International Technical Support Organization

IBM FlashSystem A9000, A9000R, and IBM XIV Storage System: Host Attachment and Interoperability

January 2017 (updated March 2018)
Note: Before using this information and the product it supports, read the information in “Notices” on page vii.
Contents

Notices ... vii
Trademarks .. viii

Preface ... ix
Authors ... ix
Now you can become a published author, too! x
Comments welcome ... xi
Stay connected to IBM Redbooks xi

Chapter 1. XIV Host Connectivity 1
1.1 Overview .. 2
1.1.1 Module, patch panel, and host connectivity 3
1.1.2 Host operating system support 5
1.1.3 Host Attachment Kit 5
1.1.4 Fibre Channel versus iSCSI access 8
1.2 Fibre Channel connectivity 9
1.2.1 Preparation steps 9
1.2.2 Fibre Channel configurations 9
1.2.3 Zoning .. 13
1.2.4 Identification of FC ports (initiator/target) 15
1.2.5 Boot from SAN on x86 or x64 based architecture 17
1.3 iSCSI connectivity .. 22
1.3.1 Preparation steps 22
1.3.2 iSCSI configurations 23
1.3.3 Network configuration 25
1.3.4 IBM XIV Storage System iSCSI setup 25
1.3.5 Identifying iSCSI ports 29
1.3.6 iSCSI and CHAP authentication 30
1.3.7 iSCSI boot from XIV LUN 31
1.4 Logical configuration for host connectivity 31
1.4.1 Host configuration preparation 32
1.4.2 Assigning LUNs to a host by using the GUI 35
1.4.3 Assigning LUNs to a host by using the XCLI 37
1.5 Performance tuning ... 39
1.6 Troubleshooting .. 40

Chapter 2. IBM FlashSystem A9000 and A9000R Host Connectivity 41
2.1 Overview .. 42
2.1.1 Grid controller interface ports and host connectivity .. 45
2.1.2 Host operating system support 46
2.1.3 Host Attachment Kits 47
2.1.4 Fibre Channel versus iSCSI access 49
2.2 Fibre Channel connectivity 51
2.2.1 Preparation steps 51
2.2.2 Fibre Channel configurations 51
2.2.3 Zoning .. 56
2.2.4 Identification of FC ports (initiator/target) 56
2.2.5 Boot from SAN .. 58
2.3 iSCSI connectivity .. 58
2.3.1 Preparation steps .. 58
2.3.2 iSCSI configurations .. 59
2.3.3 Network configuration ... 59
2.3.4 iSCSI boot from LUN ... 59
2.3.5 iSCSI setup ... 59
2.3.6 Identifying iSCSI ports .. 63
2.3.7 iSCSI and CHAP authentication 63
2.4 Logical configuration for host connectivity 64
 2.4.1 Host configuration preparation 65
 2.4.2 Assigning LUNs to a host by using the GUI 65
 2.4.3 Assigning LUNs to a host by using the XCLI 68
2.5 Performance tuning .. 69
2.6 Troubleshooting .. 70

Chapter 3. Windows connectivity .. 71
3.1 Prerequisites .. 72
 3.1.1 Supported versions of Windows 72
 3.1.2 Supported FC HBAs .. 73
 3.1.3 Multipath support and Clustering Options 73
 3.1.4 Required software on the host 74
 3.1.5 Boot from SAN support 75
3.2 Attaching a Microsoft Windows Server 2016, 2012 R2 or 2008 R2 host .. 75
 3.2.1 Windows Server 2012 R2 and 2008 R2 Prerequisites 75
 3.2.2 Windows host FC configuration 76
 3.2.3 Windows host iSCSI configuration 86
 3.2.4 Host Attachment Kit utilities 100
3.3 Attaching a Microsoft Windows cluster 102
 3.3.1 Prerequisites ... 103
 3.3.2 Installing cluster services 104
 3.3.3 Configuring the IBM Storage Enabler for Windows Failover Clustering 107
3.4 Attaching a Microsoft Hyper-V Server 113
3.5 Microsoft System Center Virtual Machine Manager Storage Automation .. 114
 3.5.1 The Open API overview 114
 3.5.2 System Center Virtual Machine Manager overview 116

Chapter 4. Linux connectivity ... 119
4.1 IBM storage systems and Linux support overview 120
 4.1.1 Issues that distinguish Linux from other operating systems .. 120
 4.1.2 Reference material ... 120
 4.1.3 Storage-related improvements to Linux 122
4.2 Basic host attachment ... 124
 4.2.1 Platform-specific remarks 124
 4.2.2 Configuring for Fibre Channel attachment 127
 4.2.3 Determining the WWPN of the installed HBAs 132
 4.2.4 Attaching volumes to an Intel x86 host using the Host Attachment Kit 132
 4.2.5 Checking attached volumes 138
 4.2.6 Setting up Device Mapper Multipathing 142
 4.2.7 Special considerations for attachment 149
4.3 Nondisruptive SCSI reconfiguration 151
 4.3.1 Adding and removing volumes dynamically 151
 4.3.2 Adding and removing volumes in Linux on z Systems 152
 4.3.3 Adding new storage system host ports to Linux on z Systems .. 154
 4.3.4 Resizing volumes dynamically 154
4.3.5 Using snapshots and remote replication targets .. 156
4.4 Troubleshooting and monitoring ... 159
 4.4.1 Linux Host Attachment Kit utilities .. 159
 4.4.2 Multipath diagnosis .. 160
 4.4.3 Other ways to check SCSI devices .. 161
 4.4.4 Performance monitoring with iostat .. 162
 4.4.5 Generic SCSI tools ... 162
4.5 Boot from SAN in Linux .. 163
 4.5.1 The Linux boot process .. 163
 4.5.2 Configuring the QLogic BIOS to boot from a SAN-attached volume 164
 4.5.3 OS loader considerations for other platforms 164
 4.5.4 Installing SUSE Linux Enterprise Server 11 SP1 on a SAN volume 165

Chapter 5. AIX connectivity ... 169
5.1 Attaching to AIX hosts ... 170
 5.1.1 Prerequisites .. 170
 5.1.2 AIX host FC configuration ... 170
 5.1.3 AIX host iSCSI configuration ... 182
 5.1.4 Management volume LUN 0 ... 188
 5.1.5 Host Attachment Kit utilities ... 188
5.2 Boot from SAN in AIX ... 188
 5.2.1 Creating a SAN boot disk by mirroring .. 189
 5.2.2 Installation on external storage from bootable AIX CD-ROM 193
 5.2.3 AIX SAN installation with NIM .. 194

Chapter 6. Clients connecting through VIOS ... 197
6.1 IBM PowerVM overview .. 198
 6.1.1 PowerVM Express Edition ... 198
 6.1.2 PowerVM Standard Edition ... 199
 6.1.3 PowerVM Enterprise Edition ... 199
6.2 Virtual I/O Server ... 199
6.3 Node Port ID Virtualization ... 200
6.4 General guidelines ... 201
 6.4.1 Physical Fibre Channel adapters and virtual SCSI adapters 201
 6.4.2 Multipath with two Virtual I/O Servers ... 201
 6.4.3 Distributing connectivity ... 201
 6.4.4 Zoning SAN switches ... 201

Chapter 7. VMware connectivity ... 203
7.1 Integration concepts and implementation guidelines 204
7.2 vSphere traditional storage architectural overview 204
7.3 VMware vSphere Virtual Volumes (VVols) ... 205
7.4 VMware general connectivity guidelines .. 206

Related publications ... 209
IBM Redbooks publications .. 209
Help from IBM ... 209
Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

AIX®
developerWorks®
FICON®
IBM®
IBM FlashSystem®
IBM Spectrum™
IBM Spectrum Accelerate™
IBM Spectrum Storage™
IBM Spectrum Virtualize™
IBM z Systems®
Micro-Partitioning®
POWER®
POWER Architecture®
Power Systems™
POWER6®
POWER7®
PowerVM®
Redbooks®
Redpaper™
Redbooks (logo)®
System i®
System Storage®
System z®
XIV®
z Systems®
z/VM®
z10™

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Preface

This IBM® Redbooks® publication provides information for attaching the IBM FlashSystem® A9000, IBM FlashSystem A9000R, and IBM XIV® Storage System to various host operating system platforms, such as IBM AIX® and Microsoft Windows.

This publication was last updated in February 2018.

The goal is to give an overview of the versatility and compatibility of the IBM Spectrum™ Accelerate family of storage systems with various platforms and environments.

The information that is presented here is not meant as a replacement or substitute for the IBM Storage Host Attachment Kit publications or other product publications. It is meant as a complement and to provide usage guidance and practical illustrations.

You can download the IBM Storage Host Attachment Kit from IBM Fix Central:
http://www.ibm.com/support/fixcentral/

This publication does not address attachments to a secondary system used for Remote Mirroring or data migration. These topics are covered in IBM XIV Storage System Business Continuity Functions, SG24-7759 and IBM FlashSystem A9000 and IBM FlashSystem A9000 and A9000R Business Continuity Solutions, REDP-5401.

Authors

This book was produced by a team of specialists from around the world, working with the International Technical Support Organization.

Markus Oscheka is an IT Specialist for Proof of Concepts and Benchmarks with the Disk Solution Europe team in Germany. He has worked at IBM for fourteen years. He has performed many proof of concepts with Copy Services on IBM Spectrum Virtualize™ and IBM Spectrum Storage™, and also Performance-Benchmarks with IBM Spectrum Virtualize and IBM Spectrum Storage. He has written extensively, and acted as Project Lead for various Redbooks publications. He has spoken at several System Technical Universities. He holds a degree in Electrical Engineering from the Technical University in Darmstadt.

Bert Dufrasne is an IBM Certified Consulting IT Specialist and Project Leader for IBM System Storage® disk products at the International Technical Support Organization (ITSO), San Jose Center. He has worked at IBM in various IT areas. He has authored many Redbooks publications, and he has also developed and taught technical workshops. Before Bert joined the ITSO, he worked for IBM Global Services as an Application Architect. He holds a Master’s degree in Electrical Engineering.

Roger Eriksson works at IBM Systems Lab Services Nordic, based in Stockholm, Sweden. He is a Senior Accredited IBM Product Service Professional. Roger has over 20 years of experience working on IBM servers and storage. He has done consulting, proof of concepts, and education, mainly with the IBM Spectrum Accelerate™ product line, since December 2008. Working with both clients and various IBM teams worldwide is a normal day’s work. He holds a Technical College Graduation in Mechanical Engineering.
Detlef Helmbrecht is an Advanced Technical Skills (ATS) IT Specialist working for IBM Systems at the European Storage Competence Center (ESCC), Germany. Detlef has over 30 years of experience in IT, performing numerous roles, including software design, sales, and solution architecture. He joined IBM in 2013. His current areas of expertise include high-performance computing (HPC), application and database tuning, and IBM products, such as IBM Spectrum Virtualize, IBM Spectrum Accelerate, and IBM FlashSystem family. Detlef holds a degree in Mathematics from the Ruhr-Universität Bochum in Germany.

Petar Kalachev is a Product Field Engineer (PFE) working for IBM Systems at the Client Innovation Centre (CIC) in Sofia, Bulgaria. He has 7 years of experience in the IT industry spanning across various solutions combining servers, storage, SAN infrastructure, and virtualization. Since joining IBM in 2014 his focus has been on midrange and high-end storage systems, with current areas of expertise including the IBM Spectrum Accelerate and IBM FlashSystem family.

Stephen Solewin is an IBM Corporate Solutions Architect based in Tucson, Arizona. He has over 20 years of experience in working on IBM storage, including enterprise and midrange disk, Linear Tape-Open (LTO) drives and libraries, SAN, storage virtualization, and storage software. Steve is a global resource, working with customers, IBM Business Partners, and fellow IBMers worldwide. He has been working on the XIV product line since 2008 and FlashSystem since 2013. He holds a BS degree in electrical engineering from the University of Arizona, where he graduated with honors.

Bruce Spell is a Storage Technical Advisor, located in Tucson, Arizona. As a Technical Advisor he delivers proactive and comprehensive consulting services for IBM storage products to ensure the highest availability for vital IT solutions. He is a customer advocate, providing focus for problem management, change management, crisis management, and best practices. Bruce has over 32 years of experience and a broad background spanning across development, test, field support, and program management. He has been a Technical Advisor since 2007 and recognized as a Notable Advocate over the last several years. Bruce holds a BS degree in Electrical Engineering from UCLA.

Thanks to the following people for their contributions to this project:

Tomer Carmeli, Jehuda Goldwein, Osnat Shasha, Patrick Pollard, John Hyams, Rivka Pollack

IBM

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

► Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks
► Send your comments in an email to:
 redbooks@us.ibm.com
► Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

► Find us on Facebook:
 http://www.facebook.com/IBMRedbooks
► Follow us on Twitter:
 http://twitter.com/ibmredbooks
► Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
► Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:
► Stay current on recent Redbooks publications with RSS Feeds:
 http://www.redbooks.ibm.com/rss.html
Chapter 1. XIV Host Connectivity

This chapter addresses host connectivity for the IBM XIV Storage System, in general. It highlights key aspects of host connectivity. It also reviews concepts and requirements for both Fibre Channel (FC) and Internet Small Computer System Interface (iSCSI) protocols.

This chapter covers common tasks that pertain to most hosts. For information about specific operating systems and host attachment, see the subsequent chapters in this book.

For the latest information, see the IBM Storage Host Attachment Kit publications at Fix Central:
https://ibm.biz/BdsnzX

This chapter includes the following sections:
- Overview
- Fibre Channel connectivity
- iSCSI connectivity
- Logical configuration for host connectivity
- Performance tuning
- Troubleshooting

Note that starting with version 2.6.0, IBM XIV Host Attachment Kit was renamed to IBM Storage Host Attachment Kit.
1.1 Overview

The IBM XIV Storage System can be attached to various host systems by using the following methods:

- Fibre Channel adapters using Fibre Channel Protocol (FCP)
- Fibre Channel over Converged Enhanced Ethernet (FCoCEE) adapters where the adapter connects to a converged network that is bridged to a Fibre Channel network
- iSCSI software initiator or iSCSI host bus adapter (HBA) that uses the iSCSI protocol

XIV is perfectly suited for integration into a new or existing Fibre Channel storage area networks (SAN). After the host HBAs, cabling, and SAN zoning are in place, connecting a Fibre Channel host to XIV is easy.

You can also implement XIV with iSCSI using an existing Ethernet network infrastructure. However, your workload might require a dedicated network. iSCSI attachment and iSCSI hardware initiators are not supported by all systems. If you have Ethernet connections between your sites, you can use that setup for a less expensive backup or disaster recovery setup. iSCSI connections are often used for asynchronous replication to a remote site. iSCSI-based mirroring that is combined with XIV snapshots or volume copies can also be used for the following tasks:

- Migrate servers between sites
- Facilitate easy off-site backup or software development

The XIV Storage System has up to 15 data modules, of which up to six are also interface modules. The number of interface modules and the activation status of the interfaces on those modules is dependent on the rack configuration. Table 1-1 summarizes the number of active interface modules and the FC and iSCSI ports for different rack configurations. As shown in Table 1-1, a six module XIV physically has three interface modules, but only two of them have active ports. An 11 module XIV physically has six interface modules, five of which have active ports.

<table>
<thead>
<tr>
<th>Module</th>
<th>Module 6 host ports</th>
<th>Module 7 host ports</th>
<th>Module 8 host ports</th>
<th>Module 9 host ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host ports</td>
<td>Inactive ports</td>
<td>Active</td>
<td>Active</td>
<td>Inactive ports</td>
</tr>
<tr>
<td>FC Ports</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>iSCSI ports</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Module 5 host ports</th>
<th>Module 4 host ports</th>
<th>Module 10 host ports</th>
<th>Module 11 host ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host ports</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
<td>Inactive ports</td>
</tr>
<tr>
<td>FC Ports</td>
<td>20</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>iSCSI ports</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

The number of interface modules and the activation status of the interfaces on those modules is dependent on the rack configuration. Table 1-1 summarizes the number of active interface modules and the FC and iSCSI ports for different rack configurations. As shown in Table 1-1, a six module XIV physically has three interface modules, but only two of them have active ports. An 11 module XIV physically has six interface modules, five of which have active ports.
Each active interface module (modules 4 - 9, if enabled) has four Fibre Channel ports. Each active interface module, except module 4 has four iSCSI ports. Module 4 has only two iSCSI ports. The maximum is therefore 22 ports.

All of these ports are used to attach hosts, remote XIV systems, or other storage systems (for migration) to the XIV. This connection can be through a SAN or iSCSI network that is attached to the internal patch panel.

The patch panel simplifies cabling because the interface modules are pre-cabled to it. Therefore, all your SAN and network connections are in one central place at the back of the rack. This arrangement also helps with general cable management.

Hosts attach to the FC ports through an FC switch, and to the iSCSI ports through a Gigabit Ethernet switch.

Restriction: Direct attachment between hosts and the XIV Storage System is not supported.

With XIV, all interface modules and all ports can be used concurrently to access any logical volume in the system. The only affinity is the mapping of logical volumes to host, which simplifies storage management. Balancing traffic and zoning (for adequate performance and redundancy) is more critical, although not more complex, than with traditional storage systems.

Important: Host traffic can be directed to any of the interface modules. The storage administrator must ensure that host connections avoid single points of failure. The server administrator also must ensure that the host workload is adequately balanced across the connections and interface modules. This balancing can be done by installing the relevant Host Attachment Kit. Review the balancing periodically and when traffic patterns change.

1.1.1 Module, patch panel, and host connectivity

This section presents a simplified view of the host connectivity to explain the relationship between individual system components and how they affect host connectivity. For more information and an explanation of the individual components, see IBM XIV Storage System Architecture and Implementation, SG24-7659:

http://www.redbooks.ibm.com/abstracts/sg247659.html

When connecting hosts to the XIV, no “one size fits all” solution can be applied because every environment is different. However, follow these guidelines to avoid single points of failure and ensure that hosts are connected to the correct ports:

- FC hosts connect to the XIV patch panel FC ports 1 and 3 on interface modules.
- Use XIV patch panel FC ports 2 and 4 for remote mirroring. They can also be used for data migration from another storage system.
- iSCSI hosts connect to at least one port on each active interface module.
- Connect hosts to multiple separate Interface Modules to avoid a single point of failure.
Figure 1-1 shows an XIV Gen 3 (model 114) patch panel to FC and to iSCSI adapter mappings. It also shows the worldwide port numbers (WWPNs) associated with the ports.
1.1.2 Host operating system support

The XIV Storage System supports many operating systems, and the list is constantly growing.

To get the current list, see IBM System Storage Interoperation Center (SSIC):
https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

From the SSIC, you can select any combination from the available boxes to determine whether your configuration is supported. You do not have to start at the top and work down. The result is a comma-separated values (CSV) file to show that you confirmed that your configuration is supported.

If you cannot locate your current (or planned) combination of product versions, talk to your IBM Business Partner, IBM Sales Representative, or IBM Pre-Sales Technical Support Representative. You might need to request a support statement called a Storage Customer Opportunity Request (SCORE). It is sometimes called a request for price quotation (RPQ).

1.1.3 Host Attachment Kit

For high availability, every host that is attached to an XIV must have multiple paths to the XIV. In the past, you had to install vendor-supplied multipathing software such as Subsystem Device Driver (SDD) or Redundant Disk Array Controller (RDAC). However, multipathing that is native to the host is more efficient. Most operating systems such as AIX, Windows, VMware, and Linux are now capable of providing native multipathing. IBM has a Host Attachment Kit for most of these supported operating systems. These kits customize the host multipathing. The Host Attachment Kit also supplies powerful tools to assist the storage administrator in day-to-day tasks.

The Host Attachment Kit has the following features:
- Is backwards compatible to Version 10.1.x of the XIV system software,
- Validates host server patch and driver versions,
- Sets up multipathing on the host using native multipathing,
- Adjusts host system tunable parameters (if required) for performance,
- Has an installation wizard (which might not be needed if you use the portable version),
- Provides management utilities such as the xiv_devlist command.
- Provides support and troubleshooting utilities such as the xiv_diag command.
- Has a portable version that can be run without installation (starting with release 1.7).
A Host Attachment Kit is built on a Python framework, and provides a consistent interface across operating systems. Other XIV tools, such as the Microsoft Systems Center Operations Manager (SCOM) management pack, also install a Python-based framework called xPYV. With release 1.7 of the Host Attachment Kit, the Python framework is now embedded with the Host Attachment Kit code. It is no longer a separate installer.

Before release 1.7 of the Host Attachment Kit, installing the Host Attachment Kit was required in order get technical support from IBM. Starting with release 1.7, a portable version allows all Host Attachment Kit commands to be run without installing the Host Attachment Kit.

You can download a Host Attachment Kit from Fix Central:
http://www.ibm.com/support/fixcentral/

Commands provided by the Host Attachment Kit

Regardless of which host operating system is in use, the Host Attachment Kit provides a uniform set of commands that create output in a consistent manner. Each chapter in this book includes examples of the appropriate Host Attachment Kit commands. This section lists all of them for completeness. In addition, useful parameters are suggested.

The `xiv_attach` command

This command locally configures the operating system and defines the host on XIV.

Tip: AIX needs extra consideration. For more information, see “Installing the Host Attachment Kit for AIX” on page 172.

Sometimes, after you run the `xiv_attach` command, you might be prompted to reboot the host. This reboot might be needed because the command can perform system modifications that force a reboot based on the normal behavior of the operating system. For example, a reboot is required when you install a Windows hotfix. You need to run this command only once, when performing initial host configuration. After the first time, use `xiv_fc_admin -R` or `xiv_iscsi_admin -R` to detect newly mapped volumes, depending on the attachment protocol.

The `xiv_detach` command

This command is used on a Windows Server to remove all XIV multipathing settings from the host. For other operating systems, use the uninstallation option. If you are upgrading a server from Windows 2003 to Windows 2008, use `xiv_detach` first to remove the multipathing settings.

The `xiv_devlist` command

This command displays a list of all volumes that are visible to the system. It also displays the following information:

- Size of the volume
- Number of paths (working and detected)
- Name and ID of each volume on the XIV
- ID of the XIV itself
- Name of the host definition on the XIV

The `xiv_devlist` command is one of the most powerful tools in your toolkit. Make sure that you are familiar with this command and use it whenever performing system administration. The *Host Attachment Kit User Guide*, GA32-1060 lists a number of useful parameters that can be run with `xiv_devlist`.
The following parameters are especially useful:

- **xiv_devlist -u GiB**
 Displays the volume size in binary gigabytes (gibibyte, GiB). The `-u` is for unit size.

- **xiv_devlist -V**
 Displays the Host Attachment Kit version number. The `-V` is for version.

- **xiv_devlist -f filename.csv -t csv**
 Directs the output of the command to a file.

- **xiv_devlist -h**
 Opens the help page, which displays other available parameters. The `-h` is for help.

The xiv_diag command

This command is used to satisfy requests from the IBM support center for log data. The **xiv_diag** command creates a compressed packed file (using tar.gz format) that contains log data. Therefore, you do not need to collect individual log files from your host server.

The xiv_fc_admin command

This command is similar to **xiv_attach**. Unlike **xiv_attach**, however, the **xiv_fc_admin** command allows you to perform individual steps and tasks. The following **xiv_fc_admin** command parameters are especially useful:

- **xiv_fc_admin -P**
 Displays the WWPNs of the host server HBAs. The `-P` is for print.

- **xiv_fc_admin -V**
 Lists the tasks that **xiv_attach** would perform if it were run. Knowing the tasks is vital if you are using the portable version of the Host Attachment Kit. You must know what tasks the Host Attachment Kit needs to perform on your system before the change window. The `-V` is for verify.

- **xiv_fc_admin -C**
 Performs all the tasks that the **xiv_fc_admin -V** command identified as being required for your operating system. The `-C` is for configure.

- **xiv_fc_admin -R**
 This command scans for and configures new volumes that are mapped to the server. For a new host that is not yet connected to an XIV, use **xiv_attach**. However, if more volumes are mapped to such a host later, use **xiv_fc_admin -R** to detect them. You can use native host methods but the Host Attachment Kit command is an easier way to detect volumes. The `-R` is for rescan.

- **xiv_fc_admin -R --clean**
 Use the `clean` option to remove devices from the multipath. You can clean unreachable devices (use only with the `-R/--rescan` option). Option `clean` was added in Host Attachment Kit version 2.6.

- **xiv_fc_admin -h**
 Opens the help page that displays other available parameters. The `-h` is for help.

The xiv_iscsi_admin command

This command is similar to **xiv_fc_admin**, but is used on hosts with iSCSI interfaces rather than Fibre Channel.

Coexistence with other multipathing software

The Host Attachment Kit is itself not a multipathing driver. It enables and configures multipathing rather than providing it. IBM insists that the correct host attachment kit be installed for each OS type.

A mix of different multipathing solution software on the same server is not supported. Each product can have different requirements for important system settings, which can conflict.
These conflicts can cause issues that range from poor performance to unpredictable behaviors, and even data corruption.

If you need co-existence and a support statement does not exist, apply for a support statement from IBM. This statement is known as a SCORE, or sometimes an RPQ. There is normally no additional charge for this support request.

1.1.4 Fibre Channel versus iSCSI access

Hosts can attach to XIV over a Fibre Channel or Ethernet network (using iSCSI). The version of XIV system software at the time of writing supports iSCSI using the software initiator only. The only exception is AIX, where an iSCSI HBA is also supported.

Choose the connection protocol (iSCSI or FCP) based on your application requirements. When you are considering IP storage-based connectivity, look at the performance and availability of your existing infrastructure.

Consider the following information:

- Always connect FC hosts in a production environment to a minimum of two separate SAN switches in independent fabrics to provide redundancy.
- For test and development, you can choose to have single points of failure to reduce costs. However, you must determine whether this practice is acceptable for your environment. The cost of an outage in a development environment can be high, and an outage can be caused by the failure of a single component.
- With iSCSI, use a separate section of the IP network to isolate iSCSI traffic by using either a VLAN or a physically separated section. Storage access is susceptible to latency or interruptions in traffic flow. Do not mix it with other IP traffic.

Figure 1-2 illustrates the simultaneous access to two different XIV volumes from one host by using both protocols.

A host can connect through FC and iSCSI simultaneously. However, you cannot access the same logical unit number (LUN) with both protocols.
1.2 Fibre Channel connectivity

This section highlights information about FC connectivity that applies to the XIV Storage System in general. For operating system-specific information, see the relevant section in the subsequent chapters of this book.

1.2.1 Preparation steps

Before you can attach an FC host to the XIV Storage System, you must complete several procedures. The following general procedures pertain to all hosts. However, you also must review any procedures that pertain to your specific hardware and operating system.

1. Ensure that your HBA is supported. Information about supported HBAs and the firmware and device driver levels is available at the SSIC web page:

 https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

 For each query, select the XIV Storage System, a host server model, an operating system, and an HBA vendor. Each query shows a list of all supported HBAs. Unless otherwise noted in SSIC, you can use any supported driver and firmware by the HBA vendors. The latest versions are always preferred. For HBAs in Oracle or Sun systems, use Sun-branded HBAs and Sun-ready HBAs only.

 Also, review any documentation that comes from the HBA vendor and ensure that any additional conditions are met.

2. Check the LUN limitations for your host operating system and verify that there are enough adapters installed. You need enough adapters on the host server to manage the total number of LUNs that you want to attach.

3. Check the optimum number of paths that must be defined to help determine the zoning requirements.

4. Download and install the latest supported HBA firmware and driver, if needed.

HBA vendor resources

All of the Fibre Channel HBA vendors have websites that provide information about their products, facts, and features, and support information. These sites are useful when you need details that cannot be supplied by IBM resources. IBM is not responsible for the content of these sites.

Platform and operating system vendor pages

The platform and operating system vendors also provide support information for their clients. See this information for general guidance about connecting their systems to SAN-attached storage. However, be aware that you might not be able to find information to help you with third-party vendors. Check with IBM about interoperability and support from IBM in regard to these products. It is beyond the scope of this book to list all of these vendors’ websites.

1.2.2 Fibre Channel configurations

Several configurations using Fibre Channel are technically possible. They vary in terms of their cost, and the degree of flexibility, performance, and reliability that they provide.

Production environments must always have a redundant (high availability) configuration. Avoid single points of failure. Assign as many HBAs to hosts as needed to support the operating system, application, and overall performance requirements.
This section details three typical FC configurations that are supported and offer redundancy:

- Redundant configuration with twelve paths to each volume
- Redundant configuration with six paths to each volume
- Redundant configuration with minimal cabling

All of those configurations have no single point of failure:

- If a module fails, each host remains connected to all other interface modules.
- If an FC switch fails, each host remains connected to at least three interface modules.
- If a host HBA fails, each host remains connected to at least three interface modules.
- If a host cable fails, each host remains connected to at least three interface modules.

Redundant configuration with twelve paths to each volume

The fully redundant configuration is illustrated in Figure 1-3.

![Figure 1-3 Fibre Channel fully redundant configuration](image)

This configuration has the following characteristics:

- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in different SAN fabrics.
- Each of the FC switches has a connection to a separate FC port of each of the six interface modules.
- Each volume can be accessed through 12 paths. There is no benefit in going beyond 12 paths because it can cause issues with host processor utilization and server reliability if a path failure occurs.
Redundant configuration with six paths to each volume
A redundant configuration that accesses all interface modules, but uses the ideal of six paths per LUN on the host, is depicted in Figure 1-4.

This configuration has the following characteristics:

- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in different SAN fabrics.
- Each of the FC switches has a connection to a separate FC port of each of the six interface modules.
- One host is using the first three paths per fabric and the other is using the three other paths per fabric.
- If a fabric fails, all interface modules are still used.
- Each volume has six paths, which is the ideal configuration.

Important: Six paths per LUN is the best overall multipathing configuration.
Redundant configuration with minimal cabling
An even simpler redundant configuration is illustrated in Figure 1-5.

This configuration has the following characteristics:
- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in different SAN fabrics.
- Each of the FC switches has a connection to three separate interface modules.
- Each volume has six paths.

Determining the ideal path count
In the examples in this chapter, SAN zoning can be used to control the number of paths that are configured per volume. Because the XIV can have up to 24 Fibre Channel ports, you might be tempted to configure many paths. However, using many paths is not a good practice.

Tip: There is no performance or reliability benefit in using too many paths. Going beyond 12 paths per volume has no benefit. More paths add more processor usage causing longer times for recovery, and going beyond six paths rarely has much benefit. Use four or six paths per volume as a standard.

Consider the configurations that are listed in Table 1-2 on page 13. The columns show the interface modules, and the rows show the number of installed modules. The table does not show how the system is cabled to each redundant SAN fabric, or how many cables are connected to the SAN fabric. You normally connect each module to each fabric and alternate which ports you use on each module.

- For a 6-module system, each host has four paths per volume: Two from module 4 and two from module 5. Port 1 on each module is connected to fabric A, whereas port 3 on each module is connected to fabric B. Each host would be zoned to all four ports.

- For a 9- or 10-module system, each host has four paths per volume (one from each module). Port 1 on each module is connected to fabric A, whereas port 3 on each module is connected to fabric B. Divide the hosts into two groups. Group 1 is zoned to port 1 on
modules 4 and 8 in fabric A, and port 3 on modules 5 and 7 in fabric B. Group 2 is zoned
to port 3 on modules 4 and 8 in fabric B, and port 1 on modules 5 and 7 in fabric A.

- For an 11- or 12-module system, each host has five paths per volume. Port 1 on each
 module is connected to fabric A, whereas port 3 on each module is connected to fabric B.
 Divide the hosts into two groups. Group 1 is zoned to port 1 on modules 4 and 8 in fabric
 A, and port 3 on modules 5, 7 and 9 in fabric B. Group 2 is zoned to port 3 on modules 4
 and 8 in fabric B, and port 1 on modules 5, 7 and 9 in fabric A. This configuration has a
 slight disadvantage in that one HBA can get slightly more workload than the other HBA.
 The extra workload is not usually an issue.

- For a 13-, 14-, or 15-module system, each host would have six paths per volume (three
 paths from each fabric). Port 1 on each module is connected to fabric A, whereas port 3 on
 each module is connected to fabric B. Divide the hosts into two groups. Group 1 is zoned
 to port 1 on modules 4, 6 and 8 in fabric A, and port 3 on modules 5, 7 and 9 in fabric B.
 Group 2 is zoned to port 3 on modules 4, 6, and 8 in fabric B, and port 1 on modules 5, 7,
 and 9 in fabric A.

Table 1-2 Number of paths per volume per interface module

<table>
<thead>
<tr>
<th>Modules</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>Inactive</td>
<td>Not present</td>
<td>Not present</td>
<td>Not present</td>
</tr>
<tr>
<td>9 or 10</td>
<td>1</td>
<td>1</td>
<td>Inactive</td>
<td>1</td>
<td>1</td>
<td>Inactive</td>
</tr>
<tr>
<td>11 or 12</td>
<td>1</td>
<td>1</td>
<td>Inactive</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13, 14 or 15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This path strategy works best on systems that start with nine modules. If you start with six
modules, you must reconfigure all hosts when you upgrade to a nine module configuration.
Do not go below four paths.

1.2.3 Zoning

Zoning is mandatory when you are connecting FC hosts to an XIV Storage System. Zoning is
configured on the SAN switch, and isolates and restricts FC traffic to only those HBAs within
a specific zone.

A zone can be either a hard zone or a soft zone. Hard zones group HBAs depending on the
physical ports they are connected to on the SAN switches. Soft zones group HBAs depending
on the WWPNs of the HBA. Each method has its merits, and you must determine which is
correct for your environment. From a switch perspective, both methods are enforced by the
hardware.

Correct zoning helps avoid issues and makes tracing the cause of errors easier. Here are
examples of why correct zoning is important:

- An error from an HBA that affects the zone or zone traffic is isolated to only the devices
 that it is zoned to.
- Any change in the SAN fabric triggers a registered state change notification (RSCN). Such
 changes can be caused by a server restarting or a new product being added to the SAN.
 An RSCN requires that any device that can “see” the affected or new device to
 acknowledge the change, interrupting its own traffic flow.
Zoning is affected by the following factors, among others:

- Host type
- Number of HBAs
- HBA driver
- Operating system
- Applications

Therefore, providing a solution to cover every situation is not possible. The following guidelines can help you to avoid reliability or performance problems. However, also review documentation about your hardware and software configuration for any specific factors that must be considered.

- Each zone (excluding those for SAN Volume Controller) has one initiator HBA (the host) and multiple target HBA ports from a single XIV.
- Zone each host to ports from at least two interface modules.
- Do not mix disk and tape traffic in a single zone. Also, avoid having disk and tape traffic on the same HBA.

More information about SAN zoning is in *Introduction to Storage Area Networks*, SG24-5470: http://www.redbooks.ibm.com/abstracts/sg245470.html

Soft zoning using the *single initiator, multiple targets* method is illustrated in Figure 1-6.

Figure 1-6 FC SAN zoning: The single initiator, multiple targets method

Spread the I/O workload evenly among the interfaces. For example, for a host that is equipped with two single-port HBAs, connect one HBA port to one port on modules 4, 6, and 8. Also, connect the second HBA port to one port on modules 5, 7, and 9. This configuration divides the workload between even and odd-numbered interface modules.
When round-robin is not in use (for example, with VMware ESX 3.5 or AIX 5.3 TL9 and earlier, or AIX 6.1 TL2 and earlier), statically balance the workload between the paths. Monitor the I/O workload on the interfaces to make sure that it stays balanced by using the XIV statistics view in the GUI (or XIVTop).

1.2.4 Identification of FC ports (initiator/target)

You must identify ports before you set up the zoning. This identification aids any modifications that might be required, and assists with problem diagnosis. The unique name that identifies an FC port is the WWPN.

The easiest way to get a record of all the WWPNs on the XIV is to use the XIV command-line interface (XCLI). However, this information is also available from the GUI. Example 1-1 shows all WWPNs for one of the XIV Storage Systems that were used in the preparation of this book. It also shows the XCLI command that was used to list them. For clarity, some of the columns were removed.

Example 1-1 Getting the WWPNs of an IBM XIV Storage System (XCLI)

```
>> fc_port_list
Component ID   Status  Currently Functioning  WWPN                 Port ID   Role
1:FC_Port:4:1  OK      yes          5001738000230140   00030A00  Target
1:FC_Port:4:2  OK      yes          5001738000230141   00614113  Target
1:FC_Port:4:3  OK      yes          5001738000230142   00750029  Target
1:FC_Port:4:4  OK      yes          5001738000230143   0FFFFFFF  Initiator
1:FC_Port:5:1  OK      yes          5001738000230150   00711000  Target
.....
1:FC_Port:6:1  OK      yes          5001738000230160   00070A00  Target
.....
1:FC_Port:7:1  OK      yes          5001738000230170   00760000  Target
.....
1:FC_Port:8:1  OK      yes          5001738000230180   00602190  Target
........
1:FC_Port:9:1  OK      yes          5001738000230190   00FFFFFF  Target
1:FC_Port:9:2  OK      yes          5001738000230191   00FFFFFF  Target
1:FC_Port:9:3  OK      yes          5001738000230192   00021700  Target
1:FC_Port:9:4  OK      yes          5001738000230193   00021600  Initiator
```

The `fc_port_list` command might not always print the port list in the same order. Although they might be ordered differently, all the ports are listed.

To retrieve the same information from the Hyper-Scale Manager (GUI), see Figure 1-7 on page 16 and follow these steps:

1. From the **Systems & Domains** view, select the system of interest.
2. From the Hub view of the System, select the **System Ports** spoke.
3. The ports and modules are listed at the bottom of the panel.
4. Click the **Actions** icon for a particular port, and select **View/Edit FC Port**.

5. Scroll down if necessary to view the WWPN as shown in Figure 1-8.

Tip: The WWPNs of an XIV Storage System are static. The last two digits of the WWPN indicate to which module and port the WWPN corresponds.

As shown in Figure 1-8, the WWPN is 500173809C480140, which means that the WWPN is from module 4, port 1.

The WWPNs for the port are numbered from 0 to 3, whereas the physical ports are numbered 1 - 4.
The values that comprise the WWPN are shown in Example 1-2.

Example 1-2 Composition of the WWPN

If WWPN is 50:01:73:8N:NN:NN:RR:MP

- **5** NAA (Network Address Authority)
- **NNNNN** IBM XIV Serial Number in hexadecimal
- **RR** Rack ID (01-FF, 00 for WWNN)
- **M** Module ID (1-F, 0 for WWNN)
- **P** Port ID (0-7, 0 for WWNN)

1.2.5 Boot from SAN on x86 or x64 based architecture

Booting from SAN creates a number of possibilities that are not available when booting from local disks. The operating systems and configuration of SAN-based computers can be centrally stored and managed. Central storage is an advantage with regards to deploying servers, backup, and disaster recovery procedures.

To boot from SAN, complete these basic steps:

1. Go into the HBA configuration mode.
2. Set the HBA BIOS to **Enabled**.
3. Detect at least one XIV target port.
4. Select a LUN to boot from.

You typically configure 2 to 4 XIV ports as targets. When using Hyper-Scale Mobility make sure that in the adapter bios targets (WWPNs) from both storage systems are defined. You might need to enable the BIOS on two HBAs, depending on the HBA, driver, and operating system. See the documentation that came with your HBA and operating systems.

For information about SAN boot for AIX, see Chapter 5, “AIX connectivity” on page 169.

The procedures for setting up your server and HBA to boot from SAN vary. They are dependent on whether your server has an Emulex or QLogic HBA (or the OEM equivalent). The procedures in this section are for a QLogic HBA. If you have an Emulex card, the configuration panels differ but the logical process is the same.

1. Boot your server. During the boot process, press Ctrl+Q when prompted to load the configuration utility and display the **Select Host Adapter** menu (Figure 1-9).

![Figure 1-9 Select Host Adapter menu](image_url)
2. You normally see one or more ports. Select a port and press Enter to display the next panel (Figure 1-10). If you are enabling the BIOS on only one port, make sure to select the correct port.

![Figure 1-10 FastUUTIL Options menu](image)

3. Select **Configuration Settings**.

4. In the next panel (Figure 1-11), select **Adapter Settings**.

![Figure 1-11 Configuration Settings menu](image)
5. The Adapter Settings menu is displayed (Figure 1-12). Change the Host Adapter BIOS setting to **Enabled**, and then press Esc to exit and go back to the Configuration Settings menu shown in Figure 1-11 on page 18.

![Figure 1-12 Adapter Settings menu](image1)

6. From the Configuration Settings menu, select **Selectable Boot Settings** to get to the panel shown in Figure 1-13.

![Figure 1-13 Selectable Boot Settings menu](image2)

7. Change the Selectable Boot option to **Enabled**.

8. Select **Boot Port Name, Lun** and then press Enter.
9. The Select Fibre Channel Device menu opens (Figure 1-14). Select the **IBM 2810XIV** device, and press Enter.

![Select Fibre Channel Device menu](image)

Figure 1-14 Select Fibre Channel Device menu

10. The Select LUN menu opens (Figure 1-15). Select the boot LUN (in this example, LUN 0).

![Select LUN menu](image)

Figure 1-15 Select LUN menu
You are returned to the Selectable Boot Setting menu, and the boot port with the boot LUN is displayed (Figure 1-16).

Figure 1-16 Boot port selected

11. Repeat the steps 8 on page 19 - 10 on page 20 to add more controllers. Any additional controllers must be zoned so that they point to the same boot LUN.

12. After all the controllers are added, press Esc to exit the Configuration Setting panel. Press Esc again to get the **Save changes** option (Figure 1-17).

Figure 1-17 Save changes

13. Select **Save changes** to return to the Fast!UTIL option panel. From there, select **Exit Fast!UTIL**.
14. The Exit Fast!UTIL menu is displayed (Figure 1-18). Select Reboot System to reboot from the newly configured SAN drive.

![Exit Fast!UTIL](image)

Figure 1-18 Exit Fast!UTIL

Important: Depending on your operating system and multipath drivers, you might need to configure multiple ports as “boot from SAN” ports. For more information, see your operating system documentation.

1.3 iSCSI connectivity

This section focuses on iSCSI connectivity as it applies to the XIV Storage System in general. For information that is specific to the operating system, see the relevant section in the corresponding chapter of this book.

Currently, iSCSI hosts other than AIX are supported by using the software iSCSI initiator. For more information about iSCSI software initiator support, see the SSIC web page:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

1.3.1 Preparation steps

Before you can attach an iSCSI host to the XIV Storage System, you must complete the following procedures. These general procedures pertain to all hosts. However, you must also review any procedures that pertain to your specific hardware and operating system.

1. Connect the host to the XIV over iSCSI using a standard Ethernet port on the host server. Dedicate the port that you choose to iSCSI storage traffic only. This port must also be capable of a minimum of 1 Gbps. This port requires an IP address, subnet mask, and gateway.

 Also, review any documentation that came with your operating system about iSCSI to ensure that any additional conditions are met.

2. Check the LUN limitations for your host operating system. Verify that enough adapters are installed on the host server to manage the total number of LUNs that you want to attach.

3. Check the optimum number of paths that must be defined, which helps determine the number of physical connections that must be made.
4. Install the latest supported adapter firmware and driver. If the latest version was not included with your operating system, download it.

5. Maximum transmission unit (MTU) configuration is required if your network supports an MTU that is larger than the default (1500 bytes). Anything larger is known as a jumbo frame. Specify the largest possible MTU.

6. Any device that uses iSCSI requires an iSCSI qualified name (IQN) and an attached host. The IQN uniquely identifies iSCSI devices. The IQN for the XIV Storage System is configured when the system is delivered and must not be changed. Contact IBM technical support if a change is required.

The XIV Storage System name in this example is `iqn.2005-10.com.xivstorage:000035`.

1.3.2 iSCSI configurations

Several configurations are technically possible. They vary in terms of their cost and the degree of flexibility, performance, and reliability that they provide.

In the XIV Storage System, each iSCSI port is defined with its own IP address.

Restriction: Link aggregation is not supported. Ports cannot be bonded.

Redundant configurations

A redundant configuration is illustrated in Figure 1-19 on page 24.

This configuration has the following characteristics:

- Each host is equipped with dual Ethernet interfaces. Each interface (or interface port) is connected to one of two Ethernet switches.
- Each of the Ethernet switches has a connection to a separate iSCSI port. The connection is to modules 4 - 9 on an XIV Gen 3.
This configuration has no single point of failure:

- If a module fails, each host remains connected to at least one other module. How many depends on the host configuration, but it is typically one or two other modules.
- If an Ethernet switch fails, each host remains connected to at least one other module. How many depends on the host configuration, but is typically one or two other modules through the second Ethernet switch.
- If a host Ethernet interface fails, the host remains connected to at least one other module. How many depends on the host configuration, but is typically one or two other modules through the second Ethernet interface.
- If a host Ethernet cable fails, the host remains connected to at least one other module. How many depends on the host configuration, but is typically one or two other modules through the second Ethernet interface.

Consideration: For the best performance, use a dedicated iSCSI network infrastructure.
Non-redundant configurations

Use non-redundant configurations only where the risks of a single point of failure are acceptable. This configuration is typically acceptable for test and development environments.

Figure 1-20 illustrates a non-redundant configuration.

1.3.3 Network configuration

Disk access is susceptible to network latency. Latency can cause timeouts, delayed writes, and data loss. To get the best performance from iSCSI, place all iSCSI IP traffic on a dedicated network. Physical switches or VLANs can be used to provide a dedicated network. This network requires a minimum of 1 Gbps, and the hosts need interfaces that are dedicated to iSCSI only. You might need to purchase more host Ethernet ports.

1.3.4 IBM XIV Storage System iSCSI setup

Initially, no iSCSI connections are configured in the XIV Storage System. The configuration process is simple, but requires more steps than an FC connection setup.

Getting the XIV iSCSI Qualified Name (IQN)

Every XIV Storage System has a unique IQN. The format of the IQN is simple, and includes a fixed text string followed by the last digits of the XIV Storage System serial number.
To display the IQN of the storage system, complete the following steps:

1. From the Hyper-Scale Manager GUI, click the **Systems & Domains Views** icon and select **All Systems** from the menu as shown in Figure 1-21.

![Figure 1-21 All Systems menu](image)

2. The list of systems that are in the inventory is displayed in the Systems & Domains view. Select the system for which you need to retrieve the IQN.

3. Click in the circle that represents the system (Figure 1-22) to display the System Properties. Scroll down in the System Properties to find the iSCSI name under System Parameters.

![Figure 1-22 Retrieving the iSCSI name (IQN)](image)

Important: Do not attempt to change the IQN. If you need to change the IQN, you must engage IBM support.
To show the same information in the XCLI, run `config_get` command (Example 1-3).

Example 1-3 Using the XCLI to get the iSCSI name (IQN)

```plaintext
>> config_get
Name                                    Value
dns_primary                             9.155.50.85
dns_secondary
system_name                             XIV_04_1340008
snmp_location                           Unknown
snmp_contact                            Unknown
snmp_community                          XIV
snmp_trap_community                     XIV
snmp_type                               V2C
snmpv3_user                             
snmpv3_encryption_type                 AES
snmpv3_encryption_passphrase           ****
snmpv3_authentication_type             SHA
snmpv3_authentication_passphrase       ****
system_id                               40008
machine_type                            2810
machine_model                           214
machine_serial_number                   1340008
email_sender_address                    admin@ibm.com
email_reply_to_address                  
email_subject_format                    {severity}: {description}
iscsi_name                              iqn.2005-10.com.xivstorage:040008
ntp_server                              9.155.112.20
support_center_port_type               Management
isns_server                             
ipv6_state                              enabled
ipsec_state                             disabled
ipsec_track_tunnels                      no
impending_power_loss_detection_method   UPS
```
Configuring the iSCSI port by using the GUI
To set up the iSCSI port by using the GUI, see Figure 1-23 and use the steps that follow.

Figure 1-23 Retrieving the IP port properties

Follow these steps:
1. From the Systems & Domains view, select the system of interest.
2. From the Hub view of the system, select the System Ports spoke.
3. The ports and modules are listed at the bottom of the panel. Scroll down to reach the iSCSI ports.
4. Click the Actions icon for a particular port, and select Define IP Interface.
5. The IP Interface window opens where you can define iSCSI ports settings (Figure 1-24).

Figure 1-24 Setting the iSCSI port properties

Enter the following information in the IP Interface window:
– Name: Define the name for this interface.
– Address, netmask, and gateway: Enter the standard IP address details.
— MTU: All devices in a network must use the same MTU. If in doubt, set MTU to 1500 because 1500 is the default value for Gigabit Ethernet. Performance might be affected if the MTU is set incorrectly.

6. Click **Apply** to complete the IP interface and iSCSI setup.

Tip: If the MTU being used by the XIV is higher than the network can transmit, the frames are discarded. The frames are discarded because the do-not-fragment bit is normally set to **on**. Use the `**ping -l**` command to test and specify packet payload size from a Windows workstation in the same subnet. A `**ping**` command normally contains 28 bytes of IP and ICMP headers plus payload. Add the `-f` parameter to prevent packet fragmentation.

For example, the `**ping -f -l 1472 10.1.1.1**` command sends a 1500-byte frame to the 10.1.1.1 IP address (1472 bytes of payload and 28 bytes of headers). If this command succeeds, you can use an MTU of 1500 in the XIV GUI or XCLI.

iSCSI XIV port configuration by using the XCLI

To configure iSCSI ports by using the XCLI session tool, issue the `**ipinterface_create**` command as shown in Example 1-4.

Example 1-4 iSCSI setup (XCLI)

```plaintext
>> ipinterface_create ipinterface="Test" address=10.0.0.10 netmask=255.255.255.0 module=1:Module:5 ports="1" gateway=10.0.0.1 mtu=9000
```

1.3.5 Identifying iSCSI ports

iSCSI ports can be easily identified and configured in the XIV Storage System. Use either the GUI or an XCLI command to display current settings.

Viewing the iSCSI configuration by using the GUI

To view the iSCSI port by using the GUI, see Figure 1-25 and use the steps that follow.

![Figure 1-25 Retrieving the IP port properties](image)
Follow these steps:

1. From the Systems & Domains view, select the system of interest.
2. From the Hub view of the system, select the System Ports spoke.
3. The ports and modules are listed at the bottom of the panel. Scroll down to reach the iSCSI ports.

Viewing the iSCSI configuration by using the XCLI

The `ipinterface_list` command that is illustrated in Example 1-5 can be used to display configure network ports only. The output is truncated to show only the iSCSI connections that are of interest here. The command also displays all other Ethernet connections and settings. For clarity, several columns are removed from the example. This example shows a XIV Gen3 (model 114).

```
Example 1-5   Listing iSCSI ports with the ipinterface_list command
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>IP Address</th>
<th>Network Mask</th>
<th>Default Gateway</th>
<th>MTU</th>
<th>Module</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI_M5P1</td>
<td>iSCSI</td>
<td>9.155.115.191</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:5</td>
<td>1</td>
</tr>
<tr>
<td>iSCSI_M6P1</td>
<td>iSCSI</td>
<td>9.155.115.192</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:6</td>
<td>1</td>
</tr>
<tr>
<td>iSCSI_M7P1</td>
<td>iSCSI</td>
<td>9.155.115.193</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:7</td>
<td>1</td>
</tr>
<tr>
<td>iSCSI_M8P1</td>
<td>iSCSI</td>
<td>9.155.115.194</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:8</td>
<td>1</td>
</tr>
</tbody>
</table>

The rows might be in a different order each time you run this command. To see a complete list of IP interfaces, use the `ipinterface_list_ports` command.

1.3.6 iSCSI and CHAP authentication

The IBM XIV Storage System supports industry-standard unidirectional iSCSI Challenge Handshake Authentication Protocol (CHAP). The iSCSI target of the IBM XIV Storage System can validate the identity of the iSCSI Initiator that attempts to log on to the system.

The CHAP configuration in the IBM XIV Storage System is defined on a per-host basis. There are no global configurations for CHAP that affect all the hosts that are connected to the system.

Tip: By default, hosts are defined without CHAP authentication.

For the iSCSI initiator to log in with CHAP, both the `iscsi_chap_name` and `iscsi_chap_secret` parameters must be set. After both of these parameters are set, the host can run an iSCSI login to the IBM XIV Storage System only if the login information is correct.

CHAP name and secret parameter guidelines

The following guidelines apply to the CHAP name and secret parameters:

- Both the `iscsi_chap_name` and `iscsi_chap_secret` parameters must be either specified or not specified. You cannot specify just one of them.
- The `iscsi_chap_name` and `iscsi_chap_secret` parameters must be unique. If they are not unique, an error message is displayed, although the command does not fail.
- The secret must be 96 - 128 bits. You can use one of the following methods to enter the secret:
 - Base64 requires that `0b` is used as a prefix for the entry. Each subsequent character that is entered is treated as a 6-bit equivalent length.
– Hex requires that 0x is used as a prefix for the entry. Each subsequent character that is entered is treated as a 4-bit equivalent length.

– String requires that a prefix is not used (it cannot be prefixed with 0b or 0x). Each character that is entered is treated as an 8-bit equivalent length.

► If the iscsi_chap_secret parameter does not conform to the required secret length (96 - 128 bits), the command fails.

► If you change the iscsi_chap_name or iscsi_chap_secret parameters, a warning message is displayed. The message says that the changes will apply the next time that the host is connected.

Configuring CHAP

CHAP can be configured by using XCLI commands:

► If you are defining a new host, use the following XCLI command to add CHAP parameters:

 host_define host=[hostName] iscsi_chap_name=[chapName] iscsi_chap_secret=[chapSecret]

► If the host already exists, use the following XCLI command to add CHAP parameters:

 host_update host=[hostName] iscsi_chap_name=[chapName] iscsi_chap_secret=[chapSecret]

► If you no longer want to use CHAP authentication, use the following XCLI command to clear the CHAP parameters:

 host_update host=[hostName] iscsi_chap_name= iscsi_chap_secret=

1.3.7 iSCSI boot from XIV LUN

At the time of writing, you cannot boot through iSCSI, even if an iSCSI HBA is used. For up-to-date information, see the SSIC web page:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

1.4 Logical configuration for host connectivity

This section shows the tasks that are required to define a volume (LUN) and assign it to a host. The following sequence of steps is generic and intended to be operating system independent. The exact procedures for your server and operating system might differ somewhat.

1. Gather information about hosts and storage systems (WWPN or IQN).
2. Create SAN zoning for the FC connections.
3. Create a storage pool.
4. Create a volume within the storage pool.
5. Define a host.
6. Add ports to the host (FC or iSCSI).
7. Map the volume to the host.
8. Check host connectivity at the XIV Storage System.
10. If the server is going to boot from SAN, install the operating system.
11. Install multipath drivers if required. For information about installing multipath drivers, see the appropriate section from the host-specific chapters of this book.

12. Reboot the host server or scan for new disks.

Important: For the host system to effectively see and use the LUN, more operating system-specific configuration tasks are required. The tasks are described in operating-system-specific chapters of this book.

1.4.1 Host configuration preparation

The environment shown in Figure 1-26 is used to illustrate the configuration tasks.

The example uses a 2nd Generation XIV. There are two hosts:

- One host uses FC connectivity
- One host uses iSCSI

The diagram also shows the unique names of components that are used in the configuration steps.

The following assumptions are made for the scenario that is shown in Figure 1-26:

- One host is set up with an FC connection. It has two HBAs and a multipath driver installed.
- One host is set up with an iSCSI connection. It has one connection, and has the software initiator loaded and configured.
Hardware information

Write down the component names and IDs because doing so saves time during the implementation. An example is illustrated in Table 1-3 for the sample scenario.

Table 1-3 Required component information

<table>
<thead>
<tr>
<th>Component</th>
<th>FC environment</th>
<th>iSCSI environment</th>
</tr>
</thead>
</table>
| **IBM XIV FC HBAs** | WWPN: 5001738000130nnn
 - nnn for Fabric1: 140, 150, 160, 170, 180, and 190
 - nnn for Fabric2: 142, 152, 162, 172, 182, and 192
 | N/A |
| **Host HBAs** | HBA1 WWPN: 21000024FF24A426
 HBA2 WWPN: 21000024FF24A427 | N/A |
| **IBM XIV iSCSI IPs** | N/A | Module7 Port1: 9.11.237.155
 Module8 Port1: 9.11.237.156 |
| **IBM XIV iSCSI IQN** | N/A | iqn.2005-10.com.xivstorage:000019 |
| **(do not change)** | | |
| **Host IPs** | N/A | 9.11.228.101 |
FC host-specific tasks
Configure the SAN (fabrics 1 and 2) and power on the host server first. These actions populate the XIV Storage System with a list of WWPNs from the host. This method is preferable because it is less prone to error when adding the ports in subsequent procedures.

For more information about configuring zoning, see your FC switch manual. The following example illustrates what the zoning details might look like for a typical server HBA zone. If you are using SAN Volume Controller as a host, there are more requirements that are not addressed here.

Fabric 1 HBA 1 zone
Log on to the Fabric 1 SAN switch and create a host zone:

```
zone: prime_sand_1
    prime_4_1; prime_6_1; prime_8_1; sand_1
```

Fabric 2 HBA 2 zone
Log on to the Fabric 2 SAN switch and create a host zone:

```
zone: prime_sand_2
    prime_5_3; prime_7_3; prime_9_3; sand_2
```

In the previous examples, the following aliases are used:

- `sand` is the name of the server, `sand_1` is the name of HBA1, and `sand_2` is the name of HBA2.
- `prime_sand_1` is the zone name of fabric 1, and `prime_sand_2` is the zone name of fabric 2.
- The other names are the aliases for the XIV patch panel ports.

iSCSI host-specific tasks
For iSCSI connectivity, ensure that any configurations such as VLAN membership or port configuration are completed so the hosts and the XIV can communicate over IP.

<table>
<thead>
<tr>
<th>Component</th>
<th>FC environment</th>
<th>iSCSI environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host iSCSI IQN</td>
<td>N/A</td>
<td>iqn.1991-05.com.microsoft:sand.storage.tucson.ibm.com</td>
</tr>
<tr>
<td>OS Type</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

Remember: The OS Type is *default* for all hosts except Windows 2008, HP-UX and IBM z/VM®.
1.4.2 Assigning LUNs to a host by using the GUI

Several steps are necessary to define a new host and assign LUNs to it. You must create the volumes in a storage system in advance.

Defining a host

To define a host, complete these steps:

1. From the main GUI dashboard, click the **New** icon and select **Host** from the menu (Figure 1-27).

![Figure 1-27 The Create New (hosts and clusters) menu](image)

2. The new Host view is displayed. The Add Host settings window opens (Figure 1-28).

![Figure 1-28 Add Host details](image)
3. Enter the required information:
 - Specify a host name (required).
 - Select the type. In this example, Default is selected. If you use an HP-UX or a z/VM host, you must change the type to match your host type. For all other hosts, such as AIX, Linux, Solaris, VMware, and Windows, the Default option is correct. Note that starting with HAK version 2.7.0, HP-UX and Solaris are no longer supported.
 - Select whether you want an iSCSI or FC connection. Host access to LUNs is granted depending on the host adapter ID. For an FC connection, the host adapter ID is the FC HBA WWPN. For an iSCSI connection, the host adapter ID is the host IQN. To add a WWPN or an IQN to a host definition, click the plus sign (+) icon to the right of the PORTS heading. See Figure 1-28.
 Ports can be added in any order.
 - Specify to which system in your inventory you want to attach the host. Alternatively, you can also add the host to a cluster. (A cluster can be created from this view.)
 - Optional: Add the host to a domain. (A domain can also be created from this view.)

Mapping LUNs to a host
The final configuration step is to map LUNs to the host by completing the following steps:

1. From the Pools and Volumes Workspace view, select the volume to map, and select Actions → Mapping → View/Modify Mapping (Figure 1-29).

![Figure 1-29 Mapping a LUN to a host](image)

2. The Volume Mapping panel opens (Figure 1-30). If no mapping exists yet, click the plus sign (+) to add a mapping.

![Figure 1-30 Add a mapping](image)

3. Select an available host from the pull-down list. The GUI suggests a default (Auto) LUN ID to which to map the volume. However, this ID can be changed to meet your requirements. Click Apply and the volume is assigned immediately. See Figure 1-31.
No differences exist between mapping a volume to an FC host or an iSCSI host in the GUI.

1.4.3 Assigning LUNs to a host by using the XCLI

Several steps are necessary to define a new host and assign LUNs to it. Volumes must already be created in a storage pool.

Defining a new host

To use the XCLI to prepare for a new host, complete these steps:

1. Create a host definition for your FC and iSCSI hosts by using the `host_define` command as shown in Example 1-6.

 Example 1-6 Creating host definition (XCLI)

   ```
   >> host_define host=itso_win2008
   Command executed successfully.
   >> host_define host=itso_win2008_iscsi
   Command executed successfully.
   ```

2. Host access to LUNs is granted depending on the host adapter ID. For an FC connection, the host adapter ID is the FC HBA WWPN. For an iSCSI connection, the host adapter ID is the IQN of the host.

 As Example 1-7 shows, the WWPN of the FC host for HBA1 and HBA2 is added with the `host_add_port` command by specifying an `fcaddress` value.

 Example 1-7 Creating FC port and adding it to host definition

   ```
   >> host_add_port host=itso_win2008 fcaddress=21000024FF24A426
   Command executed successfully.
   >> host_add_port host=itso_win2008 fcaddress=21000024FF24A427
   Command executed successfully.
   ```
Example 1-8 shows that the IQN of the iSCSI host is added. This is the same `host_add_port` command, but with the `iscsi_name` parameter.

Example 1-8 Creating iSCSI port and adding it to the host definition

```bash
>> host_add_port host=itso_win2008_iscsi
Command executed successfully
```

Mapping LUNs to a host
To map the LUNs, complete these steps:

1. Map the LUNs to the host definition. For a cluster, the volumes are mapped to the cluster host definition. There is no difference between FC and iSCSI mapping to a host. Both commands are shown in Example 1-9.

Example 1-9 Mapping volumes to hosts (XCLI)

```bash
>> map_vol host=itso_win2008 vol=itso_win2008_vol1 lun=1
Command executed successfully.

>> map_vol host=itso_win2008 vol=itso_win2008_vol2 lun=2
Command executed successfully.

>> map_vol host=itso_win2008_iscsi vol=itso_win2008_vol3 lun=1
Command executed successfully.
```

2. Power up the server and check the host connectivity status from the XIV Storage System point of view. Example 1-10 shows the output for both hosts.

Example 1-10 Checking host connectivity (XCLI)

```bash
>> host_connectivity_list host=itso_win2008
Host           Host Port          Module       Local FC port   Local iSCSI port
itso_win2008   21000024FF24A427   1:Module:5   1:FC_Port:5:2
itso_win2008   21000024FF24A427   1:Module:7   1:FC_Port:7:2
itso_win2008   21000024FF24A427   1:Module:9   1:FC_Port:9:2
itso_win2008   21000024FF24A426   1:Module:4   1:FC_Port:4:1
itso_win2008   21000024FF24A426   1:Module:6   1:FC_Port:6:1
itso_win2008   21000024FF24A426   1:Module:8   1:FC_Port:8:1

>> host_connectivity_list host=itso_win2008_iscsi
Host           Host Port                                               Module       Local FC port   Type
```

This example shows two paths per host FC HBA and two paths for the single Ethernet port that was configured.

At this stage, you might need to do operating system-dependent steps; these steps are described in the operating system chapters.
1.5 Performance tuning

This section provides some performance considerations to help you adjust your operating system to best fit your environment. The following are performance considerations for the operating system:

- Use multiple threads and asynchronous I/O to maximize performance on XIV.
- Use `iostat`, `perfmon`, or `esxtop` to check on a per path basis for the LUNs to make sure that the load is balanced across all paths.
- Verify the HBA queue depth and per device queue depth for the host are sufficient to prevent queue waits. However, make sure that they are not so large that they overrun the Storage System queues. For XIV queue limit is 1400 per XIV port and 256 per LUN per WWPN (host) per port. Do not submit more I/O per XIV port than the 1400 maximum it can handle.

Check the device queue depth:

- To check the device queue depth on AIX, periodically run `iostat -D 5`. If `avgwqsz` (average wait queue size) or `sqfull` is consistently greater than zero, increase the device queue depth.

 For more information about AIX device queue depth tuning, see the following web page:

 http://www-01.ibm.com/support/docview.wss?uid=tss1td105745

- To check the device queue depth on Linux, periodically run `iostat -dx 5`. If the `await-svctm` values are consistently greater than zero or `%util` (disk utilization) is constantly close to 100%, increase the device queue depth.

 For more information about Linux disk tuning, see the following web page:

- To check the device queue depth on VMware ESXi, run `esxtop`, press the U key. The queue depth is listed under `LQLEN`. If the `%USD` (percentage of queue depth used) is constantly close to 100%, increase the device queue depth.

 For more information about VMware ESXi queues, see the following web page:

- To check the device queue depth on Windows, run `Administrative Tools` → `Performance Monitor` and select `Physical Disk` → `Current Disk Queue Length`.

 For more information about Windows disk performance monitoring, see the following web page:

 https://blogs.technet.microsoft.com/askcore/2012/03/16/windows-performance-monitor-disk-counters-explained/

Important: Do not start at the maximum and work down (except for Windows which starts by default with maximum) because you might flood the storage system with commands and waste memory on the host.
1.6 Troubleshooting

Troubleshooting connectivity problems can be difficult. However, the XIV Storage System has built-in troubleshooting tools. Table 1-4 lists some of the built-in tools. More information is in the IBM XIV Storage System Command-Line Interface (CLI) Reference Guide:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc_connectivity_list</td>
<td>Discovers FC hosts and targets on the FC network.</td>
</tr>
<tr>
<td>fc_port_list</td>
<td>Lists all FC ports, their configuration, and their status.</td>
</tr>
<tr>
<td>ipinterface_list_ports</td>
<td>Lists all Ethernet ports, their configuration, and their status.</td>
</tr>
<tr>
<td>ipinterface_run_arp</td>
<td>Prints the ARP database of a specified IP address.</td>
</tr>
<tr>
<td>ipinterface_run_traceroute</td>
<td>Tests connectivity to a remote IP address.</td>
</tr>
<tr>
<td>host_connectivity_list</td>
<td>Lists FC and iSCSI connectivity to hosts.</td>
</tr>
</tbody>
</table>
IBM FlashSystem A9000 and A9000R Host Connectivity

This chapter addresses host connectivity for IBM FlashSystem A9000 and A9000R. It highlights key aspects of host connectivity. It also reviews concepts and requirements for both the Fibre Channel (FC) and internet Small Computer System Interface (iSCSI) protocols.

This chapter covers common tasks that relate to most hosts. For the latest information, see the IBM Storage Host Attachment Kit publications at Fix Central:

https://ibm.co/2FAgkEp

This chapter includes the following sections:

- Overview
- Fibre Channel connectivity
- iSCSI connectivity
- Logical configuration for host connectivity
- Performance tuning
- Troubleshooting
2.1 Overview

FlashSystem A9000 and A9000R can be attached to various host systems by using the following methods:

- Fibre Channel adapters that use Fibre Channel Protocol (FCP)

 Note that newer systems have grid controllers equipped with FC-NVMe adapters. In these new controllers, the FC ports are dual-purposed and NVMe ready: a future software upgrade will enable these ports to connect with servers using FC, or using FC-NVMe, or both.

- iSCSI software initiator or iSCSI host bus adapter (HBA) that uses the iSCSI protocol

FlashSystem A9000 and A9000R are perfectly suited for integration into a new or existing Fibre Channel storage area network (SAN). After the HBAs, cabling, and SAN zoning are in place, connecting a Fibre Channel host to FlashSystem A9000 or A9000R is easy. By using the IBM Hyper-Scale Manager graphical user interface (GUI) or the extended command-line interface (XCLI), the storage administrator defines hosts and ports, and then maps volumes to them.

You can also connect hosts to FlashSystem A9000 or A9000R through iSCSI by using an existing 10 Gb Ethernet network infrastructure. However, your workload might require a dedicated network to sustain the additional data traffic.

Grid controllers provide the interface node functionality to connect FlashSystem A9000 or A9000R to a host through Fibre Channel and iSCSI (Intermix Protocol feature) or iSCSI only.

Each grid controller can be equipped with four FC ports and two iSCSI ports if you order the intermix protocol option, or each grid controller can be ordered with four iSCSI ports. The possible configurations are shown in Figure 2-1.

![Grid controller configuration options](image)

Important: All of the grid controllers in a single FlashSystem A9000 or A9000R must be identical.
Table 2-1 shows the number of FC ports and iSCSI ports for FlashSystem A9000 according to the system configuration.

Note: FlashSystem A9000 always has three grid controllers.

<table>
<thead>
<tr>
<th>Table 2-1 FlashSystem A9000 attachment ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlashSystem A9000</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
</tbody>
</table>
| FC ports with iSCSI ports | 12 FC
 6 iSCSI |
| iSCSI only | 12 iSCSI |

FlashSystem A9000R has up to 8 grid controllers for Model 425 and up to 12 grid controllers for Model 415. Table 2-2 summarizes the number of grid controllers for FlashSystem A9000R and the FC and iSCSI ports for different rack configurations.

<table>
<thead>
<tr>
<th>Table 2-2 FlashSystem A9000R attachment ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FlashSystem A9000R grid controllers</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
| FC ports and iSCSI ports | 16 FC
 8 iSCSI | 24 FC
 12 iSCSI | 32 FC
 16 iSCSI | 40 FC
 20 iSCSI | 48 FC
 24 iSCSI |
| iSCSI ports only | 16 | 24 | 32 | 40 | 48 |

Hosts attach to the FC ports through an FC switch and to the iSCSI ports through a 10-Gigabit Ethernet switch. The FC ports for both FlashSystem A9000 and A9000R can negotiate FC speeds of 4 Gbps, 8 Gbps, or 16 Gbps. You must consider the switch port speed capability when you design the connectivity architecture. The negotiated FC transmission speeds can affect the overall I/O operations per second (IOPS) and bandwidth that are achievable per port. Whenever possible, use a 16Gbps fabric and HBAs, for best performance.

Restriction: Direct attachment between hosts and FlashSystem A9000 or A9000R is not supported.

Important: Host traffic can be directed to any of the grid controllers. The storage administrator must ensure that host connections avoid single points of failure. The server administrator also must ensure that the host workload is adequately balanced across the connections and host interface ports on the grid controllers. This balancing can be performed by installing the relevant Host Attachment Kit. Review the balancing periodically and when traffic patterns change.

With FlashSystem A9000 and A9000R, all grid controllers and all ports can be used concurrently to access any logical volume in the storage system. The only affinity is the mapping of logical volumes to host, which simplifies storage management. Balancing traffic and zoning for adequate performance and redundancy is a critical task and objective.
Figure 2-2 shows a logical connectivity example through a Fibre Channel SAN to FlashSystem A9000R. You can connect through either a SAN or a 10 Gb Ethernet network.

![Figure 2-2 Host Fibre Channel SAN connectivity overview example](image)

Figure 2-3 shows a logical connectivity example through a 10 Gigabit Ethernet network.

![Figure 2-3 Host 10 Gigabit Ethernet connectivity overview example](image)
2.1.1 Grid controller interface ports and host connectivity

This section presents a simplified view of the host connectivity to explain the relationship between individual system components and how they affect host connectivity.

When you connect hosts to FlashSystem A9000 or A9000R, no “one size fits all” solution can be applied because every environment differs. However, follow these guidelines to avoid single points of failure and ensure that hosts are connected to the correct ports:

- **FC hosts** connect to FlashSystem A9000 and A9000R FC ports 1 and 3 on grid controllers. This configuration provides increased reliability because FC ports 1 and 3 reside on separate FC adapter cards (each grid controller has 2 FC adapters).
- FlashSystem A9000 and A9000R FC ports 2 and 4 can be used for mirroring to another FlashSystem A9000, A9000R or XIV Gen3. They can also be used for data migration from another storage system.
- FC ports 2 and 4 can also be used as target ports for host attachment if they are required in a high connectivity scenario.
- FC port 4, by default, is set to the initiator role for use with the replication and data migration functions of FlashSystem A9000 and A9000R.
- FC port 4 can also be used as a target port. The port role must be changed through the XCLI or the GUI.

Tip: Most illustrations in this book show that ports 1 and 3 are allocated for host connectivity. Ports 2 and 4 are reserved for additional host connectivity or remote mirroring and data migration connectivity. This configuration provides more resiliency because ports 1 and 3 are on separate Fibre Channel adapters. This configuration provides increased availability. It might also increase performance because each adapter has its own Peripheral Component Interconnect (PCI) bus.

Contact your IBM service support representative (SSR) to determine the best port allocation for your environment.

- iSCSI hosts connect to at least one port on each active grid controller. The preferred practice is to use the same methodology as the FC connectivity recommendations when you connect through iSCSI with a FlashSystem A9000 or A9000R that is physically configured with the “all iSCSI adapters” option.
- Use every grid controller and spread connections evenly.
Figure 2-4 shows an overview of FC and iSCSI connectivity for a rack configuration that is configured with both Fibre Channel and iSCSI ports.

2.1.2 Host operating system support

FlashSystem A9000 and A9000R support many operating systems. To obtain the current list, see the IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

From the SSIC, you can select any combination from the available fields to determine whether your configuration is supported. You do not have to start at the top and work down. The result is a comma-separated values (CSV) file to show that you confirmed that your configuration is supported.

If you cannot locate your current (or planned) combination of product versions, talk to your IBM Business Partner, IBM Marketing Representative, or IBM Pre-Sales Technical Support Representative.
2.1.3 Host Attachment Kits

For high availability, every host that is attached to FlashSystem A9000 or A9000R must have multiple paths to the connected system. Most operating systems, such as AIX, Windows, VMware, and Linux, can provide native multipathing. IBM has a Host Attachment Kit for most of these supported operating systems. These kits customize the host multipathing. The Host Attachment Kit also supplies powerful tools to assist the storage administrator in daily tasks.

The Host Attachment Kit includes the following features:
- Validates the host server patch and driver versions for the correct levels.
- Sets up multipathing on the host by using native multipathing.
- Adjusts select host system tunable parameters (if required) for performance.

Important: One important host tunable parameter, LUN Queue Depth, is not modified. Review this parameter because you might need to increase it based on the type of workloads that are intended for the server and FlashSystem A9000 or A9000R. More about queue depth is in 2.5, “Performance tuning” on page 69.

- Provides an installation wizard (which might not be needed if you use the portable version).
- Provides management utilities, such as the xiv_devlist and xiv_attach commands.
- Provides support and troubleshooting utilities, such as the xiv_diag command.

At the time of writing this book, the Host Attachment Kit (HAK) version that supports IBM A9000 and A9000R is Host Attachment Kit 2.9.x. Latest version might differ for the specific operating system.

You may search for and then download a Host Attachment Kit from Fix Central:

http://www.ibm.com/support/fixcentral/

Commands that are provided by the Host Attachment Kit

Regardless of the host operating system that is in use, the Host Attachment Kit provides a uniform set of commands that creates output in a consistent manner. Each chapter in this book includes examples of the related Host Attachment Kit commands. This section lists all of them for completeness. In addition, useful parameters are suggested.

The xiv_attach command

This command locally configures the operating system and defines the host on FlashSystem A9000 or A9000R.

Sometimes, after you run the xiv_attach command, you might be prompted to reboot the host. This reboot might be needed because the command can perform system modifications that force a reboot based on the normal behavior of the operating system. For example, a reboot is required when you install a Windows hotfix. You need to run this command only one time, when you perform the initial host configuration. After the first time, use xiv_fc_admin -R or xiv_iscsi_admin -R to detect newly mapped volumes. The --clean option removes unavailable paths that were left in the multipathing configuration for the operation system.
The **xiv_detach command**
This command is used on a Microsoft Windows Server to remove all multipathing settings from the host. For other operating systems, use the uninstallation option.

The **xiv_devlist command**
This command displays a list of all volumes that are visible to the system. It also displays the following information:

- Size of the volume
- Number of paths (working and detected)
- Name and ID of each volume on FlashSystem A9000 or A9000R
- ID of the FlashSystem A9000 or A9000R system
- Name of the host definition on the FlashSystem A9000 or A9000R system

The **xiv_devlist** command is one of the most powerful tools in your toolkit. Ensure that you are familiar with this command and use it whenever you perform system administration. The *Host Attachment Kit User Guide*, GA32-1060 lists many useful parameters that can be run with the **xiv_devlist** command.

The following parameters are especially useful:

- **xiv_devlist -u GiB** Displays the volume size in binary GB. The -u is for unit size.
- **xiv_devlist -V** Displays the Host Attachment Kit version number. The -V is for version.
- **xiv_devlist -f filename.csv -t csv** Directs the output of the command to a file.
- **xiv_devlist -h** Opens the help page that displays other available parameters. The -h is for help.

The **xiv_diag command**
This command is used to satisfy requests from the IBM Support Center for log data. The **xiv_diag** command creates a compressed packed file that uses the tar.gz format that contains log data. Therefore, you do not need to collect individual log files from your host server.

The **xiv_fc_admin command**
This command is similar to **xiv_attach**. However, unlike **xiv_attach**, you can use the **xiv_fc_admin** command to perform individual steps and tasks.

The following parameters are useful:

- **xiv_fc_admin -P** Displays the worldwide port names (WWPNs) of the host server HBAs. The -P is for print.
- **xiv_fc_admin -V** Lists the tasks that **xiv_attach** will perform if it is run. Knowing the tasks is vital if you are using the portable version of the Host Attachment Kit. The -V is for verify.
- **xiv_fc_admin -C** Performs all of the tasks that the **xiv_fc_admin -V** command identified as required for your operating system. The -C is for configure.
xiv_fc_admin -R This command scans for and configures new volumes that are mapped to the server. For a new host that is not yet connected to an XIV, use xiv_attach. However, if more volumes are mapped to this host later, use xiv_fc_admin -R to detect them. You can use native host methods but the Host Attachment Kit command is an easier way to detect volumes. The -R is for rescan.

xiv_fc_admin -R --clean Use the clean option to remove devices from the multipath. You can clean unreachable devices (use only with the -R/--rescan option).

xiv_fc_admin -h Opens the help page that displays other available parameters. The -h is for help.

The xiv_iscsi_admin command
This command is similar to xiv_fc_admin, but this command is used on hosts with iSCSI interfaces rather than Fibre Channel.

Coexistence with other multipathing software
The Host Attachment Kit is not a multipath driver. It enables and configures native multipathing rather than providing it.

Important: An IBM requirement is that you install the correct Host Attachment Kit for each operating system (OS) type.

A mix of different multipathing solution software on the same server is not supported. Each product can have different requirements for important system settings, which can conflict. These conflicts can cause issues that range from poor performance to unpredictable behaviors, and even data corruption.

If you need coexistence and a support statement does not exist, apply for a support statement from IBM. This statement is known as a Solution for Compliance in a Regulated Environment (SCORE), or sometimes a request for price quotation (RPQ).

2.1.4 Fibre Channel versus iSCSI access

Hosts can attach to FlashSystem A9000 or A9000R over a Fibre Channel and/or Ethernet network (by using iSCSI). The version of FlashSystem A9000 and A9000R system software at the time of writing this book supports iSCSI by using the software initiator and converged network adapters (CNAs). To obtain the current list of supported operating systems and adapters for iSCSI, see the IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Choose the connection protocol (iSCSI or FCP) based on your application requirements. When you consider Internet Protocol (IP) storage-based connectivity, look at the performance and availability of your existing infrastructure.
Consider the following information:

- Always connect FC hosts in a production environment to a minimum of two separate SAN switches in independent fabrics to provide redundancy.

- For test and development, you can choose to allow single points of failure to reduce costs. However, you must determine whether this practice is acceptable for your environment. The cost of an outage in a development environment can be high, and an outage can be caused by the failure of a single component.

- When you use iSCSI, use a separate section of the IP network to isolate iSCSI traffic by using either a virtual local area network (VLAN) or a physically separated section. Storage access is susceptible to latency or interruptions in traffic flow. Do not mix it with other IP traffic.

Figure 2-5 illustrates the simultaneous access to two separate FlashSystem A9000 and A9000R volumes from one host by using both protocols.

![Figure 2-5](image)

A host can connect through FC and iSCSI simultaneously. However, you cannot access the same logical unit number (LUN) through both protocols.
2.2 Fibre Channel connectivity

This section highlights information about FC connectivity that applies to FlashSystem A9000 and A9000R in general.

2.2.1 Preparation steps

Before you can attach an FC host to FlashSystem A9000 or A9000R, you must complete several procedures. The following general procedures pertain to all hosts. However, you also must review any procedures that pertain to your specific hardware and operating system.

Follow these steps:

1. Ensure that your HBA is supported. Information about supported HBAs and the firmware and device driver levels is available at the SSIC web page:

 https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

 For each query, select FlashSystem A9000 or A9000R, a host server model, an operating system, and an HBA vendor. Also, review any documentation that comes from the HBA vendor and ensure that any additional conditions are met.

2. Check the LUN limitations for your host operating system and verify that enough adapters are installed. You need enough adapters on the host server to manage the total number of LUNs that you want to attach.

3. Check the optimum number of paths that must be defined to help determine the zoning requirements.

4. Download and install the latest supported HBA firmware and driver, if needed.

HBA vendor resources

All of the Fibre Channel HBA vendors have websites that provide information about their products, facts, and features, and support information. These sites are useful when you need details that cannot be supplied by IBM resources. IBM is not responsible for the content of these sites.

2.2.2 Fibre Channel configurations

Several configurations that use Fibre Channel are technically possible. They vary in terms of their cost, and the degree of flexibility, performance, and reliability that they provide.

Production environments must always have a redundant (high availability) configuration. Avoid single points of failure. Assign as many HBAs to hosts as needed to support the operating system, application, and overall performance requirements.

This section details three typical FC configurations that are supported and offer redundancy. All of these configurations have no single point of failure:

- If a grid controller fails, each host remains connected to all other grid controllers.
- If an FC switch fails, each host remains connected to multiple grid controllers.
- If an HBA fails, each host remains connected to multiple grid controllers.
- If a host cable fails, each host remains connected to multiple grid controllers.
Redundant configuration with multiple paths to each volume

A redundant configuration, which assumes six grid controllers but uses only six paths per LUN on the host, is depicted in Figure 2-6.

This configuration has the following characteristics:

- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in separate fabrics.
- Each of the FC switches has a connection to a separate FC port of each of the six grid controllers (in FlashSystem A9000R).
- Each fabric has 2 zones (noted by the different colors of the connections), with three paths per fabric, per zone for each host, giving a total of six paths per volume. If a fabric fails, all grid controllers that are connected are still used.

Important: The configuration shown in Figure 2-6 is a good overall multipathing configuration consisting of six paths per LUN, for a system with 6 grid controllers.

If the system had 8 grid controllers such as in a fully configured FlashSystem A9000R Model 425, each of the FC switches would have 2 zones, each zone having a connection to four separate grid controllers.
An even simpler redundant configuration, which still assumes six grid controllers, is illustrated in Figure 2-7.

This configuration has the following characteristics:

- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in separate fabrics.
- Each of the FC switches has a connection to three separate grid controllers.
- Each volume has six paths.

A fully redundant configuration, which assumes six grid controllers, is illustrated in Figure 2-8.
This configuration has the following characteristics:

- Each host is equipped with dual HBAs. Each HBA (or HBA port) is connected to one of two FC switches in separate fabrics.
- Each volume can be accessed through 12 paths. No benefit occurs from exceeding 12 paths (even with more grid controllers) because it can cause issues with host processor utilization and server reliability if a path failure occurs.

For FlashSystem A9000, with only three grid controllers, a redundant configuration that still gives six paths per host is shown in Figure 2-9.

In a fully configured FlashSystem A9000R Model 415, 12 grid controllers are present. This type of configuration can benefit from attaching each physical connection to each grid controller’s port 1 and port 3, as illustrated in Figure 2-10. It is important to equally distribute the workload over all grid controllers.

The diagram shows that:

- Host 1 has HBA1 connected to SAN Fabric 1 and HBA2 connected to SAN Fabric 2
- Host 2 has HBA1 connected to SAN Fabric 1 and HBA2 connected to SAN Fabric 2

SAN Fabric 1 has:

- 6 paths to Port1 (FC adapter 1) in grid controllers 7 to 12 (Zone 1)
- 6 paths to Port1 (FC adapter 1) in grid controllers 1 to 6 (Zone 3)

SAN Fabric 2 has:

- 6 paths to Port3 (FC adapter 2) in grid controllers 1 to 6 (Zone 2)
- 6 paths to Port3 (FC adapter 2) in grid controllers 7 to 12 (Zone 4)

Host 1 is zoned to each Grid Controller with 12 paths in total, via:

- HBA 1 zoned to port 1 (FC adapter 1) in grid controllers 7 to 12 via SAN fabric 1
- HBA 2 zoned to port 3 (FC adapter 2) in grid controllers 1 to 6 via SAN fabric 2

Host 2 is zoned to each Grid Controller with 12 paths in total, via:

- HBA 1 zoned to port 1 (FC adapter 1) in grid controllers 1 to 6 via SAN fabric 1
- HBA 2 zoned to port 3 (FC adapter 2) in grid controllers 7 to 12 via SAN fabric 2
An alternative is to attach all SAN 1 connections to port 1 of grid controllers 1 - 6 and all SAN 2 connections to port 3 of grid controllers 7 - 12. This configuration allows the operations staff to help keep a connectivity scheme that splits the connections across SAN fabrics. Either choice allows the host I/Os to be spread to all 12 grid controllers instead of using both FC port 1 and port 3 attachment recommendations and restricting the number of physical grid controller attachments.
2.2.3 Zoning

Zoning is mandatory when you are connecting FC hosts to a storage system. Zoning is configured on the SAN switch, and it isolates and restricts FC traffic to only those HBAs within a specific zone.

A zone can be either a hard zone or a soft zone. Hard zones group HBAs depending on the physical ports they are connected to on the SAN switches. Soft zones group HBAs depending on the WWPNs of the HBA. Each method has its merits, and you must determine the method that is correct for your environment. From a switch perspective, both methods are enforced by the hardware.

Correct zoning helps avoid issues and makes it easier to trace the cause of errors. The following examples show why correct zoning is important:

- An error from an HBA that affects the zone or zone traffic is isolated to only the devices that it is zoned to.
- Any change in the SAN fabric triggers a registered state change notification (RSCN). These changes can be caused by a server restart or by adding a new product to the SAN. An RSCN requires that any device that can “see” the affected or new device acknowledge the change, interrupting its own traffic flow.

Important: Disk and tape traffic are ideally handled by separate HBA ports because they have different characteristics. If both traffic types use the same HBA port, it can cause performance problems, and other adverse and unpredictable effects.

Zoning is affected by the following factors, among others:

- Host type
- Number of HBAs
- HBA driver
- Operating system
- Applications

Therefore, providing a solution to cover every situation is not possible. The following guidelines can help you to avoid reliability or performance problems. However, also review documentation about your hardware and software configuration for any specific factors that must be considered.

- Each zone (excluding those zones for the IBM SAN Volume Controller) has one initiator HBA (the host) and multiple target HBA ports from a single FlashSystem A9000 or A9000R.
- Zone each host to ports from at least two grid controllers.
- Do not mix disk and tape traffic in a single zone. Also, avoid having disk and tape traffic on the same HBA.

More information about SAN zoning is in *Introduction to Storage Area Networks*, SG24-5470: http://www.redbooks.ibm.com/abstracts/sg245470.html

2.2.4 Identification of FC ports (initiator/target)

You must identify ports before you set up the zoning. This identification aids any modifications that might be required, and assists with problem diagnosis. The unique name that identifies an FC port is called world wide port name (WWPN).
The easiest way to get a record of all of the WWPNs on FlashSystem A9000 or A9000R is to use the CLI. However, this information is also available from the GUI.

Example 2-1 shows all WWPNs for one FlashSystem A9000R system that was used in the preparation of this book. It also shows the CLI command that was used to list them. For clarity, several columns are removed from the example.

Example 2-1 Getting the WWPN on FlashSystem A9000R

```
>> fc_port_list
Component ID    Status   Currently Functioning   WWPN               Port ID    Role
1:FC_Port:1:1   OK       yes                     5001738035CF0110   FFFFFFFF   Target
1:FC_Port:1:2   OK       yes                     5001738035CF0111   00010200   Target
1:FC_Port:1:3   OK       yes                     5001738035CF0112   00020300   Target
1:FC_Port:1:4   OK       yes                     5001738035CF0113   FFFFFFFF   Target
1:FC_Port:2:1   OK       yes                     5001738035CF0120   FFFFFFFF   Target
1:FC_Port:2:2   OK       yes                     5001738035CF0121   00010100   Target
1:FC_Port:2:3   OK       yes                     5001738035CF0122   00020200   Target
1:FC_Port:2:4   OK       yes                     5001738035CF0123   00030300   Target
1:FC_Port:3:1   OK       yes                     5001738035CF0130   FFFFFFFF   Target
1:FC_Port:3:2   OK       yes                     5001738035CF0131   00010100   Target
1:FC_Port:3:3   OK       yes                     5001738035CF0132   00020200   Target
1:FC_Port:3:4   OK       yes                     5001738035CF0133   00030300   Target
1:FC_Port:4:1   OK       yes                     5001738035CF0140   FFFFFFFF   Target
1:FC_Port:4:2   OK       yes                     5001738035CF0141   00010100   Target
1:FC_Port:4:3   OK       yes                     5001738035CF0142   00020200   Target
1:FC_Port:4:4   OK       yes                     5001738035CF0143   004BA400   Initiator
```

The `fc_port_list` command might not always print the port list in the same order. Although they might be ordered differently, all of the ports are listed.

To retrieve the same information from the GUI, see Figure 2-11 and use the steps that follow.

![Figure 2-11 Retrieving Fibre Channel port properties](image)
Follow these steps:

1. From the Systems & Domains view, select the system of interest.
2. From the Hub view of the System, select the System Ports spoke.
3. The ports and modules are listed at the bottom of the panel.
4. Click the Actions icon for a particular port, and select View/Edit FC Port.
5. Scroll down if necessary to view the WWPN (Figure 2-12).

![Viewing the FC port WWPN](image)

2.2.5 Boot from SAN

Refer to 1.2.5, “Boot from SAN on x86 or x64 based architecture” on page 17.

2.3 iSCSI connectivity

This section focuses on iSCSI connectivity as it applies to FlashSystem A9000 and A9000R in general.

2.3.1 Preparation steps

Before you can attach an iSCSI host, you must complete the following procedures. These general procedures pertain to all hosts. However, you must also review any procedures that pertain to your specific hardware and operating system.

1. Connect the host to FlashSystem A9000 or A9000R over iSCSI by using a standard Ethernet port or an CNA on the host server. Dedicate the port that you choose to iSCSI storage traffic only. This port must also support 10 Gbps. This port requires an IP address, subnet mask, and gateway.

 Also, review any documentation that came with your operating system about iSCSI to ensure that any additional conditions are met.

2. Check the LUN limitations for your host operating system. Verify that enough adapters are installed on the host server to manage the total number of LUNs that you want to attach.

3. Check the optimum number of paths that must be defined, which helps determine the number of physical connections that must be made.
4. Install the latest supported adapter firmware and driver on the host. If the latest version was not shipped with your operating system, download it.

5. Maximum transmission unit (MTU) configuration is required if your network supports an MTU that is larger than the default (1500 bytes). Anything larger is known as a *jumbo frame*. Specify the largest possible MTU.

6. Any device that uses iSCSI requires an iSCSI qualified name (IQN) and an attached host. The IQN uniquely identifies iSCSI devices. The IQN for FlashSystem A9000 or A9000R is configured when the system is delivered, and the IQN must not be changed. Contact IBM technical support if a change is required.

2.3.2 iSCSI configurations

Remember that there are two possible grid controller hardware configurations. Depending on the configuration ordered, grid controllers maybe equipped with one dual port iSCSI adapter or 2 dual port iSCSI adapters as described in 2.1, “Overview” on page 42.

Each iSCSI port is defined with it sown IP address.

Restriction: Link aggregation is not supported. Ports cannot be bonded.

For high availability and performance, ensure that:

- Each host is equipped with dual Ethernet interfaces. Each interface (or interface port) is connected to one of two Ethernet switches.
- Each of the Ethernet switches has a connection to a separate iSCSI port. If your grid controllers have 2 iSCSI adapter, use one port in each adapter.
- Spread connections to all grid controllers

2.3.3 Network configuration

Disk access is susceptible to network latency. Latency can cause timeouts, delayed writes, and data loss. To get the best performance from iSCSI, place all iSCSI IP traffic on a dedicated network. Physical switches or VLANs can be used to provide a dedicated network. This network must support 10 Gbps, and the hosts need interfaces that are dedicated to iSCSI only. You might need to purchase more host Ethernet ports.

2.3.4 iSCSI boot from LUN

At the time of writing, you cannot boot through iSCSI, even if an iSCSI HBA is used. For up-to-date information, see the SSIC web page:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

2.3.5 iSCSI setup

Initially, no iSCSI connections are configured in the storage system. The configuration process is simple, but it requires more steps than an FC connection setup.

Getting the iSCSI qualified name

Every FlashSystem A9000 or A9000R has a unique IQN. The format of the IQN is simple, and it includes a fixed text string, which is followed by the last digits of the system serial number.
To display the IQN of the storage system, complete the following steps:

1. From the Hyper-Scale Manager GUI, click the **Systems & Domains Views** icon and select **All Systems** from the menu as shown in Figure 2-13.

![Figure 2-13 All Systems menu](image)

2. The list of systems that are in the inventory is displayed in the Systems & Domains view. Select the system for which you need to retrieve the IQN.

3. Click in the circle that represents the system (see Figure 2-14) to display the System Properties. Scroll down in the System Properties to find the iSCSI name under System Parameters.

![Figure 2-14 Retrieving the iSCSI name (IQN)](image)

Important: Do not attempt to change the IQN. If you need to change the IQN, you must engage IBM Support.
To get the information in the XCLI, run the `config_get` command as shown in Example 2-2. The output is truncated for clarity.

Example 2-2 Use the CLI to get the iSCSI name (IQN)

```
>> config_get
Name                      Value
system_name               ITSO_2_A9000R
...                       ...
system_id                 13775
machine_type              9835
machine_model             415
machine_serial_number     6013000
...                       ...
iscsi_name                iqn.2005-10.com.xivstorage:06013000
...                       ...
```

Configuring the iSCSI port by using the GUI

To set up the iSCSI port by using the GUI, see Figure 2-15 and use the steps that follow.

Follow these steps:

1. From the **Systems & Domains** view, select the system of interest.
2. From the Hub view of the system, select the **System Ports** spoke.
3. The ports and modules are listed at the bottom of the panel. Scroll down to reach the iSCSI ports.
4. Click the **Actions** icon for a particular port, and if the port is already configured select **View/Update IP Interface**, otherwise select **Define IP Interface**.
5. You can view and change the iSCSI ports settings as shown in Figure 2-16.

![Figure 2-16 Setting the iSCSI port properties](image)

Enter the following information (Figure 2-16 on page 62):
- Name: Define the name for this interface.
- Address, netmask, and gateway: Enter the standard IP address details.
- MTU: All devices in a network must use the same MTU. If in doubt, set MTU to 1500 because 1500 is the default value for Gigabit Ethernet. Performance might be affected if the MTU is set incorrectly.

6. Click **Apply** to complete the IP interface and iSCSI setup.

Tip: If the MTU that is used by FlashSystem A9000 or A9000R is greater than the network can transmit, the frames are discarded. The frames are discarded because the do-not-fragment bit is normally set to on. Use the `ping -l` command to test to specify packet payload size from a Windows workstation in the same subnet. A `ping` command normally contains 28 bytes of IP and Internet Control Message Protocol (ICMP) headers plus payload. Add the `-f` parameter to prevent packet fragmentation.

For example, the `ping -f -l 1472 10.1.1.1` command sends a 1500-byte frame to the 10.1.1.1 IP address (1472 bytes of payload and 28 bytes of headers). If this command succeeds, you can use an MTU of 1500.

Configuring the iSCSI port by using the CLI

To configure iSCSI ports by using the CLI session tool, issue the `ipinterface_create` command as shown in Example 2-3.

Example 2-3 iSCSI setup by using the CLI

```bash
>> ipinterface_create ipinterface="Test" address=10.0.0.10 netmask=255.255.255.0 module=1:Module:1 ports="1" gateway=10.0.0.1 mtu=9000
```
2.3.6 Identifying iSCSI ports

The iSCSI ports can be easily identified. Use either the GUI or XCLI to display the current settings.

The `ipinterface_list` command (Example 2-4) can be used to display only all configured network ports. The command also displays all other Ethernet connections and settings. For clarity, several columns are removed from the example.

Example 2-4 Listing iSCSI ports with the `ipinterface_list` command

```
>> ipinterface_list
Name         Type         IP Address     Network Mask    Default Gateway ..... MTU    Module
management   Management   9.11.237.109   255.255.254.0   9.11.236.1            1500   1:Module:1
management   Management   9.11.237.107   255.255.254.0   9.11.236.1            1500   1:Module:2
management   Management   9.11.237.108   255.255.254.0   9.11.236.1            1500   1:Module:3
VPN          VPN                                                               1500   1:Module:3
VPN          VPN                                                               1500   1:Module:4
port1        iSCSI        9.11.230.76    255.255.254.0   9.11.230.1            1500   1:Module:1
port2        iSCSI        9.11.230.79    255.255.254.0   9.11.230.1            1500   1:Module:2
```

The rows might be in a different order each time that you run this command. To see a complete list of IP interfaces, use the `ipinterface_list_ports` command.

2.3.7 iSCSI and CHAP authentication

IBM FlashSystem A9000 and A9000R support industry-standard unidirectional iSCSI Challenge Handshake Authentication Protocol (CHAP). The iSCSI target of FlashSystem A9000 or A9000R can validate the identity of the iSCSI Initiator that attempts to log on to the system.

The CHAP configuration in the IBM FlashSystem A9000 or A9000R is defined on a per-host basis. There are no global configurations for CHAP that affect all the hosts that are connected to the system.

Tip: By default, hosts are defined without CHAP authentication.

For the iSCSI initiator to log in with CHAP, both the `iscsi_chap_name` and `iscsi_chap_secret` parameters must be set. After both of these parameters are set, the host can run an iSCSI login to the Storage System only if the login information is correct.

CHAP name and secret parameter guidelines

The following guidelines apply to the CHAP name and secret parameters:

- Both the `iscsi_chap_name` and `iscsi_chap_secret` parameters must be either specified or not specified. You cannot specify just one of them.
- The `iscsi_chap_name` and `iscsi_chap_secret` parameters must be unique. If they are not unique, an error message is displayed, although the command does not fail.
- The secret must be 96 - 128 bits. You can use one of the following methods to enter the secret:
 - Base64 requires that `0b` is used as a prefix for the entry. Each subsequent character that is entered is treated as a 6-bit equivalent length.
 - Hex requires that `0x` is used as a prefix for the entry. Each subsequent character that is entered is treated as a 4-bit equivalent length.
String requires that a prefix is not used (it cannot be prefixed with 0b or 0x). Each character that is entered is treated as an 8-bit equivalent length.

- If the iscsi_chap_secret parameter does not conform to the required secret length (96 - 128 bits), the command fails.
- If you change the iscsi_chap_name or iscsi_chap_secret parameters, a warning message is displayed. The message says that the changes will apply the next time that the host is connected.

Configuring CHAP

CHAP can be configured by using XCLI commands:

- If you are defining a new host, use the following XCLI command to add CHAP parameters:
  ```
  host_define host=[hostName] iscsi_chap_name=[chapName] iscsi_chap_secret=[chapSecret]
  ```
- If the host already exists, use the following XCLI command to add CHAP parameters:
  ```
  host_update host=[hostName] iscsi_chap_name=[chapName] iscsi_chap_secret=[chapSecret]
  ```
- If you no longer want to use CHAP authentication, use the following XCLI command to clear the CHAP parameters:
  ```
  host_update host=[hostName] iscsi_chap_name= iscsi_chap_secret=
  ```

2.4 Logical configuration for host connectivity

This section shows the tasks that are required to define a volume (LUN) and assign it to a host. The following sequence of steps is generic and intended to be operating system independent. The exact procedures for your server and operating system might differ somewhat. Follow these steps:

1. Gather information about hosts and storage systems (WWPN or IQN).
2. Create SAN zoning for the FC connections.
3. Create a storage pool.
4. Create a volume within the storage pool.
5. Define a host.
6. Add ports to the host (FC or iSCSI).
7. Map the volume to the host.
8. Check host connectivity at the FlashSystem A9000 or A9000R system.
9. Complete any operating system-specific tasks.
10. If the server will SAN boot, install the operating system.
11. Install multipath drivers, if required. For information about installing multipath drivers, see the appropriate section from the host-specific chapters of this book.
12. Reboot the host server or scan new disks.

Important: For the host system to effectively see and use the LUN, more and operating system-specific configuration tasks are required. The tasks are described in the operating system-specific chapters of this book.
2.4.1 Host configuration preparation

Write down the component names and IDs to save time during the implementation.

FC host-specific tasks
Configure the SAN (Fabrics 1 and 2) and power on the host server first. These actions populate the storage system with a list of WWPNs from the host. This method is preferable because it is less prone to error when you add the ports in subsequent procedures.

For more information about configuring zoning, see your FC switch documentation.

iSCSI host-specific tasks
For iSCSI connectivity, ensure that any configurations, such as VLAN membership or port configuration, are completed so that the hosts and the XIV can communicate over IP.

2.4.2 Assigning LUNs to a host by using the GUI

Many steps are involved in defining a new host and assigning LUNs to it. You must create the volumes in a storage system in advance.

Defining a host
To define a host, complete these steps:
1. From the main GUI Dashboard, click **New**, and select **Host** from the menu (Figure 2-17).

![Figure 2-17 The Create New (hosts and clusters) menu](image)
2. The new Host view is displayed. The Add Host setting window opens (Figure 2-18) where you provide information.

Enter the required information:

- Specify a host name (required).
- Select the type. In this example, **Default** is selected. If you use Windows 2008, HP-UX or z/VM host, you must change the type to match your host type. For all other hosts, such as AIX, Linux, Solaris, VMware, and Windows (except Windows 2008), the Default (or All Others) option is correct. Note that starting with HAK version 2.7.0, HP-UX and Solaris are no longer supported.
- Select whether you want an iSCSI or FC connection. Host access to LUNs is granted depending on the host adapter ID. For an FC connection, the host adapter ID is the FC HBA WWPN. For an iSCSI connection, the host adapter ID is the host IQN. To add a WWPN or an IQN to a host definition, click the plus sign (+) icon to the right of the PORTS heading. See Figure 2-18.
- Ports can be added in any order.
- Specify to which FlashSystem A9000 or A9000R in your inventory you want to attach the host. Alternatively, you can also add the host to a cluster. (A cluster can be created from this view.)
- Optional: Add the host to a domain. (A domain can also be created from this view.)
Mapping LUNs to a host
The final configuration steps are to map LUNs to the host as follows:

1. From the **Pools and Volumes** Workspace → **Volumes** view, select the volume to map, and select **Actions** → **Mapping** → **View/Modify Mapping** (Figure 2-19).

![Figure 2-19 Mapping a LUN to a host](image)

2. The Volume Mapping panel is displayed (Figure 2-20). If no mapping exists yet, click the plus sign (+) to add a mapping.

![Figure 2-20 Add a mapping](image)

3. In the Hosts panel (Figure 2-21 on page 67), select an available host from the pull-down list. The GUI suggests a default (Auto) LUN ID to which to map the volume. However, this ID can be changed to meet your requirements. Click **Apply** and the volume is assigned immediately.

![Figure 2-21 Mapping a volume to a host](image)

No differences exist between mapping a volume to an FC host or an iSCSI host in the GUI.
2.4.3 Assigning LUNs to a host by using the XCLI

Several steps are involved to define a new host and assign LUNs to it. You must create the volumes in a storage pool in advance.

Defining a new host

To use the CLI to prepare for a new host, complete these steps:

1. Create a host definition for your FC and iSCSI hosts by using the `host_define` command as shown in Example 2-5.

 Example 2-5 Creating a host definition

   ```
   >> host_define host=itso_win2012
   Command executed successfully.
   >> host_define host=itso_win2012_iscsi
   Command executed successfully.
   ```

2. Host access to LUNs is granted depending on the host adapter ID. For an FC connection, the host adapter ID is the FC HBA WWPN. For an iSCSI connection, the host adapter ID is the IQN of the host.

 As Example 2-6 shows, the WWPNs of the FC host for HBA1 and HBA2 are added with the `host_add_port` command by specifying an `fcaddress`.

 Example 2-6 Creating the FC port and adding it to the host definition

   ```
   >> host_add_port host=itso_win2012 fcaddress=21000024FF24A426
   Command executed successfully.
   >> host_add_port host=itso_win2012 fcaddress=21000024FF24A427
   Command executed successfully.
   ```

 As Example 2-7 shows, the IQN of the iSCSI host is added. This command is the same `host_add_port` command, but it uses the `iscsi_name` parameter.

 Example 2-7 Creating an iSCSI port and adding it to the host definition

   ```
   >> host_add_port host=itso_win2012_iscsi
   Command executed successfully.
   ```

Mapping LUNs to a host

To map the LUNs, complete these steps:

1. Map the LUNs to the host definition. For a cluster, the volumes are mapped to the cluster host definition. No differences exist between the FC mapping to a host and the iSCSI mapping to a host. Both commands are shown in Example 2-8.

 Example 2-8 Mapping volumes to hosts

   ```
   >> map_vol host=itso_win2008 vol=itso_win2008_vol1 lun=1
   Command executed successfully.
   >> map_vol host=itso_win2008 vol=itso_win2008_vol2 lun=2
   Command executed successfully.
   >> map_vol host=itso_win2008_iscsi vol=itso_win2008_vol3 lun=1
   Command executed successfully.
   ```
2. Power on the server and check the host connectivity status from the storage system point of view by using the host_connectivity_list host=host_name command. Example 2-9 shows the output for both hosts.

Example 2-9 Checking host connectivity (XCLI)

```
>> host_connectivity_list host=itso_win2008
Host           Host Port          Module       Local FC port   Local iSCSI port
itso_win2008   21000024FF24A427   1:Module:1  1:FC_Port:1:1
itso_win2008   21000024FF24A427   1:Module:2  1:FC_Port:2:1
itso_win2008   21000024FF24A427   1:Module:3  1:FC_Port:3:1
itso_win2008   21000024FF24A426   1:Module:4  1:FC_Port:4:3
itso_win2008   21000024FF24A426   1:Module:5  1:FC_Port:5:3
```

```
>> host_connectivity_list host=itso_win2008_iscsi
Host                 Host Port                                               Module       Local FC port   Type
```

At this stage, operating system-dependent steps might need to be performed. These steps are described in the operating system chapters.

2.5 Performance tuning

This section provides some performance considerations to help you adjust your operating system to best fit your environment. The following performance considerations are for the operating system:

- Use multiple threads and asynchronous I/O to maximize performance on the FlashSystem A9000 and A9000R.
- Check with iostat, perfmon, or esxtop on a per path basis for the LUNs to make sure that the load is balanced across all paths.
- Verify the HBA queue depth and per device queue depth for the host are sufficient to prevent queue waits. However, make sure that they are not so large that they overrun the storage system queues. For FlashSystem A9000 and A9000R queue limit is 2048 per storage system port and 256 per LUN per WWPN (host) per port. Do not submit more I/O per storage system port than the 2048 maximum it can handle.

Check the device queue depth:

- To check the device queue depth on AIX, periodically run iostat -D 5. If the avgwqsz (average wait queue size) or sqfull is consistently greater zero, increase the device queue depth.

For more information about AIX device queue depth tuning, see the following web page:

http://www-01.ibm.com/support/docview.wss?uid=tss1td105745

- To check the device queue depth on Linux, periodically run iostat -dx 5. If the await-svctm values are consistently greater than zero or %util (disk utilization) is constantly close to 100%, increase the device queue depth.

For more information about Linux disk tuning, see the following web page:

To check the device queue depth on VMware ESXi, run `esxtop`, press the U key. The queue depth is listed under LQLEN. If the %USD (percentage of queue depth used) is constantly close to 100%, increase the device queue depth.

For more information about VMware ESXi queues, see the following web page:

To check the device queue depth on Windows, run **Administrative Tools** → **Performance Monitor** and select **Physical Disk** → **Current Disk Queue Length**.

For more details about Windows disk performance monitoring, see the following web page:
https://blogs.technet.microsoft.com/askcore/2012/03/16/windows-performance-monitor-disk-counters-explained/

Important: Do not start at the maximum and work down (except for Windows which starts by default at maximum) because you might flood the storage system with commands and waste memory on the host.

2.6 Troubleshooting

Troubleshooting connectivity problems can be difficult. However, FlashSystem A9000 and A9000R have built-in troubleshooting tools. Table 2-3 lists some of the built-in tools. More information is in the CLI manual, which you can download from IBM Knowledge Center:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc_connectivity_list</td>
<td>Discovers FC hosts and targets on the FC network.</td>
</tr>
<tr>
<td>fc_port_list</td>
<td>Lists all FC ports, their configuration, and their status.</td>
</tr>
<tr>
<td>ipinterface_list_ports</td>
<td>Lists all Ethernet ports, their configuration, and their status.</td>
</tr>
<tr>
<td>ipinterface_run_arp</td>
<td>Prints the Address Resolution Protocol (ARP) database of a specified IP address.</td>
</tr>
<tr>
<td>ipinterface_run_traceroute</td>
<td>Tests connectivity to a remote IP address.</td>
</tr>
<tr>
<td>host_connectivity_list</td>
<td>Lists FC and iSCSI connectivity to hosts.</td>
</tr>
</tbody>
</table>
Chapter 3. Windows connectivity

This chapter addresses the specific considerations for attaching various Microsoft Windows hosts to IBM FlashSystem A9000, IBM FlashSystem A9000R, and IBM XIV Storage System.

Important: The procedures and instructions that are provided here are based on code that was available at the time of writing. For the latest support information and instructions, see IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

In addition, you can download the Host Attachment Kit and related publications from Fix Central:

http://www.ibm.com/support/fixcentral/

This chapter includes the following sections:

▶ Prerequisites
▶ Attaching a Microsoft Windows Server 2016, 2012 R2 or 2008 R2 host
▶ Attaching a Microsoft Windows cluster
▶ Attaching a Microsoft Hyper-V Server
▶ Microsoft System Center Virtual Machine Manager Storage Automation
3.1 Prerequisites

To successfully attach a Windows host to IBM FlashSystem A9000 or A9000R, or IBM XIV and access storage, a number of prerequisites must be met. Generic prerequisites are indicated in the following list. Your environment might have extra requirements. Further prerequisites are also be outlined in specific sections for specific Windows versions.

- Complete the cabling.
- Complete the zoning.
- Install any required service packs and fixes.
- Create volumes to be assigned to the host.

3.1.1 Supported versions of Windows

At the time of writing, the supported versions of Windows (including cluster configurations) are summarized in Table 3-1.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Storage</th>
<th>Supported with HAK versiona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Windows Server 2016</td>
<td>XIV, A9000/R</td>
<td>2.6.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2016 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.6.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2012 R2</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2012 R2 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2012</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2012 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008 R2</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008 R2 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2008 Hyper-V</td>
<td>XIV, A9000/R</td>
<td>2.3.0 - 2.8.2</td>
</tr>
<tr>
<td>Microsoft Windows Server 2003 R2 - EOLb</td>
<td>XIV</td>
<td>2.2.0 (end of support 12/2016)c</td>
</tr>
<tr>
<td>Microsoft Windows Server 2003 R2 - EOLb</td>
<td>XIV</td>
<td>2.2.0 (end of support 12/2016)c</td>
</tr>
</tbody>
</table>

a. Windows host attachment for IBM FlashSystem A9000 and A9000R is only supported with Host Attachment Kit (HAK) version 2.6.0 or later. Starting with version 2.6.0, IBM XIV Host Attachment Kit was renamed to IBM Storage Host Attachment Kit.

b. End of life (EOL). This is where interoperability items are no longer supported by the vendor either generally or by extended service contract. IBM will continue to support the environment where possible. Where issues occur that are deemed by IBM support to be directly related to items that are no longer generally supported by the vendor, IBM might direct customers to upgrade a component to a recommended level.

3.1.2 Supported FC HBAs

Supported FC HBAs are available from Brocade, Emulex, IBM, and QLogic. Further details about driver versions are available at SSIC:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Unless otherwise noted in SSIC, use any supported driver and firmware by the HBA vendors. For best performance, install the latest firmware and drivers for the HBAs you are using.

3.1.3 Multipath support and Clustering Options

FlashSystem A9000, A9000R, and XIV Storage System support the multipath solutions and clustering options as listed in Table 3-2.

Table 3-2 Multipathing support and clustering options

<table>
<thead>
<tr>
<th>Operating system</th>
<th>XIV</th>
<th>A9000/R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multipathing</td>
<td>Clustering</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>IBM Device Specific Module (XIV DSM)(^c), Microsoft MPIO(^a), Symantec Veritas Volume Manager with DMP(^b), Symantec Veritas Volume Manager with SDDDSM(^c)</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Symantec Veritas Cluster Server</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>IBM Device Specific Module (XIV DSM)(^c), Microsoft MPIO(^a), Symantec Veritas Volume Manager with DMP(^b), Symantec Veritas Volume Manager with SDDDSM(^c)</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>IBM Device Specific Module (XIV DSM)(^c), IBM SDD DSM(^c), Microsoft MPIO(^a), Symantec Veritas Volume Manager with DMP(^b), Symantec Veritas Volume Manager with SDDDSM(^c)</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
</tr>
</tbody>
</table>
3.1.4 Required software on the host

Prior to installing the IBM Storage Host Attachment Kit for Windows and depending on the installed Windows Server version, specific operating system updates must be installed on the host. These updates are required for error-free functionality.

Important: This book has information that is known at the time of the General Availability (GA) date. Newer or additional fixes might be required in distinct cases or in particular production environments. Contact IBM Support if you encounter any errors or difficulties.

Although the Host Attachment Kit automatically installs certain Microsoft hotfixes for Windows Server, you should always ensure that the most updated and relevant hotfixes are installed.

For more information about Microsoft MPIO, see the online guide:

Note: Using more than one multipath I/O framework on the same host is not supported.

Here is a table summarizing the required software for different operating systems:

<table>
<thead>
<tr>
<th>Operating system</th>
<th>XIV Multipathing</th>
<th>Clustering</th>
<th>A9000/R Multipathing</th>
<th>Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2012</td>
<td>IBM Device Specific Module (XIV DSM)c, Microsoft MPIOa, Symantec Veritas Volume Manager with DMPb, Symantec Veritas Volume Manager with SDDDSMc</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
<tr>
<td>Windows Server 2012 Hyper-V</td>
<td>IBM Device Specific Module (XIV DSM)c, Microsoft MPIOa, Symantec Veritas Volume Manager with DMPb, Symantec Veritas Volume Manager with SDDDSMc</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering, Microsoft MSCS GeoCluster (Windows 2016 only)</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>IBM Device Specific Module (XIV DSM)c, Microsoft MPIOa, Symantec Veritas Volume Manager with DMPb, Symantec Veritas Volume Manager with SDDDSMc</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
<tr>
<td>Windows Server 2012 R2 Hyper-V</td>
<td>IBM Device Specific Module (XIV DSM)c, Microsoft MPIOa, Symantec Veritas Volume Manager with DMPb, Symantec Veritas Volume Manager with SDDDSMc</td>
<td>Microsoft Cluster Service, Microsoft MSCS GeoCluster, Microsoft Windows Failover Clustering, Symantec Veritas Cluster Server</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
<tr>
<td>Windows Server 2016 Hyper-V</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering, Microsoft MSCS GeoCluster (Windows 2016 only)</td>
<td>Microsoft MPIOa</td>
<td>Microsoft Cluster Service, Microsoft Windows Failover Clustering</td>
</tr>
</tbody>
</table>

Note: Using more than one multipath I/O framework on the same host is not supported.

For more information about Microsoft MPIO, see the online guide:

Note: Using more than one multipath I/O framework on the same host is not supported.
manually in addition to the bundled hotfixes. You can find any relevant fix and download it from the following Microsoft Support website:

http://support.microsoft.com

Always see the Microsoft documentation (KB article) for required hotfixes.

3.1.5 Boot from SAN support

SAN boot is supported (over FC only) in the following configurations:

- Windows Server 2016 with MSDSM
- Windows Server 2012 R2 with MSDSM
- Windows Server 2012 with MSDSM
- Windows Server 2008 R2 with MSDSM
- Windows Server 2008 with MSDSM
- Windows Server 2003 with XIVDSM (IBM XIV Storage System only)

For more details about SAN boot see 1.2.5, “Boot from SAN on x86 or x64 based architecture” on page 17.

3.2 Attaching a Microsoft Windows Server 2016, 2012 R2 or 2008 R2 host

This section highlights specific instructions for Fibre Channel (FC) and Internet Small Computer System Interface (iSCSI) connections. All the information here relates only to Windows Server 2016, 2012 R2 and 2008 R2 unless otherwise specified.

Important: The procedures and instructions here are based on code that was available at the time of writing. For current support information and instructions, always see the SSIC: https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

The Host Attachment Kit and related publications can be downloaded from Fix Central:

http://www.ibm.com/support/fixcentral/

3.2.1 Windows Server 2012 R2 and 2008 R2 Prerequisites

See 3.1, “Prerequisites” on page 72 for general prerequisites to successfully attach a Windows host to FlashSystem A9000, A9000R, or XIV and access storage. Table 3-3 on page 76 identifies prerequisites in addition to those already described and are specific to Windows Server 2012 R2 and 2008 R2.
3.2.2 Windows host FC configuration

This section describes attaching to FlashSystem A9000, A9000R, or XIV over Fibre Channel and provides detailed descriptions and installation instructions for the various software components required.

Installing HBA drivers

Windows Server 2016, 2012 R2 and 2008 R2 include drivers for many HBAs. However, they probably are not the latest versions. Install the latest available driver that is supported. HBA drivers are available from the supported HBA vendor website, and include instructions.

With Windows operating systems, the queue depth settings are specified as part of the host adapter configuration. These settings can be specified through the BIOS settings or by using software that is provided by the HBA vendor.

Optimize the storage environment by evenly spreading the I/O load across all available ports. Account for the load on a particular server, its queue depth, and the number of volumes.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Service pack</th>
<th>Required components that must be installed manually</th>
<th>Automatically installed by the Host Attachment Kit</th>
</tr>
</thead>
</table>
| Windows Server 2008 R2 | Service Pack 1 | ▶ Microsoft Hotfix set* KB2468345 (http://support.microsoft.com/kb/2468345)
▶ Microsoft Hotfix set* KB2545685 (http://support.microsoft.com/kb/2545685) if Windows Clustering is used. | ▶ Microsoft Hotfix KB2460971 (http://support.microsoft.com/kb/2460971)
▶ Microsoft Hotfix KB2522766 (http://support.microsoft.com/kb/2522766) |
| None | ▶ Microsoft Multipath I/O Framework (enable from the Server Manager applet).
▶ Microsoft Hotfix set* KB980054 (http://support.microsoft.com/kb/980054) if Windows Clustering is used. | ▶ Microsoft Hotfix KB979711 (http://support.microsoft.com/kb/979711)
▶ Microsoft Hotfix KB981208 (http://support.microsoft.com/kb/981208)
▶ Microsoft Hotfix KB2460971 (http://support.microsoft.com/kb/2460971)
▶ Microsoft Hotfix KB2522766 (http://support.microsoft.com/kb/2522766) | |
| Windows Server 2012 R2 | None | None | ▶ Microsoft Hotfix set* KB4019217 (http://support.microsoft.com/kb/4019217) |
Installing Multipath I/O (MPIO) feature

MPIO is provided as a built-in feature in Windows Server 2016, 2012 R2 and 2008 R2. It can be installed as part of the automated host attachment procedure using the IBM Storage Host Attachment Kit for Windows, as shown in Figure 3-3. If a manual installation is preferred, complete the following steps, which are illustrated for Windows Server 2012 R2, but also valid for Windows Server 2016 and 2008 R2:

1. Open Server Manager and select **Add roles and features** from the Dashboard for Windows Server 2016 and 2012 R2. For Windows Server 2008 R2 open Server Manager and select **Features Summary**, select **Add Features**, and then select **Multipath I/O**.

2. For Windows Server 2016 and 2012 R2 click **Next** at the bottom of the dialog until Select Features is displayed and then select **Multipath I/O** in the Features window, as shown in Figure 3-1.

![Figure 3-1 Selecting the Multipath I/O feature](image)

3. Follow the instructions on the panel to complete the installation. This process might require a reboot.

4. Check that the driver is installed correctly by loading **Device Manager**. Verify that it now includes **Microsoft Multi-Path Bus Driver** as illustrated in Figure 3-2.

![Figure 3-2 Microsoft Multi-Path Bus Driver](image)
Windows Host Attachment Kit installation
The IBM Storage Host Attachment Kit (HAK) for Windows is a software pack that simplifies the tasks of connecting a Microsoft Windows Server host to IBM XIV, IBM Spectrum Accelerate, IBM FlashSystem A9000 and A9000R storage systems.

Note: Previous versions of HAK were identified as the IBM XIV Host Attachment Kit, which was renamed beginning with version 2.6.0.

The HAK provides a set of command-line interface (CLI) tools that help host administrators perform different host-side tasks, such as: detect any physically connected storage system (single system or multiple systems), detect storage volumes, define the host on the storage system, run diagnostics, and apply best practice native multipath connectivity configuration on the host.

The IBM Storage Host Attachment Kit for Windows version 2.6.0, or later, must be installed to gain access to FlashSystem A9000 and A9000R storage. Previous versions may be used for connecting Windows host servers to IBM XIV or IBM Spectrum Accelerate.

For Windows Server 2016, 2012 R2 and 2008 R2, the 64-bit Windows version is required. A Host Attachment Kit can be downloaded from Fix Central:
http://www.ibm.com/support/fixcentral/

Portable Storage Host Attachment Kit installation and usage
The IBM Storage Host Attachment Kit is also offered in a portable format. The portable package allows use of the Host Attachment Kit without having to install the utilities locally on the host. All Host Attachment Kit utilities can be run from a shared network drive or from a portable USB flash drive. This is the preferred method for deployment and management.

Performing a local installation
The following instructions are based on the installation performed at the time of writing. For more information, see the instructions in the Windows Host Attachment Kit User Guide (which is available through Fix Central with the Host Attachment Kit). These instructions show the GUI installation, and can change over time. For information about command-line instructions, see the Windows Host Attachment Kit User Guide.

Attention: Before installing the Host Attachment Kit, remove any non-supported multipathing software that was previously installed. Failure to do so can lead to unpredictable behavior or even loss of data.

Install the IBM Storage Host Attachment Kit (it is a mandatory prerequisite for support by completing these steps:

1. Run the following installation setup executable file (at time of writing, this is the file name):
 IBM_Storage_Host_Attachment_Kit_2.8.2-b2877_Windows-x64.exe
 The process starts the Python engine (python). When you are prompted, select a language, and then proceed with the installation wizard instructions (Figure 3-3 on page 79).
Chapter 3. Windows connectivity

Figure 3-3 Welcome to IBM Storage Host Attachment Kit installation wizard

2. When the installation completes, click **Finish** (Figure 3-4). The IBM Storage Host Attachment Kit is added to the list of installed Windows programs.

The installation directory is **C:\Program Files\XIV\host_attach**.

Running the xiv_attach program

Complete the procedure that is illustrated in Example 3-1 for a Fibre Channel connection.

Example 3-1 Using the IBM Storage Host Attachment Wizard for attachment over Fibre Channel

```
PS C:\> xiv_attach
Welcome to the IBM Storage Host Attachment wizard, version 2.8.2.
This wizard will help you attach this host to one or more IBM storage systems

The wizard will now validate the host configuration for the IBM storage system.
Press [ENTER] to proceed.

Please specify the connectivity type: [f]c / [i]scsi : f
```
Please wait while the wizard validates your existing configuration...
Verifying Previous HAK versions OK
Verifying Disk timeout setting OK
Verifying Built-In MPIO feature OK
Verifying Multipath I/O feature compatibility with IBM storage devices NOT OK
Verifying IBM storage system MPIO Load Balancing (service) OK
Verifying IBM storage system MPIO Load Balancing (agent) OK
Verifying Windows Hotfix 2460971 NOT OK
Verifying Windows Hotfix 2522766 NOT OK
Verifying LUN0 device driver NOT OK

The wizard needs to configure this host for the IBM storage system.
Do you want to proceed? [default: yes]:
Please wait while the host is being configured...

Configuring Previous HAK versions OK
Configuring Disk timeout setting OK
Configuring Built-In MPIO feature OK
Configuring Multipath I/O feature compatibility with IBM storage devices REBOOT
Configuring IBM storage system MPIO Load Balancing (service) OK
Configuring IBM storage system MPIO Load Balancing (agent) OK
Configuring Windows Hotfix 2460971 REBOOT
Configuring Windows Hotfix 2522766 REBOOT
Configuring LUN0 device driver OK

This host requires a reboot in an orderly manner without interruptions.
Please reboot this host in an orderly manner and then run the HAK utility again.

Press [ENTER] to exit.

After reboot:
PS C:\> xiv_attach

Welcome to the IBM Storage Host Attachment wizard, version 2.8.2.
This wizard will help you attach this host to one or more IBM storage systems

The wizard will now validate the host configuration for the IBM storage system.
Press [ENTER] to proceed.

Please specify the connectivity type: [f]c / [i]scsi : f

Please wait while the wizard validates your existing configuration...
Verifying Previous HAK versions OK
Verifying Disk timeout setting OK
Verifying Built-In MPIO feature OK
Verifying Multipath I/O feature compatibility with IBM storage devices OK
Verifying LUN0 device driver OK

This host is already configured for the IBM storage system.

Please define zoning for this host and add its World Wide Port Names (WWPNs) to the IBM storage system:
21:00:00:24:ff:35:c6:6c: [QLogic QLE2562 Fibre Channel Adapter]: QLE2562
21:00:00:24:ff:35:c6:6d: [QLogic QLE2562 Fibre Channel Adapter]: QLE2562

Press [ENTER] to proceed.

Would you like to rescan for new storage devices? [default: yes]:
Please wait while rescanning for IBM storage devices...
This host is connected to the following IBM storage arrays:

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Serial</th>
<th>System Version</th>
<th>Host Defined</th>
<th>Ports Defined</th>
<th>Protocol</th>
<th>Host Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIV</td>
<td>1340010</td>
<td>11.6.2</td>
<td>No</td>
<td>No ports defined</td>
<td>FC</td>
<td>N/A</td>
</tr>
<tr>
<td>XIV</td>
<td>1340008</td>
<td>11.6.2.a</td>
<td>No</td>
<td>No ports defined</td>
<td>FC</td>
<td>N/A</td>
</tr>
<tr>
<td>FlashSystem A9000</td>
<td>1322131</td>
<td>12.1.0.b</td>
<td>Yes</td>
<td>All</td>
<td>FC,iSCSI</td>
<td>ITSO_W2K12,ITSO_W2K12_iSCSI</td>
</tr>
<tr>
<td>FlashSystem A9000R</td>
<td>1320902</td>
<td>12.1.0.b</td>
<td>No</td>
<td>No ports defined</td>
<td>FC,iSCSI</td>
<td>N/A</td>
</tr>
</tbody>
</table>

This host is not defined on some FC-attached IBM storage systems.

Do you want to define this host on these IBM storage systems now? [default: yes]:

Please enter a name for this host [default: WINDOWS-PQ1SB13]: ITSO_W2K12

Please enter a username for system 1340010 [default: admin]:

Please enter the password of user admin for system 1340010:

Please enter a username for system 1340008 [default: admin]:

Please enter the password of user admin for system 1340008:

Please enter a username for system 1320902 [default: admin]:

Please enter the password of user admin for system 1320902:

Press [ENTER] to proceed.

The IBM Storage Host Attachment wizard has successfully configured this host.

Press [ENTER] to exit.

Scanning for new LUNs

Before scanning for new LUNs in Windows, the host must be created, configured, and have LUNs assigned. The `xiv_attach` command shown in Example 3-1 on page 79 automated the host creation and configuration for the storage systems already attached to this host. For more information about assigning LUNs to a host for XIV, see 1.4.2, “Assigning LUNs to a host by using the GUI” on page 35 and 1.4.3, “Assigning LUNs to a host by using the XCLI” on page 37. Similarly, for more information about assigning LUNs to a host for FlashSystem A9000 and A9000R, see 2.4.2, “Assigning LUNs to a host by using the GUI” on page 65 and 2.4.3, “Assigning LUNs to a host by using the XCLI” on page 68. The following instructions assume that these operations are complete.
To scan for LUNs, complete these steps:

1. Open Administrative Tools from the Windows desktop (alternately choose **Control Panel → System and Security → Administrative Tools**). Next, select **Computer Management** to open its window and select **Device Manager** (Figure 3-5).

2. Right-click **Disk drives** in the center panel and select **Scan for hardware changes**. FlashSystem A9000, A9000R and XIV LUNs are displayed as IBM 2810XIV Multi-Path Disk Device in the Device Manager tree under **Disk drives** (Figure 3-5). The number of objects that are named IBM 2810XIV Multi-Path Disk Device depends on the number of LUNs mapped to the host.
3. Right-click an **IBM 2810 Multi-Path Disk Device** object and select **Properties**.
4. Click the MPIO tab to set the load balancing as shown in Figure 3-6.

![IBM 2810 Multi-Path Disk Device Properties](image)

Figure 3-6 MPIO load balancing

The default setting here is **Round Robin**. Change this setting only if you are confident that another option is better suited to your environment.

Load balancing has these possible options:

- Fail Over Only
- Round Robin (default)
- Round Robin With Subset
- Least Queue Depth
- Weighted Paths
- Least Blocks
5. New volumes show under Disk Management as Offline and Unallocated. Right-click on the disk name and select **Online** to bring the volume to online status (Figure 3-7).

![Figure 3-7 New volumes presented from FlashSystem A9000 storage device](image)

6. After the volume (or volumes) are set to Online, they will show as Not Initialized. Right-click on the volume name and select **Initialize Disk** to prepare it for use with Logical Disk Manager (Figure 3-8).

![Figure 3-8 New volumes need to be Initialized before Logical Disk Manager can access them](image)

Note that multiple disks can be initialized at the same time when selecting the **Initialize Disk** option.
The resulting dialog box is shown in Figure 3-9.

![Initialize Disk dialog box](image)

Figure 3-9 Initialize Disk dialog box

7. The mapped LUNs on the host are listed under Disk Management as illustrated in Figure 3-10 (shown after creating a Simple Volume, formatting, and naming).

![Mapped LUNs as displayed in Disk Management](image)

Figure 3-10 Mapped LUNs as displayed in Disk Management
3.2.3 Windows host iSCSI configuration

In Windows Server 2016, 2012 R2 and 2008 R2, the iSCSI Software Initiator is part of the operating system. Before configuring the host, however, establish the physical iSCSI connection to the XIV (see 1.3, “iSCSI connectivity” on page 22) or FlashSystem A9000 or A9000R (see 2.3, “iSCSI connectivity” on page 58).

IBM XIV, FlashSystem A9000, and A9000R support the iSCSI Challenge Handshake Authentication Protocol (CHAP). These examples assume that CHAP is not required. If it is, specify the settings for the required CHAP parameters on both the host and Storage system sides.

Supported CNAs
For Windows, IBM XIV, FlashSystem A9000, and A9000R all support various CNAs. More details about supported CNAs are available from the SSIC:
https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Ethernet interface adapters that use an iSCSI software initiator can be used also.

Windows multipathing feature and Host Attachment Kit installation
To install the Windows multipathing feature, follow the procedure given in “Installing Multipath I/O (MPIO) feature” on page 77.

To install the Windows Host Attachment Kit, use the procedure explained in “Windows Host Attachment Kit installation” on page 78.

Running the xiv_attach program
Run the xiv_attach program as shown in Example 3-2.

Example 3-2 Using the IBM Storage Host Attachment Wizard for attachment over iSCSI

```
Welcome to the IBM Storage Host Attachment wizard, version 2.8.2.
This wizard will help you attach this host to one or more IBM storage systems

The wizard will now validate the host configuration for the IBM storage system.
Press [ENTER] to proceed.

Please specify the connectivity type: [f]c / [i]scsi : i

Please wait while the wizard validates your existing configuration...
Verifying Previous HAK versions OK
Verifying Disk timeout setting OK
Verifying iSCSI service NOT OK
Verifying Built-In MPIO feature OK
Verifying Multipath I/O feature compatibility with IBM storage devices OK
Verifying LUN0 device driver OK

The wizard needs to configure this host for the IBM storage system.
Do you want to proceed? [default: yes ]:
Please wait while the host is being configured...
```

Configuring Previous HAK versions OK
Configuring Disk timeout setting OK
Configuring iSCSI service OK
Configuring Built-In MPIO feature OK
Configuring Multipath I/O feature compatibility with IBM storage devices OK
Configuring LUN0 device driver OK
The host is now configured for the IBM storage system

Discovering new iSCSI targets ...
New iSCSI target for IBM storage system 01320902: 9.155.116.206 was discovered and configured successfully.
New iSCSI target for IBM storage system 01322131: 9.155.120.21 was discovered and configured successfully.

Would you like to discover a new iSCSI target? [default: yes]: no
Would you like to rescan for new storage devices? [default: yes]:

This host is connected to the following IBM storage arrays:

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Serial</th>
<th>System Version</th>
<th>Host Defined</th>
<th>Ports Defined</th>
<th>Protocol</th>
<th>Host Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIV</td>
<td>1340010</td>
<td>11.6.2</td>
<td>Yes</td>
<td>All</td>
<td>FC</td>
<td>ITSO_W2K12</td>
</tr>
<tr>
<td>XIV</td>
<td>1340008</td>
<td>11.6.2.a</td>
<td>Yes</td>
<td>All</td>
<td>FC</td>
<td>ITSO_W2K12</td>
</tr>
<tr>
<td>FlashSystem A9000</td>
<td>1322131</td>
<td>12.1.0.b</td>
<td>Yes</td>
<td>All</td>
<td>FC,iSCSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ITSO_W2K12,ITSO_W2K12_iSCSI</td>
</tr>
<tr>
<td>FlashSystem A9000R</td>
<td>1320902</td>
<td>12.1.0.b</td>
<td>Yes</td>
<td>Not all</td>
<td>FC,iSCSI</td>
<td>ITSO_W2K12</td>
</tr>
</tbody>
</table>

This host is not defined on some iSCSI-attached IBM storage systems.
Do you want to define this host on these IBM storage systems now? [default: yes]:
Please enter a name for this host [default: WINDOWS-PQ1SB13]: ITSO_W2K12_iSCSI
This host is already defined as "ITSO_W2K12" at IBM storage system 1320902. Defining the missing ports.
Please enter a username for system 1320902 [default: admin]:
Please enter the password of user admin for system 1320902:

Press [ENTER] to proceed.

The IBM Storage Host Attachment wizard has successfully configured this host.
Press [ENTER] to exit.

Now assign the storage volumes to the defined Windows host as described in “Scanning for new LUNs” on page 81.
Configuring Microsoft iSCSI software initiator
The iSCSI connection must be configured on both the Windows host and the IBM Storage. By using the IBM Storage Host Attachment Kit for Windows, both the Windows host and the IBM Storage are configured automatically. Skip to step 13 on page 96.

To configure the Windows host and the IBM Storage manually, follow these instructions to complete the iSCSI configuration:

Note: These steps use a Windows Server 2012 R2 host and a FlashSystem A9000 storage device with Hyper-Scale Manager.

2. Select iSCSI Initiator. The iSCSI Initiator Properties window opens (Figure 3-11).

![Figure 3-11 iSCSI Initiator Properties window](image)

To connect using advanced options, select a target and then click Connect.
To completely disconnect a target, select the target and then click Disconnect.
For target properties, including configuration of sessions, select the target and click Properties.
For configuration of devices associated with a target, select the target and then click Devices.
3. Get the iSCSI Qualified Name (IQN) of the host from the Configuration tab (Figure 3-12). In this example, the IQN is `iqn.1991-05.com.microsoft:windows-pq1sb13`. Copy this IQN to the clipboard and use this IQN to define this host on FlashSystem A9000, A9000R, or XIV in the next step (step 4 on page 90).

![iSCSI Configuration tab](image)

Figure 3-12 iSCSI Configuration tab
4. Define the host on FlashSystem A9000, A9000R, or XIV as shown in Figure 3-13 (Hyper-Scale Manager used).

![Add Host dialog](image)

Figure 3-13 Defining the host

5. Back on the host, click the **Discovery** tab in the iSCSI Initiator Properties dialog (Figure 3-14 on page 91).
Click **Discover Portal** and use one of the iSCSI IP addresses from the storage system. Repeat this step for more target portals. Figure 3-14 shows the results.

![iSCSI Initiator Properties](image)

Figure 3-14 iSCSI targets portals defined

To improve performance, you can increase the MTU size if your network supports it, as shown in Example 3-3 (MTU of 9000 used).

Example 3-3 Increase MTU size

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>IP Address</th>
<th>Network Mask</th>
<th>Default Gateway</th>
<th>MTU</th>
<th>Module</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-iSCSI1</td>
<td>iSCSI</td>
<td>9.155.120.21</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:2</td>
<td>1</td>
</tr>
<tr>
<td>M3-iSCSI1</td>
<td>iSCSI</td>
<td>9.155.120.22</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:3</td>
<td>1</td>
</tr>
<tr>
<td>M1-iSCSI1</td>
<td>iSCSI</td>
<td>9.155.120.20</td>
<td>255.255.240.0</td>
<td>9.155.112.1</td>
<td>9000</td>
<td>1:Module:1</td>
<td>1</td>
</tr>
<tr>
<td>management</td>
<td>Management</td>
<td>10.0.20.108</td>
<td>255.255.255.0</td>
<td>10.0.20.1</td>
<td>1500</td>
<td>1:Module:1</td>
<td></td>
</tr>
<tr>
<td>VPN</td>
<td>VPN</td>
<td>9.155.120.218</td>
<td>255.255.255.0</td>
<td>9.155.112.1</td>
<td>1500</td>
<td>1:Module:2</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td>Management</td>
<td>10.0.20.109</td>
<td>255.255.255.0</td>
<td>10.0.20.1</td>
<td>1500</td>
<td>1:Module:3</td>
<td></td>
</tr>
</tbody>
</table>

The iSCSI IP addresses that were used in the test environment are 9.155.120.21, 9.155.120.22, and 9.155.120.20. If you want to change the MTU size, use the **ipinterface_update** command.
6. The storage system is discovered by the initiator and displayed in the Targets tab (Figure 3-15). At this stage, the Target shows as Inactive.

![Figure 3-15](image)

Figure 3-15 A discovered XIV Storage with Inactive status

7. To activate the connection, click **Connect**.

8. In the Connect To Target window, select **Enable multi-path**, and **Add this connection to the list of Favorite Targets** (Figure 3-16). These settings automatically restore this connection when the system boots.

![Figure 3-16](image)

Figure 3-16 Connect To Target window
The iSCSI Target connection status now shows as Connected (Figure 3-17).

![Figure 3-17 Connect to Target is active](image)

9. Click the **Discovery** tab.

10. Select **Discover Portal** and enter the IP address of the FlashSystem A9000, A9000R, or XIV system in the resulting dialog box (Figure 3-18 and Figure 3-19 on page 94).

![Figure 3-18 Discovering the iSCSI connections](image)
The Favorite Targets tab shows the connected IP addresses (Figure 3-20).
11. View the iSCSI sessions by clicking the **Targets** tab, highlighting the target, and clicking **Properties**. Verify the sessions of the connection as shown in Figure 3-21.

![Figure 3-21 Target connection details](image-url)
12. To see further details or change the load balancing policy, click **MCS** (Multiple Connected Session) as shown in Figure 3-22.

![Multiple Connected Session (MCS)](image)

Figure 3-22 Connected sessions

Use the default load balancing policy, **Round Robin**. Change this setting only if you are confident that another option is better suited to your environment.

These are the available options:

- Fail Over Only
- Round Robin (default)
- Round Robin With Subset
- Least Queue Depth
- Weighted Paths

13. If no volumes are mapped to this host yet, assign them now. For more information regarding assigning LUNs to a host for XIV, see 1.4.2, “Assigning LUNs to a host by using the GUI” on page 35 and 1.4.3, “Assigning LUNs to a host by using the XCLI” on page 37. Similarly, for more information regarding assigning LUNs to a host for FlashSystem A9000 and A9000R, see 2.4.2, “Assigning LUNs to a host by using the GUI” on page 65 and 2.4.3, “Assigning LUNs to a host by using the XCLI” on page 68. The following instructions assume that these operations are complete.
To verify an assigned disk open the Windows Device Manager, which shows all XIV, FlashSystem A9000, and A9000R disks connected via iSCSI under Storage controllers (Figure 3-23).

New disks are shown in the Disk Management window as Offline and Unallocated (Figure 3-24).
Right-click the disk and select **Online** (Figure 3-25) to bring the volume online. After that, initialize the disks.

![Figure 3-25 Changing the Disk to Online](image)

At this stage, the volume can be administered in Windows as needed. For this example right-click the **Unallocated** volume and select **New Simple Volume** (Figure 3-26), and follow the New Simple Volume Wizard.

![Figure 3-26 New Simple Volume](image)
The end result after naming and formatting the volume is shown in the Disk Management window, as illustrated in Figure 3-27.

![Disk Management Window](diagram.png)

Figure 3-27 Mapped LUNs are displayed in Disk Management
14. Select **iSCSI Initiator** from the Administrative Tools Window to display the iSCSI Initiator Properties window. Click the **Volumes and Devices** tab to show any newly created volumes (Figure 3-28).

![iSCSI Initiator Properties](image)

Figure 3-28 Connected Volumes list

3.2.4 Host Attachment Kit utilities

The Host Attachment Kit includes several utilities including these:

- The `xiv_devlist` utility
- The `xiv_diag` utility
The xiv_devlist utility
This utility requires Administrator privileges. The utility lists the XIV, FlashSystem A9000, and A9000R volumes available to the host. Other disks are also listed separately. To run this utility, enter xiv_devlist at a command prompt (Example 3-4).

Example 3-4 The xiv_devlist command results

```
PS C:\> xiv_devlist
IBM storage devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Size (GB)</th>
<th>Paths</th>
<th>Vol Name</th>
<th>Vol ID</th>
<th>Storage ID</th>
<th>Storage Type</th>
<th>Hyper-Scale Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>\.PHYSICALDRIVE1</td>
<td>50.1</td>
<td>6/6</td>
<td>ITSO_Vol1</td>
<td>14401</td>
<td>1322131</td>
<td>FlashSystem A9000</td>
<td>Idle</td>
</tr>
<tr>
<td>\.PHYSICALDRIVE2</td>
<td>103.4</td>
<td>3/3</td>
<td>ITSO_Win2K12_iSCSI_01</td>
<td>14531</td>
<td>1322131</td>
<td>FlashSystem A9000</td>
<td>Idle</td>
</tr>
</tbody>
</table>

Non-IBM storage devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Size (GB)</th>
<th>Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>\.PHYSICALDRIVE0</td>
<td>299.0</td>
<td>N/A</td>
</tr>
</tbody>
</table>
```

The xiv_diag utility
This utility requires Administrator privileges. It gathers diagnostic information from the operating system. The resulting compressed file can then be sent to IBM support teams for review and analysis. To run this utility, enter xiv_diag at a command prompt (Example 3-5).

Example 3-5 The xiv_diag command results

```
PS C:\> xiv_diag
Welcome to the IBM storage host diagnostics tool, version 2.8.2.
This tool will gather essential support information from this host and save the information to a file.
Specify the directory into which the xiv_diag file should be saved [default: c:\users\admini\~1\appdata\local\temp\2]:
Creating archive xiv_diag-results_2017-10-27_17-48-54
INFO: Gathering System Information (1/2)...                                     DONE
INFO: Gathering System Information (2/2)...                                     DONE
INFO: Gathering System Event Log...                                             DONE
INFO: Gathering Application Event Log...                                         DONE
INFO: Gathering Cluster Log Generator...                                        SKIPPED
INFO: Gathering Cluster Reports...                                              SKIPPED
INFO: Gathering DISKPART: List Disk...                                          DONE
INFO: Gathering DISKPART: List Volume...                                        DONE
INFO: Gathering Installed HotFixes...                                           DONE
INFO: Gathering DSMXIV Configuration...                                         DONE
INFO: Gathering Services Information...                                         DONE
INFO: Gathering Windows Setup API (1/4)...                                      SKIPPED
INFO: Gathering Windows Setup API (2/4)...                                      DONE
INFO: Gathering Windows Setup API (3/4)...                                      DONE
INFO: Gathering Windows Setup API (4/4)...                                      DONE
```
3.3 Attaching a Microsoft Windows cluster

This section addresses the attachment of Microsoft Windows Server cluster nodes to IBM Storage. The procedure outlined is described with IBM XIV Storage although the process is similar for FlashSystem A9000 and A9000R.

Important: The procedures and instructions that are given here are based on code that was available at the time of writing. For the latest support information and instructions, see the System Storage Interoperability Center (SSIC) at:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

For more information, see the IBM Storage Host Attachment Kit, Version 2.6.0, User Guide, which is available at IBM Fix Central:

http://www.ibm.com/support/fxcentral/

This section addresses the implementation of a two node Windows Server 2008 R2 Cluster by using FC connectivity.
3.3.1 Prerequisites

To successfully attach a Windows Server cluster node to XIV and access storage, a number of prerequisites must be met. Generic prerequisites are indicated in the following list. Your environment might have extra requirements.

- Complete the FC cabling.
- Configure the SAN zoning.
- Be sure to have two network adapters and a minimum of five IP addresses.
- Install Windows Server 2008 R2 SP1 or later.
- Install any other updates, if required.
- Install fix KB2468345 if Service Pack 1 is used.
- Install the Host Attachment Kit to enable the Microsoft Multipath I/O Framework.
- Ensure that all nodes are part of the same domain.
- Create volumes to be assigned to the XIV Host/Cluster group, not to the individual hosts.

Supported FC HBAs

Supported FC HBAs are available from Brocade, Emulex, IBM, and QLogic. More information about driver versions is available from the SSIC:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Unless otherwise noted in SSIC, use any supported driver and firmware by the HBA vendors. The latest versions are always preferred.

Multipath support

Microsoft provides a multipath framework and development kit that is called Multipath I/O (MPIO). The driver development kit allows storage vendors to create DSMs for MPIO. You can use DSMs to build interoperable multipath solutions that integrate tightly with Microsoft Windows.

MPIO allows the host HBAs to establish multiple sessions with the same target LUN, but present them to Windows as a single LUN. The Windows MPIO drivers enable a true active/active path policy that allows I/O over multiple paths simultaneously.

Further information about Microsoft MPIO is available at this web page:

3.3.2 Installing cluster services

This scenario covers a two node Windows Server 2008 R2 Cluster. The procedures assume that you are familiar with Windows Server 2008 Cluster. Therefore, they focus on specific requirements for attaching to XIV.

To install the cluster, complete these steps:

1. In the Hyper-Scale Manager GUI, select Hosts and Clusters Views → Cluster. Create a cluster and create two hosts in the cluster as described in “Defining a host” on page 35. In this example, an XIV cluster named clu_solman was created and both nodes were placed in it.

2. Map all the LUNs to the cluster as described “Mapping LUNs to a host” on page 36. All LUNs are mapped to the XIV cluster, but not to the individual hosts.

3. Set up a cluster-specific configuration that includes the following characteristics:
 - All nodes are in the same domain.
 - Has network connectivity.
 - Has private (heartbeat) network connectivity.
 - Node 2 must not do any disk I/O.
 - Run the cluster configuration check.

4. On node 1, scan for new disks. Then, initialize, partition, and format them with NTFS. The following requirements are for shared cluster disks:
 - These disks must be basic disks.
 - For Windows Server 2008, you must decide whether they are Master Boot Record (MBR) disks or GUID Partition Table (GPT) disks.

Figure 3-29 shows what this configuration looks like on node 1.
5. Ensure that only one node accesses the shared disks until the cluster service is installed on all nodes. This restriction must be done before you continue to the Cluster wizard (Figure 3-30). You no longer must turn off all nodes as you did with Windows Server 2003. You can bring all nodes into the cluster in a single step. However, no one is allowed to work on the other nodes.

![Create Cluster Wizard welcome window](image)

Figure 3-30 Create Cluster Wizard welcome window

6. Select all nodes that belong to the cluster (Figure 3-31).

![Selecting your nodes](image)

Figure 3-31 Selecting your nodes
7. After the Create Cluster wizard completes, a summary panel shows that the cluster was created successfully (Figure 3-32). Keep this report for documentation purposes.

![Figure 3-32 Failover Cluster Validation Report window](image)

8. Check access to at least one of the shared drives by creating a document. For example, create a text file on one of them, and then turn off node 1.

9. Check the access from node 2 to the shared disks and power node 1 on again.

10. Make sure that you have the correct cluster witness model as illustrated in Figure 3-33. The old cluster model had a quorum as a single point of failure.

![Figure 3-33 Configure Cluster Quorum Wizard window](image)
In this example, the cluster witness model is changed, which assumes that the witness share is in a third data center (Figure 3-34).

Chapter 3. Windows connectivity

3.3.3 Configuring the IBM Storage Enabler for Windows Failover Clustering

The IBM Storage Enabler for Windows Failover Clustering is a software agent that runs as a Microsoft Windows Server service, which supports XIV only. It runs on two geographically dispersed cluster nodes, and provides failover automation for XIV storage provisioning on them. This agent enables deployment of these nodes in a geo-cluster configuration.

To find the software, release notes, and the user guide, go to IBM Fix Central: https://ibm.biz/Bdse5N

Installing and configuring the Storage Enabler

The following instructions are based on the installation that was performed at the time of writing. For more information, see the instructions in the release notes and the user guide. These instructions are subject to change over time:

1. Start the installer as administrator (Figure 3-35).

2. Follow the wizard instructions.

 After the installation is complete, observe a new service named XIVmscsAgent (Figure 3-36 on page 108).
No configuration took place until now. Therefore, the dependencies of the Storage LUNs did not change (Figure 3-37).

3. Define the mirror connections for your LUNs between the two XIVs (Figure 3-38). For more information about how to define the mirror pairs, see *IBM XIV Storage System Business Continuity Functions*, SG24-7759:

http://www.redbooks.ibm.com/abstracts/sg247759.html

Figure 3-36 XIVmscsAgent as a service

Figure 3-37 Dependencies of drive properties

Figure 3-38 Mirror definitions at the master side and side of node 1
4. Also, define the connections on the subordinate side (Figure 3-39).

![Mirror definitions on the subordinate side](image)

5. Redefine the host mapping of the LUNs on both XIVs. For a working cluster, both nodes and their HBAs must be defined in a cluster group. All of the LUNs that are provided to the cluster must be mapped to the cluster group itself, not to the nodes. When using the XIVmscsAgent, you must remap those LUNs to their specific XIV/node combination. Figure 3-40 shows the mapping for node 1 on the master side.

![Selecting the private mapping for node 1 on the master side](image)

Figure 3-40 shows the mapping for node 2 on the master side.

![Changing the default mapping: Node 2 has no access to the master side](image)
Figure 3-42 shows the mapping for node 2 on the subordinate side.

![Figure 3-42](image)

Figure 3-42 Selecting the private mapping on the subordinate side for node 2

Figure 3-43 shows the mapping for node 1 on the subordinate side.

![Figure 3-43](image)

Figure 3-43 Node 1 has no access to XIV 2

6. Check that all resources are on node 1, where the Mirror Master side is defined, as illustrated in Figure 3-44.

![Figure 3-44](image)

Figure 3-44 All resources are on node 1
7. To configure the XIVmscsAgent, run the admin tool with the -install option (Example 3-6).

Example 3-6 How to use mscs_agent

C:\Users\Administrator.ITSO>cd C:\Program Files\XIV\mscs_agent\bin
C:\Program Files\XIV\mscs_agent\bin>dir
Volume in drive C has no label.
Volume Serial Number is CA6C-8122
Directory of C:\Program Files\XIV\mscs_agent\bin
09/29/2011 11:13 AM <DIR> ..
09/14/2011 03:37 PM 1,795 project_specific_pyrunner.py
09/13/2011 07:20 PM 2,709 pyrunner.py
09/14/2011 11:48 AM 134,072 xiv_mscs_admin.exe
09/14/2011 11:48 AM 134,072 xiv_mscs_service.exe
4 File(s) 272,648 bytes
2 Dir(s) 14,025,502,720 bytes free
C:\Program Files\XIV\mscs_agent\bin>xiv_mscs_admin.exe
Usage: xiv_mscs_admin [options]
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 --install installs XIV MSCS Agent components on this node and
 cluster Resource Type
 --upgrade upgrades XIV MSCS Agent components on this node
 --report generates a report on the cluster
 --verify verifies XIV MSCS Agent deployment
 --fix-dependencies fixes dependencies between Physical Disks and XIV Mirror
 resources
 --deploy-resources deploys XIV Mirror resources in groups that contain
 Physical Disk Resources
 --delete-resources deletes all existing XIV Mirror resources from the
 cluster
 --delete-resourcetype deletes the XIV mirror resource type
 --uninstall uninstalls all XIV MSCS Agent components from this node
 --change-credentials change XIV credentials
 --debug enables debug logging
 --verbose enables verbose logging
 --yes confirms disruptive operations
XCLI Credentials Options:
 --xcli-username=USERNAME
 --xcli-password=PASSWORD
C:\Program Files\XIV\mscs_agent\bin>xiv_mscs_admin.exe --install --verbose
--xcli-username=itso --xcli-password=<PASSWORD>
2011-09-29 11:19:12 INFO classes.py:76 checking if the resource DLL exists
2011-09-29 11:19:12 INFO classes.py:78 resource DLL doesn't exist, installing it
2011-09-29 11:19:12 INFO classes.py:501 The credentials MSCS Agent uses to connect
to the XIV Storage System have been change
d. Check the guide for more information about credentials.
Installing service XIVmscsAgent
Service installed
Changing service configuration
Service updated
2011-09-29 11:19:14 INFO classes.py:85 resource DLL exists
C:\Program Files\XIV\mscs_agent\bin>

Chapter 3. Windows connectivity 111
8. To deploy the resources into the geo cluster, run the `xiv_mcs_admin.exe` utility:

```
C:\Program Files\XIV\mscs_agent\bin>xiv_mcs_admin.exe --deploy-resources
--verbose --xcli-username=itso --xcli-password=<PASSWORD> --yes
```

Figure 3-45 illustrates the cluster dependencies that result.

![Figure 3-45 Dependencies after deploying the resources](image)

9. Power down node 1; then, on node 2, repeat step 5 on page 109 through step 8.

A switch of the cluster resource group from node 1 to node 2 leads to a change of the replication direction. XIV2 becomes the master and XIV1 becomes the subordinate, as shown in Figure 3-46 and Figure 3-47.

![Figure 3-46 XIVmscsAgent changing the replication direction](image)

The results are shown in Figure 3-47.

![Figure 3-47 A switch of the cluster resources leads to a “change role” on XIV](image)
3.4 Attaching a Microsoft Hyper-V Server

This section addresses a Microsoft Hyper-V environment with IBM Storage. Hyper-V Server is the hypervisor-based server virtualization product from Microsoft that consolidates workloads on a single physical server.

System hardware requirements
To run Hyper-V, you must fulfill the following hardware requirements:

- Processors can include virtualization hardware assists from Intel (Intel VT) and AMD (AMD-V). To enable Intel VT, enter System Setup and click Advanced Options → CPU Options, then select Enable Intel Virtualization Technology. AMD-V is always enabled. The processors must have the following characteristics:
 - Processor cores: Minimum of four processor cores.
 - Memory: A minimum of 16 GB of RAM.
 - Ethernet: At least one physical network adapter.
 - Disk space: One volume with at least 50 GB of disk space and one volume with at least 20 GB of space.
 - BIOS: Enable the Data Execution Prevention option in System Setup. Click Advanced Options → CPU Options and select Enable Processor Execute Disable Bit. Ensure that you are running the latest version of BIOS.

- Server hardware that is certified by Microsoft to run Hyper-V. For more information, see the Windows Server Catalog: https://www.windowsservercatalog.com/

Installing Hyper-V in Windows Server 2016, 2012 R2, and 2008 R2
The Server Core option on Windows Server provides a subset of the features of Windows Server 2016, 2012 R2, and 2008 R2. This option runs these supported server roles without a full Windows installation:

- Dynamic Host Configuration Protocol (DHCP)
- Domain Name System (DNS)
- Active Directory
- Hyper-V

With the Server Core option, the setup program installs only the files that are needed for the supported server roles.

Using Hyper-V on a Server Core installation reduces the attack surface. The attack surface is the scope of interfaces, services, APIs, and protocols that a hacker can use to attempt to gain entry into the software. As a result, a Server Core installation reduces management requirements and maintenance. Microsoft provides management tools to remotely manage the Hyper-V role and virtual machines (VMs).

For more information about using the XIV Storage System with Microsoft Hyper-V, see Microsoft Hyper-V with IBM XIV Storage System Gen3:
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102456

Note: The cited paper describes Microsoft Hyper-V with IBM XIV Storage System Gen 3, however the information is applicable to FlashSystem A9000 and A9000R.
3.5 Microsoft System Center Virtual Machine Manager Storage Automation

With Microsoft System Center Virtual Machine Manager (SCVMM) alongside IBM FlashSystem A9000, A9000R, or XIV Gen3, administrators have more features to extend Microsoft Hyper-V virtualization for Cloud. They can now perform storage management tasks through an integrated administrative interface. For example, within the SCVMM's graphical user interface (GUI), administrators can discover, classify, allocate, provision, map, assign, and decommission storage. This storage can be associated with clustered and stand-alone virtualization hosts. Usually, these tasks require multiple steps that use different applications and skills.

IBM has complied with the Storage Networking Industry Association (SNIA) standards requirements for a long time. In addition, the Common Information Model (CIM) framework is embedded in FlashSystem A9000, A9000R, and XIV Gen3. Therefore, these IBM Storage devices are an SCVMM supported device, and are fully compliant with the SNIA Storage Management Initiative Specification (SMI-S) 1.4.

The benefits are immediate when you attach the IBM Storage to the Hyper-V hypervisor and manage the Cloud with SCVMM.

This section addresses storage automation concepts and provides some implementation guidelines for SCVMM with IBM Storage.

3.5.1 The Open API overview

The XIV Open API complies to SMI-S, as specified by the SNIA to manage the XIV Storage System Gen. 3. This API can be used by any storage resource management application to configure and manage the XIV. Similarly, the FlashSystem A9000 and A9000R Open API is a non-proprietary storage-management client application. The Open API uses the Storage Management Initiative Specification (SMI-S), as defined by the Storage Networking Industry Association (SNIA) to view LUN information.
Microsoft SCVMM uses the Open API to communicate with the System’s CIM Agent as shown in Figure 3-48. The main components are the CIM object manager (CIMOM) and the SMI-S Provider (device provider). With IBM Storage’s single tier design, the SMI-S provider and CIM agent are treated identically due to the CIM component collective functionality. The SMI-S provider is also referred to as the SCVMM storage provider to align with the SCVMM application interfaces and documentation.

![Figure 3-48 SCVMM 2012 R2 CIM communication with IBM Storage](image)

Within a Cloud environment, security is key. The CIM agent can operate in two security modes:

- Secure Mode: Requests are sent over HTTP or HTTP over SSL. The Secure Mode is the preferred mode with Microsoft SCVMM.
- Non-secure Mode: A basic configuration that authorizes communication with a user name and password.

As previously said, the CIM Agent is embedded in the administrative module and does not require configuration. It is also enabled by default.
The CIM agent has the following limitations:

- The CIM agent is able to manage only the system on which the administrative module is installed.
- The secure mode must be used over port 5989.
- The CIM Agent uses the same account that is used to manage the IBM Storage with the Hyper-Scale Manager, XIV GUI, or the XCLI.

For further Open API and CIM framework details, see the following guides:
- IBM FlashSystem A9000 and IBM FlashSystem A9000R: Open API Reference Guide, publication number SC27-8561:

- IBM XIV Storage System: Application Programming Interface Reference, publication number GC27-3916:

3.5.2 System Center Virtual Machine Manager overview

SCVMM is a Microsoft virtualization management solution with eight components. It enables centralized administration of both physical and virtual servers, and provides rapid storage provisioning. The availability of VMM 2008 R2 was announced in August 2009. The following enhancements, among others, were introduced in SCVMM 2012:

- Quick Storage Migration for running virtual machines with minimal downtime
- Template-based rapid provisioning for new virtual machines
- Support for Live Migration of virtual machines
- Support for SAN migration in and out of failover clusters
- Multi-vendor Storage provisioning

Within a cloud, private or public, fabric is a key concept. Fabric is composed by hosts, host groups, library servers, networking, and storage configuration. In SCVMM 2012, this concept simplifies the operations that are required to use and define resource pools. From a user’s perspective, deploying VMs and provisioning storage capacity without performing storage administrative tasks becomes possible.
Figure 3-49 shows the SCVMM fabric management window.

![SCVMM fabric management](image)

For more information about configuring and deploying fabric resources, see the IBM technical white paper *Microsoft System Center Virtual Machine Manager 2012 R2 storage automation with IBM XIV Storage System Gen3*: http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102517

Note: This white paper details SCVMM 2012 R2 with IBM XIV Storage System Gen3, however the information and procedures described in the white paper are also applicable to FlashSystem A9000 and A9000R.

For more information about the procedures to define storage resources, see the topic about “SCVMM storage automation step-by-step processes” in the referenced white paper. These resources include storage classifications, logical units, and storage pools that are made available to Hyper-V hosts and host clusters. The following SCVMM 2012 R2 key features that use IBM XIV Storage System Gen3 are also documented:

- Storage Device Discovery
- Storage Pool Classification
- Allocation
- Provisioning

For more information, see the “Configuring Storage in VMM” overview: http://technet.microsoft.com/en-us/library/gg610600.aspx
Chapter 4. Linux connectivity

This chapter addresses the specifics for attaching FlashSystem A9000, A9000R, and XIV Storage System to host systems that are running Linux. Although it does not cover every aspect of connectivity, it addresses all of the basics. The examples usually use the Linux console commands because they are more generic than the GUIs that are provided by vendors.

This guide covers all hardware architectures that are supported for the attachment:

- Intel x86 and x86_64, both Fibre Channel and iSCSI
- IBM Power Systems™
- IBM z Systems®

Older Linux versions are supported to work with the storage systems. However, the scope of this chapter is limited to more recent enterprise level distributions of SUSE Linux Enterprise Server, and Red Hat Enterprise Linux.

Important: The procedures and instructions that are given here are based on code that was available at the time of writing. For the latest support information and instructions, always see the System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

You can retrieve the Host Attachment Kit publications from Fix Central:

http://www.ibm.com/support/fixcentral/

This chapter includes the following sections:

- IBM storage systems and Linux support overview
- Basic host attachment
- Nondisruptive SCSI reconfiguration
- Troubleshooting and monitoring
- Boot from SAN in Linux
4.1 IBM storage systems and Linux support overview

Linux is an open source, UNIX-like kernel. The term Linux is used in this chapter to mean the whole operating system of GNU/Linux.

4.1.1 Issues that distinguish Linux from other operating systems

Linux is different from the other proprietary operating systems in many ways:

- No one person or organization can be held responsible or called for support.
- The distributions differ widely in the amount of support that is available.
- Linux is available for almost all computer architectures.
- Linux is rapidly evolving.

All of those factors make providing generic support for Linux difficult. As a consequence, IBM decided on a support strategy that limits the uncertainty and the amount of testing.

IBM supports mainly these Linux distributions that are targeted at enterprise clients:

- Red Hat Enterprise Linux
- SUSE Linux Enterprise Server

Furthermore, CentOS is supported, which derives from Red Hat Enterprise Linux, but without a comparable support.

These distributions have major release cycles of about 18 months. They are maintained for five years, and require you to sign a support contract with the distributor. They also have a schedule for regular updates. These factors mitigate the issues that are listed previously. The limited number of supported distributions also allows IBM to work closely with the vendors to ensure interoperability and support. Details about the supported Linux distributions can be found in IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

4.1.2 Reference material

A wealth of information is available to help you set up your Linux server and attach it to the storage system. The IBM Storage Host Attachment Kit for Linux release notes and user guide contain up-to-date materials. You can retrieve them from Fix Central for FlashSystem A9000, IBM A9000R, or XIV:

http://www.ibm.com/support/fixcentral/

Primary references

Other useful references about Linux distributions are as follows:

- Red Hat Enterprise Linux 5: Online Storage Reconfiguration Guide:
 https://ibm.biz/BdseNA

This guide is part of the documentation that is provided by Red Hat for Red Hat Enterprise Linux 5. Although written specifically for Red Hat Enterprise Linux 5, most of the information is valid for Linux in general. It covers the following topics for Fibre Channel and iSCSI attached devices:

- Persistent device naming
- Dynamically adding and removing storage devices
- Dynamically resizing storage devices
- Low-level configuration and troubleshooting
The DM Multipath has the following changes in Red Hat Enterprise Linux 6:

- The `mpathconf` utility can be used to change the configuration file, `multipathd` daemon, and `chkconfig`.
- The new path selection algorithms `queue-length` and `service-time` provide benefits for certain workloads.
- The location of the bindings file `etc/multipath/bindings` is different.
- Output of `user_friendly_names=yes`, results in `mpathn` being an alphabetic character and not numeric as in Red Hat Enterprise Linux 5.

Another part of the Red Hat Enterprise Linux 7 documentation. It contains useful information for anyone who works with Device Mapper Multipathing (DM-MP). Most of the information is valid for Linux in general. It includes:

- Understanding how Device Mapper Multipathing works
- Setting up and configuring DM-MP within Red Hat Enterprise Linux 7
- Troubleshooting DM-MP

This guide is part of the documentation that is provided for Red Hat Enterprise Linux 7.

This publication is part of the documentation for Novell SUSE Linux Enterprise Server 12, Service Pack 1. Although written specifically for SUSE Linux Enterprise Server, it contains useful information for any Linux user who is interested in storage-related subjects. The following are the most useful topics in the book:

- Setting up and configuring multipath I/O
- Setting up a system to boot from multipath devices
- Combining multipathing with Logical Volume Manager and Linux Software RAID

This wiki site, hosted by IBM, has information about Linux on IBM Power Architecture®. It includes the following sections:

- A discussion forum
- An announcement section
- Technical articles
This is a comprehensive guide to storage attachment using Fibre Channel to z/VM and Linux on z/VM. It describes the following concepts:

- General Fibre Channel Protocol (FCP) concepts
- Setting up and using FCP with z/VM and Linux
- FCP naming and addressing schemes
- FCP devices in the 2.6 Linux kernel
- N-Port ID Virtualization
- FCP Security topics

Other sources of information
The Linux distributor documentation pages are good starting points for installation, configuration, and administration of Linux servers. These documentation pages are especially useful for server-platform-specific issues:

- SUSE Linux Enterprise Server documentation:
 https://www.suse.com/documentation/
- Red Hat Enterprise Linux documentation:

Other IBM resources:

- IBM z Systems has its own web page for storage attachment using FCP:
- *IBM z Systems Connectivity Handbook*, SG24-5444:

This book describes connectivity options that available for use within and beyond the data center for IBM z Systems servers. It has a section for FC attachment, although it is outdated with regards to multipathing.

4.1.3 Storage-related improvements to Linux

This section provides a summary of storage-related improvements that have been introduced to Linux. Details about usage and configuration are available in the subsequent sections.

Past issues
The following partial list of storage-related issues in older Linux versions are addressed in newer versions:

- Limited number of devices that could be attached
- Gaps in LUN sequence that led to incomplete device discovery
- Limited dynamic attachment of devices
- Non-persistent device naming that might lead to reordering
- No native multipathing
Dynamic generation of device nodes
Linux uses special files, also called device nodes or special device files, for access to devices. In earlier versions, these files were created statically during installation. The creators of a Linux distribution had to anticipate all devices that would ever be used for a system and create nodes for them. This process often led to a confusing number of existing nodes and missing ones.

In former versions of Linux, two new subsystems were introduced, hotplug and udev. Hotplug detects and registers newly attached devices without user intervention. Udev dynamically creates the required device nodes for the newly attached devices according to predefined rules. In addition, the range of major and minor numbers, the representatives of devices in the kernel space, was increased. These numbers are now dynamically assigned.

With these improvements, the required device nodes exist immediately after a device is detected. In addition, only device nodes that are needed are defined.

Persistent device naming
As mentioned, udev follows predefined rules when it creates the device nodes for new devices. These rules are used to define device node names that relate to certain device characteristics. For a disk drive or SAN-attached volume, this name contains a string that uniquely identifies the volume. This string ensures that every time this volume is attached to the system, it gets the same name.

Multipathing
Linux has its own built-in multipathing solution. It is based on Device Mapper, a block device virtualization layer in the Linux kernel. Therefore, it is called Device Mapper Multipathing (DM-MP). The Device Mapper is also used for other virtualization tasks, such as the logical volume manager, data encryption, snapshots, and software RAID.

DM-MP overcomes these issues that are caused by proprietary multipathing solutions:
- Proprietary multipathing solutions were only supported for certain kernel versions. Therefore, systems followed the update schedule of the distribution.
- They were often binary only. Linux vendors did not support them because they were not able to debug them.
- A mix of different storage systems on the same server usually was not possible because the multipathing solutions could not coexist.

Today, DM-MP is the only multipathing solution that is fully supported by both Red Hat and SUSE for their enterprise Linux distributions. It is available on all hardware systems, and supports all block devices that can have more than one path. IBM supports DM-MP wherever possible.

Adding and removing volumes online
With the hotplug and udev subsystems, easily adding and removing disks from Linux are possible. SAN-attached volumes are usually not detected automatically. Adding a volume to a host object does not create a hotplug trigger event like inserting a USB storage device does. SAN-attached volumes are discovered during user-initiated device scans. They are then automatically integrated into the system, including multipathing.

To remove a disk device, make sure that it is not used anymore, then remove it logically from the system before you physically detach it.
Dynamic LUN resizing
Improvements were introduced to the SCSI layer and DM-MP that allow resizing of SAN-attached volumes while they are in use. However, these capabilities are limited to certain cases.

Write barriers availability for ext4 file system
Red Hat Enterprise Linux 6 by default uses the ext4 file system. This file system uses the write barriers feature to improve performance. A write barrier kernel mechanism ensures that file system metadata is correctly written and ordered on persistent storage. The write barrier continues to do so even when storage devices with volatile write caches lose power.

Write barriers are implemented in the Linux kernel by using storage write cache flushes before and after the I/O, which is order-critical. After the transaction is written, the storage cache is flushed, the commit block is written, and the cache is flushed again. The constant flush of caches can significantly reduce performance. You can disable write barriers at mount time by using the -o nobARRIER option for mount.

Important: IBM has confirmed that write barriers have a negative impact on XIV performance. Ensure that all of your mounted disks use the following switch:

```
mount -o nobARRIER /fs
```

For more information, see the Red Hat Linux Enterprise 6: Storage Administration Guide:
https://ibm.biz/Bdse7n

4.2 Basic host attachment

This section addresses the steps to make FlashSystem A9000, A9000R, and XIV volumes available to your Linux host. It addresses attaching storage for the different hardware architectures. It also describes configuration of the Fibre Channel HBA driver, setting up multipathing, and any required special settings.

4.2.1 Platform-specific remarks

The most popular hardware system for Linux is the Intel x86 (32- or 64-bit) architecture. However, this architecture allows only direct mapping of volumes to hosts through Fibre Channel fabrics and HBAs, or IP networks with or without CNAs. IBM z Systems and IBM Power Systems provide extra mapping methods so you can use their much more advanced virtualization capabilities.

IBM Power Systems
Linux, running in a logical partition (LPAR) on an IBM Power system, can get storage from an storage system through one of these methods:

- Directly through an exclusively assigned Fibre Channel HBA
- Through a Virtual I/O Server (VIOS) running on the system

Direct attachment is not described because it works the same way as with the other systems. VIOS attachment requires specific considerations. More information about how VIOS works and how it is configured is in Chapter 6, “Clients connecting through VIOS” on page 197.
More information is available in the following publications:

- **IBM PowerVM Virtualization Introduction and Configuration**, SG24-7940
- **IBM PowerVM Virtualization Managing and Monitoring**, SG24-7590

Virtual VSCSI disks through VIOS

Linux on Power distributions contain a kernel module (driver) for a virtual SCSI HBA. This driver is called `ibmvscsi`, and attaches the virtual disks that are provided by the VIOS to the Linux system. The devices as seen by the Linux system are shown in Example 4-1.

Example 4-1 Virtual SCSI disks

```
p6-570-lpar13:~ # lsscsi
[0:0:1:0] disk AIX VDASD 0001 /dev/sda
[0:0:2:0] disk AIX VDASD 0001 /dev/sdb
```

In this example, the SCSI vendor ID is AIX, and the device model is VDASD. Apart from that, they are treated like any other SCSI disk. If you run a redundant VIOS setup on the system, the virtual disks can be attached through both servers. They then show up twice, and must be managed by DM-MP to ensure data integrity and path handling.

Virtual Fibre Channel adapters through NPIV

IBM PowerVM® is the hypervisor of the IBM Power system. It uses the N-Port ID Virtualization (NPIV) capabilities of modern SANs and Fibre Channel HBAs. These capacities allow PowerVM to provide virtual HBAs for the LPARs. The mapping of these HBAs is done by the VIOS.

Virtual HBAs register to the SAN with their own *worldwide port names* (WWPNs). To the storage systems they look exactly like physical HBAs. You can create host connections for them and map volumes. This process allows easier, more streamlined storage management, and better isolation of the LPAR in an IBM Power system.

Linux on Power distributions come with a kernel module for the virtual HBA called `ibmvfc`. This module presents the virtual HBA to the Linux operating system as though it were a real FC HBA. Volumes that are attached to the virtual HBA are displayed as though they are connected through a physical adapter (Example 4-2).

Example 4-2 Volumes that are mapped through NPIV virtual HBAs

```
p6-570-lpar13:~ # lsscsi
[1:0:0:0] disk IBM 2810XIV 10.2 /dev/sdc
[1:0:0:1] disk IBM 2810XIV 10.2 /dev/sdd
[1:0:0:2] disk IBM 2810XIV 10.2 /dev/sde
[2:0:0:0] disk IBM 2810XIV 10.2 /dev/sdm
[2:0:0:1] disk IBM 2810XIV 10.2 /dev/sdn
[2:0:0:2] disk IBM 2810XIV 10.2 /dev/sdo
```

To maintain redundancy, you usually use more than one virtual HBA, each one running on a separate real HBA. Therefore, the volumes show up more than once (once per path) and must be managed by a DM-MP.
z Systems

Linux running on an IBM z Systems server has the following storage attachment choices:

- Linux on z Systems running natively in a z Systems LPAR
- Linux on z Systems running in a virtual machine under z/VM

Linux on z Systems running natively in a z Systems LPAR

When you run Linux on z Systems directly on a z Systems LPAR, there are two ways to attach disk storage.

Tip: In IBM z Systems, the term *adapters* is better suited than the more common *channels* term that is often used in the z Systems environment.

The Fibre Channel connection (IBM FICON®) channel in a z Systems server can operate individually in *Fibre Channel Protocol* (FCP) mode. FCP transports SCSI commands over the Fibre Channel interface. It is used in all open systems implementations for SAN-attached storage. Certain operating systems that run on a z Systems mainframe can use this FCP capability to connect directly to fixed block (FB) storage devices. Linux on z Systems provides the kernel module `zfcp` to operate the FICON adapter in FCP mode. A channel can run either in FCP or FICON mode. Channels can be shared between LPARs, and multiple ports on an adapter can run in different modes.

To maintain redundancy, you usually use more than one FCP channel to connect to the volumes. Linux sees a separate disk device for each path, and needs DM-MP to manage them.

Linux on z Systems running in a virtual machine under z/VM

Running a number of virtual Linux instances in a z/VM environment is a common solution. z/VM provides granular and flexible assignment of resources to the virtual machines (VMs). You can also use it to share resources between VMs. z/VM offers even more ways to connect storage to its VMs:

- Fibre Channel (FCP) attached SCSI devices

 z/VM can assign a Fibre Channel card that runs in FCP mode to a VM. A Linux instance that runs in this VM can operate the card by using the `zfcp` driver and access the attached FB volumes.

 To maximize use of the FCP channels, share them between more than one VM. However, z/VM cannot assign FCP attached volumes individually to virtual machines. Each VM can theoretically access all volumes that are attached to the shared FCP adapter. The Linux instances that run in the VMs must ensure that each VM uses only the volumes that it is supposed to.

- FCP attachment of SCSI devices through NPIV

 To overcome the issue described previously, *N_Port ID Virtualization* (NPIV) was introduced for z Systems, z/VM, and Linux on z Systems. It allows creation of multiple virtual Fibre Channel HBAs running on a single physical HBA. These virtual HBAs are assigned individually to virtual machines. They log on to the SAN with their own WWPNs. To the storage system, they look exactly like physical HBAs. You can create Host Connections for them and map volumes. This process allows you to assign volumes directly to the Linux virtual machine. No other instance can access these HBAs, even if it uses the same physical adapter.
4.2.2 Configuring for Fibre Channel attachment

This section describes how Linux is configured to access the volumes. A Host Attachment Kit is available for the Intel x86 system to ease the configuration. Therefore, many of the manual steps that are described are necessary only for the other supported systems. However, the description might be helpful because it provides insight in the Linux storage stack. It is also useful if you must resolve a problem.

Loading the Linux Fibre Channel drivers

There are four main brands of Fibre Channel host bus adapters (FC HBAs):

- QLogic: The most used HBAs for Linux on the Intel X86 system. The kernel module qla2xxx is a unified driver for all types of QLogic FC HBAs. It is included in the enterprise Linux distributions. The shipped version is supported for storage system attachment.

- Emulex: Sometimes used in Intel x86 servers and, rebranded by IBM, the standard HBA for the Power platform. The kernel module lpfc is a unified driver that works with all Emulex FC HBAs. A supported version is also included in the enterprise Linux distributions for both Intel x86 and Power Systems.

- Brocade: Provides Converged Network Adapters (CNAs) that operate as FC and Ethernet adapters. They are supported on Intel x86 for FC attachment. The kernel module version that is provided with the current enterprise Linux distributions is not supported. You must download the supported version from the Brocade website. The driver package comes with an installation script that compiles and installs the module. The script might cause support issues with your Linux distributor because it modifies the kernel. The FC kernel module for the CNAs is called bfa. The driver can be downloaded from Brocade:

http://www.brocade.com/services-support/drivers-downloads/index.page

- IBM FICON Express: These are the HBAs for the z Systems system. They can either operate in FICON mode for traditional CKD devices, or FCP mode for FB devices. Linux deals with them directly only in FCP mode. The driver is part of the enterprise Linux distributions for z Systems, and is called zfcp.

Kernel modules (drivers) are loaded with the modprobe command. They can be removed if they are not in use as shown in Example 4-3.

Example 4-3 Loading and unloading a Linux Fibre Channel HBA Kernel module

```
x36501ab9:~ # modprobe qla2xxx
x36501ab9:~ # modprobe -r qla2xxx
```

After the driver is loaded, the FC HBA driver examines the FC fabric, detects attached volumes, and registers them in the operating system. To discover whether a driver is loaded, and what dependencies exist for it, use the lsmod command (Example 4-4 on page 128).
Example 4-4 Filter list of running modules for a specific name

```bash
x3650lab9:~ # lsmod | tee >(head -n 1) >(grep qla) > /dev/null
Module          Size  Used by
qla2xxx         293455  0
scsi_transport_fc  54752  1 qla2xxx
scsi_mod        183796  10 qla2xxx,scsi_transport_fc,scsi_tgt,st,ses, ....
```

To get detailed information about the kernel module, such as the version number and what options it supports, use the `modinfo` command. You can see a partial output in Example 4-5.

Example 4-5 Detailed information about a specific kernel module

```bash
x3650lab9:~ # modinfo qla2xxx
filename:  /lib/modules/2.6.32.12-0.7-default/kernel/drivers/scsi/qla2xxx/qla2xxx.ko
... version:        8.03.01.06.11.1-k8
license:        GPL
description:    QLogic Fibre Channel HBA Driver
author:         QLogic Corporation
... depends:        scsi_mod,scsi_transport_fc
supported:      yes
vermagic:       2.6.32.12-0.7-default SMP mod_unload modversions
parm:           ql2xlogintimeout:Login timeout value in seconds. (int)
parm:           qlport_down_retry:Maximum number of command retries to a port ...
parm:           ql2xplogiabsentdevice:Option to enable PLOGI to devices that ...
...```

**Restriction:** The zfcp driver for Linux on z Systems automatically scans and registers the attached volumes, but only in the most recent Linux distributions and only if NPIV is used. Otherwise, you must tell it explicitly which volumes to access. The reason is that the Linux virtual machine might not be intended to use all volumes that are attached to the HBA. For more information, see “Linux on z Systems running in a virtual machine under z/VM” on page 126, and “Adding volumes to a Linux on z Systems system” on page 140.

**Using the FC HBA driver at installation time**

You can use volumes that are already attached to a Linux system at installation time. Using already attached volumes allows you to install all or part of the system to the SAN-attached volumes. The Linux installers detect the FC HBAs, load the necessary kernel modules, scan for volumes, and offer them in the installation options.

When you have an unsupported driver version included with your Linux distribution, either replace it immediately after installation, or use a driver disk during the installation.

**Considerations:**

- Installing a Linux system on a SAN-attached disk does not mean that it is able to start from it. Usually you must complete extra steps to configure the boot loader or boot program.
- You must take special precautions about multipathing if you want to run Linux on SAN-attached disks.

For more information, see 4.5, “Boot from SAN in Linux” on page 163.
Making the FC driver available early in the boot process

If the SAN-attached volumes are needed early in the Linux boot process, include the HBA driver into the Initial RAM file system (initramfs) image. You must include this driver, for example, if all or part of the system is on these volumes. The initramfs allows the Linux boot process to provide certain system resources before the real system disk is set up.

Linux distributions contain a script that is called mkinitrd that creates the initramfs image automatically. They automatically include the HBA driver if you already used a SAN-attached disk during installation. If not, you must include it manually. The ways to tell mkinitrd to include the HBA driver differ depending on the Linux distribution used.

Tip: The initramfs was introduced years ago and replaced the Initial RAM Disk (initrd). People sometimes say initrd when they actually mean initramfs.

**SUSE Linux Enterprise Server**

Kernel modules that must be included in the initramfs are listed in the /etc/sysconfig/kernel file on the line that starts with INITRD_MODULES. The order that they show up on this line is the order that they are loaded at system startup (Example 4-6).

Example 4-6   Telling SUSE Linux Enterprise Server to include a kernel module in the initramfs

```bash
x3650lab9:~ # cat /etc/sysconfig/kernel
...
This variable contains the list of modules to be added to the initial
ramdisk by calling the script "mkinitrd"
(like drivers for scsi-controllers, for lvm or reiserfs)
INITRD_MODULES="thermal aacraid ata_piix ... processor fan jbd ext3 edd qla2xxx"
...
```

After you add the HBA driver module name to the configuration file, rebuild the initramfs with the mkinitrd command. This command creates and installs the image file with standard settings and to standard locations as illustrated in Example 4-7.

Example 4-7   Creating the initramfs

```bash
x3650lab9:~ # mkinitrd

Kernel image: /boot/vmlinuz-2.6.32.12-0.7-default
Initrd image: /boot/initrd-2.6.32.12-0.7-default
Root device: /dev/disk/by-id/scsi-SServeRA_Drive_1_2D0DE908-part1 (/dev/sda1)...
Resume device: /dev/disk/by-id/scsi-SServeRA_Drive_1_2D0DE908-part3 (/dev/sda3)
Kernel Modules: hwmon thermal_sys ... scsi_transport_fc qla2xxx ... (module qla2xxx.ko firmware /lib/firmware/q12500_fw.bin) (module qla2xxx.ko ...
Features: block usb resume.userspace resume.kernel
Bootsplash: SLES (800x600)
30015 blocks
```

If you need nonstandard settings, for example a different image name, use parameters for mkinitrd. For more information, see the mkinitrd man page on your Linux system.
Red Hat Enterprise Linux 5

Kernel modules that must be included in the initramfs are listed in the /etc/modprobe.conf file. The order that they show up in the file is the order that they are loaded at system startup as seen in Example 4-8.

Example 4-8  Telling Red Hat Enterprise Linux to include a kernel module in the initramfs

```
[root@x3650lab9 ~]# cat /etc/modprobe.conf

alias eth0 bnx2
alias eth1 bnx2
alias eth2 e1000e
alias eth3 e1000e
alias scsi_hostadapter aacraid
alias scsi_hostadapter1 ata_plix
alias scsi_hostadapter2 qla2xxx
alias scsi_hostadapter3 usb-storage
```

After you add the HBA driver module to the configuration file, rebuild the initramfs with the `mkinitrd` command. The Red Hat version of `mkinitrd` requires the following information as parameters (Example 4-9):

- The name of the image file to create
- The location of the image file
- The kernel version that the image file is built for

Example 4-9  Creating the initramfs

```
[root@x3650lab9 ~]# mkinitrd /boot/initrd-2.6.18-194.el5.img 2.6.18-194.el5
```

If the image file with the specified name exists, use the `-f` option to force `mkinitrd` to overwrite the existing one. The command shows more detailed output with the `-v` option.

You can discover the kernel version that is running on the system with the `uname` command (Example 4-10).

Example 4-10  Determining the kernel version

```
[root@x3650lab9 ~]# uname -r
2.6.18-194.el5
```

Red Hat Enterprise Linux 6 and 7

The `dracut` utility is for Red Hat Enterprise Linux 6 and 7 and is important to the boot process. In previous versions of Red Hat Enterprise Linux, the initial RAM disk image preinstalled the block device modules, such as for SCSI or RAID. The root file system, on which those modules are normally located, can then be accessed and mounted.

With Red Hat Enterprise Linux 6 and 7 systems, the `dracut` utility is always called by the installation scripts to create an initramfs. This process occurs whenever a new kernel is installed by using the Yum, PackageKit, or Red Hat Package Manager (RPM).

On all architectures other than IBM i, you can create an initramfs by running the `dracut` command. However, you usually do not need to create an initramfs manually. This step is automatically completed if the kernel and its associated packages are installed or upgraded from the RPM packages that are distributed by Red Hat.
Verify that an initramfs corresponding to your current kernel version exists and is specified correctly in the bootloader (GRUB by default for Red Hat Enterprise Linux 6 and GRUB2 for Red Hat Enterprise 7) configuration file by using the following procedure:

1. As root, list the contents in the /boot/ directory.
2. Find the kernel (vmlinuz-<kernel_version>) and initramfs-<kernel_version> with the most recent version number, as shown in Figure 4-1.

```
[root@bc-h-15-b7 ~]# ls /boot/
config-2.6.32-131.0.15.el6.x86_64
efi
grub
initramfs-2.6.32-131.0.15.el6.x86_64.img
initrd-2.6.32-131.0.15.el6.x86_64kdump.img
lost+found
symvers-2.6.32-131.0.15.el6.x86_64.gz
System.map-2.6.32-131.0.15.el6.x86_64
vmlinuz-2.6.32-131.0.15.el6.x86_64
```

Figure 4-1 Red Hat Enterprise Linux 6 display of matching initramfs and kernel

Optionally, if your initramfs-<kernel_version> file does not match the version of the latest kernel in /boot/, generate an initramfs file with the dracut utility. Starting dracut as root, without options generates an initramfs file in the /boot/ directory for the latest kernel present in that directory. For more information about options and usage, see man dracut and man dracut.conf.

To verify that it was created, use the ls -l /boot/ command and make sure that the /boot/vmlinuz-<kernel_version> file exists. The <kernel_version> must match the version of the installed kernel.
4.2.3 Determining the WWPN of the installed HBAs

To create a host port on the storage system that can map volumes to an HBA, you need the WWPN of the HBA. The WWPN is shown in sysfs, a Linux pseudo file system that reflects the installed hardware and its configuration. Example 4-11 shows how to discover which SCSI host instances are assigned to the installed FC HBAs. You can then determine their WWPNs.

Example 4-11  Finding the WWPNs of the FC HBAs

[root@x3650lab9 ~]# ls /sys/class/fc_host/
  host1  host2
# cat /sys/class/fc_host/host1/port_name
  0x10000000c93f2d32
# cat /sys/class/fc_host/host2/port_name
  0x10000000c93d64f5

Map volumes to a Linux host as described for XIV in 1.4, “Logical configuration for host connectivity” on page 31 or for FlashSystem A9000 and A9000R, described in 2.4, “Logical configuration for host connectivity” on page 64.

Tip: For Intel host systems, the Host Attachment Kit can create the host object and host port objects for you automatically from the Linux operating system. For more information, see 4.2.4, “Attaching volumes to an Intel x86 host using the Host Attachment Kit” on page 132.

4.2.4 Attaching volumes to an Intel x86 host using the Host Attachment Kit

You can attach the volumes to an Intel x86 host by using a Host Attachment Kit.

Installing the Host Attachment Kit

For multipathing with Linux, FlashSystem A9000, A9000R, and XIV, IBM provides a single, unified Host Attachment Kit. This section explains how to install the Host Attachment Kit on a Linux server.

Consideration: Although manually configuring Linux on Intel x86 servers for the attachment is possible, IBM strongly recommends using the Host Attachment Kit. The kit not only automates the host definition and LUN mappings but also provides valuable data collection and troubleshooting tools.

At the time of writing, Host Attachment Kit version 2.8 is the current version for Linux.

Some additional troubleshooting checklists and tips are available in 4.4, “Troubleshooting and monitoring” on page 159.

Download the latest Host Attachment Kit for Linux from Fix Central:

http://www.ibm.com/support/fixcentral/

To install the Host Attachment Kit, extra Linux packages are required. These software packages are supplied on the installation media of the supported Linux distributions. If required software packages are missing on your host, the installation terminates. You are notified of the missing package.
The required packages are listed in Figure 4-2.

<table>
<thead>
<tr>
<th>Required OS packages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL/CentOS</td>
</tr>
<tr>
<td>device-mapper-multipath</td>
</tr>
<tr>
<td>sg3_utils</td>
</tr>
</tbody>
</table>

Attention: The installation may fail if any required OS package is missing.

<table>
<thead>
<tr>
<th>Optional OS packages (iSCSI support):</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL/CentOS</td>
</tr>
<tr>
<td>iscsi-initiator-utils</td>
</tr>
</tbody>
</table>

Consideration: Illustrations and examples are based on version 2.6, a recent version of the Linux Host Attachment Kit.

Ensure that all of the listed packages are installed on your Linux system before you install the Host Attachment Kit.

To install the Host Attachment Kit, complete the following steps:

1. Copy the downloaded package to your Linux server
2. Open a terminal session
3. Change to the directory where the package is located.
4. Extract and install Host Attachment Kit by using the commands that are shown in Example 4-12.

### Example 4-12 Installing the Host Attachment Kit package

```bash
tar -xvzf IBM_Storage_Host_Attachment_Kit_2.8.0-b2850_Linux_x86-64.tar.gz
HAK_2.8.0/
HAK_2.8.0/scripts/
HAK_2.8.0/scripts/platform.linux.sh
HAK_2.8.0/scripts/motd.linux.txt
HAK_2.8.0/scripts/pkginst.linux.sh
HAK_2.8.0/scripts/is_installed.linux.sh
HAK_2.8.0/scripts/xpyv_upgrade.py
HAK_2.8.0/scripts/postinst.linux.sh
HAK_2.8.0/packages/
HAK_2.8.0/packages/pkg.list
HAK_2.8.0/packages/host_attach-2.8.0-b2850.x86_64.rpm
HAK_2.8.0/packages/tools.list
HAK_2.8.0/packages/platform.list
HAK_2.8.0/install.sh
cd HAK_2.8.0/
./install.sh
Welcome to the IBM Storage Host Attachment Kit installer.
```

Required OS packages:

```
+--------------------------+-----------------+
| RHEL/CentOS | SLES |
+--------------------------+-----------------+
```
Attention: The installation may FAIL if any required OS package is missing.

Optional OS packages (iSCSI support):

```
+--------------------------+-----------------+
| RHEL/CentOS | SLES |
| | open-iscsi |
```

Would you like to proceed and install the IBM Storage Host Attachment Kit? [Y/n]: y
Please wait while the installer validates your existing configuration...
Please wait as the IBM Storage Host Attachment Kit is being installed...
Installation successful.
Please refer to the user guide for information about how to configure this host.

The IBM Storage Host Attachment Kit includes the following utilities:
- **xiv_attach**: Interactive wizard that configures the host and verifies its configuration for connectivity with the IBM storage system.
- **xiv_devlist**: Lists all storage volumes that are mapped to the host, with general info about non-storage volumes.
- **xiv_syslist**: Lists all IBM storage systems that are detected by the host.
- **xiv_diag**: Performs complete diagnostics of the host and its connectivity with the IBM storage system, and saves the information to a file.
- **xiv_fc_admin**: Allows you to perform different administrative operations for FC-connected hosts and IBM storage systems.
- **xiv_iscsi_admin**: Allows you to perform different administrative operations for iSCSI-connected hosts and IBM storage systems.
- **xiv_host_profiler**: Collects host configuration information and performs a comprehensive analysis of the collected information.

The name of the archive, and thus the name of the directory that is created when you extract it, differs depending on the following items:

- Your Host Attachment Kit version
- Linux distribution
- Hardware platform

The installation script prompts you for this information. After you run the script, review the installation log file (install.log) in the same directory.

The Host Attachment Kit provides the utilities that you need to configure the Linux host for attachment. They are in the /opt/xiv/host_attach directory.

**Remember:** You must be logged in as root or have root privileges to use the Host Attachment Kit. The Host Attachment Kit uses Python for both the installation and uninstallation actions. Python is part of most installation distributions.
The main executable files and scripts are in the /opt/xiv/host_attach/bin directory. The installation script includes this directory in the command search path of the user root. Therefore, the commands can be run from every working directory.

**Configuring the host for Fibre Channel using the Host Attachment Kit**

Use the **xiv_attach** command to configure the Linux host. You can also create the storage system host object and host ports on the system itself. To do so, you must have a user ID and password for each storage system administrator account. Example 4-13 illustrates how **xiv_attach** works for Fibre Channel attachment. Your output can differ depending on your configuration.

**Example 4-13 Fibre Channel host attachment configuration using the xiv_attach command**

```
[root@localhost HAK_2.8.0]# xiv_attach

Welcome to the IBM Storage Host Attachment wizard, version 2.8.0.
This wizard will help you attach this host to one or more IBM storage systems
The wizard will now validate the host configuration for the IBM storage system.
Press [ENTER] to proceed.

Please specify the connectivity type: [f]c / [i]scsi : f

Please wait while the wizard validates your existing configuration...
Verifying multipath - multipath.conf OK
Verifying multipath service(s) NOT OK

The wizard needs to configure this host for the IBM storage system.
Do you want to proceed? [default: yes]:
Please wait while the host is being configured...

Configuring multipath - multipath.conf OK
Configuring multipath service(s) OK
The host is now configured for the IBM storage system
no crontab for root

Creating a host profile enables focused and better support for your host.
Would you like to add a scheduled task for host profile creation? [default: yes]:
A scheduled task for xiv_host_profiler has been added.

Please define zoning for this host and add its World Wide Port Names (WWPNs) to the IBM storage system:
21:00:00:1b:32:8b:da:1f: [QLOGIC]: N/A
21:01:00:1b:32:ab:da:1f: [QLOGIC]: N/A
21:00:00:1b:32:8b:0c:1d: [QLOGIC]: N/A
21:01:00:1b:32:ab:0c:1d: [QLOGIC]: N/A
Press [ENTER] to proceed.

Would you like to rescan for new storage devices? [default: yes]:
Please wait while rescanning for IBM storage devices...

This host is connected to the following IBM storage arrays:
```
```
This host is not defined on some FC-attached IBM storage systems. Do you want to define this host on these IBM storage systems now? [default: yes]:

Please enter a name for this host [default: localhost.localdomain]: x3650-m2-23

Please enter a username for system 1340010 [default: admin]:
Please enter the password of user admin for system 1340010:

Please enter a username for system 1322131 [default: admin]:
Please enter the password of user admin for system 1322131:

Please enter a username for system 1340008 [default: admin]:
Please enter the password of user admin for system 1340008:

Please enter a username for system 1320902 [default: admin]:
Please enter the password of user admin for system 1320902:

Press [ENTER] to proceed.

The IBM Storage Host Attachment wizard has successfully configured this host.
Press [ENTER] to exit.

Configuring the host for iSCSI using the Host Attachment Kit

Use the xiv_attach command to configure the host for iSCSI attachment of the volumes. First, make sure that the iSCSI service is running with the command service iscsi start.

Example 4-14 shows output when you run xiv_attach. Again, your output can differ depending on your configuration.

Example 4-14 iSCSI host attachment configuration using the xiv_attach command

xiv_attach

Welcome to the IBM Storage Host Attachment wizard, version 2.8.0.
This wizard will help you attach this host to one or more IBM storage systems

The wizard will now validate the host configuration for the IBM storage system. Press [ENTER] to proceed.

Please specify the connectivity type: [f]c / [i]scsi : i
Would you like to enable host-side acceleration? (A scheduled task will be created) [default: no]:

Please wait while the wizard validates your existing configuration...
Verifying multipath - multipath.conf OK
Verifying multipath service(s) OK
Verifying iSCSI initiator name - initiatorname.iscsi OK
Verifying iSCSI daemon - iscsid.conf OK
Verifying iSCSI service OK
This host is already configured for the IBM storage system.

Discovering new iSCSI targets ...

Would you like to discover a new iSCSI target? [default: yes]:
Please enter an IBM storage system iSCSI discovery address (iSCSI interface): 9.155.116.205
Is this host defined to use CHAP authentication with the IBM storage system? [default: no]:
Would you like to discover a new iSCSI target? [default: yes]:
Please enter an IBM storage system iSCSI discovery address (iSCSI interface): 9.155.120.20
Is this host defined to use CHAP authentication with the IBM storage system? [default: no]:
Would you like to discover a new iSCSI target? [default: yes]: no
Would you like to rescan for new storage devices? [default: yes]:

This host is connected to the following IBM storage arrays:

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Serial</th>
<th>System Version</th>
<th>Host Defined</th>
<th>Ports Defined</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>1340010</td>
<td>11.6.2</td>
<td>No</td>
<td>No ports defined</td>
<td>FC</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>1340008</td>
<td>11.6.2.a</td>
<td>No</td>
<td>No ports defined</td>
<td>FC</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlashSystem A9000</td>
<td>1322131</td>
<td>12.1.0.b</td>
<td>No</td>
<td>No ports defined</td>
<td>FC,iSCSI</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlashSystem A9000R</td>
<td>1320902</td>
<td>12.1.0.b</td>
<td>No</td>
<td>No ports defined</td>
<td>FC,iSCSI</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This host is not defined on some iSCSI-attached IBM storage systems.
Do you want to define this host on these IBM storage systems now? [default: yes]:
Please enter a name for this host [default: localhost.localdomain]: x3650-m2-23-iSCSI

Please enter a username for system 1322131 [default: admin]:
Please enter the password of user admin for system 1322131:

Please enter a username for system 1320902 [default: admin]:
Please enter the password of user admin for system 1320902:

Press [ENTER] to proceed.

The IBM Storage Host Attachment wizard has successfully configured this host.
4.2.5 Checking attached volumes

The Host Attachment Kit provides tools to verify mapped volumes. You can also use native Linux commands to do so.

Example 4-15 shows use of the Host Attachment Kit to verify the volumes for an iSCSI attached volume. The `xiv_devlist` command lists all devices that are attached to a host.

Example 4-15 Verifying mapped LUNs using the Host Attachment Kit tool with iSCSI

```bash
# xiv_devlist
IBM storage devices
----------------------------------------------------------------------------------
------------------------------------
Device                  Size (GB)  Paths  Vol Name            Vol ID  Storage ID
Storage Type       Hyper-Scale Mobility
----------------------------------------------------------------------------------
------------------------------------
/dev/mapper/mpatha     50.1       3/3    x3650-m2-23-iSCSI-1  14405  1322131
FlashSystem A9000  Idle
----------------------------------------------------------------------------------
------------------------------------
Non-IBM storage devices
...
```

Tip: The `xiv_attach` command already enables and configures multipathing. Therefore, the `xiv_devlist` command shows only multipath devices.

If you want to see the individual devices that represent each of the paths to a volume, use the `lsscsi` command. This command shows any volumes that are attached to the Linux system.

Example 4-16 shows that Linux recognized three devices. By looking at the SCSI addresses in the first column, you can determine that there actually is one volume. This volume is connected through three paths. Linux creates a SCSI disk device for each of the paths.

Example 4-16 Listing attached SCSI devices

```bash
# lsscsi |grep /dev/sd|grep 2810XIV
[19:0:0:1]   disk    IBM     2810XIV          0000  /dev/sde
[20:0:0:1]   disk    IBM     2810XIV          0000  /dev/sdf
[21:0:0:1]   disk    IBM     2810XIV          0000  /dev/sdg
```
Linux SCSI addressing explained

The quadruple in the first column of the `lsscsi` output is the internal Linux SCSI address. It is, for historical reasons, like a traditional parallel SCSI address. It consists of these fields:

- **HBA ID:** Each HBA in the system gets a host adapter instance when it is initiated. The instance is assigned regardless of whether it is parallel SCSI, Fibre Channel, or even a SCSI emulator.
- **Channel ID:** This field is always zero. It was formerly used as an identifier for the channel in multiplexed parallel SCSI HBAs.
- **Target ID:** For parallel SCSI, this is the real target ID that you set by using a jumper on the disk drive. For Fibre Channel, it represents a remote port that is connected to the HBA. This ID distinguishes between multiple paths, and between multiple storage systems.
- **LUN:** Logical unit numbers (LUNs) are rarely used in parallel SCSI. In Fibre Channel, they are used to represent a single volume that a storage system offers to the host. The LUN is assigned by the storage system.

Figure 4-3 illustrates how the SCSI addresses are generated.

Identifying a particular device

The `udev` subsystem creates device nodes for all attached devices. For disk drives, it not only sets up the traditional `/dev/sdx` nodes, but also some other representatives. The most useful ones are the in `/dev/disk/by-id` and `/dev/disk/by-path` locations.

The nodes for the volumes in `/dev/disk/by-id` show a unique identifier. This identifier is composed of parts of the following numbers (Example 4-17 on page 140):

- The worldwide node name (WWNN) of the system
- The volume serial number in hexadecimal notation
Example 4-17 The /dev/disk/by-id device nodes

```
x3650lab9:~ # ls -l /dev/disk/by-id/ | cut -c 44-
... 
scsi-20017380000cb051f -> ../../sde
scsi-20017380000cb0520 -> ../../sdf
scsi-20017380000cb2d57 -> ../../sdb
scsi-20017380000cb3af9 -> ../../sda
scsi-20017380000cb3af9-part1 -> ../../sda1
scsi-20017380000cb3af9-part2 -> ../../sda2
... 
```

Remember: The WWNN of the system that is used in the examples is 0x5001738000cb0000. It has three zeros between the vendor ID and the system ID, whereas the representation in /dev/disk/by-id has four zeros.

The volume with the serial number 0x3af9 has two partitions. It is the system disk. Partitions show up in Linux as individual block devices.

The udev subsystem already recognizes that there is more than one path to each volume. It creates only one node for each volume instead of four.

Important: The device nodes in /dev/disk/by-id are persistent, whereas the /dev/sdx nodes are not. They can change when the hardware configuration changes. Do not use /dev/sdx device nodes to mount file systems or specify system disks.

The /dev/disk/by-path file contains nodes for all paths to all volumes. Here you can see the physical connection to the volumes. This connection starts with the PCI identifier of the HBAs through the remote port, represented by the WWPN, to the LUN of the volumes (Example 4-18).

Example 4-18 The /dev/disk/by-path device nodes

```
x3650lab9:~ # ls -l /dev/disk/by-path/ | cut -c 44-
... 
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0001000000000000 -> ../../sda
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0001000000000000-part1 -> ../../sda1
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0001000000000000-part2 -> ../../sda2
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0002000000000000 -> ../../sdb
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0003000000000000 -> ../../sdc
pci-0000:1c:00.0-fc-0x5001738000cb0191:0x0004000000000000 -> ../../sdh
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0001000000000000 -> ../../sdc
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0010000000000000 -> ../../sdc1
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0001000000000000-part1 -> ../../sdc2
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0002000000000000 -> ../../sdd
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0003000000000000 -> ../../sde
pci-0000:24:00.0-fc-0x5001738000cb0160:0x0004000000000000 -> ../../sdf
... 
```

Adding volumes to a Linux on z Systems system

Only in recent Linux distributions for z Systems does the zfcp driver automatically scan for connected volumes. This section shows how to configure the system so that the driver automatically makes specified volumes available when it starts. Volumes and their path information (the local HBA and storage system ports) are defined in configuration files.
In this example, Linux on z Systems has two FC HBAs assigned through z/VM. Determine the device numbers of these adapters (Example 4-19).

Example 4-19 FCP HBA device numbers in z/VM

```
#CP QUERY VIRTUAL FCP
FCP 0501 ON FCP 5A00 CHPID 8A SUBCHANNEL = 0000
...
FCP 0601 ON FCP 5B00 CHPID 91 SUBCHANNEL = 0001
...
```

The Linux on z Systems tool to list the FC HBAs is `lszfcp`. It shows the enabled adapters only. Adapters that are not listed correctly can be enabled by using the `chccwdev` command (Example 4-20).

Example 4-20 Listing and enabling Linux on z Systems FCP adapters

```
lnxvm01:~ # lszfcp
0.0.0.0501 host0

lnxvm01:~ # chccwdev -e 601
Setting device 0.0.0601 online
Done

lnxvm01:~ # lszfcp
0.0.0.0501 host0
0.0.0.0601 host1
```

For SUSE Linux Enterprise Server 10, the volume configuration files are in the `/etc/sysconfig/hardware` directory. There must be one for each HBA. Example 4-21 shows their naming scheme.

Example 4-21 HBA configuration files naming scheme example

```
lnxvm01:~ # ls /etc/sysconfig/hardware/ | grep zfcp
hwcfg-zfcp-bus-ccw-0.0.0501
hwcfg-zfcp-bus-ccw-0.0.0601
```

Important: The configuration file that is described here is used with SUSE Linux Enterprise Server 9 and SUSE Linux Enterprise Server 10. SUSE Linux Enterprise Server 11 uses udev rules. These rules are automatically created by YAST when you use it to discover and configure SAN-attached volumes. They are complicated and not well documented yet, so use YAST.
The configuration files contain a remote (XIV) port and LUN pair for each path to each volume. Example 4-22 defines two XIV volumes to the HBA 0.0.0501, going through two XIV host ports.

Example 4-22 HBA configuration file example

```
# lnxvm01:~ # cat /etc/sysconfig/hardware/hwcfg-zfcp-bus-ccw-0.0.0501
#!/bin/sh
#
# hwcfg-zfcp-bus-ccw-0.0.0501
#
# Configuration for the zfcp adapter at CCW ID 0.0.0501
#
...
# Configured zfcp disks
ZFCP_LUNS="
0x5001738000cb0191:0x0001000000000000
0x5001738000cb0191:0x0002000000000000
0x5001738000cb0191:0x0003000000000000
0x5001738000cb0191:0x0004000000000000"
```

The `ZFCP_LUNS="..."` statement in the file defines all the remote port to volume relations (paths) that the zfcp driver sets up when it starts. The first term in each pair is the WWPN of the XIV host port. The second term (after the colon) is the LUN id of the XIV volume. It is padded with zeros until it reaches a length of 8 bytes.

Red Hat Enterprise Linux uses the `/etc/zfcp.conf` file to configure SAN-attached volumes. It contains the same information in a different format (Example 4-23). The three final lines in the example are comments that explain the format. They do not have to be present in the file.

Example 4-23 Format of the `/etc/zfcp.conf` file for Red Hat Enterprise Linux

```
# lnxvm01:~ # cat /etc/zfcp.conf
0x0501 0x5001738000cb0191 0x0001000000000000
0x0501 0x5001738000cb0191 0x0002000000000000
0x0501 0x5001738000cb0191 0x0003000000000000
0x0501 0x5001738000cb0191 0x0004000000000000
0x0601 0x5001738000cb0160 0x0001000000000000
0x0601 0x5001738000cb0160 0x0002000000000000
0x0601 0x5001738000cb0160 0x0003000000000000
0x0601 0x5001738000cb0160 0x0004000000000000
```

<table>
<thead>
<tr>
<th>FCP HBA</th>
<th>LUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote (XIV) Port</td>
<td></td>
</tr>
</tbody>
</table>

4.2.6 Setting up Device Mapper Multipathing

To gain redundancy and optimize performance, connect a server to a storage system through more than one HBA, fabric, and storage port. This results in multiple paths from the server to each attached volume. Linux detects such volumes more than once, and creates a device node for every instance. You need an extra layer in the Linux storage stack to recombine the multiple disk instances into one device.

Linux now has its own native multipathing solution. It is based on the Device Mapper, a block device virtualization layer in the Linux kernel, and is called DM-MP. The Device Mapper is also used for other virtualization tasks such as the logical volume manager, data encryption, snapshots, and software RAID.
DM-MP is able to manage path failover and failback, and load balancing for various storage architectures. Figure 4-4 illustrates how DM-MP is integrated into the Linux storage stack.

In simplified terms, DM-MP consists of four main components:

- The `dm-multipath` kernel module takes the I/O requests that go to the multipath device and passes them to the individual devices that represent the paths.
- The `multipath` tool scans the device (path) configuration and builds the instructions for the Device Mapper. These instructions include the composition of the multipath devices, failover and failback patterns, and load balancing behavior. This tool is being moved to the multipath background daemon, and will disappear in the future.
- The multipath background daemon `multipathd` constantly monitors the state of the multipath devices and the paths. If an event occurs, it triggers failover and failback activities in the `dm-multipath` module. It also provides a user interface for online reconfiguration of the multipathing. In the future, it will take over all configuration and setup tasks.
- A set of rules that tells `udev` what device nodes to create so that multipath devices can be accessed and are persistent.

Configuring DM-MP

You can use the `/etc/multipath.conf` file to configure DM-MP to your requirements:

- Define new storage device types
- Exclude certain devices or device types
- Set names for multipath devices
- Change error recovery behavior
The /etc/multipath.conf file is not described in detail here. For more information, see the publications in 4.1.2, "Reference material" on page 120. For more information about the settings for attachment, see 4.2.7, "Special considerations for attachment" on page 149.

One option, however, that shows up several times in the next sections needs some explanation. You can tell DM-MP to generate “user-friendly” device names by specifying this option in the /etc/multipath.conf file, as Example 4-24 shows.

Example 4-24 Specifying user-friendly names in /etc/multipath.conf

```plaintext
defaults {
  ...
  user_friendly_names yes
  ...
}
```

The names created this way are persistent. They do not change even if the device configuration changes. If a volume is removed, its former DM-MP name is not used again for a new one. If it is reattached, it gets its old name. The mappings between unique device identifiers and DM-MP user-friendly names are stored in file /var/lib/multipath/bindings.

Tip: The user-friendly names differ for SUSE Linux Enterprise Server and Red Hat Enterprise Linux. They are explained in their respective sections.

Enabling multipathing for SUSE Linux Enterprise Server 11

Important: If you install and use the Host Attachment Kit on an Intel x86 based Linux server, you do not have to set up and configure DM-MP. The Host Attachment Kit tools configure DM-MP for you.

You can start Device Mapper Multipathing by running two start scripts (Example 4-25).

Example 4-25 Starting DM-MP in SUSE Linux Enterprise Server 11

```plaintext
x3650lab9:~ # /etc/init.d/boot.multipath start
Creating multipath target done
x3650lab9:~ # /etc/init.d/multipathd start
Starting multipathd done
```

To have DM-MP start automatically at each system start, add these start scripts to the SUSE Linux Enterprise Server 11 system start process (Example 4-26).

Example 4-26 Configuring automatic start of DM-MP in SUSE Linux Enterprise Server 11

```plaintext
x3650lab9:~ # insserv boot.multipath
x3650lab9:~ # insserv multipathd
```
Enabling multipathing for Red Hat Enterprise Linux 5

Red Hat Enterprise Linux includes a default /etc/multipath.conf file. It contains a section that blacklists all device types. You must remove or comment out these lines to make DM-MP work. A # sign in front of them will mark them as comments so they are ignored the next time DM-MP scans for devices (Example 4-27).

Example 4-27 Disabling the blacklisting of all devices in /etc/multipath.conf

```
...  
# Blacklist all devices by default. Remove this to enable multipathing # on the default devices.
#blacklist {
#devnode "*"
#}
...
```

Start DM-MP (Example 4-28).

Example 4-28 Starting DM-MP in Red Hat Enterprise Linux 5

```
[root@x3650lab9 ~]# /etc/init.d/multipathd start
Starting multipathd daemon: [  OK  ]
```

To have DM-MP start automatically at each system start, add the start script, shown in Example 4-29, to the Red Hat Enterprise Linux 5 system start process.

Example 4-29 Configuring automatic start of DM-MP in Red Hat Enterprise Linux 5

```
[root@x3650lab9 ~]# chkconfig --add multipathd
[root@x3650lab9 ~]# chkconfig --levels 35 multipathd on
[root@x3650lab9 ~]# chkconfig --list multipathd
multipathd      0:off   1:off   2:off   3:on    4:off   5:on    6:off
```

Checking and changing the DM-MP configuration

The multipath background daemon provides a user interface to print and modify the DM-MP configuration. It can be started as an interactive session with the `multipathd -k` command. Within this session, various options are available. Use the `help` command to get a list. Some of the more important options are shown in the following examples. For more information, see 4.3, “Nondisruptive SCSI reconfiguration” on page 151.

The `show topology` command (Example 4-30) prints a detailed view of the current DM-MP configuration, including the state of all available paths.

Example 4-30 Showing multipath topology

```
x3650lab9:" # multipathd -k"show top"
20017380000cb0520 dm-4 IBM,2810XIV
[size=16G][features=0][hwhandler=0]
 \ round-robin 0 [prio=1][active]
  \ 0:0:0:4 sdh 8:112 [active][ready]
  \ round-robin 0 [prio=1][enabled]
  \ 1:0:0:4 sdf 8:80  [active][ready]
20017380000cb051f dm-5 IBM,2810XIV
[size=16G][features=0][hwhandler=0]
 \ round-robin 0 [prio=1][active]
  \ 0:0:0:3 sdc 8:96  [active][ready]
  \ round-robin 0 [prio=1][enabled]
```
The multipath topology in Example 4-30 on page 145 shows that the paths of the multipath devices are in separate path groups. Thus, there is no load balancing between the paths. DM-MP must be configured with a special multipath.conf file to enable load balancing. For more information, see 4.2.7, “Special considerations for attachment” on page 149 and “Multipathing” on page 123. The Host Attachment Kit does this configuration automatically if you use it for host configuration.

You can use the reconfigure command (Example 4-31) to tell DM-MP to update the topology after it scans the paths and configuration files. Use it to add new multipath devices after you add new volumes. For more information, see 4.3.1, “Adding and removing volumes dynamically” on page 151.

Example 4-31 Reconfigure DM-MP

multipathd> reconfigure
ok

Important: The multipathd -k command prompt of SUSE Linux Enterprise Server 11 SP1 supports the quit and exit commands to terminate. The command prompt of Red Hat Enterprise Linux 5U5 is a little older and must still be terminated by using the Ctrl+D key combination.

Although the multipath -l and multipath -ll commands can be used to print the current DM-MP configuration, use the multipathd -k interface. The multipath tool is being removed from DM-MP, and all further development and improvements will go into multipathd.

Tip: You can also issue commands in a “one-shot-mode” by enclosing them in quotation marks and typing them directly, without space, after the multipath -k. Here is an example:

multipathd -k"show paths"

Enabling multipathing for Red Hat Enterprise Linux 6 and 7

Unlike Red Hat Enterprise Linux 5, Red Hat Enterprise Linux 6 and 7 includes a new utility, mpathconf, that creates and modifies the /etc/multipath.conf file.

This command, illustrated in Figure 4-5, enables the multipath configuration file.

mpathconf --enable --with_multipathd y

Figure 4-5 The mpathconf command
Be sure to start and enable the `multipathd` daemon, as shown in Figure 4-6.

```
#service multipathd start
#chkconfig multipathd on
```

Figure 4-6 Commands to ensure that multipathd is started and enabled at boot

Because the value of `user_friendly_name` in Red Hat Enterprise Linux 6 and 7 is set to `yes` in the default configuration file, the multipath devices are created as follows (where `n` is an alphabetic letter that designates the path):

```
/dev/mapper/mpathn
```

Red Hat has released numerous enhancements to the device-mapper-multipath drivers that were included starting with Red Hat Enterprise Linux 6. Make sure to install and update to the latest version, and download any bug fixes.

Accessing DM-MP devices in SUSE Linux Enterprise Server 11

The device nodes that you use to access DM-MP devices are created by `udev` in the `/dev/mapper` directory. If you do not change any settings, SUSE Linux Enterprise Server 11 uses the unique identifier of a volume as device name, as shown in Example 4-32.

Example 4-32 Multipath devices in SUSE Linux Enterprise Server 11 in /dev/mapper

```
x3650lab9:~ # ls -l /dev/mapper | cut -c 48-20017380000cb051f
20017380000cb0520
20017380000cb2d57
20017380000cb3af9
... 
```

Important: The Device Mapper creates its default device nodes in the `/dev` directory. They are called `/dev/dm-0`, `/dev/dm-1`, and so on. These nodes are not persistent. They can change with configuration changes and should not be used for device access.

SUSE Linux Enterprise Server 11 creates an extra set of device nodes for multipath devices. It overlays the former single path device nodes in `/dev/disk/by-id`. Any device mappings you did for one of these nodes before starting DM-MP are not affected. It uses the DM-MP device instead of the SCSI disk device, as illustrated in Example 4-33.

Example 4-33 SUSE Linux Enterprise Server 11 DM-MP device nodes in /dev/disk/by-id

```
x3650lab9:~ # ls -l /dev/disk/by-id/ | cut -c 44-
scsi-20017380000cb051f -> ../../dm-5
scsi-20017380000cb0520 -> ../../dm-4
scsi-20017380000cb2d57 -> ../../dm-0
scsi-20017380000cb3af9 -> ../../dm-1
... 
```

If you set the `user_friendly_name` option in the `/etc/multipath.conf` file, SUSE Linux Enterprise Server 11 creates DM-MP devices with the names `mpatha`, `mpathb`, and so on, in `/dev/mapper`. The DM-MP device nodes in `/dev/disk/by-id` are not changed. They also have the unique IDs of the volumes in their names.
Accessing DM-MP devices in Red Hat Enterprise Linux

Red Hat Enterprise Linux sets the `user_friendly_name` option in its default `/etc/multipath.conf` file. The devices that it creates in `/dev/mapper` look as shown in Example 4-34.

Example 4-34 Multipath devices in Red Hat Enterprise Linux 5 in /dev/mapper

```
[root@x3650lab9 ~]# ls -l /dev/mapper/ | cut -c 45-
mpath1
mpath2
mpath3
mpath4
```

Example 4-35 show the output from an Red Hat Enterprise Linux 6 system.

Example 4-35 Red Hat Enterprise Linux 6 device nodes in /dev/mpath

```
[root@x3650lab9 ~]# ls -l /dev/mpath/ | cut -c 39-
20017380000cb051f -> ../../dm-5
20017380000cb0520 -> ../../dm-4
20017380000cb2d57 -> ../../dm-0
20017380000cb3af9 -> ../../dm-1
```

A second set of device nodes contains the unique IDs of the volumes in their name, regardless of whether user-friendly names are specified.

In Red Hat Enterprise Linux 5, you find them in the `/dev/mpath` directory (Example 4-36).

Example 4-36 Red Hat Enterprice Linux 6 Multipath devices

```
mpatha -> ../dm-2
mpathap1 -> ../dm-3
mpathap2 -> ../dm-4
mpathap3 -> ../dm-5
mpathc -> ../dm-6
mpathd -> ../dm-7
```

In Red Hat Enterprise Linux 6 and 7, you find them in `/dev/mapper` (Example 4-37).

Example 4-37 Red Hat Enterprise Linux 6 and 7 device nodes in /dev/mapper

```
# ls -l /dev/mapper/ | cut -c 43-
mpatha -> ../dm-2
mpathap1 -> ../dm-3
mpathap2 -> ../dm-4
mpathap3 -> ../dm-5
mpathc -> ../dm-6
mpathd -> ../dm-7
```
Using multipath devices

You can use the device nodes that are created for multipath devices just like any other block device:

- Create a file system and mount it.
- Use them with the Logical Volume Manager (LVM).
- Build software RAID devices.

You can also partition a DM-MP device by using the `fdisk` command or any other partitioning tool. To make new partitions on DM-MP devices available, use the `partprobe` command. It triggers udev to set up new block device nodes for the partitions as shown in Example 4-38.

Example 4-38 Using the partprobe command to register newly created partitions

```
x3650lab9:~ # fdisk /dev/mapper/20017380000cb051f
...
<x all steps to create a partition and write the new partition table>
...
x3650lab9:~ # ls -l /dev/mapper/ | cut -c 48-

20017380000cb051f
20017380000cb0520
20017380000cb2d57
20017380000cb3af9
...
x3650lab9:~ # partprobe
x3650lab9:~ # ls -l /dev/mapper/ | cut -c 48-

20017380000cb051f
20017380000cb051f-part1
20017380000cb0520
20017380000cb2d57
20017380000cb3af9
...
```

Example 4-38 was created with SUSE Linux Enterprise Server 11. The method also works for Red Hat Enterprise Linux 5, but the partition names might differ.

Remember: This limitation, that LVM by default does not work with DM-MP devices, does not exist in recent Linux versions.

4.2.7 Special considerations for attachment

This section addresses special considerations that apply to FlashSystem A9000, A9000R, and XIV.

Configuring multipathing

The Host Attachment Kit updates the `/etc/multipath.conf` file during installation to optimize use for FlashSystem A9000, A9000R, or XIV. If you must manually update the file, the contents of this file as it is created by the Host Attachment Kit are described next. The settings that are relevant for the storage systems are shown in Example 4-39 on page 150.
Example 4-39 DM-MP settings for XIV

x36501ab9:~ # cat /etc/multipath.conf
devices {
 device {
 vendor "IBM"
 product "2810XIV"
 selector "round-robin 0"
 path_grouping_policy multibus
 rr_min_io 15
 path_checker tur
 failback 15
 no_path_retry queue
 polling_interval 3
 }
}

The user_friendly_name parameter is addressed in 4.2.6, “Setting up Device Mapper Multipathing” on page 142. You can add it to file or leave it out. The values for failback, no_path_retry, path_checker, and polling_interval control the behavior of DM-MP in case of path failures. Normally, do not change them. If your situation requires a modification of these parameters, see the publications that are listed in 4.1.2, “Reference material” on page 120. The rr_min_io setting specifies the number of I/O requests that are sent to one path before switching to the next one. The value of 15 gives good load balancing results in most cases. However, you can adjust it as necessary.

Important: Upgrading or reinstalling the Host Attachment Kit does not change the multipath.conf file. Ensure that your settings match the values that were shown previously.

z Systems specific multipathing settings

Testing of Linux on z Systems with multipathing has shown that for best results, set the parameters as follows:

- dev_loss_tmo parameter to 90 seconds
- fast_io_fail_tmo parameter to 5 seconds

Modify the /etc/multipath.conf file and add the settings that are shown in Example 4-40.

Example 4-40 z Systems specific multipathing settings

```
... defaults {
... dev_loss_tmo 90
... fast_io_fail_tmo 5
...
}
...
```

Make the changes effective by using the reconfigure command in the interactive multipathd -k prompt.
Disabling QLogic failover

The QLogic HBA kernel modules have limited built-in multipathing capabilities. Because multipathing is managed by DM-MP, make sure that the QLogic failover support is disabled. To check, use the `modinfo qla2xxx` command (Example 4-41).

Example 4-41 Checking for enabled QLogic failover

```
x3650lab9:~ # modinfo qla2xxx | grep version
version: 8.03.01.04.05-k
srcversion: A2023F2884100228981F34F
```

If the version string ends with `-fo`, the failover capabilities are turned on and must be disabled. To do so, add a line to the `/etc/modprobe.conf` file of your Linux system as illustrated in Example 4-42.

Example 4-42 Disabling QLogic failover

```
x3650lab9:~ # cat /etc/modprobe.conf
... 
options qla2xxx ql2xfailover=0
... 
```

After you modify this file, run the `depmod -a` command to refresh the kernel driver dependencies. Then, reload the `qla2xxx` module to make the change is effective. If you include the `qla2xxx` module in the InitRAMFS, you must create a new one.

4.3 Nondisruptive SCSI reconfiguration

This section highlights actions that can be taken on the attached host in a nondisruptive manner.

4.3.1 Adding and removing volumes dynamically

Unloading and reloading the Fibre Channel HBA used to be the typical way to discover newly attached volumes. However, this action is disruptive to all applications that use Fibre Channel-attached disks on this particular host.

With a modern Linux system, you can add newly attached LUNs without unloading the FC HBA driver. You use a command interface that is provided by `sysfs` (Example 4-43).

Example 4-43 Scanning for new Fibre Channel attached devices

```
x3650lab9:~ # ls /sys/class/fc_host/
host0 host1
x3650lab9:~ # echo "- - -" > /sys/class/scsi_host/host0/scan
x3650lab9:~ # echo "- - -" > /sys/class/scsi_host/host1/scan
```

First, discover which SCSI instances your FC HBAs have, then issue a `scan` command to their `sysfs` representatives. The triple dashes (`"- - -"`) represent the Channel-Target-LUN combination to scan. A dash causes a scan through all possible values. A number would limit the scan to the provided value. With more recent Linux versions, you can use `rescan-scsi-bus.sh` script to scan.

Tip: If the Host Attachment Kit is installed, you can use the `xiv_fc_admin -R` or `xiv_iscsi_admin -R` command to scan for new volumes.
New disk devices that are discovered this way automatically get device nodes and are added to DM-MP.

Tip: For some older Linux versions, you must force the FC HBA to run a port login to recognize the newly added devices. Use the following command, which must be issued to all FC HBAs:

```bash
echo 1 > /sys/class/fc_host/host<ID>/issue_lip
```

If you want to remove a disk device from Linux, follow this sequence to avoid system hangs because of incomplete I/O requests:

1. Stop all applications that use the device and make sure that all updates or writes are completed.
2. Unmount the file systems that use the device.
3. If the device is part of an LVM configuration, remove it from all logical volumes and volume groups.
4. Remove all paths to the device from the system (Example 4-44).

```
Example 4-44 Removing both paths to a disk device

```x3650lab9:~ # echo 1 > /sys/class/scsi_disk/0:0:0:3/device/delete
x3650lab9:~ # echo 1 > /sys/class/scsi_disk/1:0:0:3/device/delete
```n

The device paths (or disk devices) are represented by their Linux SCSI address. For more information, see “Linux SCSI addressing explained” on page 139. Run the `multipathd -k"show topology"` command after you remove each path to monitor the progress.

DM-MP and udev recognize the removal automatically, and delete all corresponding disk and multipath device nodes. You must remove all paths that exist to the device before you detach the device on the storage system level.

You can use `watch` to run a command periodically for monitoring purposes. This example allows you to monitor the multipath topology with a period of one second:

```
watch -n 1 'multipathd -k"show top"'
```

### 4.3.2 Adding and removing volumes in Linux on z Systems

The mechanisms to scan and attach new volumes do not work the same in Linux on z Systems. Commands are available that discover and show the devices that are connected to the FC HBAs. However, they do not do the logical attachment to the operating system automatically. In SUSE Linux Enterprise Server 10 SP3, use the `zfcp_san_disc` command for discovery.

Example 4-45 on page 153 shows how to discover and list the connected volumes, in this case, one remote port or path, with the `zfcp_san_disc` command. You must run this command for all available remote ports.
Example 4-45  Listing LUNs connected through a specific remote port

```
lnxvm01:~ # zfcp_san_disc -L -p 0x5001738000cb0191 -b 0.0.0501
0x0001000000000000
0x0002000000000000
0x0003000000000000
0x0004000000000000
```

**Remember:** In more recent distributions, `zfcp_san_disc` is no longer available because remote ports are automatically discovered. The attached volumes can be listed by using the `lsluns` script.

After you discover the connected volumes, logically attach them using `sysfs` interfaces. Remote ports or device paths are represented in the `sysfs`. There is a directory for each local-remote port combination (path). It contains a representative of each attached volume and various meta files as interfaces for action. Example 4-46 shows such a `sysfs` structure for a specific port.

Example 4-46  The sysfs structure for a remote port

```
lnxvm01:~ # ls -l /sys/bus/ccw/devices/0.0.0501/0x5001738000cb0191/
```

```
total 0
```

```
...
```

```
--w------- 1 root root 4096 2010-12-03 13:26 unit_add
--w------- 1 root root 4096 2010-12-03 13:26 unit_remove
```

Add LUN 0x0003000000000000 to both available paths by using the `unit_add` metafile, as shown in Example 4-47.

Example 4-47  Adding a volume to all existing remote ports

```
lnxvm01:~ # echo 0x0003000000000000 > /sys/.../0.0.0501/0x5001738000cb0191/unit_add
lnxvm01:~ # echo 0x0003000000000000 > /sys/.../0.0.0501/0x5001738000cb160/unit_add
```

**Important:** You must run discovery by using `zfcp_san_disc` whenever new devices, remote ports, or volumes are attached. Otherwise, the system does not recognize them even if you do the logical configuration.

New disk devices that you attach this way automatically get device nodes and are added to DM-MP.

If you want to remove a volume from Linux on z Systems, complete the same steps as for the other platforms. These procedures avoid system hangs because of incomplete I/O requests:

1. Stop all applications that use the device, and make sure that all updates or writes are completed.
2. Unmount the file systems that use the device.
3. If the device is part of an LVM configuration, remove it from all logical volumes and volume groups.
4. Remove all paths to the device from the system.

Volumes can then be removed logically by using a method similar to attachment. Write the LUN of the volume into the `unit_remove` meta file for each remote port in `sysfs`. 
**4.3.3 Adding new storage system host ports to Linux on z Systems**

If you connect new ports or a new system to the Linux on z Systems system, you must logically attach the new remote ports. Discover the storage system ports that are connected to your HBAs as shown in Example 4-48.

**Example 4-48  Showing connected remote ports**

```bash
lnxvm01:~ # zfcp_san_disc -W -b 0.0.0501
0x5001738000cb0191
0x5001738000cb0170

lnxvm01:~ # zfcp_san_disc -W -b 0.0.0601
0x5001738000cb0160
0x5001738000cb0181
```

Attach the new ports logically to the HBAs. As Example 4-49 shows, a remote port is already attached to HBA 0.0.0501. Add the second connected port to the HBA.

**Example 4-49  Listing attached remote ports, attaching remote ports**

```bash
lnxvm01:~ # ls /sys/bus/ccw/devices/0.0.0501/ | grep 0x
0x5001738000cb0191

lnxvm01:~ # echo 0x5001738000cb0170 > /sys/bus/ccw/devices/0.0.0501/port_add

lnxvm01:~ # ls /sys/bus/ccw/devices/0.0.0501/ | grep 0x
0x5001738000cb0191
0x5001738000cb0170
```

Add the second new port to the other HBA in the same way (Example 4-50).

**Example 4-50  Attaching a remote port to the second HBA**

```bash
lnxvm01:~ # echo 0x5001738000cb0181 > /sys/bus/ccw/devices/0.0.0601/port_add
lnxvm01:~ # ls /sys/bus/ccw/devices/0.0.0601/ | grep 0x
0x5001738000cb0160
0x5001738000cb0181
```

**4.3.4 Resizing volumes dynamically**

You can use the additional capacity of dynamically enlarged volumes. Reducing the size is not supported. To resize volumes dynamically, complete the following steps:

1. Create a file system on one of the multipath devices and mount it. The `df` command in Example 4-51 shows the available capacity.

**Example 4-51  Checking the size and available space on a mounted file system**

```bash
x3650lab9:~ # df -h /mnt/itso_0520/
file system Size Used Avail Use% Mounted on
/dev/mapper/20017380000cb0520 16G 173M 15G 2% /mnt/itso_0520
```
2. Use the Hyper-Scale Manager (GUI) or XCLI to increase the capacity of the volume from 17 to 51 GB (decimal, as shown by the GUI). The Linux SCSI layer picks up the new capacity when you rescan each SCSI disk device (path) through `sysfs` (Example 4-52).

**Example 4-52  Rescanning all disk devices (paths) of a volume**

```bash
x3650lab9:~ # echo 1 > /sys/class/scsi_disk/0:0:0:4/device/rescan
x3650lab9:~ # echo 1 > /sys/class/scsi_disk/1:0:0:4/device/rescan
```

The message log shown in Example 4-53 indicates the change in capacity.

**Example 4-53  Linux message log indicating the capacity change of a SCSI device**

```bash
x3650lab9:~ # tail /var/log/messages
...
Oct 13 16:52:25 lnxvm01 kernel: [9927.105262] sd 0:0:0:4: [sdh] 100663296 512-byte logical blocks: (51.54 GB/48 GiB)
Oct 13 16:52:25 lnxvm01 kernel: [9927.105902] sdh: detected capacity change from 17179869184 to 51539607552
...
```

3. Indicate the device change to DM-MP by running the `resize_map` command of `multipathd`. The updated capacity is displayed in the output of `show topology` (Example 4-54).

**Example 4-54  Resizing a multipath device**

```bash
x3650lab9:~ # multipathd -k"resize map 20017380000cb0520"
ok
x3650lab9:~ # multipathd -k"show top map 20017380000cb0520" 20017380000cb0520 dm-4 IBM,2810XIV [size=48G] [features=1 queue_if_no_path] [hwhandler=0] _ round-robin 0 [prio=2] [active] _ 0:0:0:4 sdh 8:112 [active] [ready] _ 1:0:0:4 sdg 8:96 [active] [ready]
```

4. Resize the file system and check the new capacity as shown in Example 4-55.

**Example 4-55  Resizing file system and checking capacity**

```bash
x3650lab9:~ # resize2fs /dev/mapper/20017380000cb0520
resize2fs 1.41.9 (22-Aug-2009)
file system at /dev/mapper/20017380000cb0520 is mounted on /mnt/itso_0520; on-line resizing required
old_desc_blocks = 4, new_desc_blocks = 7
Performing an on-line resize of /dev/mapper/20017380000cb0520 to 12582912 (4k) blocks.
The file system on /dev/mapper/20017380000cb0520 is now 12582912 blocks long.
x3650lab9:~ # df -h /mnt/itso_0520/
file system Size Used Avail Use% Mounted on
/dev/mapper/20017380000cb0520 48G 181M 46G 1% /mnt/itso_0520
```
4.3.5 Using snapshots and remote replication targets

The snapshot and mirroring solutions create identical copies of the source volumes. The target has a unique identifier, which is made up from the WWNN of the system and volume serial number. Any metadata that is stored on the target, such as the file system identifier or LVM signature, however, is identical to that of the source. This metadata can lead to confusion and data integrity problems if you plan to use the target on the same Linux system as the source.

This section describes some methods to avoid integrity issues. It also highlights some potential traps that might lead to problems.

File system directly on a volume

The copy of a file system that is created directly on a SCSI disk device or a DM-MP device can be used on the same host as the source without modification. However, it cannot have an extra virtualization layer such as RAID or LVM. If you follow the sequence carefully and avoid the highlighted traps, you can use a copy on the same host without problems. The procedure is described on an ext3 file system on a DM-MP device that is replicated with a snapshot.

1. Mount the original file system as shown in Example 4-56 using a device node that is bound to the unique identifier of the volume. The device node cannot be bound to any metadata that is stored on the device itself.

Example 4-56   Mounting the source volume

```
x3650lab9:~ # mount /dev/mapper/20017380000cb0520 /mnt/itso_0520/
x3650lab9:~ # mount
```

```
... /dev/mapper/20017380000cb0520 on /mnt/itso_0520 type ext3 (rw)
```

2. Make sure that the data on the source volume is consistent by running the sync command.

3. Create the snapshot on the storage system, make it writable, and map the target volume to the Linux host. In the example, the snapshot source has the volume ID 0x0520, and the target volume has ID 0x1f93.

Restrictions: At the time of writing, the dynamic volume increase process has the following restrictions:

- It is not supported for Linux versions earlier than SUSE Linux Enterprise Server 11 SP1 and Red Hat Enterprise Linux 6.
- The sequence works only with unpartitioned volumes.
- The file system must be created directly on the DM-MP device.
- Only the modern file systems can be resized while they are mounted. The ext2 file system cannot.
4. Initiate a device scan on the Linux host. For more information, see 4.3.1, “Adding and removing volumes dynamically” on page 151. DM-MP automatically integrates the snapshot target (Example 4-57).

Example 4-57 Checking DM-MP topology for the target volume

```bash
x3650lab9:~ # multipathd -k "show top"
20017380000cb0520 dm-4 IBM,2810XIV
 [size=48G] [features=1 queue_if_no_path] [hwhandler=0]
 _ round-robin 0 [prio=2] [active]
 _ 0:0:0:4 sdh 8:112 [active] [ready]
 _ 1:0:0:4 sdi 8:128 [active] [ready]
 ...
20017380000cb1f93 dm-7 IBM,2810XIV
 [size=48G] [features=1 queue_if_no_path] [hwhandler=0]
 _ round-robin 0 [prio=2] [active]
 _ 0:0:0:5 sdi 8:128 [active] [ready]
 _ 1:0:0:5 sdi 8:144 [active] [ready]
 ...
```

5. Mount the target volume to a separate mount point by using a device node that is created from the unique identifier of the volume (Example 4-58).

Example 4-58 Mounting the target volume

```bash
x3650lab9:~ # mount /dev/mapper/20017380000cb1f93 /mnt/itso_fc/
x3650lab9:~ # mount
...
/dev/mapper/20017380000cb0520 on /mnt/itso_0520 type ext3 (rw)
/dev/mapper/20017380000cb1f93 on /mnt/itso_fc type ext3 (rw)
```

Now you can access both the original volume and the point-in-time copy through their respective mount points.

**Attention:** udev also creates device nodes that relate to the file system Universally Unique Identifier (UUID) or label. These IDs are stored in the data area of the volume, and are identical on both source and target. Such device nodes are ambiguous if the source and target are mapped to the host at the same time. Using them in this situation can result in data loss.

**File system in a logical volume managed by LVM**

The **Linux Logical Volume Manager** (LVM) uses metadata that is written to the data area of the disk device to identify and address its objects. If you want to access a set of replicated volumes that are under LVM control, modify this metadata so it is unique. This process ensures data integrity. Otherwise, LVM might mix volumes from the source and target sets.

A script named `vgimportclone.sh` is publicly available and automates the modification of the metadata. You can download it from this web page:


An online copy of the Linux man page for the script is available:


**Tip:** The `vgimportclone` script and commands are part of the standard LVM tools for recent Red Hat Enterprise Linux and SUSE Linux Enterprise Server versions.
Complete the following steps to ensure consistent data on the target volumes and avoid mixing up the source and target. In this example, a volume group contains a logical volume that is striped over two volumes. Snapshots are used to create a point-in-time copy of both volumes. Both the original logical volume and the cloned one are then made available to the Linux system. The serial numbers of the source volumes are 1fc5 and 1fc6, and the IDs of the target volumes are 1fe4 and 1fe5.

1. Mount the original file system by using the LVM logical volume device (Example 4-59).

   \textit{Example 4-59 Mounting the source volume}
   \begin{verbatim}
   x3650lab9:~ # mount /dev/vg_xiv/lv_itso /mnt/lv_itso
   x3650lab9:~ # mount
   ... /dev/mapper/vg_xiv-lv_itso on /mnt/lv_itso type ext3 (rw)
   \end{verbatim}

2. Make sure that the data on the source volume is consistent by running the \texttt{sync} command.

3. Create the snapshots on the storage system, unlock them, and map the target volumes 1fe4 and 1fe5 to the Linux host.

4. Initiate a device scan on the Linux host. For more information, see 4.3.1, “Adding and removing volumes dynamically” on page 151. DM-MP automatically integrates the snapshot targets as shown in Example 4-60.

   \textit{Example 4-60 Checking DM-MP topology for target volume}
   \begin{verbatim}
   x3650lab9:~ # multipathd -k "show topology"
   ... 20017380000cb1fe4 dm-9 IBM,2810XIV [size=32G][features=1 queue_if_no_path][hwhandler=0]
   \_ round-robin 0 [prio=2][active]
   \_ 0:0:0:6 sdk 8:160 [active][ready]
   \_ 1:0:0:6 sdm 8:192 [active][ready]
   20017380000cb1fe5 dm-10 IBM,2810XIV [size=32G][features=1 queue_if_no_path][hwhandler=0]
   \_ round-robin 0 [prio=2][active]
   \_ 0:0:0:7 sdl 8:176 [active][ready]
   \_ 1:0:0:7 sdn 8:208 [active][ready]
   \end{verbatim}

   \textbf{Important:} To avoid data integrity issues, be sure that no LVM configuration commands are issued until step 5 is complete.

5. Run the \texttt{vgimportclone.sh} script against the target volumes, and provide a new volume group name (Example 4-61).

   \textit{Example 4-61 Adjusting the LVM metadata of the target volumes}
   \begin{verbatim}
   x3650lab9:~ # ./vgimportclone.sh -n vg_itso_snap /dev/mapper/20017380000cb1fe4 /dev/mapper/20017380000cb1fe5
   WARNING: Activation disabled. No device-mapper interaction will be attempted.
   Physical volume "/tmp/snap.sHT13587/vgimport1" changed
   1 physical volume changed / 0 physical volumes not changed
   WARNING: Activation disabled. No device-mapper interaction will be attempted.
   Physical volume "/tmp/snap.sHT13587/vgimport0" changed
   1 physical volume changed / 0 physical volumes not changed
   WARNING: Activation disabled. No device-mapper interaction will be attempted.
   Volume group "vg_xiv" successfully changed
   \end{verbatim}
6. Activate the volume group on the target devices and mount the logical volume (Example 4-62).

```
Example 4-62 Activating volume group on target device and mounting the logical volume

x3650lab9:~ # vgchange -a y vg_itso_snap
 1 logical volume(s) in volume group "vg_itso_snap" now active
x3650lab9:~ # mount /dev/vg_itso_snap/lv_itso /mnt/lv_snap_itso/
...
/dev/mapper/vg_xiv-lv_itso on /mnt/lv_itso type ext3 (rw)
/dev/mapper/vg_itso_snap-lv_itso on /mnt/lv_snap_itso type ext3 (rw)
```

### 4.4 Troubleshooting and monitoring

This section addresses topics that are related to troubleshooting and monitoring. As mentioned previously, always check that the Host Attachment Kit is installed.

After, key information can be found in the same directory as from where the installation was started, inside the `install.log` file.

#### 4.4.1 Linux Host Attachment Kit utilities

The Host Attachment Kit includes the following utilities:

- **xiv_devlist**
  
  This command validates the attachment configuration. This command generates a list of multipath devices available to the operating system. The available options are listed in “The xiv_devlist command” on page 6.

- **xiv_diag**
  
  This command gathers diagnostic information from the operating system. The resulting compressed file can then be sent to IBM support team for review and analysis (Example 4-63).

```
Example 4-63 The xiv_diag command

[//]# xiv_diag
Please type in a path to place the xiv_diag file in [default: /tmp]:
Creating archive xiv_diag-results_2017-10-27_13-24-54
...
INFO: Closing xiv_diag archive file DONE
Deleting temporary directory... DONE
INFO: Gathering is now complete.
INFO: You can now send /tmp/xiv_diag-results_2017-10-27_13-24-54.tar.gz to IBM-XIV for review.
INFO: Exiting.
```

Volume group "vg_xiv" successfully renamed to “vg_itso_snap”
Reading all physical volumes. This may take a while...
Found volume group "vg_itso_snap" using metadata type lvm2
Found volume group "vg_xiv" using metadata type lvm2
4.4.2 Multipath diagnosis

Some key diagnostic information can be found from the following multipath commands.

- To flush all multipath device maps:
  
  multipath -F

- To show the multipath topology (maximum information):
  
  multipath -ll

For more detailed information, use the multipath -ll as illustrated in Example 4-64.

**Example 4-64**  
*Linux command multipath output that shows the correct status*

```bash
multipath -ll
mpatha (36001738ccce056730000000000013845) dm-3 IBM,2810XIV
size=47G features='1 queue_if_no_path' hwhandler='0' wp=rw
 `-+- policy='service-time 0' prio=1 status=active
 | `- 20:0:0:1 sdf 8:80 active ready running
 | `- 19:0:0:1 sde 8:64 active ready running
 `- 21:0:0:1 sdg 8:96 active ready running
```

**Important:** The multipath command sometimes finds errors in the multipath.conf file that do not exist. The following error messages can be ignored:

```
[root@b]# multipath -F
Sep 22 12:08:21 | multipath.conf line 30, invalid keyword: polling_interval
Sep 22 12:08:21 | multipath.conf line 41, invalid keyword: polling_interval
Sep 22 12:08:21 | multipath.conf line 53, invalid keyword: polling_interval
Sep 22 12:08:21 | multipath.conf line 54, invalid keyword: prio_callout
Sep 22 12:08:21 | multipath.conf line 64, invalid keyword: polling_interval
```

Another excellent command-line utility to use is the xiv_devlist command.

**Important:** When you are using the xiv_devlist command, note the number of paths that are indicated in the column for each device. You do not want the xiv_devlist output to show N/A in the paths column.

The expected output from the multipath and xiv_devlist commands is shown in Example 4-65.

**Example 4-65**  
*Shows multipath finding the devices, and updating the paths correctly*

```
[root@bc-h-15-b7 ~]# multipath
create: mpathc (20017380027950251) undef IBM,2810XIV
size=48G features='0' hwhandler='0' wp=undef
 `-+- policy='round-robin 0' prio=1 status=undef
 | `- 8:0:0:1 sdc 8:32 undef ready running
 | `- 9:0:0:1 sde 8:64 undef ready running
create: mpathd (20017380027950252) undef IBM,2810XIV
size=48G features='0' hwhandler='0' wp=undef
 `-+- policy='round-robin 0' prio=1 status=undef
 | `- 8:0:0:2 sdd 8:48 undef ready running
 | `- 9:0:0:2 sdf 8:80 undef ready running
```
[root@bc-h-15-b7 ~]# xiv_devlist

XIV Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Size (GB)</th>
<th>Paths</th>
<th>Vol Name</th>
<th>Vol Id</th>
<th>XIV Id</th>
<th>XIV Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/m</td>
<td>51.6</td>
<td>2/2</td>
<td>RedHat-Data_1</td>
<td>593</td>
<td>1310133</td>
<td>RedHat6.de.ibm.com</td>
</tr>
<tr>
<td>/dev/mapper/m</td>
<td>51.6</td>
<td>2/2</td>
<td>RedHat-Data_2</td>
<td>594</td>
<td>1310133</td>
<td>RedHat6.de.ibm.com</td>
</tr>
</tbody>
</table>

Non-XIV Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Size (GB)</th>
<th>Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/sda</td>
<td>50.0</td>
<td>N/A</td>
</tr>
<tr>
<td>/dev/sdb</td>
<td>50.0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

4.4.3 Other ways to check SCSI devices

The Linux kernel maintains a list of all attached SCSI devices in the /proc pseudo file system as illustrated in Example 4-66. The /proc/scsi/scsi pseudo file system contains basically the same information (apart from the device node) as the lsscsi output. It is always available, even if lsscsi is not installed.

Example 4-66 Alternate list of attached SCSI devices

x3650lab9:~ # cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 01
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
Host: scsi0 Channel: 00 Id: 00 Lun: 02
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
Host: scsi0 Channel: 00 Id: 00 Lun: 03
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
Host: scsi1 Channel: 00 Id: 00 Lun: 01
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
Host: scsi1 Channel: 00 Id: 00 Lun: 02
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
Host: scsi1 Channel: 00 Id: 00 Lun: 03
  Vendor: IBM    Model: 2810XIV    Rev: 10.2
  Type: Direct-Access
...

Chapter 4. Linux connectivity  161
The `fdisk -l` command can be used to list all block devices, including their partition information and capacity (Example 4-67). However, it does not include SCSI address, vendor, and model information.

**Example 4-67   Output of fdisk -l**

```
x3650lab9:~ # fdisk -l

Disk /dev/sda: 34.3 GB, 34359738368 bytes
255 heads, 63 sectors/track, 4177 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sda1 1 2089 16779861 83 Linux
/dev/sda2 3501 4177 5438002+ 82 Linux swap / Solaris

Disk /dev/sdb: 17.1 GB, 17179869184 bytes
64 heads, 32 sectors/track, 16384 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes

Disk /dev/sdb doesn't contain a valid partition table
```

---

4.4.4 Performance monitoring with `iostat`

You can use the `iostat` command to monitor the performance of all attached disks. It is part of the `sysstat` package that is included with every major Linux distribution. However, it is not necessarily installed by default. The `iostat` command reads data that are provided by the kernel in `/proc/stats` and prints it in human readable format. For more information, see the man page of `iostat`.

4.4.5 Generic SCSI tools

For Linux, the `sg tools` allow low-level access to SCSI devices. They communicate with SCSI devices through the generic SCSI layer. This layer is represented by special device files `/dev/sg0`, `/dev/sg1`, and so on. In recent Linux versions, the `sg tools` can also access the block devices `/dev/sda`, and `/dev/sdb`. They can also access any other device node that represents a SCSI device directly.

The most useful sg tools are as follows:

- `sg_inq /dev/sgx`  Prints SCSI Inquiry data, such as the volume serial number.
- `sg_scan`  Prints the SCSI host, channel, target, and LUN mapping for all SCSI devices.
- `sg_map`  Prints the `/dev/sdx` to `/dev/sgy` mapping for all SCSI devices.
- `sg_readcap /dev/sgx`  Prints the block size and capacity (in blocks) of the device.
- `sginfo /dev/sgx`  Prints SCSI inquiry and mode page data. You can also use it to manipulate the mode pages.
4.5 Boot from SAN in Linux

This section describes how you can configure a system to load the Linux kernel and operating system from a SAN-attached FlashSystem A9000, A9000R, or XIV volume. This process is illustrated with an example based on SUSE Linux Enterprise Server 11 SP1 on an x86 server with QLogic FC HBAs, booting from XIV volume. Other distributions and hardware platforms that have deviations from the example are noted. For more information about configuring the HBA BIOS to boot from SAN-attached volume, see 1.2.5, “Boot from SAN on x86 or x64 based architecture” on page 17.

4.5.1 The Linux boot process

To understand how to boot a Linux system from SAN-attached volumes, you need a basic understanding of the Linux boot process. A Linux system goes through the following basic steps until it presents the login prompt:

1. OS loader

   The system firmware provides functions for rudimentary I/O operations such as the BIOS of x86 servers. When a system is turned on, it runs the power-on self-test (POST) to check which hardware is available and whether everything is working. Then, it runs the operating system loader (OS loader). The OS loader uses those basic I/O routines to read a specific location on the defined system disk and starts running the code that it contains. This code is either part of the boot loader of the operating system, or it branches to the location where the boot loader is located.

   If you want to boot from a SAN-attached disk, make sure that the OS loader can access that disk. FC HBAs provide an extension to the system firmware for this purpose. In many cases, it must be explicitly activated.

   On x86 systems, this location is called the Master Boot Record (MBR).

2. The boot loader

   The boot loader starts the operating system kernel. It must know the physical location of the kernel image on the system disk. It then reads it in, extracts it if it is compressed, and starts it. This process is still done by using the basic I/O routines that are provided by the firmware. The boot loader can also pass configuration options and the location of the InitRAMFS to the kernel.

   These are most common Linux boot loaders:
   – GRUB (Grand Unified Bootloader) for x86 systems
   – zipl for z Systems
   – yaboot for Power Systems

3. The kernel and the InitRAMFS

   After the kernel is extracted and running, it takes control of the system hardware. It starts and configures the following systems:
   – Memory management
   – Interrupt handling
   – The built-in hardware drivers for the hardware that is common on all systems such as MMU and clock
It reads and extracts the InitRAMFS image, again by using the same basic I/O routines. The InitRAMFS contains more drivers and programs that are needed to set up the Linux file system tree (root file system). To be able to boot from a SAN-attached disk, the standard InitRAMFS must be extended with the FC HBA driver and the multipathing software. In modern Linux distributions, this process is done automatically by the tools that create the InitRAMFS image.

After the root file system is accessible, the kernel starts the init() process.

4. The init() process

The init() process starts the operating system itself, including networking, services, and user interfaces. The hardware is already abstracted. Therefore, init() is neither platform-dependent, nor are there any SAN-boot specifics.

4.5.2 Configuring the QLogic BIOS to boot from a SAN-attached volume

The first step to configure the HBA is to load a BIOS extension that provides the basic input/output capabilities for a SAN-attached disk. For more information, see 1.2.5, “Boot from SAN on x86 or x64 based architecture” on page 17.

Tip: Emulex HBAs also support booting from SAN disk devices. You can enable and configure the Emulex BIOS extension by pressing Alt+E or Ctrl+E when the HBAs are initialized during server startup. For more information, see the Broadcom website: https://www.broadcom.com/

4.5.3 OS loader considerations for other platforms

The BIOS is the x86 specific way to start loading an operating system. This section briefly describes how this loading is done on the other supported platforms.

IBM Power Systems

When you install Linux on an IBM Power System server or LPAR, the Linux installer sets the boot device in the firmware to the drive that you are installing on. No special precautions must taken whether you install on a local disk, a SAN-attached volume, or a virtual disk provided by the VIO server.

IBM z Systems

Linux on z Systems can run in two configurations:

- Linux on z Systems running natively in a z Systems LPAR

  After you install Linux on z Systems, you must provide the device from which the LPAR runs the IPL in the LPAR start dialog on the z Systems Support Element. After it is registered there, the IPL device entry is permanent until changed.

  Important: Activating the SCSI IPL feature is disruptive. It requires a power-on reset (POR) of the whole system.
Linux on z Systems running under z/VM

Within z/VM, you start an operating system with the IPL command. This command provides the z/VM device address of the device where the Linux boot loader and kernel are installed.

When you boot from SCSI disk, you do not have a z/VM device address for the disk itself. For more information, see 4.2.1, “Platform-specific remarks” on page 124, and “z Systems” on page 126. You must provide information about which LUN the machine loader uses to start the operating system separately. z/VM provides the `cp` commands `set loaddev` and `query loaddev` for this purpose. Their use is illustrated in Example 4-68.

Example 4-68  Setting and querying SCSI IPL device in z/VM

```
SET LOADDEV PORTNAME 50017380 00CB0191 LUN 00010000 00000000

CP QUERY LOADDEV
PORTNAME 50017380 00CB0191 LUN 00010000 00000000 BOOTPROG 0
BR_LBA 00000000 00000000
```

The port name is the host port that is used to access the boot volume. After the load device is set, use the IPL program with the device number of the FCP device (HBA) that connects to the port and LUN to boot from. You can automate the IPL by adding the required commands to the z/VM profile of the virtual machine.

4.5.4 Installing SUSE Linux Enterprise Server 11 SP1 on a SAN volume

With recent Linux distributions, installation on a SAN-attached volume is as easy as installation on a local disk. The process has the following extra considerations:

- Identifying the correct volumes to install on
- Enabling multipathing during installation

Tip: After the SUSE Linux Enterprise Server 11 installation program (YAST) is running, the installation is mostly hardware independent. It works the same when it runs on an x86, IBM Power System, or z Systems server.

To install SUSE Linux Enterprise Server 11 SP1 on a volume, complete the following steps:

1. Boot from an installation DVD. Follow the installation configuration windows until you come to the Installation Settings window shown in Figure 4-7 on page 166.

Remember: The Linux on z Systems installer does not automatically list the available disks for installation. Use the Configure Disks window to discover and attach the disks that are needed to install the system by using a graphical user interface. This window is displayed before you get to the Installation Settings window. At least one disk device is required to run the installation.
2. Click **Partitioning**.

3. In the Preparing Hard Disk: Step 1 window (Figure 4-8), make sure that **Custom Partitioning (for experts)** is selected. Which disk device is selected in the Hard Disk field does not matter. and click **Next**.
4. Enable multipathing in the Expert Partitioner window (Figure 4-9). Select **Hard Disks** in the navigation section on the left side, then click **Configure → Configure Multipath**.

5. Confirm your selection, and then the tool rescans the disk devices. When finished, it presents an updated list of hard disks that also shows the multipath devices it found (Figure 4-10).

6. Select the multipath device (storage system volume) that you want to install to and click **Accept**.

7. In the Partitioner window, create and configure the required partitions for your system the same way you would on a local disk.

You can also use the automatic partitioning capabilities of YAST after the multipath devices are detected in step 5. To do so, complete the following steps:

1. Click **Back** until you see the initial partitioning window again. It now shows the multipath devices instead of the disks (Figure 4-11).
2. Select the multipath device that you want to install on and click **Next**.

3. Select the partitioning scheme that you want.

**Important:** All supported platforms can boot Linux from multipath devices. In some cases, however, the tools that install the boot loader can write only to simple disk devices. In these cases, install the boot loader with multipathing deactivated. For SUSE Linux Enterprise Server 10 and SUSE Linux Enterprise Server 11, add the `multipath=off` parameter to the boot command in the boot loader. The boot loader for IBM Power Systems and z Systems must be reinstalled whenever there is an update to the kernel or initramfs. A separate entry in the boot menu allows you to switch between single and multipath mode when necessary. For more information, see the Linux distribution documentation listed in 4.1.2, “Reference material” on page 120.

The installer does not implement any device-specific settings, such as creating the `/etc/multipath.conf` file. You must implement these settings manually after installation as explained in 4.2.7, “Special considerations for attachment” on page 149. Because DM-MP is already started during the processing of the initramfs, you also must build a new initramfs image after you change the DM-MP configuration. For more information, see “Making the FC driver available early in the boot process” on page 129.

Adding **Device Mapper** layers on top of DM-MP, such as software RAID or LVM is possible. The Linux installers support these options.

**Tip:** Red Hat Enterprise Linux 5.1 and later support multipathing already. Turn on multipathing by adding the `mpath` option to the kernel boot line of the installation system. Anaconda, the RH installer, then offers to install to multipath devices.
AIX connectivity

This chapter addresses the specifics for attaching IBM FlashSystem A9000, IBM FlashSystem A9000R, and IBM XIV Storage System to host systems that are running the AIX operating system.

**Important:** The procedures and instructions that are given here are based on a certain code, but it might not be the most recent one. For the latest support information and instructions, see IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Host Attachment Kits and related publications can be downloaded from Fix Central:

http://www.ibm.com/support/fixcentral/

This chapter includes the following sections:

- Attaching to AIX hosts
- Boot from SAN in AIX
5.1 Attaching to AIX hosts

This section provides information and procedures for attaching the storage systems to AIX on an IBM POWER® platform. Fibre Channel connectivity is addressed first, followed by the iSCSI attachment method.

FlashSystem A9000, A9000R, and XIV Storage System support different versions of the AIX operating system through either Fibre Channel (FC) or iSCSI connectivity.

These general notes apply to all AIX releases:

- Host Attachment Kit 2.8 for AIX (current at the time of writing) supports all AIX releases 6.1, 7.1 and 7.2.
- Dynamic LUN expansion on XIV with LVM requires XIV firmware version 10.2 or later.

5.1.1 Prerequisites

If the current AIX operating system level installed on your system is not compatible with the storage system, you must upgrade before you attach to the storage system. To determine the maintenance package or technology level that is currently installed on your system, use the `oslevel` command (Example 5-1).

Example 5-1  Determining current AIX version and maintenance level

```
oslevel -s
7100-01-05-1228
```

In this example, the system is running AIX 7.1.0.0 technology level 1 (7.1TL1). Use this information with the SSIC to ensure that you have an IBM supported configuration.

If AIX maintenance items are needed, consult IBM Fix Central, where you can download fixes and updates for your systems software, hardware, and operating system:

http://www.ibm.com/support/fixcentral/

Before further configuring your host system or the storage system, make sure that the physical connectivity between the storage system and the POWER system is properly established. Direct attachment from the host system is not supported. If you use FC switched connections, ensure that you have functioning zoning that uses the worldwide port name (WWPN) numbers of the AIX host.

5.1.2 AIX host FC configuration

Attaching the storage system to an AIX host using Fibre Channel involves the following activities from the host side:

1. Identifying the Fibre Channel host bus adapters (HBAs) and determining their WWPN values.
2. Installing the IBM Storage Host Attachment Kit for AIX.
3. Configuring multipathing.
Identifying FC adapters and attributes
To provide volumes to an AIX host, identify the Fibre Channel (FC) adapters on the AIX server. Use the `lsdev` command to list all the FC adapter ports in your system (Example 5-2). This example shows two FC ports.

**Example 5-2  Listing FC adapters**

```
lsdev -Cc adapter|grep fcs
fcs0 Available 00-00 8Gb PCI Express Dual Port FC Adapter (df1000f114108a03)
fcs1 Available 00-01 8Gb PCI Express Dual Port FC Adapter (df1000f114108a03)
```

The `lsslot` command returns the ports, and also the PCI slot where the Fibre Channel adapters are in the system (Example 5-3). This command can be used to identify in what physical slot a specific adapter is placed.

**Example 5-3  Locating FC adapters**

```
lsslot -c pci | grep fcs
U5802.001.00H3722-P1-C10 PCI-E capable, Rev 1 slot with 8x lanes fcs0 fcs1
```

To obtain the WWPN of each of the POWER system FC adapters, use the `lscfg` command (Example 5-4).

**Example 5-4  Finding Fibre Channel adapter WWPN**

```
lscfg -vl fcs0
fcs0 U5802.001.00H3722-P1-C10-T1 8Gb PCI Express Dual Port FC Adapter (df1000f114108a03)
 Part Number.................10N9824
 Serial Number..................1A113001FB
 Manufacturer....................001A
 EC Level.........................D77040
 Customer Card ID Number.......577D
 FRU Number......................10N9824
 Device Specific.(ZM)...........3
 Network Address...............10000000C9B7F27A
 ROS Level and ID..............0278117B
 Device Specific.(Z0)..........31004549
 Device Specific.(Z1)..........00000000
 Device Specific.(Z2)..........00000000
 Device Specific.(Z3)..........09030909
 Device Specific.(Z4)..........FF781116
 Device Specific.(Z5)..........0278117B
 Device Specific.(Z6)..........0773117B
 Device Specific.(Z7)..........0B7C117B
 Device Specific.(Z8)..........20000000C9B7F27A
 Device Specific.(Z9)..........US1.11X11
 Device Specific.(ZA)..........U2D1.11X11
 Device Specific.(ZB)..........U3K1.11X11
 Device Specific.(ZC)..........00000000
 Hardware Location Code.......U5802.001.00H3722-P1-C10-T1
```

You can also print the WWPN of an HBA directly by issuing the following command (where `<fcs#>` is the instance of an FC HBA to query):

```
lscfg -vl <fcs#> | grep Network
```
Installing the Host Attachment Kit for AIX

For AIX to correctly recognize the disks that are mapped from the storage system as MPIO 2810 XIV Disk, the IBM Storage Host Attachment Kit for AIX is required. This package also enables multipathing. At the time of writing, Host Attachment Kit 2.8 is the most recent one. You can download the file set from Fix Central:

http://www.ibm.com/support/fixcentral/

Important: Although AIX now natively supports FlashSystem A9000, A9000R, and XIV using Object Data Manager (ODM) changes that have been back-ported to several older AIX releases, the preferred solution is to use the Host Attachment Kit. The kit not only automates the host definition and LUN mappings but also provides valuable data collection and troubleshooting tools.

To install the Host Attachment Kit, complete these steps:

1. Download or copy the downloaded Host Attachment Kit to your AIX system.
2. From the AIX prompt, change to the directory where your package is located.
3. Run the `gunzip -c IBM_Storage_Host_Attachment_Kit_<HAK_build_name>_AIX.tar.gz | tar xvf –` command to extract the file.
4. Switch to the newly created directory and run the installation script (Example 5-5).

```
Example 5-5 Installing the Host Attachment Kit for AIX

./install.sh
Welcome to the IBM Storage Host Attachment Kit installer.
Would you like to proceed and install the IBM Storage Host Attachment Kit?
[Y/n]: y
Please wait while the installer validates your existing configuration...

Please wait as the IBM Storage Host Attachment Kit is being installed. This may take a few minutes...

Installation successful.
Please refer to the user guide for information about how to configure this host.

```

The IBM Storage Host Attachment Kit includes the following utilities:

- `xiv_attach`: Interactive wizard that configures the host and verifies its configuration for connectivity with the IBM storage System.
- `xiv_devlist`: Lists all storage volumes that are mapped to the host, with general info about non-storage volumes.
- `xiv_syslist`: Lists all IBM storage systems that are detected by the host.
- `xiv_diag`: Performs complete diagnostics of the host and its connectivity with the IBM storage System, and saves the information to a file.
- `xiv_fc_admin`: Allows you to perform different administrative operations for FC-connected hosts and IBM storage systems.
- `xiv_iscsi_admin`: Allows you to perform different administrative operations for iSCSI-connected hosts and IBM storage systems.
- `xiv_host_profiler`: Collects host configuration information and performs a comprehensive analysis of the collected information.
5. Zone the host to the storage system.

6. The Host Attachment Kit provides an interactive command-line utility to configure and connect the host to the storage system. At this time, only Fibre Channel attachment is supported for FlashSystem A9000 and A9000R. If iSCSI attachment is needed, check the SSIC to learn which AIX versions are supported with XIV Storage system. The `xiv_attach` command starts a wizard that attaches the host to the storage system and creates the host object on the XIV. Example 5-6 shows `xiv_attach` command output.

Example 5-6   Attachment to storage system and host creation on it

```bash
xiv_attach

Welcome to the IBM Storage Host Attachment wizard, version 2.8.0.
This wizard will help you attach this host to one or more IBM storage systems

The wizard will now validate the host configuration for the IBM storage system. Press [ENTER] to proceed.

Only Fibre Channel connectivity is supported on this host.
Would you like to perform Fibre Channel attachment? [default: yes]:

Please wait while the wizard validates your existing configuration...
Verifying AIX packages OK
This host is already configured for the IBM storage system.

Creating a host profile enables focused and better support for your host.
Would you like to add a scheduled task for host profile creation? [default: yes]:
A scheduled task for xiv_host_profiler has been added.

Please define zoning for this host and add its World Wide Port Names (WWPNs) to the IBM storage system:
C0:50:76:03:44:90:00:38: fcs0: [IBM]: N/A
C0:50:76:03:44:90:00:3A: fcs1: [IBM]: N/A
C0:50:76:03:44:90:00:3C: fcs2: [IBM]: N/A
C0:50:76:03:44:90:00:3E: fcs3: [IBM]: N/A
Press [ENTER] to proceed.

Would you like to rescan for new storage devices? [default: yes]:
Please wait while rescanning for IBM storage devices...

This host is connected to the following IBM storage arrays:
<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Serial</th>
<th>System Version</th>
<th>Host Defined</th>
<th>Ports Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIV</td>
<td>1340010</td>
<td>11.6.2</td>
<td>No</td>
<td>No ports defined</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>1340008</td>
<td>11.6.2.a</td>
<td>No</td>
<td>No ports defined</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlashSystem A9000</td>
<td>1322131</td>
<td>12.1.0.b</td>
<td>No</td>
<td>No ports defined</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlashSystem A9000R</td>
<td>1320902</td>
<td>12.1.0.b</td>
<td>No</td>
<td>No ports defined</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This host is not defined on some FC-attached IBM storage systems.
Do you want to define this host on these IBM storage systems now? [default: yes]:
Please enter a name for this host [default: p7-730-02v1.mainz.de.ibm.com]:
p7-730-LLPAR1
Please enter a username for system 1340010 [default: admin]:
```
Please enter the password of user admin for system 1340010:

Please enter a username for system 1322131 [default: admin]:
Please enter the password of user admin for system 1322131:

Please enter a username for system 1340008 [default: admin]:
Please enter the password of user admin for system 1340008:

Please enter a username for system 1320902 [default: admin]:
Please enter the password of user admin for system 1320902:

Press [ENTER] to proceed.

-------------------------------------------------------------------------------
The IBM Storage Host Attachment wizard has successfully configured this host.
Press [ENTER] to exit.

7. Create volumes on the storage system and map these volumes (LUNs) to the host system that was configured by `xiv_attach`. You can use the Hyper-Scale Manager GUI for volume creation and mapping tasks, as illustrated in 1.4, “Logical configuration for host connectivity” on page 31. Use `cfgmgr` or `xiv_fc_admin -R` to rescan for LUNs (Example 5-7).

   **Example 5-7  XIV labeled FC disks**

```
xiv_fc_admin -R
lsdev -Cc disk
hdisk0 Available Virtual SCSI Disk Drive
hdisk1 Available 51-T1-01 MPIO 2810 XIV Disk
hdisk2 Available 51-T1-01 MPIO 2810 XIV Disk
```

8. Use the `xiv_devlist` command to get more information about the mapped LUNs (Example 5-8).

   **Example 5-8  The xiv_devlist command**

```
xiv_devlist -x
IBM storage devices

Device Size (GB) Paths Vol Name Vol ID Storage ID Storage Type
Hyper-Scale Mobility

/dev/hdisk1 50.1 12/12 ITSO_AIX_002 14407 1322131 FlashSystem A9000 Idle

/dev/hdisk2 50.1 12/12 ITSO_AIX_001 14406 1322131 FlashSystem A9000 Idle
```
To add disks to the system, complete the following steps:

1. Use the GUI or XCLI to map the new LUNs to the AIX server.
2. On the AIX system, run `xiv_fc_admin -R` to rescan for the new LUNs.
3. Use `xiv_devlist` to confirm that the new LUNs are present to the system.

Other AIX commands such as `cfgmgr` can also be used, but these commands are built within the Host Attachment Kit commands.

**Portable Host Attachment Kit Install and usage**

The IBM Storage Host Attachment Kit is offered in a portable format also. With the portable package, you can use the Host Attachment Kit without having to install the utilities locally on the host. You can run all Host Attachment Kit utilities from a shared network drive or from a portable USB flash drive. This is the preferred method for deployment and management.

The `xiv_fc_admin` command can be used to confirm that the AIX server is running a supported configuration and ready to attach to the storage. Use the `xiv_fc_admin -V` command to verify the configuration and be notified if any OS component is missing. The `xiv_attach` command must be run the first time that the server is attached to the array. It is used to scan for new storage system LUNs and configure the server to work with XIV. Do not run the `xiv_attach` command more than once. If more LUNs are added in the future, use the `xiv_fc_admin -R` command to scan for the new LUNs. All of these commands and others in the portable Host Attachment Kit are defined in 5.1.5, “Host Attachment Kit utilities” on page 188.

**Using a network drive**

To use the portable Host Attachment Kit package from a network drive:

1. Extract the files from the following file into a shared folder on a network drive:
   
   `IBM_Storage_Host_Attachment_Kit_<HAK_build_name>_Portable.tar.gz`

2. Mount the shared folder to each host computer you intend to use the Host Attachment Kit on. The folder must be recognized and accessible as a network drive.

You can now use the Host Attachment Kit on any host to which the network drive is mounted.

To run commands from the portable Host Attachment Kit location, use a period and forward slash character combination (./) before every command.

**Tip:** Whenever a newer Host Attachment Kit version is installed on the network drive, all hosts to which that network drive was mounted have access to that version.

**Using a portable USB flash drive**

To use the portable Host Attachment Kit package from a USB flash drive, complete these steps:

1. Extract the files from the `tar.gz` file into a folder on the USB flash drive.
2. Plug the USB flash drive into any host on which you want to use the Host Attachment Kit.
3. Run any Host Attachment Kit utility from the drive.

For more information about setting up hosts that use the portable Host Attachment Kit, see “AIX MPIO” on page 177.
Removing the Host Attachment Kit software

In some situations, you must remove the Host Attachment Kit. In most cases, when you are upgrading to a new version, the Host Attachment Kit can be installed without uninstalling the older version first. Check the release notes and instructions to determine the best procedure.

If the Host Attachment Kit is locally installed on the host, you can uninstall it without detaching the host from the storage system.

The portable Host Attachment Kit packages do not require the uninstallation procedure. You can delete the portable Host Attachment Kit directory on the network drive or the USB flash drive to uninstall it. For more information about the portable Host Attachment Kit, see “Portable Host Attachment Kit Install and usage” on page 175.

The regular uninstallation removes the locally installed Host Attachment Kit software without detaching the host. This process preserves all multipathing connections to the storage system.

Use the following command to uninstall the Host Attachment Kit software:

```
/opt/xiv/host_attach/bin/uninstall
```

The `uninstall` command removes the following components:

- IBM Storage Solutions External Runtime Components
- IBM Storage Host Attachment Kit tools

If you get the message the following message, use the package management service to remove the Host Attachment Kit:

Please use the O/S package management services to remove the package

The package name is `xiv.hostattachment.tools`. To remove the package, use the `installp -u hostattachment.tools` command (Example 5-9).

```
Example 5-9 Uninstalling the Host Attachment Kit

installp -u hostattachment.tools
+---+
| Pre-deinstall Verification... |
+---+
Verifying selections...done
Verifying requisites...done
Results...

SUCCESES

Filesets listed in this section passed pre-deinstall verification
and will be removed.

Selected Filesets

hostattachment.tools 2.8.0.0 # Support tools for Storage co...

<< End of Success Section >>

FILESET STATISTICS

1 Selected to be deinstalled, of which:
 1 Passed pre-deinstall verification
```
AIX MPIO

AIX Multipath I/O (MPIO) is an enhancement to the base OS environment that provides native support for multipath Fibre Channel storage attachment. MPIO automatically discovers, configures, and makes available every storage device path. The storage device paths provide high availability and load balancing for storage I/O. MPIO is part of the base AIX kernel, and is available with the current supported AIX levels.

The MPIO base functionality is limited. It provides an interface for vendor-specific path control modules (PCMs) that allow for implementation of advanced algorithms.

For more information, see IBM Knowledge Center:
https://ibm.biz/BdsbTd

Configuring devices as MPIO or non-MPIO devices

Configuring storage system devices as MPIO provides the best solution. However, if you are using a third-party multipathing solution, you might want to manage the XIV 2810 device with the same solution. Using a solution that is not from IBM usually requires the devices to be configured as non-MPIO devices.

The AIX manage_disk_drivers command can switch a device between MPIO and non-MPIO. This command can be used to change how the device is configured. All disks are converted.

Restriction: Converting one storage system disk to MPIO and another storage system disk to non-MPIO is not possible.
After you run either of the following `manage_disk_drivers` commands to switch a device, reboot the system for the configuration change to take effect:

- To switch XIV 2810 devices from MPIO to non-MPIO, run the following command and reboot:
  ```
 manage_disk_drivers -o AIX_non_MPIO -d 2810XIV
  ```

- To switch XIV 2810 devices from non-MPIO to MPIO, run the following command and reboot:
  ```
 manage_disk_drivers -o AIX_AAPCM -d 2810XIV
  ```

To display the present settings, run the following command:
```
manage_disk_drivers -l
```

**Disk behavior algorithms and queue depth settings**

By using the storage systems in a multipath environment, you can change the disk behavior algorithm between `round_robin` and `fail_over` mode. The default disk behavior mode is `round_robin`, with a queue depth setting of 40.

Check the disk behavior algorithm and queue depth settings as shown in Example 5-10.

**Example 5-10  Viewing disk behavior and queue depth**

```
lsattr -El hdisk2 | grep -e algorithm -e queue_depth
algorithm round_robin Algorithm True
queue_depth 40 Queue DEPTH True
```

If the application is I/O intensive and uses large block I/O, the queue_depth and the max transfer size might need to be adjusted. Such an environment typically needs a queue_depth of 64 - 256, and `max_transfer=0x100000`. Typical values are 40 - 64 as the queue depth per LUN, and 512 - 2048 per HBA in AIX.

**Performance tuning**

This section provides some performance considerations to help you adjust your AIX system to best fit your environment. If you boot from a SAN-attached LUN, create a mksysb image or a crash-consistent snapshot of the boot LUN before you change the HBA settings. The following list describes performance considerations for AIX:

- Use multiple threads and asynchronous I/O to maximize performance on the storage system.
- Check with `iostat` on a per path basis for the LUNs to make sure that the load is balanced across all paths.
- Verify the HBA queue depth and per LUN queue depth for the host are sufficient to prevent queue waits. However, make sure that they are not so large that they overrun the storage system queues.

For XIV, queue limit is 1400 per XIV port and 256 per LUN per WWPN (host) per port. Do not submit more I/O per XIV port than the 1400 maximum it can handle.

For FlashSystem A9000 and A9000R, queue limit is 2048 per storage system port and 256 per LUN per WWPN (host) per port. Do not submit more I/O per storage system port than the 2048 maximum it can handle.

The limit for the number of queued I/O for an HBA on AIX systems with 8-Gb HBAs is 4096. This limit is controlled by the `num_cmd_elems` attribute for the HBA, which is the maximum number of commands that AIX queues. If necessary, increase it to the
maximum value, which is 4096. The exception is if you have HBAs of 1 Gbps, 2 Gbps, or 4 Gbps, in which cases the maximum is lower.

The other setting to consider is the `max_xfer_size`. This setting controls the maximum I/O size the adapter can handle. The default is 0x100000. If necessary, increase it to 0x200000 for large IOs, such as backups.

Check these values by using `lsattr -E1 fcsX` for each HBA as shown in Example 5-11.

**Example 5-11  The `lsattr` command**

```
lsattr -E1 fcs0
DIF_enabled no DIF (T10 protection) enabled True
bus_intr_lvl1 Bus interrupt level False
bus_io_addr 0xff800 Bus I/O address False
bus_mem_addr 0xfffe76000 Bus memory address False
bus_mem_addr2 0xfffe78000 Bus memory address False
init_link auto INIT Link flags False
intr_msi_1 135616 Bus interrupt level False
intr_priority 3 Interrupt priority False
lg_term_dma 0x800000 Long term DMA True
max_xfer_size 0x100000 Maximum Transfer Size True
num_cmd_elems 500 Maximum number of COMMANDS to queue to the adapter True
pref_alpa 0x1 Preferred AL_PA True
sw_fc_class 2 FC Class for Fabric True
tme no Target Mode Enabled True

lsattr -E1 fcs1
DIF_enabled no DIF (T10 protection) enabled True
bus_intr_lvl1 Bus interrupt level False
bus_io_addr 0xffc00 Bus I/O address False
bus_mem_addr 0xfffe7c000 Bus memory address False
bus_mem_addr2 0xfffe78000 Bus memory address False
init_link auto INIT Link flags False
intr_msi_1 135617 Bus interrupt level False
intr_priority 3 Interrupt priority False
lg_term_dma 0x800000 Long term DMA True
max_xfer_size 0x100000 Maximum Transfer Size True
num_cmd_elems 500 Maximum number of COMMANDS to queue to the adapter True
pref_alpa 0x1 Preferred AL_PA True
sw_fc_class 2 FC Class for Fabric True
tme no Target Mode Enabled True
```

The maximum number of commands AIX queues to the adapter and the transfer size can be changed with the `chdev` command. Example 5-12 shows how to change these settings. The system must be rebooted for the changes to take effect.

**Example 5-12  The `chdev` command**

```
chdev -a 'num_cmd_elems=4096 max_xfer_size=0X200000' -l fcs0 -P
fcs0 changed

chdev -a 'num_cmd_elems=4096 max_xfer_size=0X200000' -l fcs1 -P
fcs1 changed
```
The changes can be confirmed by running the `lsattr` command again (Example 5-13).

**Example 5-13  The lsattr command confirmation**

```
lsattr -El fcs0
... max_xfer_size 0X200000 Maximum Transfer Size True
num_cmd elems 4096 Maximum number of COMMANDS to queue to the adapter True
... # lsattr -El fcs1
... max_xfer_size 0X200000 Maximum Transfer Size True
num_cmd elems 4096 Maximum number of COMMANDS to queue to the adapter True
...```

To check the disk queue depth, periodically run `iostat -D 5`. If the `avgwqsiz` (average wait queue size) or `sqfull` is consistently greater than zero, increase the disk queue depth. The maximum disk queue depth is 256. However, do not start at 256 and work down because you might flood the storage system with commands and waste memory on the AIX server. For most environments, 64 is a good number. For more information about AIX disk queue depth tuning, see the following paper in the Techdocs Library:

The default disk behavior algorithm is `round_robin` with a queue depth of 40.

Example 5-14 shows how to adjust the disk behavior algorithm and queue depth setting. In the command, `<hdisk#>` stands for an instance of an hdisk.

Example 5-14 Changing disk behavior algorithm and queue depth command

```
# chdev -a algorithm=round_robin -a queue_depth=40 -l <hdisk#>
```

If you want the `fail_over` disk behavior algorithm, load-balance the I/O across the FC adapters and paths. Set the path priority attribute for each LUN so that $1/n$ of the LUNs are assigned to each of the n FC paths.

Useful MPIO commands

The following commands are used to change priority attributes for paths that can specify a preference for the path that is used for I/O. The effect of the priority attribute depends on whether the disk behavior algorithm attribute is set to `fail_over` or `round_robin`.

- **For `algorithm=fail_over`**, the path with the higher priority value handles all the I/O. If a path failure occurs, the other path is used. After a path failure and recovery, if you have IY79741 installed, I/O will be redirected down the path with the highest priority. If you want the I/O to go down the primary path, use `chpath` to disable and then re-enable the secondary path. If the priority attribute is the same for all paths, the first path that is listed with `lspath -H <hdisk>` is the primary path. Set the primary path to priority value 1, the next path’s priority (in case of path failure) to 2, and so on.

- **For `algorithm=round_robin`**, if the priority attributes are the same, I/O goes down each path equally. If you set `pathA` priority to 1 and `pathB` to 255, for every I/O going down `pathA`, 255 IOs are sent down `pathB`.

To change the path priority of an MPIO device, use the `chpath` command. An example of this process is shown in Example 5-17 on page 181.
Initially, use the `lspath` command to display the operational status for the paths to the devices as shown in Example 5-15.

Example 5-15 The lspath command shows the paths for hdisk2

```
# lspath -l hdisk2 -F status:name:parent:path_id:connection
Enabled:hdisk2:fscsi0:0:5001738027820170,1000000000000
Enabled:hdisk2:fscsi0:1:5001738027820160,1000000000000
Enabled:hdisk2:fscsi0:2:5001738027820150,1000000000000
Enabled:hdisk2:fscsi0:3:5001738027820140,1000000000000
Enabled:hdisk2:fscsi0:4:5001738027820180,1000000000000
Enabled:hdisk2:fscsi0:5:5001738027820190,1000000000000
Enabled:hdisk2:fscsi1:6:5001738027820162,1000000000000
Enabled:hdisk2:fscsi1:7:5001738027820152,1000000000000
Enabled:hdisk2:fscsi1:8:5001738027820142,1000000000000
Enabled:hdisk2:fscsi1:9:5001738027820172,1000000000000
Enabled:hdisk2:fscsi1:10:5001738027820182,1000000000000
Enabled:hdisk2:fscsi1:11:5001738027820192,1000000000000
```

The `lspath` command can also be used to read the attributes of a path to an MPIO-capable device (Example 5-16). The `<connection>` information is either "<SCSI ID>, <LUN ID>" for SCSI (for example "5, 0") or "<WWN>, <LUN ID>" for FC devices (as in Example 5-16).

Example 5-16 The lspath command reads attributes of the 0 path for hdisk2

```
# lspath -AHE -l hdisk2 -p fscsi0 -w "5001738027820170,1000000000000"
attribute value              description  user_settable
scsi_id   0x20ac00           SCSI ID      False
node_name 0x5001738027820000 FC Node Name False
priority  1                  Priority     True
```

As noted, the `chpath` command is used to run change operations on a specific path. It can either change the operational status or tunable attributes that are associated with a path. It cannot run both types of operations in a single invocation.

Example 5-17 illustrates the use of the `chpath` command with the storage system. The command sets the primary path to `fscsi0` using the first path listed. There are two paths from the switch to the storage for this adapter. For the next disk, set the priorities to 4, 1, 2, and 3. In failover mode, assume the workload is relatively balanced across the hdisks. This setting balances the workload evenly across the paths.

Example 5-17 The chpath command

```
# chpath -l hdisk2 -p fscsi0 -w "5001738027820160,1000000000000" -a priority=2
path Changed
# chpath -l hdisk2 -p fscsi1 -w "5001738027820162,1000000000000" -a priority=3
path Changed
# chpath -l hdisk2 -p fscsi1 -w "5001738027820152,1000000000000" -a priority=4
path Changed
```

The `rmpath` command unconfigures or undefines, or both, one or more paths to a target device. You cannot unconfigure (undefine) the last path to a target device by using the `rmpath` command. The only way to unconfigure (undefine) the last path to a target device is to unconfigure the device itself. Use the `rmdev` command to do so.
5.1.3 AIX host iSCSI configuration

To make sure that your AIX version is supported for iSCSI attachment (for iSCSI hardware or software initiator), check IBM SSIC:

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

At the time of writing this book, AIX iSCSI attachment to FlashSystem A9000 and A9000R is not supported.

For iSCSI, no Host Attachment Kit is required. Make sure that your system is equipped with the required file sets by running the `lslpp` command (Example 5-18).

Example 5-18 Verifying installed iSCSI file sets in AIX

```
# lslpp -la "*.iscsi*"

<table>
<thead>
<tr>
<th>Fileset</th>
<th>Level</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path: /usr/lib/objrepos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>devices.common.IBM.iscsi.rte</td>
<td>7.1.3.0</td>
<td>COMMITTED</td>
<td>Common iSCSI Files</td>
</tr>
<tr>
<td></td>
<td>7.1.3.15</td>
<td>COMMITTED</td>
<td>Common iSCSI Files</td>
</tr>
<tr>
<td>devices.iscsi.disk.rte</td>
<td>7.1.0.15</td>
<td>COMMITTED</td>
<td>iSCSI Disk Software</td>
</tr>
<tr>
<td>devices.iscsi.tape.rte</td>
<td>7.1.0.0</td>
<td>COMMITTED</td>
<td>iSCSI Tape Software</td>
</tr>
<tr>
<td>devices.iscsi_sw.rte</td>
<td>7.1.3.0</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
<tr>
<td></td>
<td>7.1.3.15</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
<tr>
<td></td>
<td>7.1.4.0</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
<tr>
<td>Path: /etc/objrepos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>devices.common.IBM.iscsi.rte</td>
<td>7.1.3.0</td>
<td>COMMITTED</td>
<td>Common iSCSI Files</td>
</tr>
<tr>
<td></td>
<td>7.1.3.15</td>
<td>COMMITTED</td>
<td>Common iSCSI Files</td>
</tr>
<tr>
<td>devices.iscsi_sw.rte</td>
<td>7.1.3.0</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
<tr>
<td></td>
<td>7.1.3.15</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
<tr>
<td></td>
<td>7.1.4.0</td>
<td>COMMITTED</td>
<td>iSCSI Software Device Driver</td>
</tr>
</tbody>
</table>
```

Current limitations when using iSCSI

The code available at the time of writing has the following limitations when you are using the iSCSI software initiator in AIX:

- iSCSI is supported through a single path. No MPIO support is provided.
- The `xiv_iscsi_admin` command does not discover new targets on AIX. You must manually add new targets.
- The `xiv_attach` wizard does not support iSCSI.
Volume Groups

To avoid configuration problems and error log entries when you create Volume Groups that use iSCSI devices, follow these guidelines:

- Configure Volume Groups that are created using iSCSI devices to be in an inactive state after reboot. After the iSCSI devices are configured, manually activate the iSCSI-backed Volume Groups. Then, mount any associated file systems.

 Restriction: Volume Groups are activated during a different boot phase than the iSCSI software. For this reason, you cannot activate iSCSI Volume Groups during the boot process.

- Do not span Volume Groups across non-iSCSI devices.

I/O failures

To avoid I/O failures, consider these guidelines:

- If connectivity to iSCSI target devices is lost, I/O failures occur. Before you do anything that causes long term loss of connectivity to the active iSCSI targets, stop all I/O activity and unmount iSCSI-backed file systems.

- If a loss of connectivity occurs while applications are attempting I/O activities with iSCSI devices, I/O errors eventually occur. You might not be able to unmount iSCSI-backed file systems because the underlying iSCSI device remains busy.

- File system maintenance must be performed if I/O failures occur because of loss of connectivity to active iSCSI targets. To do file system maintenance, run the `fsck` command against the affected file systems.

Configuring the iSCSI software initiator and the server

To connect AIX to the storage system through iSCSI, complete the following steps:

1. Get the *iSCSI qualified name* (IQN) on the AIX server, and set the maximum number of targets by using the *System Management Interface Tool* (SMIT):
 a. Select **Devices**.
 b. Select **iSCSI**.
 c. Select **iSCSI Protocol Device**.
 d. Select **Change / Show Characteristics of an iSCSI Protocol Device**.
 e. Select the device and verify the iSCSI Initiator Name value. The Initiator Name value is used by the iSCSI Target during login.

 Tip: A default initiator name is assigned when the software is installed. This initiator name can be changed to match local network naming conventions.

You can also issue the `lsattr` command to verify the `initiator_name` parameter as shown in Example 5-19.

Example 5-19 Checking initiator name

```
# lsattr -El iscsi0
disc_filename /etc/iscsi/targets
Configuration file False
disc_policy file Discovery
Policy True
```
initiator_name iqn.com.ibm.de.mainz.p7-730-02v1.hostid.099b7683 iSCSI
Initiator Name True
isns_srvnames auto iSNS Servers
IP Addresses True iSNS Servers
isns_srvports
Port Numbers True
max_targets 16 Maximum Targets Allowed 16 Maximum
Targets Allowed True
num_cmd_elems 200 Maximum number of commands to queue to driver True

f. The Maximum Targets Allowed field corresponds to the maximum number of iSCSI targets that can be configured. If you reduce this number, you also reduce the amount of network memory pre-allocated for the iSCSI protocol during configuration.

2. Define the AIX server on storage system as described in “Defining a host” on page 35.

3. Create the LUNs in storage system and map them to the AIX iSCSI server as illustrated in “Mapping LUNs to a host” on page 36, starting from LUN 0. If you are not using LUN 0, you might see the warning that is shown in Example 5-20.

Example 5-20 Warning by not using LUN 0

```
# cfgmgr -l iscsi0
cfgmgr: 0514-621 WARNING: The following device packages are required for
device support but are not currently installed.
devices.iscsi.array
```

4. Determine the iSCSI IP addresses in the storage system as described in 1.3.5, “Identifying iSCSI ports” on page 29.

5. Find the IQN of the storage system as described in “Getting the XIV iSCSI Qualified Name (IQN)” on page 25.

6. Return to the AIX system and add the storage system iSCSI IP address, port name, and IQN to the /etc/iscsi/targets file. This file must include the iSCSI targets for the device configuration.

Tip: The iSCSI targets file defines the name and location of the iSCSI targets that the iSCSI software initiator attempts to access. This file is read every time that the iSCSI software initiator is loaded.

Each uncommented line in the file represents an iSCSI target. iSCSI device configuration requires that the iSCSI targets can be reached through a properly configured network interface. Although the iSCSI software initiator can work using a 10/100 Ethernet LAN, it is designed for use with at least a separate gigabit Ethernet network.

Include your specific connection information in the targets file as shown in Example 5-21.

Example 5-21 Inserting connection information into the /etc/iscsi/targets file in AIX

```
# cat /etc/iscsi/targets
...
9.155.120.20 3260 iqn.2005-10.com.xivstorage:01322131
```
7. Enter the following command at the AIX prompt:

```bash
cfgmgr -l iscsi0
```

This command runs the following actions:

- Reconfigures the software initiator.
- Causes the driver to attempt to communicate with the targets listed in the `/etc/iscsi/targets` file.
- Defines a new hdisk for each LUN found on the targets.

8. Run the `lsdev -Cc disk` command to view the new iSCSI devices. Example 5-22 shows two iSCSI disks.

```
# lsdev -Cc disk
hdisk0 Available          Virtual SCSI Disk Drive
hdisk1 Available 51-T1-01 MPIO 2810 XIV Disk
hdisk2 Available 50-T1-01 MPIO 2810 XIV Disk
hdisk3 Available Other iSCSI Disk Drive
hdisk4 Available Other iSCSI Disk Drive
```

Exception: If the appropriate disks are not defined, review the configuration of the initiator, the target, and any iSCSI gateways to ensure correctness. Then, rerun the `cfgmgr` command.

iSCSI performance considerations

To ensure the best performance, enable the following features of the AIX Gigabit Ethernet Adapter and the iSCSI Target interface:

- TCP Large Send
- TCP send and receive flow control
- Jumbo frame

The first step is to confirm that the network adapter supports jumbo frames. *Jumbo frames* are Ethernet frames that support more than 1500 bytes. Jumbo frames can carry up to 9000 bytes of payload, but some care must be taken when using the term. Many different Gigabit Ethernet switches and Gigabit Ethernet network cards can support jumbo frames. Check the network card specification or the vendor’s support website to confirm that the network card supports this function.

You can use `lsattr` to list some of the current adapter device driver settings. Enter `lsattr -E -l ent0`, where `ent0` is the adapter name. Make sure that you are checking and modifying the correct adapter. A typical output is shown in Example 5-23.

```
# lsattr -E -l ent0
alt_addr       0x000000000000   Alternate ethernet address                     True
busintr        167              Bus interrupt level                            False
busmem         0xe8120000       Bus memory address                             False
chksum_offload yes              Enable hardware transmit and receive checksum  True
compat_mode    no               Gigabit Backward compatability                 True
copy_bytes     2048             Copy packet if this many or less bytes             True
delay_open     no               Enable delay of open until link state is known   True
failback       yes              Enable auto failback to primary               True
failback_delay 15                Failback to primary delay timer                 True
```

Exception: If the appropriate disks are not defined, review the configuration of the initiator, the target, and any iSCSI gateways to ensure correctness. Then, rerun the `cfgmgr` command.
failover disable Enable failover mode True
flow_ctrl yes Enable Transmit and Receive Flow Control True
intr_priority 3 Interrupt priority False
intr_rate 10000 Max rate of interrupts generated by adapter True
jumbo_frames no Transmit jumbo frames True
large_send yes Enable hardware TX TCP resegmentation True
media_speed Auto_Negotiation Media speed True
rom_mem 0xe80c0000 ROM memory address False
rx_hog 1000 Max rcv buffers processed per rcv interrupt True
rxbuf_pool_sz 2048 Rcv buffer pool, make 2X rxdesc_que_sz True
rxdesc_que_sz 1024 Rcv descriptor queue size True
slih_hog 10 Max Interrupt events processed per interrupt True
tx_que_sz 8192 Software transmit queue size True
txdesc_que_sz 512 TX descriptor queue size True
use_alt_addr no Enable alternate ethernet address True

In the example, jumbo_frames are off. When this setting is not enabled, you cannot increase the network speed. Set up the tcp_sendspace, tcp_recvspace, sb_max, and mtu_size network adapter and network interface options to optimal values.

To see the current settings, use `lsattr` to list the settings for tcp_sendspace, tcp_recvspace, and mtu_size (Example 5-24).

Example 5-24 The lsattr output that displays interface settings

```
lsattr -E -l en0
alias4                      IPv4 Alias including Subnet Mask           True
alias6                      IPv6 Alias including Prefix Length         True
arp           on            Address Resolution Protocol (ARP)          True
authority                   Authorized Users                           True
broadcast                   Broadcast Address                          True
mtu           1500          Maximum IP Packet Size for This Device     True
netaddr       9.155.87.120  Internet Address                           True
netaddr6                    IPv6 Internet Address                      True
netmask       255.255.255.0 Subnet Mask                                True
prefixlen      448           Prefix Length for IPv6 Internet Address    True
remmtu        576           Maximum IP Packet Size for REMOTE Networks True
rfc1323                     Enable/Disable TCP RFC 1323 Window Scaling   True
security      none          Security Level                             True
state         up            Current Interface Status                   True
tcp_mssdflt                 Set TCP Maximum Segment Size               True
tcp_nodelay                 Enable/Disable TCP_NODELAY Option          True
tcp_recvspace               Set Socket Buffer Space for Receiving         True
tcp_sendspace               Set Socket Buffer Space for Sending            True
```

Example 5-24 shows that all values are true, and that mtu is set to 1500.

To change the mtu setting, enable jumbo_frames on the adapter. Issue the following command:

```
chdev -l ent0 -a jumbo_frames=yes -P
```
Reboot the server by entering `shutdown -Fr`. Check the interface and adapter settings and confirm the changes (Example 5-25).

Example 5-25 The adapter settings after you make the changes

```
# lsattr -E -l ent0
...
jumbo_frames yes Transmit jumbo frames True
...
```

Example 5-25 shows that the mtu value was changed to 9000.

Example 5-26 The mtu value changed to 9000

```
# lsattr -E -l en0
...
mtu 9000 Maximum IP Packet Size for This Device True
...
```

Use the `/usr/sbin/no -a` command to show the sb_max, tcp_recvspace, and tcp_sendspace values (Example 5-27).

Example 5-27 Checking values by using the /usr/sbin/no -a command

```
# /usr/sbin/no -a
...
   sb_max = 1048576
...
   tcp_recvspace = 16384
tcp_sendspace = 16384
...
```

Check these three other settings:

- **tcp_sendspace** Specifies how much data the sending application can buffer in the kernel before the application is blocked on a send call.
- **tcp_recvspace** Specifies how many bytes of data the receiving system can buffer in the kernel on the receiving sockets queue.
- **sb_max** Sets an upper limit on the number of socket buffers queued to an individual socket. It therefore controls how much buffer space is used by buffers that are queued to a sender socket or receiver socket.

Set those three as follows:

- For **tcp_sendspace**, **tcp_recvspace**, and **sb_max**: The maximum transfer size of the iSCSI software initiator is 256 KB. Assuming that the system maximums for tcp_sendspace and tcp_recvspace are set to 262144 bytes, use the `ifconfig` command to configure a gigabit Ethernet interface by using the following command:

  ```
  ifconfig en0 9.155.87.120 tcp_sendspace 262144 tcp_recvspace 262144
  
  ```

- For **sb_max**: Set this network option to at least 524288, and preferably 1048576. The sb_max sets an upper limit on the number of socket buffers queued. Set this limit with the command `/usr/sbin/no -o sb_max=1048576`.

Chapter 5. AIX connectivity 187
5.1.4 Management volume LUN 0

According to the SCSI standard, the storage system maps itself in every map to LUN 0 for inband Fibre Channel management. This LUN serves as the “well known LUN” for that map. The host can then issue SCSI commands to that LUN that are not related to any specific volume. This device is displayed as a normal hdisk in the AIX operating system.

You might want to eliminate this management LUN on your system, or need to assign the LUN 0 number to a specific volume.

5.1.5 Host Attachment Kit utilities

The Host Attachment Kit includes the following useful utilities, described in 1.1.3, “Host Attachment Kit” on page 5:

- xiv_devlist
- xiv_diag
- xiv_attach
- xiv_fc_admin
- xiv_iscsi_admin (xiv_iscsi_admin is not supported on AIX)
- xiv_detach (applicable to Windows Server only)

5.2 Boot from SAN in AIX

This section contains instructions for SAN boot implementation for the IBM POWER System (formerly IBM System p) in an AIX v6.1 environment. Similar steps can be followed for other AIX environments.

When you use AIX SAN boot with FlashSystem A9000, A9000R, or XIV, the default MPIO is used. During the boot sequence, AIX uses the bootlist to find valid paths to a LUN or hdisk that contains a valid boot logical volume (hd5). However, a maximum of five paths can be defined in the bootlist, while the storage system multipathing setup results in more than five paths to a hdisk. A fully redundant configuration establishes 12 paths (Figure 1-3 on page 10). When using FlashSystem A9000 or A9000R HyperSwap or Hyper-Scale Mobility make sure that in the adapter bios targets (WWPNs) from both storage systems are defined.

For example, consider two hdisks (hdisk0 and hdisk1) that contain a valid boot logical volume, both having 12 paths to the storage system. To set the bootlist for hdisk0 and hdisk1, issue the following command:

```
/ > bootlist -m normal hdisk0 hdisk1
```

The `bootlist` command displays the list of boot devices as shown in Example 5-28.

```
Example 5-28   Displaying the bootlist

# bootlist -m normal -o
hdisk0 blv=hd5 pathid=0
```

Example 5-28 shows that hdisk1 is not present in the bootlist. Therefore, the system cannot boot from hdisk1 if the paths to hdisk0 are lost.

A workaround in AIX 6.1 TL06 and AIX 7.1 is available to control the bootlist by using the `pathid` parameter as in the following command:

```
bootlist -m normal hdisk0 pathid=0 hdisk0 pathid=1 hdisk1 pathid=0 hdisk1 pathid=1
```
Implement SAN boot with AIX by using one of the following methods:

- For a system with an already installed AIX operating system, mirror the rootvg volume to the SAN disk.
- For a new system, start the AIX installation from a bootable AIX CD installation package or use Network Installation Management (NIM).

The mirroring method is simpler to implement than using the NIM.

5.2.1 Creating a SAN boot disk by mirroring

The mirroring method requires that you have access to an AIX system that is up and running. Locate an available system where you can install AIX on an internal SCSI disk.

To create a boot disk on the system, complete the following steps:

1. Select a logical drive that is the same size or larger than the size of rootvg currently on the internal SCSI disk. Verify that your AIX system can see the new disk with the `lspv -L` command as shown in Example 5-29.

 Example 5-29 The lspv command

   ```
   # lspv -L
   hdisk0     00cc6de1bd84ec9    rootvg    active
   hdisk1     None                   None
   hdisk2     None                   None
   hdisk3     None                   None
   hdisk4     None                   None
   hdisk5     00cc6de1cf8ea41      None
   ```

2. Verify the size with the `xiv_devlist` command to make sure that you are using an (external) disk. Example 5-30 shows that hdisk0 is 32 GB, hdisks 1-5 are attached, and they are external LUNs. Notice that hdisk1 is only 17 GB, so it is not large enough to create a mirror.

 Example 5-30 The xiv_devlist command

   ```
   # ./xiv_devlist

   XIV Devices
   --------------------------------------------------------
   Device       Size (GB)  Paths  Vol Name       Vol Id   XIV Id   XIV Host
   --------------------------------------------------------
   /dev/hdisk1  17.2       2/2    ITSO_Anthony_  1018  1310114  AIX_P570_2_lp
               Blade1_Iometer                    ar2
   /dev/hdisk2  1032.5     2/2    CUS_Jake       230    1310114  AIX_P570_2_lp
               ar2
   /dev/hdisk3  34.4       2/2    CUS_Lisa_143   232    1310114  AIX_P570_2_lp
               ar2
   /dev/hdisk4  1032.5     2/2    CUS_Zach       231    1310114  AIX_P570_2_lp
               ar2
   /dev/hdisk5  32.2       2/2    LPAR2_boot_mi  7378    1310114  AIX_P570_2_lp
               error                             ar2
   ```
3. Add the new disk to the rootvg volume group by clicking `smitty vg` → *Set Characteristics of a Volume Group* → *Add a Physical Volume to a Volume Group*.

4. Keep the Force the creation of volume group value set to no.

5. Enter the Volume Group name (in this example, `rootvg`) and Physical Volume name that you want to add to the volume group (Figure 5-1).

```
Figure 5-1   Adding the disk to the rootvg
```

Figure 5-2 shows the settings confirmation.

```
Figure 5-2   Adding disk confirmation
```

6. Create the mirror of `rootvg`. If the `rootvg` is already mirrored, create a third copy on the new disk by clicking `smitty vg` → *Mirror a Volume Group* (Figure 5-3).

```
Figure 5-3   Creating a rootvg mirror
```

Enter the volume group name that you want to mirror (`rootvg`, in this example).
7. Select one of the following mirror sync modes:
 - **Foreground**: This option causes the command to run until the mirror copy synchronization completes. The synchronization can take a long time. The amount of time depends mainly on the speed of your network and how much data you have.
 - **Background**: This option causes the command to complete immediately, and mirror copy synchronization occurs in the background. With this option, it is not obvious when the mirrors complete their synchronization.
 - **No Sync**: This option causes the command to complete immediately without running any type of mirror synchronization. If this option is used, the new remote mirror copy exists but is marked as stale until it is synchronized with the `syncvg` command.

8. Select the Physical Volume name. You added this drive to your disk group (Figure 5-1 on page 190). The number of copies of each logical volume is the number of physical partitions that are allocated for each logical partition. The value can be one to three. A value of two or three indicates a mirrored logical volume. Leave the Keep Quorum Checking on and Create Exact LV Mapping settings at `no`.

 After the volume is mirrored, you see confirmation that the mirror was successful as shown in Figure 5-4.

 ![Figure 5-4 Mirror completed](image)

9. Verify that all partitions are mirrored with `lsvg -l rootvg` (Figure 5-5). The physical volume (PVs) column displays as two or three, depending on the number you chose when you created the mirror.

 ![Figure 5-5 Verifying that all partitions are mirrored](image)
10. Re-create the boot logical drive, and change the normal boot list with the following commands:

```bash
bosboot -ad hdiskx
bootlist -m normal hdiskx
```

Figure 5-6 shows the output after you run the commands.

![Figure 5-6 Relocating boot volume](image)

11. Select the `rootvg` volume group and the original hdisk that you want to remove, then click `smitty vg → Unmirror a Volume Group`.

12. Select `rootvg` for the volume group name `ROOTVG` and the internal SCSI disk you want to remove.

14. Run the following commands again:

```bash
bosboot -ad hdiskx
bootlist -m normal hdiskx
```

At this stage, the creation of a bootable disk on the storage system is completed. Restarting the system makes it boot from the SAN (XIV) disk.

After the system reboots, use the `lspv -L` command to confirm that the server is booting from the hdisk (Figure 5-7).

![Figure 5-7 SAN boot disk confirmation](image)
5.2.2 Installation on external storage from bootable AIX CD-ROM

To install AIX on storage system disks, complete the following preparations:

1. Update the Fibre Channel (FC) adapter (HBA) microcode to the latest supported level.
2. Make sure that you have an appropriate SAN configuration, and the host is properly connected to the SAN.
3. Make sure that the zoning configuration is updated, and at least one LUN is mapped to the host.

Tip: If the system cannot see the SAN fabric at login, configure the HBAs at the server open firmware prompt.

Because a SAN allows access to many devices, identifying the hdisk to install to can be difficult. Use the following method to facilitate the discovery of the lun_id to hdisk correlation:

1. If possible, zone the switch or disk array such that the system being installed can discover only the disks to be installed to. After the installation completes, you can reopen the zoning so the system can discover all necessary devices.
2. If more than one disk is assigned to the host, make sure that you are using one of the following methods:
 - Assign Physical Volume Identifiers (PVIDs) to all disks from an already installed AIX system that can access the disks. Assign PVIDs by using the following command (where \(X \) is the appropriate disk number):
 \[
 \text{chdev -a pv=yes \(-l \) hdiskX}
 \]
 Create a table mapping PVIDs to physical disks. Make the PVIDs visible in the installation menus by selecting option **77 display more disk info**. You can also use the PVIDs to do an unprompted NIM installation.
 - Another way to ensure that the selection of the correct disk is to use Object Data Manager (ODM) commands:
 i. Boot from the AIX installation CD-ROM.
 ii. From the main installation menu, click **Start Maintenance Mode for System Recovery \(\rightarrow \) Access Advanced Maintenance Functions \(\rightarrow \) Enter the Limited Function Maintenance Shell**.
 iii. At the prompt, issue one of the following commands:
 \[
 \text{odmget -q "attribute=lun_id AND value=0xNN..N" CuAt}
 \]
 \[
 \text{odmget -q "attribute=lun_id" CuAt (list every stanza with lun_id attribute)}
 \]
 In the command, 0xNN..N is the lun_id that you are looking for. This command prints the ODM stanzas for the hdisks that have that lun_id.
 iv. Enter **Exit** to return to the installation menus.

The Open Firmware implementation can boot from only lun_ids 0 through 7. The firmware on the Fibre Channel adapter (HBA) promotes this lun_id to an 8-byte FC LUN ID. The firmware does this promotion by adding a byte of zeros to the front and 6 bytes of zeros to the end. For example, lun_id 2 becomes 0x0000200000000000. The lun_id is normally displayed without the leading zeros. Be careful when you are installing because the procedure allows installation to lun_ids outside of this range.
To install on external storage, complete these steps:

1. Insert an AIX CD that has a bootable image into the CD-ROM drive.

2. Select **CD-ROM** as the installation device to make the system boots from the CD. The way to change the bootlist varies by model. In most System p models, you use the system management services (SMS) menu. For more information, see the user’s guide for your model.

3. Allow the system to boot from the AIX CD image after you leave the SMS menu.

4. After a few minutes, the console displays a window that directs you to press a key to use the device as the system console.

5. A window prompts you to select an installation language.

6. The Welcome to the Base Operating System Installation and Maintenance window is displayed. Change the installation and system settings for this system to select a Fibre Channel-attached disk as a target disk. Enter 2 to continue.

7. On the Installation and Settings window, enter 1 to change the system settings and select the **New and Complete Overwrite** option.

8. On the Change (the destination) Disk window, select the Fibre Channel disks that are mapped to your system. To see more information, enter 77 to display the detailed information window that includes the PVID. Enter 77 again to show WWPN and LUN ID information. Type the number, but do not press Enter, for each disk that you choose. Typing the number of a selected disk clears the device of any existing data. Be sure to include an storage system disk.

9. After you select the Fibre Channel-attached disks, the Installation and Settings window is displayed with the selected disks. Verify the installation settings, and then enter 0 to begin the installation process.

 Important: Verify that you made the correct selection for root volume group. The existing data in the destination root volume group is deleted during Base Operating System (BOS) installation.

When the system reboots, a window displays the address of the device from which the system is reading the boot image.

5.2.3 AIX SAN installation with NIM

NIM is a client/server infrastructure and service that allows remote installation of the operating system. It manages software updates, and can be configured to install and update third-party applications. The NIM server and client file sets are part of the operating system. A separate NIM server must be configured to keep the configuration data and the installable product file sets.

Deploy the NIM environment, and ensure that the following configurations are completed:

- The NIM server is properly configured as the NIM master and the basic NIM resources are defined.
- The Fibre Channel adapters are already installed on the system onto which AIX is to be installed.
- The Fibre Channel adapters are connected to a SAN, and on the storage system have at least one logical volume (LUN) mapped to the host.
- The target system (NIM client) currently has no operating system installed, and is configured to boot from the NIM server.
For more information about how to configure a NIM server, see the NIM Setup Guide:
http://www.ibm.com/support/docview.wss?uid=isg3T1010383

Before the installation, modify the bosinst.data file, where the installation control is stored. Insert your appropriate values at the following stanza:

SAN_DISKID

This stanza specifies the worldwide port name and a logical unit ID for Fibre Channel-attached disks. The worldwide port name and logical unit ID are in the format that is returned by the `lsattr` command (that is, 0x followed by 1–16 hexadecimal digits). The `ww_name` and `lun_id` are separated by two slashes (`//`):

SAN_DISKID = <worldwide_portname//lun_id>

Here is an example:

SAN_DISKID = 0x0123456789FEDCBA//0x2000000000000

Or, you can specify PVID (this example is with internal disk):

target_disk_data:
PVID = 000c224a004a07fa
SAN_DISKID =
CONNECTION = scsi0//10,0
LOCATION = 10-60-00-10,0
SIZE_MB = 34715
HDISKNAME = hdisk0

To install AIX SAN with NIM, complete the following steps:

1. Enter the `# smit nim_bosinst` command.
2. Select the `lpp_source` resource for the BOS installation.
3. Select the `SPOT` resource for the BOS installation.
4. Select the `BOSINST_DATA to use during installation` option, and select a `bosinst_data` resource that can run a non-prompted BOS installation.
5. Select the `RESOLV_CONF to use for network configuration` option, and select a `resolv_conf` resource.
6. Click the `Accept New License Agreements` option, and select `Yes`. Accept the default values for the remaining menu options.
7. Press Enter to confirm and begin the NIM client installation.
8. To check the status of the NIM client installation, enter the following command:

 `# lsnim -l va09`
Clients connecting through VIOS

This chapter explains IBM FlashSystem A9000, IBM FlashSystem A9000R, and IBM XIV Storage System connectivity through Virtual I/O Server (VIOS) to AIX. VIOS is a component of PowerVM that provides the ability for logical partitions (LPARs) that are VIOS clients to share resources.

Important: The procedures and instructions that are given here are based on code that was available at the time of writing. For the latest support information and instructions, see IBM System Storage Interoperation Center (SSIC):

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

Host Attachment Kits can be downloaded from Fix Central:
http://www.ibm.com/support/fixcentral/

This chapter includes the following sections:
- IBM PowerVM overview
- Virtual I/O Server
- Node Port ID Virtualization
- General guidelines
6.1 IBM PowerVM overview

Virtualization on IBM Power Systems servers provides a rapid and cost-effective response to many business needs. Virtualization capabilities have become an important element in planning for IT floor space and servers. Growing commercial and environmental concerns create pressure to reduce the power footprint of servers. With the escalating cost of powering and cooling servers, consolidation and efficient utilization of the servers is becoming critical.

Virtualization on Power Systems servers allows an efficient utilization of servers by reducing the following needs:
- Server management and administration costs because there are fewer physical servers
- Power and cooling costs with increased utilization of existing servers
- Time to market because virtual resources can be deployed immediately

IBM PowerVM is a virtualization technology for AIX, IBM i, and Linux environments on IBM POWER® processor-based systems. It is a special software appliance that is tied to IBM Power Systems, which are the converged IBM i and IBM p server platforms. It is licensed on a POWER processor basis.

PowerVM offers a secure virtualization environment with the following features and benefits:
- Consolidates diverse sets of applications that are built for multiple operating systems (AIX, IBM i, and Linux) on a single server.
- Virtualizes processor, memory, and I/O resources to increase asset utilization and reduce infrastructure costs.
- Dynamically adjusts server capability to meet changing workload demands.
- Moves running workloads between servers to maximize availability and avoid planned downtime.

Virtualization technology is offered in three editions on Power Systems:
- PowerVM Express Edition
- PowerVM Standard Edition
- PowerVM Enterprise Edition

PowerVM provides logical partitioning technology by using the following features:
- Either the Hardware Management Console (HMC) or the Integrated Virtualization Manager (IVM)
- Dynamic logical partition (LPAR) operations
- IBM Micro-Partitioning® and VIOS capabilities
- N_Port ID Virtualization (NPIV)

6.1.1 PowerVM Express Edition

PowerVM Express Edition is available only on some IBM® Power Systems™ servers and on all IBM BladeCenter® blade servers that have Power Architecture® technology. It is designed for clients who are looking for an introduction to more advanced virtualization features.

With PowerVM Express Edition, you can create up to three partitions on a server (two client partitions and one for the VIOS and IVM) that use virtual Small Computer System Interface (SCSI), NPIV, and shared processors, also called Micro-Partitioning technology. To create more than two client logical partitions that use shared processors, virtual SCSI, or NPIV, you
must purchase either the Standard Edition or the Enterprise Edition and enter the activation
code.

All virtualization features can be managed by using the IVM, including these:
- Micro-Partitioning
- Shared processor pool
- VIOS
- PowerVM LX86
- Shared dedicated capacity
- NPIV
- Virtual tape

6.1.2 PowerVM Standard Edition

For clients who are ready to gain the full value from their server, IBM offers the PowerVM
Standard Edition. This edition provides the most complete virtualization functionality for UNIX
and Linux in the industry, and is available for all IBM Power Systems servers.

With PowerVM Standard Edition, you can create up to 254 partitions on a server. You can
use virtualized disk and optical devices, and try out the shared processor pool. All
virtualization features can be managed by using an HMC or the IVM. These features
include Micro-Partitioning, shared processor pool, Virtual I/O Server, PowerVM LX86,
shared dedicated capacity, NPIV, and virtual tape.

6.1.3 PowerVM Enterprise Edition

PowerVM Enterprise Edition is offered starting with IBM POWER6® servers. It includes all the
features of the PowerVM Standard Edition, plus the PowerVM Live Partition Mobility and the
Active Memory Sharing capability.

With PowerVM Live Partition Mobility, you can move a running partition from one IBM
POWER server to another with no application downtime. This capability results in better
system utilization, improved application availability, and energy savings. With PowerVM Live
Partition Mobility, planned application downtime because of regular server maintenance is no
longer necessary.

The PowerVM® Active Memory™ Sharing technology enables selected logical partitions to
share memory from a single pool of physical memory. A new level of abstraction managed by
the hypervisor supports the Active Memory Sharing technology.

6.2 Virtual I/O Server

Virtual I/O Server (VIOS) is virtualization software that runs in a separate partition of the
POWER system. VIOS provides virtual storage and networking resources to one or more
client partitions.

VIOS owns physical I/O resources such as Ethernet and SCSI/FC adapters. It virtualizes
those resources for its client LPARs to share them remotely using the built-in hypervisor
services. These client LPARs can be created quickly, and typically own only real memory and
shares of processors without any physical disks or physical Ethernet adapters.

With Virtual SCSI support, VIOS client partitions can share disk storage that is physically
assigned to the VIOS LPAR. VIOS owns the physical adapters, such as the Fibre Channel
storage adapters, that are connected to the storage system. The logical unit numbers (LUNs) of the physical storage devices that are detected by VIOS are mapped to VIOS virtual SCSI (VSCSI) server adapters. The VSCSI adapters are created as part of its partition profile.

The client partition connects to the VIOS VSCSI server adapters by using the hypervisor. The corresponding VSCSI client is adapters that are defined in its partition profile. VIOS runs SCSI emulation and acts as the SCSI target for the operating system.

Figure 6-1 shows an example of the VIOS owning the physical disk devices, and their virtual SCSI connections to two client partitions.

6.3 Node Port ID Virtualization

The VIOS technology has been enhanced to boost the flexibility of IBM Power Systems servers with support for NPIV. NPIV simplifies the management and improves performance of Fibre Channel SAN environments. It does so by standardizing a method for Fibre Channel ports to virtualize a physical node port ID into multiple virtual node port IDs. The VIOS takes advantage of this feature, and can export the virtual node port IDs to multiple virtual clients. The virtual clients see this node port ID and can discover devices as though the physical port was attached to the virtual client.

The VIOS does not do any device discovery on ports that use NPIV. Therefore, no devices are shown in the VIOS connected to NPIV adapters. The discovery is left for the virtual client, and all the devices that are found during discovery are detected only by the virtual client. This
way, the virtual client can use FC SAN storage-specific multipathing software on the client to discover and manage devices.

For more information about PowerVM virtualization management, see *IBM PowerVM Virtualization Managing and Monitoring*, SG24-7590:

http://www.redbooks.ibm.com/abstracts/sg247590.html

6.4 General guidelines

This section presents general guidelines for the storage system that is connected to a host. With the grid architecture and massive parallelism inherent to FlashSystem A9000, A9000R, and XIV Storage System, the general approach is to always maximize the use of all storage system resources.

6.4.1 Physical Fibre Channel adapters and virtual SCSI adapters

You can connect up to 4,095 LUNs per target, and up to 510 targets per port on a VIOS physical FC adapter. You can assign up to 16 LUNs to one VSCSI adapter. Therefore, you can use the number of LUNs to determine the number of virtual adapters that you need.

6.4.2 Multipath with two Virtual I/O Servers

The storage system is connected to an IBM client partition through the VIOS. For redundancy, connect the storage system to an IBM client with at least two VIOS partitions, independent from using vSCSI or NPIV.

6.4.3 Distributing connectivity

The goal for host connectivity is to create a balance of the resources in the storage system. Balance is achieved by distributing the physical connections across the interface modules or grid controllers. A host usually manages multiple physical connections to the storage device for redundancy purposes by using at least one SAN connected switch. The ideal is to distribute these connections across each of the interface modules. This way, the host uses the full resources of each module to which it connects for maximum performance.

You do not need to connect each host instance to each interface module. However, when the host has more than one physical connection, have the connections (cabling) spread across separate interface modules.

Similarly, if multiple hosts have multiple connections, you must distribute the connections evenly across the interface modules.

6.4.4 Zoning SAN switches

To maximize balancing and distribution of host connections to the storage system, create zones for the SAN switches. In these zones, have each host adapter connected to each interface module or grid controller and through redundant SAN switches. For more information, see for XIV 1.2.2, “Fibre Channel configurations” on page 9 and 1.2.3, “Zoning” on page 13, and for FlashSystem A9000 and A9000R see 2.2.2, “Fibre Channel configurations” on page 51 and 2.2.3, “Zoning” on page 56.
Chapter 7. VMware connectivity

IBM FlashSystem A9000, IBM FlashSystem A9000R, and IBM XIV Storage System are excellent choices for your VMware storage requirements. They achieve consistent high performance by balancing the workload across physical resources. This chapter addresses operating system-specific general connectivity considerations for host connectivity of VMware ESX and ESXi servers.

This chapter includes the following sections:

▸ Integration concepts and implementation guidelines
▸ vSphere traditional storage architectural overview
▸ VMware vSphere Virtual Volumes (VVols)
▸ VMware general connectivity guidelines

Note: For more information, refer to the IBM Redbooks publication *Using the IBM Spectrum Accelerate Family in VMware Environments: IBM XIV, IBM FlashSystem A9000 and IBM FlashSystem A9000R, and IBM Spectrum Accelerate*, REDP-5425.
7.1 Integration concepts and implementation guidelines

This section is for IT decision makers, storage administrators, and VMware administrators. It offers an overview of FlashSystem A9000, A9000R, and XIV Storage System and VMware integration concepts, and general implementation guidelines.

Note: FlashSystem A9000 and A9000R support VMware ESXi servers version 5.0 or later.

At a fundamental level, the goal of both the storage system and VMware’s storage features is to significantly reduce the complexity of deploying and managing storage resources. With the storage systems, storage administrators can provide consistent tier-1 storage performance and quick change-request cycles. This support is possible because they need perform little planning and maintenance to keep performance levels high and storage optimally provisioned.

The following underlying strategies are built into the vSphere storage framework to insulate administrators from complex storage management tasks, and non-optimal performance and capacity resource utilization:

- Make storage objects much larger and more scalable, reducing the number that must be managed by the administrator.
- Extend specific storage resource-awareness by attaching features and profiling attributes to the storage objects.
- Help administrators make the correct storage provisioning decision for each virtual machine or even fully automate the intelligent deployment of virtual machine storage.
- Remove many time-consuming and repetitive storage-related tasks, including the need for repetitive physical capacity provisioning.

Clearly, vCenter relies upon the storage subsystem to fully support several key integration features to effectively implement these strategies. Appropriately compatible storage is essential.

7.2 vSphere traditional storage architectural overview

The vSphere storage architecture, including physical and logical storage elements, is depicted in Figure 7-1 on page 205. Although not intended to thoroughly explore vSphere storage concepts and terminology here, the essential components and their relationships provide the foundational framework necessary to understand upcoming integration principles.

The VMware file system (VMFS) is the central abstraction layer that acts as a medium between the storage and the hypervisor layers. The current generation of VMFS includes the following distinguishing attributes, among others:

- Clustered file system: Purpose-built, high performance clustered file system for storing virtual machine files on shared storage (Fibre Channel and iSCSI). The primary goal of the design of VMFS is as an abstraction layer between the VMs and the storage to efficiently pool and manage storage as a unified, multi-tenant resource.
- Shared data file system: Enable multiple vSphere hosts to read and write from the same data store concurrently.
- Online insertion or deletion of nodes: Add or remove vSphere hosts from VMFS volume with no impact to adjacent hosts or VMs.
On-disk file locking: Ensure that the same virtual machine is not accessed by multiple vSphere hosts concurrently.

![ESX/ESXi basic storage elements in the vSphere infrastructure](image)

7.3 VMware vSphere Virtual Volumes (VVols)

Before the availability of vSphere Virtual Volumes, a virtual machine (VM) in a VMware environment would be presented a disk in the form of a file called a VMware disk (VMDK). This file represented a physical disk to the VM and could then be accessed by the operating system installed on the VM in the same way a physical volume on a regular server was. The VMDK file was then placed onto the VMware file system (VMFS) hosted by a standard volume (LUN), for example implemented on external storage system such as FlashSystem A9000, A9000R, or XIV.

Although this design has the advantage of simplicity, it also imposes constraints and limitations on the management of the VM data. Indeed, the storage administrator and the VMware Administrator need to agree about the size and placement of volumes in the storage array before the deployment of VMs. This approach presents scalability and granularity issues, and cannot respond to the needs of businesses in a dynamic fashion. It also inhibits using advanced storage system functions such as instant snapshots and replication, and complicates backup solutions.

With the availability of the vSphere Virtual Volumes technology, each VM disk can now be mapped to an external storage volume.

Note: With VVols, the storage system becomes aware of individual VMDK files, and data operations such as snapshot and replication can be performed directly by the storage, at the VMDK level rather than the entire VMFS data store. At the time of writing, Virtual Volumes are not supported with FlashSystem A9000 and A9000R.

Figure 7-2 shows how VVols changes the landscape of storage in a virtualized environment.
7.4 VMware general connectivity guidelines

When you implement Fibre Channel connectivity for the storage system in a vSphere environment, adhere to the following practices:

- Use host cluster groups on storage system for LUN assignment for vSphere HA.
- Configure single initiator zones.
- At the time of writing, VMware specifies that there can be a maximum of 1024 paths and 256 LUNs per ESX/ESXi host. The following conditions must be simultaneously satisfied to achieve the optimal storage configuration:
 - Effectively balance paths across these objects:
 - Host HBA ports
 - XIV interface modules, FlashSystem A9000 or A9000R grid controllers
 - Ensure that the wanted minimum number of host paths per LUN and the wanted minimum number of LUNs per host can be simultaneously met by using the optimum number of paths per volume, as described in 1.2.2, “Fibre Channel configurations” on page 9 and 1.2.2, “Fibre Channel configurations” on page 9.
- Configure the Path Selection Plug-in (PSP) multipathing based on the vSphere version:
 - Use Round Robin policy if the vSphere version is vSphere 4.0 or later.
 - Use Fixed Path policy if the vSphere version is earlier than vSphere 4.0.
 - Do not use the Most Recently Used (MRU) policy.

When you implement iSCSI connectivity for the storage systems in a vSphere environment, adhere to the following practices:

- One VMkernel port group per physical network interface card (NIC):
 - VMkernel port is bound to physical NIC port in vSwitch, which creates a path.
– Creates a 1-to-1 path for VMware NMP.
– Uses the same PSP as for FC connectivity.

➤ Enable jumbo frames for throughput-intensive workloads (must be done at all layers).
➤ Use Round Robin PSP to enable load balancing across all modules. Each initiator should see a target port on each module.
➤ Queue depth can also be changed on the iSCSI software initiator. If more bandwidth is needed, the LUN queue depth can be modified.

Table 7-1 lists maximum values for storage elements in vSphere 5.0, 5.1, 5.5, 6.0, and 6.5.

<table>
<thead>
<tr>
<th>Storage element limit</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual disk size</td>
<td>2 TB minus 512 bytes</td>
</tr>
<tr>
<td>Virtual disks per host</td>
<td>2048</td>
</tr>
<tr>
<td>LUNs per Host</td>
<td>256 or 512<sup>a</sup></td>
</tr>
<tr>
<td>Total number of paths per host</td>
<td>1024 or 2048<sup>a</sup></td>
</tr>
<tr>
<td>Total number of paths to a LUN</td>
<td>32</td>
</tr>
<tr>
<td>LUN size</td>
<td>64 TB</td>
</tr>
<tr>
<td>Concurrent storage vMotions per datastore</td>
<td>8</td>
</tr>
<tr>
<td>Concurrent storage vMotions per host</td>
<td>2</td>
</tr>
</tbody>
</table>

^a vsphere 6.5 only

Table 7-2 lists maximum values for virtual volumes in vSphere 6.0.

<table>
<thead>
<tr>
<th>Storage element limit</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data virtual volume size</td>
<td>62 TB</td>
</tr>
<tr>
<td>Number of virtual volumes bound to a host</td>
<td>64,000</td>
</tr>
<tr>
<td>Number of protocol endpoints (PEs) per host</td>
<td>256</td>
</tr>
<tr>
<td>Storage container size</td>
<td>2<sup>64</sup></td>
</tr>
<tr>
<td>Storage container per host</td>
<td>256</td>
</tr>
<tr>
<td>Configured VVol managed storage arrays per host</td>
<td>64</td>
</tr>
</tbody>
</table>
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks publications

The following Redbooks publications provide more information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

- *IBM FlashSystem A9000 and IBM FlashSystem A9000R Architecture and implementation*, SG24-8345
- *Hyper-Scale Manager for IBM Spectrum Accelerate Family: XIV, FlashSystem A9000 and A9000R, IBM Spectrum Accelerate*, SG24-8376
- *IBM FlashSystem A9000 and A9000R Business Continuity Solutions*, REDP-5401
- *IBM HyperSwap for IBM FlashSystem A9000 and A9000R*, REDP-5434
- *IBM XIV Storage System Architecture and Implementation*, SG24-7659
- *IBM XIV Storage System Business Continuity Functions*, SG24-7759
- *Using IBM Spectrum Accelerate Family in VMware Environments*, REDP-5425

You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services