IBM z13
Technical Guide

Octavian Lascu
Edzard Hoogerbrug
Cecilia A De Leon
Ewerson Palacio
Franco Pinto
Barbara Sannerud
Martin Soellig
John Troy
Jin J Yang

z Systems

In partnership with
IBM Academy of Technology
Note: Before using this information and the product it supports, read the information in “Notices” on page xv.

Second Edition (May 2016)

This edition applies to IBM z Systems™: IBM z13™, IBM z13s™, IBM zEnterprise EC12 (zEC12), IBM zEnterprise BC12 (zBC12), IBM zEnterprise 196 (z196), and IBM zEnterprise 114 (z114).

© Copyright International Business Machines Corporation 2015, 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Notices .. xv
Trademarks .. xvi

IBM Redbooks promotions ... xvii

Preface ... xix
Authors ... xix
Now you can become a published author, too! ... xx
Comments welcome .. xxii
Stay connected to IBM Redbooks .. xxii

Chapter 1. Introducing IBM z13 ... 1
1.1 Design considerations of z13 ... 2
1.2 z13 server highlights ... 3
 1.2.1 Processor and memory ... 4
 1.2.2 Capacity and performance ... 4
 1.2.3 I/O subsystem and I/O features ... 5
 1.2.4 Virtualization .. 8
 1.2.5 Reliability, availability, and serviceability design ... 11
1.3 z13 server technical overview ... 11
 1.3.1 Models .. 12
 1.3.2 Model upgrade paths .. 13
 1.3.3 Frames ... 14
 1.3.4 CPC drawer .. 14
 1.3.5 I/O connectivity: PCIe and InfiniBand ... 17
 1.3.6 I/O subsystems ... 17
 1.3.7 Coupling and Server Time Protocol connectivity ... 21
 1.3.8 Special-purpose features ... 24
 1.3.9 Reliability, availability, and serviceability ... 27
1.4 Hardware Management Consoles and Support Elements 28
1.5 IBM z BladeCenter Extension (zBX) Model 004 ... 28
 1.5.1 Blades ... 29
 1.5.2 IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise 30
1.6 IBM z Unified Resource Manager .. 30
Chapter 2. Central processor complex hardware components 37
2.1 Frames and drawers 38
2.1.1 A Frame 39
2.1.2 Z Frame 40
2.1.3 z13 new rear cover (door) design 40
2.1.4 I/O drawer and PCIe I/O drawer 40
2.1.5 Top exit I/O cabling 41
2.2 CPC drawer 42
2.2.1 CPC drawer interconnect topology 45
2.2.2 Oscillator 45
2.2.3 System control 47
2.2.4 CPC drawer power 48
2.3 Single chip modules 48
2.3.1 Processor unit chip 50
2.3.2 Processor unit (core) 52
2.3.3 PU characterization 53
2.3.4 Storage control chip 54
2.3.5 Cache level structure 55
2.4 Memory 56
2.4.1 Memory subsystem topology 57
2.4.2 Redundant array of independent memory 58
2.4.3 Memory configurations 59
2.4.4 Memory upgrades 62
2.4.5 Drawer replacement and memory 62
2.4.6 Flexible Memory Option 62
2.4.7 Pre-planned memory 63
2.5 Reliability, availability, and serviceability 64
2.5.1 RAS in the CPC memory subsystem 65
2.5.2 General z13 RAS features 65
2.6 Connectivity 66
2.6.1 Redundant I/O interconnect 67
2.6.2 Enhanced drawer availability 69
2.6.3 CPC drawer upgrade 70
2.7 Model configurations 70
2.7.1 Upgrades 71
2.7.2 Concurrent PU conversions 73
2.7.3 Model capacity identifier 73
2.7.4 Model capacity identifier and MSU value 74
2.7.5 Capacity Backup 74
2.7.6 On/Off Capacity on Demand and CPs 77
2.8 Power and cooling 78
2.8.1 Power consumption 78
2.8.2 High Voltage Direct Current power feature 79
2.8.3 Internal Battery Feature 79
2.8.4 Power capping and saving 79
2.8.5 Power estimation tool 80
2.8.6 Cooling 80
2.8.7 Radiator Unit 81
Chapter 3. Central processor complex system design

3.1 Overview ... 88
3.2 Design highlights .. 88
3.3 CPC drawer design ... 89
 3.3.1 Cache levels and memory structure 90
 3.3.2 CPC drawer interconnect topology 93
3.4 Processor unit design .. 94
 3.4.1 Simultaneous multithreading 95
 3.4.2 Single-instruction multiple-data 96
 3.4.3 Out-of-order execution 98
 3.4.4 Superscalar processor 101
 3.4.5 Compression and cryptography accelerators on a chip 101
 3.4.6 Decimal floating point accelerator 102
 3.4.7 IEEE floating point .. 103
 3.4.8 Processor error detection and recovery 103
 3.4.9 Branch prediction .. 104
 3.4.10 Wild branch .. 104
 3.4.11 Translation lookaside buffer 105
 3.4.12 Instruction fetching, decoding, and grouping 105
 3.4.13 Extended Translation Facility 105
 3.4.14 Instruction set extensions 106
 3.4.15 Transactional Execution 106
 3.4.16 Runtime Instrumentation 106
3.5 Processor unit functions 106
 3.5.1 Overview .. 106
 3.5.2 Central processors .. 108
 3.5.3 Integrated Facility for Linux 109
 3.5.4 Internal Coupling Facility 109
 3.5.5 IBM z Systems Integrated Information Processor 111
 3.5.6 System assist processors 115
 3.5.7 Reserved processors .. 116
 3.5.8 Integrated firmware processor 116
 3.5.9 Processor unit assignment 116
 3.5.10 Sparing rules ... 117
 3.5.11 Increased flexibility with z/VM mode partitions 118
3.6 Memory design .. 118
 3.6.1 Overview .. 118
 3.6.2 Main storage ... 121
 3.6.3 Expanded storage .. 121
 3.6.4 Hardware system area .. 122
3.7 Logical partitioning ... 122
 3.7.1 Overview .. 122
 3.7.2 Storage operations .. 130
 3.7.3 Reserved storage .. 133
 3.7.4 Logical partition storage granularity 133
 3.7.5 LPAR dynamic storage reconfiguration 134
3.8 Intelligent Resource Director (IRD) 134
3.9 Clustering technology ... 136
 3.9.1 Coupling Facility Control Code 137
 3.9.2 Coupling Thin Interrupts 138
Chapter 7. Software support

7.1 Operating systems summary .. 231

7.2 Support by operating system ... 232

7.2.1 z/OS ... 233
7.2.2 z/VM .. 233
7.2.3 z/VSE .. 234
7.2.4 z/TPF .. 234
7.2.5 Linux on z Systems ... 235
7.2.6 KVM for IBM z Systems ... 235
7.2.7 z13 function support summary ... 235

7.3 Support by function .. 245

7.3.1 Single system image ... 245
7.3.2 zIIP support ... 247
7.3.3 Transactional Execution ... 248
7.3.4 Maximum main storage size .. 248
7.3.5 Flash Express ... 249
7.3.6 zEnterprise Data Compression Express 250
7.3.7 10GbE RoCE Express ... 251
7.3.8 Large page support ... 252
7.3.9 Hardware decimal floating point .. 252
7.3.10 Up to 85 LPARs ... 253
7.3.11 Separate LPAR management of PUs 253
7.3.12 Dynamic LPAR memory upgrade .. 254
7.3.13 LPAR physical capacity limit enforcement 254
7.3.14 Capacity Provisioning Manager .. 254
7.3.15 Dynamic PU add ... 255
7.3.16 HiperDispatch .. 255
7.3.17 The 63.75-K subchannels ... 257

7.4 CP Assist for Cryptographic Functions ... 209

7.4.1 Cryptographic synchronous functions .. 210
7.4.2 CPACF protected key ... 211

6.1 Cryptography enhancements on IBM z13 and z13s servers 202
6.2 Some fundamentals on cryptography ... 202

6.2.1 Modern cryptography .. 202
6.2.2 Kerckhoffs' principle .. 203
6.2.3 Keys ... 204
6.2.4 Algorithms ... 205

6.3 Cryptography on IBM z13 servers .. 206

6.5 Crypto Express5S ... 213

6.5.1 Cryptographic asynchronous functions 215
6.5.2 Crypto Express5S as a CCA coprocessor 216
6.5.3 Crypto Express5S as an EP11 coprocessor 220
6.5.4 Crypto Express5S as an accelerator .. 220
6.5.5 Management of Crypto Express5S .. 221

6.6 TKE workstation ... 224

6.6.1 Logical partition, TKE host, and TKE target 224
6.6.2 Optional smart card reader ... 224
6.6.3 TKE workstation with Licensed Internal Code 8.0 225
6.6.4 TKE workstation with Licensed Internal Code 8.1 225
6.6.5 TKE hardware support and migration information 226

6.7 Cryptographic functions comparison .. 227

6.8 Cryptographic software support .. 229
7.3.18 Multiple subchannel sets .. 258
7.3.19 Fourth subchannel set ... 258
7.3.20 IPL from an alternative subchannel set 258
7.3.21 Modified Indirect Data Address Word facility 259
7.3.22 HiperSockets Completion Queue 259
7.3.23 HiperSockets integration with the intraensemble data network ... 259
7.3.24 HiperSockets Virtual Switch Bridge 260
7.3.25 HiperSockets Multiple Write Facility 260
7.3.26 HiperSockets IPv6 .. 261
7.3.27 HiperSockets Layer 2 support .. 261
7.3.28 HiperSockets network traffic analyzer for Linux on z Systems ... 261
7.3.29 FICON Express16S .. 262
7.3.30 FICON Express8S .. 262
7.3.31 FICON Express8 ... 264
7.3.32 z/OS Discovery and Auto-Configuration 265
7.3.33 High-performance FICON .. 265
7.3.34 Request node identification data .. 267
7.3.35 32 K subchannels for the FICON Express16S 267
7.3.36 Extended distance FICON .. 268
7.3.37 Platform and name server registration in FICON channel 268
7.3.38 FICON link incident reporting .. 269
7.3.39 FCP provides increased performance 269
7.3.40 N_Port ID Virtualization .. 269
7.3.41 OSA-Express5S 10-Gigabit Ethernet LR and SR 269
7.3.42 OSA-Express5S Gigabit Ethernet LX and SX 270
7.3.43 OSA-Express5S 1000BASE-T Ethernet 271
7.3.44 OSA-Express4S 10-Gigabit Ethernet LR and SR 272
7.3.45 OSA-Express4S Gigabit Ethernet LX and SX 272
7.3.46 OSA-Express4S 1000BASE-T Ethernet 273
7.3.47 Open Systems Adapter for IBM zAware 274
7.3.48 Open Systems Adapter for Ensemble 274
7.3.49 Intranode management network .. 275
7.3.50 Intraensemble data network .. 275
7.3.51 OSA-Express5S and OSA-Express4S NCP support 275
7.3.52 Integrated Console Controller .. 276
7.3.53 VLAN management enhancements 277
7.3.54 GARP VLAN Registration Protocol 277
7.3.55 Inbound workload queuing for OSA-Express5S and OSA-Express4S 277
7.3.56 Inbound workload queuing for Enterprise Extender 278
7.3.57 Querying and displaying an OSA configuration 278
7.3.58 Link aggregation support for z/VM 279
7.3.59 Multi-VSwitch Link Aggregation 279
7.3.60 QDIO data connection isolation for z/VM 279
7.3.61 QDIO interface isolation for z/OS 279
7.3.62 QDIO optimized latency mode .. 280
7.3.63 Large send for IPv6 packets .. 280
7.3.64 OSA-Express5S and OSA-Express4S checksum offload 280
7.3.65 Checksum offload for IPv4and IPv6 packets when in QDIO mode .. 281
7.3.66 Adapter interruptions for QDIO .. 281
7.3.67 OSA Dynamic LAN idle ... 281
7.3.68 OSA Layer 3 virtual MAC for z/OS environments 282
7.3.69 QDIO Diagnostic Synchronization 282
7.3.70 Network Traffic Analyzer ... 282
Appendix E. IBM Dynamic Partition Manager . 527
E.1 Introduction to IBM Dynamic Partition Manager . 528
E.2 Reasons to use DPM . 528
E.3 IBM z Systems servers and DPM . 529
E.4 Setting up the DPM environment . 530
 E.4.1 Defining partitions in DPM mode . 533
 E.4.2 Summary . 536

Appendix F. KVM for IBM z Systems . 537
F.1 Why KVM for IBM z Systems . 538
 F.1.1 Advantages of using KVM for z Systems . 538
F.2 IBM z Systems servers and KVM . 539
 F.2.1 Storage connectivity . 540
 F.2.2 Network connectivity . 540
 F.2.3 Hardware Management Console . 541
 F.2.4 Open source virtualization . 541
 F.2.5 What comes with KVM for IBM z Systems . 542
F.3 Managing the KVM for IBM z Systems environment . 544
 F.3.1 Hypervisor Performance Manager . 545
F.4 Using IBM Cloud Manager with OpenStack . 545
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

AIX®
CICS®
Cognos®
DataPower®
DB2 Connect™
DB2®
developerWorks®
Distributed Relational Database Architecture™
Domino®
DS8000®
ECKD™
FICON®
FlashCopy®
GDPS®
Geographically Dispersed Parallel Sysplex™
HACMP™
HiperSockets™
HyperSwap®
IBM Systems Director Active Energy Manager™
IBM z Systems™
IBM z13™
IBM®
IMS™
Language Environment®
Lotus®
MVS™
NetView®
OMEGAMON®
Parallel Sysplex®
Passport Advantage®
Power Systems™
POWER6®
POWER7®
PowerHA®
PowerPC®
PowerVM®
PR/SM™
Processor Resource/Systems Manager™
Redbooks®
Redbooks (logo) ®
Resource Link®
Resource Measurement Facility™
RMF™
System Storage®
System z10®
System z9®
System z®
SystemMirror®
Tivoli®
VIAM®
WebSphere®
z Systems™
z/Architecture®
z/OS®
z/VM®
z/VSE®
z10™
z13™
z9®
zEnterprise®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Find and read thousands of IBM Redbooks publications

- Search, bookmark, save and organize favorites
- Get personalized notifications of new content
- Link to the latest Redbooks blogs and videos

Get the latest version of the Redbooks Mobile App

Promote your business in an IBM Redbooks publication

Place a Sponsorship Promotion in an IBM Redbooks’ publication, featuring your business or solution with a link to your web site.

Qualified IBM Business Partners may place a full page promotion in the most popular Redbooks publications. Imagine the power of being seen by users who download millions of Redbooks publications each year!
Preface

Digital business has been driving the transformation of underlying IT infrastructure to be more efficient, secure, adaptive, and integrated. Information Technology (IT) must be able to handle the explosive growth of mobile clients and employees. IT also must be able to use enormous amounts of data to provide deep and real-time insights to help achieve the greatest business impact.

This IBM® Redbooks® publication addresses the IBM Mainframe, IBM z13™. IBM z13 is the trusted enterprise platform for integrating data, transactions, and insight. A data-centric infrastructure must always be available with a 99.999% or better availability, have flawless data integrity, and be secured from misuse. It needs to be an integrated infrastructure that can support new applications. It needs to have integrated capabilities that can provide new mobile capabilities with real-time analytics delivered by a secure cloud infrastructure.

IBM z13 servers are designed with improved scalability, performance, security, resiliency, availability, and virtualization. The superscalar design allows z13 servers to deliver a record level of capacity over the prior IBM z Systems™ platforms. In its maximum configuration, z13 is powered by up to 141 client characterizable microprocessors (cores) running at 5 GHz. This configuration can run more than 110,000 millions of instructions per second (MIPS) and up to 10 TB of client memory. The IBM z13 Model NE1 is estimated to provide up to 40% more total system capacity than the IBM zEnterprise® EC12 (zEC1) Model HA1.

This book provides information about IBM z13 and its functions, features, and associated software support. Greater detail is offered in areas relevant to technical planning. It is intended for systems engineers, consultants, planners, and anyone who wants to understand the IBM z Systems functions and plan for their usage. It is not intended as an introduction to mainframes. Readers are expected to be generally familiar with existing IBM z Systems technology and terminology.

Authors

This book was produced by a team of specialists from around the world working at the International Technical Support Organization, Poughkeepsie Center.

Octavian Lascu is a Senior IT Consultant for IBM Romania with over 20 years of experience. He specializes in designing, implementing, and supporting complex IT infrastructure environments (systems, storage, and networking), including high availability and disaster recovery solutions and high-performance computing deployments. He has developed materials for and taught over 50 workshops for technical audiences around the world. He has written several IBM publications.

Edzard Hoogerbrug is a System Support Representative in The Netherlands. During the past 26 years, he has worked in various roles within IBM, mainly in the mainframe world. He has 14 years of experience working for EMEA L2 support for IBM z Systems servers after a 2.5 years assignment in Montpellier France. He holds a degree in electrotechnology. His areas of expertise include failure analysis on z Systems hardware.

Cecilia A De Leon is a Certified IT Specialist in the Philippines. She has 15 years of experience in the z Systems field. She has worked at IBM for 7 years. She holds a degree in Computer Engineering from Mapua Institute of Technology. Her areas of expertise include
z Systems servers and operating system. In her current role as Client Technical Specialist, she supports mainframe clients and IBM sales representatives on technical sales engagements. She has also worked as a systems programmer for large banks in the Philippines.

Ewerson Palacio is an IBM Distinguished Engineer and a Certified Consulting IT Specialist for Large Systems in Brazil. He has more than 40 years of experience in IBM large systems. Ewerson holds a Computer Science degree from Sao Paulo University. His areas of expertise include z Systems client technical support, mainframe architecture, infrastructure implementation, and design. He is an ITSO z Systems hardware official speaker who has presented technical ITSO seminars, workshops, and private sessions to IBM clients, IBM IT Architects, IBM IT Specialists, and IBM Business Partners around the globe. He has also been a z Systems Hardware Top Gun training designer, developer, and instructor for the last generations of the IBM high-end servers. Ewerson leads the Mainframe Specialty Services Area (MF-SSA), which is part of GTS Delivery, Technology and Engineering (DT&E). He is a member of the IBM Academy of Technology.

Franco Pinto is a Client Technical Specialist in IBM Switzerland. He has 20 years of experience in the mainframe and IBM z/OS® field. His areas of expertise include z Systems technical pre-sales covering mainframe sizing and installation planning, and providing support on existing and new z Systems functions.

Barbara Sannerud is a Worldwide Technical Enablement Manager for IBM z Systems. She has 30 years of experience in services, strategy, marketing, and product management. Before her current role, she was Offering Manager for z/OS, and also held competitive marketing roles. She holds math and MBA degrees, and joined IBM from the software and professional services industries where she specialized in performance, systems management, and security.

Martin Soellig is a Consulting IT Specialist in Germany. He has 26 years of experience working in the z Systems field. He holds a degree in Mathematics from University of Hamburg. His areas of expertise include z/OS and z Systems hardware, specifically in IBM Parallel Sysplex® and GDPS® environments.

John Troy is a z Systems and storage hardware National Top Gun in the northeast area of the United States. He has 35 years of experience in the service field. His areas of expertise include z Systems server and high-end storage systems technical and customer support. John has been a z Systems hardware technical support course designer, developer, and instructor for the last six generations of IBM high-end servers.

Jin Yang is a Senior System Service Representative in China. He joined IBM in 1999 to support z Systems products maintenance for clients in China. He has been working in the Technical Support Group to provide second-level support for z Systems clients as a country Top Gun since 2009. His/her areas of expertise include z Systems hardware, channel connectivity, IBM z/VM® and Linux on z Systems.

Special thanks to **Parwez Hamid** for guiding the team through the massive amount of information that was required to put this book together.

The following people were the authors of the First edition of this book:

Octavian Lascu
Erik Bakker
Hans-Peter Eckam
Parwez Hamid
Rakesh Krishnakumar
Steven LaFalce
Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at: ibm.com/redbooks/residencies.html
Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

- Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks
- Send your comments in an email to:
 redbooks@us.ibm.com
- Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

- Find us on Facebook:
 http://www.facebook.com/IBMRedbooks
- Follow us on Twitter:
 http://twitter.com/ibmredbooks
- Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
- Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:
- Stay current on recent Redbooks publications with RSS Feeds:
 http://www.redbooks.ibm.com/rss.html
Introducing IBM z13

This section covers the basic concepts and design considerations around IBM z13 mainframes.

This chapter includes the following sections:

- Design considerations of z13
- z13 server highlights
- z13 server technical overview
- Hardware Management Consoles and Support Elements
- IBM z BladeCenter Extension (zBX) Model 004
- IBM z Unified Resource Manager
- IBM Dynamic Partition Manager
- Operating systems and software
1.1 Design considerations of z13

Digital business has been driving the transformation of Information Technology (IT) to be more efficient, secure, adaptive, and intelligent. IT must be able to handle the explosive growth of mobile clients and employees. It also must be able to use enormous amounts of data to provide deep and real-time insights to help achieve the greatest business impact.

Data has become more valuable as a resource that can be used by businesses, with their existing and previously under-served clients (businesses and citizens), allowing them to gain access to new products, services, and societal benefits. To help achieve the required business outcome, sophisticated real-time analytics can be applied on the data, which is present in structured and unstructured format. This advantage enables real-time analytics such as performing fraud detection during the life of a financial transaction, or providing suggestions for cross-selling or up-selling during a sales transaction.

A data-centric infrastructure must always be available for a 24 x 7 business, have flawless data integrity, and be secured from misuse. It needs to be an integrated infrastructure that can support new applications. It needs to have integrated capabilities that can provide new mobile capabilities with real-time analytics delivered by a secure cloud infrastructure.

The IBM z13 server, like its predecessors, is designed from the chip level up for data serving and transaction processing, which forms the core of business. IBM enables a common view data. It provides unmatched support for data:

- A strong, fast I/O infrastructure
- Cache on the chip to bring data close to processing power
- The security and compression capabilities of the co-processors and I/O features
- The 99.999% data availability design of clustering technologies

The z13 server has a new processor chip that offers innovative technology that is designed to deliver maximum performance, and up to 10 TB of available memory for improved efficiency across workloads. The addition of more memory can help improve response time, minimize constraints, speed up batch processing, and reduce the processor cycles that are consumed for a specific workload. The z13 server also offers a 2X improvement in the system I/O bandwidth, which can be combined with new key I/O enhancements to help reduce transfer time and enable longer distance for the global infrastructure.

A key design aspect of the z13 server is building a stronger Enterprise grade platform for running Linux. The z13 server has more throughput per core (Integrated Facility for Linux (IFL)) and uses the memory and I/O enhancements. New solutions and features provide high availability during system, application, or network failure.

z/OS V2.1 or z/OS V2.2 running on z13 servers sets the groundwork for digital business by providing the foundation that you need to support demanding workloads such as operational analytics and cloud along with your traditional mission-critical applications. z/OS V2.1 or later continues to support the IBM System z® Integrated Information Processor (zIIP)1 which can take advantage of the simultaneous multithreading (SMT) feature implemented in the IBM z Systems processor unit (PU). Applications running under z/OS V2.1 or later can take advantage of single-instruction, multiple-data (SIMD) by using compilers that are designed to support the SIMD instructions. z/OS features many I/O related enhancements, such as

1 zAAP workloads are now run on zIIP.
extending the reach of workload management into the SAN Fabric. With enhancements to management and operations, z/OS V2.1 and z/OS Management Facility V2.1 can help system administrators and other personnel handle configuration tasks with ease. Recent Mobile Workload Pricing for z/OS can help reduce the cost of growth for mobile transactions that are processed by programs such as IBM CICS®, IBM IMS™, and IBM DB2® for z/OS.

The new 141-core design delivers massive scale-up across all workloads and enables cost saving consolidation opportunities. IBM z/VM 6.3 has been enhanced to use the SMT feature that is offered on the new processor chip.² It also supports twice as many threads (64) for Linux workloads (up to 64 processors running single thread or up to 32 processors with SMT enabled).

With support for sharing Open Systems Adapters (OSAs) across z/VM systems, z/VM 6.3 delivers enhanced availability and reduced cost of ownership in network environments. In addition, KVM V1.1.1 has been announced, and is planned to support SMT on the z13 processor chip. The IBM z13 (z13) brings a new approach for Enterprise-grade Linux with offerings and capabilities for availability, virtualization with z/VM, and a focus on open standards and architecture with new support of kernel-based virtual machine (KVM) on the mainframe.

IBM z13 continues to provide heterogeneous platform investment protection with the updated IBM z BladeCenter Extension (zBX) Model 004 and IBM z Unified Resource Manager (zManager). Enhancements to the zBX include the uncoupling of the zBX from the server and installing a Support Element (SE) into the zBX. zBX Model 002 and Model 003 can be upgraded to the zBX Model 004.

1.2 z13 server highlights

This section reviews some of the most important features and functions of z13 (Driver 27) servers:

- Processor and memory
- Capacity and performance
- I/O subsystem and I/O features
- Virtualization
- Reliability, availability, and serviceability design

² z/VM 6.3 SMT support is provided on IFL processors only.
1.2.1 Processor and memory

IBM continues its technology leadership with the z13 server. The z13 server is built using the IBM modular multi-drawer design that supports 1 - 4 CPC drawers per CPC. Each CPC drawer contains eight single-chip modules (SCM), which host the redesigned complementary metal-oxide semiconductor (CMOS) 14S03 processor units, storage control chips, and connectors for I/O. The superscalar processor has enhanced out-of-order (OOO) instruction execution, redesigned caches, an expanded instruction set that includes a Transactional Execution facility, includes innovative SMT capability, and provides 139 SIMD vector instruction subset for better performance.

Depending on the model, the z13 server can support from 256 GB to a maximum of 10 TB of usable memory, with up to 2.5 TB of usable memory per CPC drawer. In addition, a fixed amount of 96 GB is reserved for the hardware system area (HSA) and is not part of customer-purchased memory. Memory is implemented as a redundant array of independent memory (RAIM) and uses extra physical memory as spare memory. The RAIM function uses 20% of the physical installed memory in each CPC drawer.

1.2.2 Capacity and performance

The z13 server provides increased processing and I/O capacity over its predecessor, the zEC12 system. This capacity is achieved by increasing the performance of the individual processor units, which increases the number of PUs per system, redesigning the system cache, and increasing the amount of memory. The increased performance and the total system capacity available, with possible energy savings, allow consolidating diverse applications on a single platform, with significant financial savings. The introduction of new technologies and instruction set ensure that the z13 server is a high performance, reliable, and rich-security platform. The z13 server is designed to maximize resource exploitation and utilization, and allows you to integrate and consolidate applications and data across the enterprise IT infrastructure.

z13 servers have five model offerings of 1 - 141 configurable PUs. The first four models (N30, N63, N96, and NC9) have up to 39 PUs per CPC drawer, and the high-capacity model (the NE1) has four 42 PU CPC drawers. Model NE1 is estimated to provide over 40% more total system capacity than the zEC12 Model HA1, with the same amount of memory and power requirements. With up to 10 TB of main storage and SMT, the performance of the z13 processors provide considerable improvement. Uniprocessor performance has also increased significantly. A z13 Model 701 offers, on average, performance improvements of more than 10% over the zEC12 Model 701. However, variations of the observed performance increase depend on the workload type.

The IFL and zIIP processor units on the z13 server can run two simultaneous threads per clock cycle in a single processor, increasing the capacity of the IFL and zIIP processors up to 1.2 times over the zEC12. However, the observed performance increase varies depending on the workload type.

The z13 server expands the subcapacity settings, offering three subcapacity levels for up to 30 processors that are characterized as central processors (CPs). This configuration gives a total of 231 distinct capacity settings in the system, and provides a range of over 1:446 in processing power (111,556: 250 Processor Capacity Index (PCI) ratio). z13 servers deliver scalability and granularity to meet the needs of medium-sized enterprises, while also satisfying the requirements of large enterprises that have demanding, mission-critical transaction and data processing requirements.

3 CMOS 14S0 is a 22-nanometer CMOS logic fabrication process.
This comparison is based on the Large System Performance Reference (LSPR) mixed workload analysis. For a description of performance and workload variation on z13 servers, see Chapter 12, “Performance” on page 463.

z13 servers continue to offer all the specialty engines that are available on previous z Systems servers except for System z Application Assist Processor (zAAP). A zAAP qualified workload can now run on a zIIP processor, thus reducing the complexity of the IBM z/Architecture®.

Workload variability
Consult the LSPR when considering performance on z13 servers. The range of performance ratings across the individual LSPR workloads is likely to have a large spread. There is more performance variation of individual logical partitions (LPARs) when an increased number of partitions and more PUs is available. For more information, see Chapter 12, “Performance” on page 463.

For detailed performance information, see the LSPR website:

The millions of service units (MSUs) ratings are available from the following website:

Capacity on demand
Capacity on demand (CoD) enhancements enable clients to have more flexibility in managing and administering their temporary capacity requirements. The z13 server supports the same architectural approach for CoD offerings as the zEC12 (temporary or permanent). Within the z13 server, one or more flexible configuration definitions can be available to solve multiple temporary situations, and multiple capacity configurations can be active simultaneously.

Up to 200 staged records can be created to handle many scenarios. Up to eight of these records can be installed on the server at any time. After the records are installed, the activation of the records can be done manually, or the z/OS Capacity Provisioning Manager can automatically start the activation when Workload Manager (WLM) policy thresholds are reached. Tokens are available that can be purchased for On/Off CoD either before or after workload execution (pre- or post-paid).

LPAR group absolute capping
IBM Processor Resource/Systems Manager™ (PR/SM™) and the Hardware Management tool have been enhanced to limit the amount of physical processor capacity that is consumed by a group of LPARs when a processor unit is defined as a general-purpose processor or as an IFL shared across a set of LPARs. Currently, a user can define the LPAR group capacity limits, and one or more groups of LPARs can each have their own capacity limit. This new feature adds the ability to define an absolute capping value for an entire LPAR group. This group physical capacity limit is enforced as an absolute limit. It is not affected by changes to the logical or physical configuration of the system.

1.2.3 I/O subsystem and I/O features

The z13 server supports both PCIe and InfiniBand I/O infrastructure. PCIe features are installed in PCIe I/O drawers. Up to five PCIe I/O drawers per z13 server are supported, providing space for up to 160 PCIe I/O features. When upgrading a zEC12 or a z196 to a z13 server, up to two I/O drawers are also supported as carry forward.

4 I/O drawers were introduced with the IBM z10™ BC.
For a four CPC drawer system, up to 40 PCIe and 16 InfiniBand fanouts can be configured for
data communications between the CPC drawers and the I/O infrastructure, and for coupling.
The multiple channel subsystem (CSS) architecture allows up to six CSSs, each with 256
channels.

For I/O constraint relief, four subchannel sets are available per CSS, allowing access to a
larger number of logical volumes. For improved device connectivity for parallel access
volumes (PAVs), Peer-to-Peer Remote Copy (PPRC) secondary devices, and IBM
FlashCopy® devices, this fourth subchannel set allows extending the amount of addressable
external storage. In addition to performing an ILP from subchannel set 0, the z13 server
allows you to also perform an IPL from subchannel set 1 (SS1), subchannel set 2 (SS2), and
subchannel set 3 (SS3).

The system I/O buses take advantage of the Peripheral Component Interconnect Express
(PCIe) technology and the InfiniBand technology, which are also used in coupling links.

z13 connectivity supports the following I/O or special purpose features:

- Storage connectivity:
 - Fibre Channel connection (IBM FICON®):
 - FICON Express16S 10 KM long wavelength (LX) and short wavelength (SX)
 - FICON Express8S 10 KM long wavelength (LX) and short wavelength (SX)
 - FICON Express8 10 KM LX and SX (carry forward only)

- Networking connectivity:
 - Open Systems Adapter (OSA):
 - OSA-Express5S 10 GbE long reach (LR) and short reach (SR)
 - OSA-Express5S GbE LX and SX
 - OSA-Express5S 1000BASE-T Ethernet
 - OSA-Express4S 10 GbE LR and SR (carry forward only)
 - OSA-Express4S GbE LX and SX (carry forward only)
 - OSA-Express4S 1000BASE-T Ethernet (carry forward only)
 - IBM HiperSockets™
 - Shared Memory Communication - Remote Direct Memory Access (SMC-R) through a
 10 GbE RDMA over Converged Ethernet (RoCE) adapter
 - Shared Memory Communication - Direct Memory Access (SMC-D) through Internal
 Shared Memory (ISM)

- Coupling and Server Time Protocol (STP) connectivity:
 - Integrated Coupling Adapter (ICA SR)
 - Parallel Sysplex InfiniBand (IFB) coupling links
 - Internal Coupling (IC) links

In addition, z13 servers support the following special function features, which are installed on
the PCIe I/O drawers:

- Crypto Express5S
- Flash Express
- zEnterprise Data Compression (zEDC) Express
Flash Express

Flash Express is an innovative optional feature that was first introduced with the zEC12. It is intended to provide performance improvements and better availability for critical business workloads that cannot afford any impact to service levels. Flash Express is easy to configure, requires no special skills, and provides rapid time to value.

Flash Express implements SCM through an internal NAND Flash solid-state drive (SSD), in a PCIe card form factor. The Flash Express feature is designed to allow each LPAR to be configured with its own SCM address space. Flash Express has been enhanced to use additional cache memory to further improve availability.

Flash Express is used by these products:

- **z/OS V1R13** (or later), for handling z/OS paging activity and supervisor call (SAN Volume Controller) memory dumps.
- Coupling Facility Control Code (CFCC) Level 20, to use Flash Express as an overflow device for shared queue data. This configuration provides emergency capacity to handle IBM WebSphere® MQ shared queue buildups during abnormal situations, such as when “putters” are putting to the shared queue, but “getters” are transiently not retrieving data from the shared queue.
- Linux for z Systems (Red Hat Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SLES)), for use as temporary storage.
- Stand alone memory dumps and Supervisor Call (SAN Volume Controller) dumps also benefit from Flash Express
- Read/write cache, which greatly increases performance by allowing customer data to be stored temporarily in a cache located in the system's HSA RAM.

For more information, see Appendix H, “Flash Express” on page 555.

10GbE RoCE Express

The 10 Gigabit Ethernet (10GbE) RoCE Express is an optional feature that uses RoCE and is designed to provide fast memory-to-memory communications between two z Systems CPCs. It is transparent to applications.

Use of the 10GbE RoCE Express feature helps reduce CPU consumption for applications that use the TCP/IP stack such as IBM WebSphere Application Server accessing a DB2 database. It might also help to reduce network latency with memory-to-memory transfers that use SMC-R in z/OS V2R1.

The 10GbE RoCE Express feature on z13 servers can now be shared among 31 LPARs running z/OS, and uses both ports on the feature. z/OS V2.1 with program temporary fix (PTF) supports the new sharing capability of RoCE Express features on z13 processors. Also, the z/OS Communications Server has been enhanced to support automatic selection between TCP/IP and RoCE transport layer protocols based on traffic characteristics. The 10GbE RoCE Express feature is supported on z13, zEC12, and zBC12 servers, and is installed in the PCIe I/O drawer. A maximum of 16 features can be installed. On zEC12 and zBC12, only one port can be used and the feature must be dedicated to a logical partition.

Shared Memory Communications - Direct Memory Access

In addition to supporting SMC-R, z13 supports is a new feature called SMC-D. Unlike SMC-R, there is no dependency on the RoCE Express feature. SMC-R affords low latency communications within a CEC by using an RDMA connection.
IBM z Systems servers (z13 and z13s) now support a new ISM virtual PCIe (vPCIe) device to enable optimized cross-LPAR TCP communications using a new sockets-based direct memory access (DMA), the SMC-D. SMC-D maintains the socket-API transparency aspect of SMC-R so that applications that use TCP/IP communications can benefit immediately without requiring any application software or IP topology changes.

SMC-D with its lightweight design is designed to improve throughput, latency, and CPU consumption over other alternatives without sacrificing quality of service. SMC-D extends the benefits of SMC-R to the same CPC operating system instances without requiring physical resources such as RoCE adapters, PCI bandwidth, ports, I/O slots, network resources, 10GbE switches, and so on. SMC-D requires either OSA connections or HiperSockets to establish the initial TCP connection and can coexist with them.

SMC-D uses a virtual PCIe adapter and is configured like a physical PCIe device. There are up to 32 ISM adapters, each with a unique Physical Network ID per CPC.

Notes:
- SMC-D does not support coupling facilities or access to the intraensemble data network (IEDN).
- Shared Memory Communication protocols (SMC-R and SMC-D) do not currently support multiple IP subnets.

zEDC Express

The growth of data that needs to be captured, transferred, and stored for large periods of time is unrelenting. The large amounts of data that need to be handled cause ever-increasing needs for bandwidth and storage space. Software-implemented compression algorithms are costly in terms of processor resources, and storage costs are not negligible.

Beginning with zEC12, bandwidth and storage space requirements are addressed by providing hardware-based acceleration for data compression and decompression. zEDC, an optional feature that is available for z13 servers, provides data compression with lower CPU consumption than previously existing compression technology on z Systems servers. The following are examples of uses for zEDC compression where you can find advantages:

- QSAM/BSAM for better disk utilization and batch elapsed time improvements
- SMF for increased availability and online storage reduction
- DFSMSddss for better disk and tape utilization for backup data
- Java for high throughput standard compression by using java.util.zip
- Encryption Facility for z/OS for better industry data exchange
- IBM Sterling Connect: Direct for z/OS for better throughput and link utilization
- ISV support for increased client value
- DFSMShsm for improved throughput and MIPS reduction

For more information, see Appendix J, “IBM zEnterprise Data Compression Express” on page 577.

1.2.4 Virtualization

PR/SM is Licensed Internal Code (LIC) that manages and virtualizes all the installed and enabled system resources as a single large symmetric multiprocessor (SMP) system. This virtualization enables full sharing of the installed resources with high security and efficiency. It does so by configuring up to 85 LPARs, each of which has logical processors, memory, and I/O resources. These LPARs are assigned from the installed CPC drawers and features. For more information about PR/SM functions, see 3.7, “Logical partitioning” on page 122.
LPAR configurations can be dynamically adjusted to optimize the virtual servers’ workloads. On z13 servers, PR/SM supports an option to limit the amount of physical processor capacity that is consumed by an individual LPAR when a PU defined as a CP or an IFL is shared across a set of LPARs. This feature is designed to provide and enforce a physical capacity limit as an absolute (rather than a relative) limit. Physical capacity limit enforcement is not affected by changes to the logical or physical configuration of the system. This physical capacity limit can be specified in units of CPs or IFLs.

z13 servers provide improvements to the PR/SM HiperDispatch function. HiperDispatch provides work alignment to logical processors, and alignment of logical processors to physical processors. This alignment optimizes cache utilization, minimizes inter-CPC drawer communication, and optimizes z/OS work dispatching, with the result of increasing throughput. For more information, see “HiperDispatch” on page 123.

z13 servers support the definition of up to 32 IBM HiperSockets. HiperSockets provide for memory to memory communication across LPARs without the need for any I/O adapters, and have virtual LAN (VLAN) capability. HiperSockets have been extended to bridge to the ensemble internode data network (IEDN).

Increased flexibility with z/VM mode logical partition
z13 servers provide for the definition of a z/VM mode LPAR containing a mix of processor types. These types include CPs and specialty processors, such as IFLs, zIIPs, and ICFs. z/VM V6R2 and later support this capability, which increases flexibility and simplifies system management. In a single LPAR, z/VM can perform the following tasks:

▶ Manage guests that use Linux on z Systems on IFLs or CPs, and manage IBM z/VSE, z/TPF, and z/OS guests on CPs.
▶ Run designated z/OS workloads, such as parts of IBM DB2 Distributed Relational Database Architecture™ (DRDA) processing and XML, on zIIPs.

Coupling Facility mode logical partition
Parallel Sysplex continues to be the clustering technology used with z13 servers. To use this technology, a special LIC is used. This code is called CFCC. To activate the CFCC, a special logical partition must be defined. Only PUs characterized as CPs or Internal Coupling Facilities (ICFs) can be used for Coupling Facility (CF) partitions. For a production CF workload, use dedicated ICFs.

IBM z Appliance Container Infrastructure
IBM z Appliance Container Infrastructure (zACI) is a new partition type which, along with an appliance installer, enables the secure deployment of software appliances. Typically, appliances can be implemented as firmware or software, depending on the environment where the appliance runs. To support the execution of software applications, base infrastructure is needed. This partition with requisite infrastructure is the z Appliance Container Infrastructure. zACI is designed to shorten the deployment and implementation of building and deploying appliances. zACI is delivered as part of the base code on z13s and z13 (Driver 27) servers.

zACI provides a standardized framework for deploying products as software or firmware. An appliance is an integration of operating system, middleware, and software components that work autonomously and provide core services and infrastructure focusing on consumability and security.

zACI reduces the work that is needed to create and maintain a product, and enforces common functions that appliances need. The zACI framework provides a consistent set of
utilities to implement these common functions such as first-failure data capture (FFDC), network setup, appliance configuration and more. The design of zACI allows a simpler product (function) deployment model.

Several exploiters are planned for delivery through zACI. For instance, z/VSE Network Appliance provides network access for TCP/IP socket applications running on z/VSE in an LPAR. The z/VSE Network Appliance is an example of a product that is intended to be managed by using the zACI infrastructure. IBM zAware is also designed to be implemented by using the zACI partition replacing the IBM zAware partition infrastructure used previously. For more information, see Appendix A, “IBM z Appliance Container Infrastructure” on page 475.

IBM z/VSE Network Appliance

The z/VSE Network Appliance builds on the z/VSE Linux Fast Path (LFP) function and provides Internet Protocol network access without requiring a TCP/IP stack in z/VSE. The appliance uses the new zACI introduced on z13 and z13s servers. Compared to a TCP/IP stack in z/VSE, this can support higher TCP/IP traffic throughput while reducing the processing resource consumption in z/VSE. The z/VSE Network Appliance is an extension of the z/VSE - z/VM IP Assist (IBM VIA®) function introduced on z114 and z196 servers. VIA provides network access for TCP/IP socket applications that run on z/VSE as a z/VM guest. With the new z/VSE Network Appliance, this function is available for z/VSE systems running in an LPAR. When available, the z/VSE Network Appliance is provided as a downloadable package. It can then be deployed with the appliance installer.

In summary, the VIA function is available for z/VSE systems that run as z/VM guests. The z/VSE Network Appliance is available for z/VSE systems that run without z/VM in LPARs.

Both provide network access for TCP/IP socket applications that use the LFP. However, no TCP/IP stack is required on the z/VSE system, and no Linux on z Systems needs to be installed.

IBM zAware

IBM zAware is a feature that was introduced with the zEC12 that embodies the next generation of system monitoring. IBM zAware is designed to offer a near real-time, continuous-learning diagnostic and monitoring capability. This function helps pinpoint and resolve potential problems quickly enough to minimize their effects on your business.

The ability to tolerate service disruptions is diminishing. In a continuously available environment, any disruption can have grave consequences. This negative effect is especially true when the disruption lasts days or even hours. But increased system complexity makes it more probable that errors will occur, and those errors are also increasingly complex. Some incidents’ early symptoms go undetected for long periods of time and can become large problems. Systems often experience “soft failures” (sick but not dead), which are much more difficult or unusual to detect. IBM zAware is designed to help in those circumstances. For more information, see Appendix B, “IBM z Advanced Workload Analysis Reporter” on page 479.

IBM zAware Version 2.0 also offers support for Linux running on z Systems servers and now supports Linux message log analysis. IBM zAware enables processing of message streams including those without message IDs. It provides increased flexibility for analysis with the ability to group multiple systems for modeling and analysis purposes together, which is especially helpful for Linux workloads.

For use across the sysplex, IBM zAware now features an aggregated Sysplex view for z/OS and system views. Visualization and usability are enhanced with an enhanced Heat map.
display, enhanced filtering and visualization capabilities, and improvements in time zone display.

Beginning with z13 Driver 27, IBM zAware runs in a zACI mode logical partition. Either CPs or IFLs can be configured to the IBM zAware partition. This special partition is defined for the exclusive use of the IBM z Systems Advanced Workload Analysis Reporter (IBM zAware) offering. IBM zAware requires a special license. IBM z Advanced Workload Analysis Reporter (zAware)

For customers now considering IBM zAware, z13 GA2 introduces the new zACI that supports IBM zAware. IBM zAware functionality is the same whether it uses zACI or runs as a stand-alone zAware partition. Existing zAware instances are automatically converted to use the zACI partition. New zACI instances intending to use IBM zAware will use the zACI web interface to select IBM zAware.

1.2.5 Reliability, availability, and serviceability design

System reliability, availability, and serviceability (RAS) is an area of continuous IBM focus. The RAS objective is to reduce, or eliminate if possible, all sources of planned and unplanned outages, while providing adequate service information if something happens. Adequate service information is required to determine the cause of an issue without the need to reproduce the context of an event. With a properly configured z13 server, further reduction of outages can be attained through improved nondisruptive replace, repair, and upgrade functions for memory, drawers, and I/O adapters. In addition, z13 servers have extended nondisruptive capability to download and install LIC updates.

Enhancements include removing pre-planning requirements with the fixed 96 GB HSA. Client-purchased memory is not used for traditional I/O configurations, and you no longer need reserve capacity to avoid disruption when adding new features. With a fixed amount of 96 GB for the HSA, maximums are configured and an initial program load (IPL) is performed so that later insertion can be dynamic, which eliminates the need for a power-on reset of the server.

IBM z13 RAS features provide many high-availability and nondisruptive operational capabilities that differentiate the z Systems servers in the marketplace.

The ability to cluster multiple systems in a Parallel Sysplex takes the commercial strengths of the z/OS platform to higher levels of system management, scalable growth, and continuous availability.

1.3 z13 server technical overview

This section briefly reviews the major elements of z13 servers:

- Models
- Model upgrade paths
- Frames
- CPC drawer
- I/O connectivity: PCIe and InfiniBand
- I/O subsystems
- Coupling and Server Time Protocol connectivity
Special-purpose features:
- Cryptography
- Flash Express
- zEDC Express
- Reliability, availability, and serviceability

1.3.1 Models

The z13 server has a machine type of 2964. Five models are offered: N30, N63, N96, NC9, and NE1. The model name indicates the maximum number of PUs available for purchase ("C9" stands for 129 and "E1" for 141). A PU is the generic term for the IBM z/Architecture processor unit (processor core) on the SCM.

On z13 servers, some PUs are part of the system base, that is, they are not part of the PUs that can be purchased by clients. They are characterized by default as follows:
- System assist processor (SAP) that is used by the channel subsystem. The number of predefined SAPs depends on the z13 model.
- One integrated firmware processor (IFP). The IFP is used in support of select features, such as zEDC and 10GbE RoCE.
- Two spare PUs that can transparently assume any characterization during a permanent failure of another PU.

The PUs that clients can purchase can assume any of the following characterizations:
- Central processor (CP) for general-purpose use.
- Integrated Facility for Linux (IFL) for the use of Linux on z Systems.
- z Systems Integrated Information Processor (zIIP5).

zIIPs:
At least one CP must be purchased with, or before, a zIIP can be purchased. Clients can purchase up to two zIIPs for each purchased CP (assigned or unassigned) on the system (2:1). However, for migrations from zEC12 with zAAPs, the ratio (CP:zIIP) can go to 4:1.

- Internal Coupling Facility (ICF) is used by the CFCC.
- Additional SAPs are used by the channel subsystem.

A PU that is not characterized cannot be used, but is available as a spare. The following rules apply:
- In the five-model structure, at least one CP, ICF, or IFL must be purchased and activated for any model.
- PUs can be purchased in single PU increments and are orderable by feature code.
- The total number of PUs purchased cannot exceed the total number that are available for that model.
- The number of installed zIIPs cannot exceed twice the number of installed CPs.

5 zAAPs are not available on z13 servers. The zAAP workload is done on zIIPs.
The multi-CPC drawer system design provides the capability to concurrently increase the capacity of the system in these ways:

- Add capacity by concurrently activating more CPs, IFLs, ICFs, or zIIPs on an existing CPC drawer.
- Add a CPC drawer concurrently and activate more CPs, IFLs, ICFs, or zIIPs.
- Add a CPC drawer to provide more memory, or one or more adapters to support a larger number of I/O features.

1.3.2 Model upgrade paths

Any z13 server can be upgraded to another z13 hardware model. All upgrades from Models N30, N63, and N96 to N63, N96, and NC9 are concurrent. The upgrades to NE1 are disruptive (that is, the system is unavailable during the upgrade). Any zEC12 or z196 model can be upgraded to any z13 model, which is also disruptive. Figure 1-1 shows the upgrade path.

Consideration: An air-cooled z13 server cannot be converted to a water-cooled z13 server, and vice versa.

The diagram illustrates the upgrade paths from z196 to z13 servers. When a z196 is upgraded to a z13, the z196 driver level must be at least 93. If a zBX is involved, the Driver 93 must be at bundle 27 or higher. When upgrading a z196 that controls a zBX Model 002 to a z13 server, the zBX is upgraded to a Model 004 and becomes a stand-alone ensemble node. The concept of the zBX being “owned” by a CPC is removed when the zBX is upgraded to a Model 004. Upgrading from z196 to z13 servers is disruptive.
zEC12 upgrade to z13 server
When an EC12 is upgraded to a z13, the zEC12 must be at least at Driver level 15. If a zBX is involved, Driver 15 must be at Bundle 27 or later. When upgrading a zEC12 that controls a zBX Model 003 to a z13, the zBX is upgraded to a Model 004 and becomes a stand-alone ensemble node. The concept of the zBX being “owned” by a CPC is removed when the zBX is upgraded to a model 004. Upgrading from zEC12 to z13 servers is disruptive.

The following processes are not supported:
- Downgrades within the z13 models
- Upgrade from a zBC12 or z114 to z13 servers
- Upgrades from IBM System z10® or earlier systems
- Attachment of a zBX Model 002 or model 003 to a z13 server

zBX upgrade
The zBX Model 004 is available as an upgrade from an existing zBX Model 002 or Model 003. The upgrade decouples the zBX from its controlling CPC and with the addition of redundant Support Elements, it becomes a stand-alone node within an ensemble.

1.3.3 Frames
z13 servers have two frames that are bolted together and are known as the A frame and the Z frame. The frames contain the following CPC components:
- Up to four CPC drawers in Frame A
- PCIe I/O drawers, and I/O drawers, which hold I/O features and special purpose features
- Power supplies
- An optional Internal Battery Feature (IBF)
- Cooling units for either air or water cooling
- Two System Control Hubs (SCHs) to interconnect the CPC components through Ethernet
- Two new 1U rack-mounted Support Elements (mounted in A frame) with their keyboards, pointing devices, and displays mounted on a tray in the Z frame.

1.3.4 CPC drawer
Up to four CPC drawers are installed in frame A of z13 servers. Each CPC drawer houses the SCMs, memory, and I/O interconnects.

Single Chip Module technology
z13 servers are built on the superscalar microprocessor architecture of its predecessor, and provide several enhancements over the zEC12. Each CPC drawer is physically divided into two nodes. Each node has four SCMs, three PU SCMs, and one storage control (SC) SCM, so the CPC drawer has six PU SCMs and two SC SCMs. The PU SCM has eight cores, with six, seven, or eight active cores, which can be characterized as CPs, IFLs, ICFs, zIIPs, SAPs, or IFPs. Two CPC drawer sizes are offered: 39 and 42 cores.

The SCM provides a significant increase in system scalability and an extra opportunity for server consolidation. All CPC drawers are interconnected by using high-speed communication links that are cable-based and in a full star topology, through the L4 cache. This configuration allows the z13 server to be controlled by the PR/SM facility as a memory-coherent and cache-coherent SMP system.
The PU configuration includes two designated spare PUs per CPC and a variable number of SAPs. The SAPs scale with the number of CPC drawers that are installed in the server. For example, there are six standard SAPs with one CPC drawer installed, and up to 24 when four CPC drawers are installed. In addition, one PU is used as an IFP and is not available for client use. The remaining PUs can be characterized as CPs, IFL processors, zIIPs, ICF processors, or extra SAPs.

The z13 server offers a water-cooling option for increased system and data center energy efficiency. The PU SCMs are cooled by a cold plate that is connected to an internal water cooling loop and the SC SCMs are air-cooled. In an air-cooled system, the radiator units (RUs) exchange the heat from the internal water loop with air. The water cooling units (WCUs) are fully redundant in an N+1 arrangement. The RU has improved availability with N+2 pumps and blowers.

Processor features
The processor chip has an eight-core design, with either six, seven, or eight active cores, and operates at 5.0 GHz. Depending on the CPC drawer version (39 PU or 42 PU), 39 - 168 PUs are available on 1 - 4 CPC drawers.

Each core on the PU chip includes an enhanced dedicated coprocessor for data compression and cryptographic functions, which are known as the Central Processor Assist for Cryptographic Functions (CPACF)\(^6\). The cryptographic performance of CPACF has improved up to 2x (100%) over the zEC12.

Having standard clear key cryptographic coprocessors that are integrated with the processor provides high-speed cryptography for protecting data.

Hardware data compression can play a significant role in improving performance and saving costs over performing compression in software. The zEDC Express feature offers more performance and savings over the coprocessor. Their functions are not interchangeable.

The micro-architecture of the core has been altered radically to increase parallelism and improve pipeline efficiency. The core has a new branch prediction and instruction fetch front end to support SMT in a single core and to improve the branch prediction throughput, a wider instruction decode (six instructions per cycle), and 10 arithmetic logical execution units that offer double instruction bandwidth over the zEC12.

Each core has two hardware decimal floating point units that are designed according to a standardized, open algorithm. Much of today’s commercial computing uses decimal floating point calculus, so two on-core hardware decimal floating point units meet the requirements of business and user applications, which provides greater floating point execution throughput with improved performance and precision.

In the unlikely case of a permanent core failure, each core can be individually replaced by one of the available spares. Core sparing is transparent to the operating system and applications.

Simultaneous multithreading
The micro-architecture of the core of the z13 server allows simultaneous execution of two threads (SMT) in the same zIIP or IFL core, dynamically sharing processor resources such as execution units and caches. This facility allows a more efficient utilization of the core and increased capacity because while one of the threads is waiting for a storage access (cache miss), the other thread that is running simultaneously in the core can use the shared resources rather than remain idle.

\(^6\) Feature code (FC) 3863 must be ordered to enable CPACF. This feature code is available for no extra fee.
Single instruction multiple data instruction set
The z13 instruction set architecture includes a subset of 139 new instructions for SIMD execution, which was added to improve efficiency of complex mathematical models and vector processing. These new instructions allow a larger number of operands to be processed with a single instruction. The SIMD instructions use the superscalar core to process operands in parallel, which enables more processor throughput.

Transactional Execution facility
The z13 server, like its predecessor zEC12, has a set of instructions that allows defining groups of instructions that are run atomically, that is, either all the results are committed or none are. The facility provides for faster and more scalable multi-threaded execution, and is known as *hardware transactional memory*.

Out-of-order execution
As with its predecessor zEC12, z13 servers have an enhanced superscalar microprocessor with OOO execution to achieve faster throughput. With OOO, instructions might not run in the original program order, although results are presented in the original order. For example, OOO allows a few instructions to complete while another instruction is waiting. Up to six instructions can be decoded per system cycle, and up to 10 instructions can be in execution.

Concurrent processor unit conversions
The z13 server supports concurrent conversion between various PU types, which provides the flexibility to meet the requirements of changing business environments. CPs, IFLs, zIIPs, ICFs, and optional SAPs can be converted to CPs, IFLs, zIIPs, ICFs, and optional SAPs.

Memory subsystem and topology
z13 servers use a new buffered dual inline memory module (DIMM) technology. For this purpose, IBM has developed a chip that controls communication with the PU, and drives address and control from DIMM to DIMM. The DIMM capacities are 16 GB, 32 GB, 64 GB, and 128 GB.

Memory topology provides the following benefits:
- A RAIM for protection at the dynamic random access memory (DRAM), DIMM, and memory channel levels
- A maximum of 10 TB of user configurable memory with a maximum of 12.5 TB of physical memory (with a maximum of 10 TB configurable to a single LPAR)
- One memory port for each PU chip, and up to five independent memory ports per CPC drawer
- Increased bandwidth between memory and I/O
- Asymmetrical memory size and DRAM technology across CPC drawers
- Large memory pages (1 MB and 2 GB)
- Key storage
- Storage protection key array that is kept in physical memory
- Storage protection (memory) key that is also kept in every L2 and L3 cache directory entry
- A larger (96 GB) fixed-size HSA that eliminates having to plan for HSA
PCIe fanout hot-plug

The PCIe fanout provides the path for data between memory and the PCIe features through the PCIe 16 GBps bus and cables. The PCIe fanout is hot-pluggable. During an outage, a redundant I/O interconnect allows a PCIe fanout to be concurrently repaired without loss of access to its associated I/O domains. Up to 10 PCIe fanouts are available per CPC drawer. The PCIe fanout can also be used for the ICA SR. If redundancy in coupling link connectivity is ensured, the PCIe fanout can be concurrently repaired.

Host channel adapter fanout hot-plug

The host channel adapter (HCA) fanout provides the path for data between memory and the I/O cards in an I/O drawer through 6 GBps IFB cables. The HCA fanout is hot-pluggable. During an outage, an HCA fanout can be concurrently repaired without the loss of access to its associated I/O features by using redundant I/O interconnect to the I/O drawer. InfiniBand optical HCA3-O and HCA3-O LR, which are used to provide connectivity between members of a sysplex, are orderable features in z13 servers. They can also be carried forward on a miscellaneous equipment specification (MES) from a zEC12 or z196. Up to four HCA fanouts are available per CPC drawer. The HCA fanout also can be used for the InfiniBand coupling links (HCA3-O and HCA3-O LR). If redundancy in coupling link connectivity is ensured, the HCA fanout can be concurrently repaired.

1.3.5 I/O connectivity: PCIe and InfiniBand

The z13 server offers various improved I/O features and uses technologies, such as PCIe and InfiniBand. This section briefly reviews the most relevant I/O capabilities.

The z13 server takes advantage of PCIe Generation 3 to implement the following features:

- PCIe Generation 3 (Gen3) fanouts that provide 16 GBps connections to the PCIe I/O features in the PCIe I/O drawers.
- PCIe Gen3 fanouts that provide 8 GBps coupling link connections through the new IBM ICA SR.

The z13 server takes advantage of InfiniBand to implement the following features:

- A 6 GBps I/O bus that includes the InfiniBand infrastructure (HCA2-C) for the I/O drawer for non-PCIe I/O features.
- Parallel Sysplex coupling links using IFB: 12x InfiniBand coupling links (HCA3-O) for local connections and 1x InfiniBand coupling links (HCA3-O LR) for extended distance connections between any two zEnterprise CPCs. The 12x IFB link (HCA3-O) has a bandwidth of 6 GBps and the HCA3-O LR 1x InfiniBand links have a bandwidth of 5 Gbps.

1.3.6 I/O subsystems

The z13 I/O subsystem is similar to the one on zEC12 and includes the new PCIe Gen3 infrastructure. The I/O subsystem is supported by both a PCIe bus and an I/O bus similar to that of zEC12. It includes the InfiniBand double data rate infrastructure, which replaced the self-timed interconnect that was used in previous z Systems servers. This infrastructure is designed to reduce processor usage and latency, and provide increased throughput.

z13 servers offer two I/O infrastructure elements for holding the I/O features:

- PCIe I/O drawers, for PCIe features
- Up to two I/O drawers for non-PCIe features
PCIe I/O drawer
The PCIe I/O drawer, together with the PCIe features, offers finer granularity and capacity over previous I/O infrastructures. It can be concurrently added and removed in the field, easing planning. Only PCIe cards (features) are supported, in any combination. Up to five PCIe I/O drawers can be installed on a z13 server.

I/O drawer
On the z13 server, I/O drawers are supported only when carried forward on upgrades from zEC12 or z196 to z13 servers. For a new z13 order, it is not possible to order an I/O drawer.

The z13 server can have up to two I/O drawers. Each I/O drawer can accommodate up to eight FICON Express8 features. Based on the number of I/O features that are carried forward, the configurator determines the number of required I/O drawers.

Native PCIe and Integrated Firmware Processor
Native PCIe was introduced with the zEDC and RoCE Express features, which are managed differently from the traditional PCIe features. The device drivers for these adapters are available in the operating system. The diagnostic tests for the adapter layer functions of the native PCIe features are managed by LIC that is designated as a resource group partition, which runs on the IFP. For availability, two resource groups are present and share the IFP.

During the ordering process of the native PCIe features, features of the same type are evenly spread across the two resource groups (RG1 and RG2) for availability and serviceability reasons. Resource groups are automatically activated when these features are present in the CPC.

I/O and special purpose features
The z13 server supports the following PCIe features on a new build, which can be installed only in the PCIe I/O drawers:

- FICON Express16S Short Wave (SX) and 10 km (6.2 miles) Long Wave (LX)
- FICON Express 8S Short Wave (SX) and 10 km (6.2 miles) Long Wave (LX)
- OSA-Express5S 10 GbE Long Reach (LR) and Short Reach (SR), GbE LX, and SX
- OSA-Express5S, GbE LX and SX, and 1000BASE-T
- ICA SR
- 10GbE RoCE Express
- Crypto Express5S
- Flash Express
- zEDC Express

When carried forward on an upgrade, the z13 server also supports the following features in the PCIe I/O drawers:

- FICON Express8S SX and LX (10 km)
- OSA-Express 5S (all)
- OSA-Express 4S (all)
- 10GbE RoCE Express
- Flash Express
- zEDC Express

When carried forward on an upgrade, the z13 server also supports up to two I/O drawers on which the FICON Express8 SX and LX (10 km) feature can be installed.

In addition, InfiniBand coupling links HCA3-O and HCA3-O LR, which attach directly to the CPC drawers, are supported.
FICON channels

Up to 160 features with up to 320 FICON Express16S channels or up to 160 features with up to 320 FICON Express 8S channels are supported. The FICON Express8S features support link data rates of 2, 4, or 8 Gbps, and the FICON Express 16S support 4, 8, or 16 Gbps.

Up to 16 features with up to 64 FICON Express8 channels are supported in a maximum of two I/O drawers. The FICON Express8 features support link data rates of 2, 4, or 8 Gbps.

The z13 FICON features support the following protocols:

- FICON (FC) and High Performance FICON for z Systems (zHPF). zHPF offers improved performance for data access, which is of special importance to online transaction processing (OLTP) applications.
- FICON channel-to-channel (CTC).
- Fibre Channel Protocol (FCP).

FICON also offers the following capabilities:

- Modified Indirect Data Address Word (MIDAW) facility: Provides more capacity over native FICON channels for programs that process data sets that use striping and compression, such as DB2, VSAM, partitioned data set extended (PDSE), hierarchical file system (HFS), and z/OS file system (zFS). It does so by reducing channel, director, and control unit processor usage.
- Enhanced problem determination, analysis, and manageability of the storage area network (SAN) by providing registration information to the fabric name server for both FICON and FCP.
- A new Extended Link Service command, Read Diagnostic Parameters, has been added to allow z Systems servers to obtain extra diagnostic data from the Small Form Factor Pluggable optics that are located throughout the SAN fabric to improve the accuracy of identifying a failing component.

Read Diagnostic Parameter

A new command called Read Diagnostic Parameters (RDP) allows z Systems servers to obtain extra diagnostics from the small form-factor pluggable (SFP) optics located throughout the SAN fabric. RDP is designed to help improve the accuracy of identifying a failed/failing component in the SAN fabric.

Open Systems Adapter

The z13 server allows any mix of the supported OSA Ethernet features. Up to 48 OSA-Express5S or OSA-Express4S features, with a maximum of 96 ports, are supported. OSA-Express5S and OSA-Express4S features are plugged into the PCIe I/O drawer.

The maximum number of combined OSA-Express5S and OSA-Express4S features cannot exceed 48.

Beginning with z13 Driver 27, the Open Systems Adapter, when configured as an integrated console controller CHPID type (OSC) on the z13 family of processors, supports the configuration and enablement of secure connections by using the Transport Layer Security (TLS) protocol versions 1.0, 1.1 and 1.2.
OSM and OSX channel path identifier types

The z13 server provides OSA-Express5S, OSA-Express4S, and channel-path identifier (CHPID) types OSA-Express for Unified Resource Manager and OSA-Express for zBX connections:

- **OSA-Express for Unified Resource Manager (OSM)**

 Connectivity to the intranode management network (INMN) Top of Rack (ToR) switch in the zBX is not supported on z13 servers. When the zBX model 002 or 003 is upgraded to a model 004, it becomes an independent node that can be configured to work with the ensemble. The zBX model 004 is equipped with two 1U rack-mounted Support Elements to manage and control itself, and is independent of the CPC SEs.

- **OSA-Express for zBX (OSX)**

 Connectivity to the IEDN. Provides a data connection from the z13 to the zBX server. Uses OSA-Express5S 10 GbE (preferred), and can also use the OSA-Express4S 10 GbE feature.

OSA-Express5S, OSA-Express4S feature highlights

The z13 server supports five different types each of OSA-Express5S and OSA-Express4S features. OSA-Express5S features are a technology refresh of the OSA-Express4S features:

- OSA-Express5S 10 GbE Long Reach (LR)
- OSA-Express5S 10 GbE Short Reach (SR)
- OSA-Express5S GbE Long Wave (LX)
- OSA-Express5S GbE Short Wave (SX)
- OSA-Express5S Ethernet 1000BASE-T Ethernet
- OSA-Express4S 10 GbE Long Reach
- OSA-Express4S 10 GbE Short Reach
- OSA-Express4S GbE Long Wave
- OSA-Express4S GbE Short Wave
- OSA-Express4S Ethernet 1000BASE-T Ethernet

OSA-Express features provide important benefits for TCP/IP traffic by reducing latency and improving throughput for standard and jumbo frames. Performance enhancements are the result of the data router function being present in all OSA-Express features. For functions that were previously performed in firmware, the OSA Express5S and OSA-Express4S now perform those functions in hardware. Extra logic in the IBM application-specific integrated circuit (ASIC) that is included with the feature handles packet construction, inspection, and routing, allowing packets to flow between host memory and the LAN at line speed without firmware intervention.

With the data router, the store and forward technique in DMA is no longer used. The data router enables a direct host memory-to-LAN flow. This configuration avoids a hop, and is designed to reduce latency and to increase throughput for standard frames (1492 bytes) and jumbo frames (8992 bytes).

For more information about the OSA features, see 4.8, “Connectivity” on page 161.

HiperSockets

The HiperSockets function is also known as internal queued direct input/output (internal QDIO or iQDIO). It is an integrated function of the z13 server that provides users with attachments to up to 32 high-speed virtual LANs with minimal system and network processor usage.
HiperSockets can be customized to accommodate varying traffic sizes. Because the HiperSockets function does not use an external network, it can free system and network resources, eliminating attachment costs while improving availability and performance.

For communications between LPARs in the same z13 server, HiperSockets eliminates the need to use I/O subsystem features and to traverse an external network. Connection to HiperSockets offers significant value in server consolidation by connecting many virtual servers. It can be used instead of certain coupling link configurations in a Parallel Sysplex.

HiperSockets is extended to allow integration with IEDN, which extends the reach of the HiperSockets network outside the CPC to the entire ensemble, and displays it as a single Layer 2 network.

Shared Memory Communication - DMA
In addition to supporting HiperSockets, z13 also supports a new means of communications within a CPC: SMC-D.

z Systems servers now support ISM virtual PCIe (vPCIe) devices to enable optimized cross-LPAR TCP communications using a new sockets-based DMA protocol called SMC-D. SMC-D maintains the socket-API transparency aspect of SMC-R so that applications that use TCP/IP communications can benefit immediately without requiring any application software or IP topology changes, making it easy for applications to use this communications capability. SMC-D requires either OSA connections or HiperSockets to establish the initial connection.

SMC-D affords low processor usage and low latency communications within a CEC using an RDMA connection. It is considered an alternative to HiperSockets. Unlike SMC-R, no adapter is required.

10GbE RoCE Express
The 10 Gigabit Ethernet (10GbE) RoCE Express feature is a RDMA-capable network interface card. The 10GbE RoCE Express feature is supported on z13, zEC12, and zBC12 servers, and is used in the PCIe I/O drawer. Each feature has one PCIe adapter. A maximum of 16 features can be installed.

The 10GbE RoCE Express feature uses an SR laser as the optical transceiver, and supports the use of a multimode fiber optic cable that terminates with an LC Duplex connector. Both a point-to-point connection and a switched connection with an enterprise-class 10 GbE switch are supported.

Support is provided by z/OS, which supports one port per feature, dedicated to one partition in zEC12 and zBC12. With z13, both ports, shared by up to 31 partitions, are supported.

For more information, see D.2.2, “Shared Memory Communications over RDMA” on page 503.

1.3.7 Coupling and Server Time Protocol connectivity
Support for Parallel Sysplex includes the CFCC and coupling links.
Coupling links support
Coupling connectivity in support of Parallel Sysplex environments is provided on the z13 server by the following features:

- New PCIe Gen3, IBM ICA SR, which allows 2-port coupling links connectivity for a distance of up to 150 m (492 feet) at 8 GBps each.

 The ICA SR is a new two-port fanout used for short distance coupling connectivity. It uses PCIe Gen3 technology, with x16 lanes that are bifurcated into x8 lanes for coupling. The ICA SR is designed to drive distances up to 150m and support a link data rate of 8 gigabytes per second (GBps). The ICA SR fanout is in the PCIe I/O slot on the z13 CPC drawer. It is used for coupling connectivity between z13 and z13s CPCs, and cannot be connected to HCA3-O or HCA3-O LR coupling fanouts. The ICA SR is only compatible with another ICA SR.

 Note: Generally, order ICA SR features (#0172) on IBM z13s processors used in a Parallel Sysplex to help ensure coupling compatibility with future processor generations.

- HCA3-O, 12x InfiniBand coupling links offering up to 6 GBps of bandwidth between z13, zBC12, z196, and z114 systems, for a distance of up to 150 m (492 feet). These links offer improved service times over the HCA2-O links that were used on prior z Systems families.

- HCA3-O LR, 1x InfiniBand (up to 5 Gbps connection bandwidth) between z13, zEC12, zBC12, z196, and z114 servers for a distance of up to 10 km (6.2 miles). The HCA3-O LR (1xIFB) type has twice the number of links per fanout card as compared to type HCA2-O LR (1xIFB) that was used in the previous z Systems generations.

- Internal Coupling Channels (ICs), operating at memory speed.

 All coupling link types can be used to carry STP messages. z13 servers do not support ISC-3 connectivity.

CFCC Level 21
CFCC level 21 is delivered on the z13 GA2 with driver level 27. CFCC Level 21 introduces the following enhancements:

- Support for up to 141 ICF processors per z Systems CPC:
 - The maximum number of logical processors in a Coupling Facility Partition remains 16.

- Large memory support:
 - Improves availability/scalability for larger CF cache structures and data sharing performance with larger DB2 group buffer pools (GBPs).
 - This support removes inhibitors to using large CF structures, enabling the use of Large Memory to scale to larger DB2 local buffer pools (LBPs) and GBPs in data sharing environments.
 - The CF structure size remains at a maximum of 1 TB.

- Support for new IBM ICA

 Coupling CHPIDs: IBM supports up to 256 Coupling CHPIDs on z13 servers, twice the number of coupling CHPIDs supported on zEC12 (128).

 Each CF image continues to support a maximum of 128 coupling CHPIDs.
z13 servers with CFCC Level 21 require z/OS V1R12 or later, and z/VM V6R2 or later for virtual guest coupling.

To support an upgrade from one CFCC level to the next, different levels of CFCC can coexist in the same sysplex while the coupling facility LPARs are running on different servers. CF LPARs that run on the same server share a single CFCC level.

A CF running on a z13 server (CFCC level 21) can coexist in a sysplex with CFCC levels 18 and 20. Review the CF LPAR size by using the CFSizer tool: http://www.ibm.com/systems/z/cfsizer

Server Time Protocol facility

STP is a server-wide facility that is implemented in the LIC of z Systems CPCs (including CPCs running as stand-alone coupling facilities). STP presents a single view of time to PR/SM and provides the capability for multiple servers to maintain time synchronization with each other.

Any z Systems CPC can be enabled for STP by installing the STP feature. Each server that must be configured in a Coordinated Timing Network (CTN) must be STP-enabled.

The STP feature is the supported method for maintaining time synchronization between z Systems images and coupling facilities. The STP design uses the CTN concept, which is a collection of servers and coupling facilities that are time-synchronized to a time value called Coordinated Server Time (CST).

Network Time Protocol (NTP) client support is available to the STP code on the z13, zEC12, zBC12, z196, and z114 servers. With this function, the z13, z13s, zEC12, zBC12, z196, and z114 servers can be configured to use an NTP server as an External Time Source (ETS).

This implementation answers the need for a single time source across the heterogeneous platforms in the enterprise. An NTP server becomes the single time source for the z13, zEC12, zBC12, and IBM zEnterprise 196 (z196) and z114, and other servers that have NTP clients, such as UNIX and Microsoft Windows systems.

The time accuracy of an STP-only CTN is improved by using, as the ETS device, an NTP server with the pulse per second (PPS) output signal. This type of ETS is available from various vendors that offer network timing solutions.

Improved security can be obtained by providing NTP server support on the Hardware Management Console (HMC) for the SE. The HMC is normally attached to the private dedicated LAN for z Systems maintenance and support. For z13 and zEC12 servers, authentication support is added to the HMC NTP communication with NTP time servers.

Attention: A z13 server cannot be connected to a Sysplex Timer and cannot join a Mixed CTN.

If a current configuration consists of a Mixed CTN or a Sysplex Timer 9037, the configuration must be changed to an STP-only CTN before z13 integration. The z13 server can coexist only with z Systems CPCs that do not have the external time reference (ETR) port capability.

Support has been added to enable STP communications to occur by using the ICA SR (new for z13).
Enhanced Console Assisted Recovery

Console Assisted Recovery (CAR) support is designed to help a Backup Time Server determine whether the Primary Time Server (PTS) is still up and running if coupling traffic ceases. The CAR process is started by the Backup Time Server (BTS) if there is a lack of communication between the Primary and Backup Time Servers. The BTS queries the state of the PTS/CTS SE using the SE and HMC of the Backup Time Server. If the PTS is down, the BTS starts takeover.

With the new Enhanced Console Assisted Recovery (ECAR), the process of BTS takeover is faster. When the PTS encounters a checkstop condition, the CEC informs the SE and HMC of the condition. The PTS SE recognizes the pending checkstop condition, and an ECAR request is sent directly from the HMC to the BTS SE to start the takeover. The new ECAR support is faster than the original support as there is almost no delay between the system checkstop and the start of CAR processing. ECAR is only available on z13 GA2 and z13s servers. In a mixed environment with previous generation machines, define a z13 or z13s server as the PTS and CTS.

1.3.8 Special-purpose features

This section overviews several features that, although installed in the PCIe I/O drawer or in the I/O drawer, provide specialized functions without performing I/O operations. That is, no data is moved between the CPC and externally attached devices.

Cryptography

Integrated cryptographic features provide leading cryptographic performance and functions. The cryptographic solution that is implemented on z Systems servers has received the highest standardized security certification (FIPS 140-2 Level 4). In addition to the integrated cryptographic features, the cryptographic features (Crypto Express5S, the only crypto card that is supported on z13s servers) allows adding or moving crypto coprocessors to LPARs without pre-planning.

The z13s server implements PKCS#11, one of the industry-accepted standards that are called Public Key Cryptography Standards (PKCS), which are provided by RSA Laboratories, currently a division of EMC Corporation. It also implements the IBM Common Cryptographic Architecture (CCA) in its cryptographic features.

CP Assist for Cryptographic Function

The CP Assist for Cryptographic Function (CPACF) offers the full complement of the Advanced Encryption Standard (AES) algorithm and Secure Hash Algorithm (SHA) with the Data Encryption Standard (DES) algorithm. Support for CPACF is available through a group of instructions that are known as the Message-Security Assist (MSA). z/OS Integrated Cryptographic Service Facility (ICSF) callable services and the z90crypt device driver running on Linux on z Systems also start CPACF functions. ICSF is a base element of z/OS. It uses the available cryptographic functions, CPACF, or PCIe cryptographic features to balance the workload and help address the bandwidth requirements of your applications.

CPACF must be explicitly enabled by using a no-charge enablement feature (FC 3863), except for the SHAs, which are included enabled with each server.

The enhancements to CPACF are exclusive to the z Systems servers, and are supported by z/OS, z/VM, z/VSE, z/TPF, and Linux on z Systems.

7 Federal Information Processing Standard (FIPS) 140-2 Security Requirements for Cryptographic Modules
Configurable Crypto Express5S feature

Crypto Express5S represents the newest generation of cryptographic features. It is designed to complement the cryptographic capabilities of the CPACF. It is an optional feature of the z13 and z13s server generation. The Crypto Express5S feature is designed to provide granularity for increased flexibility with one PCIe adapter per feature. For availability reasons, a minimum of two features is required.

With z13 and z13s servers, a cryptographic coprocessor can be shared across more than 16 domains, up to the maximum number of LPARs on the system (up to 85 domains for z13 servers and 40 domains for z13s servers).

The Crypto Express5S is a state-of-the-art, tamper-sensing, and tamper-responding programmable cryptographic feature that provides a secure cryptographic environment. Each adapter contains a tamper-resistant hardware security module (HSM). The HSM can be configured as a Secure IBM CCA coprocessor, as a Secure IBM Enterprise PKCS #11 (EP11) coprocessor, or as an accelerator:

- A Secure IBM CCA coprocessor is for secure key encrypted transactions that use CCA callable services (default).
- A Secure IBM Enterprise PKCS #11 (EP11) coprocessor implements an industry standardized set of services that adhere to the PKCS #11 specification v2.20 and more recent amendments. This new cryptographic coprocessor mode introduced the PKCS #11 secure key function.
- An accelerator for public key and private key cryptographic operations is used with Secure Sockets Layer/Transport Layer Security (SSL/TLS) acceleration.

The Crypto Express5S is designed to meet these cryptographic standards, among others:

- FIPS 140-2 Level 4
- ANSI 9.97
- Payment Card Industry (PCI) HSM
- Deutsche Kreditwirtschaft (DK)

Federal Information Processing Standard (FIPS) 140-2 certification is supported only when Crypto Express5S is configured as a CCA or an EP11 coprocessor.

Crypto Express5S supports a number of ciphers and standards including those in the following sections. For more information about cryptographic algorithms and standards, see Chapter 6, “Cryptography” on page 201.

TKE workstation and support for smart card readers

The Trusted Key Entry (TKE) feature is an integrated solution that is composed of workstation firmware, hardware, and software to manage cryptographic keys in a secure environment. The TKE is either network-connected or isolated, in which case smart cards are used.

The TKE workstation and the most recent TKE 8.1 LIC are optional features on the z13s. The TKE 8.1 requires the crypto adapter FC 4767. You can use TKE 8.0 to collect data from previous generations of cryptographic modules and apply the data to Crypto Express5S coprocessors.

The TKE workstation offers a security-rich solution for basic local and remote key management. It provides authorized personnel with a method for key identification, exchange, separation, update, and backup, and a secure hardware-based key loading mechanism for operational and master keys. TKE also provides secure management of host cryptographic module and host capabilities.
Support for an optional smart card reader that is attached to the TKE workstation allows the use of smart cards that contain an embedded microprocessor and associated memory for data storage. Access to and the use of confidential data on the smart cards are protected by a user-defined personal identification number (PIN). A FIPS certified smart card, part number 00JA710, is now included in the smart card reader and additional smart cards optional features.

When Crypto Express5S is configured as a Secure IBM Enterprise PKCS #11 (EP11) coprocessor, the TKE workstation is required to manage the Crypto Express5S feature. The TKE is recommended for CCA mode processing as well. If the smart card reader feature is installed in the TKE workstation, the new smart card part 00JA710 is required for EP11 mode. If EP11 is to be defined, smart cards that are used require FIPS certification.

For more information about the cryptographic features, see Chapter 6, “Cryptography” on page 201. Also, see Web Deliverables download site for the most current ICSF updates available. (See HCR77B0 Web Deliverable 14 and HCR77B1 Web Deliverable 15.:

Flash Express

The Flash Express optional feature is intended to provide performance improvements and better availability for critical business workloads that cannot afford any impact to service levels. Flash Express is easy to configure, requires no special skills, and provides rapid time to value.

Flash Express implements SCM in a PCIe card form factor. Each Flash Express card implements an internal NAND Flash SSD, and has a capacity of 1.4 TB of usable storage. Cards are installed in pairs, which provide mirrored data to ensure a high level of availability and redundancy. A maximum of four pairs of cards (eight features) can be installed on a z13 server, for a maximum capacity of 5.6 TB of storage.

The Flash Express feature is designed to allow each LPAR to be configured with its own SCM address space. It is used for paging. Flash Express can be used, for example, to hold pageable 1 MB pages.

Encryption is included to improve data security. Data security is ensured through a unique key that is stored on the SE hard disk drive (HDD). It is mirrored for redundancy. Data on the Flash Express feature is protected with this key, and is usable only on the system with the key that encrypted it. The Secure Keystore is implemented by using a smart card that is installed in the SE. The smart card (one pair, so you have one for each SE) contains the following items:

- A unique key that is personalized for each system
- A small cryptographic engine that can run a limited set of security functions within the smart card

Flash Express, recently enhanced with additional cache, is supported by z/OS V1R13 (at minimum) for handling z/OS paging activity, and has support for 1 MB pageable pages and SAN Volume Controller and Standalone memory dumps. Support was added to the CFCC to use Flash Express as an overflow device for shared queue data to provide emergency capacity to handle WebSphere MQ shared queue buildups during abnormal situations. Abnormal situations include when “putters” are putting to the shared queue, but “getters” are transiently not getting from the shared queue.

Flash memory is assigned to a CF image through HMC windows. The coupling facility resource management (CFRM) policy definition allows the wanted amount of SCM to be used by a particular structure, on a structure-by-structure basis. Flash Express also now supports
dynamic reconfiguration of memory. It removes the requirement for pageable link pack area (PLPA) and common page data sets for cold start IPLs.

Additional memory enhancements such as the use of 2 GB large pages have been introduced into z/OS as well, and can be used by software such as DB2 for buffer pools.

For more information, see Appendix H, “Flash Express” on page 555.

zEDC Express

zEDC Express, an optional feature that is available to z13, z13s, zEC12, and zBC12 servers, provides hardware-based acceleration for data compression and decompression with lower CPU consumption than the previous compression technology on z Systems servers.

Use of the zEDC Express feature by the z/OS V2R1 zEnterprise Data Compression acceleration capability is designed to deliver an integrated solution to accomplish these objectives:

- Help reduce CPU consumption
- Optimize performance of compression-related tasks
- Enable more efficient use of storage resources
- Lower the cost of computing
- Help optimize the cross-platform exchange of data

One to eight features can be installed on the system. There is one PCIe adapter/compression coprocessor per feature, which implements compression as defined by RFC1951 (DEFLATE).

A zEDC Express feature can be shared by up to 15 LPARs.

See the IBM System z Batch Network Analyzer (zBNA) 1.4.2 tool, which reports on potential zEDC usage for QSAM/BSAM data sets:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS5132

For more information, see Appendix J, “IBM zEnterprise Data Compression Express” on page 577.

1.3.9 Reliability, availability, and serviceability

The z13 RAS strategy employs a building-block approach, which is developed to meet the client's stringent requirements for achieving continuous reliable operation. Those building blocks are error prevention, error detection, recovery, problem determination, service structure, change management, measurement, and analysis.

The initial focus is on preventing failures from occurring. This goal is accomplished by using Hi-Rel (highest reliability) components that use screening, sorting, burn-in, and run-in, and by taking advantage of technology integration. For LIC and hardware design, failures are reduced through rigorous design rules; design walk-through; peer reviews; element, subsystem, and system simulation; and extensive engineering and manufacturing testing.

The RAS strategy is focused on a recovery design to mask errors and make them transparent to client operations. An extensive hardware recovery design is implemented to detect and correct memory array faults. In cases where transparency cannot be achieved, you can restart the server with the maximum capacity possible.

The z13 server has the following RAS improvements, among others:

- Cables for SMP fabric.
- CP and SC are SCM field replaceable units (FRUs).
- Point of load (POL) replaces the Voltage Transformation Module.
- The water manifold is a FRU.
- The redundant oscillators are isolated on their own backplane.
- The CPC drawer is a FRU (empty).
- A built-in Time Domain Reflectometry (TDR) isolates failures.
- CPC drawer level degrade.
- FICON (better recovery on fiber).
- N+2 radiator pumps (air cooled system).
- N+1 System Control Hub (SCH) and power supplies.
- N+1 Support Elements (SE).

For more information, see Chapter 9, “Reliability, availability, and serviceability” on page 359.

1.4 Hardware Management Consoles and Support Elements

The HMCs and SEs are appliances that together provide platform management for z Systems. For the z13 updated functions, the new driver level 27 is required. HMC (V2.13.1) plus microcode change levels (MCLs) and the Support Element (V2.13.1) are required to be installed.

The HMC is a workstation that is designed to provide a single point of control for managing local or remote hardware elements. In addition to the HMC console tower, a new 1u Rack Mounted HMC with 19 inch rack-mounted components can be placed in customer supplied 19 inch racks.

HMCs and SEs also provide platform management for zBX Model 004 and for the ensemble nodes when the z Systems CPCs and the zBX Model 004 nodes are members of an ensemble. In an ensemble, the HMC is used to manage, monitor, and operate one or more z Systems CPCs and their associated LPARs, as well as the zBX Model 004 machines. Also, when the z Systems server and a zBX Model 004 are members of an ensemble, the HMC has a global (ensemble) management scope, which is compared to the SEs on the zBX Model 004 and on the CPCs, which have local (node) management responsibility.

When tasks are performed on the HMC, the commands are sent to one or more CPC SEs or zBX Model 004 SEs, which then issue commands to their CPCs and zBXs. To provide high availability, an ensemble configuration requires a pair of HMCs, a primary and an alternate.

For more information, see Chapter 11, “Hardware Management Console and Support Elements” on page 415.

1.5 IBM z BladeCenter Extension (zBX) Model 004

The IBM z BladeCenter Extension (zBX) Model 004 improves infrastructure reliability by extending the mainframe systems management and service across a set of heterogeneous compute elements in an ensemble.

8 From Version 2.11. For more information, see 11.6, “HMC in an ensemble” on page 456.
The zBX Model 004 is only available as an optional upgrade from a zBX Model 003 or a zBX Model 002, through MES, in an ensemble that contains at least one z13 CPC and consists of these components:

- Two internal 1U rack-mounted SEs providing zBX monitoring and control functions.
- Up to four IBM 42U Enterprise racks.
- Up to eight BladeCenter chassis with up to 14 blades each, with up to two chassis per rack.
- Up to 112\(^9\) blades.
- INMN ToR switches. On the zBX Model 004, the new local zBX Support Elements directly connect to the INMN within the zBX for management purposes. Because zBX Model 004 is an independent node, there is no INMN connection to any z Systems CPC.
- IEDN ToR switches. The IEDN is used for data paths between the zEnterprise ensemble members and the zBX Model 004, and also for customer data access. The IEDN point-to-point connections use MAC addresses, not IP addresses (Layer 2 connectivity).
- 8 Gbps Fibre Channel switch modules for connectivity to customer supplied storage (through SAN).
- Advanced management modules (AMMs) for monitoring and management functions for all the components in the BladeCenter.
- Power Distribution Units (PDUs) and cooling fans.
- Optional acoustic rear door or optional rear door heat exchanger.

The zBX is configured with redundant hardware infrastructure to provide qualities of service similar to those of z Systems servers, such as the capability for concurrent upgrades and repairs.

Geographically Dispersed Parallel Sysplex/PPRC (GDPS/PPRC) and GDPS/Global Mirror (GDPS/GM) support zBX hardware components, providing workload failover for automated multi-site recovery. These capabilities facilitate the management of planned and unplanned outages.

1.5.1 Blades

Two types of blades can be installed and operated in the IBM zEnterprise BladeCenter Extension (zBX):

- Optimizer Blades: IBM WebSphere DataPower® Integration Appliance XI50 for zEnterprise blades
- IBM Blades:
 - A selected subset of IBM POWER7® blades
 IBM POWER7 blades are virtualized by PowerVM® Enterprise Edition, and the virtual servers run the IBM AIX® operating system.
 - A selected subset of IBM BladeCenter HX5 blades
 IBM BladeCenter HX5 blades are virtualized by using an integrated hypervisor for System x. The virtual servers run Linux on System x (RHEL and SLES operating systems) and select Microsoft Windows Server operating systems.

Enablement for the blades is specified with an entitlement feature code that is configured on the ensemble HMC.

\(^9\) The maximum number of blades varies according to the blade type and blade function.
1.5.2 IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise

The IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise (DataPower XI50z) is a multifunctional appliance that can help provide multiple levels of XML optimization. This configuration streamlines and secures valuable service-oriented architecture (SOA) applications. It also provides drop-in integration for heterogeneous environments by enabling core enterprise service bus (ESB) functions, including routing, bridging, transformation, and event handling. It can help to simplify, govern, and enhance the network security for XML and web services.

When the DataPower XI50z is installed in the zBX, the Unified Resource Manager provides integrated management for the appliance. This configuration simplifies control and operations, including change management, energy monitoring, problem detection, problem reporting, and dispatching of an IBM service support representative (IBM SSR), as needed.

Important: The zBX Model 004 uses the blades carried forward in an upgrade from a previous model. Customers can install additional entitlements up to the full zBX installed blade capacity if the existing blade centers chassis have empty available slots. After the entitlements are acquired from IBM, clients must procure and purchase the additional zBX supported blades to be added, up to the full installed entitlement LIC record, from another source or vendor.

1.6 IBM z Unified Resource Manager

The IBM z Unified Resource Manager is the integrated management software that runs on the Ensemble HMC and on the zBX model 004 SEs. The Unified Resource Manager consists of six management areas (for more information, see 11.6.1, “Unified Resource Manager” on page 456):

- Operational controls (Operations)
 Includes extensive operational controls for various management functions.
- Virtual server lifecycle management (Virtual servers)
 Enables directed and dynamic virtual server provisioning across hypervisors from a single point of control.
- Hypervisor management (Hypervisors)
 Enables the management of hypervisors and support for application deployment.
- Energy management (Energy)
 Provides energy monitoring and management capabilities that can be used to better understand the power and cooling demands of the zEnterprise System.
- Network management (Networks)
 Creates and manages virtual networks, including access control, which allows virtual servers to be connected.
- Workload Awareness and platform performance management (Performance)
 Manages CPU resource across virtual servers that are hosted in the same hypervisor instance to achieve workload performance policy objectives.

The Unified Resource Manager provides energy monitoring and management, goal-oriented policy management, increased security, virtual networking, and storage configuration management for the physical and logical resources of an ensemble.
1.7 IBM Dynamic Partition Manager

A new administrative mode for the z Systems CPC (with HMC and SE at driver 27) is being introduced for Linux only CPCs with FCP attached storage. The IBM Dynamic Partition Manager (DPM) provides simplified z Systems hardware and virtual infrastructure management that includes integrated dynamic I/O management for users who intend to run KVM for IBM z Systems as hypervisor or Linux on z Systems running in LPAR mode.

DPM provides simplified, consumable, and enhanced partition lifecycle and dynamic I/O management capabilities through the Hardware Management Console and is designed to perform these tasks:

- Create and provision an environment: Create new partitions, assignment of processors and memory, configuration of I/O adapters (Network, FCP Storage, Crypto, and Accelerators)
- Manage the environment: Modify system resources without disrupting running workloads
- Monitor and troubleshoot the environment: Source identification of system failures, conditions, states, and events that might lead to workload degradation.
- A CPC can be in either the DPM mode or the standard PR/SM mode.
- DPM mode is enabled before the CPC power-on reset.

Operating the CPC in DPM mode requires two OSA-Express 1000BASE-T Ethernet ports (these should be on separate features) for primary and backup SE connectivity.

1.8 Operating systems and software

The IBM z13 server is supported by a large set of software, including independent software vendor (ISV) applications. This section lists only the supported operating systems. Use of various features might require the latest releases. For more information, see Chapter 7, “Software support” on page 231.

1.8.1 Supported operating systems

The following operating systems are supported for z13 servers:

- z/OS Version 2 Release 2 with PTFs
- z/OS Version 2 Release 1 with PTFs
- z/OS Version 1 Release 13 with (PTFs)
- z/OS V1R12 with required maintenance (compatibility support only) and extended support agreement
- KVM for IBM z Release 1.1 with PTFs. (KVM Version 1.1.1 is announced with the z13 GA2.)
- z/VM Version 6 Release 4 with PTFs (previewed with z13 driver 27)
- z/VM Version 6 Release 3 with PTFs
- z/VM Version 6 Release 2 with PTFs
- z/VSE Version 6 Release 1 with PTFs
- z/VSE Version 5 Release 2 with PTFs
- z/VSE Version 5 Release 1 with PTFs
zTPF Version 1 Release 1 with PTFs

Linux on z Systems distributions:
- SUSE Linux Enterprise Server (SLES): SLES 12 and SLES 11.
- Customers should monitor for new distribution releases supported

For supported Linux on z Systems distribution levels, see the following website:
http://www.ibm.com/systems/z/os/linux/resources/testedplatforms.html

The following operating systems are supported on zBX Model 004:
- An AIX (on POWER7) blade in IBM BladeCenter Extension Mod 004): AIX 5.3, AIX 6.1, and AIX 7.1 and subsequent releases and PowerVM Enterprise Edition
- Linux on System x (on IBM BladeCenter HX5 blade installed in zBX Mod 004):
 - Red Hat RHEL 5.5 and up, 6.0 and up, 7.0 and up
 - SLES 10 (SP4) and up, 11 SP1 and up, SLES 12 and up - 64 bit only
- Microsoft Windows (on IBM BladeCenter HX5 blades installed in ZBX Mod 004)
 - Microsoft Windows Server 2012, Microsoft Windows Server 2012 R2
 - Microsoft Windows Server 2008 R2 and Microsoft Windows Server 2008 (SP2) (Datacenter Edition recommended) 64 bit only

Together with support for IBM WebSphere software, full support for service-oriented architecture (SOA), web services, Java Platform, Enterprise Edition, Linux, and Open Standards, the IBM z13 is intended to be a platform of choice for the integration of the newest generations of applications with existing applications and data.

z Systems software is also designed to take advantage of the many enhancements on z13 with driver 27. Several platform enhancements announced with z13:
- KVM for IBM z Systems 1.1.1
- z/VM Support
- z/OS Support

KVM for IBM z Systems 1.1.1

KVM on z offers a number of enhancements announced with z13 driver 27 for availability later in the year. As KVM support is evolving on z Systems servers, it is advisable to monitor for new enhancements to KVM and Linux on z Systems distributions.

These enhancements are intended to use many of the innovations of the server. For instance enhancements include but are not limited to:
- SMT exploitation
- Guest exploitation of the Vector Facility for z/Architecture (SIMD)
- Hypervisor enhancements that include support for Internet Small Computer System Interface (iSCSI) and Network File System (NFS)
- Hypervisor Crypto exploitation
- Enhanced RAS capabilities such as improved FFDC
- Improved high availability configuration
- Unattended installation of hypervisor
z/VM Support

z/VM Support for z13 includes but is not limited to these features:

- z/VM 6.2 and 6.3 provide
 - Guest support for Crypto Express5S, and support for 85 Crypto Express domains
 - Absolute Capping of an LPAR group, enabling each LPAR to consume capacity up to its individual limit
- In addition, z/VM 6.3 provides support for the following features with service:
 - Guest exploitation support of SMC-D.
 - Dynamic Memory Management improved efficiency for memory upgrades by using only a portion of the reserved main storage for the partition by initializing and clearing just the amount of storage requested.
 - Guest exploitation of Vector Facility (SIMD).
- z/VM SMT exploitation for IFL processors in a Linux only mode or for a z/VM mode LPAR. Note that z/VM SMT exploitation support does not virtualize threads for Linux guests. However, VM itself is designed to achieve higher throughput through SMT.
- z/VM Multi-VSwitch Link Aggregation allows a port group of OSA-Express features to span multiple virtual switches within a single z/VM or between multiple z/VM systems to increase optimization and utilization of OSA-Express when handling larger traffic loads.

z/OS Support

z/OS takes advantage of many of the new functions and features of IBM z13, including the following:

- z/OS V2.2 supports zIIP processors in SMT mode to help improve throughput for zIIP workloads. This support is also available for z/OS V2.1 with PTFs.
- z/OS V2.2 supports up to 141 processors per LPAR or up to 128 physical processors per LPAR in SMT mode.
- z/OS V2.2 also supports up to 4 TB of real memory per LPAR. This support is also available on z/OS V2.1 with PTFs.
- z/OS V2.2 supports the vector extension facility (SIMD) instructions. This support is also available for z/OS V2.1 with PTFs.
- z/OS V2.2 provides support for up to four subchannel sets on IBM z13 and z13s servers to help relieve subchannel constraints. It can allow you to define larger I/O configurations that support multi-target Metro Mirror (PPRC) sets. This support is also available for z/OS V1.13 and z/OS V2.1 with service.
- z/OS V1.13 and later releases support z13 and z13s FICON function to allow cascading up to 4 FICON switches. Dynamic Channel-path Management (DCM) support is provided for cascaded switches on z/OS V2.1 and later.
- z/OS V2.1 and later with PTFs is designed to use the Read Diagnostic Parameters (RDP) extended link service (ELS) on z13 and z13s processors to retrieve and display information about the status of FICON fiber optic connections, and to provide health checks for diagnosing FICON error conditions that might help with early detection of deterioration of connection quality.
- z/OS V2.2 running on IBM z13 and z13s servers with IBM System Storage® DS8000® devices and a minimum MCL supports a new health check for FICON dynamic routing designed to inspect all components of a dynamic routing fabric. This support, also
available for z/OS V1.13 and z/OS V2.1 with PTFs, can help you identify configuration errors that can result in data integrity exposures.

- z/OS V2.2, and z/OS V2.1 with PTFs, supports the new LPAR absolute group capping function

- z/OS V2.2 Communications Server supports the virtualization capability of 10GbE RoCE Express on IBM z13 and z13s processors. z/OS V2.2 is designed to support the SMC-D protocol for low-latency, high-bandwidth, cross-LPAR connections for applications

- Exploitation of Crypto Express5S features is provided for z/OS V2.2 and with the Enhanced Cryptographic Support for z/OS V1.13 - z/OS V2.1 web deliverables.

- z/OS V2.2 XL C/C++ provides support for z13 and z13s processors with ARCH(11) and TUNE(11) parameters that are designed to take advantage of the new instructions.

- XL C/C++ support for SIMD instructions with the vector programming language extensions, and the IBM MASS and ATLAS libraries. This function is also available for z/OS V2.1 XL C/C++ with a web deliverable:

- New functions are available for ICSF in a new Cryptographic Support for z/OS V1R13 - z/OS V2R2 This web deliverable is available for download from:
 http://www-03.ibm.com/systems/z/os/zos/tools/downloads/

- More support for the z13 processor family is planned for ICSF Cryptographic Support for z/OS V1R13 - z/OS V2R2 web deliverable in PTFs in the first quarter of 2016.

- Support for the new TKE 8.1 workstation, when available.

1.8.2 IBM compilers

The following IBM compilers for z Systems servers can use z13 servers:

- Enterprise COBOL for z/OS
- Enterprise PL/I for z/OS
- XL C/C++ for Linux on z Systems
- z/OS XL C/C++

The compilers increase the return on your investment in z Systems hardware by maximizing application performance using the compilers' advanced optimization technology for z/Architecture. Through their support of web services, XML, and Java, they allow for the modernization of existing assets in web-based applications. They support the latest IBM middleware products (CICS, DB2, and IMS), allowing applications to use their latest capabilities.

To fully use the capabilities of z13 servers, you must compile it using the minimum level of each compiler that is specified in Table 1-1.

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise COBOL for z/OS</td>
<td>V5.2</td>
</tr>
<tr>
<td>Enterprise PL/I for z/OS</td>
<td>V4.5</td>
</tr>
<tr>
<td>XL C/C++ for Linux on z Systems</td>
<td>V1.1</td>
</tr>
<tr>
<td>z/OS XL C/C++</td>
<td>V2.1a</td>
</tr>
</tbody>
</table>

a. Web update required
To obtain the best performance, you must specify an architecture level of 11 by using the
-qarch=arch11 option for the XL C/C++ for Linux on z Systems compiler or the ARCH(11)
option for the other compilers. This option grants the compiler permission to use machine
instructions that are available only on z13 servers. Because specifying the architecture level
of 11 results in the generated application using instructions that are available only on z13
servers, the application will not run on earlier versions of hardware. If the application must run
on the z13 server and on older hardware, specify the architecture level corresponding to the
oldest hardware on which the application needs to run. For more information, see the
documentation for the ARCH or -qarch options in the guide for the corresponding compiler
product.
Central processor complex
hardware components

This chapter introduces the IBM z13 central processor complex (CPC) hardware components. It also describes the significant features and functions with their characteristics and options. The objective is to explain the z13 hardware building blocks and how these components interconnect from a physical point of view. This information is useful for planning purposes and can help in defining configurations that fit your requirements.

This chapter includes the following sections:

- Frames and drawers
- CPC drawer
- Single chip modules
- Memory
- Reliability, availability, and serviceability
- Connectivity
- Model configurations
- Power and cooling
- Summary of z13 structure
2.1 Frames and drawers

z Systems frames are enclosures that are built to Electronic Industries Alliance (EIA) standards. The z13 server has two 42U EIA frames. The two frames, A and Z, are bolted together. They have positions for up to four CPC drawers and a combination of Peripheral Component Interconnect Express (PCIe) I/O drawers, and I/O drawers carried forward from an older system. The other components included in the frames are explained in the following sections.

The z13 server and its predecessor, the zEC12, have the option of ordering the infrastructure to support the top exit of fiber optic cables (FICON, OSA, 12x InfiniBand, 1x InfiniBand, ICA SR, and RoCE) and copper cables for the 1000BASE-T Ethernet features. On the z13 server, the top exit capability is designed to provide an option for overhead power cabling.

The z13 server can be delivered as an air-cooled system or as a water-cooled system. A picture of an air-cooled system with the optional top exit I/O and power feature is shown in Figure 2-1, with the maximum of four CPC drawers and five PCIe I/O drawers.

![Figure 2-1 z13 internal front view of an air-cooled CPC (models NC9 or NE1)](image)

IBM z13 Technical Guide
A picture of a water-cooled system without the optional top exit I/O and power feature is shown in Figure 2-2, with the maximum of four CPC drawers and five PCIe I/O drawers.

Figure 2-2 z13 internal front view of a water-cooled CPC (models NC9 or NE1)

2.1.1 A Frame

As shown in Figure 2-1 on page 38 and Figure 2-2, the A frame has the following major components (from top to bottom of the frame):

- Two Support Element (SE) servers that are installed at the top of the A frame. In previous z Systems servers, the SEs were notebooks in the Z Frame. For z13 servers, the SEs are replaced with the 1U servers, which are mounted at the top of the 42U EIA frame.

- Two optional integrated battery features (IBFs), which provide the function of a local uninterrupted power source. The IBF enhances the robustness of the power design, increasing power line disturbance immunity.

- One PCIe I/O drawer. The presence of this PCIe I/O drawer depends on the I/O configuration of the z13 server.

- Two System Control Hubs (SCHs). The SCHs are the replacement of the Bulk Power Hubs that were used in previous z Systems servers.

- Up to four CPC drawers. The number of the CPC drawers depends on the model number of the z13 server. At least one CPC drawer must be installed, and the additional ones are filled up from the bottom to the top.

- The cooling units for the closed loop water-cooling system of the CPC drawers in the bottom of the A Frame differ for air-cooled and water-cooled systems:

 a. For an air-cooled z13 server (Figure 2-1 on page 38), three pumps and three blowers (N+2 redundant design) are installed.

 b. For a water-cooled z13 server (Figure 2-2), two Water Conditioning Units (WCUs) are installed. The WCUs are connected to a customer-operated (data center) chilled water supply.
2.1.2 Z Frame

As shown in Figure 2-1 on page 38 and Figure 2-2 on page 39, the Z frame has the following major components (from top to bottom of the frame):

- Two or four optional IBFs. The number of batteries depends on the number of bulk power regulators that are installed. IBFs are always installed in pairs.

- Bulk power regulators (BPRs). The number of BPRs varies depending on the configuration of the z13 server. For more information about the required number of BPRs, see 2.8.1, “Power consumption” on page 78.

- The Keyboard and Display tray, which is in front of the I/O drawer slots, contains the keyboards and the displays that are connected to the SEs.

- Up to four drawers, which can be any combination of up to two I/O drawers and up to four PCIe I/O drawers:
 - The PCIe I/O drawer is used for all new installations or can be carried forward through miscellaneous equipment specification (MES).
 - The I/O drawer itself can be carried forward only with an MES from z196 or zEC12.

- An optional overhead power cable feature is shown in Figure 2-1 on page 38. When this feature is ordered, it is present on the Z frame. The top I/O exit cabling feature must also be installed in this case.

2.1.3 z13 new rear cover (door) design

The new design of the rear door covers addresses data center airflow challenges. You can change the cover (door) fins orientation down or up, as shown in Figure 2-3. This design directs the hot air that is exhausted by the z13 server to avoid adversely affecting the cooling of other systems on the hot aisle.

![Rear view - down](image)
![Rear view - up](image)

Figure 2-3 Rear cover vectored air output

2.1.4 I/O drawer and PCIe I/O drawer

Each CPC drawer has 10 PCIe Generation3 fanout slots and four InfiniBand fanout slots to support two types of I/O infrastructure for data transfer:

- PCIe I/O infrastructure with a bandwidth of 16 GBps
- InfiniBand I/O infrastructure with a bandwidth of 6 GBps
PCle I/O infrastructure
The PCle I/O infrastructure uses the PCle fanout to connect to the PCle I/O drawer, which can contain the following features:

- FICON Express16S (two port card, long wavelength (LX) or short wavelength (SX), and two channel-path identifiers (CHPIDs)).
- FICON Express8S (two port card, LX or SX, and two physical channel IDs (PCHIDs)).
- Open System Adapter (OSA)-Express5S features:
 - OSA-Express5S 10 Gb Ethernet (one port card, Long Reach (LR) or Short Reach (SR), and one CHPID)
 - OSA-Express5S Gb Ethernet (two port card, LX or SX, and one CHPID)
 - OSA-Express5S 1000BASE-T Ethernet (two port card, RJ-45, and one CHPID)
- OSA-Express4S features (only for a carry-forward MES):
 - OSA-Express4S 10 Gb Ethernet (one port card, LR or SR, and one CHPID)
 - OSA-Express4S Gb Ethernet (two port card, LX or SX, and one CHPID)
 - OSA-Express4S 1000BASE-T Ethernet (two port card, RJ-45, and one CHPID)
- Crypto Express5S feature. Each feature holds one PCI Express cryptographic adapter. Each adapter can be configured by the installation as a Secure IBM Common Cryptographic Architecture (CCA) coprocessor, as a Secure IBM Enterprise Public Key Cryptography Standards (PKCS) #11 (EP11) coprocessor, or as an accelerator.
- Flash Express. Each Flash Express feature occupies two I/O slots, but does not have a CHPID type. Logical partitions (LPARs) in all channel subsystems (CSSs) have access to the features.
- 10 GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express. It has a 2-port card, and up to 31 LPARS can share a physical adapter.
- zEnterprise Data Compression (zEDC) Express. The zEnterprise Data Compression Express feature occupies one I/O slot, but it does not have a CHPID type. Up to 15 partitions can share the feature concurrently.

InfiniBand I/O infrastructure
InfiniBand I/O infrastructure uses the HCA2-C fanout to connect to I/O drawers. The I/O drawers can contain only FICON Express8 cards (four port card, LX or SX, and four PCHIDs).

2.1.5 Top exit I/O cabling
Like the zEC12, the z13 server supports the Top Exit I/O Cabling feature (FC 7942). This feature routes all coupling links and all I/O cables, including a 1000BASE-T Ethernet cable from I/O drawers or PCle I/O drawers through four more frame extensions, out the top of the frame.

Figure 2-4 on page 42 shows the frame extensions, also called chimneys, that are installed to each corner of the frames (A frame and Z frame) when the Top Exit I/O Cabling feature (FC 7942) is ordered. The bottom of the chimney is closed with welded sheet metal.

The Top Exit I/O Cabling feature adds 15 cm (6 in.) to the width of each frame and about 95 lbs (43 kg) to the weight.

In the z13 server, the Top Exit I/O Cabling feature (FC 7942) is available for both radiator-cooled (air-cooled) models and water-cooled models.
2.2 CPC drawer

The z13 CPC has been redesigned to package processors in drawers, unlike the books that are used in zEC12 machines. A z13 CPC drawer contains eight single chip modules (SCMs), memory, symmetric multiprocessor (SMP) connectivity, and connectors to support PCIe I/O drawers (through PCIe fanout hubs), I/O drawers through InfiniBand features, and coupling links to other CPCs. The CPC drawers are in the A frame. The z13 server can have up to four CPC drawers installed (the minimum is one drawer). A CPC drawer and its components are shown in Figure 2-5.
The CPC drawer is divided into two nodes. Each node contains the following components:

- Three 8-core processor unit (PU) SCMs, with six, seven, or eight active cores, depending on the machine model.
- One storage controller SCM, with a 480 MB L4 cache.
- Five DDR3 dual inline memory module (DIMM) slots per memory controller, for a total of up to 10 or 15 per node.

Each CPC drawer contains two nodes, which altogether consist of the following components:

- Six 8-core PU SCMs, with 39 or 42 active PUs, depending on the model.
- Two Storage Controller SCMs, with 960 MB L4 cache total.
- DIMMs plugged into 20 or 25 DIMM slots, providing 320 - 3,200 GB of physical memory and 256 - 2,560 GB of addressable memory.
- Ten PCIe Generation 3 (PCIe Gen3) slots for PCIe I/O drawer fanouts or PCIe coupling links fanouts.
- Four GX++ slots for IFB fanouts or InfiniBand coupling fanouts.
- Two flexible service processor (FSP) cards for system control.
- Two DC converter assemblies (DCAs) that provide power to the CPC drawer. Loss of one DCA leaves enough power to satisfy the drawer's power requirements (n+1 redundancy). The DCAs can be concurrently removed and replaced (one at a time).
- Water-cooling manifold for PU chips.

Figure 2-6 shows the front view of a CPC drawer, with fanouts slots and connector for water cooling, and the rear view of drawer, with the DIMM slots and DCA connector.
Figure 2-7 shows the CPC drawer logical structure, component connections (including the PU SCMs), and the storage control (SC) SCMs.

Memory is connected to the SCMs through memory control units (MCUs). Six MCUs can be placed in a drawer, one per PU SCM, that provide the interface to the controller on memory DIMM. A memory controller drives five DIMM slots.

The buses are organized as follows:

- The GX++ I/O bus slots provide connectivity for host channel adapters (HCAs). They are fully buffered, and can sustain up to 6 GBps data transfer per bus direction. GXX++ I/O slots provide support for InfiniBand and non-PCle I/O features (FICON Express 8).
- The PCIe I/O buses provide connectivity for PCIe fanouts and can sustain up to 16 GBps data traffic per bus direction.
- The X-bus provides interconnects between SC chip and PUs chips to each other, in the same node.
- The S-bus provides interconnects between SC chips in the same drawer.
- The A-bus provides interconnects between SC chips in different drawers (through SMP cables).
- Processor support interfaces (PSIs) are used to communicate with FSP cards for system control.
2.2.1 CPC drawer interconnect topology

Figure 2-8 shows the point-to-point topology for CPC drawers and nodes communication. Each CPC drawer communicates directly to all of the other processors drawers in the CPC through two links.

![Diagram of CPC drawer interconnect topology]

The CPC drawers are in the Frame A and are populated from bottom to top.

Table 2-1 indicates the order of CPC drawer installation and position in the Frame A.

<table>
<thead>
<tr>
<th>CPC drawer</th>
<th>CPC drawer 1</th>
<th>CPC drawer 2</th>
<th>CPC drawer 3</th>
<th>CPC drawer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation order</td>
<td>First</td>
<td>Second</td>
<td>Third</td>
<td>Fourth</td>
</tr>
<tr>
<td>Position in Frame A</td>
<td>A15A</td>
<td>A19A</td>
<td>A23A</td>
<td>A27A</td>
</tr>
</tbody>
</table>

CPC drawer installation is concurrent, except for the upgrade to the model NE1, which requires complete replacement of all four drawers. Concurrent drawer repair requires a minimum of two drawers.

2.2.2 Oscillator

The z13 server has two oscillator cards (OSC): One primary and one backup. If the primary OSC fails, the secondary detects the failure, takes over transparently, and continues to provide the clock signal to the CPC. The two oscillators have Bayonet Neill-Concelman (BNC)
connectors that provide pulse per second signal (PPS) synchronization to an external time source with PPS output.

The SEs provide the Simple Network Time Protocol (SNTP) client function. When Server Time Protocol (STP) is used, the time of an STP-only Coordinated Timing Network (CTN) can be synchronized to the time that is provided by a Network Time Protocol (NTP) server. This configuration allows time-of-day (TOD) synchronization in a heterogeneous platform environment.

The accuracy of an STP-only CTN is improved by using an NTP server with the PPS output signal as the External Time Source (ETS). NTP server devices with PPS output are available from several vendors that offer network timing solutions. A cable connection from the PPS port on the OSC to the PPS output of the NTP server is required when zNext is using STP and is configured in an STP-only CTN using NTP with PPS as the external time source. The z13 server cannot participate in a mixed CTN. It can participate only in an STP-only CTN.

STP tracks the highly stable and accurate PPS signal from the NTP server and maintains an accuracy of 10 µs to the ETS, as measured at the PPS input of the z13 server.

If STP uses an NTP server without PPS, a time accuracy of 100 ms to the ETS is maintained.

Although not part of the CPC drawer design, the OSCs cards are located beside the drawers, and are connected to the same backplane to which the drawers are connected. All four drawers connect to the OSC.

Figure 2-9 shows the location of the two OSC cards with BNC connectors for PPS on the CPC, which is beside the drawer 2 and drawer 3 locations.
2.2.3 System control

Various system elements are managed through the FSPs. An FSP is based on the IBM PowerPC® microprocessor technology. Each FSP card has two ports to connect to two internal Ethernet LANs, through system control hubs (SCH1 and SCH2). The FSPs communicate with the SEs and provide a subsystem interface (SSI) for controlling components.

Figure 2-10 is a conceptual overview of the system control design.

Note:

The maximum number of drawers are four CPC drawers and five PCIe / I/O drawers for z13. The diagram in Figure 2-10 references the various supported FSP connections.

A typical FSP operation is to control a power supply. An SE sends a command to the FSP to start the power supply. The FSP (using SSI connections) cycles the various components of the power supply, monitors the success of each step and the resulting voltages, and reports this status to the SE.

Most system elements are duplexed \((n+1)\), and each element has at least one FSP. Two internal Ethernet LANs and two SEs, for redundancy, and crossover capability between the LANs, are available so that both SEs can operate on both LANs.

The Hardware Management Consoles (HMCs) and SEs are connected directly to one or two Ethernet Customer LANs. One or more HMCs can be used.

Tip: STP is available as FC 1021. It is implemented in the Licensed Internal Code (LIC), and allows multiple servers to maintain time synchronization with each other and synchronization to an ETS. For more information, see the following publications:

2.2.4 CPC drawer power

Each CPC drawer gets its power from two DCAs. The DCAs provide the required power for the drawer in an n+1 configuration. Loss of one DCA leaves enough power to meet power requirements for the entire drawer. The DCAs can be concurrently serviced, and are accessed from the rear of the frame A.

Figure 2-11 shows the location of DCAs on the backplane of the A frame.

2.3 Single chip modules

The single chip module (SCM) is a multi-layer metal substrate module that holds either one PU chip or a storage control (SC) chip. Its size is 678.76 mm² (28.4 mm x 23.9 mm). Each node of a CPC drawer has four SCMs: Three PU SCMs, and one SC SCM. Each CPC drawer has eight SCMs, six PU SCMs, and two SC SCMs, with more than 38 billion transistors in total.
The two types of SCMs (PU and SC) are shown in Figure 2-12.

Both PU and SC chips use CMOS 14S0 process state-of-the-art semiconductor technology, which is implemented with 17-layer (PU chip) or 15-layer (SC chip) copper interconnections and Silicon-On-Insulator (SOI) technologies. The chip lithography line width is 22 nm.

The SCMs are plugged into a card that is part of the CPC drawer packaging. The interconnectivity between the CPC drawers is accomplished through SMP connectors and cables. There are three inter-drawer connections on each node of the CPC drawer. This configuration allows a multidrawer system to be displayed as a symmetric multiprocessor (SMP) system.
Each node has four SCMs: Three PU SCMs and one SC SCM. Figure 2-13 depicts the node structure diagram, showing the PUs and SCs and their connections.

2.3.1 Processor unit chip

The z13 PU chip (installed as a PU SCM) is an evolution of the zEC12 core design. It uses CMOS 14S0 technology, out-of-order instruction processing, pipeline enhancements, dynamic simultaneous multithreading (SMT), single-instruction multiple-data (SIMD), and redesigned and larger caches.

Each PU chip has up to eight cores that run at 5.0 GHz, which means that the cycle time is 0.2 ns. The PU chips come in three versions: Six, seven, and eight active cores. For models N30, N63, N96, and NC9, the processor units in each drawer are implemented with 39 active cores per drawer. This configuration means that model N30 has 39, model N63 has 78, model N96 has 117, and model NC9 has 156 active cores.
Model NE1 has 42 active cores per drawer. This configuration provides 168 active cores on model NE1. A schematic representation of the PU chip is shown in Figure 2-14.

Each PU chip has 3.99 billion transistors. Each one of the eight cores has its own L1 cache with 96 KB for instructions and 128 KB for data. Next to each core is its private L2 cache, with 2 MB for instructions and 2 MB for data.

Each PU chip has one L3 cache, with 64 MB. This 64 MB L3 cache is a store-in shared cache across all cores in the PU chip. It has 192 x 512 KB eDRAM macros, dual address-sliced and dual store pipe support, an integrated on-chip coherency manager, cache, and cross-bar switch. The L3 directory filters queries from the local L4. Both L3 slices can deliver up to 16 GBps bandwidth to each core simultaneously. The L3 cache interconnects the eight cores, GX++ I/O buses, PCIe I/O buses, and memory controllers (MCs) with SC chips.

The MC function controls access to memory. The GX++ I/O bus controls the interface to the HCAs accessing the I/O. The chip controls traffic between the cores, memory, I/O, and the L4 cache on the SC chips.

One coprocessor is dedicated for data compression and encryption functions for each core. The compression unit is integrated with the CP Assist for Cryptographic Function (CPACF), benefiting from combining (or sharing) the use of buffers and interfaces. The assist provides high-performance hardware encrypting and decrypting support for clear key operations.

For more information, see 3.4.5, “Compression and cryptography accelerators on a chip” on page 101.
2.3.2 Processor unit (core)

Each processor unit, or core, is a superscalar and out-of-order processor that has 10 execution units and two load/store units, which are divided into two symmetric pipelines as follows:

- Four fixed-point units (FXUs) (integer)
- Two load/store units (LSUs)
- Two binary floating-point units (BFUs)
- Two binary coded decimal floating-point units (DFUs)
- Two vector floating point units (Vector Execution units or VXUs)

Up to six instructions can be decoded per cycle, and up to 10 instructions/operations can be initiated to run per clock cycle. The running of the instructions can occur out of program order, and memory address generation and memory accesses can also occur out of program order. Each core has special circuitry to display execution and memory accesses in order to the software. Not all instructions are directly run by the hardware, which is the case for several complex instructions. Some are run by millicode, and some are broken into multiple operations that are then run by the hardware.

Each core has the following functional areas, which are also shown in Figure 2-15 on page 53:

- Instruction sequence unit (ISU): This unit enables the out-of-order (OOO) pipeline. It tracks register names, OOO instruction dependency, and handling of instruction resource dispatch. This unit is also central to performance measurement through a function called instrumentation.

- Instruction fetch and branch (IFB) (prediction) and instruction cache and merge (ICM): These two subunits (IFB and ICM) contain the instruction cache, branch prediction logic, instruction fetching controls, and buffers. The relative size of these subunits is the result of the elaborate branch prediction design, which is described in 3.4.4, “Superscalar processor” on page 101.

- Instruction decode unit (IDU): The IDU is fed from the IFB buffers, and is responsible for the parsing and decoding of all z/Architecture operation codes.

- Load-store unit (LSU): The LSU contains the data cache. It is responsible for handling all types of operand accesses of all lengths, modes, and formats that are defined in the z/Architecture.

- Translation unit (XU): The XU has a large translation lookaside buffer (TLB) and the dynamic address translation (DAT) function that handles the dynamic translation of logical to physical addresses.

- Core pervasive unit (PC): Used for instrumentation and error collection.

- Vector and floating point units:
 - FXU: The FXU handles fixed-point arithmetic.
 - BFU: The BFU handles all binary and hexadecimal floating-point and fixed-point multiplication operations.
 - DFU: The DFU runs both floating-point and decimal fixed-point operations and fixed-point division operations.
 - VXU

- Recovery unit (RU): The RU keeps a copy of the complete state of the system that includes all registers, collects hardware fault signals, and manages the hardware recovery actions.
Dedicated Coprocessor (COP): The dedicated coprocessor is responsible for data compression and encryption functions for each core.

Figure 2-15 Core layout

2.3.3 PU characterization

In each CPC drawer, some PUs can be characterized for client use. The characterized PUs can be used in general to run supported operating systems, such as z/OS, z/VM, and Linux on z Systems servers. They also can run specific workloads, such as Java, XML services, IPSec, and some DB2 workloads, or functions such as Coupling Facility Control Code (CFCC). For more information about PU characterization, see 3.5, “Processor unit functions” on page 106.

The maximum number of characterized PUs depends on the z13 model. Some PUs are characterized by the system as standard system assist processors (SAPs) to run the I/O processing. By default, there are at least two spare PUs per system that are used to assume the function of a failed PU. The remaining installed PUs can be characterized for client use. A z13 model nomenclature includes a number that represents the maximum number of PUs that can be characterized for client use, as shown in Table 2-2.

Table 2-2 Number of PUs per z13 model

<table>
<thead>
<tr>
<th>Model / CPC drawers</th>
<th>Installed PUs</th>
<th>Standard SAPs</th>
<th>Minimum spare PUs</th>
<th>Maximum characterized PUs</th>
<th>Integrated firmware processor (IFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30 / 1</td>
<td>39 (1 x 39)</td>
<td>6</td>
<td>2</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>N63 / 2</td>
<td>78 (2 x 39)</td>
<td>12</td>
<td>2</td>
<td>63</td>
<td>1</td>
</tr>
</tbody>
</table>
2.3.4 Storage control chip

The SC chip uses the CMOS 14S0 22 nm SOI technology, with 15 layers of metal. It measures 28.4 x 23.9 mm, has 7.1 billion transistors, and has 2.1 billion cells of eDRAM. Each node of the CPC drawer has one SC chip. The L4 cache on each SC chip has 480 MB of non-inclusive cache and a 224 MB Non-data Inclusive Coherent (NIC) directory. This configuration results in 960 MB of in on-inclusive L4 cache and 448 MB in a NIC directory that is shared per CPC drawer.

Figure 2-16 shows a schematic representation of the SC chip.

![SC chip diagram](image)

Most of the SC chip space is taken by the L4 controller and the 480 MB L4 cache. The cache consists of four 120 MB quadrants with 256 x 1.5 MB eDRAM macros per quadrant. The L4 cache is logically organized as 16 address-sliced banks, with 30-way set associative. The L4 cache controller is a single pipeline with multiple individual controllers, which is sufficient to handle 125 simultaneous cache transactions per chip.

The L3 caches on PU chips communicate with the L4 caches through the attached SC chip by using unidirectional buses. L3 is divided into two logical slices. Each slice is 32 MB, and

<table>
<thead>
<tr>
<th>Model / CPC drawers</th>
<th>Installed PUs</th>
<th>Standard SAPs</th>
<th>Minimum spare PUs</th>
<th>Maximum characterized PUs</th>
<th>Integrated firmware processor (IFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N96 / 3</td>
<td>117 (3 x 39)</td>
<td>18</td>
<td>2</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>NC9 / 4</td>
<td>156 (4 x 39)</td>
<td>24</td>
<td>2</td>
<td>129</td>
<td>1</td>
</tr>
<tr>
<td>NE1 / 4</td>
<td>168 (4 x 42)</td>
<td>24</td>
<td>2</td>
<td>141</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2-16 SC chip diagram
consists of two 16 MB banks. L3 is 16-way set associative. Each bank has 4 K sets, and the cache line size is 256 bytes.

The bus-clock ratio (2:1) between the L4 cache and the PU is controlled by the storage controller on the SC chip.

The SC chip also acts as an L4 cache cross-point switch for L4-to-L4 traffic to up to three remote CPC drawers through three bidirectional data buses. The SMP cables transport and system coherency manager use the L4 directory to filter snoop traffic from remote CPC drawers. This process uses an enhanced synchronous fabric protocol for improved latency and cache management. There are six clock domains, and the clock function is distributed between both SC chips.

2.3.5 Cache level structure

z13 implements a four level cache structure, as shown in Figure 2-17.

![Figure 2-17 Cache level structure](image)

Each core has its own 224-KB Level 1 (L1) cache, split into 96 KB for instructions (I-cache) and 128 KB for data (D-cache). The L1 cache is designed as a store-through cache, meaning that altered data also is stored in the next level of memory.

The next level is the Level 2 (L2) private cache on each core. This cache has 4 MB, split into 2 MB D-cache and 2 MB I-cache. It is designed as a store-through cache.

The Level 3 (L3) cache is also on the PU chip. It is shared by the eight cores, has 64 MB, and is designed as a store-in cache.

Cache levels L2 and L3 are implemented on the PU chip to reduce the latency between the processor and the L4 large shared cache, which is on the two SC chips. Each SC chip has...
480 MB, which is shared by PU chips on the node. The S-bus provide the inter-node interface between the two L4 caches (SC chips) in each node. The L4 cache uses a store-in design.

2.4 Memory

The maximum physical memory size is directly related to the number of CPC drawers in the system. Each CPC drawer can contain up to 3,200 GB of physical memory, for a total of 12,800 GB (12.5 TB) of installed (physical) memory per system.

A z13 has more memory that is installed than ordered. Part of the physical installed memory is used to implement the redundant array of independent memory (RAIM) design. This configuration results in up to 2,560 GB of available memory per CPC drawer and up to 10,240 GB (10 TB) per system.

Table 2-3 shows the maximum and minimum memory sizes that you can order for each z13 model.

Table 2-3 z13 memory sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of CPC drawers</th>
<th>Customer memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30</td>
<td>1</td>
<td>64 - 2464</td>
</tr>
<tr>
<td>N63</td>
<td>2</td>
<td>64 - 5024</td>
</tr>
<tr>
<td>N96</td>
<td>3</td>
<td>64 - 7584</td>
</tr>
<tr>
<td>NC9</td>
<td>4</td>
<td>64 - 10144</td>
</tr>
<tr>
<td>NE1</td>
<td>4</td>
<td>64 - 10144</td>
</tr>
</tbody>
</table>

The minimum physical installed memory is 320 GB per CPC drawer. The minimum initial amount of memory that can be ordered is 64 GB for all z13 models. The maximum customer memory size is based on the physical installed memory minus the RAIM and minus the hardware system area (HSA) memory, which has a fixed amount of 96 GB.

Table 2-4 shows the memory granularity, which is based on the installed customer memory.

Table 2-4 Memory granularity

<table>
<thead>
<tr>
<th>Granularity (GB)</th>
<th>Customer memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>64 - 192</td>
</tr>
<tr>
<td>64</td>
<td>256 - 448</td>
</tr>
<tr>
<td>96</td>
<td>448 - 928</td>
</tr>
<tr>
<td>128</td>
<td>928 - 1440</td>
</tr>
<tr>
<td>256</td>
<td>1440 - 6048</td>
</tr>
<tr>
<td>512</td>
<td>6560 - 10144</td>
</tr>
</tbody>
</table>

With the z13, the memory granularity varies from 32 GB (for customer memory sizes 64 -192 GB) up to 512 GB (for CPCs having 6560 -10144 GB of customer memory).
2.4.1 Memory subsystem topology

The z13 memory subsystem uses high speed, differential-ended communications memory channels to link a host memory to the main memory storage devices.

Figure 2-18 shows an overview of the CPC drawer memory topology of a z13 server.

Each CPC drawer has 20 or 25 DIMMs. DIMMs are connected to each PU chip through the MCUs. Each PU chip has one MCU, which uses five channels, one for each DIMM, and one for RAIM implementation, in a 4 +1 design. Each CPC drawer can have four or five populated MCUs.

Each DIMM has 16 GB, 32 GB, 64 GB, or 128 GB. DIMM features with different sizes can be mixed in the same CPC drawer, but in the same feature, all five DIMMs have the same size.
2.4.2 Redundant array of independent memory

The z13 server uses the RAIM technology. The RAIM design detects and recovers from failures of dynamic random access memory (DRAM), sockets, memory channels, or DIMMs.

The RAIM design requires the addition of one memory channel that is dedicated for reliability, availability, and serviceability (RAS), as shown in Figure 2-19.

![RAIM configuration per node](image)

The parity of the four “data” DIMMs is stored in the DIMMs that are attached to the fifth memory channel. Any failure in a memory component can be detected and corrected dynamically. This system simplifies the memory subsystem design, while maintaining a fully fault-tolerant RAIM design.

The RAIM design provides the following layers of memory recovery:

- ECC with 90B/64B Reed Solomon code.
- DRAM failure, with marking technology in which two DRAMs can be marked and no half sparing is needed. A call for replacement occurs on the third DRAM failure.
- Lane failure with CRC retry, data-lane sparing, and clock-RAIM with lane sparing.
- DIMM failure with CRC retry, data-lane sparing, and clock-RAIM with lane sparing.
- DIMM controller ASIC failure.
- Channel failure.
2.4.3 Memory configurations

Memory sizes in each CPC drawer do not have to be similar. Different CPC drawers can contain different amounts of memory. Table 2-5 shows the physically installed memory on each CPC drawer for all z13 models.

<table>
<thead>
<tr>
<th>Customer Memory (GB)</th>
<th>Model N30</th>
<th>Model N63</th>
<th>Model N96</th>
<th>Model NC9 and Model NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPC drawer 1</td>
<td>CPC drawer 2</td>
<td>CPC drawer 1</td>
<td>CPC drawer 2</td>
</tr>
<tr>
<td>64</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>96</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>128</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>160</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>192</td>
<td>480</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>256</td>
<td>480</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>320</td>
<td>640</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>384</td>
<td>640</td>
<td>480</td>
<td>480</td>
<td>320</td>
</tr>
<tr>
<td>448</td>
<td>960</td>
<td>480</td>
<td>480</td>
<td>320</td>
</tr>
<tr>
<td>544</td>
<td>960</td>
<td>480</td>
<td>480</td>
<td>320</td>
</tr>
<tr>
<td>640</td>
<td>960</td>
<td>640</td>
<td>640</td>
<td>480</td>
</tr>
<tr>
<td>736</td>
<td>1280</td>
<td>640</td>
<td>640</td>
<td>480</td>
</tr>
<tr>
<td>832</td>
<td>1280</td>
<td>640</td>
<td>640</td>
<td>480</td>
</tr>
<tr>
<td>928</td>
<td>1280</td>
<td>960</td>
<td>960</td>
<td>480</td>
</tr>
<tr>
<td>1056</td>
<td>1920</td>
<td>960</td>
<td>960</td>
<td>640</td>
</tr>
<tr>
<td>1184</td>
<td>1920</td>
<td>960</td>
<td>960</td>
<td>640</td>
</tr>
<tr>
<td>1312</td>
<td>1920</td>
<td>960</td>
<td>960</td>
<td>640</td>
</tr>
<tr>
<td>1440</td>
<td>1920</td>
<td>960</td>
<td>960</td>
<td>960</td>
</tr>
<tr>
<td>1696</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>960</td>
</tr>
<tr>
<td>1952</td>
<td>2560</td>
<td>1280</td>
<td>1280</td>
<td>960</td>
</tr>
<tr>
<td>2208</td>
<td>3200</td>
<td>1920</td>
<td>1920</td>
<td>1280</td>
</tr>
<tr>
<td>2464</td>
<td>3200</td>
<td>1920</td>
<td>1920</td>
<td>1280</td>
</tr>
<tr>
<td>2720</td>
<td>N/A</td>
<td>1920</td>
<td>1920</td>
<td>1280</td>
</tr>
<tr>
<td>2976</td>
<td>N/A</td>
<td>1920</td>
<td>1920</td>
<td>1280</td>
</tr>
<tr>
<td>3232</td>
<td>N/A</td>
<td>2560</td>
<td>2560</td>
<td>1920</td>
</tr>
<tr>
<td>3488</td>
<td>N/A</td>
<td>2560</td>
<td>2560</td>
<td>1920</td>
</tr>
</tbody>
</table>
Physically, memory is organized in the following manner:

- A CPC drawer always contains a minimum of 20 DIMMs of 16 GB each (320 GB).
- A CPC drawer has more memory that is installed than enabled. The amount of memory that can be enabled by the client is the total physically installed memory minus the RAIM amount and minus the 96 GB of HSA memory.
- A CPC drawer can have available unused memory, which can be ordered as a memory upgrade and enabled by LIC without DIMM changes.
- DIMM changes require a disruptive power-on reset (POR) on z13 model N30. DIMM changes are always done without a POR on z13 models with multiple CPC drawers that use Enhanced Drawer Availability (EDA).
Figure 2-20 illustrates how the physical installed memory is allocated on a z13, showing HSA memory, RAIM, customer memory, and the remaining available unused memory that can be enabled by LIC when required.

As an example, a z13 Model N63 (two CPC drawers) that is ordered with 192 GB of memory has the following memory sizes:

- Physical installed memory is 640 GB: 320 GB on CPC drawer 0 and 320 GB on CPC drawer 1.
- CPC drawer 0 has 96 GB of HSA memory and up to 96 GB for customer memory. CPC drawer 1 has up to 96 GB for customer memory, resulting in 192 GB of available memory for the customer.
- Because the customer ordered 192 GB, provided the granularity rules are met, 224 GB is available for future upgrades by LIC.

Memory upgrades are satisfied from already installed unused memory capacity until it is exhausted. When no more unused memory is available from the installed memory cards (DIMMs), one of the following additions must occur:

- Memory cards must be upgraded to a higher capacity.
- A CPC drawer with more memory must be added.
- Memory cards (DIMMs) must be added.

A memory upgrade is concurrent when it requires no change of the physical memory cards. A memory card change is disruptive when no use is made of EDA. For more information, see 2.6.2, “Enhanced drawer availability” on page 69.
When activated, an LPAR can use memory resources that are in any CPC drawer. No matter where the memory is, an LPAR has access to that memory up to a maximum of 10 TB. This access is possible because despite the CPC drawer structure, the z13 is still an SMP system. The existence of an I/O drawer in the CPC limits the memory LPAR to 1 TB. For more information, see 3.7, “Logical partitioning” on page 122.

2.4.4 Memory upgrades

Memory upgrades can be ordered and enabled by LIC, by upgrading the DIMM cards, by adding new DIMM cards, or by adding a CPC drawer.

For a model upgrade that results in the addition of a CPC drawer, the minimum memory increment is added to the system. Each CPC drawer has a minimum physical memory size of 320 GB.

During a model upgrade, adding a CPC drawer is a concurrent operation. Adding physical memory to the added drawer is also concurrent. If all or part of the added memory is enabled for use, it might become available to an active LPAR if the partition has reserved storage that is defined. For more information, see 3.7.3, “Reserved storage” on page 133. Alternatively, the added memory can be used by an already-defined LPAR that is activated after the memory addition.

Note: Memory downgrades are always disruptive. Model downgrades (removal of a CPC drawer) are not supported.

2.4.5 Drawer replacement and memory

With EDA, which is supported for z13 servers, sufficient resources must be available to accommodate resources that are rendered unavailable when a CPC drawer is removed for upgrade or repair. For more information, see 2.6.2, “Enhanced drawer availability” on page 69.

Most of the time, the removal of a CPC drawer results in the removal of active memory. With the flexible memory option, evacuating the affected memory and reallocating its use elsewhere in the system are possible. For more information, see 2.4.6, “Flexible Memory Option” on page 62. This process requires more available memory to compensate for the memory that is lost with the removal of the drawer.

2.4.6 Flexible Memory Option

With the Flexible Memory Option, more physical memory is supplied to support the activation of the actual purchased memory entitlement in a single CPC drawer that is out of service during activation (POR), or in a scheduled concurrent drawer upgrade (memory add) or drawer maintenance (n+1 repair) with the use of enhanced drawer availability.

When you order memory, you can request additional flexible memory. The additional physical memory, if required, is calculated by the configurator and priced accordingly.
Flexible memory is available only on the N63, N96, NC9, and NA1 models. Table 2-6 shows the flexible memory sizes that are available for the z13.

Table 2-6 z13 (customer usable) memory sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Standard memory (GB)</th>
<th>Flexible memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30</td>
<td>64 - 2464</td>
<td>N/A</td>
</tr>
<tr>
<td>N63</td>
<td>64 - 5024</td>
<td>64 - 2464</td>
</tr>
<tr>
<td>N96</td>
<td>64 - 7584</td>
<td>64 - 5024</td>
</tr>
<tr>
<td>NC9</td>
<td>64 - 10144</td>
<td>64 - 7584</td>
</tr>
<tr>
<td>NE1</td>
<td>64 - 10144</td>
<td>64 - 7584</td>
</tr>
</tbody>
</table>

Table 2-7 shows the memory increment for the Flexible Memory Option.

Table 2-7 Flexible memory increment

<table>
<thead>
<tr>
<th>Memory Increment (GB)</th>
<th>Flexible memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>64 - 192</td>
</tr>
<tr>
<td>64</td>
<td>192 - 448</td>
</tr>
<tr>
<td>96</td>
<td>448 - 928</td>
</tr>
<tr>
<td>128</td>
<td>928 - 1440</td>
</tr>
<tr>
<td>256</td>
<td>1440 - 6048</td>
</tr>
<tr>
<td>512</td>
<td>6048 - 7584</td>
</tr>
</tbody>
</table>

Flexible memory can be purchased, but cannot be used for normal everyday use. For that reason, a different purchase price for flexible memory is offered to increase the overall availability of the system.

2.4.7 Pre-planned memory

Pre-planned memory provides the capability for concurrent and permanent memory upgrades by changing the Licensed Internal Code Configuration Control (LICCC) without using EDA. It differs from the flexible memory option. The flexible memory option is meant to anticipate nondisruptive CPC drawer replacement. Therefore, the usage of flexible memory is temporary, in contrast with plan-ahead memory.

When you are preparing for a future memory upgrade, memory can be pre-plugged, based on a target capacity. The pre-planned memory is available for all z13 models, and can be ordered with flexible memory on a multiple drawer z13 model. The pre-plugged memory can be made available through a LICCC update.

You can order this LICCC through these channels:

- The IBM Resource Link® (a login is required):

- Your IBM representative
The installation and activation of any pre-planned memory requires the purchase of the required feature codes (FCs), as shown in Table 2-8.

Table 2-8 Feature codes for plan-ahead memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>z13 feature code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-planned memory</td>
<td>FC 1996 - 16 GB</td>
</tr>
<tr>
<td>Charged when physical memory is installed. Used for tracking the quantity of physical increments of plan-ahead memory capacity.</td>
<td>FC 1990 - 32 GB</td>
</tr>
<tr>
<td>Pre-planned memory activation</td>
<td>FC1901</td>
</tr>
<tr>
<td>Charged when plan-ahead memory is enabled. Used for tracking the quantity of increments of plan-ahead memory that are being activated.</td>
<td></td>
</tr>
</tbody>
</table>

The payment for plan-ahead memory is a two-phase process. One charge takes place when the plan-ahead memory is ordered, and another charge takes place when the prepaid memory is activated for actual usage. For the exact terms and conditions, contact your IBM representative.

Installation of pre-planned memory is done by ordering FC 1996 (16 GB) or FC 1990 (32 GB). The ordered amount of plan-ahead memory is charged at a reduced price compared to the normal price for memory. One FC 1996 is needed for each 16 GB of usable memory (20 GB RAIM), or one FC 1990 is needed for each 32 GB of usable memory (40 GB RAIM).

Activation of installed pre-planned memory is achieved by ordering FC 1901, which causes the other portion of the previously contracted charge price to be invoiced. One FC 1901 is needed for each additional 16 GB to be activated.

Reminder: Normal memory upgrades use the plan-ahead memory first.

2.5 Reliability, availability, and serviceability

IBM z Systems servers continue to deliver enterprise class RAS with IBM z13 servers. The main philosophy behind RAS is about preventing or tolerating (masking) outages. It is also about providing the necessary instrumentation (in hardware, LIC/microcode, and software) to capture (collect) the relevant failure information to help identify an issue without requiring a reproduction of the event. These outages can be planned or unplanned. Planned and unplanned outages can include the following situations (examples are not related to the RAS features of z Systems servers):

- A planned outage because of the addition of extra processor capacity
- A planned outage because of the addition of extra I/O cards
- An unplanned outage because of a failure of a power supply
- An unplanned outage because of a memory failure

The z Systems hardware has decades of intense engineering behind it, which has resulted in a robust and reliable platform. The hardware has many RAS features that are built into it.
2.5.1 RAS in the CPC memory subsystem

Patented error correction technology in the memory subsystem continues to provide the most robust error correction from IBM to date. Two full DRAM failures per rank can be spared and a third full DRAM failure can be corrected. DIMM level failures, including components such as the memory controller application-specific integrated circuit (ASIC), the power regulators, the clocks, and the system board can be corrected. Memory channel failures, such as signal lines, control lines, and drivers/receivers on the MCM, can be corrected. Upstream and downstream data signals can be spared by using two spare wires on both the upstream and downstream paths. One of these signals can be used to spare a clock signal line (one upstream and one downstream). The following improvements were also added in the z13 server:

- No cascading of memory DIMMs
- Independent channel recovery
- Double tabs for clock lanes
- Separate replay buffer per channel
- Hardware driven lane soft error rate (SER) and sparing.

2.5.2 General z13 RAS features

The z13 server has the following RAS features:

- The z13 server provides a true N+2 (fully redundant) cooling function for the radiator-cooled (air-cooled) model and a true N+1 (fully redundant) cooling function for the water-cooled model.
- The power supplies for the z13 server are also based on the N+1 design. The second power supply can maintain operations and avoid an unplanned outage of the system.
- The z Systems processors have improved chip packaging (encapsulated chip connectors) and use SER hardened latches throughout the design.
- There is N+2 point-of-load (POL) power conversion. This redundancy protects the processor from the loss of voltage because of POL failures.
- There is N+2 redundancy on the environmental sensors (ambient temperature, relative humidity, air density¹, and corrosion).
- Enhanced bus structure using integrated time domain reflectometry (TDR) technology.
- There are Peripheral Component Interconnect Express (PCIe) service enhancements:
 - Mandatory end-to-end cyclic redundancy check (ECRC)
 - Customer operation code separate from maintenance code
 - Native PCIe firmware stack running on the integrated firmware processor (IFP) to manage isolation and recovery

IBM z13 servers continue to deliver robust server designs through exciting new technologies, hardening both new and classic redundancy.

For more information, see Chapter 9, “Reliability, availability, and serviceability” on page 359.

¹ The air density sensor measures air pressure and is used to control blower speed.
2.6 Connectivity

Connections to PCIe I/O drawers, I/O drawers, Parallel Sysplex InfiniBand (PSIFB) coupling, and Integrated Coupling Adapters (ICAs) are driven from the CPC drawer fanout cards. These fanouts are on the front of the CPC drawer.

Figure 2-21 shows the location of the fanouts for a four CPC drawer system. There are 10 PCIe fanout slots and four IFB fanout slots per CPC drawer. Each CPC drawer has two FSPs for system control. LGXX is the location code.

![Location of the PCIe and IFB fanouts](image)

Figure 2-21 Location of the PCIe and IFB fanouts

Up to 10 PCIe fanouts (LG02 - LG06 and LG11 - LG16) and four IFB fanouts (LG07 - LG10) can be installed in each CPC drawer.

A fanout can be repaired concurrently with the use of redundant I/O interconnect. For more information, see 2.6.1, “Redundant I/O interconnect” on page 67.

Five types of fanouts are available:

- **PCIe Generation3 fanout card:** This copper fanout provides connectivity to the PCIe switch cards in the PCIe I/O drawer.

- **Host Channel Adapter (HCA2-C):** This copper fanout provides connectivity to the InfiniBand Multiplexer (IFB-MP) cards in the I/O drawer.

- **Integrated Coupling Adapter (ICA SR):** This adapter provides coupling connectivity between two z13 servers.
Host Channel Adapter (HCA3-O (12xIFB)): This optical fanout provides 12x InfiniBand coupling link connectivity up to 150 meters (492 ft) distance to z13, zEC12, zBC12, z196, and z114 servers.

Host Channel Adapter (HCA3-O LR (1xIFB)): This optical long range fanout provides 1x InfiniBand coupling link connectivity up to a 10 km (6.2 miles) unrepeated (or 100 km (62 miles) when extended by using z Systems qualified dense wavelength division multiplexing (DWDM) equipment) distance to z13, zEC12, zBC12, z196, and z114 servers.

When you are configuring for availability, balance the channels, coupling links, and OSAs across drawers. In a system that is configured for maximum availability, alternative paths maintain access to critical I/O devices, such as disks and networks.

Enhanced (CPC) drawer availability (EDA) allows a single CPC drawer in a multidrawer CPC to be removed and reinstalled concurrently for an upgrade or a repair. Removing a CPC drawer means that the connectivity to the I/O devices that are connected to that CPC drawer is lost. To prevent connectivity loss, the redundant I/O interconnect feature allows you to maintain connection to critical devices, except for ICA and PSIFB coupling, when a CPC drawer is removed.

2.6.1 Redundant I/O interconnect

Redundancy is provided for both InfiniBand I/O and for PCIe I/O interconnects.

InfiniBand I/O connection

Redundant I/O interconnect is accomplished by the facilities of the InfiniBand I/O connections to the InfiniBand Multiplexer (IFB-MP) card. Each IFB-MP card is connected to a jack in the InfiniBand fanout of a CPC drawer. IFB-MP cards are half-high cards and are interconnected through the I/O drawer backplane. This configuration allows redundant I/O interconnect if the connection coming from a CPC drawer ceases to function. This situation can happen when, for example, a CPC drawer is removed for maintenance.
A conceptual view of how redundant I/O interconnect is accomplished is shown in Figure 2-22.

Normally, the HCA2-C fanout in the first CPC drawer connects to the IFB-MP (A) card and services domain A in an I/O drawer. In the same fashion, the HCA2-C fanout of the second CPC drawer connects to the IFB-MP (B) card and services domain B in an I/O drawer. If the second CPC drawer is removed, or the connections from the second CPC drawer to the I/O drawer are removed, connectivity to domain B is maintained. The I/O is guided to domain B through the interconnect between IFB-MP (A) and IFB-MP (B).

Note: The IFB-MP card must be installed in the I/O Drawer to maintain the interconnect across I/O domains. If the IFB-MP card is removed, then the I/O cards in that domain (up to four) become unavailable.
The PCIe I/O drawer supports up to 32 PCIe features. They are organized in four hardware domains per drawer, as shown in Figure 2-23.

Each domain is driven through a PCIe switch card. The two PCIe switch cards provide a backup path for each other through the passive connection in the PCIe I/O drawer backplane. During a PCIe fanout or cable failure, all 16 PCIe features in the two domains can be driven through a single PCIe switch card.

To support Redundant I/O Interconnect (RII) between front to back domain pairs 0,1 and 2,3, the two interconnects to each pair must be driven from two different PCIe fanouts. Normally, each PCIe interconnect in a pair supports the eight features in its domain. In backup operation mode, one PCIe interconnect supports all 16 features in the domain pair.

Note: The PCIe Gen3 Interconnect adapter must be installed in the PCIe Drawer to maintain the interconnect across I/O domains. If the adapter is removed, then the I/O cards in that domain (up to eight) become unavailable.

2.6.2 Enhanced drawer availability

With EDA, the effect of CPC drawer replacement is minimized. In a multiple CPC drawer system, a single CPC drawer can be concurrently removed and reinstalled for an upgrade or repair. Removing a CPC drawer without affecting the workload requires sufficient resources in the remaining CPC drawer.

Before removing the CPC drawer, the contents of the PUs and memory of the drawer must be relocated. PUs must be available on the remaining CPC drawers to replace the deactivated drawer. Also, sufficient redundant memory must be available if no degradation of applications...
is allowed. To ensure that the CPC configuration supports removal of a CPC drawer with minimal effect on the workload, consider the flexible memory option. Any CPC drawer can be replaced, including the first CPC drawer that initially contains the HSA.

Removal of a CPC drawer also removes the CPC drawer connectivity to the I/O drawers, PCIe I/O drawers, and coupling links. The effect of the removal of the CPC drawer on the system is limited by the use of redundant I/O interconnect. For more information, see 2.6.1, “Redundant I/O interconnect” on page 67. However, all PSIFB links on the removed CPC drawer must be configured offline.

If the enhanced drawer availability and flexible memory options are not used when a CPC drawer needs to be replaced, the memory in the failing drawer is also removed. This process might be necessary during an upgrade or a repair action. Until the removed CPC drawer is replaced, a power-on reset of the system with the remaining CPC drawer is supported.

2.6.3 CPC drawer upgrade

All fanouts that are used for I/O and coupling links are rebalanced concurrently as part of a CPC drawer addition.

2.7 Model configurations

When a z13 order is configured, PUs are characterized according to their intended usage. They can be ordered as any of the following items:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>The processor is purchased and activated. CP supports the z/OS, z/VSE, z/VM, z/TPF, and Linux on z Systems operating systems. It can also run Coupling Facility Control Code and IBM zAware code.</td>
</tr>
<tr>
<td>Capacity marked CP</td>
<td>A processor that is purchased for future use as a CP is marked as available capacity. It is offline and not available for use until an upgrade for the CP is installed. It does not affect software licenses or maintenance charges.</td>
</tr>
<tr>
<td>IFL</td>
<td>The Integrated Facility for Linux (IFL) is a processor that is purchased and activated for use by z/VM for Linux guests and Linux on z Systems operating systems. It can also run the IBM zAware code.</td>
</tr>
<tr>
<td>Unassigned IFL</td>
<td>A processor that is purchased for future use as an IFL. It is offline and cannot be used until an upgrade for the IFL is installed. It does not affect software licenses or maintenance charges.</td>
</tr>
<tr>
<td>ICF</td>
<td>An internal coupling facility (ICF) processor that is purchased and activated for use by the Coupling Facility Control Code.</td>
</tr>
<tr>
<td>zIIP</td>
<td>A System z Integrated Information Processor (zIIP) that is purchased and activated to run eligible workloads, such as Java code under the control of a z/OS Java virtual machine (JVM) or z/OS XML System Services, DB2 Distributed Relational Database Architecture (DRDA), or z/OS Communication Server IPSec.</td>
</tr>
<tr>
<td>Additional SAP</td>
<td>An optional processor that is purchased and activated for use as an SAP.</td>
</tr>
</tbody>
</table>
A minimum of one PU that is characterized as a CP, IFL, or ICF is required per system. The maximum number of CPs, IFLs, and ICFs is 141. The maximum number of zIIPs is always up to twice the number of PUs that are characterized as CPs.

Not all PUs on a model must be characterized.

The following items are present in the z13 server, but they are not part of the PUs that clients purchase and require no characterization:

- SAP to be used by the channel subsystem. The number of predefined SAPs depends on the z13 model.
- One IFP, which is used in the support of designated features, such as zEDC and 10GbE RoCE.
- Two spare PUs, which can transparently assume any characterization during a permanent failure of another PU.

The z13 model nomenclature is based on the number of PUs that are available for client use in each configuration. The models are summarized in Table 2-9.

Table 2-9 z13 processor configurations

<table>
<thead>
<tr>
<th>Model</th>
<th>Drawers / PUs</th>
<th>CPs</th>
<th>IFLs/uIFL</th>
<th>ICFs</th>
<th>zIIPs</th>
<th>Add. SAPs</th>
<th>Std. SAPs</th>
<th>Spares</th>
<th>Spares</th>
<th>IFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30</td>
<td>1/39</td>
<td>0 - 30</td>
<td>0 - 30</td>
<td>0 - 30</td>
<td>0 - 20</td>
<td>0 - 4</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N63</td>
<td>2/78</td>
<td>0 - 63</td>
<td>0 - 63</td>
<td>0 - 63</td>
<td>0 - 42</td>
<td>0 - 8</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N96</td>
<td>3/117</td>
<td>0 - 96</td>
<td>0 - 96</td>
<td>0 - 96</td>
<td>0 - 64</td>
<td>0 - 12</td>
<td>18</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NC9</td>
<td>4/156</td>
<td>0 - 129</td>
<td>0 - 129</td>
<td>0 - 129</td>
<td>0 - 86</td>
<td>0 - 16</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NE1</td>
<td>4/168</td>
<td>0 - 141</td>
<td>0 - 141</td>
<td>0 - 141</td>
<td>0 - 94</td>
<td>0 - 16</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

A *capacity marker* identifies the number of CPs that have been purchased. This number of purchased CPs is higher than or equal to the number of CPs that is actively used. The capacity marker marks the availability of purchased but unused capacity that is intended to be used as CPs in the future. They usually have this status for software-charging reasons. Unused CPs are not a factor when establishing the millions of service units (MSU) value that is used for charging monthly license charge (MLC) software, or when charged on a per-processor basis.

2.7.1 Upgrades

Concurrent upgrades of CPs, IFLs, ICFs, zIIPs, or SAPs are available for the z13 server. However, concurrent PU upgrades require that more PUs be installed but not activated.

Spare PUs are used to replace defective PUs. There are always two spare PUs on a z13 server. In the rare event of a PU failure, a spare PU is activated concurrently and transparently, and assigned the characteristics of the failing PU.
If an upgrade request cannot be accomplished within the configuration, a hardware upgrade is required. The upgrade enables the addition of one or more CPC drawers to accommodate the wanted capacity. Extra CPC drawers can be installed concurrently.

Although upgrades from one z13 model to another z13 model are concurrent, meaning that one or more CPC drawers can be added, there is one exception. Upgrades from any z13 server (model N30, N63, N96, or NC9) to a model NE1 are disruptive, because the upgrade requires the replacement of all four CPC drawers.

Table 2-10 shows the possible upgrades within the z13 configuration range.

Table 2-10 z13 to z13 upgrade paths

<table>
<thead>
<tr>
<th>From 2964</th>
<th>Model N30</th>
<th>Model N63</th>
<th>Model N96</th>
<th>Model NC9</th>
<th>Model NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model N30</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model N63</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model N96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model NC9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

 a. Disruptive upgrade

You can also upgrade a z196 or a zEC12 to a z13 server and preserve the CPC serial number (S/N). The I/O cards can also be carried forward (with certain restrictions) to the z13 server.

Important: Upgrades from z Enterprise EC12 (zEC12) and zEnterprise 196 (z196) are always disruptive.

Upgrade paths from any IBM zEnterprise 196 (EC) to any z13 server are supported as listed in Table 2-11.

Table 2-11 z196 to z13 upgrade paths

<table>
<thead>
<tr>
<th>From 2817</th>
<th>To 2964</th>
<th>Model N30</th>
<th>Model N63</th>
<th>Model N96</th>
<th>Model NC9</th>
<th>Model NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model M15</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model M32</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model M49</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model M66</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model M80</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Upgrades from any zEC12 to any z13 server are supported as listed in Table 2-12.

Table 2-12 zEC12 to z13 upgrade paths

<table>
<thead>
<tr>
<th>From 2827</th>
<th>To 2964</th>
<th>Model N30</th>
<th>Model N63</th>
<th>Model N96</th>
<th>Model NC9</th>
<th>Model NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model H20</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model H43</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Model H66</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
2.7.2 Concurrent PU conversions

Assigned CPs, assigned IFLs, and unassigned IFLs, ICFs, zIIPs, and SAPs can be converted to other assigned or unassigned feature codes.

Most conversions are nondisruptive. In exceptional cases, the conversion might be disruptive, for example, when a model N30 with 30 CPs is converted to an all IFL system. In addition, an LPAR might be disrupted when PUs must be freed before they can be converted. Conversion information is summarized in Table 2-13.

Table 2-13 Concurrent PU conversions

<table>
<thead>
<tr>
<th>From</th>
<th>To CP</th>
<th>To IFL</th>
<th>To Unassigned IFL</th>
<th>To ICF</th>
<th>To zAAP</th>
<th>To zIIP</th>
<th>To SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IFL</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Unassigned IFL</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ICF</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>zAAP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>zIIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>SAP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
</tbody>
</table>

2.7.3 Model capacity identifier

To recognize how many PUs are characterized as CPs, the Store System Information (STSI) instruction returns a model capacity identifier (MCI). The MCI determines the number and speed of characterized CPs. Characterization of a PU as an IFL, an ICF, or a zIIP is not reflected in the output of the STSI instruction because characterization has no effect on software charging. For more information about STSI output, see “Processor identification” on page 354.

Four distinct model capacity identifier ranges are recognized (one for full capacity and three for granular capacity):

- For full-capacity engines, model capacity identifiers 701 - 7E1 are used. They express capacity settings for 1 - 141 characterized CPs.
- Three model capacity identifier ranges offer a unique level of granular capacity at the low end. They are available when no more than 30 CPs are characterized. These three subcapacity settings are applied to up to 30 CPs, which combined offer 90 more capacity settings. For more information, see “Granular capacity” on page 74.
Granular capacity

The z13 server offers 90 capacity settings at the low end of the processor. Only 30 CPs can have granular capacity. When subcapacity settings are used, other PUs beyond 30 can be characterized only as specialty engines.

The three defined ranges of subcapacity settings have model capacity identifiers numbered from 401-430, 501-530, and 601-630.

Consideration: Within a z13 server, all CPs have the same capacity identifier. Specialty engines (IFLs, zIIPs, and ICFs) operate at full speed.

List of model capacity identifiers

Table 2-14 shows that regardless of the number of CPC drawers, a configuration with one characterized CP is possible. For example, model NE1 might have only one PU characterized as a CP.

Table 2-14 Model capacity identifiers

<table>
<thead>
<tr>
<th>z13</th>
<th>Model capacity identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model N30</td>
<td>701 - 730, 601 - 630, 501 - 530, and 401 - 430</td>
</tr>
<tr>
<td>Model N63</td>
<td>701 - 763, 601 - 630, 501 - 530, and 401 - 430</td>
</tr>
<tr>
<td>Model N96</td>
<td>701 - 796, 601 - 630, 501 - 530, and 401 - 430</td>
</tr>
<tr>
<td>Model NC9</td>
<td>701 - 7C9, 601 - 630, 501 - 530, and 401 - 430</td>
</tr>
<tr>
<td>Model NE1</td>
<td>701 - 7E1, 601 - 630, 501 - 530, and 401 - 430</td>
</tr>
</tbody>
</table>

Important: On z13 servers, model capacity identifier 400 is used for IFL- or ICF-only configurations.

2.7.4 Model capacity identifier and MSU value

All model capacity identifiers have a related MSU value. The MSU values are used to determine the software license charge for MLC software. Tables with MSU values are available on the Mainframe Exhibits for IBM Servers website:

2.7.5 Capacity Backup

Capacity Backup (CBU) delivers temporary backup capacity in addition to the capacity that an installation might already have available in numbers of assigned CPs, IFLs, ICFs, zIIPs, and optional SAPs. CBU has the following types:

- CBU for CP
- CBU for IFL
- CBU for ICF
- CBU for zIIP
- Optional SAPs

When CBU for CP is added within the same capacity setting range (indicated by the model capacity indicator) as the currently assigned PUs, the total number of active PUs (the sum of
all assigned CPs, IFLs, ICFs, zIIPs, and optional SAPs) plus the number of CBUs cannot exceed the total number of PUs available in the system.

When CBU for CP capacity is acquired by switching from one capacity setting to another, no more CBUs can be requested than the total number of PUs available for that capacity setting.

CBU and granular capacity

When CBU for CP is ordered, it replaces lost capacity for disaster recovery. Specialty engines (ICFs, IFLs, and zIIPs) always run at full capacity, and when running as a CBU to replace lost capacity for disaster recovery.

When you order CBU, specify the maximum number of CPs, ICFs, IFLs, zIIPs, and SAPs to be activated for disaster recovery. If disaster strikes, you decide how many of each of the contracted CBUs of any type to activate. The CBU rights are registered in one or more records in the CPC. Up to eight records can be active, which can contain various CBU activation variations that apply to the installation.

You can test the CBU. The number of CBU test activations that you can run for no additional fee in each CBU record is now determined by the number of years that are purchased with the CBU record. For example, a three-year CBU record has three test activations, as compared to a 1-year CBU record that has one test activation. You can increase the number of tests up to a maximum of 15 for each CBU record. The real activation of CBU lasts up to 90 days with a grace period of two days to prevent sudden deactivation when the 90-day period expires. The contract duration can be set from 1 - 5 years.

The CBU record describes the following properties that are related to the CBU:

- Number of CP CBUs allowed to be activated
- Number of IFL CBUs allowed to be activated
- Number of ICF CBUs allowed to be activated
- Number of zIIP CBUs allowed to be activated
- Number of SAP CBUs allowed to be activated
- Number of additional CBU tests that are allowed for this CBU record
- Number of total CBU years ordered (duration of the contract)
- Expiration date of the CBU contract

The record content of the CBU configuration is documented in IBM configurator output, which is shown in Example 2-1. In the example, one CBU record is made for a 5-year CBU contract without additional CBU tests for the activation of one CP CBU.

Example 2-1 Simple CBU record and related configuration features

On Demand Capacity Selections:
NEW00001 - CBU - CP(1) - Years(5) - Tests(5)

Resulting feature numbers in configuration:

<table>
<thead>
<tr>
<th>Feature Number</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6817</td>
<td>Total CBU Years Ordered</td>
<td>5</td>
</tr>
<tr>
<td>6818</td>
<td>CBU Records Ordered</td>
<td>1</td>
</tr>
<tr>
<td>6820</td>
<td>Single CBU CP-Year</td>
<td>5</td>
</tr>
</tbody>
</table>
In Example 2-2, a second CBU record is added to the configuration for two CP CBUs, two IFL CBUs, and two zIIP CBUs, with five more tests and a 5-year CBU contract. The result is that a total number of 10 years of CBU ordered: Five years in the first record and five years in the second record. The two CBU records are independent, and can be activated individually. Five more CBU tests have been requested. Because a total of five years are contracted for a total of three CP CBUs (two IFL CBUs and two zIIP CBUs), they are shown as 15, 10, 10, and 10 CBU years for their respective types.

Example 2-2 Second CBU record and resulting configuration features

NEW00001 - CBU - Replenishment is required to reactivate
Expiration(06/21/2017)
NEW00002 - CBU - CP(2) - IFL(2) - zIIP(2)
 Total Tests(10) - Years(5)

Resulting cumulative feature numbers in configuration:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6805 5 Additional CBU Tests</td>
<td>5</td>
</tr>
<tr>
<td>6817 Total CBU Years Ordered</td>
<td>10</td>
</tr>
<tr>
<td>6818 CBU Records Ordered</td>
<td>2</td>
</tr>
<tr>
<td>6820 Single CBU CP-Year</td>
<td>15</td>
</tr>
<tr>
<td>6822 Single CBU IFL-Year</td>
<td>10</td>
</tr>
<tr>
<td>6828 Single CBU zIIP-Year</td>
<td>10</td>
</tr>
</tbody>
</table>

CBU for CP rules

Consider the following guidelines when you are planning for CBU for CP capacity:

- The total CBU CP capacity features are equal to the number of added CPs plus the number of permanent CPs that change the capacity level. For example, if two CBU CPs are added to the current model 503, and the capacity level does not change, the 503 becomes 505:
 \[(503 + 2 = 505)\]

 If the capacity level changes from a 503 to a 606, the number of additional CPs (three) is added to the three CPs of the 503, resulting in a total number of CBU CP capacity features of six:
 \[(3 + 3 = 6)\]

- The CBU cannot decrease the number of CPs.
- The CBU cannot lower the capacity setting.

Remember: CBU for CPs, IFLs, ICFs, zIIPs, and SAPs can be activated together with On/Off Capacity on Demand temporary upgrades. Both facilities can be on a single system, and can be activated simultaneously.
CBA for specialty engines
Specialty engines (ICFs, IFLs, and zIIPs) run at full capacity for all capacity settings. This fact also applies to CBA for specialty engines. Table 2-15 shows the minimum and maximum (min-max) numbers of all types of CBAs that can be activated on each of the models. The CBA record can contain larger numbers of CBAs than can fit in the current model.

Table 2-15 Capacity Backup matrix

<table>
<thead>
<tr>
<th>Model</th>
<th>Total PUs available</th>
<th>CBA CPs min - max</th>
<th>CBA IFLs min - max</th>
<th>CBA ICFs min - max</th>
<th>CBA zIIPs min - max</th>
<th>CBA SAPs min - max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model N30</td>
<td>30</td>
<td>0 - 30</td>
<td>0 - 30</td>
<td>0 - 30</td>
<td>0 - 20</td>
<td>0 - 4</td>
</tr>
<tr>
<td>Model N63</td>
<td>63</td>
<td>0 - 63</td>
<td>0 - 63</td>
<td>0 - 63</td>
<td>0 - 42</td>
<td>0 - 8</td>
</tr>
<tr>
<td>Model N96</td>
<td>96</td>
<td>0 - 96</td>
<td>0 - 96</td>
<td>0 - 96</td>
<td>0 - 64</td>
<td>0 - 12</td>
</tr>
<tr>
<td>Model NC9</td>
<td>129</td>
<td>0 - 129</td>
<td>0 - 129</td>
<td>0 - 129</td>
<td>0 - 86</td>
<td>0 - 16</td>
</tr>
<tr>
<td>Model NE1</td>
<td>141</td>
<td>0 - 141</td>
<td>0 - 141</td>
<td>0 - 1E1</td>
<td>0 - 94</td>
<td>0 - 16</td>
</tr>
</tbody>
</table>

Unassigned IFLs are ignored because they are considered spares, and are available for use as CBA. When an unassigned IFL is converted to an assigned IFL, or when more PUs are characterized as IFLs, the number of CBAs of any type that can be activated is decreased.

2.7.6 On/Off Capacity on Demand and CPs

On/Off Capacity on Demand (CoD) provides temporary capacity for all types of characterized PUs. Relative to granular capacity, On/Off CoD for CPs is treated similarly to the way that CBA is handled.

On/Off CoD and granular capacity

When temporary capacity that is requested by On/Off CoD for CPs matches the model capacity identifier range of the permanent CP feature, the total number of active CPs equals the sum of the number of permanent CPs plus the number of temporary CPs ordered. For example, when a model capacity identifier 504 has two CP5s added temporarily, it becomes a model capacity identifier 506.

When the addition of temporary capacity that is requested by On/Off CoD for CPs results in a cross-over from one capacity identifier range to another, the total number of CPs active when the temporary CPs are activated is equal to the number of temporary CPs ordered. For example, when a CPC with model capacity identifier 504 specifies six CP6 temporary CPs through On/Off CoD, the result is a CPC with model capacity identifier 606. A cross-over does not necessarily mean that the CP count for the additional temporary capacity increases. The same 504 might temporarily be upgraded to a CPC with model capacity identifier 704. In this case, the number of CPs does not increase, but more temporary capacity is achieved.

On/Off CoD guidelines

When you request temporary capacity, consider the following guidelines:

- Temporary capacity must be greater than permanent capacity.
- Temporary capacity cannot be more than double the purchased capacity.
- On/Off CoD cannot decrease the number of engines on the CPC.
- Adding more engines than are currently installed is not possible.
For more information about temporary capacity increases, see Chapter 8, “System upgrades” on page 313.

2.8 Power and cooling

The z13 power and cooling system is a continuation of zEC12 with the addition of improvements in availability, temperature tolerance, and vectored (directional) air output. The air-cooled z13 server now has a radiator unit (RU) N+2 design for the pumps and blowers. With the new rear cover design for vectored air output, you can choose whether the output air goes up or down. The water-cooled system is still an option for the z13 server. The Top Exit Power feature is available for the z13 server. Combined with the Top Exit I/O Cabling feature, it gives you more options when you are planning your computer room cabling. For more information about the z13 Top Exit features, see 10.3, “z13 physical planning” on page 396.

2.8.1 Power consumption

The system operates with two fully redundant power supplies. One is in the front side of the Z frame, and the other is in the rear side of the Z frame. Each power supply has either one or two power cords. The number of power cords that are required depends on the system configuration. The total loss of one power supply has no impact on system operation.

Systems that specify two power cords can be brought up with one power cord and continue to run.

The larger systems that have a minimum of four BPR pairs that are installed must have four power cords installed. Systems that specify four power cords can be started with two power cords on the same side with sufficient power to keep the system running.

Power cords attach to either a three-phase, 50/60 Hz, 200 - 480 V AC power source, or a 380 - 520 V DC power source.

A Balanced Power Plan Ahead feature is available for future growth, helping to ensure adequate and balanced power for all possible configurations. With this feature, system downtime for upgrading a server is eliminated by including the maximum power requirements in terms of BPRs and power cords to your installation.

For ancillary equipment, such as the Hardware Management Console, its display, and its switch, extra single phase outlets are required.

The power requirements depend on the cooling facility that is installed, and on the number of CPC drawers and I/O units that are installed. For more information about the requirements that are related to the number of installed I/O units, see 10.1.2, “Power requirements and consumption” on page 388.
2.8.2 High Voltage Direct Current power feature

The High Voltage Direct Current power feature is an option for z13 servers. It allows z13 servers to directly use the high voltage (HV) DC distribution as shown in Figure 2-24. A direct high voltage DC data center power design can improve data center energy efficiency by removing the need for a DC to AC inversion step.

![Figure 2-24 AC versus DC distribution](image)

The z13 bulk power supplies have been modified to support HV DC, so the only difference in the shipped hardware to implement this option is the DC power cords. Because HV DC is a new technology, there are multiple proposed standards. z13 servers support both ground referenced and dual polarity HV DC supplies, such as +/-190 V, +/-260 V, and +380 V. Beyond the data center uninterruptible power supply and power distribution energy savings, a z13 server that runs on HV DC power draws 1 - 3% less input power. HV DC does not change the number of power cords that a system requires.

2.8.3 Internal Battery Feature

The Internal Battery Feature (IBF) is an optional feature on the z13 server. It is shown in Figure 2-1 on page 38 for air-cooled (radiator) models and in Figure 2-2 on page 39 for water-cooled models. The IBF provides a local uninterrupted power source.

The IBF further enhances the robustness of the power design, increasing power line disturbance immunity. It provides battery power to preserve processor data during a loss of power on all power feeds from the computer room. The IBF can hold power briefly during a brownout, or for orderly shutdown if there is a longer outage. For information about the hold times, which depend on the I/O configuration and amount of CPC drawers, see 10.1.4, “Internal Battery Feature (IBF)” on page 394.

2.8.4 Power capping and saving

Power capping limits the maximum power consumption and reduces the cooling requirements for the zBX. z13 servers do not support power capping.
The z13 server has a mechanism to vary the frequency and voltage that it supplies its chips. The mechanism can be used to reduce the energy consumption of the system during periods of low usage or for systems that are designed mainly for disaster recovery. The mechanism is under the full control of the client. The client controls are implemented in the HMC, SE, and Active Energy Manager where you can choose between High Performance (default) or Low Power (power saving). The expectation is that the frequency change is 20%, the voltage change is 9%, and the total power savings is 6% - 16%, depending on the configuration.

2.8.5 Power estimation tool

The power estimation tool for the z13 server allows you to enter your precise server configuration to obtain an estimate of power consumption. Log in to the Resource link with your user ID. Click Planning → Tools → Power Estimation Tools. Specify the quantity for the features that are installed in your system. This tool estimates the power consumption for the specified configuration. The tool does not verify that the specified configuration can be physically built.

Tip: The exact power consumption for your system varies. The object of the tool is to estimate the power requirements to aid you in planning for your system installation. Actual power consumption after installation can be confirmed by using the HMC Monitors Dashboard task.

To learn how to check the current values of your z13 server, see 10.4.1, “Power usage” on page 402.

2.8.6 Cooling

The PU SCMs are cooled by a cold plate that is connected to the internal water-cooling loop. The SC SCMs are air-cooled. In an air-cooled system, the RUs dissipate the heat from the internal water loop with air. The radiator units provide improved availability with N+2 pumps and blowers. The WCUs are fully redundant in an N+1 arrangement.

Air-cooled models

In z13 servers, the CPC drawer, SC SCMs, PCIe I/O drawers, I/O drawers, and power enclosures are all cooled by forced air with blowers that are controlled by the Move Device Assembly (MDA).

The PU SCMs in the CPC drawers are cooled by water. The internal closed water loop takes heat away from PU SCMs by circulating water between the radiator heat exchanger and the cold plate that is mounted on the PU SCMs. For more information, see 2.8.7, “Radiator Unit” on page 81.

Although the PU SCMs are cooled by water, the heat is exhausted into the room from the radiator heat exchanger by forced air with blowers. At the system level, z13 servers are still air-cooled systems.

Water-cooled models

z13 servers are available as water-cooled systems. With WCU technology, z13 servers can transfer most of the heat that they generate into the building’s chilled water, which effectively reduces the heat output to the computer room.

Unlike the radiator in air-cooled models, a WCU has two water loops: An internal closed water loop and an external (chilled) water loop. The external water loop connects to the
client-supplied building's chilled water. The internal water loop circulates between the WCU heat exchanger and the PU SCMs cold plates. The loop takes heat away from the PU SCMs and transfers it to the external water loop in the WCU's heat exchanger. For more information, see 2.8.8, "Water-cooling unit" on page 83.

In addition to the PU SCMs, the internal water loop also circulates through two heat exchangers that are in the path of the exhaust air in the rear of the frames. These heat exchangers remove approximately 60% - 65% of the residual heat from the I/O drawers, PCIe I/O drawers, the air-cooled logic in the CPC drawers, and the power enclosures. Almost two-thirds of the total heat that is generated can be removed from the room by the chilled water.

The selection of air-cooled models or water-cooled models is done when ordering, and the appropriate equipment is factory-installed. An MES (conversion) from an air-cooled model to a water-cooled model and vice versa is not allowed.

2.8.7 Radiator Unit

The Radiator Unit provides cooling to PU SCMs with closed loop water. No connection to an external chilled water supply is required. For the z13 server, the internal circulating water is conditioned water that is added to the radiator unit during system installation with the Fill and Drain Tool (FC 3380). The Fill and Drain Tool (FDT) is included with new z13 servers, but if you already have an FDT from a zEC12 (FC 3378) in the data center, you can order an upgrade kit (FC 3379) to have the same equipment as in the FC 3380, and it can be used for the zEC12 and z13 servers. The FDT is used to provide the internal water at the installation and for maintenance, and to remove it at discontinuance.

Figure 2-25 shows the FDT.

![Figure 2-25 Fill and Drain Tool (FDT)]

Approximate FDT unit dimensions:
- 90 cm (35 in) from floor to top of handle
- 76 cm (30 in) long
- 56 cm (22 in) wide

The radiator unit connects to all four CPC drawers (if installed) and cools all PU SCMs simultaneously. The cooling capability is a redundant N+2 design, so a single working pump and blower can support the entire load. The replacement of one pump or blower can be done concurrently and has no performance impact.
As Figure 2-26 shows, the water pumps, manifold assembly, radiator assembly (which includes the heat exchanger), and blowers are the main components of the z13 RU.

Figure 2-26 Radiator unit

Figure 2-27 shows the closed water loop in the radiator unit. The warm water exiting from the PU SCMs cold plates enters pumps through a common manifold, and is pumped through a heat exchanger where heat is extracted by the air flowing across the heat exchanger fins. The cooled water is then recirculated back into the PU SCMs cold plates.

Figure 2-27 Radiator cooling system
2.8.8 Water-cooling unit

z13 servers continue to provide the ability to cool systems with building-provided chilled water by employing the WCU technology. The PU SCMs in the CPC drawers are cooled by internal closed loop water. The internal closed loop water exchanges heat with building-provided chilled water in the WCU heat exchanger. The source of the building’s chilled water is provided by the client.

Figure 2-28 shows a WCU.

![Figure 2-28 Water-cooling unit](image)

The water in the closed loop within the system exchanges heat with the continuous supply of building-provided chilled water. This water circulates between the PU SCMs cold plates and a heat exchanger within the WCU. Heat from the PU SCMs is transferred to the cold plates, where it is in turn transferred to the circulating system water (closed loop). The system water then dissipates its heat to the building-provided chilled water within the WCU’s heat exchanger. The PU SCMs are cooled efficiently in this manner.

A simplified high-level diagram that illustrates this principle is shown in Figure 2-29.

![Figure 2-29 WCU water loop](image)

z13 servers operate with two fully redundant WCUs. These water-cooling units have each their own facility feed and return water connections. If water is interrupted to one of the units, the other unit picks up the entire load, and the server continues to operate without interruption. You must provide independent redundant water loops to the water-cooling units to obtain full redundancy.
The internal circulating water is conditioned water that is added to the radiator unit during system installation with the Fill and Drain Tool (FC 3380). The FDT is included with new z13 servers, but if you already have an FDT from a zEC12 (FC 3378) in the data center, you can order an upgrade kit (FC 3379) to have the same equipment as in the FC 3380, and it can be used for the zEC12 and z13 servers. The FDT is used to provide the internal water at the installation and for maintenance, and to remove it at discontinuance. Figure 2-25 on page 81 shows the FDT.

Exhaust Air Heat Exchanger

In z13 servers, all water-cooled models have two Exhaust Air Heat Exchanger units that are installed on the rear of the A and Z frames, as shown in Figure 2-30. These units remove heat from the internal system water loop, and internal air exits the server into the hot air exhaust aisle.

![Figure 2-30 Water-cooled model: Rear view](image)

In addition to the PU SCMs cold plates, the internal water loop also circulates through these two heat exchangers. These exchangers are in the path of the exhaust air in the rear of the frames. These heat exchangers remove approximately 65% of the residual heat from the I/O drawers, PCIe I/O drawer, the air-cooled logic in the CPC drawer, and the power enclosures. The goal is for two-thirds of the total heat that is generated to be removed from the room by the chilled water.

If one client water supply or one WCU fails, the remaining feed maintains PU SMCs cooling. The WCUs and the associated drive card are concurrently replaceable. In addition, the heat exchangers can be disconnected and removed from the system concurrently.
Considerations before you order
The water-cooling option is preferable because it can substantially lower the total power consumption of z13 servers and the total cost of ownership for the CPC. This savings is greater for the larger models of z13 servers, as shown in Table 2-16.

The water-cooling option cannot be installed in the field. Therefore, you must carefully consider the present and future computer room and CPC configuration options before you decide what cooling option to order. For more information, see 10.1.3, “Cooling requirements” on page 391.

Table 2-16 Heat to water based on temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Three CPC drawer typical configuration</th>
<th>Four CPC drawer typical configuration</th>
<th>Four CPC drawer maximum power configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-cooled system power in normal room/hot room</td>
<td>12.9 kW/14.1 kW</td>
<td>17.4 kW/19.0 kW</td>
<td>24.7 kW/26.3 kW</td>
</tr>
<tr>
<td>Inlet air temperature</td>
<td>Heat to water and as % of total system heat load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18°C (64°F)</td>
<td>7.3 kW (57%)</td>
<td>9.8 kW (56%)</td>
<td>12.6 kW (51%)</td>
</tr>
<tr>
<td>23°C (73°F)</td>
<td>9.5 kW (74%)</td>
<td>12.6 kW (72%)</td>
<td>15.6 kW (63%)</td>
</tr>
<tr>
<td>27°C (80.6°F)</td>
<td>11.5 kW (89%)</td>
<td>14.8 kW (85%)</td>
<td>18.0 kW (73%)</td>
</tr>
<tr>
<td>32°C (89.6°F) (hot room)</td>
<td>14.8 kW (105%)</td>
<td>18.2 kW (96%)</td>
<td>21.6 kW (82%)</td>
</tr>
</tbody>
</table>

2.9 Summary of z13 structure

Table 2-17 summarizes all aspects of the z13 structure.

Table 2-17 System structure summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Model N30</th>
<th>Model N63</th>
<th>Model N96</th>
<th>Model NC9</th>
<th>Model NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of CPC drawers</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of SCMs</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Total number of PUs</td>
<td>39</td>
<td>78</td>
<td>117</td>
<td>156</td>
<td>168</td>
</tr>
<tr>
<td>Maximum number of characterized PUs</td>
<td>30</td>
<td>63</td>
<td>96</td>
<td>129</td>
<td>141</td>
</tr>
<tr>
<td>Number of CPs</td>
<td>0 - 30</td>
<td>0 - 63</td>
<td>0 - 96</td>
<td>0 - 129</td>
<td>0 - 141</td>
</tr>
<tr>
<td>Number of IFLs</td>
<td>0 - 30</td>
<td>0 - 63</td>
<td>0 - 96</td>
<td>0 - 129</td>
<td>0 - 141</td>
</tr>
<tr>
<td>Number of ICFs</td>
<td>0 - 30</td>
<td>0 - 63</td>
<td>0 - 96</td>
<td>0 - 129</td>
<td>0 - 141</td>
</tr>
<tr>
<td>Number of zIIPs</td>
<td>0 - 20</td>
<td>0 - 42</td>
<td>0 - 64</td>
<td>0 - 86</td>
<td>0 - 94</td>
</tr>
<tr>
<td>Standard SAPs</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Additional SAPs</td>
<td>0 - 4</td>
<td>0 - 8</td>
<td>0 - 12</td>
<td>0 - 16</td>
<td>0 - 16</td>
</tr>
<tr>
<td>Number of IFP</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Description</td>
<td>Model N30</td>
<td>Model N63</td>
<td>Model N96</td>
<td>Model NC9</td>
<td>Model NE1</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Standard spare PUs</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Enabled memory sizes</td>
<td>64 - 2464 GB</td>
<td>64 - 5024 GB</td>
<td>64 - 7584 GB</td>
<td>64 - 10144 GB</td>
<td>64 - 10144 GB</td>
</tr>
<tr>
<td>Flexible memory sizes</td>
<td>N/A</td>
<td>64 - 2464 GB</td>
<td>64 - 5024 GB</td>
<td>64 - 7584 GB</td>
<td>64 - 7584 GB</td>
</tr>
<tr>
<td>L1 cache per PU</td>
<td>96/128 KB(I/D)</td>
<td>96/128 KB(I/D)</td>
<td>96/128 KB(I/D)</td>
<td>96/128 KB(I/D)</td>
<td>96/128 KB(I/D)</td>
</tr>
<tr>
<td>L2 cache per PU</td>
<td>2/2 MB (I/D)</td>
</tr>
<tr>
<td>L3 shared cache per PU chip</td>
<td>64 MB</td>
<td>64 MB</td>
<td>64 MB</td>
<td>64 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>L4 shared cache per node</td>
<td>480 MB</td>
<td>480 MB</td>
<td>480 MB</td>
<td>480 MB</td>
<td>480 MB</td>
</tr>
<tr>
<td>L4 NIC directory per node</td>
<td>224 MB</td>
<td>224 MB</td>
<td>224 MB</td>
<td>224 MB</td>
<td>224 MB</td>
</tr>
<tr>
<td>Cycle time (ns)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>5.0 GHz</td>
<td>5.0 GHz</td>
<td>5.0 GHz</td>
<td>5.0 GHz</td>
<td>5.0 GHz</td>
</tr>
<tr>
<td>Maximum number of PCIe fanouts</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Maximum number of IFB fanouts</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>I/O interface per IFB cable</td>
<td>6 GBps</td>
<td>6 GBps</td>
<td>6 GBps</td>
<td>6 GBps</td>
<td>6 GBps</td>
</tr>
<tr>
<td>I/O interface per PCIe cable</td>
<td>16 GBps</td>
<td>16 GBps</td>
<td>16 GBps</td>
<td>16 GBps</td>
<td>16 GBps</td>
</tr>
<tr>
<td>Number of support elements</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>External AC power</td>
<td>3 phase</td>
<td>3 phase</td>
<td>3 phase</td>
<td>3 phase</td>
<td>a3 phase</td>
</tr>
<tr>
<td>Optional external DC</td>
<td>520 V/380 V</td>
</tr>
<tr>
<td>Internal Battery Feature</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Central processor complex system design

This chapter explains how the IBM z13 processor unit is designed. This information can be used to understand the functions that make the z13 server a system that accommodates a broad mix of workloads for large enterprises.

This chapter includes the following sections:

- Overview
- Design highlights
- CPC drawer design
- Processor unit design
- Processor unit functions
- Memory design
- Logical partitioning
- Intelligent Resource Director (IRD)
- Clustering technology
3.1 Overview

The z13 symmetric multiprocessor (SMP) system is the next step in an evolutionary trajectory that began with the introduction of the IBM System/360 in 1964. Over time, the design was adapted to the changing requirements dictated by the shift toward new types of applications that clients depend on.

z13 servers offer high levels of reliability, availability, serviceability, resilience, and security. It fits into the IBM strategy in which mainframes play a central role in creating an infrastructure for cloud, analytics, and mobile, underpinned by security. The z13 server is designed so that everything around it, such as operating systems, middleware, storage, security, and network technologies that support open standards, help you achieve your business goals.

The modular CPC drawer design aims to reduce, or in some cases even eliminate, planned and unplanned outages. The design does so by offering concurrent repair, replace, and upgrade functions for processors, memory, and I/O. For more information about the z13 reliability, availability, and serviceability (RAS) features, see Chapter 9, “Reliability, availability, and serviceability” on page 359.

z13 servers have ultra-high frequency, large high-speed buffers (caches) and memory, superscalar processor design, out-of-order core execution, simultaneous multithreading (SMT), single-instruction multiple-data (SIMD), and flexible configuration options. It is the next implementation of z Systems servers to address the ever-changing IT environment.

3.2 Design highlights

The physical packaging of z13 servers is different from zEnterprise zEC12 (zEC12) systems. Its modular CPC drawer and single chip module (SCM) design address the augmenting costs that are related to building systems with ever-increasing capacities. The modular CPC drawer design is flexible and expandable, offering unprecedented capacity to meet consolidation needs, and might contain even larger capacities in the future.

z13 servers continue the line of mainframe processors that are compatible with an earlier version. They introduce more complex instructions that are run by millicode, and more complex instructions that are broken down into multiple operations. It uses 24-bit, 31-bit, and 64-bit addressing modes, multiple arithmetic formats, and multiple address spaces for robust interprocess security.

The z13 system design has the following main objectives:

- Offer a flexible infrastructure to concurrently accommodate a wide range of operating systems and applications, which range from the traditional systems (for example, z/OS and z/VM) to the world of Linux, cloud, analytics, and mobile computing.
- Offer state-of-the-art integration capability for server consolidation by using virtualization capabilities in a highly secure environment:
 - Logical partitioning, which allows 85 independent logical servers.
 - z/VM, which can virtualize hundreds to thousands of servers as independently running virtual machines (guests).
 - HiperSockets, which implement virtual LANs between logical partitions (LPARs) within the system.
 - The z Systems PR/SM is designed for Common Criteria Evaluation Assurance Level 5+ (EAL 5+) certification for security, so an application running on one partition (LPAR)
cannot access another application on a different partition, providing essentially the same security as an air-gapped system.

This configuration allows for a logical and virtual server coexistence and maximizes system utilization and efficiency by sharing hardware resources.

- Offer **high performance computing** to achieve the outstanding response times that are required by new workload-type applications. This performance is achieved by high frequency, enhanced superscalar processor technology, out-of-order core execution, large high-speed buffers (cache) and memory, an architecture with multiple complex instructions, and high-bandwidth channels.

- Offer the **high capacity** and **scalability** that are required by the most demanding applications, both from the single-system and clustered-systems points of view.

- Offer the capability of **concurrent upgrades** for processors, memory, and I/O connectivity, which prevents system outages in planned situations.

- Implement a system with **high availability and reliability**. These goals are achieved with redundancy of critical elements and sparing components of a single system, and the clustering technology of the Parallel Sysplex environment.

- Have internal and external **connectivity** offerings, supporting open standards, such as Gigabit Ethernet (GbE) and Fibre Channel Protocol (FCP).

- Provide leading **cryptographic** performance. Every processor unit (PU) has a dedicated and optimized CP Assist for Cryptographic Function (CPACF). Optional Crypto Express features with cryptographic coprocessors provide the highest standardized security certification.¹ These optional features can also be configured as Cryptographic Accelerators to enhance the performance of Secure Sockets Layer/Transport Layer Security (SSL/TLS) transactions.

- Be **self-managing** and **self-optimizing**, adjusting itself when the workload changes to achieve the best system throughput. This process can be done through the Intelligent Resource Director or the Workload Manager functions, which are assisted by HiperDispatch.

- Have a **balanced system** design, providing large data rate bandwidths for high performance connectivity along with processor and system capacity.

The remaining sections describe the z13 system structure, showing a logical representation of the data flow from PUs, caches, memory cards, and various interconnect capabilities.

3.3 CPC drawer design

A z13 system can have up to four CPC drawers in a full configuration, up to 141 PUs that can be characterized, and up to 10 TB of customer usable memory capacity. Each CPC drawer is physically divided in two nodes to improve the processor and memory affinity and availability. The topology is shown in Figure 3-5 on page 94.

The memory has up to 24 memory controllers, but only 20 populated memory controller units (MCUs) with five MCUs per CPC drawer. The configuration uses 5-channel redundant array of independent memory (RAIM) protection, with dual inline memory modules (DIMM) bus cyclic redundancy check (CRC) error retry. The 4-level cache hierarchy is implemented with embedded dynamic random access memory (eDRAM) caches. Until recently, eDRAM was considered to be too slow for this use. However, a breakthrough in technology made by IBM has eliminated that limitation. In addition, eDRAM offers higher density, less power utilization,

¹ Federal Information Processing Standard (FIPS)140-2 Security Requirements for Cryptographic Modules
fewer soft errors, and better performance. Concurrent maintenance allows dynamic central processing complex (CPAC) drawer add and repair.\(^2\)

z13 servers use CMOS 14S0 Silicon-on-Insulator (SOI) 22 nm chip technology, with advanced low latency pipeline design, creating high-speed yet power-efficient circuit designs. The PU SCM has a dense packaging, allowing closed water loop cooling. The heat exchange from the closed loop is either air-cooled by a radiator unit (RU) or, optionally, water-cooled by a water-cooling unit (WCU). The water-cooling option can lower the total power consumption of the system. This benefit is significant for larger configurations. For more information, see 2.8.6, “Cooling” on page 80.

3.3.1 Cache levels and memory structure

The z13 memory subsystem focuses on keeping data “closer” to the PU core. With the current processor configuration, all cache levels have increased, and the second-level private cache (L2) and the total node-level shared cache (L4) in a CPC drawer have doubled in size.

Figure 3-1 shows the z13 cache levels and memory hierarchy.

![Figure 3-1 z13 cache levels and memory hierarchy](image)

The 4-level cache structure is implemented within the storage control (SC) SCMs. There is one L4 cache in each node of the CPC drawer. The first three levels (L1, L2, and L3) are on each PU chip (PU SCM), and L4 is on the SC chips (SC SCMs):

- L1 and L2 caches use static random-access memory (SRAM), and are private for each core.
- L3 cache uses eDRAM and is shared by all eight cores within the PU chip. Each CPC drawer has six L3 caches. A four-CPC drawer system therefore has 24 of them, resulting in 1536 MB (24 x 64 MB) of this shared PU chip-level cache.
- L4 cache also uses eDRAM, and is shared by all PU chips on the node of a CPC drawer. Each L4 cache has 480 MB for previously owned and some least recently used (LRU)

\(^2\) For configurations with two or more CPC drawers installed
L3-owned lines and 224 MB for a non-data inclusive coherent (NIC) directory that points to L3 owned lines that have not been included in L4 cache. A four-CPC drawer system has 3840 MB (4 x 2 x 384 MB) of shared L4 cache and 1792 MB (4 x 2 x 224 MB) of NIC directory.

- Main storage has up to 2.5 TB addressable memory per CPC drawer, using 20 or 25 DIMMs. A four-CPC drawer system can have up to 10 TB of main storage.

Considerations

Cache sizes are being limited by ever-diminishing cycle times because they must respond quickly without creating bottlenecks. Access to large caches costs more cycles. Instruction and data cache (L1) sizes must be limited because larger distances must be traveled to reach long cache lines. This L1 access time generally occurs in one cycle, which prevents increased latency.

Also, the distance to remote caches as seen from the microprocessor becomes a significant factor. An example is an L4 cache that is not on the microprocessor (and might not even be in the same CPC drawer). Although the L4 cache is rather large, several cycles are needed to travel the distance to the cache. Figure 3-2 shows the node-cache topology of z13 servers.

![Node-cache topology of z13 servers](image)

Although large caches mean increased access latency, the new technology of CMOS 14S0 (22 nm chip lithography) and the lower cycle time allows z13 servers to increase the size of cache levels (L1, L2, and L3) within the PU chip by using denser packaging. This design reduces traffic to and from the shared L4 cache, which is on another chip (SC chip). Only when there is a cache miss in L1, L2, or L3 is a request sent to L4. L4 is the coherence manager, which means that all memory fetches must be in the L4 cache before that data can be used by the processor. However, in the z13 cache design, some lines of the L3 cache are not included in the L4 cache. The L4 cache has an NIC directory that has entries that point to the non-inclusive lines of L3 cache. This design ensures that L3 locally owned lines (same node) can be accessed over the X-bus by using the intra-node snoop interface without being included in L4. Inter-node snoop traffic to L4 can still be handled effectively.
Another approach is available for avoiding L4 cache access delays (latency). The L4 cache straddles up to four CPC drawers and up to eight nodes. This configuration means that relatively long distances exist between the higher-level caches in the processors and the L4 cache content. To overcome the delays that are inherent in the SMP CPC drawer design and save cycles to access the remote L4 content, keep instructions and data as close to the processors as possible. You can do so by directing as much work of a particular LPAR workload to the processors in the same CPC drawer as the L4 cache. This configuration is achieved by having the IBM Processor Resource/Systems Manager (PR/SM) scheduler and the z/OS WLM and dispatcher work together. Have them keep as much work as possible within the boundaries of as few processors and L4 cache space (which is best within a node of a CPC drawer boundary) without affecting throughput and response times.

Figure 3-3 compares the cache structures of z13 servers with the previous generation of z Systems servers, zEC12.

Compared to zEC12, the z13 cache design has much larger cache level sizes. In z13 servers, there is more affinity between the memory of a partition, the L4 cache in the SC SCM, and the cores in the PU SCMs of a node of a CPC drawer. The access time of the private cache usually occurs in one cycle. The z13 cache level structure is focused on keeping more data closer to the PU. This design can improve system performance on many production workloads.

HiperDispatch

To help avoid latency in a high-frequency processor design, such as z13 servers, prevent PR/SM and the dispatcher from scheduling and dispatching a workload on any processor available, and keep the workload in as small a portion of the system as possible. The cooperation between z/OS and PR/SM is bundled in a function called **HiperDispatch**. HiperDispatch uses the z13 cache topology, which has reduced cross-node “help” and better locality for multi-task address spaces.
PR/SM can use dynamic PU reassignment to move processors (CPs, ZIIPs, IFLs, ICFs, SAPs, and spares) to a different chip, node, and drawer to improve the reuse of shared caches by processors of the same partition. It can use dynamic memory relocation (DMR) to move a running partition's memory to different physical memory to improve the affinity and reduce the distance between the memory of a partition and the processors of the partition. For more information about HiperDispatch, see 3.7, “Logical partitioning” on page 122.

3.3.2 CPC drawer interconnect topology

CPC drawers are interconnected in a point-to-point topology, allowing a node in a CPC drawer to communicate with every other node (eight nodes in four CPC drawers). Data transfer does not always have to go through another node or processor drawer (cache) to address the requested data or control information.

Figure 3-4 shows the z13 inter-CPC drawer communication structure.
Figure 3-5 shows a simplified topology of a four-CPC drawer system.

Inter-CPC drawer communication takes place at the L4 cache level, which is implemented on SC cache chips in each node. The SC function regulates coherent node-to-node traffic.

3.4 Processor unit design

Processor cycle time is especially important for processor-intensive applications. Current systems design is driven by processor cycle time, although improved cycle time does not automatically mean that the performance characteristics of the system improve. The System z10 EC introduced a dramatic PU cycle time improvement. Its succeeding generations, the z196 and the zEC12, reduced the cycle time even further, reaching 0.192 ns (5.2 GHz) and 0.178 ns (5.5 GHz).

z13 servers have a cycle time of 0.2 ns (5.0 GHz), which allows the increased number of processors that share larger caches to have quick access times and improved capacity and performance. Although the cycle time of the z13 processor was slightly increased compared to z196 and zEC12 (4% and 10%), the processor performance was increased through improved processor design, such as pipeline, out-of-order execution design, branch prediction, time of access to high-speed buffers (caches redesign), and the relative nest intensity (RNI). For more information about RNI, see 12.4, “Relative Nest Intensity” on page 467.
The z13 processor unit core is a superscalar, out-of-order (OOO), SMT processor with 10 execution units. For instructions that are not directly run by the hardware, some are run by millicode, and others are split into multiple operations.

z13 servers introduce architectural extensions with instructions that are designed to allow reduced processor quiesce effects, reduced cache misses, reduced pipeline disruption, and increased parallelism with instructions that process several operands in a single instruction (SIMD). The new z13 architecture includes the following features:

- SMT
- SIMD instructions set
- Out-of-order core execution
- Improvements in branch prediction and handling
- Performance per watt improvements when compared to the zEC12 system
- Enhanced instruction dispatch and grouping efficiency
- Enhanced branch prediction structure and sequential instruction fetching
- Millicode improvements
- Decimal floating-point (DFP) improvements

The z13 enhanced Instruction Set Architecture (ISA) includes a set of instructions that are added to improve compiled code efficiency. These instructions optimize PUs to meet the demands of a wide variety of business and analytics workload types without compromising the performance characteristics of traditional workloads.

3.4.1 Simultaneous multithreading

z13 servers, aligned with industry directions, can process up to two simultaneous threads in a single core while sharing certain resources of the processor, such as execution units, translation lookaside buffers (TLBs), and caches. When one thread in the core is waiting for other hardware resources, the second thread in the core can use the shared resources rather than remaining idle. This capability is known as SMT.

SMT is supported only by Integrated Facility for Linux (IFL) and IBM z Systems Integrated Information Processor (zIIP) speciality engines on z13 servers, and it requires operating system support. An operating system with SMT support can be configured to dispatch work to a thread on a zIIP (for eligible workloads in z/OS) or an IFL (for z/VM) core in single thread or SMT mode so that HiperDispatch cache optimization can be considered. For more information about operating system support, see Chapter 7, “Software support” on page 231.

To support SMT, z13 servers have a double symmetric instruction pipeline width and full architectural state per thread. Beyond this, the CPU address changes and the 16-bit CPU ID consist of 15-bit core ID and a 1-bit thread ID. For example, the CPU ID 6 (b'0000000000000110') means core 3 thread 0 and the CPU ID 7(b'0000000000000111') means core 3 thread 1. For CPs, only thread 0 is used in each core.

SMT technology allows instructions from more than one thread to run in any pipeline stage at a time. Each thread has its own unique state information, such as Program Status Word - S/360 Architecture (PSW) and registers. The simultaneous threads cannot necessarily run instructions instantly and must at times compete to use certain core resources that are shared between the threads. In some cases, threads can use shared resources that are not experiencing competition.
Figure 3-6 show two threads (A and B) running on the same processor core on different pipeline stages, sharing the core resources.

The use of SMT provides more efficient use of the processors’ resources and helps address memory latency, resulting in overall throughput gains. The active thread shares core resources in space, such as data and instruction caches, TLBs, branch history tables, and, in time, pipeline slots, execution units, and address translators.

Although SMT increases the processing capacity, the performance in some cases might be superior if you use a single thread. Enhanced hardware monitoring supports measurement through CPUMF for thread usage and capacity.

For workloads that need maximum thread speed, the partition’s SMT mode can be turned off. For workloads that need more throughput to decrease the dispatch queue size, the partition’s SMT mode can be turned on.

The SMT exploitation is functionally transparent to middleware and applications, and no changes are required to run them in an SMT-enabled partition.

3.4.2 Single-instruction multiple-data

The z13 superscalar processor has 32 vector registers and an instruction set architecture that includes a subset of 139 new instructions, known as SIMD, added to improve the efficiency of complex mathematical models and vector processing. These new instructions allow a larger number of operands to be processed with a single instruction. The SIMD instructions use the superscalar core to process operands in parallel.

SIMD provides the next phase of enhancements of z Systems analytics capability. The set of SIMD instructions are a type of data parallel computing and vector processing that can decrease the amount of code and accelerate code that handles integer, string, character, and floating point data types. The SIMD instructions improve performance of complex mathematical models and allow integration of business transactions and analytic workloads on z Systems servers.
The 32 new vector registers have 128 bits. The 139 new instructions include string operations, vector integer, and vector floating point operations. Each register contains multiple data elements of a fixed size. The instructions code specifies which data format to use and the size of the elements:

- Byte (sixteen 8-bit operands)
- Halfword (eight 16-bit operands)
- Word (four 32-bit operands)
- Doubleword (two 64-bit operands)
- Quadword (one 128-bit operand)

The collection of elements in a register is called a vector. A single instruction operates on all of the elements in the register. Instructions have a non-destructive operand encoding that allows the addition of the register vector A and register vector B and stores the result in the register vector A (A = A + B).

Figure 3-7 shows a schematic representation of a SIMD instruction with 16-byte size elements in each vector operand.

![Vector Registers](image1)

Figure 3-7 Schematic representation of add SIMD instruction with 16 elements in each vector

The vector register file overlays the floating-point registers (FPRs), as shown in Figure 3-8. The FPRs use the first 64 bits of the first 16 vector registers, which saves hardware area and power, and makes it easier to mix scalar and SIMD codes. Effectively, the core gets 64 FPRs, which can further improve FP code efficiency.

![Vector regfile](image2)

Figure 3-8 Floating point registers overlaid by vector registers
Here are some examples of SIMD instructions:

- Integer byte to quadword add, sub, and compare
- Integer byte to doubleword min, max, and average
- Integer byte to word multiply
- String find 8-bits, 16-bits, and 32-bits
- String range compare
- String find any equal
- String load to block boundaries and load/store with length

For most operations, the condition code is not set. A summary condition code is used only for a few instructions.

3.4.3 Out-of-order execution

Z13 servers have an OOO core, much like the previous systems z196 and zEC12. OOO yields significant performance benefits for compute-intensive applications. It does so by reordering instruction execution, allowing later (younger) instructions to be run ahead of a stalled instruction, and reordering storage accesses and parallel storage accesses. OOO maintains good performance growth for traditional applications. Out-of-order execution can improve performance in the following ways:

- **Reordering instruction execution:** Instructions stall in a pipeline because they are waiting for results from a previous instruction or the execution resource that they require is busy. In an in-order core, this stalled instruction stalls all later instructions in the code stream. In an out-of-order core, later instructions are allowed to run ahead of the stalled instruction.

- **Reordering storage accesses:** Instructions that access storage can stall because they are waiting on results that are needed to compute the storage address. In an in-order core, later instructions are stalled. In an out-of-order core, later storage-accessing instructions that can compute their storage address are allowed to run.

- **Hiding storage access latency:** Many instructions access data from storage. Storage accesses can miss the L1 and require 7 - 50 more clock cycles to retrieve the storage data. In an in-order core, later instructions in the code stream are stalled. In an out-of-order core, later instructions that are not dependent on this storage data are allowed to run.

The z13 processor has pipeline enhancements that benefit OOO execution. The z Systems processor design has advanced micro-architectural innovations that provide these benefits:

- Maximized instruction-level parallelism (ILP) for a better cycles per instruction (CPI) design by reviewing every part of the z196 design.

- Maximized performance per watt. Two cores are added, as compared to the z196 chip, at slightly higher chip power (~300 watts).

- Enhanced instruction dispatch and grouping efficiency.

- Increased OOO resources (Global Completion Table entries, physical GPR entries, and physical FPR entries).

- Improved completion rate.

- Reduced cache/TLB miss penalty.

- Improved execution of D-Cache store and reload and new Fixed-point divide.

- New OSC (load-hit-store conflict) avoidance scheme.

- Enhanced branch prediction structure and sequential instruction fetching.
Program results
The OOO execution does not change any program results. Execution can occur out of (program) order, but all program dependencies are honored, ending up with the same results as in-order (program) execution.

This implementation requires special circuitry to make execution and memory accesses display in order to the software. The logical diagram of a z13 core is shown in Figure 3-9.

Memory address generation and memory accesses can occur out of (program) order. This capability can provide a greater use of the z13 superscalar core, and can improve system performance.
Figure 3-10 shows how OOO core execution can reduce the run time of a program.

The left side of Figure 3-10 shows an in-order core execution. Instruction 2 has a large delay because of an L1 cache miss, and the next instructions wait until instruction 2 finishes. In the usual in-order execution, the next instruction waits until the previous instruction finishes. Using OOO core execution, which is shown on the right, instruction 4 can start its storage access and run while instruction 2 is waiting for data. This situation occurs only if no dependencies exist between the two instructions. When the L1 cache miss is solved, instruction 2 can also start its run while instruction 4 is running. Instruction 5 might need the same storage data that is required by instruction 4. As soon as this data is on L1 cache, instruction 5 runs at the same time. The z13 superscalar PU core can have up to 10 instructions/operations running per cycle. This technology results in a shorter run time.

Branch prediction

If the branch prediction logic of the microprocessor makes the wrong prediction, removing all instructions in the parallel pipelines might be necessary. The wrong branch prediction is expensive in a high-frequency processor design. Therefore, the branch prediction techniques that are used are important to prevent as many wrong branches as possible.

For this reason, various history-based branch prediction mechanisms are used, as shown on the in-order part of the z13 PU core logical diagram in Figure 3-9 on page 99. The branch target buffer (BTB) runs ahead of instruction cache pre-fetches to prevent branch misses in an early stage. Furthermore, a branch history table (BHT) in combination with a pattern history table (PHT) and the use of tagged multi-target prediction technology branch prediction offer a high branch prediction success rate.

The z13 microprocessor improves the branch prediction throughput by using the new branch prediction and instruction fetch front end.
3.4.4 Superscalar processor

A scalar processor is a processor that is based on a single-issue architecture, which means that only a single instruction is run at a time. A superscalar processor allows concurrent (parallel) execution of instructions by adding more resources to the microprocessor in multiple pipelines, each working on its own set of instructions to create parallelism.

A superscalar processor is based on a multi-issue architecture. However, when multiple instructions can be run during each cycle, the level of complexity is increased because an operation in one pipeline stage might depend on data in another pipeline stage. Therefore, a superscalar design demands careful consideration of which instruction sequences can successfully operate in a long pipeline environment.

On z13 servers, up to six instructions can be decoded per cycle and up to 10 instructions or operations can be in execution per cycle. Execution can occur out of (program) order. These improvements also make possible the simultaneous execution of two threads in the same processor.

Many challenges exist in creating an efficient superscalar processor. The superscalar design of the PU has made significant strides in avoiding address generation interlock (AGI) situations. Instructions that require information from memory locations can suffer multi-cycle delays to get the needed memory content. Because high-frequency processors wait “faster” (spend processor cycles more quickly while idle), the cost of getting the information might become prohibitive.

3.4.5 Compression and cryptography accelerators on a chip

This section describes the compression and cryptography features.

Coprocessor units

There is one coprocessor unit for compression and cryptography on each core in the chip. The compression engine uses static dictionary compression and expansion. The compression dictionary uses the L1-cache (instruction cache).

The cryptography engine is used for the CPACF, which offers a set of symmetric cryptographic functions for encrypting and decrypting of clear key operations.

Here are some of the characteristics of the z13 coprocessors:

- Each core has an independent compression and cryptographic engine.
- The coprocessor has been redesigned from scratch to support SMT operation and for throughput increase.
- It is available to any processor type.
- The owning processor is busy when its coprocessor is busy.
Figure 3-11 shows the location of the coprocessor on the chip.

CP Assist for Cryptographic Function

CPACF accelerates the encrypting and decrypting of SSL/TLS transactions, virtual private network (VPN)-encrypted data transfers, and data-storing applications that do not require FIPS 140-2 level 4 security. The assist function uses a special instruction set for symmetrical clear key cryptographic encryption and decryption, and for hash operations. This group of instructions is known as the Message-Security Assist (MSA). For more information about these instructions, see *z/Architecture Principles of Operation*, SA22-7832.

For more information about cryptographic functions on z13 servers, see Chapter 6, “Cryptography” on page 201.

3.4.6 Decimal floating point accelerator

The DFP accelerator function is present on each of the microprocessors (cores) on the 8-core chip. Its implementation meets business application requirements for better performance, precision, and function.

Base 10 arithmetic is used for most business and financial computation. Floating point computation that is used for work that is typically done in decimal arithmetic involves frequent data conversions and approximation to represent decimal numbers. This process has made floating point arithmetic complex and error-prone for programmers who use it for applications in which the data is typically decimal.

Hardware decimal floating point computational instructions provide the following features:

- Data formats of 4 bytes, 8 bytes, and 16 bytes
- An encoded decimal (base 10) representation for data
- Instructions for running decimal floating point computations
- An instruction that runs data conversions to and from the decimal floating point representation
Benefits of the DFP accelerator
The DFP accelerator offers the following benefits:

- Avoids rounding issues, such as those that happen with binary-to-decimal conversions.
- Controls existing binary-coded decimal (BCD) operations better.
- Follows the standardization of the dominant decimal data and decimal operations in commercial computing, supporting the industry standardization (IEEE 745R) of decimal floating point operations. Instructions are added in support of the Draft Standard for Floating-Point Arithmetic - IEEE 754-2008, which is intended to supersede the ANSI/IEEE Standard 754-1985.
- Allows COBOL programs that use zoned-decimal operations to take advantage of the z/Architecture DFP instructions.

z13 servers have two DFP accelerator units per core, which improve the decimal floating point execution bandwidth. The floating point instructions operate on newly designed vector registers (32 new 128-bit registers).

z13 servers have new decimal floating point packed conversion facility support with the following benefits:

- Reduces code path length because extra instructions to format conversion are no longer needed.
- Packed data is operated in memory by all decimal instructions without general-purpose registers, which were required only to prepare for decimal floating point packed conversion instruction.
- Converting from packed can now force the input packed value to positive instead of requiring a separate OI, OILL, or load positive instruction.
- Converting to packed can now force a positive zero result instead of requiring ZAP instruction.

Software support
Decimal floating point is supported in the following programming languages and products:

- Release 4 and later of the High Level Assembler
- C/C++ (requires z/OS 1.10 with program temporary fixes (PTFs) for full support or later)
- Enterprise PL/I Release 3.7 and Debug Tool Release 8.1 or later
- Java Applications using the BigDecimal Class Library
- SQL support as of DB2 Version 9 and later

3.4.7 IEEE floating point
Binary and hexadecimal floating-point instructions are implemented in z13 servers. They incorporate IEEE standards into the system.

The key point is that Java and C/C++ applications tend to use IEEE BFP operations more frequently than earlier applications. Therefore, the better the hardware implementation of this set of instructions, the better the performance of applications.

3.4.8 Processor error detection and recovery
The PU uses a process called transient recovery as an error recovery mechanism. When an error is detected, the instruction unit tries the instruction again and attempts to recover the error. If the second attempt is unsuccessful (that is, a permanent fault exists), a relocation
process is started that restores the full capacity by moving work to another PU. Relocation under hardware control is possible because the R-unit has the full designed state in its buffer. The principle is shown in Figure 3-12.

![PU error detection and recovery](image)

3.4.9 Branch prediction

Because of the ultra-high frequency of the PUs, the penalty for a wrongly predicted branch is high. Therefore, a multi-pronged strategy for branch prediction, based on gathered branch history that is combined with other prediction mechanisms, is implemented on each microprocessor.

The BHT implementation on processors provides a large performance improvement. Originally introduced on the IBM ES/9000 9021 in 1990, the BHT has been continuously improved.

The BHT offers significant branch performance benefits. The BHT allows each PU to take instruction branches based on a stored BHT, which improves processing times for calculation routines. In addition to the BHT, z13 servers use various techniques to improve the prediction of the correct branch to be run. The following techniques are used:

- Branch history table (BHT)
- Branch target buffer (BTB)
- Pattern history table (PHT)
- BTB data compression

The success rate of branch prediction contributes significantly to the superscalar aspects of z13 servers. This is because the architecture rules prescribe that, for successful parallel execution of an instruction stream, the correctly predicted result of the branch is essential.

3.4.10 Wild branch

When a bad pointer is used or when code overlays a data area that contains a pointer to code, a random branch is the result. This process causes a 0C1 or 0C4 abend. Random branches are hard to diagnose because clues about how the system got there are not evident.

With the wild branch hardware facility, the last address from which a successful branch instruction was run is kept. z/OS uses this information with debugging aids, such as the SLIP command, to determine where a wild branch came from. It can also collect data from that storage location. This approach decreases the number of debugging steps that are necessary when you want to know from where the branch came from.
3.4.11 Translation lookaside buffer

The TLB in the instruction and data L1 caches use a secondary TLB to enhance performance. In addition, a translator unit is added to translate misses in the secondary TLB.

The size of the TLB is kept as small as possible because of its short access time requirements and hardware space limitations. Because memory sizes have recently increased significantly as a result of the introduction of 64-bit addressing, a smaller working set is represented by the TLB. To increase the working set representation in the TLB without enlarging the TLB, large (1 MB) page and giant page (2 GB) support is available and can be used when appropriate. For more information, see “Large page support” on page 120.

With the enhanced DAT-2 (EDAT-2) improvements, the z Systems servers introduce architecture enhancements to allow support for 2 GB page frames.

3.4.12 Instruction fetching, decoding, and grouping

The superscalar design of the microprocessor allows for the decoding of up to six instructions per cycle and the execution of up to 10 instructions per cycle. Both execution and storage accesses for instruction and operand fetching can occur out of sequence.

Instruction fetching
Instruction fetching normally tries to get as far ahead of instruction decoding and execution as possible because of the relatively large instruction buffers available. In the microprocessor, smaller instruction buffers are used. The operation code is fetched from the I-cache and put in instruction buffers that hold prefetched data that is awaiting decoding.

Instruction decoding
The processor can decode up to six instructions per cycle. The result of the decoding process is queued and later used to form a group.

Instruction grouping
From the instruction queue, up to 10 instructions can be completed on every cycle. A complete description of the rules is beyond the scope of this book.

The compilers and JVMs are responsible for selecting instructions that best fit with the superscalar microprocessor. They abide by the rules to create code that best uses the superscalar implementation. All the z Systems compilers and the JVMs are constantly updated to benefit from new instructions and advances in microprocessor designs.

3.4.13 Extended Translation Facility

Instructions have been added to the z/Architecture instruction set in support of the Extended Translation Facility. They are used in data conversion operations for Unicode data, causing applications that are enabled for Unicode or globalization to be more efficient. These data-encoding formats are used in web services, grid, and on-demand environments where XML and SOAP technologies are used. The High Level Assembler supports the Extended Translation Facility instructions.
3.4.14 Instruction set extensions

The processor supports many instructions to support functions:

- Hexadecimal floating point instructions for various unnormalized multiply and multiply-add instructions.
- Immediate instructions, including various add, compare, OR, exclusive-OR, subtract, load, and insert formats. Use of these instructions improves performance.
- Load instructions for handling unsigned halfwords, such as those used for Unicode.
- Cryptographic instructions, which are known as the MSA, offer the full complement of the AES, SHA-1, SHA-2, and DES algorithms. They also include functions for random number generation.
- Extended Translate Facility-3 instructions, enhanced to conform with the current Unicode 4.0 standard.
- Assist instructions that help eliminate hypervisor processor usage.
- SIMD instructions, which allow the parallel processing of multiple elements in a single instruction.

3.4.15 Transactional Execution

The Transactional Execution (TX) capability, which is known in the industry as hardware transactional memory, runs a group of instructions atomically, that is, either all their results are committed or no result is committed. The execution is optimistic. The instructions are run, but previous state values are saved in a “transactional memory”. If the transaction succeeds, the saved values are discarded. Otherwise, they are used to restore the original values.

The Transaction Execution Facility provides instructions, including declaring the beginning and end of a transaction, and canceling the transaction. TX is expected to provide significant performance benefits and scalability by avoiding most locks. This benefit is especially important for heavily threaded applications, such as Java.

3.4.16 Runtime Instrumentation

Runtime Instrumentation (RI) is a hardware facility for managed run times, such as the Java Runtime Environment (JRE). RI allows dynamic optimization of code generation as it is being run. It requires fewer system resources than the current software-only profiling, and provides information about hardware and program characteristics. It enhances JRE in making the correct decision by providing real-time feedback.

3.5 Processor unit functions

This section describes the PU functions.

3.5.1 Overview

All PUs on a z13 server are physically identical. When the system is initialized, one integrated firmware processor (IFP) is allocated from the pool of PUs that is available for the whole system. The other PUs can be characterized to specific functions (CP, IFL, ICF, zIIPor SAP).
The function that is assigned to a PU is set by the Licensed Internal Code (LIC). The LIC is loaded when the system is initialized (at power-on reset (POR)) and the PUs are characterized.

Only characterized PUs have a designated function. Non-characterized PUs are considered spares. Order at least one CP, IFL, or ICF on a z13 server.

This design brings outstanding flexibility to z13 servers because any PU can assume any available characterization. The design also plays an essential role in system availability because PU characterization can be done dynamically, with no system outage.

For more information about software level support of functions and features, see Chapter 7, “Software support” on page 231.

Concurrent upgrades

Except on a fully configured model, concurrent upgrades can be done by the LIC, which assigns a PU function to a previously non-characterized PU. Within the CPC drawer boundary or boundary of multiple CPC drawer, no hardware changes are required. The upgrade can be done concurrently through the following facilities:

- Customer Initiated Upgrade (CIU) for permanent upgrades
- On/Off Capacity on Demand (On/Off CoD) for temporary upgrades
- Capacity BackUp (CBU) for temporary upgrades
- Capacity for Planned Event (CPE) for temporary upgrades

If the PU chips in the installed CPC drawers have no available remaining PUs, an upgrade results in a model upgrade and the installation of an extra CPC drawer. However, there is a limit of four CPC drawers. CPC drawer installation is nondisruptive, but takes more time than a simple LIC upgrade.

For more information about Capacity on Demand, see Chapter 8, “System upgrades” on page 313.

PU sparing

In the rare event of a PU failure, the failed PU’s characterization is dynamically and transparently reassigned to a spare PU. z13 servers have two spare PUs. PUs that are not characterized on a CPC configuration can also be used as extra spare PUs. For more information about PU sparing, see 3.5.10, “Sparing rules” on page 117.

PU pools

PUs that are defined as CPs, IFLs, ICFs, and zIIPs are grouped in their own pools, from where they can be managed separately. This configuration significantly simplifies capacity planning and management for LPARs. The separation also affects weight management because CP and zIIP weights can be managed separately. For more information, see “PU weighting” on page 108.

All assigned PUs are grouped in the PU pool. These PUs are dispatched to online logical PUs. As an example, consider a z13 server with 10 CPs, two IFLs, five zIIPs, and one ICF. This system has a PU pool of 18 PUs, called the pool width. Subdivision defines these pools:

- A CP pool of 10 CPs
- An ICF pool of one ICF
- An IFL pool of two IFLs
- A zIIP pool of five zIIPs
PUs are placed in the pools in the following circumstances:

- When the system is PORed
- At the time of a concurrent upgrade
- As a result of the addition of PUs during a CBU
- Following a capacity on-demand upgrade through On/Off CoD or CIU

PUs are removed from their pools when a concurrent downgrade takes place as the result of the removal of a CBU. They are also removed through the On/Off CoD process and the conversion of a PU. When a dedicated LPAR is activated, its PUs are taken from the correct pool. This is also the case when an LPAR logically configures a PU on, if the width of the pool allows for it.

For an LPAR, logical PUs are dispatched from the supporting pool only. The logical CPs are dispatched from the CP pool, logical zIIPs from the zIIP pool, logical IFLs from the IFL pool, and the logical ICFs from the ICF pool.

PU weighting

Because CPs, zIIPs, IFLs, and ICFs have their own pools from where they are dispatched, they can be given their own weights. For more information about PU pools and processing weights, see the *z Systems Processor Resource/Systems Manager Planning Guide*, SB10-7162.

3.5.2 Central processors

A central processor (CP) is a PU that uses the full z/Architecture instruction set. It can run z/Architecture-based operating systems (z/OS, z/VM, TPF, z/TPF, z/VSE, and Linux), the Coupling Facility Control Code (CFCC), and IBM zAware. Up to 141 PUs can be characterized as CPs, depending on the configuration.

The z13 server can be initialized either in LPAR mode or in elastic PR/SM mode. For more information, see Appendix E, “IBM Dynamic Partition Manager” on page 527. CPs are defined as either dedicated or shared. Reserved CPs can be defined to an LPAR to allow for nondisruptive image upgrades. If the operating system in the LPAR supports the logical processor add function, reserved processors are no longer needed. Regardless of the installed model, an LPAR can have up to 141 logical CPs that are defined (the sum of active and reserved logical CPs). In practice, define no more CPs than the operating system supports. For example, the z/OS V1R13 LPAR supports a maximum of 100 logical CPs and z/OS V2R1 LPAR supports a maximum of 141 logical CPs.

All PUs that are characterized as CPs within a configuration are grouped into the CP pool. The CP pool can be seen on the HMC workplace. Any z/Architecture operating systems, CFCCs, and IBM zAware can run on CPs that are assigned from the CP pool.

The z13 server recognizes four distinct capacity settings for CPs. Full-capacity CPs are identified as CP7. In addition to full-capacity CPs, three subcapacity settings (CP6, CP5, and CP4), each for up to 30 CPs, are offered.

These capacity settings appear in hardware descriptions:

- CP7 Feature Code 1918
- CP6 Feature Code 1917
- CP5 Feature Code 1916
- CP4 Feature Code 1915
Granular capacity adds 90 subcapacity settings to the 141 capacity settings that are available with full capacity CPs (CP7). Each of the 90 subcapacity settings applies only to up to 30 CPs, independently of the model installed.

Information about CPs in the remainder of this chapter applies to all CP capacity settings, unless indicated otherwise. For more information about granular capacity, see 2.7, “Model configurations” on page 70.

3.5.3 Integrated Facility for Linux

An IFL is a PU that can be used to run Linux, Linux guests on z/VM operating systems, and IBM zAware. Up to 141 PUs can be characterized as IFLs, depending on the configuration. IFLs can be dedicated to a Linux, a z/VM, or an IBM zAware LPAR, or can be shared by multiple Linux guests, z/VM LPARs, or IBM zAware running on the same z13 server. Only z/VM, Linux on z Systems operating systems, IBM zAware, and designated software products can run on IFLs. IFLs are orderable by using FC 1919.

IFL pool

All PUs that are characterized as IFLs within a configuration are grouped into the IFL pool. The IFL pool can be seen on the Hardware Management Console (HMC) workplace.

IFLs do not change the model capacity identifier of the z13 server. Software product license charges that are based on the model capacity identifier are not affected by the addition of IFLs.

Unassigned IFLs

An IFL that is purchased but not activated is registered as an unassigned IFL (FC 1923). When the system is later upgraded with an additional IFL, the system recognizes that an IFL already was purchased and is present.

3.5.4 Internal Coupling Facility

An Internal Coupling Facility (ICF) is a PU that is used to run the CFCC for Parallel Sysplex environments. Within the sum of all unassigned PUs in up to four CPC drawers, up to 141 ICFs can be characterized, depending on the model. However, the maximum number of ICFs that can be defined on a coupling facility LPAR is limited to 16. ICFs are orderable by using FC 1920.

ICFs exclusively run CFCC. ICFs do not change the model capacity identifier of the z13 server. Software product license charges that are based on the model capacity identifier are not affected by the addition of ICFs.

All ICFs within a configuration are grouped into the ICF pool. The ICF pool can be seen on the HMC workplace.

The ICFs can only be used by coupling facility LPARs. ICFs are either dedicated or shared. ICFs can be dedicated to a CF LPAR, or shared by multiple CF LPARs that run on the same system. However, having an LPAR with dedicated and shared ICFs at the same time is not possible.
Coupling Thin Interrupts
With the introduction of Driver 15F (zEC12 and IBM zEnterprise BC12 (zBC12)), the z Systems architecture provides a new thin interrupt class called **Coupling Thin Interrupts**. The capabilities that are provided by hardware, firmware, and software support the generation of coupling-related “thin interrupts” when the following situations occur:

- On the coupling facility (CF) side:
 - A CF command or a CF signal (arrival of a CF-to-CF duplexing signal) is received by a shared-engine CF image
 - The completion of a CF signal that was previously sent by the CF occurs (completion of a CF-to-CF duplexing signal)

- On the z/OS side:
 - CF signal is received by a shared-engine z/OS image (arrival of a List Notification signal)
 - An asynchronous CF operation completes

The interrupt causes the receiving partition to be dispatched by an LPAR, if it is not already dispatched. This process allows the request, signal, or request completion to be recognized and processed in a more timely manner.

After the image is dispatched, existing “poll for work” logic in both CFCC and z/OS can be used largely as is to locate and process the work. The new interrupt simply expedites the redispatching of the partition.

LPAR presents these Coupling Thin Interrupts to the guest partition, so CFCC and z/OS both require interrupt handler support that can deal with them. CFCC also changes to give up control of the processor as soon as all available pending work is exhausted, or when the LPAR undispatches it off the shared processor, whichever comes first.

Coupling facility combinations
A coupling facility image can have one of the following combinations that are defined in the image profile:

- Dedicated ICFs
- Shared ICFs
- Dedicated CPs
- Shared CPs

Shared ICFs add flexibility. However, running only with shared coupling facility PUs (either ICFs or CPs) is not a preferable production configuration. It is preferable for a production CF to operate by using dedicated ICFs. With CFCC Level 19 (and later; z13 servers run CFCC level 20), Coupling Thin Interrupts are available, and dedicated engines continue to be recommended to obtain the best coupling facility performance.
In Figure 3-13, the CPC on the left has two environments that are defined (production and test), and each has one z/OS and one coupling facility image. The coupling facility images share an ICF.

The LPAR processing weights are used to define how much processor capacity each coupling facility image can have. The capped option can also be set for a test coupling facility image to protect the production environment.

Connections between these z/OS and coupling facility images can use internal coupling links to avoid the use of real (external) coupling links, and get the best link bandwidth available.

Dynamic coupling facility dispatching

The dynamic coupling facility dispatching function has a dispatching algorithm that you can use to define a backup coupling facility in an LPAR on the system. When this LPAR is in backup mode, it uses few processor resources. When the backup CF becomes active, only the resources that are necessary to provide coupling are allocated.

CFCC Level 19 introduced Coupling Thin Interrupts and the new DYNDISP specification. It allows more environments with multiple CF images to coexist in a server, and to share CF engines with reasonable performance. For more information, see 3.9.3, “Dynamic CF dispatching” on page 139.

3.5.5 IBM z Systems Integrated Information Processor

A zIIP\(^3\) reduces the standard processor (CP) capacity requirements for z/OS Java, XML system services applications, and a portion of work of z/OS Communications Server and DB2 UDB for z/OS Version 8 or later, freeing up capacity for other workload requirements.

A zIIP enables eligible z/OS workloads to have a portion of them directed to zIIP. The zIIPs do not increase the MSU value of the processor, and so do not affect the IBM software license changes.

\(^3\) z Systems Application Assist Processors (zAAPs) are not available on z13 servers. A zAAP workload is dispatched to available zIIPs (zAAP on zIIP capability).
z13 is the first z Systems processor to support SMT. z13 servers support two threads per core on IFLs and zIIPs only. SMT must be enabled at the LPAR level and supported by the z/OS operating system. SMT enables continued scaling of per-processor capacity.

How zIIPs work
zIIPs are designed for supporting designated z/OS workloads. One of the workloads is Java code execution. When Java code must be run (for example, under control of IBM WebSphere), the z/OS JVM calls the function of the zIIP. The z/OS dispatcher then suspends the JVM task on the CP that it is running on and dispatches it on an available zIIP. After the Java application code execution is finished, z/OS rediscapes the JVM task on an available CP. After this process occurs, normal processing is resumed.

This process reduces the CP time that is needed to run Java WebSphere applications, freeing that capacity for other workloads.

Figure 3-14 shows the logical flow of Java code running on a z13 server that has a zIIP available. When JVM starts the execution of a Java program, it passes control to the z/OS dispatcher that verifies the availability of a zIIP.

The availability is treated in the following manner:

- If a zIIP is available (not busy), the dispatcher suspends the JVM task on the CP and assigns the Java task to the zIIP. When the task returns control to the JVM, it passes control back to the dispatcher. The dispatcher then reassigns the JVM code execution to a CP.

- If no zIIP is available (all busy), the z/OS dispatcher allows the Java task to run on a standard CP. This process depends on the option that is used in the OPT statement in the IEAOPTxx member of SYS1.PARMLIB.
A zIIP runs only IBM authorized code. This IBM authorized code includes the z/OS JVM in association with parts of system code, such as the z/OS dispatcher and supervisor services. A zIIP cannot process I/O or clock comparator interruptions, and it does not support operator controls, such as IPL.

Java application code can either run on a CP or a zIIP. The installation can manage the use of CPs so that Java application code runs only on CPs, only on zIIPs, or on both.

Two execution options for zIIP-eligible code execution are available. These options are user-specified in IEAOPTxx, and can be dynamically altered by the SET OPT command. The following options are currently supported for z/OS V1R10 and later releases:

- Option 1: Java dispatching by priority (IIPHONORPRIORITY=YES): This is the default option, and specifies that CPs must not automatically consider zIIP-eligible work for dispatching on them. The zIIP-eligible work is dispatched on the zIIP engines until Workload Manager (WLM) determines that the zIIPs are overcommitted. WLM then requests help from the CPs. When help is requested, the CPs consider dispatching zIIP-eligible work on the CPs themselves based on the dispatching priority relative to other workloads. When the zIIP engines are no longer overcommitted, the CPs stop considering zIIP-eligible work for dispatch.

 This option runs as much zIIP-eligible work on zIIPs as possible, and allows it to spill over onto the CPs only when the zIIPs are overcommitted.

- Option 2: Java dispatching by priority (IIPHONORPRIORITY=NO): zIIP-eligible work runs on zIIPs only while at least one zIIP engine is online. zIIP-eligible work is not normally dispatched on a CP, even if the zIIPs are overcommitted and CPs are unused. The exception is that zIIP-eligible work can sometimes run on a CP to resolve resource conflicts.

 Therefore, zIIP-eligible work does not affect the CP utilization that is used for reporting through the subcapacity reporting tool (SCRT), no matter how busy the zIIPs are.

If zIIPs are defined to the LPAR but are not online, the zIIP-eligible work units are processed by CPs in order of priority. The system ignores the IIPHONORPRIORITY parameter in this case and handles the work as though it had no eligibility to zIIPs.

zIIPs provide the following benefits:

- Potential cost savings.
- Simplification of infrastructure as a result of the collocation and integration of new applications with their associated database systems and transaction middleware, such as DB2, IMS, or CICS. Simplification can happen, for example, by introducing a uniform security environment, and by reducing the number of TCP/IP programming stacks and system interconnect links.
- Prevention of processing latencies that occur if Java application servers and their database servers are deployed on separate server platforms.

The following DB2 UDB for z/OS V8 or later workloads are eligible to run in Service Request Block (SRB) mode:

- Query processing of network-connected applications that access the DB2 database over a TCP/IP connection by using IBM Distributed Relational Database Architecture (DRDA). DRDA enables relational data to be distributed among multiple systems. It is native to DB2 for z/OS, which reduces the need for more gateway products that can affect performance and availability. The application uses the DRDA requester or server to access a remote database. IBM DB2 Connect™ is an example of a DRDA application requester.
Star schema query processing, mostly used in business intelligence (BI) work. A *star schema* is a relational database schema for representing multidimensional data. It stores data in a central fact table and is surrounded by more dimension tables that hold information about each perspective of the data. A star schema query, for example, joins various dimensions of a star schema data set.

- DB2 utilities that are used for index maintenance, such as LOAD, REORG, and REBUILD. Indexes allow quick access to table rows, but over time, as data in large databases is manipulated, the databases become less efficient and must be maintained.

The zIIP runs portions of eligible database workloads, and so helps to free computer capacity and lower software costs. Not all DB2 workloads are eligible for zIIP processing. DB2 UDB for z/OS V8 and later gives z/OS the information to direct portions of the work to the zIIP. The result is that in every user situation, different variables determine how much work is redirected to the zIIP.

On a z13 server, the following workloads can also benefit from zIIPs:

- **z/OS Communications Server** uses the zIIP for eligible Internet Protocol Security (IPSec) network encryption workloads. This configuration requires z/OS V1R10 or later. Portions of IPSec processing take advantage of the zIIPs, specifically end-to-end encryption with IPSec. The IPSec function moves a portion of the processing from the general-purpose processors to the zIIPs. In addition, to run the encryption processing, the zIIP also handles the cryptographic validation of message integrity and IPSec header processing.

- **z/OS Global Mirror**, formerly known as Extended Remote Copy (XRC), uses the zIIP as well. Most z/OS Data Facility Storage Management Subsystem (DFSMS) system data mover (SDM) processing that is associated with z/OS Global Mirror can run on the zIIP. This configuration requires z/OS V1R10 or later releases.

- The first IBM user of z/OS XML system services is DB2 V9. For DB2 V9 before the z/OS XML System Services enhancement, z/OS XML System Services non-validating parsing was partially directed to zIIPs when used as part of a distributed DB2 request through DRDA. This enhancement benefits DB2 V9 by making all z/OS XML System Services non-validating parsing eligible to zIIPs. This configuration is possible when processing is used as part of any workload that is running in enclave SRB mode.

- **z/OS Communications Server** also allows the HiperSockets Multiple Write operation for outbound large messages (originating from z/OS) to be run by a zIIP. Application workloads that are based on XML, HTTP, SOAP, and Java, and traditional file transfer can benefit.

- For business intelligence, IBM Scalable Architecture for Financial Reporting provides a high-volume, high performance reporting solution by running many diverse queries in z/OS batch. It can also be eligible for zIIP.

For more information about zIIP and eligible workloads, see the IBM zIIP website:

zIIP installation information

One CP must be installed with or before any zIIP is installed. In zNext, the zIIP to CP ratio is 2:1, which means that up to 94 zIIPs on a model NE1 can be characterized. Table 3-1 shows the allowed number of zIIPs for each model.

Table 3-1 Number of zIIPs per model

<table>
<thead>
<tr>
<th>Model</th>
<th>N30</th>
<th>N63</th>
<th>N96</th>
<th>NC9</th>
<th>NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum zIIPs</td>
<td>0 - 20</td>
<td>0 - 42</td>
<td>0 - 64</td>
<td>0 - 86</td>
<td>0 - 94</td>
</tr>
</tbody>
</table>
zIIPs are orderable by using FC 1922. Up to two zIIPs can be ordered for each CP or marked CP configured in the system. If the installed CPC drawer has no remaining unassigned PUs, the assignment of the next zIIP might require the installation of an additional CPC drawer.

PUs characterized as zIIPs within a configuration are grouped into the zIIP pool. This configuration allows zIIPs to have their own processing weights, independent of the weight of parent CPs. The zIIP pool can be seen on the hardware console.

The number of permanent zIIPs plus temporary zIIPs cannot exceed twice the number of purchased CPs plus temporary CPs. Also, the number of temporary zIIPs cannot exceed the number of permanent zIIPs.

zIIPs and logical partition definitions

zIIPs are either dedicated or shared depending on whether they are part of an LPAR with dedicated or shared CPs. In an LPAR, at least one CP must be defined before zIIPs for that partition can be defined. The number of zIIPs that are available in the system is the number of zIIPs that can be defined to an LPAR.

> **Logical partition:** In a logical partition, as many zIIPs as are available can be defined together with at least one CP.

3.5.6 System assist processors

A system assist processor (SAP) is a PU that runs the channel subsystem LIC to control I/O operations. All SAPs run I/O operations for all LPARs. All models have standard SAPs configured. The number of standard SAPs depends on the z13 model, as shown in Table 3-2.

<table>
<thead>
<tr>
<th>Model</th>
<th>N30</th>
<th>N63</th>
<th>N96</th>
<th>NC9</th>
<th>NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SAPs</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

SAP configuration

A standard SAP configuration provides a well-balanced system for most environments. However, some application environments have high I/O rates, typically Transaction Processing Facility (TPF) environments. In this case, more SAPs can be ordered. Assignment of more SAPs can increase the capability of the channel subsystem to run I/O operations. In z13 systems, the number of SAPs can be greater than the number of CPs. However, additional SAPs plus standard SAPs cannot exceed 32.

Optional additional orderable SAPs

The option to order more SAPs is available on all models (FC 1921). These additional SAPs increase the capacity of the channel subsystem to run I/O operation, which is suggested for TPF environments. The maximum number of optional additional orderable SAPs depends on the configuration and the number of available uncharacterized PUs. The number of SAPs is listed in Table 3-3.

<table>
<thead>
<tr>
<th>Model</th>
<th>N30</th>
<th>N63</th>
<th>N96</th>
<th>NC9</th>
<th>NE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional SAPs</td>
<td>0 - 4</td>
<td>0 - 8</td>
<td>0 - 12</td>
<td>0 - 16</td>
<td>0 - 16</td>
</tr>
</tbody>
</table>
3.5.7 Reserved processors

Reserved processors are defined by the PR/SM to allow for a nondisruptive capacity upgrade. Reserved processors are like spare logical processors, and can be shared or dedicated. Reserved CPs can be defined to an LPAR dynamically to allow for nondisruptive image upgrades.

Reserved processors can be dynamically configured online by an operating system that supports this function, if enough unassigned PUs are available to satisfy the request. The PR/SM rules that govern logical processor activation remain unchanged.

By using reserved processors, you can define more logical processors than the number of available CPs, IFLs, ICFs, and zIIPs in the configuration to an LPAR. This process makes it possible to configure online, nondisruptively, more logical processors after additional CPs, IFLs, ICFs, and zIIPs are made available concurrently. They can be made available with one of the Capacity on Demand options.

The maximum number of reserved processors that can be defined to an LPAR depends on the number of logical processors that already are defined. The maximum number of logical processors plus reserved processors is 141. If the operating system in the LPAR supports the logical processor add function, reserved processors are no longer needed.

Do not define more active and reserved processors than the operating system for the LPAR can support. For more information about logical processors and reserved processors and their definitions, see 3.7, “Logical partitioning” on page 122.

3.5.8 Integrated firmware processor

An IFP is allocated from the pool of PUs and is available for the whole system. Unlike other characterized PUs, the IFP is standard and not defined by the client. It is a single PU dedicated solely to supporting the native Peripheral Component Interconnect Express (PCIe) features (10GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express and zEnterprise Data Compression (zEDC) Express) and is initialized at POR. The IFP supports Resource Group (RG) LIC to provide native PCIe I/O feature management and virtualization functions. For more information, see Appendix G, “Native Peripheral Component Interconnect Express (PCIe)” on page 547.

3.5.9 Processor unit assignment

The processor unit assignment of characterized PUs is done at POR time, when the system is initialized. The initial assignment rules keep PUs of the same characterization type grouped as much as possible in relation to PU chips and CPC drawer boundaries to optimize shared cache usage.

The PU assignment is based on CPC drawer plug ordering. The CPC drawers are populated from the bottom upward. This process defines the low-order and the high-order CPC drawers:

- CPC drawer 1: Plug order 1 (low-order CPC drawer)
- CPC drawer 2: Plug order 2
- CPC drawer 3: Plug order 3
- CPC drawer 4: Plug order 4 (high-order CPC drawer)
The assignment rules follow this order:

- **Spare**: CPC drawers 1 and 2 are assigned one spare each on the high PU chip. In the model N30, the two spares are assigned to CPC drawer 1.
- **IFP**: One IFP is assigned to CPC drawer 1.
- **SAPs**: Spread across CPC drawers and high PU chips. Each CPC drawer has six standard SAPs. Start with the highest PU chip high core, then the next highest PU chip high core. This process prevents all the SAPs from being assigned on one PU chip.
- **IFLs and ICFs**: Assign IFLs and ICFs to cores on chips in higher CPC drawers working downward.
- **CPs and zIIPs**: Assign CPs and zIIPs to cores on chips in lower CPC drawers working upward.

These rules are intended to isolate, as much as possible, on different CPC drawers and even on different PU chips, processors that are used by different operating systems. This configuration ensures that different operating systems do not use the same shared caches. For example, CPs and zIIPs are all used by z/OS, and can benefit by using the same shared caches. However, IFLs are used by z/VM and Linux, and ICFs are used by CFCC. Therefore, for performance reasons, the assignment rules prevent them from sharing L3 and L4 caches with z/OS processors.

This initial PU assignment, which is done at POR, can be dynamically rearranged by an LPAR by swapping an active core to a core in a different PU chip in a different CPC drawer or node to improve system performance. For more information, see “LPAR dynamic PU reassignment” on page 128.

When an additional CPC drawer is added concurrently after POR and new LPARs are activated, or processor capacity for active partitions is dynamically expanded, the additional PU capacity can be assigned from the new CPC drawer. The processor unit assignment rules consider the newly installed CPC drawer only after the next POR.

3.5.10 Sparing rules

On a z13 system, two PUs are reserved as spares. The reserved spares are available to replace any two characterized PUs, whether they are CP, IFL, ICF, zIIP, SAP, or IFP.

Systems with a failed PU for which no spare is available will **call home** for a replacement. A system with a failed PU that is spared and requires an SCM to be replaced (referred to as a **pending repair**) can still be upgraded when sufficient PUs are available.

Transparent CP, IFL, ICF, zIIP, SAP, and IFP sparing

Depending on the model, sparing of CP, IFL, ICF, zIIP, SAP, and IFP is transparent and does not require operating system or operator intervention.

With **transparent sparing**, the status of the application that was running on the failed processor is preserved. The application continues processing on a newly assigned CP, IFL, ICF, zIIP, SAP, or IFP (allocated to one of the spare PUs) without client intervention.

Application preservation

If no spare PU is available, **application preservation** (z/OS only) is started. The state of the failing processor is passed to another active processor that is used by the operating system. Through operating system recovery services, the task is resumed successfully (in most cases, without client intervention).
Dynamic SAP and IFP sparing and reassignment

Dynamic recovery is provided if there is a failure of the SAP or IFP. If the SAP or IFP fails, and if a spare PU is available, the spare PU is dynamically assigned as a new SAP or IFP. If no spare PU is available, and more than one CP is characterized, a characterized CP is reassigned as an SAP or IFP. In either case, client intervention is not required. This capability eliminates an unplanned outage and allows a service action to be deferred to a more convenient time.

3.5.11 Increased flexibility with z/VM mode partitions

z13 servers provide a capability for the definition of a z/VM mode LPAR that contains a mix of processor types that includes CPs and specialty processors, such as IFLs, zIIPs, and ICFs.

z/VM V5R4 and later support this capability, which increases flexibility and simplifies systems management. In a single LPAR, z/VM can perform these tasks:

- Manage guests that use Linux on z Systems on IFLs, and those that use z/VSE, or z/OS on CPs
- Run designated z/OS workloads, such as Java and XML execution and parts of DB2 DRDA processing, on zIIPs

If the only operating system to run under z/VM is Linux, define a Linux only LPAR.

3.6 Memory design

This section describes various considerations of the z13 memory design.

3.6.1 Overview

The z13 memory design also provides flexibility, high availability, and upgrades:

- Concurrent memory upgrades (if the physically installed capacity is not yet reached): z13 servers can have more physically installed memory than the initial available capacity. Memory upgrades within the physically installed capacity can be done concurrently by LIC, and no hardware changes are required. However, memory upgrades cannot be done through CBU or On/Off CoD.

- Concurrent memory upgrades (if the physically installed capacity is reached): Physical memory upgrades require a processor cage to be removed and reinstalled after replacing the memory cards in the processor cage. Except for a model N30, the combination of enhanced drawer availability and the flexible memory option allows you to concurrently add memory to the system. For more information, see 2.4.5, “Drawer replacement and memory” on page 62 and 2.4.6, “Flexible Memory Option” on page 62.

When the total capacity that is installed has more usable memory than required for a configuration, the LIC Configuration Control (LICCC) determines how much memory is used from each processor drawer. The sum of the LICCC provided memory from each CPC drawer is the amount that is available for use in the system.

Memory allocation

When system is activated by using a POR, PR/SM determines the total installed memory and the customer enabled memory. Later in the process, during LPAR activation, PR/SM assigns and allocates each partition memory according to their image profile.
PR/SM has control over all physical memory, and can so make physical memory available to the configuration when a CPC drawer is added.

In prior z Systems processors, memory allocation was striped across the available CPC drawers because there was relatively fast connectivity between the drawers, and splitting the work between all of the memory controllers allowed a smooth performance variability.

With the z13 and z13s memory design, the memory allocation algorithm has changed. PR/SM tries to allocate memory into a single CPC drawer, striped between the two nodes. Basically, the PR/SM memory and logical processor resources allocation goal is to place all partition resources on a single CPC drawer, if possible. The resources, like memory and logical processors, are assigned to the logical partitions at the time of their activation. Later on, when all partitions are activated, PR/SM can move memory between CPC drawers to benefit the performance of each LPAR, without OS knowledge. This process was done on the previous families of z Systems servers only for PUs that use PR/SM dynamic PU reallocation.

With z13 and z13s servers, this process happens each time the configuration changes, such as in these circumstances:

- Activating an LPAR
- Deactivating an LPAR
- Changing the LPARs processing weights
- Upgrade the system through a temporary or permanent record
- Downgrade the system through a temporary record

PR/SM schedules a global reoptimization of the resources in use. It does so by looking at all the partitions that are active and prioritizing them based on their processing entitlement and weights, creating a high and low priority rank. Then the resources, such as logical processors and memory, can be moved from one CPC drawer to another to address the priority ranks that were just created.

When partitions are activated, PR/SM tries to find a home assignment CPC drawer, home assignment node, and home assignment chip for the logical processors that are defined to them. The PR/SM goal is to allocate all the partition logical processors and memory to a single CPC drawer (the home drawer for that partition). If all logical processors can be assigned to a home drawer and the partition defined memory is greater than what is available in that drawer, the exceeding memory amount is allocated on another CPC drawer. If all the logical processors cannot fit in one CPC drawer, the remaining logical processors spill to another CPC drawer. When that overlap happens, PR/SM stripes the memory, if possible, across the CPC drawers where the logical processors are assigned.

The process of reallocating memory is based on the memory copy/reassign function, which was used to allow enhanced book availability (EBA) and concurrent book replacement (CBR) in previous z Systems families. However, this process has been enhanced to provide more efficiency and speed to the process without affecting system performance. PR/SM controls the reallocation of the content of a specific physical memory array in one CPC drawer to a physical memory array in another CPC drawer. To do that, PR/SM uses all the available physical memory in the system. This memory includes the memory not in use by the system, that is available but not purchased by the client, and the planned memory options, if installed.

Because of the memory allocation algorithm, systems that undergo a number of miscellaneous equipment specification (MES) upgrades for memory can have different memory mixes and quantities in all processor drawers of the system. If the memory fails, it is technically feasible to run a POR of the system with the remaining working memory resources. After the POR completes, the memory distribution across the processor drawers will be different, as will be the total amount of available memory.
Large page support
By default, page frames are allocated with a 4 KB size. z13 servers also support large page sizes of 1 MB or 2 GB. The first z/OS release that supports 1 MB pages is z/OS V1R9. Linux on z Systems support for 1 MB pages is available in SUSE Linux Enterprise Server (SLES) 10 SP2 and Red Hat Enterprise Linux (RHEL) 5.2.

The TLB exists to reduce the amount of time that is required to translate a virtual address to a real address. This translation is done by dynamic address translation (DAT) when it must find the correct page for the correct address space. Each TLB entry represents one page. Like other buffers or caches, lines are discarded from the TLB on a least recently used (LRU) basis. The worst-case translation time occurs when a TLB miss occurs and both the segment table (which is needed to find the page table) and the page table (which is needed to find the entry for the particular page in question) are not in cache. This case involves two complete real memory access delays plus the address translation delay. The duration of a processor cycle is much shorter than the duration of a memory cycle, so a TLB miss is relatively costly.

It is preferable to have addresses in the TLB. With 4 K pages, holding all the addresses for 1 MB of storage takes 256 TLB lines. When you are using 1 MB pages, it takes only one TLB line. Therefore, large page size users have a much smaller TLB footprint.

Large pages allow the TLB to better represent a large working set and suffer fewer TLB misses by allowing a single TLB entry to cover more address translations.

Users of large pages are better represented in the TLB and are expected to see performance improvements in both elapsed time and processor usage. These improvements are because DAT and memory operations are part of processor busy time even though the processor waits for memory operations to complete without processing anything else in the meantime.

To overcome the processor usage that is associated with creating a 1 MB page, a process must run for some time. It must maintain frequent memory access to keep the pertinent addresses in the TLB.

Short-running work does not overcome the processor usage. Short processes with small working sets are expected to receive little or no improvement. Long-running work with high memory-access frequency is the best candidate to benefit from large pages.

Long-running work with low memory-access frequency is less likely to maintain its entries in the TLB. However, when it does run, a smaller number of address translations is required to resolve all the memory it needs. Therefore, a long-running process can benefit even without frequent memory access. Weigh the benefits of whether something in this category must use large pages as a result of the system-level costs of tying up real storage. There is a balance between the performance of a process that uses large pages, and the performance of the remaining work on the system.

On z13 servers, 1 MB large pages become pageable if Flash Express is available and enabled. They are available only for 64-bit virtual private storage, such as virtual memory above 2 GB.

It is easy to assume that increasing the TLB size is a feasible option to deal with TLB-miss situations. However, this process is not as straightforward as it seems. As the size of the TLB increases, so does the processor usage that is involved in managing the TLB’s contents. Correct sizing of the TLB is subject to complex statistical modeling to find the optimal tradeoff between size and performance.
3.6.2 Main storage

Main storage is addressable by programs, and storage that is not directly addressable by programs. Non-addressable storage includes the hardware system area (HSA).

Main storage provides these functions:

- Data storage and retrieval for PUs and I/O
- Communication with PUs and I/O
- Communication with and control of optional expanded storage
- Error checking and correction

Main storage can be accessed by all processors, but cannot be shared between LPARs. Any system image (LPAR) must have a main storage size defined. This defined main storage is allocated exclusively to the LPAR during partition activation.

3.6.3 Expanded storage

Expanded storage can optionally be defined on z13 servers. Expanded storage is physically a section of processor storage. It is controlled by the operating system and transfers 4-KB pages to and from main storage.

Storage considerations

Except for z/VM, z/Architecture operating systems do not use expanded storage. Because they operate in 64-bit addressing mode, they can have all the required storage capacity allocated as main storage. z/VM is an exception because even when it operates in 64-bit mode, it can have guest virtual machines that are running in 31-bit addressing mode. The guest systems can use expanded storage. In addition, z/VM uses expanded storage for its own operations.

z/VM 6.3: Starting in z/VM 6.3, it is no longer preferable to configure any of the memory as expanded storage unless it is being attached to a virtual machine for testing or some unique purpose. Configure all the processor memory as main storage.

Defining expanded storage to a coupling facility image is not possible. However, any other image type can have expanded storage that is defined, even if that image runs a 64-bit operating system and does not use expanded storage.

Removal of support for Expanded Storage (XSTORE): z/VM V6.3 is the last z/VM release that supports Expanded Storage (XSTORE) for either host or guest use. The IBM z13 server family is the last z Systems server to support Expanded Storage (XSTORE).

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

z13s servers run only in LPAR-, or Elastic PR/SM mode. For more information, see Appendix E, “IBM Dynamic Partition Manager” on page 527.

When running in LPAR mode, storage is placed into a single storage pool that is called the LPAR single storage pool. This pool can be dynamically converted to expanded storage and back to main storage as needed when partitions are activated or deactivated.
LPAR single storage pool
In LPAR mode, storage is not split into main storage and expanded storage at POR. Rather, the storage is placed into a single main storage pool that is dynamically assigned to expanded storage and back to main storage, as needed.

On the HMC, the storage assignment tab of a reset profile shows the customer storage. Customer storage is the total installed storage. LPARs are still defined to have main storage and, optionally, expanded storage.

Activation of LPARs and dynamic storage reconfiguration cause the storage to be assigned to the type that is needed (central or expanded). It does not require a POR.

3.6.4 Hardware system area

The HSA is a non-addressable storage area that contains system LIC and configuration-dependent control blocks. On z13 servers, the HSA has a fixed size of 96 GB and is not part of the purchased memory that you order and install.

The fixed size of the HSA eliminates planning for future expansion of the HSA because the hardware configuration definition (HCD)/input/output configuration program (IOCP) always reserves space for the following items:
- Six channel subsystems (CSSs)
- Fifteen LPARs in the five CSSs and 10 LPARs for the sixth CSS for a total of 85 LPARs
- Subchannel set 0 with 63.75-K devices in each CSS
- Subchannel set 1 with 64-K devices in each CSS
- Subchannel set 2 with 64-K devices in each CSS
- Subchannel set 3 with 64-K devices in each CSS

The HSA has sufficient reserved space to allow for dynamic I/O reconfiguration changes to the maximum capability of the processor.

3.7 Logical partitioning

This section addresses logical partitioning features.

3.7.1 Overview

Logical partitioning is a function implemented by the PR/SM on z13. z13 runs either in LPAR-, or elastic PR/SM mode. Therefore, all system aspects are controlled by PR/SM functions.

PR/SM is aware of the processor drawer structure on z13 servers. However, LPARs do not have this awareness. LPARs have resources that are allocated to them from various physical resources. From a systems standpoint, LPARs have no control over these physical resources, but the PR/SM functions do.

PR/SM manages and optimizes allocation and the dispatching of work on the physical topology. Most physical topology that was previously handled by the operating systems is the responsibility of PR/SM.

As shown in 3.5.9, “Processor unit assignment” on page 116, the initial PU assignment is done during POR by using rules to optimize cache usage. This is the “physical” step, where CPs, zIIPs, IFLs, ICFs, and SAPs are allocated on the processor drawers.
When an LPAR is activated, PR/SM builds logical processors and allocates memory for the LPAR.

Memory allocation has changed from the previous z Systems servers. IBM System z9® memory used to be spread across all books. This optimization was done by using a round-robin algorithm with a number of increments per book to match the number of memory controllers (MCs) per book. This memory allocation design is driven by performance results, which minimizes variability for most workloads.

With z13 servers, memory allocation has changed from the model that was used for the z9. Partition memory is now allocated in a per processor drawer basis and striped across processor nodes. For more information, see “Memory allocation” on page 118.

Logical processors are dispatched by PR/SM on physical processors. The assignment topology that is used by PR/SM to dispatch logical processors on physical PUs is also based on cache usage optimization.

Processor drawers and node level assignments are more important because they optimize L4 cache usage. Therefore, logical processors from a specific LPAR are packed into a processor drawer as much as possible.

PR/SM optimizes chip assignments within the assigned processor drawers (or drawers) to maximize L3 cache efficiency. Logical processors from an LPAR are dispatched on physical processors on the same PU chip as much as possible. The number of processors per chip (eight) matches the number of z/OS processor affinity queues that is used by HiperDispatch, achieving optimal cache usage within an affinity node.

PR/SM also tries to redispatch a logical processor on the same physical processor to optimize private cache (L1 and L2) usage.

Removal of an option for the way shared logical processors are managed under PR/SM LPAR: IBM z13 will be the last high-end server to support selection of the option to "Do not end the time slice if a partition enters a wait state" when the option to set a processor runtime value has been previously selected in the CPC RESET profile. The CPC RESET profile applies to all shared logical partitions on the system, and is not selectable by logical partition.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

HiperDispatch
PR/SM and z/OS work in tandem to use processor resources more efficiently. HiperDispatch is a function that combines the dispatcher actions and the knowledge that PR/SM has about the topology of the system.

Performance can be optimized by redispatching units of work to the same processor group, keeping processes running near their cached instructions and data, and minimizing transfers of data ownership among processors and processor drawers.

The nested topology is returned to z/OS by the Store System Information (STSI) instruction. HiperDispatch uses the information to concentrate logical processors around shared caches (L3 at PU chip level, and L4 at book level), and dynamically optimizes the assignment of logical processors and units of work.
z/OS dispatcher manages multiple queues, called *affinity queues*, with a target number of eight processors per queue, which fits nicely onto a single PU chip. These queues are used to assign work to as few logical processors as are needed for an LPAR workload. So, even if the LPAR is defined with many logical processors, HiperDispatch optimizes this number of processors to be near the required capacity. The optimal number of processors to be used is kept within a processor drawer boundary when possible.

Tip: z/VM V6.3 now also supports HiperDispatch.

Logical partitions

PR/SM enables z13 servers to be initialized for a logically partitioned operation, supporting up to 85 LPARs. Each LPAR can run its own operating system image in any image mode, independently from the other LPARs.

An LPAR can be added, removed, activated, or deactivated at any time. Changing the number of LPARs is not disruptive and does not require a POR. Certain facilities might not be available to all operating systems because the facilities might have software corequisites.

Each LPAR has the same resources as a real CPC:

- **Processors:** Called *logical processors*, they can be defined as CPs, IFLs, ICFs, or zIIPs. They can be dedicated to an LPAR or shared among LPARs. When shared, a processor weight can be defined to provide the required level of processor resources to an LPAR. Also, the capping option can be turned on, which prevents an LPAR from acquiring more than its defined weight, limiting its processor consumption.

LPARs for z/OS can have CP and zIIP logical processors. The two logical processor types can be defined as either all dedicated or all shared. The zIIP support is available in z/OS.

The weight and number of online logical processors of an LPAR can be dynamically managed by the LPAR CPU Management function of the Intelligent Resource Director (IRD). These can be used to achieve the defined goals of this specific partition and of the overall system. The provisioning architecture of z13 servers, described in Chapter 8, “System upgrades” on page 313, adds another dimension to the dynamic management of LPARs.

PR/SM is enhanced to support an option to limit the amount of physical processor capacity that is consumed by an individual LPAR when a PU is defined as a general-purpose processor (CP) or an IFL shared across a set of LPARs.

This enhancement is designed to provide a physical capacity limit that is enforced as an absolute (versus relative) limit. It is not affected by changes to the logical or physical configuration of the system. This physical capacity limit can be specified in units of CPs or IFLs. The Change LPAR Controls and Customize Activation Profiles tasks on the Hardware Management Console have been enhanced to support this new function.

For the z/OS Workload License Charges (WLC) pricing metric, and metrics that are based on it, such as Advanced Workload License Charges (AWLC), an LPAR *defined capacity* can be set. This defined capacity enables the soft capping function. Workload charging introduces the capability to pay software license fees based on the processor utilization of the LPAR on which the product is running, rather than on the total capacity of the system:

- In support of WLC, the user can specify a defined capacity in millions of service units (MSUs) per hour. The defined capacity sets the capacity of an individual LPAR when soft capping is selected.

The defined capacity value is specified on the Options tab in the Customize Image Profiles window.
WLM keeps a 4-hour rolling average of the processor usage of the LPAR. When the 4-hour average processor consumption exceeds the defined capacity limit, WLM dynamically activates LPAR capping (soft capping). When the rolling 4-hour average returns below the defined capacity, the soft cap is removed.

For more information about WLM, see System Programmer’s Guide to: Workload Manager, SG24-6472. For a review of software licensing, see 7.16.1, “Software licensing considerations” on page 306.

Weight settings: When defined capacity is used to define an uncapped LPAR’s capacity, carefully consider the weight settings of that LPAR. If the weight is much smaller than the defined capacity, PR/SM uses a discontinuous cap pattern to achieve the defined capacity setting. This configuration means PR/SM alternates between capping the LPAR at the MSU value corresponding to the relative weight settings, and no capping at all. It is best to avoid this scenario, and try to establish a defined capacity that is equal or close to the relative weight.

Memory: Memory, either main storage or expanded storage, must be dedicated to an LPAR. The defined storage must be available during the LPAR activation. Otherwise, the LPAR activation fails.

Reserved storage can be defined to an LPAR, enabling nondisruptive memory addition to and removal from an LPAR, by using the LPAR dynamic storage reconfiguration (z/OS and z/VM). For more information, see 3.7.5, “LPAR dynamic storage reconfiguration” on page 134.

Channels: Channels can be shared between LPARs by including the partition name in the partition list of a channel-path identifier (CHPID). I/O configurations are defined by the IOCP or the HCD with the CHPID mapping tool (CMT). The CMT is an optional tool that is used to map CHPIDs onto physical channel IDs (PCHIDs). PCHIDs represent the physical location of a port on a card in an I/O cage, I/O drawer, or PCIe I/O drawer.

IOCP is available on the z/OS, z/VM, and z/VSE operating systems, and as a stand-alone program on the hardware console. For more information, see z Systems Input/Output Configuration Program User’s Guide for ICP IOCP, SB10-7163. HCD is available on the z/OS and z/VM operating systems. Consult the appropriate 2964DEVICE Preventive Service Planning (PSP) buckets before implementation.

Fibre Channel connection (FICON) channels can be managed by the Dynamic CHPID Management (DCM) function of the Intelligent Resource Director. DCM enables the system to respond to ever-changing channel requirements by moving channels from lesser-used control units to more heavily used control units, as needed.

Modes of operation

Table 3-4 shows the nodes of operation, summarizing all available mode combinations, including their operating modes and processor types, operating systems, and addressing modes. Only the currently supported versions of operating systems are considered.

Table 3-4 z13 modes of operation

<table>
<thead>
<tr>
<th>Image mode</th>
<th>PU type</th>
<th>Operating system</th>
<th>Addressing mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA/390</td>
<td>CP and zIIP</td>
<td>z/OS</td>
<td>64-bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z/VM</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>z/VSE and Linux on z Systems (64-bit)</td>
<td>64-bit</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>Linux on z Systems (31-bit)</td>
<td>31-bit</td>
<td></td>
</tr>
</tbody>
</table>
The 64-bit z/Architecture mode has no special operating mode because the architecture mode is not an attribute of the definable images operating mode. The 64-bit operating systems are in 31-bit mode at IPL and, optionally, can change to 64-bit mode during their initialization. The operating system is responsible for taking advantage of the addressing capabilities that are provided by the architectural mode.

For information about operating system support, see Chapter 7, “Software support” on page 231.

Logically partitioned mode
If the z13 server runs in LPAR mode, each of the 85 LPARs can be defined to operate in one of the following image modes:

- **ESA/390 TPF mode** to run the following systems:
 - A z/Architecture operating system, on dedicated or shared CPs
 - An ESA/390 operating system, on dedicated or shared CPs
 - A Linux on z Systems operating system, on dedicated or shared CPs
 - z/OS, on any of the following processor units:
 - Dedicated or shared CPs
 - Dedicated CPs and dedicated zIIPs
 - Shared CPs and shared zIIPs

 zIIP usage: zIIPs can be defined to an ESA/390 mode or z/VM mode image, as shown in Table 3-4 on page 125. However, zIIPs are used only by z/OS. Other operating systems cannot use zIIPs even if they are defined to the LPAR. z/VM V5R4a and later provide support for real and virtual zIIPs to guest z/OS systems.

 a. z/VM V5R4 is not supported on IBM z13

- **ES/390 TPF mode** to run the z/TPF operating system, on dedicated or shared CPs

- **Coupling facility mode**, by loading the CFCC code into the LPAR that is defined as one of these types:
 - Dedicated or shared CPs
 - Dedicated or shared ICFs

<table>
<thead>
<tr>
<th>Image mode</th>
<th>PU type</th>
<th>Operating system</th>
<th>Addressing mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA/390 TPF</td>
<td>CP only</td>
<td>z/TPF</td>
<td>64-bit</td>
</tr>
<tr>
<td>Coupling facility</td>
<td>ICF or CP</td>
<td>CFCC</td>
<td>64-bit</td>
</tr>
<tr>
<td>Linux only</td>
<td>IFL or CP</td>
<td>Linux on z Systems (64-bit)</td>
<td>64-bit</td>
</tr>
<tr>
<td>Linux on Systems (31-bit)</td>
<td></td>
<td>z/VM</td>
<td>31-bit</td>
</tr>
<tr>
<td>z/VM</td>
<td>CP, IFL, zIIP, or ICF</td>
<td>z/VM</td>
<td>64-bit</td>
</tr>
<tr>
<td>zACI a</td>
<td>IFL or CP</td>
<td>IBM zAware</td>
<td>64-bit</td>
</tr>
<tr>
<td>z/VSE Network Appliance b</td>
<td></td>
<td>z/VM</td>
<td>64 bit</td>
</tr>
</tbody>
</table>

a. z Appliance Container Infrastructure
b. Planned
Linux only mode to run these systems:
- A Linux on z Systems operating system, on either of these types:
 - Dedicated or shared IFLs
 - Dedicated or shared CPs
- A z/VM operating system, on either of these types:
 - Dedicated or shared IFLs
 - Dedicated or shared CPs

z/VM mode to run z/VM on dedicated or shared CPs or IFLs, plus zIIPs and ICFs

z Appliance Container Infrastructure (zACI) mode LPAR can run on:
- Dedicated or shared CPs
- Dedicated or shared IFLs

Table 3-5 shows all LPAR modes, required characterized PUs, operating systems, and the PU characterizations that can be configured to an LPAR image. The available combinations of dedicated (DED) and shared (SHR) processors are also shown. For all combinations, an LPAR also can have reserved processors that are defined, allowing nondisruptive LPAR upgrades.

<table>
<thead>
<tr>
<th>LPAR mode</th>
<th>PU type</th>
<th>Operating systems</th>
<th>PUs usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA/390 CPs</td>
<td>DED or CPs SHR</td>
<td>z/Architecture operating systems</td>
<td>CPs DED or CPs SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESA/390 operating systems</td>
<td></td>
</tr>
<tr>
<td>ESA/390 CPs</td>
<td>DED or CPs SHR</td>
<td>Linux on z Systems</td>
<td></td>
</tr>
<tr>
<td>CPs</td>
<td>DED or CPs SHR</td>
<td>z/OS (V6R2 and later for guest exploitation)</td>
<td>CPs DED and (or) zIIPs DED or CPs SHR or zIIPs SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESA/390 TPF</td>
<td>CPs</td>
<td>z/TPF</td>
<td>CPs DED or CPs SHR</td>
</tr>
<tr>
<td>Coupling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux only</td>
<td>IFLs or CPs</td>
<td>CFCC</td>
<td>ICFs DED or ICFs SHR, or CPs DED or CPs SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z/VM</td>
<td>CPs, IFLs, zIIPs,</td>
<td>z/VM (V6R2 and later)</td>
<td>All PUs must be SHR or DED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zACI</td>
<td>IFLs, or CPs</td>
<td>IBM zAwareb z/VSE Network Applianceb</td>
<td>IFLs DED or IFLs SHR, or CPs DED or CPs SHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a. z Appliance Container Infrastructure
*b. Encapsulated as a firmware appliance
*c. Planned

Dynamically adding or deleting a logical partition name

Dynamically adding or deleting a logical partition name is the ability to add or delete LPARs and their associated I/O resources to or from the configuration without a POR.

The extra channel subsystem and multiple image facility (MIF) image ID pairs (SSID/MIFID) can be later assigned to an LPAR for use (or later removed). This process can be done through dynamic I/O commands by using the HCD. At the same time, required channels must be defined for the new LPAR.
Adding logical processors to a logical partition

Logical processors can be concurrently added to an LPAR by defining them as reserved in the image profile and later configuring them online to the operating system by using the appropriate console commands. Logical processors also can be concurrently added to a logical partition dynamically by using the Support Element (SE) “Logical Processor Add” function under the CPC Operational Customization task. This SE function allows the initial and reserved processor values to be dynamically changed. The operating system must support the dynamic addition of these resources. In z/OS, this support is available since Version 1 Release 10 (z/OS V1.10).

Adding a crypto feature to a logical partition

You can plan the addition of Crypto Express5S features to an LPAR on the crypto page in the image profile by defining the Cryptographic Candidate List, and the Usage and Control Domain indexes, in the partition profile. By using the Change LPAR Cryptographic Controls task, you can add crypto adapters dynamically to an LPAR without an outage of the LPAR. Also, dynamic deletion or moving of these features does not require pre-planning. Support is provided in z/OS, z/VM, z/VSE, and Linux on z Systems.

LPAR dynamic PU reassignment

The system configuration is enhanced to optimize the PU-to-CPC drawer assignment of physical processors dynamically. The initial assignment of client-usable physical processors to physical processor drawers can change dynamically to better suit the actual LPAR configurations that are in use. For more information, see 3.5.9, “Processor unit assignment” on page 116. Swapping of specialty engines and general processors with each other, with spare PUs, or with both, can occur as the system attempts to compact LPAR configurations into physical configurations that span the least number of processor drawers.

LPAR dynamic PU reassignment can swap client processors of different types between processor drawers. For example, reassignment can swap an IFL on processor drawer 1 with a CP on processor drawer 2. Swaps can also occur between PU chips within a processor drawer or a node and can include spare PUs. The goals are to pack the LPAR on fewer processor drawers and also on fewer PU chips, based on the z13 processor drawers’ topology. The effect of this process is evident in dedicated and shared LPARs that use HiperDispatch.

LPAR dynamic PU reassignment is transparent to operating systems.

LPAR group capacity limit

The group capacity limit feature allows the definition of a group of LPARs on a z13 system, and limits the combined capacity usage by those LPARs. This process allows the system to manage the group so that the group capacity limits in MSUs per hour are not exceeded. To take advantage of this feature, you must be running z/OS V1.10 or later in the all LPARs in the group.

PR/SM and WLM work together to enforce the capacity that is defined for the group and the capacity that is optionally defined for each individual LPAR.
LPAR absolute capping

Absolute capping is a new logical partition control that was made available with zEC12 and is supported on z13 servers. With this support, PR/SM and the HMC are enhanced to support a new option to limit the amount of physical processor capacity that is consumed by an individual LPAR when a PU is defined as a general-purpose processor (CP), zIIP, or an IFL processor that is shared across a set of LPARs.

Unlike traditional LPAR capping, absolute capping is designed to provide a physical capacity limit that is enforced as an absolute (versus relative) value that is not affected by changes to the virtual or physical configuration of the system.

Absolute capping provides an optional maximum capacity setting for logical partitions that is specified in the absolute processors capacity (for example, 5.00 CPs or 2.75 IFLs). This setting is specified independently by processor type (namely CPs, zIIPs, and IFLs) and provides an enforceable upper limit on the amount of the specified processor type that can be used in a partition.

Absolute capping is ideal for processor types and operating systems that the z/OS WLM cannot control. Absolute capping is not intended as a replacement for defined capacity or group capacity for z/OS, which are managed by WLM.

Absolute capping can be used with any z/OS, z/VM, or Linux on z LPAR running on zEnterprise. If specified for a z/OS LPAR, it can be used concurrently with defined capacity or group capacity management for z/OS. When used concurrently, the absolute capacity limit becomes effective before other capping controls.

Dynamic Partition Manager mode

Dynamic Partition Manager (DPM) is a new z Systems mode of operation that provides a simplified approach to create and manage virtualized environments, reducing the barriers of its adoption for new and existing customers.

The implementation provides built-in integrated capabilities that allow advanced virtualization management on z Systems servers. With DPM, you can use your existing Linux and virtualization skills while taking advantage of the full value of z Systems hardware, robustness, and security in a workload optimized environment.

DPM provides facilities to define and run virtualized computing systems, using a firmware managed environment, that coordinate the physical system resources shared by the partitions. The partitions' resources include processors, memory, network, storage, crypto, and accelerators.

DPM provides a new mode of operation for z Systems servers that provide these services:

- Facilitates defining, configuring, and operating PR/SM LPARs in a similar way to how someone performs these tasks on another platform.
- Lays the foundation for a general z Systems new user experience.

DPM is not an additional hypervisor for z Systems servers. DPM uses the existing PR/SM hypervisor infrastructure and on top of it, provides an intelligent interface that allows customers to define, use, and operate the platform virtualization without prior z Systems experience or skills. For more information about DPM, see Appendix E, “IBM Dynamic Partition Manager” on page 527.
3.7.2 Storage operations

In z13 servers, memory can be assigned as a combination of main storage and expanded storage, supporting up to 85 LPARs. Expanded storage is used only by the z/VM operating system.

Removal of support for Expanded Storage (XSTORE): z/VM V6.3 is the last z/VM release that supports Expanded Storage (XSTORE) for either host or guest use. The IBM z13 server family is the last z Systems server to support Expanded Storage (XSTORE).

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

Before you activate an LPAR, main storage (and optionally, expanded storage) must be defined to the LPAR. All installed storage can be configured as main storage. Each z/OS individual LPAR can be defined with a maximum of 4 TB of main storage. z/VM supports 1 TB of main storage.

Main storage can be dynamically assigned to expanded storage and back to main storage as needed without a POR. For more information, see “LPAR single storage pool” on page 122.

Memory cannot be shared between system images. It is possible to dynamically reallocate storage resources for z/Architecture LPARs that run operating systems that support dynamic storage reconfiguration (DSR). This process is supported by z/OS, and z/VM V5R4 and later releases. z/VM, in turn, virtualizes this support to its guests. For more information, see 3.7.5, “LPAR dynamic storage reconfiguration” on page 134.

Operating systems that run as guests of z/VM can use the z/VM capability of implementing virtual memory to guest virtual machines. The z/VM dedicated real storage can be shared between guest operating systems.

Table 3-6 shows the z13 storage allocation and usage possibilities, depending on the image mode.

<table>
<thead>
<tr>
<th>Image mode</th>
<th>Architecture mode (addressability)</th>
<th>Maximum main storage</th>
<th>Expanded storage</th>
<th>Operating system usagea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>z13 definition</td>
<td>z13 definable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESA/390</td>
<td>z/Architecture (64-bit)</td>
<td>16 EB</td>
<td>4 TB</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ESA/390 (31-bit)</td>
<td>2 GB</td>
<td>128 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>ESA/390 TPF</td>
<td>ESA/390 (31-bit)</td>
<td>2 GB</td>
<td>2 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>Coupling facility</td>
<td>CFCC (64-bit)</td>
<td>1.5 TB</td>
<td>1 TB</td>
<td>No</td>
</tr>
<tr>
<td>Linux only</td>
<td>z/Architecture (64-bit)</td>
<td>16 EB</td>
<td>1 TB</td>
<td>Only by z/VM</td>
</tr>
<tr>
<td></td>
<td>ESA/390 (31-bit)</td>
<td>2 GB</td>
<td>2 GB</td>
<td>Only by z/VM</td>
</tr>
<tr>
<td>z/VMb</td>
<td>z/Architecture (64-bit)</td>
<td>16 EB</td>
<td>1 TB</td>
<td>Only by z/VM</td>
</tr>
<tr>
<td>zACI</td>
<td>z/Architecture (64-bit)</td>
<td>16 EB</td>
<td>1 TB</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a. z/VM supports the use of expanded storage, but expanded storage is not recommended for z/VM V6.3.
b. z/VM mode is supported by z/VM V6R2 and later.
ESA/390 mode

In ESA/390 mode, storage addressing can be 31 or 64 bits, depending on the operating system architecture and the operating system configuration.

An ESA/390 mode image is always initiated in 31-bit addressing mode. During its initialization, a z/Architecture operating system can change it to 64-bit addressing mode and operate in the z/Architecture mode.

Certain z/Architecture operating systems, such as z/OS, always change the 31-bit addressing mode and operate in 64-bit mode. Other z/Architecture operating systems, such as z/VM, can be configured to change to 64-bit mode or to stay in 31-bit mode and operate in the ESA/390 architecture mode.

The following modes are provided:

- z/Architecture mode: In z/Architecture mode, storage addressing is 64-bit, allowing for virtual addresses up to 16 exabytes (16 EB). The 64-bit architecture theoretically allows a maximum of 16 EB to be used as main storage. However, the current main storage limit for LPARs is 10 TB of main storage. The operating system that runs in z/Architecture mode must be able to support the real storage. Currently, z/OS supports up to 4 TB of real storage (z/OS V1R10 and later releases).

Expanded storage can also be configured to an image that runs an operating system in z/Architecture mode. However, only z/VM can use expanded storage. Any other operating system that runs in z/Architecture mode (such as a z/OS or a Linux on z Systems image) does not address the configured expanded storage. This expanded storage remains configured to this image and is unused.

- ESA/390 architecture mode: In ESA/390 architecture mode, storage addressing is 31 bit, allowing for virtual addresses up to 2 GB. A maximum of 2 GB can be used for main storage. Because the processor storage can be configured as central and expanded storage, memory above 2 GB can be configured as expanded storage. In addition, this mode allows the use of either 24-bit or 31-bit addressing, under program control.

Because an ESA/390 mode image can be defined with up to 128 GB of main storage, the main storage above 2 GB is not used. Instead, it remains configured to this image.

Storage resources: Either a z/Architecture mode or an ESA/390 architecture mode operating system can run in an ESA/390 image on a z13 server. Any ESA/390 image can be defined with more than 2 GB of main storage, and can have expanded storage. These options allow you to configure more storage resources than the operating system can address.

ESA/390 TPF mode

In ESA/390 TPF mode, storage addressing follows the ESA/390 architecture mode. The z/TPF operating system runs in 64-bit addressing mode.

4 1 TB if an I/O drawer is installed in the system (carry forward only).
Coupling facility mode
In coupling facility mode, storage addressing is 64 bit for a coupling facility image that runs at CFCC Level 12 or later. This configuration allows for an addressing range up to 16 EB. However, the current z13 definition limit for LPARs is 1 TB of storage.

CFCC Level 20, which is available for z13 servers with driver level 22, introduces several enhancements in the performance, reporting, and serviceability areas.

CFCC Level 19, which is available for the zEC12 with driver level 15F, introduces several improvements in the performance and resiliency areas, including Coupling Thin Interrupts and Flash Express.

For more information, see 3.9.1, “Coupling Facility Control Code” on page 137. Expanded storage cannot be defined for a coupling facility image. Only IBM CFCC can run in coupling facility mode.

Linux only mode
In Linux only mode, storage addressing can be 31 bit or 64 bit, depending on the operating system architecture and the operating system configuration, in the same way as in ESA/390 mode.

Only Linux and z/VM operating systems can run in Linux only mode. Linux on z Systems 64-bit distributions (SUSE SLES 10 and later, and Red Hat RHEL 5 and later) use 64-bit addressing and operate in z/Architecture mode. z/VM also uses 64-bit addressing and operates in z/Architecture mode.

z/VM mode
In z/VM mode, certain types of processor units can be defined within one LPAR. This increases flexibility and simplifies systems management by allowing z/VM to run the following tasks in the same z/VM LPAR:

- Manage guests to operate Linux on z Systems on IFLs
- Operate z/VSE and z/OS on CPs
- Offload z/OS system software processor usage, such as DB2 workloads on zIIPs
- Provide an economical Java execution environment under z/OS on zIIPs

z Appliance Container Infrastructure mode
In zACI mode, storage addressing is 64 bit for an embedded product. This configuration allows for an addressing range up to 16 EB. However, the current z13 definition limit for LPARs is 10 TB of storage.

Currently, the IBM zAware Version 2 feature, which is available on z13 and z13s servers runs in a zACI LPAR.

Important: The IBM zAware LPAR mode has been replaced for z13s and z13 at Driver Level 27 servers with zACI. Existing IBM zAware LPARs are automatically converted during Enhanced Driver Maintenance from Driver 22 to Driver 27. No reconfiguration of IBM zAware is required.

For more information, see Appendix B, “IBM z Advanced Workload Analysis Reporter” on page 479.
3.7.3 Reserved storage

Reserved storage can be optionally defined to an LPAR, allowing a nondisruptive image memory upgrade for this partition. Reserved storage can be defined to both central and expanded storage, and to any image mode except coupling facility mode.

An LPAR must define an amount of main storage and, optionally (if not a coupling facility image), an amount of expanded storage. Both main storage and expanded storage can have two storage sizes defined:

- The initial value is the storage size that is allocated to the partition when it is activated.
- The reserved value is an additional storage capacity beyond its initial storage size that an LPAR can acquire dynamically. The reserved storage sizes that are defined to an LPAR do not have to be available when the partition is activated. They are predefined storage sizes to allow a storage increase, from an LPAR point of view.

Without the reserved storage definition, an LPAR storage upgrade is a disruptive process that requires the following actions:

1. Partition deactivation
2. An initial storage size definition change
3. Partition activation

The additional storage capacity for an LPAR upgrade can come from these sources:

- Any unused available storage
- Another partition that has released storage
- A memory upgrade

A concurrent LPAR storage upgrade uses DSR. z/OS uses the reconfigurable storage unit (RSU) definition to add or remove storage units in a nondisruptive way.

z/VM V5R4 and later releases support the dynamic addition of memory to a running LPAR by using reserved storage. It also virtualizes this support to its guests. Removal of storage from the guests or z/VM is disruptive.

SLES 11 supports concurrent add and remove.

3.7.4 Logical partition storage granularity

Granularity of main storage for an LPAR depends on the largest main storage amount that is defined for either initial or reserved main storage, as shown in Table 3-7.

<table>
<thead>
<tr>
<th>Logical partition: Largest main storage amount</th>
<th>Logical partition: Main storage granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main storage amount <= 256 GB</td>
<td>512 MB</td>
</tr>
<tr>
<td>256 GB < main storage amount <= 512 GB</td>
<td>1 GB</td>
</tr>
<tr>
<td>512 GB < main storage amount <= 1 TB</td>
<td>2 GB</td>
</tr>
<tr>
<td>1 TB < main storage amount <= 2 TB</td>
<td>4 GB</td>
</tr>
<tr>
<td>2 TB < main storage amount <= 4 TB</td>
<td>8 GB</td>
</tr>
<tr>
<td>4 TB < main storage amount <= 8 TB</td>
<td>16 GB</td>
</tr>
<tr>
<td>8 TB < main storage amount <= 10 TB</td>
<td>32 GB</td>
</tr>
</tbody>
</table>
The granularity applies across all main storage that is defined, both initial and reserved. For example, for an LPAR with an initial storage amount of 30 GB and a reserved storage amount of 48 GB, the main storage granularity of both initial and reserved main storage is 512 MB.

Expanded storage granularity is fixed at 512 MB.

Removal of support for Expanded Storage (XSTORE): The IBM z13 server family is the last z Systems server to support Expanded Storage (XSTORE).

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

LPAR storage granularity information is required for LPAR image setup and for z/OS RSU definition. LPARs are limited to a maximum size of 10 TB of main storage. For z/VM V6R2, the limit is 256 GB, whereas for z/VM V6.3 the limit is 1 TB.

3.7.5 LPAR dynamic storage reconfiguration

Dynamic storage reconfiguration on z13 servers allows an operating system running on an LPAR to add (nondisruptively) its reserved storage amount to its configuration. This process can occur only if unused storage exists. This unused storage can be obtained when another LPAR releases storage, or when a concurrent memory upgrade takes place.

With dynamic storage reconfiguration, the unused storage does not have to be continuous.

When an operating system running on an LPAR assigns a storage increment to its configuration, PR/SM determines whether any free storage increments are available. PR/SM then dynamically brings the storage online.

PR/SM dynamically takes offline a storage increment and makes it available to other partitions when an operating system running on an LPAR releases a storage increment.

3.8 Intelligent Resource Director (IRD)

IRD is a z13 and z Systems capability that is used only by z/OS. IRD is a function that optimizes processor and channel resource utilization across LPARs within a single z Systems server.

This feature extends the concept of goal-oriented resource management. It does so by grouping system images that are on the same z13 or z Systems servers running in LPAR mode, and in the same Parallel Sysplex, into an **LPAR cluster**. This configuration allows WLM to manage resources, both processor and I/O, not just in one single image, but across the entire cluster of system images.
Figure 3-15 shows an LPAR cluster. It contains three z/OS images, and one Linux image that is managed by the cluster. Included as part of the entire Parallel Sysplex is another z/OS image and a coupling facility image. In this example, the scope over which IRD has control is the defined LPAR cluster.

IRD has the following characteristics:

- **IRD processor management**: WLM dynamically adjusts the number of logical processors within an LPAR and the processor weight based on the WLM policy. The ability to move the processor weights across an LPAR cluster provides processing power where it is most needed, based on WLM goal mode policy.

 The processor management function is automatically deactivated when HiperDispatch is active. However, the LPAR weight management function remains active with IRD with HiperDispatch. For more information about HiperDispatch, see 3.7, “Logical partitioning” on page 122.

 HiperDispatch manages the number of logical CPs in use. It adjusts the number of logical processors within an LPAR to achieve the optimal balance between CP resources and the requirements of the workload.

 HiperDispatch also adjusts the number of logical processors. The goal is to map the logical processor to as few physical processors as possible. This configuration uses the processor resources more efficiently by trying to stay within the local cache structure. Doing so makes efficient use of the advantages of the high-frequency microprocessors, and improves throughput and response times.

 Dynamic channel path management (DCM): DCM moves FICON channel bandwidth between disk control units to address current processing needs. z13 servers support DCM within a channel subsystem.
Channel subsystem priority queuing: This function on z13 and z Systems servers allows the priority queuing of I/O requests in the channel subsystem and the specification of relative priority among LPARs. When running in goal mode, WLM sets the priority for an LPAR and coordinates this activity among clustered LPARs.

For more information about implementing LPAR processor management under IRD, see z/OS Intelligent Resource Director, SG24-5952.

3.9 Clustering technology

Parallel Sysplex is the clustering technology that is used with z13 servers. Figure 3-16 illustrates the components of a Parallel Sysplex as implemented within the z Systems architecture. The figure is intended only as an example. It shows one of many possible Parallel Sysplex configurations.

Figure 3-16 shows a z13 system that contains multiple z/OS sysplex partitions. It contains an internal coupling facility (CF02), a z13 system that contains a stand-alone CF (CF01), and a zEC12 that contains multiple z/OS sysplex partitions. STP over coupling links provides time synchronization to all systems. The appropriate CF link technology (Integrated Coupling Adapter (ICA SR), 1x InfiniBand (IFB), or 12x IFB) selection depends on the system configuration and how distant they are physically. The ISC-3 coupling link is not supported on z13 servers. For more information about link technologies, see 4.9.1, “Coupling links” on page 178.

Parallel Sysplex technology is an enabling technology, allowing highly reliable, redundant, and robust z Systems technology to achieve near-continuous availability. A Parallel Sysplex
makes up one or more (z/OS) operating system images that are coupled through one or more Coupling Facilities. The images can be combined to form clusters.

A correctly configured Parallel Sysplex cluster maximizes availability in these ways:

- Continuous (application) availability: Changes can be introduced, such as software upgrades, one image at a time, while the remaining images continue to process work. For more information, see Parallel Sysplex Application Considerations, SG24-6523.

- High capacity: Scales can be 2 - 32 images.

- Dynamic workload balancing: Because it is viewed as a single logical resource, work can be directed to any similar operating system image in a Parallel Sysplex cluster that has available capacity.

- Systems management: The architecture provides the infrastructure to satisfy client requirements for continuous availability, and provides techniques for achieving simplified systems management consistent with this requirement.

- Resource sharing: A number of base (z/OS) components use the coupling facility shared storage. This configuration enables sharing of physical resources with significant improvements in cost, performance, and simplified systems management.

- Single system image: The collection of system images in the Parallel Sysplex is displayed as a single entity to the operator, the user, and the database administrator. A single system image ensures reduced complexity from both operational and definition perspectives.

- N-2 support: Multiple hardware generations (normally three) are supported in the same Parallel Sysplex. This configuration provides for a gradual evolution of the systems in the Parallel Sysplex without having to change all of them simultaneously. Similarly, software support for multiple releases or versions is supported.

Through state-of-the-art cluster technology, the power of multiple images can be harnessed to work in concert on common workloads. The z Systems Parallel Sysplex cluster takes the commercial strengths of the platform to improved levels of system management, competitive price for performance, scalable growth, and continuous availability.

3.9.1 Coupling Facility Control Code

The LPAR running the CFCC can be on z13, zEC12, zBC12, z196, or z114 systems. For more information about CFCC requirements for supported systems, see 7.8, “Coupling facility and CFCC considerations” on page 293.

Consideration: z13 and z13s servers cannot coexist in the same sysplex with System z10 and previous systems. The introduction of z13 servers into existing installations might require more planning.

CFCC Level 21

CFCC level 21 is delivered on the z13 servers with driver level 27. CFCC Level 21 introduces the following enhancements:

- Asynchronous CF Duplexing for lock structures:
 - z/OS V2.2 SPE with PTFs for APAR OA47796
 - DB2 V12 with PTFs
Enable systems management applications to collect valid CF LPAR information through z/OS BCPI:

- System Type (CFCC)
- System Level (CFCC LEVEL)
- Dynamic Dispatch settings to indicate CF state (dedicated, shared, thin interrupt), which are useful when investigating functional performance problems

z13 systems with CFCC Level 21 require z/OS V1R12 with PTFs or later, and z/VM V6R2 or later for guest virtual coupling.

To support an upgrade from one CFCC level to the next, different levels of CFCC can be run concurrently while the coupling facility LPARs are running on different servers. CF LPARs that run on the same server share the CFCC level.

z13 servers (CFCC level 21) can coexist in a sysplex with CFCC levels 17 and 19.

The CFCC is implemented by using the active wait technique. This technique means that the CFCC is always running (processing or searching for service) and never enters a wait state. This setting also means that the CF Control Code uses all the processor capacity (cycles) that are available for the coupling facility LPAR. If the LPAR running the CFCC has only dedicated processors (CPs or ICFs), using all processor capacity (cycles) is not a problem. However, this configuration can be an issue if the LPAR that is running the CFCC also has shared processors. Therefore, enable dynamic dispatching on the CF LPAR.

With CFCC Level 19 and Coupling Thin Interrupts, shared-processor CF can provide more consistent CF service time and acceptable usage in a broader range of configurations. For more information, see 3.9.3, “Dynamic CF dispatching” on page 139.

Performance consideration: Dedicated processor CF still provides the best CF image performance for production environments.

CF structure sizing changes are expected when going from CFCC Level 17 (or earlier) to CFCC Level 20. Review the CF structure size by using the CFSizer tool, which is available at this website:

http://www.ibm.com/systems/z/cfsizer/

For latest recommended levels, see the current exception letter that is published on Resource Link at the following website:

3.9.2 Coupling Thin Interrupts

CFCC Level 19 introduced Coupling Thin Interrupts to improve performance in environments that share Coupling Facility engines. Although dedicated engines are preferable to obtain the best Coupling Facility performance, Coupling Thin Interrupts can help facilitate the use of a shared pool of engines, helping to lower hardware acquisition costs.

- The interrupt causes a shared logical processor coupling facility partition to be dispatched by PR/SM, if it is not already dispatched, allowing the request or signal to be processed in a more timely manner. The coupling facility gives up control when work is exhausted or when PR/SM takes the physical processor away from the logical processor.
- The use of Coupling Thin Interrupts is controlled by the new DYNDISP specification.
You can experience CF response time improvements or more consistent CF response time when using Coupling Facilities with shared engines. This improvement can allow more environments with multiple CF images to coexist in a server, and share CF engines with reasonable performance. The response time for asynchronous CF requests can also be improved as a result of using Coupling Thin Interrupts on the z/OS host system, regardless of whether the CF is using shared or dedicated engines.

3.9.3 Dynamic CF dispatching

Dynamic CF dispatching provides the following functions on a coupling facility:

1. If there is no work to do, CF enters a wait state (by time).
2. After an elapsed time, CF wakes up to see whether there is any new work to do (that is, there are requests in the CF Receiver buffer).
3. If there is no work, CF sleeps again for a longer period.
4. If there is new work, CF enters the normal active wait until there is no more work. After all work is complete, the process starts again.

With the introduction of the Coupling Thin Interrupt support, which is used only when the CF partition is using shared engines and the new DYNDISP=THININTERRUPT parameter, the CFCC code is changed to handle these interrupts correctly. CFCC was also changed to give up voluntarily control of the processor whenever it runs out of work to do. It relies on Coupling Thin Interrupts to dispatch the image again in a timely fashion when new work (or new signals) arrives at the CF to be processed.

This capability allows ICF engines to be shared by several CF images. In this environment, it provides faster and far more consistent CF service times. It can also provide performance that is reasonably close to dedicated-engine CF performance if the CF engines are not Coupling Facility Control Code thin interrupts. The introduction of thin interrupts allows a CF to run by using a shared processor while maintaining good performance. The shared engine is allowed to be undispached when there is no more work, as in the past. The new thin interrupt now gets the shared processor that is dispatched when a command or duplexing signal is presented to the shared engine.

This function saves processor cycles and is an excellent option to be used by a production backup CF or a testing environment CF. This function is activated by the CFCC command DYNDISP ON.

The CPs can run z/OS operating system images and CF images. For software charging reasons, generally use only ICF processors to run coupling facility images.
Figure 3-17 shows dynamic CF dispatching.

For more information about CF configurations, see Coupling Facility Configuration Options, GF22-5042.

3.9.4 CFCC and Flash Express use

From CFCC Level 19 and later, Flash Express can be used. It improves resilience while providing cost-effective standby capacity to help manage the potential overflow of IBM WebSphere MQ shared queues. Structures can now be allocated with a combination of real memory and SCM that is provided by the Flash Express feature.

For more information about Flash Express and CF Flash use, see Appendix H, “Flash Express” on page 555.
Chapter 4. Central processor complex I/O system structure

This chapter describes the I/O system structure and connectivity options that are available on the z13 servers.

This chapter includes the following sections:
- Introduction to InfiniBand and PCIe for I/O infrastructure
- I/O system overview
- I/O drawer
- PCIe I/O drawer
- PCIe I/O drawer and I/O drawer offerings
- Fanouts
- I/O features (cards)
- Connectivity
- Parallel Sysplex connectivity
- Cryptographic functions
- Integrated firmware processor
- Flash Express
- 10GbE RoCE Express
- zEDC Express
4.1 Introduction to InfiniBand and PCIe for I/O infrastructure

z13 servers support two types of internal I/O infrastructure:

- InfiniBand infrastructure for I/O drawers
- Peripheral Component Interconnect Express (PCIe)-based infrastructure for PCIe I/O drawers

4.1.1 InfiniBand I/O infrastructure

The InfiniBand I/O infrastructure was first made available on System z10 and is supported on z13 servers. It consists of these components:

- InfiniBand fanouts that support the current 6 GBps InfiniBand I/O interconnect
- InfiniBand I/O card domain multiplexers with redundant I/O interconnect to a 5U, eight-slot, and two-domain I/O drawer

4.1.2 PCIe I/O infrastructure

IBM extends the use of industry standards on the z Systems server by offering a Peripheral Component Interconnect Express Generation 3 (PCIe Gen3) I/O infrastructure. The PCIe I/O infrastructure that is provided by the central processor complex (CPC) improves I/O capability and flexibility, while allowing for the future integration of PCIe adapters and accelerators.

The z13 PCIe I/O infrastructure consists of the following components:

- PCIe fanouts that support 16 GBps I/O bus interconnection for CPC drawer connectivity to the PCIe I/O drawers
- The 7U, 32-slot, and 4-domain PCIe I/O drawer for PCIe I/O features

The z13 PCIe I/O infrastructure provides these benefits:

- Increased bandwidth from the CPC drawer to the I/O domain in the PCIe I/O drawer through a 16 GBps bus.
- The PCIe I/O drawer doubles the number of I/O ports compared to an I/O drawer. Up to 64 channels (32 PCIe I/O features) are supported versus the 32 channels (8 I/O features) that are offered with the I/O drawer.
- Better granularity for the storage area network (SAN) and the local area network (LAN): For Fibre Channel connection (FICON), High Performance FICON on z Systems (zHPF), and Fibre Channel Protocol (FCP) storage area networks, the FICON Express16S has two channels per feature. For LAN connectivity, the Open Systems Adapter (OSA)-Express5S GbE and the OSA-Express5S 1000BASE-T features have two ports each, and the OSA-Express5S 10 GbE features have one port each.
- New designed native PCIe features can be plugged into the PCIe I/O drawer, such as Flash Express, zEnterprise Data Compression (zEDC) Express, and 10 GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express.

4.1.3 InfiniBand specifications

The InfiniBand specification defines a point-to-point, bidirectional serial communications between two nodes. It is intended for the connection of processors with high-speed peripheral devices, such as disks. InfiniBand supports various signaling rates on a physical lane, and as
with PCI Express, lanes can be bonded together for larger link width. Connection with only one physical lane pair is defined as a 1x link width connection. The specification also supports a 4x or 12x link width connection, by aggregating 4 or 12 pairs of physical lanes.

The base signaling rate on one physical lane is 2.5 Gbps, which is called the single data rate (SDR). InfiniBand can also support enhanced signaling rates like 5.0 Gbps for the double data rate (DDR) and 10 Gbps for the quad data rate (QDR)\(^1\).

While operating at SDR, DDR, or QDR, data transmission of physical lane is 8b/10b encoding, which means that every 10 bits carry 8 bits of data. Thus the data rates for different link widths operating at different signaling rates are:

- 250 MB/s for 1x SDR, 500 MB/s for 1x DDR
- 1 GB/s for 4x\(^2\) SDR, 2 GB/s for 4x DDR
- 3 GB/s for 12x SDR, 6 GB/s for 12x DDR

Link performance: The link speeds do not represent the actual performance of the link. The actual performance is dependent upon many factors that include latency through the adapters, cable lengths, and the type of workload.

z13 servers use InfiniBand 12x DDR connections between the CPC fanouts and I/O drawers. Both 1x and 12x InfiniBand connections, at SDR and DDR, are used for CPC to CPC communications.

For details and the standards for InfiniBand, see the InfiniBand website at:

http://www.infinibandta.org

4.1.4 PCIe Generation 3

The z13 server is the first z Systems server to support the PCIe Generation 3 (Gen3) protocol.

The PCIe Generation 3 uses 128b/130b encoding for data transmission. This encoding reduces the encoding processor usage to approximately 1.54% compared to the PCIe Generation 2, which has an encoding processor usage of 20% by using 8b/10b encoding.

The PCIe standard uses a low voltage differential serial bus. Two wires are used for signal transmission, and a total of four wires (two for transmit and two for receive) become a lane of a PCIe link, which is full duplex. Multiple lanes can be aggregated into a larger link width. PCIe supports link widths of one lane (x1), x2, x4, x8, x12, x16, and x32.

The data transmission rate of a PCIe link is determined by the link width (numbers of lanes), the signaling rate of each lane, and the signal encoding rule. The signaling rate of a PCIe Generation 3 lane is 8 gigatransmit/s (GT/s), which means that 8 gigabits are transmitted per second (Gbps).

A PCIe Gen3 x16 link has the following data transmission rates:

- Data transmission rate per lane: 8 Gb/s * 128/130 bit (encoding) = 7.87 Gb/s = 984.6 MB/s
- Data transmission rate per link: 984.6 MB/s * 16 (lanes) = 15.75 GB/s

Considering the PCIe link is full-duplex mode, the data throughput rate of a PCIe Gen3 x16 link is 31.5 Gbps (15.75 GB/s in both directions).

\(^1\) Higher link speeds might be available for other applications. For more information, see the InfiniBand Trade Association website: http://www.infinibandta.org

\(^2\) z Systems servers do not support 4x link width.
PCIe Gen3 x16 links are used in z13 servers for driving the PCIe I/O drawers, and coupling links for CPC to CPC communications.

Note: Unless specified otherwise, when PCIe is mentioned in remaining sections of this chapter, it refers to PCIe Generation 3.

4.2 I/O system overview

This section lists the z13 I/O characteristics and a summary of supported features.

4.2.1 Characteristics

The z13 I/O subsystem is designed to provide great flexibility, high availability, and excellent performance characteristics:

- **High bandwidth:**
 - z13 servers use PCIe as an internal interconnect protocol to drive PCIe I/O drawers and CPC to CPC connections. The I/O bus infrastructure data rate increases up to 16 GBps. For more information about coupling link connectivity, see 4.9, “Parallel Sysplex connectivity” on page 178.
 - z13 servers use InfiniBand as the internal interconnect protocol to drive I/O drawers and CPC to CPC connections. InfiniBand supports I/O bus infrastructure data rates up to 6 GBps.

- **Connectivity options:**
 - z13 servers can be connected to an extensive range of interfaces, such as FICON/FCP for SAN connectivity, 10 Gigabit Ethernet, Gigabit Ethernet, and 1000BASE-T Ethernet for LAN connectivity.
 - For CPC to CPC connections, z13 servers use Integrated Coupling Adapter (ICA SR) or Parallel Sysplex InfiniBand (IFB).
 - The 10GbE RoCE Express feature provides high-speed memory-to-memory data exchange to a remote CPC by using the Shared Memory Communications over RDMA (SMC-R) protocol for TCP communications.

- **Concurrent I/O upgrade:**
 - You can concurrently add I/O features to z13 servers if unused I/O slot positions are available.

- **Concurrent PCIe I/O drawer upgrade:**
 - Additional PCIe I/O drawers can be installed concurrently if free frame slots for the PCIe I/O drawers are available.
Chapter 4. Central processor complex I/O system structure

Dynamic I/O configuration:
- Dynamic I/O configuration supports the dynamic addition, removal, or modification of the channel path, control units, and I/O devices without a planned outage.

Pluggable optics:
- The FICON Express16S, FICON Express8S and FICON Express8, OSA Express5S, and 10GbE RoCE Express features have Small Form-Factor Pluggable (SFP) optics. These optics allow each channel to be individually serviced in a fiberoptic module failure. The traffic on the other channels on the same feature can continue to flow if a channel requires servicing.

Concurrent I/O card maintenance:
- Every I/O card that is plugged in an I/O drawer or PCIe I/O drawer supports concurrent card replacement during a repair action.

4.2.2 Summary of supported I/O features

The following I/O features are supported:
- Up to 320 FICON Express16S channels
- Up to 320 FICON Express8S channels
- Up to 64 FICON Express8 channels
- Up to 96 OSA-Express5S ports
- Up to 96 OSA-Express4S ports
- Up to 20 ICA SRs with up to 40 coupling links at 8 GBps
- Up to 16 InfiniBand fanouts with one of these options:
 - Up to 32 12x InfiniBand coupling links with HCA3-O fanout
 - Up to 64 1x InfiniBand coupling links with HCA3-O LR (1xIFB) fanout

Coupling links:
- For z13 servers with Driver 27 microcode installed, the maximum number of ICA SR links is 40.
- For z13 servers with Driver 22 microcode installed, the maximum number of ICA SR links is 32.
- ICA SR links are independent from any IFB link count because they occupy a different adapter slot in the CPC drawer. The maximum number of IFB links (any combination of HCA3-O and HCA3-O LR) is 64.
- The maximum number of coupling links on a z13 server is 96, or 104.

In addition to I/O features, the following features are supported exclusively in the PCIe I/O drawer:
- Up to four zFlash Express features
- Up to eight zEDC Express features
- Up to sixteen 10GbE RoCE Express features

4.3 I/O drawer

The I/O drawer is five Electronic Industries Alliance (EIA) units high, and supports up to eight I/O feature cards. Each I/O drawer supports two I/O domains (A and B) for a total of eight I/O card slots. Each I/O domain uses an IFB-MP card in the I/O drawer and a copper cable to connect to a host channel adapter (HCA) fanout in the CPC drawer.
The link between the HCA in the CPC drawer and the InfiniBand Multiplexer (IFB-MP) in the I/O drawer supports a link rate of up to 6 GBps. All cards in the I/O drawer are installed horizontally. Two distributed converter assemblies (DCAs) distribute power to the I/O drawer.

The locations of the DCAs, I/O feature cards, and IFB-MP cards in the I/O drawer are shown in Figure 4-1.

The I/O structure in a z13 CPC is illustrated in Figure 4-2 on page 147. An IFB cable connects the HCA fanout card in the CPC drawer to an IFB-MP card in the I/O drawer. The passive connection between two IFB-MP cards allows redundant I/O interconnection (RII). This configuration provides connectivity between an HCA fanout card, and I/O cards during concurrent fanout card or IFB cable replacement. The IFB cable between an HCA fanout card and each IFB-MP card supports a 6 GBps link rate.

Carry-forward only: Only two I/O drawers are supported on z13 servers on a carry-forward basis only and can host FICON Express8 cards only.
The I/O drawer domains and their related I/O slots are shown in Figure 4-2. The IFB-MP cards are installed at slot 09 at the rear side of the I/O drawer. The I/O features are installed from the front and rear side of the I/O drawer. Two I/O domains (A and B) are supported. Each I/O domain has up to four I/O features for FICON Express8 only (carry-forward). The I/O cards are connected to the IFB-MP card through the backplane board.

Each I/O domain supports four I/O card slots. Balancing I/O cards across both I/O domains is automatically done when the order is placed. Table 4-1 lists the I/O domains and their related I/O slots.

Table 4-1 I/O domains of I/O drawer

<table>
<thead>
<tr>
<th>Domain</th>
<th>I/O slot in domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>02, 05, 08, and 10</td>
</tr>
<tr>
<td>B</td>
<td>03, 04, 07, and 11</td>
</tr>
</tbody>
</table>

4.4 PCIe I/O drawer

The PCIe I/O drawers are attached to the CPC drawer through a PCIe bus and use PCIe as the infrastructure bus within the drawer. The PCIe I/O bus infrastructure data rate is up to 16 GBps.

PCIe switch application-specific integrated circuits (ASICs) are used to fan out the host bus from the processor drawers to the individual I/O features. Up to 64 channels (32 PCIe I/O features) are supported versus the 32 channels (eight I/O features) that are offered with the I/O drawer.
The PCIe I/O drawer is a two-sided drawer (I/O cards on both sides) that is 7U high. The drawer contains 32 I/O slots for feature cards, four switch cards (two in front, two in the back), two DCAs to provide redundant power, and two air-moving devices (AMDs) for redundant cooling.

The locations of the DCAs, AMDs, PCIe switch cards, and I/O feature cards in the PCIe I/O drawer are shown in Figure 4-3.
The I/O structure in a z13 CPC is shown in Figure 4-4. The PCIe switch card provides the fanout from the high-speed x16 PCIe host bus to eight individual card slots. The PCIe switch card is connected to the drawers through a single x16 PCIe Gen 3 bus from a PCIe fanout card.

In the PCIe I/O drawer, the eight I/O feature cards that directly attach to the switch card constitute an I/O domain. The PCIe I/O drawer supports concurrent add and replace I/O features to enable you to increase I/O capability as needed without having to plan ahead.

The PCIe I/O Drawer supports up to 32 I/O features. They are organized into four hardware I/O domains per drawer. Each I/O domain supports up to eight features and is driven through a PCIe switch card. Two PCIe switch cards always provide a backup path for each other through the passive connection in the PCIe I/O drawer backplane. During a PCIe fanout card or cable failure, all 16 I/O cards in the two domains can be driven through a single PCIe switch card.

As an RII design, a switch card in the front is connected to a switch card in the rear through the PCIe I/O drawer board. In addition, switch cards in same PCIe I/O drawer are connected to PCIe fanouts across nodes and CPC drawers for higher availability. This RII design provides a failover capability during a PCIe fanout card failure or CPC drawer upgrade. All
four domains in one of these PCIe I/O drawers can be activated with four fanouts. The flexible service processors (FSPs) are used for system control.

The PCIe I/O drawer domains and their related I/O slots are shown in Figure 4-5.

![Figure 4-5 PCIe I/O drawer with 32 PCIe slots and four I/O domains](image)

Each I/O domain supports up to eight features (FICON, OSA, and crypto), and each drawer supports up to two Flash Express features (four adapters), installed as pairs in slot 1 and 14, 25 and 33. All I/O cards connect to the PCIe switch card through the backplane board.

Table 4-2 lists the I/O domains and slots.

Table 4-2 I/O domains of PCIe I/O drawer

<table>
<thead>
<tr>
<th>Domain</th>
<th>I/O slot in domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01, 02, 03, 04, 06, 07, 08, and 09</td>
</tr>
<tr>
<td>1</td>
<td>30, 31, 32, 33, 35, 36, 37, and 38</td>
</tr>
<tr>
<td>2</td>
<td>11, 12, 13, 14, 16, 17, 18, and 19</td>
</tr>
<tr>
<td>3</td>
<td>20, 21, 22, 23, 25, 26, 27, and 28</td>
</tr>
</tbody>
</table>

Note: The limitation of up to two native PCIe features (Flash Express, zEDC Express, and 10GbE RoCE Express) per I/O domain is eliminated on z13 servers.
4.5 PCIe I/O drawer and I/O drawer offerings

A maximum of five PCIe I/O drawers can be installed that support up to 160 PCIe I/O features. Only PCIe I/O features can be ordered for a new system, and the configurator determines how many PCIe I/O drawers are required. For an upgrade to z13 servers, the correct mix of I/O drawers and PCIe I/O drawers is determined based on the type and number of I/O features (new and carry-forward) that are required. I/O drawers cannot be ordered.

Consideration: On a *new build* z13 server, only PCIe I/O drawers are supported. A mixture of I/O drawers, and PCIe I/O drawers are available only on upgrades to a z13 server.

The PCIe I/O drawers support the following PCIe features:

- FICON Express16S
- FICON Express8S
- OSA-Express5S
- OSA-Express4S
- 10GbE RoCE Express
- Crypto Express5S
- Flash Express
- zEDC Express

A maximum of two I/O drawers can be carried forward for FICON Express8 cards (also carry-forward). As such, a maximum of 16 FICON Express8 cards (a total of 64 FICON Express8 ports) can be carried forward.

Consideration: FICON Express8 cards are supported as carry-forward only for z13. They are installed in an I/O drawer. The installation of an I/O drawer limits the logical partition (LPAR) storage size to 1 TB (independent from the input/output configuration program (IOCP) definition). Moreover, each I/O drawer affects the configuration as follows:

- The total fanout slots for PSIFB are reduced by two (independent of the carry-forward of one or two I/O drawers; two HCA2-C fanout cards are required in both cases).
- The maximum number of PCIe I/O features is reduced by 32.
- The maximum number of FICON channels is reduced by 32.

4.6 Fanouts

The z13 server uses fanout cards to connect the I/O subsystem to the CPC drawer. The fanout cards also provide the ICA SR and InfiniBand coupling links for Parallel Sysplex. All fanout cards support concurrent add, delete, and move.

The internal z13 I/O infrastructure consists of PCIe fanout cards and InfiniBand fanout cards:

- The PCIe Generation3 fanout card is a one port card and connects to a PCIe I/O drawer supporting an eight-slot I/O domain. This card is always installed in pairs to support I/O domain redundant connectivity.
- The InfiniBand HCA2-C fanout card is available as carry-forward of FICON Express8 features that are installed in I/O drawers.
The PCIe and InfiniBand fanouts are installed in the front of each CPC drawer. Each CPC drawer has 10 PCIe Gen3 fanout slots and four InfiniBand fanout slots. The PCIe fanout slots are named LG02 - LG06 and LG11 - LG15, left to right. The InfiniBand fanout slots are in the middle of the CPC drawer and are named LG07 - LG10, left to right. Slots LG01 and LG16 are not used for I/O infrastructure.

Five types of fanout cards are supported by z13 servers. Each slot can hold one of the following five fanouts:

- PCIe Gen3 fanout card: This copper fanout provides connectivity to the PCIe switch card in the PCIe I/O drawer.
- Integrated Coupling Adapter (ICA SR): This adapter provides coupling connectivity between z13 and z13s servers, up to 150-meter (492 ft) distance, 8 GB/s link rate.
- Host Channel Adapter (HCA2-C): This copper fanout provides connectivity to the IFB-MP card in the I/O drawer.
- Host Channel Adapter (HCA3-O (12xIFB)): This optical fanout provides 12x InfiniBand coupling link connectivity up to 150-meter (492 ft) distance to a z13, z13s, zEC12, zBC12, z196, and z114 server.
- Host Channel Adapter (HCA3-O LR (1xIFB)): This optical long range fanout provides 1x InfiniBand coupling link connectivity up to a 10 km (6.2 miles) unrepeated (or 100 km (62 miles) when extended by using z Systems qualified dense wavelength division multiplexing (DWDM) equipment) distance to z13, z13s, zEC12, zBC12, z196 and z114 servers.

The PCIe Gen3 fanout card comes with one port, the HCA3-O LR (1xIFB) fanout comes with four ports, and other fanouts come with two ports.

Figure 4-6 on page 153 illustrates the following PCIe and IFB connections from the CPC drawer:

- A PCIe I/O drawer (PCIe Gen3)
- Another CPC through InfiniBand (either 12x or 1x HCA3-O)
- Another z13 server connected through a dedicated PCIe ICA SR
Figure 4-6 shows an I/O connection scheme that is not tied to a particular CPC drawer. In a real configuration I/O connectivity is mixed across multiple CPC drawers, if available, for I/O connection redundancy.

4.6.1 PCIe Generation 3 fanout (FC 0173)

The PCIe Generation 3 fanout card provides connectivity to an PCIe I/O drawer by using a copper cable. One port on the fanout card is dedicated for PCIe I/O. The bandwidth of this PCIe fanout card supports a link rate of 16 GBps.

A 16x PCIe copper cable of 1.5 meters (4.92 ft) to 4.0 meters (13.1 ft) is used for connection to the PCIe switch card in the PCIe I/O drawer. PCIe fanout cards are always plugged in pairs and provide redundancy for I/O domains within the PCIe I/O drawer.

The pairs of PCIe fanout cards of a z13 Model N30 are split across the two logical nodes within a CPC drawer (LG02 - LG06 and LG11 - LG15). All remaining models split the PCIe fanout pairs across different processor drawers for redundancy purposes.

PCIe fanout: The PCIe fanout is used exclusively for I/O and cannot be shared for any other purpose.

4.6.2 HCA2-C fanout (FC 0162)

The HCA2-C fanout is used to connect to an I/O drawer by using a copper cable. The two ports on the fanout are dedicated to I/O. The bandwidth of each port on the HCA2-C fanout supports a link rate of up to 6 GBps.

A 12x InfiniBand copper cable of 1.5 meters (4.92 ft) to 3.5 meters (11.4 ft) is used for connection to the IFB-MP card in the I/O drawer. An HCA2-C fanout is supported only if
carried forward with a miscellaneous equipment specification (MES) from z196, z114, zEC12, or zBC12 to z13 servers. For a new build z13 server, HCA2-C cannot be ordered.

HCA2-C fanout: The HCA2-C fanout is used exclusively for a connection to the I/O drawer. It cannot be shared for any other purpose.

4.6.3 Integrated Coupling Adapter (FC 0172)

The IBM ICA SR, introduced on the z13 platform, is a two-port fanout that is used for short distance coupling connectivity and uses a new coupling channel type, the CS5. The ICA SR uses PCIe Gen3 technology, with x16 lanes that are bifurcated into x8 lanes for coupling. No performance degradation is expected compared to the Coupling over InfiniBand 12x IFB3 protocol. The ICA SR is designed to drive distances up to 150 m and supports a link data rate of 8 Gbps. It is also designed to support up to four channel-path identifiers (CHPIDs) per port and seven subchannels (devices) per CHPID. The coupling links can be defined as shared between images within a CSS. They also can be spanned across multiple CSSs in a CPC. Unlike the HCA3-O 12x InfiniBand links, the ICA SR cannot define more than four CHPIDS per port. When STP is enabled, ICA SR coupling links can be defined as timing-only links to other z13 and z13s CPCs.

The ICA SR fanout is housed in the PCIe I/O fanout slot on the z13 CPC drawer, which supports 10 PCIe I/O slots. Up to 10 ICA SR fanouts and up to 20 ICA SR ports are supported on a z13 CPC drawer, enabling greater connectivity for short distance coupling on a single processor node compared to previous generations. The maximum number of ICA SR fanout features is 20 per system with Driver 27 microcode installed, and 16 per system with Driver 25 microcode installed.

The ICA SR can be used only for coupling connectivity between z13 and z13s servers. It does not support connectivity to zEC12, zBC12, z196, or z114 servers, and it cannot be connected to HCA3-O or HCA3-O LR coupling fanouts.

The ICA SR fanout requires new cabling different from the 12x IFB cables. For distances up to 100 m, you can choose the OM3 fiber optic cable. For distances up to 150 m, you must choose the OM4 fiber optic cable. For more information, see *Planning for Fiber Optic Links*, GA23-1407, and *IBM z13 Installation Manual for Physical Planning*, GC28-6938.

4.6.4 HCA3-O (12x IFB) fanout (FC 0171)

The HCA3-O fanout for 12x InfiniBand provides an optical interface that is used for coupling links. The two ports on the fanout are dedicated to coupling links that connect to z13, z13s, zEC12, zBC12, z196, and z114 CPCs. Up to 16 HCA3-O (12x IFB) fanouts are supported, and provide up to 32 ports for coupling links.

The fiber optic cables are industry standard OM3 (2000 MHz-km) 50-µm multimode optical cables with multifiber push-on (MPO) connectors. The maximum cable length is 150 meters (492 ft). There are 12 pairs of fibers: 12 fibers for transmitting, and 12 fibers for receiving. The HCA3-O (12xIFB) fanout supports a link data rate of 6 GBps.
Chapter 4. Central processor complex I/O system structure

155

Figure 4-7 OM3 50/125 μm multimode fiber cable with MPO connectors

Important: The HCA3-O fanout has two ports (1 and 2). Each port has one connector for transmitting (TX) and one connector for receiving (RX). Ensure that you use the correct cables. An example is shown in Figure 4-7.

For more information, see Planning for Fiber Optic Links, GA23-1407, and IBM z13 Installation Manual for Physical Planning, GC28-6938.

A fanout has two ports for optical link connections, and supports up to 16 CHPIDs across both ports. These CHPIDs are defined as channel type CIB in the input/output configuration data set (IOCDS). The coupling links can be defined as shared between images within a channel subsystem (CSS). They also can be spanned across multiple CSSs in a CPC.

Each HCA3-O (12x IFB) fanout has an assigned Adapter ID (AID) number. This number must be used for definitions in IOCDS to create a relationship between the physical fanout location and the CHPID number. For more information about AID numbering, see “Adapter ID number assignment” on page 157.

For more information about how the AID is used and referenced in the HCD, see Implementing and Managing InfiniBand Coupling Links on System z, SG24-7539.

When STP is enabled, IFB coupling links can be defined as timing-only links to other z13, z13s, zEC12, zBC12, z196, and z114 CPCs.

12x IFB and 12x IFB3 protocols

These protocols are supported by the HCA3-O for 12x IFB feature:

- 12x IFB3 protocol: When HCA3-O (12xIFB) fanouts are communicating with HCA3-O (12x IFB) fanouts and are defined with four or fewer CHPIDs per port, the 12x IFB3 protocol is used.

- 12x IFB protocol: If more than four CHPIDs are defined per HCA3-O (12xIFB) port, or HCA3-O (12x IFB) features are communicating with HCA2-O (12x IFB) features on zEnterprise or System z10 CPCs, links run with the 12x IFB protocol.

The HCA3-O feature that supports 12x InfiniBand coupling links is designed to deliver improved service times. When no more than four CHPIDs are defined per HCA3-O (12xIFB) port, the 12x IFB3 protocol is used. When you use the 12x IFB3 protocol, synchronous...
service times are up to 40% faster than when you use the 12x IFB protocol. Unlike the HCA3-O 12x InfiniBand links, the ICA SR cannot define more than four CHPIDS per port.

4.6.5 HCA3-O LR (1x IFB) fanout (FC 0170)

The HCA3-O LR fanout for 1x InfiniBand provides an optical interface that is used for coupling links. The four ports on the fanout are dedicated to coupling links to connect to z13, z13s, zEC12, zBC12, z196, and z114 servers. Up to 16 HCA3-O LR (1xIFB) fanouts are supported by z13 servers, and provide up to 64 ports for coupling links.

The HCA-O LR fanout supports InfiniBand 1x optical links that offer long-distance coupling links. The cable has one lane that contains two fibers. One fiber is used for transmitting, and the other fiber is used for receiving data.

Each connection supports a link rate of up to 5 Gbps if connected to a z13, z13s, zEC12, zBC12, z196, or z114 server. It supports a link rate of 2.5 Gbps when connected to a z Systems qualified DWDM. The link rate is auto-negotiated to the highest common rate.

The fiber optic cables are 9-µm SM optical cables that terminate with an LC Duplex connector. With direct connection, the supported unrepeated distance\(^3\) is up to 10 km (6.2 miles), and up to 100 km (62 miles) with z Systems qualified DWDM.

A fanout has four ports for optical link connections, and supports up to 16 CHPIDs across all four ports. These CHPIDs are defined as channel type CIB in the IOCDS. The coupling links can be defined as shared between images within a channel subsystem, and also can be spanned across multiple CSSs in a server.

Each HCA3-O LR (1xIFB) fanout can be used for link definitions to another server, or a link from one port to a port in another fanout on the same server.

The source and target operating system image, CF image, and the CHPIDs that are used on both ports in both servers are defined in IOCDS.

Each HCA3-O LR (1xIFB) fanout has an assigned AID number. This number must be used for definitions in IOCDS to create a relationship between the physical fanout location and the CHPID number. For more information about AID numbering, see “Adapter ID number assignment” on page 157.

When STP is enabled, IFB LR coupling links can be defined as timing-only links to other z13, z13s, zEC12, zBC12, z196, and z114 CPCs.

4.6.6 Fanout considerations

Fanout slots in each CPC drawer can be used to plug different fanouts. One drawer can hold up to 10 PCIe fanouts and four InfiniBand fanout cards.

For migration purposes, the number of available HCA3 or HCA3 LR cards in the z13 server can be important (for coupling connectivity to zEC12, zBC12, z196, and z114). The carry-forward of FICON Express8 features reduces the number of available InfiniBand fanout slots by two. This limitation can be important for coupling connectivity planning, especially for a z13 Model N30, as shown in Table 4-3 on page 157. Only two fanout adapter slots for HCA3 or HCA3 LR features are available for a one CPC drawer model after a FICON Express8 feature is carried forward.

\(^3\) On special request, see http://www.ibm.com/systems/z/advantages/pso/cflinks.html
Table 4-3 shows the z13 models N30 and N63 where the limitation of HCA3 and HCA3 LR cards that are caused by carry-forward of FICON Express8 features might require attention during migration. For a three or four CPC drawers, the IFB fanout capability is relieved because the total number of IFB fanout slots increases with each additional CPC drawer.

For migration considerations, see 4.9.2, “Migration considerations” on page 183.

Table 4-3 CPC drawer InfiniBand fanout availability limitation with carry-forward FICON Express8 features

<table>
<thead>
<tr>
<th>CPC Model</th>
<th>Carry forward FICON Express8 features</th>
<th>Resulting number of I/O drawers</th>
<th>Max. number of HCA3 or HCA3 LR fanout cards</th>
<th>Max. number of PCIe I/O drawers</th>
<th>Max. number of PCIe I/O features</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3(^a)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>1 - 8</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 - 16</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N63</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>1 - 8</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>9 - 16</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>96</td>
</tr>
</tbody>
</table>

\(a\). The third PCIe I/O drawer can be populated only with two I/O domains (16 I/O features).

Adapter ID number assignment

PCle and IFB fanouts and ports are identified by an AID that is initially dependent on their physical locations, which is unlike channels that are installed in a PCIe I/O drawer or I/O drawer. Those channels are identified by a physical channel ID (PCHID) number that is related to their physical location. This AID must be used to assign a CHPID to the fanout in the IOCDS definition. The CHPID assignment is done by associating the CHPID to an AID port.

Table 4-4 illustrates the AID assignment for each fanout slot relative to the drawer location on a new build system.

Table 4-4 AID number assignment

<table>
<thead>
<tr>
<th>Drawer</th>
<th>Location</th>
<th>Fanout slot</th>
<th>AIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>A15A</td>
<td>LG02-LG06 (PCle)</td>
<td>2E-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG07-LG10 (IFB)</td>
<td>0C-0F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG11-LG15 (PCle)</td>
<td>33-37</td>
</tr>
<tr>
<td>Second</td>
<td>A19A</td>
<td>LG02-LG06 (PCle)</td>
<td>24-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG07-LG10 (IFB)</td>
<td>08-0B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG11-LG15 (PCle)</td>
<td>29-2D</td>
</tr>
<tr>
<td>Third</td>
<td>A23A</td>
<td>LG02-LG06 (PCle)</td>
<td>1A-1E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG07-LG10 (IFB)</td>
<td>04-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG11-LG15 (PCle)</td>
<td>1F-23</td>
</tr>
<tr>
<td>Fourth</td>
<td>A27A</td>
<td>LG02-LG06 (PCle)</td>
<td>10-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG07-LG10 (IFB)</td>
<td>00-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG11-LG15 (PCle)</td>
<td>15-19</td>
</tr>
</tbody>
</table>
Fanout slots
The fanout slots are numbered LG02 - LG15 left to right, as shown in Table 4-4 on page 157. All fanout locations and their AIDs for all four drawers are shown for reference only. Slots LG01 and LG16 never have a fanout installed because they are dedicated for FSPs.

Important: The AID numbers in Table 4-4 are valid only for a new build system or if new processor drawers are added. If a fanout is moved, the AID follows the fanout to its new physical location.

The AID assignment is listed in the PCHID REPORT that is provided for each new server or for an MES upgrade on existing servers. Example 4-1 shows part of a PCHID REPORT for a model NE1. In this example, one fanout is installed in the first drawer (location A15A slot LG02) and one fanout is installed in the second drawer (location A19A slot LG11). The assigned AID for the fanout in the first drawer is 2E. The AID that is assigned to the fanout in the second drawer is 29.

Example 4-1 AID assignment in PCHID REPORT

<table>
<thead>
<tr>
<th>Source</th>
<th>Cage</th>
<th>Slot</th>
<th>F/C</th>
<th>PCHID/Ports or AID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15/LG02</td>
<td>A15A</td>
<td>LG02</td>
<td>0172</td>
<td>AID=2E</td>
<td></td>
</tr>
<tr>
<td>A19/LG11</td>
<td>A19A</td>
<td>LG11</td>
<td>0172</td>
<td>AID=29</td>
<td></td>
</tr>
</tbody>
</table>

Fanout features that are supported by the z13 server are shown in Table 4-5, which provides the feature type, feature code, and information about the link supported by the fanout feature.

Table 4-5 Fanout summary

<table>
<thead>
<tr>
<th>Fanout feature</th>
<th>Feature code</th>
<th>Use</th>
<th>Cable type</th>
<th>Connector type</th>
<th>Maximum distance</th>
<th>Link data rate<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCA2-C</td>
<td>0162</td>
<td>Connect to I/O drawer</td>
<td>Copper</td>
<td>N/A</td>
<td>3.5 m (11.48 ft)</td>
<td>6 GBps</td>
</tr>
<tr>
<td>PCIe fanout</td>
<td>0173</td>
<td>Connect to PCIe I/O drawer</td>
<td>Copper</td>
<td>N/A</td>
<td>4 m (13.1 ft)</td>
<td>16 GBps</td>
</tr>
<tr>
<td>HCA3-O (12xIFB)</td>
<td>0171</td>
<td>Coupling link</td>
<td>50-µm MM OM3 (2000 MHz-km)</td>
<td>MPO</td>
<td>150 m (492 ft)</td>
<td>6 GBps<sup>b</sup></td>
</tr>
<tr>
<td>HCA3-O LR (1xIFB)</td>
<td>0170</td>
<td>Coupling link</td>
<td>9-µm SM</td>
<td>LC Duplex</td>
<td>10 km (6.2 miles)</td>
<td>5.0 Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 km<sup>c</sup></td>
<td>2.5 Gbps<sup>d</sup></td>
</tr>
<tr>
<td>ICA SR</td>
<td>0172</td>
<td>Coupling link</td>
<td>OM4</td>
<td>MTP</td>
<td>150 m (492 ft)</td>
<td>8 Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OM3</td>
<td>MTP</td>
<td>100 m (328 ft)</td>
<td>8 Gbps</td>
</tr>
</tbody>
</table>

^a The link data rates do not represent the actual performance of the link. The actual performance depends on many factors that include latency through the adapters, cable lengths, and the type of workload.

^b When using the 12x IFB3 protocol, synchronous service times are 40% faster than the 12x IFB protocol.

^c Up to 100 km (62 miles) with repeaters (z Systems qualified DWDM).

^d Auto-negotiated, depending on the DWDM equipment.
Chapter 4. Central processor complex I/O system structure

4.7 I/O features (cards)

I/O features (cards) have ports\(^4\) to connect the z13 server to external devices, networks, or other servers. I/O features are plugged into the PCIe I/O drawer, based on the configuration rules for the server. Different types of I/O cards are available, one for each channel or link type. I/O cards can be installed or replaced concurrently.

In addition to PCIe I/O features, FICON Express8 features can be installed in I/O drawers. z13 servers support a maximum of two I/O drawers as carry-forward during an MES. This configuration represents a maximum of 16 FICON Express8 features (a total of 64 FICON Express8 ports) that can be carried forward.

Consideration: The installation of an I/O drawer limits the LPAR storage to 1 TB (independent from the IOCP definition). Moreover, each I/O drawer affects the configuration as follows:

- The total fanout slots for PSIFB are reduced by two (independent of the carry-forward of one or two I/O drawers; two HCA2-C fanout cards are required in both cases).
- The maximum number of PCIe I/O features is reduced by 32.
- The maximum number of FICON channels is reduced by 32.

4.7.1 I/O feature card ordering information

Table 4-6 lists the I/O features that are supported by z13 servers and the ordering information for them.

<table>
<thead>
<tr>
<th>Channel feature</th>
<th>Feature code</th>
<th>New build</th>
<th>Carry-forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express16S 10KM LX</td>
<td>0418</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>FICON Express16S SX</td>
<td>0419</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>FICON Express8S 10KM LX</td>
<td>0409</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8S SX</td>
<td>0410</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8 10KM LX</td>
<td>3325</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8 SX</td>
<td>3326</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE LR</td>
<td>0415</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE SR</td>
<td>0416</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S GbE LX</td>
<td>0413</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S GbE SX</td>
<td>0414</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet</td>
<td>0417</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE LR</td>
<td>0406</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE SR</td>
<td>0407</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S GbE LX</td>
<td>0404</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

\(^4\) Certain I/O features do not have external ports, such as Crypto Express5S and zEDC
4.7.2 Physical channel (PCHID) report

A PCHID reflects the physical location of a channel-type interface. A PCHID number is based on these factors:

- The I/O drawer, and PCIe I/O drawer location
- The channel feature slot number
- The port number of the channel feature

A CHPID does not directly correspond to a hardware channel port, but it is assigned to a PCHID in the hardware configuration definition (HCD) or IOCP.

A PCHID REPORT is created for each new build server and for upgrades on existing servers. The report lists all I/O features that are installed, the physical slot location, and the assigned PCHID. Example 4-2 shows a portion of a sample PCHID REPORT. For more information about the AID numbering rules for InfiniBand coupling links, see Table 4-4 on page 157.

Example 4-2 PCHID REPORT

<table>
<thead>
<tr>
<th>Channel feature</th>
<th>Feature code</th>
<th>New build</th>
<th>Carry-forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA-Express4S GbE SX</td>
<td>0405</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T Ethernet</td>
<td>0408</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Integrated Coupling Adapter (ICA SR)</td>
<td>0172</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>HCA3-O (12xIFB)</td>
<td>0171</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HCA3-O LR (1xIFB)</td>
<td>0170</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Crypto ExpressSS</td>
<td>0890</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Flash Express</td>
<td>0403</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>Flash Express</td>
<td>0402</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>10GbE RoCE Express</td>
<td>0411</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>zEDC Express</td>
<td>0420</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Important: z13 servers do not support the ISC-3, HCA2-O (12x), or HCA2-O LR (1x) features and cannot participate in a Mixed Coordinated Timing Network (CTN).
The following list explains the content of the sample PCHID REPORT:

- Feature code 0170 (HCA3-O LR (1xIFB)) is installed in CPC drawer 4 (location A27A, slot LG07), and has AID 00 assigned.
- Feature code 0172 (Integrated Coupling Adapter (ICA SR) is installed in CPC drawer 1 (location A15A, slot LG04), and has AID 30 assigned.
- Feature code 0414 (OSA-Express5S GbE short wavelength (SX)) is installed in PCIe I/O drawer 2 (location Z22B, slot 03), and has PCHID 108 assigned. PCHID 108 is shared by ports D0 and D1.
- Feature code 0418 (FICON Express16S long wavelength (LX) 10 km (6.2 miles)) is installed in PCIe I/O drawer 2 (location Z22B, slot 04), and has PCHIDs 10C and 10D assigned.
- Feature code 0411 (10GbE RoCE Express) is installed in PCIe I/O drawer 3 (location Z08B, slot 20), and has PCHID 240 assigned. PCHID 240 is shared by ports D0 and D1.

A resource group (RG) parameter is shown in the PCHID REPORT for native PCIe features. A balanced plugging of native PCIe features exists between two resource groups (RG1 and RG2). For more information about resource groups, see Appendix G, “Native Peripheral Component Interconnect Express (PCIe)” on page 547.

The preassigned PCHID number of each I/O port relates directly to its physical location (jack location in a specific slot).

4.8 Connectivity

I/O channels are part of the CSS. They provide connectivity for data exchange between servers, or between servers and external control units (CUs) and devices, or between networks.

Communication between servers is implemented by using ICA SR, coupling over InfiniBand, or channel-to-channel (CTC) connections.
Communication to LANs is provided by the OSA-Express5S, OSA-Express4S, and 10GbE RoCE Express features.

Connectivity to external I/O subsystems, disks for example, is provided by FICON channels.

4.8.1 I/O feature support and configuration rules

Table 4-7 lists the I/O features that are supported. The table shows the number of ports per card, port increments, the maximum number of feature cards, and the maximum number of channels for each feature type. Also, the CHPID definitions that are used in the IOCDS are listed.

<table>
<thead>
<tr>
<th>I/O feature</th>
<th>Number of Ports per card</th>
<th>Port increments</th>
<th>Maximum number of Ports</th>
<th>I/O slots</th>
<th>PCHID</th>
<th>CHPID definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express16S LX/SX</td>
<td>2</td>
<td>2</td>
<td>320</td>
<td>160</td>
<td>Yes</td>
<td>FC, FCP</td>
</tr>
<tr>
<td>FICON Express8S LX/SX</td>
<td>2</td>
<td>2</td>
<td>320</td>
<td>160</td>
<td>Yes</td>
<td>FC, FCP</td>
</tr>
<tr>
<td>FICON Express8 LX/SX</td>
<td>4</td>
<td>4</td>
<td>64</td>
<td>16</td>
<td>Yes</td>
<td>FC, FCP</td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE LR/SR</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>Yes</td>
<td>OSD, OSX</td>
</tr>
<tr>
<td>OSA-Express5S GbE LX/SX</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>Yes</td>
<td>OSD</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>Yes</td>
<td>OSC, OSD, OSE, OSM, OSN</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE LR/SR</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>Yes</td>
<td>OSD, OSX</td>
</tr>
<tr>
<td>OSA-Express4S GbE LX/SX</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>Yes</td>
<td>OSD</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>Yes</td>
<td>OSC, OSD, OSE, OSM, OSN</td>
</tr>
<tr>
<td>10GbE RoCE Express</td>
<td>2</td>
<td>2</td>
<td>32</td>
<td>16</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Integrated Coupling Adapter (ICA SR)</td>
<td>2</td>
<td>2</td>
<td>32, 40b</td>
<td>16, 20</td>
<td>N/A</td>
<td>CS5</td>
</tr>
<tr>
<td>HCA3-O for 12x IFB and 12x IFB3</td>
<td>2</td>
<td>2</td>
<td>32</td>
<td>16</td>
<td>N/A</td>
<td>CIB</td>
</tr>
<tr>
<td>HCA3-O LR for 1x IFB</td>
<td>4</td>
<td>4</td>
<td>64</td>
<td>16</td>
<td>N/A</td>
<td>CIB</td>
</tr>
</tbody>
</table>

- Defined by PFID (PCIe Function ID).
- With Driver 27 microcode.
- Identified by AID (Adapter identification) instead of a PCHID.
At least one I/O feature (FICON) or one coupling link feature (ICA SR or HCA3-O) must be present in the minimum configuration.

The following features can be shared and spanned:

- FICON channels that are defined as FC or FCP
- OSA-Express5S features that are defined as OSC, OSD, OSE, OSM, OSN, or OSX
- OSA-Express4S features that are defined as OSC, OSD, OSE, OSM, OSN, or OSX
- Coupling links that are defined as CS5, CIB, or ICP
- HiperSockets that are defined as IQD

Note: There is a new parameter for HiperSockets IOCP definitions on z13 servers. As such, the z13 IOCP definitions need to be migrated to support the HiperSockets definitions (CHPID type IQD). On z13 servers, the CHPID statement of HiperSockets devices requires the keyword VCHID. VCHID specifies the virtual channel identification number associated with the channel path. Valid range is 7E0 - 7FF. VCHID is not valid on z Systems servers before z13 servers.

The following features are exclusively plugged into a PCIe I/O drawer and do not require the definition of a CHPID and CHPID type:

- Each Crypto Express feature occupies one I/O slot, but does not have a CHPID type. However, LPARs in all CSSs have access to the features. Each Crypto Express adapter can be defined to up to 85 LPARs.
- Each Flash Express feature occupies two I/O slots, but does not have a CHPID type. However, LPARs in all CSSs have access to the features. The Flash Express feature can be defined to up to 85 LPARs.
- Each RoCE feature occupies one I/O slot but does not have a CHPID type. However, LPARs in all CSSs have access to the feature. The RoCE feature can be defined to up to 31 LPARs.
- Each zEDC feature occupies one I/O slot but does not have a CHPID type. However, LPARs in all CSSs have access to the feature. The zEDC feature can be defined to up to 15 LPARs.

I/O feature cables and connectors

The IBM Facilities Cabling Services fiber transport system offers a total cable solution service to help with cable ordering requirements. These services can include the requirements for all of the protocols and media types that are supported (for example, FICON, Coupling Links, and OSA). The services can help whether the focus is the data center, a SAN, a LAN, or the end-to-end enterprise.

Cables: All fiber optic cables, cable planning, labeling, and installation are client responsibilities for new z13 installations and upgrades. Fiber optic conversion kits and mode conditioning patch cables are not orderable as features on z13 servers. All other cables must be sourced separately.

The Enterprise Fiber Cabling Services use a proven modular cabling system, the fiber transport system (FTS), which includes trunk cables, zone cabinets, and panels for servers, directors, and storage devices. FTS supports Fiber Quick Connect (FQC), a fiber harness that is integrated in the frame of a z13 server for quick connection. The FQC is offered as a feature on z13 servers for connection to FICON LX channels.
Whether you choose a packaged service or a custom service, high-quality components are used to facilitate moves, additions, and changes in the enterprise to prevent having to extend the maintenance window.

Table 4-8 lists the required connector and cable type for each I/O feature on z13 servers.

Table 4-8 I/O feature connector and cable types

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Feature name</th>
<th>Connector type</th>
<th>Cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0418</td>
<td>FICON Express16S LX 10 km</td>
<td>LC Duplex</td>
<td>9 µm SM<sup>a</sup></td>
</tr>
<tr>
<td>0419</td>
<td>FICON Express16S SX</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM<sup>b</sup></td>
</tr>
<tr>
<td>0409</td>
<td>FICON Express8S LX 10 km</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>0410</td>
<td>FICON Express8S SX</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>3325</td>
<td>FICON Express8 LX 10 km</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>3326</td>
<td>FICON Express8 SX</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0415</td>
<td>OSA-Express5S 10 GbE LR</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>0416</td>
<td>OSA-Express5S 10 GbE SR</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0413</td>
<td>OSA-Express5S GbE LX</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>0414</td>
<td>OSA-Express5S GbE SX</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0417</td>
<td>OSA-Express5S 1000BASE-T</td>
<td>RJ-45</td>
<td>Category 5 UTP<sup>c</sup></td>
</tr>
<tr>
<td>0404</td>
<td>OSA-Express4S GbE LX</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>0405</td>
<td>OSA-Express4S GbE SX</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0406</td>
<td>OSA-Express4S 10 GbE LR</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
<tr>
<td>0407</td>
<td>OSA-Express4S 10 GbE SR</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0408</td>
<td>OSA-Express4S 1000BASE-T</td>
<td>RJ-45</td>
<td>Category 5 UTP</td>
</tr>
<tr>
<td>0411</td>
<td>10GbE RoCE Express</td>
<td>LC Duplex</td>
<td>50, 62.5 µm MM</td>
</tr>
<tr>
<td>0172</td>
<td>Integrated Coupling Adapter (ICA SR)</td>
<td>MPO</td>
<td>50 µm MM OM4 (4.7 GHz-km)<sup>d</sup></td>
</tr>
<tr>
<td>0171</td>
<td>HCA3-O (12xIFB)</td>
<td>MPO</td>
<td>50 µm MM OM3 (2 GHz-km)</td>
</tr>
<tr>
<td>0170</td>
<td>HCA3-O LR (1xIFB)</td>
<td>LC Duplex</td>
<td>9 µm SM</td>
</tr>
</tbody>
</table>

^a SM is single-mode fiber.

^b MM is multimode fiber.

^c UTP is unshielded twisted pair. Consider using category 6 UTP for 1000 Mbps connections.

^d Or 50 µm MM OM3 (2 GHz-km), but OM4 is highly recommended.

4.8.2 FICON channels

The FICON Express16S, FICON Express8S, and FICON Express8 features conform to the following architectures:

- Fibre Connection (FICON)
- High Performance FICON on z Systems (zHPF)
- Fibre Channel Protocol (FCP)
They provide connectivity between any combination of servers, directors, switches, and devices (control units, disks, tapes, and printers) in a SAN.

Each FICON Express16S or FICON Express8S feature occupies one I/O slot in the PCIe I/O drawer. Each feature has two ports, each supporting an LC Duplex connector, with one PCHID and one CHPID associated with each port.

Each FICON Express8 feature occupies one I/O slot in the I/O drawer. Each feature has four ports, each supporting an LC Duplex connector, with one PCHID and one CHPID that are associated with each port.

All FICON Express16S, FICON Express8S, and FICON Express8 features use SFP optics that allow for concurrent repairing or replacement for each SFP. The data flow on the unaffected channels on the same feature can continue. A problem with one FICON port no longer requires replacement of a complete feature.

All FICON Express16S, FICON Express8S, and FICON Express8 features also support cascading, which is the connection of two FICON Directors in succession. This configuration minimizes the number of cross-site connections and helps reduce implementation costs for disaster recovery applications, IBM Geographically Dispersed Parallel Sysplex™ (GDPS), and remote copy.

z13 servers now support 32K devices per FICON channel for all FICON features, which more than the 24K in previous generations.

Each FICON Express16S, FICON Express8S, and FICON Express8 channel can be defined independently for connectivity to servers, switches, directors, disks, tapes, and printers:

- CHPID type FC: FICON, zHPF, and FCTC. All of these protocols are supported simultaneously.
- CHPID type FCP: Fibre Channel Protocol that supports attachment to SCSI devices directly or through Fibre Channel switches or directors.

FICON channels (CHPID type FC or FCP) can be shared among LPARs and can be defined as spanned. All ports on a FICON feature must be of the same type, either LX or SX. The features are connected to a FICON capable control unit, either point-to-point or switched point-to-point, through a Fibre Channel switch.

Statement of Direction: The z13 and z13s servers are the last z Systems servers to support FICON Express8 features for 2 Gbps connectivity.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

FICON Express16S

The FICON Express16S feature is exclusively in the PCIe I/O drawer. Each of the two independent ports is capable of 4 Gbps, 8 Gbps, or 16 Gbps. The link speed depends on the capability of the attached switch or device. The link speed is auto-negotiated, point-to-point, and is transparent to users and applications.
The two types of FICON Express16S optical transceivers that are supported are the LX and the SX:

- FICON Express16S 10 km LX feature, FC 0418, with two ports per feature, supporting LC Duplex connectors
- FICON Express16S SX feature, FC 0419, with two ports per feature, supporting LC Duplex connectors

Each port of the FICON Express16S 10 km LX feature uses an optical transceiver that supports an unrepeated distance of 10 km (6.2 miles) by using 9 µm single-mode fiber.

Each port of the FICON Express16S SX feature uses an optical transceiver that supports up to 125 m (410 feet) of distance depending on the fiber that is used.

Consideration: FICON Express16S features do not support auto-negotiation to a data link rate of 2 Gbps (only 4, 8, or 16 Gbps).

FICON Express8S
The FICON Express8S feature is exclusively in the PCIe I/O drawer. Each of the two independent ports is capable of 2 Gbps, 4 Gbps, or 8 Gbps. The link speed depends on the capability of the attached switch or device. The link speed is auto-negotiated, point-to-point, and is transparent to users and applications.

The two types of FICON Express8S optical transceivers that are supported are the LX and the SX:

- FICON Express8S 10 km LX feature, FC 0409, with two ports per feature, supporting LC Duplex connectors
- FICON Express8S SX feature, FC 0410, with two ports per feature, supporting LC Duplex connectors

Each port of the FICON Express8S 10 km LX feature uses an optical transceiver that supports an unrepeated distance of 10 km (6.2 miles) by using 9 µm single-mode fiber.

Each port of the FICON Express8S SX feature uses an optical transceiver that supports up to 150 m (492 feet) of distance depending on the fiber used.

Statement of Direction: The IBM z13 and z13s servers will be the last z Systems servers to offer ordering of FICON Express8S channel features. Enterprises that have 2 Gb device connectivity requirements must carry forward these channels.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

FICON Express8
The FICON Express8 feature for z13 servers is in the I/O drawer (carry-forward only). Each of the four independent ports is capable of 2 Gbps, 4 Gbps, or 8 Gbps. The link speed depends on the capability of the attached switch or device. The link speed is auto-negotiated, point-to-point, and is transparent to users and applications.
The two types of FICON Express8 optical transceivers that are supported are the LX and the SX:

- FICON Express8 10 km LX feature, FC 3325, with four ports per feature, supporting LC Duplex connectors
- FICON Express8 SX feature, FC 3326, with four ports per feature, supporting LC Duplex connectors

Each port of FICON Express8 10 km LX feature uses an optical transceiver that supports an unrepeated distance of 10 km (6.2 miles) by using 9 µm single-mode fiber.

Each port of FICON Express8 SX feature uses an optical transceiver that supports to up to 150 m (492 feet) of distance depending on the fiber used.

FICON enhancements

Together with the FICON Express16S, z13 servers have introduced enhancements for FICON in both functional and performance aspects.

Forward Error Correction

Forward Error Correction (FEC) is a technique used for reducing data errors when transmitting over unreliable or noisy communication channels (improving signal to noise ratio). By adding redundancy error-correction code (ECC) to the transmitted information, the receiver can detect and correct a number of errors without requiring retransmission. This process has improved signal reliability and bandwidth utilization by reducing retransmissions due to bit errors, especially for connections across long distance, like an inter-switch link (ISL) in a GDPS Metro Mirror environment.

The FICON Express16S is designed to support FEC coding on top of its 64b/66b data encoding for 16Gbps connections. This design is capable of correcting up to 11 bit errors per 2112 bits transmitted. Thus, while connected to devices that support FEC at 16 Gbps connections, the FEC design allows FICON Express16S channels to operate at higher speeds, over longer distances, with reduced power and higher throughput. They do this while retaining the same reliability and robustness that FICON channels have traditionally been known for.

With the IBM DS8870, z13 servers are capable of extending the use of FEC to the fabric N_Ports for a completed end-to-end coverage of 16 Gbps FC links. For more information, see the IBM DS8884 and z13s: A new cost optimized solution, REDP-5327.

FICON dynamic routing

With the IBM z13 and IBM z13s servers, FICON channels are no longer restricted to the use of static SAN routing policies for ISLs for cascaded FICON directors. The z Systems servers now support dynamic routing in the SAN with the FICON Dynamic Routing (FIDR) feature. It is designed to support the dynamic routing policies provided by the FICON director manufacturers, for example, Brocade's exchange-based routing (EBR) and Cisco's originator exchange ID (OxID)5 routing.

A static SAN routing policy normally assigns the ISL routes according to the incoming port and its destination domain (port-based routing), or the source and destination ports pairing (device-based routing).

The port-based routing (PBR) assigns the ISL routes statically based on first come first served, when a port starts a fabric login (FLOGI) to a destination domain. The ISL is round robin selected for assignment. Thus, I/O flow from same incoming port to same destination

5 Check with the switch provider for their support statement.
domain will always be assigned the same ISL route, regardless of the destination port of each I/O. This setup can result in some ISLs overloaded while some are underutilized. The ISL routing table is changed every time a z Systems server undergoes a power-on-reset (POR), so the ISL assignment is somewhat unpredictable.

Device-based routing (DBR) assigns the ISL routes statically based on a hash of the source and destination port. That I/O flow from same incoming port to same destination is assigned to same ISL route. Compared to PBR, the DBR is more capable of spreading the load across ISLs for I/O flow from the same incoming port to different destination ports within a destination domain.

When using a static SAN routing policy, the FICON director has limited capability to assign ISL routes based on workload, which may result in unbalanced use of ISLs (some may be overloaded, while others are underutilized).

The dynamic routing ISL routes are dynamically changed based on the Fibre Channel exchange ID, which is unique for each I/O operation. ISL is assigned at I/O request time, so different I/Os from same incoming port to same destination port are assigned different ISLs.

With FIDR, z13 servers have advantages for performance and management in configurations with ISL and cascaded FICON directors:
- Support sharing of ISLs between FICON and FCP (PPRC or distributed)
- I/O traffic is better balanced between all available ISLs
- Improve utilization of FICON director and ISL
- Easier to manage with a predictable and repeatable I/O performance

FICON dynamic routing can be enabled by definition of dynamic routing capable switches and control units in HCD. Also, z/OS has implemented a health check function for FICON dynamic routing.

Improved zHPF I/O execution at distance

By introducing the concept of pre-deposit writes, zHPF reduces the number of round trips of standard FCP I/Os to a single round trip. Originally this benefit is limited to writes that are less than 64 KB. zHPF on z13s and z13 servers has been enhanced to allow all large write operations (> 64 KB) at distances up to 100 km to be run in a single round trip to the control unit. This improvement avoids elongating the I/O service time for these write operations at extended distances.

Read Diagnostic Parameter Extended Link Service Support

To improve the accuracy of identifying a failed component without unnecessarily replacing components in a SAN fabric, a new Extended Link Service (ELS) command called Read Diagnostic Parameters (RDP) has been added to the Fibre Channel T11 standard to allow z Systems to obtain extra diagnostic data from the SFP optics located throughout the SAN fabric.

z13 servers now can read this additional diagnostic data for all the ports accessed in the I/O configuration and make the data available to an LPAR. For z/OS LPARs using FICON channels, z/OS displays the data with a new message and display command. For Linux on z Systems, z/VM, z/VSE, and KVM LPARs using FCP channels, this diagnostic data is available in a new window in the SAN Explorer tool.

N_Port ID Virtualization enhancement

N_Port ID Virtualization (NPIV) allows multiple system images (in LPARs or z/VM guests) to use a single FCP channel as though each were the sole user of the channel. This feature, first
introduced with z9 EC, can be used with earlier FICON features that have been carried forward from earlier servers.

Using the FICON Express16S as an FCP channel with NPIV enabled, the maximum numbers of these aspects for one FCP physical channel are doubled:

1. Maximum number of NPIV hosts defined: Increased from 32 to 64
2. Maximum number of remote N_Ports communicated: Increased from 512 to 1024
3. Maximum number of addressable LUNs: Increased from 4096 to 8192
4. Concurrent I/O operations: Increased from 764 to 1528

For operating system information of NPIV supporting, see 7.3.40, “N_Port ID Virtualization” on page 269,

Export / import physical port WWPNs for FCP Channels

z Systems servers automatically assign worldwide port names (WWPNs) to the physical ports of an FCP channel based on the PCHID. This WWPN assignment changes when an FCP channel is moved to a different physical slot position. z13 and z13s servers will now allow for the modification of these default assignments, allowing FCP channels to keep previously assigned WWPNs, even after being moved to a different slot position. This capability can eliminate the need for reconfiguration of the SAN in many situations, and is especially helpful during a system upgrade.

Note: For more information about the FICON enhancement of z13 and z13s servers, see Get More Out of Your IT Infrastructure with IBM z13 I/O Enhancements, REDP-5134.

FICON support for multiple-hop cascaded SAN configurations

Before the introduction of z13 and z13s servers, z Systems FICON SAN configurations only supported a single ISL (a single hop) in a cascaded FICON SAN environment. The IBM z13s server now supports up to three hops in a cascaded FICON SAN environment. This support allows clients to more easily configure a three or four site disaster recovery solution.

FICON feature summary

Table 4-9 shows the FICON card feature codes, cable type, maximum unrepeated distance, and the link data rate on a z13 server. All FICON features use LC Duplex connectors.

<table>
<thead>
<tr>
<th>Channel feature</th>
<th>Feature codes</th>
<th>Bit rate</th>
<th>Cable type</th>
<th>Maximum unrepeated distancea (MHz -km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express16S 10KM LX</td>
<td>0418</td>
<td>4, 8, or 16 Gbps</td>
<td>SM 9 µm</td>
<td>10 km</td>
</tr>
<tr>
<td>FICON Express16S SX</td>
<td>0419</td>
<td>16 Gbps</td>
<td>MM 50 µm</td>
<td>35 m (500) 100 m (2000) 125 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>21 m (200) 50 m (500) 150 m (2000) 190 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>70 m (200) 150 m (500) 380 m (2000) 400 m (4700)</td>
</tr>
<tr>
<td>FICON Express8S 10KM LX</td>
<td>0409</td>
<td>2, 4, or 8 Gbps</td>
<td>SM 9 µm</td>
<td>10 km</td>
</tr>
</tbody>
</table>
The OSA-Express5S feature is exclusively in the PCIe I/O drawer. The following OSA-Express5S features can be installed on z13 servers:

- OSA-Express5S 10 Gigabit Ethernet LR, FC 0415
- OSA-Express5S 10 Gigabit Ethernet SR, FC 0416
- OSA-Express5S Gigabit Ethernet LX, FC 0413
- OSA-Express5S Gigabit Ethernet SX, FC 0414
- OSA-Express5S 1000BASE-T Ethernet, FC 0417

Table 4-10 lists the OSA-Express5S features.

<table>
<thead>
<tr>
<th>Channel feature</th>
<th>Feature codes</th>
<th>Bit rate</th>
<th>Cable type</th>
<th>Maximum unreported distancea (MHz-km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express8S SX</td>
<td>0410</td>
<td>8 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>21 m (200) 50 m (500) 150 m (2000) 190 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>70 m (200) 150 m (500) 380 m (2000) 400 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>150 m (200) 300 m (500) 500 m (2000) N/A (4700)</td>
</tr>
<tr>
<td>FICON Express8 10KM LX</td>
<td>3325</td>
<td>2, 4, or 8 Gbps</td>
<td>SM 9 µm</td>
<td>10 km</td>
</tr>
<tr>
<td>FICON Express8 SX</td>
<td>3326</td>
<td>8 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>21 m (200) 50 m (500) 150 m (2000) 190 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>70 m (200) 150 m (500) 380 m (2000) 400 m (4700)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Gbps</td>
<td>MM 62.5 µm MM 50 µm</td>
<td>150 m (200) 300 m (500) 500 m (2000) N/A (4700)</td>
</tr>
</tbody>
</table>

a Minimum fiber bandwidths in MHz/km for multimode fiber optic links are included in parentheses where applicable.

4.8.3 OSA-Express5S

The OSA-Express5S feature is exclusively in the PCIe I/O drawer. The following OSA-Express5S features can be installed on z13 servers:

- OSA-Express5S 10 Gigabit Ethernet LR, FC 0415
- OSA-Express5S 10 Gigabit Ethernet SR, FC 0416
- OSA-Express5S Gigabit Ethernet LX, FC 0413
- OSA-Express5S Gigabit Ethernet SX, FC 0414
- OSA-Express5S 1000BASE-T Ethernet, FC 0417

Table 4-10 lists the OSA-Express5S features.

<table>
<thead>
<tr>
<th>I/O feature</th>
<th>Feature code</th>
<th>Number of ports per feature</th>
<th>Port increment</th>
<th>Maximum number of ports</th>
<th>Maximum number of features</th>
<th>CHPID type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA-Express5S 10 GbE LR</td>
<td>0415</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>OSD, OSX</td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE SR</td>
<td>0416</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>OSD, OSX</td>
</tr>
</tbody>
</table>
The OSA-Express5S 10 Gigabit Ethernet (GbE) Long Reach (LR) feature has one PCIe adapter and one port per feature. The port supports CHPID types OSD and OSX. When defined as CHPID type OSX, the 10 GbE port provides connectivity and access control to the intraensemble data network (IEDN) from z13 servers to zEnterprise BladeCenter Extension (zBX). The 10 GbE feature is designed to support attachment to a single-mode fiber 10 Gbps Ethernet LAN or Ethernet switch that is capable of 10 Gbps. The port can be defined as a spanned channel and can be shared among LPARs within and across logical channel subsystems.

The OSA-Express5S 10 GbE LR feature supports the use of an industry standard small form factor LC Duplex connector. Ensure that the attaching or downstream device has an LR transceiver. The transceivers at both ends must be the same (LR to LR, which might also be referred to as LW or LX).

The OSA-Express5S 10 GbE LR feature does not support auto-negotiation to any other speed and runs in full duplex mode only.

A 9 µm single-mode fiber optic cable that terminates with an LC Duplex connector is required for connecting this feature to the selected device.

OSA-Express5S 10 Gigabit Ethernet SR (FC 0416)

The OSA-Express5S 10 GbE Short Reach (SR) feature has one PCIe adapter and one port per feature. The port supports CHPID types OSD and OSX. When defined as CHPID type OSX, the 10 GbE port provides connectivity and access control to the IEDN from z13 servers to zBX. The 10 GbE feature is designed to support attachment to a multimode fiber 10 Gbps Ethernet LAN or Ethernet switch that is capable of 10 Gbps. The port can be defined as a spanned channel and can be shared among LPARs within and across logical channel subsystems.

The OSA-Express5S 10 GbE SR feature supports the use of an industry standard small form factor LC Duplex connector. Ensure that the attaching or downstream device has an SR transceiver. The sending and receiving transceivers must be the same (SR to SR, which might also be referred to as SW or SX).

The OSA-Express5S 10 GbE SR feature does not support auto-negotiation to any other speed and runs in full duplex mode only.

A 50 or a 62.5 µm multimode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device.
OSA-Express5S Gigabit Ethernet LX (FC 0413)
The OSA-Express5S GbE LX feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). The ports support attachment to a 1 Gbps Ethernet LAN. Each port can be defined as a spanned channel and can be shared among LPARs and across logical channel subsystems.

The OSA-Express5S GbE LX feature supports the use of an LC Duplex connector. Ensure that the attaching or downstream device has an LX transceiver. The sending and receiving transceivers must be the same (LX to LX).

A 9 µm single-mode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device. If multimode fiber optic cables are being reused, a pair of Mode Conditioning Patch cables is required, with one cable for each end of the link.

OSA-Express5S Gigabit Ethernet SX (FC 0414)
The OSA-Express5S GbE SX feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). The ports support attachment to a 1 Gbps Ethernet LAN. Each port can be defined as a spanned channel and can be shared among LPARs and across logical channel subsystems.

The OSA-Express5S GbE SX feature supports the use of an LC Duplex connector. Ensure that the attaching or downstream device has an SX transceiver. The sending and receiving transceivers must be the same (SX to SX).

A multi-mode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device.

OSA-Express5S 1000BASE-T Ethernet feature (FC 0417)
Feature code 0417 occupies one slot in the PCIe I/O drawer. It has two ports that connect to a 1000 Mbps (1 Gbps) or 100 Mbps Ethernet LAN. Each port has a SFP with an RJ-45 receptacle for cabling to an Ethernet switch. The RJ-45 receptacle is required to be attached by using an EIA/TIA Category 5 or Category 6 UTP cable with a maximum length of 100 m (328 ft). The SFP allows a concurrent repair or replace action.

The OSA-Express5S 1000BASE-T Ethernet feature supports auto-negotiation when attached to an Ethernet router or switch. If you allow the LAN speed and duplex mode to default to auto-negotiation, the OSA-Express port and the attached router or switch auto-negotiate the LAN speed and duplex mode settings between them. They then connect at the highest common performance speed and duplex mode of interoperation. If the attached Ethernet router or switch does not support auto-negotiation, the OSA-Express port examines the signal that it is receiving and connects at the speed and duplex mode of the device at the other end of the cable.

The OSA-Express5S 1000BASE-T Ethernet feature can be configured as CHPID type OSC, OSD, OSE, OSM, or OSN. Non-QDIO operation mode requires CHPID type OSE. When defined as CHPID type OSM, the port provides connectivity to the intranode management network (INMN).

The following settings are supported on the OSA-Express5S 1000BASE-T Ethernet feature port:
- Auto-negotiate
- 100 Mbps half-duplex or full-duplex
- 1000 Mbps full-duplex
If you are not using auto-negotiate, the OSA-Express port attempts to join the LAN at the specified speed and duplex mode. If this specified speed and duplex mode do not match the speed and duplex mode of the signal on the cable, the OSA-Express port does not connect.

4.8.4 OSA-Express4S features

This section addresses the characteristics of all OSA-Express4S features that are supported on z13 servers.

The OSA-Express4S feature is exclusively in the PCIe I/O drawer. The following OSA-Express4S features can be installed on z13 servers:

- OSA-Express4S 10 Gigabit Ethernet LR, FC 0406
- OSA-Express4S 10 Gigabit Ethernet SR, FC 0407
- OSA-Express4S Gigabit Ethernet LX, FC 0404
- OSA-Express4S Gigabit Ethernet SX, FC 0405
- OSA-Express4S 1000BASE-T Ethernet, FC 0408

Table 4-11 lists the characteristics of the OSA-Express4S features.

<table>
<thead>
<tr>
<th>I/O feature</th>
<th>Feature code</th>
<th>Number of ports per feature</th>
<th>Port increment</th>
<th>Maximum number of ports (CHPIDs)</th>
<th>Maximum number of features</th>
<th>CHPID type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA-Express4S 10 GbE LR</td>
<td>0406</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>OSD, OSX</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE SR</td>
<td>0407</td>
<td>1</td>
<td>1</td>
<td>48</td>
<td>48</td>
<td>OSD, OSX</td>
</tr>
<tr>
<td>OSA-Express4S GbE LX</td>
<td>0404</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>OSD</td>
</tr>
<tr>
<td>OSA-Express4S GbE SX</td>
<td>0405</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>OSD</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T</td>
<td>0408</td>
<td>2</td>
<td>2</td>
<td>96</td>
<td>48</td>
<td>OSC, OSD, OSE, OSM, OSN</td>
</tr>
</tbody>
</table>

OSA-Express4S 10 Gigabit Ethernet LR (FC 0406)

The OSA-Express4S 10 GbE LR feature has one PCIe adapter and one port per feature. The port supports CHPID types OSD and OSX. When defined as CHPID type OSX, the 10 GbE port provides connectivity and access control to the IEDN from z13 servers to IBM zBX. The 10 GbE feature is designed to support attachment to a single mode fiber 10-Gbps Ethernet LAN or Ethernet switch that is capable of 10 Gbps. The port can be defined as a spanned channel, and can be shared among LPARs within and across logical channel subsystems.

The OSA-Express4S 10 GbE LR feature supports the use of an industry standard small form factor LC Duplex connector. Ensure that the attaching or downstream device has an LR transceiver. The sending and receiving transceivers must be the same (LR to LR).

The OSA-Express4S 10 GbE LR feature does not support auto-negotiation to any other speed and runs in full duplex mode only. OSA-Express4S 10 GbE LR supports 64B/66B
encoding. However, the GbE supports 8B/10 encoding, making auto-negotiation to any other speed impossible.

A 9-µm single mode fiber optic cable that terminates with an LC Duplex connector is required for connecting this feature to the selected device.

OSA-Express4S 10 Gigabit Ethernet SR (FC 0407)
The OSA-Express4S 10 GbE SR feature has one PCIe adapter and one port per feature. The port supports CHPID types OSD and OSX. When defined as CHPID type OSX, the 10 GbE port provides connectivity and access control to the IEDN from z13 servers to zBX. The 10 GbE feature is designed to support attachment to a multimode fiber 10-Gbps Ethernet LAN or Ethernet switch capable of 10 Gbps. The port can be defined as a spanned channel, and can be shared among LPARs within and across logical channel subsystems.

The OSA-Express4S 10 GbE SR feature supports the use of an industry standard small form factor LC Duplex connector. Ensure that the attaching or downstream device has an SR transceiver. The sending and receiving transceivers must be the same (SR to SR).

The OSA-Express4S 10 GbE SR feature does not support auto-negotiation to any other speed and runs in full duplex mode only. OSA-Express4S 10 GbE SR supports 64B/66B encoding. However, the GbE supports 8B/10 encoding, making auto-negotiation to any other speed impossible.

A 50 or a 62.5-µm multimode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device.

OSA-Express4S Gigabit Ethernet LX (FC 0404)
The OSA-Express4S GbE LX feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). The ports support attachment to a 1-Gbps Ethernet LAN. Each port can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems.

The OSA-Express4S GbE LX feature supports the use of an LC Duplex connector. Ensure that the attaching or downstream device has an LX transceiver. The sending and receiving transceivers must be the same (LX to LX).

A 9-µm single mode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device. If multimode fiber optic cables are being reused, a pair of Mode Conditioning Patch cables is required, one for each end of the link.

OSA-Express4S Gigabit Ethernet SX (FC 0405)
The OSA-Express4S GbE SX feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). The ports support attachment to a 1-Gbps Ethernet LAN. Each port can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems.

The OSA-Express4S GbE SX feature supports the use of an LC Duplex connector. Ensure that the attaching or downstream device has an SX transceiver. The sending and receiving transceivers must be the same (SX to SX).

A 50 or a 62.5-µm multimode fiber optic cable that terminates with an LC Duplex connector is required for connecting each port on this feature to the selected device.
OSA-Express4S 1000BASE-T Ethernet feature (FC 0408)
The OSA-Express4S 1000BASE-T Ethernet feature occupies one slot in the PCIe I/O drawer. It has two ports that connect to a 1000 Mbps (1 Gbps), 100 Mbps, or 10 Mbps Ethernet LAN. Each port has an RJ-45 receptacle for cabling to an Ethernet switch. The RJ-45 receptacle must be attached by using an EIA/TIA Category 5 or Category 6 UTP cable with a maximum length of 100 meters (328 ft).

The OSA-Express4S 1000BASE-T Ethernet feature supports auto-negotiation when attached to an Ethernet router or switch. If you allow the LAN speed and duplex mode to default to auto-negotiation, the OSA-Express port and the attached router or switch auto-negotiate the LAN speed and duplex mode settings between them. They connect at the highest common performance speed and duplex mode of interoperation. If the attached Ethernet router or switch does not support auto-negotiation, the OSA-Express port examines the signal that it is receiving. It then connects at the speed and duplex mode of the device at the other end of the cable.

The OSA-Express4S 1000BASE-T Ethernet feature can be configured as CHPID type OSC, OSD, OSE, OSN, or OSM. Non-QDIO operation mode requires CHPID type OSE. When defined as CHPID type OSM, the port provides connectivity to the INMN.

The following settings are supported on the OSA-Express4 1000BASE-T Ethernet feature port:
- Auto-negotiate
- 10 Mbps half-duplex or full-duplex
- 100 Mbps half-duplex or full-duplex
- 1000 Mbps full-duplex

If you are not using auto-negotiate, the OSA-Express port attempts to join the LAN at the specified speed and duplex mode. If these settings do not match the speed and duplex mode of the signal on the cable, the OSA-Express port does not connect.

4.8.5 OSA-Express for ensemble connectivity

The following OSA-Express features are used to connect z13 servers to IBM z BladeCenter Extension (zBX) Model 004 and other ensemble nodes:
- OSA-Express5S 10 Gigabit Ethernet (GbE) Long Reach (LR), FC 0415
- OSA-Express5S 10 Gigabit Ethernet (GbE) Short Reach (SR), FC 0416
- OSA-Express5S 1000BASE-T Ethernet, FC 0417
- OSA-Express4S 10 Gigabit Ethernet (GbE) Long Reach (LR), FC 0406
- OSA-Express4S 10 Gigabit Ethernet (GbE) Short Reach (SR), FC 0407
- OSA-Express4S 1000BASE-T Ethernet, FC 0408

Intraensemble data network

The IEDN is a private and secure 10-Gbps Ethernet network. It connects all elements of an ensemble, and is access-controlled by using integrated virtual LAN (VLAN) provisioning. No client-managed switches or routers are required. The IEDN is managed by a primary Hardware Management Console (HMC).

The IEDN connection requires two ports. The following features can be used, which are configured as CHPID type OSX:
- OSA-Express5S 10 GbE
- OSA-Express4S 10 GbE

For redundancy, one port each from two OSA-Express 10 GbE features must be configured.
The connection is from z13 servers to the IEDN Top of Rack (ToR) switches on the zBX Model 003. With a stand-alone z13 node (no-zBX), the connection is interconnected pairs of OSX ports through LC Duplex directly connected cables, not wrap cables as was previously recommended.

Intranode management network

The INMN is a private and physically isolated 1000BASE-T Ethernet internal management network that operates at 1 Gbps. It connects all resources (z13 and zBX Model 004 components) of an ensemble node for management purposes. It is prewired, internally switched, configured, and managed with full redundancy for high availability.

The INMN requires two ports (CHPID port 0 from two OSA-Express5S 1000BASE-T features, or OSA-Express4S 1000BASE-T features (CHPID port 1 is not used at all in this case) that are configured as CHPID type OSM. The connection is through a System Control Hub (SCH) in the z13 server. Because it is a stand-alone node, the INMN ToR switches on zBX Model 004 are not connected to the SCHs.

Ensemble HMC management functions

An HMC can manage multiple z Systems servers and can be at a local or a remote site. If the z13 server is defined as a member of an ensemble, a pair of HMCs (a primary and an alternate) is required, and certain restrictions apply. The primary HMC is required to manage ensemble network connectivity, the INMN, and the IEDN network.

For more information, see 11.6, “HMC in an ensemble” on page 456 and 9.10, “RAS capability for the Hardware Management Console and Support Element” on page 378.

4.8.6 HiperSockets

The HiperSockets function of z13 servers provides up to 32 high-speed virtual LAN attachments, just like the IBM zEnterprise zEC12, IBM zEnterprise BC12, IBM zEnterprise 196, and IBM zEnterprise 114 servers. Previous servers provided 16 attachments.

<table>
<thead>
<tr>
<th>HiperSockets IOCP definitions on z13 servers:</th>
<th>A new parameter has been added for HiperSockets IOCP definitions on z13 servers. Therefore, the z13 IOCP definitions need to be migrated to support the HiperSockets definitions (CHPID type IQD).</th>
</tr>
</thead>
<tbody>
<tr>
<td>On z13 servers, the CHPID statement of HiperSockets devices requires the keyword VCHID. VCHID specifies the virtual channel identification number associated with the channel path. Valid range is 7E0 - 7FF.</td>
<td></td>
</tr>
<tr>
<td>VCHID is not valid on z Systems servers before z13.</td>
<td></td>
</tr>
<tr>
<td>For more information, see the z Systems Input/Output Configuration Program User’s Guide for ICP IOCP, SB10- 7163.</td>
<td></td>
</tr>
</tbody>
</table>

HiperSockets can be customized to accommodate varying traffic sizes. Because HiperSockets does not use an external network, it can free up system and network resources. This advantage can help eliminate attachment costs, and improve availability and performance.

HiperSockets eliminates having to use I/O subsystem operations and having to traverse an external network connection to communicate between LPARs in the same z13 server. HiperSockets offers significant value in server consolidation when connecting many virtual servers. It can be used instead of certain coupling link configurations in a Parallel Sysplex.
HiperSockets internal networks support two transport modes:
- Layer 2 (link layer)
- Layer 3 (network or IP layer)

Traffic can be IPv4 or IPv6, or non-IP, such as AppleTalk, DECnet, IPX, NetBIOS, or SNA.

HiperSockets devices are protocol-independent and Layer 3 independent. Each HiperSockets device (Layer 2 and Layer 3 mode) has its own Media Access Control (MAC) address. This address allows the use of applications that depend on the existence of Layer 2 addresses, such as Dynamic Host Configuration Protocol (DHCP) servers and firewalls. Layer 2 support helps facilitate server consolidation, and can reduce complexity and simplify network configuration. It also allows LAN administrators to maintain the mainframe network environment similarly to non-mainframe environments.

Packet forwarding decisions are based on Layer 2 information instead of Layer 3. The HiperSockets device can run automatic MAC address generation to create uniqueness within and across LPARs and servers. The use of Group MAC addresses for multicast is supported, and broadcasts to all other Layer 2 devices on the same HiperSockets networks.

Datagrams are delivered only between HiperSockets devices that use the same transport mode. A Layer 2 device cannot communicate directly to a Layer 3 device in another LPAR network. A HiperSockets device can filter inbound datagrams by VLAN identification, the destination MAC address, or both.

Analogous to the Layer 3 functions, HiperSockets Layer 2 devices can be configured as primary or secondary connectors, or multicast routers. This configuration enables the creation of high-performance and high-availability link layer switches between the internal HiperSockets network and an external Ethernet network. It also can be used to connect to the HiperSockets Layer 2 networks of different servers.

HiperSockets Layer 2 on z13 servers is supported by Linux on z Systems, and by z/VM for Linux guest use.

z13 servers, and the other zEnterprise CPCs (zEC12, zBC12, z196, and z114 servers), support the HiperSockets Completion Queue function that is designed to allow HiperSockets to transfer data synchronously if possible, and asynchronously if necessary. This feature combines ultra-low latency with more tolerance for traffic peaks. With the asynchronous support, during high volume situations, data can be temporarily held until the receiver has buffers that are available in its inbound queue. The HiperSockets Completion Queue function requires the following applications at a minimum:
- z/OS V1.13
- Linux on z Systems distributions:
 - Red Hat Enterprise Linux (RHEL) 6.2
 - SUSE Linux Enterprise Server (SLES) 11 SP2
- z/VSE V5.1.1
- z/VM V6.2 with maintenance

The z13 and zEnterprise servers provide the capability to integrate HiperSockets connectivity to the IEDN. This configuration extends the reach of the HiperSockets network outside the CPC to the entire ensemble, which is displayed as a single Layer 2. Because HiperSockets and IEDN are both internal z Systems networks, the combination allows z Systems virtual servers to use the optimal path for communications.

In z/VM V6.2, the virtual switch function is enhanced to transparently bridge a guest virtual machine network connection on a HiperSockets LAN segment. This bridge allows a single
HiperSockets guest virtual machine network connection to communicate directly with these systems:

- Other guest virtual machines on the virtual switch
- External network hosts through the virtual switch OSA UPLINK port

Shared Memory Communication - Direct Memory Access

With z13 and z13s servers, IBM introduces Shared Memory Communication - Direct Memory Access (SMC-D). SMC-D maintains the socket-API transparency aspect of SMC-R so that applications that use TCP/IP communications can benefit immediately without requiring any application software or IP topology changes. SMC-D completes the overall Shared Memory Communications solution, providing synergy with SMC-R. Both protocols use shared memory architectural concepts, eliminating TCP/IP processing in the data path, yet preserving TCP/IP Qualities of Service for connection management purposes.

Internal Shared Memory

Internal Shared Memory (ISM) is a new function supported by z13 and z13s machines. It is the firmware that provides the connectivity for shared memory access between multiple operating systems within the same CPC. ISM creates virtual adapters with shared memory allocated for each OS, that OSs can take advantage of these virtual adapters for SMC-D data exchanges within the same CPC.

ISM is defined by the FUNCTION statement with a virtual CHPID (VCHID) in hardware configuration definition (HCD)/IOCDS. Identified by the PNETID parameter, each ISM VCHID defines an isolated, internal virtual network for SMC-D communication, without any hardware component required. Virtual adapters are defined by virtual function (VF) statements. Multiple LPARs can access the same virtual network for SMC-D data exchange by associating their VF with same VCHID.

z13 servers support up to 32 ISM VCHIDs per CPC, and each VCHID supports up to 255 VFs, with a total maximum of 8K VFs.

For more information about the SMC-D and ISM, see Appendix D, “Shared Memory Communications” on page 501.

HiperSockets can have network latency and CPU reduction benefits and performance improvement, by using the SMC-D over ISM.

4.9 Parallel Sysplex connectivity

Coupling links are required in a Parallel Sysplex configuration to provide connectivity from the z/OS images to the coupling facility. A properly configured Parallel Sysplex provides a highly reliable, redundant, and robust z Systems technology solution to achieve near-continuous availability. A Parallel Sysplex is composed of one or more z/OS operating system images that are coupled through one or more coupling facilities.

4.9.1 Coupling links

The type of coupling link that is used to connect a coupling facility (CF) to an operating system LPAR is important. The link performance has a significant effect on response times and coupling processor usage. For configurations that cover large distances, the time that is spent on the link can be the largest part of the response time.
These links are available to connect an operating system LPAR to a coupling facility:

- **Integrated Coupling Adapter (ICA SR)** for short distance connectivity, defined as CHPID type CS5. The ICA SR can be used only for coupling connectivity between z13 and z13s servers. It does not support connectivity to zEC12, zBC12, z196, or z114 servers, and it cannot be connected to HCA3-O or HCA3-O LR coupling fanouts. The ICA SR supports distances up to 150 m and a link data rate of 8 GBps. OM3 fiber optic cable is used for distances up to 100 m, and OM4 for distances up to 150 m. ICA SR supports four CHPIDs per port and seven subchannels (devices) per CHPID. ICA SR supports transmission of Server Time Protocol (STP) messages.

z13 with Driver 27 microcode servers support a maximum number of 20 FC0172 ICA SR fanout features (40 ports) per system.

- **Parallel Sysplex using IFB** connects to z13, z13s, zEC12, zBC12, z196, or z114 servers. 12x InfiniBand coupling links are fiberoptic connections that support a maximum distance of up to 150 meters (492 ft). IFB coupling links are defined as CHPID type CIB. IFB supports transmission of STP messages.

z13 servers support one type of 12x InfiniBand coupling link: FC 0171 HCA3-O (12xIFB) fanout.

- **IFB LR**: InfiniBand Long Reach (IFB LR) connects to z13, z13s, zEC12, zBC12, z196, or z114 servers. 1x InfiniBand coupling links are fiberoptic connections that support a maximum unrepeated distance of up to 10 km (6.2 miles), and up to 100 km (62 miles) with a z Systems qualified DWDM. IFB LR coupling links are defined as CHPID type CIB, and support 7 or 32 subchannels per CHPID. IFB LR supports transmission of STP messages.

z13 servers support one type of 1x InfiniBand coupling link: FC 0170 HCA3-O LR (1xIFB) fanout.

- **Internal Coupling (IC)**: CHPIDs (type ICP) that are defined for internal coupling can connect a CF to a z/OS LPAR in the same z13 server. IC connections require two CHPIDs to be defined, which can be defined only in peer mode. A maximum of 32 IC CHPIDs (16 connections) can be defined.

Note: ISC-3, HCA2-O, and HCA2-O LR are not supported on z13 servers. The zEC12 and zBC12 are the last servers that support ISC-3, HCA2-O, and HCA2-O LR coupling links (by carry-forward only). HCA3-O (LR) on z13 servers however, can connect to HCA2-O (LR) on previous generation servers.

IFB and IFB LR links contend for adapter space. Total port counts vary depending on the number of configured IFB links, IFB LR links, and I/O drawers (I/O drawers that are connected through HCA2-O).
Table 4-12 shows the coupling link options.

Table 4-12 Coupling link options

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Use</th>
<th>Link ratea</th>
<th>Distance</th>
<th>z13-N30 Max # ports</th>
<th>z13-N63 to NE1 Max # ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFB</td>
<td>12x InfiniBand (HCA3-O)b</td>
<td>z13 to z13, zEC12, zBC12, z196, z114</td>
<td>6 GBps</td>
<td>150 meters (492 feet)</td>
<td>8c</td>
<td>N63 - 16c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N96 - 24c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC9 - 32c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NE1 - 32c</td>
</tr>
<tr>
<td>IFB LR</td>
<td>1x IFB (HCA3-O LR)</td>
<td>z13 to z13, zEC12, zBC12, z196, z114</td>
<td>2.5 Gbps</td>
<td>10 km unrepeated (6.2 miles)</td>
<td>16c</td>
<td>N63 - 32c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0 Gbps</td>
<td>100 km repeated (62 miles)</td>
<td></td>
<td>N96 - 48c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC9 - 64c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NE1 - 64c</td>
</tr>
<tr>
<td>IC</td>
<td>Internal coupling channel</td>
<td>Internal communication</td>
<td>N/A</td>
<td></td>
<td>32d</td>
<td>32d</td>
</tr>
<tr>
<td>ICA SR</td>
<td>Integrated Coupling Adapter</td>
<td>z13/z13s to z13/z13s</td>
<td>8 GBps</td>
<td>150 meters (492 feet)</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

a. The link data rates do not represent the actual performance of the link. The actual performance depends on many factors that include latency through the adapters, cable lengths, and the type of workload.
b. 12x IFB3 protocol supports a maximum of four CHPIDs and connects to the other HCA3-O port. Otherwise, use the 12x IFB protocol. The protocol is auto-configured when conditions are met for IFB3. For more information, see 4.6.4, “HCA3-O (12x IFB) fanout (FC 0171)” on page 154.
c. Uses all available fanout slots. Allows no I/O drawer or other IFB coupling option.
d. One IC connection (or ‘link’) requires the definition of two CHPIDs (‘logical ports’).

The system can have these maximum number of links of each type:
- IFB links: 64
- ICA SR: 40
- IC: 32

The maximum number of combined external coupling links (active ICA SR links and IFB LR) is 136 per z13 server. And z13 servers support up to 256 coupling CHPIDs per CPC, which provides enhanced connectivity and scalability for a growing number of coupling channel types, which is, twice the 128 coupling CHPIDs that are supported on zEC12. Unlike the HCA3-O 12x InfiniBand links, the ICA SR cannot define more than four CHPIDS per port.

Coupling CHPIDs: On z13 servers, each CF image continues to support a maximum of 128 coupling CHPIDs.
z13 server supports various connectivity options, depending on the connected servers. Figure 4-8 shows z13 coupling link support for z13, zEC12, zBC12, z196, and z114 servers.

When defining IFB coupling links (CHPID type CIB), HCD defaults to seven subchannels. Thirty-two subchannels are supported only on HCA2-O LR (1xIFB) and HCA3-O LR (1xIFB) on zEC12 and later when both sides of the connection use 32 subchannels. Otherwise, change the default value from 7 to 32 subchannels on each CIB definition.

In a Parallel Sysplex configuration, z/OS and coupling facility images can run on the same or on separate servers. There must be at least one CF that is connected to all z/OS images, although other CFs can be connected only to selected z/OS images. Two coupling facility images are required for system-managed CF structure duplexing. In this case, each z/OS image must be connected to both duplexed CFs.

To eliminate any single points of failure in a Parallel Sysplex configuration, have at least the following components:

- Two coupling links between the z/OS and coupling facility images.
- Two coupling facility images not running on the same server.
- One stand-alone coupling facility. If using system-managed CF structure duplexing or running with resource sharing only, a stand-alone coupling facility is not mandatory.

Coupling link features

z13 servers support these types of coupling link options:

- HCA3-O fanout for 12x InfiniBand, FC 0171
- HCA3-O LR fanout for 1x InfiniBand, FC 0170
- ICA SR fanout, FC0172
Various link options are available to connect a z13 server to other z Systems and zEnterprise servers:

- ICA SR fanout at 8 GBps to z13 server
- 12x InfiniBand using HCA3-O fanout at 6 GBps to z13 server with HCA3-O fanout, or zEC12, zBC12, z196, and z114 with HCA3-O or HCA2-O fanout
- 1x InfiniBand using HCA3-O LR fanout at 5.0 or 2.5 Gbps to z13 server with HCA3-O LR, or zEC12, zBC12, z196, and z114 servers with HCA3-O LR or HCA2-O LR fanout

HCA3-O fanout for 12x InfiniBand (FC 0171)

For more information, see 4.6.4, “HCA3-O (12x IFB) fanout (FC 0171)” on page 154.

HCA3-O LR fanout for 1x InfiniBand (FC 0170)

For more information, see 4.6.5, “HCA3-O LR (1x IFB) fanout (FC 0170)” on page 156.

ICA SR fanout (FC0172)

For more information, see 4.6.3, “Integrated Coupling Adapter (FC 0172)” on page 154.

Extended distance support

For information about extended distance support, see *System z End-to-End Extended Distance Guide*, SG24-8047.

Internal coupling links

IC links are LIC-defined links that connect a CF to a z/OS LPAR in the same server. These links are available on all z Systems servers. The IC link is a z Systems server coupling connectivity option. It enables high-speed, efficient communication between a CF partition and one or more z/OS LPARs that run on the same server. The IC is a linkless connection (implemented in Licensed Internal Code (LIC)), and so does not require any hardware or cabling.

An IC link is a fast coupling link that uses memory-to-memory data transfers. IC links do not have PCHID numbers, but do require CHPIDs.

IC links require an ICP channel path definition at the z/OS and the CF end of a channel connection to operate in peer mode. They are always defined and connected in pairs. The IC link operates in peer mode, and its existence is defined in HCD/IOCP.

IC links have the following attributes:

- Operate in peer mode (channel type ICP) on z Systems servers.
- Provide the fastest connectivity, which is faster than any external link alternatives.
- Result in better coupling efficiency than with external links, effectively reducing the server cost that is associated with Parallel Sysplex technology.
- Can be used in test or production configurations, and reduce the cost of moving into Parallel Sysplex technology while also enhancing performance and reliability.
- Can be defined as spanned channels across multiple CSSs.
- Are available for no extra fee (no feature code). Employing ICFs with IC channels results in considerable cost savings when you are configuring a cluster.

IC links are enabled by defining channel type ICP. A maximum of 32 IC channels can be defined on a z Systems server.
4.9.2 Migration considerations

Upgrading from previous generations of z Systems servers in an existing Parallel Sysplex to z13 servers in that same Parallel Sysplex requires proper planning for coupling connectivity. Planning is important because of the change in the supported type of coupling link adapters and the number of available fanout slots of the z13 CPC drawer, as compared to the number of available fanout slots of the processor books of the previous generation z Systems servers, in particular z196 and zEC12.

z13 servers do not support ISC-3 links and HCA2-O (LR).

HCA3-O link compatibility: HCA3-O (LR) links can connect to HCA2-O (LR) on z196, z114, zEC12, and zBC12.

The new ICA SR fanout provides connectivity only to another z13 server. For more information, see Table 4-12 on page 180.

The z13 server fanout slots in the CPC drawer provide coupling links connectivity through the ICA SR and IFB fanout cards. In addition to coupling links for Parallel Sysplex, the fanout cards that the fanout slots provide connectivity for the I/O drawer (HCA2-C fanout) and PCIe I/O drawer (PCIe fanout). Up to 10 PCIe and four IFB fanout cards can be installed in each CPC drawer, as shown in Figure 4-9.

![Figure 4-9 - CPC drawer front view showing the coupling links](image)

Previous generation z Systems servers, in particular z196 and zEC12, use processor books, which provide connectivity for up to eight InfiniBand fanouts per book.

As an example of a possible migration case, assume a one-book zEC12 used as stand-alone coupling facility with all eight fanouts that are used for IFB connectivity. In a 1:1 link migration scenario, this server cannot be upgraded to a one z13 CPC drawer because the z13 server cannot accommodate more than four InfiniBand fanouts. Furthermore, if FICON Express8...
features are carried forward, the total number of InfiniBand fanout are reduced by two. For more information, see 4.6.6, “Fanout considerations” on page 156.

In this case, a second CPC drawer is needed to fulfill all IFB connectivity, as shown in Figure 4-10.

![Figure 4-10 HCA3-O Fanouts: z13 versus z196 / zEC12 servers](image)

It is beyond the scope of this book to describe all possible migration scenarios. Always involve subject matter experts (SMEs) to help you to develop your migration strategy.

The following list of considerations can help you assess possible migration scenarios. The objective of this list is to enable migration to z13 servers, supporting legacy coupling where essential, and adopting ICA SR where possible, to avoid the need for more CPC drawers and other possible migration issues.

- The IBM zEnterprise EC12 and BC12 are the last generation of z Systems servers to support ISC-3, 12x HCA2-O, 1x HCA2-O LR. They also are the last z Systems servers that can be part of a Mixed Coordinated Timing Network (CTN).

- Consider Long Distance Coupling requirements first:
 - HCA3-O 1x is the only long-distance coupling link that is available on z13 servers. Keep slots free for HCA3-O 1x (LR) where possible.
 - ICA SR or HCA3-O 12x should be used for short distance coupling requirements.

- ISC-3 Migration (z13 servers do not support ISC-3):
 - Evaluate current ISC-3 usage (long- and short-distance, coupling data, or timing only) to determine how to fulfill ISC-3 requirements with the links that are available on z13 servers.
 - You can migrate from ISC-3 to ICA SR, InfiniBand 12x, or 1x on z13 servers.
 - 1:1 Mapping of ISC-3 to Coupling over InfiniBand. On previous servers, the HCA2-C fanouts enable ISC-3 coupling in the I/O Drawer. Two HCA2-C fanouts can be replaced by two 1x fanouts (eight 1x links) or two 12x fanouts (four 12x links).
 - ISC-3 supports one CHPID/link. Consolidate ISC-3 CHPIDs into ICA SR or IFB, and use multiple CHPIDs per link.

- By eliminating FICON Express8 (and thus the need to carry forward the I/O drawers), you can preserve InfiniBand fanout slots for coupling over InfiniBand fanouts. Replace FICON Express8 with FICON Express8S or (depending on your SAN fabric infrastructure) with FICON Express16S.
Evaluate configurations for opportunities to eliminate or consolidate InfiniBand links:

- Eliminate any redundant links. Two physical links between CPCs is the minimum requirement from a reliability, availability, and serviceability (RAS) perspective.

- Share logical CHPIDs on a physical IFB link connection to reduce the usage of IFB links in z13 servers (even multiple sysplexes can share a single link).

- Coupling Link Analysis: Capacity Planning tools and services can help.

For z13 to z13, or z13s links, adopt the new ICA SR coupling link. Use ICA SR channel as much as possible for existing InfiniBand links for z13 to z13 connectivity.

Install all the ICA SR links that are required to fulfill future short distance coupling requirements:

- When upgrading a CPC to a z13 server, configure the z13 server with all the ICA SR coupling links that eventually will be needed (that is, avoid loose piece MES with ICA SR links) in your Parallel Sysplex configuration.

- Consider a plan-ahead configuration. In a multi-CPC configuration, a final approach can be to establish z13 to z13 connections by using mainly ICA SR connectivity. Even if the links are not used immediately, especially within the first z13 migration, most coupling connectivity uses InfiniBand. However, after the second z13 server is migrated, coupling connectivity can be moved to ICA SR links.

Upgrade CPCs with fewer coupling constraints first:

- Consider upgrading CPCs to have sufficient IFB links in the target z13 configuration first (for example, multi-CPC drawer CPCs).

- Test the new ICA SR link on the least constrained CPC (for example, z/OS Host CPCs that have the lowest number of links). For the CPCs that are involved in this test that do not have a CF, you might need to add a CF LPAR and ICF engine to one of the CPCs.

- When migrating CPCs with more coupling links to a z13 server, begin by using enough ICA SR links in place of Coupling over InfiniBand (for example, half ICA SR, half 12x) to maintain the CPC footprint (that is, avoid extra CPC drawers).

Consider replacing two servers that are close to each other at the same time. Assess the risk, and, if acceptable, immediately replace 12x IFB with ICA SR links in z13 peers, thus freeing InfiniBand fanout slots for 1x InfiniBand links.

Consider (even temporary) increased CHPID/link consolidation on 12x InfiniBand links. For less critical sysplexes (that is, test, development, and QA) that use the IFB3 protocol (see 4.6.4, “HCA3-O (12x IFB) fanout (FC 0171)” on page 154), consider temporary performance reduction when consolidating more than four CHPIDs per 12x link. After the peer system has been migrated to a z13 server, the InfiniBand links can be migrated to ICA SR links.

Coupling link considerations

For more information about changing to InfiniBand or ICA SR coupling links, see *Implementing and Managing InfiniBand Coupling Links on System z*, SG24-7539, and the *Coupling Facility Configuration Options* white paper, which can be found at the following website:

Coupling links and Server Time Protocol

All external coupling links can be used to pass time synchronization signals by using STP. STP is a message-based protocol in which timing messages are passed over data links between servers. The same coupling links can be used to exchange time and coupling facility messages in a Parallel Sysplex.
Using the coupling links to exchange STP messages has the following advantages:

- By using the same links to exchange STP messages and coupling facility messages in a Parallel Sysplex, STP can scale with distance. Servers exchanging messages over short distances, such as IFB or ICA SR links, can meet more stringent synchronization requirements than servers that exchange messages over long IFB LR links (distances up to 100 km (62 miles)). This advantage is an enhancement over the IBM Sysplex Timer implementation, which does not scale with distance.

- Coupling links also provide the connectivity that is necessary in a Parallel Sysplex. Therefore, there is a potential benefit of minimizing the number of cross-site links that is required in a multi-site Parallel Sysplex.

Between any two servers that are intended to exchange STP messages, configure each server so that at least two coupling links exist for communication between the servers. This configuration prevents the loss of one link from causing the loss of STP communication between the servers. If a server does not have a CF LPAR, timing-only links can be used to provide STP connectivity.

The z13 server does not support attachment to the IBM Sysplex Timer. A z13 server cannot be added into a Mixed CTN. It can participate only in an STP-only CTN.

STP recovery enhancement

All coupling host channel adapters (ICA SR, HCA3-O (12xIFB), and HCA3-O LR (1xIFB)) are designed to send a reliable and unambiguous “going away signal.” This signal indicates that the server on which the ICA SR or HCA3 is running is about to enter a failed (check stopped) state. The “going away signal” that is sent by the Current Time Server (CTS) in an STP-only CTN is received by the Backup Time Server (BTS). The BTS can then safely take over as the CTS. The BTS does not have to rely on the previous Offline Signal (OLS) in a two-server CTN, or the Arbiter in a CTN with three or more servers.

This enhancement is exclusive to z Systems and zEnterprise CPCs. It is available only if you have an ICA SR, HCA3-O (12x IFB), or HCA3-O LR (1x IFB) on the CTS communicating with an ICA SR, HCA3-O (12x IFB), or HCA3-O LR (1x IFB) on the BTS. However, the previous STP recovery design is still available for the cases when a “going away signal” is not received or for failures other than a server failure.

A new designed Enhanced Console Assisted Recovery (ECAR) is introduced in z13 servers that can help to speed up the progress of BTS take over when the CTS has a check stopped condition. For more information about the ECAR design, see “Enhanced Console Assisted Recovery” on page 447.

Important: For more information about configuring an STP CTN with three or more servers, see the white paper that is found at the following website:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101833

If the guidelines are not followed, it might result in all the servers in the CTN becoming unsynchronized. This condition results in a sysplex-wide outage.

For more information about STP configuration, see these books:

- **Server Time Protocol Planning Guide**, SG24-7280
- **Server Time Protocol Implementation Guide**, SG24-7281
- **Server Time Protocol Recovery Guide**, SG24-7380
4.9.3 Pulse per second input

A pulse per second (PPS) signal can be received from an external time source (ETS) device. One PPS port is available on each of the two oscillator cards. These cards are installed on a small backplane mounted in the rear of the frame of z13 servers, with connection to all the CEC drawers, to provide redundancy for continued operation and concurrent maintenance when a single oscillator card fails. Each oscillator card has a Bayonet Neill-Concelman (BNC) connector for PPS connection support, attaching to two different ETSs. Two PPS connections from two different ETSs are preferable for redundancy.

The time accuracy of an STP-only CTN is improved by adding an ETS device with the PPS output signal. STP tracks the highly stable accurate PPS signal from ETSs. It maintains accuracy of 10 µs as measured at the PPS input of the z13 server. If STP uses an NTP server without PPS, a time accuracy of 100 ms to the ETS is maintained. ETSs with PPS output are available from various vendors that offer network timing solutions.

4.10 Cryptographic functions

Cryptographic functions are provided by the CP Assist for Cryptographic Function (CPACF) and the PCI Express cryptographic adapters. z13 servers support the Crypto Express5S feature.

4.10.1 CPACF functions (FC 3863)

FC 3863 is required to enable CPACF functions.

4.10.2 Crypto Express5S feature (FC 0890)

Crypto Express5S is a new feature on z13 servers. On the initial configuration, a minimum of two features are installed. The number of features then increases one at a time up to a maximum of 16 features. Each Crypto Express5S feature holds one PCI Express cryptographic adapter. Each adapter can be configured by the installation as a Secure IBM Common Cryptographic Architecture (CCA) coprocessor, as a Secure IBM Enterprise Public Key Cryptography Standards (PKCS) #11 (EP11) coprocessor, or as an accelerator.

Each Crypto Express5S feature occupies one I/O slot in the PCIe I/O drawer, and has no CHPID assigned. However, it has one PCHID.

4.11 Integrated firmware processor

The integrated firmware processor (IFP) was introduced in the zEC12 and zBC12 servers. The IFP is dedicated for managing a new generation of PCIe features. These new features are installed exclusively in the PCIe I/O drawer:

- zEDC Express
- 10GbE RoCE Express

6 Subject to export regulations.
All native PCIe features should be ordered in pairs for redundancy. According to their physical location in the PCIe I/O drawer, the features are assigned to one of the two resource groups (RGs) that are running on the IFP, providing management functions and virtualization functions. If two features of same type are installed, one will always be managed by resource group 1 (RG 1) and the other feature by resource group 2 (RG 2). This configuration provides redundancy if one of the features or resource groups needs maintenance or has a failure.

The IFP and RGs support the following infrastructure management functions:

- Firmware update of adapters and resource groups
- Error recovery and failure data collection
- Diagnostic and maintenance tasks

For more information about the IFP and RGs, see Appendix G, “Native Peripheral Component Interconnect Express (PCIe)” on page 547.

4.12 Flash Express

The Flash Express cards are supported in a PCIe I/O drawer with other PCIe I/O cards and can be ordered as new (FC 403) or carry-forward (FC 402). They are plugged into PCIe I/O drawers in pairs for availability. Like the Crypto Express5S cards, each card has a PCHID, and no HCD/IOCP definition is required. Flash Express subchannels are predefined, and are allocated from the 256 subchannels that is reserved in subchannel set 0.

Flash Express cards are internal to the CPC, and are accessible by using the new z Systems Extended Asynchronous Data Mover (EADM) Facility. EADM is an extension of the Asynchronous Data Mover (ADM) architecture that was used in the past with expanded storage. EADM access is initiated with a Start Subchannel instruction.

z13 servers support a maximum of four pairs of Flash Express cards. Only one Flash Express card is allowed per I/O domain. The PCIe I/O drawer has four I/O domains, and can install two pairs of Flash Express cards. Each pair is installed either in the front of PCIe I/O drawers at slots 1 and 14, or in the rear at slots 25 and 33. The Flash Express cards are first plugged into the front of the PCIe I/O drawer before being plugged into the rear of drawer. These four slots (1, 14, 25, and 33) are reserved for Flash Express and must not be filled with other types of I/O cards until there is no spare slot.
Figure 4-11 shows a PCIe I/O drawer that is fully populated with Flash Express cards.

4.12.1 IBM Flash Express read/write cache

On IBM z13s and z13 servers, Driver 27 Flash Express can provide a read/write cache that greatly increases performance by allowing customer data to be stored temporarily in a cache located in the system's hardware system area (HSA) RAM. For this purpose, 0.5 GB of HSA space is reserved on z13s servers and 4 GB on z13 Driver 27 servers.

Extended asynchronous data mover (EADMF) operations would complete from a partition's perspective immediately after data is moved to/from HSA cache, long before IBM Flash Express operations have completed.

4.13 10GbE RoCE Express

RoCE Express (FC 0411) is exclusively in the PCIe I/O drawer and is supported on z13 servers, zEC12, and zBC12. The 10GbE RoCE Express feature has one PCIe adapter. It does not use a CHPID. It is defined by using the IOCP FUNCTION statement or in the hardware configuration definition (HCD). For zEC12 and zBC12, each feature can only be dedicated to an LPAR, and z/OS can use only one of the two ports. On z13 servers, both two ports are supported by z/OS and can be shared by up to 31 partitions (LPARs). The 10GbE RoCE Express feature uses an SR laser as the optical transceiver, and supports the use of a multimode fiber optic cable that terminates with an LC Duplex connector. Both point-to-point connections and switched connections with an enterprise-class 10 GbE switch are supported.
Switch configuration for RoCE: If the IBM 10GbE RoCE Express features are connected to 10 GbE switches, the switches must meet the following requirements:

- Global Pause function enabled
- Priority flow control (PFC) disabled
- No firewalls, no routing, and no IEDN

The maximum supported unrepeated distance, point-to-point, is 300 meters (984 ft). A client-supplied cable is required. Three types of cables can be used for connecting the port to the selected 10 GbE switch or to the 10GbE RoCE Express feature on the attached server:

- OM3 50 micron multimode fiber optic cable that is rated at 2000 MHz-km that terminates with an LC Duplex connector (supports 300 meters (984 ft))
- OM2 50 micron multimode fiber optic cable that is rated at 500 MHz-km that terminates with an LC Duplex connector (supports 82 meters (269 ft))
- OM1 62.5 micron multimode fiber optic cable that is rated at 200 MHz-km that terminates with an LC Duplex connector (supports 33 meters (108 ft))

For more information about the management and definition of the 10GbE RoCE, see Appendix D, “Shared Memory Communications” on page 501 and Appendix G, “Native Peripheral Component Interconnect Express (PCIe)” on page 547.

4.14 zEDC Express

zEDC Express is an optional feature (FC 0420) that is available on z13, zEC12, and zBC12 servers. It is designed to provide hardware-based acceleration for data compression and decompression.

The feature installs exclusively on the PCIe I/O drawer. One to eight features can be installed on the system. There is one PCIe adapter/compression coprocessor per feature, which implements compression as defined by RFC1951 (DEFLATE).

A zEDC Express feature can be shared by up to 15 LPARs.

For more information about the management and definition of the zEDC feature, see Appendix J, “IBM zEnterprise Data Compression Express” on page 577 and Appendix G, “Native Peripheral Component Interconnect Express (PCIe)” on page 547.
Central processor complex
channel subsystem

This chapter addresses the concepts of the IBM z13 channel subsystem, including multiple channel subsystems and multiple subchannel sets. It also describes the technology, terminology, and implementation aspects of the channel subsystem.

This chapter includes the following sections:

- Channel subsystem
- I/O configuration management
- Channel subsystem summary
5.1 Channel subsystem

Channel subsystem (CSS) is a collective name of facilities that z Systems servers used to control I/O operations.

The channel subsystem directs the flow of information between I/O devices and main storage. It allows data processing to proceed concurrently with I/O processing, which relieves data processors (central processor (CP), Integrated Facility for Linux (IFL)) of the task of communicating directly with I/O devices.

The channel subsystem includes subchannels, I/O devices that are attached through control units, and channel paths between the subsystem and control units. For more information about the channel subsystem, see 5.1.1, “Multiple logical channel subsystems”.

The design of z Systems servers offers considerable processing power, memory size, and I/O connectivity. In support of the larger I/O capability, the CSS structure is scaled up by introducing the multiple logical channel subsystem (LCSS) since z990, and multiple subchannel set (MSS) since z9.

An overview of the channel subsystem for z13 servers is shown in Figure 5-1. z13 servers are designed to support up to six logical channel subsystems, and four subchannel sets.

All channel subsystems are defined within a single configuration, which is called I/O configuration data set (IOCDS). The IOCDS is loaded into the hardware system area (HSA) during a central processor complex (CPC) power-on reset (POR), to start all of the channel subsystems. On z13 servers, the HSA is pre-allocated in memory with a fixed size of 96 GB, which is in addition to the customer purchased memory. This fixed size memory for HSA eliminates the requirement for additional planning of the initial I/O configuration and pre-planning for future I/O expansions.
These objects are always reserved in the z13 HSA during POR, whether they are defined in the IOCDS for use or not:

- Six CSSs
- Fifteen LPARs in each CSS0 to CSS4
- Ten LPARs in CSS5
- Subchannel set 0 with 63.75 K devices in each CSS
- Subchannel set 1 with 64 K minus one device in each CSS
- Subchannel set 2 with 64 K minus one device in each CSS
- Subchannel set 3 with 64 K minus one device in each CSS

5.1.1 Multiple logical channel subsystems

In z Systems architecture, a single channel subsystem can have up to 256 channel paths defined, which limited the total numbers of I/O connectivities on a z Systems server to 256.

The introducing of multiple LCSSs enabled a z Systems server to have more than one channel subsystems logically, while each logical channel subsystem maintains the same manner of I/O processing. Also, a logical partition (LPAR) is now attached to a specific logical channel subsystem, which makes the extension of multiple logical channel subsystems transparent to the operating systems and applications. The multiple image facility (MIF) in the structure enables resource sharing across logical partitions within a single LCSS or across the LCSSs.

The multiple LCSS structure has extended the z Systems’ total number of I/O connectivities to support a balanced configuration for the growth of processor and I/O capabilities.

A one-digit number ID starting from 0 (CSSID) is assigned to an LCSS, and a one-digit hexadecimal ID (MIF ID) starting from 0 is assigned to an LPAR within the LCSS.

Note: The word channel subsystem has same meaning as logical channel subsystem in this section unless otherwise stated.

Subchannels

A subchannel provides the logical appearance of a device to the program and contains the information required for sustaining a single I/O operation. Each device is accessible by using one subchannel in a channel subsystem to which it is assigned according to the active IOCDS of the z Systems server. A subchannel set (SS) is a collection of subchannels within a channel subsystem, and the maximum number of subchannels of a subchannel set determines how many devices are accessible to a channel subsystem.

In z Systems architecture, the first subchannel set of an LCSS can have 63.75K subchannels (with 0.25K reserved), with a subchannel set ID (SSID) of 0. By enabling the multiple subchannel sets, which are described in 5.1.2, “Multiple subchannel sets” on page 194, extra subchannel sets are available to increase the device addressability of a channel subsystem.
Channel paths

A channel path provides a connection between the channel subsystem and control units that allows the channel subsystem to communicate with I/O devices. Depending on the type of connections, a channel path might be a physical connection to a control unit with I/O devices, like FICON, or an internal logical one, like HiperSockets.

Each channel path in a channel subsystem has a unique 2-digit hexadecimal identifier that is known as a channel-path identifier (CHPID), which ranges from 00 to FF. Therefore, a total of 256 CHPIDs are supported by a CSS, and a maximum of 1536 CHPIDs are available on a z13 server with six logical channel subsystems.

By assigning a CHPID to a physical port of an I/O feature card such as FICON Express16S, or a fanout adapter port such as like an heximal identifie (ICA-SR) port, the channel subsystem connects to the I/O devices through these physical ports.

A port on an I/O feature card has a unique physical channel identifier (PCHID) according to the physical location of this I/O feature card, and the sequence of this port on the card.

In addition, a port on a fanout adapter has a unique adapter identifier (AID), according to the physical location of this fanout card, and the sequence of this port on the card.

A CHPID is assigned to a physical port by defining the corresponding PCHID or AID in the I/O configuration definitions.

A CHPID can be assigned to a physical port of an I/O feature card located in an InfiniBand (IFB) I/O drawer or a Peripheral Component Interconnect Express (PCIe) I/O drawer, in a multidrawer CPC.

Control units

A control unit provides the logical capabilities that are necessary to operate and control an I/O device. It adapts the characteristics of each device so that it can respond to the standard form of control that is provided by the CSS.

A control unit can be housed separately, or can be physically and logically integrated with the I/O device, the channel subsystem, or within the z Systems server itself.

I/O devices

An I/O device provides external storage, a means of communication between data-processing systems, or a means of communication between a system and its environment. In the simplest case, an I/O device is attached to one control unit and is accessible through one or more channel paths connected to the control unit.

5.1.2 Multiple subchannel sets

A subchannel set is a collection of subchannels within a channel subsystem. The maximum number of subchannels of a subchannel set determines how many I/O devices that a channel subsystem can access. This number also determines the number of addressable devices to the program, an operating system for example, running in the LPAR.

Each subchannel has a unique 4-digit hexadecimal number, ranging from 0x0000 to 0xFFFF. Thus, a single subchannel set can address and access up to 64K I/O devices.

MSS was introduced in z9 to extend the maximum number of addressable I/O devices for a channel subsystem.
z13 servers now support four subchannel sets for each logical channel subsystem. It is capable of accessing a maximum of 255.74K devices for a logical channel subsystem, and thus a logical partition and the programs running on it.

Note: Do not confuse the multiple subchannel sets function with multiple channel subsystems.

Subchannel number
The subchannel number is a four-digit hexadecimal number, ranging from 0x0000 to 0xFFFF, assigned to a subchannel within a subchannel set of a channel subsystem. Subchannels in each subchannel set are always assigned subchannel numbers within a single range of contiguous numbers. The lowest-numbered subchannel is subchannel 0, and the highest-numbered subchannel has a subchannel number equal to one less than the maximum numbers of subchannels supported by the subchannel set. Thus, a subchannel number is always unique within a subchannel set of a channel subsystem, and depends on the sequence of assigning.

With the subchannel numbers, a program running on an LPAR, an operating system for example, can specify all I/O functions relative to a specific I/O device by designating a subchannel assigned to the I/O devices.

Normally, subchannel numbers are only used in communication between the programs and the channel subsystem.

Subchannel set identifier
While introducing the MSS, the channel subsystem is extended to assign a value ranging from 0 to 3 for each subchannel set, which is the SSID. A subchannel can be identified by its SSID and subchannel number.

Device number
A device number is an arbitrary number, ranging from 0x0000 to 0xFFFF, defined by a system programmer in an I/O configuration for naming an I/O device. The device number must be unique within a subchannel set of a channel subsystem. It is assigned to the corresponding subchannel by channel subsystem when an I/O configuration is activated. Thus a subchannel in a subchannel set of a channel subsystem has a device number together with subchannel number for designating an I/O operation.

The device number provide a means to identify a device, independent of any limitations imposed by the system model, the configuration, or channel-path protocols.

A device number also can be used to designate an I/O function to a specific I/O device. Because it is an arbitrary number, it can easily be fit into any configuration management and operating management scenarios. For example, that a system administrator can set all the z/OS systems in an environment to device number 1000 for their system RES volumes.

With multiple subchannel sets, a subchannel is assigned to a specific I/O device by the channel subsystem with an automatically assigned subchannel number, and a device number defined by user. That an I/O device can always be identified by an SSID in conjunction with a subchannel number or a device number. For example, a device with device number AB00 of subchannel set 1, can be designated as 1AB00.

Normally, the subchannel number is used by the programs to communicate with the channel subsystem and I/O device, whereas the device number is used by a system programmer, operator, and administrator.
Device in subchannel set 0 and additional subchannel sets

An LCSS always has the first subchannel set (SSID 0), which can have up to 63.75K subchannels, with 256 subchannels reserved by the channel subsystem. That user can always define their I/O devices in this subchannel set for general use.

For the additional subchannel sets enabled by the MSS facility, each has 65535 subchannels (64K minus one) for specific types of devices. These additional subchannel sets are referred as alternate subchannel sets in z/OS. Also, a device that is defined in an alternate subchannel set is considered a special device, which normally has a special device type in the I/O configuration.

Currently, a z13 server running z/OS defines these types of devices in an additional subchannel set, with proper APAP or PTF installed:

- Alias devices of the parallel access volumes (PAV).
- Secondary devices of GDPS Metro Mirror Copy Service (formerly Peer-to-Peer Remote Copy (PPRC)).
- FlashCopy SOURCE and TARGET devices with program temporary fix (PTF) OA46900.
- DB2 data backup volumes with PTF OA24142.

Using an additional subchannel set for these special devices helps reduce the numbers of devices in the subchannel set 0, which increases the growth capability for accessing more devices.

IPL from an alternate subchannel set

z13 servers support initial program load (IPL) from alternate subchannel sets in addition to subchannel set0. Devices that are used early during IPL processing now can be accessed by using subchannel set 1, subchannel set 2, or subchannel set3 on a z13 server. This configuration allows the users of Metro Mirror (formerly PPRC) secondary devices that are defined by using the same device number and a new device type in an alternate subchannel set to be used for IPL, an I/O definition file (IODF), and stand-alone memory dump volumes when needed.

IPL from an alternate subchannel set is supported by z/OS V1.13 or later, and Version 1.12 with PTFs.
The display ios,config command

The z/OS display ios,config(all) command that is shown in Figure 5-2 includes information about the MSSs.

```
D IOS,CONFIG(ALL)
IOS506I 11.32.19 I/O CONFIG DATA 340
ACTIVE IODF DATA SET = SYS6.10DF39
CONFIGURATION ID = L06RMVS1       EDT ID = 01
TOKEN: PROCESSOR DATE     TIME     DESCRIPTION
       SOURCE: SCZP501  14-10-31 08:51:47 SYS6     IODF39
ACTIVE CSS:  0    SUBCHANNEL SETS CONFIGURED: 0, 1, 2, 3
CHANNEL MEASUREMENT BLOCK FACILITY IS ACTIVE
LOCAL SYSTEM NAME (LSYSTEM): SCZP501
HARDWARE SYSTEM AREA AVAILABLE FOR CONFIGURATION CHANGES
PHYSICAL CONTROL UNITS               8099
CSS  0 - LOGICAL CONTROL UNITS       3996
   SS 0 SUBCHANNELS                54689
   SS 1 SUBCHANNELS                58862
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
CSS  1 - LOGICAL CONTROL UNITS       4088
   SS 0 SUBCHANNELS                65280
   SS 1 SUBCHANNELS                65535
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
CSS  2 - LOGICAL CONTROL UNITS       4088
   SS 0 SUBCHANNELS                65280
   SS 1 SUBCHANNELS                65535
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
CSS  3 - LOGICAL CONTROL UNITS       4088
   SS 0 SUBCHANNELS                65280
   SS 1 SUBCHANNELS                65535
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
CSS  4 - LOGICAL CONTROL UNITS       4088
   SS 0 SUBCHANNELS                65280
   SS 1 SUBCHANNELS                65535
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
CSS  5 - LOGICAL CONTROL UNITS       4088
   SS 0 SUBCHANNELS                65280
   SS 1 SUBCHANNELS                65535
   SS 2 SUBCHANNELS                65535
   SS 3 SUBCHANNELS                65535
```

Figure 5-2 Output for display ios,config(all) command with MSS

5.1.3 Channel path spanning

With the implementation of multiple LCSSs, a channel path can be available to LPARs as dedicated, shared, and spanned.
While a shared channel path can be shared by LPARs within a same LCSS, a spanned channel path can be shared by LPARs within and across LCSSs.

By assigning the same CHPID from different LCSSs to the same channel path, a PCHID for example, the channel path can be accessed by any LPARs from these LCSSs at the same time. The CHPID is spanned across those LCSSs. Using spanned channels paths decreases the number of channels needed in an installation of z Systems servers.

A sample of channel paths defined as dedicated, shared, and spanned is shown in Figure 5-3.

In the sample, the three different definitions of a channel path are shown:

- **CHPID FF**, assigned to PCHID 20A is dedicated access for partition 15 of LCSS0. The same applies to CHPID 00,01,02 of LCSS0, and CHPID 00,01,FF of LCSS1.
- **CHPID 03**, assigned to PCHID 20E is shared access for partition 2, and 15 of LCSS0. The same applies to CHPID 05 of LCSS1.
- **CHPID 06**, assigned to PCHID 120 is spanned access for partition 1, 15 of LCSS0, and partition 16, 17 of LCSS1. The same applies to CHPID 04.

Channel spanning is supported for internal links (HiperSockets and IC links) and for certain types of external links. External links that are supported on z13 servers include FICON Express16S, FICON Express8S, FICON Express8 channels, OSA-Express5S, OSA-Express4S, and Coupling Links.

The definition of LPAR name, MIF image ID, and LPAR ID are used to identify an LPAR by the channel subsystem to identify I/O functions from different LPARs of multiple LCSSs, supporting the implementation of these dedicated, shared, and spanned paths.
An example of definition of these LPAR related identifications is shown in Figure 5-4.

LPAR name
The LPAR name is defined as partition name parameter in the `RESOURCE` statement of an I/O configuration. The LPAR name must be unique across the server.

MIF image ID
The MIF image ID is defined as a parameter for each LPAR in the `RESOURCE` statement of an I/O configuration. It ranges from 1 to F, and must be unique within an LCSS. However duplicates are allowed in different LCSSs. If a MIF image ID is not defined, an arbitrary ID is assigned when the I/O configuration activated. The z13 server supports a maximum of six LCSSs, with a total of 85 LPARs that can be defined. Each LCSS of a z13 server can support the following numbers of LPARs:
- LCSS0 to LCSS4 support 15 LPARs each, and the MIF image ID ranges from 1 to F
- LCSS5 supports 10 LPARs, and the MIF image IDs range from 1 to A.

LPAR ID
The LPAR ID is defined by a user in an image activation profile for each LPAR. It is a 2-digit hexadecimal number from 00 to 7F. The LPAR ID must be unique across the server. Although it is arbitrarily defined by the user, normally an LPAR ID will be the CSS ID concatenated to its MIF image ID, which makes the value more meaningful for the system administrator. For example, an LPAR with LPAR ID 1A defined in that manner means that the LPAR is defined in LCSS1, with the MIF image ID A.

5.2 I/O configuration management

The following tools are available to help maintain and optimize the I/O configuration:
- IBM Configurator for e-business (eConfig): The eConfig tool is available from your IBM representative. It is used to create new configurations or upgrades of an existing configuration, and maintains tracking to the installed features of those configurations.
eConfig produces reports that help you understand the changes that are being made for a new system, or a system upgrade, and what the target configuration will look like.

- **Hardware configuration definition (HCD):** HCD supplies an interactive dialog to generate the IODF, and later the IOCDS. Generally, use HCD or Hardware Configuration Manager (HCM) to generate the I/O configuration rather than writing input/output configuration program (IOCP) statements. The validation checking that HCD runs against a IODF source file helps minimize the risk of errors before an I/O configuration is activated.

HCD support for multiple channel subsystems is available with z/VM and z/OS. HCD provides the capability to make both dynamic hardware and software I/O configuration changes.

![Note: Certain functions might require specific levels of an operating system, PTFs, or both.]

- Consult the appropriate 2964DEVICE, 2827DEVICE, 2828DEVICE, 2817DEVICE, and 2818DEVICE Preventive Service Planning (PSP) buckets before implementation.

- **Hardware Configuration Manager (HCM):** HCM is a priced optional feature that supplies a graphical interface of HCD. It is installed on a PC and allows you to manage both the physical and the logical aspects of a mainframe's hardware configuration.

- **CHPID Mapping Tool (CMT):** The CMT helps to map CHPIDs onto PCHIDs based on a IODF source file and the eConfig configuration file of a mainframe. It provides a CHPID to PCHID mapping with high availability for the targeted I/O configuration. It also has built-in mechanisms to generate a mapping according to customized I/O performance groups. Additional enhancements are implemented in CMT to support z13 servers. The CMT is available for download from the IBM Resource Link website:

5.3 Channel subsystem summary

z13 servers support the channel subsystem features of multiple LCSS, MSS and the channel spanning described in this chapter. Table 5-1 lists an overview of the channel subsystem capabilities of z13 servers.

<table>
<thead>
<tr>
<th>Table 5-1 z13 CSS overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of CSSs</td>
</tr>
<tr>
<td>Maximum number of LPARs per CSS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum number of LPARs per system</td>
</tr>
<tr>
<td>Maximum number of subchannel sets per CSS</td>
</tr>
<tr>
<td>Maximum number of subchannels per CSS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum number of CHPIDs per CSS</td>
</tr>
</tbody>
</table>
Chapter 6. Cryptography

This chapter describes the hardware cryptographic functions that are available on IBM z13 servers. The CP Assist for Cryptographic Function (CPACF) with the Peripheral Component Interconnect Express (PCIe) cryptographic coprocessors offer a balanced use of processing resources and unmatched scalability.

This chapter provides a short introduction in the principles of cryptography. It then looks at the implementation of cartography in the hardware and software architecture of z Systems servers, followed by a more detailed description of the features that IBM z13 servers offer. The chapter is closed by a summary of the cryptographic features and the software required.

This chapter includes the following sections:

- Cryptography enhancements on IBM z13 and z13s servers
- Cryptography on IBM z13 servers
- CP Assist for Cryptographic Functions
- Crypto Express5S
- TKE workstation
- Cryptographic functions comparison
- Cryptographic software support
6.1 Cryptography enhancements on IBM z13 and z13s servers

IBM z13 and z13s servers introduce the new PCI Crypto Express5S feature, together with a redesigned CPACF Coprocessor, managed by a new Trusted Key Entry (TKE) workstation. In addition, the IBM Common Cryptographic Architecture (CCA) and the IBM Enterprise PKCS #11 (EP11) Licensed Internal Code (LIC) have been enhanced. The new functions support new standards and are designed to meet the following compliance requirements:

- National Institute of Standards and Technology (NIST) through the Federal Information Processing Standard (FIPS) standard to implement guidance requirements
- Emerging banking standards to strength the cryptographic standards for attack resistance
- VISA Format Preserving Encryption (VFPE) for credit card numbers
- Enhanced public key Elliptic Curve Cryptography (ECC) for users such as Chrome, Firefox, and Apple’s iMessage

These enhancements are described further in this chapter.

IBM z13 servers include both standard cryptographic hardware and optional cryptographic features for flexibility and growth capability. IBM has a long history of providing hardware cryptographic solutions. This history stretches from the development of the Data Encryption Standard (DES) in the 1970s to the Crypto Express tamper-sensing and tamper-responding programmable features. Crypto Express is designed to meet the US Government’s highest security rating, which is, FIPS 140-2 Level 4\(^1\), and several other security ratings like the Common Criteria for Information Technology Security Evaluation, the Payment Card Industry (PCI) Hardware Security Module (HSM) criteria and the criteria for Deutsche Kreditwirtschaft (DK) evaluation.

The cryptographic functions include the full range of cryptographic operations that are necessary for e-business, e-commerce, and financial institution applications. User Defined Extensions (UDX) allow you to add custom cryptographic functions to the functions that z13 servers offer.

6.2 Some fundamentals on cryptography

From the early beginning of human history, when two people were communicating with each other, there has always been the demand to keep certain messages secret, so that a third person is not able to understand what the sender is telling to the receiver. Also, it is necessary to ensure that a message cannot be corrupted, and that it can be ensured that the sender and the receiver really are the persons that they seem to be. During the centuries, several methods have been used to achieve these objectives, with more or less success. Many procedures and algorithms for encrypting and decrypting data have been developed, most of them complicated and time consuming to use.

6.2.1 Modern cryptography

With the development of computing technology, the encryption and decryption algorithms can be performed by the support of computers, which enables the use of complicated mathematical algorithms, most of which are based on the prime factorization of very large numbers.

\(^1\) FIPS 140-2 Security Requirements for Cryptographic Modules
Modern cryptography involves the following purposes for protecting information:

- **Protection**: The protection of data usually is the main concept associated with cryptography. Only authorized persons should be able to read the message or to get information about it. Data is encrypted by using a known algorithm and secret keys such that the intended party can de-scramble the data, but an interloper cannot. This idea is also referred to as **confidentiality**.

- **Authentication**: This is the process of deciding whether the partners in the communication are who they claim to be, which can be done by using certificates and signatures. It must be possible to clearly identify the owner of the data, or the sender and the receiver of the message.

- **Integrity**: The verification of data ensures that what has been received is identical to what has been sent. It must be proved that the data is complete and has not been modified.

- **Non-repudiation**: It must be impossible for the owner of the data or the sender of the message to deny authorship. Non-repudiation ensures that both sides of a communication know that the other side has agreed to what was exchanged, and not someone else. This specification implies a legal liability and contractual obligation, which is the same as a signature on a contract.

These goals all should be possible without unacceptable overhead to the communication itself. The goal is to keep the system secure, manageable, and productive.

The basic method for granting the protection of data is encrypting and decrypting it, while for authentication, integrity and non-repudiation also hash algorithms, message authentication codes (MACs), digital signatures, and certificates are used.

When encrypting a message, the sender transforms the clear text into a secret text. Doing so requires two main elements: An **algorithm** and a **key**.

The algorithm is the mathematical or logical formula that is applied to the key and the clear text to deliver a ciphered result, or to take a ciphered text and deliver the original clear text. The key ensures that the result of the encrypting data transformation by the algorithm is only the same when the same key is used, and that decryption of a ciphered message only results in the original clear message when the correct key is used. Therefore, the receiver of a ciphered message must know which algorithm and which key must be used to decrypt the message.

6.2.2 Kerckhoffs’ principle

In modern cryptography, the algorithm is published and known to everyone, whereas the keys are kept secret. This corresponds to Kerckhoffs’ principle, which is named after Auguste Kerckhoffs, a Dutch cryptographer, who formulated it in 1883:

“A system should not depend on secrecy, and it should be able to fall into the enemy’s hands without disadvantage.”

In other words, the security of a cryptographic system should depend on the security of the key, so the key must be kept secret. So the secure management of keys is a primary task of modern cryptographic systems.

The reasons for adhering to Kerckhoffs’ Principle are obvious:

- It is much more difficult to keep an algorithm secret than a key.
- It is harder to exchange a compromised algorithm than to exchange a compromised key.
Secret algorithms can be reconstructed by reverse engineering of software or hardware implementations.

Errors in public algorithms can generally be found more easily, when many experts deal with it.

In history, most secret encryption methods have proved to be weak and inadequate.

When using a secret encryption method, it is possible that a back door has been built in.

If an algorithm is public, many experts can form an opinion about it, and the method can be more thoroughly investigated for potential weaknesses and vulnerabilities.

6.2.3 Keys

The keys that are used for the cryptographic algorithms usually are sequences of numbers and characters, but can also be any other sequence of bits. The length of a key influences the security of the cryptographic method. The longer the used key, the harder it is to compromise a cryptographic algorithm. The prominent symmetric cryptographic algorithm DES uses keys with a length of 56 bits, Triple-DES (TDES) uses keys with a length of 112 bits, the Advanced Encryption Standard (AES) uses keys with a length of 128, 192 or 256 bits. The asymmetric RSA algorithm (named after its inventors Rivest, Shamir, and Adleman) uses keys with a length of 1024 - 4096 bits.

As already mentioned, in modern cryptography keys must be kept secret. Depending on the effort that is made to protect the key, keys are classified into three levels:

- **A clear key** is a key that is transferred from the application in the clear to the cryptographic function. The key value is stored in the clear, at least briefly, somewhere in unprotected memory areas, so under certain circumstances the key can be exposed by someone accessing this memory area. This is a risk that must be considered when using clear keys. However, there are many applications where this risk can be accepted. For example, the transaction security for the widely used encryption methods Secure Sockets Layer (SSL) and Transport Layer Security (TLS) is based on clear keys.

- **The value of a protected key** is only stored in clear in memory areas that cannot be read by applications or users. The key value does not exist outside of the physical hardware, although the hardware might not be tamper-resistant. The principle of protected keys is unique to z Systems servers and is explained in more detail in 6.4.2, “CPACF protected key” on page 211.

- **For a secure key**, the key value does not exist in clear outside of a special hardware device, called a HSM, which must be secure and tamper-resistant. A secure key is protected from disclosure and misuse, and can be used for the trusted execution of cryptographic algorithms on highly sensitive data. If used and stored outside of the HSM, a secure key must be encrypted with a master key, which is created within the HSM and never leaves the HSM.
Because a secure key must be handled in a special hardware device, the use of secure keys usually is far slower than that of clear keys as shown in Figure 6-1.

![Figure 6-1 Three levels of protection with three levels of speed.](image)

6.2.4 Algorithms

The algorithms of modern cryptography are differentiated based on whether they use the same key for the encryption of the message as for the decryption:

- **Symmetric algorithms** use the same key to encrypt and to decrypt data. The function used to decrypt the data is the opposite of the function that is used to encrypt the data. Because the same key is used on both sides of an operation, it must be negotiated between both parties and kept secret. Therefore, symmetric algorithms are also known as *secret key algorithms*.

 The main advantage of symmetric algorithms is that they are fast and therefore can be used for huge amounts of data, even if they are not run on specialized hardware. The disadvantage is that the key must be known by both sender and receiver of the messages, which implies that the key must be exchanged between them. This key exchange is a weak point that can be attacked.

 Prominent examples for symmetric algorithms are the already mentioned DES, TDES, and AES.

- **Asymmetric algorithms** use two distinct but related keys, the *public key* and the *private key*. As the names imply, the private key must be kept secret, whereas the public key is shown to everyone. However, with asymmetric cryptography, it is not important who sees or knows the public key. Whatever is done with one key can only be undone by the other key. For instance, data encrypted by the public key can only be decrypted by the associated private key, and vice versa. Unlike symmetric algorithms, which use distinct functions for encryption and decryption, there is only one function in asymmetric algorithms. Depending on the values passed to this function, it either encrypts or decrypts the data. Asymmetric algorithms are also known as *public key algorithms*.

 Asymmetric algorithms use complex calculations and are rather slow (about 100 - 1000 times slower than symmetric algorithms), and therefore are not used for the encryption of bulk data. Because the private key is never exchanged, they are less vulnerable than symmetric algorithms. Asymmetric algorithms mainly are used for authentication, digital signatures, and for the encryption and exchange of secret keys that then are used to encrypt bulk data with a symmetric algorithm.

 Examples for asymmetric algorithms are the already mentioned RSA, and also the elliptic curve algorithms.
Additionally there are one-way algorithms which are, strictly speaking, not cryptographic functions at all. They do not use keys, and they can only scramble data. They cannot de-scramble it. These algorithms are used extensively within cryptographic procedures for digital signing and tend to be developed and governed using the same principles as cryptographic algorithms. One-way algorithms are also known as hash algorithms. The most prominent one-way algorithms are the Secure Hash Algorithms (SHA).

6.3 Cryptography on IBM z13 servers

In principle, cryptographic algorithms can run on processor hardware. But these workloads are compute intensive, and the handling of secure keys also requires special hardware protection. Therefore, IBM z Systems servers offer several cryptographic hardware features, specialized to meet the requirements for cryptographic workload. Figure 6-2 shows the cryptographic hardware that is supported on IBM z13 servers. All these features are described in more detail further in this chapter.

Figure 6-2 Cryptographic hardware supported in IBM z13 servers

Attached to every processor unit (PU) on a single-chip module (SCM) in a central processor complex (CPC) is a cryptographic coprocessor that can be used for cryptographic algorithms using clear keys or protected keys. For more information, see 6.4, “CP Assist for Cryptographic Functions” on page 209.

The Crypto Express5S card is an HSM that is placed in the PCIe I/O drawer of z13 servers. It also supports cryptographic algorithms using secret keys. This feature is described in more detail in 6.5, “Crypto Express5S” on page 213.
Finally, for entering keys in a secure way into the Crypto Express5S HSM, a TKE is required, usually also equipped with smart card readers. For more information, see 6.6, “TKE workstation” on page 224.

Table 6-1 lists the feature codes and describes the purpose of the cryptographic hardware features available for IBM z13 servers.

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3863</td>
<td>CP Assist for Cryptographic Function (CPACF) enablement: This feature is a prerequisite to use CPACF (except for SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512) and the Crypto Express5S feature.</td>
</tr>
<tr>
<td>0890</td>
<td>Crypto Express5S card: A maximum of 16 features can be ordered (minimum of two adapters). This is an optional feature, each feature of which contains one PCI Express cryptographic adapter (adjunct processor). This feature is supported only in z13 and z13s servers.</td>
</tr>
<tr>
<td>0847</td>
<td>Trusted Key Entry (TKE) tower workstation: A TKE provides basic key management (key identification, exchange, separation, update, and backup) and security administration. It is optional for running a Crypto Express5S card in CCA mode and required for running it in EP11 mode. The TKE workstation has one Ethernet port, and supports connectivity to an Ethernet local area network (LAN) operating at 10, 100, or 1000 Mbps. Up to 10 features per z13 server can be ordered.</td>
</tr>
<tr>
<td>0097</td>
<td>Trusted Key Entry (TKE) rack-mounted workstation: The rack-mounted version of the TKE, which needs a customer provided standard 19-inch rack. It comes with a 1u TKE unit and a 1u console tray (screen, keyboard, and pointing device). When using smart card readers, an additional customer provided tray is needed. Up to 10 features per z13 server can be ordered.</td>
</tr>
<tr>
<td>0877</td>
<td>TKE 8.0 Licensed Internal Code (LIC): Included with the TKE tower workstation FC 0847 since z13 GA. This LIC is not orderable with a z13 server, but it can manage a Crypto Express5S card FC 0890 installed in a z13 server.</td>
</tr>
<tr>
<td>0878</td>
<td>TKE 8.1 Licensed Internal Code (LIC): Included with the TKE tower workstation FC 0847 and the TKE rack-mounted workstation FC 0097 for z13 driver 27 and z13s servers.</td>
</tr>
<tr>
<td>0891</td>
<td>TKE Smart Card Reader: Access to information in the smart card is protected by a PIN. One feature code includes two smart card readers, two cables to connect to the TKE workstation, and 20 smart cards. Smart card part 74Y0551 is required to support CEX5P.</td>
</tr>
<tr>
<td>0892</td>
<td>TKE additional smart cards: When one feature code is ordered, 10 smart cards are included. The order increment is 1 - 99 (990 blank smart cards). Smart cards 74Y0551 and 54D3338 can be used. A new card 00JA710 will be released because of the end of life of 74Y0551.</td>
</tr>
</tbody>
</table>

A TKE includes support for the AES encryption algorithm with 256-bit master keys and key management functions to load or generate master keys to the cryptographic coprocessor.

If the TKE workstation is chosen to operate the Crypto Express5S features in a z13s server, TKE workstation with the TKE 8.0 LIC or the TKE 8.1 LIC is required. For more information, see 6.6, “TKE workstation” on page 224.
To access and use the cryptographic hardware devices that are provided by z13 servers, the application must use an application programming interface (API) provided by the operating system. In z/OS, the Integrated Cryptographic Service Facility (ICSF) provides the APIs and is managing the access to the cryptographic devices, as shown in Figure 6-3.

ICSF is a software component of z/OS. ICSF works with the hardware cryptographic features and the Security Server (IBM Resource Access Control Facility (RACF®) element) to provide secure, high-speed cryptographic services in the z/OS environment. ICSF provides the APIs by which applications request the cryptographic services, as well from the CPACF and the Crypto Express5S feature. ICSF transparently routes application requests for cryptographic services to one of the integrated cryptographic engines, either CPACF or a Crypto Express5S card, depending on performance or requested cryptographic function. ICSF is also the means by which the secure Crypto Express5S features are loaded with master key values, allowing the hardware features to be used by applications. The cryptographic hardware that is installed in z13 servers determines the cryptographic features and services available to the applications.

The exploiters of the cryptographic services call the ICSF API. Some functions are performed by the ICSF software without starting the cryptographic hardware features. Other functions result in ICSF going into routines that contain proprietary z Systems crypto instructions. These instructions are run by a CPU engine and result in a work request being generated for a cryptographic hardware feature.

Important: Products that include any of the cryptographic feature codes contain cryptographic functions that are subject to special export licensing requirements by the United States Department of Commerce. It is your responsibility to understand and adhere to these regulations when you are moving, selling, or transferring these products.
6.4 CP Assist for Cryptographic Functions

As already mentioned, attached to every PU on an SCM in a CPC of a z13 server are two independent engines, one for compression and one for cryptographic purposes, as shown in Figure 6-4. This cryptographic coprocessor, called the CPACF, is not an HSM, and therefore is not suitable for handling algorithms that use secret keys. However, the coprocessor can be used for cryptographic algorithms that use clear keys or protected keys. The CPACF works synchronously with the PU, which means that the owning processor is busy when its coprocessor is busy. This setup provides a fast device for cryptographic services.

![Figure 6-4 The cryptographic coprocessor CPACF](image)

The CPACF offers a set of symmetric cryptographic functions that enhance the encryption and decryption performance of clear key operations. These functions are for SSL, virtual private network (VPN), and data-storing applications that do not require FIPS 140-2 Level 4 security.

CPACF is designed to facilitate the privacy of cryptographic key material when used for data encryption through key wrapping implementation. It ensures that key material is not visible to applications or operating systems during encryption operations. For more information, see 6.4.2, “CPACF protected key” on page 211.

The CPACF feature provides hardware acceleration for DES, Triple-DES, AES-128, AES-192, AES-256 (all for clear and protected keys), SHA-1, SHA-256, SHA-384, SHA-512, PRNG, and DRNG (only clear key) cryptographic services. It provides high-performance hardware encryption, decryption, hashing, and random number generation support. The following instructions support the cryptographic assist function:

- **KMAC**: Compute Message Authentic Code
- **KM**: Cipher Message
- **KMC**: Cipher Message with Chaining
- **KMF**: Cipher Message with CFB
- **KMCTR**: Cipher Message with Counter
- **KMO**: Cipher Message with OFB
- **KIMD**: Compute Intermediate Message Digest
- **KLMD**: Compute Last Message Digest
- **PCKMO**: Provide Cryptographic Key Management Operation
These functions are provided as problem-state z/Architecture instructions that are directly available to application programs. These instructions are known as Message-Security Assist (MSA). When enabled, the CPACF runs at processor speed for every CP, IFL, and zIIP. For more information about MSA instructions, see z/Architecture Principles of Operation, SA22-7832.

The CPACF must be explicitly enabled by using an enablement feature (feature code 3863), which is available for no additional charge. The exception is support for the hashing algorithms SHA-1, SHA-256, SHA-384, and SHA-512, which is always enabled.

6.4.1 Cryptographic synchronous functions

Because the CPACF works synchronously with the PU, it provides cryptographic synchronous functions. For IBM and client-written programs, CPACF functions can be started by using the MSA instructions. z/OS ICSF callable services on z/OS, in-kernel crypto APIs, and a *libica* cryptographic functions library running on Linux on z Systems can also start CPACF synchronous functions.

The CPACF coprocessor in z13 servers is redesigned for improved performance compared to the zBC12 by more than two times for large block data, depending on the function that is being used. These tools that might benefit from the throughput improvements:

- DB2/IMS encryption tool
- z/OS Communication Server: IPsec/IKE/AT-TLS
- z/OS System SSL
- z/OS Network Authentication Service (Kerberos)
- DFDSS Volume encryption
- z/OS Java SDK
- z/OS Encryption Facility
- Linux on z Systems: Kernel, openSSL, openCryptoki, and GSKIT

The z13 hardware includes the implementation of algorithms as hardware synchronous operations. This configuration holds the PU processing of the instruction flow until the operation completes. z13 servers offer the following synchronous functions:

- Data encryption and decryption algorithms for data privacy and confidentiality:
 - Data Encryption Standard (DES):
 - Single-length key DES
 - Double-length key DES
 - Triple-length key DES (also known as Triple-DES)
 - Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys
- Hashing algorithms for data integrity, such as SHA-1, and SHA-2 support for SHA-224, SHA-256, SHA-384, and SHA-512
- Message authentication code (MAC):
 - Single-length key MAC
 - Double-length key MAC
- Pseudo-Random Number Generator (PRNG) and Deterministic Random Number Generator (DRNG) for cryptographic key generation.
For the SHA hashing algorithms and the random number generation algorithms, only clear keys are used. For the symmetric encryption/decryption DES and AES algorithms as well as clear keys, protected keys can also be used. Protected keys require a Crypto Express5S card running in CCA mode. For more information, see 6.5.2, “Crypto Express5S as a CCA coprocessor” on page 216.

The hashing algorithms SHA-1, and SHA-2 support for SHA-224, SHA-256, SHA-384, and SHA-512, are included enabled on all servers and do not require the CPACF enablement feature. For all other algorithms, the no-charge CPACF enablement feature (FC 3863) is required.

The CPACF functions are supported by z/OS, z/VM, z/VSE, zTPF, and Linux on z Systems.

6.4.2 CPACF protected key

z13 servers support the protected key implementation. Since PCIXCC2 deployment, secure keys are processed on the PCI-X and PCIe cards. This process requires an asynchronous operation to move the data and keys from the general-purpose central processor (CP) to the crypto cards. Clear keys process faster than secure keys because the process is done synchronously on the CPACF. Protected keys blend the security of Crypto Express5S coprocessors and the performance characteristics of the CPACF. This process allows it to run closer to the speed of clear keys.

An enhancement to CPACF facilitates the continued privacy of cryptographic key material when used for data encryption. In Crypto Express5S coprocessors, a secure key is encrypted under a master key. However, a protected key is encrypted under a wrapping key that is unique to each LPAR. Because the wrapping key is unique to each LPAR, a protected key cannot be shared with another LPAR. By using key wrapping, CPACF ensures that key material is not visible to applications or operating systems during encryption operations.

CPACF code generates the wrapping key and stores it in the protected area of the hardware system area (HSA). The wrapping key is accessible only by firmware. It cannot be accessed by operating systems or applications. DES/T-DES and AES algorithms are implemented in CPACF code with the support of hardware assist functions. Two variations of wrapping keys are generated: One for DES/T-DES keys and another for AES keys.

2 IBM 4764 PCI-X cryptographic coprocessor
Wrapping keys are generated during the clear reset each time an LPAR is activated or reset. There is no customizable option available at Support Element (SE) or Hardware Management Console (HMC) that permits or avoids the wrapping key generation. Figure 6-5 shows this function flow.

If a Crypto Express5S coprocessor (CEX5C) is available, a protected key can begin its life as a secure key. Otherwise, an application is responsible for creating or loading a clear key value, and then using the PCKMO instruction to wrap the key. ICSF is not called by the application if the Crypto Express5S is not available.

A new segment in the profiles of the CSFKEYS class in IBM RACF restricts which secure keys can be used as protected keys. By default, all secure keys are considered not eligible to be used as protected keys. The process that is described in Figure 6-5 considers a secure key as being the source of a protected key.

The source key in this case is already stored in the ICSF Cryptographic Key Data Set (CKDS) as a secure key, which has been encrypted under the master key. This secure key is sent to Crypto Express5S to be deciphered, and sent to the CPACF in clear text. At the CPACF, the key is wrapped under the LPAR wrapping key, and is then returned to ICSF. After the key is wrapped, ICSF can keep the protected value in memory. It then passes it to the CPACF, where the key is unwrapped for each encryption/decryption operation.

The protected key is designed to provide substantial throughput improvements for a large volume of data encryption and low latency for encryption of small blocks of data. A high performance secure key solution, also known as a protected key solution, requires the ICSF HCR7770 as a minimum release.
6.5 Crypto Express5S

The Crypto Express5S feature (FC 0890) is an optional feature that is exclusive to z13 and z13s servers. Each feature has one PCIe cryptographic adapter. The Crypto Express5S feature occupies one I/O slot in a z13 or z13s PCIe I/O drawer. This feature is an HSM, and provides a secure programming and hardware environment on which crypto processes are run. Each cryptographic coprocessor includes a general-purpose processor, non-volatile storage, and specialized cryptographic electronics. The Crypto Express5S feature provides tamper-sensing and tamper-responding, high-performance cryptographic operations.

Each Crypto Express5S PCI Express adapter can be in one of these configurations:

- Secure IBM CCA coprocessor (CEX5C) for FIPS 140-2 Level 4 certification. This configuration includes secure key functions. It is optionally programmable to deploy more functions and algorithms by using UDX. For more information, see 6.5.2, “Crypto Express5S as a CCA coprocessor” on page 216.

- Secure IBM Enterprise PKCS #11 (EP11) coprocessor (CEX5P) implements an industry-standardized set of services that adhere to the PKCS #11 specification V2.20 and more recent amendments. It was designed for extended FIPS and Common Criteria evaluations to meet public sector requirements. This new cryptographic coprocessor mode introduced the PKCS #11 secure key function. For more information, see 6.5.3, “Crypto Express5S as an EP11 coprocessor” on page 220.

A TKE workstation is required to support the administration of the Crypto Express5S when it is configured in EP11 mode.

- Accelerator (CEX5A) for acceleration of public key and private key cryptographic operations that are used with SSL/TLS processing. For more information, see 6.5.4, “Crypto Express5S as an accelerator” on page 220.

These modes can be configured by using the SE. The PCIe adapter must be configured offline to change the mode.

Attention: Switching between configuration modes erases all card secrets. The exception is when you are switching from Secure CCA to accelerator, and vice versa.

The Crypto Express5S feature has been released for enhanced cryptographic performance. It is designed to more than double performance over the Crypto Express4S feature. To achieve this, L2 Cache has been added, a new Crypto application-specific integrated circuit (ASIC) has been implemented, and the internal processor has been upgraded from PowerPC 405 to PowerPC 476.

The Crypto Express5S feature does not have external ports and does not use optical fiber or other cables. It does not use channel path identifiers (CHPIDs), but requires one slot in the PCIe I/O drawer and one physical channel ID (PCHID) for each PCIe cryptographic adapter. Removal of the feature or card zeroizes its content. Access to the PCIe cryptographic adapter is controlled through the setup in the image profiles on the SE.

Adapter: Although PCIe cryptographic adapters have no CHPID type and are not identified as external channels, all logical partitions (LPARs) in all channel subsystems have access to the adapter. In z13 servers, there are up to 85 LPARs per adapter. Having access to the adapter requires a setup in the image profile for each partition. The adapter must be in the candidate list.
Each z13 server supports up to 16 Crypto Express5S features. Table 6-2 shows configuration information for Crypto Express5S.

Table 6-2 Crypto Express5S features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum number of orderable features for each server<sup>a</sup></td>
<td>2</td>
</tr>
<tr>
<td>Order increment above two features</td>
<td>1</td>
</tr>
<tr>
<td>Maximum number of features for each server</td>
<td>16</td>
</tr>
<tr>
<td>Number of PCIe cryptographic adapters for each feature</td>
<td>1</td>
</tr>
<tr>
<td>(coprocessor or accelerator)</td>
<td></td>
</tr>
<tr>
<td>Maximum number of PCIe adapters for each server</td>
<td>16</td>
</tr>
<tr>
<td>Number of cryptographic domains for each PCIe adapter<sup>b</sup></td>
<td>85</td>
</tr>
</tbody>
</table>

- a. The minimum initial order of Crypto Express5S features is two. After the initial order, more Crypto Express5S features can be ordered one feature at a time, up to a maximum of 16.
- b. More than one partition, which is defined to the same channel subsystem (CSS) or to different CSSs, can use the same domain number when assigned to different PCIe cryptographic adapters.

The concept of dedicated processor does not apply to the PCIe cryptographic adapter. Whether configured as a coprocessor or an accelerator, the PCIe cryptographic adapter is made available to an LPAR. It is made available as directed by the domain assignment and the candidate list in the LPAR image profile. This availability is not changed by the shared or dedicated status that is given to the CPs in the partition.

When installed non-concurrently, Crypto Express5S features are assigned PCIe cryptographic adapter numbers sequentially during the power-on reset (POR) that follows the installation. When a Crypto Express5S feature is installed concurrently, the installation can select an out-of-sequence number from the unused range. When a Crypto Express5S feature is removed concurrently, the PCIe adapter numbers are automatically freed.

The definition of domain indexes and PCIe cryptographic adapter numbers in the candidate list for each LPAR must be planned to allow for nondisruptive changes:

- Operational changes can be made by using the Change LPAR Cryptographic Controls task from the SE, which reflects the cryptographic definitions in the image profile for the partition. With this function, adding and removing the cryptographic feature without stopping a running operating system can be done dynamically.
- The same usage domain index can be defined more than once across multiple LPARs. However, the PCIe cryptographic adapter number that is coupled with the usage domain index that is specified must be unique across all active LPARs.

The same PCIe cryptographic adapter number and usage domain index combination can be defined for more than one LPAR (up to 40). For example, you might define a configuration for backup situations. However, only one of the LPARs can be active at a time.

For more information, see 6.5.5, “Management of Crypto Express5S” on page 221.
6.5.1 Cryptographic asynchronous functions

The optional PCIe cryptographic coprocessors Crypto Express5S provides asynchronous cryptographic functions to z13 servers. Over 300 Cryptographic algorithms and modes are supported, including:

- **DES/TDES w DES/TDES MAC/CMAC**: The Data Encryption Standard is a widespread symmetrical encryption algorithm. DES along with its double-length and triple length variations TDES today are considered to be not sufficient secure for many applications. They have been replaced by the AES as the official US standard, but it is still used in the industry, together with the MAC and the Cipher-based Message Authentication Code (CMAC) for verifying the integrity of messages.

- **AES, AESKW, AES GCM, AES XTS mode, CMAC**: AES replaced DES as the official US standard in October 2000. The enhanced standards for AES Key Warp (AESKW), the AES Galois Message Authentication Code (AES GCM) and Galois/Counter Mode (AES GCM), the XEX-based tweaked-codebook mode with ciphertext stealing (AES XTS), and CMAC are supported.

- **MD5, SHA-1, SHA-2 (224, 256, 384, 512), HMAC**: The Secure Hash Algorithm (SHA-1 and the enhanced SHA-2 for different block sizes) as well as the older message-digest (MD5) algorithm and the advanced keyed-hash method authentication code (HMAC) are used for verifying both the data integrity and the authentication of a message.

- **Visa Format Preserving Encryption (VFPE)**: A method of encryption where the resulting cipher text has the same form as the input clear text, developed for use with credit cards.

- **RSA (512, 1024, 2048, 4096)**: RSA was been published in 1977, and was named with the initial letters of the surnames of its authors Ron Rivest, Adi Shamir, and Leonard Adleman. It is widely used asymmetric public-key algorithm, which means that the encryption key is public whereas the decryption key is kept secret. It is based on the difficulty of factoring the product of two large prime numbers. The number describes the length of the keys.

- **ECDSA (192, 224, 256, 384, 521 Prime/NIST)**: ECC is a family of asymmetric cryptographic algorithms based on the algebraic structure of elliptic curves. ECC can be used for encryption, pseudo-random number generation, and digital certificates. The Elliptic Curve Digital Signature Algorithm (ECDSA) Prime/NIST method is used for ECC digital signatures, which are recommended for government use by NIST.

- **ECDSA (160, 192, 224, 256, 320, 384, 512 BrainPool)**: ECC Brainpool is a workgroup of companies and institutions that collaborate on developing ECC algorithms. The ECDSA algorithms that are recommended by this group are supported.

- **ECDH (192, 224, 256, 384, 521 Prime/NIST)**: Elliptic Curve Diffie-Hellman (ECDH) is an asymmetric protocol used for key agreement between two parties using ECC-based private keys. The recommendations by NIST are supported.

- **ECDH (160, 192, 224, 256, 320, 384, 512 BrainPool)**: ECDH according to the Brainpool recommendations.

- **Montgomery Modular Math Engine**: The Montgomery Modular Math Engine is a method for fast modular multiplication. Many crypto systems like RSA and Diffie-Hellman key Exchange can use this method.

- **RNG (Random Number Generator)**: The generation of random numbers for cryptographic key generation is supported.

- **PNG (Prime Number Generator)**: The generation of prime numbers is also supported.

- **Clear Key Fast Path (Symmetric and Asymmetric)**: This mode of operation gives a direct hardware path to the cryptographic engine and provides high performance for public-key cryptographic functions.
Several of these algorithms require a secure key and must run on an HSM. Some of them can also run with a clear key on the CPACF. Many standards are only supported when the Crypto Express5S card is running in CCA mode. Others are supported only when the card is running in EP11 mode. The three modes for the Crypto Express5S card are further described in the following sections. A summary which algorithm is supported in which mode is shown in 6.7, “Cryptographic functions comparison” on page 227.

6.5.2 Crypto Express5S as a CCA coprocessor

A Crypto Express5S card running in CCA mode supports IBM CCA. CCA is both an architecture and a set of APIs. It provides cryptographic algorithms and secure key management, and many special functions that are required for banking. Over 129 APIs with more than 600 options are provided, with new functions and algorithms always being added.

The IBM CCA provides functions for these tasks:

- Encryption of data (DES/TDES/AES)
- Key management:
 - Using TDES or AES keys
 - Using RSA or Elliptic Curve keys
- Message authentication for MAC/HMAC/AES-CMAC
- Key generation
- Digital signatures
- Random number generation
- Hashing (SHA, MD5, and others)
- ATM PIN generation and processing
- Credit card transaction processing
- Visa Data Secure Platform (DSP) Point to Point Encryption (P2PE)
- Europay, MasterCard, and Visa (EMV) card transaction processing
- Card personalization
- Other financial transaction processing
- Integrated role-based access control system

User-Defined Extensions support

UDX allows the user to add customized operations to a cryptographic coprocessor. User-Defined Extensions to the CCA support customized operations that run within the Crypto Express features when defined as a coprocessor.

UDX is supported under a special contract through an IBM or approved third-party service offering. The Crypto Cards website directs your request to an IBM Global Services location for your geographic location. A special contract is negotiated between IBM Global Services and you for the development of the UDX code by IBM Global Services according to your specifications and an agreed-upon level of the UDX.

A UDX toolkit for z Systems servers is tied to specific versions of the CCA card code and the related host code. UDX is available for the Crypto Express5S (Secure IBM CCA coprocessor mode only) features. An UDX migration is no more disruptive than a normal Microcode Change Level (MCL) or ICSF release migration.

In z13 servers, up to four UDX files can be imported. These files can be imported only from a DVD. The UDX configuration window is updated to include a **Reset to IBM Default** button.

Consideration: CCA has a new code level at z13 servers, and the UDX clients require a new UDX.
On z13 servers, the crypto Express5S card is delivered with CCA Level 5.2 firmware. A new set of cryptographic functions and callable services are provided by the IBM CCA LIC to enhance the functions that secure financial transactions and keys:

- Greater than 16 domains support, up to 40 LPARs on z13s servers and up to 85 LPARs on z13 servers, exclusive to z13 or z13s servers and to Crypto Express5S
- Visa Format Preserving Encryption (VFPE) support, exclusive to z13 or z13s servers and to Crypto Express5S
- AES PIN support for the German banking industry
- PKA Translate UDX function into CCA
- Verb Algorithm Currency

Greater than 16 domains support
z13s servers have support for up to 40 LPARs. z13 servers have support for up to 85 LPARs. The z Systems crypto architecture was designed to support 16 domains, which matched the LPAR maximum at the time. Before z13 and z13s servers, in customer environments where the number of LPARs was larger than 16, crypto workload separation could be complex. These customers had to map a large set of LPARs to a small set of crypto domains.

Now, in z13s and z13 servers, with the adjunct processor (AP) extended addressing (APXA) facility that is installed, the z Systems crypto architecture can support up to 256 domains in an AP. As such, the Crypto Express cards are enhanced to handle 256 domains, and the z Systems firmware provides up to 40 (on z13s servers) or 85 (on z13 servers) domains to customers (to match the current LPAR maximum). Customers have the flexibility of mapping individual LPARs to unique crypto domains or continuing to share crypto domains across LPARs.

Here are the requirements to support 40 and 85 domains:

- **Hardware requirements:**
 - z13s servers and Crypto Express5S with CCA V5.2 firmware
 - z13 servers and Crypto Express5S with CCA V5.0 or later firmware

- **Software requirements:**
 - z/OS V2.2
 - z/OS V2.1 and z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77B0)
 - Also available with HCR7780, HCR7790, HCR77A0, and HCR77A1 (previous web deliveries with program temporary fixes (PTFs))
 - z/VM V6.2 and Version 6.3 with PTFs for guest use

Visa Format Preserving Encryption
VFPE refers to a method of encryption where the resulting cipher text has the same form as the input clear text. The form of the text can vary according to use and application. One of the classic examples is a 16-digit credit card number. After using VFPE to encrypt a credit card number, the resulting cipher text is another 16-digit number. This helps legacy databases contain encrypted data of sensitive fields without having to restructure the database or applications.

VFPE allows customers to add encryption to their applications in such a way that the encrypted data can flow through their systems without requiring a massive redesign of their application. In the previous example, if the credit card number is VFPE-encrypted at the point
of entry, the cipher text still behaves like a credit card number. It can flow through business logic until it meets a back-end transaction server that can VFPE-decrypt it to get the original credit card number to process the transaction.

Here are the FPE requirements:

- **Hardware requirements:**
 - Z13s or z13 servers and Crypto Express5S with CCA V5.2 firmware

- **Software requirements:**
 - z/OS V2.2
 - z/OS V2.1 and z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77B0)
 - z/VM V6.2 and Version 6.3 with PTFs for guest use

AES PIN support for the German banking industry

The German banking industry organization, DK, has defined a new set of PIN processing functions to be used on the internal systems of banks and their servers. CCA is designed to support the functions that are essential to those parts of the German banking industry that are governed by DK requirements. The functions include key management support for new AES key types, AES key derivation support, and several DK-specific PIN and administrative functions.

This support includes PIN method APIs, PIN administration APIs, new key management verbs, and new access control points support that is needed for DK-defined functions.

Here are the requirements for AES PIN support:

- **Hardware requirements:**
 - Z13s servers and Crypto Express5S with CCA V5.2 firmware
 - Z13 servers and Crypto Express5S with CCA V5.0 or later firmware
 - zEC12 or zBC12 and Crypto Express4S with CCA V4.4 firmware
 - zEC12, zBC12, z196 or z114 and Crypto Express3 with CCA V4.4 firmware

- **Software requirements:**
 - z/OS V2.2
 - z/OS V2.1 or z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77A1) with PTFs
 - z/OS V2.1 (FMID HCR77A0) with PTFs
 - z/OS V1.12 or z/OS V1.13 with the Cryptographic Support for z/OS V1R12-V1R13 web deliverable (FMID HCR77A0) with PTFs
 - z/VM Version 6.2, and Version 6.3 with PTFs for guest use

PKA Translate UDX function into CCA

UDX is custom code that allows the client to add unique operations/extensions to the CCA firmware. Certain UDX functions are integrated into the base CCA code over time to accomplish the following tasks:

- Removes headaches and pain points that are associated with UDX management and currency.
- Popular UDX functions are made available to a wider audience to encourage adoption.
UDX is integrated into the base CCA code to support translating an external RSA CRT key into new formats. These new formats use tags to identify key components. Depending on which new rule array keyword is used with the PKA Key Translate callable service, the service TDES encrypts those components in either CBC or ECB mode. In addition, AES CMAC support is delivered.

Here are the requirements for this function:

- **Hardware requirements:**
 - z13s servers and Crypto Express5S with CCA V5.2 firmware
 - z13 servers and Crypto Express5S with CCA V5.0 or later firmware
 - zEC12 or zBC12 and Crypto Express4S with CCA V4.4 firmware
 - zEC12, zBC12, z196 or z114 and Crypto Express3 with CCA V4.4 firmware

- **Software requirements:**
 - z/OS V2.2
 - z/OS V2.1 or z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77A1) with PTFs
 - z/OS V2.1 (FMID HCR77A0) with PTFs
 - z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77A1) with PTFs
 - z/OS V1.12 or z/OS V1.13 with the Cryptographic Support for z/OS V1R12-V1R13 web deliverable (FMID HCR77A0) with PTFs
 - z/OS V1.12 or V1.13 with the Cryptographic Support for z/OS V1R11-V1R13 web deliverable (FMID HCR7790) with PTFs
 - z/VM Version 6.2, and Version 6.3 with PTFs for guest use

Verb Algorithm Currency

Verb Algorithm Currency is a collection of CCA verb enhancements related to customer requirements, with the intent of maintaining currency with cryptographic algorithms and standards. It is intended for customers who want to maintain the latest cryptographic capabilities:

- Secure key support AES GCM encryption
- New Key Check Value (KCV) algorithm for service CSNBKYT2 Key Test 2
- New key derivation options for CSNDEDH EC Diffie-Hellman service

Here are the requirements for this function:

- **Hardware requirements:**
 - z13s or z13 servers and Crypto Express5S with CCA V5.2 firmware

- **Software requirements:**
 - z/OS V2.2
 - z/OS V2.1 or z/OS V1.13 with the Cryptographic Support for z/OS V1R13-z/OS V2R1 web deliverable (FMID HCR77B1) with PTFs
 - z/VM 5.4, 6.2, and 6.3 with PTFs for guest exploitation
6.5.3 Crypto Express5S as an EP11 coprocessor

A Crypto Express5S card that is configured in Secure IBM Enterprise PKCS #11 (EP11) coprocessor mode provides PKCS #11 secure key support for public sector requirements. Before EP11, the ICSF PKCS #11 implementation supported only clear keys. In EP11, keys can now be generated and securely wrapped under the EP11 Master Key. The secure keys never leave the secure coprocessor boundary unencrypted.

The secure IBM Enterprise PKCS #11 (EP11) coprocessor runs the following tasks:

- Encrypt and decrypt (AES, DES, TDES, and RSA)
- Sign and verify (DSA, RSA, and ECDSA)
- Generate keys and key pairs (DES, AES, DSA, ECC, and RSA)
- HMAC (SHA1, SHA224, SHA256, SHA384, and SHA512)
- Digest (SHA1, SHA224, SHA256, SHA384, and SHA512)
- Wrap and unwrap keys
- Random number generation
- Get mechanism list and information
- Attribute values
- Key Agreement (Diffie-Hellman)

The function extension capability through UDX is not available to the EP11.

When defined in EP11 mode, the TKE workstation is required to manage the Crypto Express5S feature.

6.5.4 Crypto Express5S as an accelerator

A Crypto Express5S card running in accelerator mode supports only RSA clear key and SSL Acceleration. A request is processed fully in hardware. The Crypto Express accelerator is a coprocessor that is reconfigured by the installation process so that it uses only a subset of the coprocessor functions at a higher speed. Reconfiguration is disruptive to coprocessor and accelerator operations. The coprocessor or accelerator must be deactivated before you begin the reconfiguration.

FIPS 140-2 certification is not relevant to the accelerator because it operates with clear keys only. The function extension capability through UDX is not available to the accelerator.

The functions that remain available when the Crypto Express5S feature is configured as an accelerator are used for the acceleration of modular arithmetic operations. That is, the RSA cryptographic operations are used with the SSL/TLS protocol. The following operations are accelerated:

- PKA Decrypt (CSNDPKD) with PKCS-1.2 formatting
- PKA Encrypt (CSNDPKE) with zero-pad formatting
- Digital Signature Verify

The RSA encryption and decryption functions support key lengths of 512 bits to 4,096 bits, in the Modulus-Exponent (ME) and Chinese Remainder Theorem (CRT) formats.
6.5.5 Management of Crypto Express5S

With zEC12 and older servers, each cryptographic coprocessor has 16 physical sets of registers or queue registers. With z13 servers, this number is raised to 85. This increase corresponds to the maximum number of LPARs running on a z13 server, which is also 85. Each of these 85 sets belongs to a domain as follows:

- A cryptographic domain index, in the range of 0 - 84, is allocated to a logical partition in its image profile. The same domain must also be allocated to the ICSF instance running in the logical partition that uses the Options data set.
- Each ICSF instance accesses only the Master Keys or queue registers corresponding to the domain number specified in the logical partition image profile at the SE and in its Options data set. Each ICSF instance sees a logical cryptographic coprocessor that consists of the physical cryptographic engine and the unique set of registers (the domain) allocated to this logical partition.

The installation of CP Assist for Cryptographic Functions (CPACF) DES/TDES enablement, Feature Code #3863, is required to use the Crypto Express5S feature.

Each Crypto Express5S feature contains one PCI-X adapter. The adapter can be in the following configurations:

- IBM Enterprise Common Cryptographic Architecture (CCA) Coprocessor (CEX5C)
- IBM Enterprise Public Key Cryptography Standards#11 (PKCS) Coprocessor (CEX5P)
- IBM Crypto Express5S Accelerator (CEX5A)

During the feature installation, the PCI-X adapter is configured by default as the CCA coprocessor.

The configuration of the Crypto Express5S adapter as EP11coprocessor requires a Trusted Key Entry (TKE) tower workstation (FC 0847) or a TKE rack-mounted workstation (FC 0097) with TKE 8.1 (FC 0877) or 8.1 (FC 0878) LIC.

The Crypto Express5S feature does not use CHPIDs from the channel subsystem pool. However, the Crypto Express5S feature requires one slot in a PCIe I/O drawer, and one PCHID for each PCIe cryptographic adapter.

For enabling an LPAR to use a Crypto Express5S card, the following cryptographic resources in the image profile must be defined for each partition:

- Usage domain index
- Control domain index
- PCI Cryptographic Coprocessor Candidate List
- PCI Cryptographic Coprocessor Online List
This task is accomplished by using the Customize/Delete Activation Profile task, which is in the Operational Customization Group, either from the HMC or from the SE. Modify the cryptographic initial definition from the Crypto option in the image profile, as shown in Figure 6-6. After this definition is modified, any change to the image profile requires a DEACTIVATE and ACTIVATE of the logical partition for the change to take effect. Therefore, this cryptographic definition is disruptive to a running system.

![Figure 6-6 Customize Image Profiles: Crypto](image)

The cryptographic resource definitions have the following meanings:

Control Domain

Identifies the cryptographic coprocessor domains that can be administered from this logical partition if it is being set up as the TCP/IP host for the TKE.

If you are setting up the host TCP/IP in this logical partition to communicate with the TKE, the partition is used as a path to other domains' Master Keys. Indicate all the control domains that you want to access (including this partition's own control domain) from this partition.

Control and Usage Domain

Identifies the cryptographic coprocessor domains that are assigned to the partition for all cryptographic coprocessors that are configured on the partition. The usage domains cannot be removed if they are online. The numbers that are selected must match the domain numbers that are entered in the Options data set when you start this partition instance of ICSF.

The same usage domain index can be used by multiple partitions regardless of which CSS they are defined to. However, the combination of PCI-X adapter number and usage domain index number must be unique across all active partitions.
Cryptographic Candidate list Identifies the cryptographic coprocessor numbers that are eligible to be accessed by this logical partition. From the list, select the coprocessor numbers, in the range 0 - 15, that identify the PCI-X adapters to be accessed by this partition.

Cryptographic Online list Identifies the cryptographic coprocessor numbers that are automatically brought online during logical partition activation. The numbers that are selected in the online list must also be part of the candidate list.

After they are activated, the active partition cryptographic definitions can be viewed from the SE. Select the CPCs, and click **View LPAR Cryptographic Controls** in the CPC Operational Customization window. The resulting window displays the definition of Usage and Control domain indexes, and PCI Cryptographic candidate and online lists, as shown in Figure 6-7. Information is provided only for active logical partitions.

![Figure 6-7 SE: View LPAR Cryptographic Controls](image)

Operational changes can be made by using the Change LPAR Cryptographic Controls task from the SE, which reflects the cryptographic definitions in the image profile for the partition. With this function, the cryptographic feature can be added and removed dynamically, without stopping a running operating system.

For more information about the management of Crypto Express5S cards, see the corresponding chapter in *IBM z13 Configuration Setup*, SG24-8260.
6.6 TKE workstation

The TKE workstation is an optional feature that offers key management functions. A TKE tower workstation feature (FC 0847) or a TKE rack-mounted workstation feature (FC 0097) is required for z13 servers to manage the Crypto Express5S feature.

The TKE contains a combination of hardware and software. A mouse, keyboard, flat panel display, PCIe adapter, and a writable USB media to install the TKE LIC are included with the system unit. The TKE workstation requires an IBM 4767 crypto adapter.

A TKE workstation is part of a customized solution for using the Integrated Cryptographic Service Facility for z/OS (ICSF for z/OS) or Linux for z Systems. This program provides a basic key management system for the cryptographic keys of a z13s server that has Crypto Express features installed.

The TKE provides a secure, remote, and flexible method of providing Master Key Part Entry, and to remotely manage PCIe cryptographic coprocessors. The cryptographic functions on the TKE are run by one PCIe cryptographic coprocessor. The TKE workstation communicates with the z Systems server through a TCP/IP connection. The TKE workstation is available with Ethernet LAN connectivity only. Up to 10 TKE workstations can be ordered. TKE FCs 0847 and 0097 can be used to control the Crypto Express5S cards on z13 servers. They also can be used to control the Crypto Express5S on z13s servers, and the older Crypto cards on zEC12, zBC12, z196, z114, z10 EC, z10 BC, z9 EC, z9 BC, z990, and z890 servers.

Tip: For more information about handling a TKE, see the series of instructive video clips at: http://www.youtube.com/user/IBMTKE

6.6.1 Logical partition, TKE host, and TKE target

If one or more LPARs are configured to use Crypto Express5S coprocessors, the TKE workstation can be used to manage DES, AES, ECC, and PKA master keys. This management can be done for all cryptographic domains of each Crypto Express coprocessor feature that is assigned to the LPARs that are defined to the TKE workstation.

Each LPAR in the same system that uses a domain that is managed through a TKE workstation connection is either a TKE host or a TKE target. An LPAR with a TCP/IP connection to the TKE is referred to as the TKE host. All other partitions are TKE targets.

The cryptographic controls that are set for an LPAR through the SE determine whether the workstation is a TKE host or a TKE target.

6.6.2 Optional smart card reader

An optional smart card reader (FC 0885) can be added to the TKE workstation. One FC 0885 includes two smart card readers, two cables to connect them to the TKE workstation, and 20 smart cards. The reader supports the use of smart cards that contain an embedded microprocessor and associated memory for data storage. The memory can contain the keys to be loaded into the Crypto Express features.

Access to and use of confidential data on the smart card are protected by a user-defined PIN. Up to 990 additional smart cards can be ordered for backup. The additional smart card feature code is FC 0884. When one feature code is ordered, 10 smart cards are shipped. The order increment is 1 - 99 (10 - 990 blank smart cards).
6.6.3 TKE workstation with Licensed Internal Code 8.0

To control the Crypto Express5S card in a z13 server, a TKE workstation (FC 0847 or 0097) with LIC 8.0 (FC 0877) or LIC 8.1 (FC 0878) is required. With LIC 8.0, the new functions of LIC 8.1 are not available. TKE LIC 8.1 is delivered with z13 Driver 27. To control a Crypto Express5S in z13 Driver 27 with a TKE workstation running LIC 8.0, delivered with an already installed z13 server, an MES upgrade to LIC 8.1 is issued.

LIC 8.0 has the following enhancements compared to older LIC 7.x:

- TKE workstation with LIC 8.0 or higher is required to manage a Crypto Express5S host.
- Only a TKE workstation with LIC 8.0 or higher can be used to manage domains higher than 16 on a Crypto Express5S feature.
- The Full Function Migration Wizard is required when data is applied to a Crypto Express5S host. If data is applied to a Crypto Express5S host, the collection must be done by using Key Part Holder Certificates from Key Part Holder (KPH) smart cards that are created on a TKE workstation with LIC 8.0 or later.

Recommendation: During a migration, if data is applied to a Crypto Express5S, collect the source module from the TKE workstation with LIC 8.0 or higher.

6.6.4 TKE workstation with Licensed Internal Code 8.1

The TKE 8.1 LIC (FC 0878) offers the following new features:

- Domain Cloning: The ability to collect data from one domain and push it to a set of domains. This is valuable for deploying new domains.
- Ability to start Coordinated Master Key roll from the TKE.
- Three new wizard-like features: Create new TKE zone, Create new Migration Zone, Configure Host Roles and Authorities.
- Operational Key Option: This allows the client to decide whether operational key commands are limited to the master domain or sent all domains in the group.
- HMAC key: Support for HMAC key has been added. The key is limited to three specific sizes: 128, 192, and 256.
- TKE enables the Save Customized Data feature: This feature simplifies the way that a client can save and restore client data to a TKE.
- TKE can be configured to prevent auto-logon: If configured, a password is required to start the Trusted Key Entry Console web application.
- Binary Key Part File Utility: This feature allows the client to copy a key part from a binary file to a smart card.
- ACP Usage Information: This feature allows clients to determine which Domain Controls (Access Control Points) are actually checked/used on a domain. The utility allows the client to activate and deactivate tracking and create reports.
- Display Crypto Module Settings: This feature allows clients to build a report that shows the settings of a crypto module.
6.6.5 TKE hardware support and migration information

The new TKE 8.1 LIC (FC 0878) is shipped with z13 Driver 27 and z13s servers. If a new TKE 8.1 is purchased, two versions are available:

- TKE 8.1 tower workstation (FC 0847)
- TKE 8.1 rack-mounted workstation (FC 0097)

The TKE 8.1 LIC requires the 4767 crypto adapter. Any TKE 8.0 workstation can be upgraded to TKE 8.1 tower workstation (FC 0847), which is using the same crypto adapter. The TKE 7.3 workstation (FC 0842) can be upgraded to the TKE 8.1 tower workstation with purchasing a 4767 crypto adapter.

The Omnikey Cardman 3821 smart card readers can be carried forward to any TKE 8.1 workstation. Smart cards 45D3398, 74Y0551, and 00JA710 can be used on TKE 8.1.

When doing a MES upgrade to a TKE 8.1 installation, the following steps must be completed.

Upgrade from TKE 8.0 to TKE 8.1:
1. Save Upgrade Data on TKE 8.0 to USB memory to save client data.
2. Upgrade the firmware to TKE 8.1.
3. Perform the Frame Roll installation to apply Save Upgrade Data (client data) to the TKE 8.1 system.
4. Run the TKE Workstation Setup wizard.

Upgrade from TKE 7.3 to TKE 8.1:
1. Save Upgrade Data on TKE 7.3 to USB memory to save client data.
2. Replace the 4765 crypto adapter with the 4767 crypto adapter.
3. Upgrade the firmware to TKE 8.1.
4. Perform the Frame Roll installation to apply Save Upgrade Data (client data) to the TKE 8.1 system.
5. Run the TKE Workstation Setup wizard.

For more information about TKE hardware support, see Table 6-3.

Table 6-3 TKE Compatibility Matrix

<table>
<thead>
<tr>
<th>TKE Workstation</th>
<th>TKE Release LIC</th>
<th>7.2</th>
<th>7.3^a</th>
<th>8.0</th>
<th>8.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW Feature Code</td>
<td>0814</td>
<td>0842</td>
<td>0847</td>
<td>0847 or 0097</td>
<td></td>
</tr>
<tr>
<td>LICC</td>
<td>0850</td>
<td>0872</td>
<td>0877</td>
<td>0878</td>
<td></td>
</tr>
<tr>
<td>Smart Card Reader</td>
<td>0885</td>
<td>0885</td>
<td>0891</td>
<td>0891</td>
<td></td>
</tr>
<tr>
<td>Smart Card</td>
<td>0884</td>
<td>0884^b</td>
<td>0892</td>
<td>0892</td>
<td></td>
</tr>
</tbody>
</table>
6.7 Cryptographic functions comparison

Table 6-4 lists the functions or attributes on z13 servers for the two cryptographic hardware features. In the table, “X” indicates that the function or attribute is supported.

<table>
<thead>
<tr>
<th>Functions or attributes</th>
<th>CPACF</th>
<th>CEX5C</th>
<th>CEX5P</th>
<th>CEX5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports z/OS applications using ICSF</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Supports Linux on z Systems CCA applications</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Encryption and decryption using secret-key algorithm</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Provides the highest SSL/TLS handshake performance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Supports SSL/TLS functions</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Provides the highest symmetric (clear key) encryption performance</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Provides the highest asymmetric (clear key) encryption performance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Functions or attributes</td>
<td>CPACF</td>
<td>CEX5C</td>
<td>CEX5P</td>
<td>CEX5A</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Provides the highest asymmetric (encrypted key) encryption performance</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Disruptive process to enable</td>
<td>-</td>
<td>Notea</td>
<td>Notea</td>
<td>Notea</td>
</tr>
<tr>
<td>Requires IOCDS definition</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uses CHPID numbers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uses PCHIDs (one PCHID)</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Requires CPACF enablement (FC 3863)</td>
<td>Xb</td>
<td>Xb</td>
<td>Xb</td>
<td>Xb</td>
</tr>
<tr>
<td>Requires ICSF to be active</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Offers UDX</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Usable for data privacy: Encryption and decryption processing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Usable for data integrity: Hashing and message authentication</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Usable for financial processes and key management operations</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Crypto performance IBM RMFTM monitoring</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Requires system master keys to be loaded</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>System (master) key storage</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Retained key storage</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tamper-resistant hardware packaging</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>Xc</td>
</tr>
<tr>
<td>Designed for FIPS 140-2 Level 4 certification</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Supports Linux applications performing SSL handshakes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>RSA functions</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>High-performance SHA-1 and SHA2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Clear key DES or triple DES</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Pseudorandom number generator (PRNG)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Clear key RSA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Europay, MasterCard, and Visa (EMV) support</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Public Key Decrypt (PKD) support for Zero-Pad option for clear RSA private keys</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Public Key Encrypt (PKE) support for Mod\textunderscore Raised\textunderscore to Power (MRP) function</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Remote loading of initial keys in ATM</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Improved key exchange with non-CCA systems</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
6.8 Cryptographic software support

The software support levels for cryptographic functions are listed in 7.4, “Cryptographic support” on page 286.
Software support

This chapter lists the minimum operating system requirements and support considerations for the IBM z13 servers and their features. It addresses z/OS, z/VM, z/VSE, z/TPF, Linux on z Systems, and KVM for IBM z Systems. Because this information is subject to change, see the Preventive Service Planning (PSP) bucket for 2964DEVICE for the most current information. Also included is generic software support for IBM z BladeCenter Extension (zBX) Model 004.

Support of z13 functions depends on the operating system, its version, and release.

This chapter includes the following sections:

- Operating systems summary
- Support by operating system
- Support by function
- Cryptographic support
- GDPS Virtual Appliance
- z/OS migration considerations
- IBM z Advanced Workload Analysis Reporter (IBM zAware)
- Coupling facility and CFCC considerations
- Simultaneous multithreading
- Single-instruction multiple-data
- The Modified Indirect Data Address Word facility
- IOCP
- Worldwide port name tool
- ICKDSF
- IBM z BladeCenter Extension (zBX) Model 004 software support
- Software licensing
- References
7.1 Operating systems summary

Table 7-1 lists the minimum operating system levels that are required on z13 servers. For similar information about the IBM z BladeCenter Extension (zBX) Model 004, see 7.15, “IBM z BladeCenter Extension (zBX) Model 004 software support” on page 305.

End-of-service operating systems: Operating system levels that are no longer in service are not covered in this publication. These older levels might provide support for some features.

<table>
<thead>
<tr>
<th>Operating systems</th>
<th>ESA/390 (31-bit mode)</th>
<th>z/Architecture (64-bit mode)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R12a</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>z/VM V6R2b</td>
<td>No</td>
<td>Yes(^c)</td>
<td></td>
</tr>
<tr>
<td>z/VSE V5R1</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>z/TPF V1R1</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>No(^d)</td>
<td>See Table 7-2 on page 235.</td>
<td></td>
</tr>
<tr>
<td>KVM for IBM z Systems</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

- a. Regular service support for z/OS V1R12 ended September 2014. However, by ordering the IBM Software Support Services - Service Extension for z/OS V1.12, fee-based corrective service can be obtained up to September 2017.
- b. z/VM V6R2 with PTF provides compatibility support (CEX5S with enhanced crypto domain support)
- c. z/VM supports both 31-bit and 64-bit mode guests.
- d. 64-bit distributions included the 31-bit emulation layer to run 31-bit software products.

Features: Usage of certain features depends on the operating system. In all cases, program temporary fixes (PTFs) might be required with the operating system level that is indicated. Check the z/OS, z/VM, z/VSE, and z/TPF subsets of the 2964DEVICE PSP buckets. The PSP buckets are continuously updated, and contain the latest information about maintenance.

- Hardware and software buckets contain installation information, hardware and software service levels, service guidelines, and cross-product dependencies.
- For Linux on z Systems distributions, consult the distributor’s support information.
- For KVM for IBM z Systems, see *Getting Started with KVM for IBM z Systems*, SG24-8332.
7.2 Support by operating system

z13 servers introduce several new functions. This section addresses support of those functions by the current operating systems. Also included are some of the functions that were introduced in previous z Systems servers and carried forward or enhanced in z13 servers. Features and functions that are available on previous servers but no longer supported by z13 servers have been removed.

For a list of supported functions and the z/OS and z/VM minimum required support levels, see Table 7-3 on page 236. For z/VSE, z/TPF, and Linux on z Systems, see Table 7-4 on page 241. The tabular format is intended to help you determine, by a quick scan, which functions are supported and the minimum operating system level that is required.

7.2.1 z/OS

z/OS Version 1 Release 13 is the earliest in-service release that supports z13 servers. After September 2016, a fee-based Extended Service for defect support (for up to three years) can be obtained for z/OS V1R13. Although service support for z/OS Version 1 Release 12 ended in September of 2014, a fee-based extension for defect support (for up to three years) can be obtained by ordering IBM Software Support Services - Service Extension for z/OS 1.12. Also, z/OS.e is not supported on z13 servers, and z/OS.e Version 1 Release 8 was the last release of z/OS.e.

z13 capabilities differ depending on the z/OS release. Toleration support is provided on z/OS V1R12. Exploitation support is provided only on z/OS V2R1 and later. For a list of supported functions and their minimum required levels, see Table 7-3 on page 236.

7.2.2 z/VM

At general availability, z/VM V6R2 and V6R3 provide compatibility support with limited use of new z13 functions. For a list of supported functions and their minimum required support levels, see Table 7-3 on page 236.

Capacity
For the capacity of any z/VM logical partition (LPAR), and any z/VM guest, in terms of the number of Integrated Facility for Linux (IFL) processors and central processors (CPs), real or virtual, you might want to adjust the number to accommodate the processor unit (PU) capacity of z13 servers.

z/VM V6R3 and IBM z Unified Resource Manager
In light of the IBM cloud strategy and adoption of OpenStack, the management of z/VM environments in zManager is now stabilized and will not be further enhanced. Therefore, zManager does not provide systems management support for z/VM V6R2 on IBM z13 servers or for z/VM V6.3 and later releases. However, zManager continues to play a distinct and strategic role in the management of virtualized environments that are created by integrated firmware hypervisors of the z Systems servers:

- IBM Processor Resource/Systems Manager (PR/SM)
- PowerVM
- System x hypervisor based on a kernel-based virtual machine (KVM)
7.2.3 z/VSE

Support is provided by z/VSE V5R1 and later. Note the following considerations:

► z/VSE runs in z/Architecture mode only.
► z/VSE supports 64-bit real and virtual addressing
► z/VSE V5 has an architectural level set (ALS) that requires IBM System z9 or later.
► z/VSE V6 has an ALS that requires IBM System z10 or later.

For a list of supported functions and their minimum required support levels, see Table 7-4 on page 241.

7.2.4 z/TPF

For a list of supported functions and their minimum required support levels, see Table 7-4 on page 241.

7.2.5 Linux on z Systems

Linux on z Systems distributions are built separately for the 31-bit and 64-bit addressing modes of the z/Architecture. The newer distribution versions are built for 64-bit only. Using the 31-bit emulation layer on a 64-bit Linux on z Systems distribution provides support for running 31-bit applications. None of the current versions of Linux on z Systems distributions (SUSE Linux Enterprise Server 12 and SUSE Linux Enterprise Server 11, and Red Hat Enterprise Linux (RHEL) 7 and RHEL 6) require z13 toleration support.
Table 7-2 shows the service levels of SUSE and Red Hat releases supported at the time of writing.

Table 7-2 Current Linux on z Systems distributions

<table>
<thead>
<tr>
<th>Linux on z Systems distribution</th>
<th>z/Architecture (64-bit mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSE Linux Enterprise Server 12</td>
<td>Yes</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server 11</td>
<td>Yes</td>
</tr>
<tr>
<td>Red Hat RHEL 7</td>
<td>Yes</td>
</tr>
<tr>
<td>Red Hat RHEL 6</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For the latest information about supported Linux distributions on z Systems servers, see this website:

http://www.ibm.com/systems/z/os/linux/resources/testedplatforms.html

IBM is working with its Linux distribution Business Partners to provide further use of selected z13 functions in future Linux on z Systems distribution releases.

Consider the following guidelines:

- Use SUSE Linux Enterprise Server 12 or Red Hat RHEL 7 in any new projects for z13 servers.
- Update any Linux distributions to their latest service level before the migration to z13 servers.
- Adjust the capacity of any z/VM and Linux on z Systems LPAR guests, and z/VM guests, in terms of the number of IFLs and CPs, real or virtual, according to the PU capacity of the z13 servers.

7.2.6 KVM for IBM z Systems

KVM for IBM z Systems (KVM for IBM z) is an open virtualization alternative for z Systems servers built on Linux and KVM. KVM for IBM z delivers a Linux-familiar administrator experience that can enable simplified virtualization management and operation. See Table F-1 on page 539 for a list of supported features.

7.2.7 z13 function support summary

The following tables summarize the z13 functions and their minimum required operating system support levels:

- Table 7-3 on page 236 is for z/OS and z/VM.
- Table 7-4 on page 241 is for z/VSE, z/TPF, and Linux on z Systems.

Information about Linux on z Systems refers exclusively to the appropriate distributions of SUSE and Red Hat.

Both tables use the following conventions:

Y The function is supported.
N The function is not supported.
- The function is not applicable to that specific operating system.
Although the following tables list all functions that require support, the PTF numbers are not given. Therefore, for the current information, see the PSP bucket for 2964DEVICE.

Table 7-3 provides the minimum support requirements for z/OS and z/VM.

Table 7-3 z13 function minimum support requirements summary (part 1 of 2)

<table>
<thead>
<tr>
<th>Function</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13 servers<sup>a</sup></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Maximum processor unit (PUs) per system image</td>
<td>141<sup>b</sup></td>
<td>141<sup>b</sup></td>
<td>100</td>
<td>100</td>
<td>64<sup>c</sup></td>
<td>32</td>
</tr>
<tr>
<td>Support of IBM zAware</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y<sup>d</sup></td>
<td>Y<sup>d</sup></td>
</tr>
<tr>
<td>z Systems Integrated Information Processors (zIIPs)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Java Exploitation of Transactional Execution</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Large memory support (TB)<sup>e</sup></td>
<td>4 TB</td>
<td>4 TB<sup>f</sup></td>
<td>1 TB</td>
<td>1 TB</td>
<td>1 TB</td>
<td>256 GB</td>
</tr>
<tr>
<td>Large page (1 MB) support</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1 MB pageable large pages</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2 GB large page support</td>
<td>Y</td>
<td>Y</td>
<td>Y<sup>g</sup></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Out-of-order execution</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Hardware decimal floating point<sup>h</sup></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>85 LPARs</td>
<td>Y<sup>i</sup></td>
<td>Y<sup>i</sup></td>
<td>Y<sup>i</sup></td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>CPU measurement facility</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Enhanced flexibility for Capacity on Demand (CoD)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperDispatch</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Six logical channel subsystems (LCSSs)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Four subchannel sets per logical channel subsystem (LCSS)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Simultaneous multithreading (SMT)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y<sup>i</sup></td>
<td>N</td>
</tr>
<tr>
<td>Single-instruction multiple-data (SIMD)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y<sup>i</sup></td>
<td>N</td>
</tr>
<tr>
<td>Multi-vSwitch Link Aggregation</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y<sup>i</sup></td>
<td>N</td>
</tr>
</tbody>
</table>

Cryptography

CP Assist for Cryptographic Function (CPACF) greater than 16 Domain Support	Y	Y	Y	Y	Y	Y
CPACF AES-128, AES-192, and AES-256	Y	Y	Y	Y	Y	Y
CPACF SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512	Y	Y	Y	Y	Y	Y
Software support

<table>
<thead>
<tr>
<th>Function</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPACF protected key</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Secure IBM Enterprise PKCS #11 (EP11) coprocessor mode</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Crypto ExpressSS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Elliptic Curve Cryptography (ECC)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

HiperSockets

<table>
<thead>
<tr>
<th>HiperSockets feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 HiperSockets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Completion Queue</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets integration with intraensemble data network (IEDN)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>HiperSockets Virtual Switch Bridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Network Traffic Analyzer</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Multiple Write Facility</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>HiperSockets support of IPV6</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Layer 2 support</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flash Express Storage

<table>
<thead>
<tr>
<th>Feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Express</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

zEnterprise Data Compression (zEDC)

<table>
<thead>
<tr>
<th>Feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>zEDC Express</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE)

<table>
<thead>
<tr>
<th>Feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GbE RoCE Express</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Shared RoCE environment</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Shared Memory Communications - Direct Memory Access (SMC-D)

<table>
<thead>
<tr>
<th>Feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC-D over ISM (Internal Shared Memory)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

FICON (Fibre Connection) and FCP (Fibre Channel Protocol)

<table>
<thead>
<tr>
<th>Feature</th>
<th>z/OS V2 R2</th>
<th>z/OS V2 R1</th>
<th>z/OS V1R13</th>
<th>z/OS V1R12</th>
<th>z/VM V6R3</th>
<th>z/VM V6R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express 8S (channel-path identifier (CHPID) type FC) when using z13 FICON or channel-to-channel (CTC)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 8S (CHPID type FC) for support of z Systems High Performance FICON (zHPF) single-track operations</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 8S (CHPID type FC) for support of zHPF multitrack operations</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Function</td>
<td>z/OS V2 R2</td>
<td>z/OS V2 R1</td>
<td>z/OS V1R13</td>
<td>z/OS V1R12</td>
<td>z/VM V6R3</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FICON Express 8S (CHPID type FCP) for support of SCSI devices</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 8S (CHPID type FCP) support of hardware data router</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>T10-DIF support by the FICON Express8S and FICON Express8</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>support of hardware data router</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
</tr>
<tr>
<td>T10-DIF support by the FICON Express8S and FICON Express8 features when</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>defined as CHPID type FCP</td>
<td>YYYYNY</td>
<td>YYYYNY</td>
<td>YYYYNY</td>
<td>YYYYNY</td>
<td>YYYYNY</td>
<td>YYYYNY</td>
</tr>
<tr>
<td>Global resource serialization (GRS) FICON CTC toleration</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
</tr>
<tr>
<td>FICON Express 8 CHPID 10KM long wavelength (LX) and short wavelength (</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
<td>YYYYN</td>
</tr>
<tr>
<td>SX) type FC</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) when using FICON or CTC</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) for support of zHPF single-track</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>operations</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) for support of zHPF multitrack</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>operations</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FCP) for support of SCSI devices</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FCP) support of hardware data router</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>T10-DIF support by the FICON Express16S features when defined as</td>
<td>NYYNYY</td>
<td>NYYNYY</td>
<td>NYYNYY</td>
<td>NYYNYY</td>
<td>NYYNYY</td>
<td>NYYNYY</td>
</tr>
<tr>
<td>CHPID type FCP</td>
<td>YYYYYY</td>
<td>YYYYYY</td>
<td>YYYYYY</td>
<td>YYYYYY</td>
<td>YYYYYY</td>
<td>YYYYYY</td>
</tr>
<tr>
<td>Health Check for FICON Dynamic routing</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>Open Systems Adapter (OSA)</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>OSA-Express5S 10 Gigabit Ethernet Long Reach (LR) and Short Reach (SR)</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>CHPID type OSD</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>OSA-Express5S 10 Gigabit Ethernet LR and SR</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>CHPID type OSX</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>OSA-Express5S Gigabit Ethernet LX and SX CHPID type OSD (two ports per</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>CHPID)</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>OSA-Express5S Gigabit Ethernet LX and SX CHPID type OSD (one port per</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>CHPID)</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
<td>YYYYYN</td>
</tr>
<tr>
<td>Function</td>
<td>z/OS V2 R2</td>
<td>z/OS V2 R1</td>
<td>z/OS V1R13</td>
<td>z/OS V1R12</td>
<td>z/VM V6R3</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSC</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N°</td>
<td>N°</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSN</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 10-Gigabit Ethernet LR and SR CHPID type OSD</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y°</td>
</tr>
<tr>
<td>OSA-Express4S 10-Gigabit Ethernet LR and SR CHPID type OSX</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N°</td>
<td>N°</td>
</tr>
<tr>
<td>OSA-Express4S Gigabit Ethernet LX and SX CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S Gigabit Ethernet LX and SX CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSC (one or two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSE (one or two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSM (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N°</td>
<td>N°</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSN</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Inbound workload queuing Enterprise extender</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Checksum offload IPV6 packets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Checksum offload for LPAR-to-LPAR traffic</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Function</td>
<td>z/OS V2 R2</td>
<td>z/OS V2 R1</td>
<td>z/OS V1R13</td>
<td>z/OS V1R12</td>
<td>z/VM V6R3</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Large send for IPV6 packets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Parallel Sysplex and other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Time Protocol (STP)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coupling over InfiniBand CHPID type CIB</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>InfiniBand coupling links 12x at a distance of 150 m (492 ft.)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>InfiniBand coupling links 1x at an unrepeated distance of 10 km (6.2 miles)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CFCC Level 20, 21m</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>CFCC Level 20, 21m Flash Express exploitation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CFCC Level 20, 21m Coupling Thin Interrupts</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CFCC Level 20, 21m Coupling Large Memory support</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CFCC 20, 21m Support for 256 Coupling CHPIDs</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>IBM Integrated Coupling Adapter (ICA)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Dynamic I/O support for InfiniBand and ICA CHPIDs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RMF coupling channel reporting</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

- a. PTFs might be required for toleration support or exploitation of z13s functions and features
- b. 141-way without multithreading. 128-way with multithreading.
- c. 64-way without multithreading and 32-way with multithreading enabled.
- d. IBM zAware V2.0, Linux Guest support
- e. 10 TB of real storage available per server.
- f. 4 TB of real storage is supported(with PTF for APAR OA47439).
- g. PTF support required and with real storage manager (RSM)-enabled web delivery.
- h. Packed decimal conversion support.
- i. Only 60 LPARs can be defined if z/OS V1R12 is running.
- j. PTF support required.
- k. On z13, the CHPID statement of HiperSockets devices requires the keyword VCHID.
 Therefore, the z13 IOCp definitions need to be migrated to support the HiperSockets definitions (CHPID type IQD). VCHID specifies the virtual channel identification number associated with the channel path. Valid range is 7E0 - 7FF. VCHID is not valid on z Systems servers before z13.
- l. Dynamic I/O support only.
- m. CFCC Level 21 with Driver 27.
Table 7-4 provides the minimum support requirements for z/VSE, z/TPF, and Linux on z Systems.

Table 7-4 z13 functions minimum support requirements summary (part 2 of 2)

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13 servers</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Maximum PUs per system image</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>86</td>
<td>141(^b)</td>
</tr>
<tr>
<td>Support of IBM zAware</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>System z Integrated Information Processors (zIIPs)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Java Exploitation of Transactional Execution</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Large memory support</td>
<td>32 GB</td>
<td>32 GB</td>
<td>32 GB</td>
<td>4 TB</td>
<td>4 TB(^d)</td>
</tr>
<tr>
<td>Large page (1 MB) support</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Pageable 1 MB page support</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>2 GB Large Page Support</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Out-of-order execution</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>85 logical partitions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperDispatch</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Six logical channel subsystems (LCSSs)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Four subchannel set per LCSS</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Simultaneous multithreading (SMT)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Single Instruction Multiple Data (SIMD)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Multi-vSwitch Link Aggregation</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cryptography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP Assist for Cryptographic Function (CPACF)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>CPACF AES-128, AES-192, and AES-256</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y(^e)</td>
<td>Y</td>
</tr>
<tr>
<td>CPACF SHA-1/SHA-2, SHA-224, SHA-256, SHA-384, and SHA-512</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y(^f)</td>
<td>Y</td>
</tr>
<tr>
<td>CPACF protected key</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Secure IBM Enterprise PKCS #11 (EP11) coprocessor mode</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Crypto Express5S</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y(^gh)</td>
<td>Y</td>
</tr>
<tr>
<td>Elliptic Curve Cryptography (ECC)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N(^k)</td>
</tr>
<tr>
<td>HiperSockets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 HiperSockets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Completion Queue</td>
<td>Y</td>
<td>Y</td>
<td>Y(^g)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Function</td>
<td>z/VSE V6R1</td>
<td>z/VSE V5R2</td>
<td>z/VSE V5R1</td>
<td>z/TPF V1R1</td>
<td>Linux on z Systems</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>HiperSockets integration with IEDN</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>HiperSockets Virtual Switch Bridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y[^i]</td>
</tr>
<tr>
<td>HiperSockets Network Traffic Analyzer</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y[^k]</td>
</tr>
<tr>
<td>HiperSockets Multiple Write Facility</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>HiperSockets support of IPV6</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets Layer 2 support</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>HiperSockets</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Flash Express Storage

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Express</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

zEnterprise Data Compression (zEDC)

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>zEDC Express</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE)

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GbE RoCE Express</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N[^k]</td>
</tr>
</tbody>
</table>

Shared Memory Communications - Direct(SMC-D)

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC-D over Internal Shared memory (ISM)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

FICON and FCP

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>FICON Express8S support of zHPF single track CHPID type FC</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8 support of zHPF multitrack CHPID type FC</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>High Performance FICON (zHPF)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y[^l]</td>
</tr>
<tr>
<td>GRS FICON CTC toleration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N_Port ID Virtualization for FICON (NPIV) CHPID type FCP</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8S support of hardware data router CHPID type FCP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y[^m]</td>
</tr>
<tr>
<td>FICON Express8S and FICON Express8 and FICON Express8S support of T10-DIF CHPID type FCP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y[^l]</td>
</tr>
<tr>
<td>FICON Express8S, FICON Express8, FICON Express16S 10KM LX, and FICON Express4 SX support of SCSI disks CHPID type FCP</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8S CHPID type FC</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express8 CHPID type FC</td>
<td>Y</td>
<td>Y</td>
<td>Y[^n]</td>
<td>Y[^n]</td>
<td>Y[^n]</td>
</tr>
<tr>
<td>Function</td>
<td>z/VSE V6R1</td>
<td>z/VSE V5R2</td>
<td>z/VSE V5R1</td>
<td>z/TPF V1R1</td>
<td>Linux on z Systems</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) when using FICON or CTC</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) for support of zHPF single-track operations</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FC) for support of zHPF multitrack operations</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FCP) for support of SCSI devices</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>FICON Express 16S (CHPID type FCP) support of hardware data router</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>T10-DIF support by the FICON Express16S features when defined as CHPID type FCP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

OSA

<table>
<thead>
<tr>
<th>Function</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large send for IPv6 packets</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Inbound workload queuing for Enterprise Extender</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Checksum offload for IPv6 packets</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Checksum offload for LPAR-to-LPAR traffic</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>OSA-Express5S 10 Gigabit Ethernet LR and SR CHPID type OSD</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 10 Gigabit Ethernet LR and SR CHPID type OSX</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S Gigabit Ethernet LX and SX CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S Gigabit Ethernet LX and SX CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSC</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSE (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T Ethernet CHPID type OSM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Function</td>
<td>z/VSE V6R1</td>
<td>z/VSE V5R2</td>
<td>z/VSE V5R1</td>
<td>z/TPF V1R1</td>
<td>Linux on z Systems</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>OSA-Express4S 10-Gigabit Ethernet LR and SR CHPID type OSD</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 10-Gigabit Ethernet LR and SR CHPID type OSX</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y¹</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S Gigabit Ethernet LX and SX CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y¹</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S Gigabit Ethernet LX and SX CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSC (one or two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSD (two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSD (one port per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSE (one or two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSM</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T CHPID type OSN (one or two ports per CHPID)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Parallel Sysplex and other

<table>
<thead>
<tr>
<th>Function</th>
<th>z/VSE V6R1</th>
<th>z/VSE V5R2</th>
<th>z/VSE V5R1</th>
<th>z/TPF V1R1</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>STPenhancements</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>STP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y³</td>
<td>Y</td>
</tr>
<tr>
<td>Coupling over InfiniBand CHPID type CIB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>InfiniBand coupling links 12x at a distance of 150 m (492 ft.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>InfiniBand coupling links 1x at unrepeated distance of 10 km (6.2 miles)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dynamic I/O support for InfiniBand CHPIDs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CFCC Level 20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
</tbody>
</table>

a. Toleration support PTFs are required.
b. SUSE Linux Enterprise Server 12 and RHEL can support up to 256 PUs (IFLs or CPs).
c. 10 TB of real storage is supported per server.
d. Red Hat (RHEL) supports a maximum of 3 TB.
e. z/TPF supports only AES-128 and AES-256.
f. z/TPF supports only SHA-1 and SHA-256.
g. Service is required.
h. Supported only when running in accelerator mode.
7.3 Support by function

This section addresses operating system support by function. Only the currently in-support releases are covered.

Tables in this section use the following convention:

| N/A | Not applicable |
| NA | Not available |

7.3.1 Single system image

A single system image can control several processor units, such as CPs, zIIPs, or IFLs.

Maximum number of PUs per system image

Table 7-5 lists the maximum number of PUs supported by each operating system image and by special-purpose LPARs.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Maximum number of PUs per system image</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V2R2</td>
<td>141<sup>ab</sup></td>
</tr>
<tr>
<td>z/OS V2R1</td>
<td>141<sup>ab</sup></td>
</tr>
<tr>
<td>z/OS V1R13</td>
<td>100<sup>b</sup></td>
</tr>
<tr>
<td>z/OS V1R12</td>
<td>100<sup>b</sup></td>
</tr>
<tr>
<td>z/VM V6R3</td>
<td>64<sup>c</sup></td>
</tr>
<tr>
<td>z/VM V6R2</td>
<td>32.</td>
</tr>
<tr>
<td>z/VSE V5R1 and later</td>
<td>z/VSE Turbo Dispatcher can use up to 4 CPs, and tolerates up to 10-way LPARs.</td>
</tr>
</tbody>
</table>

i. On z13, the CHPID statement of HiperSockets devices requires the keyword VCHID. Therefore, the z13 IOCP definitions need to be migrated to support the HiperSockets definitions (CHPID type IQD). VCHID specifies the virtual channel identification number associated with the channel path. Valid range is 7E0 - 7FF. VCHID is not valid on z Systems servers before z13.

j. Applicable to guest operating systems.

k. IBM is working with its Linux distribution Business Partners to include support in future Linux on z Systems distribution releases.

l. Supported by SUSE Linux Enterprise Server 11.

m. Supported by SUSE Linux Enterprise Server 11 SP3 and RHEL 6.4.

n. For more information, see 7.3.39, “FCP provides increased performance” on page 269.

o. Requires PUT 5 with PTFs.

p. Requires PUT 8 with PTFs.

q. Supported by SUSE Linux Enterprise Server 11 SP1, SUSE Linux Enterprise Server 10 SP4, RHEL 6, and RHEL 5.6.

r. Supported by SUSE Linux Enterprise Server 11, SUSE Linux Enterprise Server 10 SP2, RHEL 6, and RHEL 5.2.

s. Supported by SUSE Linux Enterprise Server 11 SP2, SUSE Linux Enterprise Server 10 SP4, RHEL 6, and RHEL 5.2.

t. Requires PUT 4 with PTFs.

u. STP is supported in z/TPF with APAR PJ36831 in PUT 07.
The z Appliance Container Infrastructure-mode LPAR
zEC12 introduced an LPAR mode, called zAware-mode, that is exclusively for running the IBM zAware virtual appliance.

z Appliance Container Infrastructure (zACI) is a new partition type which, along with an appliance installer, enables the secure deployment of software and firmware appliances. zACI shortens the deployment and implementation of firmware solutions or software solutions delivered as virtual software appliances.

The zACI framework enforces a common set of standards and behaviors, and a new zACI partition mode for a virtual appliance, which a new zACI LPAR type. The IBM zAware partition mode has been renamed to zACI, and the IBM zAware firmware now runs in this partition.

There are no hardware dependencies. zACI is delivered as part of the base code on each z13s and z13 (driver level 27) server.

The IBM zAware virtual appliance can pinpoint deviations in z/OS normal system behavior. It also improves real-time event diagnostic tests by monitoring the z/OS operations log (OPERLOG). It looks for unusual messages, unusual message patterns that typical monitoring systems miss, and unique messages that might indicate system health issues.

The IBM zAware virtual appliance requires the monitored clients to run z/OS V1R13 with PTFs or later. The newer version of IBM zAware is enhanced to work with messages without message IDs. This enhancement includes support for Linux running natively or as a guest under z/VM on z Systems.

For more information about IBM zAware, see Appendix B, “IBM z Advanced Workload Analysis Reporter” on page 479.

The z/VM-mode LPAR
z13 servers support an LPAR mode, called z/VM-mode, that is exclusively for running z/VM as the first-level operating system. The z/VM-mode requires z/VM V6R2 or later, and allows z/VM to use a wider variety of specialty processors in a single LPAR. For example, in a z/VM-mode LPAR, z/VM can manage Linux on z Systems guests running on IFL processors while also managing z/VSE and z/OS guests on CPs. It also allows z/OS to fully use zIIPs.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Maximum number of PUs per system image</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/TPF V1R1</td>
<td>86 CPs.</td>
</tr>
<tr>
<td>CFCC Level 20</td>
<td>16 CPs or ICFs: CPs and ICFs cannot be mixed.</td>
</tr>
<tr>
<td>IBM zAware</td>
<td>80.</td>
</tr>
</tbody>
</table>
| Linux on z Systems\(^d\) | SUSE Linux Enterprise Server 12: 256 CPs or IFLs.
 SUSE Linux Enterprise Server 11: 64 CPs or IFLs.
 Red Hat RHEL 7: 256 CPs or IFLs.
 Red Hat RHEL 6 64 CPs or IFLs. |
| KVM for IBM z Systems | 141\(^b\) |

a. 128 PUs in multithreading mode and 141 PUs supported without multithreading.
b. Total characterizable PUs including zIIPs and CPs.
c. 64 PUs without SMT mode and 32 PUs with SMT.
d. IBM is working with its Linux distribution Business Partners to provide the use of this function in future Linux on z Systems distribution releases.
IBM Dynamic Partition Manager

A new administrative mode is being introduced for Linux only central processor complexes (CPCs) for z13 and z13s servers with SCSI storage attached through FCP channels. IBM Dynamic Partition Manager (DPM) provides simplified z Systems hardware and virtual infrastructure management that includes integrated dynamic I/O management for users who intend to run KVM for IBM z Systems as hypervisor or Linux on z Systems running in a partition (LPAR). The new mode, DPM, provides simplified, consumable, and enhanced partition lifecycle and dynamic I/O management capabilities by using the Hardware Management Console (HMC).

For more information see Appendix E, “IBM Dynamic Partition Manager” on page 527.

7.3.2 zIIP support

zIIPs do not change the model capacity identifier of z13 servers. IBM software product license charges based on the model capacity identifier are not affected by the addition of zIIPs. On a z13 server, z/OS Version 1 Release 12 is the minimum level for supporting zIIPs.

No changes to applications are required to use zIIPs. They can be used by these applications:

- DB2 V8 and later for z/OS data serving, for applications that use data Distributed Relational Database Architecture (DRDA) over TCP/IP, such as data serving, data warehousing, and selected utilities.
- z/OS XML services.
- z/OS CIM Server.
- z/OS Communications Server for network encryption (Internet Protocol Security (IPSec)) and for large messages that are sent by HiperSockets.
- IBM z/OS Global Mirror (formerly XRC) and System Data Mover.
- IBM OMEGAMON® XE on z/OS, OMEGAMON XE on DB2 Performance Expert, and DB2 Performance Monitor.
- Any Java application that is using the current IBM SDK.
- WebSphere Application Server V5R1 and later, and products that are based on it, such as WebSphere Portal, WebSphere Enterprise Service Bus (WebSphere ESB), and WebSphere Business Integration (WBI) for z/OS.
- CICS/TS V2R3 and later.
- DB2 UDB for z/OS Version 8 and later.
- IMS Version 8 and later.
- zIIP Assisted HiperSockets for large messages

The functioning of a zIIP is transparent to application programs.

On z13 servers, the zIIP processor is designed to run in SMT mode, with up to two threads per processor. This new function is designed to help improve throughput for zIIP workloads and provide appropriate performance measurement, capacity planning, and SMF accounting data. This support is available for z/OS V2.1 with PTFs and higher at z13 general availability.

Use the PROJECTCPU option of the IECOPTxx parmlib member to help determine whether zIIPs can be beneficial to the installation. Setting PROJECTCPU=YES directs z/OS to record the amount of eligible work for zIIPs in SMF record type 72 subtype 3. The field APPL% IIPCP of
the Workload Activity Report listing by WLM service class indicates the percentage of a processor that is zIIP eligible. Because of the zIIP’s lower price as compared to a CP, a utilization as low as 10% can provide benefits.

7.3.3 Transactional Execution

The IBM zEnterprise EC12 introduced an architectural feature called Transactional Execution (TX). This capability is known in academia and industry as hardware transactional memory. Transactional execution is also implemented on z13, z13s, and zBC12 servers.

This feature enables software to indicate to the hardware the beginning and end of a group of instructions that need to be treated in an atomic way. Either all of their results happen or none happens, in true transactional style. The execution is optimistic. The hardware provides a memory area to record the original contents of affected registers and memory as the instruction’s execution takes place. If the transactional execution group is canceled or must be rolled back, the hardware transactional memory is used to reset the values. Software can implement a fallback capability.

This capability enables more efficient software by providing a way to avoid locks (lock elision). This advantage is of special importance for speculative code generation and highly parallelized applications.

TX is used by IBM Java virtual machine (JVM), but potentially can be used by other software. z/OS V1R13 with PTFs or later is required. The feature also is enabled for specific Linux distributions: SUSE Linux Enterprise Server 11 SP3, RHEL 6.4, SUSE Linux Enterprise Server 12, and RHEL 7.

7.3.4 Maximum main storage size

Table 7-6 lists the maximum amount of main storage that is supported by current operating systems. A maximum of 10 TB of main storage can be defined for an LPAR on a z13 server. Expanded storage, although part of the z/Architecture, is used only by z/VM.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Maximum supported main storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R1 and later support 4 TB.</td>
</tr>
</tbody>
</table>
| z/VM | z/VM V6R3 supports 1 TB.
| | z/VM V6R2 supports 256 GB. |
| z/VSE | z/VSE V5R1 and later support 32 GB. |
| z/TPF | z/TPF supports 4 TB.a |
| CFCC | Level 20 and 21 support up to 3 TB per server.a |
| zACI | Supports up to 3 TB per server.a |
| Linux on z Systems (64-bit) | SUSE Linux Enterprise Server 12 supports 4 TB.a
| | SUSE Linux Enterprise Server 11 supports 4 TB.a
| | SUSE Linux Enterprise Server 10 supports 4 TB.a
| | Red Hat RHEL 7 supports 3 TB.a
| | Red Hat RHEL 6 supports 3 TB.a
| | Red Hat RHEL 5 supports 3 TB.a |

a. z13 servers support 10 TB user configurable memory per server.

1. If an I/O drawer is present (as carry-forward), the LPAR maximum memory is limited to 1 TB.
7.3.5 Flash Express

z13 servers continue support for *Flash Express*, which can help improve the resilience and performance of the z/OS system. Flash Express is designed to assist with the handling of workload spikes or increased workload demand that might occur at the opening of the business day, or in a workload shift from one system to another.

z/OS is the first OS to use Flash Express storage as storage-class memory (SCM) for paging store and supervisor call (SAN Volume Controller) memory dumps. Flash memory is a faster paging device than a hard disk drive (HDD). SAN Volume Controller memory dump data capture time is expected to be substantially reduced. As a paging store, Flash Express storage is suitable for workloads that can tolerate paging. It does not benefit workloads that cannot afford to page. The z/OS design for Flash Express storage does not completely remove the virtual storage constraints that are created by a paging spike in the system. However, some scalability relief is expected because of faster paging I/O with Flash Express storage.

Flash Express storage is allocated to an LPAR similar to main memory. The initial and maximum amount of Flash Express Storage that is available to a particular LPAR is specified at the Support Element (SE) or Hardware Management Console (HMC) by using a new Flash Storage Allocation window. The Flash Express storage granularity is 16 GB. The amount of Flash Express storage in the partition can be changed dynamically between the initial and the maximum amount at the SE or HMC. For z/OS, this change also can be made by using an operator command. Each partition’s Flash Express storage is isolated like the main storage, and sees only its own space in the flash storage space.

Flash Express provides 1.4 TB of storage per feature pair. Up to four pairs can be installed, for a total of 5.6 TB. All paging data can easily be on Flash Express storage, but not all types of page data can be on it. For example, virtual I/O (VIO) data is always placed on an external disk. Local page data sets are still required to support peak paging demands that require more capacity than provided by the amount of configured SCM.

The z/OS paging subsystem works with a mix of internal Flash Express storage and external disk. The placement of data on Flash Express storage and external disk is self-tuning, based on measured performance. At initial program load (IPL) time, z/OS detects whether Flash Express storage is assigned to the partition. z/OS automatically uses Flash Express storage for paging unless specified otherwise by using `PAGESCM=NONE` in IEASYSxx. No definition is required for placement of data on Flash Express storage.

The support is delivered in the z/OS V1R13 real storage manager (RSM) Enablement Offering Web Deliverable (FMID JBB778H) for z/OS V1R13. The installation of this web deliverable requires careful planning because the size of the Nucleus, extended system queue area (ESQA) per CPU, and RSM stack is increased. Also, a new memory pool is available for pageable large pages. For web-deliverable code on z/OS, see the z/OS downloads website:

The support is also delivered in z/OS V2R1 (included with the base product) or later.

Linux on z Systems also offers support for Flash Express as an SCM device. This support is useful for workloads with large write operations with a block size of 256 KB or more of data. The SCM increments are accessed through extended asynchronous data mover (EADM) subchannels.

2 Dynamic reconfiguration support for SCM is available as a web deliverable.
Table 7-7 lists the minimum support requirements for Flash Express.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13<sup>a</sup></td>
</tr>
</tbody>
</table>
| Linux on z Systems | ▶ SUSE Linux Enterprise Server 12
▶ SUSE Linux Enterprise Server 11 SP3
▶ RHEL 7
▶ RHEL 6 |

^a Web deliverable and PTFs are required.

Flash Express usage by CFCC

Coupling facility control code (CFCC) Level 20 and 21 support Flash Express. Initial CF Flash usage is targeted for WebSphere MQ shared queues application structures. Structures can now be allocated with a combination of real memory and SCM that is provided by the Flash Express feature. For more information, see “Flash Express exploitation by CFCC” on page 295.

Flash Express usage by Java

z/OS Java SDK 7 SR3, CICS TS V5.1, WebSphere Liberty Profile 8.5, DB2 V11, and IMS V12 are targeted for Flash Express usage. There is a statement of direction to support traditional WebSphere V8. The support is for just-in-time (JIT) Code Cache and Java Heap to improve performance for pageable large pages.

7.3.6 zEnterprise Data Compression Express

The growth of data that must be captured, transferred, and stored for a long time is unrelenting. Software-implemented compression algorithms are costly in terms of processor resources, and storage costs are not negligible either.

zEnterprise Data Compression (zEDC) Express is an optional feature that is available for z13, zEC12, and zBC12 servers that addresses those requirements by providing hardware-based acceleration for data compression and decompression. zEDC provides data compression with lower CPU consumption than the compression technology that previously was available on z Systems servers.

Support of zEDC Express functions is provided exclusively by z/OS V2R1 zEDC or later for both data compression and decompression.

Support for data recovery (decompression) when the zEDC is not installed, or installed but not available on the system, is provided through software on z/OS V2R2, z/OS V2R1, V1R13, and V1R12 with the correct PTFs. Software decompression is slow and uses considerable processor resources, so it is not recommended for production environments.

zEDC is enhanced to support QSAM/BSAM (non-VSAM) data set compression. This support can be achieved by any of the following ways

- Data class level: Two new values, zEDC Required (ZR) and zEDC Preferred (ZP), can be set with the COMPACTIOⁿ option in the data class.
- System Level: Two new values, zEDC Required (ZEDC_R) and zEDC Preferred (ZEDC_P), can be specified with the COMPRESS parameter found in the IGDSMSXX member of the SYS1.PARMLIB data set.
Data class takes precedence over system level.

Table 7-8 shows the minimum support requirements for zEDC Express.

Table 7-8 Minimum support requirements for zEDC Express

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R1a</td>
</tr>
<tr>
<td></td>
<td>z/OS V1R13a (Software decompression support only)</td>
</tr>
<tr>
<td></td>
<td>z/OS V1R12a (Software decompression support only)</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM 6.3b</td>
</tr>
</tbody>
</table>

a. PTFs are required.
b. For guest use, PTF support is required

For more information about zEDC Express, see Appendix J, “IBM zEnterprise Data Compression Express” on page 577.

7.3.7 10GbE RoCE Express

z13 servers support the RoCE Express feature. It extends this support by providing support to the second port on the adapter and by sharing the ports to up 31 partitions, per adapter, by using both ports.

The 10 Gigabit Ethernet (10GbE) RoCE Express feature is designed to help reduce consumption of CPU resources for applications that use the TCP/IP stack (such as WebSphere accessing a DB2 database). Use of the 10GbE RoCE Express feature also can help reduce network latency with memory-to-memory transfers using Shared Memory Communications over Remote Direct Memory Access (SMC-R) in z/OS V2R1 or later. It is transparent to applications and can be used for LPAR-to-LPAR communication on a single z13 server or for server-to-server communication in a multiple CPC environment.

z/OS V2R1 or later with PTFs provides support for the SMC-R protocol. It does not roll back to previous z/OS releases. z/OS V1R12 and z/OS V1R13 with PTFs provide only compatibility support.

IBM is working with its Linux distribution Business Partners to include support in future Linux on z Systems distribution releases.

Table 7-9 lists the minimum support requirements for 10GbE RoCE Express.

Table 7-9 Minimum support requirements for RoCE Express

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R1 with supporting PTFs (SPE for IBM VTAM®, TCP/IP, and IOS). The IOS PTF is a minor change to allow greater than 256 (xFF) PFIDs for RoCE.</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6.3 with supporting PTFs. The z/VM V6.3 SPE for base PCIe support is required. When running z/OS as a guest z/OS, APAR OA43256 is required for RoCE, and APARs OA43256 and OA44482 are required for zEDC. A z/VM web page that details the prerequisites for using RoCE and zEDC in a guest can be found at: http://www.vm.ibm.com/zvm630/apars.html</td>
</tr>
</tbody>
</table>
For more information about Shared Memory Communications, see Appendix D, “Shared Memory Communications” on page 501.

7.3.8 Large page support

In addition to the existing 1-MB large pages, 4-KB pages, and page frames, z13 servers support pageable 1-MB large pages, large pages that are 2 GB, and large page frames. For more information, see “Large page support” on page 120.

Table 7-10 lists the support requirements for 1-MB large pages.

Table 7-10 Minimum support requirements for 1-MB large page

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R11</td>
</tr>
<tr>
<td></td>
<td>z/OS V1R13<sup>a</sup> for pageable 1-MB large pages</td>
</tr>
<tr>
<td>z/VM</td>
<td>Not supported, and not available to guests</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1: Supported for data spaces</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

^a Web deliverable and PTFs are required, plus the Flash Express hardware feature.

Table 7-11 lists the support requirements for 2-GB large pages.

Table 7-11 Minimum support requirements for 2-GB large pages

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13</td>
</tr>
</tbody>
</table>

7.3.9 Hardware decimal floating point

Industry support for decimal floating point is growing, with IBM leading the open standard definition. Examples of support for the draft standard IEEE 754r include Java BigDecimal, C#, XML, C/C++, GCC, COBOL, and other key software vendors, such as Microsoft and SAP.

Decimal floating point support was introduced with z9 EC. z13 servers inherited the decimal floating point accelerator feature that was introduced with z10 EC. For more information, see 3.4.6, “Decimal floating point accelerator” on page 102.
Table 7-12 lists the operating system support for decimal floating point. For more information, see 7.6.6, “Decimal floating point and z/OS XL C/C++ considerations” on page 292.

Table 7-12 Minimum support requirements for decimal floating point

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2: Support is for guest use.</td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 12
| | SUSE Linux Enterprise Server 11
| | Red Hat RHEL 7
| | Red Hat RHEL 6 |

7.3.10 Up to 85 LPARs

This feature, first made available on z13 servers, allows the system to be configured with up to 85 LPARs. Because channel subsystems can be shared by up to 15 LPARs, it is necessary to configure six channel subsystems to reach the 85 LPARs limit. Table 7-13 lists the minimum operating system levels for supporting 85 LPARs.

Table 7-13 Minimum support requirements for 85 LPARs

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>z/TPF V1R1</td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 11
| | SUSE Linux Enterprise Server 12
| | Red Hat RHEL 7
| | Red Hat RHEL 6 |

Remember: The IBM zAware virtual appliance runs in a dedicated LPAR (zACI -mode LPAR). When it is activated, it reduces the maximum number of available LPARs by one.

7.3.11 Separate LPAR management of PUs

z13 servers use separate PU pools for each optional PU type. The separate management of PU types enhances and simplifies capacity planning and management of the configured LPARs and their associated processor resources. Table 7-14 lists the support requirements for the separate LPAR management of PU pools.

Table 7-14 Minimum support requirements for separate LPAR management of PUs

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1</td>
</tr>
</tbody>
</table>
7.3.12 Dynamic LPAR memory upgrade

An LPAR can be defined with both an initial and a reserved amount of memory. At activation time, the initial amount is made available to the partition and the reserved amount can be added later, partially or totally. Those two memory zones do not have to be contiguous in real memory, but appear as logically contiguous to the operating system that runs in the LPAR.

z/OS can take advantage of this support and nondisruptively acquire and release memory from the reserved area. z/VM V6R2 and later can acquire memory nondisruptively, and immediately make it available to guests. z/VM virtualizes this support to its guests, which now also can increase their memory nondisruptively if supported by the guest operating system. Releasing memory from z/VM is not supported. Releasing memory from the z/VM guest depends on the guest's operating system support.

Linux on z Systems also supports both acquiring and releasing memory nondisruptively. This feature is enabled for SUSE Linux Enterprise Server 11 and RHEL 6.

Dynamic LPAR memory upgrade is not supported for zACI-mode LPARs.

7.3.13 LPAR physical capacity limit enforcement

On z13 servers, PR/SM is enhanced to support an option to limit the amount of physical processor capacity that is consumed by an individual LPAR when a PU that is defined as a CP or an IFL is shared across a set of LPARs. This enhancement is designed to provide a physical capacity limit that is enforced as an absolute (versus a relative) limit. It is not affected by changes to the logical or physical configuration of the system. This physical capacity limit can be specified in units of CPs or IFLs.

Table 7-15 lists the minimum operating system level that is required on z13 servers.

Table 7-15 Minimum support requirements for LPAR physical capacity limit enforcement

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R3</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1<sup>a</sup></td>
</tr>
</tbody>
</table>

^a PTFs are required.

7.3.14 Capacity Provisioning Manager

The provisioning architecture enables clients to better control the configuration and activation of the On/Off CoD. For more information, see 8.8, “Nondisruptive upgrades” on page 352. The new process is inherently more flexible, and can be automated. This capability can result in easier, faster, and more reliable management of the processing capacity.
The Capacity Provisioning Manager, a function that is first available with z/OS V1R9, interfaces with z/OS Workload Manager (WLM) and implements capacity provisioning policies. Several implementation options are available, from an analysis mode that issues only guidelines, to an autonomic mode that provides fully automated operations.

Replacing manual monitoring with autonomic management or supporting manual operation with guidelines can help ensure that sufficient processing power is available with the least possible delay. Support requirements are listed in Table 7-16.

Table 7-16 Minimum support requirements for capacity provisioning

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>Not supported, and not available to guests</td>
</tr>
</tbody>
</table>

7.3.15 Dynamic PU add

Planning of an LPAR configuration allows defining reserved PUs that can be brought online when extra capacity is needed. Operating system support is required to use this capability without an IPL, that is, nondisruptively. This support has been in z/OS for a long time.

The dynamic PU add function enhances this support by allowing you to define and change dynamically the number and type of reserved PUs in an LPAR profile, removing any planning requirements. Table 7-17 lists the minimum required operating system levels to support this function.

The new resources are immediately made available to the operating system and, in the case of z/VM, to its guests. The dynamic PU add function is not supported for zAware-mode LPARs.

Table 7-17 Minimum support requirements for dynamic PU add

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

7.3.16 HiperDispatch

The `HIPERDISPATCH=YES/NO` parameter in the IEAOPTxz member of SYS1.PARMLIB and on the `SET OPT=xx` command controls whether HiperDispatch is enabled or disabled for a z/OS image. It can be changed dynamically, without an IPL or any outage.

The default is that HiperDispatch is disabled on all releases, from z/OS V1R10 (requires PTFs for zIIP support) through z/OS V1R12.
Beginning with z/OS V1R13, when running on a z13, z13s, zEC12, zBC12, z196, or z114 server, the IEAOPTxx keyword **HIPERDISPATCH** defaults to YES. If HIPERDISPATCH=NO is specified, the specification is accepted as it was on previous z/OS releases.

The use of SMT on z13 servers requires that HiperDispatch is enabled on the operating system (z/OS V2R1/V2R2 or z/VM V6R3).

Additionally, with z/OS V1R12 or later, any LPAR running with more than 64 logical processors is required to operate in HiperDispatch Management Mode.

The following rules control this environment:

- If an LPAR is defined at IPL with more than 64 logical processors, the LPAR automatically operates in HiperDispatch Management Mode, regardless of the HIPERDISPATCH= specification.

- If more logical processors are added to an LPAR that has 64 or fewer logical processors and the additional logical processors raise the number of logical processors to more than 64, the LPAR automatically operates in HiperDispatch Management Mode regardless of the HIPERDISPATCH=YES/NO specification. That is, even if the LPAR has the HIPERDISPATCH=NO specification, that LPAR is converted to operate in HiperDispatch Management Mode.

- An LPAR with more than 64 logical processors running in HiperDispatch Management Mode cannot be reverted to run in non-HiperDispatch Management Mode.

HiperDispatch on z13 servers uses a new chip and CPC drawer configuration to improve the access cache performance. Beginning with z/OS V1R13, HiperDispatch changed to use the new node cache structure of z13 servers. The base support is provided by PTFs identified by IBM.device.server.z13-2964.requiredservice.

The PR/SM in the System z9 EC to zEC12 servers stripes the memory across all books in the system to take advantage of the fast book interconnection and spread memory controller work. The PR/SM on z13 servers seeks to assign all memory in one drawer striped across the two nodes to take advantage of the lower latency memory access in a drawer and smooth performance variability across nodes in the drawer.

The PR/SM in the System z9 EC to zEC12 servers attempts to assign all logical processors to one book, packed into PU chips of that book in cooperation with operating system HiperDispatch optimize shared cache usage. The PR/SM on z13 servers seeks to assign all logical processors of a partition to one CPC drawer, packed into PU chips of that CPC drawer in cooperation with operating system HiperDispatch optimize shared cache usage.

The PR/SM automatically keeps partition’s memory and logical processors on the same CPC drawer. This arrangement looks simple for a partition, but it is a complex optimization for multiple logical partitions because some must be split among processors drawers.

To use HiperDispatch effectively, WLM goal adjustment might be required. Review the WLM policies and goals, and update them as necessary. You might want to run with the new policies and HiperDispatch on for a period, turn it off, and then run with the older WLM policies. Compare the results of using HiperDispatch, readjust the new policies, and repeat the cycle, as needed. WLM policies can be changed without turning off HiperDispatch.

A health check is provided to verify whether HiperDispatch is enabled on a system image that is running on z13 servers.
z/VM V6R3
z/VM V6R3 also uses the HiperDispatch facility for improved processor efficiency by better use of the processor cache to take advantage of the cache-rich processor, node, and drawer design of the z13 system. The supported processor limit has been increased to 64, whereas with SMT, it remains at 32, supporting up to 64 threads running simultaneously.

The operating system support requirements for HiperDispatch are listed in Table 7-18.

Table 7-18 Minimum support requirements for HiperDispatch

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R11 with PTFs</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R3</td>
</tr>
</tbody>
</table>
| Linux on z Systems| SUSE Linux Enterprise Server 12^a
| | SUSE Linux Enterprise Server 11^a
| | Red Hat RHEL 7^a
| | Red Hat RHEL 6^a |

^a For more information about CPU polarization support, see http://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lgdd/lgdd_t_cpu_pol.html

7.3.17 The 63.75-K subchannels

Servers before z9 EC reserved 1024 subchannels for internal system use, out of a maximum of 64K subchannels. Starting with z9 EC, the number of reserved subchannels was reduced to 256, increasing the number of subchannels that are available. Reserved subchannels exist only in subchannel set 0. One subchannel is reserved in each of subchannel sets 1, 2, and 3.

The informal name, 63.75-K subchannels, represents 65280 subchannels, as shown in the following equation:

63 x 1024 + 0.75 x 1024 = 65280

The above equation is applicable for subchannel set 0. For subchannel sets 1, 2 and 3, the available subchannels are derived by using the following equation:

(64 x 1024) -1 = 65535

Table 7-19 lists the minimum operating system level that is required on z13 servers.

Table 7-19 Minimum support requirements for 63.75-K subchannels

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 12
| | SUSE Linux Enterprise Server 11
| | Red Hat RHEL 7
| | Red Hat RHEL 6 |
7.3.18 Multiple subchannel sets

Multiple subchannel sets (MSS), first introduced in z9 EC, provides a mechanism for addressing more than 63.75-K I/O devices and aliases for ESCON\(^3\) (CHPID type CNC) and FICON (CHPID types FC) on the z13, z13s, zEC12, zBC12, z196, z114, z10 EC, and z9 EC. z196 introduced the third subchannel set (SS2). With z13, one more subchannel set (SS3) has been introduced, which expands the alias addressing by 64-K more I/O devices.

Table 7-20 lists the minimum operating system levels that are required on the z13.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R3(^a)</td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 12
| | SUSE Linux Enterprise Server 11
| | Red Hat RHEL 7 |
| | Red Hat RHEL 6 |

\(^a\) For specific Geographically Dispersed Parallel Sysplex (GDPS) usage only

z/VM V6R3 MSS support for mirrored direct access storage device (DASD) provides a subset of host support for the MSS facility to allow using an alternative subchannel set for Peer-to-Peer Remote Copy (PPRC) secondary volumes.

7.3.19 Fourth subchannel set

With z13, a fourth subchannel set (SS3) was introduced. Together with the second subchannel set (SS1) and third subchannel set (SS2), SS3 can be used for disk alias devices of both primary and secondary devices, and as Metro Mirror secondary devices. This set helps facilitate storage growth and complements other functions, such as extended address volume (EAV) and Hyper Parallel Access Volumes (HyperPAV).

Table 7-21 lists the minimum operating systems level that is required on the z13.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13 with PTFs</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 with PTF</td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 12
| | SUSE Linux Enterprise Server 11
| | Red Hat RHEL 7 |
| | Red Hat RHEL 6 |

7.3.20 IPL from an alternative subchannel set

z13 supports IPL from subchannel set 1 (SS1), subchannel set 2 (SS2), or subchannel set 3 (SS3), in addition to subchannel set 0. For more information, see “IPL from an alternate subchannel set” on page 196.

\(^3\) ESCON features are not supported on z13 and zEC12 servers.
7.3.21 Modified Indirect Data Address Word facility

The Modified Indirect Data Address Word (MIDAW) facility improves FICON performance. It provides a more efficient channel command word (CCW)/indirect data address word (IDAW) structure for certain categories of data-chaining I/O operations.

Support for the MIDAW facility when running z/OS as a guest of z/VM requires z/VM V6R2 or later. For more information, see 7.9, “Simultaneous multithreading” on page 296.

Table 7-22 lists the minimum support requirements for MIDAW.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 for guest use</td>
</tr>
</tbody>
</table>

7.3.22 HiperSockets Completion Queue

The HiperSockets Completion Queue function is implemented on z13, z13s, zEC12, zBC12, z196, and z114. The HiperSockets Completion Queue function is designed to allow HiperSockets to transfer data synchronously if possible, and asynchronously if necessary. Therefore, it combines ultra-low latency with more tolerance for traffic peaks. HiperSockets Completion Queue can be especially helpful in burst situations.

Table 7-23 lists the minimum support requirements for HiperSockets Completion Queue.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13<sup>a</sup></td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2<sup>a</sup></td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11 SP2</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6.2</td>
</tr>
</tbody>
</table>

^a PTFs are required.

7.3.23 HiperSockets integration with the intraensemble data network

The HiperSockets integration with IEDN is available on z13, zEC12, zBC12, z196, and z114. HiperSockets integration with the IEDN combines the HiperSockets network and the physical IEDN to be displayed as a single Layer 2 network. This configuration extends the reach of the HiperSockets network outside the CPC to the entire ensemble, displaying as a single Layer 2 network.
Table 7-24 lists the minimum support requirements for HiperSockets integration with the IEDN.

Table 7-24 Minimum support requirements for HiperSockets integration with IEDN

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13 a</td>
</tr>
</tbody>
</table>

a. PTFs are required.

7.3.24 HiperSockets Virtual Switch Bridge

The HiperSockets Virtual Switch Bridge is implemented on z13, z13s, zEC12, zBC12, z196, and z114. HiperSockets Virtual Switch Bridge can integrate with the IEDN through OSA-Express for zBX (OSX) adapters. It can then bridge to another CPC through OSD adapters. This configuration extends the reach of the HiperSockets network outside of the CPC to the entire ensemble and hosts that are external to the CPC. The system is displayed as a single Layer 2 network.

Table 7-25 lists the minimum support requirements for HiperSockets Virtual Switch Bridge.

Table 7-25 Minimum support requirements for HiperSockets Virtual Switch Bridge

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 a, z/VM V6R3</td>
</tr>
<tr>
<td>Linux on z Systems b</td>
<td>SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, SUSE Linux Enterprise Server 10 SP4 update (kernel 2.6.16.60-0.95.1), Red Hat RHEL 7, Red Hat RHEL 6, Red Hat RHEL 5.8 (GA-level)</td>
</tr>
</tbody>
</table>

a. PTFs are required.

b. Applicable to guest operating systems.

7.3.25 HiperSockets Multiple Write Facility

The HiperSockets Multiple Write Facility allows the streaming of bulk data over a HiperSockets link between two LPARs. Multiple output buffers are supported on a single Signal Adapter (SIGA) write instruction. The key advantage of this enhancement is that it allows the receiving LPAR to process a much larger amount of data per I/O interrupt. This process is transparent to the operating system in the receiving partition. HiperSockets Multiple Write Facility with fewer I/O interrupts is designed to reduce processor utilization of the sending and receiving partitions.

Support for this function is required by the sending operating system. For more information, see 4.8.6, “HiperSockets” on page 176. Table 7-26 lists the minimum support requirements for HiperSockets Virtual Multiple Write Facility.

Table 7-26 Minimum support requirements for HiperSockets multiple write

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
</tbody>
</table>
7.3.26 HiperSockets IPv6

IPv6 is expected to be a key element in future networking. The IPv6 support for HiperSockets allows compatible implementations between external networks and internal HiperSockets networks.

Table 7-27 lists the minimum support requirements for HiperSockets IPv6 (CHPID type IQD).

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

7.3.27 HiperSockets Layer 2 support

For flexible and efficient data transfer for IP and non-IP workloads, the HiperSockets internal networks on z13 can support two transport modes. These modes are Layer 2 (Link Layer) and the current Layer 3 (Network or IP Layer). Traffic can be Internet Protocol (IP) Version 4 or Version 6 (IPv4, IPv6) or non-IP (AppleTalk, DECnet, IPX, NetBIOS, or SNA).

HiperSockets devices are protocol-independent and Layer 3-independent. Each HiperSockets device has its own Layer 2 Media Access Control (MAC) address. This MAC address allows the use of applications that depend on the existence of Layer 2 addresses, such as Dynamic Host Configuration Protocol (DHCP) servers and firewalls.

Layer 2 support can help facilitate server consolidation. Complexity can be reduced, network configuration is simplified and intuitive, and LAN administrators can configure and maintain the mainframe environment the same way as they do a non-mainframe environment.

Table 7-28 lists the minimum support requirements for HiperSockets Layer 2.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 for guest use</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

7.3.28 HiperSockets network traffic analyzer for Linux on z Systems

HiperSockets network traffic analyzer (HS NTA), introduced with IBM System z10, provides support for tracing Layer2 and Layer3 HiperSockets network traffic in Linux on z Systems. This support allows Linux on z Systems to control the trace for the internal virtual LAN to capture the records into host memory and storage (file systems).
Linux on z Systems tools can be used to format, edit, and process the trace records for analysis by system programmers and network administrators.

7.3.29 FICON Express16S

FICON Express16S supports a link data rate of 16 gigabits per second (Gbps) and autonegotiation to 4 or 8 Gbps for synergy with existing switches, directors, and storage devices. With support for native FICON, zHPF, and FCP, the z13 server enables SAN for even higher performance, helping to prepare for an end-to-end 16 Gbps infrastructure to meet the increased bandwidth demands of your applications.

The new features for the multimode and single mode fiber optic cabling environments reduce latency for large read/write operations and increase bandwidth compared to the FICON Express8S features.

Table 7-29 lists the minimum support requirements for FICON Express8S.

Table 7-29 Minimum support requirements for FICON Express8S

<table>
<thead>
<tr>
<th>Operating system</th>
<th>z/OS</th>
<th>z/VM</th>
<th>z/VSE</th>
<th>z/TPF</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native FICON and CTC CHPID type FC</td>
<td>V1R12<sup>a</sup></td>
<td>V6R2</td>
<td>V5R1</td>
<td>V1R1</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 Red Hat RHEL 7 Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF single-track operations CHPID type FC</td>
<td>V1R12</td>
<td>V6R2<sup>b</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 Red Hat RHEL 7 Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF multitrack operations CHPID type FC</td>
<td>V1R12<sup>b</sup></td>
<td>V6R2<sup>b</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 Red Hat RHEL 7 Red Hat RHEL 6</td>
</tr>
<tr>
<td>Support of SCSI devices CHPID type FCP</td>
<td>N/A</td>
<td>V6R2<sup>b</sup></td>
<td>V5R1</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 Red Hat RHEL 7 Red Hat RHEL 6</td>
</tr>
<tr>
<td>Support of hardware data router CHPID type FCP</td>
<td>N/A</td>
<td>V6R3</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 SP3 Red Hat RHEL 7 Red Hat RHEL 6.4</td>
</tr>
<tr>
<td>Support of T10-DIF CHPID type FCP</td>
<td>N/A</td>
<td>V6R2<sup>b</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12 SUSE Linux Enterprise Server 11 SP3 Red Hat RHEL 7 Red Hat RHEL 6.4</td>
</tr>
</tbody>
</table>

^a PTFs are required to support global resource serialization (GRS) FICON CTC tolanation.
^b PTFs are required.

7.3.30 FICON Express8S

The *FICON Express8S* feature is exclusively installed in the Peripheral Component Interconnect Express (PCIe) I/O drawer. It provides a link rate of 8 Gbps, with auto
negotiation to 4 or 2 Gbps for compatibility with previous devices and investment protection. Both 10 km (6.2 miles) LX and SX connections are offered (in a feature, all connections must have the same type).

With FICON Express 8S, clients might be able to consolidate existing FICON, FICON Express24, and FICON Express4 channels, while maintaining and enhancing performance.

FICON Express8S introduced a hardware data router for more efficient zHPF data transfers. It is the first channel with hardware that is designed to support zHPF, as contrasted to FICON Express8, FICON Express4, and FICON Express2, which have a firmware-only zHPF implementation.

Table 7-30 lists the minimum support requirements for FICON Express8S.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>z/OS</th>
<th>z/VM</th>
<th>z/VSE</th>
<th>z/TPF</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native FICON and CTC ChPID type FC</td>
<td>V1R12a</td>
<td>V6R2</td>
<td>V5R1</td>
<td>V1R1</td>
<td>SUSE Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF single-track operations ChPID type FC</td>
<td>V1R12</td>
<td>V6R2b</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF multitrack operations ChPID type FC</td>
<td>V1R12b</td>
<td>V6R2b</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>Support of SCSI devices ChPID type FCP</td>
<td>N/A</td>
<td>V6R2b</td>
<td>V5R1</td>
<td>N/A</td>
<td>SUSE Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>Support of hardware data router ChPID type FCP</td>
<td>N/A</td>
<td>V6R3</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6.4</td>
</tr>
</tbody>
</table>

\[All FICON Express4, FICON Express2, and FICON features have been withdrawn from marketing.\]
The FICON Express8 features provide a link rate of 8 Gbps, with auto-negotiation to 4 Gbps or 2 Gbps for compatibility with previous devices and investment protection. Both 10 km (6.2 miles) LX and SX connections are offered (in a feature, all connections must have the same type).

7.3.31 FICON Express8

The FICON Express8 features provide a link rate of 8 Gbps, with auto-negotiation to 4 Gbps or 2 Gbps for compatibility with previous devices and investment protection. Both 10 km (6.2 miles) LX and SX connections are offered (in a feature, all connections must have the same type).

Important: The z13 and z13s are the last z Systems servers to support FICON Express 8 channels. Enterprises should begin migrating from FICON Express8 channel features (FC 3325 and FC 3326) to FICON Express16S channel features (FC 0418 and FC 0419). FICON Express 8 will not be supported on future high-end z Systems servers as carry-forward on an upgrade.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

Table 7-31 lists the minimum support requirements for FICON Express8.

Table 7-31 Minimum support requirements for FICON Express8

<table>
<thead>
<tr>
<th>Operating system</th>
<th>z/OS</th>
<th>z/VM</th>
<th>z/VSE</th>
<th>z/TPF</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support of T10-DIF</td>
<td>N/A</td>
<td>V6R2b</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td>CHPID type FCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>Support of SCSI devices</td>
<td>N/A</td>
<td>V6R2a</td>
<td>V5R1</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td>CHPID type FCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>Native FICON and CTC</td>
<td>V1R12</td>
<td>V6R2</td>
<td>V5R1</td>
<td>V1R1</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td>CHPID type FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF single-track operations</td>
<td>V1R12</td>
<td>V6R2a</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td>CHPID type FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>zHPF multitrack operations</td>
<td>V1R12a</td>
<td>V6R2a</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td>CHPID type FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>
Chapter 7. Software support

7.3.32 z/OS Discovery and Auto-Configuration

z/OS Discovery and Auto Configuration (zDAC) is designed to automatically run a number of I/O configuration definition tasks for new and changed disk and tape controllers that are connected to a switch or director, when attached to a FICON channel.

The zDAC function is integrated into the existing hardware configuration definition (HCD). Clients can define a policy that can includes preferences for availability and bandwidth that include parallel access volume (PAV) definitions, control unit numbers, and device number ranges. When new controllers are added to an I/O configuration or changes are made to existing controllers, the system discovers them and proposes configuration changes that are based on that policy.

zDAC provides real-time discovery for the FICON fabric, subsystem, and I/O device resource changes from z/OS. By exploring the discovered control units for defined logical control units (LCUs) and devices, zDAC compares the discovered controller information with the current system configuration. It then determines delta changes to the configuration for a proposed configuration.

All added or changed logical control units and devices are added into the proposed configuration. They are assigned proposed control unit and device numbers, and channel paths that are based on the defined policy. zDAC uses channel path chosen algorithms to minimize single points of failure. The zDAC proposed configurations are created as work I/O definition files (IODFs) that can be converted to production IODFs and activated.

zDAC is designed to run discovery for all systems in a sysplex that support the function. Therefore, zDAC helps to simplify I/O configuration on z13 systems that run z/OS, and reduces complexity and setup time.

zDAC applies to all FICON features that are supported on z13 when configured as CHPID type FC. Table 7-32 lists the minimum support requirements for zDAC.

Table 7-32 Minimum support requirements for zDAC

<table>
<thead>
<tr>
<th>Operating system</th>
<th>z/OS</th>
<th>z/VM</th>
<th>z/VSE</th>
<th>z/TPF</th>
<th>Linux on z Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support of T10-DIF CHPID type FCP</td>
<td>N/A</td>
<td>V6R2a</td>
<td>N/A</td>
<td>N/A</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

a. PTFs are required.

7.3.33 High-performance FICON

zHPF was first provided on System z10, and is a FICON architecture for protocol simplification and efficiency. It reduces the number of information units (IUs) processed. Enhancements have been made to the z/Architecture and the FICON interface architecture to provide optimizations for online transaction processing (OLTP) workloads.
When used by the FICON channel, the z/OS operating system, and the DS8000 control unit or other subsystems, the FICON channel processor usage can be reduced and performance improved. Appropriate levels of Licensed Internal Code (LIC) are required. Additionally, the changes to the architectures provide end-to-end system enhancements to improve reliability, availability, and serviceability (RAS).

zHPF is compatible with these standards:

- Fibre Channel Framing and Signaling standard (FC-FS)
- Fibre Channel Switch Fabric and Switch Control Requirements (FC-SW)
- Fibre Channel Single-Byte-4 (FC-SB-4) standards

The zHPF channel programs can be used, for example, by the z/OS OLTP I/O workloads, DB2, VSAM, the partitioned data set extended (PDSE), and the z/OS file system (zFS).

At the zHPF announcement, zHPF supported the transfer of small blocks of fixed size data (4 K) from a single track. This capability has been extended, first to 64 KB, and then to multitrack operations. The 64 KB data transfer limit on multitrack operations was removed by z196. This improvement allows the channel to fully use the bandwidth of FICON channels, resulting in higher throughputs and lower response times.

The multitrack operations extension applies exclusively to the FICON Express8S, FICON Express8, and FICON Express16S, on the z13, z13s, zEC12, zBC12, z196, and z114, when configured as CHPID type FC and connecting to z/OS. zHPF requires matching support by the DS8000 series. Otherwise, the extended multitrack support is transparent to the control unit.

From the z/OS point of view, the existing FICON architecture is called command mode and the zHPF architecture is called transport mode. During link initialization, the channel node and the control unit node indicate whether they support zHPF.

Requirement: All FICON channel path identifiers (CHPIDs) that are defined to the same LCU must support zHPF. The inclusion of any non-compliant zHPF features in the path group causes the entire path group to support command mode only.

The mode that is used for an I/O operation depends on the control unit that supports zHPF and its settings in the z/OS operating system. For z/OS use, there is a parameter in the IECIOSxx member of SYS1.PARMLIB (ZHPF=YES or NO) and in the SETIOS system command to control whether zHPF is enabled or disabled. The default is ZHPF=NO.

Support is also added for the D I0S,ZHPF system command to indicate whether zHPF is enabled, disabled, or not supported on the server.

Similar to the existing FICON channel architecture, the application or access method provides the channel program (CCWs). The way that zHPF (transport mode) manages channel program operations is different from the CCW operation for the existing FICON architecture (command mode). While in command mode, each CCW is sent to the control unit for execution. In transport mode, multiple channel commands are packaged together and sent over the link to the control unit in a single control block. Fewer processors are used compared to the existing FICON architecture. Certain complex CCW chains are not supported by zHPF.

zHPF is available to z13, z13s, zEC12, zBC12, z196, z114, and System z10 servers. The FICON Express8S, FICON Express8, and FICON Express16S (CHPID type FC) concurrently support both the existing FICON protocol and the zHPF protocol in the server LIC.

zHPF is enhanced to allow all large write operations (> 64 KB) at distances up to 100 km to be run in a single round trip to the control unit. This process does not elongate the I/O service
time for these write operations at extended distances. This enhancement to zHPF removes a key inhibitor for clients adopting zHPF over extended distances, especially when using the IBM HyperSwap® capability of z/OS.

Table 7-33 lists the minimum support requirements for zHPF.

Table 7-33 Minimum support requirements for zHPF

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>Single-track operations: z/OS V1R12</td>
</tr>
<tr>
<td></td>
<td>Multitrack operations: z/OS V1R12 with PTFs</td>
</tr>
<tr>
<td></td>
<td>64 K enhancement: z/OS V1R12 with PTFs</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6.2 for guest use only</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11 SP1</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td></td>
<td>IBM continues to work with its Linux distribution Business Partners on use of appropriate z Systems (z13, zEC12) functions to be provided in future Linux on z Systems distribution releases.</td>
</tr>
</tbody>
</table>

For more information about FICON channel performance, see the performance technical papers on the z Systems I/O connectivity website at:

7.3.34 Request node identification data

First offered on z9 EC, the request node identification data (RNID) function for native FICON CHPID type FC allows isolation of cabling-detected errors.

Table 7-34 lists the minimum support requirements for RNID.

Table 7-34 Minimum support requirements for RNID

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
</tbody>
</table>

7.3.35 32 K subchannels for the FICON Express16S

To help facilitate growth and continue to enable server consolidation, the z13 supports up to 32 K subchannels per FICON Express16S channel (CHPID). More devices can be defined per FICON channel, which includes primary, secondary, and alias devices. The maximum number of subchannels across all device types that are addressable within an LPAR remains at 63.75 K for subchannel set 0 and 64 K (64 X 1024)-1 for subchannel sets 1, 2, and 3.

This support is exclusive to the z13 and z13s servers and applies to the FICON Express16S feature (defined as CHPID type FC). FICON Express8S and FICON Express8 remain at 24 subchannel support when defined as CHPID type FC.
Table 7-35 lists the minimum support requirements of 32K subchannel support for FICON Express.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>RHEL 7</td>
</tr>
<tr>
<td></td>
<td>RHEL 6</td>
</tr>
</tbody>
</table>

^a PTFs are required.

7.3.36 Extended distance FICON

An enhancement to the industry-standard FICON architecture (FC-SB-3) helps avoid degradation of performance at extended distances by implementing a new protocol for persistent IU pacing. Extended distance FICON is transparent to operating systems and applies to all FICON Express16S, FICON Express8S, and FICON Express8 features that carry native FICON traffic (CHPID type FC).

To use this enhancement, the control unit must support the new IU pacing protocol. IBM System Storage DS8000 series supports extended distance FICON for IBM z Systems environments. The channel defaults to current pacing values when it operates with control units that cannot use extended distance FICON.

7.3.37 Platform and name server registration in FICON channel

The FICON Express16S, FICON Express8S, and FICON Express8 features (on the zEC12 servers) support platform and name server registration to the fabric for CHPID types FC and FCP.

Information about the channels that are connected to a fabric, if registered, allows other nodes or storage area network (SAN) managers to query the name server to determine what is connected to the fabric.

The following attributes are registered for the z13 servers:

- Platform information
- Channel information
- Worldwide port name (WWPN)
- Port type (N_Port_ID)
- FC-4 types that are supported
- Classes of service that are supported by the channel

The platform and name server registration service are defined in the Fibre Channel Generic Services 4 (FC-GS-4) standard.
7.3.38 FICON link incident reporting

FICON link incident reporting allows an operating system image (without operator intervention) to register link incident reports. Table 7-36 lists the minimum support requirements for this function.

Table 7-36 Minimum support requirements for link incident reporting

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
</tbody>
</table>

7.3.39 FCP provides increased performance

The FCP LIC is modified to help provide increase I/O operations per second for both small and large block sizes, and to support 16-Gbps link speeds.

For more information about FCP channel performance, see the performance technical papers on the z Systems I/O connectivity website at:

7.3.40 N_Port ID Virtualization

N_Port ID Virtualization (NPIV) allows multiple system images (in LPARs or z/VM guests) to use a single FCP channel as though each were the sole user of the channel. This feature, first introduced with z9 EC, can be used with earlier FICON features that have been carried forward from earlier servers.

Table 7-37 lists the minimum support requirements for NPIV.

Table 7-37 Minimum support requirements for NPIV

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 provides support for guest operating systems and VM users to obtain virtual port numbers. Installation from DVD to SCSI disks is supported when NPIV is enabled.</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1.</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12.</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11.</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7.</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6.</td>
</tr>
</tbody>
</table>

7.3.41 OSA-Express5S 10-Gigabit Ethernet LR and SR

The OSA-Express5S 10-Gigabit Ethernet feature, introduced with the zEC12 and zBC12, is installed exclusively in the PCIe I/O drawer. Each feature has one port, which is defined as either CHPID type OSD or OSX. CHPID type OSD supports the queued direct input/output (QDIO) architecture for high-speed TCP/IP communication. The z196 introduced the CHPID type OSX. For more information, see 7.3.50, “Intraensemble data network” on page 275.
Table 7-38 lists the minimum support requirements for OSA-Express5S 10-Gigabit Ethernet LR and SR features.

Table 7-38 Minimum support requirements for OSA-Express5S 10-Gigabit Ethernet LR and SR

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>OSD: z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>OSX: z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>OSD: z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>OSX: z/VSE V5R1</td>
</tr>
<tr>
<td></td>
<td>OSD: z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>OSD: z/TPF V1R1 PUT 5<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>OSX: z/TPF V1R1 PUT 8<sup>a</sup></td>
</tr>
<tr>
<td>IBM zAware</td>
<td>OSD</td>
</tr>
<tr>
<td></td>
<td>OSX</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>OSD: SUSE Linux Enterprise Server 11, SUSE Linux Enterprise Server 12, Red Hat RHEL 7, and Red Hat RHEL 6</td>
</tr>
<tr>
<td></td>
<td>OSX: SUSE Linux Enterprise Server 11 SP1<sup>b</sup>, SUSE Linux Enterprise Server 12, Red Hat RHEL 6, Red Hat RHEL 7</td>
</tr>
</tbody>
</table>

^a IBM Software Support Services is required for support.

^b Maintenance update is required.

7.3.42 OSA-Express5S Gigabit Ethernet LX and SX

The OSA-Express5S Gigabit Ethernet feature is installed exclusively in the PCIe I/O drawer. Each feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). Each port supports attachment to a 1 Gigabit per second (Gbps) Ethernet local area network (LAN). The ports can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems.

Operating system support is required to recognize and use the second port on the OSA-Express5S Gigabit Ethernet feature. Table 7-39 lists the minimum support requirements for OSA-Express5S Gigabit Ethernet LX and SX.

Table 7-39 Minimum support requirements for OSA-Express5S Gigabit Ethernet LX and SX

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements using two ports per CHPID</th>
<th>Support requirements using one port per CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>OSD: z/OS V1R12</td>
<td>OSD: z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>OSD: z/VM V6R2</td>
<td>OSD: z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>OSD: z/VSE V5R1</td>
<td>OSD: z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>OSD: z/TPF V1R1</td>
<td>OSD: z/TPF V1R1</td>
</tr>
<tr>
<td>IBM zAware</td>
<td>OSD</td>
<td>OSD</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>OSD: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
<td>OSD: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
</tr>
</tbody>
</table>
7.3.43 OSA-Express5S 1000BASE-T Ethernet

The OSA-Express5S 1000BASE-T Ethernet feature is installed exclusively in the PCIe I/O drawer. Each feature has one PCIe adapter and two ports. The two ports share a CHPID, which can be defined as OSC, OSD, OSE, OSM, or OSN. The ports can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems. The OSM CHPID type was introduced with z196. For more information, see 7.3.49, “Intranode management network” on page 275.

Each adapter can be configured in the following modes:
- QDIO mode, with CHPID types OSD and OSN
- Non-QDIO mode, with CHPID type OSE
- Local 3270 emulation mode, including OSA-ICC, with CHPID type OSC:
 - OSA-ICC (OSC Channel) supports Secure Sockets Layer on z13s and z13 Driver 27 servers.
 - OSA-ICC supports up to 48 secure sessions per CHPID (the overall maximum of 120 connections is unchanged).
- Ensemble management, with CHPID type OSM

Table 7-40 lists the minimum support requirements for OSA-Express5S 1000BASE-T.

Table 7-40 Minimum support requirements for OSA-Express5S 1000BASE-T Ethernet

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements using two ports per CHPID</th>
<th>Support requirements using one port per CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>OSC, OSD, OSE, and OSN:\z/OS V1R12(^a)</td>
<td>OSC, OSD, OSE, OSM, and OSN:\z/OS V1R12(^a)</td>
</tr>
<tr>
<td>z/VM</td>
<td>OSC, OSD(^a), OSE, and OSN:\z/VM V6R2</td>
<td>OSC, OSD, OSE, OSM(^a), and OSN:\z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>OSC, OSD, OSE, and OSN:\z/VSE V5R1</td>
<td>OSC, OSD, OSE, and OSN:\z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>OSD, OSC, OSN(^b): z/TPF V1R1</td>
<td>OSD, OSC, OSN(^b): z/TPF</td>
</tr>
<tr>
<td>IBM zAware</td>
<td>OSD</td>
<td>OSD</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>OUSD SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6 OSN(^b): SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
<td>OUSD SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6 OSM: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11 SP2, Red Hat RHEL 7, and Red Hat RHEL 6 OSN(^b): SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

- ^a^ PTFs are required.
- ^b^ Although CHPID type OSN does not use any ports (because all communication is LPAR to LPAR), it is listed here for completeness.
- ^c^ OSM support in V6R2 and V6R3 for dynamic I/O only.

5 For dynamic I/O only
7.3.44 OSA-Express4S 10-Gigabit Ethernet LR and SR

The OSA-Express4S 10-Gigabit Ethernet feature, introduced with the zEC12, is installed exclusively in the PCIe I/O drawer. Each feature has one port, which is defined as either CHPID type OSD or OSX. CHPID type OSD supports the QDIO architecture for high-speed TCP/IP communication. The z196 introduced the CHPID type OSX. For more information, see 7.3.50, “Intraensemble data network” on page 275.

The OSA-Express4S features have half the number of ports per feature when compared to OSA-Express3, and half the size as well. This configuration results in an increased number of installable features. It also facilitates the purchase of the correct number of ports to help satisfy your application requirements and to better optimize for redundancy.

Table 7-41 lists the minimum support requirements for OSA-Express4S 10-Gigabit Ethernet LR and SR features.

Table 7-41 Minimum support requirements for OSA-Express4S 10-Gigabit Ethernet LR and SR

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
</table>
| z/OS | OSD: z/OS V1R12\(^a\)
 | OSX: z/OS V1R12\(^a\) |
| z/VM | OSD: z/VM V6R2
 | OSX: z/VM V6R2\(^a\) and V6R3 for dynamic I/O only |
| z/VSE | OSD: z/VSE V5R1
 | OSX: z/VSE V5R1 |
| z/TPF | OSD: z/TPF V1R1
 | OSX: z/TPF V1R1 |
| IBM zAware | OSD
 | OSX |
| Linux on z Systems | OSD: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6
 | OSX: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11 SP1\(^b\), Red Hat RHEL 7, and Red Hat RHEL 6 |

\(^a\) PTFs are required.
\(^b\) Maintenance update is required.

7.3.45 OSA-Express4S Gigabit Ethernet LX and SX

The OSA-Express4S Gigabit Ethernet feature is installed exclusively in the PCIe I/O drawer. Each feature has one PCIe adapter and two ports. The two ports share a channel path identifier (CHPID type OSD exclusively). Each port supports attachment to a 1 Gbps Ethernet LAN. The ports can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems.

Operating system support is required to recognize and use the second port on the OSA-Express4S Gigabit Ethernet feature.
Table 7-42 lists the minimum support requirements for OSA-Express4S Gigabit Ethernet LX and SX.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements using two ports per CHPID</th>
<th>Support requirements using one port per CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>OSD: z/OS V1R12</td>
<td>OSD: z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>OSD: z/VM V6R2</td>
<td>OSD: z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>OSD: z/VSE V5R1</td>
<td>OSD: z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>OSD: z/TPF V1R1</td>
<td>OSD: z/TPF V1R1</td>
</tr>
<tr>
<td>IBM zAware</td>
<td>OSD</td>
<td>OSD</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>OSA: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
<td>OSA: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

7.3.46 OSA-Express4S 1000BASE-T Ethernet

The OSA-Express4S 1000BASE-T Ethernet feature is installed exclusively in the PCIe I/O drawer. Each feature has one PCIe adapter and two ports. The two ports share a CHPID, which is defined as OSC, OSD, OSE, OSM, or OSN. The ports can be defined as a spanned channel, and can be shared among LPARs and across logical channel subsystems. The OSM CHPID type was introduced with z196. For more information, see 7.3.49, “Intranode management network” on page 275.

Each adapter can be configured in the following modes:
- QDIO mode, with CHPID types OSD and OSN
- Non-QDIO mode, with CHPID type OSE
- Local 3270 emulation mode, including OSA-ICC, with CHPID type OSC:
 - OSA-ICC (OSC Channel) supports Secure Sockets Layer on z13s and z13 Driver 27 servers.
 - OSA-ICC supports up to 48 secure sessions per CHPID (the overall maximum of 120 connections unchanged).
- Ensemble management, with CHPID type OSM

Operating system support is required to recognize and use the second port on the OSA-Express4S 1000BASE-T feature. Table 7-43 lists the minimum support requirements for OSA-Express4S 1000BASE-T.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements using two ports per CHPID</th>
<th>Support requirements using one port per CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>OSC, OSD, OSE, and OSN<sup>b</sup>: z/OS V1R12<sup>a</sup></td>
<td>OSC, OSD, OSE, OSM, and OSN<sup>b</sup>: z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>OSC, OSD<sup>a</sup>, OSE, and OSN<sup>b</sup>: z/VM V6R2</td>
<td>OSC, OSD, OSE, OSM<sup>a</sup><sup>c</sup>, and OSN<sup>b</sup>: z/VM V6R2</td>
</tr>
</tbody>
</table>
The IBM zAware server requires connections to the graphical user interface (GUI) browser and z/OS monitored clients. An OSA channel is the most logical choice for allowing GUI browser connections to the server. By using this channel, users can view the analytical data for the monitored clients through the IBM zAware GUI. For z/OS monitored clients that connect to an IBM zAware server, the following network options are supported:

- A client-provided data network that is provided through an OSA Ethernet channel.
- A HiperSockets subnetwork within the z13.
- IEDN on the z13 to other central processor complex (CPC) nodes in the ensemble. The z13 server also supports the use of HiperSockets over the IEDN.

7.3.47 Open Systems Adapter for IBM zAware

The IBM zAware server requires connections to the graphical user interface (GUI) browser and z/OS monitored clients. An OSA channel is the most logical choice for allowing GUI browser connections to the server. By using this channel, users can view the analytical data for the monitored clients through the IBM zAware GUI. For z/OS monitored clients that connect to an IBM zAware server, the following network options are supported:

- A client-provided data network that is provided through an OSA Ethernet channel.
- A HiperSockets subnetwork within the z13.
- IEDN on the z13 to other central processor complex (CPC) nodes in the ensemble. The z13 server also supports the use of HiperSockets over the IEDN.

7.3.48 Open Systems Adapter for Ensemble

Five different OSA-Express5S and OSA-Express4S features are used to connect the z13 to Unified Resource Manager, and other ensemble nodes. These connections are part of the ensemble’s two private and secure internal networks.

For the intranode management network (INMN), use these features:

- OSA Express5S 1000BASE-T Ethernet, FC 0417
- OSA Express4S 1000BASE-T Ethernet, FC 0408

For the IEDN, use these features:

- OSA-Express5S 10 Gigabit Ethernet (GbE) Long Reach (LR), FC 0415
- OSA-Express5S 10 Gigabit Ethernet (GbE) Short Reach (SR), FC 0416
- OSA-Express4S 10 Gigabit Ethernet (GbE) Long Reach (LR), FC 0406
- OSA-Express4S 10 Gigabit Ethernet (GbE) Short Reach (SR), FC 0407

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements using two ports per CHPID</th>
<th>Support requirements using one port per CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VSE</td>
<td>OSC, OSD, OSE, and OSNb: z/VSE V5R1</td>
<td>OSC, OSD, OSE, and OSNb: z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>OSD, OSC, OSNb: z/TPF V1R1</td>
<td>OSD, OSC, OSNb: z/TPF V1R1</td>
</tr>
<tr>
<td>IBM zAware</td>
<td>OSD</td>
<td>OSD</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>OSA: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
<td>OSA: SUSE Linux Enterprise Server 12, SUSE Linux Enterprise Server 11, Red Hat RHEL 7, and Red Hat RHEL 6</td>
</tr>
</tbody>
</table>

a. PTFs are required.
b. Although CHPID type OSN does not use any ports (because all communication is LPAR to LPAR), it is listed here for completeness.
c. OSM Support in z/VM V6R2 and V6R3 for dynamic I/O only.
7.3.49 Intranode management network

The INMN is one of the ensemble's two private and secure internal networks. The INMN is used by the Unified Resource Manager functions.

The INMN is a private and physically isolated 1000Base-T Ethernet internal platform management network. It operates at 1 Gbps, and connects all resources (CPC components) of an ensemble node for management purposes. It is pre-wired, internally switched, configured, and managed with full redundancy for high availability.

The z196 introduced the OSA-Express for Unified Resource Manager (OSM) CHPID type. INMN requires two OSA-Express5S 1000BASE-T or OSA-Express4S 1000BASE-T ports from two different OSA-Express5S 1000BASE-T or OSA-Express4S 1000BASE-T features, which are configured as CHPID type OSM. One port per CHPID is available with CHPID type OSM.

The OSA connection is through the system control hub (SCH) on the z13 to the HMC network interface.

7.3.50 Intraensemble data network

The IEDN is one of the ensemble’s two private and secure internal networks. The IEDN provides applications with a fast data exchange path between ensemble nodes. Specifically, it is used for communications across the virtualized images (LPARs, z/VM virtual machines, and blade LPARs).

The IEDN is a private and secure 10 Gbps Ethernet network that connects all elements of an ensemble. It is access-controlled by using integrated virtual LAN (VLAN) provisioning. No client-managed switches or routers are required. The IEDN is managed by the primary HMC that controls the ensemble. This configuration helps reduce the need for firewalls and encryption, and simplifies network configuration and management. It also provides full redundancy for high availability.

The z196 introduced the OSX CHPID type. The OSA connection is from the z13 to the ToR switches on zBX.

The IEDN requires two OSA-Express5S or OSA-Express4S 10 GbE ports that are configured as CHPID type OSX.

7.3.51 OSA-Express5S and OSA-Express4S NCP support

The OSA-Express5S 1000BASE-T Ethernet and OSA-Express4S 1000BASE-T Ethernet features can provide channel connectivity from an operating system in a z13 to IBM Communication Controller for Linux on z Systems (CCL). This configuration uses the Open Systems Adapter for Network Control Program (NCP) (CHPID type OSN) in support of the Channel Data Link Control protocol (CDLC). OSN eliminates the requirement for an external communication medium for communications between the operating system and the CCL image.

The data flow of the LPAR to the LPAR is accomplished by the OSA-Express5S or OSA-Express4S feature without ever exiting the card. The OSN support allows multiple connections between the CCL image and the operating system, such as z/OS or z/TPF. The operating system must be in the same physical server as the CCL image.
For CCL planning information, see IBM Communication Controller for Linux on System z V1.2.1 Implementation Guide, SG24-7223. For the most recent CCL information, see this website:

CDLC, when used with CCL, emulates selected functions of IBM 3745/NCP operations. The port that is used with the OSN support is displayed as an ESCON channel to the operating system. This support can be used with the OSA-Express5S 1000BASE-T and OSA-Express4S 1000BASE-T features.

Table 7-44 lists the minimum support requirements for OSN.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12<sup>a</sup></td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1</td>
</tr>
<tr>
<td>z/TPF</td>
<td>z/TPF V1R1<sup>a</sup></td>
</tr>
</tbody>
</table>
| Linux on z Systems | SUSE Linux Enterprise Server 12
| | SUSE Linux Enterprise Server 11
| | Red Hat RHEL 7
| | Red Hat RHEL 6 |

^a PTFs are required.

7.3.52 Integrated Console Controller

The 1000BASE-T Ethernet features provide the Integrated Console Controller (OSA-ICC) function, which supports TN3270E (RFC 2355) and non-SNA DFT 3270 emulation. The OSA-ICC function is defined as CHIPD type OSC and console controller, and has multiple LPAR support, both as shared or spanned channels.

With the OSA-ICC function, 3270 emulation for console session connections is integrated in the z13 through a port on the OSA-Express5S 1000BASE-T or OSA-Express4S 1000BASE-T features. This function eliminates the requirement for external console controllers, such as 2074 or 3174, helping to reduce cost and complexity. Each port can support up to 120 console session connections.

OSA-ICC can be configured on a PCHID-by-PCHID basis, and is supported at any of the feature settings (10, 100, or 1000 Mbps, half-duplex or full-duplex).

Starting with z13s or z13 Driver level 27 servers, TLS/SSL with Certificate Authentication will be added to the OSC CHIPD to provide a secure and validated method for connecting clients to the z Systems host.

Note: OSA-ICC supports up to 48 secure sessions per CHIPD (the overall maximum of 120 connections is unchanged).
7.3.53 VLAN management enhancements

Table 7-45 lists the minimum support requirements for VLAN management enhancements for the OSA-Express5S and OSA-Express4S features (CHPID type OSD).

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12.</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2. Support of guests is transparent to z/VM if the device is directly connected to the guest (pass through).</td>
</tr>
</tbody>
</table>

7.3.54 GARP VLAN Registration Protocol

All OSA-Express5S and OSA-Express4S features support VLAN prioritization, a component of the IEEE 802.1 standard. GARP VLAN Registration Protocol (GVRP) support allows an OSA-Express port to register or unregister its VLAN IDs with a GVRP-capable switch and dynamically update its table as the VLANs change. This process simplifies the network administration and management of VLANs because manually entering VLAN IDs at the switch is no longer necessary.

The minimum support requirements are listed in Table 7-46.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
</tbody>
</table>
| Linux on z Systems^a | SUSE Linux Enterprise Server 12
 | SUSE Linux Enterprise Server 11
 | Red Hat RHEL 7
 | Red Hat RHEL 6 |

^a By using VLANs.

7.3.55 Inbound workload queuing for OSA-Express5S and OSA-Express4S

OSA-Express3 introduced inbound workload queuing (IWQ), which creates multiple input queues and allows OSA to differentiate workloads “off the wire.” It then assigns work to a specific input queue (per device) to z/OS. The support is also available with OSA-Express5S and OSA-Express4S. CHPID types OSD and OSX are supported.

Each input queue is a unique type of workload, and has unique service and processing requirements. The IWQ function allows z/OS to preassign the appropriate processing resources for each input queue. This approach allows multiple concurrent z/OS processing threads to process each unique input queue (workload), avoiding traditional resource contention. In a heavily mixed workload environment, this “off the wire” network traffic separation is provided by OSA-Express5S and OSA-Express4S. IWQ reduces the conventional z/OS processing that is required to identify and separate unique workloads. This advantage results in improved overall system performance and scalability.
A primary objective of IWQ is to provide improved performance for business-critical interactive workloads by reducing contention that is created by other types of workloads. The following types of z/OS workloads are identified and assigned to unique input queues:

- **z/OS Sysplex Distributor traffic**: Network traffic that is associated with a distributed virtual Internet Protocol address (VIPA) is assigned to a unique input queue. This configuration allows the Sysplex Distributor traffic to be immediately distributed to the target host.

- **z/OS bulk data traffic**: Network traffic that is dynamically associated with a streaming (bulk data) TCP connection is assigned to a unique input queue. This configuration allows the bulk data processing to be assigned the appropriate resources and isolated from critical interactive workloads.

IWQ is exclusive to OSA-Express5S and OSA-Express4S CHPID types OSD and OSX, and the z/OS operating system. This limitation applies to z13, z13s, zEC12, zBC12, z196, z114, and System z10. The minimum support requirements are listed in Table 7-47.

Table 7-47 Minimum support requirements for IWQ

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 for guest use only, service required</td>
</tr>
</tbody>
</table>

7.3.56 Inbound workload queuing for Enterprise Extender

IWQ for the OSA-Express features is enhanced to differentiate and separate inbound Enterprise Extender traffic to a dedicated input queue.

IWQ for Enterprise Extender is exclusive to OSA-Express5S and OSA-Express4S, CHPID types OSD and OSX, and the z/OS operating system. This limitation applies to z13, z13s, zEC12, zBC12, z196, and z114. The minimum support requirements are listed in Table 7-48.

Table 7-48 Minimum support requirements for IWQ

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 for guest use only, service required</td>
</tr>
</tbody>
</table>

7.3.57 Querying and displaying an OSA configuration

OSA-Express3 introduced the capability for the operating system to query and display directly the current OSA configuration information (similar to OSA/SF). z/OS uses this OSA capability by introducing a TCP/IP operator command called `display OSAINFO`.

Using `display OSAINFO` allows the operator to monitor and verify the current OSA configuration. Doing so helps improve the overall management, serviceability, and usability of OSA-Express5S and OSA-Express4S.

The `display OSAINFO` command is exclusive to z/OS, and applies to CHPID types OSD, OSM, and OSX.
7.3.58 Link aggregation support for z/VM

Link aggregation (IEEE 802.3ad) that is controlled by the z/VM Virtual Switch (VSWITCH) allows the dedication of an OSA-Express5S or OSA-Express4S port to the z/VM operating system. The port must be participating in an aggregated group that is configured in Layer 2 mode. Link aggregation (trunking) combines multiple physical OSA-Express5S or OSA-Express4S ports into a single logical link. This configuration increases throughput, and provides nondisruptive failover if a port becomes unavailable. The target links for aggregation must be of the same type.

Link aggregation is applicable to CHPID type OSD (QDIO). Link aggregation is supported by z/VM V6R2 and later.

7.3.59 Multi-VSwitch Link Aggregation

Multi-VSwitch Link Aggregation support allows a port group of OSA-Express features to span multiple virtual switches within a single z/VM system or between multiple z/VM systems. Sharing a Link Aggregation Port Group (LAG) with multiple virtual switches increases optimization and utilization of the OSA-Express when handling larger traffic loads. Higher adapter utilization protects customer investments, which is increasingly important as 10 Gb deployments become more prevalent.

The minimum support requirements are listed in Table 7-49.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM</td>
<td>z/VM V6R3<sup>a</sup></td>
</tr>
</tbody>
</table>

^a PTF support is required.

7.3.60 QDIO data connection isolation for z/VM

The QDIO data connection isolation function provides a higher level of security when sharing an OSA connection in z/VM environments that use VSWITCH. The VSWITCH is a virtual network device that provides switching between OSA connections and the connected guest systems.

QDIO data connection isolation allows disabling internal routing for each QDIO connected. It also provides a means for creating security zones and preventing network traffic between the zones.

QDIO data connection isolation is supported by all OSA-Express5S and OSA-Express4S features on z13 and zEC12.

7.3.61 QDIO interface isolation for z/OS

Some environments require strict controls for routing data traffic between servers or nodes. In certain cases, the LPAR-to-LPAR capability of a shared OSA connection can prevent such controls from being enforced. With interface isolation, internal routing can be controlled on an LPAR basis. When interface isolation is enabled, the OSA discards any packets that are destined for a z/OS LPAR that is registered in the OSA Address Table (OAT) as isolated.
QDIO interface isolation is supported by Communications Server for z/OS V1R12 or later, and all OSA-Express5S and OSA-Express4S features on z13.

7.3.62 QDIO optimized latency mode

QDIO optimized latency mode (OLM) can help improve performance for applications that have a critical requirement to minimize response times for inbound and outbound data.

OLM optimizes the interrupt processing in the following manner:

- For inbound processing, the TCP/IP stack looks more frequently for available data to process. This process ensures that any new data is read from the OSA-Express5S or OSA-Express4S without needing more program controlled interrupts (PCIs).
- For outbound processing, the OSA-Express5S or OSA-Express4S also look more frequently for available data to process from the TCP/IP stack. Therefore, the process does not require a Signal Adapter (SIGA) instruction to determine whether more data is available.

7.3.63 Large send for IPv6 packets

Large send for IPv6 packets improves performance by offloading outbound TCP segmentation processing from the host to an OSA-Express5S and OSA-Express4S feature by employing a more efficient memory transfer into OSA-Express5S and OSA-Express4S. Large send support for IPv6 packets applies to the OSA-Express5S and OSA-Express4S features (CHPID type OSD and OSX), and is exclusive to z13, z13s, zEC12, zBC12, z196, and z114. With z13, large send for IPv6 packets (segmentation offloading) for LPAR-to-LPAR traffic is supported. The minimum support requirements are listed in Table 7-50.

Table 7-50 Minimum support requirements for large send for IPv6 packets

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13a</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 for guest use only</td>
</tr>
</tbody>
</table>

* a. PTFs are required.

7.3.64 OSA-Express5S and OSA-Express4S checksum offload

OSA-Express5S and OSA-Express4S features, when configured as CHPID type OSD, provide checksum offload for several types of traffic, as indicated in Table 7-51.

Table 7-51 Minimum support requirements for OSA-Express5S and OSA-Express4S checksum offload

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR to LPAR</td>
<td>z/OS V1R12a</td>
</tr>
<tr>
<td>IPv6</td>
<td>z/VM V6R2 for guest useb</td>
</tr>
<tr>
<td>LPAR-to-LPAR traffic for IPv4 and IPv6</td>
<td>z/OS V1R13</td>
</tr>
<tr>
<td></td>
<td>z/VM V6R2 for guest useb</td>
</tr>
</tbody>
</table>

* a. PTFs are required.
* b. Device is directly attached to guest, and PTFs are required.
7.3.65 Checksum offload for IPv4 and IPv6 packets when in QDIO mode

The checksum offload function supports z/OS and Linux on z Systems environments. It is offered on the OSA-Express5S GbE, OSA-Express5S 1000BASE-T Ethernet, OSA-Express4S GbE, and OSA-Express4S 1000BASE-T Ethernet features. Checksum offload provides the capability of calculating the Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and IP header checksum. Checksum verifies the accuracy of files. By moving the checksum calculations to a Gigabit or 1000BASE-T Ethernet feature, host processor cycles are reduced and performance is improved.

When checksum is offloaded, the OSA-Express feature runs the checksum calculations for Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) packets. The checksum offload function applies to packets that go to or come from the LAN. When multiple IP stacks share an OSA-Express, and an IP stack sends a packet to a next hop address that is owned by another IP stack that is sharing the OSA-Express, OSA-Express sends the IP packet directly to the other IP stack. The packet does not have to be placed out on the LAN, which is termed LPAR-to-LPAR traffic. Checksum offload is enhanced to support the LPAR-to-LPAR traffic, which was not originally available.

Checksum offload is supported by the GbE features, which include FC 0404, FC 0405, FC 0413, and FC 0414. It is also supported by the 1000BASE-T Ethernet features, including FC 0408 and FC 0417, when it is operating at 1000 Mbps (1 Gbps). Checksum offload is applicable to the QDIO mode only (channel type OSD).

z/OS support for checksum offload is available in all in-service z/OS releases, and in all supported Linux on z Systems distributions.

7.3.66 Adapter interruptions for QDIO

Linux on z Systems and z/VM work together to provide performance improvements by using extensions to the QDIO architecture. Adapter interruptions, first added to z/Architecture with HiperSockets, provide an efficient, high-performance technique for I/O interruptions to reduce path lengths and processor usage. These reductions are in both the host operating system and the adapter (OSA-Express5S and OSA-Express4S when using CHPID type OSD).

In extending the use of adapter interruptions to OSD (QDIO) channels, the processor utilization to handle a traditional I/O interruption is reduced. This benefits OSA-Express TCP/IP support in z/VM, z/VSE, and Linux on z Systems.

Adapter interruptions apply to all of the OSA-Express5S and OSA-Express4S features on z13 when in QDIO mode (CHPID type OSD).

7.3.67 OSA Dynamic LAN idle

The OSA Dynamic LAN idle parameter change helps reduce latency and improve performance by dynamically adjusting the inbound blocking algorithm. System administrators can authorize the TCP/IP stack to enable a dynamic setting that previously was static.

For latency-sensitive applications, the blocking algorithm is modified to be latency-sensitive. For streaming (throughput-sensitive) applications, the blocking algorithm is adjusted to maximize throughput. In all cases, the TCP/IP stack determines the best setting based on the current system and environmental conditions, such as inbound workload volume, processor utilization, and traffic patterns. It can then dynamically update the settings. OSA-Express5S and OSA-Express4S features adapt to the changes, avoiding thrashing and frequent updates.
to the OAT. Based on the TCP/IP settings, OSA holds the packets before presenting them to
the host. A dynamic setting is designed to avoid or minimize host interrupts.

OSA Dynamic LAN idle is supported by the OSA-Express5S, and OSA-Express4S features
on z13 when in QDIO mode (CHPID type OSD). It is used by z/OS V1R12 and later releases.

7.3.68 OSA Layer 3 virtual MAC for z/OS environments

To help simplify the infrastructure and facilitate load balancing when an LPAR is sharing an
OSA MAC address with another LPAR, each operating system instance can have its own
unique logical or virtual MAC (VMAC) address. All IP addresses that are associated with a
TCP/IP stack are accessible by using their own VMAC address instead of sharing the MAC
address of an OSA port. This situation also applies to Layer 3 mode and to an OSA port
spanned among channel subsystems.

OSA Layer 3 VMAC is supported by the OSA-Express5S and OSA-Express4S features on
z13 when in QDIO mode (CHPID type OSD). It is used by z/OS V1R12 and later.

7.3.69 QDIO Diagnostic Synchronization

QDIO Diagnostic Synchronization enables system programmers and network administrators
to coordinate and simultaneously capture both software and hardware traces. It allows z/OS
to signal OSA-Express5S and OSA-Express4S features (by using a diagnostic assist
function) to stop traces and capture the current trace records.

QDIO Diagnostic Synchronization is supported by the OSA-Express5S and OSA-Express4S
features on z13 when in QDIO mode (CHPID type OSD). It is used by z/OS V1R12 and later.

7.3.70 Network Traffic Analyzer

The z13 offers systems programmers and network administrators the ability to more easily
solve network problems despite high traffic. With the OSA-Express Network Traffic Analyzer
and QDIO Diagnostic Synchronization on the server, you can capture trace and trap data.
This data can then be forwarded to z/OS tools for easier problem determination and
resolution.

The Network Traffic Analyzer is supported by the OSA-Express5S and OSA-Express4S
features on z13 when in QDIO mode (CHPID type OSD). It is used by z/OS V1R12 and later.

7.3.71 Program-directed re-IPL

First available on System z9, program directed re-IPL allows an operating system on a z13 to
IPL again without operator intervention. This function is supported for both SCSI and IBM
extended count key data (IBM ECKD™) devices.
Table 7-52 lists the minimum support requirements for program directed re-IPL.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
<tr>
<td>Linux on z Systems</td>
<td>SUSE Linux Enterprise Server 12</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 7</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6</td>
</tr>
<tr>
<td>z/VSE</td>
<td>V5R1 on SCSI disks</td>
</tr>
</tbody>
</table>

7.3.72 Coupling over InfiniBand and Integrated Coupling Adapter

InfiniBand (IFB) and Integrated Coupling Adapter (ICA) using PCIe Gen3 technology can potentially provide high-speed interconnection at short distances, longer distance fiber optic interconnection, and interconnection between partitions on the same system without external cabling. Several areas of this book address InfiniBand and PCIe Gen3 characteristics and support. For more information, see 4.9, “Parallel Sysplex connectivity” on page 178.

Integrated Coupling Adapter

Support for PCIe Gen3 fanout (also known as Integrated Coupling Adapter Short Range (ICA SR)) that supports a maximum distance of 150 meters (492 feet) is listed in Table 7-53.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 (dynamic I/O support for ICA CHPIDs only. Coupling over ICA is not supported for guest use.)</td>
</tr>
<tr>
<td>z/TPF</td>
<td>z/TPF V1R1</td>
</tr>
</tbody>
</table>

InfiniBand coupling links

Support for HCA3-O\(^6\) (12xIFB) fanout that supports InfiniBand coupling links 12x at a maximum distance of 150 meters (492 feet) is listed in Table 7-54.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 (dynamic I/O support for InfiniBand CHPIDs only. Coupling over InfiniBand is not supported for guest use.)</td>
</tr>
<tr>
<td>z/TPF</td>
<td>z/TPF V1R1</td>
</tr>
</tbody>
</table>

\(^6\) HCA2-O is not supported on z13.
InfiniBand coupling links at an unrepeated distance of 10 km (6.2 miles)
Support for HCA3-O LR\(^7\) (1xIFB) fanout that supports InfiniBand coupling links 1x at an
unrepeated distance of 10 KM (6.2 miles) is listed in Table 7-55.

Table 7-55 Minimum support requirements for coupling links over InfiniBand at 10 km (6.2 miles)

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R12</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 (dynamic I/O support for InfiniBand CHPIDs only; coupling over InfiniBand is not supported for guest use.)</td>
</tr>
</tbody>
</table>

7.3.73 Dynamic I/O support for InfiniBand and ICA CHPIDs

This function refers exclusively to the z/VM dynamic I/O support of InfiniBand and ICA
coupling links. Support is available for the CIB and CS5 CHPID type in the z/VM dynamic commands, including the change channel path dynamic I/O command. Specifying and changing the system name when entering and leaving configuration mode are also supported. z/VM does not use InfiniBand or ICA, and does not support the use of InfiniBand or ICA coupling links by guests.

Table 7-56 lists the minimum support requirements for dynamic I/O support for InfiniBand CHPIDs.

Table 7-56 Minimum support requirements for dynamic I/O support for InfiniBand CHPIDs

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/VM</td>
<td>z/VM V6R2</td>
</tr>
</tbody>
</table>

7.3.74 Simultaneous multithreading

SMT is the hardware capability to process up to two simultaneous threads in a single core, sharing the resources of the superscalar core. This capability improves the system capacity and efficiency in the usage of the processor, increasing the overall throughput of the system.

SMT is supported only by zIIP and IFL speciality engines on z13 and must be used by the operating system. An operating system with SMT support can be configured to dispatch work to a thread on a zIIP (for eligible workloads in z/OS) or an IFL (for z/VM) core in single-thread or SMT mode. For more information, see 7.9, “Simultaneous multithreading” on page 296.

Table 7-57 lists the minimum support requirements for SMT.

Table 7-57 Minimum support requirements for SMT

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R1 with APARs</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R3</td>
</tr>
</tbody>
</table>

\(^7\) HCA2-O is not supported on z13.
7.3.75 Single-instruction multiple-data

The SIMD feature introduces a new set of instructions with z13 to enable parallel computing that can accelerate code with string, character, integer, and floating point data types. The SIMD instructions allow a larger number of operands to be processed with a single complex instruction. For more information, see 3.4.2, “Single-instruction multiple-data” on page 96.

Table 7-58 lists the minimum support requirements for SIMD.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R1 with small programming enhancement (SPE)</td>
</tr>
</tbody>
</table>

7.3.76 Shared Memory Communication - Direct Memory Access (SMC-D)

The SMC-D feature is introduced in z13 and z13s. SMC-D maintains the socket-API transparency aspect of SMC-R so that applications that use TCPI/IP communications can benefit immediately without requiring application software to undergo IP topology changes. Similar to SMC-R, this protocol uses shared memory architectural concepts that eliminate TCP/IP processing in the data path, yet preserving TCP/IP Qualities of Service for connection management purposes.

Table 7-59 lists the minimum support requirements for SMC-D.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R2</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R3 with APAR VM65716 if running z/OS as guest</td>
</tr>
</tbody>
</table>

For more information, see Appendix D, “Shared Memory Communications” on page 501.
7.4 Cryptographic support

IBM z13 provides two major groups of cryptographic functions:

- Synchronous cryptographic functions, which are provided by CPACF
- Asynchronous cryptographic functions, which are provided by the Crypto Express5S feature

The minimum software support levels are listed in the following sections. Obtain and review the current PSP buckets to ensure that the latest support levels are known and included as part of the implementation plan.

7.4.1 CP Assist for Cryptographic Function

In z13, CPACF supports the following encryption types:

- The Advanced Encryption Standard (AES, symmetric encryption)
- The Data Encryption Standard (DES, symmetric encryption)
- The Secure Hash Algorithm (SHA, hashing)

For more information, see 6.4, “CP Assist for Cryptographic Functions” on page 209.

Table 7-60 lists the support requirements for CPACF in z13.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS(^a)</td>
<td>z/OS V1R12 and later with the Cryptographic Support for web deliverable that is specific for the operating system level.</td>
</tr>
<tr>
<td>z/VM</td>
<td>z/VM V6R2 with PTFs and higher: Supported for guest use.</td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE V5R1 and later with PTFs.</td>
</tr>
<tr>
<td>z/TPF</td>
<td>z/TPF V1R1.</td>
</tr>
</tbody>
</table>

\(^a\) CPACF also is used by several IBM software product offerings for z/OS, such as IBM WebSphere Application Server for z/OS.

7.4.2 Crypto Express5S

Support of Crypto Express5S functions varies by operating system and release. Table 7-61 lists the minimum software requirements for the Crypto Express5S features when configured as a coprocessor or an accelerator. For more information, see 6.5, “Crypto Express5S” on page 213.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Crypto Express5S</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V2R2, z/OS V2R1, z/OS V1R13, or z/OS V1R12 with the specific web deliverable.</td>
</tr>
<tr>
<td>z/VM</td>
<td>For guest use, z/VM V6R2.</td>
</tr>
</tbody>
</table>
7.4.3 Web deliverables

For web-deliverable code on z/OS, see the z/OS downloads website:

For Linux on z Systems, support is delivered through IBM and the distribution partners. For more information, see Linux on z Systems on the IBM developerWorks® website:

http://www.ibm.com/developerworks/linux/linux390/

7.4.4 z/OS Integrated Cryptographic Service Facility FMIDs

Integrated Cryptographic Service Facility (ICSF) is a base component of z/OS. It is designed to transparently use the available cryptographic functions, whether CPACF or Crypto Express, to balance the workload and help address the bandwidth requirements of the applications.

Despite being a z/OS base component, ICSF functions are generally made available through web deliverable support a few months after a new z/OS release. Therefore, new functions are related to an ICSF function modification identifier (FMID) instead of a z/OS version.

For a list of ICSF versions and FMID cross-references, see the Technical Documents website:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103782

Table 7-62 lists the ICSF FMIDs and web-deliverable codes for z/OS V1R12 through V2R2. Later FMIDs include the functions of previous ones.

Table 7-62 z/OS ICSF FMIDs

<table>
<thead>
<tr>
<th>ICSF FMID</th>
<th>z/OS</th>
<th>Web deliverable name</th>
<th>Supported function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR7770</td>
<td>V1R12 V1R11 V1R10</td>
<td>Cryptographic Support for z/OS V1R9-V1R11 included as a base element of z/OS V1R12</td>
<td>▶ Crypto Express3 and Crypto Express3-1P support ▶ PKA Key Management Extensions ▶ CPACF Protected Key ▶ Extended PKCS #11 ▶ ICSF Restructure (Performance, RAS, and ICSF-CICS Attach Facility)</td>
</tr>
<tr>
<td>ICSF FMID</td>
<td>z/OS</td>
<td>Web deliverable name</td>
<td>Supported function</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>HCR7780</td>
<td>V1R13</td>
<td>Cryptographic Support for z/OS V1R10-V1R12</td>
<td>▶ IBM zEnterprise 196 support</td>
</tr>
<tr>
<td></td>
<td>V1R12</td>
<td></td>
<td>▶ Elliptic Curve Cryptography</td>
</tr>
<tr>
<td></td>
<td>V1R11</td>
<td>Included as a base element of z/OS V1R13</td>
<td>▶ Message-Security-Assist-4</td>
</tr>
<tr>
<td></td>
<td>V1R10</td>
<td></td>
<td>▶ HMAC Support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ ANSI X9.8 Pin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ ANSI X9.24 (CBC Key Wrapping)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ CKDS constraint relief</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ PCI Audit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ All callable services AMODE(64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ PKA RSA OAEP with SHA-256 algorithm</td>
</tr>
<tr>
<td>HCR7790</td>
<td>V1R13</td>
<td>Cryptographic Support for z/OS V1R11-V1R13</td>
<td>▶ Expanded key support for AES algorithm</td>
</tr>
<tr>
<td></td>
<td>V1R12</td>
<td></td>
<td>▶ Enhanced ANSI TR-31</td>
</tr>
<tr>
<td></td>
<td>V1R11</td>
<td></td>
<td>▶ PIN block decimalization table protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Elliptic Curve Diffie-Hellman (ECDH) algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ RSA in the Modulus-Exponent (ME) and Chinese Remainder Theorem (CRT) formats</td>
</tr>
<tr>
<td>HCR77A0</td>
<td>V2R1</td>
<td>Cryptographic Support for z/OS V1R12-V1R13</td>
<td>▶ zEC12 & CEX4S Support, including Enterprise PKCS #11 (EP11)</td>
</tr>
<tr>
<td></td>
<td>V1R13</td>
<td>Included as a base element of z/OS V2R1</td>
<td>▶ KDS Administration support for the PKDS (RSA-MK/ECC-MK) and TKDS (P11-MK)</td>
</tr>
<tr>
<td></td>
<td>V1R12</td>
<td></td>
<td>including improved I/O performance on these key data sets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ 24-byte DES Master Key support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ New controls for weak key wrapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ DUKPT for MAC and Encryption Keys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ FIPS-compliant RNG and Random Number cache</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Secure Cipher RNG and Random Number cache</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ EMV Enhancements for Amex</td>
</tr>
<tr>
<td>HCR77A1</td>
<td>V2R1</td>
<td>Cryptographic Support for z/OS V1R13-V2R1</td>
<td>▶ AP Configuration Simplification</td>
</tr>
<tr>
<td></td>
<td>V1R13</td>
<td></td>
<td>▶ KDS Key Utilization Statistics</td>
</tr>
<tr>
<td></td>
<td>V1R12</td>
<td></td>
<td>▶ Dynamic SSM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ UDX Reduction and Simplification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Europay, Mastercard, and Visa (EMV) enhancements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Key wrapping and other security enhancements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ OWH/RNG Authorization Access</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ SAF ACEE Selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Non-SAF Protected IQF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ RKX Key Export Wrapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ AES MAC Enhancements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ PKCS #11 Enhancements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Improved CTRACE Support</td>
</tr>
</tbody>
</table>
7.4.5 ICSF migration considerations

Consider the following if you have installed the Cryptographic Support for z/OS V1R13 – z/OS V2R1 web deliverable (FMID HCR77A1) to accommodate the change in the way master keys are processed to determine which coprocessors become active:

- The FMID HCR77A1 ICSF level is not integrated in z/OS V2R1 and needs to be downloaded and installed even after ordering a z/OS V2R1 ServerPac. The Cryptographic web deliverable is available at the following website:

- Starting with FMID HCR77A1, the activation procedure now uses the master key verification patterns (MKVP) in the header record of the Cryptographic Key Data Set (CKDS) and PKDS to determine which coprocessors become active.
You can use the IBM Health Checker check ICSFMIG77A1_UNSUPPORTED_HW to determine whether your current server can support HCR77A1. The migration check is available for HCR7770, HCR7780, HCR7790, and HCR77A0 through APAR OA42011.

All systems in a sysplex that share a PKDS/TKDS must be at HCR77A1 to use the PKDS/TKDS Coordinated Administration support.

For more information, see *Migration from z/OS V1R13 and z/OS V1R12 to z/OS V2R1*, GA32-0889.

7.5 GDPS Virtual Appliance

The GDPS Virtual Appliance solution implements GDPS/PPRC Multiplatform Resilience for z Systems (xDR). xDR coordinates near-continuous availability and a disaster recovery (DR) solution through the following features:

- Disk error detection
- Heartbeat for smoke tests
- Re-IPL in place
- Coordinated site takeover
- Coordinated HyperSwap
- Single point of control

The GDPS Virtual Appliance software requirements are z/VM Version 5 Release 4 or later, or z/VM 6.2 or later. z/VM 5.4 is not supported on z13.

For more information, see Appendix I, “GDPS Virtual Appliance” on page 567.

7.6 z/OS migration considerations

Except for base processor support, z/OS software changes do not require any of the functions that are introduced with the z13. Also, the functions do not require functional software. The approach, where applicable, allows z/OS to automatically enable a function based on the presence or absence of the required hardware and software.

7.6.1 General guidelines

The IBM z13 introduces the latest z Systems technology. Although support is provided by z/OS starting with z/OS V1R12, use of z13 depends on the z/OS release. z/OS.e is *not* supported on z13.

In general, consider the following guidelines:

- Do not change software releases and hardware at the same time.
- Keep members of the sysplex at the same software level, except during brief migration periods.
- Migrate to an STP-only network before introducing a z13 into a sysplex.
- Review z13 restrictions and migration considerations before creating an upgrade plan.
7.6.2 Hardware configuration definition

On z/OS V1R12 and later, the HCD or Hardware Configuration Manager (HCM) help define a configuration for z13.

7.6.3 Coupling links

Each system can use, or not use, internal coupling links, InfiniBand coupling links, or ICA coupling links independently of what other systems are using. z13 does not support participating in a Parallel Sysplex with System z10 and earlier systems.

Coupling connectivity is available only when other systems also support the same type of coupling. When you plan to use the InfiniBand coupling or ICA coupling links technology, consult the Coupling Facility Configuration Options white paper, which is available at the following website:

7.6.4 Large page support

The large page support function must not be enabled without the respective software support. If large page is not specified, page frames are allocated at the current size of 4 K.

In z/OS V1R9 and later, the amount of memory to be reserved for large page support is defined by using the LFAREA parameter in the IEASYSxx member of SYS1.PARMLIB:

LFAREA=xx%|xxxxxxM|xxxxxxG

The parameter indicates the amount of storage, in percentage, megabytes, or gigabytes. The value cannot be changed dynamically.

7.6.5 Capacity Provisioning Manager

The installation of the capacity provision function on z/OS requires the following prerequisites:

► Setting up and customizing z/OS RMF, including the Distributed Data Server (DDS)
► Setting up the z/OS CIM Server (included in z/OS base)
► Performing capacity provisioning customization, as described in z/OS MVS Capacity Provisioning User’s Guide, SA33-8299

Using the capacity provisioning function requires these prerequisites:

► TCP/IP connectivity to observed systems.
► RMF Distributed Data Server must be active.
► CIM server must be active.
► Security and CIM customization.
► Capacity Provisioning Manager customization.

In addition, the Capacity Provisioning Control Center must be downloaded from the host and installed on a PC server. This application is used only to define policies. It is not required for regular operation.
Customization of the capacity provisioning function is required on the following systems:

- Observed z/OS systems: These are the systems in one or multiple sysplexes that are to be monitored. For more information about the capacity provisioning domain, see 8.8, “Nondisruptive upgrades” on page 352.
- Runtime systems: These are the systems where the Capacity Provisioning Manager is running, or to which the server can fail over after server or system failures.

7.6.6 Decimal floating point and z/OS XL C/C++ considerations

z/OS V1R13 with PTFs or higher is required to use the latest level (11) of the following two C/C++ compiler options:

- **ARCHITECTURE**: This option selects the minimum level of system architecture on which the program can run. Certain features that are provided by the compiler require a minimum architecture level. ARCH(11) uses instructions that are available on the z13.
- **TUNE**: This option allows optimization of the application for a specific system architecture, within the constraints that are imposed by the ARCHITECTURE option. The TUNE level must not be lower than the setting in the ARCHITECTURE option.

For more information about the ARCHITECTURE and TUNE compiler options, see the z/OS V1R13.0 XL C/C++ User’s Guide, SC09-4767.

Important: Use the previous z Systems ARCHITECTURE or TUNE options for C/C++ programs if the same applications run on both the z13 and on previous z Systems servers. However, if C/C++ applications run only on z13 servers, use the latest ARCHITECTURE and TUNE options to ensure that the best performance possible is delivered through the latest instruction set additions.

For more information, see Migration from z/OS V1R13 and z/OS V1R12 to z/OS V2R1, GA32-0889.

7.7 IBM z Advanced Workload Analysis Reporter

IBM z Advanced Workload Analysis Reporter (IBM zAware) is designed to offer a real-time, continuous learning, diagnostic, and monitoring capability. This capability is intended to help you pinpoint and resolve potential problems quickly enough to minimize impacts to your business. IBM zAware runs analytics in firmware and intelligently examines the message logs for potential deviations, inconsistencies, or variations from the norm. Many z/OS environments produce such a large volume of OPERLOG messages that it is difficult for operations personnel to analyze them easily. IBM zAware provides a simple GUI for easy identification of message anomalies, which can facilitate faster problem resolution.

IBM zAware is enhanced as part of z13s general availability to process messages without message IDs. This feature opened up the means to analyze the health of Linux operating systems by analyzing Linux SYSLOG. Linux on z Systems running natively and as a guest on z/VM is also supported. It must be a Linux distribution that has been tested for the z Systems server on which it runs.
7.7.1 z Appliance Container Infrastructure mode LPAR

IBM zAware is ordered through specific features of z13s, and requires z/OS V1R13 or later with IBM zAware support to collect specific log stream data. It requires a correctly configured LPAR. For more information, see “The z Appliance Container Infrastructure-mode LPAR” on page 246.

During a driver upgrade for z13 servers from Driver 22 to Driver 27, an existing IBM zAware mode LPAR is automatically converted to the zACI LPAR type. With Driver 27 and later, any new IBM zAware host is deployed in an LPAR of type zACI.

To use the IBM zAware feature, complete the following tasks in z/OS:

- For each z/OS that is to be monitored through the IBM zAware client, configure a network connection in the TCP/IP profile. If necessary, update the firewall settings.
- Verify that each z/OS system meets the sysplex configuration and OPERLOG requirements for monitored clients of the IBM zAware virtual appliance.
- Configure the z/OS system logger to send data to the IBM zAware virtual appliance server.
- Prime the IBM zAware server with prior data from monitored clients.

Complete these tasks for the Linux systems to be monitored:

- For each Linux system that is to be monitored through the IBM zAware client, configure a network connection. If necessary, update the firewall settings to ensure secure communications between IBM zAware and Linux clients.
- Configure the syslog daemon of the Linux system to send messages to the IBM zAware server.

For more information about IBM zAware, see Appendix B, “IBM z Advanced Workload Analysis Reporter” on page 479 and the latest guide on Resource Link at the following website:

https://www.ibm.com/servers/resourcelink/

7.8 Coupling facility and CFCC considerations

Coupling facility connectivity to a z13 is supported on the z13s, zEC12, zBC12, z196, z114, or another z13. The LPAR running the CFCC can be on any of the previously listed supported systems. For more information about CFCC requirements for supported systems, see Table 7-63 on page 295.

Consideration: Because coupling link connectivity to System z10 and previous systems is not supported, introducing z13 into existing installations requires extra planning. Consider the level of CFCC. For more information, see “Coupling link considerations” on page 185.
7.8.1 CFCC Level 20

CFCC level 20 is initially delivered on the z13 with driver level 22. CFCC Level 20 introduces the following enhancements:

- Support for up to 141 Internal Coupling Facility (ICF) processors. The maximum number of logical processors in a Coupling Facility Partition remains at 16.

- Large memory support:
 - Improve availability/scalability for larger CF cache structures and data sharing performance with larger DB2 group buffer pools (GBPs).
 - This support removes inhibitors to using large CF structures, enabling use of Large Memory to scale to larger DB2 local buffer pools (LBPs) and GBPs in data sharing environments.
 - CF structure size remains at a maximum of 1 TB.

- Support for the new IBM ICA for short distance coupling.

z13 systems with CFCC Level 20 require z/OS V1R12 or later, and z/VM V6R2 or later for guest virtual coupling.

7.8.2 CFCC Level 21

CFCC Level 21 is delivered on z13 servers with driver level 27. CFCC Level 21 introduces the following enhancements:

- Usability enhancement:
 - Enable systems management applications to collect valid CF LPAR information through z/OS BCPii
 - System type (CFCC), System Level (CFCC Level)
 - Dynamic dispatch settings to indicate CF state (dedicated, shared, thin interrupt)

- Availability enhancement:
 - Asynchronous CF duplexing for lock structures. Secondary structure updates are performed asynchronously with respect to primary updates
 - Designed to drive out cross-site latencies that exist today when replicating CF data across distance
 - Designed to avoid the need for synchronous speed-of-light communication delays during the processing of every duplexed update operation
 - Improves performance with cross-site duplexing of lock structures at distance
 - Maintains robust failure recovery capability through the redundancy of duplexing
 - Reduces z/OS, CF, and link utilization overhead costs associated with synchronous duplexing of lock structures
 - Requires CFCC level 21 and service level 02.16 and z/OS V2.2 SPE with PTFs for APAR OA47796.

To support an upgrade from one CFCC level to the next, different levels of CFCC can be run concurrently while the coupling facility LPARs are running on different servers. CF LPARs that run on the same server share the CFCC level. The CFCC level for z13 servers is CFCC Level 21, as shown in Table 7-63. z13 (CFCC level 20 or 21) can coexist in a sysplex with CFCC levels 17 and 19.
For more information about CFCC code levels, see the Parallel Sysplex website at:

For the latest CFCC code levels, see the current exception letter that is published on
Resource Link at the following website:

CF structure sizing changes are expected when upgrading from a previous CFCC Level to
CFCC Level 21. Review the CF LPAR size by using the available CFSizer tool, found at the
following website:
http://www.ibm.com/systems/z/cfsizer

Sizer Utility, an authorized z/OS program download, is useful when you are upgrading a CF. It
is available at the following web page:

Before the migration, install the compatibility/coexistence PTFs. A planned outage is required
when you upgrade the CF or CF LPAR to CFCC Level 21.

7.8.3 Flash Express exploitation by CFCC

CFCC Level 19 is the minimum level that supports Flash Express. Initial CF Flash Express
exploitation is targeted for WebSphere MQ shared queue application structures. It is designed
to help improve resilience and provide cost-effective standby capacity to help manage the
potential overflow of WebSphere MQ shared queues. Structures now can be allocated with a
combination of real memory and SCM that is provided by the Flash Express feature.

Flash memory in the CPC is assigned to a CF partition through hardware definition windows,
which is like how it is assigned to the z/OS partitions. The CFRM policy definition allows the
maximum amount of flash memory that you want to be used by a particular structure, on a
structure-by-structure basis.

Important: Flash memory is **not** pre-assigned to structures at allocation time.

Structure size requirements for real memory get larger at initial allocation time to
accommodate more control objects that are needed to use flash memory. The CFSIZER
structure recommendations consider these additional requirements, both for sizing the structure's flash usage and for the related real memory considerations.

Here are the minimum CFCC Flash Express exploitation requirements:

- CFCC Level 19 support or higher
- z/OS support for z/OS V1R13 with PTFs and z/OS V2R1 or later with PTFs
- WebSphere MQ Version 7 is required.

7.8.4 CFCC Coupling Thin Interrupts

The Coupling Thin Interrupts enhancement is delivered with CFCC 19. It improves the performance of a Coupling Facility partition and improves the dispatching of z/OS LPARs awaiting the arrival of returned asynchronous CF requests, when used in a shared engine environment.

7.9 Simultaneous multithreading

The z13 can run up two threads simultaneously in the same processor, dynamically sharing resources of the core such as cache, translation lookaside buffer (TLB), and execution resources. It provides better utilization of the cores and more processing capacity. This function is known as SMT, and is available only in zIIP and IFL cores. For more information about SMT, see 3.4.1, “Simultaneous multithreading” on page 95.

The z/OS and the z/VM have SMT support if the support is enabled by PTFs. z/OS 2.2 supports the operation of zIIP processors in SMT mode.

The following APARs must be applied to z/OS V2R1 to use SMT:

- OA43366 (BCP)
- OA43622 (WLM)
- OA44439 (XCF)

The use of SMT on z/OS V2R1 requires enabling HiperDispatch, and defining the processor view (PROCVIEW) control statement in the LOADxx parmlib member and the MT_ZIIP_MODE parameter in the IEAOPTxx parmlib member.

The PROCVIEW statement is defined for the life of IPL, and can have the following values:

- **CORE**: This value specifies that z/OS should configure a processor view of core, where a core can have one or more threads. The number of threads is limited by z13 to two threads. If the underlying hardware does not support SMT, a core is limited to one thread.
- **CPU**: This value is the default. It specifies that z/OS should configure a traditional processor view of CPU and not use SMT.
- **CORE,CPU_OK**: This value specifies that z/OS should configure a processor view of core, as with the **CORE** value, but the CPU parameter is accepted as an alias for applicable commands.

When **PROCVIEW CORE** or **CORE,CPU_OK** are specified in z/OS running in z13, HiperDispatch is forced to run as enabled, and you cannot disable HiperDispatch. The PROCVIEW statement cannot be changed dynamically, so you must run an IPL after changing it to make the new setting effective.

8 SMT is only available for zIIP workload.
The **MT_ZIIP_MODE** parameter in the IEAOPTxx controls zIIP SMT mode. It can be 1 (the default), where only one thread can be running in a core, or 2, where up to two threads can be running in a core. If **PROCVIEW CPU** is specified, the **MT_ZIIP_MODE** is always 1. Otherwise, the use of SMT to dispatch two threads in a single zIIP logical processor (MT_ZIIP_MODE=2) can be changed dynamically by using the **SET OPT=xx** setting in the IEAOPTxx parmlib. Changing the MT mode for all cores can take some time to complete.

The activation of SMT mode also requires that the HMC Customize/Delete Activation Profiles task “Do not end the time slice if a partition enters a wait state” must not be selected. This is the recommended default setting.

PROCVIEW COR requires **DISPLAY M=CORE** and **CONFIG CORE** to display the core states and configure an entire core.

Figure 7-1 shows the result of the display core command with processor view core and SMT enabled.

![Figure 7-1 Result of the display core command](image)

The use of SMT in z/VM V6R3 requires the application of a SPE that has a new **MULTITHREADING** statement in the system configuration file, has HiperDispatch enabled, and has the dispatcher work distribution mode set to *reshuffle*.

The default in z/VM is multithreading disabled. The SMT mode has no dynamic switching. It can be enabled or disabled only by setting the **MULTITHREADING** statement in the configuration file. After the statement is set, you must run an IPL of the partition to enable or disable the SMT.

z/VM supports up to 32 multithreaded cores (64 threads) for IFLs, and each thread is treated as an independent processor. z/VM dispatches virtual IFLs on the IFL logical processor so that the same or different guests can share a core. Each core has a single dispatch vector.

9 The z/VM 6.3 SMT enablement APAR is VM65586.
and z/VM attempts to place virtual sibling IFLs on the same dispatch vector to maximize cache reuses. The guests have no awareness of SMT, and cannot use it.

z/VM SMT exploitation does not include guest support for multithreading. The value of this support for guests is that the first-level z/VM hosts under the guests can achieve higher throughput from the multi-threaded IFL cores.

Note: IBM is working with its Linux distribution Business Partners to support SMT. KVM for IBM z Systems SMT support is planned for 1Q2016.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

An operating system that uses SMT controls each core and is responsible for maximizing their throughput and meeting workload goals with the smallest number of cores. In z/OS, HiperDispatch cache optimization should be considered when you must choose the two threads to be dispatched in the same processor. HiperDispatch attempts to dispatch guest virtual CPUs on the same logical processor on which they have run previously. PR/SM attempts to dispatch a vertical low logical processor in the same physical processor. If that is not possible, it attempts to dispatch it in the same node, or then the same CPC drawer where it was dispatched before to maximize cache reuse.

From the point of view of an application, SMT is transparent and no changes are required in the application for it to run in an SMT environment, as shown in Figure 7-2.

Figure 7-2 Simultaneous multithreading

7.10 Single-instruction multiple-data

z13 is equipped with new set of instructions to improve the performance of complex mathematical models and analytic workloads through vector processing and new complex instructions, which can process a lot of data with a single instruction. This new set of instructions, which is known as SIMD, enables more consolidation of analytic workloads and business transactions on z Systems servers.

z/OS V2R1 has support for SIMD through an SPE. The z/VM guest exploitation for SIMD support will be delivered at z13 with PTF for APAR WM65733.

OS support includes the following items:
- Enablement of vector registers.
- Use of vector registers using XL C/C++ ARCH(11) and TUNE(11).
- A math library with an optimized and tuned math function (Mathematical Acceleration Subsystem (MASS)) that can be used in place of some of the C standard math functions. It has a SIMD vectorized and non-vectorized version.
- A specialized math library, which is known as Automatically Tuned Linear Algebra Software (ATLAS), that is optimized for the hardware.
- IBM Language Environment® for C runtime function enablement for ATLAS.
- DBX to support the disassembly of the new vector instructions, and to display and set vector registers.
- XML SS exploitation to use new vector processing instructions to improve performance.

MASS and ATLAS can reduce the time and effort for middleware and application developers. IBM provides compiler built-in functions for SMID that software applications can use as needed, such as for using string instructions.

The use of new hardware instructions through XL C/C++ ARCH(11) and TUNE(11) or SIMD usage by MASS and ATLAS libraries requires the z13 support for z/OS V2R1 XL C/C++ web deliverable.

The followings compilers have built-in functions for SMID:
- IBM Java
- XL C/C++
- Enterprise COBOL
- Enterprise PL/I

Code must be developed to take advantage of the SIMD functions, and applications with SIMD instructions abend if they run on a lower hardware level system. Some mathematical function replacement can be done without code changes by including the scalar MASS library before the standard math library.

The MASS and standard math library have different accuracies, so assess the accuracy of the functions in the context of the user application before deciding whether to use the MASS and ATLAS libraries.

The SIMD functions can be disabled in z/OS partitions at IPL time by using the MACHMIG parameter in the LOADxx member. To disable SIMD code, use the MACHMIG VEF hardware-based vector facility. If you do not specify a MACHMIG statement, which is the default, the system is unlimited in its use of the Vector Facility for z/Architecture (SIMD).

7.11 The Modified Indirect Data Address Word facility

The MIDAW facility is a system architecture and software exploitation that is designed to improve FICON performance. This facility was first made available on System z9 servers, and is used by the Media Manager in z/OS.

The MIDAW facility provides a more efficient CCW/IDAW structure for certain categories of data-chaining I/O operations:

MIDAW can improve FICON performance for extended format data sets. Non-extended data sets can also benefit from MIDAW.
MIDAW can improve channel utilization, and can improve I/O response time. It reduces FICON channel connect time, director ports, and control unit processor usage.

IBM laboratory tests indicate that applications that use EF data sets, such as DB2, or long chains of small blocks can gain significant performance benefits by using the MIDAW facility.

MIDAW is supported on FICON channels that are configured as CHPID type FC.

7.11.1 MIDAW technical description

An IDAW is used to specify data addresses for I/O operations in a virtual environment. The existing IDAW design allows the first IDAW in a list to point to any address within a page. Subsequent IDAWs in the same list must point to the first byte in a page. Also, IDAWs (except the first and last IDAW) in a list must deal with complete 2 K or 4 K units of data.

Figure 7-3 shows a single CCW that controls the transfer of data that spans non-contiguous 4 K frames in main storage. When the IDAW flag is set, the data address in the CCW points to a list of words (IDAWs). Each IDAW contains an address that designates a data area within real storage.

The number of required IDAWs for a CCW is determined by these factors:

- The IDAW format as specified in the operation request block (ORB)
- The count field of the CCW
- The data address in the initial IDAW

For example, three IDAWs are required when these events occur:

- The ORB specifies format-2 IDAWs with 4 KB blocks.
- The CCW count field specifies 8 KB.

10 There are exceptions to this statement, and many details are skipped in this description. This section assumes that you can merge this brief description with an existing understanding of I/O operations in a virtual memory environment.
The first IDAW designates a location in the middle of a 4 KB block.

CCWs with data chaining can be used to process I/O data blocks that have a more complex internal structure, in which portions of the data block are directed into separate buffer areas. This process is sometimes known as scatter-read or scatter-write. However, as technology evolves and link speed increases, data chaining techniques become less efficient because of switch fabrics, control unit processing and exchanges, and other issues.

The MIDAW facility is a method of gathering and scattering data from and into discontinuous storage locations during an I/O operation. The MIDAW format is shown in Figure 7-4. It is 16 bytes long and is aligned on a quadword.

![MIDAW format](image)

Figure 7-4 MIDAW format

An example of MIDAW usage is shown in Figure 7-5.

![MIDAW usage](image)

Figure 7-5 MIDAW usage

The use of MIDAWs is indicated by the MIDAW bit in the CCW. If this bit is set, the skip flag cannot be set in the CCW. The skip flag in the MIDAW can be used instead. The data count in the CCW must equal the sum of the data counts in the MIDAWs. The CCW operation ends when the CCW count goes to zero or the last MIDAW (with the last flag) ends. The combination of the address and count in a MIDAW cannot cross a page boundary. Therefore,
the largest possible count is 4 K. The maximum data count of all the MIDAWs in a list cannot exceed 64 K, which is the maximum count of the associated CCW.

The scatter-read or scatter-write effect of the MIDAWs makes it possible to efficiently send small control blocks that are embedded in a disk record to separate buffers from those used for larger data areas within the record. MIDAW operations are on a single I/O block, in the manner of data chaining. Do not confuse this operation with CCW command chaining.

7.11.2 Extended format data sets

z/OS extended format (EF) data sets use internal structures (usually not visible to the application program) that require a scatter-read (or scatter-write) operation. Therefore, CCW data chaining is required, which produces less than optimal I/O performance. Because the most significant performance benefit of MIDAWs is achieved with EF data sets, a brief review of the EF data sets is included here.

Both VSAM and non-VSAM (DSORG=PS) sets can be defined as EF data sets. For non-VSAM data sets, a 32-byte suffix is appended to the end of every physical record (that is, block) on disk. VSAM appends the suffix to the end of every control interval (CI), which normally corresponds to a physical record. A 32 K CI is split into two records to span tracks. This suffix is used to improve data reliability, and facilitates other functions that are described in the following paragraphs. Therefore, for example, if the DCB BLKSIZE or VSAM CI size is equal to 8192, the actual block on storage consists of 8224 bytes. The control unit itself does not distinguish between suffixes and user data. The suffix is transparent to the access method and database.

In addition to reliability, EF data sets enable three other functions:

- DFSMS striping
- Access method compression
- Extended addressability (EA)

EA is useful for creating large DB2 partitions (larger than 4 GB). Striping can be used to increase sequential throughput, or to spread random I/Os across multiple logical volumes. DFSMS striping is useful for using multiple channels in parallel for one data set. The DB2 logs are often striped to optimize the performance of DB2 sequential inserts.

Processing an I/O operation to an EF data set normally requires at least two CCWs with data chaining. One CCW is used for the 32-byte suffix of the EF data set. With MIDAW, the additional CCW for the EF data set suffix is eliminated.

MIDAWs benefit both EF and non-EF data sets. For example, to read twelve 4 K records from a non-EF data set on a 3390 track, Media Manager chains 12 CCWs together by using data chaining. To read twelve 4 K records from an EF data set, 24 CCWs are chained (two CCWs per 4 K record). Using Media Manager track-level command operations and MIDAWs, an entire track can be transferred by using a single CCW.

7.11.3 Performance benefits

z/OS Media Manager has I/O channel program support for implementing EF data sets, and automatically uses MIDAWs when appropriate. Most disk I/Os in the system are generated by using Media Manager.

Users of the Executing Fixed Channel Programs in Real Storage (EXCPVR) instruction can construct channel programs that contain MIDAWs. However, doing so requires that they
construct an IOBE with the IOBEMIDA bit set. Users of the EXCP instruction cannot construct channel programs that contain MIDAWs.

The MIDAW facility removes the 4 K boundary restrictions of IDAWs and, for EF data sets, reduces the number of CCWs. Decreasing the number of CCWs helps to reduce the FICON channel processor utilization. Media Manager and MIDAWs do not cause the bits to move any faster across the FICON link. However, they reduce the number of frames and sequences that flow across the link, and therefore use the channel resources more efficiently.

The MIDAW facility with FICON Express8S, operating at 8 Gbps, shows an improvement in throughput for all reads on DB2 table scan tests with EF data sets compared to the use of IDAWs with FICON Express2, operating at 2 Gbps.

The performance of a specific workload can vary based on the conditions and hardware configuration of the environment. IBM laboratory tests found that DB2 gains significant performance benefits by using the MIDAW facility in the following areas:

- Table scans
- Logging
- Utilities
- Use of DFSMS striping for DB2 data sets

Media Manager with the MIDAW facility can provide significant performance benefits when used in combination applications that use EF data sets (such as DB2) or long chains of small blocks.

For more information about FICON and MIDAW, see the following resources:

- The I/O Connectivity website contains material about FICON channel performance: http://www.ibm.com/systems/z/connectivity/
- *DS8000 Performance Monitoring and Tuning*, SG24-7146

7.12 IOCP

All z Systems servers require a description of their I/O configuration. This description is stored in input/output configuration data set (IOCDS) files. The input/output configuration program (IOCP) allows the creation of the IOCDS file from a source file that is known as the input/output configuration source (IOCS).

z13 IOCP definitions: There is a new parameter for HiperSockes IOCP definitions on z13 servers. As such, the z13 IOCP definitions need to be migrated to support the HiperSockets definitions (CHPID type IQD).

On z13 servers, the CHPID statement of HiperSockets devices requires the keyword VCHID. VCHID specifies the virtual channel identification number associated with the channel path. Valid range is 7E0 - 7FF. VCHID is not valid on z Systems servers before z13 servers.

IOCP required level for z13 servers: The required level of IOCP for the z13 is V5 R1 L0 (IOCP 5.1.0) or later with PTFs. For more information, see the following manuals:

The IOCS file contains detailed information for each channel and path assignment, each control unit, and each device in the configuration.

7.13 Worldwide port name tool

Part of the installation of your z13 system is the pre-planning of the SAN environment. IBM has a stand-alone tool to assist with this planning before the installation.

The capabilities of the WWPN are extended to calculate and show WWPNs for both virtual and physical ports ahead of system installation.

The tool assigns WWPNs to each virtual FCP channel/port by using the same WWPN assignment algorithms that a system uses when assigning WWPNs for channels using NPIV. Therefore, the SAN can be set up in advance, allowing operations to proceed much faster after the server is installed. In addition, the SAN configuration can be retained instead of altered by assigning the WWPN to physical FCP ports when a FICON feature is replaced.

The WWPN tool takes a `.csv` file that contains the FCP-specific I/O device definitions and creates the WWPN assignments that are required to set up the SAN. A binary configuration file that can be imported later by the system is also created. The `.csv` file can either be created manually, or exported from the HCD/HCM.

The WWPN tool on z13 (CHPID type FCP) requires the following levels:

- z/OS V1R12 and later
- z/VM V6R2 and later

The WWPN tool is applicable to all FICON channels that are defined as CHPID type FCP (for communication with SCSI devices) on z13. It is available for download at the Resource Link at the following website:

http://www.ibm.com/servers/resourcelink/

Note: An optional feature can be ordered for WWPN persistency before shipment to keep the same I/O serial number on the new CEC. Current information must be provided during the ordering process.

7.14 ICKDSF

Device Support Facilities, ICKDSF, Release 17 is required on all systems that share disk subsystems with a z13 processor.

ICKDSF supports a modified format of the CPU information field that contains a two-digit LPAR identifier. ICKDSF uses the CPU information field instead of CCW reserve/release for concurrent media maintenance. It prevents multiple systems from running ICKDSF on the same volume, and at the same time allows user applications to run while ICKDSF is processing. To prevent data corruption, ICKDSF must be able to determine all sharing systems that can potentially run ICKDSF. Therefore, this support is required for z13.

Remember: The need for ICKDSF Release 17 applies even to systems that are not part of the same sysplex, or are running an operating system other than z/OS, such as z/VM.
7.15 IBM z BladeCenter Extension (zBX) Model 004 software support

zBX Model 004 houses two types of blades: Power platform specific, and IBM Blades for Linux and Windows operating systems.

For information about zBX upgrades, see 8.3.4, “MES upgrades for the zBX” on page 331.

7.15.1 IBM Blades

IBM offers a selected subset of IBM POWER7 blades that can be installed and operated on the zBX Model 004.

The blades are virtualized by PowerVM Enterprise Edition. Their LPARs run either AIX Version 5 Release 3 technology level (TL) 12 (IBM POWER6® mode), AIX Version 6 Release 1 TL5 (POWER7 mode), or AIX Version 7 Release 1 and subsequent releases. Applications that are supported on AIX can be deployed to blades.

Also offered are selected IBM System x HX5 blades. Virtualization is provided by an integrated kernel-based hypervisor, xHyp, supporting Linux on System x and Microsoft Windows operating systems.

Table 7-64 lists the operating systems that are supported by HX5 blades.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux on System x</td>
<td>Red Hat RHEL 5.5 and up, 6.0 and up, and 7.0 and up</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 10 (SP4) and up</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 11 (SP1)a and up</td>
</tr>
<tr>
<td></td>
<td>SUSE Linux Enterprise Server 12.0 and up</td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td>Microsoft Windows Server 2008 R2b</td>
</tr>
<tr>
<td></td>
<td>Microsoft Windows Server 2008 (SP2)b (Datacenter Edition preferred)</td>
</tr>
<tr>
<td></td>
<td>Microsoft Windows Server 2012b (Datacenter Edition preferred)</td>
</tr>
<tr>
<td></td>
<td>Microsoft Windows Server 2012b R2</td>
</tr>
</tbody>
</table>

- a. Latest patch level required
- b. 64-bit only

7.15.2 IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise

The IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise (DataPower XI50z) is a special-purpose, double-wide blade.

The DataPower XI50z is a multifunctional appliance that provides these features:

- Offers multiple levels of XML optimization
- Streamlines and secures valuable service-oriented architecture (SOA) applications
- Provides drop-in integration for heterogeneous environments by enabling core enterprise service bus (ESB) functions, including routing, bridging, transformation, and event handling
- Simplifies, governs, and enhances the network security for XML and web services
Table 7-65 lists the minimum support requirements for DataPower Sysplex Distributor support.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R11 for IPv4</td>
</tr>
<tr>
<td></td>
<td>z/OS V1R12 for IPv4 and IPv6</td>
</tr>
</tbody>
</table>

7.16 Software licensing

This section briefly describes the software licensing options that are available for the z13. Basic information about software licensing for the IBM z BladeCenter Extension (zBX) Model 004 environments is also covered.

7.16.1 Software licensing considerations

The IBM z13 software portfolio includes operating system software (that is, z/OS, z/VM, z/VSE, and z/TPF) and middleware that runs on these operating systems. The portfolio also includes middleware for Linux on z Systems environments.

zBX software products are covered by the International Program License Agreement (IPLA) and other agreements, such as the IBM International Passport Advantage® Agreement, similar to other AIX, Linux on System x, and Windows environments. PowerVM Enterprise Edition licenses must be ordered for IBM POWER7 blades.

For the z13, two metric groups for software licensing are available from IBM, depending on the software product:

- **Monthly license charge (MLC)**

 MLC pricing metrics have a recurring charge that applies each month. In addition to the permission to use the product, the charge includes access to IBM product support during the support period. MLC metrics, in turn, include various offerings.

- **IPLA**

 IPLA metrics have a single, up-front charge for an entitlement to use the product. An optional and separate annual charge, called *subscription and support*, entitles clients to access IBM product support during the support period. With this option, you can also receive future releases and versions at no additional charge.

For more information about software licensing, see the following websites:

- **Learn about Software licensing:**

- **Base license agreements:**

- **IBM z Systems Software Pricing reference guide:**

- **IBM z Systems Software Pricing:**

The IBM International Passport Advantage Agreement can be downloaded from the “Learn about Software licensing” website:

The remainder of this section describes the software licensing options that are available for the z13.

7.16.2 Monthly license charge pricing metrics

MLC pricing applies to z/OS, z/VSE, and z/TPF operating systems. Any mix of z/OS, z/VM, Linux, z/VSE, and z/TPF images is allowed. Charges are based on processor capacity, which is measured in millions of service units (MSU) per hour.

Charge models
Various Workload License Charges (WLC) pricing structures support these charge models:

- Variable charges (several pricing metrics):
 Variable charges apply to products such as z/OS, z/VSE, z/TPF, DB2, IMS, CICS, and WebSphere MQ. Several pricing metrics employ the following charge types:
 - Full-capacity license charges:
 The total number of MSUs of the CPC is used for charging. Full-capacity licensing is applicable when the CPC of the client is not eligible for subcapacity.
 - Subcapacity license charges:
 Software charges that are based on the utilization of the logical partitions where the product is running.
- Flat charges:
 Software products that are licensed under flat charges are not eligible for subcapacity pricing. There is a single charge for each CPC on the z13.

Subcapacity license charges
For eligible programs, subcapacity licensing allows software charges that are based on the measured utilization by logical partitions instead of the total number of MSUs of the CPC. Subcapacity licensing removes the dependency between the software charges and CPC (hardware) installed capacity.

The subcapacity licensed products are charged monthly based on the highest observed 4-hour rolling average utilization of the logical partitions in which the product runs. The exception is products that are licensed by using the select application license charge (SALC) pricing metric. This type of charge requires measuring the utilization and reporting it to IBM.

The 4-hour rolling average utilization of the logical partition can be limited by a defined capacity value on the image profile of the partition. This value activates the soft capping function of the PR/SM, limiting the 4-hour rolling average partition utilization to the defined capacity value. Soft capping controls the maximum 4-hour rolling average usage (the last 4-hour average value at every 5-minute interval), but does not control the maximum instantaneous partition use.

You can also use an LPAR group capacity limit, which sets soft capping by PR/SM for a group of logical partitions running z/OS.
Even by using the soft capping option, the use of the partition can reach up to its maximum share based on the number of logical processors and weights in the image profile. Only the 4-hour rolling average utilization is tracked, allowing utilization peaks above the defined capacity value.

Some pricing metrics apply to stand-alone z Systems servers. Others apply to the aggregation of multiple z Systems server workloads within the same Parallel Sysplex.

For more information about WLC and details about how to combine logical partition utilization, see z/OS Planning for Workload License Charges, SA22-7506.

IBM z13

Metrics that are applicable to a stand-alone z13 include the following charges:

- Advanced Workload License Charges (AWLC)
- z Systems new application license charge (zNALC)
- Parallel Sysplex license charge (PSLC)

Metrics that are applicable to a z13 in an actively coupled Parallel Sysplex include the following charges:

- AWLC, when all nodes are z13, z13s, zEC12, zBC12, z196, or z114.
- Variable workload license charge (VWLC), allowed only under the AWLC Transition Charges for Sysplexes when not all of the nodes are z13, z13s, zEC12, zBC12, z196, or z114.
- zNALC
- PSLC

7.16.3 Advanced Workload License Charges

AWLCs were introduced with the IBM zEnterprise 196. They use the measuring and reporting mechanisms, and the existing MSU tiers, from VWLCs, although the prices for each tier were lowered.

AWLC can be implemented in full-capacity or subcapacity mode. The AWLC applies to z/OS and z/TPF and their associated middleware products, such as DB2, IMS, CICS, and WebSphere MQ, and IBM Lotus® and IBM Domino®.

With z13, Technology Transition Offerings are available that extend the software price and performance of the AWLC pricing metric:

- Technology Update Pricing for z13 is applicable for clients that run on a stand-alone z13 or in an aggregated Parallel Sysplex consisting exclusively of z13 servers.
- New Transition Charges for Sysplexes (TC3) are applicable when z13, z13s, zEC12, and zBC12 are the only servers in an actively coupled Parallel Sysplex.
- Transition Charges for Sysplexes (TC2) are applicable when two or more servers exist in an actively coupled Parallel Sysplex consisting of one or more z13, z13s, zEC12, zBC12, z196, or z114 servers.

For more information, see the AWLC website:

7.16.4 System z new application license charges

ZNALCs offer a reduced price for the z/OS operating system on logical partitions that run a qualified new workload application. An example are Java language business applications that run under the WebSphere Application Server for z/OS or SAP.

z/OS with zNALC provides a strategic pricing model that is available on the full range of z Systems servers for simplified application planning and deployment. zNALC allows for aggregation across a qualified Parallel Sysplex, which can provide a lower cost for incremental growth across new workloads that span a Parallel Sysplex.

For more information, see the zNALC website:

7.16.5 Midrange workload license charges

MWLCs apply to z/VSE V4 and later when running on z13, zEC12, z196, System z10, and z9 servers. The exceptions are the z10 BC and z9 BC servers at the capacity setting A01, to which zELC applies, and z114 and zBC12, where MWLC is not available.

Similar to workload license charges, MWLC can be implemented in full-capacity or subcapacity mode. An MWLC applies to z/VSE V4 and later, and several IBM middleware products for z/VSE. All other z/VSE programs continue to be priced as before.

The z/VSE pricing metric is independent of the pricing metric for other systems (for example, z/OS) that might be running on the same server. When z/VSE is running as a guest of z/VM, z/VM V5R4 or later is required.

To report usage, the subcapacity report tool is used. One subcapacity reporting tool (SCRT) report per server is required.

For more information, see the MWLC website:

7.16.6 Parallel Sysplex license charges

PSLCs apply to a large range of mainframe servers. The list can be obtained from this website:

Although it can be applied to stand-alone CPCs, the metric provides aggregation benefits only when applied to a group of CPCs in an actively coupled Parallel Sysplex cluster according to IBM terms and conditions.

Aggregation allows charging a product based on the total MSU value of the systems where the product runs (as opposed to all the systems in the cluster). In an uncoupled environment, software charges are based on the MSU capacity of the system.

For more information, see the PSLC website:
7.16.7 z Systems International Program License Agreement

For z Systems systems, the following types of products are generally in the IPLA category:

- Data management tools
- DB2 for z/OS VUE
- CICS TS VUE V5 and CICS Tools
- IMS DB VUE V12 and IMS Tools
- Application development tools
- Certain WebSphere for z/OS products
- Linux middleware products
- z/VM V5 and V6

Generally, three pricing metrics apply to IPLA products for z13 and z Systems servers:

- Value unit (VU)
 VU pricing applies to the IPLA products that run on z/OS. Value Unit pricing is typically based on the number of MSUs and allows for a lower cost of incremental growth. Examples of eligible products are IMS Tools, CICS Tools, DB2 Tools, application development tools, and WebSphere products for z/OS.

- Engine-based value unit (EBVU)
 EBVU pricing enables a lower cost of incremental growth with more engine-based licenses that are purchased. Examples of eligible products include z/VM V5 and V6, and certain z/VM middleware, which are priced based on the number of engines.

- Processor value unit (PVU)
 PVUs are determined from the number of engines, under the Passport Advantage terms and conditions. Most Linux middleware is also priced based on the number of engines. In z/VM environments, CPU pooling can be used to limit the number of engines that are used to determine the PVUs for a particular software product.

For more information, see the z Systems IPLA website:

7.16.8 zBX licensed software

The software licensing for the zBX select System x and POWER7 blades and DataPower XI50z follows the same rules as licensing for blades that are installed outside of zBX.

PowerVM Enterprise Edition must be licensed for POWER7 blades at the time of ordering the blades.

The hypervisor for the select System x blades for zBX is provided as part of the zEnterprise Unified Resource Manager.

IBM z Unified Resource Manager
The IBM z Unified Resource Manager is available through z13, z13s, zEC12, and zBC12 hardware features, either ordered with the system or later. No separate software licensing is required.
7.17 References

For current planning information, see the support website for each of the following operating systems:

- **z/OS:**

- **z/VM:**

- **z/VSE:**

- **z/TPF:**

- **Linux on z Systems:**

- **KVM for IBM z Systems:**

System upgrades

This chapter provides an overview of IBM z13 upgrade capabilities and procedures, with an emphasis on capacity on demand (CoD) offerings. The upgrade offerings to the z13 systems were developed from previous IBM z Systems servers. In response to client demands and changes in market requirements, many features were added. The provisioning environment gives you unprecedented flexibility and more control over cost and value.

For detailed tutorials about all aspects of system upgrades, go to the IBM Resource Link website. Click Resource Link → Client Initiated Upgrade Information, and then select Education. Select your particular product from the list of available systems:

The growth capabilities that are provided by the z13 servers include the following benefits:

- Enabling exploitation of new business opportunities
- Supporting the growth of dynamic, smart, and cloud environments
- Managing the risk of volatile, high-growth, and high-volume applications
- Supporting 24 x 7 application availability
- Enabling capacity growth during lockdown periods
- Enabling planned-downtime changes without availability impacts

This chapter includes the following sections:

- Upgrade types
- Concurrent upgrades
- Miscellaneous equipment specification upgrades
- Permanent upgrade through the CIU facility
- On/Off Capacity on Demand
- Capacity for Planned Event
- Capacity Backup
- Nondisruptive upgrades
- Summary of Capacity on Demand offerings

\(^1\) http://www.ibm.com/servers/resourcelink/. Registration is required to access Resource Link.
8.1 Upgrade types

The types of upgrades for a z13 server are summarized in this section.

8.1.1 Overview of upgrade types

Upgrades can be categorized as described in the following section.

Permanent and temporary upgrades

Permanent and temporary upgrades are different types of upgrades that can be used in different situations. For example, a growing workload might require more memory, more I/O cards, or more processor capacity. However, only a short-term upgrade might be necessary to handle a peak workload, or to temporarily replace a system that is down during a disaster or data center maintenance. z13 servers offer the following solutions for such situations:

- **Permanent:**
 - Miscellaneous equipment specification (MES):
 The MES upgrade order is always performed by IBM personnel. The result can be either real hardware or installation of Licensed Internal Code Configuration Control (LICCC) to the system. In both cases, installation is performed by IBM personnel.
 - Customer Initiated Upgrade (CIU):
 Using the CIU facility for a system requires that the online CoD buying feature (FC 9900) is installed on the system. The CIU facility supports only LICCC upgrades.

- **Temporary:**
 All temporary upgrades are LICCC-based. The one billable capacity offering is On/Off Capacity on Demand (On/Off CoD). The two replacement capacity offerings available are Capacity Backup (CBU) and Capacity for Planned Event (CPE).

For more information, see 8.1.2, “Terminology that is related to CoD for z13 systems” on page 315.

Tip: An MES provides system upgrades that can result in more enabled processors, a different central processor (CP) capacity level, and in additional processor drawers, memory, PCIe I/O drawers, and I/O features (physical upgrade). Additional planning tasks are required for nondisruptive logical upgrades. An MES is ordered through your IBM representative and installed by IBM service support representatives (IBM SSRs).

Concurrent and nondisruptive upgrades

Depending on the impact on the system and application availability, upgrades can be classified in the following manner:

- **Concurrent**
 In general, *concurrency* addresses the continuity of operations of the hardware part of an upgrade. For example, whether a system (hardware) is required to be turned off during the upgrade. For more information, see 8.2, “Concurrent upgrades” on page 318.

- **Non-concurrent**
 This type of upgrade requires turning off the hardware that is being upgraded. Examples include model upgrades from any z13 model to the z13 NE1 model, and certain physical memory capacity upgrades.
Disruptive

An upgrade is considered *disruptive* when resources modified or added to an operating system image require that the operating system be restarted to configure the newly added resources.

Nondisruptive

Nondisruptive upgrades do not require the software or operating system to be restarted for the upgrade to take effect. Therefore, even concurrent upgrades can be disruptive to operating systems or programs that do not support the upgrades while being nondisruptive to others. For more information, see 8.8, “Nondisruptive upgrades” on page 352.

8.1.2 Terminology that is related to CoD for z13 systems

Table 8-1 lists the most frequently used terms that are related to CoD for z13 systems.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated capacity</td>
<td>Capacity that is purchased and activated. Purchased capacity can be greater than the activated capacity.</td>
</tr>
<tr>
<td>Billable capacity</td>
<td>Capacity that helps handle workload peaks, either expected or unexpected. The one billable offering that is available is On/Off Capacity on Demand (OOCoD).</td>
</tr>
<tr>
<td>Capacity</td>
<td>Hardware resources (processor and memory) that can process the workload can be added to the system through various capacity offerings.</td>
</tr>
<tr>
<td>Capacity Backup (CBU)</td>
<td>Capacity Backup allows you to place model capacity or specialty engines in a backup system. CBU is used in an unforeseen loss of system capacity because of an emergency.</td>
</tr>
<tr>
<td>Capacity for Planned Event (CPE)</td>
<td>Used when temporary replacement capacity is needed for a short-term event. CPE activates processor capacity temporarily to facilitate moving systems between data centers, upgrades, and other routine management tasks. CPE is an offering of Capacity on Demand.</td>
</tr>
<tr>
<td>Capacity levels</td>
<td>Can be full capacity or subcapacity. For the z13 system, capacity levels for the CP engine are 7, 6, 5, and 4:</td>
</tr>
<tr>
<td></td>
<td>- 1 - 99 in decimal and A0 - E1, where A0 represents 100 and E1 represents 141, for capacity level 7nn.</td>
</tr>
<tr>
<td></td>
<td>- 1 - 30 for capacity levels 6yy and 5yy.</td>
</tr>
<tr>
<td></td>
<td>- 0 - 30 for capacity levels 4xx. An all Integrated Facility for Linux (IFL) or an all integrated catalog facility (ICF) system has a capacity level of 400.</td>
</tr>
<tr>
<td>Capacity setting</td>
<td>Derived from the capacity level and the number of processors.</td>
</tr>
<tr>
<td></td>
<td>For the z13 system, the capacity levels are 7nn, 6yy, 5yy, and 4xx, where xx, yy, or nn indicates the number of active CPs.</td>
</tr>
<tr>
<td></td>
<td>The number of processors can have the following ranges:</td>
</tr>
<tr>
<td></td>
<td>- 1 - 99 in decimal and A0 - E1, where A0 represents 100 and E1 represents 141, for capacity level 7nn.</td>
</tr>
<tr>
<td></td>
<td>- 1 - 30 for capacity levels 6yy and 5yy.</td>
</tr>
<tr>
<td></td>
<td>- 0 - 30 for capacity levels 4xx. An all IFL or an all ICF system has a capacity level of 400.</td>
</tr>
<tr>
<td>Customer Initiated Upgrade (CIU)</td>
<td>A web-based facility where you can request processor and memory upgrades by using the IBM Resource Link and the system's Remote Support Facility (RSF) connection.</td>
</tr>
<tr>
<td>Capacity on Demand (CoD)</td>
<td>The ability of a computing system to increase or decrease its performance capacity as needed to meet fluctuations in demand.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Capacity Provisioning Manager (CPM)</td>
<td>As a component of z/OS Capacity Provisioning, CPM monitors business-critical workloads that are running on z/OS on z13 systems.</td>
</tr>
<tr>
<td>Customer profile</td>
<td>This information is on Resource Link, and contains client and system information. A customer profile can contain information about more than one system.</td>
</tr>
<tr>
<td>Full capacity CP feature</td>
<td>For z13 servers, feature (CP7) provides full capacity. Capacity settings 7nn are full capacity settings.</td>
</tr>
<tr>
<td>High-water mark</td>
<td>Capacity that is purchased and owned by the client.</td>
</tr>
<tr>
<td>Installed record</td>
<td>The LICCC record is downloaded, staged to the Support Element (SE), and is installed on the central processor complex (CPC). A maximum of eight different records can be concurrently installed and active.</td>
</tr>
</tbody>
</table>
| Model capacity identifier (MCI) | Shows the current active capacity on the system, including all replacement and billable capacity. For z13 servers, the model capacity identifier is in the form of 7nn, 6yy, 5yy, or 4xx, where xx, yy, or nn indicates the number of active CPs:
 - 1 - 99 in decimal and A0 - E1, where A0 represents 100 and E1 represents 141, for capacity level 7nn.
 - yy can have a range of 01 - 30.
 - xx can have a range of 00 - 30. An all IFL or an all ICF system has a capacity level of 400. |
| Model Permanent Capacity Identifier (MPCI) | Keeps information about the capacity settings that are active before any temporary capacity is activated. |
| Model Temporary Capacity Identifier (MTCI) | Reflects the permanent capacity with billable capacity only, without replacement capacity. If no billable temporary capacity is active, MTCI equals the MPCI. |
| On/Off Capacity on Demand (CoD) | Represents a function that allows spare capacity in a CPC to be made available to increase the total capacity of a CPC. For example, On/Off CoD can be used to acquire more capacity for handling a workload peak. |
| Features on Demand (FoD) | FoD is a new centralized way to entitle flexibly features and functions on the system. FoD contains, for example, the IBM z BladeCenter Extension (zBX) high water marks (HWMs). HWMs refer to highest quantity of blade entitlements by blade type that the client has purchased. On z196 and z114, the HWMs are stored in the processor and memory LICCC record. On z13 and zEC12 servers, the HWMs are stored in the FoD record. |
| Permanent capacity | The capacity that a client purchases and activates. This amount might be less capacity than the total capacity purchased. |
| Permanent upgrade | LIC that is licensed by IBM to enable the activation of applicable computing resources, such as processors or memory, for a specific CIU-eligible system on a permanent basis. |
| Purchased capacity | Capacity that is delivered to and owned by the client. It can be higher than the permanent capacity. |
| Permanent/Temporary entitlement record | The internal representation of a temporary (TER) or permanent (PER) capacity upgrade that is processed by the CIU facility. An entitlement record contains the encrypted representation of the upgrade configuration with the associated time limit conditions. |
| Replacement capacity | A temporary capacity that is used for situations in which processing capacity in other parts of the enterprise is lost. This loss can be a planned event or an unexpected disaster. The two replacement offerings available are Capacity for Planned Events and Capacity Backup. |
| Resource Link | The IBM Resource Link is a technical support website that provides a comprehensive set of tools and resources. It is available at the IBM Systems technical support website: http://www.ibm.com/servers/resourcelink/ |
8.1.3 Permanent upgrades

Permanent upgrades can be obtained by using these processes:
- Ordered through an IBM marketing representative
- Initiated by the client with the CIU on the IBM Resource Link

Tip: The use of the CIU facility for a system requires that the online CoD buying feature (FC 9900) is installed on the system. The CIU facility itself is enabled through the permanent upgrade authorization feature code (FC 9898).

Permanent upgrades that are ordered through an IBM representative

Through a permanent upgrade, you can accomplish these tasks:
- Add processor drawers
- Add Peripheral Component Interconnect Express (PCIe) drawers and features
- Add model capacity
- Add specialty engines
- Add memory
- Activate unassigned model capacity or IFLs
- Deactivate activated model capacity or IFLs
- Activate channels
- Activate cryptographic engines
- Change specialty engine (recharacterization)
- Add zBX model 004 Blades, only if BladeCenter slots and entitlements already exist.

Considerations: Most of the MESs can be concurrently applied without disrupting the existing workload. For more information, see 8.2, “Concurrent upgrades” on page 318. However, certain MES changes are disruptive, such as model upgrades from any z13 model to the z13 NE1 model.

The only permanent upgrade available for the zBX model 004, supported by z13 servers, is the addition of zBX Blades if entitlement features are present, and BladeCenter unused slots are available.

Memory upgrades that require dual inline memory module (DIMM) changes can be made nondisruptively if there are multiple CPC drawers and the flexible memory option is used.

Term	**Description**
Secondary approval | An option, which is selected by the client, that requires second approver control for each CoD order. When a secondary approval is required, the request is sent for approval or cancellation to the Resource Link secondary user ID.
Staged record | The point when a record that represents a capacity upgrade, either temporary or permanent, is retrieved and loaded on the SE disk.
Subcapacity | For z13 servers, CP features (CP4, CP5, and CP6) provide reduced capacity relative to the full capacity CP feature (CP7).
Temporary capacity | An optional capacity that is added to the current system capacity for a limited amount of time. It can be capacity that is owned or not owned by the client.
Vital product data (VPD) | Information that uniquely defines system, hardware, software, and microcode elements of a processing system.
8.1.4 Temporary upgrades

z13 servers offer three types of temporary upgrades:

- **On/Off Capacity on Demand (On/Off CoD):**
 This offering allows you to temporarily add more capacity or specialty engines to cover seasonal activities, period-end requirements, peaks in workload, or application testing. This temporary upgrade can be ordered only by using the CIU application through Resource Link.

- **Capacity Backup (CBU):**
 This offering allows you to replace model capacity or specialty engines in a backup system that is used in an unforeseen loss of system capacity because of a disaster.

- **Capacity for Planned Event (CPE):**
 This offering allows you to replace model capacity or specialty engines because of a relocation of workload during system migrations or a data center move.

CBU or CPE temporary upgrades can be ordered by using the CIU application through Resource Link or by calling your IBM marketing representative.

Temporary upgrade capacity changes can be billable or a replacement.

Billable capacity

To handle a peak workload, you can activate up to double the purchased capacity of any processor unit (PU) type temporarily. You are charged daily.

The one billable capacity offering is On/Off Capacity on Demand (On/Off CoD).

Replacement capacity

When a processing capacity is lost in another part of an enterprise, replacement capacity can be activated. It allows you to activate any PU type up to your authorized limit.

The following offerings are the two replacement capacity offerings:

- Capacity Backup
- Capacity for Planned Event

8.2 Concurrent upgrades

Concurrent upgrades on z13 servers can provide more capacity with no system outage. In most cases, with prior planning and operating system support, a concurrent upgrade can be nondisruptive to the operating system.
The concurrent capacity growth capabilities that are provided by z13 servers include, but are not limited to, these benefits:

- Enabling the meeting of new business opportunities
- Supporting the growth of smart and cloud environments
- Managing the risk of volatile, high-growth, and high-volume applications
- Supporting 24 x 7 application availability
- Enabling capacity growth during **lockdown or frozen** periods
- Enabling planned-downtime changes without affecting availability

This capability is based on the flexibility of the design and structure, which allows concurrent hardware installation and Licensed Internal Code (LIC) control over the configuration.

The subcapacity models allow more configuration granularity within the family. The added granularity is available for models that are configured with up to 30 CPs, and provides 90 extra capacity settings. Subcapacity models provide for CP capacity increase in two dimensions that can be used together to deliver configuration granularity. The first dimension is adding CPs to the configuration. The second is changing the capacity setting of the CPs currently installed to a higher model capacity identifier.

z13 servers allow the concurrent and nondisruptive addition of processors to a running logical partition (LPAR). As a result, you can have a flexible infrastructure in which you can add capacity without pre-planning. This function is supported by z/OS, z/VM, and z/VSE. There are two ways to accomplish this addition:

- With planning ahead for the future need of extra processors. In the LPAR’s profile, reserved processors can be specified. When the extra processors are installed, the number of active processors for that LPAR can be increased without the need for a partition reactivation and initial program load (IPL).
- Another (easier) way is to enable the dynamic addition of processors through the z/OS LOADxx member. Set the **DYNCPADD** parameter in member LOADxx to **ENABLE**. z13 servers supports dynamic processor addition in the same way that the zEC12, z196, and z10 support it. The operating system must be z/OS V1R10 or later.

Another function concerns the system assist processor (SAP). When more SAPs are concurrently added to the configuration, the SAP-to-channel affinity is dynamically remapped on all SAPs on the system to rebalance the I/O configuration.

8.2.1 Model upgrades

z13 servers have a machine type and model, and model capacity identifiers:

- The machine type and model are 2964-Nvv.
 - The vv can be 30, 63, 96, C9, or E1. The model number indicates how many PUs (vv) are available for client characterization (C9 stands for 129, where C equals 12 in decimal and E1 stands for 141, where E equals 14 in decimal). Model N30 has one processor drawer that is installed, model N63 contains two processor drawers, model N96 contains three processor drawers, and models NC9 and NE1 contain four processor drawers.
- The model capacity identifiers are 4xx, 5yy, 6yy, or 7nn.
 - The xx is a range of 00 - 30\(^2\), yy is a range of 01 - 30, and nn is a range of 01 - 99, A0 - E1, where A0 represents the decimal number 100, combining the hexadecimal A with decimal 0 and E1 represents the decimal number 141, obtained combining the hexadecimal E that equals 14, and the decimal digit 1. A z13 server with 141 client usable processors is a z13 server.

\(^2\) The z13 zero CP MCI is 400. This setting applies to an all-IFL or all-ICF system.
7E1. The model capacity identifier describes how many CPs are characterized (xx, yy, or nn) and the capacity setting (4, 5, 6, or 7) of the CPs.

A hardware configuration upgrade always requires more physical hardware (processor drawers, PCIe I/O drawers, or both). A system upgrade can change either, or both, of the system model and the MCI.

Consider the following model upgrade information:

- LICCC upgrade:
 - Does not change the system model 2964-Nvv because more processor drawers are not added
 - Can change the model capacity identifier, the capacity setting, or both

- Hardware installation upgrade:
 - Can change the system model 2964-Hvv if one or more processor drawers are added
 - Can change the model capacity identifier, the capacity setting, or both

The system model and the model capacity identifier can be concurrently changed. Concurrent upgrades can be performed for both permanent and temporary upgrades.

Tip: A model upgrade can be concurrent by using concurrent drawer add (CDA), except for upgrades to Model NE1.

Licensed Internal Code upgrades (MES ordered)
The LICCC provides for system upgrades without hardware changes by activation of additional (previously installed) unused capacity. Concurrent upgrades through LICCC can be performed for these resources:

- Processors (CPs, ICFs, IBM z Integrated Information Processors (zIIPs), IFLs, and SAPs) if unused PUs are available on the installed processor drawers, or if the model capacity identifier for the CPs can be increased.

- Memory, when unused capacity is available on the installed memory cards. Plan-ahead memory and the flexible memory option are available to give you better control over future memory upgrades. For more information, see 2.4.6, “Flexible Memory Option” on page 62, and 2.4.7, “Pre-planned memory” on page 63.

Concurrent hardware installation upgrades (MES ordered)
Configuration upgrades can be concurrent when installing the following resources:

- Processor drawers (which contain processors, memory, and fanouts). Up to three processor drawers can be added concurrently on the model z13 N30.

- PCIe fanouts.

- I/O cards, when slots are still available on the installed PCIe I/O drawers.

- PCIe I/O drawers.

- zBX features. However, the upgrade from a zBX Model 002 or zBX Model 003 to a zBX model 004 is disruptive to zBX operations.

The concurrent I/O upgrade capability can be better used if a future target configuration is considered during the initial configuration.

3 The 8-slot I/O drawer cannot be ordered as an MES on z13 servers. They are available as carry-forward only.
Concurrent PU conversions (MES ordered)

z13 servers support concurrent conversion between all PU types, which includes SAPs, to provide flexibility to meet changing business requirements.

Important: The LICCC-based PU conversions require that at least one PU, either CP, ICF, or IFL, remains unchanged. Otherwise, the conversion is disruptive. The PU conversion generates an LICCC that can be installed concurrently in two steps:

1. Remove the assigned PU from the configuration.
2. Activate the newly available PU as the new PU type.

LPARs also might have to free the PUs to be converted. The operating systems must have support to configure processors offline or online so that the PU conversion can be done nondisruptively.

Considerations: Client planning and operator action are required to use concurrent PU conversion. Consider the following information about PU conversion:

- It is disruptive if all current PUs are converted to different types.
- It might require individual LPAR outages if dedicated PUs are converted.

Unassigned CP capacity is recorded by a model capacity identifier. CP feature conversions change (increase or decrease) the model capacity identifier.

8.2.2 Customer Initiated Upgrade facility

The CIU facility is an IBM online system through which you can order, download, and install permanent and temporary upgrades for z Systems servers. Access to and use of the CIU facility requires a contract between the client and IBM through which the terms and conditions for use of the CIU facility are accepted. The use of the CIU facility for a system requires that the online CoD buying feature code (FC 9900) is installed on the system. Although it can be installed on your z13 servers at any time, generally it is added when ordering a z13 server. The CIU facility itself is controlled through the permanent upgrade authorization feature code, FC 9898.

After you place an order through the CIU facility, you receive a notice that the order is ready for download. You can then download and apply the upgrade by using functions that are available through the Hardware Management Console (HMC), along with the RSF. After all the prerequisites are met, the entire process, from ordering to activation of the upgrade, is performed by the client.

After download, the actual upgrade process is fully automated and does not require any onsite presence of IBM SSRs.

CIU prerequisites

The CIU facility supports LICCC upgrades only. It does not support I/O upgrades. All additional capacity that is required for an upgrade must be previously installed. Additional processor drawers or I/O cards cannot be installed as part of an order that is placed through the CIU facility. The sum of CPs, unassigned CPs, ICFs, zIIPs, IFLs, and unassigned IFLs cannot exceed the client (characterized) PU count of the installed processor drawers. The total number of zIIPs can be twice the number of purchased CPs.
CIU registration and contract for CIU
To use the CIU facility, a client must be registered and the system must be set up. After you complete the CIU registration, access to the CIU application is available through the IBM Resource Link website:

http://www.ibm.com/servers/resourcelink/

As part of the setup, provide one resource link ID for configuring and placing CIU orders and, if required, a second ID as an approver. The IDs are then set up for access to the CIU support. The CIU facility allows upgrades to be ordered and delivered much faster than through the regular MES process.

To order and activate the upgrade, log on to the IBM Resource Link website and start the CIU application to upgrade a system for processors or memory. Requesting a client order approval to conform to your operational policies is possible. You can allow the definition of more IDs to be authorized to access the CIU. Additional IDs can be authorized to enter or approve CIU orders, or only view existing orders.

Permanent upgrades
Permanente upgrades can be ordered by using the CIU facility. Through the CIU facility, you can generate online permanent upgrade orders to concurrently add processors (CPs, ICFs, zIIPs, IFLs, and SAPs) and memory, or change the model capacity identifier. You can do so up to the limits of the installed processor drawers on an existing system.

Temporary upgrades
The base model z13 server describes permanent and dormant capacity using the capacity marker and the number of PU features installed on the system. Up to eight temporary offerings can be present. Each offering has its own policies and controls, and each can be activated or deactivated independently in any sequence and combination. Although multiple offerings can be active at any time, if enough resources are available to fulfill the offering specifications, only one On/Off CoD offering can be active at any time.

Temporary upgrades are represented in the system by a record. All temporary upgrade records are resident on the SE hard disk drive (HDD). The records can be downloaded from the RSF or installed from portable media. At the time of activation, you can control everything locally.
Figure 8-1 shows a representation of the provisioning architecture.

The authorization layer enables administrative control over the temporary offerings. The activation and deactivation can be driven either manually or under control of an application through a documented application programming interface (API).

By using the API approach, you can customize, at activation time, the resources that are necessary to respond to the current situation, up to the maximum that is specified in the order record. If the situation changes, you can add or remove resources without having to go back to the base configuration. This process eliminates the need for temporary upgrade specifications for all possible scenarios. However, for CPE, the ordered configuration is the only possible activation.
In addition, this approach enables you to update and replenish temporary upgrades, even in situations where the upgrades are already active. Likewise, depending on the configuration, permanent upgrades can be performed while temporary upgrades are active. Figure 8-2 shows examples of the activation sequence of multiple temporary upgrades.

If R2, R3, and R1 are active at the same time, only parts of R1 can be activated because not enough resources are available to fulfill all of R1. When R2 is deactivated, the remaining parts of R1 can be activated as shown.

Temporary capacity can be billable as On/Off CoD, or replacement capacity as CBU or CPE:

- **On/Off CoD** is a function that enables *concurrent and temporary* capacity growth of the system.

 On/Off CoD can be used for client peak workload requirements, for any length of time, and has a daily hardware and maintenance charge. The software charges can vary according to the license agreement for the individual products. See your IBM Software Group representative for exact details.

 On/Off CoD can concurrently add processors (CPs, ICFs, zIIPs, IFLs, and SAPs), increase the model capacity identifier, or both. It can do so up to the limit of the installed processor drawers of an existing system, and is restricted to twice the currently installed capacity. On/Off CoD requires a contractual agreement between you and IBM.

 You decide whether to either pre-pay or post-pay On/Off CoD. Capacity tokens inside the records are used to control activation time and resources.

- **CBU** is a concurrent and temporary activation of more CPs, ICFs, zIIPs, IFLs, and SAPs, an increase of the model capacity identifier, or both.

 CBU *cannot* be used for peak workload management in any form. As stated, On/Off CoD is the correct way to do that. A CBU activation can last up to 90 days when a disaster or recovery situation occurs. CBU features are optional, and require unused capacity to be
available on installed processor drawers of the backup system. They can be available as
unused PUs, an increase in the model capacity identifier, or both.

A CBU contract must be in place before the special code that enables this capability can
be loaded on the system. The standard CBU contract provides for five 10-day tests\(^4\) (the
CBU test activation) and one 90-day activation over a five-year period. Contact your IBM
representative for details.

You can run production workload on a CBU upgrade during a CBU test. At least an
equivalent amount of production capacity must be shut down during the CBU test. If you
already have existing CBU contracts, you also must sign an Amendment (US form
#Z125-8145) with IBM to allow you to run production workload on a CBU upgrade during
your CBU tests.

- CPE is a concurrent and temporary activation of extra CPs, ICFs, zIIPs, IFLs, and SAPs,
an increase of the model capacity identifier, or both.

The CPE offering is used to replace temporary lost capacity within a client's enterprise for
planned downtime events, such as data center changes. CPE cannot be used for peak
load management of client workload or for a disaster situation.

The CPE feature requires unused capacity to be available on installed processor drawers
of the backup system. The capacity must be available either as unused PUs, as a
possibility to increase the model capacity identifier on a subcapacity system, or as both. A
CPE contract must be in place before the special code that enables this capability can be
loaded on the system. The standard CPE contract provides for one 3-day planned
activation at a specific date. Contact your IBM representative for details.

8.2.3 Summary of concurrent upgrade functions

Table 8-2 summarizes the possible concurrent upgrades combinations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Upgrade</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent</td>
<td>MES</td>
<td>CPs, ICFs, zIIPs, IFLs, SAPs, processor</td>
<td>Installed by IBM SSRs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drawer, memory, and I/Os</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Online</td>
<td>CPs, ICFs, zIIPs, IFLs, SAPs, and memory</td>
<td>Performed through the CIU facility</td>
</tr>
<tr>
<td></td>
<td>permanent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>upgrade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary</td>
<td>On/Off CoD</td>
<td>CPs, ICFs, zIIPs, IFLs, and SAPs</td>
<td>Performed through the OOCoD facility</td>
</tr>
<tr>
<td>CBU</td>
<td></td>
<td></td>
<td>Performed through the CBU facility</td>
</tr>
<tr>
<td>CPE</td>
<td></td>
<td></td>
<td>Performed through the CPE facility</td>
</tr>
</tbody>
</table>

\(^4\) z13 servers provides more improvements in the CBU activation windows. These windows have been improved
to prevent inadvertent CBU activation.
8.3 Miscellaneous equipment specification upgrades

MES upgrades enable concurrent and permanent capacity growth. MES upgrades allow the concurrent adding of processors (CPs, ICFs, zIIPs, IFLs, and SAPs), memory capacity, and I/O ports, and power and x86 blades to the IBM z BladeCenter Extension, if previously entitled. For subcapacity models, MES upgrades allow the concurrent adjustment of both the number of processors and the capacity level. The MES upgrade can be performed by using LICCC only, by installing more processor drawers, by adding PCIe I/O drawers, by adding I/O5 features, or by a combination:

- MES upgrades for processors are done by any of the following methods:
 - LICCC assigning and activating unassigned PUs up to the limit of the installed processor drawers.
 - LICCC to adjust the number and types of PUs, to change the capacity setting, or both.
 - Installing more processor drawers, and LICCC assigning and activating unassigned PUs on the installed processor drawers.

- MES upgrades for memory are done by one of the following methods:
 - Using LICCC to activate more memory capacity up to the limit of the memory cards on the currently installed processor drawers. Plan-ahead and flexible memory features enable you to have better control over future memory upgrades. For more information about the memory features, see these descriptions:
 - 2.4.7, “Pre-planned memory” on page 63
 - 2.4.6, “Flexible Memory Option” on page 62
 - Installing more processor drawers and using LICCC to activate more memory capacity on installed processor drawers.
 - Using the CPC Enhanced Drawer Availability (EDA), where possible, on multi-drawer systems to add or change the memory cards.

- MES upgrades for I/O5 are done by installing more I/O5 features and supporting infrastructure, if required, on PCIe drawers that are already installed, or installing more PCIe drawers to hold the new cards.

- Adding new blades to the existing zBX Blade centers can only be done if there are empty slots available and the entitlement to add features already exists.

An MES upgrade requires IBM SSRs for the installation. In most cases, the time that is required for installing the LICCC and completing the upgrade is short.

To better use the MES upgrade function, carefully plan the initial configuration to allow a concurrent upgrade to a target configuration. The availability of PCIe I/O drawers improves the flexibility to perform unplanned I/O configuration changes concurrently.

The Store System Information (STSI) instruction gives more useful and detailed information about the base configuration and temporary upgrades. You can more easily resolve billing situations where independent software vendor (ISV) products are in use.

The model and model capacity identifiers that are returned by the STSI instruction are updated to coincide with the upgrade. For more information, see “Store System Information instruction” on page 355.

5 Other adapter types, such as zFlash, zEOC, and Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE), also can be added to the PCIe I/O drawers through an MES.
8.3.1 MES upgrade for processors

An MES upgrade for processors can concurrently add CPs, ICFs, zIIPs, IFLs, and SAPs to a z13 server by assigning available PUs on the processor drawers through LICCC. Depending on the quantity of the additional processors in the upgrade, more processor drawers might be required, and can be concurrently installed before the LICCC is enabled. With the subcapacity models, more capacity can be provided by adding CPs, by changing the capacity identifier on the current CPs, or by doing both.

Limits: The sum of CPs, inactive CPs, ICFs, zIIPs, IFLs, unassigned IFLs, and SAPs cannot exceed the maximum limit of PUs available for client use. The number of zIIPs cannot exceed twice the number of purchased CPs.

Figure 8-3 is an example of an MES upgrade for processors, showing two upgrade steps.
A model N30 (one processor drawer), model capacity identifier 708 (eight CPs), is concurrently upgraded to a model N63 (two processor drawers), with MCI 738 (38 CPs). The model upgrade requires adding a processor drawer and assigning and activating 38 PUs as CPs. Then, model N63, MCI 738, is concurrently upgraded to a capacity identifier 739 (39 CPs) with two IFLs. This process is done by assigning and activating three more unassigned PUs (one as CP and two as IFLs). If needed, more LPARs can be created concurrently to use the newly added processors.

The example in Figure 8-3 on page 327 was used to show how the addition of PUs as CPs and IFLs, and the addition of a processor drawer, works. In reality, the addition of a processor drawer to a z13 Model N30 upgrades the machine model to N63. In addition, one of the two spare PUs on CPC drawer 0 is moved over to CPC drawer 1 to have one spare PU on each CPC drawer. After the second CPC drawer addition, CPC drawer 0 has 31 configurable PUs and CPC drawer 1 has 32 configurable PUs, which allow 63 PUs to be characterized on the new N63 model.

Consideration: Up to 141 logical processors, including reserved processors, can be defined to an LPAR. However, do not define more processors to an LPAR than the target operating system supports.

Table 8-3 describes the number of processors that are supported by various z/OS and z/VM releases.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Number of processors that are supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS V1R10 with PTFs</td>
<td>64</td>
</tr>
<tr>
<td>z/OS V1R11 with PTFs</td>
<td>100</td>
</tr>
<tr>
<td>z/OS V1R12 with PTFs</td>
<td>100</td>
</tr>
<tr>
<td>z/OS V1R13 with PTFs</td>
<td>100</td>
</tr>
<tr>
<td>z/OS V2R1</td>
<td>141 PUs per z/OS LPAR in non-SMT mode and 128 PUs per z/OS LPAR in simultaneous multithreading (SMT) mode. For both, the PU total is the sum of CPs and zIIPs</td>
</tr>
<tr>
<td>z/OS V2R2</td>
<td>141 PUs per z/OS LPAR in non-SMT mode and 128 PUs per z/OS LPAR in SMT mode. For both, the PU total is the sum of CPs and zIIPs</td>
</tr>
<tr>
<td>z/VM V6R2</td>
<td>32</td>
</tr>
<tr>
<td>z/VM V6R3</td>
<td>64<sup>a</sup></td>
</tr>
<tr>
<td>z/VSE</td>
<td>z/VSE Turbo Dispatcher can use up to 4 CPs, and tolerates up to 10-way LPARs</td>
</tr>
<tr>
<td>z/TPF</td>
<td>86 CPs</td>
</tr>
<tr>
<td>Linux on z Systems -141 CPs</td>
<td>SUSE SLES 10: 64 CPs or IFLs</td>
</tr>
<tr>
<td></td>
<td>SUSE SLES 11: 64 CPs or IFLs</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 5: 80 CPs or IFLs</td>
</tr>
<tr>
<td></td>
<td>Red Hat RHEL 6: 80 CPs or IFLs</td>
</tr>
</tbody>
</table>

^a 32 in SMT mode

Software charges, which are based on the total capacity of the system on which the software is installed, are adjusted to the new capacity after the MES upgrade.
Software products that use Workload License Charges (WLC) might not be affected by the system upgrade. Their charges are based on partition usage, not on the system total capacity. For more information about WLC, see 7.16, “Software licensing” on page 306.

8.3.2 MES upgrades for memory

MES upgrades for memory can concurrently add more memory in the following ways:

- Enabling, through LICCC, more capacity up to the limit of the currently installed DIMM memory cards
- Concurrently installing more CPC drawers and LICCC-enabling memory capacity on the new CPC drawers.

The Preplanned Memory Feature is available to allow better control over future memory upgrades. For more information about plan-ahead memory features, see 2.4.6, “Flexible Memory Option” on page 62 and 2.4.7, “Pre-planned memory” on page 63.

If the z13 server is a multiple processor drawer configuration, you can use the EDA feature to remove a processor drawer and add DIMM memory cards. It can also be used to upgrade the already installed memory cards to a larger capacity size. You can then use LICCC to enable the additional memory. With proper planning, more memory can be added nondisruptively to z/OS partitions and z/VM partitions. If necessary, new LPARs can be created nondisruptively to use the newly added memory.

Concurrency: Upgrades requiring DIMM changes can be concurrent by using the EDA feature. Planning is required to see whether this is a viable option for your configuration. Using the flexible memory option and the Preplanned Memory Feature (FC 1996 for the 16-GB increment, or FC 1990 for the 32-GB increment) ensures that EBA can work with the least disruption.

The one-processor drawer model N30 has a minimum of 320 GB physical installed memory. The client addressable storage in this case is 256 GB. If you require more, an extra memory upgrade can install up to 2.5 TB of memory. It does so by changing the existing DIMM sizes and adding more DIMMs in all available slots in the processor drawer. You can also add memory by concurrently adding a second processor drawer with sufficient memory into the configuration and then using LICCC to enable that memory.

An LPAR can dynamically take advantage of a memory upgrade if reserved storage is defined to that LPAR. The reserved storage is defined to the LPAR as part of the image profile. Reserved memory can be configured online to the LPAR by using the LPAR dynamic storage reconfiguration (DSR) function. DSR allows a z/OS operating system image and z/VM partitions to add reserved storage to their configuration if any unused storage exists.

The nondisruptive addition of storage to a z/OS and z/VM partition requires that pertinent operating system parameters have been prepared. If reserved storage is not defined to the LPAR, the LPAR must be deactivated, the image profile changed, and the LPAR reactivated. This process allows the additional storage resources to be available to the operating system image.
8.3.3 MES upgrades for I/O

MES upgrades for I/O can concurrently add more I/O features by using one of the following methods:

- Installing more I/O features on an already installed PCIe I/O drawer.
- The installed PCIe I/O drawer providing the number of I/O slots that are required by the target configuration.
- Adding a PCIe I/O drawer to hold the new I/O features.

Tip: Up to two I/O drawers are supported if carried forward on an upgrade from a zEC12 or from a z196. They only support the FICON Express8 feature on z13 servers.

For more information about I/O drawers and PCIe I/O drawers, see 4.2, “I/O system overview” on page 144.

Table 8-4 gives an overview of the number of I/O drawers and PCIe I/O drawers that can be present in a z13 server.

Table 8-4 I/O drawers and PCIe drawer summary

<table>
<thead>
<tr>
<th>Description</th>
<th>New build</th>
<th>Carry-forward</th>
<th>MES add</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O drawer</td>
<td>0</td>
<td>0 - 2</td>
<td>0</td>
</tr>
<tr>
<td>PCIe I/O drawer</td>
<td>0 - 5</td>
<td>0 - 5</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

Table 8-5 lists the number of FICON Express8 features that can be carried forward.

Table 8-5 Number of FICON Express8 features and drawers on a carry-forward

<table>
<thead>
<tr>
<th>Number of FICON Express8 features on a carry-forward</th>
<th>Number of I/O drawers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 8</td>
<td>1</td>
</tr>
<tr>
<td>9 - 16</td>
<td>2</td>
</tr>
</tbody>
</table>

Consideration: The maximum number of original I/O features on a carry-forward is 16. Also, the only supported carry-forward feature is the 4-port FICON Express 8 card.

Also, note that LPAR addressability is constrained to 1 TB maximum if I/O drawers are carried forward to a z13 server.

Depending on the number of I/O features that are carried forward on an upgrade, the configurator determines the number of I/O drawers and PCIe I/O drawers.

To better use the MES for I/O capability, carefully plan the initial configuration to allow concurrent upgrades up to the target configuration. If original I/O features are removed from the I/O drawer, the configurator does not physically remove the drawer unless the I/O frame slots are required to install a new PCIe I/O drawer.

If a PCIe I/O drawer is added to an existing z13 server and original features must be physically moved to another PCIe I/O drawer, original card moves are disruptive.
z/VSE, z/TPF, Linux on z Systems, and CFCC do not provide dynamic I/O configuration support. The installation of the new hardware is performed concurrently, but defining the new hardware to these operating systems requires an IPL.

Tip: z13 servers has a hardware system area (HSA) of 96 GB. zEC12 servers have a 32-GB HSA. HSA is not part of the client-purchased memory.

8.3.4 MES upgrades for the zBX

The MES upgrades for zBX model 004 can only concurrently add blades if slots are available in the existing blade chassis and the entitlement records are already in place to allow this action. Add Feature on Demand (FoD) entitlements through LICCC were withdrawn from marketing (WDfM) on December 31, 2015.

Feature on Demand

FoD contains the zBX HWMs. HWMs refer to the highest quantities of blade entitlements by blade type that the client has purchased. On the z196/z114, the HWMs are stored in the processor and memory LICCC record. On the z13 and zEC12 servers, the HWMs are in the FoD LICCC record.

The current zBX installed and staged feature values can be obtained by using the Perform Model Conversion function on the SE, or from the HMC by using a Single Object Operation (SOO) to the servers' SE. Figure 8-4 shows the window for FoD Blades feature values that are shown under the **Perform Model Conversion → Features on Demand Manage** function.

![Figure 8-4 Features on Demand window for zBX blade feature HWMs](image)

Only one FoD LICCC record is installed or staged at any time in the system and its contents can be viewed under the Manage window, as shown in Figure 8-4. A staged record can be removed without installing it. An FoD record can only be installed completely. There is no selective feature or partial record installation. The features that are installed are merged with the CPC LICCC after activation.
An FoD record can be installed only one time. If it is removed, a new FoD record is needed to install it again. A remove action cannot be undone.

If upgrading from an existing z196 with zBX-002, or upgrading from an existing zEC12 with zBX-003, the zBX Model 002 or the zBX model 003 must to be be upgraded to a zBX Model 004. The existing zBX must be detached from z196 or the zEC12 and converted to a zBX model 004, becoming an independent node that is not associated, or not owned, by the z13 server. Because the system upgrade is always disruptive, the zBX upgrade is a disruptive task as well. Because the zBX model 004 is not owned by the z13 server, the zBX upgrade does not have to be done at the same time that the CPC is upgraded. However, the zBX upgrades are disruptive to the zBX environment.

If installing a new build z13 server and you plan to take over an existing zBX attached to a zEC12, zBC12, z196, or z114, the conversion of the zBX-002 or zBX-003 to the zBX-004 also can be done during the installation phase of the z13 server. FC 0030 must be ordered to detach the zBX from an existing z196 or z114. FC 0031 is required to reattach the zBX to the zEC12 or zBC12.

If the model zBX Model 002 still has IBM Smart Analytics Optimizer blades installed, they must be removed from the Model 002 before you order the upgrade to a Model 004.

The zBX Model 004 maintains the zBX-003 features or incorporates them if upgrading from a zBX model 002. These features and functions are available with zBX-004:

- All enhancements implemented in zBX Model 003.
- Stand-Alone node-based zBX defined as an ensemble member to the ensemble HMCs.
- Direct management connection to server eliminated with node-based zBX Model 004.
- Two SEs installed in the zBX Model 004.
- Firmware updates and service activities no longer linked to the z Systems CPC.
- No need for a direct intranode management network (INMN) link between CPC and zBX. Configuration and connectivity complexity is reduced and resiliency improved.
- Synchronized time from HMC by using Network Time Protocol (NTP)
- Workload Optimization mapped to service level agreement (SLA) requirements available with zManager and zBX Model 004.
- Available only as an upgrade from zBX Model 002 and from a zBX Model 003.
- No new blade types will be announced or delivered. As of December 31, 2014, all supported blades have been WDfM.
- Except for DataPower XI50z Blades, supported x and p blades might still be available from distributors or on the used market.
- Empty slot entitlements for x and p blades, if they already exist, can be populated.
- New entitlements for blades were WDfM in December, 2015.
- Consider upgrading zBX to a Model 004 until withdrawn (WDfM date not announced).

8.3.5 Summary of plan-ahead features

A number of plan-ahead features exist for z13 servers. The following list provides an overview of those features:

- Flexible memory

 Flexible memory has no feature code (FC) associated with it. The purpose of flexible memory is to enable enhanced processor drawer availability. If a processor drawer must
be serviced, the flexible memory is activated to accommodate the storage of the CPC drawer that is taken offline. After the repair action, the memory is taken offline again and is made unavailable for use.

- **Pre-planned memory**
 Pre-planned memory allows you to plan for nondisruptive memory upgrades. Any hardware that is required is pre-plugged, based on a target capacity that is specified in advance. Pre-plugged hardware is enabled by using an LICCC order when more memory capacity is needed. FC 1990 provides 32 GB of pre-planned memory, and FC 1996 provides 16 GB of pre-planned memory. FC 1901 is used to activate previously installed pre-planned memory, and can activate all the preinstalled memory or subsets of it.

- **Balanced Power Plan Ahead**
 Balanced Power Plan Ahead is designed to anticipate future upgrade power needs on z13 servers. When more processor drawers are added to the system, the power consumption also rises. If necessary, one or more bulk power regulators (BPRs) must be added. This process increases the time that is needed for the upgrade. When ordering this feature, regardless of the configuration, all six BPR pairs are installed and activated. Balanced Power Plan Ahead has FC 3003.

- **Line Cord plan ahead**
 This option allows you to plan ahead for the second set of power cords. It is normally not configured until the addition of extra BPRs requires them. A plan-ahead option allows you to plan for a lengthy outage that is caused by installing circuit breakers or power feeds, or the routing of cables under the floor. The Line Cord plan-ahead option is FC 2000.

 Tip: Accurate planning and the definition of the target configuration allows you to maximize the value of these plan-ahead features.

8.4 Permanent upgrade through the CIU facility

By using the CIU facility (through the IBM Resource Link on the web), you can start a permanent upgrade for CPs, ICFs, zIIPs, IFLs, SAPs, or memory. When performed through the CIU facility, you add the resources without having IBM personnel present at your location. You can also unassign previously purchased CPs and IFL processors through the CIU facility.

Adding permanent upgrades to a system through the CIU facility requires that the permanent upgrade enablement feature (FC 9898) is installed on the system. A permanent upgrade might change the system model capacity identifier (4xx, 5yy, 6yy, or 7nn) if more CPs are requested, or if the capacity identifier is changed as part of the permanent upgrade. However, it cannot change the system model. If necessary, more LPARs can be created concurrently to use the newly added processors.

 Consideration: A permanent upgrade of processors can provide a physical concurrent upgrade, resulting in more enabled processors that are available to a system configuration. Therefore, more planning and tasks are required for *nondisruptive* logical upgrades. For more information, see “Guidelines to avoid disruptive upgrades” on page 357.

Maintenance charges are automatically adjusted as a result of a permanent upgrade.

Software charges that are based on the total capacity of the system on which the software is installed are adjusted to the new capacity after the permanent upgrade is installed. Software products that use WLC might not be affected by the system upgrade because their charges
are based on an LPAR usage rather than system total capacity. For more information about WLC, see 7.16.3, “Advanced Workload License Charges” on page 308.

Figure 8-5 illustrates the CIU facility process on IBM Resource Link.

The following sample sequence shows how to start an order on the IBM Resource Link:

1. Sign on to Resource Link.
2. Select Customer Initiated Upgrade from the main Resource Link page. Client and system details that are associated with the user ID are displayed.
3. Select the system to receive the upgrade. The current configuration (PU allocation and memory) is shown for the selected system.
4. Select Order Permanent Upgrade. The Resource Link limits the options to those that are valid or possible for the selected configuration (system).
5. After the target configuration is verified by the system, accept or cancel the order. An order is created and verified against the pre-established agreement.
6. Accept or reject the price that is quoted. A secondary order approval is optional. Upon confirmation, the order is processed. The LICCC for the upgrade will be available within hours.
Figure 8-6 illustrates the process for a permanent upgrade. When the LICCC is passed to the Remote Support Facility, you are notified through an email that the upgrade is ready to be downloaded.

The two major components in the process are ordering and retrieval (along with activation).

8.4.1 Ordering

Resource Link provides the interface that enables you to order a concurrent upgrade for a system. You can create, cancel, or view the order, and view the history of orders that were placed through this interface. Configuration rules enforce that only valid configurations are generated within the limits of the individual system. Warning messages are issued if you select invalid upgrade options. The process allows only one permanent CIU-eligible order for each system to be placed at a time.

For a tutorial, see this website:

Figure 8-7 shows the initial view of the Machine profile on Resource Link.

The number of CPs, ICFs, zIIPs, IFLs, SAPs, memory size, and unassigned IFLs on the current configuration are displayed on the left side of the web page.

Resource Link retrieves and stores relevant data that is associated with the processor configuration, such as the number of CPs and installed memory cards. It allows you to select only those upgrade options that are deemed valid by the order process. It allows upgrades only within the bounds of the currently installed hardware.

8.4.2 Retrieval and activation

After an order is placed and processed, the appropriate upgrade record is passed to the IBM support system for download.

When the order is available for download, you receive an email that contains an activation number. You can then retrieve the order by using the Perform Model Conversion task from the SE, or through the Single Object Operation to the SE from an HMC.
In the Perform Model Conversion window, select **Permanent upgrades** to start the process, as shown in Figure 8-8.

![Perform Model Conversion window](image)

Figure 8-8 z13 Perform Model Conversion window

The window provides several possible options. If you select the **Retrieve and apply** data option, you are prompted to enter the order activation number to start the permanent upgrade, as shown in Figure 8-9.

![Customer Initiated Upgrade Order Activation Number window](image)

Figure 8-9 Customer Initiated Upgrade Order Activation Number window

8.5 On/Off Capacity on Demand

On/Off CoD allows you to enable temporarily PUs and unassigned IFLs that are available within the current hardware model. You can also use it to change capacity settings for CPs to help meet your peak workload requirements.

8.5.1 Overview

The capacity for CPs is expressed in millions of service units (MSUs). Capacity for speciality engines is expressed in number of speciality engines. **Capacity tokens** are used to limit the resource consumption for all types of processor capacity.
Capacity tokens are introduced to provide better control over resource consumption when On/Off CoD offerings are activated. Tokens represent the following resource consumptions:

- For CP capacity, each token represents the amount of CP capacity that results in one MSU of software cost for one day (an MSU-day token).
- For speciality engines, each token is equivalent to one speciality engine capacity for one day (an engine-day token).

Each speciality engine type has its own tokens, and each On/Off CoD record has separate token pools for each capacity type. During the ordering sessions on Resource Link, select how many tokens of each type to create for an offering record. Each engine type must have tokens for that engine type to be activated. Capacity that has no tokens cannot be activated.

When resources from an On/Off CoD offering record that contains capacity tokens are activated, a billing window is started. A billing window is always 24 hours. Billing takes place at the end of each billing window. The resources that are billed are the highest resource usage inside each billing window for each capacity type. An activation period is one or more complete billing windows. The activation period is the time from the first activation of resources in a record until the end of the billing window in which the last resource in a record is deactivated. At the end of each billing window, the tokens are decremented by the highest usage of each resource during the billing window. If any resource in a record does not have enough tokens to cover usage for the next billing window, the entire record is deactivated.

On/Off CoD requires that the Online CoD Buying feature (FC 9900) is installed on the system that you want to upgrade.

The On/Off CoD to Permanent Upgrade Option is a new offering. It is an offshoot of On/Off CoD that takes advantage of aspects of the architecture. You are given a window of opportunity to assess capacity additions to your permanent configurations by using On/Off CoD. If a purchase is made, the hardware On/Off CoD charges during this window (three days or less) are waived. If no purchase is made, you are charged for the temporary use.

The resources eligible for temporary use are CPs, ICFs, zIIPs, IFLs, and SAPs. The temporary addition of memory and I/O ports or adapters is not supported. Unassigned PUs that are on the installed processor drawers can be temporarily and concurrently activated as CPs, ICFs, zIIPs, IFLs, and SAPs through LICCC. You can assign PUs up to twice the currently installed CP capacity, and up to twice the number of ICFs, zIIPs, or IFLs. Therefore, an On/Off CoD upgrade cannot change the system model. The addition of new processor drawers is not supported. However, the activation of an On/Off CoD upgrade can increase the model capacity identifier (4xx, 5yy, 6yy, or 7nn).

8.5.2 Ordering

Concurrently installing temporary capacity by ordering On/Off CoD is possible in the following manner:

- CP features equal to the MSU capacity of installed CPs
- IFL features up to the number of installed IFLs
- ICF features up to the number of installed ICFs
- zIIP features up to the number of installed zIIPs
- Up to six SAPs for model N30, 12 for an N63, 18 for an N96, and 24 for an NC9 and NE1
On/Off CoD can provide CP temporary capacity in two ways:

- By increasing the number of CPs.
- For subcapacity models, capacity can be added by increasing the number of CPs, changing the capacity setting of the CPs, or both. The capacity setting for all CPs must be the same. If the On/Off CoD is adding CP resources that have a capacity setting different from the installed CPs, the base capacity settings are changed to match.

On/Off CoD has the following limits associated with its use:

- The number of CPs cannot be reduced.
- The target configuration capacity is limited to these amounts:
 - Twice the currently installed capacity, expressed in MSUs for CPs.
 - Twice the number of installed IFLs, ICFs, and zIIPs. The number of SAPs that can be activated depends on the model. For more information, see 8.2.1, “Model upgrades” on page 319.

On/Off CoD can be ordered as prepaid or postpaid:

- A prepaid On/Off CoD offering record contains resource descriptions, MSUs, a number of speciality engines, and tokens that describe the total capacity that can be used. For CP capacity, the token contains MSU-days. For speciality engines, the token contains speciality engine-days.
- When resources on a prepaid offering are activated, they must have enough capacity tokens to allow the activation for an entire billing window, which is 24 hours. The resources remain active until you deactivate them or until one resource consumes all of its capacity tokens. When that happens, all activated resources from the record are deactivated.
- A postpaid On/Off CoD offering record contains resource descriptions, MSUs, speciality engines, and can contain capacity tokens that denote MSU-days and speciality engine-days.
- When resources in a postpaid offering record without capacity tokens are activated, those resources remain active until they are deactivated, or until the offering record expires. The record usually expires 180 days after its installation.
- When resources in a postpaid offering record with capacity tokens are activated, those resources must have enough capacity tokens to allow the activation for an entire billing window (24 hours). The resources remain active until they are deactivated, until all of the resource tokens are consumed, or until the record expires. The record usually expires 180 days after its installation. If one capacity token type is consumed, resources from the entire record are deactivated.

As an example, for a z13 server with capacity identifier 502 (two CPs), a capacity upgrade through On/Off CoD can be delivered in these ways:

- The first option is to add CPs of the same capacity setting. With this option, the model capacity identifier can be changed to a 503, adding one more CP to make it a 3-way. It can also be changed to a 504, which adds two CPs, making it a 4-way.
- The second option is to change to a different capacity level of the current CPs and change the model capacity identifier to a 602 or to a 702. The capacity level of the CPs is increased, but no additional CPs are added. The 502 also can be temporarily upgraded to a 603, increasing the capacity level and adding another processor. The capacity setting 430 does not have an upgrade path through On/Off CoD.
Use the Large System Performance Reference (LSPR) information to evaluate the capacity requirements according to your workload type. LSPR data for current IBM processors is available at this website:

The On/Off CoD hardware capacity is charged on a 24-hour basis. There is a grace period at the end of the On/Off CoD day. This grace period allows up to an hour after the 24-hour billing period to either change the On/Off CoD configuration for the next 24-hour billing period or deactivate the current On/Off CoD configuration. The times when the capacity is activated and deactivated are maintained in the z13 server and sent back to the support systems.

If On/Off capacity is already active, more On/Off capacity can be added without having to return the system to its original capacity. If the capacity is increased multiple times within a 24-hour period, the charges apply to the highest amount of capacity active in that period. If more capacity is added from an already active record that contains capacity tokens, the systems checks whether the resource has enough capacity to be active for an entire billing window (24 hours). If that criteria is not met, no additional resources are activated from the record.

If necessary, more LPARs can be activated concurrently to use the newly added processor resources.

Consideration: On/Off CoD provides a concurrent hardware upgrade, resulting in more enabled processors that are available to a system configuration. Extra planning tasks are required for nondisruptive upgrades. For more information, see “Guidelines to avoid disruptive upgrades” on page 357.

To participate in this offering, you must have accepted contractual terms for purchasing capacity through the Resource Link, established a profile, and installed an On/Off CoD enablement feature on the system. Later, you can concurrently install temporary capacity up to the limits in On/Off CoD and use it for up to 180 days. Monitoring occurs through the system call-home facility, and an invoice is generated if the capacity is enabled during the calendar month. You are billed for the use of temporary capacity until the system is returned to the original configuration. If the On/Off CoD support is no longer needed, remove the enablement code.

On/Off CoD orders can be pre-staged in Resource Link to allow multiple optional configurations. The pricing of the orders is done at the time that you order them, and the pricing can vary from quarter to quarter. Staged orders can have different pricing. When the order is downloaded and activated, the daily costs are based on the pricing at the time of the order. The staged orders do not have to be installed in order sequence. If a staged order is installed out of sequence, and later an order is staged that has a higher price, the daily cost is based on the lower price.

Another possibility is to store unlimited On/Off CoD LICCC records on the SE with the same or different capacities, giving you greater flexibility to enable quickly needed temporary capacity. Each record is easily identified with descriptive names, and you can select from a list of records that can be activated.

Resource Link provides the interface to order a dynamic upgrade for a specific system. You can create, cancel, and view the order. Configuration rules are enforced, and only valid configurations are generated based on the configuration of the individual system. After you complete the prerequisites, orders for the On/Off CoD can be placed. The order process uses the CIU facility on Resource Link.
You can order temporary capacity for CPs, ICFs, zIIPs, IFLs, or SAPs. Memory and channels are not supported on On/Off CoD. The amount of capacity is based on the amount of owned capacity for the different types of resources. An LICCC record is established and staged to Resource Link for this order. After the record is activated, it has no expiration date.

However, an individual record can be activated only once. Subsequent sessions require a new order to be generated, producing a new LICCC record for that specific order. Alternatively, you can use an auto-renewal feature to eliminate the need for a manual replenishment of the On/Off CoD order. This feature is implemented in Resource Link, and you must also select this feature in the machine profileas shown in Figure 8-10.

![Figure 8-10 Order On/Off CoD record window](image)

8.5.3 On/Off CoD testing

Each On/Off CoD-enabled system is entitled to one no-charge 24-hour test. No IBM charges are assessed for the test, including charges that are associated with temporary hardware capacity, IBM software, and IBM maintenance. The test can be used to validate the processes to download, stage, install, activate, and deactivate On/Off CoD capacity.

This test can have a maximum duration of 24 hours, commencing upon the activation of any capacity resource that is contained in the On/Off CoD record. Activation levels of capacity can change during the 24-hour test period. The On/Off CoD test automatically ends at the end of the 24-hour period.

In addition, you can perform administrative testing. No additional capacity is added to the system, but you can test all the procedures and automation for the management of the On/Off CoD facility.
Figure 8-11 is an example of an On/Off CoD order on the Resource Link web page.

The example order in Figure 8-11 is an On/Off CoD order for 0% more CP capacity (system is already at capacity level 7), and for two more ICFs and two more zIIPs. The maximum number of CPs, ICFs, zIIPs, and IFLs is limited by the current number of available unused PUs of the installed processor drawers. The maximum number of SAPs is determined by the model number and the number of available PUs on the already installed processor drawers.

To finalize the order, you must accept Terms and Conditions for the order, as shown in Figure 8-12.
8.5.4 Activation and deactivation

When a previously ordered On/Off CoD is retrieved from Resource Link, it is downloaded and stored on the SE HDD. You can activate the order when the capacity is needed, either manually or through automation.

If the On/Off CoD offering record does not contain resource tokens, you must deactivate the temporary capacity manually. Deactivation is accomplished from the SE, and is nondisruptive. Depending on how the additional capacity was added to the LPARs, you might be required to perform tasks at the LPAR level to remove it. For example, you might have to configure offline any CPs that were added to the partition, deactivate LPARs that were created to use the temporary capacity, or both.

On/Off CoD orders can be staged in Resource Link so that multiple orders are available. An order can be downloaded and activated only one time. If a different On/Off CoD order is required or a permanent upgrade is needed, it can be downloaded and activated without having to restore the system to its original purchased capacity.

In support of automation, an API is provided that allows the activation of the On/Off CoD records. The activation is performed from the HMC, and requires specifying the order number. With this API, automation code can be used to send an activation command along with the order number to the HMC to enable the order.

8.5.5 Termination

A client is contractually obligated to terminate the On/Off CoD right-to-use feature when a transfer in asset ownership occurs. A client also can choose to terminate the On/Off CoD right-to-use feature without transferring ownership. Application of FC 9898 terminates the right to use the On/Off CoD. This feature cannot be ordered if a temporary session is already active. Similarly, the CIU enablement feature cannot be removed if a temporary session is active. Any time that the CIU enablement feature is removed, the On/Off CoD right-to-use feature is simultaneously removed. Reactivating the right-to-use feature subjects the client to the terms and fees that apply then.

Upgrade capability during On/Off CoD
Upgrades involving physical hardware are supported while an On/Off CoD upgrade is active on a particular z13 server. LICCC-only upgrades can be ordered and retrieved from Resource Link, and can be applied while an On/Off CoD upgrade is active. LICCC-only memory upgrades can be retrieved and applied while an On/Off CoD upgrade is active.

Repair capability during On/Off CoD
If the z13 server requires service while an On/Off CoD upgrade is active, the repair can take place without affecting the temporary capacity.

Monitoring
When you activate an On/Off CoD upgrade, an indicator is set in vital product data. This indicator is part of the call-home data transmission, which is sent on a scheduled basis. A time stamp is placed into the call-home data when the facility is deactivated. At the end of each calendar month, the data is used to generate an invoice for the On/Off CoD that was used during that month.

Maintenance
The maintenance price is adjusted as a result of an On/Off CoD activation.
Software

Software Parallel Sysplex license charge (PSLC) clients are billed at the MSU level that is represented by the combined permanent and temporary capacity. All PSLC products are billed at the peak MSUs that are enabled during the month, regardless of usage. Clients with WLC licenses are billed by product at the highest four-hour rolling average for the month. In this instance, temporary capacity does not increase the software bill until that capacity is allocated to LPARs and used.

Results from the STSI instruction reflect the current permanent and temporary CPs. For more information, see “Store System Information instruction” on page 355.

8.5.6 z/OS capacity provisioning

The z13 provisioning capability that is combined with CPM functions in z/OS provides a flexible, automated process to control the activation of On/Off Capacity on Demand. The z/OS provisioning environment is shown in Figure 8-13.

![Figure 8-13 The capacity provisioning infrastructure]

The z/OS WLM manages the workload by goals and business importance on each z/OS system. WLM metrics are available through existing interfaces, and are reported through IBM Resource Measurement Facility™ (RMF) Monitor III, with one RMF gatherer for each z/OS system.

Sysplex-wide data aggregation and propagation occur in the RMF Distributed Data Server (DDS). The RMF Common Information Model (CIM) providers and associated CIM models publish the RMF Monitor III data.
The CPM, a function inside z/OS, retrieves critical metrics from one or more z/OS systems’ CIM structures and protocols. CPM communicates to local or remote SEs and HMCs by using the Simple Network Management Protocol (SNMP).

CPM has visibility of the resources in the individual offering records and the capacity tokens. When CPM activates resources, a check is run to determine whether enough capacity tokens remain for the specified resource to be activated for at least 24 hours. If insufficient tokens remain, no resource from the On/Off CoD record is activated.

If a capacity token is consumed during an activation that is driven by the CPM, the corresponding On/Off CoD record is deactivated prematurely by the system. This process occurs even if the CPM has activated this record, or parts of it. However, you do receive warning messages if capacity tokens are getting close to being fully consumed. You receive the messages five days before a capacity token is fully consumed. The five days are based on the assumption that the consumption is constant for the five days. You must put operational procedures in place to handle these situations. You can either deactivate the record manually, allow it happen automatically, or replenish the specified capacity token by using the Resource Link application.

The Capacity Provisioning Control Center (CPCC), which is on a workstation, provides an interface to administer capacity provisioning policies. The CPCC is not required for regular CPM operation. The CPCC will over time be moved into the z/OS Management Facility (z/OSMF). Parts of the CPCC are included in z/OSMF V1R13.

Capacity Provisioning Domain

The provisioning infrastructure is managed by the CPM through the Capacity Provisioning Domain (CPD), which is controlled by the Capacity Provisioning Policy (CPP). The CPD is shown in Figure 8-14.

Figure 8-14 The Capacity Provisioning Domain
The CPD configuration defines the CPCs and z/OS systems that are controlled by an instance of the CPM. One or more CPCs, sysplexes, and z/OS systems can be defined into a domain. Sysplexes and CPCs do not have to be contained in a domain, but must not belong to more than one domain. Each domain has one active capacity provisioning policy. The CPCC is the CPM user interface component. Administrators work through this interface to define the domain configuration and provisioning policies. The CPCC is installed on a Microsoft Windows workstation.

CPM operates in four modes, allowing four different levels of automation:

- **Manual mode:**

 Use this command-driven mode when no CPM policy is active.

- **Analysis mode:**

 - In analysis mode, CPM processes capacity-provisioning policies and informs the operator when a provisioning or deprovisioning action is required according to policy criteria.

 - In analysis mode, the operator determines whether to ignore the information or to manually upgrade or downgrade the system by using the HMC, the SE, or available CPM commands.

- **Confirmation mode:**

 In this mode, CPM processes capacity provisioning policies and interrogates the installed temporary offering records. Every action that is proposed by the CPM must be confirmed by the operator.

- **Autonomic mode:**

 This mode is similar to the confirmation mode, but no operator confirmation is required.

A number of reports are available in all modes that contain information about workload and provisioning status, and the rationale for provisioning guidelines. User interfaces are provided through the z/OS console and the CPCC application.

The provisioning policy defines the circumstances under which more capacity can be provisioned (when, which, and how). The criteria have three elements:

- **A time condition is when provisioning is allowed:**

 - Start time indicates when provisioning can begin

 - Deadline indicates that provisioning of more capacity is no longer allowed

 - End time indicates that deactivation of more capacity must begin

- **A workload condition is which work qualifies for provisioning.** It can have these parameters:

 - The z/OS systems that can run eligible work.

 - The importance filter indicates eligible service class periods, which are identified by WLM importance.

 - Performance Index (PI) criteria:

 - Activation threshold: PI of service class periods must exceed the activation threshold for a specified duration before the work is considered to be suffering.

 - Deactivation threshold: PI of service class periods must fall below the deactivation threshold for a specified duration before the work is considered to no longer be suffering.
- Included service classes are eligible service class periods.
- Excluded service classes are service class periods that must not be considered.

Tip: If no workload condition is specified, the full capacity that is described in the policy is activated and deactivated at the start and end times that are specified in the policy.

- Provisioning scope is how much more capacity can be activated, expressed in MSUs.
 - The number of zIIPs must be one specification per CPC that is part of the CPD. They are specified in MSUs.
 - The maximum provisioning scope is the maximum additional capacity that can be activated for all the rules in the CPD.

The provisioning rule is, in the specified time interval, that if the specified workload is behind its objective, up to the defined additional capacity can be activated.

The rules and conditions are named and stored in the Capacity Provisioning Policy.

For more information about z/OS Capacity Provisioning functions, see *z/OS MVS Capacity Provisioning User’s Guide*, SA33-8299.

Planning considerations for using automatic provisioning
Although only one On/Off CoD offering can be active at any one time, several On/Off CoD offerings can be present on the system. Changing from one to another requires stopping the active one before the inactive one can be activated. This operation decreases the current capacity during the change.

The provisioning management routines can interrogate the installed offerings, their content, and the status of the content of the offering. To avoid the decrease in capacity, create only one On/Off CoD offering on the system by specifying the maximum allowable capacity. The CPM can then, when an activation is needed, activate a subset of the contents of the offering sufficient to satisfy the demand. If more capacity is needed later, the Provisioning Manager can activate more capacity up to the maximum allowed increase.

Having an unlimited number of offering records pre-staged on the SE hard disk is possible. Changing the content of the offerings, if necessary, is also possible.

Remember: The CPM has control over capacity tokens for the On/Off CoD records. In a situation where a capacity token is consumed, the system deactivates the corresponding offering record. Therefore, you must prepare routines for catching the warning messages about capacity tokens being consumed, and have administrative procedures in place for such a situation. The messages from the system begin five days before a capacity token is fully consumed. To avoid capacity records being deactivated in this situation, replenish the necessary capacity tokens before they are consumed.

The Capacity Provisioning Manager operates based on Workload Manager (WLM) indications, and the construct that is used is the PI of a service class period. It is important to select service class periods that are appropriate for the business application that needs more capacity. For example, the application in question might be running through several service class periods, where the first period is the important one. The application might be defined as importance level 2 or 3, but might depend on other work that is running with importance level 1. Therefore, it is important to consider which workloads to control and which service class periods to specify.
8.6 Capacity for Planned Event

CPE is offered with z13 servers to provide replacement backup capacity for planned downtime events. For example, if a server room requires an extension or repair work, replacement capacity can be installed temporarily on another z13 server in the client's environment.

Important: CPE is for planned replacement capacity only, and cannot be used for peak workload management.

CPE includes these feature codes:

- FC 6833: Capacity for Planned Event enablement
- FC 0116: 1 CPE Capacity Unit
- FC 0117: 100 CPE Capacity Unit
- FC 0118: 10000 CPE Capacity Unit
- FC 0119: 1 CPE Capacity Unit - IFL
- FC 0120: 100 CPE Capacity Unit - IFL
- FC 0121: 1 CPE Capacity Unit - ICF
- FC 0122: 100 CPE Capacity Unit - ICF
- FC 0125: 1 CPE Capacity Unit - zIIP
- FC 0126: 100 CPE Capacity Unit - zIIP
- FC 0127: 1 CPE Capacity Unit - SAP
- FC 0128: 100 CPE Capacity Unit - SAP

The feature codes are calculated automatically when the CPE offering is configured. Whether using the eConfig tool or the Resource Link, a target configuration must be ordered. The configuration consists of a model identifier, a number of specialty engines, or both. Based on the target configuration, a number of feature codes from the list are calculated automatically, and a CPE offering record is constructed.

CPE is intended to replace capacity that is lost within the enterprise because of a planned event, such as a facility upgrade or system relocation. **CPE is intended for short duration events that last a maximum of three days.** Each CPE record, after it is activated, gives you access to dormant PUs on the system for which you have a contract, as described by the feature codes. Processor units can be configured in any combination of CP or specialty engine types (zIIP, SAP, IFL, and ICF). At the time of CPE activation, the contracted configuration is activated. The general rule of two zIIPs for each configured CP is enforced for the contracted configuration.

The processors that can be activated by CPE come from the available unassigned PUs on any installed processor drawer. CPE features can be added to an existing z13 server nondisruptively. A one-time fee is applied for each CPE event. This fee depends on the contracted configuration and its resulting feature codes. Only one CPE contract can be ordered at a time.

The base system configuration must have sufficient memory and channels to accommodate the potential requirements of the large CPE-configured system. Ensure that all required functions and resources are available on the system where CPE is activated. These functions and resources include CF LEVELs for coupling facility partitions, memory, and cryptographic functions, and include connectivity capabilities.
The CPE configuration is activated temporarily and provides more PUs in addition to the system's original, permanent configuration. The number of additional PUs is predetermined by the number and type of feature codes that are configured, as described by the feature codes. The number of PUs that can be activated is limited by the unused capacity that is available on the system:

- A model N63 with 26 CPs, and no IFLs or ICFs has 37 unassigned PUs available.
- A model H96 with 38 CPs, one IFL, and one ICF has 56 unassigned PUs available.

When the planned event is over, the system must be returned to its original configuration. You can deactivate the CPE features at any time before the expiration date.

A CPE contract must be in place before the special code that enables this capability can be installed on the system. CPE features can be added to an existing z13 server nondisruptively.

8.7 Capacity Backup

CBU provides reserved emergency backup processor capacity for unplanned situations in which capacity is lost in another part of your enterprise. It allows you to recover by adding the reserved capacity on a designated z13 server.

CBU is the quick, temporary activation of PUs and is available in these options:

- For up to 90 contiguous days, for a loss of processing capacity as a result of an emergency or disaster recovery situation.
- For 10 days, for testing your disaster recovery procedures or running the production workload. This option requires that an amount of z Systems workload capacity that is equivalent to the CBU upgrade capacity is shut down or otherwise made unusable during the CBU test.\(^6\)

Important: CBU is for disaster and recovery purposes only, and cannot be used for peak workload management or for a planned event.

8.7.1 Ordering

The CBU process allows for CBU to activate CPs, ICFs, zIIPs, IFLs, and SAPs. To be able to use the CBU process, a CBU enablement feature (FC 9910) must be ordered and installed. You must order the quantity and type of PU that you require using these feature codes:

- FC 6805: Additional test activations
- FC 6817: Total CBU years ordered
- FC 6818: CBU records ordered
- FC 6820: Single CBU CP-year
- FC 6821: 25 CBU CP-year
- FC 6822: Single CBU IFL-year
- FC 6823: 25 CBU IFL-year
- FC 6824: Single CBU ICF-year
- FC 6825: 25 CBU ICF-year
- FC 6828: Single CBU zIIP-year
- FC 6829: 25 CBU zIIP-year
- FC 6830: Single CBU SAP-year

\(^6\) All new CBU contract documents contain new CBU test terms to allow execution of production workload during CBU test. Existing CBU clients must run the IBM client Agreement Amendment for IBM z Systems Capacity Backup Upgrade Tests (US form #Z125-8145).
FC 6831: 25 CBU SAP-year
FC 6832: CBU replenishment

The CBU entitlement record (FC 6818) contains an expiration date that is established at the time of the order. This date depends on the quantity of CBU years (FC 6817). You can extend your CBU entitlements through the purchase of more CBU years. The number of FC 6817 per instance of FC 6818 remains limited to five. Fractional years are rounded up to the nearest whole integer when calculating this limit. If there are two years and eight months before the expiration date at the time of the order, the expiration date can be extended by no more than two years. One test activation is provided for each additional CBU year added to the CBU entitlement record.

FC 6805 allows for ordering more tests in increments of one. The total number of tests that is allowed is 15 for each FC 6818.

The processors that can be activated by CBU come from the available unassigned PUs on any installed processor drawer. The maximum number of CBU features that can be ordered is 101. The number of features that can be activated is limited by the number of unused PUs on the system:
- A model N30 with Capacity Model Identifier 410 can activate up to 40 CBU features: 20 to change the capacity setting of the existing CPs, and 20 to activate unused PUs.
- A model N63 with 15 CPs, four IFLs, and one ICF has 43 unused PUs available. It can activate up to 43 CBU features.

However, the ordering system allows for over-configuration in the order itself. You can order up to 141 CBU features regardless of the current configuration. However, at activation, only the capacity that is already installed can be activated. At activation, you can decide to activate only a subset of the CBU features that are ordered for the system.

Subcapacity makes a difference in the way that the CBU features are done. On the full-capacity models, the CBU features indicate the amount of extra capacity needed. If the amount of necessary CBU capacity is equal to four CPs, the CBU configuration is four CBU CPs.

The subcapacity models have multiple capacity settings of 4xx, 5yy, or 6yy. The standard models have the capacity setting 7nn. The number of CBU CPs must be equal to or greater than the number of CPs in the base configuration. All the CPs in the CBU configuration must have the same capacity setting. For example, if the base configuration is a 2-way 402, providing a CBU configuration of a 4-way of the same capacity setting requires two CBU feature codes. If the required CBU capacity changes the capacity setting of the CPs, going from model capacity identifier 402 to a CBU configuration of a 4-way 504 requires four CBU feature codes with a capacity setting of 5yy.

If the capacity setting of the CPs is changed, more CBU features are required, not more physical PUs. Therefore, your CBU contract requires more CBU features when the capacity setting of the CPs is changed.

CBU can add CPs through LICCC only, and the z13 server must have the correct number of processor drawers that are installed to allow the required upgrade. CBU can change the model capacity identifier to a higher value than the base setting (4xx, 5yy, or 6yy), but does not change the system model. The CBU feature cannot decrease the capacity setting.

A CBU contract must be in place before the special code that enables this capability can be installed on the system. CBU features can be added to an existing z13 server nondisruptively. For each system enabled for CBU, the authorization to use CBU is available for a 1 - 5 year period.
The alternative configuration is activated temporarily, and provides additional capacity greater than the system’s original, permanent configuration. At activation time, determine the capacity that you require for that situation. You can decide to activate only a subset of the capacity that is specified in the CBU contract.

The base system configuration must have sufficient memory and channels to accommodate the potential requirements of the large CBU target system. Ensure that all required functions and resources are available on the backup systems. These include CF LEVELs for coupling facility partitions, memory, and cryptographic functions, and connectivity capabilities.

When the emergency is over (or the CBU test is complete), the system must be returned to its original configuration. The CBU features can be deactivated at any time before the expiration date. Failure to deactivate the CBU feature before the expiration date can cause the system to downgrade resources gracefully to the original configuration. The system does not deactivate dedicated engines, or the last of in-use shared engines.

Planning: CBU for processors provides a concurrent upgrade. This upgrade can result in more enabled processors, changed capacity settings that are available to a system configuration, or both. You can activate a subset of the CBU features that are ordered for the system. Therefore, more planning and tasks are required for nondisruptive logical upgrades. For more information, see “Guidelines to avoid disruptive upgrades” on page 357.

For more information, see the *z Systems Capacity on Demand User’s Guide*, SC28-6846.

8.7.2 CBU activation and deactivation

The activation and deactivation of the CBU function is your responsibility and does not require the onsite presence of IBM SSRs. The CBU function is activated/deactivated concurrently from the HMC by using the API. On the SE, CBU is activated either by using the Perform Model Conversion task or through the API. The API enables task automation.

CBU activation

CBU is activated from the SE, by using the HMC and SSO to the SE, by using the Perform Model Conversion task, or through automation by using the API on the SE or the HMC. During a real disaster, use the Activate CBU option to activate the 90-day period.

Image upgrades

After CBU activation, the z13 server can have more capacity, more active PUs, or both. The additional resources go into the resource pools and are available to the LPARs. If the LPARs must increase their share of the resources, the LPAR weight can be changed or the number of logical processors can be concurrently increased by configuring reserved processors online. The operating system must be able to concurrently configure more processors online. If necessary, more LPARs can be created to use the newly added capacity.

CBU deactivation

To deactivate the CBU, the additional resources must be released from the LPARs by the operating systems. In some cases, this process is a matter of varying the resources offline. In other cases, it can mean shutting down operating systems or deactivating LPARs. After the resources are released, the same facility on the HMC/SE is used to turn off CBU. To deactivate CBU, select the **Undo temporary upgrade** option from the Perform Model Conversion task on the SE.
CBU testing
Test CBU is provided as part of the CBU contract. CBU is activated from the SE by using the Perform Model Conversion task. Select the test option to start a 10-day test period. A standard contract allows one test per CBU year. However, you can order more tests in increments of one up to a maximum of 15 for each CBU order.

Tip: The CBU test activation is done the same way as the real activation, by using the same SE Perform a Model Conversion window and selecting the Temporary upgrades option. The HMC windows have been changed to avoid accidental real CBU activations by setting the test activation as the default option.

The test CBU must be deactivated in the same way as the regular CBU. Failure to deactivate the CBU feature before the expiration date can cause the system to degrade gracefully back to its original configuration. The system does not deactivate dedicated engines, or the last of in-use shared engines.

CBU example
An example of a capacity backup operation is 12 CBU features that are installed on a backup model N63 with model capacity identifier 708. When a production model N30 with model capacity identifier 708 has an unplanned outage, the backup system can be temporarily upgraded from model capacity identifier 708 - 720. This process allows the capacity to take over the workload from the failed production system.

Furthermore, you can configure systems to back up each other. For example, if you use two models of N30 model capacity identifier 705 for the production environment, each can have five or more features installed. If one system suffers an outage, the other one uses a temporary upgrade to recover the approximate original total capacity.

8.7.3 Automatic CBU enablement for GDPS
The IBM Geographically Dispersed Parallel Sysplex (GDPS) CBU enables automatic management of the PUs that are provided by the CBU feature during a system or site failure. Upon detection of a site failure or planned disaster test, GDPS concurrently adds CPs to the systems in the take-over site to restore processing power for mission-critical production workloads. GDPS automation runs the following tasks:
- Runs the analysis that is required to determine the scope of the failure. This process minimizes operator intervention and the potential for errors.
- Automates authentication and activation of the reserved CPs.
- Automatically restarts the critical applications after reserved CP activation.
- Reduces the outage time to restart critical workloads from several hours to minutes.

The GDPS service is for z/OS only, or for z/OS in combination with Linux on z Systems.

8.8 Nondisruptive upgrades
Continuous availability is an increasingly important requirement for most clients, and even planned outages are no longer acceptable. Although Parallel Sysplex clustering technology is the best continuous availability solution for z/OS environments, nondisruptive upgrades within a single system can avoid system outages and are suitable to more operating system environments.
z13 server allows concurrent upgrades, which mean that dynamically adding more capacity to the system is possible. If the operating system images that run on the upgraded system do not require disruptive tasks to use the new capacity, the upgrade is also nondisruptive. This process type means that power-on reset (POR), LPAR deactivation, and IPL do not have to occur.

If the concurrent upgrade is intended to satisfy an image upgrade to an LPAR, the operating system that is running in this partition must be able to concurrently configure more capacity online. z/OS operating systems have this capability. z/VM can concurrently configure new processors and I/O devices online, and memory can be dynamically added to z/VM partitions.

If the concurrent upgrade is intended to satisfy the need for more operating system images, more LPARs can be created concurrently on the z13 system. These LPARs include all resources that are needed. These additional LPARs can be activated concurrently.

These enhanced configuration options are available through the separate HSA, which was introduced on the zEnterprise 196.

Linux operating systems, in general, cannot add more resources concurrently. However, Linux, and other types of virtual machines that run under z/VM, can benefit from the z/VM capability to nondisruptively configure more resources online (processors and I/O).

With z/VM, Linux guests can manipulate their logical processors by using the Linux CPU hotplug daemon. The daemon can start and stop logical processors that are based on the Linux load average value. The daemon is available in Linux SLES 10 SP2 and later, and in Red Hat Enterprise Linux (RHEL) V5R4 and up.

8.8.1 Components

The following components can be added, depending on the considerations that are described here:

- Processors
- Memory
- I/O
- Cryptographic adapters
- Special features

Processors

CPs, ICFs, zIIPs, IFLs, and SAPs can be added concurrently to a z13 server if unassigned PUs are available on any installed processor drawer. The number of zIIPs cannot exceed twice the number of CPs plus unassigned CPs. More processor drawers can also be installed concurrently, allowing further processor upgrades.

If necessary, more LPARs can be created concurrently to use the newly added processors.

The Coupling Facility Control Code (CFCC) can also configure more processors online to coupling facility LPARs by using the CFCC image operations window.

Memory

Memory can be added concurrently up to the physical installed memory limit. Additional processor drawers can also be installed concurrently, allowing further memory upgrades by LICCC, enabling memory capacity on the new processor drawers.

Using the previously defined reserved memory, z/OS operating system images, and z/VM partitions, you can dynamically configure more memory online. This process allows
nondisruptive memory upgrades. Linux on z Systems supports Dynamic Storage Reconfiguration.

I/O
I/O features can be added concurrently if all the required infrastructure (I/O slots and PCIe Fanouts) is present in the configuration. PCIe I/O drawers can be added concurrently without planning if free space is available in one of the frames and the configuration permits.

Dynamic I/O configurations are supported by certain operating systems (z/OS and z/VM), allowing nondisruptive I/O upgrades. However, having dynamic I/O reconfiguration on a stand-alone coupling facility system is not possible because no operating system with that capability is running on the system.

Cryptographic adapters
Crypto Express5S features can be added concurrently if all the required infrastructure is in the configuration.

Special features
Special features, such as Flash Express, zEnterprise Data Compression (zEDC) Express, and RoCE, also can be added concurrently if all infrastructure is available in the configuration.

8.8.2 Concurrent upgrade considerations

By using an MES upgrade, On/Off CoD, CBU, or CPE, a z13 server can be upgraded concurrently from one model to another, either temporarily or permanently.

Enabling and using the additional processor capacity is transparent to most applications. However, certain programs depend on processor model-related information, such as ISV products. Consider the effect on the software that is running on a z13 server when you perform any of these configuration upgrades.

Processor identification
Two instructions are used to obtain processor information:

- Store System Information (STSI) instruction
 STSI reports the processor model and model capacity identifier for the base configuration, and for any additional configuration changes through temporary upgrade actions. It fully supports the concurrent upgrade functions, and is the preferred way to request processor information.

- Store CPU ID (STIDP) instruction
 STIDP is provided for compatibility with an earlier version.
Store System Information instruction

Figure 8-15 shows the relevant output from the STSI instruction. The STSI instruction returns the model capacity identifier for the permanent configuration and the model capacity identifier for any temporary capacity. This data is key to the functioning of CoD offerings.

The model capacity identifier contains the base capacity, On/Off CoD, and CBU. The Model Permanent Capacity Identifier and the Model Permanent Capacity Rating contain the base capacity of the system. The Model Temporary Capacity Identifier and Model Temporary Capacity Rating contain the base capacity and On/Off CoD.
Store CPU ID (STIDP) instruction
The STIDP instruction provides information about the processor type, serial number, and LPAR identifier, as shown in Table 8-6. The LPAR identifier field is a full byte to support more than 15 LPARs.

Table 8-6 STIDP output for z13 servers

<table>
<thead>
<tr>
<th>Description</th>
<th>Version code</th>
<th>CPU identification number</th>
<th>Machine type number</th>
<th>Logical partition 2-digit indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit position</td>
<td>0 - 7</td>
<td>8 - 15 16 - 31</td>
<td>32 - 48</td>
<td>48 - 63</td>
</tr>
<tr>
<td>Value</td>
<td>x’00’(^a)</td>
<td>LPAR ID(^b) 4-digit number that is derived from the CPC serial number</td>
<td>x’2964’</td>
<td>x’8000’(^c)</td>
</tr>
</tbody>
</table>

\(^a\) The version code for z13 servers is x00.
\(^b\) The LPAR identifier is a two-digit number in the range of 00 - 3F. It is assigned by the user on the image profile through the SE or HMC.
\(^c\) A high-order bit that is on indicates that the LPAR ID value returned in bits 8 - 15 is a two-digit value.

When issued from an operating system that is running as a guest under z/VM, the result depends on whether the SET CPUID command was used:

- Without the use of the SET CPUID command, bits 0 - 7 are set to FF by z/VM. However, the remaining bits are unchanged, which means that they are exactly as they were without running as a z/VM guest.
- If the SET CPUID command is issued, bits 0 - 7 are set to FF by z/VM and bits 8 - 31 are set to the value that is entered in the SET CPUID command. Bits 32 - 63 are the same as they were without running as a z/VM guest.

Table 8-7 lists the possible output that is returned to the issuing program for an operating system that runs as a guest under z/VM.

Table 8-7 z/VM guest STIDP output for z13 servers

<table>
<thead>
<tr>
<th>Description</th>
<th>Version code</th>
<th>CPU identification number</th>
<th>Machine type number</th>
<th>Logical partition 2-digit indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit position</td>
<td>0 - 7</td>
<td>8 - 15 16 - 31</td>
<td>32 - 48</td>
<td>48 - 63</td>
</tr>
<tr>
<td>Without SET CPUID command</td>
<td>x’FF’</td>
<td>LPAR ID 4-digit number that is derived from the CPC serial number</td>
<td>x’2964’</td>
<td>x’8000’</td>
</tr>
<tr>
<td>With SET CPUID command</td>
<td>x’FF’</td>
<td>6-digit number as entered by the command SET CPUID = nnnnnn</td>
<td>x’2964’</td>
<td>x’8000’</td>
</tr>
</tbody>
</table>
Planning for nondisruptive upgrades

Online permanent upgrades, On/Off CoD, CBU, and CPE can be used to upgrade concurrently a z13 server. However, certain situations require a disruptive task to enable capacity that was recently added to the system. Some of these situations can be avoided if planning is done in advance. Planning ahead is a key factor for nondisruptive upgrades.

The following list describes the main reasons for disruptive upgrades. However, by carefully planning and reviewing “Guidelines to avoid disruptive upgrades” on page 357, you can minimize the need for these outages.

- LPAR memory upgrades when reserved storage was not previously defined are disruptive to image upgrades. z/OS and z/VM support this function.
- Installation of an I/O cage is disruptive.
- An I/O upgrade when the operating system cannot use the dynamic I/O configuration function is disruptive to that partition. Linux, z/VSE, z/TPF, and CFCC do not support dynamic I/O configuration.

Guidelines to avoid disruptive upgrades

Based on reasons for disruptive upgrades (“Planning for nondisruptive upgrades” on page 357), here are guidelines for avoiding or at least minimizing these situations, increasing the chances for nondisruptive upgrades:

- Using an SE function that is called Logical Processor add, which is under Operational Customization tasks, CPs and zIIPs can be added concurrently to a running partition. The CP and zIIP, and initial or reserved number of processors can be changed dynamically.
- The operating system that runs in the targeted LPAR must support the dynamic addition of resources and be able to configure processors online. The total number of defined and reserved CPs cannot exceed the number of CPs that are supported by the operating system. z/OS V1R11, z/OS V1R12, and z/OS V1R13 with PTFs support up to 100 processors. z/OS V2R1 supports 141 PUs per z/OS LPAR in non-SMT mode and 128 PUs per z/OS LPAR in SMT mode. For both, the PU total is the sum of CPs and zIIPs. z/VM supports up to 64 processors.

- Configure reserved storage to LPARs.

 Configuring reserved storage for all LPARs before their activation enables them to be nondisruptively upgraded. The operating system that is running in the LPAR must be able to configure memory online. The amount of reserved storage can be above the CPC drawer threshold limit, even if no other CPC drawer is already installed. With z13 servers, the current partition storage limit is 4 TB for z/OS. z/VM still supports 1 TB memory partitions.

- Consider the flexible and plan-ahead memory options.

 Use a convenient entry point for memory capacity, and select memory options that allow future upgrades within the memory cards that are installed on the CPC drawers. For more information about the offerings, see these sections:
 - 2.4.6, “Flexible Memory Option” on page 62
 - 2.4.7, “Pre-planned memory” on page 63

Considerations when installing additional CPC drawers

During an upgrade, more processor drawers can be installed concurrently. Depending on the number of additional processor drawers in the upgrade and your I/O configuration, a fanout rebalancing might be needed for availability reasons.
8.9 Summary of Capacity on Demand offerings

The CoD infrastructure and its offerings are major features that were introduced with the z13 system. These features are based on numerous client requirements for more flexibility, granularity, and better business control over the z Systems infrastructure, operationally and financially.

One major client requirement was to eliminate the need for a client authorization connection to the IBM Resource Link system when activating an offering. This requirement is met by the z196, zEC12, and z13 servers. After the offerings are installed on the z13 server, they can be activated at any time at the client’s discretion. No intervention by IBM or IBM personnel is necessary. In addition, the activation of CBU does not require a password.

The z13 server can have up to eight offerings that are installed at the same time, with the limitation that only one of them can be an On/Off CoD offering. The others can be any combination. The installed offerings can be activated fully or partially, and in any sequence and any combination. The offerings can be controlled manually through command interfaces on the HMC, or programmatically through a number of APIs. IBM applications, ISV programs, and client-written applications can control the usage of the offerings.

Resource consumption (and therefore financial exposure) can be controlled by using capacity tokens in the On/Off CoD offering records.

The CPM is an example of an application that uses the CoD APIs to provision On/Off CoD capacity based on the requirements of the workload. The CPM cannot control other offerings.

For more information about any of the topics in this chapter, see the z Systems System Capacity on Demand User’s Guide, SC28-6943.
Reliability, availability, and serviceability

This chapter describes the reliability, availability, and serviceability (RAS) features of IBM z13 servers. The design goal for z13 servers is to remove all sources of planned outages.

The z13 design is focused on providing higher availability by reducing planned and unplanned outages. RAS can be accomplished with improved concurrent replace, repair, and upgrade functions for processors, memory, drawers, and I/O. RAS also extends to the nondisruptive capability for installing Licensed Internal Code (LIC) updates. In most cases, a capacity upgrade can be concurrent without a system outage. As an extension to the RAS capabilities, environmental controls are implemented in the system to help reduce power consumption and meet cooling requirements.

The design of the memory on z13 servers is based on the fully redundant memory infrastructure, Redundant Array of Independent Memory (RAIM). RAIM was first introduced with the z196. The z Systems servers are the only systems in the industry that offer this level of memory design. RAS also provides digitally signed delivery and transmission of microcode (LIC), fixes, and restoration/backup files. Any data transmitted to IBM Support is encrypted.

This chapter includes the following sections:

- The RAS strategy
- Technology change
- Structure change
- Reducing complexity
- Reducing touches
- z13 availability characteristics
- z13 RAS functions
- z13 enhanced drawer availability
- z13 Enhanced Driver Maintenance
- RAS capability for the Hardware Management Console and Support Element
- RAS capability for zBX Mod 004
- Considerations for PowerHA in zBX environment
- IBM z Advanced Workload Analysis Reporter
- RAS capability for Flash Express
9.1 The RAS strategy

The RAS strategy is to manage change by learning from previous generations and investing in new RAS function to eliminate or minimize all sources of outages. Enhancements to z Systems RAS designs are implemented on the z13 system through the introduction of new technology, structure, and requirements. Continuous improvements in RAS are associated with new features and functions to ensure that z Systems servers deliver exceptional value to clients.

As described throughout this book, the z13 server introduced several changes from prior z Systems generations. Although the RAS design objective has not changed, many new RAS functions were introduced to mitigate changes in the server design. The RAS design on z13 servers is based on continuous improvements to address changes in technology, structure, complexity, and touches.

9.2 Technology change

A technology change in z13 servers is that the central processor (CP) and system cache (SC) chips are designed as single chip modules (SCMs). Further improvements to address soft errors include bus interleaving, and smaller structures and register arrays. Cache sizes and densities were increased in z13 servers.

In the cache structure, the L3 wordline structure was changed, subarray masking was introduced, and the hardware system area (HSA) was changed to detect and demote uncorrectable errors. A new L4 cache design contains improved symbol error correction code (ECC) to handle correctable errors more effectively. The following are the technology changes made in z13 servers:

- All models use SCMs as opposed to the multiple chip modules (MCMs) that were used in previous generations.
- Increased interleaving on buses and register files to mitigate soft errors.
- Increased cache sizes and densities.
- Improved address checking for array and register files to better protect against soft error disturbances in the processors.
- Improved L3 cache macro structure such that wordline failures do not affect all compartments.
- Dynamic L3 cache monitor (“stepper”) to find and demote HSA lines in the cache.
- Symbol ECC on L3 cache configuration array.
- Symbol ECC on the L4 cache data.
- Symbol ECC on the L4 cache directory data.
- Symbol ECC on L4 cache configuration array.
- Dynamic L4 cache subarray masking that provides active monitoring of a masked subarray.
- Symbol ECC on the store protects key cache data.
9.3 Structure change

A structure change in z13 servers is that the processing infrastructure within the CPC was designed using drawer technology. Cables are keyed to ensure that correct lengths are plugged, plug detection ensures correct location, and custom latches ensure retention. Further improvements to the fabric bus include the introduction of symmetric multiprocessing (SMP) cables that connect the drawers together. To improve field-replaceable unit (FRU) isolation, time domain reflectometry (TDR) techniques are applied to the SMP cables, between chips (CP-CP, CP-SC, and SC-SC), and between the CP chips and dual inline memory modules (DIMMs).

With a two-node CPC drawer structure, the z13 design protects system resources and allows activation with half-drawer resources in degraded mode, if necessary. Enhancements to thermal RAS were introduced as well, such as a field-replaceable water manifold for CP cooling. Two redundant oscillator cards are attached to the central processor complex (CPC) drawers through a rigid backplane. The following structure changes were made in z13 servers:

- Processing infrastructure was designed by using drawer technology (zEC12 used book technology).
- Keyed cables and plugging detection.
- SMP cables that are used for fabric bus connections.
- Node level degrade on single drawer configuration.
- Water manifold is an FRU.
- Master-master redundant oscillator design in the main memory.
- Processor and nest chips are separate FRUs (like BC servers).
- Point of load cards are separate FRUs (replaces the VTM function in book).
- Oscillator cards plug straight in (no blind mating of connector)
- Built in time domain reflectometer for FRU isolation in interface errors

9.4 Reducing complexity

z13 servers also introduced a number of enhancements that reduced system RAS complexity. Specifically, in the memory subsystem design, simplifications were made in RAIM recovery. Memory DIMMs are no longer cascaded, which eliminates the double FRU call for DIMM errors. Independent channel recovery with replay buffers on all interfaces allows recovery of a single DIMM channel, while other channels remain active. Further redundancies are incorporated in I/O pins for clock lines to main memory, which eliminates the loss of memory clocks because of connector (pin) failure. The following RAS enhancements reduce service complexity:

- Continued use of RAIM ECC.
- No cascading of memory DIMM to simplify the recovery design.
- Replay buffer for hardware retry on soft errors on the main memory interface.
- Redundant I/O pins for clock lines to main memory.
9.5 Reducing touches

z Systems RAS efforts focus on the reduction of unscheduled, scheduled, planned, and unplanned outages. z Systems technology has a long history of demonstrated RAS improvements, and this effort continues with changes that reduce service touches on the system.

Firmware has been updated to improve filtering and resolution of errors that do not require action. Enhanced integrated sparing in processor cores, cache relocates, N+1 SEEPROM and POL N+2 redundancies, and DRAM marking also are incorporated to reduce touches. The following RAS enhancements reduce service touches:

- Improved error resolution to enable filtering
- Enhanced integrated sparing in processor cores
- Cache relocates
- N+1 SEEPROM
- N+2 POL
- DRAM marking
- N+2 radiator pumps, controllers, blowers, and sensors
- SCH N+1 (with N+1 SCH power supplies)
- N+1 Support Element (SE) (with N+1 SE power supplies)
- Redundant SEEPROM on memory DIMM
- Redundant temperature sensor (one SEEPROM and one temperature sensor per I2C bus)
- FICON forward error correction

9.6 z13 availability characteristics

The following functions include availability characteristics on z13 servers:

- Enhanced drawer availability (EDA)

 EDA is a procedure under which a CPC drawer in a multidrawer system can be removed and reinstalled during an upgrade or repair action with no impact on the workload.

- Concurrent memory upgrade or replacement

 Memory can be upgraded concurrently by using Licensed Internal Code Configuration Control (LICCC) if physical memory is available on the drawers. If the physical memory cards must be changed in a multidrawer configuration, requiring the drawer to be removed, the EDA function can be useful. It requires the availability of more memory resources on other drawers or reducing the need for memory resources during this action. To help ensure that the appropriate level of memory is available in a multiple-drawer configuration, select the flexible memory option. This option provides more resources to use EDA when repairing a drawer or memory on a drawer. They also are available when upgrading memory where larger memory cards might be required.
Memory can be upgraded concurrently by using LICCC if physical memory is available. The plan-ahead memory function that is available with z13 servers allows you to plan for nondisruptive memory upgrades by having the system pre-plugged based on a target configuration. You can enable the pre-plugged memory by placing an order through LICCC.

- **Enhanced driver maintenance (EDM)**
 One of the greatest contributors to downtime during planned outages is LIC driver updates that are performed in support of new features and functions. z13 servers are designed to support the concurrent activation of a selected new driver level.

- **IBM zAware**
 IBM z Advanced Workload Analysis Reporter (IBM zAware) is an availability feature that uses near real-time continuous learning algorithms, which provide a diagnostic capability that is intended to help you quickly pinpoint problems, which in turn can help you to address rapidly service disruptions. IBM zAware uses analytics to examine z/OS messages and Linux on z Systems logs (syslogd) to find unusual patterns, inconsistencies, and variations. For more information about IBM zAware, see 9.13, “IBM z Advanced Workload Analysis Reporter” on page 383.

- **Flash Express**
 The Flash Express feature allows customers to recover from application failures more quickly by speeding up the memory dump process. The internal flash storage solution is protected by two Peripheral Component Interconnect Express (PCIe) adapters that mirror to each other. If either card fails, the data is available on the other card. Data is stored over multiple flash devices in pairs, in a RAID configuration. If the flash device fails, the data is reconstructed dynamically. For more information about Flash Express, see 9.14, “RAS capability for Flash Express” on page 384.

- **Redundant IBM z BladeCenter Extension (zBX) Model 004 configurations**
 Redundant hardware configurations within the zBX provide the capacity to concurrently repair the BladeCenter components. Top of Rack (ToR) switches, present on the first zBX rack (frame B), are redundant. This redundancy allows firmware application and repair actions to be fully concurrent. Power Distribution Units (PDUs) provide redundant \((N+1)\) connections to the main power source, improving zBX availability. The internal and external network connections are redundant throughout all the zBX racks, ToRs, and BladeCenters.

- **Plan Ahead for Balanced Power (FC 3003)**
 The **Plan Ahead for Balanced Power** feature allows you to order the maximum number of bulk power regulators (BPRs) on any server configuration. This feature helps to ensure that your configuration is in a balanced power environment if you intend to add CPC drawers and I/O drawers to your server in the future. Regardless of your configuration, all six BPR pairs are shipped, installed, and activated.

 Note: When this feature is ordered, a corequisite feature, the Plan Ahead for Line Cords feature (FC 2000), is automatically selected.
Concurrent fanout addition or replacement

A PCIe or InfiniBand (IFB) fanout card provides the path for data between memory and I/O through PCIe or IFB cables. With z13 servers, a hot-pluggable and concurrently upgradeable fanout card is available. Up to 10 PCIe and up to four IFB fanout cards per CPC drawer are available for z13 servers. A z13 Model NC9 (or NE1) holds four CPC drawers and can have 40 PCIe fanout slots and 16 IFB fanout slots. Internal I/O paths from the CPC drawer fanout ports to either a PCIe drawer or an I/O drawer are spread across multiple CPC drawers (for models N63, N96, NC9, and NE1) and across different nodes within a single CPC drawer model N30. During an outage, a fanout card that is used for I/O can be repaired concurrently while redundant I/O interconnect ensures that no I/O connectivity is lost.

Redundant I/O interconnect

Redundant I/O interconnect helps maintain critical connections to devices. z13 servers allows a single drawer, in a multidrawer system, to be removed and reinstalled concurrently during an upgrade or repair. Connectivity to the system I/O resources is maintained through a second path from a different drawer.

Dynamic oscillator switch-over

z13 servers have two oscillator cards, a primary and a backup. During a primary card failure, the backup card is designed to detect transparently the failure, switch over, and provide the clock signal to the system.

Processor unit (PU) sparing

z13 servers have two spare PUs to maintain performance levels if an active CP, Internal Coupling Facility (ICF), Integrated Facility for Linux (IFL), IBM z Integrated Information Processor (zIIP), integrated firmware processor (IFP), or system assist processor (SAP) fails. Transparent sparing for failed processors is supported. There are two spare PUs per system and sparing is supported across the drawers in the unlikely event that the drawer with the failure does not have spares available.

Application preservation

Application preservation is used when a CP fails and no spares are left. The state of the failing CP is passed to another active CP, where the operating system uses it to successfully resume the task, in most cases without client intervention.

Cooling improvements

The z13 air-cooled configuration comes with a newly designed radiator cooling system. The radiator pumps, blowers, controls, and sensors are N+2 redundant. In normal operation, one active pump supports the system. A second pump is turned on and the original pump is turned off periodically, which improves reliability of the pumps. The replacement of pumps or blowers is concurrent with no performance impact.

A water-cooling system also is an option in z13 servers, with water-cooling unit (WCU) technology. Two redundant WCUs run with two independent chilled water feeds. One WCU and one water feed can support the entire system load. The water-cooled configuration is backed up by the rear door heat exchangers in the rare event of a problem with the chilled water facilities of the customer.

A new design of the rear door covers addresses past data center issues regarding airflow challenges. The covers can be installed for a vectored down or up orientation, fulfilling the requirements of the modern data center.

FICON Express16S with Forward Error Correction (FEC)

FICON Express16S features provide a new standard for transmission of data over 16 Gbps links by using 64b/66b encoding. The new standard that is defined by T11.org FC-FS-3 is more efficient than the current 8b/10b encoding.
FICON Express16S channels running at 16 Gbps can take advantage of FEC capabilities when connected to devices that support FEC.

FEC allows FICON Express16S channels to operate at higher speeds, over longer distances, with reduced power and higher throughput, while retaining the same reliability and robustness for which FICON channels have traditionally been known.

FEC is a technique that is used for controlling errors in data transmission over unreliable or noisy communication channels. When running at 16 Gbps link speeds, clients should see fewer I/O errors, reducing the potential impact to production workloads from those I/O errors.

Read Diagnostic Parameters (RDP) improve Fault Isolation. After a link error is detected (for example, IFCC, CC3, reset event, or a link incident report), use link data returned from Read Diagnostic Parameters to differentiate between errors because of failures in the optics versus failures because of dirty or faulty links. Key metrics can be displayed on the operator console.

The new z Systems Channel Subsystem Function performs periodic polling from the channel to the end points for the logical paths that are established and reduces the number of useless Repair Actions (RAs).

The RDP data history is used to validate Predictive Failure Algorithms and identify Fibre Channel Links with degrading signal strength before errors start to occur. The new Fibre Channel Extended Link Service (ELS) retrieves signal strength.

FICON Dynamic Routing

FICON Dynamic Routing (FIDR) enables the usage of storage area network (SAN) dynamic routing policies in the fabric. With the z13 server, FICON channels are no longer restricted to the use of static routing policies for inter-switch links (ISLs) for cascaded FICON directors.

FICON Dynamic Routing dynamically changes the routing between the channel and control unit based on the Fibre Channel Exchange ID. Each I/O operation has a unique exchange ID. FIDR is designed to support static SAN routing policies, and dynamic routing policies.

FICON Dynamic Routing can help clients reduce costs by providing these abilities:
- Share SANs between their FICON and FCP traffic
- Improve performance because of SAN dynamic routing policies that better use all the available ISL bandwidth through higher use of the ISLs,
- Simplify management of their SAN fabrics by using static routing policies assigning different ISL routes with each power-on-reset (POR), which makes the SAN fabric performance difficult to predict.

Clients must ensure that all devices in their FICON SAN support FICON Dynamic Routing before they implement this feature.

9.7 z13 RAS functions

Hardware RAS function improvements focus on addressing all sources of outages. Sources of outages have these classifications:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unscheduled</td>
<td>This outage occurs because of an unrecoverable malfunction in a hardware component of the system.</td>
</tr>
<tr>
<td>Scheduled</td>
<td>This outage is caused by changes or updates that must be done to the system in a timely fashion. A scheduled outage can be caused by a</td>
</tr>
</tbody>
</table>
disruptive patch that must be installed, or other changes that must be made to the system.

Planned

This outage is caused by changes or updates that must be done to the system. A planned outage can be caused by a capacity upgrade or a driver upgrade. A planned outage is usually requested by the client, and often requires pre-planning. The z13 design phase focuses on enhancing planning to simplify or eliminate planned outages.

The difference between scheduled outages and planned outages is, perhaps, not obvious. The general consensus is that scheduled outages take place sometime soon. The time frame is approximately two weeks. Planned outages are outages that are planned well in advance and go beyond this approximate two-week time frame. This chapter does not distinguish between scheduled and planned outages.

Preventing unscheduled, scheduled, and planned outages has been addressed by the IBM System z® system design for many years.

z13 servers introduce a fixed size HSA of 96 GB. This size helps eliminate pre-planning requirements for HSA and provides the flexibility to update dynamically the configuration. You can perform the following tasks dynamically:¹

- Add a logical partition (LPAR).
- Add a logical channel subsystem (LCSS).
- Add a subchannel set.
- Add a logical CP to an LPAR.
- Add a cryptographic coprocessor.
- Remove a cryptographic coprocessor.
- Enable I/O connections.
- Swap processor types.
- Add memory.
- Add a physical processor.

In addition, by addressing the elimination of planned outages, the following tasks are possible:

- Concurrent driver upgrades
- Concurrent and flexible customer-initiated upgrades

For more information about the flexible upgrades that are started by clients, see 8.2.2, “Customer Initiated Upgrade facility” on page 321.

9.7.1 Scheduled outages

Concurrent hardware upgrades, concurrent parts replacement, concurrent driver upgrades, and concurrent firmware fixes that are available with z13 servers all address the elimination of scheduled outages. Furthermore, the following indicators and functions that address scheduled outages are included:

- Double memory data bus lane sparing.
 This feature reduces the number of repair actions for memory.
- Single memory clock sparing.
- Double DRAM chipkill tolerance.
- Field repair of the cache fabric bus.

¹ Some pre-planning considerations might exist. For more information, see Chapter 8, “System upgrades” on page 313.
Processor drawer power distribution N+2 design.

The CPC Drawer uses point of load (POL) cards in a highly redundant N+2 configuration. POL regulators are daughter cards that contain the voltage regulators for the principle logic voltage boundaries in the z13 CPC drawer. They plug onto the CPC drawer system board and are nonconcurrent FRUs for the affected drawer, similar to the memory DIMMs. If you can use EDA, the replacement of POL cards is concurrent for the whole z Systems server.

Redundant N+1 System Control Hubs (SCHs).

The bulk power hub (BPH) in former z Systems servers has been repacked into a new part, the SCH. The SCH contains an Ethernet hub, a flexible support processor (FSP), power supplies for the SEs and displays, and blowers. There are two SCHs in the A frame for redundancy.

Redundant (N+2) humidity sensors.

Redundant (N+2) altimeter sensors.

Redundant (N+2) ambient temperature sensors.

Unified support for the zBX.

The zBX is supported like any other feature on z13 servers.

Dual inline memory module (DIMM) field-replaceable unit (FRU) indicators.

These indicators imply that a memory module is not error-free and might fail sometime in the future. This indicator gives IBM a warning and provides time to concurrently repair the storage module if the z13 is a multidrawer system. The process to repair the storage module is to isolate or “fence off” the drawer, remove the drawer, replace the failing storage module, and then add the drawer. The flexible memory option might be necessary to maintain sufficient capacity while repairing the storage module.

Single processor core checkstop and sparing.

This indicator shows that a processor core has malfunctioned and is spared. IBM determines what to do based on the system and the history of that system.

Point-to-point fabric for symmetric multiprocessing (SMP).

Having fewer components that can fail is an advantage. In a multidrawer system, all of the drawers are connected by point-to-point connections. A drawer can always be added concurrently.

Air-cooled system: radiator with redundant (N+2) pumps.

z13 servers implement true N+2 redundancy on pumps and blowers for the radiator. The radiator cooling system can support one and two CPC drawers simultaneously with a redundant design that consists of three pumps and three blowers. One active pump and blower can support the entire system load. If you have three or four CPC drawers, one additional blower is there, and one active pump and two blowers can support the entire system load. The replacement of a pump or blower causes no performance impact.

Water-cooled system: N+1 Water-Cooling Units (WCUs).

A water-cooling system is an option in z13 servers, with WCU technology. Two redundant WCUs run with two independent chilled water feeds. One WCU and one water feed can support the entire system load. The water-cooled configuration is backed up by the rear door heat exchangers in the rare event of a problem with the chilled water facilities of the customer.
> Hot-swap IFB hub cards.

When correctly configured for redundancy, hot swapping (replacing) the IFB (HCA2-O (12xIFB) or HCA3-O (12xIFB)) hub cards is possible. This process avoids any interruption when you must replace these types of cards.

> Redundant 1 Gbps Ethernet service network with virtual LAN (VLAN).

The service network in the system gives the machine code the capability to monitor each internal function in the system. This process helps to identify problems, maintain the redundancy, and concurrently replace a part. Through the implementation of the VLAN to the redundant internal Ethernet service network, these advantages are improved, making the service network easier to handle and more flexible.

> The PCIe I/O drawer is available for z13 servers. It and all of the PCIe I/O drawer-supported features can be installed concurrently.

> Memory interface logic to maintain channel synchronization when one channel goes into replay. z13 servers can isolate recovery to just the failing channel.

> Out of band access to DIMM (for background maintenance functions).

Out of band access (using an I2C interface) allows maintenance (such as logging) without disrupting customer memory accesses.

> Lane shadowing function to each lane that periodically is taken offline (for recalibration).

The (logical) spare bit lane is rotated through the (physical) lanes. This allows the lane to be tested and recalibrated transparently to customer operations.

> Automatic lane recalibration on offline lanes on the main memory interface. Hardware support for transparent recalibration.

> Automatic dynamic lane sparing based on pre-programmed CRC thresholds on the main memory interface. Hardware support to detect a defective lane and spare it out.

> Improved DIMM exerciser for testing memory during IML.

> PCIe redrive hub cards plug straight in (no blind mating of connector). Simplified plugging that is more reliable.

> ICB_P (short distance) coupling cards plug straight in (no blind mating of connector). Simplified plugging that is more reliable.

9.7.2 Unscheduled outages

An unscheduled outage occurs because of an unrecoverable malfunction in a hardware component of the system.

The following improvements can minimize unscheduled outages:

> Continued focus on firmware quality

For LIC and hardware design, failures are eliminated through rigorous design rules; design walk-through; peer reviews; element, subsystem, and system simulation; and extensive engineering and manufacturing testing.

> Memory subsystem improvements

RAIM on z Systems servers is a concept similar to the concept of Redundant Array of Independent Disks (RAID). The RAIM design detects and recovers from dynamic random access memory (DRAM), socket, memory channel, or DIMM failures. The RAIM design requires the addition of one memory channel that is dedicated for RAS. The parity of the four data DIMMs is stored in the DIMMs that are attached to the fifth memory channel. Any
failure in a memory component can be detected and corrected dynamically. z13 servers inherited this memory architecture.

The memory system on z13 servers is implemented with an enhanced version of the Reed-Solomon ECC that is known as 90B/64B. It provides protection against memory channel and DIMM failures. A precise marking of faulty chips helps ensure timely DIMM replacements. The design of the z13 server further improved this chip marking technology. There is graduated DRAM marking, and there are channel marking and scrubbing calls for replacement on the third DRAM failure. For more information about the memory system on z13 servers, see 2.4, “Memory” on page 56.

- Improved thermal, altitude, and condensation management
- Soft-switch firmware
 z13 servers are equipped with the capabilities of soft-switching firmware. Enhanced logic in this function ensures that every affected circuit is powered off during the soft-switching of firmware components. For example, when you are upgrading the microcode of a FICON feature, enhancements are implemented to avoid any unwanted side effects that were detected on previous systems.
- Server Time Protocol (STP) recovery enhancement
 When HCA3-O (12×IFB) or HCA3-O Long Reach (LR) (1×IFB) or PCIe based integrated communication adapter (ICA) Short Reach (SR) coupling links are used, an unambiguous “going away signal” is sent when the server on which the HCA3 is running is about to enter a failed (check stopped) state.

 When the “going away signal” that is sent by the Current Time Server (CTS) in an STP-only Coordinated Timing Network (CTN) is received by the Backup Time Server (BTS), the BTS can safely take over as the CTS without relying on the previous Offline Signal (OLS) in a two-server CTN, or as the Arbiter in a CTN with three or more servers.

 Enhanced Console Assisted Recovery (ECAR) is new with z13s and z13 GA2. It contains better recovery algorithms during a failing Primary Time Server (PTS) and uses communication over the HMC/SE network to assist with BTS takeover. For more information, see Chapter 11, “Hardware Management Console and Support Elements” on page 415.

- Design of pervasive infrastructure controls in processor chips in memory ASICs.
- Improved error checking in the processor recovery unit (RU) to better protect against word line failures in the RU arrays.

9.8 z13 enhanced drawer availability

EDA is a procedure where a drawer in a multidrawer system can be removed and reinstalled during an upgrade or repair action. This procedure has no impact on the running workload.

The EDA procedure and careful planning help ensure that all the resources are still available to run critical applications in an (n-1) drawer configuration. This process allows you to avoid planned outages. Consider the flexible memory option to provide more memory resources when you are replacing a drawer. For more information about flexible memory, see 2.4.6, “Flexible Memory Option” on page 62.

To minimize the effect on current workloads, ensure that sufficient inactive physical resources exist on the remaining drawers to complete a drawer removal. Also, consider deactivating non-critical system images, such as test or development LPARs. After you stop these non-critical LPARs and free their resources, you might find sufficient inactive resources to contain critical workloads while completing a drawer replacement.
9.8.1 EDA planning considerations

To use the EDA function, configure enough physical memory and engines so that the loss of a single drawer does not result in any degradation to critical workloads during the following occurrences:

- A degraded restart in the rare event of a drawer failure
- A drawer replacement for repair or a physical memory upgrade

The following configurations especially enable the use of the EDA function. These z13 models need enough spare capacity so that they can cover the resources of a fenced or isolated drawer. This configuration imposes limits on the number of the client-owned PUs that can be activated when one drawer within a model is fenced:

- A maximum of 32 client PUs are configured on the N63.
- A maximum of 65 client PUs are configured on the N96.
- A maximum of 98 client PUs are configured on the NC9.
- A maximum of 107 client PUs are configured on the NE1.
- No special feature codes are required for PU and model configuration.
- For all z13 models, there are six SAPs in every drawer.
- The flexible memory option delivers physical memory so that 100% of the purchased memory increment can be activated even when one drawer is fenced.

The system configuration must have sufficient dormant resources on the remaining drawers in the system for the evacuation of the drawer that is to be replaced or upgraded. Dormant resources include the following possibilities:

- Unused PUs or memory that are not enabled by LICCC
- Inactive resources that are enabled by LICCC (memory that is not being used by any activated LPARs)
- Memory that is purchased with the flexible memory option
- Additional drawers

The I/O connectivity must also support drawer removal. Most of the paths to the I/O have redundant I/O interconnect support in the I/O infrastructure (drawers) that enable connections through multiple fanout cards.

If sufficient resources are not present on the remaining drawers, certain non-critical LPARs might have to be deactivated. One or more CPs, specialty engines, or storage might have to be configured offline to reach the required level of available resources. Plan to address these possibilities to help reduce operational errors.

Exception: Single-drawer systems cannot use the EDA procedure.

Include the planning as part of the initial installation and any follow-on upgrade that modifies the operating environment. A client can use the Resource Link machine information report to determine the number of drawers, active PUs, memory configuration, and channel layout.

If the z13 server is installed, click **Prepare for Enhanced Drawer Availability** in the Perform Model Conversion window of the EDA process on the Hardware Management Console (HMC). This task helps you determine the resources that are required to support the removal of a drawer with acceptable degradation to the operating system images.
The EDA process determines which resources, including memory, PUs, and I/O paths, are free to allow for the removal of a drawer. You can run this preparation on each drawer to determine which resource changes are necessary. Use the results as input in the planning stage to help identify critical resources.

With this planning information, you can examine the LPAR configuration and workload priorities to determine how resources might be reduced and still allow the drawer to be concurrently removed.

Include the following tasks in the planning process:

- Review of the z13 configuration to determine the following values:
 - Number of drawers that are installed and the number of PUs enabled. Note the following information:
 - Use the Resource Link machine information or the HMC to determine the model, number, and types of PUs (CPs, IFLs, ICFs, and zIIPs).
 - Determine the amount of memory, both physically installed and LICCC-enabled.
 - Work with your IBM Service Support Representative (IBM SSR) to determine the memory card size in each drawer. The memory card sizes and the number of cards that are installed for each drawer can be viewed from the SE under the CPC configuration task list. Use the View Hardware Configuration option.
 - Channel layouts, ICA, and host channel adapter (HCA) to channel connections.
 - Use the Resource Link machine information to review the channel configuration, including the HCA paths. This process is a normal part of the I/O connectivity planning. The alternative paths must be separated as far into the system as possible.

- Review the system image configurations to determine the resources for each image.

- Determine the importance and relative priority of each LPAR.

- Identify the LPAR or workloads and the actions to be taken:
 - Deactivate the entire LPAR.
 - Configure PUs.
 - Reconfigure memory, which might require the use of reconfigurable storage unit (RSU) values.
 - Vary off the channels.

- Review the channel layout and determine whether any changes are necessary to address single paths.

- Develop a plan to address the requirements.

When you perform the review, document the resources that can be made available if the EDA is used. The resources on the drawers are allocated during a POR of the system and can change after that process. Perform a review when changes are made to z13 servers, such as adding drawers, CPs, memory, or channels. Also, perform a review when workloads are added or removed, or if the HiperDispatch feature was enabled and disabled since the last time you performed a POR.
9.8.2 Enhanced drawer availability processing

To use the EDA, first ensure that the following conditions are satisfied:

- Free the used processors (PUs) on the drawer that will be removed.
- Free the used memory on the drawer.
- For all I/O domains that are connected to the drawer, ensure that alternative paths exist. Otherwise, place the I/O paths offline.

For the EDA process, this is the preparation phase. It is started from the SE, either directly or on the HMC by using the **Single object operation** option on the Perform Model Conversion window from the CPC configuration task list, as shown in Figure 9-1 on page 373.

Processor availability

Processor resource availability for reallocation or deactivation is affected by the type and quantity of the resources in use:

- Total number of PUs that are enabled through LICCC
- PU definitions in the profiles that can be dedicated and dedicated reserved or shared
- Active LPARs with dedicated resources at the time of the drawer repair or replacement

To maximize the PU availability option, ensure that sufficient inactive physical resources are on the remaining drawers to complete a drawer removal.

Memory availability

Memory resource availability for reallocation or deactivation depends on these factors:

- Physically installed memory
- Image profile memory allocations
- Amount of memory that is enabled through LICCC
- Flexible memory option

For more information, see 2.6.2, “Enhanced drawer availability” on page 69.

Fanout card to I/O connectivity requirements

The optimum approach is to maintain maximum I/O connectivity during drawer removal. The redundant I/O interconnect (RII) function provides for redundant HCA connectivity to all installed I/O domains in the PCIe I/O drawers, and I/O drawers.

Preparing for enhanced drawer availability

The Prepare Concurrent Drawer replacement option validates that enough dormant resources exist for this operation. If enough resources are not available on the remaining drawers to complete the EDA process, the process identifies those resources. It then guides you through a series of steps to select and free up those resources. The preparation process does not complete until all processors, memory, and I/O conditions are successfully resolved.

Preparation: The preparation step does not reallocate any resources. It is only used to record client choices and produce a configuration file on the SE that is used to run the concurrent drawer replacement operation.

The preparation step can be done in advance. However, if any changes to the configuration occur between the preparation and the physical removal of the drawer, you must rerun the preparation phase.
The process can be run multiple times because it does not move any resources. To view the results of the last preparation operation, click **Display Previous Prepare Enhanced Drawer Availability Results** from the Perform Model Conversion window in the SE.

The preparation step can be run without performing a drawer replacement. You can use it to dynamically adjust the operational configuration for drawer repair or replacement before IBM SSR activity. Figure 9-1 shows the Perform Model Conversion window where you click **Prepare for Enhanced Drawer Availability**.

![Figure 9-1 Clicking Prepare for Enhanced Drawer Availability](image)

After you click **Prepare for Enhanced Drawer Availability**, the Enhanced Drawer Availability window opens. Select the drawer that is to be repaired or upgraded, then select **OK**, as shown in Figure 9-2. Only one target drawer can be selected at a time.

![Figure 9-2 Selecting the target drawer](image)

The system verifies the resources that are required for the removal, determines the required actions, and presents the results for review. Depending on the configuration, the task can take from a few seconds to several minutes.

The preparation step determines the readiness of the system for the removal of the targeted drawer. The configured processors and the memory in the selected drawer are evaluated against unused resources available across the remaining drawers. The system also analyzes I/O connections that are associated with the removal of the targeted drawer for any single path I/O connectivity.

If insufficient resources are available, the system identifies the conflicts so that you can free other resources.
Three states can result from the preparation step:

- The system is ready to run the EDA for the targeted drawer with the original configuration.
- The system is not ready to run the EDA because of conditions that are indicated by the preparation step.
- The system is ready to run the EDA for the targeted drawer. However, to continue with the process, processors are reassigned from the original configuration. Review the results of this reassignment relative to your operation and business requirements. The reassignments can be changed on the final window that is presented. However, before making changes or approving reassignments, ensure that the changes are reviewed and approved by the correct level of support based on your organization’s business requirements.

Preparation tabs

The results of the preparation are presented for review in a tabbed format. Each tab indicates conditions that prevent the EDA option from being run. Tabs are for processors, memory, and various single path I/O conditions. The following tab selections are available:

- Processors
- Memory
- Single I/O
- Single Domain I/O
- Single Alternate Path I/O

Only the tabs that have conditions that prevent the drawer from being removed are displayed. Each tab indicates the specific conditions and possible options to correct them.

The preparation identifies, for example, single I/O paths that are associated with the removal of the selected drawer. These paths must be varied offline to perform the drawer removal. After you address the condition, rerun the preparation step to ensure that all the required conditions are met.

Preparing the system to perform enhanced drawer availability

During the preparation, the system determines the CP configuration that is required to remove the drawer. Figure 9-3 shows the results and provides the option to change the assignment on non-dedicated processors.

![Figure 9-3 Reassign Non-Dedicated Processors results](image-url)
After you review the reassignment results and make any necessary adjustments, click **OK**.

The final results of the reassignment, which include the changes that are made as a result of the review, are displayed as shown in Figure 9-4. These results are the assignments when the drawer removal phase of the EDA is completed.

Summary of the drawer removal process steps

To remove a drawer, the following resources must be moved to the remaining active drawers:

- **PUs:** Enough PUs must be available on the remaining active drawers, including all types of PUs that can be characterized (CPs, IFLs, ICFs, zIIPs, the IFP2, and SAPs).
- **Memory:** Enough installed memory must be available on the remaining active drawers.
- **I/O connectivity:** Alternative paths to other drawers must be available on the remaining active drawers, or the I/O path must be taken offline.

By understanding both the system configuration and the LPAR allocation for memory, PUs, and I/O, you can make the best decision about how to free the necessary resources to allow for drawer removal.

To replace concurrently a drawer, complete these steps:

1. Run the preparation task to determine the necessary resources.
2. Review the results.
3. Determine the actions to perform to meet the required conditions for EDA.
4. When you are ready for the drawer removal, free the resources that are indicated in the preparation steps.
5. Rerun the step in Figure 9-1 on page 373 (the Prepare for Enhanced Drawer Availability task) to ensure that the required conditions are all satisfied.
6. Upon successful completion, the system is ready for the removal of the drawer.

2 If any native PCIe features are installed on the system.
The preparation process can be run multiple times to ensure that all conditions are met. It
does not reallocate any resources. It only produces a report. The resources are not
reallocated until the Perform Drawer Removal process is started.

Rules during EDA
During EDA, the following processor, memory, and single I/O rules are enforced:

- **Processor rules**
 All processors in any remaining drawers are available to be used during EDA. This
 requirement includes the two spare PUs or any available PU that is non-LICCC.
 The EDA process also allows conversion of one PU type to another PU type. One example
 is converting a zIIP to a CP during the EDA function. The preparation for the concurrent
 drawer replacement task indicates whether any SAPs must be moved to the remaining
 drawers.

- **Memory rules**
 All physical memory that is installed in the system, including flexible memory, is available
 during the EDA function. Any physical installed memory, whether purchased or not, is
 available to be used by the EDA function.

- **Single I/O rules**
 Alternative paths to other drawers must be available, or the I/O path must be taken offline.

Review the results. The result of the preparation task is a list of resources that must be made
available before the drawer replacement can take place.

Freeing any resources
At this stage, create a plan to free these resources. The following list shows the resources
and actions that are necessary to free them:

- **To free any PUs:**
 - Vary off the CPs by using the Perform a Model Conversion window, which reduces the
 number of CPs in the shared CP pool.
 - Deactivate the LPARs.

- **To free memory:**
 - Deactivate an LPAR.
 - Vary offline a portion of the reserved (online) memory. For example, in z/OS, run the
 following command:

    ```
    CONFIG_STOR(E=1),<OFFLINE/ONLINE>
    ```

 This command enables a storage element to be taken offline. The size of the storage
 element depends on the RSU value. In z/OS, the following command configures offline
 smaller amounts of storage than the amount that was set for the storage element:

    ```
    CONFIG_STOR(nnM),<OFFLINE/ONLINE>
    ```

 - A combination of both LPAR deactivation and varying memory offline.

Reserved storage: If you plan to use the EDA function with z/OS LPARs, set up
reserved storage and an RSU value. Use the RSU value to specify the number of
storage units that are to be kept free of long-term fixed storage allocations. This
configuration allows for storage elements to be varied offline.
9.9 z13 Enhanced Driver Maintenance

EDM is one more step toward reducing both the necessity for and the duration of a scheduled outage. One of the components to planned outages is LIC Driver updates that are run in support of new features and functions.

When correctly configured, z13 servers support concurrently activating a selected new LIC Driver level. Concurrent activation of the selected new LIC Driver level is supported only at specific released sync points. Concurrently activating a selected new LIC Driver level anywhere in the maintenance stream is not possible. Certain LIC updates do not allow a concurrent update/upgrade.

Consider the following key points of EDM:

- The HMC can query whether a system is ready for a concurrent driver upgrade.
- Previous firmware updates, which require an initial machine load (IML) of the z13 system to be activated, can block the ability to run a concurrent driver upgrade.
- An icon on the SE allows you or your IBM SSR to define the concurrent driver upgrade sync point to be used for an EDM.
- The ability to concurrently install and activate a driver can eliminate or reduce a planned outage.
- z13 servers introduce Concurrent Driver Upgrade (CDU) cloning support to other CPCs for CDU preinstallation and activation.
- Concurrent crossover from Driver level \(N \) to Driver level \(N+1 \), then to Driver level \(N+2 \), must be done serially. No composite moves are allowed.
- Disruptive upgrades are permitted at any time, and allow for a composite upgrade (Driver \(N \) to Driver \(N+2 \)).
- Concurrently backing up to the previous driver level is not possible. The driver level must move forward to driver level \(N+1 \) after EDM is initiated. Unrecoverable errors during an update might require a scheduled outage to recover.

The EDM function does not eliminate the need for planned outages for driver-level upgrades. Upgrades might require a system level or a functional element scheduled outage to activate the new LIC. The following circumstances require a scheduled outage:

- Specific complex code changes might dictate a disruptive driver upgrade. You are alerted in advance so that you can plan for the following changes:
 - Design data or hardware initialization data fixes
 - CFCC release level change
- OSA CHPID code changes might require PCHID Vary OFF/ON to activate new code.
- Crypto CHPID code changes might require PCHID Vary OFF/ON to activate new code.

Note: zUDX clients should contact their User Defined Extensions (UDX) provider before installation of Microcode Change Levels (MCLs). Any changes to Segments 2 and 3 from a previous MCL level might require a change to the client's UDX. Attempting to install an incompatible UDX at this level results in a Crypto checkstop.

- Changes to the code of native PCIe features might require additional action from the client if the specific feature must be offline to the connecting LPARs before the new code can be applied and brought back online.
During changes to the Resource Group (RG) code, all native PCIe features within that RG might need to be varied offline to all connection LPARs by the client and back online after the code is applied.

z13 servers introduce the support to concurrently activate an MCL on an OSA-ICC channel to improve the availability and simplification of the firmware maintenance. The OSD channels already have this capability.

9.10 RAS capability for the Hardware Management Console and Support Element

The HMC and the SE have the following RAS capabilities:

- **Back up from HMC and SE**

 On a scheduled basis, the HMC hard disk drive (HDD) is backed up to the USB flash memory drive (UFD), a customer provided FTP server, or both.

 SE HDDs are backed up on to the primary SE HDD and alternate SE HDD. In addition, you can save the backup to a customer-provided FTP server.

 For more information, see 11.2.4, “New backup options for HMCs and primary SEs” on page 421.

- **Remote Support Facility (RSF)**

 The HMC RSF provides the important communication to a centralized IBM support network for hardware problem reporting and service. For more information, see 11.4, “Remote Support Facility” on page 431.

- **Microcode Change Level (MCL)**

 Regular installation of MCLs is key for RAS, optimal performance, and new functions. Generally, plan to install MCLs quarterly at a minimum. Review hiper MCLs continuously. You must decide whether to wait for the next scheduled apply session, or schedule one earlier if your risk assessment of the new hiper MCLs warrants.

 For more information, see 11.5.4, “HMC and SE microcode” on page 436.

- **Support Element (SE)**

 z13 servers are provided with two 1U System x servers inside the z Systems frame. One is always the primary SE and the other is the alternate SE. The primary SE is the active one. The alternate acts as the backup. Once per day, information is mirrored. The SE servers have N+1 redundant power supplies.

 For more information, see 11.2.3, “New Support Elements” on page 421.

- **Hardware Management Console (HMC) in an ensemble**

 The serviceability function for the components of an ensemble is delivered through the traditional HMC/SE constructs, as for earlier z Systems systems. From a serviceability point of view, all the components of the ensemble, including the zBX, are treated as z13 features. The zBX receives all of its serviceability and problem management through the HMC and SE infrastructure. All service reporting, including RSF functions, is delivered in a similar fashion to the z13 servers.

 The primary HMC for the ensemble is where portions of the Unified Resource Manager routines run. The Unified Resource Manager is an active part of the ensemble and z13 infrastructure. Therefore, the HMC is in a stateful state that needs high availability features

3 For up-to-date information, see Driver 27 Service Exception Letter, GC28-6957.
to ensure the survival of the system during a failure. Therefore, each ensemble must be equipped with two HMCs: A primary and an alternate. The primary HMC performs all HMC activities (including Unified Resource Manager activities). The alternate is only the backup. The alternate cannot be used for tasks or activities.

Failover: The primary HMC and its alternate must be connected to the same LAN segment. This configuration allows the alternate HMC to take over the IP address of the primary HMC during failover processing.

For more information, see 11.6, “HMC in an ensemble” on page 456.

- **Alternate HMC preload function**

The Manage Alternate HMC task allows you to reload internal code onto the alternate HMC to minimize HMC downtime during an upgrade to a new driver level. After the new driver is installed on the alternate HMC, it can be made active by running an HMC switchover.

9.11 RAS capability for zBX Mod 004

The zBX Mod 004 exists only as a result of a miscellaneous equipment specification (MES) from a zBX Model 002 or zBX Model 003. The zBX Mod 004 is now a stand-alone node that contains its own monitoring and controlling SEs. The two new 1U rack-mounted server SEs, along with their displays and keyboards, are added to the stand-alone zBX Model 004 frame B, below the ToR switches. zBX Mod 004 includes all the RAS capabilities that are available in the previous models, and it was built with the traditional z Systems quality of service (QoS) to include RAS capabilities. The zBX Mod 004 offering provides extended service capability independent of the z13 hardware management structure.

zBX Mod 004 is a stand-alone box that can be added to an existing ensemble HMC as an individual ensemble member. The zBX Mod 004 is now an object that is required to be defined to the HMC. The ensemble HMC is used to run the zBX configuration and monitoring functions by using its connectivity to its internal SEs.

Apart from a zBX configuration with one chassis that are installed, the zBX is configured to provide $N + 1$ components. All the components are designed to be replaced concurrently. In addition, zBX configuration upgrades can be performed concurrently.

The zBX has two ToR switches. These switches provide $N + 1$ connectivity for the private networks between the zBX and its internal support elements for monitoring, controlling, and managing the zBX components.

9.11.1 BladeCenter components

Each BladeCenter has the following components:

- Up to 14 blade server slots. Blades can be removed, repaired, and replaced concurrently.
- $(N + 1)$ PDUs. If the Power Distribution Units (PDUs) have power inputs from two separate sources, if there is a single source failure, the second PDU takes over the total load of its BladeCenter.
- $(N + 1)$ hot-swap power modules with fans. A pair of power modules provides power for seven blades. A fully configured BladeCenter with 14 blades has a total of four power modules.
-
 - (N + 1) 1 GbE switch modules for the power system control network (PSCN).
 - (N + 1) 10 GbE High Speed switches for the intraensemble data network (IEDN).
 - (N + 1) 1000BaseT switches for the intranode management network (INMN).
 - (N + 1) 8 Gb FC switches for the external disk.
 - (N+1) Internal 1U rack-mounted SEs with fully redundant (N+1) components.
 - Two hot-swap advanced management modules (AMMs).
 - Two hot-swap fans/blowers.

Maximums: Certain BladeCenter configurations do not physically fill up the rack with their components, but they might have reached other maximums, such as power usage.

9.11.2 zBX firmware

The testing, delivery, installation, and management of the zBX firmware is handled in the same way as the z13 servers. The same processes and controls are used. All fixes to the zBX are downloaded to the zBX Model 004 internal SEs and applied to the zBX.

The MCLs for the zBX are designed to be concurrent. Their status can be viewed at the z13 HMC.

9.11.3 zBX RAS and the IBM z Unified Resource Manager

The Hypervisor Management function of the Unified Resource Manager provides tasks for managing the hypervisor lifecycle, managing storage resources, performing RAS and using the first-failure data capture (FFDC) features, and monitoring the supported hypervisors.

For blades that are deployed in a solution configuration, such as DataPower, the solution handles the complete end-to-end management for them and for their operating systems, middleware, and applications.

For blades that are deployed by the client, the Unified Resource Manager handles the blades:

- The client must have an entitlement for each blade in the configuration.
- When the blade is deployed in the BladeCenter chassis, the Unified Resource Manager powers up the blade, verifies that there is an entitlement for the blade, and verifies that the blade can participate in an ensemble. If these two conditions are not met, the Unified Resource Manager powers down the blade.
- The blade is populated with the necessary microcode and firmware.
- The appropriate hypervisor is loaded onto the blade.
- The management scope is deployed according to which management enablement level is present in the configuration.
- The administrator can define the blade profile, and the profiles for virtual servers to run on the blade, through the HMC.

Based on the profile for individual virtual servers inside the deployed hypervisor, the virtual servers can be activated and an operating system can be loaded following the activation. For client-deployed blades, all of the application, database, operating system, and network management is handled by the client's usual system management disciplines.
9.11.4 zBX Model 004: 2458-004

z13 servers can only be in an ensemble that supports a zBX Model 004. When upgrading a z196 or a zEC12 with zBX to a z13 server, the zBX must also be upgraded from a Model 002 or a Model 003 to a zBX Model 004.

The zBX Model 004 is based on the BladeCenter and blade hardware offerings that contain IBM certified components. zBX Model 004 BladeCenter and blade RAS features are extended considerably for IBM System z®:

- Hardware redundancy at various levels:
 - Redundant power infrastructure
 - Redundant power and switch units in the BladeCenter chassis
 - Redundant cabling for management of zBX and data connections
 - Redundant 1U rack-mounted support elements
- Concurrent to system operations:
 - Install more blades
 - Hardware repair
 - Firmware fixes and driver upgrades
 - Automated call home for hardware/firmware problems

Important: Depending on the type of hardware repair being performed and the firmware fixes being installed or activated, a deactivation of a target blade might be required.

The zBX has two pairs of ToR switches, the INMN \(N+1\) pair and the IEDN \(N+1\) switch pair, which are installed in Frame B. The management switch pair (INMN) provides \(N+1\) connectivity for the private networks between the internal zBX support elements SEs and the zBX hardware. The connection is used for monitoring, controlling, and managing the zBX components. The data switch pair (IEDN) provides \(N+1\) connectivity for the data traffic between the defined virtual servers and client’s networks.

Because of the MES conversion from previous zBX Models, a zBX Model 004 became a stand-alone box, independent of the z13 server for management and control functions. The zBX Model 004 internal SEs are used for firmware updates and other related service activities. Therefore, the distance restriction of 23 meters from the CPC to the zBX that existed with the previous models was removed.

Not only hardware and firmware provide RAS capabilities. The operating system can also contribute to improving RAS. IBM PowerHA® SystemMirror® for AIX (PowerHA) supports the zBX PS701 8406-71Y blades. PowerHA enables setting up a PowerHA environment on the stand-alone zBX. Table 9-1 provides more information about PowerHA and the required AIX levels that are needed for a PowerHA environment on zBX.

<table>
<thead>
<tr>
<th>IBM zBX Model 004</th>
<th>AIX V6.1</th>
<th>AIX V7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerHA V6.1</td>
<td>AIX V6.1 TL05 RSCT 2.5.5.0</td>
<td>PowerHA V6.1 SP3 AIX V7.1 RSCT V3.1.0.3</td>
</tr>
<tr>
<td>PowerHA V7.1</td>
<td>AIX V6.1 TL06 RSCT V3.1.0.3</td>
<td>AIX V7.1 RSCT V3.1.0.3</td>
</tr>
</tbody>
</table>

\(^4\) AIX 6.1 Technology Level (TL)06 Service Pack (SP) 3 with RSCT 3.1.0.4 (packaged in Cluster Systems Management (CSM) PTF 1.7.1.10 installed with AIX 6.1.6.3) is the preferred baseline for zBX Virtual Servers running AIX.
zBX Model 004 includes major firmware changes in almost all areas compared to the zBX Model 003. zBX Model 004 takes the RAS concept of the zBX to higher levels.

9.12 Considerations for PowerHA in zBX environment

An application that runs on AIX can be provided with high availability by using the PowerHA SystemMirror for AIX (formerly known as IBM High Availability Cluster Multi-Processing (HACMP™)). PowerHA is easy to configure because it is menu-driven, and provides high availability for applications that run on AIX.

PowerHA helps define and manage resources that are required by applications that run on AIX. It provides service/application continuity through system resources and application monitoring, and automated actions (start/manage/monitor/restart/move/stop).

Tip: Resource movement and application restart on the second server are known as failover.

Automating the failover process speeds up recovery and allows for unattended operations, improving application availability. In an ideal situation, an application must be available 24 x 7. Application availability can be measured as the amount of time that the service is available, divided by the amount of time in a year, as a percentage.

A PowerHA configuration (also known as a cluster) consists of two or more servers (up to 32) that have their resources managed by PowerHA cluster services. The configuration provides automated service recovery for the applications that are managed. Servers can have physical or virtual I/O resources, or a combination of both.

PowerHA performs the following functions at the cluster level:
- Manage and monitor operating system and hardware resources
- Manage and monitor application processes
- Manage and monitor network resources (service IP addresses)
- Automate application control (start/stop/restart/move)

The virtual servers that are defined and managed in zBX use only virtual I/O resources. PowerHA can manage both physical and virtual I/O resources (virtual storage and virtual network interface cards).

PowerHA can be configured to perform automated service recovery for the applications that run in virtual servers that are deployed in zBX. PowerHA automates application failover from one virtual server in an IBM System p blade to another virtual server in a different System p blade with a similar configuration.

Failover protects service (masks service interruption) in an unplanned or planned (scheduled) service interruption. During failover, you might experience a short service unavailability while resources are configured by PowerHA on the new virtual server.

The PowerHA configuration for the zBX environment is similar to standard Power environments, except that it uses only virtual I/O resources. Currently, PowerHA for zBX support is limited to fail over inside the same ensemble. All zBXs participating in the PowerHA cluster must have access to the same storage.

5 Servers can be also virtual servers. One server is one instance of the AIX operating system.
The PowerHA configuration includes the following tasks:

- Network planning (VLAN and IP configuration definition and server connectivity)
- Storage planning (shared storage must be accessible to all blades that provide resources for a PowerHA cluster)
- Application planning (start/stop/monitoring scripts and operating system, processor, and memory resources)
- PowerHA software installation and cluster configuration
- Application integration (integrating storage, networking, and application scripts)
- PowerHA cluster testing and documentation

A typical PowerHA cluster is shown in Figure 9-5.

For more information about IBM PowerHA SystemMirror for AIX, see this website:

9.13 IBM z Advanced Workload Analysis Reporter

IBM z Advanced Workload Analysis Reporter (IBM zAware) Version 2.0 provides a solution for detecting and diagnosing anomalies in z/OS and Linux on z Systems by analyzing software logs and highlighting abnormal events. It represents the first in a new generation of “smart monitoring” products with pattern-based message analysis.
IBM zAware runs as a firmware virtual appliance in a z13 z Appliance Container Infrastructure (zACI) LPAR. It is an integrated set of analytic applications that creates a model of normal system behavior that is based on prior system data. It uses pattern recognition techniques to identify unexpected messages in current data from the z/OS or Linux on z Systems systems that it is monitoring. This analysis of events provides nearly real-time detection of anomalies. These anomalies can then be easily viewed through a graphical user interface (GUI). For more information, see Appendix A, “IBM z Appliance Container Infrastructure” on page 475.

IBM zAware improves the overall RAS capability of z13 servers by providing these advantages:

- Identify when and where to look for a problem
- Drill down to identify the cause of the problem
- Improve problem determination in near real-time
- Reduce problem determination efforts significantly

For more information about IBM zAware, see Appendix B, “IBM z Advanced Workload Analysis Reporter” on page 479.

9.14 RAS capability for Flash Express

Flash Express cards come in pairs for availability, and can only be place in PCIe I/O drawers. Similar to other PCIe I/O cards, redundant PCIe paths to Flash Express cards are provided by redundant IO interconnect. Unlike other PCIe I/O cards, they can be accessed only by the host by using a unique protocol.

In each Flash Express card, data is stored in four solid-state drives (SSDs) in a RAID configuration. If an SSD fails, the data is reconstructed dynamically. The cards in a pair mirror each other over a pair of cables, in a RAID 10 configuration. If either card fails, the data is available on the other card. Card replacement is concurrent, and does not cause disruption to your operations.

The data is always stored encrypted with a volatile key, and the card is usable only on the system with the key that encrypted it. For key management, both the Primary and Alternate SEs have a smart card reader installed.

Flash Express cards support concurrent firmware upgrades.
Figure 9-6 shows the various components that support Flash Express RAS functions.

For more information about Flash Express, see Appendix H, “Flash Express” on page 555.
Environmental requirements

This chapter addresses the environmental requirements for IBM z13 servers. It lists the dimensions, weights, power, and cooling requirements that are needed to plan for the installation of a z13 server, and what is required to upgrade to an IBM z BladeCenter Extension Model 004 (zBX Model 004).

Select from these options for the physical installation of the server:

- Air or water cooling
- Installation on a raised floor or non-raised floor
- I/O and power cables can exit under the raised floor or off the top of the server frames
- A high-voltage DC power supply or the usual AC power supply

For more information about physical planning, see *IBM z13 Installation Manual for Physical Planning*, GC28-6938 for z13 servers, and *zBX Model 004 Installation Manuel for Physical Planning*, GC27-2630 for the zBX Model 004.

This chapter includes the following sections:

- z13 power and cooling
- z13 physical specifications
- z13 physical planning
- Energy management
- zBX environmental requirements
10.1 z13 power and cooling

The z13 server is always a two-frame system. The frames are shipped separately and are bolted together during the installation procedure. z13 servers support installation on a raised floor or non-raised floor. However, z13 servers with the water-cooling feature must be installed on a raised floor because the water hoses must attach to the server from underneath the raised floor. Power and I/O cables also exit from the bottom of the server frames unless the Top Exit I/O Cabling feature code (FC 7942) or Top Exit Power feature code (FC 7901) is installed. These options allow I/O cables and power cables to exit from the top of the server into overhead cabling rails.

10.1.1 z13 new rear cover design for vectored air output

The new design of the rear door covers addresses data center airflow challenges. You can change the cover (door) fin orientation down or up, as shown in Figure 10-1. This design allows you to direct the hot air that is exhausted by z13 servers to avoid adversely affecting cooling of other systems on the hot aisle.

![Rear view - down](image1)
![Rear view - up](image2)

Figure 10-1 Rear cover vectored air output

The new rear doors are all the same part. In the installation planning meeting, you can decide in which orientation the IBM Service Support Representative (IBM SSR) should install the covers. For more information about the vectored orientation, see the IBM z13 Installation Manual for Physical Planning, GC28-6938 or ask your IBM SSR.

10.1.2 Power requirements and consumption

This section describes the power requirements and consumption for z13 servers.

Power requirements
The system operates with two fully redundant power supplies. One is in the front, and the other is in the rear of the Z frame. Each power supply has either one or two power cords. The number of power cords that are required depends on the system configuration. The total loss of one power supply has no impact on system operation.

Systems that have two power cords (one in the front and one in the rear) can be started with one power cord and continue to run.
The larger systems that have a minimum of four bulk power regulator (BPR) pairs that are installed must have four power cords installed. A system that has four power cords can be started with two power cords on the same power supply with sufficient power to keep the system running.

Power cords attach to either 3-phase, 50/60 Hz, 200 - 480 V AC power, or 380 - 520 V DC power.

The High-Voltage Direct Current power feature is an option for z13 servers. It allows z13 servers to directly use the high voltage (HV) DC distribution. A direct HVDC data center power design can improve data center energy efficiency by removing the need for a DC to AC inversion step.

The z13 bulk power supplies have been modified to support HVDC, so the only difference in the included hardware to implement this option is the DC power cords. Because HVDC is a new technology, multiple proposed standards exist. z13 servers support both ground referenced and dual polarity HVDC supplies, such as +/-190 V, +/-260 V, and +380 V. Beyond the data center uninterruptible power supply and power distribution energy savings, a z13 server that runs on HVDC power draws 1 - 3% less input power. HVDC does not change the number of power cords that a system requires.

For ancillary equipment, such as the Hardware Management Console (HMC), its display, and switch, extra single-phase outlets are required.

The power requirements depend on the cooling facility that is installed, and on the number of central processor complex (CPC) drawer and I/O units that are installed. I/O power units are values for I/O drawers or Peripheral Component Interconnect Express (PCIe) drawers. Both drawer types equal one I/O unit.

If your initial configuration needs one power cord pair, but needs a second pair for growth, you can order the power cord Plan Ahead feature (FC 2000). This feature installs four power cords at the initial configuration. Also, if Balanced Power Plan Ahead (FC 3003) is ordered, four power cords are included and all 12 possible BPRs are installed. If the z13 server is configured with the Internal Battery Feature (IBF), Balanced Power Plan Ahead automatically supplies the maximum number of batteries, six IBFs, with the system.

Table 10-1 lists the BPR requirements for CPC drawer and I/O units. A second pair of power cords is installed if the number of BPR pairs is four or higher.

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of I/O unitsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N30 (1)</td>
<td>2b</td>
</tr>
<tr>
<td>N63 (2)</td>
<td>2b</td>
</tr>
<tr>
<td>N96 (3)</td>
<td>3c</td>
</tr>
<tr>
<td>NC9/NE1 (4)</td>
<td>4c</td>
</tr>
</tbody>
</table>

a. I/O units = the number of I/O drawers or PCIe I/O drawers.
b. Single-line power cord pair.
c. Two-line power cord pair.
Table 10-2 shows the number of power cords that are installed on one power supply, which depends on the number of I/O units and how many CPC drawers are installed.

Table 10-2 Number of power cords that are installed per power supply

<table>
<thead>
<tr>
<th>Model (number of CPC drawers)</th>
<th>Number of I/O units^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N30 (1)</td>
<td>1</td>
</tr>
<tr>
<td>N63 (2)</td>
<td>1</td>
</tr>
<tr>
<td>N96 (3)</td>
<td>1</td>
</tr>
<tr>
<td>NC9/NE1 (4)</td>
<td>2</td>
</tr>
</tbody>
</table>

^a. I/O units = the number of I/O drawers or PCIe I/O drawers.

Power consumption

This section lists the maximum power consumption for the air-cooled and water-cooled models.

Consideration: Power is lower in a normal ambient temperature room and for configurations that do not have every I/O slot plugged, the maximum installed memory, and are not using the maximum processors. Power also is slightly lower for DC input voltage. The numbers below assume that batteries are present and charging.

Power estimation for any configuration, power source, and room condition can be obtained by using the power estimation tool at IBM Resource Link (authentication required), found at the following website:
https://www.ibm.com/servers/resourcelink/

Table 10-3 lists the absolute maximum power consumption for the air-cooled models in a warm room (power will be lower for DC input voltage).

Table 10-3 Power consumption for air-cooled models

<table>
<thead>
<tr>
<th>Model (number of CPC drawers)</th>
<th>Number of I/O units^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N30 (1)</td>
<td>6.5</td>
</tr>
<tr>
<td>N63 (2)</td>
<td>11.1</td>
</tr>
<tr>
<td>N96 (3)</td>
<td>15.6</td>
</tr>
<tr>
<td>NC9 (4)</td>
<td>20.4</td>
</tr>
<tr>
<td>NE1 (4)</td>
<td>20.6</td>
</tr>
</tbody>
</table>

^a. I/O units = the number of I/O drawers or PCIe I/O drawers.
^b. Three PCIe I/O drawers and one or two I/O drawers.
^c. Assumes the maximum supported configuration (maximum I/O adapters are installed).
Table 10-4 lists the absolute maximum power consumption for the water-cooled models in a warm room (power will be lower for DC input voltage).

Table 10-4 Power consumption for water-cooled models

<table>
<thead>
<tr>
<th>Model (number of CPC drawers)</th>
<th>Number of I/O units<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N30 (1)</td>
<td>6.2</td>
</tr>
<tr>
<td>N63 (2)</td>
<td>10.3</td>
</tr>
<tr>
<td>N96 (3)</td>
<td>14.7</td>
</tr>
<tr>
<td>NC9 (4)</td>
<td>19.0</td>
</tr>
<tr>
<td>NE1 (4)</td>
<td>19.3</td>
</tr>
</tbody>
</table>

^a I/O units = the number of I/O drawers or PCIe I/O drawers.
^b Three PCIe I/O drawers and one or two I/O drawers.
^c Assumes a maximum supported configuration (maximum I/O adapters are installed).

10.1.3 Cooling requirements

The z13 cooling system is a combination of an air-cooling system and water-cooling system. The z13 Processor Unit (PU) single chip modules (SCMs) are cooled by an internal water loop. This water can be cooled by using a radiator or customer-supplied chilled water supply. I/O drawers, PCIe I/O drawers, power enclosures, and CPC drawers are cooled by chilled air with blowers.

z13 servers have a recommended (long-term) ambient temperature range from 18°C (64.4°F) to 27°C (80.6°F). The minimum allowed ambient temperature is 15°C (59°F) and the maximum allowed temperature is 32°C (89.6°F).

For more information about the environmental specifications, see *IBM z13 Installation Manual for Physical Planning*, GC28-6938.

Radiator cooling system requirements

The radiator cooling system requires chilled air to fulfill the air-cooling requirements. Normal air exhausts from the front to the rear of the frames. The chilled air is provided through perforated floor panels in front of the system.
Figure 10-2 does not represent any particular server system type, and is intended only to show hot and cold airflow and the arrangement of server aisles.

As shown in Figure 10-2, rows of servers must be placed front-to-front. Chilled air is provided through perforated floor panels that are placed in rows between the fronts of servers (the cold aisles). Perforated tiles generally are not placed in the hot aisles. If your computer room causes the temperature in the hot aisles to exceed a comfortable temperature, add as many perforated tiles as necessary to create a satisfactory comfort level. Heated exhaust air exits the computer room above the computing equipment.

With the new z13 rear covers, the exiting airflow direction can be customized, which provides you more flexibility in placing z13 servers in your data center. For more information, see 10.1.1, “z13 new rear cover design for vectored air output” on page 388.

For more information about the requirements for air-cooling options, see IBM z13 Installation Manual for Physical Planning, GC28-6938.

Water-cooling system requirements

The water-cooling system requires a chilled customer building water supply to be supplied to the z13 water-cooling units (WCUs). A z13 server requires four connections to the facility water: Two feeds and two returns.

Raised floor: The minimum raised floor height for a water-cooled system is 22.86 cm (8.6 in.).
These connections are made by using hoses that are fixed to the facility plumbing and are routed up through the front tailgate of the system. They terminate with quick connect couplings.

Before you install z13 servers, several conditions must be met in your facility for water-cooled systems are required for your facility:

- Total water hardness must not exceed 200 mg/L of calcium carbonate.
- The pH must be 7 - 9.
- Turbidity must be less than 10 Nephelometric Turbidity Units (NTUs).
- Bacteria must be less than 1000 colony-forming units (CFUs)/ml.
- The water must be as free of particulate matter as feasible.
- The allowable system inlet water temperature range is 6°C to 20°C (43°F to 68°F) using standard building chilled water. A special water system is typically not required.
- The required flow rate to the frame is 3.7 - 79.4 lpm (1 - 21 gpm), depending on the inlet water temperature and the number of processor drawers in the z13 server. Colder inlet water temperatures require less flow than warmer water temperatures. Fewer processor drawers require less flow than a maximum populated z13 server.
- The minimum water pressure that is required across the IBM hose ends is 0.34 - 2.32 BAR (5 - 33.7 psi), depending on the minimum flow required.
- The maximum water pressure that is supplied at the IBM hose connections to the client's water supply cannot exceed 6.89 BAR (100 psi).

For more information about the requirements for water-cooling options, see IBM z13 Installation Manual for Physical Planning, GC28-6938, and Figure 10-3.

Supply hoses

The z13 water-cooled system includes 4.2 m (13.7 ft) water hoses. Figure 10-3 shows the WCU water supply connections.
The client’s ends of the hoses are left open, allowing you to cut the hose to the length that you need. An insulation clamp is provided to secure the insulation and protective sleeving after you cut the hose to the correct length and install it onto your plumbing.

Use shut-off valves in front of the hoses. This configuration allows for the removal of the hoses for a service procedure or relocation. Valves are not included in the order. A stainless steel fitting is available for ordering. The fitting is barbed on one side and has a 2.54 cm (1 in.) male national pipe thread (NPT). For a complete list of tools for the water supply connections, see the *IBM z13 Installation Manual for Physical Planning*, GC28-6938.

10.1.4 Internal Battery Feature (IBF)

The optional IBF provides sustained system operations for a relatively short time, allowing for an orderly shutdown. In addition, an external uninterrupted power supply system can be connected, allowing for longer periods of sustained operation.

The IBF can provide emergency power for the estimated time that is listed in Table 10-5. The number of IFBs depends on the number of BPRs. For the number of BPRs that are installed in relation to I/O units and the number of CPC drawers, see Table 10-5. They are installed in pairs. You can have two, four, or six batteries (odd numbers are not allowed).

<table>
<thead>
<tr>
<th>Model (number of CPC drawers)</th>
<th>Number of I/O unitsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N30 (1)</td>
<td>19.9 min</td>
</tr>
<tr>
<td>N63 (2)</td>
<td>8.8 min</td>
</tr>
<tr>
<td>N96 (3)</td>
<td>9.6 min</td>
</tr>
<tr>
<td>NC9/NE1 (4)</td>
<td>6.7 min</td>
</tr>
</tbody>
</table>

a. I/O units = the number of I/O drawers or PCIe I/O drawers.

Consideration: The system holdup times in Table 10-5 assume that both sides are functional and have fresh batteries under normal room ambient conditions.

Holdup times are greater for configurations that do not have every I/O slot plugged, the maximum installed memory, and are not using the maximum processors.

These holdup times are estimates. Your particular battery holdup time for any specific circumstance might be different.

Holdup times vary depending on the number of BPRs that are installed. As the number of BPRs increases, the holdup time also increases until the maximum number of BPRs is reached. After six BPRs (three per side) are installed, no additional batteries are added, so the time decreases from that point.

Holdup times for actual configurations are provided in the power estimation tool at IBM Resource Link (authentication required) found at the following website:

https://www.ibm.com/servers/resourcelink/

On the Resource Link page, click **Tools → Machine information**, select your z Systems system, and click **Power Estimation Tool**.
10.1.5 Emergency power-off switch

On the front of the A frame is an emergency power-off switch that, when activated, immediately disconnects utility and battery power from the server. This process causes all volatile data in the server to be lost.

If the server is connected to a room’s emergency power-off switch, and the IBF is installed, the batteries take over if the switch is engaged.

To avoid the takeover, connect the room emergency power-off switch to the server power-off switch. Then, when the room emergency power-off switch is engaged, all power is disconnected from the power cords and the Internal Battery Features. However, all volatile data in the server is lost.

10.2 z13 physical specifications

This section describes the weights and dimensions of z13 servers.

z13 servers can be installed on a raised or non-raised floor. For more information about weight distribution and floor loading tables, see the IBM z13 Installation Manual for Physical Planning, GC28-6938. This data is used with the maximum frame weight, frame width, and frame depth to calculate the floor loading.

Table 10-6 indicates the maximum system dimension and weights for the NC9/NE1 model. The weight ranges are based on configuration models with five PCIe I/O drawers, IBFs, and with the top exit cable features.

<table>
<thead>
<tr>
<th>Table 10-6 System dimensions and weights</th>
</tr>
</thead>
</table>

| Maximum | A and Z frames with IBF (FC 3212) | A and Z frames with IBFs (FC 3212) and Top Exit Cabling Features (FC 7942 and FC 7901) |
|--|---|
| **Radiator-cooled servers** | |
| Weight kg (lbs) | 2499 (5508) |
| Width mm (in.) | 1568 (61.7) |
| Depth mm (in.) | 1869 (73.6) |
| Height mm (in.) | 2015 (79.3) |
| Height reduction mm (in.) | 1803 (71.0) |
| **Water-cooled servers** | |
| Weight kg (lbs) | 2564 (5653) |
| Width mm (in) | 1568 (61.7) |
| Depth mm (in) | 1971 (77.7) |
| Height mm (in) | 2015 (79.3) |
| Height reduction mm (in) | 1809 (71.2) |
The power and weight estimation tool for z Systems servers on Resource Link covers the estimated weight for your designated configuration. It is available on IBM Resource Link (authentication required) at the following website:

http://www.ibm.com/servers/resourcelink

10.3 z13 physical planning

This section describes the floor mounting options, and power and I/O cabling options. For more information, see the IBM z13 Installation Manual for Physical Planning, GC28-6938.

10.3.1 Raised floor or non-raised floor

z13 servers can be installed on a raised or non-raised floor. The water-cooled models require a raised floor.

Raised floor

If the z13 server is installed in a raised floor environment, both air-cooled and water-cooled models are supported. You can select top exit features to route I/O cables and power cables from the top frame of the z13 server. The following additional options are available for z13 servers:

- Top Exit I/O Cabling feature code (FC 7942)
- Top Exit Power feature code (FC 7901)

FC 7942 is a prerequisite for FC 7901.
Figure 10-4 shows the top exit feature options of z13 servers in a raised floor environment.

![Raised floor options diagram](image)

Figure 10-4 Raised floor options

Note: There is no top exit feature support for water hoses, which must go through the system from underneath the raised floor.

Non-raised floor

If you install the z13 server in a non-raised floor environment, you can select only radiator-cooled models. The Non-Raised Floor Support feature code (FC 7998) is required. The Top Exit I/O Cabling feature code (FC 7942) and Top Exit Power feature code (FC 7901) also must be ordered. All cables must exit from the top frame of the z13 server, as shown in Figure 10-5.

![Non-raised floor options diagram](image)

Figure 10-5 Non-raised floor options

10.3.2 Top Exit Power feature

The Top Exit Power feature (FC 7901) is designed to provide you with an additional option. Instead of all of your power cables exiting under the raised floor, you can route your power cables from the top of the frame.
The Top Exit Power feature (FC 7901) is shipped separately from the system and is installed at the customer site. It is installed on the top of the Z frame, and increases the height of the frame from 17.78 cm (7 in.) to 30.48 cm (1 ft), based on the selected power cords.

Two types of power cords are offered in this feature:

- **Cut cords**
 These cords are 4.3 m (14 ft) long from the exit point of the frame, with an attached mount bracket that you can use to fix power cords at the top of frame, as shown in Figure 10-5.

- **Plugged cords**
 For z13 servers, the fittings are 60A and require much more force to plug in successfully. For the 60A plugs, the “power cord” is a short connection from the power enclosure to the top of the frame. The plug is rigidly fixed to the frame. The client drop must come down to the frame to meet the system input plug.

Figure 10-6 shows the difference between cut cords and plugged cords.

![Figure 10-6 Top Exit Power feature](image)

10.3.3 Top Exit I/O Cabling feature

Like the zEC12, z13 servers support the Top Exit I/O Cabling feature (FC 7942). This feature routes all coupling links and all I/O cables, including 1000BASE-T Ethernet cable from I/O drawers or PCIe I/O drawers, through four more frame extensions out the top of the frame.
Figure 10-7 shows the frame extensions, also called *chimneys*, that are installed on each corner of the frames (A frame and Z frame) when the Top Exit I/O Cabling feature (FC 7942) is ordered. The bottom of the chimney is closed with welded sheet metal.

The Top Exit I/O Cabling feature adds 15 cm (6 in.) to the width of each frame and about 95 lbs (43 kg) to the weight.

For z13 servers, the Top Exit I/O Cabling feature (FC 7942) is available for both radiator-cooled models and water-cooled models.

10.3.4 Weight distribution plate

The *weight distribution plate* is designed to distribute the weight of a frame onto two floor panels in a raised-floor installation. As listed in Table 10-6 on page 395, the weight of a frame can be substantial. A concentrated load on a caster or leveling foot can be half of the total frame weight. In a multiple system installation, one floor panel can have two casters from two adjacent systems on it, potentially inducing a highly concentrated load on a single floor panel. The weight distribution plate distributes the weight over two floor panels. The weight distribution kit is ordered and delivered by using FC 9970.

Always consult the floor tile manufacturer to determine the load rating of the tile and pedestal structure. Additional panel support might be required to improve the structural integrity because cable cutouts reduce the floor tile rating.

10.3.5 Bolt-down kit for raised floor

A bolt-down kit for raised floor environments can be ordered for the z13 frames. The kit provides hardware to enhance the ruggedness of the frames and to tie down the frames to a concrete floor beneath a raised floor of 15 cm - 91 cm (5.9 in. - 35.8 in.). The kit is offered in the following configurations:

- The Bolt-Down kit for an air-cooled system (FC 8018) provides frame stabilization and bolt-down hardware for securing the frames to a concrete floor beneath the raised floor.
- The Bolt-Down kit for a water-cooled system (FC 8019) provides frame stabilization and bolt-down hardware for securing the frames to a concrete floor beneath the raised floor.
The kits help secure the frames and their contents from damage when exposed to shocks and vibrations, such as those generated by a seismic event. The frame tie-downs are intended for securing a frame that weighs up to 1632 kg (3600 lbs).

10.3.6 Nonraised floor frame tie-down kit

The nonraised floor frame tie-down kit (FC 8020) is designed to help secure the frames and its contents from damage when exposed to vibrations and shocks, such as those in a seismic event.

10.3.7 Service clearance areas

z13 servers require specific service clearance to ensure the fastest possible repair in the unlikely event that a part needs to be replaced. Failure to provide enough clearance to open the front and rear covers results in extended service times or outages.

10.4 Energy management

This section addresses the elements of energy management to help you understand the requirements for power and cooling, monitoring and trending, and reducing power consumption. The energy management structure for the server is shown in Figure 10-8.
The hardware components in the z13 servers and the optional IBM zEnterprise BladeCenter Extension (zBX) are monitored and managed by the energy management component in the Support Element (SE) and HMC. The graphical user interfaces (GUIs) of the SE and HMC provide views, such as the Monitors Dashboard and Environmental Efficiency Statistics Monitor Dashboard. For example, through a Simple Network Management Protocol (SNMP) application programming interface (API), energy information is available to IBM Systems Director Active Energy Manager™, a plug-in of IBM Systems Director. For more information, see 10.4.3, “IBM Systems Director Active Energy Manager” on page 405.

When Unified Resource Manager features are installed, several monitoring and control functions can be used to run Energy Management. For more information, see 11.6.1, “Unified Resource Manager” on page 456, and 10.4.4, “Unified Resource Manager: Energy management” on page 406.

A few tools are available to plan and monitor the energy consumption of z13 servers:

- The power estimation tool on Resource Link
- The Energy Management task for maximum potential power on HMC and SE
- The Monitors Dashboard and Environmental Efficiency Statistics tasks on HMC and SE
- IBM Systems Director Active Energy Manager
10.4.1 Power usage

Figure 10-9 shows the Energy Management tab in the CPC details task, which gives you information about power usage. The CPC section shows the values for the z Systems CPC and a possible attached zBX. The zCPC section shows the values only for the currently displayed z Systems servers. If there is no zBX, the CPC and zCPC sections show the same values.

The Energy Management tab shows the following information about power usage:

- **Power rating** is the calculated value as indicated by the electrical rating labels or system rating plates of the components.
- **Power consumption** shows the current power consumption.
- **Maximum potential power** gives the maximum value according to the current system configuration.
These values help prevent you from overallocating power, as shown in Figure 10-10.

![Maximum potential power](image)

10.4.2 Environmental monitoring

This section addresses monitoring considerations.

Monitor task group

The Monitor task group on the HMC and SE includes monitoring-related tasks for z13 servers, as shown in Figure 10-11.

![HMC Monitor task group](image)

The Monitors Dashboard task

In z13 servers, the Monitors Dashboard task in the Monitor task group provides a tree-based view of resources. Multiple graphical views exist for displaying data, including history charts. This task monitors processor and channel usage. It produces data that includes power monitoring information, power consumption, and the air input temperature for the server.
Figure 10-12 shows an example of the Monitors Dashboard task.
Environmental Efficiency Statistics task
The Environmental Efficiency Statistics task (Figure 10-13) is part of the Monitor task group. It provides historical power consumption and thermal information for the zEnterprise CPC.

The data is presented in table format and graphical “histogram” format. The data can also be exported to a .csv-formatted file so that the data can be imported into a spreadsheet. For this task, you must use a web browser to connect to an HMC.

Figure 10-13 Environmental Efficiency Statistics

10.4.3 IBM Systems Director Active Energy Manager

IBM Systems Director Active Energy Manager is an energy management solution building block that returns true control of energy costs to the client. Active Energy Manager is an industry-leading cornerstone of the IBM energy management framework.

Active Energy Manager Version 4.4 is a plug-in to IBM Systems Director Version 6.2.1, and is available for installation on Linux on z Systems. It can also run on Microsoft Windows, Linux on IBM System x, and AIX and Linux on IBM Power Systems™. For more information, see Implementing IBM Systems Director Active Energy Manager 4.1.1, SG24-7780.

Use Active Energy Manager to monitor the power and environmental values of resources. It supports z Systems servers and other IBM products, such as IBM Power Systems and IBM System x. It also supports devices and hardware that are acquired from another vendor. You can view historical trend data for resources, calculate energy costs and savings, view properties and settings for resources, and view active energy-related events.
Active Energy Manager is not directly connected to the z Systems servers. It is attached through a LAN connection to the HMC, as shown in Figure 10-8 on page 400. For more information, see 11.3, “HMC and SE connectivity” on page 426. Active Energy Manager discovers the HMC that manages the server by using a discovery profile and by specifying the HMC’s IP address and the SNMP credentials for that z Systems HMC. As the system is discovered, the z Systems servers that are managed by the HMC are also discovered.

Active Energy Manager is a management software tool that can provide a single view of the actual power usage across multiple systems, as opposed to the benchmarked or rated power consumption. It can effectively monitor and control power in the data center at the system, chassis, or rack level. By enabling these power management technologies, you can more effectively manage the power of the systems while lowering the cost of computing.

The following data is available through Active Energy Manager:

- System name, system type, model, serial number, and firmware level of z Systems servers and optional zBXs that are attached to IBM zEnterprise Systems.
- Ambient temperature.
- Exhaust temperature.
- Average power usage.
- Peak power usage.
- Limited status and configuration information. This information helps explain the following types of changes, called Events, to the power consumption:
 - Changes in fan speed
 - Radiator and WCU failures
 - Changes between power off, power on, and initial machine load (IML) complete states
 - Number of books and I/O cages
 - Capacity BackUp (CBU) record expirations

IBM Systems Director Active Energy Manager provides you with the data that is necessary to effectively manage power consumption in the data center. Active Energy Manager, an extension to the IBM Systems Director management software, monitors power usage and trend data for any single physical system or group of systems. Active Energy Manager uses monitoring circuitry, developed by IBM, to help identify how much power is being used and the temperature of the system.

10.4.4 Unified Resource Manager: Energy management

This section addresses the energy management capabilities of Unified Resource Manager.

Choice of suites

The energy management capabilities for Unified Resource Manager that can be used in an ensemble depend on which suite is installed in the ensemble:

- Manage suite (FC 0019)
- Automate/advanced management suite (FC 0020)
Manage suite

For energy management, the manage suite focuses on the monitoring capabilities. Energy monitoring can help you better understand the power and cooling demands of the z13 system. Unified Resource Manager provides complete monitoring and trending capabilities for the z Systems CPC and the zBX by using one or more of the following options:

- Monitor dashboard
- Environmental Efficiency Statistics
- Details view

Automate/advanced management suite

The Unified Resource Manager offers multiple energy management tasks as part of the automate/advanced management suite. These tasks allow you to change the systems’ behavior for optimized energy usage and energy savings:

- Power Cap
- Group Power Cap
- Power Save
- Group Power Save

Depending on the scope that is selected inside the Unified Resource Manager GUI, different options are available.

Set Power Cap function

The Set Power Cap function can be used to limit the maximum amount of energy that is used by the ensemble. If enabled, it enforces power caps for the hardware by throttling the processors in the system.

The Unified Resource Manager shows all components of an ensemble in the Set Power Cap window, as shown in Figure 10-14. Not all components that are used in a specific environment necessarily support power capping. A z13 server does not support power capping, as opposed to specific blades, which can be power-capped. For more information, see 10.4.1, “Power usage” on page 402.

![Set Power Cap window](image)

Figure 10-14 Set Power Cap window
Static power-saving mode

The server has a mechanism to vary frequency and voltage. The mechanism can be used to reduce the energy consumption of the system in periods of low use or for systems that are designed mainly for disaster recovery. The mechanism is under the full control of the client. The client controls are implemented in the HMC, SE, and Active Energy Manager, where you can choose between High Performance (default) or Low Power (power saving). The expectation is that the frequency change is 20%, the voltage change is 9%, and the total power savings is 6% - 16%, depending on the configuration.

Figure 10-15 shows the Set Power Saving window.

![Set Power Saving window](image)

Figure 10-15 Set Power Saving window

For more information about Energy Management with Unified Resource Manager, see Building an Ensemble Using IBM zEnterprise Unified Resource Manager, SG24-7921.

10.5 zBX environmental requirements

The following sections address the environmental requirements for the zBX. For more information about the environmental requirements for zBX, see zBX Installation Manual for Physical Planning 2458-003, GC27-2619.

zBX and z13 servers: A new zBX Model 004 cannot be ordered from IBM. A zBX Model 004 is the result of an miscellaneous equipment specification (MES) from a zBX Model 002 or a zBX Model 003 only. After a zBX is upgraded to a Model 004, it becomes a stand-alone box that can be added to an existing ensemble as an ensemble member (or node).
10.5.1 zBX configurations

The zBX can have 1 - 4 racks. The racks are shipped separately, and are bolted together at installation time. Each rack can contain up to two BladeCenter chassis, and each chassis can contain up to 14 single-wide blades. The total number of blades determines the actual components that are required for each configuration. The number of blades determines the number of BladeCenters and racks, as shown in Table 10-7.

<table>
<thead>
<tr>
<th>Number of blades</th>
<th>Number of BladeCenters</th>
<th>Number of racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>84</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>98</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>112</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

A zBX can be populated with up to 112 POWER7 blades. A maximum of 56 IBM BladeCenter HX5 blades can be installed in a zBX. For DataPower blades, the maximum number is 28 because they are double-wide.

Note: A zBX can have only the number of entitlements changed along with the upgrade MES. To increase the zBX Model 004 entitlement records, available slots in the BladeCenter systems are required. After the entitlements are added, new blades can be installed up to the entitlement record limits. The addition of new racks or BladeCenter systems is not available.

10.5.2 zBX power components

The zBX has its own power supplies and cords that are independent of the zEnterprise server power. Depending on the configuration of the zBX, up to 16 client-supplied power feeds might be required. A fully configured four-rack zBX has 16 Power Distribution Units (PDUs).

As mentioned, when upgrading an existing zBX Model 002 or zBX Model 003 to a zBX Model 004, the number of existing racks and blade centers is maintained.

The zBX operates with the following characteristics:

- 50/60Hz AC power
- Voltage (240 V)
- Both single-phase and three-phase wiring

PDUs and power cords

The zBX has these available PDU options:

- FC 0520 - 7176 Model 3NU with attached power cord (US)
- FC 0521 - 7176 Model 2NX (WW)
The following power cord options are available for the zBX:

- FC 0531 - 4.3 meter, 60A/208V, US power cord, Single Phase.
- FC 0532 - 4.3 meter, 63A/230V, non-US power cord, Single Phase.
- FC 0533 - 4.3 meter, 32A/380V-415V, non-US power cord, Three Phase. 32A WYE 380 V provides a 220 V line to neutral, and 32A WYE 415 V provides a 240 V line to neutral. This setting ensures that the BladeCenter maximum of 240 V is not exceeded.

Note: If a zBX Model 002 or 003 with a single rack and a single BladeCenter installed is upgraded to a zBX Model 004, a pair of new PDUs along with two power cord line drops are added to the existing Frame B. These PDUs and cords provide AC power for the two new 1U zBX SEs.

Power installation considerations

Each zBX BladeCenter operates from two fully redundant PDUs that are installed in the rack with the BladeCenter. These PDUs each have their own power cords, as shown in Table 10-8. This configuration allows the system to survive the loss of the client's power to either power cord. If power is interrupted to one of the PDUs, the other PDU picks up the entire load and the BladeCenter continues to operate without interruption.

Table 10-8 Number of BladeCenter power cords

<table>
<thead>
<tr>
<th>Number of BladeCenter systems</th>
<th>Number of power cords</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

A zBX can be populated by up to 112 Power 701 blades. A maximum of 56 IBM BladeCenter HX5 blades can be installed in a zBX. For DataPower blades, the maximum number is 28.

DataPower blades: The DataPower blade is a double-wide blade.

For maximum availability, attach the power cords on each side of the racks to different building power distribution units.

Actual power consumption depends on the zBX configuration in terms of the number of BladeCenter systems and blades that are installed. Input power in kVA is equal to the output power in kW. Heat output, expressed in kBTU per hour, is derived by multiplying the table entries by a factor of 3.4. For 3-phase installations, phase balancing is accomplished with the power cable connectors between the BladeCenter systems and the PDUs.
10.5.3 zBX cooling

The individual BladeCenter configuration is air-cooled with two hot-swap blower modules. The blower speeds vary depending on the ambient air temperature at the front of the BladeCenter unit and the temperature of internal BladeCenter components:

- If the ambient temperature is 25°C (77°F) or below, the BladeCenter unit blowers run at their minimum rotational speed. They increase their speed as required to control the internal BladeCenter temperature.
- If the ambient temperature is above 25°C (77°F), the blowers run faster, increasing their speed as required to control the internal BladeCenter unit temperature.
- If a blower fails, the remaining blower runs at full speed to cool the BladeCenter unit and blade servers.

Typical heat output

Table 10-9 shows the typical heat that is released by various zBX solution configurations.

<table>
<thead>
<tr>
<th>Number of blades</th>
<th>Max utility power (kW)</th>
<th>Heat output (kBTU/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7.3</td>
<td>24.82</td>
</tr>
<tr>
<td>14</td>
<td>12.1</td>
<td>41.14</td>
</tr>
<tr>
<td>28</td>
<td>21.7</td>
<td>73.78</td>
</tr>
<tr>
<td>42</td>
<td>31.3</td>
<td>106.42</td>
</tr>
<tr>
<td>56</td>
<td>40.9</td>
<td>139.06</td>
</tr>
<tr>
<td>70</td>
<td>50.5</td>
<td>171.70</td>
</tr>
<tr>
<td>84</td>
<td>60.1</td>
<td>204.34</td>
</tr>
<tr>
<td>98</td>
<td>69.7</td>
<td>236.98</td>
</tr>
<tr>
<td>112</td>
<td>79.3</td>
<td>269.62</td>
</tr>
</tbody>
</table>
Optional Rear Door Heat eXchanger (FC 0540)

For data centers with limited cooling capacity, use the Rear Door Heat eXchanger (FC 0540), as shown in Figure 10-16. It is a more cost-effective solution than adding another air conditioning unit.

Rear Door Heat eXchanger: The Rear Door Heat eXchanger is not a requirement for BladeCenter cooling. It is a solution for clients who cannot upgrade a data center's air conditioning units because of space, budget, or other constraints.

The Rear Door Heat eXchanger has the following features:

► A water-cooled heat exchanger door is designed to dissipate heat that is generated from the back of the computer systems before it enters the room.

► An easy-to-mount rear door design attaches to client-supplied water by using industry standard fittings and couplings.

► Up to 50,000 BTUs (or approximately 15 kW) of heat can be removed from the air that is exiting the back of a zBX rack.

The IBM Rear Door Heat eXchanger details are shown in Figure 10-16.

The IBM Rear Door Heat eXchanger also offers a convenient way to handle hazardous “hot spots”, which can help you lower the total energy cost of the data center.
10.5.4 zBX physical specifications

The zBX solution is delivered either with one rack (Rack B) or four racks (Racks B, C, D, and E). Table 10-10 shows the physical dimensions of the zBX minimum and maximum solutions.

Table 10-10 Dimensions of zBX racks

<table>
<thead>
<tr>
<th>Racks with covers</th>
<th>Width mm (in.)</th>
<th>Depth mm (in.)</th>
<th>Height mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>648 (25.5)</td>
<td>1105 (43.5)</td>
<td>2020 (79.5)</td>
</tr>
<tr>
<td>B + C</td>
<td>1296 (51.0)</td>
<td>1105 (43.5)</td>
<td>2020 (79.5)</td>
</tr>
<tr>
<td>B + C + D</td>
<td>1994 (76.5)</td>
<td>1105 (43.5)</td>
<td>2020 (79.5)</td>
</tr>
<tr>
<td>B + C + D + E</td>
<td>2592 (102)</td>
<td>1105 (43.5)</td>
<td>2020 (79.5)</td>
</tr>
</tbody>
</table>

Top Exit Support feature (FC 0545)

This feature (Figure 10-17) allows you to route I/O and power cabling through the top of the zBX rack. The feature adds 177 mm (7 in.) to the height and 9.75 kg (21.5 lbs) to the weight of the zBX rack after it is installed. It can be ordered as an additional feature. You must have one feature per installed rack.

Figure 10-17 Top Exit Support feature for the zBX

zBX weight

Table 10-11 lists the maximum weights of fully populated zBX racks and BladeCenter systems.

Table 10-11 Weights of zBX racks

<table>
<thead>
<tr>
<th>Rack description</th>
<th>Weight kgs (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B with 28 blades</td>
<td>740 (1630)</td>
</tr>
<tr>
<td>B + C full</td>
<td>1234 (2720)</td>
</tr>
<tr>
<td>B + C + D full</td>
<td>1728 (3810)</td>
</tr>
<tr>
<td>B + C + D + E full</td>
<td>2222 (4900)</td>
</tr>
</tbody>
</table>

Remember: A fully configured Rack B is heavier than a fully configured Rack C, D, or E because Rack B has the Top of Rack (ToR) switches, SEs, and consoles installed.

For more information about the physical requirements for zBX, see zBX Model 004 Installation Manual for Physical Planning, GC27-2630.
The Hardware Management Console (HMC) supports many functions and tasks to extend the management capabilities of IBM z13 servers. When tasks are performed on the HMC, the commands are sent to one or more Support Elements (SEs), which then issue commands to their central processor complexes (CPCs) or IBM z BladeCenter Extension (zBX).

This chapter addresses the HMC and SE in general, and adds appropriate information for HMCs that manage ensembles with the IBM z Unified Resource Manager.

This chapter includes the following sections:
- Introduction to the HMC and SE
- HMC and SE enhancements and changes
- HMC and SE connectivity
- Remote Support Facility
- HMC and SE key capabilities
- HMC in an ensemble
11.1 Introduction to the HMC and SE

The HMC is a stand-alone computer that runs a set of management applications. The HMC is a closed system, which means that no other applications can be installed on it.

The HMC is used to set up, manage, monitor, and operate one or more z Systems CPCs. It manages z Systems hardware, its logical partitions (LPARs), and provides support applications. At least one HMC is required to operate an IBM z Systems server. An HMC can manage multiple z Systems CPCs, and can be at a local or a remote site.

If z13 servers are defined as members of an ensemble, a pair of HMCs is required (a primary and an alternate). When a z13 server is defined as a member of an ensemble, certain restrictions apply. For more information, see 11.6, “HMC in an ensemble” on page 456.

The SEs are two integrated servers in the A frame that are supplied together with the z13 server. One is the primary SE and the other is the alternate SE. The primary SE is the active one. The alternate SE acts as the backup. Like the HMCs, the SEs are closed systems, and no other applications can be installed on them.

When tasks are performed at the HMC, the commands are routed to the active SE of the z Systems CPC. The SE then issues those commands to their CPC and or zBX (if any). One HMC can control up to 100 SEs and one SE can be controlled by up to 32 HMCs.

Some functions are available only on the SE. With Single Object Operations (SOOs), these functions can be used from the HMC. For more information, see “Single object operating” on page 433.

With Driver 27 (Version 2.13.0), the IBM Dynamic Partition Manager (DPM) is introduced for Linux only CPCs with Fibre Channel Protocol (FCP) attached storage. DPM is a new mode of operation that enables customers with little or no knowledge of z Systems technology to set up the system efficiently and with ease. For more information see Appendix E, “IBM Dynamic Partition Manager” on page 527.

The HMC Remote Support Facility (RSF) provides an important communication to a centralized IBM support network for hardware problem reporting and service. For more information, see 11.4, “Remote Support Facility” on page 431.

11.2 HMC and SE enhancements and changes

The initial release that comes with z13 servers is HMC application Version 2.13.0. After a February 2016 announcement, HMC and SE application now have Driver 27 (2.13.1). Use the “What’s New” task to explore the new features that are available for each release. For a complete list of HMC and SE functions, use the HMC and SE (Version 2.13.1) console help system or go to the IBM Knowledge Center at the following website:

http://www.ibm.com/support/knowledgecenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.
11.2.1 Driver Level 27 HMC and SE enhancements and changes

The HMC and SE with Driver 22 has several enhancements and changes for z13 servers:

- **Rack-mounted HMC**
 A new rack-mounted HMC (FC 0094) is available. For more information, see 11.2.2, “Rack-mounted HMC” on page 420.

- **New SE server**
 The SEs are no longer two notebooks in one z13 server. They are now two 1U servers that are installed in the top of the A frame. For more information, see 11.2.3, “New Support Elements” on page 421.

- **New backup options**
 The backup options of the HMC and SE have changed. The system can now have an FTP destination for the backup. For more information, see 11.2.4, “New backup options for HMCs and primary SEs” on page 421.

- **New UFD**
 A new optional 32 GB USB flash memory drive (UFD) is available for previous servers to create a backup. For more information, see 11.2.4, “New backup options for HMCs and primary SEs” on page 421.

- **Monitor activity enhancements**
 You can now display the activity for an LPAR by processor type, and the Monitors Dashboard is enhanced to show simultaneous multithreading (SMT) usage. For more information, see “The Monitors Dashboard task” on page 440.

- **HMC Data Replication**
 If you are using HMC Data Replication and you have an HMC at Driver 27, this HMC can only do Data Replication with another HMC at Driver 27 or Driver 22. Data Replication with driver levels older than Driver 22 are not supported on an HMC at Driver 27. If IBM z Unified Resource Manager is used, data replication is not available, Mirroring between the primary and alternate Ensemble HMCs is used instead.

- **STP enhancements**
 Enhancements and changes have been made for the Server Time Protocol (STP), which are described in 11.5.8, “Server Time Protocol support” on page 444.

- **Help infrastructure updates**
 The content from the following publications is incorporated into the HMC and SE help system:
 - *z Systems Hardware Management Console Operations Guide Version 2.13.1*
 Alternatively, see the HMC and SE (Version 2.13.1) console help system or go to the IBM Knowledge Center at the following website:
 After you get to the IBM Knowledge Center, click **z Systems**, and then click **z13**.

- **Disable boot from removable media**
 By default, starting at level 2.13.0, booting from removable media has been disabled. An admin password for the UEFI (the successor of BIOS) can be set. This action protects the
SE and HMC against unauthorized booting from removable media. An IBM Service Support Representative (IBM SSR) might perform the following tasks, which require booting from removable media:

- Engineering Change (EC) upgrade
- Save or restore of Save/Restore data
- Hard disk drive (HDD) restore

Note: When a UEFI admin password is set, it must be available for the SSR to perform these tasks. A lost password requires a system board replacement.

- Support multi-partitions for LPAR weights
 Ability to change LPAR weight-related information at the same time.
- New option for CPUMF Diagnostic Sampling Collection
 Can only be selected if Basic sampling is selected as shown in Figure 11-1.

Figure 11-1 Diagnostic sampling authorization control
Enabling Diagnostic Sampling for a specific LPAR is shown in Figure 11-2.

Figure 11-2 Change LPAR security

▶ zBX firmware management
As a result of a MES upgrade from a zBX Model 002 or zBX Model 003, the zBX Model 004 becomes a stand-alone box and must be added to an existing ensemble HMC as an ensemble node member. As part of the upgrade, the zBX Model 004 is detached from the owning CPC and receives two redundant internal SEs that are installed on its B Frame. The zBX Model 004 object can then be added to the ensemble HMC by using the Add Object Definition task. The ensemble HMC and the zBX Model 004 SE along with the zEnterprise Unified Resource Manager can perform the following monitoring and management functions:

– zBX firmware upgrades are downloaded from IBM RETAIN by using the HMC broadband RSF connection. Firmware updates are saved locally and installed during a scheduled MCL apply session.
– Firmware updates are installed from the HMC and zBX SEs by using the same process and controls as used for z Systems servers.
– zBX hardware-related and firmware-related failures are reported to IBM, and the IBM support structure is engaged, by using the HMC RSF. This is the same process that is used for reporting z Systems problems.

▶ zBX lifecycle management: zBX Model 004 supports the same System x, POWER7, and DataPower XI50z blade types that are supported in zBX Model 003 and zBX Model 002.

▶ Help infrastructure updates
The content from the following publications is incorporated into the HMC and SE help system:

Alternatively, see the HMC and SE console help system or go to the IBM Knowledge Center at the following website:
http://www.ibm.com/support/knowledgecenter
After you get to the IBM Knowledge Center, click **z Systems**, and then click **z13**.

11.2.2 Rack-mounted HMC

Feature codes (FC) 0094 and FC 0096 provides a rack-mounted HMC. They cannot be ordered as a feature code for zEC12, zBC12, or previous z Systems servers.

The HMC is a 1U IBM server and comes with an IBM 1U standard tray that contains a monitor and a keyboard. The system unit and tray must be mounted in the rack in two adjacent 1U locations in the “ergonomic zone” between 21U and 26U in a standard 19” rack.

The customer must provide the rack. Three C13 power receptacles are required: Two for the system unit and one for the display and keyboard, as shown in Figure 11-3.

![Rack-mounted HMC](image-url)
11.2.3 New Support Elements

The SEs are no longer two notebook computers in one z13 server. They are now two servers that are installed at the top of the A frame. They are managed by the keyboards, pointing devices, and displays that are mounted in the front and rear of the tray of the Z frame (where the SE notebooks were in previous z Systems servers), as shown in Figure 11-4. The SEs have internal USB attached smart card readers to support Flash Express and Feature on Demand (FoD).

![Figure 11-4 SEs location](image)

11.2.4 New backup options for HMCs and primary SEs

This section provides a short description of the new backup options that are available for HMC Version 2.13.0 and Version 2.13.1.

Backup of primary SEs or HMCs to an FTP server

With Driver 22 or later, you can perform a backup of primary SEs or HMCs to a File Transfer Protocol (FTP) server.

Note: If you do a backup to an FTP server for a z13 or zBX Model 004 server, ensure that you have set up a connection to the FTP server by using the Configure Backup Setting task. If you have not set up a connection to the FTP server, a message appears that prompts you to configure it.

The FTP server must be supplied by the customer. You can enable a secure FTP connection to your server.
Figure 11-5 shows the information that is required to configure your backup FTP server.

Figure 11-5 Configure backup FTP server

Note: Backup FTP site is a static setting for an HMC. If an alternate FTP site is needed to perform a backup, then this process should be done from another HMC.

Backup of HMCs
A backup of the HMC can be performed to the following media

- A USB flash memory drive (UFD)
- An FTP server
- A UFD and FTP server

Figure 11-6 shows the destination options of the Backup Critical Console Data task.

Figure 11-6 Backup Critical Console Data destinations

Optional 32 GB UFD FC 0848
A new, optional 32 GB UFD is available for backups. An 8 GB UFD is included by default with the system. SE and HMC backup files have been getting larger with the later z Systems servers. The following features require more storage space for a backup:

- IBM zEnterprise Unified Resource Manager
- zBX
- IBM zAware
- Several previous z Systems SE backups

Backup of primary SEs
The backup for the primary SE of a z13 or zBX Model 004 server can be made to the following media:

- The primary SE HDD and alternate SE HDD
- The primary SE HDD and alternate SE HDD and FTP server
It is no longer possible to do the primary SE backup to an UFD of a z13 or zBX Model 004 SE. Table 11-1 shows the SE Backup options for external media.

Table 11-1 SE Backup options

<table>
<thead>
<tr>
<th>System Type</th>
<th>UFD Media</th>
<th>FTP Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13 / z13s</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>zBX 004</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>zEC12 / zBC12</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>z196 / z114</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>z10EC / z10BC</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>z9EC / z9BC</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 11-7 shows examples of the different destination options of the SE Backup Critical Data for different CPC machine types.

Figure 11-7 Backup Critical Data destinations of SEs

For more information, see the HMC and SE (Version 2.13.0) console help system or go to the IBM Knowledge Center at the following link:
http://www.ibm.com/support/knowledgecenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.
Scheduled operations for the backup of HMCs and SEs

The Scheduled Operation task with the new backup options for HMC is changed, as shown in Figure 11-8.

![Figure 11-8 Scheduled Operation for HMC backup](image)

The Scheduled Operation task with the new backup options for the SEs is changed, as shown in Figure 11-9.

![Figure 11-9 Scheduled Operation for SEs backup](image)

11.2.5 SE driver support with the HMC driver

The driver of the HMC and SE is equivalent to a specific HMC and SE version, as shown in these examples:

- Driver 27 is equivalent to Version 2.13.1
- Driver 22 is equivalent to Version 2.13.0
- Driver 86 is equivalent to Version 2.11.0
- Driver 79 is equivalent to Version 2.10.2

An HMC with Version 2.13.1 can support different z Systems types. Some functions that are available on Version 2.13.1 and later are supported only when the HMC is connected to a z13 server with Driver 27.
Table 11-2 shows a summary of the SE drivers and versions that are supported by the new HMC Version 2.13.0 (Driver 22).

Table 11-2 z13 HMC at Driver 22: z Systems support summary

<table>
<thead>
<tr>
<th>z Systems family name</th>
<th>Machine type</th>
<th>SE driver</th>
<th>SE version</th>
<th>Ensemble node potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13s</td>
<td>2965</td>
<td>27</td>
<td>2.13.1</td>
<td>Yes^a</td>
</tr>
<tr>
<td>z13</td>
<td>2964</td>
<td>22, 27</td>
<td>2.13.0, 2.13.1</td>
<td>Yes^a</td>
</tr>
<tr>
<td>zBX Node</td>
<td>2458 Model 004</td>
<td>22</td>
<td>2.13.0</td>
<td>Required</td>
</tr>
<tr>
<td>zBC12</td>
<td>2828</td>
<td>15</td>
<td>2.12.1</td>
<td>Yes</td>
</tr>
<tr>
<td>zEC12</td>
<td>2827</td>
<td>15</td>
<td>2.12.1</td>
<td>Yes</td>
</tr>
<tr>
<td>z114</td>
<td>2818</td>
<td>93</td>
<td>2.11.1</td>
<td>Yes</td>
</tr>
<tr>
<td>z196</td>
<td>2817</td>
<td>93</td>
<td>2.11.1</td>
<td>Yes</td>
</tr>
<tr>
<td>z10 BC</td>
<td>2098</td>
<td>79</td>
<td>2.10.2</td>
<td>No</td>
</tr>
<tr>
<td>z10 EC</td>
<td>2097</td>
<td>79</td>
<td>2.10.2</td>
<td>No</td>
</tr>
<tr>
<td>z9 BC</td>
<td>2096</td>
<td>67</td>
<td>2.9.2</td>
<td>No</td>
</tr>
<tr>
<td>z9 EC</td>
<td>2094</td>
<td>67</td>
<td>2.9.2</td>
<td>No</td>
</tr>
</tbody>
</table>

^a. A CPC in DPM mode cannot be a member of a ensemble, but the CPC can still be managed by the ensemble HMC.

Note: The z900/z800 (Driver 3G, SE Version 1.7.3) and z990/z890 (Driver 55, SE Version 1.8.2) systems are no longer supported. If you have these older systems, consider managing these systems by using separate HMCs running older drivers.

11.2.6 HMC feature codes

HMCs older than FC 0091 are not supported for z13 servers at Driver 22.

FC 0091 M/T 7327

FC 0091 can be carried forward. These HMCs need an upgrade to driver 27. ECA398 is required, which can be ordered by the local IBM support representative. The upgrade process includes upgrading memory if necessary and installing the necessary firmware.

FC 0092 M/T 7382

FC 0092 is an HMC that contains 16 GB of memory. It is a tower model. The physical dimensions from FC 0092 compared to FC 0090 and FC 0091 are similar, except the depth for FC 0092 is in round numbers, that is, 95 mm (3.75 in.) more.

FC 0094 M/T 7914

FC 0094 is the new rack-mounted HMC. It contains 16 GB of memory.

FC 0096 M/T 2461

FC 0096 is the new rack-mounted HMC. It contains 16 GB of memory.
For more information, see 11.2.2, “Rack-mounted HMC” on page 420.

11.2.7 Tree Style User Interface and Classic Style User Interface

Two user interface styles are provided with an HMC. The Tree Style User Interface (default) uses a hierarchical model that is common in newer operating systems, and features context-based task launching. The Classic Style User Interface uses the drag-and-drop interface style.

Statements of Direction:a:

IBM z13 and z13s servers will be the last z Systems servers to support the Classic Style User Interface. In the future, user interface enhancements will be focused on the Tree Style User Interface.

IBM z13 and z13s servers will be the last z Systems servers to support the Hardware Console Common Information Model (CIM) Management Interface. The Hardware Management Console Simple Network Management Protocol (SNMP), and Web Services application programming interfaces (APIs) will continue to be supported.

a. All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

Classic Style User Interface is not available on zBX Model 004 SEs.

If at least one CPC defined on the HMC is running in DPM mode, the welcome window on the HMC changes. Setting up a machine in DPM mode is wizard-based. For more information, see Chapter 11.5.15, “Dynamic Partition Manager” on page 454 and Appendix E, “IBM Dynamic Partition Manager” on page 527.

Tutorials: IBM Resource Linka provides tutorials that demonstrate how to change from the Classic Style User Interface to the Tree Style Interface, and introduce the function of the Tree Style Interface on the HMC. You can find Resource Link at the following website:

http://www.ibm.com/servers/resourcelink

After you go to the Resource Link website, click **Education → IBM z13 → Course Z121-0255-00**.

a. Registration is required to access IBM Resource Link.

11.3 HMC and SE connectivity

The HMC has two Ethernet adapters, which are supported by HMC Driver 22 or later for connectivity to up to two different Ethernet LANs.

The SEs on z13 servers are connected to the System Control Hubs (SCH) to control the internal network. In previous z Systems servers, the customer network was connected to the bulk power hub (BPH). Now the SEs are directly connected to the customer network. The HMC to CPC communication is now only possible through an Ethernet switch connected to the J03 or J04 port on the SEs. Other z Systems servers and HMCs also can be connected to the switch. To provide redundancy, install two Ethernet switches.

Only the switch (and not the HMC directly) can be connected to the SEs.
Figure 11-10 shows the connectivity between HMCs and the SEs.

The LAN ports for the SEs installed in the CPC are shown in Figure 11-11.

Various methods are available for setting up the network. It is your responsibility to plan and design the HMC and SE connectivity. Select the method based on your connectivity and security requirements.
11.3.1 Network planning for the HMC and SE

Plan the HMC and SE network connectivity carefully to allow for current and future use. Many of the z Systems capabilities benefit from the various network connectivity options that are available. These functions, which depend on the HMC connectivity, are available to the HMC:

- Lightweight Directory Access Protocol (LDAP) support, which can be used for HMC user authentication
- Network Time Protocol (NTP) client/server support
- RSF through broadband
- HMC access through a remote web browser
- Enablement of the SNMP and CIM APIs to support automation or management applications, such as IBM System Director Active Energy Manager (AEM)

These examples are shown in Figure 11-12.

Security: Configuration of network components, such as routers or firewall rules, is beyond the scope of this book. Whenever the networks are interconnected, security exposures can exist. For more information about HMC security, see Integrating the Hardware Management Console’s Broadband Remote Support Facility into your Enterprise, SC28-6951.

For more information about the HMC settings that are related to access and security, see the HMC and SE (Version 2.13.0) console help system or go to the IBM Knowledge Center at the following link:

http://www.ibm.com/support/knowledgcenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.
For more information, see the following resources:

- The HMC and SE (Version 2.13.1) console help system, or go to the IBM Knowledge Center at the following link:

 http://www.ibm.com/support/knowledgecenter

 After you get to the IBM Knowledge Center, click z Systems, and then click z13.

- Section 10.4.3, “IBM Systems Director Active Energy Manager” on page 405

11.3.2 Hardware prerequisite changes

The following HMC changes are important for z13 servers:

- IBM does not provide Ethernet switches with the system.
- RSF is broadband-only.

Ethernet switches

Ethernet switches for HMC and SE connectivity are customer provided. Existing supported switches can still be used.

Ethernet switches/hubs typically have these characteristics:

- Sixteen auto-negotiation ports
- 100/1000 Mbps data rate
- Full or half duplex operation
- Auto medium dependent interface crossover (MDIX) on all ports
- Port status LEDs

Note: The recommendation is to use 1000 Mbps/Full duplex

RSF is broadband-only

RSF through a modem is *not supported* on the z13 HMC. Broadband is needed for hardware problem reporting and service. For more information, see 11.4, “Remote Support Facility” on page 431.

11.3.3 TCP/IP Version 6 on the HMC and SE

The HMC and SE can communicate by using IPv4, IPv6, or both. Assigning a static IP address to a SE is unnecessary if the SE communicates only with HMCs on the same subnet. The HMC and SE can use IPv6 link-local addresses to communicate with each other.

IPv6 link-local addresses have the following characteristics:

- Every IPv6 network interface is assigned a link-local IP address.
- A link-local address is used only on a single link (subnet) and is never routed.
- Two IPv6-capable hosts on a subnet can communicate by using link-local addresses, without having any other IP addresses assigned.
11.3.4 Assigning addresses to the HMC and SE

An HMC can have the following IP configurations:

- Statically assigned IPv4 or statically assigned IPv6 addresses
- Dynamic Host Configuration Protocol (DHCP)-assigned IPv4 or DHCP-assigned IPv6 addresses
- Auto-configured IPv6:
 - Link-local is assigned to every network interface.
 - Router-advertised, which is broadcast from the router, can be combined with a Media Access Control (MAC) address to create a unique address.
 - Privacy extensions can be enabled for these addresses as a way to avoid using the MAC address as part of the address to ensure uniqueness.

An SE can have the following IP addresses:

- Statically assigned IPv4 or statically assigned IPv6
- Auto-configured IPv6 as link-local or router-advertised

IP addresses on the SE cannot be dynamically assigned through DHCP to ensure repeatable address assignments. Privacy extensions are not used.

The HMC uses IPv4 and IPv6 multicasting\(^1\) to discover automatically SEs. The HMC Network Diagnostic Information task can be used to identify the IP addresses (IPv4 and IPv6) that are being used by the HMC to communicate to the CPC SEs.

IPv6 addresses are easily identified. A fully qualified IPv6 address has 16 bytes. It is written as eight 16-bit hexadecimal blocks that are separated by colons, as shown in the following example:

```
2001:0db8:0000:0000:0202:b3ff:fe1e:8329
```

Because many IPv6 addresses are not fully qualified, shorthand notation can be used. In shorthand notation, the leading zeros can be omitted, and a series of consecutive zeros can be replaced with a double colon. The address in the previous example also can be written in the following manner:

```
2001:db8::202:b3ff:fe1e:8329
```

For remote operations that use a web browser, if an IPv6 address is assigned to the HMC, navigate to it by specifying that address. The address must be surrounded with square brackets in the browser’s address field:

```
```

Using link-local addresses must be supported by your browser.

\(^1\) For a customer-supplied switch, multicast must be enabled at the switch level.
11.4 Remote Support Facility

The HMC RSF provides important communication to a centralized IBM support network for hardware problem reporting and service. The following types of communication are provided:

- Problem reporting and repair data
- Microcode Change Level (MCL) delivery
- Hardware inventory data, which is also known as vital product data (VPD)
- On-demand enablement

Consideration: RSF through a modem is not supported on the z13 HMC. Broadband connectivity is needed for hardware problem reporting and service. Modems on installed HMC FC 0091 hardware do not work with HMC Version 2.13.0 and later, which is required to support z13 servers.

11.4.1 Security characteristics

The following security characteristics are in effect:

- RSF requests always are initiated from the HMC to IBM. An inbound connection is never initiated from the IBM Service Support System.
- All data that is transferred between the HMC and the IBM Service Support System is encrypted with high-grade Secure Sockets Layer (SSL)/Transport Layer Security (TLS) encryption.
- When starting the SSL/TLS-encrypted connection, the HMC validates the trusted host with the digital signature that is issued for the IBM Service Support System.
- Data that is sent to the IBM Service Support System consists of hardware problems and configuration data.

Additional resource: For more information about the benefits of Broadband RSF and the SSL/TLS-secured protocol, and a sample configuration for the Broadband RSF connection, see Integrating the HMC Broadband Remote Support Facility into Your Enterprise, SC28-6927.

11.4.2 RSF connections to IBM and Enhanced IBM Service Support System

If the HMC and SE are at Driver 22 or later, the driver uses a new remote infrastructure at IBM when the HMC connects through RSF for certain tasks. Check your network infrastructure settings to ensure that this new infrastructure will work.

At the time of writing, RSF still uses the “traditional” RETAIN connection. You must add access to the new Enhanced IBM Service Support System to your current RSF infrastructure (proxy, firewall, and so on).

To have the best availability and redundancy and to be prepared for the future, the HMC must have access to the Internet to IBM through RSF in the following manner. Transmission to the enhanced IBM Support System requires a domain name server (DNS). The DNS must be configured on the HMC if you are not using a proxy for RSF. If you are using a proxy for RSF, the proxy must provide the DNS.
The following host names and IP addresses are used and your network infrastructure must allow the HMC to have access to the following host names or IP addresses:

- **Host names:**
 - www-945.ibm.com on port 443
 - esupport.ibm.com on port 443

- **IP addresses. IPv4, IPv6, or both can be used:**
 - IPv4:
 - 129.42.26.224:443
 - 129.42.34.224:443
 - 129.42.42.224:443
 - 129.42.56.189:443
 - 129.42.58.189:443 (enhanced)
 - 129.42.60.189:443 (enhanced)
 - 129.42.50.224:443 (enhanced)
 - 129.42.54.189:443 (enhanced)
 - IPv6:
 - 2620:0:6C0:1::1000:443
 - 2630:0:6C1:1::1000:443
 - 2630:0:6C2:1::1000:443
 - 2620:0:6C4:1::1000:443

Note: All other previous existing IP addresses are no longer supported.

11.4.3 HMC and SE remote operations

You can use these methods to perform remote manual operations on the HMC:

- **Using a remote HMC**

 A remote HMC is a physical HMC that is on a different subnet from the SE. This configuration prevents the SE from being automatically discovered with IP multicast. A remote HMC requires TCP/IP connectivity to each SE to be managed. Therefore, any existing customer-installed firewalls between the remote HMC and its managed objects must permit communications between the HMC and the SE. For service and support, the remote HMC also requires connectivity to IBM, or to another HMC with connectivity to IBM through RSF. For more information, see 11.4, “Remote Support Facility” on page 431.

- **Using a web browser to connect to an HMC**

 The z13 HMC application simultaneously supports one local user and any number of remote users. The user interface in the web browser is the same as the local HMC and has the same functions. Some functions are not available. Access by the UFD requires physical access to the HMC. Logon security for a web browser is provided by the local HMC user logon procedures. Certificates for secure communications are provided, and can be changed by the user. A remote browser session to the primary HMC that is managing an ensemble allows a user to perform ensemble-related actions.
Microsoft Internet Explorer, Mozilla Firefox, and Goggle Chrome were tested as remote browsers. For detailed web browser requirements, see the HMC and SE (Version 2.13.1) console help system or go to the IBM Knowledge Center at the following link:

http://www.ibm.com/support/knowledgecenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.

Single object operating

It is not necessary to be physically close to a SE to use it. The HMC can be used to access the SE remotely by using the SOO task. The interface is the same as the one on the SE. For more information, see the HMC and SE (Version 2.13.1) console help system or go to the IBM Knowledge Center at the following link:

http://www.ibm.com/support/knowledgecenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.

11.5 HMC and SE key capabilities

The HMC and SE have many capabilities. This section covers the key areas. For a complete list of capabilities, see the HMC and SE (Version 2.13.1) console help system or go to the IBM Knowledge Center at the following link:

http://www.ibm.com/support/knowledgecenter

After you get to the IBM Knowledge Center, click z Systems, and then click z13.

11.5.1 Central processor complex management

The HMC is the primary place for CPC control. For example, the input/output configuration data set (IOCDS) contains definitions of LPARs, channel subsystems, control units, and devices, and their accessibility from LPARs. IOCDS can be created and put into production from the HMC.

The HMC is used to start the power-on reset (POR) of the server. During the POR, processor units (PUs) are characterized and placed into their respective pools, memory is put into a single storage pool, and the IOCDS is loaded and initialized into the hardware system area (HSA).

The Hardware messages task displays hardware-related messages at the CPC level, LPAR level, or SE level. It also displays hardware messages that relate to the HMC itself.

11.5.2 Logical partition management

Use the HMC to define LPAR properties, such as the number of processors of each type, how many are reserved, and how much memory is assigned to it. These parameters are defined in LPAR profiles, and are stored on the SE.

Because Processor Resource/Systems Manager (PR/SM) must manage LPAR access to processors and the initial weights of each partition, weights are used to prioritize partition access to processors.

You can use the Load task on the HMC to perform an IPL of an operating system. This task causes a program to be read from a designated device, and starts that program. You can
perform the IPL of the operating system from storage, the HMC DVD-RAM drive, the USB flash memory drive (UFD), or a File Transfer Protocol (FTP) server.

When an LPAR is active and an operating system is running in it, you can use the HMC to dynamically change certain LPAR parameters. The HMC provides an interface to change partition weights, add logical processors to partitions, and add memory.

LPAR weights can also be changed through a scheduled operation. Use the Customize Scheduled Operations task to define the weights that are set to LPARs at the scheduled time.

Channel paths can be dynamically configured on and off, as needed for each partition, from an HMC.

The Change LPAR Controls task for z13 servers can export the Change LPAR Controls table data to a comma-separated value (.csv)-formatted file. This support is available to a user when connected to the HMC remotely by a web browser.

Partition capping values can be scheduled and are specified on the Change LPAR Controls scheduled operation support. Viewing details about an existing Change LPAR Controls scheduled operation is available on the SE.

Absolute physical HW LPAR capacity setting

Driver 15 introduced the capability to define, in the image profile for shared processors, the absolute processor capacity that the image is allowed to use (independent of the image weight or other cappings).

To indicate that the LPAR can use the undedicated processors absolute capping, select **Absolute capping** on the Image Profile Processor settings to specify an absolute number of processors to cap the LPAR’s activity at. The absolute capping value can either be “None” or a value for the number of processors (0.01 - 255.0).

LPAR group absolute capping

This is the next step in partition capping options available on z13s and z13 servers at Driver level 27. Follow on to LPAR absolute capping, LPAR group absolute capping uses a similar methodology to enforce:

- Customer licensing
- Non-z/OS partitions where group soft capping is not an option
- z/OS partitions where ISV does not support software capping

A group name, processor capping value, and partition membership are specified at HW console:

- Set an absolute capacity cap by CPU type on a group of LPARs
- Allows each of the partitions to consume capacity up to their individual limits as long as the group’s aggregate consumption does not exceed the group absolute capacity limit
- Includes updated SysEvent QVS support (used by vendors who implement software pricing)
- Only shared partitions managed in these groups
- Can specify caps for one or more processor types in the group
- Specified in absolute processor capacity (for example, 2.5 processors)
Use Change LPAR Group Controls (same windows that are used for software group defined capacity) as shown in Figure 11-13 (snapshot on a z13 server).

Figure 11-13 Change LPAR Group Controls - Group absolute capping

Absolute capping is specified as an absolute number of processors to cap the group's activity to. The value is specified to hundredths of a processor (for example, 4.56 processors) worth of capacity.

The value is not tied to the LICCC. Any value from 0.01 to 255.00 can be specified. This configuration makes the profiles more portable and means that you will not have issues in the future when profiles are migrated to new machines.

Although the absolute cap can be specified to hundredths of a processor, the exact amount might not be that precise. The same factors that influence the “machine capacity” also influence the precision with which the absolute capping actually works.

11.5.3 Operating system communication

The Operating System Messages task displays messages from an LPAR. You also can enter operating system commands and interact with the system. This task is especially valuable for entering Coupling Facility Control Code (CFCC) commands.

The HMC also provides integrated 3270 and ASCII consoles. These consoles allow an operating system to be accessed without requiring other network or network devices, such as TCP/IP or control units.

Updates to x3270 support

The Configure 3270 Emulators task on the HMC and TKE consoles was enhanced with Driver 15 to verify the authenticity of the certificate that is returned by the 3270 server when a secure and encrypted SSL connection is established to an IBM host. This is also known as Secure 3270.

Use the Certificate Management task if the certificates that are returned by the 3270 server are not signed by a well-known trusted certificate authority (CA) certificate, such as VeriSign or Geotrust. An advanced action within the Certificate Management task, Manage Trusted Signing Certificates, is used to add trusted signing certificates.
For example, if the certificate that is associated with the 3270 server on the IBM host is signed and issued by a corporate certificate, it must be imported, as shown in Figure 11-14.

Figure 11-14 Manage Trusted Signing Certificates

If the connection between the console and the IBM host can be trusted at the time of importing the certificate, the import from the remote server option can be used, as shown in Figure 11-15. Otherwise, import the certificate by using removable media.

Figure 11-15 Import Remote Certificate example

A secure Telnet connection is established by adding the prefix L: to the IP address:port of the IBM host, as shown in Figure 11-16.

Figure 11-16 Configure 3270 Emulators

11.5.4 HMC and SE microcode

The microcode for the HMC, SE, CPC, and zBX is included in the driver/version. The HMC provides the management of the driver upgrade through Enhanced Driver Maintenance (EDM). EDM also provides the installation of the latest functions and the patches (MCLs) of the new driver.

When you perform a driver upgrade, always check the Driver (xx) Customer Exception Letter option in the Fixes section at the IBM Resource Link.

For more information, see 9.9, “z13 Enhanced Driver Maintenance” on page 377.
Microcode Change Level
Regular installation of MCLs is key for reliability, availability, and serviceability (RAS), optimal performance, and new functions:

- Install MCLs on a quarterly basis at a minimum.
- Review hiper MCLs continuously to decide whether to wait for the next scheduled fix application session or to schedule one earlier if the risk assessment warrants.

Tip: The IBM Resource Link^a provides access to the system information for your z Systems according to the system availability data that is sent on a scheduled basis. It provides more information about the MCL status of your z13 servers. To access the Resource Link, to the following website:

http://www.ibm.com/servers/resourcelink

After you reach the Resource Link, click Tools → Machine Information, choose your z Systems server, and click EC/MCL.

a. Registration is required to access the IBM Resource Link.

Microcode terms
The microcode has these characteristics:

- The driver contains engineering change (EC) streams.
- Each EC stream covers the code for a specific component of z13 servers. It has a specific name and an ascending number.
- The EC stream name and a specific number are one MCL.
- MCLs from the same EC stream must be installed in sequence.
- MCLs can have installation dependencies on other MCLs.
- Combined MCLs from one or more EC streams are in one bundle.
- An MCL contains one or more Microcode Fixes (MCFs).
Figure 11-17 shows how the driver, bundle, EC stream, MCL, and MCFs interact with each other.
Microcode installation by MCL bundle target

A *bundle* is a set of MCLs grouped during testing and released as a group on the same date. You can install an MCL to a specific target bundle level. The System Information window is enhanced to show a summary bundle level for the activated level, as shown in Figure 11-18.

![System Information - SCZP501](image)

Figure 11-18 System Information: Bundle level

OSC Concurrent Patch

Concurrent patch for OSC channels is now supported

11.5.5 Monitoring

This section addresses monitoring considerations.
Monitor task group
The Monitor task group on the HMC and SE includes monitoring-related tasks for z13 servers, as shown in Figure 11-19.

![Figure 11-19 HMC Monitor Task Group](image)

The Monitors Dashboard task
The Monitors Dashboard task supersedes the System Activity Display (SAD). In the z13 server, the Monitors Dashboard task in the Monitor task group provides a tree-based view of resources.

Multiple graphical views exist for displaying data, including history charts. The Open Activity task, which is known as SAD, monitors processor and channel usage. It produces data that includes power monitoring information, power consumption, and the air input temperature for the server.
Figure 11-20 shows an example of the Monitors Dashboard task.

Starting with Driver 22, you can display the activity for an LPAR by processor type, as shown in Figure 11-21.

The Monitors Dashboard is enhanced to show simultaneous multithreading (SMT) usage, as shown in the example in Figure 11-22.
The crypto-utilization percentage is displayed on the Monitors Dashboard according to the physical channel ID (PCHID) number. The associated crypto number (Adjunct Processor Number) for this PCHID is also shown in the table. It provides information about the usage rate on a system-wide basis, not per LPAR, as shown in Figure 11-23.

![Figure 11-23 Monitors Dashboard showing crypto function integration](image1)

For Flash Express, a new window is added, as shown in Figure 11-24.

![Figure 11-24 Monitors Dashboard showing Flash Express function integration](image2)
Environmental Efficiency Statistics task
The Environmental Efficiency Statistics task (Figure 11-25) is part of the Monitor task group. It provides historical power consumption and thermal information for the zEnterprise CPC, and is available on the HMC.

The data is presented in table format and graphical “histogram” format. The data also can be exported to a .csv-formatted file so that the data can be imported into a spreadsheet. For this task, you must use a web browser to connect to an HMC.

![Environmental Efficiency Statistics - ROSE1201](image)

Figure 11-25 Environmental Efficiency Statistics

11.5.6 Capacity on demand support
All capacity on demand (CoD) upgrades are performed by using the SE Perform a Model Conversion task. Use the task to retrieve and activate a permanent upgrade, and to retrieve, install, activate, and deactivate a temporary upgrade. The task shows a list of all installed or staged Licensed Internal Code (LIC) configuration code (LICCC) records to help you manage them. It also shows a history of recorded activities.

The HMC for IBM z13 servers has these CoD capabilities:

- **SNMP API support:**
 - API interfaces for granular activation and deactivation
 - API interfaces for enhanced CoD query information
 - API event notification for any CoD change activity on the system
 - CoD API interfaces, such as On/Off CoD and Capacity BackUp (CBU)

- **SE window features (accessed through HMC Single Object Operations):**
 - Window controls for granular activation and deactivation
 - History window for all CoD actions
 - Description editing of CoD records
HMC/SE Version 2.13.0 and later provides the following CoD information:
- Millions of service units (MSU) and processor tokens
- Last activation time
- Pending resources that are shown by processor type instead of only a total count
- Option to show the details of installed and staged permanent records
- More details for the Attention state by providing seven more flags

HMC and SE are a part of the z/OS Capacity Provisioning environment. The Capacity Provisioning Manager (CPM) communicates with the HMC through z Systems APIs, and enters CoD requests. For this reason, SNMP must be configured and enabled by using the Customize API Settings task on the HMC.

For more information about using and setting up CPM, see these publications:
- z/OS MV$™ Capacity Provisioning User’s Guide, SC33-8299
- z Systems System Capacity on Demand User’s Guide, SC28-6943

11.5.7 Features on Demand support

FoD is a new centralized way to add flexibility features and functions to the system. FoD contains, for example, the zBX High Water Marks (HWMs). HWMs refer to highest quantity of blade entitlements by blade type that the customer has purchased. On the z196/z114, the zBX HWMs are stored in the processor and memory LICCC record. On z13 servers, they are in the Feature on Demand record.

FoD allows separate LICCC controls for z Systems processors (central processors (CPs), Integrated Facility for Linux (IFL) and IBM System z Integrated Information Processors (zIIPs)), and zBX HWMs, providing entitlement controls for each blade type. It is also used as LICCC support for the following features:
- IBM zAware: Enablement/max connections
- Base/proprietary service: Expiration date
- New features: Yet to be announced or developed

11.5.8 Server Time Protocol support

With the STP functions, the role of the HMC is extended to provide the user interface for managing the Coordinated Timing Network (CTN):
- z13 servers rely solely on STP for time synchronization, and continues to provide support of a pulse per second (PPS) port. It maintains accuracy of 10 microseconds as measured at the PPS input of the z13 server. If STP uses an Network Time Protocol (NTP) server without PPS, a time accuracy of 100 milliseconds to the External Time Source (ETS) is maintained.
- The z13 server cannot be in the same CTN with a System z10 (n-2) or earlier systems. As a consequence, the z13 server cannot become member of an STP mixed CTN.
- An STP-only CTN can be managed by using different HMCs. However, the HMC must be at the same driver level (or later) than any SE that is to be managed. Furthermore, all SEs to be managed must be known (defined) to that HMC.

In a STP-only CTN, the HMC can be used to perform the following tasks:
- Initialize or modify the CTN ID.
- Initialize the time, manually or by contacting an NTP server.
- Initialize the time zone offset, Daylight Saving Time offset, and leap second offset.
- Assign the roles of preferred, backup, and current time servers, and arbiter.
- Adjust time by up to plus or minus 60 seconds.
- Schedule changes to the offsets listed. STP can automatically schedule Daylight Saving Time, based on the selected time zone.
- Monitor the status of the CTN.
- Monitor the status of the coupling links that are initialized for STP message exchanges.
- For diagnostic purposes, the PPS port state on a z13 server can be displayed and fenced ports can be reset individually.

STP window enhancements
The z13 STP windows are enhanced to show the following additional or enhanced information:

- The new Integrated Coupling Adapter (ICA) adapters are added to the list of possible STP-supporting Coupling Links.
- A new task role is added within the Customize User Controls window that allows the enablement of the View System (Sysplex) Time option. This option provides view-only access to the STP windows for each individual user role.
- The Initialize Time window shows the current values of leap second offset, time zone, and date and time if the CTN time was set before.
- Set Date and Time is modified so that Use External Time Source (ETS) is the first option. This configuration should encourage the user to select the NTP option (if their system is configured for NTP) because a NTP-set time is more precise compared to a user-set time.
- With Driver 22 and later, the HMC “Enable for time synchronization” task was moved from the “Add (or Modify) object definition” window to the Customize Console Date and Time window. This function synchronizes the HMCs date and time to either an NTP server (if defined) or to a SE Date and Time, with the NTP server option provided as the first choice.
As shown in Figure 11-26, the NTP option is the recommended option, if an NTP server is available. If an NTP server is not available for this HMC, any defined CPC SE can be selected after you click Selected CPCs.

Figure 11-26 Customize Console Date and Time
The Timing Network window now includes the next scheduled Daylight Saving Time change and the next leap second adjustment, as shown in Figure 11-27. The schedules that are shown are the ones for the next Daylight Savings Time change (either given per automatic or scheduled adjustment) and for the next Leap Second change (given per scheduled adjustment).

![System (Sysplex) Time for SCZP501](image)

Figure 11-27 Timing Network window showing Scheduled DST and Scheduled leap second offset

Attention: Figure 11-27 shows a Schedule leap second offset change to 26 seconds that is scheduled for 12/31/2014. This is *not* a real leap second that is released by the International Earth Rotation and Reference System Services. It was temporarily set *only* to show the panel appearance.

Enhanced Console Assisted Recovery

Enhanced Console Assisted Recovery (ECAR) speeds up the process of BTS takeover by using these steps:

1. When the Primary Time Server (PTS/CTS) detects a checkstop condition, the CEC informs its SE and HMC.
2. The PTS SE recognizes the checkstop pending condition, and calls the PTS SE STP code.
3. The PTS SE sends an ECAR request thorough HMC to the Backup Time Server (BTS) SE.
4. The BTS SE communicates with the BTS to start the takeover.
ECAR support is faster than the original CAR support for these reasons:

- The console path goes from a 2-way path to an one-way path
- There is almost no lag time between the system checkstop and the start of CAR processing
- Because the request is generated from the PTS before system logging, it avoids the potential of recovery being held up

Requirements
ECAR is only available on z13 Driver 27 and z13s servers. In a mixed environment with previous generation machines, you should define a z13 or z13s server as the PTS and CTS.

For more planning and setup information, see the following publications:

- Server Time Protocol Planning Guide, SG24-7280
- Server Time Protocol Implementation Guide, SG24-7281

11.5.9 NTP client and server support on the HMC

The NTP client support allows a STP-only CTN to use an NTP server as an ETS. This capability addresses the following requirements:

- Clients who want time accuracy for the STP-only CTN
- Clients who use a common time reference across heterogeneous systems

The NTP server becomes the single time source, the ETS, for STP and other servers that are not z Systems servers (such as AIX, Microsoft Windows, and others) that have NTP clients.

The HMC can act as an NTP server. With this support, the z13 server can get time from the HMC without accessing a LAN other than the HMC/SE network. When the HMC is used as an NTP server, it can be configured to get the NTP source from the Internet. For this type of configuration, a LAN that is separate from the HMC/SE LAN can be used.

HMC NTP broadband authentication support
HMC NTP authentication can be used since HMC Driver 15. The SE NTP support is unchanged. To use this option on the SE, configure the HMC with this option as an NTP server for the SE.

Authentication support with a proxy
Some client configurations use a proxy for external access outside the corporate data center. NTP requests are User Datagram Protocol (UDP) socket packets and cannot pass through the proxy. The proxy must be configured as an NTP server to get to target servers on the web. Authentication can be set up on the client’s proxy to communicate with the target time sources.

Authentication support with a firewall
If you use a firewall, HMC NTP requests can pass through it. Use HMC authentication to ensure untampered time stamps.
NTP symmetric key and autokey authentication

With symmetric key and autokey authentication, the highest level of NTP security is available. HMC Level 2.12.0 and later provide windows that accept and generate key information to be configured into the HMC NTP configuration. They can also issue NTP commands, as shown in Figure 11-28.

![Figure 11-28 HMC NTP broadband authentication support](image)

The HMC offers symmetric key and autokey authentication and NTP commands:

- **Symmetric key (NTP V3-V4) authentication**
 Symmetric key authentication is described in RFC 1305, which was made available in NTP Version 3. Symmetric key encryption uses the same key for both encryption and decryption. Users exchanging data keep this key to themselves. Messages encrypted with a secret key can be decrypted only with the same secret key. Symmetric key authentication supports network address translation (NAT).

- **Symmetric key autokey (NTP V4) authentication**
 This autokey uses public key cryptography, as described in RFC 5906, which was made available in NTP Version 4. You can generate keys for the HMC NTP by clicking **Generate Local Host Key** in the Autokey Configuration window. This option issues the `ntp-keygen` command to generate the specific key and certificate for this system. Autokey authentication is not available with the NAT firewall.

- **Issue NTP commands**
 NTP command support is added to display the status of remote NTP servers and the current NTP server (HMC).

For more information about planning and setup for STP and NTP, see the following publications:

- **Server Time Protocol Planning Guide**, SG24-7280
- **Server Time Protocol Implementation Guide**, SG24-7281
- **Server Time Protocol Recovery Guide**, SG24-7380
Time coordination for zBX components

NTP clients that run on blades in the zBX can synchronize their time to the SE battery operated clock (BOC). The SE BOC is synchronized to the z13 time-of-day (TOD) clock every hour. This process allows the SE clock to maintain a time accuracy of 100 milliseconds to an NTP server that is configured as the ETS in a STP-only CTN. This configuration is shown in Figure 11-29. For more information, see the Server Time Protocol Planning Guide, SG24-7280.

![Figure 11-29 Time coordination for zBX components](image)

11.5.10 Security and user ID management

This section addresses security and user ID management considerations.

HMC and SE security audit improvements

With the Audit and Log Management task, audit reports can be generated, viewed, saved, and offloaded. The Customize Scheduled Operations task allows you to schedule audit report generation, saving, and offloading. The Monitor System Events task allows Security Logs to send email notifications by using the same type of filters and rules that are used for both hardware and operating system messages.

With z13 servers, you can offload the following HMC and SE log files for customer audit:

- Console event log
- Console service history
- Tasks performed log
- Security logs
- System log

Full log offload and delta log offload (since the last offload request) are provided. Offloading to removable media and to remote locations by FTP is available. The offloading can be manually started by the new Audit and Log Management task or scheduled by the Customize Scheduled Operations task. The data can be offloaded in the HTML and XML formats.
HMC user ID templates and LDAP user authentication

Lightweight Directory Access Protocol (LDAP) user authentication and HMC user ID templates enable the addition and removal of HMC users according to your own corporate security environment. These processes use an LDAP server as the central authority. Each HMC user ID template defines the specific authorization levels for the tasks and objects for the user who is mapped to that template. The HMC user is mapped to a specific user ID template by user ID pattern matching. The system then obtains the name of the user ID template from content in the LDAP server schema data.

Default HMC user IDs

It is no longer possible to change the Managed Resource or Task Roles of the default user ID’s operator, advanced, sysprog, acsadmin, and service.

If you want the capability to change the roles for a default user ID, create your own version by copying an existing default user ID.

View-only user IDs and view-only access for HMC and SE

With HMC and SE user ID support, users can be created that have “view-only” access to selected tasks. Support for “view-only” user IDs is available for the following purposes:

- Hardware messages
- Operating system messages
- Customize or delete activation profiles
- Advanced facilities
- Configure on and off

HMC and SE secure FTP support

You can use a secure FTP connection from a HMC/SE FTP client to a customer FTP server location. This configuration is implemented by using the Secure Shell (SSH) File Transfer Protocol, which is an extension of SSH. You can use the Manage SSH Keys console action, which is available to both the HMC and SE, to import public keys that are associated with a host address.

The Secure FTP infrastructure allows HMC and SE applications to query whether a public key is associated with a host address and to use the Secure FTP interface with the appropriate public key for a host. Tasks that use FTP now provide a selection for the secure host connection.

When selected, the task verifies that a public key is associated with the specified host name. If none is provided, a message window is displayed that points to the Manage SSH Keys task to input a public key. The following tasks provide this support:

- Import/Export IOCDS
- Advanced Facilities FTP IBM Content Collector Load
- Audit and Log Management (Scheduled Operations only)
- FCP Configuration Import/Export
- OSA view Port Parameter Export
- OSA Integrated Console Configuration Import/Export
11.5.11 System Input/Output Configuration Analyzer on the SE and HMC

The System Input/Output Configuration Analyzer task supports the system I/O configuration function.

The information that is needed to manage a system’s I/O configuration must be obtained from many separate sources. The System Input/Output Configuration Analyzer task enables the system hardware administrator to access, from one location, the information from those sources. Managing I/O configurations then becomes easier, particularly across multiple servers.

The System Input/Output Configuration Analyzer task runs the following functions:

- Analyzes the current active IOCDS on the SE.
- Extracts information about the defined channel, partitions, link addresses, and control units.
- Requests the channels’ node ID information. The Fibre Channel connection (FICON) channels support remote node ID information, which is also collected.

The System Input/Output Configuration Analyzer is a view-only tool. It does not offer any options other than viewing. With the tool, data is formatted and displayed in five different views. The tool provides various sort options, and data can be exported to a UFD for later viewing.

The following five views are available:

- PCHID Control Unit View shows PCHIDs, channel subsystems (CSS), CHPIDs, and their control units.
- PCHID Partition View shows PCHIDS, CSS, CHPIDs, and the partitions in which they exist.
- Control Unit View shows the control units, their PCHIDs, and their link addresses in each CSS.
- Link Load View shows the Link address and the PCHIDs that use it.
- Node ID View shows the Node ID data under the PCHIDs.

11.5.12 Automated operations

As an alternative to manual operations, an application can interact with the HMC and SE through an API. The interface allows a program to monitor and control the hardware components of the system in the same way you can. The HMC APIs provide monitoring and control functions through SNMP and the CIM. These APIs can get and set a managed object’s attributes, issue commands, receive asynchronous notifications, and generate SNMP traps.

The HMC supports the CIM as an extra systems management API. The focus is on attribute query and operational management functions for z Systems servers, such as CPCs, images, and activation profiles. z13 servers contain a number of enhancements to the CIM systems management API. The function is similar to that provided by the SNMP API.

For more information about APIs, see z Systems Application Programming Interfaces, SB10-7164.
11.5.13 Cryptographic support

This section lists the cryptographic management and control functions that are available in the HMC and the SE.

Cryptographic hardware

z13 servers include both standard cryptographic hardware and optional cryptographic features for flexibility and growth capability.

The HMC/SE interface provides the following capabilities:

- Defining the cryptographic controls
- Dynamically adding a Crypto feature to a partition for the first time
- Dynamically adding a Crypto feature to a partition that already uses Crypto
- Dynamically removing a Crypto feature from a partition

The Crypto Express5S, a new Peripheral Component Interconnect Express (PCIe) cryptographic coprocessor, is an optional z13 exclusive feature. Crypto Express5S provides a secure programming and hardware environment on which crypto processes are run. Each Crypto Express5S adapter can be configured by the installation as a Secure IBM CCA coprocessor, a Secure IBM Enterprise Public Key Cryptography Standards (PKCS) #11 (EP11) coprocessor, or an accelerator.

When EP11 mode is selected, a unique Enterprise PKCS #11 firmware is loaded into the cryptographic coprocessor. It is separate from the Common Cryptographic Architecture (CCA) firmware that is loaded when a CCA coprocessor is selected. CCA firmware and PKCS #11 firmware cannot coexist in a card.

The Trusted Key Entry (TKE) Workstation with smart card reader feature is required to support the administration of the Crypto Express5S when configured as an Enterprise PKCS #11 coprocessor.

To support the new Crypto Express5S card, the Cryptographic Configuration window was changed to support the following card modes:

- Accelerator mode (CEX5A)
- CCA Coprocessor mode (CEX5C)
- PKCS #11 Coprocessor mode (CEX5P)

The Cryptographic Configuration window also has the following updates:

- Support for a Client-Initiated Self-test (CIS) for Crypto running EP11 Coprocessor mode.
- TKE commands are always permitted for EP11 mode.
- The Test RN Generator function was modified and generalized to also support CIS, depending on the mode of the crypto card.
- The Crypto Details window was changed to display the crypto part number.
- Support is now provided for up to four User Defined Extensions (UDX) files. Only UDX CCA is supported for z13 servers.
- UDX import now supports importing from DVD only.
Figure 11-30 shows an example of the Cryptographic Configuration window.

```
Figure 11-30 Cryptographic Configuration window
```

The Usage Domain Zeroize task is provided to clear the appropriate partition crypto keys for a usage domain when you remove a crypto card from a partition. Crypto Express5S in EP11 mode is configured to the standby state after the zeroize process.

For more information, see IBM z13 Configuration Setup, SG24-8260.

Digitally signed firmware

Critical issues with firmware upgrades are security and data integrity. Procedures are in place to use a process to digitally sign the firmware update files that are sent to the HMC, the SE, and the TKE. Using a hash algorithm, a message digest is generated that is then encrypted with a private key to produce a digital signature.

This operation ensures that any changes that are made to the data are detected during the upgrade process by verifying the digital signature. It helps ensure that no malware can be installed on z Systems products during firmware updates. It enables the z13 Central Processor Assist for Cryptographic Function (CPACF) functions to comply with Federal Information Processing Standard (FIPS) 140-2 Level 1 for Cryptographic LIC changes. The enhancement follows the z Systems focus of security for the HMC and the SE.

11.5.14 Installation support for z/VM using the HMC

Starting with z/VM V5R4 and System z10, Linux on z Systems can be installed in a z/VM virtual machine from HMC workstation media. This Linux on z Systems installation can use the existing communication path between the HMC and the SE. No external network or additional network setup is necessary for the installation.

11.5.15 Dynamic Partition Manager

DPM is a z Systems mode of operation that provides a simplified approach to create and manage virtualized environments, which reduces the barriers of its adoption for new and existing customers. For more information about DPM, see Appendix E., “IBM Dynamic Partition Manager” on page 527

Setting up is a disruptive action. The selection of the DPM mode of operation is done by using a function called “Enable Dynamic Partition Manager”, under the SE CPC Configuration menu.
Figure 11-31 shows enabling DPM with the SE interface.

![Figure 11-31 Enabling DPM (SE interface)](image)

After the CPC is restarted and you log on to the HMC that has this CPC defined, the HMC shows another welcome window that is shown in Figure 11-32.

![Figure 11-32 HMC welcome window](image)

New LPARs can be added by selecting **Get Started**. More information can be found in Appendix E, “IBM Dynamic Partition Manager” on page 527.
11.6 HMC in an ensemble

An ensemble is a platform systems management domain that consists of up to eight z13 or IBM zEnterprise System (zEnterprise) nodes and up to eight zBX Model 004 systems. Each node comprises a zEnterprise CPC or a zBX Model 004. The ensemble provides an integrated way to manage virtual server resources and the workloads that can be deployed on those resources. The zEnterprise is a workload-optimized technology system that delivers a multiple platform, integrated hardware system. This system spans z Systems, System p, and System x blade server technologies.

Management of the ensemble is provided by the IBM zEnterprise Unified Resource Manager.

Consideration: The ensemble HMC mode is available only for managing IBM z Systems servers (z13, z13s, zEC12, zBC12, z196, and z114).

11.6.1 Unified Resource Manager

The ensemble is provisioned and managed through the Unified Resource Manager, which is in the HMC. The Unified Resource Manager provides a large set of functions for system management.

Figure 11-33 shows the Unified Resource Manager functions and suites.
Overview
Unified Resource Manager provides the following functions:

► Hypervisor management
 Provides tasks for managing the hypervisor lifecycle, managing storage resources, providing RAS and first-failure data capture (FFDC) features, and monitoring the supported hypervisors.

► Ensemble membership management
 Provides tasks for creating an ensemble and controlling membership of the ensemble.

► Storage management
 Provides a common user interface for allocation and deallocation of physical and virtual storage resources for an ensemble.

► Virtual server management
 Provides lifecycle management to create, delete, activate, deactivate, and modify the definitions of virtual servers.

► Virtual network management
 Allows management of networking resources for an ensemble.

► Availability management
 The resource workload “Awareness availability” function monitors and reports virtual servers’ availability status, based on the workloads of which they are a part and their associated workload policies.

► Performance management
 Provides a global performance view of all the virtual servers that support workloads that are deployed in an ensemble. The virtual server workload performance goal is like a simplified z/OS Workload Manager (WLM) policy:
 – You can define, monitor, report, and manage the performance of virtual servers based on workload performance policies.
 – Policies are associated to the workload:
 • From the overall Workload performance health report, you can review contributions of individual virtual servers.
 • You can manage resources across virtual servers within a hypervisor instance.

► Ensemble Availability Management (EAM)
 EAM implements basic availability services for the ensemble as part of the Unified Resource Manager. It provides consistent high availability management across virtual servers running on the zEnterprise and zBX in an ensemble, allowing error monitoring and identifying conditions that affect the availability of resources.
 The EAM availability assessment is based on user-defined policies for the following objects:
 – PR/SM LPARs running on zEnterprise
 – Kernel-based virtual machine (KVM) virtual servers running on zBX
 – PowerVM virtual servers running on zBX

► EAM enhancements
 EAM availability enhancements are based on Workload Resource Group (WRG) definitions. A WRG is a grouping mechanism and management view of the virtual servers...
that support a business application. The availability definitions are created at the HMC and include these functions:

- Creation of element groups (an element is a virtual server that is associated to a specific workload. Elements are grouped to form a Resource Group. Resource Groups are associated, based on a defined workload, to form a WRG.)
- Addition of virtual servers and element groups to a workload.
- Definition of new availability policies.
- Definition of workload status: Performance and availability compliance.
- Providing workload details summary and reports.

Energy management:

- Monitors energy usage and controls power-saving settings, which are accessed through the new Monitors Dashboard task.
- Monitoring virtual server resources for processor use and delays, with the capability to create a graphical trend report.

Unified Resource Manager supports different levels of system management. These features determine the management functions and operational controls that are available for a zEnterprise mainframe and any stand-alone zBX:

- Manage suite

 Provides the Unified Resource Manager function with core operational controls, installation, and energy monitoring. It is configured by default and activated when an ensemble is created.

- Automate/Advanced Management suite

 Advanced Management functions for IBM System x blades delivers a workload definition and performance policy monitoring and reporting. The Automate function adds goal-oriented resource monitoring management and energy management for CPC components, such as System x blades, POWER7 Blades, and the IBM DataPower XI50z. This function is in addition to the Advanced Management function.

Table 11-3 lists the feature codes that must exist to enable Unified Resource Manager. To get ensemble membership, ensure that you also have FC 0025 for the zEC12.

Table 11-3 Unified Resource Manager feature codes and charge indicators

<table>
<thead>
<tr>
<th>Unified Resource Manager managed component</th>
<th>Manage(^a) (per connection)</th>
<th>Automate(^a) (per connection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base features</td>
<td>FC 0019(^b) - N/C</td>
<td>FC 0020(^c) - N/C</td>
</tr>
<tr>
<td>POWER7 blade</td>
<td>FC 0178(^d) - Yes</td>
<td>FC 0179(^d) - Yes</td>
</tr>
<tr>
<td>DataPower blade</td>
<td>FC 0184(^d) - Yes</td>
<td>FC 0185(^d) - N/C</td>
</tr>
<tr>
<td>IBM System x blades</td>
<td>FC 0182(^d) - Yes</td>
<td>FC 0183(^d) - Yes (also covers the previous Advanced Management function)</td>
</tr>
</tbody>
</table>

\(^a\) Yes = charged feature, N/C = no charge, N/A = not applicable. All components are either managed through the Manage suite or the Automate/Advanced Management suite. The Automate/Advanced Management suite contains all of the functions of the Managed suite.

\(^b\) FC 0019 is a prerequisite for FC 0020, FC 0184, and FC 0178.
c. FC 0020 is a prerequisite for FC 0185 and FC 0183.
d. All these feature codes are now associated to the zBX Model 004.

Restriction: No new features can be ordered for IBM z Unified Resource Manager with IBM z13 servers.

APIs for the Unified Resource Manager
The API is a web-oriented programming interface that makes the underlying Unified Resource Manager capabilities available for use by higher-level management applications, system automation functions, and custom scripting. The functions that are available through the API support several important usage scenarios. These scenarios are in virtualization management, resource inventory, provisioning, monitoring, automation, workload-based optimization, and others.

The Web Services API consists of two major components that are accessed by customer applications through Internet Protocol network connections with the HMC.

For more information about the API and the Unified Resource Manager, see z Systems Hardware Management Console Web Services API (Version 2.13.0), SC27-2627, and Building an Ensemble Using IBM zEnterprise Unified Resource Manager, SG24-7921.

z/VM V6R3 and Unified Resource Manager: Because of the IBM cloud strategy and adoption of OpenStack, the management of z/VM environments in zManager is now stabilized and will not be further enhanced. zManager will not provide systems management support for z/VM 6.3 and later releases. However, zManager continues to play a distinct and strategic role in the management of virtualized environments that are created by the integrated firmware hypervisors (PR/SM, PowerVM, and x hypervisor, which is based on KVM) of zEnterprise.

11.6.2 Ensemble definition and management

The ensemble starts with a pair of HMCs that are designated as the primary and alternate HMCs and are assigned an ensemble identity. The zEnterprise CPCs and zBXs are then added to the ensemble through an explicit action at the primary HMC.

Ensemble Membership Flag
The Ensemble Membership Flag feature, FC 0025, is associated with an HMC when a z13 server is ordered.

The new Create Ensemble task allows the Ensemble Administrator user to create an ensemble that contains CPCs and zBXs (Model 004) as members along with images, workloads, virtual networks, and storage pools.

If a z13 server is entered into an ensemble, the CPC Details task on the SE and the HMC reflects the ensemble name.

The Unified Resource Manager actions for the ensemble are conducted from a single primary HMC. All other HMCs that are connected to the ensemble can run system management tasks (but not ensemble management tasks) for any CPC or zBX Model 004 within the ensemble. The primary HMC can also be used to run system management tasks on CPCs that are not part of the ensemble. These tasks include Load, Activate, and so on.
The ensemble-specific managed objects include the following objects:

- Ensemble
- Members
- Blades
- BladeCenters
- Hypervisors
- Storage resources
- Virtual servers
- Workloads

When another HMC accesses an ensemble node’s CPC, the HMC can perform the same tasks as though the CPC were not a part of an ensemble. A few of those tasks are extended so that you can configure certain ensemble-specific properties. You can, for example, set the virtual network that is associated with Open Systems Adapters (OSAs) for an LPAR. Showing ensemble-related data in certain tasks is allowed. Generally, if the data affects the operation of the ensemble, the data is read-only on another HMC.

The following tasks show ensemble-related data on another HMC:

- Scheduled operations: Displays ensemble-introduced scheduled operations, but you can only view these scheduled operations.
- User role: Shows ensemble tasks. You can modify and delete those roles.
- Event monitoring: Displays ensemble-related events, but you cannot change or delete the event.

HMC considerations when using IBM zEnterprise Unified Resource Manager to manage an ensemble

The following considerations are valid when you use Unified Resource Manager to manage an ensemble:

- All HMCs at the supported code level are eligible to create an ensemble. Only HMCs with FC 0094, FC 0092, or FC 0091 at Driver 22 or later can be primary or alternate HMCs for z13 servers.
- The primary HMC and the alternate HMC must be the same machine type and feature code.
- A single HMC pair manages the ensemble that consists of a primary HMC and an alternate HMC.
- Only one primary HMC manages an ensemble, which can consist of a maximum of eight CPCs and up to eight zBX Model 004 systems.
- The HMC that ran the Create Ensemble wizard becomes the primary HMC. An alternate HMC is elected and paired with the primary.
- The Primary HMC (Version 2.13.0 or later) and Alternate HMC (Version 2.13.0 or later) are displayed on the HMC banner. When the ensemble is deleted, the titles change back to the default.
- A primary HMC is the only HMC that can run ensemble-related management tasks. These tasks include create virtual server, manage virtual networks, and create workload.
- A zEnterprise ensemble can have a maximum of 16 nodes (eight CPCs plus eight zBX Model 004 systems), and is managed by one primary HMC and its alternate. Each node comprises a zEnterprise CPC or a zBX Model 004.
- Any HMC can manage up to 100 CPCs. The primary HMC can run all non-ensemble HMC functions on CPCs that are not members of the ensemble.
The primary and alternate HMCs must be on the same LAN segment.

The alternate HMC’s role is to mirror the ensemble configuration and policy information from the primary HMC.

When failover happens, the alternate HMC becomes the primary HMC. This behavior is the same as primary and alternate SEs.

11.6.3 HMC availability

The HMC is attached to the same LAN as the server’s and zBX Model 004 SEs. This LAN is referred to as the *Customer Managed Management Network*. The HMC communicates with each CPC and with each zBX Model 004 SE.

If the z13 node is defined as a member of an ensemble, the primary HMC is the authoritative controlling (stateful) component for the Unified Resource Manager configuration. It is also the stateful component for policies that have a scope that spans all of the managed CPCs and SEs in the ensemble. The managing HMC has an active role in ongoing system monitoring and adjustment.

This configuration requires the HMC to be configured in a primary/alternate configuration. It also cannot be disconnected from the managed ensemble members.

Failover: The primary HMC and its alternate must be connected to the same LAN segment. This configuration allows the alternate HMC to take over the IP address of the primary HMC during failover processing.

11.6.4 Considerations for multiple HMCs

Customers often deploy multiple HMC instances to manage an overlapping collection of systems. Until the emergence of ensembles, all of the HMCs were peer consoles to the managed systems. Using this configuration, all management actions are possible to any of the reachable systems while logged in to a session on any of the HMCs (subject to access control). With the Unified Resource Manager, this paradigm has changed. Each ensemble is managed by one primary and alternate HMC pair. Multiple ensembles require an equal number of primary and alternate HMC pairs to manage them. If a z13, a zEnterprise System, or a zBX Model 004 server is added to an ensemble, management actions that target that object can be done only from the managing (primary) HMC for that ensemble.

11.6.5 HMC browser session to a primary HMC

A remote HMC browser session to the primary HMC that manages an ensemble allows a user who is logged on to another HMC or a workstation to perform ensemble-related actions.

11.6.6 HMC ensemble topology

The system management functions that pertain to an ensemble use the HMC and the z13, zEnterprise System, or zBX Model 004 SEs through the intranode management network (INMN) to provide the required connectivity.
Figure 11-34 depicts an ensemble with a zEC12, a z13, and a stand-alone zBX server that are managed by the Unified Resource Manager in the primary and alternate HMCs.

For the stand-alone CPC ensemble node (zEC12), an OSA-Express4S (CHPID type OSD) connects to the zBX intraensemble data network (IEDN) switch. The HMCs also communicate with all the components of the ensemble by using the SCH in the z13 server, the BPH in the zEC12, and the INMN switch in the zBX Model 004.

The OSA-Express5S (or OSA Express 4S) 10 GbE ports (CHPID type OSX) in the z13 server are plugged with customer-provided 10 GbE cables to the IEDN zBX switch. These cables are either short reach (SR) or long reach (LR), depending on the OSA feature.
This chapter describes the performance considerations for IBM z13 servers.

This chapter includes the following sections:

- IBM z13 performance characteristics
- LSPR workload suite
- Fundamental components of workload capacity performance
- Relative Nest Intensity
- LSPR workload categories based on relative nest intensity
- Relating production workloads to LSPR workloads
- Workload performance variation
12.1 IBM z13 performance characteristics

The IBM z13 Model NE1 is designed to offer approximately 40% more capacity and 3.3 times the amount of memory than the IBM zEnterprise EC12 (zEC12) Model HA1 system. Uniprocessor performance has also increased. A z13 Model 701 offers, on average, performance improvements of more than 10% over the zEC12 Model 701. Figure 12-1 shows the estimated capacity ratios for z13, zEC12, z196, z10 EC, and z9 EC.

Figure 12-1 z13 to zEC12, z196, z10 EC, and z9 EC performance comparison

The Large System Performance Reference (LSPR) numbers that are given for z13 servers were obtained with z/OS V2R1. The numbers for zEC12 were obtained with z/OS V1R13, and numbers for the z196, z10 EC, and z9 EC systems were obtained with the z/OS V1R11 operating system.

On average, z13 servers can deliver up to 40% more performance in a 141-way configuration than an zEC12 101-way. However, the observed performance increase varies depending on the workload type.

Consult the LSPR when you consider performance on the zEC12. The range of performance ratings across the individual LSPR workloads is likely to have a large spread. More performance variation of individual logical partitions (LPARs) exists because the fluctuating resource requirements of other partitions can be more pronounced with the increased number of partitions and the availability of more processor units (PUs). For more information, see 12.7, “Workload performance variation” on page 471.

For detailed performance information, see the LSPR website:

The millions of service units (MSU) ratings are available from the following website:
12.2 LSPR workload suite

Historically, LSPR capacity tables, including pure workloads and mixes, have been identified with application names or a software characteristic. Examples are CICS, IMS, OLTP-T,1 CB-L,2 LoI0-mix,3 and TI-mix.4 However, capacity performance is more closely associated with how a workload uses and interacts with a particular processor hardware design. The CPU Measurement Facility (CPU MF) data that was introduced on the z10 provides insight into the interaction of workload and hardware design in production workloads. CPU MF data helps LSPR to adjust workload capacity curves based on the underlying hardware sensitivities, in particular, the processor access to caches and memory. This is known as nest activity intensity. Using this data, LSPR introduces three new workload capacity categories that replace all prior primitives and mixes.

LSPR contains the internal throughput rate ratios (ITRRs) for the zEC12 and the previous generation processor families. These ratios are based on measurements and projections that use standard IBM benchmarks in a controlled environment. The throughput that any user experiences can vary depending on the amount of multiprogramming in the user's job stream, the I/O configuration, and the workload processed. Therefore, no assurance can be given that an individual user can achieve throughput improvements equivalent to the performance ratios that are stated.

12.3 Fundamental components of workload capacity performance

Workload capacity performance is sensitive to three major factors:

- Instruction path length
- Instruction complexity
- Memory hierarchy and memory nest

This section examines each of these three factors.

12.3.1 Instruction path length

A transaction or job runs a set of instructions to complete its task. These instructions are composed of various paths through the operating system, subsystems, and application. The total count of instructions that are run across these software components is referred to as the transaction or job path length. The path length varies for each transaction or job, and depends on the complexity of the tasks that must be run. For a particular transaction or job, the application path length tends to stay the same, assuming that the transaction or job is asked to run the same task each time.

1 Traditional online transaction processing workload (formerly known as IMS)
2 Commercial batch with long-running jobs
3 Low I/O Content Mix Workload
4 Transaction Intensive Mix Workload
However, the path length that is associated with the operating system or subsystem can vary based on a number of factors:

- Competition with other tasks in the system for shared resources. As the total number of tasks grows, more instructions are needed to manage the resources.
- The n-way (number of logical processors) of the image or LPAR. As the number of logical processors grows, more instructions are needed to manage resources that are serialized by latches and locks.

12.3.2 Instruction complexity

The type of instructions and the sequence in which they are run interacts with the design of a microprocessor to affect a performance component. This factor is defined as *instruction complexity*. Many design alternatives affect this component:

- Cycle time (GHz)
- Instruction architecture
- Pipeline
- Superscalar
- Out-of-order execution
- Branch prediction

As workloads are moved between microprocessors with various designs, performance varies. However, when on a processor, this component tends to be similar across all models of that processor.

12.3.3 Memory hierarchy and memory nest

The *memory hierarchy* of a processor generally refers to the caches, data buses, and memory arrays that stage the instructions and data that must be run on the microprocessor to complete a transaction or job.

Many design choices affect this component:

- Cache size
- Latencies (sensitive to distance from the microprocessor)
- Number of levels, the Modified, Exclusive, Shared, Invalid (MESI) protocol, controllers, switches, the number and bandwidth of data buses, and so on

Certain caches are *private* to the microprocessor core, which means that only that microprocessor core can access them. Other caches are shared by multiple microprocessor cores. The term *memory nest* for a z Systems processor refers to the shared caches and memory along with the data buses that interconnect them.
Figure 12-2 shows a memory nest in a z13 single CPC drawer system.

![Memory hierarchy on the z13 one CPC drawer system (two nodes)](image)

Workload capacity performance is sensitive to how deep into the memory hierarchy the processor must go to retrieve the workload instructions and data for running. The best performance occurs when the instructions and data are in the caches nearest the processor. In this configuration, little time is spent waiting before running. If the instructions and data must be retrieved from farther out in the hierarchy, the processor spends more time waiting for their arrival.

As workloads are moved between processors with various memory hierarchy designs, performance varies because the average time to retrieve instructions and data from within the memory hierarchy varies. Additionally, when on a processor, this component continues to vary. This variation is because the location of a workload's instructions and data within the memory hierarchy is affected by many factors that include, but are not limited to, these factors:

- Locality of reference
- I/O rate
- Competition from other applications and LPARs

12.4 Relative Nest Intensity

The most performance-sensitive area of the memory hierarchy is the activity to the memory nest. This is the distribution of activity to the shared caches and memory. The term Relative Nest Intensity (RNI) indicates the level of activity to this part of the memory hierarchy. Using data from CPU MF, the RNI of the workload running in an LPAR can be calculated. The higher the RNI, the deeper into the memory hierarchy the processor must go to retrieve the instructions and data for that workload.
RNI reflects the distribution and latency of sourcing data from shared caches and memory, as shown in Figure 12-3.

Many factors influence the performance of a workload. However, usually what these factors are influencing is the RNI of the workload. The interaction of all these factors results in a net RNI for the workload, which in turn directly relates to the performance of the workload.

These factors are tendencies, not absolutes. For example, a workload might have a low I/O rate, intensive processor use, and a high locality of reference, which all suggest a low RNI. But it might be competing with many other applications within the same LPAR and many other LPARs on the processor, which tends to create a higher RNI. It is the net effect of the interaction of all these factors that determines the RNI.

The traditional factors that were used to categorize workloads in the past are listed along with their RNI tendency in Figure 12-4.

Little can be done to affect most of these factors. An application type is whatever is necessary to do the job. The data reference pattern and processor usage tend to be inherent to the nature of the application. The LPAR configuration and application mix are mostly a function of what must be supported on a system. The I/O rate can be influenced somewhat through buffer pool tuning.

However, one factor, software configuration tuning, is often overlooked but can have a direct effect on RNI. This term refers to the number of address spaces (such as CICS application-owning regions (AORs) or batch initiators) that are needed to support a workload.
This factor has always existed, but its sensitivity is higher with the current high frequency microprocessors. Spreading the same workload over more address spaces than necessary can raise a workload's RNI. This increase occurs because the working set of instructions and data from each address space increases the competition for the processor caches.

Tuning to reduce the number of simultaneously active address spaces to the correct number that is needed to support a workload can reduce RNI and improve performance. In the LSPR, the number of address spaces for each processor type and n-way configuration is tuned to be consistent with what is needed to support the workload. Therefore, the LSPR workload capacity ratios reflect a presumed level of software configuration tuning. Retuning the software configuration of a production workload as it moves to a larger or faster processor might be needed to achieve the published LSPR ratios.

12.5 LSPR workload categories based on relative nest intensity

A workload's RNI is the most influential factor in determining workload performance. Other more traditional factors, such as application type or I/O rate, have RNI tendencies. However, it is the net RNI of the workload that is the underlying factor in determining the workload's capacity performance. The LSPR now runs various combinations of former workload primitives, such as CICS, DB2, IMS, OSAM, VSAM, WebSphere, COBOL, and utilities, to produce capacity curves that span the typical range of RNI.

Three new workload categories are represented in the LSPR tables:

- **LOW** (relative nest intensity)
 A workload category that represents light use of the memory hierarchy. This category is similar to past high-scaling primitives.

- **AVERAGE** (relative nest intensity)
 A workload category that represents average use of the memory hierarchy. This category is similar to the past LoI0-mix workload, and is expected to represent most production workloads.

- **HIGH** (relative nest intensity)
 A workload category that represents a heavy use of the memory hierarchy. This category is similar to the past Ti-mix workload.

These categories are based on the RNI. The RNI is influenced by many variables, such as application type, I/O rate, application mix, processor usage, data reference patterns, LPAR configuration, and the software configuration that is running. CPU MF data can be collected by z/OS System Measurement Facility on SMF 113 records.

12.6 Relating production workloads to LSPR workloads

Historically, a number of techniques were used to match production workloads to LSPR workloads:

- Application name (a client running CICS can use the CICS LSPR workload)
- Application type (create a mix of the LSPR online and batch workloads)
- I/O rate (the low I/O rates used a mix of low I/O rate LSPR workloads)
The previous LSPR workload suite was composed of the following workloads:

- Traditional online transaction processing workload OLTP-T (formerly known as IMS)
- Web-enabled online transaction processing workload OLTP-W (also known as Web/CICS/DB2)
- A heavy Java based online stock trading application that is known as WASDB (previously referred to as Trade2-EJB)
- Batch processing, represented by the CB-L (commercial batch with long-running jobs or CBW2)
- A new ODE-B Java batch workload, replacing the CB-J workload

The traditional Commercial Batch Short Job Steps (CB-S) workload (formerly CB84) was dropped. Figure 12-4 on page 468 shows the traditional factors that have been used to categorize workloads.

The previous LSPR provided performance ratios for individual workloads and for the default mixed workload. This default workload was composed of equal amounts of four of the previous workloads (OLTP-T, OLTP-W, WASDB, and CB-L). Guidance in converting the previous LSPR categories to the new ones is given in Figure 12-5.

The IBM Processor Capacity Reference for z Systems (zPCR) tool has been changed to support the new z/OS workload categories. The IBM zPCR tool reflects the latest IBM LSPR measurements. It is available at no extra charge at: http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381

However, as addressed in 12.5, “LSPR workload categories based on relative nest intensity” on page 469, the underlying performance sensitive factor is how a workload interacts with the processor hardware. These past techniques approximated the hardware characteristics because they were not available through software performance reporting tools.

Beginning with the z10 processor, the hardware characteristics can now be measured by using CPU MF (SMF 113) counters data. A production workload can now be matched to an LSPR workload category through these hardware characteristics. For more information about RNI, see 12.5, “LSPR workload categories based on relative nest intensity” on page 469.
The AVERAGE RNI LSPR workload is intended to match most client workloads. When no other data is available, use it for capacity analysis.

Direct access storage device (DASD) I/O rate was used for many years to separate workloads into two categories:

- DASD I/O per MSU (adjusted) is <30 (or DASD I/O per Peripheral Component Interconnect (PCI) is <5)
- Higher than these values

Most production workloads fell into the “low I/O” category, and a LoI0-mix workload was used to represent them. Using the same I/O test, these workloads now use the AVERAGE RNI LSPR workload. Workloads with higher I/O rates can use the HIGH RNI workload or the AVG-HIGH RNI workload that is included with IBM zPCR. Low-Average and Average-High categories allow better granularity for workload characterization.

For z10 and newer processors, the CPU MF data can be used to provide an extra hint as to workload selection. When available, this data allows the RNI for a production workload to be calculated. By using the RNI and another factor from CPU MF, the L1MP (percentage of data and instruction references that miss the L1 cache), a workload can be classified as LOW, AVERAGE, or HIGH RNI. This classification and resulting hit are automated in the zPCR tool. It is preferable to use zPCR for capacity sizing.

12.7 Workload performance variation

Because of the nature of the z13 multi-drawer system and resource management across those drawers, performance variability from application to application is expected. This variation is similar to that seen on the zEC12, z196, z10 EC, and z9 EC. This variability can be observed in certain ways. The range of performance ratings across the individual workloads is likely to have a spread, but not as large as that seen with the z10 EC.

The memory and cache designs affect various workloads in many ways. All workloads are improved, with cache-intensive loads benefiting the most. When comparing moving from z9 EC to z10 EC with moving from z10 EC to z196 or from z196 to zEC12, it is likely that the relative benefits per workload will vary. Those workloads that benefited more than the average when moving from z9 EC to z10 EC will benefit less than the average when moving from z10 EC to z196. Nevertheless, the workload variability for moving from zEC12 to z13 servers is expected to be less than the last few upgrades.

The effect of this variability is increased deviations of workloads from single-number metric-based factors, such as millions of instructions per second (MIPS), MSUs, and CPU time charge-back algorithms.

Experience demonstrates that z Systems servers can be run at up to 100% utilization levels, sustained. However, most clients prefer to leave a bit of room and run at 90% or slightly under. For any capacity comparison exercise, using a single metric, such as MIPS or MSU, is not a valid method. When deciding the number of processors and the uniprocessor capacity, remember both the workload characteristics and LPAR configuration. For these reasons, when you plan capacity, zPCR and involving IBM technical support are recommended.
12.7.1 Main performance improvement drivers with z13 servers

z13 servers are designed to deliver new levels of performance and capacity for large-scale consolidation and growth. The following attributes and design points of z13 servers contribute to overall performance and throughput improvements as compared to the zEC12.

The z/Architecture implementation has the following enhancements:

- Transactional Execution (TX) designed for z/OS, Java, DB2, and other users
- Runtime Instrumentation (RI) provides dynamic and self-tuning online recompilation capability for Java workloads
- Enhanced DAT-2 for supporting 2-GB pages for DB2 buffer pools, Java heap size, and other large structures
- Software directives implementation to improve hardware performance
- Decimal format conversions for COBOL programs

The z13 microprocessor design has the following enhancements:

- Up to eight active processor cores per chip
- Improved out-of-order (OOO) execution design
- Improved pipeline balance, with up to six instructions that can be decoded per cycle, and up to 10 instructions/operations that can be initiated to run per clock cycle
- Simultaneous multithreading (SMT)
- Single-instruction multiple-data (SIMD) unit and 139 new instructions for vector operations
- Enhanced branch prediction latency and instruction fetch throughput
- Improvements in execution bandwidth and throughput: 10 execution units and two load/store units, which are divided into two symmetric pipelines:
 - Four fixed-point units (FXU) (integer)
 - Two load/store units (LSU)
 - Two binary floating-point units (BFU)
 - Two binary coded decimal floating-point units (DFU)
 - Two vector floating-point units (VXU)
- Redesigned cache structure:
 - Increased L1I and L1D caches (96 KB instruction and 128 KB data per core)
 - Increased 2 MB + 2 MB eDRAM split (instruction and data) private L2 cache per core
 - On-chip 64 MB eDRAM L3 Cache, shared by all cores (eight), 384 MB per CPC drawer
 - New Inclusive L4 Design: 480 MB L4 with 224 MB NIC Directory (960 MB L4 per CPC drawer)
- One cryptographic/compression co-processor per core, redesigned
- CP Assist for Cryptographic Functions (CPACF) (hardware) runs additional UTF conversion operations: UTF8 to UTF32, UTF8 to UTF16, UTF32 to UTF8, and UTF32 to UTF16
- Clock frequency at 5.0 GHz
- IBM CMOS 14S0 22 nm Silicon-On-Insulator (SOI) technology with IBM embedded dynamic static random access memory (eDRAM) technology
The z13 design has the following enhancements as compared with the zEC12:

- Increased total number of PUs that are available on the system, from 120 to 168, and number of characterizable cores, from 101 to 141
- Hardware system area (HSA) increased from 32 GB to 96 GB
- Increased number of supported LPARs from 60 to 85
- 10 TB of addressable memory (configurable to LPARs) with up to 10 TB of memory per LPAR
- Increased default number of system assist processor (SAP) processors per CPC drawer

New Coupling Facility Control Code (CFCC) that is available for improved performance:
- Elapsed time improvements when dynamically altering the size of a cache structure
- DB2 conditional writes to a group buffer pool (GBP)
- Performance improvements for coupling facility cache structures to avoid flooding the coupling facility cache with changed data, and avoid excessive delays and backlogs for cast-out processing
- Performance throughput enhancements for parallel cache castout processing by extending the number of record code check (RCC) cursors beyond 512
- Coupling facility (CF) storage class and castout class contention avoidance by breaking up individual storage class and castout class queues to reduce storage class and castout class latch contention

The following new features are available on z13 servers:

- Integrated Coupling Adapter (ICA SR)
- FICON Express16S
- Shared Memory Communications over RDMA (SMC-R). The 10GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express (10Gbe RoCE Express) feature now supports using both physical ports and can be shared between up to 31 LPARs
- Shared Memory Communications-Direct Memory Access (SMC-D) over Internal Shared Memory (ISM)
- Crypto Express5S with up to 85 domains
IBM z Appliance Container Infrastructure

This appendix introduces the IBM z Appliance Container Infrastructure (zACI) framework, which is available on z13s and z13 Driver Level 27 servers. It briefly describes the reason why IBM has created the framework and provides a description about how the zACI environment is intended to be used.

This appendix includes the following sections:

- What is zACI?
- Why use zACI?
- IBM z Systems servers and zACI
A.1 What is zACI?

An appliance is an integration of operating system, middleware, and software components that work autonomously and provide core services and infrastructure that focus on consumability and security.

Appliances can be implemented as firmware or software, depending on the environment in which the appliance runs and the function it must provide.

Introduced with z13s and z13 with Driver Level 27 servers, the common framework called zAppliance Container Infrastructure (zACI) is intended to provide a standard set of behaviors and operations that help simplify deploying infrastructure functions.

A.2 Why use zACI?

Frameworks like zACI are embedded technologies. They are not product deliverables themselves. They are only delivered as part of the solution that uses them.

The zACI framework reduces the amount of work a team must do to create an appliance, and enforces a common set of behaviors for operations that all appliances adhere to.

The zACI framework provides a set of utilities to implement common functions that all appliances need, such as first-failure data capture (FFDC), network setup, appliance configuration, and so on.

The framework enables the decision to release a product as software or firmware based on a business decision, not on a technical decision.

A.3 IBM z Systems servers and zACI

An appliance that is based on the zACI framework has the following features:

- Encapsulated Operating Systems
- Remote APIs (RESTful) and web interfaces
- Embedded monitoring and self-healing
- Tamper-protection
- Protected IP

An appliance that is built based on the zACI framework has these characteristics:

- Tested and qualified by IBM for a specific use case
- Can be delivered either as firmware, platform, or software
Figure A-1 shows the basic outline of the zACI framework.

Statement of Direction: IBM plans to make available the z/VSE Network Appliance based on z Appliance Container Infrastructure (zACI) in June 2016.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

A.3.1 Example: Deploying IBM zAware

The new type of LPAR called *zACI* is used to deploy the IBM zAware server application. The IBM zAware LPAR type is not supported on z13s or z13 at Driver level 27 servers. zACI LPAR type is used instead.
Figure A-2 shows the new LPAR type.

Existing IBM zAware LPARs are automatically converted during Enhanced Driver Maintenance from Driver 22 to Driver 27. No reconfiguration of IBM zAware is required. A new icon identifies the zACI LPARs in the HMC user interface as shown in Figure A-3 (the Classic UI is on the right, and the tree style UI on the left).
Appendix B. IBM z Advanced Workload Analysis Reporter

This appendix introduces IBM z Advanced Workload Analysis Reporter (IBM zAware), which was introduced with IBM zEnterprise zEC12. This feature is designed to offer near real-time, continuous learning, diagnostic, and monitoring capabilities. IBM zAware helps you pinpoint and resolve potential problems quickly enough to minimize impacts to your business.

This appendix includes the following sections:

- Troubleshooting in complex IT environments
- Introducing IBM zAware
- Understanding IBM zAware technology
- IBM zAware prerequisites
- Configuring and using IBM zAware virtual appliance

For more information about IBM zAware, see Extending z/OS System Management Functions with IBM zAware, SG24-8070, and z Advanced Workload Analysis Reporter (IBM zAware) Guide Version 2.0, SC27-2632.
B.1 Troubleshooting in complex IT environments

In a 24x7 operating environment, a system problem or incident can drive up operations costs and disrupt service to clients for hours or even days. Current IT environments cannot afford recurring problems or outages that take too long to repair. These outages can result in damage to a company’s reputation and limit the ability to remain competitive in the marketplace.

However, as systems become more complex, errors can occur anywhere. Some problems begin with symptoms that go undetected for long periods of time. Systems often experience “soft failures” (sick but not dead) that are much more difficult or unusual to detect. Moreover, problems can grow, cascade, and get out of control.

Many everyday activities can introduce system anomalies and cause either hard or soft failures in complex, integrated data centers:

- Increased volume of business activity
- Application modifications to comply with changing regulatory requirements
- IT efficiency efforts, such as consolidating images
- Standard operational changes:
 - Adding or upgrading hardware
 - Adding or upgrading software, such as operating systems, middleware, and independent software vendor products
 - Modifying network configurations
 - Moving workloads (provisioning, balancing, deploying, disaster recovery (DR) testing, and so on)

Using a combination of existing system management tools helps to diagnose problems. However, they cannot quickly identify messages that precede system problems and cannot detect every possible combination of change and failure.

When using these tools, you might need to look through message logs to understand the underlying issue. But the number of messages makes this a challenging and skills-intensive task, as well as an error-prone task.

To meet IT service challenges and to effectively sustain high levels of availability, a proven way is needed to identify, isolate, and resolve system problems quickly. Information and insight are vital to understanding baseline system behavior along with possible deviations. Having this knowledge reduces the time that is needed to diagnose problems, and address them quickly and accurately.

The current complex, integrated data centers require a team of experts to monitor systems and perform the real-time diagnosis of events. However, it is not always possible to deploy this level of skill for these reasons:

- A z/OS sysplex can produce more than 40 GB of message traffic per day for its images and components alone. Application messages can significantly increase that number.
- There are more than 40,000 unique message IDs defined in z/OS and the IBM software that runs on z/OS. Independent software vendor (ISV) or client messages can increase that number.
B.2 Introducing IBM zAware

IBM zAware Version 2.0 is an integrated expert solution that contains sophisticated analytics, IBM insight into the problem domain, and web-browser-based visualization. It is an adaptive analytics solution that learns your unique system characteristics and helps you to detect and diagnose unusual behavior of z/OS and Linux on z Systems images in near real time, accurately and rapidly.

IBM zAware introduces a new generation of technology with improved analytics to provide better results. It can process message streams that do not have message IDs, which makes it possible to handle a broader variety of unstructured data.

The IBM zAware Version 2.0 that is delivered on z13s and z13 at Driver 27 servers provides the following capabilities:

- Support for Linux on z Systems message log analysis.
- Support for native or guest Linux on z Systems images.
- The ability to group multiple systems that have similar operational characteristics for modeling and analysis.
- Recognition of dynamic activation and deactivation of a Linux image into a group and appropriate modeling and analysis:
 - Aggregated Sysplex view for z/OS and system views.
 - User-defined grouping.
 For Linux on z Systems, the user can group multiple systems' data into a combined model by workload (one for all web servers, one for all databases, and so on), by "solution" (for example, one model for your cloud), and by VM host.
- Heat map display that provides a consolidated, aggregated, and high-level view, with the ability to drill down to detail views.
- Improved usability and GUI functional enhancements that address customer requirements.
- Enhanced filtering and visualization, with better use of GUI space.
- Improved UI navigation.
- Display of local time in addition to Coordinated Universal Time.
- Enhancements based on IBM One UI guidelines.
- Enhanced analytics.
- More robust data stores.
- Expanded browser support with Mozilla Firefox 31 and Internet Explorer 9, 10, and 11.

IBM zAware is designed to use near real-time continuous learning algorithms, providing a diagnostics capability that is intended to help you pinpoint problems, which in turn can lead to better availability and a more efficient system. IBM zAware uses analytics to intelligently examine z/OS or Linux on z Systems messages to find unusual patterns, inconsistencies, and variations.

Large operating system environments can sometimes generate more than 25 million messages per day. This large volume of messages can make manual analysis time-consuming and error-prone when exceptional problems occur. IBM zAware provides a simple graphical user interface (GUI) and application programming interfaces (APIs) to help you find message anomalies quickly, which can help speed up problem resolution when seconds count.
IBM zAware and Tivoli® Service Management can be integrated by using the IBM zAware API to provide the following capabilities:

- Provide visibility into IBM zAware anomalies by using Event Management
- Improve mean time to repair (MTTR) through integration with existing problem determination and performance monitoring tools
- Identify system errors and eliminate subsequent occurrences through automation and more sophisticated analysis

B.2.1 Hardware requirements overview

IBM zAware runs on a client-visible logical partition (LPAR) with the following resources:

- Shared or dedicated Open Systems Adapter (OSA) port
- Shared or dedicated Integrated Facilities for Linux (IFLs) or central processors (CPs)
- Storage and memory

For more information, see B.4.2, “IBM zAware operating requirements” on page 493.

Figure B-1 shows how IBM zAware complements an existing environment.

![Figure B-1 IBM zAware complements an existing environment](image)

B.2.2 Value of IBM zAware

Early detection and focused diagnosis can help decrease the time that is needed to recover from complex z/OS problems. These problems can be cross sysplex, across a set of z Systems servers, and beyond central processing complex (CPC) boundaries. IBM zAware is enhanced to identify unusual system behavior of Linux on z Systems images running natively or as a guest on z/VM.
IBM zAware delivers sophisticated detection and diagnostic capabilities that identify when and where to look for a problem. The cause of the anomalies can be difficult to determine. High-speed analytics on large quantities of log data reduces the problem determination and isolation efforts, time to repair, and impact to service levels. They also provide system awareness for more effective monitoring.

Figure B-2 depicts how IBM zAware shortens the business impact of a problem.

![Figure B-2 IBM zAware shortens the business impact of a problem](image)

The IBM zAware GUI also provides quick drill-down capabilities. You can view analytical data that indicates which system is experiencing deviations in behavior, when the anomaly occurred, and whether the message was issued out of context. The IBM zAware GUI fits into existing monitoring structure and can also feed other processes or tools so that they can take corrective action for faster problem resolution.

B.2.3 IBM z/OS Solutions to improve problem diagnostic procedures

Table B-1 shows how IBM zAware compliments other monitoring and problem determination tools.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Available functions</th>
<th>Rules based</th>
<th>Analytics/Statistical model</th>
<th>Examines message traffic</th>
<th>Self-learning</th>
<th>Method</th>
</tr>
</thead>
</table>
| z/OS Health Checker™ | - Checks configurations
 | - Programmatic, applies to IBM and ISV tools
 | - Can escalate notifications | Yes | | Rules based to screen for conditions |
| z/OS PFA™ | - Trending analysis of z/OS system resources and performance
 | - Can start z/OS Runtime Diagnostics | Yes | Yes | Early detection |
B.3 Understanding IBM zAware technology

IBM zAware creates a base model of system behavior by accessing prior system log (SYSLOG) and applying mathematical modeling on these logs. The base model is then used to compare with current SYSLOG for the monitored z/OS and Linux on z Systems images. This analysis help detect unusual message patterns to pinpoint deviations from normal system behavior, which improves real-time diagnostics. IBM zAware automatically manages the creation of the behavioral model that is used to analyze the current message log data from the connected z/OS and Linux on z Systems instances.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Available functions</th>
<th>Rules based</th>
<th>Analytics/Statistical model</th>
<th>Examines message traffic</th>
<th>Self-learning</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS RTD<sup>a</sup></td>
<td>• Real-time diagnostics of specific z/OS system issues</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Rules based after an incident</td>
</tr>
</tbody>
</table>
| Linux on z Systems health checker^b | • Checks configurations
 • Programmatic, applies to IBM and ISV tools | Yes | | | | Rules based to screen for conditions |
| IBM zAware | • Pattern-based message analysis
 • Self-learning
 • Aids in diagnosing complex z/OS problems, including cross sysplex and problems that might bring the system down | Yes | Yes | Yes | | Diagnosis before or after an incident |

You can use IBM zAware along with problem diagnosis solutions that are included in z/OS with any large and complex z/OS installation with mission-critical applications and middleware.

Notes:

- IBM zAware uniquely analyzes messages in context to determine unusual behaviors.
- IBM zAware uniquely understands and tunes its baseline to compare against your current activity.
- IBM zAware does not depend on other solutions or manual coding of rules, and is always enabled to watch your system.

^a Included in z/OS.
^b Installable as Red Hat Package Manager (RPM).
Figure B-3 depicts the basic components of an IBM zAware environment.

![Diagram of IBM zAware environment components]

On z13 driver 27 servers, the IBM zAware V2 runs in an independent LPAR (type zACI) as firmware. IBM zAware has the following characteristics:

- IBM zAware V2 requires the z13s or z13 systems with a priced feature code.

Important: IBM zAware Version 2 server DR configuration requires z13 or z13s servers. IBM zAware Version 1 cannot be in a DR configuration with IBM zAware Version 2.

- IBM zAware V1 requires zEC12 or zBC12 systems with a priced feature code.
- Needs processor, memory, disk storage, and network resources to be assigned to the LPAR that it runs.
- Is updated like all other firmware, with a separate engineering change stream.
- Is loaded from the Support Element (SE) hard disk by activating an Image Profile configured with a mode of zAware
- Employs out-of-band monitoring with minimal effect on product workloads.
Figure B-4 shows IBM zAware Image Profile on the Hardware Management Console (HMC). The Mode on the General tab of the image profile is zAware.

Figure B-4 HMC Image Profile for an IBM zAware LPAR

Figure B-5 shows the tab of the image profile on the HMC. The setup information is configured on the tab of the image profile. This setup must be performed for the initial activation of the image profile.

Figure B-5 HMC Image Profile for an IBM zAware LPAR
The following settings are configured in the IBM zAware image profile:

- **Host name**: A unique host name for the LPAR.
- **Master user ID and password**: These are used after the LPAR is initialized by the workstation through the intranet to configure or use the IBM zAware appliance.
- **Default gateway / DNS Servers**: Network information that defines the network interfaces that allow a workstation on the intranet to access the IBM zAware appliance, and an internal hipersocket channel to other LPAR clients on the same hosting system.

IBM zAware analyzes massive amounts of OPERLOG messages, including all z/OS console messages and ISV and application-generated messages, to build sysplex and LPAR detailed views in the IBM zAware GUI. Linux on z Systems images must be configured so that the syslog daemon sends data to IBM zAware. IBM zAware can create model groups based on similar operational characteristics for Linux images that run on z Systems servers.

Figure B-6 shows the IBM zAware Heat Map view.
The analytics create a statistical model of the normal message traffic that is generated by each monitored client (system or group of systems, such as z/OS or Linux on z Systems). This model is stored in a database and is used to identify out-of-the-ordinary messages and patterns of messages.

Using a sliding 10-minute interval that is updated every two minutes, a current score for the interval is created based on the uniqueness of the message traffic:

- A stable system requires a lower interval score to be marked as interesting or rare.
- An unstable system requires a larger interval score to be marked as interesting or rare.

For each interval, IBM zAware provides details of all of the unique and unusual message IDs within the interval. This data includes how many, how rare, and how much the messages contributed to the interval's score (anomaly score, interval contribution score, rarity score, and appearance count) when they first appeared. IBM zAware also helps identify messages with the following conditions:

- Whether the unusual message IDs are coming from a single component
- Whether the message is a critical z/OS or Linux kernel message
- Whether the messages are related to changes, such as new software levels (operating system, middleware, and applications) or updated system settings and configurations

IBM zAware detects conditions that typical monitoring systems miss because of these challenges:

- Message suppression (message too common): Common messages are useful for long-term health issues.
- Uniqueness (message not common enough): These messages are useful for real-time event diagnostic procedures.
IBM zAware assigns a color to an interval based on the interval score:

- Blue (Normal): Interval score between 1- 99.5
- Gold (Interesting): Interval score between 99.6 - 100
- Orange (Rare): An interval score of 101

B.3.1 Training period

The IBM zAware server starts receiving current data from the z/OS system logger that runs on z/OS monitored clients and from Linux SYSLOG for Linux on z Systems monitored clients. However, the server cannot use this data for analysis until a model of normal system behavior exists.

The minimum amount of data for building the most accurate models is 90 days of data for each client. By default, training automatically runs every 30 days. You can modify the number of days that are required for this training period, based on your knowledge of the workloads that run on the z/OS monitored clients. This training period applies for all monitored clients. Different training periods cannot be defined for each client.

B.3.2 Priming IBM zAware

Instead of waiting for the IBM zAware server to collect data over the course of the training period, you can prime the server. You do so by transferring prior data for monitored clients and requesting that the server build a model for each client from the transferred data. Currently, the bulk transfer of Linux historical data is not supported.

B.3.3 IBM zAware ignore message support

When a new workload is added to a system that is monitored by IBM zAware or is moved to a different system, it often generates messages that are not part of that system’s model. Therefore, these messages are flagged as anomalous and cause orange bars to appear on the IBM zAware analysis window.

Sometimes, the reporting of anomalous behavior is caused solely by the new workload, but sometimes a real problem is present as well. Therefore, it is not appropriate to automatically mark all the messages as “normal” when new workloads are introduced. IBM zAware provides the ignore message support to give you input into the IBM zAware rules. This function allows you to mark messages as “ignore.” An ignored message is not part of the IBM zAware interval anomaly scoring, although it appears in the output.

The first iteration of this work requires you to mark each message to be ignored on a per system basis. That is, for each message that you want to ignore, you must mark that particular message on each system for which IBM zAware is to ignore the message. You can choose from one of two types of ignore message: Until the next training period occurs (automatic or manual train) or forever.

B.3.4 IBM zAware graphical user interface

IBM zAware creates XML data with the status of the z/OS, Linux image, and details about the message traffic. This data is rendered by the web server that runs as a part of IBM zAware. The web server is available using a standard web browser (Internet Explorer or Mozilla Firefox).
IBM zAware provides an easy-to-use, browser-based GUI with relative weighting and color coding. For IBM messages, IBM zAware GUI has a link to the message description that often includes a corrective action for the issue that is highlighted by the message.

B.3.5 IBM zAware is complementary to your existing tools

Compared to existing tools, IBM zAware works with relatively little customization. It does not depend on other solutions or manual coding of rules, and is always enabled to watch your system. The XML output that is created by IBM zAware is consumed by existing system monitoring tools, such as IBM Tivoli OMEGAMON XE for z/OS and IBM Tivoli NetView® for z/OS, by using published APIs.

B.4 IBM zAware prerequisites

This section describes the hardware and software requirements for IBM zAware.

B.4.1 IBM zAware features and ordering

| IBM zAware Version 2: IBM zAware Version 2 partition is not supported on hardware earlier than z13. DR configuration must use same generation hardware (z13/z13s) for primary and DR zAware host. IBM zAware partition is not supported on a CPC running in Dynamic Partition Manager (DPM) mode. For more information, see Appendix E, “IBM Dynamic Partition Manager” on page 527. IBM zAware is available with IBM z13 and z13s servers, IBM zEnterprise EC12 (zEC12), and zEnterprise BC12 (zBC12) models. IBM zAware feature-related definitions are listed in Table B-2. |

<table>
<thead>
<tr>
<th>Name</th>
<th>Related feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM zAware host system</td>
<td>FC0011</td>
<td>Represents the z13, zEC12, or zBC12 that hosts the IBM zAware partition. In most cases, the host server also has partitions on it that are being monitored. There can be multiple IBM zAware host partitions on one z13, zEC12, or zBC12, but only one IBM zAware FC0011 feature (no additional charge for multiple host partitions).</td>
</tr>
<tr>
<td>IBM zAware monitored client</td>
<td></td>
<td>Represents the z/OS partition that sends OPERLOG files for processing to an IBM zAware partition. Multiple z/OS partitions (monitored clients) can be on the server. The clients can also include Linux running natively or as a guest on a hypervisor (z/VM)</td>
</tr>
</tbody>
</table>
12.7.2 Feature on Demand

Feature on Demand (FoD) is a centralized way to flexibly entitle features and functions on the system. For example, Feature on Demand contains the IBM z BladeCenter Extension (zBX) Model 004 High Water Marks (HWMs). HWMs refer to highest quantity of blade entitlements by blade type that the client has purchased. On z196 and z114, the HWMs are stored in the processor and memory Licensed Internal Code (LIC) configuration code (LICCC) record. From zEC12 onwards, the HWMs are in the Feature on Demand record.

The IBM zAware feature availability and installed capacity are also controlled by the FoD LICCC record. The current IBM zAware installed and staged feature values can be obtained by using the Perform Model Conversion function on the SE or from the HMC by using a single object operation (SOO) to the server SE.

<table>
<thead>
<tr>
<th>Name</th>
<th>Related feature code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM zAware environment</td>
<td></td>
<td>Represents the collection of the IBM zAware host system and the IBM zAware monitored clients that are sending information to the IBM zAware host system.</td>
</tr>
<tr>
<td>IBM zAware connection</td>
<td>FC0101: IBM zAware CP 10 pack (z13, zEC12)</td>
<td>Represents a set of central processors that are associated with servers that are either the IBM zAware host system or IBM zAware monitored clients.</td>
</tr>
<tr>
<td></td>
<td>FC0138: IBM zAware CP 2 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0140: IBM zAware CP 4 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0142: IBM zAware CP 6 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0150: IBM zAware CP 10 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td>Disaster Recovery (DR) IBM zAware server</td>
<td>FC0102: IBM zAware DR CP 10 pack (z13, zEC12)</td>
<td>Represents z13, zEC12, or zBC12 servers with no-charge firmware to run IBM zAware in a disaster situation.</td>
</tr>
<tr>
<td></td>
<td>FC0139: IBM zAware DR CP 2 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0141: IBM zAware DR CP 4 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0143: IBM zAware DR CP 6 pack (zBC12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC0151: IBM zAware DR CP 10 pack (zBC12)</td>
<td></td>
</tr>
</tbody>
</table>
Figure B-8 shows the window for IBM zAware Feature on Demand status and value shown under the Perform Model Conversion, Feature on Demand Manage function.

Only one Feature on Demand LICCC record can be installed or staged at any time in the system. Its contents can be viewed under the Manage window as shown in Figure B-8. A staged record can be removed without installing it. A Feature on Demand record can be installed only as a complete installation. There is no selective feature or partial record installation, and the features that are installed will be merged with the CPC LICCC after activation.

A Feature on Demand record can be installed only once. If it is removed, a new Feature on Demand record is needed to install it again. A remove action cannot be undone.

The IBM zAware host system feature code (FC 0011) must be ordered for the z13, zEC12, or zBC12 server that hosts the IBM zAware partition.

You do not need to order IBM zAware connections for client systems. The number of IBM zAware connections to be ordered can be calculated by completing the following steps:

1. Determine which systems have z/OS images to be monitored by IBM zAware, including the z13, zEC12, or zBC12 server where the IBM zAware LPAR is.

2. Count the number of CPs on the systems that were identified in the previous step. Include banked CPs (HWM), and round up to the nearest factor of 10 (z13).

 Example: z13s 3 CPs + z13 20 CPs + 5 IFLs + zEC12 16 CPs = 44
 44 is rounded up to nearest factor of 10 = 50
A disaster recovery option (IBM zAware DR CP packs) is also available and indicates that IBM zAware is installed on a DR z13, zEC12, or zBC12 server. This feature is available at no additional fee, but is exclusive to the IBM zAware connection.

For example, FC 0102 represents the quantity of DR CPs. FC 0101 represents the quantity of CPs associated with servers that are either the IBM zAware host system or the IBM zAware monitored clients. FC 0101 and FC 0102 are mutually exclusive. Therefore, if you have one, you cannot have the other. In addition, in most cases, the number of FC 0102 features on DR must match the number of FC 0101 features on the IBM zAware host server.

B.4.2 IBM zAware operating requirements

This section describes the components that are required for IBM zAware.

IBM zAware host system requirements

z13 and z13s servers can host IBM zAware Version 2 server. The zEC12, or zBC12 can host the IBM zAware Version 1 server. The IBM zAware server requires a dedicated LPAR and runs its own self-contained firmware stack.

Note: Host system resources (processors, memory, direct access storage devices (DASDs), and so on) depend on the number of monitored clients, amount of message traffic, and length of time that data is retained.

The following components are required:

- Processors:
 - General-purpose CP or IFL that can be shared with other LPARs in the z13, zEC12, or zBC12 server
 - Usage estimates between a partial engine to two engines, depending on the size of the configuration

- Memory:
 - Minimum 4 GB initial memory for the first six z/OS clients
 - 256 MB required for each additional z/OS client above the first six z/OS clients
 - 256 MB required for each additional LINUX client
 - Flash Express is not supported

- DASDs:
 - 500 GB persistent DASD storage
 - Only extended count key data (ECKD) format is supported
 - Fibre Channel Protocol (FCP) devices are not supported
 - IBM zAware manages its own data store

- Network (for both instrumentation data gathering and outbound alerting/communications):
 - HiperSockets for the z/OS and Linux LPARs running on the same z13, zEC12 or zBC12 as the IBM zAware LPAR
 - OSA ports for the z/OS LPARs running on a different CPC than where the IBM zAware LPAR runs and for browser access to GUI
 - Dedicated IP address for the IBM zAware LPAR
IBM zAware monitored client requirements
IBM zAware monitored clients can be in the same CPC as the IBM zAware host system or in different CPCs. They can be in the same site or multiple sites.

- The distance between the IBM zAware host systems and monitored clients can be up to a maximum of 3500 km (2174.79 miles).
- IBM zAware monitored clients can be on any z Systems servers (IBM z13, zEC12, zBC12, z196, z114, z10, and so on) if they fulfill the operating system requirements. Monitoring can be done by transmitting log files through an Internet Protocol network with IBM zAware servers.

Operating system requirements
IBM zAware monitored clients have the following z/OS requirements:

- Linux on z Systems (SUSE or Red Hat)
- z/OS V2.1 or higher
- z/OS V1.13 with program temporary fixes (PTFs)
- 90 days of historical SYSLOG or formatted OPERLOG data to initially prime IBM zAware

B.5 Configuring and using IBM zAware virtual appliance

The following checklist provides a task summary for configuring and using IBM zAware:

- Phase 1: Planning
 - Plan the configuration of the IBM zAware environment.
 - Plan the LPAR characteristics of the zACI LPAR to host IBM zAware firmware.
 - Plan the network connections that are required for the partition and each monitored client.
 - Plan the security requirements for the IBM zAware server, its monitored clients, and users of the IBM zAware GUI.
 - Plan for using the IBM zAware GUI.

- Phase 2: Configuring the zACI partition for IBM zAware
 - Verify that your installation meets the prerequisites for using the IBM zAware virtual appliance.
 - Configure network connections for the zACI partition through the hardware configuration definition (HCD) or the input/output configuration program (IOCP).
 - Configure persistent storage for the partition through the HCD or IOCP.
 - Define the LPAR characteristics of the partition through the HMC.
 - Define network settings for the partition through the HMC.
 - Activate the partition through the HMC.

- Phase 3: Configuring the IBM zAware server and its monitored clients
 - Assign storage devices for the IBM zAware server through the IBM zAware GUI.
 - Optional: Replace the self-signed certificate authority (CA) certificate that is configured in the IBM zAware server.
 - Optional: Configure a Lightweight Directory Access Protocol (LDAP) directory or local file-based repository for authenticating users of the IBM zAware GUI.
 - Optional: Authorize users or groups to access the IBM zAware GUI.
– Optional: Modify the configuration values that control the IBM zAware analytics operation.

– Configure a network connection for each z/OS and Linux monitored client through the TCP/IP profile. If necessary, update firewall settings.

– Verify that each z/OS system meets the sysplex configuration and OPERLOG requirements for IBM zAware virtual appliance monitored clients.

– Configure the z/OS system logger to send data to the IBM zAware virtual appliance server.

– Configure the Linux SYSLOG to send data to the IBM zAware virtual appliance server.

– Prime the IBM zAware server with prior data from monitored clients.

– Build a model of normal system behavior for each monitored client. The IBM zAware server uses these models for analysis.

– Optional: Use the IBM zAware ignore message support to give your input to the IBM zAware rules. It allows you to mark messages as “ignore.” An ignored message is not part of IBM zAware analysis and scoring.

\(^1\) For Linux on z Systems, model groups are defined based on host names. Models are built with available data for systems that match the model group definition.
Channel options

This appendix describes all channel attributes, the required cable types, the maximum unrepeated distance, and the bit rate for z13 servers.

For all optical links, the connector type is LC Duplex, except for the 12xIFB and the ICA SR connections, which are established with multifiber push-on (MPO) connectors. The MPO connector of the 12xIFB connection has one row of 12 fibers, and the MPO connector of the ICA connection has two rows of 12 fibers. The electrical Ethernet cable for the Open Systems Adapter (OSA) connectivity is connected through an RJ45 jack.

Table C-1 lists the attributes of the channel options that are supported on z13 servers.

<table>
<thead>
<tr>
<th>Channel feature</th>
<th>Feature codes</th>
<th>Bit rate(^a) in Gbps (or stated)</th>
<th>Cable type</th>
<th>Maximum unrepeated distance(^b)</th>
<th>Ordering information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Connection (FICON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FICON Express16S 10KM LX</td>
<td>0418</td>
<td>4, 8, or 16</td>
<td>SM 9 µm</td>
<td>10 km (6.2 miles)</td>
<td>New build</td>
</tr>
<tr>
<td>FICON Express16S SX</td>
<td>0419</td>
<td>4, 8, or 16</td>
<td>OM2, OM3, OM4</td>
<td>See Table C-2 on page 499.</td>
<td>New build</td>
</tr>
<tr>
<td>FICON Express8S 10KM LX</td>
<td>0409</td>
<td>2, 4, or 8</td>
<td>SM 9 µm</td>
<td>10 km (6.2 miles)</td>
<td>New build</td>
</tr>
<tr>
<td>FICON Express8 10KM LX</td>
<td>3325</td>
<td></td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>FICON Express8S SX</td>
<td>0410</td>
<td>2, 4, or 8</td>
<td>OM1, OM2, OM3, OM4</td>
<td>See Table C-2 on page 499.</td>
<td>New build</td>
</tr>
<tr>
<td>FICON Express8 SX</td>
<td>3326</td>
<td>2, 4, or 8</td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>Open Systems Adapter (OSA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE LR</td>
<td>0415</td>
<td>10</td>
<td>SM 9 µm</td>
<td>10 km (6.2 miles)</td>
<td>New build</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE LR</td>
<td>0406</td>
<td></td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>Channel feature</td>
<td>Feature codes</td>
<td>Bit rate(^a) in Gbps (or stated)</td>
<td>Cable type</td>
<td>Maximum unrepeated distance(^b)</td>
<td>Ordering information</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>OSA-Express5S 10 GbE SR</td>
<td>0416</td>
<td>10</td>
<td>MM 62.5 µm, MM 50 µm</td>
<td>33 m (200), 82 m (500), 300 m (2000)</td>
<td>New build</td>
</tr>
<tr>
<td>OSA-Express4S 10 GbE SR</td>
<td>0407</td>
<td></td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>OSA-Express5S GbE LX</td>
<td>0413</td>
<td>1.25</td>
<td>SM 9 µm</td>
<td>5 km (3.1 miles)</td>
<td>New build</td>
</tr>
<tr>
<td>OSA-Express4S GbE LX</td>
<td>0404</td>
<td></td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>OSA-Express5S GbE SX</td>
<td>0414</td>
<td>1.25</td>
<td>MM 62.5 µm, MM 50 µm</td>
<td>275 m (200), 550 m (500)</td>
<td>New build</td>
</tr>
<tr>
<td>OSA-Express4S GbE SX</td>
<td>0405</td>
<td></td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>OSA-Express5S 1000BASE-T</td>
<td>0417</td>
<td>100 or 1000 Mbps</td>
<td>Cat 5, Cat 6 unshielded twisted pair (UTP)</td>
<td>100 m</td>
<td>New build</td>
</tr>
<tr>
<td>OSA-Express4S 1000BASE-T</td>
<td>0408</td>
<td>10, 100, or 1000 Mbps</td>
<td></td>
<td></td>
<td>Carry forward</td>
</tr>
<tr>
<td>10GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express</td>
<td>0411</td>
<td>10</td>
<td>OM3</td>
<td>300 m</td>
<td>New build</td>
</tr>
<tr>
<td>Parallel Sysplex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA (PCIe-O SR)</td>
<td>0172</td>
<td>8 Gbps</td>
<td>OM4</td>
<td>150 m</td>
<td>New build</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OM3</td>
<td>100 m</td>
<td>New build</td>
</tr>
<tr>
<td>HCA3-O (12x IFB)</td>
<td>0171</td>
<td>6 Gbps</td>
<td>OM3</td>
<td>150 m</td>
<td>New build</td>
</tr>
<tr>
<td>HCA3-O LR (1x IFB)</td>
<td>0170</td>
<td>2.5 or 5 Gbps</td>
<td>SM 9 µm</td>
<td>10 km (6.2 miles)</td>
<td>New build</td>
</tr>
<tr>
<td>IC</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto Express5S</td>
<td>0890</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>New build</td>
</tr>
<tr>
<td>Flash Express</td>
<td>0403</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>New build</td>
</tr>
<tr>
<td>zEDC Express</td>
<td>0420</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>New build</td>
</tr>
</tbody>
</table>

\(^a\) The link data rate does not represent the actual performance of the link. The actual performance depends on many factors that include latency through the adapters, cable lengths, and the type of workload.

\(^b\) Where applicable, the minimum fiber bandwidth distance in MHz-km for multi-mode fiber optic links is included in parentheses.
Table C-2 shows the maximum unrepeated distances for FICON short wavelength (SX) features.

<table>
<thead>
<tr>
<th>Cable type</th>
<th>1 Gbps</th>
<th>2 Gbps</th>
<th>4 Gbps</th>
<th>8 Gbps</th>
<th>16 Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM1 (62.5 µm at 200 MHz·km)</td>
<td>300 meters</td>
<td>150 meters</td>
<td>70 meters</td>
<td>21 meters</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>984 feet</td>
<td>492 feet</td>
<td>230 feet</td>
<td>69 feet</td>
<td>N/A</td>
</tr>
<tr>
<td>OM2 (50 µm at 500 MHz·km)</td>
<td>500 meters</td>
<td>300 meters</td>
<td>150 meters</td>
<td>50 meters</td>
<td>35 meters</td>
</tr>
<tr>
<td></td>
<td>1640 feet</td>
<td>984 feet</td>
<td>492 feet</td>
<td>164 feet</td>
<td>115 feet</td>
</tr>
<tr>
<td>OM3 (50 µm at 2000 MHz·km)</td>
<td>860 meters</td>
<td>500 meters</td>
<td>380 meters</td>
<td>150 meters</td>
<td>100 meters</td>
</tr>
<tr>
<td></td>
<td>2822 feet</td>
<td>1640 feet</td>
<td>1247 feet</td>
<td>492 feet</td>
<td>328 feet</td>
</tr>
<tr>
<td>OM4a (50 µm at 4700 MHz·km)</td>
<td>N/A</td>
<td>500 meters</td>
<td>400 meters</td>
<td>190 meters</td>
<td>125 meters</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>1640 feet</td>
<td>1312 feet</td>
<td>693 feet</td>
<td>410 feet</td>
</tr>
</tbody>
</table>

a. Fibre Channel Standard (not certified for Ethernet)
This appendix briefly describes the optional Shared Memory Communications (SMC) function implemented on IBM z Systems servers as Shared Memory Communications over Remote Direct Memory Access (SMC-R) and the new Shared Memory Communications - Direct Memory Access (SMC-D) of IBM z13 and z13s servers.

This appendix includes the following sections:

- Shared Memory Communications overview
- Shared Memory Communication over RDMA
- Shared Memory Communications - Direct Memory Access
D.1 Shared Memory Communications overview

As the volume of data being generated and transmitted by technologies that are driven by cloud, mobile, analytics, and social computing applications grows, pressure increases on business IT organizations to be able to provide fast access to that data across the web, application, and database tiers that comprise most enterprise workloads. Shared Memory Communications helps to access data faster and with less latency as well as reducing CPU resource consumption over traditional TCP/IP for communications.

D.2 Shared Memory Communication over RDMA

IBM z13 delivers improvements for the RoCE exploitation over previous zEnterprise generation (zEC12, zBC12). On z13 and z13s servers, the IBM 10GbE RoCE Express feature can be shared between up to 31 partitions, and the two ports are enabled to be used in z/OS. IBM z13 and z13s servers improve the usability of the RoCE feature by using existing z Systems and industry standard communications technology along with emerging new network technology:

- Remote Direct Memory Access (RDMA) technology provides low latency, high bandwidth, high throughput, and low processor utilization attachment between hosts.
- SMC-R is a protocol that allows existing TCP applications to benefit transparently from RDMA for transferring data:
 - SMC-R uses 10GbE RoCE Express adapter as the physical transport layer.
 - Initial deployment is limited to z/OS to z/OS communications with a goal to expand exploitation to more operating systems, and possibly appliances and accelerators.
- Single Root I/O Virtualization (SR-IOV) technology provides the capability to share the 10GbE RoCE Express adapter between logical partitions (LPARs).

D.2.1 RDMA technology overview

RDMA over Converged Ethernet (RoCE) is part of the InfiniBand Architecture Specification that provides InfiniBand transport over Ethernet fabrics. It encapsulates InfiniBand transport headers into Ethernet frames by using an IEEE-assigned Ethertype. One of the key InfiniBand transport mechanisms is RDMA, which is designed to allow transfer of data to or from memory on a remote system with low latency, high throughput, and low CPU utilization.

Traditional Ethernet transports, such as TCP/IP, typically use software-based mechanisms for error detection and recovery, and are based on the underlying Ethernet fabric using a “best-effort” policy. With the traditional policy, the switches typically discard packets in congestion and rely on the upper-level transport for packet retransmission.

RoCE, however, uses hardware-based error detection and recovery mechanisms that are defined by the InfiniBand specification. A RoCE transport performs best when the underlying Ethernet fabric provides a lossless capability, where packets are not routinely dropped. This process can be accomplished by using Ethernet flow control where Global Pause frames are enabled for both transmission and reception on each of the Ethernet switches in the path between the 10GbE RoCE Express features. This capability is enabled, in the 10GbE RoCE Express feature by default.

The two key requirements for RDMA are shown in Figure D-1 on page 503:

- A reliable “lossless” Ethernet network fabric (LAN for layer 2 data center network distance)
An RDMA network interface card (RNIC)

Figure D-1 RDMA technology overview

RDMA technology is now available on Ethernet. RoCE uses an existing Ethernet fabric (switches with Global Pause enabled) and requires advanced Ethernet hardware (RNICs on the host).

D.2.2 Shared Memory Communications over RDMA

SMC-R is a protocol that allows TCP socket applications to transparently use RDMA.

SMC-R is a “hybrid” solution as shown in Figure D-2:

- It uses an existing TCP connection to establish the SMC-R connection.
- A TCP option (SMCR) controls switching from TCP to “out of band” SMC-R.
- The SMC-R information is exchanged within the TCP data stream.
- Socket application data is exchanged through RDMA (write operations).
- The TCP connection remains to control the SMC-R connection.
- This model preserves many critical existing operational and network management features of TCP/IP.
The hybrid model of SMC-R uses these key existing attributes:

- It follows the standard TCP/IP connection setup.
- The hybrid model switches to RDMA (SMC-R) dynamically.
- The TCP connection remains active (idle) and is used to control the SMC-R connection.
- The hybrid model preserves the following critical operational and network management TCP/IP features:
 - Minimal (or zero) IP topology changes
 - Compatibility with TCP connection-level load balancers
 - Preservation of the existing IP security model, such as IP filters, policies, virtual LANs (VLANs), and Secure Sockets Layer (SSL)
 - Minimal network administration and management changes
- Host application software is not required to change, so all host application workloads can benefit immediately.

D.2.3 Single Root I/O virtualization (SR-IOV)

SR-IOV is a technology that is designed to provide the capability to share the adapter between up to 31 LPARs. SR-IOV is also designed to provide isolation of virtual functions within the PCIe 10GbE RoCE Express adapter. For example, one LPAR cannot cause errors visible to other virtual functions or other LPARs. Each operating system LPAR has its own application queue in its own memory space.

Figure D-3 shows the concept of the Shared RoCE Mode.
The Physical Function Driver communicates to the physical function in the PCIe adapter. The Physical Function Driver has a relatively limited function:

- Manages resource allocation
- Perform hardware error handling
- Perform code updates
- Run diagnostics

The device-specific z Systems Licensed Internal Code (LIC) connects Physical Function Driver to Support Elements (SEs) and limited system level firmware required services.

D.2.4 Hardware

The 10 Gigabit Ethernet (10GbE) RoCE Express feature (FC 0411) is an RDMA-capable NIC. The integrated firmware processor (IFP) has two resource groups (RGs) that contain firmware for the 10GbE RoCE Express feature. For more information, see G.1.3, “Resource groups” on page 549.

D.2.5 10GbE RoCE Express feature

The 10GbE RoCE Express feature is designed to help reduce the consumption of CPU resources for applications that use the TCP/IP stack, such as WebSphere accessing a DB2 database. Using the 10GbE RoCE Express feature also helps to reduce network latency with memory-to-memory transfers that use SMC-R in z/OS V2.1 or later. It is transparent to applications and can be used for LPAR-to-LPAR communications on a single z/OS system or server-to-server communications in a multiple CPC environment.

Table D-1 shows the differences in the number of ports and shared support for different systems.
The 10GbE RoCE Express feature shown in Figure D-4 is used exclusively in the Peripheral Component Interconnect Express (PCIe) I/O drawer.

![Figure D-4 10GbE RoCE Express](image)

Each feature has one PCIe adapter and two ports. A maximum of 16 features can be installed. The 10GbE RoCE Express feature uses a short reach (SR) laser as the optical transceiver and supports the use of a multimode fiber optic cable terminated with an LC Duplex connector. Both point-to-point connection (with another 10GbE RoCE Express adapter) and switched connection with an enterprise-class 10 GbE switch are supported.

Although SMC-R can be taken advantage of by using direct RoCE Express to RoCE Express connectivity (without any switch), this type of direct physical connectivity forms a single physical point-to-point connection, disallowing any other connectivity with other LPARs such as other SMC-R peers. Although this is a viable option for test scenarios, it is not practical (nor recommended) for production deployment.

<table>
<thead>
<tr>
<th>System Name</th>
<th>z/OS Supported Ports</th>
<th>Shared mode</th>
<th>Dedicated mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>z13</td>
<td>2</td>
<td>YES</td>
<td>No</td>
</tr>
<tr>
<td>z13s</td>
<td>2</td>
<td>YES</td>
<td>No</td>
</tr>
<tr>
<td>zEC12</td>
<td>1</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>zBC12</td>
<td>1</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table D-1 RoCE number of enabled ports and shared/dedicated environment
If the IBM 10GbE RoCE Express features are connected to 10 GbE switches, the switches must support the following requirements:

- Global Pause function frame (as described in the IEEE 802.3x standard) should be enabled
- Priority flow control (PFC) disabled
- No firewalls, no routing, and no intraensemble data network (IEDN)

The maximum supported unrepeated distance, point-to-point is 300 meters (984.25 ft).

A client-supplied cable is required. Three types of cables can be used for connecting the port to the selected 10 GbE switch or to the 10GbE RoCE Express feature on the attached server:

- OM3 50 micron multimode fiber optic cable rated at 2000 MHz-km terminated with an LC Duplex connector (supports 300 m (984.25 ft))
- OM2 50 micron multimode fiber optic cable rated at 500 MHz-km terminated with an LC Duplex connector (support 82 m (269 ft))
- OM1 62.5 micron multimode fiber optic cable rated at 200 MHz-km terminated with an LC Duplex connector (support 33 m (108.2 ft))

D.2.6 10GbE RoCE Express configuration example

Figure D-5 illustrates a sample configuration that allows redundant SMC-R connectivity among LPAR A and C, and LPAR 1, 2 and 3. Each feature can be shared or dedicated to an LPAR. Like the sample configuration, two features per LPAR are advised for redundancy.

![Figure D-5 10GbE RoCE Express sample configuration](image)

The configuration that is shown in Figure D-5 allows redundant SMC-R connectivity among LPAR A, LPAR C, LPAR 1, LPAR 2, and LPAR 3. LPAR to LPAR OSD connections are required to establish the SMC-R communications. 1 GbE OSD connections can be used instead of 10 GbE. OSD connections can flow through the same 10 GbE switches or different switches.
An OSA-Express feature, defined as channel-path identifier (CHPID) type OSD, is required to establish SMC-R. Figure D-6 shows the interaction of OSD and the RNIC. The OSA feature might be a single or pair of 10 GbE, 1 GbE, or 1000Base-T OSAs. The OSA needs to be connected to another OSA on the system with which the RoCE feature is communicating. In Figure D-5, 1 GbE OSD connections can still be used instead of 10 GbE and OSD connections can flow through the same 10 GbE switches.

The following notes refer to Figure D-6:

- The z/OS system administrator must only configure and manage the OSD interface.
- The Communications Server transparently splits and converges network traffic to and from the converged interface.
- Only OSD connectivity must be configured.

With SMC-R, the RNIC interface is dynamically and transparently added and configured.

D.2.7 Hardware configuration definitions

The following HCDs are important.
Function ID
The RoCE feature is identified by a hexadecimal Function Identifier (FID). It has a dedicated limit in the range 00 - FF, while the shared limit is 000 - 0FFF in the HCD or Hardware Management Console (HMC), to create the input/output configuration program (IOCP) input. A FID can only be configured to one LPAR, but it is reconfigurable. The RoCE feature, as installed in a specific PCIe I/O drawer and slot, is to be used for the defined function. The physical installation (drawer and slot) determines the physical channel identifier (PCHID). Only one FID can be defined for dedicated mode. Up to 31 FIDs can be defined for shared mode (on a z13 and a z13s server) for each physical card (PCHID).

Virtual Function ID
Virtual Function ID is defined when PCIe hardware is shared between LPARs. Virtual Function ID has a decimal Virtual Function Identifier (VF=) in the range 1 – n, where n is the maximum number of partitions that the PCIe feature supports. For example, the RoCE feature supports up to 31 partitions, and a zEDC Express feature supports up to 15.

Physical network (PNet) ID
As one parameter for the FUNCTION statement, the PNet ID is a client-defined value for logically grouping OSD interfaces and RNIC adapters based on physical connectivity. The PNet ID values are defined for both OSA and RNIC interfaces in the HCD. A PNet ID is defined for each physical port. z/OS Communications Server gets the information during the activation of the interfaces and associates the OSD interfaces with the RNIC interfaces that have matching PNet ID values.

Attention: If you do not configure a PNet ID for the RNIC adapter, activation fails. If you do not configure a PNet ID for the OSA adapter, activation succeeds, but the interface is not eligible to use SMC-R.

Figure D-7 shows the three physically separate networks defined.

![Figure D-7 Physical network ID example](image-url)
Sample IOCP FUNCTION statement

Example D-1 shows one sample IOCP FUNCTION configuration to define an RoCE Express adapter shared between LPARs.

Example D-1 IOCP FUNCTION statements

```
FUNCTION FID=05,PCHID=100,PART=((LP08),(LP09)),VF=1,TYPE=ROCE,PNETID=(PNETA,PNETB)
FUNCTION FID=06,PCHID=12C,PART=((LP08),(LP09)),VF=1,TYPE=ROCE,PNETID=(PNETA,PNETB)
FUNCTION FID=07,PCHID=100,PART=((LP12),(LP06)),VF=2,TYPE=ROCE,PNETID=(PNETA,PNETB)
FUNCTION FID=08,PCHID=12C,PART=((LP12),(LP06)),VF=2,TYPE=ROCE,PNETID=(PNETA,PNETB)
```

This example has these characteristics:

- PNETID array identifies the network that the ports are associated with. Thus, all FIDs on a RoCE adapter that are associated with the same PCHID must have the same PNETID for each port.
- 10GbE RoCE Express Functions for LPAR 08 are reconfigurable to LP 09 with access to two networks.
- 10GbE RoCE Express Functions for LPAR 12 are reconfigurable to LP 06 with access to two networks.
- Physical RoCE Express adapters on PCHID 100 and 12C are shared between LPARs 08 and 12.

D.2.8 Software exploitation of SMC-R

SMC-R can be implemented on the RoCE and can communicate memory to memory, thus avoiding the CPU resources of TCP/IP by reducing network latency and improving wall clock time. It focuses on “time to value” and widespread performance benefits for all TCP socket-based middleware.

The following advantages are gained as shown in Figure D-8:

- No middleware or application changes (transparent)
- Ease of deployment (no IP topology changes)
- LPAR-to-LPAR communications on a single central processing complex (CPC)
- Server-to-server communications in a multi-CPC environment
- Retained key qualities of service that TCP/IP offers for enterprise class server deployments (high availability, load balancing, and an IP security-based framework)

![Figure D-8 Reduced latency and improved wall clock time with SMC-R](image-url)
D.2.9 SMC-R support overview

SMC-R needs both hardware and software support.

Hardware
SMC-R requires the following hardware:
- PCIe-based RoCE Express
 - z13, z13s, zEC12, and zBC12 servers
 - Dual port 10 GbE adapter
 - Maximum of 16 RoCE Express features per CPC
- HCD and input/output configuration data set (IOCDS):
 - PCIe FID, VF (sharing), and RoCE configuration with PNet ID
- Optional: Standard 10 GbE switch (CEE-enabled switch is not required)
- Required queued direct input/output (QDIO) Mode OSA connectivity between z/OS LPARs as shown in Figure D-5 on page 507.
- Adapter MUST be dedicated to an LPAR on a zEC12 or zBC12. And it MUST be shared (or at least in shared mode) to one or more LPARs on a z13 or z13s server.
- SMC-R cannot be used in IEDN.

Software
SMC-R requires the following software:
- z/OS V2R1 (with PTFs) or higher are the only supported operating systems for the SMC-R protocol. You cannot roll back to previous z/OS releases.
- z/OS guests under z/VM 6.3 are supported to use 10GbE RoCE features.
- IBM is working with its Linux distribution partners to include support in future Linux on z Systems distribution releases.

IOCP required level for z13 servers: The required level of IOCP for z13 servers is V5 R2 L1 (IOCP 5.2.1) or later with program temporary fixes (PTFs). For more information, see the following manuals:

Other RoCE considerations
RoCE has the following additional considerations:
- RoCE system limits:
 - 16 Physical cards per CPC (no change from zEC12)
 - 31 Virtual Functions per PCHID
 - 128 unique VLANs per PCHID physical port
 - Each VF guarantees a minimum of 2 VLANs max of 16 (31 VFs, max VLANs depends on the number of unique VLAN IDs)
z/OS CS consumption of RoCE virtual resources:
- One VF consumed per TCP stack (per PFID / port).
- One virtual Media Access Control (VMAC) per VF (z/OS uses PF generated VMAC)
- One VLAN ID (up to 16) per OSA VLAN ("inherited" as TCP connections occur)

z/OS Communications Server Migration considerations:
- RoCE HCD (IOCDS) configuration changes are required
- Existing z/OS RoCE users might be required to make a TCP/IP configuration change (that is, existing TCP/IP profile (PFIDs) might be compatible with shared RoCE)

Changes are required for existing RoCE users for the following cases:
- z/OS users who use multiple TCP/IP stacks and both stacks currently use the same RoCE feature (single z/OS image sharing a physical card among multiple stacks).
- z/OS users who need to use both physical RoCE ports from the same z/OS instance (not "best practices", but is allowed).
- z/OS users who could not continue using (coordinate) the same PFID values (continue using the existing PFID value that is used in the dedicated environment for a specific z/OS instance) when adding multiple PFIDs and VFs to the same card (for additional shared users).

D.2.10 SMC-R use cases for z/OS to z/OS

SMC-R with RoCE provides high-speed communications and “HiperSockets-like” performance across physical processors. It can help all TCP-based communications across z/OS LPARs that are in different CPCs.

The following list shows several typical communications patterns:
- Optimized Sysplex Distributor intra-sysplex load balancing
- WebSphere Application Server type 4 connections to remote DB2, IMS, and CICS instances
- IBM Cognos® to DB2 connectivity
- CICS to CiCS connectivity through Internet Protocol interconnectivity (IPIC)

Optimized Sysplex Distributor intra-sysplex load balancing
Dynamic virtual IP address (VIPA) and Sysplex Distributor support are often deployed for high availability (HA), scalability, and so on in the sysplex environment.

When the clients and servers are all in the same sysplex, SMC-R offers a significant performance advantage. Traffic between client and server can flow directly between the two servers without having to traverse the Sysplex Distributor node for every inbound packet, which is the current model with TCP/IP. In the new model, only connection establishment flows must go through the Sysplex Distributor node.
Sysplex Distributor before RoCE
Figure D-9 shows a traditional Sysplex Distributor.

The traditional Sysplex Distributor has these characteristics:
- All traffic from the client to the target application goes through the Sysplex Distributor TCP/IP stack.
- All traffic from the target application goes directly back to the client by using the TCP/IP routing table on the target TCP/IP stack.

Sysplex Distributor after RoCE
Figure D-10 shows a RoCE Sysplex Distributor:
- The initial connection request goes through the Sysplex Distributor stack.
- The session then flows directly between the client and the target over the RoCE cards.

Note: As with all RoCE Communications, the session end also flows over OSAs.
D.2.11 Enabling SMC-R support in z/OS Communications Server

The following checklist provides a task summary for enabling SMC-R support in z/OS Communications Server. This list assumes that you start with an existing IP configuration for LAN access that uses OSD:

- HCD definitions (install and configure RNICs in the HCD):
 - Add the PNet ID for the current OSD.
 - Define PFIDs for RoCE (with the same PNet ID).
- Specify the GLOBALCONFIG SMCR parameter (TCP/IP Profile):
 - Must specify at least one PCIe Function ID (PFID):
 - A PFID represents a specific RNIC adapter.
 - A maximum of 16 PFID values can be coded.
 - Up to eight TCP/IP stacks can share a RoCE PCHID (RoCE feature) in a specific LPAR (each stack must define a unique FID value).
- Start the IPAQENET or IPAQENET6 INTERFACE with CHPIDTYPE OSD:
 - SMC-R is enabled, by default, for these interface types.
 - SMC-R is not supported on any other interface types.

Note: The IPv4 INTERFACE statement (IPAQENET) must also specify an IP subnet mask

- Repeat in each host (at least two hosts).

Start the TCP/IP traffic and monitor it with Netstat and IBM VTAM displays.
D.3 Shared Memory Communications - Direct Memory Access

This section describes the new Shared Memory Communication - Direct Memory Access (SMC-D) functions implemented in IBM z13 and z13s Driver Level 27 servers.

Concepts

Co-location of multiple tiers of a workload onto a single z Systems physical server allows for the exploitation of HiperSockets, an internal LAN technology that provides low-latency communication between virtual machines within a physical z Systems CPC. HiperSockets is implemented fully within z Systems firmware, so it requires no physical cabling or external network connection to purchase, maintain, or replace. The lack of external components also provides for a secure and low latency network connection because data transfer occurs much like a cross-address-space memory move.

With the z13 (Driver 27) and z13s servers, IBM introduces SMC-D. SMC-D maintains the socket-API transparency aspect of SMC-R so that applications that use TCP/IP communications can benefit immediately without requiring any application software or IP topology changes. SMC-D completes the overall Shared Memory Communications solution, providing synergy with SMC-R. Both protocols use shared memory architectural concepts, eliminating TCP/IP processing in the data path, yet preserving TCP/IP Qualities of Service for connection management purposes.

From an operations standpoint, SMC-D is similar to SMC-R. The objective is to provide consistent operations and management tasks for both SMC-D and SMC-R. SMC-D uses a new virtual PCI adapter called Internal Shared Memory (ISM). The ISM Interfaces are associated with IP interfaces (for example HiperSockets or OSA, ISM interfaces do not exist without an IP interface). ISM interfaces are not defined in software. Instead, ISM interfaces are dynamically defined and created, and automatically started and stopped. You do not need to operate (Start or Stop) ISM interfaces. Unlike RoCE, ISM FIDs (PFIDs) are not defined in software. Instead, they are auto-discovered based on their PNet ID.

SMC-R uses RDMA (RoCE), which is based on Queue Pair (QP) technology:

- RC-QPs represent SMC Links (logical point-to-point connection).
- RC-QPs over unique RNICs are logically bound together to form Link Groups (used for HA and load balancing).
- Link Groups (LGs) and Links are provided in many Netstat displays (for operational and various network management tasks).

SMC-D over ISM does not use QPs:

- Links and LGs based on QPs (or other hardware constructs) are not applicable to ISM. So the SMC-D information in the Netstat command displays are related to ISM link information rather than LGs.
- SMC-D protocol (like SMC-R) has a design concept of a “logical point-to-point connection” and therefore preserves the concept of an SMC-D Link (for various reasons that include network administrative purposes).

Note: The SMC-D information in the Netstat command displays is related to ISM link information (not LGs).
D.3.1 Internal Shared Memory technology overview

ISM is a new function supported by the z13 and z13s machines. It is the firmware that provides the connectivity for shared memory access between multiple operating systems within the same CPC. It provides the same functionality as SMC-R but without physical adapters like the RoCE card, using instead virtual ISM devices as SMC-R. It is a Hipersocket like function that provides guest-to-guest communications within the same machine. Figure D-11 shows a possible solution using SMC-D only.

![Figure D-11 Connecting two LPARs on the same CPC using SMC-D](image)

Both SMC-D and SMC-R technologies can be used at the same time on the same CPCs. Figure D-12 shows a fully configured three-tier solution using both SMC-D and SMC-R.

![Figure D-12 Clustered systems: Multitier application solution. RDMA, and DMA](image)

D.3.2 SMC-D over Internal Shared Memory

ISM is a virtual channel similar to IQD for HiperSockets. A virtual adapter is created in each OS. Using the SMC protocol, the memory is logically shared. The network is firmware provided. A new device is required to manage that virtual function. SMC is based on a TCP/IP connection and preserves the entire network infrastructure.

SMC-D is a protocol that allows TCP socket applications to transparently use ISM.
SMC-D is a “hybrid” solution as shown in Figure D-13:

- It uses a TCP connection to establish the SMC-D connection.
- The TCP connection can be either through the OSA adapter or IQD HiperSockets.
- A TCP option (SMCD) controls switching from TCP to “out of band” SMC-D.
- The SMC-D information is exchanged within the TCP data stream.
- Socket application data is exchanged through ISM (write operations).
- The TCP connection remains to control the SMC-D connection.
- This model preserves many critical existing operational and network management features of TCP/IP.

![Figure D-13](image)

Figure D-13 Dynamic transition from TCP to SMC-D by using two OSA-Express adapters

The hybrid model of SMC-D uses these key existing attributes:

- It follows the standard TCP/IP connection setup.
- The hybrid model switches to ISM (SMC-D) dynamically.
- The TCP connection remains active (idle) and is used to control the SMC-D connection.
- The hybrid model preserves the following critical operational and network management TCP/IP features:
 - Minimal (or zero) IP topology changes
 - Compatibility with TCP connection-level load balancers
– Preservation of the existing IP security model, such as IP filters, policies, VLANs,
and SSL
– Minimal network administration and management changes
 ▶ Host application software is not required to change, so all host application workloads can
benefit immediately.

D.3.3 Internal Shared Memory introduction

The IBM z13 (Driver 27) and z13s servers introduce the ISM virtual PCI function. ISM is a
virtual PCI network adapter that enables direct access to shared virtual memory providing a
highly optimized network interconnect for z Systems intra-CPC communications. ISM
introduces a new static virtual channel identifier (VCHID) Type. The VCHID is referenced in
IOCDS / HCD. The ISM VCHID concepts are similar to the IQD (HiperSockets) type of virtual
adapters. ISM is based on existing z Systems PCIe architecture (that is virtual PCI function /
adapter). It introduces a new PCI Function Group and type (ISM virtual PCI). There will be a
new virtual adapter.

The system admin, configuration, and operations tasks follow the same process
(HCD/IOCDS) as existing PCI functions such as RoCE Express, zEDC Express, and so on.
ISM supports dynamic I/O.

ISM Provides adapter virtualization (Virtual Functions) with high scalability:
▶ It supports up to 32 ISM VCHIDs per CPC (z13 or z13s servers, each VCHID represents a
unique internal shared memory network each with a unique Physical Network ID)
▶ Each VCHID supports up to 255 VFs per VCHID (the maximum is 8k VFs per z13 or z13s
CPC), which provide significant scalability.

Note: There is no concept of a PCI Physical Function to provide virtualization. There is
no concept of MACs, or MTU or Frame size.

– Each ISM VCHID represents a unique and isolated internal network, each having a
unique Physical Network ID (PNet IDs are configured in HCD/IOCDS).
▶ ISM VCHIDs support VLANs, so subdividing a VCHID using virtual LANs is supported.
▶ ISM provides a Global Identifier (GID) that is internally generated to correspond with each
ISM FID.
▶ ISM is supported by z/VM in pass-through mode (PTF required).

D.3.4 Virtual PCI Function (vPCI Adapter)

Virtual Function ID is defined when PCIe hardware is shared between LPARs. Virtual
Function ID has a decimal Virtual Function Identifier (VF=) in the range 1 – n, where n is the
maximum number of partitions that the PCIe feature supports. For example, the SMC-D ISM
feature supports up to 32 partitions, and a zEDC Express feature supports up to 15.

The following basic infrastructure is available:
▶ zPCI architecture
▶ RoCE, zEDC, ISM
▶ zPCI layer in z/OS and Linux for z systems
▶ vPCI for SD queues
Figure D-14 shows the basic concept vPCI adapters:

![Diagram of vPCI adapter implementation]

Note: The following basic z/VM support is available:
- Generic zPCI pass-through support starting from z/VM 6.3
- The use of the zPCI architecture remains basically unchanged
Figure D-15 shows a SMC-D configuration in which Ethernet provides the connectivity.

Figure D-15 SMC-D configuration using Ethernet to provide connectivity
Figure D-16 shows a SMC-D configuration in which HiperSockets provide the connectivity.

![Diagram of SMC-D configuration using HiperSockets to provide connectivity](image)

Figure D-16 SMC-D configuration using HiperSockets to provide connectivity

D.3.5 Planning considerations

In the z/OS SMC-D implementation, z/OS uses a single Virtual Function (VF) per ISM PNet. This is true for a single VLAN or for multiple VLANs per PNet. The number of VLANs defined for a given PNet does not affect the number of VFs required.

z/OS Communications Server requires one ISM FID per ISM PNet ID per TCP/IP stack. This is not affected by the version of the IP (that is, this is true even if both IPv4 and IPv6 are used).

Reasons why z/OS might use additional ISM FIDs:

- IBM supports up to 8 TCP/IP stacks per z/OS LPAR. SMC-D could use up to 8 FIDs or VFs (one per TCP/IP stack).
- IBM supports up to 32 ISM PNet IDs per CEC. Each TCP/IP stack can have access to PNet ID consuming up to 32 FIDs (one VF per PNet ID).

D.3.6 Hardware configuration definitions

Complete the following steps to use HCDs:

1. Configure ISM vPCI Functions (HCD/HCM).
2. Define PNet IDs (OSA, HiperSockets (IQD) and ISM) in HCD/HCM.
3. Activate the definition using HCD.
4. Enable SMC-D in at least two z/OS instances, which is a single parameter in TCP/IP Global configuration. Both z/OS instances must execute on the same CPC.

5. Review and adjust if needed available real memory and fixed memory usage limits (z/OS and CS). SMC requires fixed memory. You might need to review limits and provision additional real memory for z/OS.

6. Review IP topology, VLAN usage considerations, and IP security. For more information, see the SMC-R Security white paper.

7. Run Shared Memory Communications Applicability Tool (SMC-AT) to evaluate applicability and potential value.

8. Review changes to messages, monitoring information and diagnostic tools. Similar to SMC-R, there are numerous updates to these items:
 - Messages (VTAM and TCP stack)
 - Netstat (status, monitoring, and display information)
 - CS diagnostic tools (VIT, Packet trace, CTRACE, and IPCS formatted dumps)

 Note: There are no application changes (transparent to Socket applications). There are no required optional operation changes (for example starting or stopping devices).

ISM Functions must be associated with another channel (CHID) of one of these types:

- IQD (a single IQD HiperSockets) channel
- OSD channels

 Note: A single ISM PCHID cannot be associated with both (IQD and OSD)

D.3.7 Sample IOCP FUNCTION statements

Example D-2 shows IOCP FUNCTION statements that describe the configuration that defines ISM adapters shared between LPARs on the same CPC as shown in Figure D-17.

Figure D-17 ISM adapters shared between LPARs

Example D-2 IOCP FUNCTION statements

FUNCTION FID=1017,VCHID=7E1,VF=1,PART=((LP1),(LP1,LP2)),PNETID=(PNET1),TYPE=ISM
FUNCTION FID=1018,VCHID=7E1,VF=2,PART=((LP2),(LP1,LP2)),PNETID=(PNET1),TYPE=ISM
Note: On the IOCDS statement, the VCHID is defined as 7E1. In Figure D-17 on page 522, the ISM network “PNET 1” is referenced by the IOCDS VCHID statement. ISM (just like IQD) doesn’t use physical cards or card slots (PCHID), but only logical (firmware) instances that are defined as VCHIDs in IOCDS.

Example D-3 shows a sample IOCP FUNCTION configuration that defines ISM adapters shared between LPSRs and multiple VLANs on the same CPC as shown in Figure D-18.

This OS (LP2 & LP5) have access to 2 VLANs on the same ISM network; requires a single ISM FID (VF)

This OS has access to 2 unique ISM networks (VCHIDs); requires 2 unique ISM FIDs (VFs)

System z13 or z13s (Driver 27)

Figure D-18 Multiple LPARs connected through multiple VLANs

Workloads can be logically isolated on separate ISM VCHIDs. Alternatively, workloads can be isolated by exploiting VLANs. The ISM VLAN definitions are inherited from the associated IP network (OSA or HiperSockets).

Example D-3 Sample IOCP Function

FUNCTION FID=1017,VCHID=7E1,VF=1,PART=((LPAR3),(LPAR3,LPAR4)),PNETID=(PNETA),TYPE=ISM
FUNCTION FID=1018,VCHID=7E1,VF=2,PART=((LPAR4),(LPAR3,LPAR4)),PNETID=(PNETA),TYPE=ISM
FUNCTION FID=1019,VCHID=7E1,VF=3,PART=((LPAR5),(LPAR4,LPAR5)),PNETID=(PNETA),TYPE=ISM
FUNCTION FID=1020,VCHID=7E1,VF=4,PART=((LPAR6),(LPAR5,LPAR6)),PNETID=(PNETA),TYPE=ISM
FUNCTION FID=1021,VCHID=7E1,VF=5,PART=((LPARN),(LPARN,LPARN)),PNETID=(PNETA),TYPE=ISM
FUNCTION FID=1022,VCHID=7E2,VF=1,PART=((LPAR1),(LPAR1,LPAR2)),PNETID=(PNETB),TYPE=ISM
FUNCTION FID=1023,VCHID=7E2,VF=2,PART=((LPAR2),(LPAR1,LPAR2)),PNETID=(PNETB),TYPE=ISM
FUNCTION FID=1024,VCHID=7E2,VF=3,PART=((LPARN),(LPARN,LPARN)),PNETID=(PNETB),TYPE=ISM
Configuration considerations

The IOCDS (HCD) definitions for ISM PCI VFs are not directly related to the software (SMC-D) exploitation of ISM (that is, the z/OS TCP/IP and SMC-D implementation and usage are not directly related to the I/O definition).

The user defines a list if ISM FIDs (VFs) in IOCDS (HCD), and z/OS dynamically selects an eligible FID based on the required PNet ID. FIDs or VFs are NOT defined in Communications Server for z/OS TCP/IP. Instead, z/OS selects an available FID for a specific PNET. Access to additional VLANs does not require configuration of additional VFs.

Note: Consider over-provisioning the I/O definitions (e.g. consider defining eight FIDs instead of 5.

For native PCI devices, FIDs need to be defined. Each FID in turn will also define a corresponding VF. In terms of operating system administration tasks, the administrator will typically reference FIDs. Usually VFs (and VF numbers) are transparent.

D.3.8 Software exploitation of ISM

ISM enables SMC-D, which provides SMC capability within the CPC (SMC without requiring RoCE hardware/network equipment). Host virtual memory is managed by each OS (similar to SMC-R, logically shared memory) following existing z Systems PCI I/O translation architecture. Only minor changes required for z/VM guests. An OS can be enabled for both SMC-R and SMC-D. SMC-D is used when both peers are within the same CPC (and ISM PNet and VLAN). After the ISM HCD configuration is complete, SMC-D can be enabled in z/OS with a single TCP/IP parameter (GLOBALCONFIG SMCD). ISM FIDs must be associated with an IP network. The association is accomplished by matching PNet IDs (for example HiperSockets and ISM).

Note: ISM FIDs must be associated with HiperSockets or with an OSA adapter by using a PNet ID. It cannot be associated to both.

D.3.9 SMC-D over ISM prerequisites

SMC-D over ISM has these prerequisites:

- z13s or z13 server (Driver 27):
 - HMC/SE for ISM vPCI Functions.
- At least two z/OS V2.2 systems in two LPARs on the same CPC with required service installed:
 - SMC-D can only communicate with another z/OS V2.2 instance and peer hosts must be on the same CPC and ISM PNet.
 - SMC-D requires an IP Network with access through OSA or HiperSockets that has a defined PNet ID that matches the ISM PNet ID.
- If running as a z/OS guest under z/VM, z/VM 6.3 with APAR VM65716, including APARs is required for guest access to RoCE (Guest Exploitation only).
- Linux support is planned for a future deliverable.
Table D-2 shows a list of required APARs per z/OS subsystem.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>FMID</th>
<th>APAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS</td>
<td>HBB77A0</td>
<td>OA47913</td>
</tr>
<tr>
<td>CommServer SNA VTAM</td>
<td>HVT6220</td>
<td>OA48411</td>
</tr>
<tr>
<td>CommServer IP</td>
<td>HIP6220</td>
<td>PI45028</td>
</tr>
<tr>
<td>HCD</td>
<td>HCS77A0</td>
<td>OA46010</td>
</tr>
<tr>
<td></td>
<td>HCS7790</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS7780</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS7770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS7760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCS7750</td>
<td></td>
</tr>
<tr>
<td>IOCP</td>
<td>HIO1104</td>
<td>OA47938</td>
</tr>
<tr>
<td>HCM</td>
<td>HCM1F10</td>
<td>IO23612</td>
</tr>
<tr>
<td></td>
<td>HCM1E10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCM1D10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCM1C10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCM1B10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCM1A10</td>
<td></td>
</tr>
</tbody>
</table>

Restrictions: SMC (existing architecture) cannot be used in these circumstances:
- Peer hosts are not within the same IP subnet and VLAN
- TCP traffic requires IPSec or the server exploits FRCA.

D.3.10 Enabling SMC-D support in z/OS Communications Server

The new parameter SMCD (see Figure D-19) will be available on the GLOBALCONFIG statement in the TCP/IP profile of the z/OS Communications Server (similar to the SMCR parameter). The SMCD parameter is the only parameter that is required to enable SMC-D. The key difference from the SMCR parameter is that ISM PFIDs are not defined in TCP/IP. Rather, ISM FIDs are discovered automatically based on matching PNETID associated with the OSD or HiperSockets. Figure D-19 shows an extract from z/OS Communications Server: IP Configuration Reference.
D.3.11 SMC-D support overview

SMC-D requires IBM z13 and IBM z13s servers to be at driver level 27 or later for support of ISM.

IOCP required level for z13: The required level of IOCP for the z13s server is V5 R2 L1 or later with PTFs. Defining ISM devices on machines other the z13 or z13s servers will not be possible. For more information, see the following manuals:

SMC-D requires the following software:

- z/OS V2R2 with PTFs (See Table D-2 on page 525) or later is the only supported operating systems for the SMC-D protocol:
 - HCD APAR (OA46010) is required.
 - You cannot roll back to previous z/OS releases.
- z/OS guests under z/VM 6.3 are supported to use SMC-D.
- IBM is working with its Linux distribution partners to include support in future Linux on z Systems distribution releases.

Other ISM considerations
ISM systems have the following limits:

- 32 ISM VCHIDs (in IOCDS / HCD) per CPC. Each IOCDS / HCD VCHID represents a unique internal shared memory network each with a unique Physical Network ID.
- 255 VFs per VCHID (8k VFs per CPC). For example, the maximum number of virtual servers that can communicate over the same ISM VCHID is 255.
- Each ISM VCHID in IOCDS / HCD represents a unique (isolated) internal network, each having a unique Physical Network ID (PNet IDs are configured in HCD/IOCDS).
- ISM VCHIDs support VLANs (can be subdivided into VLANs).
- ISM provides a GID (internally generated) to correspond with each ISM FID.
- MACs (VMACs), MTU, physical ports, and Frame size are all N/A.
- ISM is supported by z/VM (for pass-through guest access to support the new PCI function).

Additional documentation
A configuration example for SMC-D is presented in the Redbook *IBM z/OS V2R2 Communications Server TCP/IP Implementation - Volume 1*, SG24-8360.
IBM Dynamic Partition Manager

This appendix contains an introduction to IBM Dynamic Partition Manager (DPM) on z Systems. It provides a description about how the DPM environment can be set up and managed.

This appendix includes the following sections:

- Introduction to IBM Dynamic Partition Manager
- Reasons to use DPM
- IBM z Systems servers and DPM
- Setting up the DPM environment
E.1 Introduction to IBM Dynamic Partition Manager

DPM is a z Systems mode of operation that provides a simplified approach to creating and managing virtualized environments. DPM reduces the barriers to adoption of virtualized environments for new and existing customers.

The implementation provides built-in integrated capabilities that allow advanced virtualization management on z Systems servers. With DPM, customers can use their existing Linux and virtualization skills while getting the full value of z Systems hardware's robustness and security in a workload optimized environment.

DPM provides facilities to define and run virtualized computing systems, using a firmware managed environment, that coordinates the physical system resources shared by the partitions. The partitions' resources include processors, memory, network, storage, Crypto, and Accelerators.

DPM provides a new mode of operation for z Systems servers that provides these benefits:

- Facilitates defining, configuring, and operating partitions similar to the way these tasks are performed on other platforms.
- Lays the foundation for a general z Systems new user experience.

DPM is not an additional hypervisor for z Systems servers. DPM uses the existing PR/SM hypervisor infrastructure and provides an intelligent interface that allows customers to define, use, and operate the platform virtualization with little or no z Systems experience.

Note: When z Systems servers are set to run in DPM mode, only Linux virtual servers can be defined by using the provided user server definition interface. KVM for z Systems is also supported in DPM mode.

E.2 Reasons to use DPM

DPM mode is targeted at customers (distributed market) with no specific z Systems skills or knowledge of z/VM who want to implement and use the cloud infrastructure to consolidate and integrate their IT. DPM also eases the management and administration of their Linux environment and workloads.

DPM is of special value for customer segments with these characteristics:

- New z Systems, or Linux adopters, or distributed driven:
 - Likely not z/VM users
 - Looking for integration into their distributed business models
 - Want ease of migration of distributed environments to z Systems servers and improve centralized management

- Currently not running on z Systems servers:
 - No z Systems skills
 - Want to implement cloud
 - Have expectations acquired from another hypervisors' management such as VMware, KVM, and Citrix

1 DPM uses the term “partition”, which is the same as logical partition (LPAR).
E.3 IBM z Systems servers and DPM

Traditional IBM z Systems servers are highly virtualized with the goal of maximizing the utilization of compute and I/O (storage and network) resources, and simultaneously lowering the total amount of resources needed for workloads. For decades, virtualization has been embedded in the z Systems architecture and built into the hardware and firmware.

Virtualization requires a hypervisor, which manages resources that are required for multiple independent virtual machines. The z Systems hardware hypervisor is known as IBM Processor Resource/System Manager (PR/SM). PR/SM is implemented in firmware as part of the base system. It fully virtualizes the system resources, and does not require additional software to run.

PR/SM allows the defining and managing of subsets of the z Systems resources in LPARs. The LPAR definitions include a number of logical processing units (LPUs), memory, and I/O resources. LPARs can be added, modified, activated, or deactivated in z Systems platforms by using the traditional Hardware Management Console (HMC) interface.

DPM uses all the capabilities previously mentioned as the foundation for the new user experience. On top of these capabilities, DPM provides an HMC user interface that allows customers to define, implement, and run Linux partitions without requiring deep knowledge of the underlying z Systems infrastructure management (for example, input/output configuration program (IOCP) or hardware configuration definition (HCD)).

The DPM infrastructure is depicted in Figure E-1.

![Figure E-1 High-level view of DPM implementation](image)

The firmware partition (similar to the existing PCIe support partitions, also known as master control services (MCS) partition), along with the Support Element (SE), provides services to create and manage the Linux native partitions, or partitions running kernel-based virtual...
machine (KVM) code. The connectivity from the SE to the MCS is provided through the internal management network by two OSA Express5s 1000BASE-T acting as OSA Management adapters.

This implementation integrates platform I/O resource management and dynamic resource management.

E.4 Setting up the DPM environment

The DPM is a z Systems mode of operation that requires IBM z13 (driver 27) or z13s CPCs. Enabling DPM is a disruptive action. The selection of DPM mode of operation is done by using a function called Enable Dynamic Partition Manager, under the CPC Configuration menu, in the SE interface, as shown in Figure E-2. The DPM mode of operation setting is normally performed at machine installation time by the service support representative (SSR).

Note: DPM is a feature code (FC 0016) that can be selected during the machine order process. After it is selected, a pair of OSA Express5s 1000BASE-T adapters must be included in the configuration.

Figure E-2 Enabling DPM mode of operation from the SE CPC configuration options
After the option is selected, a new window is displayed where you enter the two OSA Express5s 1000BASE-T ports selected and cabled to the System Control Hubs (SCHs) during the z Systems installation. This window is shown in Figure E-3.

Note: During the machine installation process, the IBM SSR will connect the two OSA Express5s 1000BASE-T cables to the SCHs provided ports.

![Enable DPM - P1020304](image)

Figure E-3 Entering the OSA ports that will be used by the management network

After entering the OSA adapter port numbers that were previously cabled to the SCHs, click **Enable**. The SE then restarts, and, when finished, the DPM mode becomes active and operational.

Important:

- A CPC in DPM mode cannot be part of an Ensemble managed by Unified Resource Manager. The HMC used to enable the CPC in DPM mode must NOT be an Ensemble HMC (either Primary or Backup Ensemble HMC).
- All definitions that are made for the CPC, if any, before the DPM mode is activated, are saved and can be brought back if you choose to revert to standard PR/SM mode. However, when switching the CPC into standard PR/SM mode, any definitions that are made with the CPC in DPM mode are lost.
Figure E-4 shows the DPM mode welcome window. The three options at the bottom (Getting Started, Guides, and Learn More) have mouse-over functions that either briefly describe their meaning or provide additional functions.

The HMC can monitor and control up to 32 z Systems CPCs. The monitored and controlled CPCs need to be defined to the HMC by using the Object Definition task, and adding the CPC object.

The welcome window shown in Figure E-4 only opens when at least one HMC defined CPC is active in DPM mode. Otherwise, the traditional HMC window is presented when you log on to the HMC.
Figure E-5 shows the welcome window from a traditional HMC when none of the defined CPC objects are running in DPM mode.

E.4.1 Defining partitions in DPM mode

After the CPC is in DPM mode, the user can choose one of the options provided in the welcome window to learn more about the process of defining partitions, browse the tutorials, or start creating the environment by defining and activating the partitions.

Figure E-6 shows the three options that are presented to the user in the HMC welcome page when at least one CPC is running in DPM mode.
The Guides option provides tutorials, videos, and information about What's New in DPM. The Learn More option covers the application programming interfaces (APIs), and the Support option takes the user to the IBM ResourceLink website.

The first option on the left of the window shown on Figure E-6 on page 533, is Getting Started. This option starts the DPM wizard application on the HMC, which allows users to define their partitions, and associate processor and memory resources, network and storage I/O, crypto adapters, and accelerators to them.

From the Getting Started with DPM window, users can select the Partition option that opens the Create Partition wizard. The Create Partition wizard can also be accessed clicking Next at the bottom of Getting Started with DPM window.

Figure E-7 on page 535 shows, on the left banner, the HMC create partition wizard steps that are available to define and activate a partition:

- **Welcome**: Initial window that contains basic information about the process.
- **Name**: This window is used to provide name and description for the partition being created.
- **Processors**: The partition's processing resources are defined in this window.
- **Memory**: This window is used to define partition's initial and maximum memory.
- **Network**: Window where users define partition's network NICs resources.
- **Storage**: Where the storage connectivity host bus adapters (HBAs) are defined.
- **Accelerators**: Partition resources such as zEDC can be added in this window.
- **Cryptos**: Wizard window where users define their cryptographic resources.
- **Boot**: In this wizard window, users define the partition's OS and their source. The following options as the source for loading an OS are available:
 - FTP Server
 - Storage Device (SAN)
 - Network Server (PXE)
 - Hardware Management Console removable media
 - ISO image
- **Summary**: This wizard window provides a view of all defined partition resources

The final step after the partition creation process is to start it. After the partition is started (Status: Active), the user can start the messages or the Integrated ASCII console interface to operate it.
Figure E-7 shows an option at the lower left called **Advanced**. The **Advanced** option allows users to open a window that contains all definitions made for the partition. This window provides additional settings for some of the definitions, such as defining a processor as shared or dedicated, and associating a weight for a partition.

An important additional facility that is provided by the DPM is the **Monitor System**. This option allows users to monitor and manage their DPM environment. The following monitoring and management capabilities are available:

- Partition overall performance, shown in usage percentages, including:
 - Processors
 - Storage utilization
 - Network adapters
 - Storage adapters
 - Cryptos
 - Accelerators
 - Power Consumption in KW
 - Environmentalis - Ambient Temperature in Fahrenheit
- Adapters that exceed a user predefined threshold value
- Overall port utilization in the last 36 hours
- Utilization details are available by selecting one of the performance indicators
- Manage Adapters Task
E.4.2 Summary

DPM provides simplified z Systems hardware and virtual infrastructure management including integrated dynamic I/O management for users that intend to run Linux on z Systems and KVM on for IBM z as hypervisor, running in a partition.

The new mode, DPM, provides partition lifecycle and dynamic I/O management capabilities using the Hardware Management Console (HMC) for these tasks:

- Create and provision: Creation of new partitions, assignment of processors and memory, configuration of I/O Adapters (Network, FCP Storage, Crypto, and Accelerators)
- Manage the environment: Modification of system resources without disrupting running workloads
- Monitor and troubleshoot the environment: Source identification of system failures, conditions, states, or events that might lead to workload degradation

A CPC can be in either DPM mode or standard PR/SM mode. The mode is enabled before the CPC power-on reset (POR).

DPM mode requires two OSA-Express 1000BASE-T Ethernet features for primary and backup connectivity (OSA-Express4S 1000BASE-T Ethernet #0408), along with associated cabling (HW for DPM FC0016).
KVM for IBM z Systems

This appendix contains an introduction to open fertilization with kernel-based virtual machine (KVM) for IBM z Systems and a description about how the environment can be managed.

This appendix includes the following sections:
- Why KVM for IBM z Systems
- IBM z Systems servers and KVM
- Managing the KVM for IBM z Systems environment
- Using IBM Cloud Manager with OpenStack
F.1 Why KVM for IBM z Systems

Organizations are challenged to find new business opportunities while reducing budgets, managing increased IT complexity, and improving staff productivity. Although cost considerations are important, businesses are looking at other benefits of open source solutions, such as interoperability, flexibility, and access to the underlying code in their systems to address their challenges.

With KVM for IBM z Systems (KVM for IBM z), IT organizations can unleash the power of KVM open virtualization to improve productivity, and to simplify administration and management for a quick start on their journey to a highly virtualized environment on IBM z Systems.

KVM for IBM z Systems is an open source virtualization option for running Linux-centric workloads, using common Linux-based tools and interfaces. It takes advantage of the robust scalability, reliability, and security that is inherent to the IBM z Systems server. The strengths of the z Systems server have been developed and refined over several decades to provide additional value to any type of IT-based services.

KVM-based virtualization on z Systems servers allows businesses to deploy fewer systems to run more workloads, sharing resources and improving service levels to meet demand. KVM for IBM z provides these advantages:

- Uses Linux administrative skills to allow for simplicity and familiarity for non z Systems users, leading to greater operational efficiencies.
- Enables x86 workload consolidation and deployment on z Systems servers using KVM.
- Uses standard interfaces to enable single cross-platform virtualization and help simplify systems management.
- Integrates into existing cloud environments and enables cloud deployments by seamlessly working with OpenStack.
- Runs your Linux workloads on z Systems servers, one of the most trusted, scalable, available, reliable, and highly secure platforms.
- Enhances performance, utilization, and delivery of service by allowing business applications to remain active while the workload is relocated for either load balancing or scheduled downtime.
- Provides flexibility and automatic provisioning of computing resources, as needed, to meet changing server demands and maintain service at a constant, high utilization rate.

Note: Both KVM for z Systems and Linux on z Systems are the same KVM and Linux that run on other hardware platforms with the same look and feel.

F.1.1 Advantages of using KVM for z Systems

KVM for IBM z Systems offers enterprises a cost-effective alternative to other hypervisors. It has simple and familiar standard user interfaces, offering easy integration of the z Systems platform into any IT infrastructure.

KVM for IBM z Systems can be managed to allow for over-commitment of system resources to optimize the virtualized environment. In addition, KVM for IBM z Systems can help make platform mobility easier. Its live relocation capabilities enable you to move virtual machines and workloads without incurring downtime.
Table F-1 lists the supported features in KVM for IBM z Systems.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KVM hypervisor</td>
<td>Supports running multiple disparate Linux virtual machines on a single system</td>
</tr>
<tr>
<td>CPU sharing</td>
<td>Allows for the sharing of CPU resources by virtual machines</td>
</tr>
<tr>
<td>I/O sharing</td>
<td>Enables the sharing of I/O resources among virtual machines</td>
</tr>
<tr>
<td>Memory and CPU over-commitment</td>
<td>Supports the over-commitment of CPU, memory, and swapping of inactive memory</td>
</tr>
<tr>
<td>Live virtual machine relocation</td>
<td>Enables workload migration with minimal impact</td>
</tr>
<tr>
<td>Dynamic addition and deletion of virtual I/O devices</td>
<td>Reduces downtime to modify I/O device configurations for virtual machines</td>
</tr>
<tr>
<td>Thin provisioned virtual machines</td>
<td>Allows for copy-on-write virtual disks to save on storage</td>
</tr>
<tr>
<td>Hypervisor performance management</td>
<td>Supports policy based, goal-oriented management and monitoring of virtual CPU resources</td>
</tr>
<tr>
<td>Installation and configuration tools</td>
<td>Supplies tools to install and configure KVM for IBM z Systems</td>
</tr>
<tr>
<td>Transactional execution exploitation</td>
<td>Provides improved performance</td>
</tr>
</tbody>
</table>

F.2 IBM z Systems servers and KVM

The z Systems server is highly virtualized, with the goal of maximizing the utilization of compute and I/O (storage and network) resources, and simultaneously lowering the total amount of resources needed for your workloads. For decades, virtualization has been embedded in the z Systems architecture and built into the hardware and firmware.

Virtualization requires a hypervisor, which manages resources required for multiple independent virtual machines. Hypervisors can be implemented in software or hardware, and z Systems servers have both. The hardware hypervisor is known as IBM Processor Resource/Systems Manager (PR/SM). PR/SM is implemented in firmware as part of the base system. It fully virtualizes the system resources, and does not require additional software to run. KVM for IBM z is a software hypervisor that uses PR/SM functions to service its virtual machines.

PR/SM allows the defining and managing of subsets of the z Systems resources in logical partitions (LPARs). Each KVM for IBM z instance runs in a dedicated LPAR. The LPAR definition includes a number of logical processing units (LPUs), memory, and I/O resources. LPUs are defined and managed by PR/SM and are perceived by KVM for IBM z as real CPUs. PR/SM is responsible for accepting requests for work on LPUs and dispatching that work on physical CPUs. LPUs can be dynamically added to and removed from an LPAR. LPARs can be added, modified, activated, or deactivated in z Systems servers by using the Hardware Management Console (HMC).
KVM for IBM z Systems also uses PR/SM to access storage devices and the network for Linux on z Systems virtual machines (see Figure F-1).

![Figure F-1 KVM running in z Systems LPARs]

F.2.1 Storage connectivity

Storage connectivity is provided on the z Systems servers by host bus adapters (HBAs) called Fibre Connection (FICON) features. IBM FICON (FICON Express16S and FICON Express8S) features follow Fibre Channel (FC) standards. They support data storage and access requirements, and the latest FC technology in storage devices.

The FICON features support the following protocols:

- **Native FICON**: An enhanced protocol (over FC) providing for communication with FICON devices such as disks, tapes, and printers. Native FICON supports IBM extended count key data (ECKD) devices.
- **Fibre Channel Protocol (FCP)**: A standard protocol for communicating with disk and tape devices. FCP supports Small Computer System Interface (SCSI) devices.

Linux on z Systems and KVM for IBM z Systems can use both protocols by using the FICON features.

F.2.2 Network connectivity

Network connectivity is provided on the z Systems server by the network interface cards (NICs) called Open Systems Adapter (OSA) features. The OSA features (OSA-Express5S and OSA-Express4S) provide direct, industry-standard local area network (LAN) connectivity and communications in a networking infrastructure.

OSA features use the z Systems I/O architecture, called queued direct input/output (QDIO). QDIO is a highly efficient data transfer mechanism that uses system memory queues and a signaling protocol to directly exchange data between the OSA microprocessor and network software.

KVM for IBM z Systems can use the OSA features by virtualizing them for Linux on IBM z Systems to use.
For more information about storage and network connectivity for Linux on z Systems, see *The Virtualization Cookbook for IBM z Systems Volume 3: SUSE Linux Enterprise Server 12, SG24-8890.*

F.2.3 Hardware Management Console

The HMC is a stand-alone computer that runs a set of management applications. The HMC is a closed system, which means that no other applications can be installed on it.

The HMC can set up, manage, monitor, and operate one or more z Systems servers. It manages and provides support utilities for the hardware and its LPARs.

The HMC is used to install KVM for IBM z and to provide an interface to the IBM z Systems hardware for configuration management functions.

For more information about the HMC, see *Introduction to the Hardware Management Console* at:

F.2.4 Open source virtualization

KVM technology is a cross-platform virtualization technology that turns the Linux kernel into an enterprise-class hypervisor by using the hardware virtualization support built into the z Systems platform. KVM for IBM z Systems can do things such as scheduling tasks, dispatching CPUs, managing memory, and interacting with I/O resources (storage and network) through PR/SM.

KVM for IBM z Systems creates virtual machines as Linux processes that run Linux on z Systems images by using a modified version of another open source module that is known as QEMU. QEMU provides I/O device emulation inside the virtual machine.

The KVM for IBM z Systems kernel provides the core virtualized infrastructure. It can schedule virtual machines on real CPUs and manage their access to real memory. QEMU runs in a user space and implements virtual machines by using KVM module functions. QEMU virtualizes real storage and network resources for a virtual machine, which in turn uses *virtio* drivers to access these virtualized resources.
The configuration using QEMU is shown in Figure F-2.

The network interface in Linux on z Systems is a virtual Ethernet interface. The interface name is eth. Multiple Ethernet interfaces can be defined to Linux and are handled by the virtio_net device driver module. This module must either be compiled into the Linux kernel or loaded automatically during the boot process.

In Linux, a generic virtual block device is used instead of specific devices, such as ECKD or SCSI devices. The virtual block devices are handled by the virtio_blk device driver module. This module must either be compiled into the Linux kernel or loaded automatically during the boot process.

For more information about KVM on IBM z Systems, see:
http://www.ibm.com/systems/z/solutions/virtualization/kvm/

F.2.5 What comes with KVM for IBM z Systems

KVM for IBM z Systems provides standard Linux and KVM interfaces for operational control of the environment, such as standard drivers and application program interfaces (APIs), as well as system emulation support and virtualization management. The following items are included as part of KVM for IBM z Systems:

- The command-line interface (CLI) is a common, familiar Linux interface environment that is used to issue commands and interact with the KVM hypervisor.

- Libvirt is open source software that resides on KVM and many other hypervisors to provide low-level virtualization capabilities that interface with KVM through a CLI called virsh.
A list of virsh commands can be found in the Table F-2. For a complete listing, see KVM Virtual Server Management, SC34-2752.

Table F-2 Basic virsh commands

<table>
<thead>
<tr>
<th>virsh Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>define</td>
<td>Creates a virtual server with the unique name specified in the domain configuration .xml file.</td>
</tr>
<tr>
<td>start</td>
<td>Starts a defined virtual server. Using the --console option grants initial access to the virtual server console and displays all messages that are issued to the console.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Terminate a running virtual server, sending a shutdown signal to the virtual machine (VM). This process allows proper shutdown of an operating system of a VM.</td>
</tr>
<tr>
<td>destroy</td>
<td>Immediately terminates a virtual server without any interaction with the operating system running on a VM.</td>
</tr>
<tr>
<td>undefine</td>
<td>Deletes the definition of a virtual server from libvirt.</td>
</tr>
<tr>
<td>list</td>
<td>Without an option, this command lists the running virtual servers. With the --all option, this command lists all of the defined virtual servers.</td>
</tr>
<tr>
<td>edit</td>
<td>Opens the libvirt internal definition of a VM and allows it to be changed. These changes are not applied dynamically. Instead, they become effective after a restart of the VM.</td>
</tr>
</tbody>
</table>

- The Hypervisor Performance Manager (HPM) monitors virtual machines running on KVM to achieve goal-oriented, policy-based performance goals. For more information about HPM, see Getting Started with KVM for IBM z Systems, SG24-8332.

- Open vSwitch (OVS) is open source software that allows for network communication between virtual machines that are hosted by a KVM hypervisor.
 http://www.openvswitch.org

- MacVTap is a device driver that is used to virtualize bridge networking that is based on the mclvlan device driver.
 http://virt.kernelnewbies.org/MacVTap

- QEMU is open source software that is a hardware emulator for virtual machines that run on KVM. It also provides management and monitoring function for the KVM virtual machines.
 http://wiki.qemu.org

- The installer is a series of windows to assist and guide the user through the installation process. Each window has setting selections that can be used to customize the KVM installation. For more information about KVM installation process, see Getting Started with KVM for IBM z Systems, SG24-8332.

- Nagios Remote Plugin Executor (NRPE) can be used with KVM for IBM z. NRPE is an addon that allows you to run plug-ins on KVM for IBM z. You can monitor resources such as disk usage, CPU load, and memory usage For more information about how to configure the Nagios monitoring, see Getting Started with KVM for IBM z Systems, SG24-8332.
F.3 Managing the KVM for IBM z Systems environment

KVM for IBM z Systems integrates with standard OpenStack virtualization managements, enabling enterprises to easily integrate Linux servers into their infrastructure and cloud offerings.

KVM for IBM z Systems supports libvirt APIs, enabling CLIs (and custom scripting) to be used to administer the hypervisor. Furthermore, KVM can be administered by using open source tools such as virt-manager or OpenStack. KVM for IBM z Systems can also be administered and managed by using IBM Cloud Manager with OpenStack as shown in Figure F-3. IBM Cloud Manager is created and maintained by IBM and built on OpenStack.

![Figure F-3 KVM for IBM z Systems management interface](image)

KVM for IBM z Systems can be managed just like any another KVM hypervisor by using the Linux CLI. The Linux CLI provides a familiar experience for platform management. In addition, an open source tool called Nagios can be used to monitor the KVM for IBM z environment.

Libvirt provides different methods of access, from a command line called virsh to a low-level API for many programming languages as shown in Figure F-4.

![Figure F-4 KVM management by using libvirt API layers](image)
The main component of the libvirt software is the libvirtd daemon. This component interacts directly with QEMU and the KVM kernel.

QEMU manages and monitors the KVM virtual machines by performing the following tasks:

- Manage the I/O between virtual machines and KVM
- Create virtual disks
- Change the state of a virtual machine:
 - Start a virtual machine
 - Stop a virtual machine
 - Suspend a virtual machine
 - Resume a virtual machine
 - Delete a virtual machine
 - Take and restore snapshots

For more information about libvirt go to:
http://libvirt.org

F.3.1 Hypervisor Performance Manager

HPM monitors and manages workload performance of the virtual machines under KVM by performing the following operations:

- **Detect** when a virtual machine is not achieving its goals when it is a member of a Workload Resource Group
- **Determine** if the virtual machine performance can be improved with additional resources
- **Project** the impact on all virtual machines of the reallocation of resources
- **Redistribute** processor resources if there is a good trade-off based policy

F.4 Using IBM Cloud Manager with OpenStack

OpenStack is a cloud-based operating system that controls large pools of compute, storage, and networking resources throughout a data center and is based on the OpenStack project. For more information about OpenStack, see:
http://www.openstack.org/

IBM Cloud Manager with OpenStack is an advanced management solution that is created and maintained by IBM and built on OpenStack. IBM Cloud Manager with OpenStack can be used to get started with a cloud environment and continue to scale with users and workloads. It provides advanced resource management with simplified cloud administration and full access to OpenStack APIs.

KVM for IBM z Systems compute nodes provide support for these items:

- Nova (a Libvirt driver)
- Neutron (an agent for Open vSwitch)
- Ceilometer
- Cinder
The OpenStack compute node has an abstraction layer for compute drivers to support different hypervisors, including QEMU and KVM for IBM z through the libvirt API layer (Figure F-4 on page 544).
Native Peripheral Component Interconnect Express (PCIe)

This appendix introduces the native Peripheral Component Interconnect Express (PCIe) features management on z13 servers and includes concepts of the integrated firmware processor (IFP) and resource groups (RG).

The following topics are included:
- Design of native PCIe adapter management
- Native PCIe feature plugging rules
- Native PCIe feature definitions
G.1 Design of native PCIe adapter management

The native PCIe adapter is a new category of features introduced since zEC12. These features are 10GbE Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE) Express, zEnterprise Data Compression (zEDC) Express, and Flash Express. These adapters are exclusively installed into a PCIe I/O drawer, together with the existing I/O features and have a physical channel ID (PCHID) assigned according to its physical location.

For all the feature adapters installed in an I/O drawer, management functions in the form of device drivers and diagnostic tools are always implemented to support virtualization of the adapter, service, and maintenance.

Traditionally, these management functions are integrated on the adapter with specific hardware design. For the newly introduced native PCIe adapters, these functions are moved out of the adapter and are now handled by an IFP.

This section covers the following topics:
- Native PCIe adapter
- Integrated firmware processor
- Resource groups
- Management tasks

Note: Management of Flash Express feature is not covered in this section. All succeeding topics apply to RoCE Express and zEDC Express only.

G.1.1 Native PCIe adapter

For traditional I/O adapters, such as the Open Systems Adapter (OSA) and Fibre Channel connection (FICON) cards, the application-specific integrated circuit (ASIC) chip on the adapter will always download the device drivers and diagnostic tools from the Support Element (SE) and run the management functions on the adapter. In the new design, there is no ASIC chip for management function on the native PCIe feature adapters.

For the RoCE and zEDC, device drivers and diagnostic tools are now running on the IFP and use two RGs. Management functions including virtualization, servicing and recovery, diagnostics, failover, firmware updates against an adapter, and other functions are still implemented.

G.1.2 Integrated firmware processor

The IFP is a processor unit (PU) exclusively used to manage native PCIe feature adapters that are installed in the PCIe I/O drawer. On previous systems, this processor was not used and was called a reserved processor. It is allocated from the system PU pool and is not counted in the PUs available for characterization.

If a native PCIe feature is installed in the system, the system allocates and initializes an IFP during its power-on reset (POR) phase. Although the IFP is allocated to one of the physical PUs, it is not visible to the users. In an error or failover scenario, PU sparing also happens for an IFP, with the same rules as other PUs.
G.1.3 Resource groups

The IFP allocates two resource groups for running the management functions of native PCIe feature adapters. A native PCIe feature adapter is managed by one of the resource groups according to which I/O domain this adapter is located in.

As shown in Figure G-1, each I/O domain in a PCIe I/O drawer of a z13 server is logically attached to one of the two resource groups: I/O domain 0 and 2 in the front of the drawer are attached to RG1, and I/O domain 1 and 3 are attached to RG2. Thus, the native PCIe I/O feature adapters that are located in I/O domain 0 and 2 are managed by RG1 for device drivers and diagnostic tools functions. Adapters that are located in I/O domain 1 and 3 are managed by RG2.

![Figure G-1 I/O domains and resource groups managed by the IFP](image)

Up to five PCIe I/O drawers are supported on z13 servers. The same type of native PCIe features are always assigned to different I/O domains in different resource groups, and different PCIe I/O drawers if the configuration has them, to eliminate the possibility of a single point of failure.

Currently, an I/O domain of the PCIe I/O drawer can support a total of two native PCIe feature adapters, together with the existing PCIe feature cards (FICON, OSA, and Crypto).

The following native PCIe features are supported in the PCIe I/O drawer:
- Flash Express
- zEDC Express
- 10GbE RoCE Express

Although only zEDC Express and 10GbE RoCE Express features are managed by the IFP and resource groups, a Flash Express feature is always counted as a native PCIe feature installed in a PCIe I/O drawer.
G.1.4 Management tasks

The IFP and resource groups perform all management tasks on the native PCIe adapters:

- Firmware update of adapters and resource groups
- Error recovery and failure data collection
- Diagnostic and maintenance tasks

Firmware update of adapters and resource groups
Firmware of native PCIe adapters and resource groups are part of the system’s microcode and can be updated by a Microcode Change Level (MCL) upgrade. MCL upgrades on adapters or on the code of the resource groups require the specific adapter or all native PCIe adapters managed by the specific resource group (depending on the type of u-code that it applies) to be offline during activation of the MCL. However, to maintain availability, MCLs can only be applied to one resource group at a time. While one resource group is offline, the second resource group and all adapters in it remain active. An MCL application for a native PCIe adapter or resource group is not possible if an error condition exists within the other resource group.

Error recovery and failure data collection
If an error in one of the resource groups or features that are assigned to one of the resource groups occurs, the IFP manages error recovery and collects error data. The error data is sent by the IFP to the SE, which then provides a message on the SE and the Hardware Management Console (HMC). If an error requires maintenance, a call home to the IBM Support system is initiated by the HMC.

Diagnostic and maintenance tasks
Any maintenance action on a native PCIe feature is managed by the IFP, including testing or replacing a feature card. Before configuring a feature offline, the IFP ensures that the same type of feature is available in the same or the other resource group (if applicable).

G.2 Native PCIe feature plugging rules

The following are the maximum number of native PCIe adapters that can be installed in a z13 server:

- Four Flash Express features. Each feature requires two Flash Express adapters configured, and can only be installed into slot 1 and 14, or 25 and 33 of a PCIe I/O drawer.
- Sixteen 10GbE RoCE Express features. Each feature has one adapter configured.
- Eight zEDC Express features. Each feature has one adapter configured.
Table G-1 shows the maximum possible combinations of native PCIe features on a z13 server.

Table G-1 Combinations of maximum number of native PCIe features on z13 servers

<table>
<thead>
<tr>
<th>Number of Flash Express features (2 adapters/feature)</th>
<th>Maximum number of zEDC Express features</th>
<th>Maximum number of RoCE Express features</th>
<th>Minimum number of PCIe I/O drawers required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>3a</td>
<td>8</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>4a</td>
<td>8</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

a. The maximum number of Flash Express features per drawer is 2

Considering availability, install adapters of the same type in slots of different I/O domains, drawers, fanouts, and resource groups (for RoCE Express and zEDC Express). The next sections describe more information about achieving a highly available configuration.

G.3 Native PCIe feature definitions

During the ordering process of the native PCIe adapters, such as the zEDC Express and 10GbE RoCE Express features, features of the same type are evenly spread across two resource groups (resource group 1 and resource group 2) for availability and serviceability.

Notes:
- Although Flash Express features are counted as native PCIe cards for the total number of Native PCIe features, they are not part of any resource group.
- The Flash Express features are not defined by using the IOCDS.

Figure G-2 on page 552 shows a sample PCHID report of a z13 configuration with four zEDC Express features and four 10GbE RoCE Express features. It lists the following information for each adapter:
- PCHID and ports
- The Resource Group that the adapter is attached to (Comment column)
- Physical location (drawer, slot)
In Figure G-2, F/C 0420 = zEDC Express, and F/C 0411 = 10GbE RoCE Express.

<table>
<thead>
<tr>
<th>Source</th>
<th>Drwr</th>
<th>Slot</th>
<th>F/C</th>
<th>PCHID/Ports or AID</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A19/LG15/J01</td>
<td>Z22B</td>
<td>03</td>
<td>0420</td>
<td>108</td>
<td>RG1</td>
</tr>
<tr>
<td>A19/LG15/J01</td>
<td>Z22B</td>
<td>04</td>
<td>0420</td>
<td>10C</td>
<td>RG1</td>
</tr>
<tr>
<td>A15/LG15/J01</td>
<td>Z22B</td>
<td>06</td>
<td>0411</td>
<td>110/D1D2</td>
<td>RG1</td>
</tr>
<tr>
<td>A15/LG15/J01</td>
<td>Z22B</td>
<td>07</td>
<td>0411</td>
<td>114/D1D1</td>
<td>RG1</td>
</tr>
<tr>
<td>A19/LG02/J01</td>
<td>Z22B</td>
<td>35</td>
<td>0411</td>
<td>170/D1D2</td>
<td>RG2</td>
</tr>
<tr>
<td>A19/LG02/J01</td>
<td>Z22B</td>
<td>36</td>
<td>0411</td>
<td>174/D1D2</td>
<td>RG2</td>
</tr>
<tr>
<td>A15/LG02/J01</td>
<td>Z22B</td>
<td>37</td>
<td>0420</td>
<td>178</td>
<td>RG2</td>
</tr>
<tr>
<td>A15/LG02/J01</td>
<td>Z22B</td>
<td>38</td>
<td>0420</td>
<td>17C</td>
<td>RG2</td>
</tr>
</tbody>
</table>

Figure G-2 Sample output of AO data or PCHID report

The report shows a balanced configuration where I/O domains and resource groups are distributed for both types of features:

- I/O domain 0 of drawer Z22B, attached to resource group RG1, has these features:
 - Two zEDC Express features, installed in slot 3 and 4
 - Two 10GbE RoCE Express features, installed in slot 6 and 7
- I/O domain 1 of drawer Z22B, attached to resource group RG2, has these features:
 - Two zEDC Express features, installed in slot 37 and 38
 - Two 10GbE RoCE Express features, installed in slot 35 and 36

The native PCIe features are not part of the traditional channel subsystem (CSS). They do not have a channel-path identifier (CHPID) assigned, but they have a PCHID assigned according to their physical location in the PCIe I/O drawer.

To define the native PCIe adapters in the HCD or HMC, a new I/O configuration program (IOCP) FUNCTION statement is introduced that includes several feature-specific parameters.

The IOCP example in Figure G-3 on page 553 defines zEDC Express and 10GbE RoCE Express features to LPARs LP14 and LP15 as follows:

- Both LPARs have access to two zEDC Express features with redundancy:
 - PCHID 108 in I/O domain 0 of drawer Z22B, in resource group RG1
 - PCHID 178 in I/O domain 1 of drawer Z22B, in resource group RG2
- Both LPARs have access to two 10GbE RoCE Express features with redundancy:
 - PCHID 110 in I/O domain 0 of drawer Z22B, in resource group RG1
 - PCHID 170 in I/O domain 1 of drawer Z22B, in resource group RG2
- Both LPARs have access to both networks, with PNETID as NET1 and NET2.
Appendix G. Native Peripheral Component Interconnect Express (PCIe) 553

Figure G-3 Example of IOCP statements for zEDC Express and 10GbE RoCE Express

G.3.1 FUNCTION identifier

The FUNCTION identifier (FID) is a hexadecimal number between 000 and FFF that you use to assign a PCHID to the FUNCTION to identify the specific hardware feature in the PCIe I/O drawer. Because the FUNCTION is not related to a channel subsystem, all LPARs on a central processor complex (CPC) can be defined to it. However, a FUNCTION cannot be shared between LPARs. It is only dedicated or reconfigurable by using the PART parameter. The TYPE parameter is new for z13 servers and is required.

G.3.2 Virtual function number

If you want several LPARs to be able to use a zEDC Express feature (the 10GbE RoCE Express feature cannot be shared between LPARs), you need to use a Virtual Function (VF) number. A VF number is a number between 1 and \(n \), where \(n \) is the maximum number of LPARs that the feature supports. The maximum is 15 for the zEDC Express feature and 31 for the RoCE Express feature.

G.3.3 Physical network identifier

The physical network ID (PNETID) is required to set up the Shared Memory Communications over Remote Direct Memory Access (SMC-R) communication between two 10GbE RoCE Express features. Each FUNCTION definition supports up to four PNETIDs.
Notes:

- For more information about FUNCTION statement, see *z Systems Input/Output Configuration Program User’s Guide for ICP IOCP*, SB10-7163.

- Definition of 10GbE RoCE Express feature is required to pair up with an OSD CHPID definition, by the parameter of PNETID. The OSD CHPID definition statement is not listed in the example.

- The PNETID is limited to two for a 10GbE RoCE Express definition statement on z13 servers.
Flash Express

This appendix covers the IBM Flash Express feature introduced on the zEC12 server.

Flash memory is a non-volatile computer storage technology. It was introduced on the market decades ago. Flash memory is commonly used today in memory cards, USB flash drives, solid-state drives (SSDs), and similar products for general storage and data transfer. Until recently, the high cost per gigabyte and limited capacity of SSDs restricted deployment of these drives to specific applications. Recent advances in SSD technology and economies of scale have driven down the cost of SSDs, making them a viable storage option for I/O-intensive enterprise applications.

An SSD, sometimes called a solid-state disk or electronic disk, is a data storage device that uses integrated circuit assemblies as memory to store data persistently. SSD technology uses electronic interfaces compatible with traditional block I/O hard disk drives. SSDs do not employ any moving mechanical components. This characteristic distinguishes them from traditional magnetic disks, such as hard disk drives (HDDs), which are electromechanical devices that contain spinning disks and movable read/write heads. With no seek time or rotational delays, SSDs can deliver substantially better I/O performance than HDDs. Flash SSDs demonstrate latencies that are 10 - 50 times lower than the fastest HDDs, often enabling dramatically improved I/O response times.

This appendix includes these sections:

- Flash Express overview
- Using Flash Express
- Security on Flash Express
H.1 Flash Express overview

Flash Express, which is implemented by using Flash SSDs mounted in Peripheral Component Interconnect Express (PCIe) Flash Express feature cards, is available as carry forward or as a new order for a z13 server.

Flash Express is an innovative solution that is designed to help improve availability and performance to provide a higher level of quality of service. It is designed to automatically improve availability for key workloads at critical processing times and to improve access time for critical business z/OS workloads. It can also reduce latency time during diagnostic collection (memory dump operations). In addition, CFCC Level 20 can take advantage of Flash Express as an overflow device for shared queue data in clustered WebSphere MQ deployments.

Figure H-1 illustrates how Flash Express introduces a new level in the z Systems storage hierarchy.

![Flash Express z Systems storage hierarchy](image)

Flash Express is an optional PCIe card feature that is available on zEC12, zBC12, z13, and z13s servers. Flash Express cards are supported in PCIe I/O drawers, and can be mixed with other PCIe I/O cards, such as Fibre Channel connection (FICON) Express16S, Crypto Express5S, and Open Systems Adapter (OSA) Express5S cards. You can order a minimum of two features (FC 0403) and a maximum of eight features.\(^1\) The cards are ordered in increments of two.

Flash Express cards are assigned one physical channel ID (PCHID) despite having no ports. No hardware configuration definition (HCD) or input/output configuration program (IOCP) definition is required for Flash Express installation. Flash Express uses subchannels that are allocated from the .25K that is reserved in subchannel set 0. Similar to other PCIe I/O cards,

\(^1\) FC 0402 can also be carried forward. The total number of Flash Express features (carry forward + new order) cannot exceed eight per z Systems server.
redundant PCIe paths to Flash Express cards are provided by redundant I/O interconnect. Unlike other PCIe I/O cards, they can be accessed from the host only by a unique protocol.

A Flash Express PCIe adapter integrates four SSD cards of 400 GB each for a total of 1.4 TB of usable data per card, as shown in Figure H-2.

![Figure H-2 Flash Express PCIe adapter](image)

Each card (of a pair of cards) is installed in a PCIe I/O drawer in two different I/O domains. A maximum of two pairs are installed in a drawer with only one flash card per domain. Installing more than two pairs requires a second PCIe I/O drawer. Install the cards in the front of the installed drawers (slots 1 and 14) before you use the rear slots (25 and 33). Format each pair of cards before you use them.

Figure H-3 shows a PCIe I/O drawer that is fully populated with Flash Express cards.

![Figure H-3 PCIe I/O drawer that is fully populated with Flash Express cards](image)
For higher resiliency and high availability, Flash Express cards are always installed in pairs. A maximum of four pairs are supported in a z13 system, providing a maximum of 5.6 TB of storage. In each Flash Express card, data is stored in a RAID configuration. If an SSD fails, data is reconstructed dynamically. The cards mirror each other over a pair of cables in a RAID 10 configuration that combines mirroring and striping RAID capabilities. If either card fails, the data is available on the other card. Card replacement is concurrent with the client’s operations. In addition, Flash Express supports concurrent firmware upgrades.

The data that is written on the Flash Express cards is always stored encrypted with a volatile key. The card is only usable on the system with the key that encrypted it. For key management, both the primary and alternate Support Elements (SEs) have USB smart cards installed. The smart card contains both a unique key that is personalized for each system and a small Crypto engine that can run a set of security functions within the card.

H.2 Using Flash Express

Flash Express is designed to improve availability and latency from batch to interactive processing in z/OS environments, such as start of day. It helps accelerate start of day processing when there is heavy application activity. Flash Express also helps improve diagnostic procedures, such as supervisor call (SVC) memory dumps, and stand-alone memory dumps.

In z/OS, Flash Express memory is accessed by using the new z Systems Extended Asynchronous Data Mover (EADM) architecture. It is started with a Start subchannel instruction.

The Flash Express PCIe cards are shareable across logical partitions (LPARs). Flash Express memory can be assigned to z/OS LPARs, such as the main storage. It is dedicated to each LPAR. You can dynamically increase the amount of Flash Express memory that is allocated to an LPAR.

Flash Express is supported by z/OS 1.13 plus program temporary fixes (PTFs), and z/OS 2.1 for the z/OS paging activity and SVC memory dumps. Using Flash Express memory, 1 MB large pages become pageable. It is expected to provide applications with substantial improvement in SVC memory dump data capture time. Flash Express is expected to provide the applications with improved resiliency and speed, and make large pages pageable.

Flash Express memory in the CPC is assigned to a coupling facility (CF) partition by using hardware definition windows the same way that it is assigned to the z/OS partitions.

Flash Express use by the CF provides emergency capacity to handle WebSphere MQ shared queue buildups during abnormal situations, such as where “putters” are putting to the shared queue, but “getters” are transiently not getting from the shared queue, or other such transient producer or consumer mismatches on the queue. No new level of WebSphere MQ is required for this support.

Linux for z Systems (Red Hat Enterprise Linux and SUSE Linux enterprise) can use Flash Express as temporary storage. Other software subsystems might take advantage of Flash Express in the future.
Table H-1 gives the minimum support requirements for Flash Express.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Support requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
<td>z/OS V1R13(^a) and V2R1</td>
</tr>
<tr>
<td>CFCC</td>
<td>CF Level 20</td>
</tr>
</tbody>
</table>

\(^a\) Web delivery and PTFs are required.

You can use the Flash Express allocation windows on the SE or Hardware Management Console (HMC) to define the initial and maximum amount of Flash Express available to an LPAR. The maximum memory that is allocated to an LPAR can be dynamically changed. On z/OS, this process can also be done by using an operator command. Flash memory can also be configured offline to an LPAR.

Figure H-4 shows a sample SE/HMC interface that is used for Flash Express allocation.

![Sample SE/HMC window for Flash Express allocation to LPAR](image)

Figure H-4 Sample SE/HMC window for Flash Express allocation to LPAR

The SE user interface for Flash Express provides the following types of actions:

- Flash status and control: Displays the list of adapters that are installed in the system and their state
- Manage Flash allocation: Displays the amount of flash memory on the system
- View Flash allocations: Displays a table of flash information for one partition
- View Flash: Displays information for one pair of flash adapters

Physical Flash Express PCIe cards are fully virtualized across LPARs. Each LPAR can be configured with its own storage-class memory (SCM) address space. The size of Flash Express memory that is allocated to a partition is done by amount, not by card size. The hardware supports error isolation, transparent mirroring, centralized diagnostic procedures, hardware logging, and recovery, independently from the software.

At initial program load (IPL), z/OS detects whether flash memory is assigned to the partition. z/OS automatically uses Flash Express for paging unless otherwise specified by using the
The new z/OS \texttt{PAGESCM=NONE} parameter allows all paging data to be on Flash Express memory. This function is easy to use, and does not require capacity planning or placement of data on Flash Express cards.

Figure H-5 gives an example of Flash Express allocation between two z/OS LPARs.

![Flash Express allocation in z/OS LPARs](image)

Flash Express memory is a faster paging device than HDD. It replaces disks, not memory. It is suitable for workloads that can tolerate paging. It does not benefit workloads that cannot afford to page. The z/OS design for Flash Express memory does not completely remove the virtual constraints that are created by a paging spike in the system. The z/OS paging subsystem works with a mix of internal Flash Express and external disks. Flash Express improves paging performance.

Currently, 1 MB large pages are not pageable. With the introduction of Flash Express, 1 MB large pages can be on Flash Express and pageable.
Table H-2 introduces, for a few z/OS data types that are supported by Flash Express, the choice criteria for data placement on Flash Express or on disk.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Data page placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pageable link pack area (PLPA)</td>
<td>At IPL/NIP time, PLPA pages are placed both on flash and disk.</td>
</tr>
<tr>
<td>Virtual input/output (VIO)</td>
<td>VIO data is always placed on disk (first to VIO accepting data sets, with any spillover flowing to non-VIO data sets).</td>
</tr>
</tbody>
</table>
| IBM HyperSwap Critical Address Space data | If flash space is available, all virtual pages that belong to a HyperSwap Critical Address Space are placed in flash memory.
If flash space is not available, these pages are kept in memory and only paged to disk when the system is real storage constrained, and no other alternatives exist. |
| Pageable large pages | If contiguous flash space is available, pageable large pages are written to flash. |
| All other data | If space is available on both flash and disk, the system makes a selection that is based on response time. |

Flash Express is used by the Auxiliary Storage Manager (ASM) with paging data sets to satisfy page-out and page-in requests received from the real storage manager (RSM). It supports 4 KB and 1 MB page sizes. ASM determines where to write a page based on space availability, data characteristics, and performance metrics. ASM still requires definition of a PLPA, Common, and at least one local paging data set. VIO pages are only written to direct access storage device (DASD) because persistence is needed for warm starts.

A new `PAGESCM` keyword in the `IEASYSxx` member defines the minimum amount of flash to be reserved for paging. The value can be specified in units of MB, GB, or TB. `NONE` indicates that the system does not use flash for paging. `ALL` (the default) indicates that all flash that is defined to the partition is available for paging.

The following new messages are issued during z/OS IPL and indicate the status of SCM:

IAR031I USE OF STORAGE-CLASS MEMORY FOR PAGING IS ENABLED - PAGESCM=ALL, ONLINE=00001536M
IAR032I USE OF STORAGE-CLASS MEMORY FOR PAGING IS NOT ENABLED - PAGESCM=None

The `D ASM` and `D M` commands are enhanced to display flash-related information/status:

- `D ASM` lists the SCM status along with paging data set status.
- `D ASM,SCM` displays a summary of SCM usage.
- `D M=SCM` displays the SCM online/offline and increment information.
- `D M=SCM(DETAIL)` displays detailed increment-level information.

The `CONFIG ONLINE` command is enhanced to allow bringing more SCMs online:

CF SCM (`amount`), ONLINE
H.3 Security on Flash Express

Data that is stored on Flash Express is encrypted by a strong encryption symmetric key that is in a file on the SE hard disk. This key is also known as the Flash encryption key/authentication key. The firmware management of the Flash Express adapter can generate an asymmetric transport key in which the flash encryption key/authentication key is wrapped. This transport key is used while in transit from the SE to the firmware management of the Flash Express adapter.

The SE has an integrated card reader into which one smart card at a time can be inserted. When an SE is “locked down,” removing the smart card is not an option unless you have the physical key to the physical lock.

H.3.1 Integrated Key Controller

The SE initializes the environment by starting APIs within the Integrated Key Controller (IKC). The IKC loads an applet to a smart card inserted in the integrated card reader. The smart card applet, as part of its installation, creates a Rivest-Shamir-Adleman algorithm (RSA) key pair, the private component of which never leaves the smart card. However, the public key is exportable. The applet also creates two Advanced Encryption Standard (AES) symmetric keys. One of these AES keys is known as the key-encrypting key (KEK), which is retained on the smart card. The KEK can also be exported. The other AES key becomes the Flash encryption key/authentication key and is encrypted by the KEK.

A buffer is allocated containing the KEK-encrypted flash encryption key/authentication key and the unique serial number of the SE. The buffer is padded per Public Key Cryptography Standards #1 (PKCS #1) and then encrypted by the smart card RSA public key. The encrypted content is then written to a file on the SE hard disk.

This design defines a tight coupling of the file on the SE to the smart card. The coupling ensures that any other SE is not able to share the file or the smart card that is associated with an SE. It ensures that the encrypted files are unique and all such smart cards are uniquely tied to their SEs.

All key generation, encryption, and decryption occur on the smart card. Keys are never in the clear. The truly sensitive key, the flash encryption key/authentication key, is only in the file on the SE until it is served to the firmware management of the Flash Express adapter.
Figure H-6 shows the cryptographic keys that are involved in creating this tight-coupling design.

The flash encryption key/authentication key can be served to the firmware management of the Flash Express adapter. This process can be either upon request from the firmware at initial microcode load (IML) time or from the SE as the result of a request to “change” or “roll” the key.

During the alternate SE initialization, APIs are called to initialize the alternate smart card in it with the applet code and create the RSA public/private key pair. The API returns the public key of the smart card that is associated with the alternate SE. This public key is used to encrypt the KEK and the Flash encryption key/authentication key from the primary SE. The resulting encrypted file is sent to the alternate SE for redundancy.

H.3.2 Key serving topology

In a key serving topology, the SE is the key server and the IKC is the key manager. The SE is connected to the firmware management of the Flash Express adapter through a secure communications line. The firmware manages the transportation of the Flash encryption key/authentication key through internal system paths. Data in the adapter cache memory is backed up by a flash-backed DRAM module. This module can encrypt the data with the Flash encryption key/authentication key.

The firmware management of the Flash Express adapter generates its own transport RSA asymmetric key pair. This pair is used to wrap the Flash encryption key/authentication key while in transit between the SE and the firmware code.
Figure H-7 shows the following key serving topology:

- The firmware management of the Flash Express adapter requests the Flash encryption key/authentication key from the SE at IML time. When this request arrives, the firmware public key is passed to the SE to be used as the transport key.

- The file that contains the KEK-encrypted Flash encryption key/authentication key and the firmware public key is passed to the IKC. The IKC sends the file contents and the public key to the smart card.

- The applet on the smart card decrypts the file contents and the Flash encryption key/authentication key. It then reencrypts the Flash encryption key/authentication key with the firmware public key.

- This encrypted key is then passed back to the SE, which forwards it on to the firmware management of the Flash Express adapter code.

Figure H-7 Key serving topology

H.3.3 Error recovery scenarios

Possible error scenarios are described in this section.

Primary Support Element failure

When the primary SE fails, a switch is made to the alternate SE, which then becomes the new primary. When the former primary is brought back up, it becomes the alternate SE. The KEK and the Flash encryption key/authentication key from the primary SE were already sent to the alternate SE for redundancy at initialization time.
Removal of a smart card

If a smart card is removed from the card reader, the card reader signals the event to the IKC listening code. The IKC listener then calls the SE to take the appropriate action. The appropriate action can involve deleting the flash encryption key or authentication key file.

If the smart card is removed while the SE is powered off, the system has no knowledge of the event. However, when the SE is powered on, notification is sent to the system administrator.

Primary Support Element failure during IML serving of the flash key

If the primary SE fails during the serving of the key, the alternate SE takes over as the primary and restarts the key serving operation.

Alternate Support Element failure during switchover from the primary

If the alternate SE fails during the switchover when the primary SE fails, the key serving state is lost. When the primary comes back up, the key serving operation can be restarted.

Primary and alternate Support Elements fail

If the primary and the alternate SEs both fail, the key cannot be served. If the devices are still up, the key is still valid. If either or both SEs are recovered, the files holding the Flash encryption key/authentication key might still be valid. This is true even in a key roll case. Both new and current (old) keys need to be available until the key serving operation is complete.

If both SEs are down, and the Flash Express goes down and comes back online before the SEs become available, all data on the Flash Express is lost. Reformatting is then necessary when the device is started.

If both Flash Express devices are still started, get the primary SE back online as fast as possible with the Flash encryption key/authentication key file and associated smart card still intact. After that happens, the alternate SE can be brought online with a new smart card and taken through the initialization procedure.
GDPS Virtual Appliance

This appendix discusses the Geographically Dispersed Parallel Sysplex (GDPS) Virtual Appliance.

Statement of Direction: In the first half of 2015, IBM intends to deliver a GDPS/Peer-to-Peer Remote Copy (GDPS/PPRC) multiplatform resiliency capability for customers who do not run the z/OS operating system in their environment. This solution is intended to provide IBM z Systems customers who run z/VM and their associated guests, for instance, Linux on z Systems, with similar high availability and disaster recovery benefits to those who run on z/OS. This solution will be applicable for any IBM z Systems servers announced after and including zBC12 and zEC12.

All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice. Any reliance on these statements of general direction is at the relying party’s sole risk and will not create liability or obligation for IBM.

This appendix includes the following sections:

- GDPS overview
- Overview of GDPS Virtual Appliance
- GDPS Virtual Appliance recovery scenarios
I.1 GDPS overview

GDPS is a collection of offerings, each addressing a different set of IT resiliency goals that can be tailored to meet the recovery point objective (RPO) and recovery time objective (RTO) for your business. Each offering uses a combination of server and storage hardware or software-based replication, automation, and clustering software technologies. In addition to the infrastructure that makes up a GDPS solution, IBM also includes services, particularly for the first installation of GDPS and optionally for subsequent installations to ensure that the solution meets and fulfills your business objectives.

Definitions:

- RPO defines the amount of data that you can afford to re-create during a recovery, by determining the most recent point in time for data recovery.
- RTO is the time needed to recover from a disaster or how long the business can survive without the systems.

Figure I-1 illustrates some of the GDPS offerings.

![Figure I-1: GDPS offerings](image)

For a complete description of GDPS solution and terminology, see IBM GDPS Family of Products: An Introduction to Concepts and Capabilities, SG24-6374.

It is typical to deploy IT environments based on IBM z Systems servers that are running only Linux on z Systems. The GDPS Virtual Appliance is a building block of high availability (HA) and disaster recovery (DR) solutions for those environments that do not have nor require z/OS skills.
The following are the major drivers behind implementing an HA/DR architecture:
- Regulatory compliance for business continuity (99.999% or higher availability)
- Avoid financial loss
- Maintaining reputation (which translates to customer satisfaction, and thus money)

And HA/DR implementation has these attributes:
- High availability (HA): The attribute of a system to provide service during defined periods, at agreed upon levels by masking unplanned outages from users. It employs component duplication (hardware and software), automated failure detection, retry, bypass, and reconfiguration.
- Continuous operations (CO): Attribute of a system to continuously operate and mask planned outages from users. It provides the means to minimize planned downtime during maintenance windows by employing nondisruptive hardware and software changes, nondisruptive configuration, and software coexistence.
- Continuous availability (CA): Attribute of a system to deliver nondisruptive service to the user 7 days a week, 24 hours a day (no planned or unplanned outages).

System outages can be categorized as either planned or unplanned.

Planned outages can be caused by the following situations:
- Backups
- Operating system installation and maintenance
- Application software maintenance
- Hardware and software upgrades

Unplanned outages can be caused by the following situations:
- Non-disaster events such as:
 - Application failure
 - Operator errors (human error)
 - Power outages
 - Network failure
 - Hardware and software failures
- Disaster events such as:
 - Outages that are caused by natural disasters or other catastrophes that damage the production facilities beyond usability (for example, fire, flood, earthquake, or bombing)
 - Failure of a regional power grid
 - Outages that require a recovery procedure at an off-site location

Automation is key when implementing a HA/DR solution. The major benefits of an automated solution are as follows:
- Provides reliable, consistent RTO
- Provides consistent and predictive recovery time as the environment scales
- Reduces infrastructure management cost and staff skills
- Reduces or eliminates human intervention, and therefore the probability of human error
- Facilitates regular testing for repeatable and reliable results of business continuity procedures
- Helps maintain recovery readiness by managing/monitoring servers, data replication, workload, and network with the notification of events that occur within the environment
I.2 Overview of GDPS Virtual Appliance

To reduce IT costs and complexity, many enterprises are consolidating independent servers into Linux images (guests) running on z Systems servers. Linux on z Systems can be implemented either as guests running under z/VM or native Linux logical partitions (LPARs) on z Systems servers. Workloads with an application server running on Linux on z Systems and a database server running on z/OS are common. Two examples are as follows:

- WebSphere Application Server running on Linux and CICS, DB2 running under z/OS
- SAP application servers running on Linux and database servers running on z/OS

With a multi-tiered architecture, you need to provide a coordinated near-continuous availability and disaster recovery solution for both z/OS and Linux on z Systems.

GDPS Virtual Appliance is a fully integrated CA/DR solution for Linux on z Systems customers that includes these components:

- An operating system image
- The application components
- An appliance management layer, which makes the image self-containing
- Application programming interfaces (APIs) and user interfaces (UIs) for customization, administration, and operation tailored for the appliance function.
- It is designed to improve both consumability and time-to-value for customers.

Figure I-2 shows different solutions and how to position the GDPS Virtual Appliance.

A virtual appliance is a fully integrated software solution that has been targeted and optimized for a specific business problem:

- **Targeted** for a specific deployment platform to reduce potential configuration complexity while using any underlying capabilities of the platform
- **Purposed** for a specific, high-level business context or IT architecture, which involves installing particular applications and hardening them before delivery
- **Optimized** by choosing the appropriate configuration, knowing all elements of the system, and removing unnecessary attributes
The GDPS Virtual Appliance solution implements GDPS/PPRC Multiplatform Resilience for z Systems (xDR). xDR coordinates near-continuous availability and DR solution by using these functions:

- Disk error detection
- Heartbeat for smoke tests
- Initial program load (IPL) in place again
- Coordinated site takeover
- Coordinated HyperSwap
- Single point of control

The GDPS Virtual Appliance has the following requirements:

- **Hardware**
 - Any supported hardware: zEC12, zBC12, and z13
 - 1 LPAR with one logical CP
 - 1 GB Memory
 - 3 extended count key data (ECKD) direct access storage device (DASD) (one for appliance image initial installation, and two for upgrade scenario)
 - One or two OSA attachments (depending on the network setup and the level of network resilience that is wanted).

- **System**
 - z/VM Version 5 Release 4 or higher, or z/VM 6.2 or higher. z/VM 5.4 is not supported on z13 servers
 - The disks being used by z/VM and Linux to be mirrored must be ECKD disks
 - A supported distribution of Linux on z Systems with the latest recommended fix pack
 - IBM Tivoli System Automation for Multiplatforms with the latest recommended fix pack. The separately priced xDR for Linux feature is required (one Linux guest as xDR proxy).

Note: To get the latest information about Tivoli System Automation for Multiplatforms, see: http://www.ibm.com/software/tivoli/products/sys-auto-multi
Figure I-3 shows an overview of a GDPS Virtual Appliance implementation.

Keep in mind the following considerations for GDPS Virtual Appliance architecture:

- PPRC ensures that the remote copy is identical to the primary data. The synchronization takes place at the time of I/O operation.
- One dedicated Linux guest is configured as XDR Proxy for GDPS, which is used for tasks that have z/VM scope (HyperSwap, shut down z/VM, IPL z/VM guest).
- The remote copy environment is managed by using HyperSwap function, and data is kept available and consistent for operating systems and applications.
- Disaster detection ensures successful and faster recovery by using automated processes.
- A single point of control is implemented from the GDPS Virtual Appliance. You do not need to involve your system experts (for example, storage team, hardware team, OS team, or application team).
The GDPS Virtual Appliance implements the following functions:

- Awareness of a failure in a Linux on z Systems node or cluster by monitoring (heartbeats) all nodes or cluster master nodes. If a node or cluster fails, it can be set up to automatically IPL the node or all the nodes in the cluster again.
- Shutting down a Linux on z Systems node or cluster for service (planned maintenance).
- Initiation of z/VM Live Guest Relocation to move active guests from one member of a z/VM subsystem interface (SSI) cluster to another.
- Graceful shutdown/startup of the Linux on z Systems cluster, nodes in the cluster, and the z/VM host. Graceful shutdown/startup of z/VM systems includes any z/VSE guests.
- Use of HyperSwap to non-disruptively swap z/VM and its guests from the primary to secondary PPRC devices, for both planned disk subsystem maintenance and unplanned disk subsystem failure.

I.3 GDPS Virtual Appliance recovery scenarios

This section presents the following recovery scenarios that use GDPS Virtual Appliance:

- Planned disk outage
- Unplanned disk outage
- Disaster recovery

I.3.1 Planned disk outage

In a planned disk outage, the HyperSwap provides the ability to non-disruptively swap from using the primary volume of a mirrored pair to using the secondary volume. A planned HyperSwap is started manually by operator action by using GDPS facilities. One example of a planned HyperSwap is where a HyperSwap operation is initiated in advance of a planned disruptive maintenance of a disk subsystem.
Figure I-4 shows the operation principle of disk failover operation using HyperSwap.

Without HyperSwap, the procedure to change the primary disk to the secondary can take up to 2 hours, or even more, depending on the installation size. The procedures include shutting down the systems, removing systems from clusters, and when applicable, reversing PPRC (that is, suspending PPRC), and restarting the systems.

When using HyperSwap, disk swap takes seconds (for example, 6 seconds for 14 systems and 10,000 volume pairs), and the systems remain active.

I.3.2 Unplanned disk outage

An unplanned HyperSwap is started automatically by GDPS, triggered by events that indicate the failure of a primary disk device. HyperSwap events can include the following events:

- **Hard failure triggers**
 - I/O errors
 - Boxed devices
 - Control unit failures
 - Loss of all channel paths
- **Soft failures**, such as I/O response time triggers

Again, without HyperSwap, this process can take more than an hour even when done properly. The systems are quiesced, removed from the cluster, and restarted on the other side. With HyperSwap, the same operation can take seconds.
I.3.3 Disaster recovery

In a site disaster, GDPS Appliance will immediately issue a freeze for all applicable primary devices. This freeze is done to protect the integrity of the secondary data. GDPS cluster then resets Site 1 and Site 2 systems, updates all the IPL information to point to the secondary devices, and IPL all the production systems in LPARs in Site 2 again. The GDPS Appliance scripting capability is key to recovering the systems in the shortest possible time following a disaster. All recovery operations are carried out without operator intervention.
IBM zEnterprise Data Compression Express

This appendix briefly describes the optional IBM zEnterprise Data Compression (zEDC) Express feature of the z13, z13s, zEC12, and IBM zBC12 servers.

This appendix includes the following sections:

- Overview
- zEDC Express
- Software support
J.1 Overview

The growth of data that needs to be captured, transferred, and stored for large periods of time is not relenting. In addition, software-implemented compression algorithms can be costly in terms of processor resources and storage costs.

zEDC Express, an optional feature available for z13, z13s, zEC12, and zBC12 servers, addresses these requirements by providing hardware-based acceleration for data compression and decompression. zEDC provides data compression with lower CPU consumption than compression technology previously available on the IBM z Systems server.

Using the zEDC Express feature with the z/OS V2R1 zEnterprise Data Compression acceleration capability (or later releases) is designed to deliver an integrated solution. It helps reduce CPU consumption, optimize the performance of compression-related tasks, and enable more efficient use of storage resources. This solution provides a lower cost of computing and also helps to optimize the cross-platform exchange of data.

J.2 zEDC Express

zEDC Express is an optional feature (FC 0420). It is designed to provide hardware-based acceleration for data compression and decompression.

The feature installs exclusively on the Peripheral Component Interconnect Express (PCIe) I/O drawer. Between one and eight features can be installed on the system. There is one PCIe adapter/compression coprocessor per feature, which implements compression as defined by RFC1951 (DEFLATE).

A zEDC Express feature can be shared by up to 15 logical partitions (LPARs) on the same CPC.

Adapter support for zEDC is provided by Resource Group code that runs on the system integrated firmware processor (IFP). The recommended high availability configuration per server is four features. This configuration provides continuous availability during concurrent update. For resilience, the system always has two independent RGs on the system, sharing the IFP. Install a minimum of two zEDC features, one feature per RG, for resilience and throughput.
Figure J-1 illustrates the PCIe I/O drawer structure and the relationships among card slots, domains, and resource groups.

J.3 Software support

Support of the zEDC Express function is provided by z/OS V2R1 zEnterprise Data Compression or later for both data compression and decompression. Support for data recovery (decompression) in the case that zEDC is not installed, or installed but not available, is provided through software in z/OS V2R2, V2R1, V1R13, and V1R12 with the appropriate program temporary fixes (PTFs). Software decompression is slow and can use considerable processor resources. Therefore, it is not suggested for production environments.

Refer to the appropriate fixcat for SMP/E to install prerequisite PTFs. The fixcat function is explained here:

A specific fix category named IBM.Function.zEDC identifies the fixes that enable or use the zEDC function.

Reference: z/OS support for the zEDC can be found by using FIXCAT: IBM.Function.zEDC.

z/OS guests that run under z/VM V6.3 with PTFs can now use the zEDC Express feature. zEDC for z/OS V2.1 or later and the zEDC Express feature are designed to support a data...
compression function to help provide high-performance, low-latency compression without significant CPU processor usage. This feature can help to reduce disk usage, provide optimized cross-platform exchange of data, and provide higher write rates for SMF data. For more information, see:

IBM 31-bit and 64-bit SDK for z/OS Java Technology Edition, Version 7 Release 1 (5655-W43 and 5655-W44) (IBM SDK 7 for z/OS Java) now provides use of the zEDC Express feature and Shared Memory Communications-Remote Direct Memory Access (SMC-R), which is used by the 10GbE RoCE Express feature.

For more information about how to implement and use the zEDC feature, see *Reduce Storage Occupancy and Increase Operations Efficiency with IBM zEnterprise Data Compression*, SG24-8259.

J.3.1 IBM z Systems Batch Network Analyzer (zNBA)

zBNA is a no-charge, “as is” tool. It is available to clients, IBM Business Partners, and IBM employees.

zBNA replaces the BWATOOL. It is based on Microsoft Windows, and provides graphical and text reports, including Gantt charts, and support for alternate processors.

zBNA can be used to analyze client-provided System Management Facilities (SMF) records to identify jobs and data sets that are candidates for zEDC compression, across a specified time window, typically a batch window. zBNA is able to generate lists of data sets by job:

- Those jobs that already perform hardware compression and might be candidates for zEDC
- Those jobs that might be zEDC candidates, but are not in extended format

Therefore, zBNA can help you estimate the use of zEDC features and help determine the number of features needed:

- **IBM Employees** can obtain zBNA and other CPS tools by using the IBM intranet:
 http://w3.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS5126
- **IBM Business Partners** can obtain zBNA and other CPS tools by using the Internet:
 https://www.ibm.com/partnerworld/wps/servlet/mem/ContentHandler/tech_PRS5133
- **IBM clients** can obtain zBNA and other CPS tools by using the Internet:
 http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS5132
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

- *Enhancing Value to Existing and Future Workloads with IBM z13*, REDP-5135
- *Get More Out of Your IT Infrastructure with IBM z13 I/O Enhancements*, REDP-5134
- *IBM z Systems Connectivity Handbook*, SG24-5444
- *IBM z Systems Functional Matrix*, REDP-5157
- *IBM z13 Configuration Setup*, SG24-8260
- *Securing Your Mobile Mainframe*, REDP-5176
- *z Systems Simultaneous Multithreading Revolution*, REDP-5144
- *z/OS Infrastructure Optimization using Large Memory*, REDP-5146

You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

- *Capacity on Demand User’s Guide*, SC28-6943
- *PR/SM Planning Guide*, SB10-7162

Online resources

These websites are also relevant as further information sources:

- IBM Resource Link
- IBM Offering Information
Help from IBM

IBM Support and downloads
ibm.com/support

IBM Global Services
ibm.com/services