor is specified in the check definition. For example, if you want to be alerted when the system fails to take a dump, you can monitor message IEE711I. To do this add into your HZSPRMxx parmlib member a definition statement like that shown in Example 9-7.

 Example 9-7 Defining the MPFX_IMPORTANT_MSG check using parmlib statements

 [image:]

 /* */

 /*---*/

 /* IEE711I [SYSTEM UNABLE TO DUMP|SYSTEM DUMP NOT TAKEN */

 /*---*/

 /* */

 ADDREP CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IEE711I) ACTIVE

 SEVERITY(MEDIUM) PARM('WARN(NEW)') INTERVAL(00:10) VERBOSE(YES)

 REASON('Health Check for msg IEE711I') DATE(20090717)

 CHECKROUTINE(MPFHZSCK) MESSAGETABLE(MPFHZSMT)

 [image:]

 Looking at the actual definition you can see that the check name is MPFX_IMPORTANT_MSG_IEE711I. This includes the message ID that we are interested in, in this case IEE711I. The structure of the check name is fixed and cannot be changed. Also, the check owner is predefined as IBMITSO and cannot be changed.

 	
 Note: The name we chose for this check does not adhere to the IBM recommendation to have check names beginning with the component name, in our case ITSO. The conforming name for this check would be ITSOMPFX_IMPORTANT_MSG_xxxxxxxx, but that would exceed the 32 byte limit for a check name, which allows us to specify message IDs no longer than 8 characters. For this reason, although aware of the deviation, we decided to use the name shown.

 In Example 9-7 the check is defined as ACTIVE, which means that it will be eligible to be executed by the IBM Health Checker.

 Messages produced when a health check raises an exception reflect the SEVERITY associated with the check. In this case we decided to define a MEDIUM severity. Should the IEE711I message be issued, the check will raise a MEDIUM exception.

 The PARM keyword is used to provide check-specific parameters. The MPFX_IMPORTANT_MSG check accepts a single parameter, one of the two available: The “WARN(xxx)” parameter, used to indicate when an exception should be raised; or the “INITCHECK(value)” one, used to request check re-initialization.

 By running the MPFX_IMPORTANT_MSG check with the WARN(NEW) parameter, an exception will be reported only if the relevant message has been issued during the last monitoring interval. With the alternative choice—specifying WARN(ANY)—you will get an exception condition any time the check is executed, providing that the message has been issued at least once since the check has been initialized.

 Specifying WARN(ANY) allows you to keep receiving a warning for a critical condition until it is acknowledged. When running in WARN(ANY) mode, to acknowledge an exception and stop receiving messages for a condition that has been relieved, just re-initialize the check using the INITCHECK parameter.

 The INITCHECK parameter is provided as an option to stop receiving exception reports for a message-related condition you are aware of.

 It is useful in the following circumstances:

 •When running in WARN(NEW) mode, if the condition cannot be immediately removed and you want to avoid repeating exception reports for any new occurrence of the same condition

 •When running in WARN(ANY) mode, to stop receiving exception reports for a previous condition that has been managed and resolved

 To acknowledge a condition and re-initialize the check use the INITCHECK(value) execution parameter, where value is an arbitrary string. The check will be re-initialized provided that the specified value is different from the one you used for the previous re-initialization.

 	
 Note: We recommend that you supply the date and time as the value, thereby making the parameter value self-documenting.

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),PARM='INITCHECK(200909091033)'

 For additional details about check parameters, see 9.3.3, “Managing MPFX_IMPORTANT_MSG checks” on page 207.

 For the MPFX_IMPORTANT_MSG check the VERBOSE keyword controls the format of the generated report. When specifying VERBOSE(YES), the check report, in the case of an exception, will contain a list with the actual message trapped.

 The INTERVAL keyword determines how often the check runs. This is specified in the format hh:mm. In this case it is executed every 10 minutes.

 The REASON and DATE keywords are used to keep track of why and when the check has been defined or updated. REASON specifies the unique reason the check has been defined. The value for REASON can be 1–126 text characters. DATE specifies when the values for a check were last updated. The date is specified in the format yyyymmdd.

 The CHECKROUTINE and MESSAGETABLE keywords indicate the actual name of the check program and of the associated message table. For the MPFX_IMPORTANT_MSG check, CHECKROUTINE and MESSAGETABLE will be the same for every instance of the check, namely MPFHZSCK and MPFHZSMT.

 	
 Note: The MPFHZSCK check routine has been designed to be generic, and can be used by multiple checks at the same time to track multiple message IDs simply by adding HZSPRMxx definition statements.

 To monitor another message (for example, IXC518I) and detect when a system stops using a coupling facility, we define a different check. In this case, given the importance of such a condition, we assigned a high severity to this check. We also decided to run it in WARN(ANY) mode and more frequently (every two minutes). If the IXC518I message appears, the check will keep raising an exception every two minutes until the condition is acknowledged by putting the check in WARN(NEW) mode or re-initializing it using the INITCHECK parm. Example 9-8 shows the relevant HZSPRMxx definition.

 Example 9-8 Sample MPFX_IMPORTANT_MSG check definition for message ID IXC518I

 [image:]

 /* */

 /*---*/

 /* IXC518I SYSTEM sysname NOT USING COUPLING FACILITY ... */

 /*---*/

 /* */

 ADDREP CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC518I) ACTIVE

 SEVERITY(HIGH) PARM('WARN(ANY)') INTERVAL(00:02) VERBOSE(YES)

 REASON('Health Check for msg IXC518I') DATE(20090717)

 CHECKROUTINE(MPFHZSCK) MESSAGETABLE(MPFHZSMT)

 [image:]

 Activating the companion MPF exit

 The MPFX_IMPORTANT_MSG check relies on an MPF exit to trap system messages. In order to monitor a specific message the MPFHZSCK check routine makes use of information produced and stored in ECSA by the companion MPF exit MPFHZS00. The MPFHZS00 exit can be used to monitor multiple message IDs simply by adding multiple definition statements in your MPFLSTxx parmlib member.

 	
 Note: MPFLSTxx allows message management for specific message IDs and for generic ones. A generic message ID consists of a message ID prefix followed by an asterisk. Although it is possible to use the MPFHZS00 exit to define message management policies for a generic message ID, this MPF exit is designed to control specific messages. For this reason we expect you to use the exit in association with specific message IDs.

 For example, for the two check instances shown, MPFX_IMPORTANT_MSG_IEE711I and MPFX_IMPORTANT_MSG_IXC518I, we added to our MPFLSTxx parmlib member two USEREXIT statements similar to the ones shown in Example 9-9.

 Example 9-9 Adding the required USEREXIT statements in your MPFLSTxx parmlib member

 [image:]

 /* */

 /*---*/

 /* MESSAGES monitored by the MPFX_IMPORTANT_MSG Healt Check */

 /*---*/

 /* */

 IEE711I,SUP(NO),USEREXIT(MPFHZS00)

 IXC518I,SUP(NO),USEREXIT(MPFHZS00)

 . . .

 [image:]

 	
 Note: If you do not specify the AUTO option in your MPFLSTxx statement, as in the previous example, the system defaults to AUTO(NO). If, however, you do not specify any message processing statements for a message, the system considers the message eligible for automation processing, AUTO(YES). For this reason, when adding MPF exit definitions, make sure that this modification does not change the current processing behavior for the selected messages.

 Dynamically activating the check

 So far we have described how to add the MPFHZSCK, MPFHZSMT, and MPFHZS00 modules to a LNKLST concatenated load library, how to define the health check via a set of statements in an HZSPRMxx parmlib member, and how to define the MPFHZS00 exit via new definitions in a MPFLSTxx parmlib member.

 Now we discuss how the defined checks can be dynamically activated. This involves activating the new MPFLSTxx definitions and the new HZSPRMxx ones.

 Assuming that you used the IM (important messages) suffix for your MPFLSTxx parmlib member, you can activate the MPF exit for the messages that you want to monitor by issuing the following command, where xx, yy, and ... are the other MPFLSTxx members already in use:

 SET MPF=(xx[,yy]...IM)

 For example, if you are just using an MPFLST00 member for all the other definitions, you can activate the new ones contained by the MPFLSTIM member by issuing the following command:

 SET MPF=(00,IM)

 This gives you the following result:

 11.18.28 SET MPF=(00,IM)

 11.18.29 IEE712I SET MPF PROCESSING COMPLETE

 The exits are now active. At the first occurrence of the monitored messages each of these goes through its initialization process and issues the following console message:

 11.21.25 MPFHZS00 - Exit activated for msgid xxxxxxxx DIAG=yyyyyyyy

 When comfortable with the new MPF definitions, you can make them permanent by updating your CONSOLxx member. You simply add the IM suffix 1 to the list of MPF definition members into the INIT statement, as shown in Example 9-10.

 Example 9-10 Updating your CONSOLxx parmlib member to point to your new MPFLSTxx definitions

 [image:]

 INIT CMDDELIM(")

 MLIM(1500)

 MONITOR(DSNAME)

 MMS(00)

 MPF(00,IM) 1

 PFK(00)

 RLIM(999)

 UEXIT(N)

 CNGRP(00)

 . . .

 [image:]

 Now that the MPF exit has been activated for each monitored message, we also must activate the relevant checks. Assuming that they have been previously defined using an HZSPRMIM parmlib member and that IBM Health Checker is running, we activate them by issuing the following command:

 F hzsproc,ADD,PARMLIB=IM

 For example, if you are just using an HZSPRM00 member for all the other definitions, you can activate the new ones contained by the HZSPRMIM member by issuing the following command:

 F hzsproc,ADD,PARMLIB(00,IM)

 This gives the following result:

 11.32.13 F hzsproc,ADD,PARMLIB=(00,IM)

 11.32.13 STC02389 HZS0403I ADD PARMLIB PROCESSING HAS BEEN COMPLETED

 The check definitions are now in place, and each MPFX_IMPORTANT_MSG check runs accordingly.

 There are two ways to make these changes permanent and have the new checks automatically activated every time that the IBM Health Checker starts:

 •Modify the HZSPROC start command to include the new parmlib member, using the following syntax:

 START hzsproc,HZSPRM=(xx[,yy]...IM)

 Here xx, yy, and ... are the HZSPRMxx members already in use.

 •Update the start procedure, adding the IM suffix 1 to the list associated with the HZSPRM symbol (Example 9-11).

 Example 9-11 Updating your HZSPROC procedure

 [image:]

 //HZSPROC JOB JESLOG=SUPPRESS

 //HZSPROC PROC HZSPRM='00,IM' 1

 //IEFPROC EXEC PGM=HZSINIT,REGION=0M,TIME=NOLIMIT,

 // PARM='SET PARMLIB=&HZSPRM.'

 //HZSPDATA DD DDNAME=IEFRDER

 //IEFRDER DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=SHR

 //SYSABEND DD SYSOUT=*

 // PEND

 // EXEC HZSPROC

 [image:]

 9.3.3 Managing MPFX_IMPORTANT_MSG checks

 Once activated, the MPFX_IMPORTANT_MSG check can be managed by using modify commands or via the SDSF CK menu. A quick summary of the modify commands that you can use to manage checks follows.

 To make a check ineligible for further invocations you can use the modify deactivate command:

 F HZSPROC,DEACTIVATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx)

 To return it to the active (eligible) state use the modify activate command:

 F HZSPROC,ACTIVATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx)

 To completely remove a check definition use the modify delete command:

 F HZSPROC,DELETE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx)

 	
 Note: The modify delete command just removes a check from the running configuration. It does not change the permanent check definitions kept in parmlib.

 If the specified check is running when the modify delete command is issued, the system waits until the check finishes running before deleting it. If you need to immediately remove a running check, use the modify delete force command:

 F HZSPROC,DELETE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),FORCE=YES

 	
 Note: Note that specifying FORCE=YES deletes the check while it might still be in the process of running, potentially leaving check-owned resources in an inconsistent state.

 To reinstate previously deleted MPFX_IMPORTANT_MSG checks use the modify addnew command:

 F HZSPROC,ADDNEW

 To update an active check use the modify update command. This can be used to change most of the check's attributes, for example:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),INTERVAL=00:01

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),SEVERITY=MEDIUM

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),PARM='WARN(ANY)'

 Finally, a check can be re-initialized using the INITCHECK parameter:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),PARM='INITCHECK(value)'

 When running in WARN(ANY) mode, the MPFX_IMPORTANT_MSG check will raise an exception at every interval provided that the relevant message has been issued at least once since the check was initialized. This allows you to keep receiving a warning for a critical condition until this is acknowledged.

 When running in WARN(ANY) mode, if you want to stop receiving exception messages for an error condition that has been removed, you can re-initialize the check using the following command:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),PARM='INITCHECK(value)'

 	
 Note: There is no need to revert to a WARN(xxx) specification after the check has been re-initialized. Letting the check run with the INITCHECK option is useful to remind you that it was re-initialized. You can use the value string to provide additional information about when or why the check was last re-initialized.

 The MPFX_IMPORTANT_MSG check keeps two separate counters for the number of messages trapped: one which counts all the occurrences since the first one was detected, another for messages trapped since the last check initialization. Also, the memory buffer used to hold trapped messages is preserved across check initializations, which means that when running the check in verbose mode it is still possible to view messages trapped before the check was re-initialized.

 9.3.4 How the check works

 A separate instance of the MPFX_IMPORTANT_MSG check can be used to monitor a single message ID. Define a unique check, with the associated MPF exit, to manage each unique message ID.

 The actual message monitoring activity is performed by a MPF exit routine, which listens for the specified message ID. When the relevant message is detected, the exit records the event and saves the actual message in a memory buffer located in CSA above the line.

 	
 Attention: If you define an MPFX_IMPORTANT_MSG check for a given message ID without activating the associated MPF exit, the health check will not be able to detect any occurrence of the message and will always end successfully. The check does not know if the MPF exit has been activated for the relevant message ID. That is why the success message generated by the check reminds you of the need to activate the companion MPF exit.

 Each MPFX_IMPORTANT_MSG check runs on an interval basis according to its definition. When the interval expires the check routine MPFHZSCK is executed and verifies the information generated by the MPFHZS00 exit. If no messages have been detected the check ends successfully, producing a report like the one shown in Example 9-12.

 Example 9-12 MPFX_IMPORTANT_MSG sample success status message

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IEE711I)

 START TIME: 08/29/2009 10:35:35.061601

 CHECK DATE: 20090717 CHECK SEVERITY: MEDIUM

 CHECK PARM: WARN(NEW)

 MPFHZS1I No occurrences of message IEE711I detected since when message

 monitoring was initialized (09.241 10:25:34.93).

 This is OK as soon as the MPF exit MPFHZS00 is active for message

 IEE711I.

 Make sure that MPF exit MPFHZS00 is active for message IEE711I.

 To activate it add the following statement to your MPFLSTxx parmlib

 member:

 IEE711I,SUP(NO),AUTO(N),USEREXIT(MPFHZS00)

 and make the new MPF list current using the SET MPF=xx command.

 END TIME: 08/29/2009 10:35:35.115647 STATUS: SUCCESSFUL

 [image:]

 If the relevant message ID has been trapped the check raises an exception and generates a report. When the check is run in verbose mode the generated report also includes a log of the trapped messages.

 To run a check in verbose mode issue the following command:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_xxxxxxx),VERBOSE=YES

 Note that although the update command immediately changes the verbose setting, this option only becomes effective at the next scheduled check invocation, after the current interval expires.

 9.3.5 Sample check execution

 This section shows you the life of an MPFX_IMPORTANT_MSG check. In this case we define an MPFX_IMPORTANT_MSG check for message IXC534I, which reports the successful completion of a coupling facility structure alter. The idea is to monitor when a structure is dynamically resized to evaluate the change and possibly make it permanent by updating the CFRM policy.

 This is not a critical condition, so we defined the check with a low severity. We also chose to run it in WARN(ANY) mode, to have the exception pending until it is acknowledged and managed. Finally, we decided to run the check every 5 minutes.

 Example 9-13 is the required check definition statement.

 Example 9-13 Sample MPFX_IMPORTANT_MSG check definition for message ID IXC534I

 [image:]

 /*---*

 /* IXC534I SETXCF REQUEST TO ALTER STRUCTURE ... */

 ---/

 ADDREP CHECK(IBMITSO,MPFX_SIGNIFICANT_MSG_IXC534I) ACTIVE

 SEVERITY(LOW) INTERVAL(00:05) PARM('WARN(ANY)') VERBOSE(NO)

 DATE(200900829) REASON('Health Check for sysyem msg IXC534I')

 CHECKROUTINE(MPFHZSCK) MESSAGETABLE(MPFHZSMT)

 [image:]

 We performed the setup steps described in the previous paragraphs and activated the check at 09:01:33.

 After some time we checked the status using the SDSF CK command. As expected, the check was successful, as shown in Example 9-14.

 Example 9-14 MPFX_IMPORTANT_MSG_IXC534I success status message

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I)

 START TIME: 09/09/2009 09:36:33.987375

 CHECK DATE: 20090829 CHECK SEVERITY: LOW

 CHECK PARM: WARN(ANY)

 MPFHZS1I No occurrences of message IXC534I detected since when message monitoring was initialized (09.252 09:01:33.90).

 This is OK as soon as the MPF exit MPFHZS00 is active for message IXC534I.

 Make sure that MPF exit MPFHZS00 is active for message IXC534I.

 To activate it add the following statement to your MPFLSTxx parmlib member:

 IXC534I,SUP(NO),AUTO(N),USEREXIT(MPFHZS00)

 and make the new MPF list current using the T MPF=xx command.

 END TIME: 09/09/2009 09:36:33.988103 STATUS: SUCCESSFUL

 [image:]

 Just to make sure that the MPFHZS00 exit was properly defined for IXC534I, we issued a D MPF command, as shown in Example 9-15.

 Example 9-15 Using display MPF to check the status of MPF exits

 [image:]

 09:36:40.60 -D MPF

 IEE677I 09.40.52 MPF DISPLAY 438

 MESSAGE ID -MPF SUPPRESS RETAIN AUTO TOKEN EXIT

 .NO_ENTRY -00 NO YES YES

 IXC534I -IM NO YES YES N MPFHZS00

 [image:]

 The display shows that MPFHZS00 is defined for message IXC534I. We are now sure that no IXC534I messages have been issued so far.

 We now explicitly trigger the message by resizing one of the XCF structures:

 09:36:48.77 SETXCF START,ALTER,STRNM=IXC_DEFAULT_2,SIZE=30000

 . . .

 At the first occurrence of the IXC534I message, MPFHZS00 initializes 1 and saves the message into a memory buffer (Example 9-16).

 Example 9-16 MPFHZS00 exit activation message

 [image:]

 09:36:57.06 MPFHZS00 - Exit activated for msgid IXC534I DIAG=100A2000 1

 . . .

 09:36:57.06 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 30720 K TARGET: 30720 K

 CURRENT ENTRY COUNT: 5271 TARGET: 5271

 CURRENT ELEMENT COUNT: 5247 TARGET: 5247

 CURRENT EMC COUNT: 0 TARGET: 0

 [image:]

 When the next interval expires at 09:41:33 the check executes again, detects the new message, and raises an exception, which is reported in the system log:

 09:41:33.98 STC07735 HZS0001I CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I): 558

 558 MPFHZS9E The Check detected 1 occurrence(s) of the IXC534I message.

 A detailed check execution report is also generated. This can be displayed using SDSF, as shown in Example 9-17.

 Example 9-17 MPFX_IMPORTANT_MSG_IXC534I exception status message

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I)

 START TIME: 09/09/2009 09:41:33.980351

 CHECK DATE: 20090829 CHECK SEVERITY: LOW

 CHECK PARM: WARN(ANY)

 * Low Severity Exception *

 MPFHZS9E The Check detected 1 occurrence(s) of the IXC534I message.

 Explanation: CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I), which is running in WARN(ANY) mode, detected 1 occurrence(s) of the IXC534I message for

 system #@$2. A total of 1 have been detected since when message

 monitoring was initialized (09.252 09:01:33.90).

 If the check ran in WARN(ANY) mode this exception could be related

 to messages issued before message monitoring initialization. Run the

 Check in verbose mode to view a list of trapped messages.

 System Action: n/a.

 Operator Response: Report this error to the System Programmer.

 System Programmer Response: Determine the reasons why message IXC534I

 was issued. If you want to keep receiving an exception even for

 intervals with no occurrences of IXC534I use the check parameter 'WARN(ANY)'.

 Problem Determination: For problem determination refer to the

 relevant message manual.

 Source: IBM ITSO Message Checker MPF exit.

 Reference Documentation: Look at the following manuals to explain the

 error message further or help diagnose and correct the problem

 reported: MVS System Messages manuals Vol. 1-10 or the relevant

 product manual.

 Check Reason: Health Check for msg IXC534I

 END TIME: 09/09/2009 09:41:33.984026 STATUS: EXCEPTION-LOW

 [image:]

 From the report you can see that during the last run the check raised a low severity exception because it detected one occurrence of the IXC534I message. This is the only occurrence since message monitoring was initialized at 09:01:33.

 The check is currently running in WARN(ANY), VERBOSE(NO) mode. The explanation suggests re-running the check in verbose mode to view the actual list of trapped IXC534I messages.

 We use the modify update command to set the check verbose mode to YES:

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I),VERBOSE=YES

 The new verbose setting is used at the next check execution, in our case at 09:46:33:

 09:46:33.97 STC07735 HZS0001I CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I): 581

 581 MPFHZSAE The Check detected 1 occurrence(s) of the IXC534I message

 581 since when message monitoring was initialized (09.343 09:01:33.90).

 581 None of them occurred during the last monitoring interval.

 We now display the detailed check execution report again to view the actual message, as shown in Example 9-18.

 Example 9-18 MPFX_IMPORTANT_MSG_IXC534I exception status message: verbose format

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I)

 START TIME: 09/09/2009 09:46:33.977114

 CHECK DATE: 20090829 CHECK SEVERITY: LOW

 CHECK PARM: WARN(ANY)

 MPFHZS3I The Check ran in verbose mode. A log of all the 1 occurrence(s)

 of message IXC534I since when the first one was detected (09.252

 09:36:57.06) follows.

 -- 09.252 09:36:57.06 - XCFAS -----

 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2 106

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 30720 K TARGET: 30720 K

 CURRENT ENTRY COUNT: 5271 TARGET: 5271

 CURRENT ELEMENT COUNT: 5247 TARGET: 5247

 CURRENT EMC COUNT: 0 TARGET: 0

 * Low Severity Exception *

 MPFHZSAE The Check detected 1 occurrence(s) of the IXC534I message since

 when message monitoring was initialized (09.252 09:01:33.90). None of

 them occurred during the last monitoring interval.

 Explanation: CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I), which is running in WARN(ANY) mode, didn't detect any occurrence of message IXC534I in

 the last monitoring interval for system #@$2. A total of 1 have been detected since when message monitoring was initialized (09.252 09:01:33.90).

 System Action: n/a.

 Operator Response: Report this error to the System Programmer.

 System Programmer Response: Determine the reasons why message IXC534I

 was issued. If you elect to just receive an exception for new

 occurrences of IXC534I use the check parameter 'WARN(NEW)'.

 Problem Determination: For problem determination refer to the

 relevant message manual.

 Source: IBM ITSO Message Checker MPF exit.

 Reference Documentation: Look at the following manuals to explain the

 error message further or help diagnose and correct the problem

 reported: MVS System Messages manuals Vol. 1-10 or the relevant

 product manual.

 Automation: n/a

 Check Reason: Health Check for msg IXC534I

 END TIME: 09/09/2009 09:46:33.977288 STATUS: EXCEPTION-LOW

 [image:]

 From the VERBOSE (YES) report we can see the actual list of IXC534I messages issued so far, in this case just one. The message was issued at 09:36:57.06 on 09.252 by the XCFAS address space.

 Due to the WARN(ANY) setting, the check keeps raising an exception at every new invocation (every 5 minutes) even if no new occurrences of IXC534I were detected in the last run:

 . . .

 10:31:33.99 STC07735 HZS0001I CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I): 600

 600 MPFHZSAE The Check detected 1 occurrence(s) of the IXC534I message

 600 since when message monitoring was initialized (09.343 09:01:33.90).

 600 None of them occurred during the last monitoring interval.

 . . .

 This continues until when we acknowledged the condition explicitly running the check with the INITCHECK parameter. We decided to provide, as arbitrary INITCHECK value, the date and time when the check was reinitialized.

 F HZSPROC,UPDATE,CHECK=(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I),PARM='INITCHECK(200909091033)'

 The detailed report for the first execution after we re-initialized the check (Example 9-19), shows a successful status and informs you that zero occurrences of the message were detected since the check was re-initialized at 10:33:25.35 2 .

 Example 9-19 MPFX_IMPORTANT_MSG_IXC534I success status message after check re-initialization

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I)

 START TIME: 09/09/2009 10:33:25.352791

 CHECK DATE: 20090829 CHECK SEVERITY: LOW

 CHECK PARM: INITCHECK(200909091033) 1

 MPFHZS2I No new occurrences of message IXC534I detected in the last

 monitoring interval. This is OK.

 0 occurrences have been detected for system #@$2 since when message

 monitoring was initialized (09.252 10:33:25.35). 2

 A total of 1 messages have been trapped. 3

 CHECK(MPFX_IMPORTANT_MSG_IXC534I) is running in WARN(ANY) mode. 4

 Run the Check in verbose mode to to view a list of trapped messages.

 END TIME: 09/09/2009 10:38:25.25.469281 STATUS: SUCCESSFUL

 [image:]

 The check has one occurrence of the IXC534I message in its memory buffer 3: That was trapped before the check was re-initialized and can still be viewed by running the check in VERBOSE mode. The report also informs you that the check is running in WARN(ANY) mode 4: This is needed since for documentation reasons you might want to keep running with the original INITCHECK parameter you used to re-initialize the check 1.

 Wrap-around buffer

 The MPFX_IMPORTANT_MSG check uses a dedicated memory buffer for each managed message ID. The 64 KB ECSA buffer dedicated to a given message ID can contain up to 256 single-line messages, or a proportionally lesser amount of multi-line messages. It is filled in a wrap-around fashion, but in any case the very first occurrence of the message is preserved with the assumption that it can help in better understanding when the problem originally arose.

 Example 9-20 is a sample check report showing the wrap-around condition.

 Example 9-20 MPFX_IMPORTANT_MSG_IXC534I exception status message: buffer wrapped

 [image:]

 CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I)

 START TIME: 09/16/2009 16:34:49.308512

 CHECK DATE: 20090829 CHECK SEVERITY: LOW

 CHECK PARM: WARN(ANY)

 MPFHZS4I The Check ran in verbose mode. A log with the first and the

 last 35 occurrences of IXC534I follows. A total of 38 were detected since

 09.252 09:36:57.06. 3

 -- 09.252 09:36:57.06 - XCFAS ----- 4

 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 30720 K TARGET: 30720 K

 CURRENT ENTRY COUNT: 5271 TARGET: 5271

 CURRENT ELEMENT COUNT: 5247 TARGET: 5247

 CURRENT EMC COUNT: 0 TARGET: 0

 <snip>

 -- 09.258 19:41:01.41 - XCFAS ----- 5

 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 20480 K TARGET: 20480 K

 CURRENT ENTRY COUNT: 2877 TARGET: 2877

 CURRENT ELEMENT COUNT: 2864 TARGET: 2864

 CURRENT EMC COUNT: 0 TARGET: 0

 -- 09.259 13:45:24.62 - XCFAS -----

 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 30720 K TARGET: 30720 K

 CURRENT ENTRY COUNT: 5271 TARGET: 5271

 CURRENT ELEMENT COUNT: 5247 TARGET: 5247

 CURRENT EMC COUNT: 0 TARGET: 0

 -- 09.259 16:27:14.31 - XCFAS -----

 IXC534I SETXCF REQUEST TO ALTER STRUCTURE IXC_DEFAULT_2

 COMPLETED. TARGET ATTAINED.

 CURRENT SIZE: 20480 K TARGET: 20480 K

 CURRENT ENTRY COUNT: 2877 TARGET: 2877

 CURRENT ELEMENT COUNT: 2864 TARGET: 2864

 CURRENT EMC COUNT: 0 TARGET: 0

 * Low Severity Exception *

 MPFHZSAE The Check detected 36 occurrence(s) of the IXC534I message 1

 since when message monitoring was initialized (09.252 10:33:25.35). 2

 None of them occurred during the last monitoring interval.

 Explanation: CHECK(IBMITSO,MPFX_IMPORTANT_MSG_IXC534I), which is running in WARN(ANY) mode, didn't detect any occurrence of message IXC534I in

 the last monitoring interval for system #@$2. A total of 36 have been detected since when message monitoring was initialized (09.252

 10:33:25.35).

 System Action: n/a.

 Operator Response: Report this error to the System Programmer.

 System Programmer Response: Determine the reasons why message IXC534I

 was issued. If you elect to just receive an exception for new

 occurrences of IXC534I use the check parameter 'WARN(NEW)'.

 Problem Determination: For problem determination refer to the

 relevant message manual.

 Source: IBM ITSO Message Checker MPF exit.

 Reference Documentation: Look at the following manuals to explain the

 error message further or help diagnose and correct the problem

 reported: MVS System Messages manuals Vol. 1-10 or the relevant

 product manual.

 Automation: n/a

 Check Reason: Health Check for msg IXC534I

 END TIME: 09/16/2009 16:34:49.316272 STATUS: EXCEPTION-LOW

 [image:]

 In this case the check detected 36 occurrences of the IXC534I message 1 since the check was re-initialized at 10:33:25.35 on 09.343 2. The check ran in verbose mode, and a list of messages available in the memory buffer was generated.

 The list shows the very first IXC534I message trapped at 09:36:57.06 on 09.252 4, before the check was re-initialized, and the last 35 occurrences 5 (most of them have been removed from the report in Example 9-20 on page 215 to make it readable). The MPFHZS4I message also informs you that a total of 38 IXC534I messages have been detected, although only 36 of them fit in the message buffer 3.

 9.3.6 The implementation

 Figure 9-1 on page 217 summarizes how the different parts of the check work and interact with each other. Let us use it to see what happens when a monitored message is trapped.

 [image:]

 Figure 9-1 MPFX_IMPORTANT_MSG: parts and basic check flow

 A software component issues a WTO to produce a system message. The MVS message processing facilities determine whether an MPF exit should be invoked for the relevant message ID.

 •If the message ID is associated with a MPFLSTxx definition with MPFHZS00, the exit is invoked 1. During its first invocation for a given message ID MPFHZS00 allocates an ECSA memory buffer to keep a copy of trapped messages. There is a 64 KB memory buffer for each managed message ID.

 •As part of its routine processing MPFHZS00 saves a copy of the trapped message in the ECSA memory buffer 2.

 •At interval expiration the MPFX_IMPORTANT_MSG check associated with this message ID is executed by IBM Health Checker. MPFHZSCK is a local check routine that runs in the IBM Health Checker address space 3.

 •MPFHZSCK invokes the data retrieval function MPFHZSDR to access the ECSA memory buffer 4.

 •MPFHZSDR collects the available information about the message 5.

 Based on the information passed by MPFHZSDR and according to the current WARN and VERBOSE settings, MPFHZSCK determines whether an exception should be raised. MPFHZSCK makes use of the MPFHZSMT message table to generate the appropriate exception and information messages 6.

[image:]
[image:]

Additional material

 This paper refers to additional material that can be downloaded from the Internet as described in this appendix.

 Locating the web material

 The web material associated with this paper is available in softcopy on the Internet from the IBM Redbooks web server. Point your web browser to:

 ftp://www.redbooks.ibm.com/redbooks/REDP4590

 Alternatively, you can go to the IBM Redbooks website at:

 ibm.com/redbooks

 Select the Additional materials and open the directory that corresponds with the IBM Redpaper form number, REDP4590.

 Using the web material

 The additional web material that accompanies this paper includes the following files:

 File name		Description

 REDP4590.CHAPTER3.zip		Compressed code samples for the check described in “Writing checks” on page 61

 REDP4590.CHAPTER7.zip		Compressed code samples for the check described in “Writing checks using System REXX” on page 147

 REDP4590.CHAPTER8.zip		Compressed code samples for the check described in “Unauthorized health checks written in REXX” on page 177

 REDP4590.CHAPTER9.zip		Compressed code samples for the check described in “Writing health checks using Metal C” on page 195

 How to use the web material

 For each of the available web material compressed files, create a subdirectory (folder) on your workstation and uncompress the contents of the web material compressed file into this folder. Open the readme file. This file contains the description of the other files and instructions for uploading and using the files.

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this paper.

 IBM Redbooks publications

 For information about ordering this publication see “How to get Redbooks publications” on page 222.

 •z/OS Version 1 Release 9 Implementation, SG24-7427

 Other publications

 These publications are also relevant as further information sources:

 •IBM Health Checker for z/OS User's Guide, SA22-7994-09

 •z/OS TSO/E REXX Reference, SA22-7790

 •Parallel Sysplex and z/OS publications:

  –	z/OS MVS Initialization and Tuning Reference

  –	z/OS MVS Planning: Global Resource Serialization

  –	z/OS MVS Planning: Operations

  –	z/OS MVS Setting Up a Sysplex

  –	z/OS Security Server RACF Command Language Reference

  –	z/OS Security Server RACF Security Administrator’s Guide

  –	z/OS UNIX System Services Planning

  –	

 These publications are available at:

 http://www-03.ibm.com/systems/z/os/zos/bkserv/r11pdf/

 •Metal C Programming Guide and Reference SA23-2225

 •TSO/E Customization SA22-7783
This document describes IBM support for the REXX compiler.

 •MVS Authorized Assembler Services Guide SA22-7608
This document includes a detailed discussion of System REXX.

 Online resources

 These websites are also relevant as further information sources:

 •The z/OS V1R11 Information Center

 http://publib.boulder.ibm.com/infocenter/zos/v1r11/index.jsp

 •IBM Health Checker for z/OS Web site

 http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

 •IBM Tech Support website

 http://www14.software.ibm.com/webapp/set2/psp/srchBroker

 •Washington System Center Flashes website

 http://www.ibm.com/support/techdocs/

 How to get Redbooks publications

 You can search for, view, or download Redbooks publications, Redpapers publications, Technotes, draft publications and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

 ibm.com/redbooks

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Exploiting the IBM Health Checker for z/OS Infrastructure

 Improve the availability of your systems exploiting the Health Checker

Design useful, informative custom health checks

Learn how to code health checks

 The IBM Health Checker for z/OS (also identified in this book as IBM Health Checker) is a key component of the z/OS operating system, whose objective is to identify potential problems before they impact the system’s availability. To do this it continuously checks many current, active z/OS and sysplex settings and compares them with those suggested by IBM or defined by you.

 The IBM Health Checker for z/OS is made of two parts:

 •A framework that provides check management and execution services. It supports check development by IBM, independent software vendors (ISVs), and users.

 •Individual checks that look for specific z/OS settings and definitions, checking for potential problems.

 Customers can use the IBM Health Checker for z/OS infrastructure to run their own checks, extending the reach of IBM Health Checker for z/OS to environment-specific settings.

 This IBM Redpaper publication introduces the IBM Health Checker and describes how to activate and use it. It teaches you how to exploit the IBM Health Checker infrastructure to run custom checks and how to identify good candidates for writing your own checks. This publication also provides a number of sample checks to give you a good start creating custom checks for your environment.

 Back cover

 Acrobat bookmark

 OPS/images/4590ch07.12.1.49.jpg

OPS/images/4590ch08.13.1.17.jpg

OPS/images/4590ch07.12.1.48.jpg

OPS/images/4590ch08.13.1.16.jpg

OPS/images/4590ch02.07.1.50.jpg

OPS/images/4590ch07.12.1.47.jpg

OPS/images/4590ch08.13.1.15.jpg

OPS/images/4590ch07.12.1.46.jpg

OPS/images/4590ch08.13.1.14.jpg

OPS/images/4590ch02.07.1.52.jpg

OPS/images/4590ch03.08.1.21.jpg

OPS/images/4590ch07.12.1.45.jpg

OPS/images/4590ch08.13.1.13.jpg

OPS/images/4590ch02.07.1.51.jpg

OPS/images/4590ch03.08.1.22.jpg

OPS/images/4590ch07.12.1.44.jpg

OPS/images/4590ch08.13.1.12.jpg

OPS/images/4590ch02.07.1.54.jpg

OPS/images/4590ch07.12.1.43.jpg

OPS/images/4590ch08.13.1.11.jpg

OPS/images/4590ch02.07.1.53.jpg

OPS/images/4590ch03.08.1.20.jpg

OPS/images/4590ch07.12.1.42.jpg

OPS/images/4590ch08.13.1.10.jpg

OPS/images/4590ch08.13.1.19.jpg

OPS/images/4590ch08.13.1.18.jpg

OPS/images/4590ch02.07.1.45.jpg

OPS/images/4590ch03.08.1.14.jpg

OPS/images/4590ch07.12.1.52.jpg

OPS/images/4590ch08.13.1.20.jpg

OPS/images/4590ch02.07.1.44.jpg

OPS/images/4590ch03.08.1.15.jpg

OPS/images/4590ch07.12.1.51.jpg

OPS/images/4590ch02.07.1.47.jpg

OPS/images/4590ch03.08.1.12.jpg

OPS/images/4590ch07.12.1.50.jpg

OPS/images/4590ch02.07.1.46.jpg

OPS/images/4590ch03.08.1.13.jpg

OPS/images/4590ch02.07.1.49.jpg

OPS/images/4590ch03.08.1.18.jpg

OPS/images/4590ch02.07.1.48.jpg

OPS/images/4590ch03.08.1.19.jpg

OPS/images/4590ch03.08.1.16.jpg

OPS/images/4590ch03.08.1.17.jpg

OPS/images/4590ch06.11.1.09.jpg

OPS/images/4590ch07.12.1.38.jpg

OPS/images/4590ch07.12.1.37.jpg

OPS/images/4590ch06.11.1.07.jpg

OPS/images/4590ch07.12.1.36.jpg

OPS/images/4590ch06.11.1.08.jpg

OPS/images/4590ch07.12.1.35.jpg

OPS/images/4590ch02.07.1.41.jpg

OPS/images/4590ch03.08.1.10.jpg

OPS/images/4590ch06.11.1.05.jpg

OPS/images/4590ch07.12.1.34.jpg

OPS/images/4590ch02.07.1.40.jpg

OPS/images/4590ch03.08.1.11.jpg

OPS/images/4590ch06.11.1.06.jpg

OPS/images/4590ch07.12.1.33.jpg

OPS/images/4590ch02.07.1.43.jpg

OPS/images/4590ch06.11.1.03.jpg

OPS/images/4590ch07.12.1.32.jpg

OPS/images/4590ch02.07.1.42.jpg

OPS/images/4590ch06.11.1.04.jpg

OPS/images/4590ch07.12.1.31.jpg

OPS/images/4590ch07.12.1.39.jpg

OPS/images/4590ch02.07.1.34.jpg

OPS/images/4590ch06.11.1.01.jpg

OPS/images/4590ch07.12.1.41.jpg

OPS/images/4590ch02.07.1.33.jpg

OPS/images/4590ch06.11.1.02.jpg

OPS/images/4590ch07.12.1.40.jpg

OPS/images/4590ch02.07.1.36.jpg

OPS/images/4590ch02.07.1.35.jpg

OPS/images/4590ch02.07.1.38.jpg

OPS/images/4590ch02.07.1.37.jpg

OPS/images/4590ch02.07.1.39.jpg

OPS/images/4590ch02.07.1.70.jpg

OPS/images/4590ch03.08.1.40.jpg

OPS/images/4590ch02.07.1.72.jpg

OPS/images/4590ch02.07.1.71.jpg

OPS/images/4590ch02.07.1.74.jpg

OPS/images/4590ch03.08.1.43.jpg

OPS/images/4590ch04.09.1.11.jpg

OPS/images/4590ch02.07.1.73.jpg

OPS/images/4590ch03.08.1.44.jpg

OPS/images/4590ch04.09.1.12.jpg

OPS/images/4590ch07.12.1.66.jpg

OPS/images/zHC_MC_2.jpg
MASSIE

Tivoli| Enterprise Portal

Fie.

Edt View Hel

BiiéeiE| 20049 B
€2 View: |physical [o8 Ll
®
@ ertermie o

S B 205 Sysems

&

© B SANDBOXz0S ManagemeniConsdle
Couping Focity Py Det for Syspiex | =
Couping Facity Systens Dt orSyspi
@ O] couping Fecity Sucures et for Sy
@ cr_STRUCTURE REBULDCH
34 Coupin Facity Pt Deta for Syspex
XCF Sysems Data or Sysplex
Al
B

Physical

ASM_NUMBER_LOCAL_DATASETS:

CSTCP_TCPMAXRCVBUFRSIZE_TCPIP E

HOeEEEP OB

Lk

SM_CSA_CHANGE

XCF_CF_CONNECTIVITY:
XCF_TCLASS_CONNECTIITY:
XCF_CF_STR_PREFLIST
GRS_RNL_IGNORED_CONY:
CNZ_EMCS_HARDCOPY_MSCOPE
RACF_IBMUSER_REVOKED!
IXGLOGR_STRUCTUREFULL
RRS_DURDFFLOADSIZE

RSM_MEMLIMIT

VEM_ALLOWUSERKEYCSA,

XCF _CF_CONNECTIITY,

XCF_TCLASS_CLASSLEN

GRS_MODE,

CNZ_CONSOLE_MASTERAUTH_CMDSYS!

CNZ_SYSCONS_PD_MODE

RACF_TAPEVOL_ACTIVE

RRS_MURDFFLOADSIZE
CSTCP_TCPMAXRCVBUFRSIZE_TCPIP S

Check
Owner

Check
Narne

Check
State

IEMRACF | RACF_SENSITIVE_RESOURCES

ACTIVE(ENABLED)

TEMCE__ XCF_CF_CONNECTNVITY

[ACTIVE(ENABLED)

IBMRACF | RACF_IBMUSER_REVOKED

ACTIVE(ENABLED)

IBMRACF | RACF_TEMPDN_ACTIVE

[ACTIVE(ENABLED)

IBMASM__| ASM_PLPA_COMMON_SIZE

ACTIVE(ENABLED)

TEMASM__| ASM_PAGE_ADD

[ACTIVE(ENABLED)

IBMXCF | XCF_SYSPLEX_CDS_CAPACITY

ACTIVE(ENABLED)

IBMVSAM

[vaal_INDEX_TRAP

[ACTIVE(ENABLED)

IBMRRS | RRS_RMDATALOGDUPLEXMODE

ACTIVE(ENABLED)

IEMUSS | USS_FILESYS_CONFIG

ACTIVE(ENABLED)

IBMRSM__| RSW_MEMLIMIT

ACTIVE(ENABLED) | EXCERTIONALO

 EXCEFTION:MEDIUM

Diag! R e

00000000
00000000

00000000
T Do000000

Unknown
Urkngwn

00000000
00000000
00000000

00000000
00000000
00000000

Unknown
Unknown
Unknown

00000000 | 00000000_| Untkriown

00000000
00000000
00000000
00000000

4] 00000000

00000000
00000000
00000000
00000000 | Unknawin

00000000 Unknown

Unknown
Unknown
Unknown

TEMUSS | USS_MAXSOCKETS WAFILEPROC

ACTIVE(ENABLED)

4/ 00000000 | 00000000 | Unknown

IBMCNZ | CNZ_CONSOLE_WSCOPE_AND_ROUTCODE

ACTIVE(ENABLED)

4| 00000000 | 00000000 | Unknown

(2]

IBMGNZ | ONZ_CONSOLE_ROUTCODE 11

4] 00000000 00000000 | Unknown

TEMCCE
J IEMACE

XCF_SIG_STR_SIZE
CF _FDI

[ACTIVE(ENABLED)
ACTIVE (ENABLED)

SUCCESSFUL
SUCGESSFUL

000000000 00000000 Unknown,
700000000 | 00000000 | Unknown

OPS/images/4590ch03.08.1.41.jpg

OPS/images/4590ch07.12.1.65.jpg

OPS/images/zHC_MC_1.jpg
Tivali Enterprise Portal
Fie Edt Vew ek

B¢ 2004 BEQUBRAERAERTEE

G View: [Physical) W= M1 Health Checker Gounts me o x
®
@ Erierprise C

© [zos Systems

© B SANDBOXz0S ManegemeniConisdle -
Couping Facy Polcy Dt for Sysplex

Couning Fecy Systems Deta for Sysplex

e %mm Fecity Srctures Data or Syses] | %0 Donessveties
@ Cr_STRUCTLRE RESUILOCH Bchesk puttepanding
Coupling Faciity Paths Data for Sysplex 50 Echecis Eligible
recenelle
XCF Systems Dt or Sysplex 4
XCF Paths Data for Sysplex [t
© By scos 40 B Exceptions Outstanding|
D Exceptions SevHigh
© (B 205 Mansgeret Console By
© B SANDBOX SCEIAVALABLITY w0 H oo
© Bl sanoBOX SCe3HEALTHCHECK e
i Morkor St -
Heath ortor Checks
® Ba scst
& 10
<l 3]
& prysea o
Health Checker Status mBeox
wrin| Srstem | Proc Taok [gms| | Version Excepions | Exepions| Exceptions | Exceptons | Exceptions| Checks [Checks| Checks | cn
Name | _Name | idenier deniifer | Ouistanaing | SevNone | Seviow | Sewed | Sewbigh | NoDeisted | Deleted | DeletePening | El
5C63 6063 | HEGPROC |HZGPROC |Actve [208 010800 3 o 7 5 T 77 o 0

S —————————————————————— !

R T P, 11772008 0340 P B e o2 Warior Siats 8 128 200 WABIE

OPS/images/4590ch03.08.1.42.jpg

OPS/images/4590ch04.09.1.10.jpg

OPS/images/4590ch07.12.1.64.jpg

OPS/images/4590ch09.14.1.10.jpg

OPS/images/4590ch02.07.1.67.jpg

OPS/images/4590ch03.08.1.36.jpg

OPS/images/4590ch02.07.1.66.jpg

OPS/images/4590ch03.08.1.37.jpg

OPS/images/4590ch02.07.1.69.jpg

OPS/images/4590ch03.08.1.34.jpg

OPS/images/4590ch02.07.1.68.jpg

OPS/images/4590ch03.08.1.35.jpg

OPS/images/4590ch03.08.1.38.jpg

OPS/images/4590ch03.08.1.39.jpg

OPS/images/4590ch07.12.1.59.jpg

OPS/images/4590ch02.07.1.61.jpg

OPS/images/4590ch05.10.1.08.jpg

OPS/images/4590ch07.12.1.58.jpg

OPS/images/4590ch02.07.1.60.jpg

OPS/images/4590ch05.10.1.09.jpg

OPS/images/4590ch07.12.1.57.jpg

OPS/images/4590ch02.07.1.63.jpg

OPS/images/4590ch03.08.1.32.jpg

OPS/images/4590ch05.10.1.06.jpg

OPS/images/4590ch07.12.1.56.jpg

OPS/images/4590ch02.07.1.62.jpg

OPS/images/4590ch03.08.1.33.jpg

OPS/images/4590ch05.10.1.07.jpg

OPS/images/4590ch07.12.1.55.jpg

OPS/images/4590ch02.07.1.65.jpg

OPS/images/4590ch03.08.1.30.jpg

OPS/images/4590ch05.10.1.04.jpg

OPS/images/4590ch07.12.1.54.jpg

OPS/images/4590ch08.13.1.22.jpg

OPS/images/4590ch02.07.1.64.jpg

OPS/images/4590ch03.08.1.31.jpg

OPS/images/4590ch05.10.1.05.jpg

OPS/images/4590ch07.12.1.53.jpg

OPS/images/4590ch08.13.1.21.jpg

OPS/images/4590ch02.07.1.56.jpg

OPS/images/4590ch03.08.1.25.jpg

OPS/images/4590ch05.10.1.02.jpg

OPS/images/4590ch07.12.1.63.jpg

OPS/images/4590ch02.07.1.55.jpg

OPS/images/4590ch03.08.1.26.jpg

OPS/images/4590ch05.10.1.03.jpg

OPS/images/4590ch07.12.1.62.jpg

OPS/images/4590ch02.07.1.58.jpg

OPS/images/4590ch03.08.1.23.jpg

OPS/images/4590ch07.12.1.61.jpg

OPS/images/4590ch02.07.1.57.jpg

OPS/images/4590ch03.08.1.24.jpg

OPS/images/4590ch05.10.1.01.jpg

OPS/images/4590ch07.12.1.60.jpg

OPS/images/4590ch03.08.1.29.jpg

OPS/images/4590ch02.07.1.59.jpg

OPS/images/4590ch03.08.1.27.jpg

OPS/images/4590ch03.08.1.28.jpg

OPS/images/4590ch02.07.1.10.jpg

OPS/images/4590ch09.14.1.22.jpg

OPS/images/4590ch09.14.1.23.jpg

OPS/images/4590ch09.14.1.24.jpg

OPS/images/4590ch09.14.1.25.jpg

OPS/images/4590ch09.14.1.26.jpg

OPS/images/4590ch09.14.1.27.jpg

OPS/images/4590ch09.14.1.28.jpg

OPS/images/4590ch09.14.1.29.jpg

OPS/images/4590ch09.14.1.30.jpg

OPS/images/4590ch09.14.1.31.jpg

OPS/images/4590ch09.14.1.32.jpg

OPS/images/4590ch08.13.1.07.jpg

OPS/images/4590ch09.14.1.19.jpg

OPS/images/4590ch08.13.1.08.jpg

OPS/images/4590ch08.13.1.05.jpg

OPS/images/4590ch08.13.1.06.jpg

OPS/images/4590ch08.13.1.03.jpg

OPS/images/4590ch08.13.1.04.jpg

OPS/images/4590ch08.13.1.01.jpg

OPS/images/4590ch08.13.1.02.jpg

OPS/images/4590ch09.14.1.11.jpg

OPS/images/4590ch09.14.1.12.jpg

OPS/images/4590ch09.14.1.13.jpg

OPS/images/4590ch09.14.1.14.jpg

OPS/images/4590ch09.14.1.15.jpg

OPS/images/4590ch09.14.1.16.jpg

OPS/images/4590ch08.13.1.09.jpg

OPS/images/4590ch09.14.1.17.jpg

OPS/images/4590ch09.14.1.18.jpg

OPS/images/4590ch04.09.1.09.jpg

OPS/images/4590ch04.09.1.08.jpg

OPS/images/4590ch04.09.1.07.jpg

OPS/images/4590ch09.14.1.20.jpg

OPS/images/4590ch04.09.1.06.jpg

OPS/images/4590ch09.14.1.21.jpg

OPS/images/4590ch04.09.1.05.jpg

OPS/images/4590ch04.09.1.04.jpg

OPS/images/4590ch04.09.1.03.jpg

OPS/images/4590ch04.09.1.02.jpg

OPS/images/4590ch04.09.1.01.jpg

OPS/images/4590ch02.07.1.30.jpg

OPS/images/4590ch02.07.1.32.jpg

OPS/images/4590ch02.07.1.31.jpg

OPS/images/4590ch02.07.1.23.jpg

OPS/images/4590ch02.07.1.22.jpg

OPS/images/4590ch02.07.1.25.jpg

OPS/images/4590ch02.07.1.24.jpg

OPS/images/4590ch02.07.1.27.jpg

OPS/images/4590ch02.07.1.26.jpg

OPS/images/4590ch02.07.1.29.jpg

OPS/images/4590ch02.07.1.28.jpg

OPS/images/4590ch07.12.1.08.jpg

OPS/images/4590ch07.12.1.09.jpg

OPS/images/4590ch07.12.1.06.jpg

OPS/images/4590ch07.12.1.07.jpg

OPS/images/4590ch07.12.1.04.jpg

OPS/images/4590ch07.12.1.05.jpg

OPS/images/4590ch02.07.1.21.jpg

OPS/images/4590ch07.12.1.02.jpg

OPS/images/4590ch02.07.1.20.jpg

OPS/images/4590ch07.12.1.03.jpg

OPS/images/4590ch09.14.1.33.jpg

OPS/images/4590ch09.14.1.34.jpg

OPS/images/4590ch09.14.1.35.jpg

OPS/images/4590ch09.14.1.36.jpg

OPS/images/4590ch09.14.1.37.jpg

OPS/images/4590ch09.14.1.38.jpg

OPS/images/4590ch09.14.1.39.jpg

OPS/images/4590ch02.07.1.19.jpg

OPS/images/4590ch09.14.1.40.jpg

OPS/images/4590ch03.08.1.09.jpg

OPS/images/4590ch09.14.1.41.jpg

OPS/images/4590ch03.08.1.08.jpg

OPS/images/4590ch09.14.1.42.jpg

OPS/images/4590ch03.08.1.07.jpg

OPS/images/MPFHZS00.png
Any AS

HZSPROC

ECSA

MPFHZS
Memory Buffer

ECSA

a

MPFHZS00

/

WTO 1

\5

MPFHZSDR

E

MPFHZSCK

E

MPFHZSMT

OPS/images/4590ch02.07.1.12.jpg

OPS/images/4590ch03.08.1.06.jpg

OPS/images/4590ch02.07.1.11.jpg

OPS/images/4590ch03.08.1.05.jpg

OPS/images/4590ch07.12.1.01.jpg

OPS/images/zHC_CFSizer_2.jpg
Hom Businsscoutors

Tenvest pousts Supports somcss

CFSizer structure size results

e —

o

OPS/images/4590ch03.08.1.04.jpg

OPS/images/4590ch02.07.1.13.jpg
HomeSousons+ Sercen+ Productn~ Support couriosdn th ot - et e cCororh

S Coupling facilty selection parameters

i o ot men

Vi Eltoam crecer s,
Ve @ s

awcrvpes

OPS/images/4590ch03.08.1.03.jpg

OPS/images/4590ch02.07.1.16.jpg

OPS/images/4590ch03.08.1.02.jpg

OPS/images/4590ch02.07.1.15.jpg

OPS/images/4590ch03.08.1.01.jpg

OPS/images/4590ch02.07.1.18.jpg

OPS/images/4590ch02.07.1.17.jpg

OPS/images/4590ch05.10.1.24.jpg

OPS/images/4590ch05.10.1.25.jpg

OPS/images/4590ch05.10.1.22.jpg

OPS/images/4590ch05.10.1.23.jpg

OPS/images/4590ch05.10.1.20.jpg

OPS/images/4590ch05.10.1.21.jpg

OPS/images/4590ch05.10.1.28.jpg

OPS/images/4590ch05.10.1.29.jpg

OPS/images/4590ch05.10.1.26.jpg

OPS/images/4590ch05.10.1.27.jpg

OPS/images/4590ch05.10.1.13.jpg

OPS/images/4590ch05.10.1.14.jpg

OPS/images/4590ch05.10.1.11.jpg

OPS/images/4590ch05.10.1.12.jpg

OPS/images/4590addm.15.1.1.jpg

OPS/images/4590ch05.10.1.10.jpg

OPS/images/4590addm.15.1.2.jpg

OPS/images/4590ch05.10.1.19.jpg

OPS/images/4590ch05.10.1.17.jpg

OPS/images/4590ch05.10.1.18.jpg

OPS/images/4590ch05.10.1.15.jpg

OPS/images/4590ch05.10.1.16.jpg

OPS/images/4590ch02.07.1.09.jpg

OPS/images/4590ch02.07.1.08.jpg

OPS/images/4590ch02.07.1.07.jpg

OPS/images/4590ch02.07.1.06.jpg

OPS/images/4590ch02.07.1.05.jpg

OPS/images/4590ch02.07.1.04.jpg

OPS/images/4590ch02.07.1.03.jpg

OPS/images/4590ch02.07.1.02.jpg

OPS/images/4590ch02.07.1.01.jpg

OPS/images/4590ch05.10.1.46.jpg

OPS/images/4590ch06.11.1.15.jpg

OPS/images/4590ch05.10.1.47.jpg

OPS/images/4590ch06.11.1.14.jpg

OPS/images/4590ch05.10.1.44.jpg

OPS/images/4590ch06.11.1.13.jpg

OPS/images/4590ch05.10.1.45.jpg

OPS/images/4590ch06.11.1.12.jpg

OPS/images/4590ch05.10.1.42.jpg

OPS/images/4590ch06.11.1.11.jpg

OPS/images/4590ch05.10.1.43.jpg

OPS/images/4590ch06.11.1.10.jpg

OPS/images/4590ch05.10.1.40.jpg

OPS/images/4590ch05.10.1.41.jpg

OPS/images/4590ch06.11.1.19.jpg

OPS/images/4590ch06.11.1.18.jpg

OPS/images/4590ch05.10.1.48.jpg

OPS/images/4590ch06.11.1.17.jpg

OPS/images/4590ch05.10.1.49.jpg

OPS/images/4590ch06.11.1.16.jpg

OPS/images/4590ch01.06.1.10.jpg
Technical help database

for mainframe Preventive Service Planning buckets

Search the preventive maintenance planing database for specfic nstalation tps, high impact or pervasive
problems, and service recommendations. You wil find information on both software and hardware for the
2Series family of servers. This data s updated daiy. This release combines the original PSP390 and the
nhanced PS7390 appications. You can now seachfr thecontents ofth PSP buckets and download

eir extract fies from one locaion.

Enter search terms: Search assatance

Instructions for
dowrloadig, instaing, and
using the EVSPT host foo.

Find the bucket by Type, Category and Release:
‘This functionality is currently avaiable only for the base components of
supported 0S/390 and 2/0S releases, atest hardware buckets supported by

the 05/390 and 2/0S releases, and several /05 Cross Function buckets (for
example, SYSPLEXDS).

Type: [Function]
Catego CHECKER -
Raleases F_ }

© Al Content
© Exclude extract files
O Extract files only

OPS/images/4590ch05.10.1.50.jpg

OPS/images/4590ch05.10.1.35.jpg

OPS/images/4590ch09.14.1.06.jpg

OPS/images/4590ch05.10.1.36.jpg

OPS/images/4590ch09.14.1.07.jpg

OPS/images/4590ch05.10.1.33.jpg

OPS/images/4590ch09.14.1.04.jpg

OPS/images/4590ch05.10.1.34.jpg

OPS/images/4590ch09.14.1.05.jpg

OPS/images/4590ch05.10.1.31.jpg

OPS/images/4590ch09.14.1.02.jpg

OPS/images/4590ch05.10.1.32.jpg

OPS/images/4590ch09.14.1.03.jpg

OPS/images/4590ch05.10.1.30.jpg

OPS/images/4590ch09.14.1.01.jpg

OPS/images/4590ch05.10.1.39.jpg

OPS/images/4590ch05.10.1.37.jpg

OPS/images/4590ch09.14.1.08.jpg

OPS/images/4590ch05.10.1.38.jpg

OPS/images/4590ch09.14.1.09.jpg

OPS/images/4590ch01.06.1.09.jpg

OPS/images/4590ch01.06.1.08.jpg

OPS/images/4590ch01.06.1.07.jpg

OPS/images/4590ch01.06.1.06.jpg

OPS/images/4590ch01.06.1.05.jpg
HZSPQE
HZS_PQE data area

variables

Check
autput

+SDSF
« HZSPRINT
« Log stream

1BM Health Checker for 208
System REXX address space address space.

OPS/images/4590ch01.06.1.04.jpg
Check output
+SDSF
« HZSPRINT

« Log stream

- HzsPaE

dota area)

Caller's address space

Instalation
overrides

1BM Health Check for 2108
address space.

OPS/images/4590ch01.06.1.03.jpg
Instalation Framework

overrides

HZSPQE
dataarea

Component, element,
and product checks.

Check.

roytin
Check
T

Check

/

Gheck output

-sDsF
+HZSPRINT Message
+Log stream o

1B Health Checker
For 20S address space

T
Check
routine

OPS/images/4590ch01.06.1.02.jpg

OPS/images/4590ch01.06.1.01.jpg

OPS/images/4590ch05.10.1.68.jpg

OPS/images/4590ch06.11.1.37.jpg

OPS/images/4590ch05.10.1.69.jpg

OPS/images/4590ch06.11.1.36.jpg

OPS/images/4590ch05.10.1.66.jpg

OPS/images/4590ch06.11.1.35.jpg

OPS/images/4590ch05.10.1.67.jpg

OPS/images/4590ch06.11.1.34.jpg

OPS/images/4590ch05.10.1.64.jpg

OPS/images/4590ch06.11.1.33.jpg

OPS/images/4590ch05.10.1.65.jpg

OPS/images/4590ch06.11.1.32.jpg

OPS/images/4590ch05.10.1.62.jpg

OPS/images/4590ch06.11.1.31.jpg

OPS/images/4590ch05.10.1.63.jpg

OPS/images/4590ch06.11.1.30.jpg

OPS/images/4590ch06.11.1.39.jpg

OPS/images/4590ch06.11.1.38.jpg

OPS/images/4590ch05.10.1.71.jpg

OPS/images/4590ch06.11.1.40.jpg

OPS/images/4590ch05.10.1.72.jpg

OPS/images/4590ch05.10.1.70.jpg

OPS/images/4590ch05.10.1.57.jpg

OPS/images/4590ch06.11.1.26.jpg

OPS/images/4590ch05.10.1.58.jpg

OPS/images/4590ch06.11.1.25.jpg

OPS/images/4590ch05.10.1.55.jpg

OPS/images/4590ch06.11.1.24.jpg

OPS/images/4590ch05.10.1.56.jpg

OPS/images/4590ch06.11.1.23.jpg

OPS/images/4590ch05.10.1.53.jpg

OPS/images/4590ch06.11.1.22.jpg

OPS/images/4590ch05.10.1.54.jpg

OPS/images/4590ch06.11.1.21.jpg

OPS/images/4590ch05.10.1.51.jpg

OPS/images/4590ch06.11.1.20.jpg

OPS/images/4590ch05.10.1.52.jpg

OPS/images/4590ch06.11.1.29.jpg

OPS/images/4590ch05.10.1.59.jpg

OPS/images/4590ch06.11.1.28.jpg

OPS/images/4590ch06.11.1.27.jpg

OPS/images/4590ch05.10.1.60.jpg

OPS/images/4590ch05.10.1.61.jpg

OPS/images/4590ch07.12.1.27.jpg

OPS/images/4590ch07.12.1.26.jpg

OPS/images/4590ch07.12.1.25.jpg

OPS/images/4590ch07.12.1.24.jpg

OPS/images/4590ch07.12.1.23.jpg

OPS/images/4590ch07.12.1.22.jpg

OPS/images/4590ch07.12.1.21.jpg

OPS/images/4590ch07.12.1.20.jpg

OPS/images/4590ch07.12.1.29.jpg

OPS/images/4590ch07.12.1.28.jpg

OPS/images/4590ch07.12.1.30.jpg

OPS/images/4590ch05.10.1.79.jpg

OPS/images/4590ch07.12.1.16.jpg

OPS/images/4590ch07.12.1.15.jpg

OPS/images/4590ch05.10.1.77.jpg

OPS/images/4590ch07.12.1.14.jpg

OPS/images/4590ch05.10.1.78.jpg

OPS/images/4590ch07.12.1.13.jpg

OPS/images/4590ch05.10.1.75.jpg

OPS/images/4590ch07.12.1.12.jpg

OPS/images/4590ch05.10.1.76.jpg

OPS/images/4590ch07.12.1.11.jpg

OPS/images/4590ch05.10.1.73.jpg

OPS/images/4590ch07.12.1.10.jpg

OPS/images/4590ch05.10.1.74.jpg

OPS/images/4590ch07.12.1.19.jpg

OPS/images/4590ch07.12.1.18.jpg

OPS/images/4590ch07.12.1.17.jpg

OPS/images/4590ch05.10.1.82.jpg

OPS/images/4590ch05.10.1.80.jpg

OPS/images/4590ch05.10.1.81.jpg

OPS/images/4590spec.03.1.1.jpg

OPS/4590cover.jpg
Exploiting the IBM
Health Checker for
z/0S Infrastructure

OPS/cover.xhtml

 [image: Cover image]

OPS/images/4590ch02.07.1.89.jpg

OPS/images/4590ch02.07.1.88.jpg

OPS/images/4590ch02.07.1.81.jpg

OPS/images/4590ch02.07.1.80.jpg

OPS/images/4590ch02.07.1.83.jpg

OPS/images/4590ch02.07.1.82.jpg

OPS/images/4590ch02.07.1.85.jpg

OPS/images/4590ch02.07.1.84.jpg

OPS/images/4590ch02.07.1.87.jpg

OPS/images/4590ch04.09.1.20.jpg

OPS/images/4590ch02.07.1.86.jpg

OPS/images/4590ch02.07.1.78.jpg

OPS/images/4590ch04.09.1.15.jpg

OPS/images/zHC_MC_3.jpg
Tivoli Enterprise Porta

Fle Edt View telp

0B

NeAFT|ICO0¢ BRUBSE

&8 View [pysical

T Cr STRUCTURE REBUILOH

@4 couping Facilty Paths Data for Sysplex

<& ey

Check
& For

TXCHDA54T Tiot all installed channel paths are online from system 5063 to

TXCHO454T coupling facility CFL.

TXCHDA46E Systen 5063 has only ome online operational channel

TXCHDA46E path to coupling facility CFL.

TXCHDA46E
TXCHO46E _ Explanation: The specified systen has only one chamnel path that can
TXCHOA446E __ be used to commmnicate to the indicated cowpling facility. This
TXCHOA46E__represents a single point of failure regarding communication to the
TXCHOA46E_ coupling facility.

TXCHD446E

TXCHDA46E__ System Action: The system contimues processing normally.

TXCHD446E

TXCHOA46E _Dperator Response: Report the problem to the system programmer.
TXCHD446E

TXCHOA46E__ System Programmer Response: Tssue display command [D CF,CFEAME =
TXCHOA46E cfname) to obtain the curfent information regarding coupling
TXCHD46E __facility comnectivity information. Inspect the sender path status
TXCHOA46E _ for each defined channel path.

TXCHD446E

O T " T

CheckMessages - 9.12.5.208 - MASSIE

OPS/images/4590ch04.09.1.16.jpg

OPS/images/4590ch04.09.1.13.jpg

OPS/images/4590ch02.07.1.79.jpg

OPS/images/4590ch04.09.1.14.jpg

OPS/images/4590ch04.09.1.19.jpg

OPS/images/4590ch04.09.1.17.jpg

OPS/images/4590ch04.09.1.18.jpg

