
ibm.com/redbooks

Front cover

Implementing High
Availability and Disaster
Recovery in IBM
PureApplication Systems V2

Venkata Gadepalli
Rajeev Gandhi

Addison Goering
Bertrand Portier

Stanley Shieh
Sung-Ik Son

Hendrik Van Run

Discover new features in IBM
PureApplication System V2.0

Examine how to use GPFS with
WebSphere Application Server

Learn about Block Storage
Replication

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Implementing High Availability and Disaster Recovery
in IBM PureApplication Systems V2

January 2015

SG24-8246-00

© Copyright International Business Machines Corporation 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (January 2015)

This edition applies to Version 2, IBM PureApplication System.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

IBM Redbooks promotions . xi

Preface . xiii
Authors. xiii
Now you can become a published author, too! . xvi
Comments welcome. xvi
Stay connected to IBM Redbooks . xvii

Chapter 1. Overview . 1
1.1 Define high availability and disaster recovery . 2

1.1.1 High availability . 2
1.1.2 Disaster recovery . 3

1.2 PureApplication System support for HA and DR. 5
1.2.1 IBM General Parallel File System (GPFS) . 5
1.2.2 Shared service for GPFS . 6
1.2.3 Block storage . 6
1.2.4 Block storage replication. 7
1.2.5 External storage . 7
1.2.6 Multisystem deployments . 8

1.3 Backup and recovery . 8
1.4 Always On (Continuous Availability) . 9

1.4.1 Always On Principles (Continuous Availability). 9
1.4.2 Always On Patterns . 10

1.5 Overview of HADR use case scenarios . 12

Chapter 2. High availability and disaster recovery capabilities of PureApplication
System V2.0. 17

2.1 Storage volumes . 18
2.1.1 The new type of storage volumes in PureApplication System V2.0 18

2.2 Block storage overview . 18
2.2.1 Block storage replication. 19

2.3 Block storage replication . 20
2.3.1 Planned failover . 22
2.3.2 Unplanned failover . 22

2.4 External storage . 23
2.5 GPFS Overview . 24
2.6 GPFS topologies . 25
2.7 Active/Active GPFS deployment . 25
2.8 Active/Passive GPFS deployment . 27
2.9 Shared Service for GPFS . 27
2.10 GPFS file systems and file sets . 28
2.11 Load balancing . 28

Chapter 3. High availability and disaster recovery scenarios 29
3.1 Overview for the scenarios . 30

3.1.1 Nomenclature . 30
© Copyright IBM Corp. 2015. All rights reserved. iii

3.1.2 Patterns. 30
3.1.3 Rack topology . 30
3.1.4 PureApplication Platform for testing scenarios . 31
3.1.5 Scenario basics. 31

3.2 HADR scenarios for WebSphere Application Server . 31
3.2.1 Scenario WAS_1: WebSphere cell in the same rack (PDC-1) with transactions in

GPFS . 32
3.2.2 Scenario WAS_2: WebSphere cell across two racks in same data center 33
3.2.3 Scenario WAS_3: WebSphere active-passive cells - identical setup in PDC and SDC,

with WebSphere transactions stored in GPFS . 34
3.3 HADR scenarios for DB2 . 35

3.3.1 Scenario DB2_1: DB2 HADR from the same pattern and deployed on a single rack
(PDC-1). 36

3.3.2 Scenario DB2_2: DB2 HADR from the same pattern and deployed the parts on two
racks (PDC-1 and PDC-2) . 37

3.3.3 Scenario DB2_3: Identical DB2 HADR deployments across primary (PDC) and
secondary DR (SDC) data centers . 38

3.4 HADR scenarios for WebSphere Application Server and DB2 39
3.4.1 Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed

on a single rack with transactions stored in database . 40
3.4.2 Scenario WDB_2: WebSphere Application Server cluster split across two racks in the

same data center with DB2 HADR also split across the racks, with WebSphere
transactions stored in database . 41

3.4.3 Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR
replicated across DR site, with WebSphere transactions stored in DB 42

3.5 HADR scenarios for WebSphere MQ . 43
3.5.1 Scenario WMQ_1: WebSphere MQ primary and standby in the same pattern

deployed on a single rack . 44
3.5.2 Scenario WMQ_2: WebSphere MQ primary and standby in different pattern deployed

on two different racks within the same data center. 45
3.5.3 Scenario WMQ_3: WebSphere MQ primary and passive in the different patterns

deployed on separate racks across the data center . 46

Chapter 4. Infrastructure setup . 47
4.1 Block storage configuration. 48

4.1.1 Block storage configuration. 48
4.2 Block storage replication configuration . 49

4.2.1 Block storage replication: Steps . 49
4.3 Configuring an Active/Active (Mirrored) GPFS deployment . 53

4.3.1 Active/Active GPFS deployment: Steps . 53
4.4 Configuring an Active/Passive GPFS deployment . 61

4.4.1 Active/Passive GPFS deployment: steps . 61
4.4.2 Active/Passive setup and takeover . 62

4.5 Deploy GPFS Shared Service. 63
4.6 External storage configuration . 64
4.7 Network configuration and cloud resources configuration . 65

4.7.1 Network configuration . 65
4.7.2 Cloud resources configuration . 66

4.8 Multisystem environment deployment . 71
4.8.1 Management domains . 72
4.8.2 Deployment subdomains . 72
4.8.3 Additional requirements . 73
4.8.4 System configuration . 73
iv Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4.8.5 Create one or more deployment subdomains. 76
4.8.6 Cloud resources configuration . 78

4.9 DNS setup for primary and secondary (cross) rack scenarios 81
4.9.1 Network setup . 82

4.10 Network configuration for WebSphere Application Server and DB2 scenarios. 85
4.10.1 PDC . 86
4.10.2 SDC . 87

Chapter 5. High availability and disaster recovery scenarios for DB2. 89
5.1 Introduction to DB2 HADR . 91

5.1.1 Primary, standby, and log shipping. 91
5.1.2 DB2 client and automatic client rerouting . 91

5.2 DB2 Client Setup. 92
5.2.1 Deploy DB2 client on PureApplication System . 92
5.2.2 Configure DB2 client . 93

5.3 Building a DB2 Virtual System Pattern . 93
5.3.1 Cloning the Default DB2 OLTP Pattern with HADR for Linux 94
5.3.2 Modifying the new pattern, ITSO DB2 OLTP HADR Pattern 95
5.3.3 Optional: Multiple HADR databases . 99

5.4 Scenario DB2_1 . 109
5.4.1 Deployment . 110
5.4.2 Validation . 113

5.5 Scenario DB2_2: Two systems using a single pattern . 114
5.5.1 Deployment . 115
5.5.2 Validation . 119

5.6 Scenario DB2_3: Two systems using block storage replication 119
5.6.1 Adding block storage to Virtual System Pattern . 120
5.6.2 Block Storage configuration . 124
5.6.3 Deploy Virtual System Pattern on both systems. 127
5.6.4 Enable Block Storage replication . 132
5.6.5 Validate the Virtual System Instance on the active system. 142
5.6.6 Planned Failover to SDC . 142
5.6.7 Unplanned Failover to SDC . 156

5.7 Validation . 160
5.7.1 Configure the DB2 client . 160
5.7.2 Connect to the DB2 database and perform a simple query 162
5.7.3 Confirm DB2 HADR roles of primary and standby DB2 servers 163

5.8 Testing for outages . 165
5.8.1 Planned outage: DB2 takeover . 165
5.8.2 Unplanned outage - shutdown of primary database OS 168

Chapter 6. High availability and disaster recovery scenarios for WebSphere Application
Server. 173

6.1 Scenario WAS_1: WebSphere cell in the same rack, transactions in GPFS 174
6.1.1 Configure Primary GPFS Server. 174
6.1.2 Build the WebSphere Application Server cluster pattern 175
6.1.3 Add GPFS Client Policy . 175
6.1.4 Deploy WebSphere Application Server cluster pattern . 177
6.1.5 Create a WebSphere Application Server cluster. 178
6.1.6 Configure transaction services . 178
6.1.7 Test Scenario WAS_1 HA. 178

6.2 Scenario WAS_2: Single WebSphere Cell Across two racks in PDC 179
6.2.1 Configure and Deploy GPFS Mirror Server at PDC-2. 180
6.2.2 Configure and Deploy Tiebreaker Server at PDC-2 . 182
 Contents v

6.2.3 Configure and deploy GPFS Primary server on PDC-1 183
6.2.4 Deploy GPFS Shared Service at PDC-1. 185
6.2.5 Configure WebSphere Application Server with GPFS client policy. 186
6.2.6 Deploy WebSphere pattern to multiple domains. 186
6.2.7 Configure WebSphere Application Server to write transaction log to GPFS storage

volume . 187
6.2.8 Test the Multi-domain WebSphere Split Cell HA using GPFS scenario 188

6.3 Scenario WAS_3: Active/Passive, identical setups in PDC and SDC, with transactions
stored in GPFS. 189

6.3.1 Network configuration . 191
6.3.2 Cloud Group and Environment Profile . 191
6.3.3 Storage Volume . 192
6.3.4 GPFS . 193
6.3.5 WebSphere Application Server . 193
6.3.6 Planned outage at PDC . 198
6.3.7 Recovery . 199

Chapter 7. High availability and disaster recovery scenarios for WebSphere Application
Server and DB2 . 205

7.1 Common assets used in scenarios . 206
7.2 Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed on a

single rack with transactions stored in database . 207
7.2.1 Build the WebSphere Application Server cluster pattern 207
7.2.2 Deploy WebSphere Application Server cluster pattern . 207
7.2.3 Create a WebSphere Application Server cluster. 207
7.2.4 Install DB2 JDBC driver . 208
7.2.5 Create a JDBC Provider . 208
7.2.6 Create a J2C alias . 208
7.2.7 Create data sources . 208
7.2.8 Install BankTransaction application. 208
7.2.9 Validate the functionality of the application. 208

7.3 Scenario WDB_2: WebSphere Application Server cluster with DB2 HADR, split across two
racks with WebSphere transactions stored in database. 209

7.4 Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR replicated
across DR site, with WebSphere transactions stored in database. 211

Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ . . 223
8.1 Common assets used in WebSphere MQ scenarios. 225

8.1.1 Image Parts. 225
8.1.2 Policies . 226
8.1.3 Script packages and parameters used in the pattern . 226
8.1.4 Prerequisites . 228

8.2 Scenario WMQ_1: WebSphere MQ Primary and standby in the same pattern deployed on
a single rack . 228

8.3 Scenario WMQ_2: WebSphere MQ primary and standby in different patterns deployed on
two different racks in the same data center . 235

8.4 Scenario WMQ_3: WebSphere MQ primary and standby in the different patterns deployed
on two different racks across different data centers . 241

8.4.1 Steps for creating a WebSphere MQ active/passive scenario 243

Appendix A. Sample Application . 253
Database Setup . 255

Create CHECKING database and SAVINGS database . 255
List database directory . 255
vi Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Create tables. 256
Insert a single row into the SAVINGS table . 257
Terminate and configure CHECKING database and table . 257

Application Coding Explanation . 258
First phase (withdraw). 259
Second phase (deposit) . 260

Testing . 260

Appendix B. Common WebSphere Application Server configuration tasks 265
Build the WebSphere Application Server cluster pattern . 266
Deploy WebSphere Application Server cluster pattern: Single rack 269
Deploy WebSphere Application Server cluster pattern: Multiple rack 270
Create WebSphere Application Server cluster. 273
Configure database connectivity for BankTransaction application. 273

DB2 JDBC Database driver installation . 274
Create a JDBC Provider . 275
Create a J2C alias . 278
Create data sources for SAVINGS, CHECKING, and transaction data source 280
Create data source for SAVINGS . 280

Install BankTransaction application . 284
Validate BankTransaction application . 284

Appendix C. Additional material . 287
Locating the web material . 287
Using the web material. 287

Downloading and extracting the web material . 288

Related publications . 289
IBM Redbooks . 289
Online resources . 289
Help from IBM . 290
 Contents vii

viii Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2015. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2®
Everyplace®
GPFS™
IBM®

Power Systems™
PowerVM®
PureApplication®
Redbooks®
Redbooks (logo) ®

System/390®
Tivoli®
VisualAge®
WebSphere®

The following terms are trademarks of other companies:

IPAS, and Kenexa device are trademarks or registered trademarks of Kenexa, an IBM Company.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp
https://itunes.apple.com/bw/app/ibm-redbooks/id778694354
https://play.google.com/store/apps/details?id=com.ibm.homeScreen
http://www.redbooks.ibm.com/redbooks.nsf/pages/partnerprograms?Open

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication describes and demonstrates common, prescriptive
scenarios for setting up disaster recovery for common workloads using IBM WebSphere®
Application Server, IBM DB2®, and WebSphere MQ between two IBM PureApplication®
System racks using the features in PureApplication System V2.

The intended audience for this book is pattern developers and operations team members who
are setting up production systems using software patterns from IBM that must be highly
available or able to recover from a disaster (defined as the complete loss of a data center).

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Venkata Gadepalli is a member of the IBM Software Services
for WebSphere team. He has more than 16 years of experience
in the IT field and has been involved in client engagements
involving the WebSphere family of products. His main area of
interest is working with first-of-a-kind engagements that involve
IBM PureApplication System. Vishy has written numerous
papers that have been published both within and outside of
IBM. He also co-authored the first and second editions of the
IBM WebSphere Portal Primer (IBM Press, 2003 and 2005).

Rajeev Gandhi is a Senior Technical Staff Member in the IBM
Software Services for WebSphere team. He has more than 28
years of experience in the IT field and has been involved in
client engagements working with many of the early releases of
IBM middleware products. His current main area of focus is
IBM PureApplication System. He was the lead developer on
the enablement team for IBM PureApplication System, and
currently works with clients to help them adopt IBM
PureApplication Systems. He has presented in several IBM
and external conferences, and written articles in
DeveloperWorks. Rajeev holds a M.S. in Computer Science
from University of Connecticut.
© Copyright IBM Corp. 2015. All rights reserved. xiii

Addison Goering is a Certified IT Specialist with the
WebSphere Education team. His main specialty is the design,
development, and delivery of courses in the WebSphere
product family. He has developed and delivered courses
ranging from webinars to week-long workshops on products
such as WebSphere ESB, IBM Workload Deployer,
WebSphere Application Server, WebSphere Business Services
Fabric, and IBM WebSphere BPM. He is the lead developer on
the WebSphere Education team that is developing education
on IBM PureApplication System. Addison holds a B.S. in
education from Keene State College in New Hampshire,
mainframe certification from DePaul University in Chicago, and
several certifications from IBM.

Bertrand Portier is an IBM Executive IT Architect in the United
States. He has 15 years of experience in the field of distributed
computing. He holds a Masters degree in Computer
Engineering from Lille Polytechnique School. His areas of
expertise include IT Architecture, technical leadership,
innovation, and Always On. He has written extensively on these
topics.

Stanley Shieh is an Executive IT Specialist. He started his IBM
career learning the assembly language for the mainframe. The
last language that he learned from work was the Smalltalk. He
left his development work after 10 years as a developer. He
went to the field as a Java advocate and later became a
technical sales engineer and manager. In his field days, he
supported IBM VisualAge® for Smalltalk, VisualAge for Java,
WebSphere Application Server, Edge Server, Portal Server,
WebSphere MQ and BPM. His current focus is on
PureApplication System. He supports IBM North America. He
has degrees in Industrial Management Science, Management
Information System, and Computer Science. He co-authored
Connecting the Enterprise to the Internet with MQSeries and
VisualAge for Java, SG24-2144, Application Development with
VisualAge for Smalltalk and MQSeries, SQ24-2117, and
WebSphere Scalability: WLM and Clustering Using
WebSphere Application Server Advanced Edition, SG24-6153.
xiv Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

This project was led by:

Margaret Ticknor a Redbooks Project Leader in the Raleigh Center. She primarily leads
projects about WebSphere products and IBM PureApplication System. Before joining the
ITSO, Margaret worked as an IT specialist in Endicott, NY. Margaret attended the Computer
Science program at State University of New York at Binghamton.

Thanks to the following people for their contributions to this project:

� Tom Alcott, Senior Technical Staff Member, World Wide WebSphere Application
Infrastructure.

� Kyle Brown, Distinguished Engineer, CTO Cloud and Emerging Technologies, Master
Inventor, for his leadership, mentoring, guidance, and inspiration throughout the entire
effort of developing this publication. Kyle was involved in the design of the scenarios,
review of the book and providing overall guidance throughout this work. Without Kyle's
effort and help, the authors would not have been able to complete this work.

� Arunava Majumdar, Application Integration and Middleware Solutions Specialist: AIM.WS
WebSphere Message Broker Architecture, for providing some of the WebSphere MQ
script packages used in the WebSphere MQ scenarios.

� Scott Moonen, Senior Software Engineer, PureApplication System, for his timely and
prompt help in resolving issues with the multi-rack setup and networking across the racks.

� Dan Mullen, Software Developer, IBM PowerVM® Cloud Development, for his timely and
prompt help in resolving issues with the multi-rack setup and networking across the racks.

Sung-Ik Son is a Senior Software Engineer at IBM in
Research Triangle Park, NC, United States. He has been a key
developer in IBM system and application software development
organizations. He has worked in VM/CP ESA Development,
IBM System/390® Client/Server Development, Personal
Communication Development, and WebSphere Performance
Pack Development. After his successful software development
career for 12 years, he moved to the Software Services
organization and has worked with various WebSphere products
that include WebSphere Application Server, WebSphere
Transcoding Publisher, IBM SWebSphere Everyplace®
products, WebSphere RFID (Radio Frequency Identification),
WebSphere Portal, WebSphere Process Server, WebSphere
DataPower, and PureApplication System. Sung-Ik’s current
focus and area of responsibility is IBM PureApplication System.
He holds a B.S. in Computer Science from the University of
New Brunswick in Canada and an MS in Computer Science
from Purdue University.

Hendrik Van Run is an Executive IT Specialist with IBM
Software Services for WebSphere (ISSW) consulting practice
in Hursley. He is the European technical lead for
PureApplication System and helps clients evaluate and
implement solutions using this platform. He has advised many
clients on issues such as high availability, performance, and
scalability across the WebSphere Application Server product
families. Hendrik also has a strong background in performance
analysis and optimization within the enterprise. He holds a
Master's degree in physics, is co-author of a number of IBM
Redbooks, and frequently speaks at conferences.
 Preface xv

� Jim Robbins, STSM and lead developer for IBM PureApplication System for providing
infrastructure help in setting the PureApplication Systems and managing the systems
used to validate the scenarios, helping answer key architecture questions related to
scenarios and the new function.

� Herbie Pearthree, STSM Continuous Availability Svcs., Acting CTO.

� Valentina Popescu, lead developer for the GPFS™ component in IBM PureApplication
System for providing help in answering many questions related to GPFS, which was the
key component of the HADR scenarios.

� Al Weiner, lead developer for WebSphere Application Server Hypervisor components in
IBM PureApplication System for answering many questions.

Thanks to the following people for their support of this project:

� Deana Coble, IBM Redbooks Technical Writer and Video
� Tamikia Lee, IBM Redbooks Residency Administrator
� Thomas Edison, IBM Redbooks Graphics Editor
� Ernest A. Keenan, IBM Redbooks Editor

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xvi Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xvii

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xviii Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 1. Overview

Most carpenters have a toolbox full of tools to use on construction projects. Given a stack of
building materials for project, plan blueprints, and knowledge, a carpenter can complete a
construction project according to the blueprints. A smart carpenter knows when, where, and
how to use those tools.

IBM PureApplication System provides many capabilities that allow you to implement high
availability (HA) strategies and disaster recovery (DR) scenarios for your workloads. These
capabilities are analogous to the tools in the carpenter’s toolbox. You might consider
PureApplication System as a toolbox that provides you with the tools to implement HA
strategies and DR scenarios. The goal of this book is to introduce you to applying the tools in
the toolbox to a number of common scenarios.

Each organization has its own specific high availability disaster recovery (HADR)
requirements (plan blueprints). Each organization’s requirements are uniquely different from
other organizations. Because PureApplication System does not provide a single solution or a
cookbook for implementing HA strategies and DR scenarios, the organization must draw
upon the collective experience of its staff and the tools in the PureApplication Server toolbox.

This chapter introduces the tools and scenarios in the following topic sections:

� Define high availability and disaster recovery
� PureApplication System support for HA and DR
� Backup and recovery
� Always On (Continuous Availability)
� Overview of HADR use case scenarios

1

© Copyright IBM Corp. 2015. All rights reserved. 1

1.1 Define high availability and disaster recovery

High availability and disaster recovery are often discussed together. This section begins with
some definitions of the concepts.

1.1.1 High availability

If an organization strives for durability and uninterrupted operation without failure, it desires a
highly available system. With highly available systems, you might experience outages for a
few seconds or even a few minutes while failover occurs. High availability does allow for
planned outages, such as system upgrades, but does not allow unplanned outages.

High availability must be considered on the hardware side and on the workload side. The next
section provides an overview of hardware and workload high availability characteristics of
PureApplication System.

PureApplication System hardware high availability
PureApplication System is designed for HA in its hardware redundancy. Compute nodes,
network controllers, management nodes, virtualization nodes, storage controllers, and
storage are all redundant and contribute to a highly available environment as shown in
Figure 1-1 on page 3. The following list notes the component level details available on a
single rack system:

� Compute nodes: The management system automatically routes around failed cores. If an
entire node fails, the system tries to move the VM to another compute node in its cloud
group if free space is available.

� Network controllers: The cabling and switches are redundant. The failure of one controller
reduces bandwidth. Service is continuous.

� Management nodes: The node has a backup server. A floating IP address is assigned to
the active management node (workload deployer).

� Virtualization nodes: The node has a backup server.

� Storage controllers: Each controller has two canisters that service all traffic. If one fails,
the other handles all traffic.

� Storage: SSD and HDD storage is configured in RAID5 plus spares. Storage is designed
to tolerate two concurrent failures without data loss (after the spares are in use).
2 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 1-1 PureApplication System - HA through hardware redundancy (model shown W2500-384)

PureApplication System workload high availability
Several of the IBM software products that are implemented as patterns for PureApplication
System have high availability characteristics built into them. These patterns include those
noted in the following list:

� DB2 HADR pattern

� WebSphere Application Server cell composition with deployment manager and built-in
script packages

� Load balancers, such as the WebSphere Application Server On Demand Router and
DataPower XI52 Virtual Appliance.

1.1.2 Disaster recovery

Disaster recovery is generally considered a plan or process for reconstructing (recovering)
data center operations in a different data center. The goal of disaster recovery is business
continuity, which drives the requirements for acceptable service levels. The purpose of DR is
to return a site to a running condition restored from a last “good” state.
Chapter 1. Overview 3

Business continuity might be a more accurate term when describing disaster recovery. The
following list notes the two fundamental measurements that drive an organization toward
business continuity:

� Recovery time objective (RTO) answers the question: “If a disaster renders a system
unavailable, how much time do you have to make it available again?”. In other words, RTO
is the maximum wanted length of time that is allowed between a disaster and the
resumption of normal operations and service levels. A business might define and measure
its RTO in days or hours for non-critical business systems, but in minutes or seconds for
systems critical to the functioning of the business.

� Recovery point objective (RPO) answers a different question: “If a disaster renders a
system unavailable, what is the time frame in which data might be lost?” RPO addresses
the maximum acceptable amount of data loss measured in time due to a disaster. RPO is
typically measured in seconds or milliseconds. A business might lose inflight transactions
for the last second, but no more data loss is acceptable.

There is no exact formula to determine RTO and RPO. Each organization has different
expectations that contribute to RTO and RPO requirements. The challenge in this area is
balancing those expectations against the technical complexity of enabling disaster recovery.
Figure 1-2 illustrates different RTO and RPO expectations.

Figure 1-2 Disaster recovery solution ranges

PureApplication System disaster recovery
Three aspects of a PureApplication System must be moved from one system to another to
restore functionality of a system’s previous configuration. These aspects are shown in
Figure 1-3 on page 5, and noted in the following list:

� Replicate management data that is stored locally in the storage of the management
nodes. This data includes the workload components such as patterns, virtual images,
pattern types, script packages, and plug-ins. This data can be synchronized automatically
through the multitarget deployment features of PureApplication System V2.0.

� Replicate application data that include logs, message queues, configuration data, and
databases.

� Redirect network traffic from the primary system to the backup system.
4 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 1-3 PureApplication System disaster recovery basics

1.2 PureApplication System support for HA and DR

This section provides a general overview of the support that is found in IBM PureApplication
System V2.0 for high availability and disaster recovery.

1.2.1 IBM General Parallel File System (GPFS)

GPFS is a scalable, high performance file management infrastructure for IBM AIX®, Linux,
and Windows Server systems based on a shared disk model, provided by an underlying SAN.

GPFS provides fast, reliable access to data from multiple nodes in a cluster environment.
Applications can readily access files using standard file system interfaces, and the same file
can be accessed concurrently from multiple nodes. GPFS is designed to provide high
availability through advanced clustering technologies, dynamic file system management, and
data replication. GPFS can continue to provide data access even when the cluster
experiences storage or node malfunctions. GPFS scalability and performance are designed
to meet the needs of data intensive applications such as engineering design, digital media,
data mining, relational databases, financial analytics, seismic data processing, scientific
research, and scalable file serving.

In terms of PureApplication System, GPFS allows multiple nodes or virtual machines to
concurrently access the same data. GPFS provides a shared file system to support highly
available configurations for virtual system and virtual application pattern deployments within
the same rack or across racks.
Chapter 1. Overview 5

In the example GPFS configuration shown in Figure 1-4, a GPFS cluster is shown spanning
two PureApplication Systems, maximizing the storage within the two systems. The file system
is mirrored across the systems. There are other valid GPFS configurations beyond this
example.

Figure 1-4 An example GPFS configuration

1.2.2 Shared service for GPFS

For workloads to connect to a GPFS server and use shared file systems, the shared service
for GPFS must be deployed. The shared service defines the parameters to connect to the
GPFS server that connects to shared storage. As a result, any pattern deployed to a cloud
group into which a shared service is deployed can use the storage.

In previous versions of PureApplication Server, some client setup was required to use GPFS.
To compose a pattern, you added scripts to parts that required access to the GPFS shared
file system. There were scripts to share SSH certificates, add a client to GPFS, create a file
set, connect to a file set, and link to an existing GPFS file set.

With PureApplication System V2.0, the GPFS Client Policy supports application components
in both virtual system patterns and virtual application patterns. When the GPFS Client Policy
is added to a pattern component, at deployment time the GPFS product is installed on the
virtual machine. Also, the configuration is retrieved from the shared service, and the client is
connected to shared file systems that are hosted by the deployed GPFS server pattern.

1.2.3 Block storage

A new type of storage volume, called block storage, was introduced with PureApplication
System V2.0. Block storage can be cloned on a single rack or replicated to another rack for
HADR solutions. Block storage takes advantage of storage controller LUNs, thus directly
avoiding Virtual Machine File System (VMFS) and allowing more capabilities. Volumes can be
internal volumes or defined in an external storage device (see 1.2.5, “External storage” on
page 7).
6 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Implementing block storage separates the application and data lifecycles. If an application is
deleted, block storage is persisted. Block storage is not included in application snapshots.
Internal block storage volumes can be exported, imported, and replicated to another rack.
Block storage volumes support synchronous replication (0 - 300 kilometers) and
asynchronous replication (0 - 8000 kilometers).

1.2.4 Block storage replication

Block storage replication is a form of disaster recovery at the individual storage volume level.
Rather than replicating the entire system configuration, you can configure replication of each
storage volume between local and remote systems in either direction. As noted previously in
1.2.3, “Block storage” on page 6, replication can occur in synchronous (< 300 km) or
asynchronous modes (< 8000 km) depending on your environment. Block storage replication
removes the need to have a dedicated disaster recovery rack.

1.2.5 External storage

You can attach your own storage to a PureApplication System rack or even multiple racks as
shown in Figure 1-5. This concept is similar to connecting two networks through an Ethernet
switch, but you are connecting drives instead of computers. Attaching external volumes to
multiple racks allows high availability across PureApplication System hardware.

Figure 1-5 External storage

When you use external storage devices, you can assign storage volumes to cloud groups as
either block or block shared storage volume types. Block shared storage is available on Intel
systemsonly. You provide the external SAN Volume Controller hardware. For a list of
supported SAN Volume Controller hardware, see the IBM Knowledge Center at:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extst
orage_plan.dita?lang=en
Chapter 1. Overview 7

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en

The PureApplication System provides the following listed connections:

� Ethernet connections for SAN Volume Controller management to PureApplication System
rack

� Fibre Channel connections for customer storage

1.2.6 Multisystem deployments

The multisystem deployment capability is also referred to as multirack deployment or
multitarget deployment. The concept behind multi-system deployments is to improve the
availability and resilience of applications by deploying patterns across multiple
PureApplication System systems. You can deploy virtual system patterns, virtual
applicationpatterns, and shared services to a multisystem environment. At deployment time,
the system uses a placement algorithm to determine where the deployment is placed. You
can move virtual systems to different cloud groups, but the system first verifies the availability
of the necessary resources and artifacts.

PureApplication System employs the concept of a management domain to create and
manage the relationship between two or more PureApplication System systems. The
management domain is used to manage users and artifacts in multiple systems. There is no
limit to the number of systems in the management domain. There is also no limit on the
distance between systems in the management domain. Management data can be replicated
between systems in a management domain.

A deployment subdomain is used to deploy instances from a single pattern across multiple
PureApplication System systems. The systems must be part of the same management
domain and membership is limited to two systems. Consider the following hardware
requirements:

� The systems must be connected by a low-latency network

� When there is no connectivity between systems, a 1 GB storage iSCSI target is used as a
tiebreaker

1.3 Backup and recovery

Although not discussed in detail in this book, using the PureApplication System capabilities
for systems backup and restore provides a simple level of disaster recovery that you can use
if your business continuity requirements are lenient, such as an RTO of 48 hours and an RPO
of 24 hours. The general approach, which is outlined in the following list, fulfills the disaster
recovery requirements shown in Figure 1-3 on page 5. The location defined as the backup
must be on a UNIX or Linux server with SSH configured. You can also perform many of the
tasks in this approach using REST API commands.

Note: Classic virtual system patterns and promoted classic virtual system patterns can be
deployed only in a single rack system.
8 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The following list gives an approach outline for disaster recovery requirements:

� Use one rack for production (active/primary) and another rack for non-production
(standby/backup).

� To replicate management data, take the following actions:

– On the backup rack, configure a production cloud group for disaster recovery that
includes IP groups. The IP groups should contain production IP addresses and VLANs.

– The backup rack should contain a single compute node.

– The remainder of the backup rack is used for non-production work.

� Take application data backups of each pattern instance every 24 hours.

� To be able to fail over the active rack to the backup rack, take the following actions:

– On the backup rack:

• Store or delete workloads in the non-production cloud group to release resources.

• Quiesce, stop, and remove compute nodes from the non-production cloud group.

• Add compute nodes to the Prod cloud group.

• Deploy patterns for the workloads to be recovered.

• Restore application data backups into the newly deployed workloads.

� Redirect network traffic to make the workloads available. This action makes the active
workloads available on the backup.

1.4 Always On (Continuous Availability)

The need for high levels of availability, Continuous Availability, has been driven by the
confluence of cloud, analytics, mobile, and social media. Always On or Continuous Availability
is expensive and requires no visible planned or unplanned outages.

Always On is not for all applications. There is still a maturity level and a high cost required to
achieve Always On. The level of availability for Always On is at or above five 9's, or 99.999%
up time (typically with RTO and RPO close to 0). Five 9s means only 27 seconds of downtime
per month and requires automated intervention. This type of high availability has traditionally
been expected for the top 5 - 10 percent of applications (referred to as tier 0 or tier 1).

Almost Always On (near Continuous Availability) refers to slightly lower up times where
human intervention is required.

1.4.1 Always On Principles (Continuous Availability)

Always On is based on the following three principles:

� The ability to withstand component failures:

This is where you can use best practices from high availability concepts and many of the
topics described in this book. This book uses techniques such as component redundancy
and the elimination of single points of failure. Components can fail at any level of the stack
(for example, network layer, systems layer, middleware layer, or application layer).
Always On is achieved by implementing component redundancy and clustering. As
described in this book, many of these availability functions are pre-built features within the
PureApplication System.
Chapter 1. Overview 9

� The ability to withstand catastrophes transparently:

This is designed into your topology with out of region data centers. Out of region means
that another data center is on a different power network in a different geographic region.
For example, this can involve having PureApplication systems deployed in multiple
regions, typically hundreds of miles apart. This is a different approach to disaster recovery.
In this approach, you do not wait for the disaster before you are using the infrastructure
that is out of region. With the Always On approach, the out of region data center is already
up and running and plays an active role in the architecture (Active/Active).

� The ability to introduce change non-disruptively:

This is related to the domain of Continuous Operations and eliminating planned outages.
Customers are used to their phone applications evolving and needing updates to obtain
new functionality for services. The ability to introduce innovations and new versions of the
applications on a frequent basis falls in to this category. DevOps practices are important to
success in this Always On category.

1.4.2 Always On Patterns

Implementing Always On strategies involves designing topologies with out of region
(geographically dispersed) architectures using Active/Active settings, combined with
techniques for introducing changes (upgrades) without breaking the availability promise. This
section describes several Always On application infrastructure patterns (topologies) that can
help to achieve those Always On principals.

It is important to note the following aspects before reviewing the patterns:

� The first Always On application infrastructure pattern, Active/Standby, is not a true Always
On strategy. Rather, it is more of a common starting point for Always On.

� These examples assume that you are on a layered architecture where any specific layer
depends on the underlying layers to be Always On. For example, applications need to be
implemented with Always On concepts as a part of their criteria. These applications rely
on the middleware (application infrastructure), such as WebSphere Application Server.
The middleware relies on the virtual images or containers, which rely on the operating
system, which relies on the system hardware and networking.

� Data consistency requirements are going to drive the selection of a specific pattern.
Consider, for example, there is latency involved when making dual writes or when
replicating data across distances. If you want a response time of 100 ms and you need to
do synchronous writes, then the two data centers must be within metro distance (typically
no more than 40-100 km apart). When absolute data consistency is required (such as for
atomicity, consistency, isolation, durability (ACID) requirement), then only a subset of the
patterns can be used. Because of varying requirements, an overall architecture will
typically use different patterns for different needs. For example, one pattern for the system
of record (absolute data consistency requirement for the core banking system on DB2)
and another pattern for the system of engagement (eventual data consistency for the
online banking application on WebSphere Application Server).

As mentioned previously, there are several Always On (or Almost Always On) patterns. The
following list notes those patterns at a high level (see also Figure 1-6 on page 11):

� Active/Standby metro with out of region disaster recovery
� Active/Active metro with out of region disaster recovery
� Active/Active metro with out of region query
� Active/Active/Active out of region
10 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 1-6 High-level view of the various Always On topology patterns

The following list gives more details about these Always On topology patterns:

� Active/Standby metro with out of region disaster recovery: This pattern is the most widely
used, and a starting point for Always On. With Active-Standby, one of the data centers is
active and accepting client requests. The data is synchronously replicated to the in-metro
standby data center, and asynchronously replicated to the out of region data center. If the
active data center goes down, traffic is routed to the standby.

� Active/Active metro with out of region disaster recovery: This pattern has two within-metro
data centers that accept requests (are active). Synchronous data replication occurs
between these two centers and asynchronous data replication to the out-of-region data
center. A global routing strategy is in place to route clients to either active data center. If
one of the centers fail, the other one takes over.

� Active/Active metro with out of region query: This pattern is a further developed
modification of the previous Active/Active pattern. In this pattern, now including out of
region query, the out of region data center is warm (infrastructure in place and operational
with some or most data) and is used for read-only queries. This pattern is the most
comprehensive for absolute data consistency (ACID) requirements.

� Active/Active/Active: This pattern has three out-of-region active data centers, all accepting
requests. Data is asynchronously replicated to the other centers.

In this section, the Always On topology patterns were presented at a high level. For more
information about these topology and patterns (including economical considerations on
capacity and rational for multi-site data centers) are available, see Always On: Assess,
Design, Implement, and Manage Continuous Availability, REDP-5109.

Clients

Ap
pli

ca
tio

n
Cl

us
te

r

Application
Cluster

Application

Cluster

DB

DBDB

Sync Uni Data
Replication
d<100km

Async Uni Data
Replication
d>100km

Async Uni Data
Replication
d>100km

OoR
DR

Active Standby

Clients

Ap
pl

ica
tio

n
Cl

us
te

r

Application
Cluster

Application

Cluster

Sessions

DB

DBDB

Sync Bi Data
Replication
d<100km

Async Uni Data
Replication
d>100km

Async Uni Data
Replication
d>100km

ACTIVEACTIVE

OoR
DR

Clients

Ap
pl

ica
tio

n
Cl

us
te

r

Application
Cluster

Application

Cluster

Sessions

Sessions Sessions

DB

DBDB

Sync or Async Bi Data
Replication

Async Bi Data
Replication

Async Bi Data
Replication

OoR
ACTIVE

OoR
ACTIVE

OoR
ACTIVE

Clients

Ap
pl

ica
tio

n
Cl

us
te

r

Application
Cluster

Application

Cluster

Sessions

Sessions Sessions

DB

DBDB

Sync or Async Bi Data
Replication

Async Bi Data
Replication

Async Bi Data
Replication

ACTIVE ACTIVE

WARM

Active Standby
w/OoR DR

2 Active
w/OoR DR

2 Active/Query
OoR

3 Active
w/OoR

Architecture Description

Active Standy
Metro / OoR DR
300%? Capacity

• HA: 100% Active, 100%
Standby, <100% DR

• RTO = minutes within
metro, hours to days for
OoR DR

• RPO=0?

2Active Metro /
OoR DR
300%? Capacity

• nCA:<100% Active, <100%
Active, <100% DR

• RTO = seconds within metro,
hours to days for OoR DR

• RPO=0?

2 Active Metro /
OoR Query
300%? Capacity

• nCA: <100% Active, <100%
Active, <100% Standy

• RTO = seconds within metro,
minutes to hours to warm OoR

• RPO=0 to seconds OoR

3 Active OoR (or
2-Active metro,
Active OoR)
150% Capacity

• CA: 50% Active, 50% Active,
50% active

• RTO = seconds to minutes
• RPO = 0 to seconds Oor
• RISK = Eventual Data

Consistency
Chapter 1. Overview 11

For the PureApplication System use case scenarios described in this book, note the following
observations for their use of Always On patterns:

� Geographic dispersion: The PureApplication System use case scenarios, described in this
book, are all implemented with one or two PureApplication systems in the same data
center. This is because of the test environment available when writing the book. If you
were using IBM PureApplication System topologies that span distances, then you would
need to pay attention to the constraints associated with latency (the time it takes to
replicate) when addressing the data consistency requirements. PureApplication System
supports both synchronous (within metro storage) replication and asynchronous (out of
region storage) replication. Particular PureApplication System pattern solutions make use
of either, and at times both, synchronous and asynchronous replication, but there are not
distinct pattern solutions that allow you chose synchronous or asynchronous. For such a
varied selection, you must design a specific solution using patterns and the toolbox.

� Active/Active: The PureApplication System use case scenarios in this book implement
inter-rack Active/Active for WebSphere Application Server using split cells across the two
racks. A split cell is basically one cluster where the deployment manager and some of the
nodes are on one system, and other nodes on another system. This can be extended to a
split cell across three or more racks. This scenario can also be extended to racks in
different data centers (with the considerations mentioned previously in Geographic
dispersion). However, Always On (and resiliency) is typically achieved by providing
isolation and independence. When designing for true Always On, a preferred approach is
to use independent WebSphere Application Server clusters and cells in each of the data
centers (and implement global routing and state replication).

The following PureApplication System use case scenarios described in 1.5, “Overview of
HADR use case scenarios” on page 12 can be mapped to the Always On patterns described
in Figure 1-6 on page 11:

� DB2 HADR across two racks

� WebSphere Application Server cell across two racks in the primary data center

� Two identical WebSphere Application Server cells across the primary data center and
secondary data center

� Two WebSphere MQ instances (primary and standby) with Multi-Instance Queue Manager
(MIQM) across two racks

� All WebSphere Application Server and DB2 across two separate racks

1.5 Overview of HADR use case scenarios

In this book, the tools in the toolbox are described along with how to implement those tools in
the HADR use case scenarios. The following tables provide a brief look at the HADR use
case scenarios used in this book. It also provides an in-depth description of these use case
scenarios in Chapter 3, “High availability and disaster recovery scenarios” on page 29.

The following list notes the middleware highlighted and the corresponding table:

� DB2 HADR (see Table 1-1 on page 13)

� WebSphere Application Server (see Table 1-2 on page 13)

� WebSphere MQ (see Table 1-3 on page 14)

� WebSphere Application Server and DB2 (see Table 1-4 on page 15
12 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Table 1-1 DB2 HADR use case scenarios

Table 1-2 WebSphere Application Server use case scenarios

Scenario Description When to use the scenario

DB2 HADR Active/Standby in single
rack in the primary data center.

Single DB2 HADR pattern deployed
on single rack

Can handle single DB2 (VM or DB2
instance) failure.
However, it cannot handle rack or data
center failure.

DB2 HADR Active/Standby across
two racks in the primary data center.

Single DB2 HADR pattern deployed
using multi-rack deployment

Can handle single DB2 (VM or DB2
instance) failure, and single rack
failure.
However, it cannot handle data center
failure.

DB2 HADR Active/Standby in primary
data center and same Active/Passive
DR setup in secondary data center

Uses block storage replication Can handle DB2 (VM or DB2)
instance failure, rack failure, and even
data center failure.
Based on the failure, if the entire data
center went down, DB2 HADR
instances can be activated on the
secondary data center in a short time
because the data was being
replicated from primary to the
secondary data center.

Scenario Description When to use the scenario

WebSphere Application Server cell in
a single rack in the primary data
center.

WebSphere cell in the same rack with
transaction log stored in GPFS or
database, and shared by multiple
nodes

Can handle WebSphere node (VM or
WebSphere JVM) failures with other
nodes handling the requests or
recovering the transactions.
However, it cannot handle the entire
WebSphere cell, or the rack or data
center failures.

WebSphere Application Server cell
across two racks in the primary data
center

Transaction logs stored in GPFS or
database. Multirack deployment of
single pattern across two racks.

Can handle WebSphere node (VM or
WebSphere JVM) failures with other
nodes handling the requests or
recovering the transactions.
Can also handle rack failures.
However, it cannot handle data center
failure.

Two identical WebSphere Application
Server cells across the primary data
center and secondary data center

WebSphere Application Server
Active/Passive. Transaction logs
stored in GPFS or database.

Can handle single WebSphere node
(VM failure, or WebSphere JVM
failure), rack failure, and even data
center failure.
Based on the failure, if the entire data
center went down, WebSphere cell
can be activated on the secondary
data center in a short time because
the data was being replicated from
primary to the secondary data center.
Chapter 1. Overview 13

Table 1-3 WebSphere MQ use case scenarios

Scenario Description When to use the scenario

Two WebSphere MQ instances
(primary and standby) with MIQM -
same rack

Same pattern - Active/Standby in
primary data center

Can handle WebSphere MQ primary
QManager failure (VM or WebSphere
MQ processes) and failures with
WebSphere MQ standby handling the
messaging.
However, it cannot handle entire rack
or data center failures.

Two WebSphere MQ instances
(primary and standby) with MIQM -
across two racks

Active/Standby in primary data
center. Split pattern for WebSphere
MQ.

Can handle WebSphere MQ primary
QManager failure (VM or WebSphere
MQ processes) and failures with
WebSphere MQ standby handling the
messaging. Can also handle a rack
failure.
However, it cannot handle entire rack
or data center failures.

Two WebSphere MQ instances
(primary and standby) with MIQM -
across two racks

Active/Standby across data centers.
Split pattern for WebSphere MQ.

Can handle WebSphere MQ primary
QManager failure (VM or WebSphere
MQ processes) and failures with
WebSphere MQ standby handling the
messaging. Can also handle rack and
data center failures.
WebSphere MQ can be activated on
the secondary data center in a short
time because the QManager data was
being replicated from primary to the
secondary data center.
14 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Table 1-4 WebSphere Application Server and DB2 use case scenarios

Scenario Description

WebSphere Application Server cell
and DB2 HADR in a single rack in the
primary data center.

Transactions are stored in GPFS or
database

Can handle WebSphere node (VM or
WebSphere JVM) or DB2 (instance of
VM) failure with other VMs handling
the requests or recovering the
transactions.
However, it cannot handle the entire
WebSphere cell or both DB2
instances, or rack or data center
failures.

WebSphere Application Server cell
across two racks, split cell and DB2
HADR in two separate racks in the
primary data center.

Single pattern using multi-rack
deployment. Transactions are stored
in database.

Can handle WebSphere node (VM or
WebSphere JVM) or DB2 (instance or
VM) failures with other VMs handling
the requests or recovering the
transactions.
Can also handle rack failures.
However, it cannot handle data center
failure.

WebSphere Application Server
Active/Passive, two identical cells
across primary data center. DB2
environment replicated on disaster
recovery site.

Transactions are stored in GPFS or
database.

Can handle single WebSphere node
(VM failure, or WebSphere JVM
failure) or DB2 (VM or instance)
failure, rack failure, and even data
center failure.
Based on the failure, if the entire data
center went down, WebSphere cell
and DB2 HADR can be activated on
the secondary data center in a short
time because the data was being
replicated from primary to the
secondary data center.
Chapter 1. Overview 15

16 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 2. High availability and disaster
recovery capabilities of
PureApplication System V2.0

Chapter 1, “Overview” on page 1 provided basic information about the high availability and
disaster recovery capabilities of PureApplication System. This chapter provides a more
in-depth description of those capabilities.

The following capabilities are described in this chapter:

� Storage volumes
� Block storage overview
� Block storage replication
� External storage
� GPFS Overview
� GPFS topologies
� Active/Active GPFS deployment
� Active/Passive GPFS deployment
� Shared Service for GPFS
� GPFS file systems and file sets

2

© Copyright IBM Corp. 2015. All rights reserved. 17

2.1 Storage volumes

Volumes have been around since PureApplication System V1.0. Simplistically, storage
volumes are extra storage that can be attached to virtual machines. For example, you might
want extra storage for DB2 to host large databases.

In PureApplication V1.1, two types of storage volumes were available: VMFS and Raw. Virtual
Machine File System (VMFS) is specific to the PureApplication System Intel-based system
and compatible with the high performance cluster file system. VMFS is primarily used for
deployed virtual machines. Raw has no partitions or formatting. Both of these storage volume
types are still available in PureApplication System V2.0.

2.1.1 The new type of storage volumes in PureApplication System V2.0

PureApplication System V2.0 introduced a new type of storage volume called block storage.
Block storage volumes have a separate lifecycle from the pattern instance. This is important
because block storage can be added as part of the pattern or added later to the deployed
virtual machines. If an application is deleted, the block storage is persisted. Block storage
volumes can also be located off-box and accessed as external storage. For more information,
see 2.2, “Block storage overview” on page 18.

2.2 Block storage overview

Block storage is declared with the storage area network (SAN) found in PureApplication
System. Data is stored in volumes, which are also referred to as blocks. Block storage allows
administrators to create volumes of type block that allow better access to the SAN inside
PureApplication System or an external SAN accessed through the storage volume controller.
Block storage provides access to multiple blocks through the file system.

Block storage is used by file systems and database management systems (DBMS). These
systems can use block storage as part of providing higher level constructs such as databases
and files to programming models. Block storage is not included in application snapshots.

Block storage can be cloned on a single system or replicated to another system for high
availability (HA) and disaster recovery (DR) solutions. For internal storage volumes, the
maximum internal block size is 8 TB. For external block stores, size depends on external
storage support.
18 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Block storage separates the lifecycle of a storage volume and the application (workload). An
example is shown in Figure 2-1. If a workload is deleted, the block storage persists. A new
workload can be deployed and the persisted block storage can be attached to the new
workload. If more storage is required by the workload, you can increase the size of the
storage volume.

Figure 2-1 Block storage and workload lifecycle separation

Power-based systems and Intel-based systems both support non-shared block storage.
Intel-based systems support block shared storage. Block shared storage allows one or more
virtual machines to share storage volume.Block shared storage provides data sharing
between peers. Using shared block storage has several constraints:

� VMs must have a dedicated compute node
� VMs must be in the same cloud group
� VMs must be on the same rack (system)
� Only GPFS deployments on Intel-based systems use shared block storage

2.2.1 Block storage replication

Block storage replication provides the capability of replicating individual block storage
volumes to another rack. This is useful for disaster recovery of data where PureApplication
System replicates data from a primary rack to another rack in the same (or different) data
center.

Storage volumes between the local rack and remote rack are replicated within a consistency
group. A consistency group is a group of storage volumes of the same type.

Block storage replication needs to be configured in order for replication to occur. A block
storage replication profile is required on both local and remote systems. There must be one or
more storage volumes of type block or block shared on both systems. Block storage
replication configuration details can be found in 4.2, “Block storage replication configuration”
on page 49.

Note: In this publication, the term “rack” refers to a PureApplication System.
Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0 19

DR for workloads using selective replica across racks
In this disaster recovery scenario, workloads running on the primary rack can use a selective
replica on the secondary rack. Several replication pairs can be created between the two racks
that are in the block storage replication domain. Several phases outlined in Figure 2-2
illustrate this scenario:

� Before these phases, block storage replication pairs are created for the storage volumes of
the workload.

� In phase 1, there is a running workload with attached block storage.

� In phase 2, the storage volumes are replicated.

� In phase 3, on the remote (DR) rack, deploy a new workload using the replicated storage
volume.

� In phase 4, the storage on the remote rack is attached.

Figure 2-2 DR for workloads using selective replica across racks

A planned failover is an orderly transition of the workload from the sending system to the
receiving system. For planned failovers (see 2.3.1, “Planned failover” on page 22) two cases
are relevant to this scenario:

� Stop processing on the local rack and start processing on the remote rack. In this case,
there is no data lost. If you break storage volume replication as a group while processing
was occurring, you would lose data. This approach requires that the application takes an
outage while the application is stopped, replication direction is reversed, and the
application is started on the remote rack.

� Storage volume replication is never stopped. In this case, you do not want to risk data loss.
Testing failover is possible on the remote rack using the replication. This approach is
suitable for applications that cannot take outages and where data on the remote (DR) rack
is acceptable for workload verification.

2.3 Block storage replication

Instead of replicating the entire system configuration for disaster recovery, you can configure
block storage replication for disaster recovery at the individual storage volume level.
Replication is for active and passive disaster recovery cases.
20 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Replication for each storage volume can be configured between local and remote (recovery)
systems in either direction. Replication is configured in volume replication pairs. There is no
limit to the number of volume replication pairs. Replication can be configured as synchronous
(< 300 kilometers) or asynchronous (< 8000 kilometers). Figure 2-3 illustrates replication pair
combinations between a local and a remote rack.

Figure 2-3 Possible replication pairs between local and remote systems

All block storage volumes that have the same source and target, and the same
synchronization mode are replicated in an implicit consistency group. Consider the following
example:

� Declare one block storage volume for WebSphere transaction logs and another block
storage volume for database data

� Both are replicated from one rack to another with the same synchronization mode

� Both are replicated in a consistency group, so the data will be consistent for the workload
on the remote DR rack.

During normal production mode, the remote (recovery) rack can be used for other purposes.
However, when needed, the remote rack supports both planned and unplanned failovers of
the local rack. For more information, see 2.3.1, “Planned failover” on page 22 and 2.3.2,
“Unplanned failover” on page 22.

The general procedure for configuring block storage replication is outlined in the following
steps. These steps are performed from the System console and are detailed in Chapter 4,
“Infrastructure setup” on page 47. The administrator must have permissions for Manage
Block Storage (Full) and Manage Security (Full) to configure block storage replication. For a
general procedure to configure block storage, use the following steps:

1. Create a storage volume on the primary rack

2. Create a storage volume of same size on the recovery rack.

3. Define block storage replication profiles on the local and remote systems. The profiles
establish the relationship between the storage volume pairs for replication.

4. Create the replication pair between the primary and remote storage volumes.

5. Validate the block storage replication profiles on both systems. The validation process
verifies:

a. Platform compatibility

b. Both systems have block storage replication profiles
Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0 21

c. Peer management (floating IP) properly references the other system

d. Identical firmware levels on both systems

e. Fibre Channel connectivity between storage controllers on each system

6. Start the block storage replication profiles on both systems.

2.3.1 Planned failover

A planned failover is an orderly transition of the workload from the sending (local) system to
the receiving (remote) system. A planned failover is for storage volume recovery.

You can perform a planned failover from a sending (local) system where the local storage
volume is replicating to the receiving storage volume on the receiving (remote) system. A
block storage replication profile is required on both local and remote systems. There must be
one or more storage volumes of type block or block shared on both systems. Within the
PureApplication System, you can run a failover from a block storage replication pair as shown
in Figure 2-4.

Figure 2-4 Planned failover run from PureApplication System system console

When you initiate a planned failover, you can determine how the sending and receiving
replication roles are handled after the replication completes. The following list notes your
options for roles:

� Replication is enabled in the opposite direction. The sending and receiving replication
roles between the storage volumes are “reversed”. This configuration allows you to restore
the primary storage after testing the scenario by performing another planned failover from
the remote rack.

� Replication is disabled and replication roles are not swapped. This action allows for a test
of an unplanned failover.

2.3.2 Unplanned failover

An unplanned failover is encountered when a real disaster incapacitates a system and makes
it inoperable. If block storage replication profiles are enabled, and continuous replication is
already in process at the time of the disaster, the only data lost is related to changes that are
in process at the time of the disaster. The block replication function allows a system
administrator to simulate an unplanned failure.

An unplanned failover is initiated from the receiving (remote) system. You can either have
another pattern deployed on the remote system, or deploy an identical pattern on the remote
system. In either case, attach the replicated storage to the deployed pattern. The replicated
storage contains the application data. This process effectively reestablishes the sending
system workload on the receiving system.
22 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Within the PureApplication System, you can run an unplanned failover from a block storage
replication profile as shown in Figure 2-5. The replication pair is broken and the block storage
on the remote rack becomes active, allowing VMs to attach to that storage.

Figure 2-5 Unplanned failover executed from PureApplication System system console.

2.4 External storage

You can configure external storage to one or more PureApplication System racks. You make a
connection from your storage volume controller to the SAN connection of the rack. This
configuration is analogous to connecting two networks using an Ethernet switch, but instead
you are connecting drives instead of computers. An example of this configuration is shown in
Figure 2-6.

Figure 2-6 Example of external storage and PureApplication System

For a list of supported hardware and procedures to enable the system to use external
storage, see the IBM Knowledge Center article “Planning to use external storage” at:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extst
orage_plan.dita?lang=en

From an administrative perspective, the external SAN administrator creates storage volumes
and shares them with the PureApplication System rack. These external storage volumes are
automatically added to PureApplication System. The PureApplication System administrator
must enable external storage management from System Console System Settings,
as shown in Figure 2-7.

Figure 2-7 External storage enablement
Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0 23

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en

External storage volumes can then be assigned to cloud groups as either block or block
shared storage volume types. To attach external storage volumes, the administrator finds the
external volume within PureApplication System and assigns the volumes to patterns.

For the patterns, there is no distinction on how it uses storage. The pattern is not aware if the
storage is internal or external. External volumes being attached to multiple racks allows high
availability across PureApplication System hardware. This is not possible with internal
storage.

2.5 GPFS Overview

IBM General Parallel File System (GPFS) is a high performance shared-disk file management
system that provides reliable access to multiple nodes in a cluster environment.

GPFS allows the same file to be accessed from multiple different clients. GPFS is built to be
redundant so that the file system remains active even if the host nodes become unavailable or
inoperable.

IBM PureApplication System provides the IBM Pattern for GPFS, which the system
administrator can deploy as a GPFS cluster. The GPFS cluster provides high-performance,
highly available storage to the middleware and applications that are deployed in the IBM
PureApplication System environment.

The system administrator is responsible for the following actions:

� Deploying the GPFS Server pattern
� Attaching storage
� Defining file systems
� Deploying the GPFS shared service

One result of this configuration is the GPFS cluster as shown in Figure 2-8. This example
configuration is used throughout this book.

Figure 2-8 GPFS Cluster

Note: External storage was not configured for this book.
24 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

2.6 GPFS topologies

Using the IBM Pattern for GPFS, you can deploy a number of different file server topologies.
All deployments provide a GPFS Manager virtual machine that directs and controls the
underlying GPFS cluster. From the GPFS Manager virtual machine and its application
management capabilities, administrators can define file systems, add storage, add file system
mirrors, manage security credentials, apply recovery actions in the case of a failure, and
attach a passive replica.

The GPFS Server is the first component deployed when planning to use a GPFS shared file
system topology. This component is deployed as a virtual application by using the GPFS
Pattern Type. When you deploy a GPFS Server component, configure the GPFS Server
nodes and attach the list of disks used by the GPFS shared file system.

This virtual application pattern supports the following configurations:

� Primary
� Mirror
� Tiebreaker
� Passive

For this book, two GPFS server topologies were configured:

� Active/Active GPFS deployment
� Active/Passive GPFS deployment

2.7 Active/Active GPFS deployment

The Active/Active GPFS deployment is also referred to as active-active mirroring and is
considered a high availability scenario. This topology includes a GPFS Primary server along
with attached GPFS Mirror and GPFS Tiebreaker servers. The tiebreaker server takes care
of quorum and decides which server is primary. The tiebreaker also takes over the primary
role of serving clients if either the primary or mirror server becomes unstable. The number of
GPFS mirror nodes must match the number of primary nodes.

The size of the mirror and primary storage volumes must match as well. It is interesting to
note that the block storage volumes are separate and not aware of each other. GPFS is
responsible for the synchronization of data in the two volumes.
Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0 25

Active/Active mirroring is generally used for disaster recovery scenarios over shorter
distances (< 300 kilometers). Figure 2-9 shows the three GPFS server configurations
deployed to build out this high availability scenario.

Figure 2-9 Active/Active GPFS deployment

To configure an Active/Active GPFS configuration, use the following steps as a general guide:

1. Create volumes for all three configurations
2. Deploy a mirror server configuration and attach volumes
3. Deploy a tiebreaker server configuration and attach volumes
4. Deploy a primary server configuration and attach volumes
5. Attach mirror and tiebreaker server configurations to the primary configuration

When a failover situation occurs, you can attempt to recover in several ways:

� If either the Primary or Mirror server configuration fails, you might be able to recover the
GPFS cluster.

� If the Primary or Mirror server configuration fail and the Tiebreaker configuration fails, the
GPFS cluster ceases to function.

� If you lose the Primary configuration, or the Mirror and Tiebreaker configurations, the
failure is recoverable.
26 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

2.8 Active/Passive GPFS deployment

An Active/Passive GPFS deployment includes a GPFS Primary server configuration and a
GPFS Passive server configuration. For replication, this configuration uses block storage
replication (see 2.3, “Block storage replication” on page 20), which must be set up manually.
This configuration, which is shown in Figure 2-10, is generally used over larger distances
(< 8000 kilometers).

Figure 2-10 Active/Passive GPFS deployment

In the approach shown in Figure 2-10, the two GPFS server configurations are not aware of
each other. However, the volumes are aware of each other (synchronized) through block
storage replication approach (see 2.3, “Block storage replication” on page 20).

When a planned failover situation is needed, there are several options available (dependent
on the state of the primary and remote racks). The options are noted in the following list:

� If the primary rack is active, perform a failover operation on the replicated storage
volumes.

� If the primary rack is inoperable, run a passive takeover operation to cause the passive
server instance to become the new primary configuration.

2.9 Shared Service for GPFS

This shared service is deployed so that GPFS clients in the same cloud group are able to
communicate with a deployed GPFS Server. To communicate with a GPFS Server, GPFS
clients need to know the client key, which contains the IP address and key retrieved from the
Primary GPFS Manager server. The shared service for GPFS simplifies the GPFS client
deployments by providing information about available GPFS Servers.

As a prerequisite for this shared service, you must deploy a GPFS Server configuration by
using IBM Pattern for GPFS. For more detailed information about GPFS configurations, see
4.3, “Configuring an Active/Active (Mirrored) GPFS deployment” on page 53 or 4.4,
“Configuring an Active/Passive GPFS deployment” on page 61.
Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0 27

2.10 GPFS file systems and file sets

The GPFS Servers that you create can host multiple file systems. File systems are attached to
one or more block storage volumes. On the GPFS Server, file systems are mounted as shown
in the following commands:

/gpfs/fileSystemName1
/gpfs/fileSystemName2

Within each file system, you define file sets that are treated as subdirectories within the file
system. File sets are created in the client VM, either through a GPFS client policy or post
deployment. Even though file set creation operation is run on the client side, the file set
directory is created on the server VMs. A directory is created for each file system and file set
in the client VM, as shown in the following commands:

/gpfs/fileSystemName1/fileSet1
/gpfs/fileSystemName1/fileSet2
/gpfs/fileSystemName2/fileSet1
/gpfs/fileSystemName2/fileSet2

These shared file directories are linked to local file directories. This convention makes it
easier for workloads to reference those directories. For example, a shared file directory might
look like the following example:

/WASTranlogs links to /gpfs/fileSystemName1/fileSet1

A maximum of 14 storage volumes can be attached to all file systems for a GPFS Server. File
systems must be created before a client can use them.

2.11 Load balancing

Part of any high availability and disaster recovery strategy is the implementation of a load
balancer. Load balancers come in the form of hardware and software solutions that allow
organizations to distribute inbound traffic across multiple back-end solutions, such as
PureApplication System.

In the case where PureApplication System running in the primary data center becomes
unavailable, a load balancer can switch inbound traffic to the PureApplication System running
in the secondary data center. The load balancer normally has a degree of built-in health
monitoring to determine whether the primary data center is not available before routing traffic
to the secondary data center.
28 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 3. High availability and disaster
recovery scenarios

Though there are many high availability disaster recovery (HADR) scenarios possible, the
focus of this book is on some of the most common scenarios across some key IBM
middleware products. This book’s goal is for you to be able to apply these scenarios to your
specific requirements and use cases.

When possible, the new release of the virtual system patterns has been highlighted for some
key IBM middleware available with PureApplication System V2. The software components
used are for the following releases of the product:

� WebSphere Application Server V8.5.5.2
� DB2 V10.5.0.2

In addition to the middleware previously listed, WebSphere MQ V7.5 (available as a
Hypervisor Image from PureApplication System V1) is included. As of the release of this
book, the new release of WebSphere MQ as a V2 software component is not available.

The focus of this book is about the topology and not the automation of the configuration of the
middleware. In production environments, automation by scripts (Urban Code Deploy or other
mechanisms) is highly desirable and advised to achieve maximum efficiency from
PureApplication System. Every effort is made to identify areas where you can further
automate middleware configuration.

The goal is to cover as many scenarios as possible, but due to limited time, only a subset of
scenarios is covered. Continued coverage of other scenarios and new solutions will be
offered in future publications such as revisions to this publication, DeveloperWorks articles,
and so on.

This chapter includes the following sections:

� Overview for the scenarios
� HADR scenarios for WebSphere Application Server
� HADR scenarios for DB2
� HADR scenarios for WebSphere Application Server and DB2
� HADR scenarios for WebSphere MQ

3

© Copyright IBM Corp. 2015. All rights reserved. 29

3.1 Overview for the scenarios

The following information sections are provided to give clarity to the scenarios covered in this
book:

� Nomenclature
� Patterns
� Rack topology
� PureApplication Platform for testing scenarios
� Scenario basics

3.1.1 Nomenclature

The names that are used in the HADR scenarios are noted in the following list:

� PDC: Primary data center
� SDC: Secondary data center (also Disaster Recovery data center in this book)
� Racks:

– PDC-1: Rack 1 in PDC
– PDC-2: Rack 2 in PDC
– SDC-1: Rack 1 in SDC
– SDC-2: Rack 2 in SDC

3.1.2 Patterns

The scenarios contain one or more virtual system patterns. The topology examples (shown in
the figures within this chapter) display the boundaries of the virtual system patterns that are
used to create the scenarios.

3.1.3 Rack topology

The rack topology used for these scenarios is noted in the following list:

� For most active scenarios within the data center: One rack is assigned as PDC-1 and
another rack is assigned as PDC-2 (in the same data center or a data center in close
proximity (< 300 km)).

� For active/passive scenarios across data centers: One rack is assigned as PDC-1 in the
first data center, and another rack (mimicking the DR rack) in the second data center is
assigned as SDC-1.

For scenarios with two data centers, the centers can be in close proximity (< 300 km) or
separated over a larger distance (< 8000 km). For close proximity data centers, where block
storage replication is used, synchronous replication mode is used. For data centers that are
separated over larger distances, asynchronous mode replication must be used. In this
chapter’s example, sync mode is used, but the same scenarios can be set with async mode.

If additional PureApplication System racks are available, a golden HADR deployment
provides a more robust HADR solution. In the golden HADR deployment, there are two racks
in the PDC and two racks in the SDC (or if two racks are not available, then one rack in the
SDC).
30 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.1.4 PureApplication Platform for testing scenarios

Each of the scenarios were tested on a specific PureApplication platform (Intel or Power).
However, they are expected to run on either platform without modification. In the detailed
section for each scenario, the platforms that were tested are listed. Some of them were tested
using the Intel platform, whereas others were tested using the Power platform.

3.1.5 Scenario basics

Based on the selected middleware, the following list notes the highlighted scenarios:

� WebSphere Application Server

� DB2

� WebSphere Application Server and DB2

� WebSphere MQ

In each of the scenario descriptions, a list is provided of new HADR functions that are used
(GPFS, Block Storage). To test the scenarios, the following listed test cases are used:

� For WebSphere and DB2 scenarios, a small test case was created, called Bank
Transaction that interacts with two databases. The databases (checking and savings) are
tested to allow deposit, withdrawal, and transfer from those accounts. Testing uses a
2-phase commit transaction for moving data between the two databases. The test case
details are provided in Appendix A, “Sample Application” on page 253, and is available for
download (as-is) as detailed in Appendix C, “Additional material” on page 287.

� For WebSphere MQ, the samples amqsput and amqsget that are included with WebSphere
MQ are used. These samples allow put and retrieve of messages from the queue.

Each of the following sections provides more details of the architecture and topology.

3.2 HADR scenarios for WebSphere Application Server

Table 3-1 lists all the WebSphere Application Server scenarios described in this chapter and
gives additional specifics for how these scenarios function.

Table 3-1 WebSphere Application Server Scenarios

Scenario
name

Description New HADR
features used in
the scenario

Platform
tested

Rack:
PDC-1

Rack:
PDC-2

Rack:
SDC-1

Rack:
SDC-2

WAS_1 WebSphere cell in the
same rack with
transaction log stored in
GPFS

GPFS Primary
configuration

Power x

WAS_2 WebSphere cell across
multiple racks in the same
data center

Multi-rack
deployment
GPFS
Primary-Mirror
configuration across
two racks.

Power x x
Chapter 3. High availability and disaster recovery scenarios 31

The middleware used in these scenarios is WebSphere Application Server V8.5.5. The
topology diagram (of each of the scenarios that are listed in Table 3-1 on page 31) are
outlined in the following sections that discuss each scenario by name:

� 3.2.1, “Scenario WAS_1: WebSphere cell in the same rack (PDC-1) with transactions in
GPFS” on page 32

� 3.2.2, “Scenario WAS_2: WebSphere cell across two racks in same data center” on
page 33

� 3.2.3, “Scenario WAS_3: WebSphere active-passive cells - identical setup in PDC and
SDC, with WebSphere transactions stored in GPFS” on page 34

3.2.1 Scenario WAS_1: WebSphere cell in the same rack (PDC-1) with
transactions in GPFS

Figure 3-1 shows the topology diagram for this scenario.

Figure 3-1 Scenario WAS_1

WAS_3 WebSphere
active-passive cells with
active cell in PDC and
identical passive cell in
SDC
Recovery of the
transactions on DR site
(SDC) requires that the
WebSphere nodes in the
DR site have the same
host names.

Multi-rack
deployments.

GPFS Passive
configuration for
WebSphere
transactions, across
two racks.

Power x x x x

Scenario
name

Description New HADR
features used in
the scenario

Platform
tested

Rack:
PDC-1

Rack:
PDC-2

Rack:
SDC-1

Rack:
SDC-2

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1
Middleware:
•WebSphere Application Server
V8.5.5

Notes:
•Transaction logs stored in
GPFS

WebSphere
Node

GPFS-P

Virtual System
Pattern=
32 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The following list notes the benefits and considerations of scenario WAS_1:

� Benefits:

– HA available within the single rack

– Most of this pattern is built from pre-built setup features, except the configuration of the
application server

� Considerations:

– Does not tolerate rack failure

– Does not tolerate GPFS Primary node failure (can have GPFS Mirror configuration on
the same rack to tolerate GPFS Primary node failure)

Additional information for scenario WAS_1 is noted in the following list:

� Test case used: Bank Transaction sample

� Possible automation: Automate the WebSphere configuration for transactions directory to
point to GPFS directory

3.2.2 Scenario WAS_2: WebSphere cell across two racks in same data center

Figure 3-2 shows the topology diagram for this scenario.

Figure 3-2 Scenario WAS_2

The following list notes the benefits and considerations of scenario WAS_2:

� Benefits:

– HA available across the racks, and hence tolerates single rack failure

– Tolerates GPFS node failure on a single rack

– Most of this pattern is built from pre-built setup features, except the configuration of the
application server

WebSphere
DMgr

WebSphere
Node

IHS

Middleware:
•WebSphere Application
Server V8.5.5

Notes:
•Transaction logs stored in
GPFS
• Uses Multi-rack
deployment of single
pattern across the 2 racksWebSphere

Node

GPFS
Primary

GPFS
Mirror

GPFS-Tie

Rack PDC-1 Rack PDC-2

GPFS Sync

Virtual System
Pattern=
Chapter 3. High availability and disaster recovery scenarios 33

� Considerations:

– Does not tolerate entire data center failure

– Tie breaker needs to be on a separate environment to avoid single rack failure

Additional information for scenario WAS_2 is noted in the following list:

� Test case used: Bank Transaction sample.

� Possible automation: Automate the WebSphere configuration for transactions directory to
point to GPFS directory.

3.2.3 Scenario WAS_3: WebSphere active-passive cells - identical setup in
PDC and SDC, with WebSphere transactions stored in GPFS

Figure 3-3 shows the topology diagram for this scenario.

Figure 3-3 Scenario WAS_3

Recovery of transactions by WebSphere nodes in SDC requires that the WebSphere VMs
have the same host name as the VMs in the PDC. The network team needs to ensure that the
DNS in SDC is set up to provide same host names. The VMs in the SDC are only started
during the activation of the DR, so having the same host names does not create any conflicts.

The following list notes the benefits and considerations of scenario WAS_3:

� Benefits:

– HA available within the rack and DR across data centers. Tolerates data center failure

– Most of this pattern is built from pre-built setup features, except the configuration of the
application server

� Considerations:

– Need to activate DR when there is a rack failure in PDC

Rack PDC-1
Middleware:
•WebSphere Application
Server V8.5.5

Notes:
•Transaction logs stored in
GPFS
•VMs should have the same
host names in SDC as Rack
PDC for transaction
recovery
•WebSphere cell in SDC-1
deployed on passive
takeover.

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

GPFS
Primary

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

GPFS
Passive

Rack SDC-1

Replicate

Virtual System
Pattern=
34 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Additional information for scenario WAS_3 is noted in the following list:

� Test case used: Bank Transaction sample.

� Possible automation: Automate the WebSphere configuration for transactions directory to
point to GPFS directory.

3.3 HADR scenarios for DB2

Table 3-2 lists the HADR scenarios for DB2 V10.5.2 that are the focus for this book and gives
more detailed specifics for the scenarios.

Table 3-2 DB2 scenarios

The following list notes additional details about the scenarios that are listed in Table 3-2:

� The DB2 HADR solution consists of Active-Standby DB2 instances.

� The data replication across the DB2 instances is managed by DB2, using different data
synchronization modes (such as Synchronous, Near-synchronous, Asynchronous, and
Super-asynchronous). The DB2 HADR pattern (a pre-built feature ready for use) supports
Asynchronous and Near-synchronous modes.

� DB2 clients can use the automatic client routing feature. This feature detects any failure in
the active DB2 instance and sends requests to the standby DB2 instance.

Note: If you have the luxury of having a golden HADR setup, you can combine scenarios
WAS_2 and WAS_3. The only change is that you have GPFS Passive configuration
instead of a combined GPFS Mirror and Passive deployments.

Scenario name Description New HADR
features used in
the scenario

Platform
tested

Rack:
PDC-1

Rack:
PDC-2

Rack:
SDC-1

Rack:
SDC-2

DB2_1 DB2 HADR from the
same pattern and
deployed in a single rack

N/A Intel x

DB2_2 DB2 HADR from the
same pattern and
deployed across two
racks using multi-rack
deployment

Multi-rack
deployment

Intel x x

DB2_3 Two identical DB2
HADR deployments
across two different data
centers, PDC and SDC,
in which the SDC
deployment provides
the DR for any data
center failure in PDC.

Multi-rack
deployment and
block storage
replication

Intel x x
Chapter 3. High availability and disaster recovery scenarios 35

A more detailed explanation of the topology for each of the scenarios in Table 3-2 on page 35
are described in the following sections:

� 3.3.1, “Scenario DB2_1: DB2 HADR from the same pattern and deployed on a single rack
(PDC-1)” on page 36

� 3.3.2, “Scenario DB2_2: DB2 HADR from the same pattern and deployed the parts on two
racks (PDC-1 and PDC-2)” on page 37

� 3.3.3, “Scenario DB2_3: Identical DB2 HADR deployments across primary (PDC) and
secondary DR (SDC) data centers” on page 38

3.3.1 Scenario DB2_1: DB2 HADR from the same pattern and deployed on a
single rack (PDC-1)

Figure 3-4 shows the topology diagram for this scenario.

Figure 3-4 Scenario DB2_1

The following list notes the benefits and considerations of scenario DB2_1:

� Benefits:
– Active-Standby available within the single rack
– Most of this pattern is built from pre-built setup features

� Considerations:
– Does not tolerate rack failure

Additional information for scenario DB2_1 is noted in the following list:

� Test case used: Bank Transaction sample with WebSphere Application Server
� Possible automation: Not applicable

DB2-P DB2-S

Rack PDC-1

Sync

Notes:
• Single DB2 HADR pattern
deployed on the same rack

Virtual System
Pattern=
36 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.3.2 Scenario DB2_2: DB2 HADR from the same pattern and deployed the
parts on two racks (PDC-1 and PDC-2)

Figure 3-5 shows the topology diagram for this scenario.

Figure 3-5 Scenario DB2_2

The following list notes the benefits and considerations of scenario DB2_2:

� Benefits:
– Active-Standby available across the racks, so this configuration tolerates rack failure
– Most of this pattern is built from pre-built setup features

� Considerations:
– Requires multi-rack deployment domain set up
– Does not tolerate data center failure where both the racks are affected

Additional information for scenario DB2_2 is noted in the following list:

� Test case used: Bank transaction sample with WebSphere Application Server
� Possible automation: Not applicable

DB2-P DB2-S

Rack PDC-1 Rack PDC-2

Notes:
• Single DB2 HADR pattern
deployed using multi-rack
deployment

Sync

Virtual System
Pattern=
Chapter 3. High availability and disaster recovery scenarios 37

3.3.3 Scenario DB2_3: Identical DB2 HADR deployments across primary (PDC)
and secondary DR (SDC) data centers

Figure 3-6 shows the topology diagram for this scenario.

Figure 3-6 Scenario DB2_3

The following list notes the benefits and considerations of scenario DB2_3:

� Benefits:
– Active-Standby available within the single rack
– Tolerates data center failure

� Considerations:
– Requires Block storage replication if internal block storage is used

Additional information for scenario DB2_3 is noted in the following list:

� Test case used: Bank transaction sample with WebSphere Application Server
� Possible automation: Not applicable

Rack PDC-1 Rack SDC-1

Notes:
• Uses Block Storage
replication

DB2-P DB2-S DB2-P DB2-S

Replicate

Sync Sync

Virtual System
Pattern=
38 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.4 HADR scenarios for WebSphere Application Server and
DB2

Table 3-3 lists all the WebSphere Application Server and DB2 scenarios that are highlighted
in this publication. The middleware used in these scenarios is WebSphere Application Server
V8.5.5 and DB2 V10.5.

Table 3-3 WebSphere Application Server and DB2 scenarios

The topology diagram of each of the mentioned scenarios in Table 3-3 are covered in more
detail in the following sections:

� 3.4.1, “Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed
on a single rack with transactions stored in database” on page 40

� 3.4.2, “Scenario WDB_2: WebSphere Application Server cluster split across two racks in
the same data center with DB2 HADR also split across the racks, with WebSphere
transactions stored in database” on page 41

� 3.4.3, “Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR
replicated across DR site, with WebSphere transactions stored in DB” on page 42

Scenario name Description New HADR
features used
in the
scenario

Platform
tested

Rack:
PDC-1

Rack:
PDC-2

Rack:
SDC-1

Rack:
SDC-2

WDB_1 WebSphere Application
Server cluster and DB2
HADR deployed on a single
rack, with transactions
stored in the database

Power x

WDB_2 WebSphere Application
Server cluster split across
two racks in the same data
center with DB2 HADR also
split across the racks.
WebSphere transactions
are stored in the database.

Power x x

WDB_3 Identical WebSphere
Application Server cell and
DB2 HADR replicated
across DR site.

Block storage
replication

Power x x
Chapter 3. High availability and disaster recovery scenarios 39

3.4.1 Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR
deployed on a single rack with transactions stored in database

Figure 3-7 shows the topology diagram for this scenario.

Figure 3-7 Scenario WDB_1

The following list notes the benefits and considerations of scenario WDB_1:

� Benefits:

– Active WebSphere nodes are in the same cell.

– DB2 HADR active and standby in the same rack.

– Most of this pattern is built from pre-built setup features.

– Stores WebSphere transactions in database. Reduces setup process because a
shared files system is not needed for WebSphere transactions

� Considerations:

– Does not tolerate rack failure

Additional information for scenario WDB-1b is noted in the following list:

� Test case used: Bank Transaction failure
� Possible automation: Not applicable

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1 Middleware and OS:
•WebSphere Application
Server V8.5.5
•DB2 10.5

Notes:
•Data in DB2
•Transactions in DB

WebSphere Node

DB2-P DB2-S
Sync

Virtual System
Pattern=
40 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.4.2 Scenario WDB_2: WebSphere Application Server cluster split across two
racks in the same data center with DB2 HADR also split across the racks, with
WebSphere transactions stored in database

Figure 3-8 shows the topology diagram for this scenario.

Figure 3-8 Scenario WDB_2

The following list notes the benefits and considerations of scenario WDB_2:

� Benefits:

– Active WebSphere nodes split across racks in the same data center.

– DB2 HADR active and standby across multiple racks.

– Most of this pattern is built from pre-built setup features.

– Stores WebSphere transactions in database. Reduces setup process as shared file
system is not needed for WebSphere transactions.

– Tolerates single rack failure

� Considerations:

– Does not tolerate data center failure.

Additional information for scenario WDB_2 is noted in the following list:

� Test case used: Bank Transaction sample
� Possible automation: Not applicable

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1 Rack PDC-2

DB2-P DB2-S

WebSphere
Node

Middleware and OS:
•WebSphere Application
Server V8.5.5
•DB 10.5

Notes:
•WebSphere cell split
across 2 patterns
•DB2 HADR split pattern
•WebSphere Transactions
stored in DB

Sync

Virtual System
Pattern=
Chapter 3. High availability and disaster recovery scenarios 41

3.4.3 Scenario WDB_3: Identical WebSphere Application Server cell and DB2
HADR replicated across DR site, with WebSphere transactions stored in DB

Figure 3-9 shows the topology diagram for this scenario.

Figure 3-9 Scenario WDB_3

The WebSphere cell in the DR site can be provisioned as noted in the following list:

� After passive takeover

� Pre-provisioned with application servers and DB2 being stopped, to be started after the
passive failover of the block storage on the DR rack

The following list notes the benefits and considerations of scenario WDB_3:

� Benefits:

– Identical WebSphere cell and DB2 setup across two sites, providing a recovery from a
complete data center failure.

– Most of this pattern is built from pre-built setup features

� Considerations:

– WebSphere cell transaction recovery requires identical host names for WebSphere cell
on the DR site

– Some manual steps are required for passive takeover and starting of DB2 and
WebSphere on the DR site (the time required can be 2 hours or less, based on how
much has been pre-provisioned)

Additional information for scenario WDB_3 is noted in the following list:

� Test case used: Bank Transaction sample
� Possible automation: Not applicable

Rack PDC-1
Middleware:
•WebSphere V V8.5.5
•DB2 10.5

Notes:
•Transaction logs stored in
GPFS
•VMs should have the same
host names in SDC as Rack
PDC
•WebSphere Transactions
stored in DB
•Block storage replication
sync mode must be same
across all replication pair to
have consistency

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

SDC-1

DB2-P DB2-S DB2-P DB2-S

Replicate

Sync Sync

Virtual System
Pattern=
42 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.5 HADR scenarios for WebSphere MQ

Table 3-4 lists the HADR scenarios for WebSphere MQ V7.5 Hypervisor image using
Multi-Instance Queue Manager (MIQM) for this publication.

Table 3-4 WebSphere MQ scenarios

The following is additional information about the scenarios noted in Table 3-4:

� WebSphere MQ MIQM requires a shared file system to share the Queue Manager (QMgr)
files (data, logs, and errors) across the different MIQM Queue Managers. When the
primary QMgr fails, the standby automatically becomes active and because it is using the
sharing of the file systems, it has access to the Queue Manager data.

� There are other HADR solutions, such as using the WebSphere MQ cluster solution.
Though this chapter focuses on MIQM, some of the base concepts (used within these
scenarios for shared file systems) can be used for other HADR solutions.

� The HADR solution consists of an active-standby WebSphere MQ QManager instance.

The topology diagram of each of the mentioned scenarios in Table 3-4 are covered in more
detail in the following sections:

� 3.5.1, “Scenario WMQ_1: WebSphere MQ primary and standby in the same pattern
deployed on a single rack” on page 44

� 3.5.2, “Scenario WMQ_2: WebSphere MQ primary and standby in different pattern
deployed on two different racks within the same data center” on page 45

� 3.5.3, “Scenario WMQ_3: WebSphere MQ primary and passive in the different patterns
deployed on separate racks across the data center” on page 46

Scenario name Description New HADR
features used
in the
scenario

Platform
tested

Rack:
PDC-1

Rack:
PDC-2

Rack:
SDC-1

Rack:
SDC-2

WMQ_1 WebSphere MQ primary
and standby parts in the
same pattern deployed in a
single rack

GPFS-Primary
configuration
sharing
QManager
files (data,
logs, and error
files)

Intel x

WMQ_2 WebSphere MQ primary
and standby parts in the
different patterns deployed
on two different racks within
the same data center (or
can even be across data
centers with distance less
than 300 km)

GPFS-Mirror
configuration
for sharing
QManager
files

Intel x x

WMQ_3 WebSphere MQ primary
and standby parts in the
different patterns deployed
on two different racks
across data centers over
large geographic distances

GPFS-Passive
configuration
for sharing
QManager
files

Intel x x
Chapter 3. High availability and disaster recovery scenarios 43

3.5.1 Scenario WMQ_1: WebSphere MQ primary and standby in the same
pattern deployed on a single rack

Figure 3-10 shows the topology diagram for this scenario.

Figure 3-10 Scenario WMQ_1

The following list notes the benefits and considerations of scenario WMQ_1:

� Benefits:
– Active-Standby available within the single rack
– Most of this pattern is built from pre-built setup features

� Considerations:
– Does not tolerate rack failure

Additional information for scenario WMQ_1 is noted in the following list:

� Test case used: Built-in product samples:
– amqsput: To put messages to a queue associated with a QManager
– amqsget: To get messages from the queue

� Possible automation: Not applicable

WMQ
Primary

Rack PDC-1
Middleware and OS:
•WMQ V7.5.0.x

Notes:
•QMGRs and Logs in GPFS

WMQ
Standby

GPFS-P

Virtual System
Pattern=
44 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3.5.2 Scenario WMQ_2: WebSphere MQ primary and standby in different
pattern deployed on two different racks within the same data center

This scenario can also be used for racks in different data centers within close geographic
locations. It uses GPFS mirror con-figuration across the two racks. Figure 3-11 shows the
topology diagram for this scenario.

Figure 3-11 Scenario WMQ_2

The following list notes the benefits and considerations of scenario WMQ_2:

� Benefits:
– Active-Standby available across racks
– GPFS mirror configuration used so that a GPFS node failure in one rack is tolerated

� Considerations:
– Does not tolerate data center failure

Additional information for scenario WMQ_2 is noted in the following list:

� Test case used: Built-in product samples:
– amqsput: To put messages to a queue associated with a QManager
– amqsget: To get messages from the queue

� Possible automation: Not applicable

GPFS
Primary

GPFS
Mirror

GPFS-Tie

Rack PDC-1 Rack PDC-2

WMQ
Primary

WMQ
Standby

Middleware and OS:
•WMQ V7.5.0.x

Notes:
•QMGRs and Logs in GPFS
•WMQ split patterns

GPFS Sync

Virtual System
Pattern=
Chapter 3. High availability and disaster recovery scenarios 45

3.5.3 Scenario WMQ_3: WebSphere MQ primary and passive in the different
patterns deployed on separate racks across the data center

This scenario is for racks in different data centers across large geographic distances. GPFS
passive configuration is used across the two data centers. Figure 3-12 shows the topology
diagram for this scenario.

Figure 3-12 Scenario WMQ_3

The following list notes the benefits and considerations of scenario WMQ_3:

� Benefits:

– Tolerates data center failure.

– Most of this pattern is built from pre-built setup features.

� Considerations:

– The second WebSphere MQ instance is a passive one. The GPFS passive instance
needs to be activated for the second instance of WebSphere MQ to process the
messages.

Additional information for scenario WMQ_3 is noted in the following list:

� Test case used: Built-in product samples:
– amqsput: To put messages to a queue associated with a QManager
– amqsget: To get messages from the queue

� Possible automation: Not applicable

GPFS
Primary

WMQ WMQ

Middleware and OS:
•WMQ V7.5.0.x

Notes:
•QMGRs and Logs in GPFS
•Identical WMQ on SDC
•Manual takeover on GPFS
Passive as primary
•Start QMgr on WMQ in
SDC

Replicate

GPFS
Passive

Rack PDC-1 Rack PDC-2

Virtual System
Pattern=
46 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 4. Infrastructure setup

This chapter describes specific details about the infrastructure setup used to configure and
test the scenarios in this book. You can find details about those scenarios in Chapter 3, “High
availability and disaster recovery scenarios” on page 29.

The following topics are covered in this chapter:

� Block storage configuration
� Block storage replication configuration
� Configuring an Active/Active (Mirrored) GPFS deployment
� Configuring an Active/Passive GPFS deployment
� Deploy GPFS Shared Service
� External storage configuration
� Network configuration and cloud resources configuration
� Multisystem environment deployment
� DNS setup for primary and secondary (cross) rack scenarios
� Network configuration for WebSphere Application Server and DB2 scenarios

4

© Copyright IBM Corp. 2015. All rights reserved. 47

4.1 Block storage configuration

Configure block storage early during the development of your high availability (HA) and
disaster recovery (DR) strategy implementation. The block storage configuration that is
described here was used by the Active/Active General Parallel File System (GPFS)
deployment (4.3, “Configuring an Active/Active (Mirrored) GPFS deployment” on page 53)
and by the Active/Passive GPFS deployment (4.4, “Configuring an Active/Passive GPFS
deployment” on page 61).

For an overview of block storage, see Chapter 2, “High availability and disaster recovery
capabilities of PureApplication System V2.0” on page 17.

You can configure multiple systems, but for the block storage configuration in this book, two
PureApplication System systems were involved: Primary and secondary. On both systems,
the number and size of the volumes is identical. This is a requirement if you are configuring
either an active/active GPFS deployment or an active/passive GPFS deployment.

Because the primary and secondary racks were used for both GPFS configurations, several
block storage volumes were created for use in these configurations. The example shown in
Table 4-1and Table 4-2 are for an Intel system, so the type is shared block. On IBM Power
Systems™, the type is block.

Table 4-1 Primary rack storage volume specification

Table 4-2 Secondary storage volume specifications

4.1.1 Block storage configuration

The steps to configure block storage are outlined below. This block storage configuration was
used for the GPFS Primary configuration on the primary rack.

1. From the System Console, select Cloud Storage Volumes

2. Click Create New.

Volume name Size Type

RBHADR_GPFS_Primary 100 GB Shared block

Volume name Size Type

RBHADR_GPFS_Mirror 100 GB Shared block

RBHADR_GPFS_Tie 20 GB Shared block

RBHADR_GPFS_PassiveConfig_Passive 100 GB Shared block
48 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. Create the storage volume by entering appropriate values. For this example (Figure 4-1), a
100 GB block shared volume was created in an externally managed cloud group.

Figure 4-1 Example of block shared storage volume configuration

4. Create the remaining block storage volumes that are needed for the other GPFS
configurations (Tiebreaker, Mirror, and Passive) on the remote systems as specified in
Table 4-2 on page 48.

4.2 Block storage replication configuration

Block storage replication is configured between storage volumes on different racks. For this
particular configuration, block storage replication is configured between the storage volumes
used by the GPFS Primary configuration (primary rack) and GPFS Passive configuration
(secondary rack).

Before starting, verify that each rack has the appropriate storage volumes of the same size
and type.

The glue between the storage volumes is a block storage replication profile on each
participating rack, which defines the storage volumes that are replicated as part of the block
storage replication process.

4.2.1 Block storage replication: Steps

The following are the steps to configure block storage replication profiles on the primary and
secondary racks.

To configure a block storage replication profile on the primary rack, complete these steps:

1. From the System Console, select System Block Storage Replication.

2. Click the New icon.
Chapter 4. Infrastructure setup 49

3. Complete these required fields:

a. Name: Provide a descriptive name such as “Redbooks-DR.”

b. Peer management location: This is the management IP address or fully qualified
domain name (FQDN) of the system to which a relationship is established (Passive
rack).

4. Trust User ID: This user ID establishes the trust relationship between the host and remote
system. The user must have full permissions to manage security.

c. Trust Password: The password that is associated with the Trust User ID on the remote
system.

5. Click OK. The profile is added to the Block Storage Replication Page with an initial state of
Defined.

6. Click the profile to validate and enable the profile. The status changes to Enabled as
shown in Figure 4-2.

Figure 4-2 Block storage replication profile on the primary rack

To configure a block storage replication profile on the secondary rack, complete these steps:

1. From the System Console, select System Block Storage Replication.

2. Click the New icon.

Note: Use the FQDN instead of an IP address. You can locate the management IP
address for the Passive system by clicking System Network Configuration.
Expand the Management IP section. Use the floating IP address.
50 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. There are four required fields:

a. Name: Provide a descriptive name such as “Redbooks-DR.”

b. Peer management location: This is the management IP address (or FQDN) of the
system to which a relationship is established (Primary rack)

c. Trust User ID: This user ID establishes the trust relationship between the host and
remote system. The user must have full permissions to manage security.

d. Trust Password: The password that is associated with the Trust User ID on the remote
system.

4. Click OK. The profile is added to the Block Storage Replication Page with an initial state of
Defined.

5. Click the profile to validate and enable the profile. The status changes to Enabled as
shown in Figure 4-3.

Figure 4-3 Block storage replication profile on the secondary rack

Now that block storage replication profiles exist on both the primary and secondary racks, you
can add storage volumes for replication. This action links two storage volume pairs on the
racks and starts the replication process.

1. On the primary rack, select System Block Storage Replication

2. Locate the appropriate block storage replication profile. Click Add Volumes.

3. Select the Local Volume (primary rack).

4. Select the Remote Volume (secondary rack). The interface only displays volumes of the
same type and size.

Note: You can locate the management IP address for the Passive system by
clicking System Network Configuration. Expand the Management IP
section. Use the floating IP address.
Chapter 4. Infrastructure setup 51

5. Select the Replication type (either Synchronous or Asynchronous) as shown in
Figure 4-4.

Figure 4-4 Adding local and remote storage volumes for replication

6. Click Add.

7. Accept the replication request for each storage volume pair on the Passive rack.

Confirm that the storage volumes configured for replication on each rack are configured
properly using these steps:

1. On the primary rack, select System Block Storage Replication

2. Select the block storage replication profile.

3. Expand Storage Volumes. You should see the local and remote volumes you selected
earlier. Notice the arrow in the Direction field points to the storage volume on the
secondary rack as shown in Figure 4-5.

Figure 4-5 Storage volume replication on primary rack

4. On the secondary rack, select System Block Storage Replication

5. Select the block storage replication profile.

Note: Synchronous was selected for this book because the racks were in the same
physical location.
52 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6. Expand Storage Volumes. You should see the local and remote volumes you selected
earlier. Notice the arrow in the Direction field points to the storage volume on the primary
rack as shown in Figure 4-6.

Figure 4-6 Storage volume replication on secondary rack

4.3 Configuring an Active/Active (Mirrored) GPFS deployment

For this book, two racks were used for this deployment. The first (primary) rack contains the
GPFS Primary configuration. The GPFS Mirror configuration is on the other (secondary) rack.
Normally a third rack would be used in this configuration for either the Mirror or the
Tiebreaker.

The GPFS primary configuration on the first rack can support 1, 3, 5, or 7 GPFS server
nodes. For this publication, one node was configured. The primary server can have either a
mirrored or passive replica attached to it. The primary server cannot have both a mirrored and
passive replica. If you attempt to deploy this configuration, you receive a message that
indicates the configuration is not allowed.

The GPFS mirrored configuration consists of a GPFS mirror deployment and a GPFS
tiebreaker deployment. These deployments are attached to the GPFS primary server
deployed in the GPFS primary configuration.

4.3.1 Active/Active GPFS deployment: Steps

The following procedure shows the general steps to configure an active/active GPFS
deployment. In this configuration, a GPFS Primary instance is deployed to one rack (primary
rack), while a GPFS Mirror instance and GPFS Tiebreaker instance are deployed on another
rack (secondary rack), possibly at a separate location. In general, to avoid latency problems
with data transfer, this type of configuration is supported only for geographic distances less
than 300 km apart.

Note: The configuration shown in this publication is not a typical Active/Active GPFS
deployment. A typical configuration has each GPFS deployment on a separate rack. For
example, GPFS Primary (rack1), GPFS Mirror (rack 2), and GPFS Tiebreaker on an iSCSI
device.
Chapter 4. Infrastructure setup 53

To configure the primary rack, complete these steps:

1. On the primary rack, verify that a storage volume has been created. For more information,
see 4.1, “Block storage configuration” on page 48. The storage volume should be
configured as shown in Figure 4-7.

Figure 4-7 Block storage configuration on primary rack

2. On the primary rack, create the GPFS Primary pattern by completing these steps:

a. From the Workload Console, select Patterns Virtual Applications.

b. Select GPFS Pattern Type 1.2.

c. Click Create New.

d. There are four pattern options. Select GPFS Primary and click Start Building. A new
browser tab opens with the Pattern Builder available.

e. Use these guidelines and the information in Figure 4-8 on page 55,

• Name: Provide a name based on standards. This publication uses
RBHADR_GPFS_Server.

• GPFS Managers Key: Generated automatically. The key must be the same as the
Mirror and Tie configuration. The GPFS Cluster Key and GPFS Clients Key do not
need to be configured.

• GPFS Configurations: Select Primary Configuration.

• Number of GPFS Node(s): Select 1 node.

• Cluster Name: Provide a cluster name. This publication used Primary_Cluster.

• File System name: Enter file system name. This publication used
RBHADRfileSystem.

• Clear the Active Configuration and Passive Configuration check boxes.

f. Save the pattern with a standard name.
54 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 4-8 Sample GPFS Primary server configuration
Chapter 4. Infrastructure setup 55

3. On the primary rack, deploy the Primary GPFS pattern by completing these steps:

a. Before deploying, verify that the component attributes and settings are the same as the
pattern you just created. See Figure 4-9.

Figure 4-9 Primary GPFS pattern deployment window

b. Click Continue to Distribute.

c. You should see two components. The GPFS-Manager component should have a blue
dot next to the VM. Move the cursor over the VM box. Click the Edit (Pencil) icon.
56 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

d. Select the storage volume that you configured earlier. Figure 4-10 provides an
example.

Figure 4-10 Add a storage volume to the Primary server configuration

e. Click Deploy. Check the deployment status in the History section of the instance. The
deployment takes 5-10 minutes depending on system resource availability.

f. No configuration is necessary on GPFSServer-Main.

To configure the Secondary rack, complete these steps:

1. On the secondary rack, create a Mirror GPFS pattern. The configuration is similar to the
primary pattern with a few key differences:

• Name: Provide a unique name.

• GPFS Managers Key: artifacts/manager_key_linux.tar.gz (this is the default
value and should match the key in the primary configuration).

• GPFS Configurations: MIrror Configuration.

• Number of GPFS Node(s): 1 node (this value should match the primary
configuration).

• File System name for selected shared volumes: This value should match the
primary configuration file system name.

2. Save the pattern.

3. Create a Tiebreaker GPFS pattern. The configuration is similar to the primary pattern with
a few key differences:

• Name: Provide a unique name.

• GPFS Managers Key: artifacts/manager_key_linux.tar.gz (this is the default value
and should match the key in the primary configuration).

• GPFS Configurations: Tiebreaker.

• File System name for selected shared volumes: This value should match the
primary configuration file system name.

4. Save the pattern.
Chapter 4. Infrastructure setup 57

5. Deploy both the Mirror and Tiebreaker GPFS patterns. Be sure to attach the appropriate
block shared storage to each deployment as shown in Figure 4-11.

Figure 4-11 Sample block shared volumes for mirror and tie configuration

6. Make a note of the GPFS-Manager IP address for each deployment as shown in
Figure 4-12 and Figure 4-13. These are added to the primary configuration by the
administrator in the next step.

Figure 4-12 IP address for the GPFS Mirror server

Figure 4-13 IP address for the GPFS Tiebreaker server

To configure the Primary rack, complete these steps:

1. On the primary rack, add the Mirror GPFS server to the Primary GPFS instance. The
dialog is shown in Figure 4-14 on page 59.

a. From the Workload Console, select Instances Virtual ApplicationsSelect the
Primary Server instance.

b. Select Manage. This action opens the Instance Console.

c. Select the GPFS-Manager (not the GPFS-Server-Main).

d. Select Operations.

e. In the Operations window, select GPFS_Manager.

f. Expand Add New Member.

• Member Type: Mirror

• Manager IP: <enter the IP of the Mirror GPFS Server>

g. Click Submit.
58 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 4-14 Add a Mirror to Primary cluster

h. Confirm that you want to add the cluster member.

i. Verify that the operation was successful. Look in the Operation Execution Results
window. You should see a message similar to Figure 4-15.

Figure 4-15 Operation Execution Results

2. On the primary rack, add the Tiebreaker GPFS instance to Primary GPFS instance. The
procedure is similar to adding the Mirror to the Primary.

a. In the Operations window, select GPFS_Manager.

b. Expand Add New Member.

• Member Type: Tiebreaker

• Manager IP: <enter the IP of the Tiebreaker GPFS Server>

c. Click Submit.

d. Confirm that you want to add the cluster member.

e. Verify that the operation was successful. Look in the Operation Execution Results
window. You should see a message that indicates a successful operation.

Note: In this configuration, the Mirror server was added to the Primary server after the
Primary server was deployed. Optionally, you can add the Mirror server to the Primary
server configuration before deploying the Primary server.
Chapter 4. Infrastructure setup 59

3. On the primary rack, verify the GPFS cluster configuration by running two separate cluster
operations:

a. Get Configuration Type as shown in Figure 4-16.

i. In the Operations window, select GPFS_Manager.

ii. Expand Manage Cluster Run Cluster Operation.

iii. Select Get Configuration Type.

iv. Click Submit.

Figure 4-16 Get Configuration Type operation

v. In the Operation Execution Results window, you should see a message indicating
that the operation was successful. In the Return Value column, click the link. You
should see a message similar to Figure 4-17.

Figure 4-17 Results of Get Configuration Type operation

b. Get Cluster Status:

i. In the Operations window, select GPFS_Manager.

ii. Expand Manage Cluster Run Cluster Operation.

i. Select Get Cluster Status.

ii. Click Submit.

iii. In the Operation Execution Results window, you should see a message indicating
that the operation was successful. In the Return Value column, click the link. You
should see a lengthy status report.

Note: In this configuration, the Tiebreaker server was added to the Primary server after
the Primary server was deployed. Optionally, you can add the Tiebreaker server to the
Primary server configuration before deploying the Primary server.
60 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4.4 Configuring an Active/Passive GPFS deployment

In an active/passive GPFS configuration, you deploy a GPFS Primary instance and a GPFS
Passive instance on separate racks. This deployment is used by several of the scenarios that
are described in this publication.

4.4.1 Active/Passive GPFS deployment: steps

The following are the required steps for an Active/Passive GHPFS deployment:

1. On the primary rack, follow the configuration steps 1 - 4 outlined in 4.3.1, “Active/Active
GPFS deployment: Steps” on page 53 to deploy the GPFS Primary server. The
deployment steps for the GPFS Primary server are the same in both deployments.

2. Verify that the appropriate storage volumes have been created. The storage volumes must
be identical in size and number to those on the primary rack. On Intel-based systems, use
block shared storage. On Power-based systems, use block storage. This configuration
used 100 GB of block storage. This storage volume must match the size and type on the
primary rack. See Table 4-2 on page 48 for storage volume specifications on the
secondary rack. An example of the storage volume used for the passive configuration on
the secondary rack is shown in Figure 4-18.

Figure 4-18 Storage volume configuration on Passive deployment.

3. On the secondary rack, create GPFS Passive pattern. The configuration is similar to the
primary pattern, except the GPFS configuration is “Passive Configuration”. See
Figure 4-19 on page 62 for a completed configuration.

– Name: Provide a name based on standards. This publication uses GPFS_Passive.

– GPFS Managers Key: Generated automatically. The key must be the same as the
Primary configuration. The GPFS Cluster Key and GPFS Clients Key do not need to be
configured.

– GPFS Configurations: Select Passive Configuration.

– Number of GPFS Node(s): Select 1 node.
Chapter 4. Infrastructure setup 61

– Cluster Name: Provide a cluster name. This publication used Primary_Cluster.

– File System name: Enter file system name. This publication used
RBHADRfileSystem.

Figure 4-19 GPFS Passive configuration

4. Save the pattern.

5. On the secondary rack, deploy the GPFS Passive pattern.

a. Before deploying, verify that the component attributes and settings are the same as the
pattern you just created.

b. Click Continue to Distribute.

c. You should see two components. The GPFS-Manager component has a blue dot next
to the VM. Move the cursor over the VM box. Click the Edit (Pencil) icon.

d. Select the storage volume that you configured earlier.

6. Attach the replicated storage volumes.

4.4.2 Active/Passive setup and takeover

This setup uses the GPFS Passive configuration, where the GPFS Primary server is
deployed on the primary data center (PDC-1) and the GPFS Passive server is deployed on
the secondary data center (SDC-1). As shown previously, in this configuration, both servers
use block storage. A replication pair is created between the two block storage volumes of the
GPFS server.
62 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

During the passive takeover, several manual steps are performed. The high-level steps that
are listed here are for information only:

1. On GPFS Primary server, select Prepare Primary for Takeover.

2. Perform manual Failover operation on the Passive Block Storage volume. This action
deletes the replication between the two block storage volumes.

3. On DR rack, for the GPFS Passive server, select Passive Takeover. This action makes
the GPFS Passive server the primary server.

4. On DR rack, redeploy GPFS Shared Service to point to the new GPFS Primary.

4.5 Deploy GPFS Shared Service

In order for a GPFS client to communicate with its GPFS server, it must supply an IP address
or communication key. To avoid manually configuring this information for each client, you can
deploy a GPFS shared service. The GPFS shared service can be configured with the IP
address or communication key. Deploy instances of this shared service in the same cloud
groups where future GPFS client deployments are expected. The shared service does not
need to reside in the same cloud group, or even the same PureApplication System rack, with
the GPFS server.

The following steps outline the procedure to deploy the GPFS shared service:

1. From the Workload Console, select Instances Shared Services Create New.

2. Select IBM Shared Service for GPFS (External) 1.2.0.0. See Figure 4-20.

Figure 4-20 GPFS Shared Service

Note: GPFS Clients can also be configured to point to an external GPFS server that is
deployed outside of a PureApplication System. At deployment time, the GPFS Client
provides the IP address for the main external GPFS server, and runs a set of script
packages to set up communication with the external GPFS server.
Chapter 4. Infrastructure setup 63

3. Get the client key from the GPFS-Manager server.

a. Select Instances Virtual Applications <Instance name>.

b. Click Manage.

c. Click the Operations tab.

d. Select GPFS-Manager.GPFS_Manager.

e. Expand Manage Keys Retrieve Keys.

f. Select Client.

g. Click Submit. After the operation finishes, in the Return Value field, click client
private key. The client private key should look similar to Figure 4-21.

Figure 4-21 Manager IP and private key file

h. Cut and paste the client key into GPFS Manager IP and Client Key.

4.6 External storage configuration

External storage was not configured for this book. Information about configuring external
storage is found in the “Configuring the system to use external storage devices” at:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extst
orage_cfg.dita
64 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_cfg.dita
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_cfg.dita

4.7 Network configuration and cloud resources configuration

This section provides a description of the network and cloud configuration for this publication.
The descriptions provided are for illustrative and guidance purposes only. Any naming
conventions and configurations are specific to the systems used for this project.

Perform networking and cloud configuration before any of the HADR scenarios are
implemented. See Chapter 3, “High availability and disaster recovery scenarios” on page 29
for a list of scenarios.

4.7.1 Network configuration

Configuring the network is dependent upon the scenarios you decide to implement. Some
scenarios consume more network resources than others. For example, scenario WAS_1:
WebSphere cell in the same rack (PDC-1 with transactions in GPFS requires far fewer IP
addresses than scenarios that implement the Business Process Manager pattern.

VLANs
A virtual local area network (VLAN) logically isolates its network traffic from that of other
VLANs on the same network as a separate broadcast domain. This means that the network
traffic of applications using two IP groups with different VLAN IDs transmits on (seemingly)
independent networks. PureApplication System does not define VLANs, which are defined in
the network by the network administrator. However, it does use VLANs extensively.
PureApplication System uses VLANs in two distinct ways: As a management VLAN or an
application VLAN.

Two VLANs were used. The VLAN configuration on the primary and secondary racks was the
same. One VLAN was used for data traffic and the other was used for cloud management.
The two VLANs configured are shown in Figure 4-22.

Figure 4-22 Sample VLAN configurations
Chapter 4. Infrastructure setup 65

4.7.2 Cloud resources configuration

Generally, cloud configuration in PureApplication System involves configuring IP groups,
cloud groups, compute nodes, and environment profiles. Configuration establishes
relationships among these resources. The relationship between these resources is shown in
Figure 4-23.

Figure 4-23 Relationship of cloud resources in PureApplication System

Compute nodes
A compute node is essentially a compact computer, rather like a blade server. As a computer,
a compute node can run an operating system. However, in PureApplication System, instead
of a traditional operating system, each compute node runs a hypervisor.
66 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The Intel-based systems used in this publication were both “mini” systems with four compute
nodes on each rack. An example rack configuration is shown in Figure 4-24. The primary
(PDC-1) and secondary (SDC-2) each had the same number of compute nodes.

Figure 4-24 Example of compute nodes on “mini” system

IP groups
An IP group is a set of IP addresses, expressed either as a list or a range. Because a network
does not work properly with duplicate IP addresses, each address in the group must be
unique and an address can belong to only one group. The group also has settings for the ID
of the VLAN to use for communication, and settings for how to connect to the external
network that the VLAN is part of. All of the addresses in the set must belong to the same
subnet of the external network, which is the one indicated by the netmask.

Four IP groups were configured on each of the racks. Each configuration was similar to the
one shown in the cloud group configuration in Figure 4-25 on page 69. Two IP groups were
used for data management (shown as associated with VLAN ID 171) and two IP groups were
used for cloud management. (shown as associated with VLAN ID 904).
Chapter 4. Infrastructure setup 67

The configurations in this Redbooks publication consumed a large number of IP addresses.
Before implementing these scenarios, work with your network administrator to reserve an
appropriate number of IP addresses. The IP group configuration is shown in Table 4-3.

Table 4-3 Sample IP group configuration

Cloud groups
A cloud group is a virtualized platform for running workloads, and acts like a logical computer.
You can also think of a cloud group as a cloud within a cloud, with PureApplication System
being the larger cloud. It accomplishes two main goals:

� System segmentation: It divides a PureApplication System into one or more logical
computers. Groups run isolated from each other.

� Compute node aggregation: It groups one or more compute nodes along with at least one
IP group into a logical computer that can have greater capacity than a single node.

A cloud group acts like a logical computer that is a virtualized platform. Here are some rules
that affect cloud groups:

� Each virtual machine that runs in a cloud group runs in one of the cloud group's compute
nodes and runs with an IP address from one of the IP groups.

� A particular compute node can belong to only one cloud group (at most). Typically, a cloud
group contains at least two compute nodes so that the group can keep running even if one
of the nodes fails. This configuration limits the number of cloud groups that a single
PureApplication System can support.

� A particular IP group can belong to only one cloud group (at most). Each cloud group also
requires its own management VLAN.

� Cloud groups create isolated runtime environments, such that workloads running in one
group are not affected by workloads running in another group.

IP group name VLAN Used for Number of
IP addresses

R4-v904-Data-10.14.1.x 904 Data 93

R4-v904-extMgmt 904 Cloud Management 249

R4-vlan171-1.externMgmt 171 Cloud Management 63

R4-vlan171-2 171 Data 93
68 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The cloud group configuration for this publication was externally managed with four IP groups
and two compute nodes as shown in Figure 4-25. This configuration was done by setting
Cloud Management to By way of external network. An externally managed cloud group
connects the management traffic of a virtual machine to an external VLAN, allowing the traffic
to be subject to external routing and firewalls when that traffic crosses VLANs. It also allows
virtual machines that are deployed to this cloud group to communicate with virtual machines
in other cloud groups or other systems for management and monitoring.

Figure 4-25 Cloud group configuration
Chapter 4. Infrastructure setup 69

Because the cloud group is externally managed, you need to configure extra IP addresses.
The IP addresses that you specify provide workloads in cloud groups managed by way of
external network access to the workload console and system console. The IP addresses you
specify are for the local system, not the remote system. The configuration is available from
the System Console by selecting System Network Configuration Additional IPs for
Cloud Management by way of External Networks. See Figure 4-26 for an example
configuration.

Figure 4-26 Additional IP configuration for externally managed cloud groups

Environment profiles
An environment profile defines policies for how patterns are deployed to one or more cloud
groups and how their instances run in the cloud group. To deploy a pattern, a user selects a
profile for running the deployment, which in turn specifies the cloud groups the deployer can
deploy patterns to. The deployer should think of the environment profile as the deployment
target.
70 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

For this publication, two environment profiles were created on each system. One profile was
configured for an internally managed network and the other profile used an externally
managed network. These configurations mean that the environment profile was associated
with an environment profile with Cloud Management set to By way of internal network or
By way of external network. Figure 4-27 shows an environment profile with associated
externally managed cloud groups.

Figure 4-27 Sample environment profile

4.8 Multisystem environment deployment

A multisystem environment consists of two or more systems that are connected to each other
physically (by networking) and logically (in a defined relationship). The systems in a
multisystem environment might be at the same or different geographic locations.

Besides being connected to one another, each system in this environment might have several
local and remote devices connected to it. In a multisystem environment, because systems are
interconnected, data can be moved through and between them, from any system to any
system. Similar to a single system environment, in a multisystem environment you continue to
access the resources in your cloud group and manage multiple environments from a single
console.

Note: Multisystem environment deployment is also referred to as “multi-rack” or
“multi-target” deployment. The official IBM name for this feature is multisystem
environment deployment.
Chapter 4. Infrastructure setup 71

PureApplication System provides continuous availability for key applications by deploying
across multiple systems in a multisystem environment. The multisystem environment
contains management domains and deployment subdomains. Systems that are part of a
multisystem environment are also referred to as locations.

You can use a multisystem environment to perform a number of tasks:

� Deploy virtual machines across multiple locations in a region.

� Determine whether application content across multiple system locations and data centers
is synchronized.

� Deploy patterns across multiple locations in a deployment subdomain.

� Manage catalog artifacts at different levels of granularity, including details for a single item,
across a management domain.

� Copy virtual system images from one system location to another within the management
domain.

� Edit script packages in the catalog and synchronize the changes to all system locations in
the management domain.

4.8.1 Management domains

A management domain is used to create a management relationship between two or more
PureApplication Systems. The systems associated with the management domain are called
locations. Locations included in the management domain can be geographically separated by
any distance. The systems, or locations, in a management domain can share patterns, users,
and other catalog content, which you can manage through a single common console
interface.

Systems in a management domain must share a common LDAP user repository, which
provides a common set of users across systems. User permissions must be set explicitly on
each system.

IP network connectivity is required between all systems. There is no limit on the number of
systems in a management domain. There is no limit on distance between systems in a
management domain.

4.8.2 Deployment subdomains

Up to two locations in the management domain can be further grouped into a deployment
subdomain. Locations in the same deployment subdomain add the additional capability to
share externally managed environment profiles and deploy multisystem pattern instances.
Membership in a deployment subdomain is limited to two systems. You can define any
number of deployment subdomains within a management domain.

To participate in a deployment subdomain, systems must be linked by a low-latency network
(generally geographically <300 km apart). Each system in a deployment subdomain must
have a minimum of 512 GB of storage available.

There is a requirement of a 1 GB iSCSI target that can be used as a tiebreaker if the systems
cannot contact each other.

As always, systems can be stand-alone systems and not belong to any management domain
or deployment subdomain.
72 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4.8.3 Additional requirements

There are several additional requirements regarding management domains and deployment
subdomains:

� You can remove a deployment subdomain from a management domain, but you cannot
remove a system location from within a deployment subdomain.

� Removing a deployment subdomain also removes any externally managed deployments
and environment profiles.

� When you remove a deployment subdomain, any locations that were part of that
deployment subdomain are returned to the pool of available locations to be added to
another deployment subdomain as needed.

� If a location is not a member of a deployment subdomain, you can remove the location
from the management domain as needed.

4.8.4 System configuration

There are several steps that you need to complete to configure systems for multisystem
deployment:

1. Configure IP addresses for external management.

2. Create a management domain.

3. Add locations to the management domain.

4. Create one or more deployment subdomains.

5. Add systems (locations) to a deployment subdomain.

6. Configure an iSCSI tiebreaker.
Chapter 4. Infrastructure setup 73

Configure IP addresses for external management
External management traffic requires an additional IP address for external system console
access. The external network must enable routes that connect these additional IP addresses
and the cloud management IP addresses. From the system console, click System
Network Configuration Additional IPs for Cloud Management by way of External
Networks. For Intel-based systems, configure IP address 2 for workload console access as
shown in Figure 4-28.

Figure 4-28 Additional IP address configuration for cloud management by way of external networks

For Power-based systems, an additional IP address, IP address 3 (not shown) is needed for
VM management.

Create a management domain
To create a management domain, complete these steps:

1. From the system console, select System Management Domain Configuration.

2. Click Create Management Domain.

3. Enter a name.

4. Click OK.
74 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

In the example shown in Figure 4-29, RedBooks HADR MR is the name of the management
domain.

Figure 4-29 Management domain

Add locations to the management domain
When you add a location (system) to the management domain, a trust relationship is created
between the systems that use OAuth. To add a location, the user must have the following
permissions:

� Manage hardware resources (full permissions)

� Manage security (full permissions)
Chapter 4. Infrastructure setup 75

Click Add Location and provide the following (see Figure 4-30):

� Peer management location: Target system’s management IP address.

� Trust user ID: User ID to log in to the target system and establish trust.

Figure 4-30 Add location to a management domain

4.8.5 Create one or more deployment subdomains

You can create a deployment subdomain after the management domain has been created.
From the system console, select the management subdomain. Click Create Deployment
Subdomain. Provide the name of the deployment subdomain.

Figure 4-31 shows a deployment subdomain that was configured for this publication.

Figure 4-31 Deployment subdomain
76 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Add systems (locations) to a deployment subdomain
Adding systems to the deployment subdomain is straightforward. After you add one or more
locations (see “Add locations to the management domain” on page 75), you can then drag the
system icons into the deployment subdomain as shown in Figure 4-32.

Figure 4-32 Add locations to deployment subdomain
Chapter 4. Infrastructure setup 77

Configure an iSCSI tiebreaker
An iSCSI tiebreaker is required to maintain data integrity and keep the deployment
subdomain operational in a PureApplication System failure. It enables functionality in case
members of a deployment subdomain are not able to communicate. The target must be at
least 1 GB and exist on a server outside both racks. Figure 4-33 shows a sample iSCSI
configuration.

Figure 4-33 iSCSI configuration

4.8.6 Cloud resources configuration

Multisystem environment configuration requires that cloud resources are configured to
support management traffic across systems. For single system deployment, this traffic travels
only on the internal IPv6. For multisystem environment deployment, this traffic travels
between systems on the data center and requires external IP addresses.

Three cloud resources must be configured to use an external network for managing
deployments across multiple system. Those cloud resources are listed below and discussed
in detail in this section.

� IP groups
� Cloud groups
� Environment profiles
78 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

IP groups
You can configure an IP group to be used for either data communication or management data
through the option Used For. For multisystem environment configurations, cloud
management IP groups are required. See Figure 4-34 for an example of an IP group that was
configured for this publication.

Figure 4-34 IP group that is used for cloud management

In this example, the IP group named R4-v904-extMgmt is used for cloud management.
Chapter 4. Infrastructure setup 79

Cloud groups
For a cloud group to participate in a multisystem configuration, it must be configured so it can
be managed by way of an external network. When you configure a cloud group, you are
presented with two options for cloud management, either By way of an internal network or
By way of an external network. Select By way of an external network so that cloud group
management data travels on the data center network outside the system. An example of this
configuration is shown in Figure 4-35. Notice that two IP groups that are used for cloud
management are part of the cloud group.

Figure 4-35 Cloud group that is managed by way of an external network

In this example, the cloud group named RedBooksHADR External CG performs its cloud
management by way of an external network. Two associated IP groups are used for cloud
management. One of the IP groups is shown in Figure 4-34 on page 79.
80 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Environment profiles
In a manner similar to IP groups and cloud groups, you can configure environment profiles so
that they are targets for virtual machines deployed to an externally managed network. The
field that you must configure is named Network and can have values of either Internally
Managed or Externally Managed as shown in Figure 4-36.

Figure 4-36 Externally managed environment profile

In this example, the externally managed environment profile named RedBooks HADR
External deploys the cloud group named RedBooks External CG, which is a cloud group
that is managed by way of an external network.

4.9 DNS setup for primary and secondary (cross) rack
scenarios

In several scenarios, there are situations where applications (workloads) need to have the
same host name on the primary data center (PDC) and secondary data center (SDC). This
situation is needed to help recover possible unfinished in-flight transaction stored in
transaction logs in replicated block storage. These duplicated network host names might
cause host name conflict. In the case that the PDC is presumed unavailable, the original host
names should not be used at the time the SDC uses them.

Host names need to be set aside and made exclusively accessible only for use by certain
workloads on both PDC and SDC. In summary, IP groups must be allocated to own these
host names on both sites. Additionally, a private DNS must be designated just for that special
IP group at the SDC.
Chapter 4. Infrastructure setup 81

4.9.1 Network setup

The DNS configuration task must be done on both PDC and SDC. Complete these planning
steps to implement the necessary DNS setup:

1. The deployer needs to decide how many IPs need to be reserved for the deployment.

2. The networking department must set aside IPs and host names for use at both the PDC
and the SDC.

3. Create IP groups and environment profiles on both sites and restrict other users from
using these resources.

After the planning work is done, the implementation work can be done in the following
sequence:

1. Set up the DNS at the PDC.

2. Set up the IP group and environment profile at the PDC.

3. Set up the DNS at the SDC.

4. Set up the IP group and environment profile at the SDC.

The details of this configuration are shown in the following sections.

� Set up the DNS at the PDC
� Set up the IP group and environment profile at the PDC
� Set up the DNS at the SDC (includes Set up the IP group and environment profile at the

SDC)

Set up the DNS at the PDC
There is no special DNS configuration that is needed at the PDC. The networking
administrator needs to ensure all the reserved IP addresses are available and their host
names are registered to the DNS.

Set up the IP group and environment profile at the PDC
Compete these steps to set up the IP group and environment profile at the PDC:

1. Set up an IP group for the workload’s DR operation.

2. Create an environment profile that contains the IP group, or add the IP group to an existing
environment profile. This is done so that when deploying the patterns, the system can
choose IP addresses automatically from the designated IP group.
82 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Set up the DNS at the SDC
More care is needed when setting up the DNS at the SDC:

1. Create a DNS that maps all the reserved host names to the local IP addresses.

2. Configure PureApplication System to use that DNS. Details are shown in Figure 4-37.

a. From the System Console, select System Settings Domain Name Service
(DNS).

b. Expand that section and add the special DNS as the only DNS for the system.

Figure 4-37 Special DNS entry
Chapter 4. Infrastructure setup 83

3. Create an IP group as shown in Figure 4-38 and ensure that you have at least one IP
address selected from the reserved IP range in it. You need to use the special DNS as the
primary DNS and provide no secondary DNS.

a. From the System Console, select Cloud IP Groups.

b. Click New in the upper left corner.

c. Enter the special DNS IP for the Primary DNS.

d. Add one IP address from the reserved list.

e. Fill the remainder of the required information.

Figure 4-38 IP group that uses special DNS

Note: The requirement for adding at least one IP address is a temporary
requirement only. A future release or fix pack will remove this requirement.
84 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Create an Environment Profile for deployments. Because the deployer at the SDC needs
to pick a particular host name for each VM, do not set the IP addresses provided by field
to IP Group. Instead, set the field to Pattern Deployer. The environment profile must
include the special IP group designated for the deployment. See Figure 4-39 for details.

a. From Workload Console, select Cloud Environment Profiles.

b. Be sure to select the IP group in the Deploy to cloud groups section.

c. Select Pattern Deployer for the IP addresses provided by field.

Figure 4-39 Environment profile

4.10 Network configuration for WebSphere Application Server
and DB2 scenarios

Because of specific DNS configurations need for several scenarios involving WebSphere
Application Server and DB2, you must configure networking in the PDC and SDC differently
depending on the scenario.
Chapter 4. Infrastructure setup 85

4.10.1 PDC

On the PDC side, set aside an IP group for WebSphere Application Server VMs. The name
resolution of this IP group goes through the same site DNS chain setup for the PDC. There is
no need for a special DNS for this IP group. This IP group is set up to reserve a set of host
names for WebSphere Application Server VMs. Provide this set of host names to the SDC
networking people so that they can configure an IP group designated for WebSphere
Application Server VMs using those host names. Figure 4-40 shows an example of such an
IP group. The IP group and IP HADR are set aside for WebSphere Application Server
deployments only.

For this publication, IP addresses were set aside ranging from 172.20.95.1 to 172.20.95.40
and their corresponding host names from ipas-hadr-001.purescale.raleigh.ibm.com to
ipas-hadr-040.purescale.raleigh.ibm.com for use by WebSphere Application Server VMs.

Figure 4-40 IP address range and corresponding host names
86 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

For the Environment Profile used by WebSphere Application Server, ensure that it includes
the IP Group that was reserved. In this scenario, the IP Group is IPAS® HADR. Figure 4-41
shows how to include it in the environment profile.

Figure 4-41 Include IP groups in environment profile

4.10.2 SDC

On the SDC side, the DNS setup is more complex than that on the PDC. The IP addresses
assigned to WebSphere Application Server VMs must be assigned manually instead of
automatically by the IP group. The deployer must find the IP address that has the exact host
name for its corresponding VM. For instance, the host name of the WebSphere Custom
Node1 on SDC must be the same as that of the Custom Node1 on PDC. If the host name is
ipas-hadr-010.purescale.raleigh.ibm.com on the PDC, the deployer must find the IP
address, for example 172.20.71.10, for the host name on the SDC.

Because of that restriction, the host name resolution for this particular IP group cannot go
through the common site DNS. Instead, it needs to have its own local DNS. Notice that in
Figure 4-42 on page 88, the primary DNS is not used by other IP groups and there is no
secondary DNS lookup for this IP group. Also, note that Figure 4-42 on page 88 shows that
there is one IP address listed in the IP group. That does not mean that there is only one IP
address for WebSphere Application Server to use. As you assign an address to a VM, that
address is added to the list. You need to know the range of all available IP addresses that are
reserved for WebSphere Application Server before you can assign one to a WebSphere
Application Server VM at deployment time. The list in the interface shows only IPs that are
occupied (being assigned), and thus not available for subsequent assignment.

Note: When you create the special IP group without specifying any available IP, the system
returns an error and does not allow you to continue. This condition will be fixed in a future
release. As a workaround, leave one IP in the IP group.
Chapter 4. Infrastructure setup 87

Figure 4-42 Using local DNS and no secondary DNS
88 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 5. High availability and disaster
recovery scenarios for DB2

This chapter describes how to implement DB2 solutions on IBM PureApplication System that
provides High Availability and Disaster Recovery. A number of scenarios, as previously
described in Chapter 3, “High availability and disaster recovery scenarios” on page 29, are
continued in this chapter. Other scenarios exist, but this chapter covers only the ones that are
tested and further documented within this publication.

Table 5-1 provides an overview of the four scenarios. All scenarios provide high availability
(HA) through the DB2 high availability disaster recovery (HADR) mechanism. However, not all
scenarios involve deployment across both the Primary Data Center (PDC) and the Secondary
Data Center (SDC). The deployment has implications for disaster recovery (DR), which is
only in place when DB2 is deployed across both data centers.

Table 5-1 Overview of the DB2 scenarios.

This chapter assumes that the following listed items are in place:

� Two Intel W1500/W2500 IBM PureApplication Systems set up in different data centers

� Firmware 2.0.0.0 installed on both systems

� Block Storage Replication enabled as described in Chapter 4, “Infrastructure setup” on
page 47

� DB2 10.5 Virtual System Patterns installed

5

Scenario PDC SDC HA DR

DB2_1 Yes No Yes No

DB2_2 Yes Yes Yes Yes

DB2_3 Yes Yes Yes Yes
© Copyright IBM Corp. 2015. All rights reserved. 89

Throughout this chapter, the Default DB2 OLTP Pattern with HADR for Linux shown in
Figure 5-1, is used as a basis.

Figure 5-1 DB2 Virtual System Patterns available on W1500/W2500 PureApplication System 2.0.0.0

Unlike the classic Virtual System Patterns, this pattern no longer uses the Hypervisor Edition
images. Instead, a Software Component is used to install the DB2 product on an image that
contains only the operating system. As described in 1.2.6, “Multisystem deployments” on
page 8, this approach brings several advantages including multi-target deployment, whereby
a single pattern can be deployed across two PureApplication Systems.

This chapter includes the following sections:

� Introduction to DB2 HADR
� DB2 Client Setup
� Building a DB2 Virtual System Pattern
� Scenario DB2_1
� Scenario DB2_2: Two systems using a single pattern
� Scenario DB2_3: Two systems using block storage replication
� Validation
� Testing for outages

Note: The instructions provided here are specifically for the Intel W1500/W2500 models.
However, these scenarios should work equally on the Power W1700/W2700 models,
although there can be minor differences in the instructions.
90 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.1 Introduction to DB2 HADR

DB2 HADR is a feature available in DB2 10.5 Enterprise Edition and earlier releases. This
mechanism allows a single DB2 database to be deployed across two hosts and connected
over the network. Although this is not something within the scope of this book, some of the
fundamentals are covered briefly. The following link provides more details about DB2 HADR:

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.
doc/doc/c0011724.html

5.1.1 Primary, standby, and log shipping

When configured for HADR, a DB2 database on each system gets assigned the role of
primary or standby. DB2 clients connect to the primary database, but transactions committed
there are sent across to the standby database by shipping the transactions logs. This process
is also referred to as log shipping. DB2 HADR provides the following four listed options to
perform the log shipping:

� Super asynchronous
� Asynchronous
� Near synchronous
� Synchronous

Figure 5-2 shows the four options for log shipping.

Figure 5-2 DB2 HADR provides four different options to keep the standby in sync with the primary

Each option has different characteristics. Synchronous ensures absolute consistency
between the primary and the standby. however, this comes at a cost of increased latency. The
other options cannot ensure consistency, but have a smaller increase in latency.

5.1.2 DB2 client and automatic client rerouting

A DB2 database that is configured for HADR requires the DB2 client to connect to the
primary. However, if the primary has a planned or unplanned outage, the standby takes over
and effectively becomes the new primary.
Chapter 5. High availability and disaster recovery scenarios for DB2 91

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0011724.html

A DB2 client normally automatically retrieves the host name and port of the standby server
when it connects to the DB2 database of the primary for the first time. This information
ensures that the DB2 client can automatically fail over its connection to the standby server in
case of an outage. This mechanism is also known as DB2 Automatic Client Rerouting (ACR).

In a scenario where the DB2 client has never connected to the primary before an outage
occurs, ACR does not allow the DB2 client to connect to the new primary (standby).
Depending on the type of DB2 client, there are ways to prevent this occurrence. For example,
when using the DB2 JCC JDBC Provider, you can specify the host name and port for the
standby server as custom properties on the data source. You can find more details about that
process by using the following link:

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java
.doc/src/tpc/imjcc_c0056186.html

ACR is a complex subject. Additional information and more background is available by using
the following links:

http://www.ibm.com/support/docview.wss?uid=swg21394840

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/DB2HADR/pag
e/Client%20Reroute

5.2 DB2 Client Setup

To be able to perform failover scenarios with DB2, a DB2 client is needed to prove the
availability of a DB2 database. For example scenarios where WebSphere and DB2 are
combined (which means WebSphere is the DB2 client), see 3.4, “HADR scenarios for
WebSphere Application Server and DB2” on page 39.

This chapter uses a simple DB2 CLI client. This following section describes how this client is
set up and configured.

5.2.1 Deploy DB2 client on PureApplication System

To quickly set up a DB2 client, a simple DB2 Virtual System Pattern is built and deployed.
This pattern can be used to perform a DB2 server installation and set up a DB2 instance, and
includes a DB2 client. The scenario that is used in this chapter does not use the DB2 server
or instance, but does use the DB2 client run time.

Note: Using the same DB2 Software Component for the DB2 client has an advantage. The
client is using the exact same version of DB2 as the DB2 HADR server environments that
are used for the various scenarios.
92 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_c0056186.html
http://www.ibm.com/support/docview.wss?uid=swg21394840
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/DB2HADR/page/Client%20Reroute

Figure 5-3 shows the scenario’s DB2 client Virtual System Pattern.

Figure 5-3 DB2 Virtual System Pattern to deploy a DB2 client

5.2.2 Configure DB2 client

Before connecting to a DB2 database, you must configure the DB2 client. See 5.7.1,
“Configure the DB2 client” on page 160 for more details about how to do this configuration.

5.3 Building a DB2 Virtual System Pattern

As mentioned at the start of this chapter, the Default DB2 OLTP Pattern with HADR for
Linux is used for the DB2 scenarios that are described in this chapter. However, a number of
small modifications to this Virtual System Pattern are needed. Those changes are described
in this section.
Chapter 5. High availability and disaster recovery scenarios for DB2 93

5.3.1 Cloning the Default DB2 OLTP Pattern with HADR for Linux

Instead of making the changes directly in the original pattern provided by IBM, this process
creates a copy of the pattern and uses the following steps to make the changes in the copy:

1. From the Workload Console, select Patterns Virtual System Patterns and filter for
Default DB2 (see Figure 5-4).

Figure 5-4 Filter for Default DB2

2. Click the Clone icon (shown in Figure 5-4 in the lower right) and specify a name for the
new pattern. This example uses ITSO DB2 OLTP HADR Pattern for the name. Also, ensure
that Core OS 2.1.0.0 42 has been selected as the virtual image (see Figure 5-5).

Figure 5-5 Configuring the clone

3. After a short time, you should see a notification that the new pattern has been created
(see Figure 5-6).

Figure 5-6 Notification message
94 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Go to Patterns Virtual System Patterns, and this time filter for ITSO. You should see
the newly created pattern appear (see Figure 5-7).

Figure 5-7 New pattern verification

5.3.2 Modifying the new pattern, ITSO DB2 OLTP HADR Pattern

With the new pattern created, you can start modifying it. The changes described in this
section are for the test purposes of this book. For actual implementations, more modifications
might be required including the use of block storage.

To modify the pattern, complete the following steps:

1. From the Workload Console, select Patterns Virtual System Patterns. Find the newly
created pattern by filtering for ITSO and click the Edit icon to open the pattern in the
Pattern Builder (see Figure 5-8).

Figure 5-8 Edit the pattern

Note: The use of block storage with DB2 on PureApplication System 2.0 can bring a
number of tangible benefits, including the ability to clone and resize the actual storage. The
use of block storage also allows for replication of data to another system.

Using block storage is simple. You can replace the Default add disk add-on with Default
attach block disk.
Chapter 5. High availability and disaster recovery scenarios for DB2 95

2. The Pattern Builder opens in a new window, you should recognize the name of the pattern
that is shown in the right corner (see Figure 5-9).

Figure 5-9 Pattern in the Pattern Builder

3. Next, rename the parts (Virtual Machines), the Software Components, and the Script
Packages as noted in the following actions: (see Figure 5-10 on page 97)

a. Rename part OS Node to DB2 VM one.
b. Rename part OS Node 1 to DB2 VM two.
c. Rename Software Component DB2 Server to DB2 Server one.
d. Rename Software Component DB2 Server 1 to DB2 Server two.
e. Rename Script Package primary database to primary database - ITSO.
f. Rename Script Package standby database to standby database - ITSO.
96 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 5-10 Renaming parts, software components, and script packages

4. Now review, modify, and lock the other pattern-level parameters. Pattern level parameters
are defined at the pattern level and can be referenced from Script Packages and Add-ons.
Table 5-2 shows the pattern parameters, values, and whether they are locked or not.

Table 5-2 Overview of pattern parameters and locking information

Parameter Value Locked?

databaseName itso Yes

databaseUser itsouser Yes

Password (root) No

Password (virtuser) No

Virtual CPUs 1 Yes

Memory size (MB) 4096 Yes

Reserve physical CPUs False Yes

Reserve physical memory True Yes

Fenced user group db2fadm1 Yes

Fenced user db2fenc1 Yes

Password (Fenced user) No

Instance owner group db2iadm1 Yes

Instance name db2inst1 Yes
Chapter 5. High availability and disaster recovery scenarios for DB2 97

5. Set all the pattern level parameters, as shown previously in Table 5-2 on page 97, by
repeating the following steps used to set the parameter databaseName:

a. Find the parameter databasaName in the Pattern Builder (under Pattern-level
parameters located to the right side of the window).

b. Change the value to itso.

c. Click the Lock icon to lock the value of this parameter. This helps speed up
deployment as you will not have to specify or review this aspect at time of deployment
(see Figure 5-11).

Figure 5-11 Locking a parameter value

6. Finally, to simplify deployment of the pattern, lock the parameters for the disk add-ons
noted in the following list: (see Figure 5-12 on page 99)

– disk for db2 instance_primary

– disk for db2 instance_standby

– disk for database data_primary

– disk for database data_standby

Password (Instance owner) No

Database compatibility mode DB2 (default) Yes

DB2 Service Port 50000 Yes

localHADRSevPort 55555 Yes

remoteHADRSevPort 55555 Yes

databaseImage Yes

databaseUserPassword No

databaseTerritory US Yes

databaseCodeset UTF-8 Yes

databasePageSize 4 Yes

databaseCollate SYSTEM Yes

Parameter Value Locked?
98 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 5-12 Lock disk add-ons to save time at deployment

7. With all the changes made, click Save to save the pattern

5.3.3 Optional: Multiple HADR databases

The pattern created in the previous section can easily be extended to deploy multiple HADR
databases using the same pattern. This scenario is common for many clients. To complete
this option, build a new pattern using the pattern (ITSO DB2 OLTP HADR Pattern) by following
these steps:

1. From the Workload Console, select Patterns Virtual System. Find the pattern ITSO
DB2 OLTP HADR Pattern by filtering for ITSO and click the Clone icon to create a copy. The
Clone icon is in the lower right corner (see Figure 5-13).

Figure 5-13 Filtering and cloning the pattern
Chapter 5. High availability and disaster recovery scenarios for DB2 99

2. Provide a name for the new pattern, for example ITSO DB2 OLTP HADR Pattern with two
databases. Also, make sure that the image IBM OS Image for Red Hat Linux Systems
2.1.0.0 42 is used (see Figure 5-14).

Figure 5-14 Naming pattern and selecting virtual image

3. After a short time, you should see a notification that the new pattern has been created
(see Figure 5-15).

Figure 5-15 Verification of pattern creation

4. Select Patterns Virtual System Patterns and filter for ITSO.

5. Select the newly created pattern, ITSO DB2 OLTP HADR Pattern with two databases.

6. Click the Edit icon to open the pattern in the Pattern Builder (see Figure 5-16).

Figure 5-16 Editing the newly created pattern
100 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

7. With the pattern opened in the Pattern Builder, add two Script Packages to the pattern for
the second HADR database by using the following steps:

a. Expand the Scripts section on the left side and filter for HADR. You then see the Script
Packages, CreateDB_HADRPrimary and CreateDB_HADRStandby. These are the Script
Packages that you are adding to the pattern (see Figure 5-17).

Figure 5-17 Identifying Script Packages by filtering for HADR
Chapter 5. High availability and disaster recovery scenarios for DB2 101

b. Add the Script Package CreateDB_HADRStandby to DB2 VM two, by dragging the script
package and dropping it onto that VM (see Figure 5-18).

c. Add the Script Package CreateDB_HADRPrimary to DB2 VM one, by dragging the script
package and dropping it onto that VM (see Figure 5-18).

Figure 5-18 Adding script packages

8. Rename the Script Packages just added to reflect the name of the second HADR
database: ITSO2:

a. Rename CreateDB_HADRStandby, in DB2 VM two, to standby database - ITSO2.

b. Rename CreateDB_HADRPrimary, in DB2 VM two, to primary database - ITSO2.
102 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

9. With the script packages renamed, you now need to define and change some of the script
packages parameters. Change the parameter, Database name, for the Script Package
standby database - ITSO by using the following steps: (see Figure 5-19):

a. Find the parameter in the right side and click the Delete icon to delete the current
value, ${pattern.databaseName}. Note that this is a reference to a pattern-level
parameter, so you are effectively breaking the reference.

Figure 5-19 Changing the parameter for database name

b. With the value removed, now specify itso as the name for the database.

c. Finally, lock the parameter by clicking the Lock icon (see Figure 5-20).

Figure 5-20 Locking the database name parameter

Note: When renaming, do not use capital letters because the Script Package only
accepts a string without any capitals. The actual name of the DB2 database is not
case sensitive. Also, keep in mind that the name of a DB2 database is limited to
eight characters.
Chapter 5. High availability and disaster recovery scenarios for DB2 103

10.In a similar fashion, make changes for the parameters of the Script Packages for the ITSO
database, as shown in Table 5-3.

Table 5-3 Values for Script Package parameters

11.Now you need to populate the parameters for the Script Packages of the ITSO2 database.
It is not uncommon to notice a Warning icon on both virtual machines in the Pattern
Builder shown in Figure 5-21. This is a result of some parameters (properties) not being
defined for the Script Packages of the ITSO2 database.

Figure 5-21 Warnings in the Pattern Builder highlighting parameters that need to be defined

12.To update the parameters of the ITSO2 database, the steps are similar to the ones
previously described. However, they now include references to pattern-level parameters.
Use the following steps to continue this process:

a. Change the parameter, Instance name, for the Script Package standby database -
ITSO2. To do so, find the parameter and click the Add reference icon (see
Figure 5-22).

Figure 5-22 Changing the parameter for Instance name

Standby database - ITSO Primary database - ITSO

Database name itso ${standby database -
ITSO.databaseName}

HADR local service name 55555 55555

HADR remote service name 55555 55555
104 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

b. In the dialog window, select component-level parameter. Select DB2 Server two as
the component, and instanceName as the Output attribute. Click Add to generate the
Output value. Your results should be similar to those shown in Figure 5-23.

Figure 5-23 Adding a reference

c. Click OK to add the reference. You should notice that the value of the parameter is now
grayed out and locked, which is normal when you add references (see Figure 5-24).

Figure 5-24 Parameter with value locked by adding a reference
Chapter 5. High availability and disaster recovery scenarios for DB2 105

13.Complete the list of parameters for the Script Packages, standby database - ITSO2 and
primary database - ITSO2, as shown in Table 5-4. Some of these parameters are only
applicable to the primary database - ITSO2.

Table 5-4 Values and references for Script Package parameters.

Parameter Standby
database -
ITSO2

Locked? Primary
database -
ITSO2

Locked?

Instance name ${DB2 Server
two.instanceNam
e}

Yes ${DB2 Server
one.instanceNam
e}

Yes

Instance owner
group

${DB2 Server
two.instanceOwn
erGroup}

Yes ${DB2 Server
one.instanceOwn
erGroup}

Yes

Instance port ${DB2 Server
two.instancePort}

Yes ${DB2 Server
one.instancePort
}

Yes

HADR local
service name

55556 Yes 55556 Yes

HADR remote
service name

55556 Yes 55556 Yes

Standby host
name

(N/A) (N/A) ${standby
database -
ITSO2.host

Yes

Standby IP (N/A) (N/A) ${standby
database -
ITSO2.ipaddr}

Yes

Standby instance
name

(N/A) (N/A) ${standby
database -
ITSO2.instanceN
ame}

Yes

Standby owner
group

(N/A) (N/A) ${standby
database -
ITSO2.instanceO
wnerGroup}

Yes

Standby instance
port

(N/A) (N/A) ${standby
database -
ITSO2.instanceP
ort}

Yes

HADR sync
mode

(N/A) (N/A) SYNC No

Database name itso2 Yes itso2 Yes

Description Yes Yes

Database image ${pattern.databa
seImage}

Yes ${pattern.databa
seImage}

Yes

Database user ${pattern.databa
seUser}

Yes ${pattern.databa
seUser}

Yes
106 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

14.The following pattern-level parameters can now be deleted because they no longer serve
a purpose. Also, note that they are not referenced by any of the Script Packages:

– databaseName
– localHADRSevPort
– remoteHADRSevPort

a. To delete these parameters, go the Pattern-level parameters, find the parameter, and
click the Delete icon to remove them (see Figure 5-25).

Figure 5-25 Deleting pattern-level parameters

Database user
password

${pattern.databa
seUserPassword

Yes ${pattern.databa
seUserPassword

Yes

Data mount point ${disk for
database
data_standby.MO
UNT_POINT}

Yes ${disk for
database
data_primary.MO
UNT_POINT}

Yes

Database
territory

${pattern.databa
seTerritory}

Yes ${pattern.databa
seTerritory}

Yes

Database
codeset

${pattern.databa
seCodeset}

Yes ${pattern.databa
seCodeset}

Yes

Database page
size

${pattern.databa
sePageSize}

Yes ${pattern.databa
sePageSize}

Yes

Database collate ${pattern.databa
seCollate}

Yes ${pattern.databa
seCollate}

Yes

Parameter Standby
database -
ITSO2

Locked? Primary
database -
ITSO2

Locked?
Chapter 5. High availability and disaster recovery scenarios for DB2 107

b. You should see that no mappings are present for the parameter. Confirm the deletion of
the parameter by clicking OK (see Figure 5-26).

Figure 5-26 Confirmation of no mapping and deletion of parameter
108 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.4 Scenario DB2_1

For this scenario, you deploy a DB2 primary and standby database to a single
PureApplication System in the PDC. Figure 5-27 shows the scenario. DB2-P stands for the
primary database, and DB2-S for the standby database.

Figure 5-27 Scenario DB2_1 - DB2 primary and standby on the same system in the PDC

DB2-P DB2-S

Rack PDC-1

Sync

Notes:
• Single DB2 HADR pattern
deployed on the same rack

Virtual System
Pattern=
Chapter 5. High availability and disaster recovery scenarios for DB2 109

5.4.1 Deployment

For this scenario, you deploy the Virtual System Pattern, ITSO DB2 OLTP HADR Pattern. See
5.3, “Building a DB2 Virtual System Pattern” on page 93 for more details about this Virtual
System Pattern. Figure 5-28 shows the ITSO DB2 OLTP HADR Pattern. Note that block storage
is not used in this pattern.

Figure 5-28 Virtual System Pattern, ITSO DB2 OLTP HADR Pattern

For this deployment, use the environment profile named Redbooks HADR Internal Profile.
This is a standard environment profile, which does not allow for pattern deployments across
multiple PureApplication Systems. This type of environment profile uses an internally
managed network, as shown in Figure 5-39 on page 115. The status of the environment
profile must also be valid. The status is valid if the current status shows as: Environment
profile can now be used for deployments, also shown in Figure 5-29.

Figure 5-29 Environment Profile that supports deployments within a single system.
110 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

To deploy a specific pattern, use the following steps:

1. From the Workload Console, go the Patterns Virtual System Patterns and filter for
itso. Then find the pattern ITSO DB2 OLTP HADR Pattern.

2. Click the Deploy icon as shown in Figure 5-30.

Figure 5-30 Deploying Virtual System Pattern, ITSO DB2 OLTP HADR Pattern

3. The deployment window opens in a new browser tab. Use the following steps to address
the various parameters and attributes:

a. Specify the following generic deployment parameters:

• Name
• Environment profile
• Priority
• SSH key

b. Specify the Pattern and Component attributes. Table 5-5 provides more details about
each attribute.

Table 5-5 Attributes for deployment of ITSO DB2 OLTP HADR Pattern

Note: Make sure to specify the correct environment profile.

Attribute Type Value

Password (root) Pattern attribute ********

Password (virtuser) Pattern attribute ********

Password (Fenced user) Pattern attribute ********

Password (Instance owner) Pattern attribute ********

databaseUserPassword Pattern attribute ********

HADR sync mode Component attribute
(DB2 VM one)

SYNC
Chapter 5. High availability and disaster recovery scenarios for DB2 111

After all the information has been entered, the window should look like Figure 5-31.

Figure 5-31 Deployment window for deployment of ITSO DB2 OLTP HADR Pattern

4. Click Continue to Distribute. The following message is shown while the system is
preparing for this step (see Figure 5-32).

Figure 5-32 Verification message

5. The next window, shown in Figure 5-33, is where you assign the two different virtual
machines to various Cloud Groups and IP Groups. However, in this example, the
Environment Profile deploys to a single Cloud Group and IP Group. Notice that both virtual
machines are assigned to Cloud Group Shared and IP Group R4-vlan171 in the
PureApplication System (with serial number 1000202).

Figure 5-33 Accepting the distribution of the two virtual machines before deployment.

Option: If your Environment Profile contains only a single Cloud Group and IP Group,
optionally at step 4, you can click Quick Deploy (instead of Continue to Distribute).
This starts deployment immediately.
112 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6. Click Deploy to start the deployment. You can review the status by clicking the link
provided (see Figure 5-34).

Figure 5-34 Link to status window

After the link is started, the deployment status window is displayed (see Figure 5-35).

Figure 5-35 Status of deployment

7. After approximately 15 minutes, the deployment should have completed. Figure 5-36
shows the result of a successful deployment for a single PureApplication System.

Figure 5-36 Successful deployment of ITSO DB2 OLTP HADR Pattern for a single system

5.4.2 Validation

See 5.7, “Validation” on page 160, for more details about how to prove that the deployed
solution does actually provide HADR for the deployed DB2 database.
Chapter 5. High availability and disaster recovery scenarios for DB2 113

5.5 Scenario DB2_2: Two systems using a single pattern

This scenario deploys a DB2 primary and standby database across two PureApplication
Systems in the PDC. Figure 5-37 shows the scenario, where DB2-P stands for the primary
database and DB2-S for the standby database.

Figure 5-37 Scenario DB2_2: DB2 primary and standby using two different systems for the PDC

DB2-P DB2-S

Rack PDC-1 Rack PDC-2

Notes:
• Single DB2 HADR pattern
deployed using multi-rack
deployment

Sync

Virtual System
Pattern=
114 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.5.1 Deployment

This scenario deploys the Virtual System Pattern, ITSO DB2 OLTP HADR Pattern. See 5.3,
“Building a DB2 Virtual System Pattern” on page 93 for more detail about this Virtual System
Pattern. Figure 5-38 shows the ITSO DB2 OLTP HADR Pattern. Note that block storage is not
used in this pattern.

Figure 5-38 Virtual System Pattern, ITSO DB2 OLTP HADR Pattern

This scenario assumes that you have set up the two PureApplication Systems in the PDC to
support multitarget deployment as described in Chapter 4, “Infrastructure setup” on page 47.
For this deployment, use the Environment Profile Redbooks HADR External, which supports
multitarget deployment. This type of Environment Profile uses an externally managed
network, as shown in Figure 5-39. The status of the Environment Profile must also be valid. If
the status is valid, the Current Status field states Environment profile can now be used for
deployments as shown in Figure 5-39.

Figure 5-39 Environment Profile that supports multitarget deployments
Chapter 5. High availability and disaster recovery scenarios for DB2 115

To deploy the Virtual System Pattern ITSO DB2 OLTP HADR Pattern across two
PureApplication Systems in the PDC, use the following steps:

1. From the Workload Console, go to Patterns Virtual System Patterns and filter for
itso.

2. Find the pattern ITSO DB2 OLTP HADR Pattern and click the Deploy icon (see Figure 5-40).

Figure 5-40 Deploying Virtual System Pattern ITSO DB2 OLTP HADR Pattern

3. The deployment window opens in a new browser tab. Within that window, use the following
steps to specify parameters and attributes:

a. Specify the following generic deployment parameters:

• Name
• Environment Profile
• Priority
• SSH key

b. In addition, you must specify Pattern and Component attributes. Table 5-6 provides
more details about these attributes.

Table 5-6 Attributes for deployment of ITSO DB2 OLTP HADR Pattern

Note: Make sure to specify the multi-rack Environment Profile.

Attribute Type Value

Password (root) Pattern attribute ********

Password (virtuser) Pattern attribute ********

Password (Fenced user) Pattern attribute ********

Password (Instance owner) Pattern attribute ********

databaseUserPassword Pattern attribute ********

HADR sync mode Component attribute
(DB2 VM one)

SYNC
116 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

After all information has been entered, the deployment window should look like
Figure 5-41.

Figure 5-41 Deployment window for deployment of ITSO DB2 OLTP HADR Pattern

4. Click Continue to Distribute. The message in Figure 5-42 is shown while the system is
preparing for this step.

Figure 5-42 Verification message

5. The next window, shown in Figure 5-43, is where you assign the two different virtual
machines to various Cloud Groups within both PureApplication Systems. By default, one
virtual machine is assigned to each PureApplication System. In this example, the systems
(with serial numbers 1000202 and 1000236) are used.

Figure 5-43 Distributing the two virtual machines across both PureApplication Systems

Note: By hovering the mouse over each virtual machine, you can review the IP Groups
for the Data and Management networks.
Chapter 5. High availability and disaster recovery scenarios for DB2 117

6. Click Deploy to start the deployment. You can review the status by clicking the link
provided (see Figure 5-44).

Figure 5-44 Clickable link to review status of deployment

After you click the link for checking the status, the status window displays (see
Figure 5-45).

Figure 5-45 Status window for deployment

7. After approximately 15 minutes, the deployment completes. Figure 5-46 shows the result
of a successful deployment across two PureApplication Systems using multi-rack.

Figure 5-46 Successful deployment of ITSO DB2 OLTP HADR Pattern using multi-rack.
118 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.5.2 Validation

See 5.7, “Validation” on page 160 for more details about how to prove that the deployed
solution provided HADR for the deployed DB2 database.

5.6 Scenario DB2_3: Two systems using block storage
replication

Not all clients have a multi-rack setup in place. However, even without a multi-rack setup, it is
still possible to deploy DB2 across two PureApplication Systems. Ultimately, all that the DB2
middleware requires for HADR is network connectivity between the two virtual machines
running the DB2 instances with the primary and standby database (see Figure 5-47).

Figure 5-47 Scenario DB2_3: DB2 primary and standby using two different systems for the PDC

To deploy this scenario, you need to build two separate patterns and deploy them to the two
different PureApplication Systems in the PDC.

Rack PDC-1 Rack SDC-1

Notes:
• Uses Block Storage
replication

DB2-P DB2-S DB2-P DB2-S

Replicate

Sync Sync

Virtual System
Pattern=
Chapter 5. High availability and disaster recovery scenarios for DB2 119

5.6.1 Adding block storage to Virtual System Pattern

Adding block storage requires you to build a new Virtual System Pattern that uses Block
Storage Volumes instead of normal Storage Volumes (which cannot be replicated between
systems). To create a pattern by cloning the existing pattern ITSO DB2 OLTP HADR Pattern,
use the following steps:

1. From the Workload Console, go to Patterns Virtual Systems. Filter for ITSO to find the
pattern ITSO DB2 OLTP HADR Pattern. Click Clone to clone the pattern (see Figure 5-48).

Figure 5-48 Filter and clone a pattern

2. Enter ITSO DB2 OLTP HADR Pattern with BS, in the name field. Verify that you select the
same virtual image as in the original pattern, which is listed on the right side under Virtual
images in the pattern.(see Figure 5-49).

Figure 5-49 Configuring the clone

3. Find the new pattern, ITSO DB2 OLTP HADR Pattern with BS, in the list. Click the Edit icon
to open the pattern in the Pattern Builder (see Figure 5-50).

Figure 5-50 Finding the pattern and clicking the edit icon
120 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Changing the pattern can be done through the graphical editor. However, this example
makes the changes by directly editing the corresponding source representation of the
pattern. In the Pattern Builder, click Source, to open the Source window. Click Edit to start
editing the source code for the pattern (see Figure 5-51).

Figure 5-51 Opening the source window to edit the pattern

5. Find the section in the source that has the four disk add-ons (corresponding to what is
shown in Example 5-1). You should see, four disk add-ons of type add-on:Default add
disk:1.0.0. Each of the two VMs has two of those disks that are associated with it. One is
associated with the DB2 instance (mounted at /myinst) and the other one for the actual
DB2 data (mounted at /db2data).

Example 5-1 The section for the four disk add-ons in the Virtual System Pattern source

{
"attributes": {

"VOLUME_GROUP": "group1",
"DISK_SIZE_GB": 10,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/myinst"

},
"id": "disk for db2 instance_primary",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
"VOLUME_GROUP",
"OWNER"

]
},
{

"attributes": {
"VOLUME_GROUP": "group2",
"DISK_SIZE_GB": 30,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/db2data"

},
"id": "disk for database data_primary",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
Chapter 5. High availability and disaster recovery scenarios for DB2 121

"VOLUME_GROUP",
"OWNER"

]
},
{

"attributes": {
"VOLUME_GROUP": "group1",
"DISK_SIZE_GB": 10,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/myinst"

},
"id": "disk for db2 instance_standby",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
"VOLUME_GROUP",
"OWNER"

]
},
{

"attributes": {
"VOLUME_GROUP": "group2",
"DISK_SIZE_GB": 30,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/db2data"

},
"id": "disk for database data_standby",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
"VOLUME_GROUP",
"OWNER"

]
},

6. For the primary and standby databases, change the type of disk from add-on:Default add
disk:1.0.0 to add-on:Default attach block disk:1.0.0. This change effectively
replaces the old disks with block storage disks. Change the type of disk for the following
databases:

– ID: disk for database _primary

– ID: disk for database _standby
122 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The sections, in bold in Example 5-2, show the source of the pattern after making these
changes.

Example 5-2 Pattern source with block storage disks for the databases incorporated

{
"attributes": {

"VOLUME_GROUP": "group1",
"DISK_SIZE_GB": 10,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/myinst"

},
"id": "disk for db2 instance_primary",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
"VOLUME_GROUP",
"OWNER"

]
},
{

"attributes": {
"FILESYSTEM_TYPE": "ext3",
"MOUNT_POINT": "/db2data"

},
"id": "disk for database data_primary",
"type": "add-on:Default attach block disk:1.0.0",
"groups": {}

},
{

"attributes": {
"VOLUME_GROUP": "group1",
"DISK_SIZE_GB": 10,
"FILESYSTEM_TYPE": "ext3",
"OWNER": "root",
"MOUNT_POINT": "/myinst"

},
"id": "disk for db2 instance_standby",
"type": "add-on:Default add disk:1.0.0",
"groups": {},
"locked": [

"DISK_SIZE_GB",
"FILESYSTEM_TYPE",
"MOUNT_POINT",
"VOLUME_GROUP",
"OWNER"

]
},
{

"attributes": {
"FILESYSTEM_TYPE": "ext3",
"MOUNT_POINT": "/db2data"
Chapter 5. High availability and disaster recovery scenarios for DB2 123

},
"id": "disk for database data_standby",
"type": "add-on:Default attach block disk:1.0.0",
"groups": {}

},

7. Click Done Editing to finish editing the source of the Virtual System Pattern. This action
automatically saves the pattern.

The new pattern, ITSO DB2 OLTP HADR Pattern with BS, created for the system in the PDC,
also needs to be made available for the SDC. See the following links for details about how to
export and import Virtual System Patterns:

http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_exportvsys.dit
a

http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_importvsys.dit
a

5.6.2 Block Storage configuration

Before deploying the new pattern, you need to define Block Storage Volumes on both
systems. Table 5-7 shows the different Storage Volumes that you need to create. These
Storage Volumes also need to be associated with a new Storage Group Volume on each
system.

Storage Volume Groups can be used to logically group a number of Storage Volumes. As the
Storage Volumes you create are for a single purpose, this is a useful opportunity for grouping
(also included in Table 5-7).

Table 5-7 Block Storage Volumes and their attributes as configured for this scenario

Note: The new pattern, when viewed in the Pattern Builder using the (default) graphical
interface Diagram tab, does not show any difference between the normal disk add-ons
and the Block Storage disk add-ons. However, the difference can be seen by inspecting
the parameters that they expose in the Pattern Builder.

Storage Volume Size (GB) System Cloud Group Storage Volume
Group

DB2_3 VM one -
PDC

10 PDC Shared DB2_3

DB2_3 VM two -
PDC

10 PDC Shared DB2_3

DB2_3 VM one -
SDC

10 SDC Shared DB2_3

DB2_3 VM one -
SDC

10 SDC Shared DB2_3
124 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_exportvsys.dita
http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_importvsys.dita

Define Storage Volume Groups
To define Storage Volume Groups, complete the following steps:

1. Log on to the System Console of the system in the PDC and select Cloud Storage
Volume Groups. Then click Create New (see Figure 5-52).

Figure 5-52 Create a Storage Volume Group

2. Specify the following field attributes for the new Storage Volume Group (see Figure 5-53):

a. Name: DB2_3

b. Description: Provide a useful description for the Storage Volume Group, this example
uses Storage volume group for scenario DB2_3

c. Cloud Group: Specify the name of the Cloud Group where you are deploying the
pattern to; this example uses the Cloud Group Shared

Figure 5-53

3. Click OK, to create the Storage Volume Group.

4. Repeat these steps to create the same Storage Volume Group on the system in the SDC.

Create Block Storage Volumes
With the Storage Volume Groups created, you can now create the Block Storage Volumes
and associate them with the appropriate Storage Volume Groups. To do so, complete the
following steps:

1. From the System Console of the system in the PDC, select Cloud Storage Volumes.
Then click Create New (see Figure 5-54).

Figure 5-54 Creating Block Storage volumes
Chapter 5. High availability and disaster recovery scenarios for DB2 125

2. Specify the following field attributes for the new Storage Volume (see Figure 5-55):

a. Name: DB2_3 VM one - PDC

b. Description: Provide a useful description for the Storage Volume, this example uses
Block storage volume of VM one in PDC

c. Type: Make sure to chose Block; this selection must be a Block Storage Volume to be
able to replicate it.

d. Storage Volume Group: Select the Storage Volume Group, DB2_3, that you created
previously.

e. Cloud Group: Select the Cloud Group that will be used for the deployment in the PDC.
In this example, use the Cloud Group, Shared.

f. Size: Specify 10 GB for the size of the new Storage Volume

Figure 5-55 Specifying the attributes for the new Storage Volume

3. Click OK to create it.

4. Create the second Block Storage Volume on the system in the PDC, and the two Block
Storage Volumes on the system in the SDC in a similar fashion. See Table 5-7 on
page 124 for the information that you need to provide.
126 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 5-56 shows the Storage Volume Group, DB2_3, and its two Block Storage Volumes on
the system in the PDC.

Figure 5-56 Block Storage Volume Group, DB2_3, on the system in the PDC

5.6.3 Deploy Virtual System Pattern on both systems

With the Block Storage Volumes defined in both systems, you can now deploy the Virtual
System Pattern. To do so, complete the following steps:

1. Go to the Workload Console of the system in the PDC and select Patterns Virtual
Systems.

2. Find the pattern, ITSO DB2 OLTP HADR Pattern with BS, and click the Deploy icon (see
Figure 5-57).

Figure 5-57 Deploying the Virtual System Pattern

Note: Replication type for the two Block Storage Volumes is listed as Asynchronous. This is
the default. After you set up synchronous replication, the information is updated to reflect
the change.
Chapter 5. High availability and disaster recovery scenarios for DB2 127

3. Several options are located to the left in the Deploy Pattern window. Specify the following
listed options and accept the default information for options not listed (see Figure 5-58):

a. Name: Provide a unique name, for this example use, ITSO DB2 OLTP HADR Pattern
with BS - DB2_3

b. Environment Profile: Choose the appropriate Environment Profile for the system in the
PDC. For this example, use Redbooks HADR Internal Profile.

c. SSH key: Although not required, it can be convenient to specify an SSH key for access
to the deployed VMs.

d. Storage Volume Group: Choose the Storage Volume Group, DB2_3, that you created
previously.

e. Cloud Group: Choose the Cloud Group that will be used for the deployment in the PDC.
For this example, use the Cloud Group, Shared.

f. Size: Specify 10 GB for the size of the new Storage Volume.

Figure 5-58 Configuring pattern options and fields

4. Under Pattern attributes (located to the right), specify a password for the following users:

– root
– virtuser
– Fenced user (db2fenc1)
– Instance owner (db2inst1)
– Database user (itsouser)

Note: The Cloud Group, Shared, matches the Cloud Group that you specified when
creating the Block Storage Volumes on the system in the PDC.
128 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. Under Component attributes (located to the right), select DB2 VM one and expand the
attributes for primary database - ITSO. For the HADR Sync Mode, select SYNC (see
Figure 5-59).

Figure 5-59 Configuring attributes and fields for the pattern before deploying

6. Click Continue to Distribute.

Note: The Quick Deploy option is grayed out because this pattern contains Block
Storage Volumes. At deployment time, you must specify whether to use existing Block
Storage Volumes or to create new ones. This example uses existing block storage
volumes.
Chapter 5. High availability and disaster recovery scenarios for DB2 129

7. Using the Distribute deployment window, hover the mouse over DB2_VM_one. Notice that
no Storage Volume has been associated yet for the primary database known as
disk_for_database_data_primary (see Figure 5-60).

Figure 5-60 Viewing associated Storage Volume for the primary database

8. To associate a storage volume, click the Edit icon for the Storage of DB2_VM_one. In the
window that opens, you see the drop-down menu for the Storage Volume. Select DB2_3
VM one - PDC (see Figure 5-61).

Figure 5-61 Select a Storage Volume for DB2_VM_one
130 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

9. Repeat steps 7 on page 130 and 8 on page 130 for DB2_VM_two, but select DB2_3 VM two
- PDC as the Storage volume (see Figure 5-62).

Figure 5-62 Select a Storage Volume for DB2_VM_two

10.You are now ready to deploy the pattern. Click Deploy to start the deployment. After a few
moments, you should see a notification that the new Virtual System Instance is starting.
Click the link to go to the Virtual System Instance and monitor the progress of its
deployment (see Figure 5-63).

Figure 5-63 Clickable link to verification and monitoring of deployment

11.After approximately 15 minutes, the deployment of the new Virtual System Instance
should have completed (see Figure 5-64).

Figure 5-64 Verify that Virtual System Instance has completed deployment
Chapter 5. High availability and disaster recovery scenarios for DB2 131

12.Repeat steps 1 on page 127 through 11 on page 131 to deploy the same pattern on the
system in the SDC. After completion, you should have a running Virtual System Instance
for the SDC (see Figure 5-65).

Figure 5-65 Verify that the Virtual System Instance has deployed for the SDC

5.6.4 Enable Block Storage replication

The DB2 HADR Virtual System Pattern is now running in both the PDC and SDC. Each
system has two Block Storage Volumes that hold the DB2 database data (for example
/db2data) for both the primary and standby DB2 VMs. Currently, these two Virtual System
Instances are running independently.

Next, make the necessary changes to start replicating the data of the Block Storage Volumes
from the PDC to the SDC. Block Storage Replication in PureApplication System mandates
that only the source Block Storage Volume can be attached to a VM, the target Block Storage
Volume must be detached.

Therefore, detach the two Block Storage Volumes from the Virtual System Instance in the
SDC. But before you take that step, you must stop the DB2 instances running on the virtual
machines of that Virtual System Instance.

Understanding Tivoli Storage Automation setup
Before you stop DB2 on the Virtual System Instance in the SDC, notice that the IBM Tivoli®
System Automation has been automatically configured by the pattern. As a result, a Tivoli
System Automation domain and a number of Resource Groups have been put in place.

The lsrpdomain command lists the domains. You can run this command from either of the
VMs in the Virtual System Instance. Example 5-3 shows the normal output of this command.

Example 5-3 The Tivoli System Automation domain, db2HAdomain, that is automatically set up

-bash-4.1# lsrpdomain
Name OpState RSCTActiveVersion MixedVersions TSPort GSPort
db2HAdomain Online 3.1.4.4 No 12347 12348

Note: It is currently not possible to simply stop the Virtual System Instance in the SDC. In
IBM PureApplication System 2.0.0.0, Block Storage Volumes can only be detached from
running VMs. Therefore, you need to manually stop the DB2 instances and then detach the
Block Storage Volumes.
132 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The lssam command can be used to obtain the status of the Resource Groups that exist
within the domain. Example 5-4 shows the output of this command. This command can be
run from either VM.

Example 5-4 The status of the various Tivoli System Automation Resource Groups

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Online IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
 |- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

Table 5-8 lists the three Resource Groups and explains their purposes. There is a Resource
Group corresponding to the DB2 instance on each of the two VMs in the Virtual System
Instance.

Table 5-8 Overview of the three Resource Groups

The Resource Group db2_db2inst1_db2inst1_ITSO-rg controls which “ITSO” database is the
primary and standby. The output of the command lssam also shows that the Application,
db2_db2inst1_ITSO-rs, is only Online on host ausipas088. This indicates that the primary
ITSO database is running on ausipas088. This is confirmed by issuing the command, db2pd
-hadr -db itso, and examining the field called HADR_ROLE, as shown in Example 5-5.

Example 5-5 ITSO database on ausipas088 is the primary

[db2inst1@ausipas088 ~]$ db2pd -hadr -db itso

Database Member 0 -- Database ITSO -- Active -- Up 0 days 04:51:44 -- Date
2014-11-04-13.02.47.705287

Resource group Description Expected status

db2_db2inst1_ausipas088_
0-rg

DB2 instance “db2inst1” on
host “ausipas088”

Online

db2_db2inst1_ausipas089_
0-rg

DB2 instance “db2inst1” on
host “ausipas089”

Online

db2_db2inst1_db2inst1_IT
SO-rg

Controls which database is the
primary and standby.

Online
Chapter 5. High availability and disaster recovery scenarios for DB2 133

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = ausipas088
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = ausipas089
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 11/04/2014 08:11:09.991581 (1415088669)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 150
 TIME_SINCE_LAST_RECV(seconds) = 7
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.000743
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 10.681
 LOG_HADR_WAIT_COUNT = 9983
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 19800
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000011.LOG, 563, 93141005
 STANDBY_LOG_FILE,PAGE,POS = S0000011.LOG, 563, 93141005
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000011.LOG, 563, 93141005
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 11/04/2014 12:24:33.000000 (1415103873)
 STANDBY_LOG_TIME = 11/04/2014 12:24:33.000000 (1415103873)
 STANDBY_REPLAY_LOG_TIME = 11/04/2014 12:24:33.000000 (1415103873)
 STANDBY_RECV_BUF_SIZE(pages) = 4298
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 25600
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 11/04/2014 13:04:40.000000 (1415106280)
 READS_ON_STANDBY_ENABLED = N

Stop DB2 on the Virtual System Instance in the SDC
After you review the information about the Tivoli System Automation Resource Group for the
DB2 instance on each VM, you can stop DB2 on the Virtual System Instance in the SDC
using Tivoli System Automation commands.
134 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

To stop the DB2 instance that is running the standby ITSO database, use the following steps:

1. Run the chrg command as shown in Example 5-6 to stop the corresponding Tivoli System
Automation Resource Group from Table 5-8 on page 133.

Example 5-6 Stopping the Resource Group corresponding to the standby DB2 database

-bash-4.1# chrg -o Offline db2_db2inst1_ausipas089_0-rg

2. Run the lssam command and notice the Resource Group for the DB2 instance on host,
ausipas089. Briefly, after running the command, the Resource Group becomes offline.
This action is shown in Example 5-7.

Example 5-7 Confirming that the Resource Group for the standby DB2 database instance is offline.

Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Offline IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online
 '- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=SuspendedPropagated
 |- Online
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

3. Log on to the host, ausipas089, to determine the status of the local DB2 instance. Run the
db2pd command. Example 5-8 shows that the db2pd command is unable to attach to the
database manager, which implies that the local instance is not running.

Example 5-8 Confirming that the DB2 instance on the standby host is no longer running

[db2inst1@ausipas089 ~]$ db2pd -hadr -db itso
Unable to attach to database manager on member 0.
Please ensure the following are true:
 - db2start has been run for the member.
 - db2pd is being run on the same physical machine as the member.
 - DB2NODE environment variable setting is correct for the member

Note: When running the chrg command to stop the Tivoli System Automation Resource
Group, the command must be run as root.
Chapter 5. High availability and disaster recovery scenarios for DB2 135

 or db2pd -mem setting is correct for the member.
Another possibility of this failure is the Virtual Address Space Randomization
is currently enabled on this system.

4. With the DB2 instance on ausipas089 stopped, there should be no open files in /db2data.
The location (/db2data) is the block storage where the data for the ITSO database is
stored. Run the lsof command as shown in Example 5-9 to verify that there are no open
files. If the command does not return any data, it means that there are no open files in
/db2data.

Example 5-9 Confirm that no open files exist in /db2data

[db2inst1@ipas-lpar-9-3-171-24 ~]$ lsof | grep /db2data
[db2inst1@ausipas089 ~]

5. Repeat steps 1 on page 135 through 4 to stop the DB2 instance on the primary database
(VM ausipas088).

Detach Block Storage volumes from the VMs in SDC
Now that the DB2 instances on both VMs of the Virtual System Instance have been stopped,
you can proceed with detaching the Block Storage volumes. For both VMs, use the following
steps to detach their corresponding Block Storage Volume:

1. Log on to the VM and confirm that the file system /db2data is mounted. This file system is
on the Block Storage Volume (which corresponds to /dev/sdc1 on the VM). See
Example 5-10.

Example 5-10 Confirm that the file system of the Block Storage Volume is mounted under /db2data

[db2inst1@ausipas089 ~]$ mount
/dev/mapper/vg_root-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
/dev/sda1 on /boot type ext4 (rw)
/dev/mapper/group1-LV9067 on /myinst type ext3 (rw)
/dev/sdc1 on /db2data type ext3 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

2. From the Virtual System Instance in the Workload Console, expand the Virtual Machines
section that is on the right side of the window.

3. Expand the appropriate VM, and find the Block storage section. In that section, find the
attached Block Storage Volume (mounted as an ext3 file system on /db2data). Click
Detach to detach the Block Storage Volume (see Figure 5-66).

Figure 5-66 Detaching the Block Storage Volume
136 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. After step 3 on page 136 is completed, the file system is no longer mounted. You can
confirm this in the VM by again running the mount command (see Example 5-11).

Example 5-11 Confirm that the file system of the Block Storage Volume is no longer mounted

[db2inst1@ausipas089 ~]$ mount
/dev/mapper/vg_root-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
/dev/sda1 on /boot type ext4 (rw)
/dev/mapper/group1-LV9067 on /myinst type ext3 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

After both Block Storage Volumes have been detached, leave the Virtual System Instance
running. This state allows for fast attach operations in a failover from the system in the PDC.
However, the DB2 database instances are stopped and the data for the ITSO database is not
available.

Configure Block Storage replication
The two Block Storage Volumes are now detached on the system in the SDC. That means you
can now configure the replication of the attached Block Storage Volumes on the system in the
PDC with those on the system in the SDC.

Before you proceed with configuring Block Storage Replication, ensure that you have set up a
Block Storage Replication Profile on both systems. This is described in more detail in 4.2,
“Block storage replication configuration” on page 49. On the systems in this scenario, a Block
Storage Replication Profile called Redbooks DR is set up. Table 5-9 outlines the Block
Storage Replication to configure for this scenario.

Table 5-9 Configuration for Block Storage Replication

Block Storage Replication
Profile

Source Block Storage
Volume (PDC)

Target Block Storage Volume
(SDC)

Redbooks DR DB2 VM one - PDC DB2 VM one - SDC

Redbooks DR DB2 VM two - PDC DB2 VM one - SDC
Chapter 5. High availability and disaster recovery scenarios for DB2 137

To start the process of configuring for Block Storage Replication, use the following steps:

1. Go to the System Console of the system in the PDC and select System Block Storage
Replication (see Figure 5-67).

Figure 5-67 Selecting Block Storage Replication

2. Select the Block Storage Replication Profile, Redbooks DR. Click Add Volumes to start
adding the Block Storage Volumes for this scenario (see Figure 5-68).

Figure 5-68 Adding volumes

3. Perform the following steps in the Add storage volumes for replication window:

a. Select DB2_3 VM one - PDC as the Local Volume.

b. After you select a Local Volume, the volumes that are listed under Remote Volume are
populated with matching Block Storage Volumes on the system in the SDC. Under
Remote Volume, select DB2_3 VM one - SDC.
138 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

c. Select Synchronous as the Replication type, and then click Add (see Figure 5-69).

Figure 5-69 Configuring replication

d. After adding volumes, you should see the following notification (see Figure 5-70).

Figure 5-70 Notification of success

e. Click Close. You should see the Block Storage Volume, DB2_3 VM one - SDC, listed
under Storage Volumes as shown in Figure 5-71. Note that you can still withdraw this
request.

Figure 5-71 Listed Storage Volumes
Chapter 5. High availability and disaster recovery scenarios for DB2 139

f. Next, log on to the system in the SDC and accept the request for replication of this
Block Storage Volume. From the System Console, select System Block Storage
Replication and select the Block Storage Replication Profile, Redbooks-DR (see
Figure 5-72).

Figure 5-72 Selecting Block Storage Replication Profile

g. Notice that DB2_3 VM one SDC is listed under Storage Volumes. This is the local Block
Storage Volume on the system in the SDC. The remote Block Storage Volume is DB2_3
VM one PWC. This matches what is listed in Table 5-9 on page 137. Click Accept to start
the replication (see Figure 5-73).

Figure 5-73 Notification that replication has started

4. Repeat step 3 on page 138 to add the second Block Storage Volume listed in Table 5-9 on
page 137.
140 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. When both Block Storage Volumes have been set up for replication, the Block Storage
Replication Profile in the SDC should look as shown in Figure 5-74.

Figure 5-74 Block Storage Volume Replication seen from the system in the SDC

6. After the initial synchronization has completed for both Block Storage Volumes, a
Replication status of Available should be reported, as shown in Figure 5-75.

Figure 5-75 Block Storage Volumes with Replication status, Available

Note: The Replication status for both Block Storage Volumes is not shown. It takes
some time until the initial synchronization is completed. Although typically the Fibre
Channel connection between the two systems has a bandwidth of 16 Gbps,
PureApplication System applies a rate limit of 64 MBps for this initial synchronization.
Therefore, two Block Storage Volumes of 10 GB each, take approximately 2 * 160 =320
seconds (or 5 minutes).
Chapter 5. High availability and disaster recovery scenarios for DB2 141

5.6.5 Validate the Virtual System Instance on the active system

See 5.7, “Validation” on page 160 for how to validate that the Virtual System Instance on the
active system is working as expected. Using a DB2 client, you again create a table and insert
a record. Example 5-12 shows how to commit these transactions. Creating a table and
inserting a record is a simple but effective mechanism to store data in the DB2 database.

Example 5-12 Committing a simple transaction from a DB2 client

db2 "CREATE TABLE AUTHOR (AUTHOR_NUMBER INT NOT NULL PRIMARY KEY, AUTHOR_NAME
VARCHAR(20) NOT NULL)"
db2 "INSERT INTO AUTHOR (AUTHOR_NUMBER, AUTHOR_NAME) VALUES (1, 'Margaret
Ticknor')"
[db2inst1@ipas-lpar-9-3-171-25 ~]$ db2 "select * from author"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor

 1 record(s) selected.

[db2inst1@ipas-lpar-9-3-171-25 ~]$ db2 connect reset
DB20000I The SQL command completed successfully.

5.6.6 Planned Failover to SDC

At this point, you are going to simulate a planned failover to the SDC. This option is useful
when planned downtime is required, perhaps for the entire PDC or for the PureApplication
System in the PDC.

Stop DB2 on the Virtual System Instance in the PDC

See “Stop DB2 on the Virtual System Instance in the SDC” on page 134 and follow the
instructions to stop the DB2 instance on both VMs of the Virtual System Instance in the PDC.
Example 5-13 provides a summary of the process.

Example 5-13 Stopping DB2 on the Virtual System Instance in the PDC

-bash-4.1# chrg -o Offline db2_db2inst1_ipas-lpar-9-3-171-24_0-rg
-bash-4.1# chrg -o Offline db2_db2inst1_ipas-lpar-9-3-171-25_0-rg
-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock Nominal=Online

Note: After these transactions are committed, the synchronous DB2 HADR standby
database in the PDC will have written those transactions to disk as well. Because you also
have synchronous block storage replication setup, that data has also been committed to
the Block Storage Volumes in the SDC.

Note: An unplanned failover is described in 5.6.7, “Unplanned Failover to SDC” on
page 156.

Note: When you are just performing a failover test, you can skip this step and leave DB2
running in the PDC. This avoids an outage of DB2 in the PDC altogether.
142 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

 '- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=SuspendedPropagated
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ipas-lpar-9-3-171-24
 '- Online
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ipas-lpar-9-3-171-25
Offline IBM.ResourceGroup:db2_db2inst1_ipas-lpar-9-3-171-24_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ipas-lpar-9-3-171-24_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ipas-lpar-9-3-171-24_0-rs:ipas-lpar-9-3-171-24
Offline IBM.ResourceGroup:db2_db2inst1_ipas-lpar-9-3-171-25_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ipas-lpar-9-3-171-25_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ipas-lpar-9-3-171-25_0-rs:ipas-lpar-9-3-171-25
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ipas-lpar-9-3-171-25:ipas-lpar-9-3-171-25
 '- Online IBM.PeerNode:ipas-lpar-9-3-171-24:ipas-lpar-9-3-171-24
Online IBM.Equivalency:db2_db2inst1_ipas-lpar-9-3-171-24_0-rg_group-equ
 '- Online IBM.PeerNode:ipas-lpar-9-3-171-24:ipas-lpar-9-3-171-24
Online IBM.Equivalency:db2_db2inst1_ipas-lpar-9-3-171-25_0-rg_group-equ
 '- Online IBM.PeerNode:ipas-lpar-9-3-171-25:ipas-lpar-9-3-171-25
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ipas-lpar-9-3-171-24
 '- Online IBM.NetworkInterface:eth1:ipas-lpar-9-3-171-25

Detach Block Storage volumes from the VMs in the PDC

With DB2 no longer running on the Virtual System Instance in the PDC, you can safely detach
the Block Storage Volumes from the VMs. See “Detach Block Storage volumes from the VMs
in SDC” on page 136 for more details about this process.

Clone Block Storage Volume Group in the SDC
Now you clone the block storage volume group in the second data center so you can attach
those to the VMs and start DB2 again. The advantage of this process is that it allows for a
planned failover and a planned failover test.

Note: When just performing a failover test, you can skip this step and leave DB2 running in
the PDC. This avoids an outage of DB2 in the PDC altogether.

Note: Always make sure that no open files exist on the mounted file system for the Block
Storage Volumes before detaching them.

Note: Remember that the VMs of the Virtual System Instance in the SDC are still running
(required for attach and detach operations), but that DB2 is not running (as the file system
for the DB2 data is not mounted).
Chapter 5. High availability and disaster recovery scenarios for DB2 143

To clone the Block Storage Volume, use the following steps:

1. From the System Console, select Cloud Storage Volumes Groups and select the
Storage Volume Group, DB2_3 (see Figure 5-76).

Figure 5-76 Selecting the Storage Volume for cloning process

2. Click Clone, provide the following details, and then click OK to perform the clone operation
(see Figure 5-77):

– Name: DB2_3_clone_planned_failover

– Description: Clone for planned failover from PDC to SDC

– Storage volume naming configuration:

• New name for DB2_3 VM two - SDC: DB2_3 VM two - SDC clone

• New name for DB2_3 VM one - SDC: DB2_3 VM one - SDC clone

Figure 5-77 Configure the clone
144 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. After some time, the clone operations complete. Examine the newly created Storage
Volume Group, DB2_3_clone_planned_failover (see Figure 5-78).

Figure 5-78 Examining the clone

Setup Block Storage Replication from the cloned volumes
Now, you can set up Block Storage Replication for the cloned Block Storage Volumes.

Start by stopping the replication of the original Block Storage Volumes that were configured
for synchronous replication in “Configure Block Storage replication” on page 137 using these
steps:

1. Log on to the System Console of the system in the PDC and select System Block
Storage Replication.

2. Select the Block Storage Replication Profile Redbooks-DR and find the Block Storage
replication definitions that are listed in Table 5-10.

Table 5-10 Block Storage replication definitions to be deleted

Note: The cloned Block Storage Volumes appear with Asynchronous as the replication
type. This is the default for Block Storage Volumes that do not take part in replication.

Block Storage Replication
Profile

Source Block Storage
Volume (PDC)

Target Block Storage Volume
(SDC)

Redbooks DR DB2_3 VM One - PDC DB2_3 VM One - SDC

Redbooks DR DB2_3 VM Two - PDC DB2_3 VM One - SDC
Chapter 5. High availability and disaster recovery scenarios for DB2 145

3. Delete each of the Block Storage replication deviations by clicking the corresponding
Delete button (see Figure 5-79).

Figure 5-79 Deleting Block Storage Volumes

4. Click OK to confirm you want to stop replicating the corresponding pair of Block Storage
Volumes (see Figure 5-80).

Figure 5-80 Confirmation notice

5. Repeat steps 2 on page 145 through 4 to delete the second Block Storage Volume.

6. Now, log on to the System Console of the system in the SDC. Select System Block
Storage Replication to confirm that the target Block Storage Volumes are no longer listed
(see Figure 5-81).

Figure 5-81 Verify no listings for deleted Block Storage Volumes
146 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

7. Next, configure the Replication of the cloned Block Storage Volumes from the SDC to the
PDC. Follow the steps in “Configure Block Storage replication” on page 137 to configure
Block Storage Replication as listed in Table 5-11.

Table 5-11 New configuration for Block Storage Replication

After completing the steps 1 on page 145 through 7, the Block Storage Replication Profile on
the system in the SDC should look like Figure 5-82.

Figure 5-82 New Block Storage Replication

Attach cloned Block Storage Volumes to Virtual System Instance in SDC
Now attach the cloned Block Storage Volumes to the Virtual System Instance in the SDC. For
both VMs, use the following steps to attach their corresponding Block Storage Volume:

1. Log on to the VM and confirm that no file system is mounted under /db2data (see
Example 5-14).

Example 5-14 Confirm that no file system is mounted under /db2data

[db2inst1@ausipas089 ~]$ mount
/dev/mapper/vg_root-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
/dev/sda1 on /boot type ext4 (rw)
/dev/mapper/group1-LV9067 on /myinst type ext3 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

Block Storage Replication
Profile

Source Block Storage
Volume (SDC)

Target Block Storage
Volume (PDC)

Redbooks DR DB2 VM one - SDC clone DB2 VM one - PDC

Redbooks DR DB2 VM two - SDC clone DB2 VM one - PDC
Chapter 5. High availability and disaster recovery scenarios for DB2 147

2. From the Virtual System Instance in the Workload Console, expand the Virtual Machines
section on the right side of the window (see Figure 5-83).

Figure 5-83 Virtual machine perspective

3. Expand the appropriate VM, and look for the Block storage section. In that section, find the
Block Storage entry for the mount point, /db2data, for an ext3 file system. Select the Block
Storage Volumes, DB2_3 VM one - SDC clone, and click Attach to attach the Block
Storage Volume. See Figure 5-84.

Figure 5-84 Attaching the Block Storage Volume

4. After attaching the block storage, a file system is mounted on /db2data. Confirm this by
running the mount command on the VM (see Example 5-15).

Example 5-15 Confirm that the file system of the Block Storage Volume has been mounted

[db2inst1@ausipas089 ~]$ mount
/dev/mapper/vg_root-LogVol00 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
/dev/sda1 on /boot type ext4 (rw)
/dev/mapper/group1-LV9067 on /myinst type ext3 (rw)
/dev/sdc1 on /db2data type ext3 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw

Start DB2 on the Virtual System Instance in the SDC
You next proceed to start DB2 on the Virtual System Instance in the SDC. Start by running
the lssam command, as shown in Example 5-16. You want to obtain the Resource Groups of
the Virtual System Instance by using the lssam command. Use the output to populate
Table 5-12 on page 149.

Example 5-16 Obtaining the Resource Groups of the Virtual System Instance in the SDC

[db2inst1@ausipas088 ~]$ lssam
Offline IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Offline IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Offline IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Offline IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=StartInhibitedBecauseSuspended
148 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

Table 5-12 Overview of the three Resource Groups of the Virtual System Instance in the SDC

To start DB2 on the Virtual System Instance in the SDC, perform the following steps:

1. Log on to the VM corresponding to the first VM, ausipas088. Run the command chrg, as
shown in Example 5-17. Running that command startsthe Tivoli System Automation
Resource Group corresponding to the DB2 instance on ausipas088 from Table 5-12.

Example 5-17 Starting the Resource Group corresponding to the DB2 instance on the first VM

-bash-4.1# chrg -o Online db2_db2inst1_ausipas088_0-rg

2. Run the lssam command. Notice that the Resource Group for the DB2 instance on host
ausipas088 shifts to online soon after issuing that command, as shown in Example 5-18.

Example 5-18 Confirming that the Resource Group for the DB2 instance is now online.

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Offline IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online

Resource group Description Expected status

db2_db2inst1_ausipas088_
0-rg

DB2 instance “db2inst1” on
host “ausipas088”

Online

db2_db2inst1_ausipas089_
0-rg

DB2 instance “db2inst1” on
host “ausipas089”

Online

db2_db2inst1_db2inst1_IT
SO-rg

Controls which database is
the primary and standby.

Online

Note: To start the Tivoli System Automation Resource Group, you must run the chrg
command as root.
Chapter 5. High availability and disaster recovery scenarios for DB2 149

 '- Offline IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=StartInhibitedBecauseSuspended
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

3. Now, log on as db2inst1 to host ausipas088 to determine the status of the local DB2
instance. Run the db2pd command to confirm the state of the DB2 instance. Example 5-19
shows that the db2pd command is unable to attach to the database manager, which
implies that the local instance is not running.

Example 5-19 Confirming that the DB2 instance on the standby host is no longer running

[[db2inst1@ausipas088 ~]$ db2pd -

Database Member 0 -- Active -- Up 0 days 00:01:30 -- Date
2014-11-05-14.59.37.743558

4. Repeat steps 1 on page 149 through 3 to start the DB2 instance on the second database
VM, ausipas089. After completing those steps, the DB2 instance should be running on
both VMs. The output from the lssam command confirms this (as shown in Example 5-20).

Example 5-20 Output from lssam command when both DB2 instances are started

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Online IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=StartInhibitedBecauseSuspended
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
150 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

Manually updating the DB2 HADR configuration on the VMs
You now need to make some manual changes to the DB2 HADR configuration of the
database, ITSO.

The configuration of the database ITSO is stored in /db2data, which is a file system on a
Block Storage Volume. Run the Virtual System Instance in the SDC with the data from the
Block Storage Volumes of the Virtual System Instance in the PDC. As a result, the DB2
HADR configuration contains references to host names from the Virtual System Instance in
the PDC.

The host names for the VMs of the Virtual System Instances in the PDC and SDC are listed in
Table 5-13.

Table 5-13 Overview of host names for the Virtual System Instances in the PDC and the SDC

To manually update the DB2 HADR configuration on the VMs of the Virtual System Instance
in the SDC, perform the following steps:

1. Example 5-21 shows the current database configuration parameters, HADR_LOCAL_HOST
and HADR_REMOTE_HOST, of the ITSO database on the first VM.

Example 5-21 Extracting HADR configuration parameters of the ITSO database on the first VM

[db2inst1@ausipas088 ~]$ db2 get db cfg for itso | grep "host name"
 HADR local host name (HADR_LOCAL_HOST) = ipas-lpar-9-3-171-25
 HADR remote host name (HADR_REMOTE_HOST) = ipas-lpar-9-3-171-24

2. You need to update these two DB2 configuration parameters of the ITSO database on the
first VM. Example 5-22 shows how to update these parameters and modify them to
correspond with the host names of the Virtual System Instance in the SDC (as listed
previously in Table 5-13).

Example 5-22 Manually changing the DB2 HADR host names on first VM

[db2inst1@ausipas088 ~]$ db2 update db cfg for itso using HADR_LOCAL_HOST
ausipas088

Note: The short names are listed for convenience. All hosts are part of the domain
.test.ibm.com.

Virtual System Instance First VM Second VM

PDC ipas-lpar-9-3-171-25 ausipas088

SDC ipas-lpar-9-3-171-24 ausipas089

Note: These parameters still use the host names of the VMs belonging to the Virtual
System Instance in the PDC as previously stated.

Note: Set HADR_LOCAL_HOST to the host name of the local server, ausipas088. Set
HADR_REMOTE_HOST to the host name of the other VM, ausiaps089.
Chapter 5. High availability and disaster recovery scenarios for DB2 151

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
[db2inst1@ausipas088 ~]$ db2 update db cfg for itso using HADR_REMOTE_HOST
ausipas089
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

[[db2inst1@ausipas088 ~]$ db2 get db cfg for itso | grep "host name"
 HADR local host name (HADR_LOCAL_HOST) = ausipas088
 HADR remote host name (HADR_REMOTE_HOST) = ausipas089

3. Repeat step 2 on page 151 for the second VM, as shown in Example 5-23.

Example 5-23 Manually changing the DB2 HADR host names on second VM

[db2inst1@ausipas089 ~]$ db2 update db cfg for itso using HADR_LOCAL_HOST
ausipas089
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
SQL1363W One or more of the parameters submitted for immediate modification
were not changed dynamically. For these configuration parameters, the database
must be shutdown and reactivated before the configuration parameter changes
become effective.
[db2inst1@ausipas089 ~]$ db2 update db cfg for itso using HADR_REMOTE_HOST
ausipas088
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
SQL1363W One or more of the parameters submitted for immediate modification
were not changed dynamically. For these configuration parameters, the database
must be shutdown and reactivated before the configuration parameter changes
become effective.

4. The correct DB2 HADR configuration is in place. However, the status of the lssam
command still shows the Resource Group, db2_db2inst1_db2inst1_ITSO-rg, as pending
online, as shown in Example 5-24. To address this, you need to restart the DB2 instance
on both VMs.

Example 5-24 The Resource Group, db2_db2inst1_ITSO-rg, still shows as pending online

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Online IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=StartInhibitedBecauseSuspended
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ

Note: This time set HADR_LOCAL_HOST to ausipas089 and HADR_REMOTE_HOST to
ausipas088.
152 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089

5. Stop the Resource Groups corresponding to the DB2 instances on both VMs, as shown in
Example 5-25.

Example 5-25 Commands to stop the Resource Groups for both DB2 instances

-bash-4.1# chrg -o Offline db2_db2inst1_ausipas089_0-rg
-bash-4.1# chrg -o Offline db2_db2inst1_ausipas088_0-rg

6. Wait a few seconds to make sure that both DB2 instances have been stopped. Use the
lssam command to confirm that the Resources Groups corresponding to the DB2
instances are Offline as shown in Example 5-26.

Example 5-26 The Resource Groups for the DB2 instances are now Offline

-bash-4.1# lssam
Offline IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Offline IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Offline
 '- Offline IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Offline
IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Pending online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Request=Lock
Nominal=Online
 '- Offline IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
Control=StartInhibitedBecauseSuspended
 |- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

7. Start both DB2 instances again using the chrg command, as shown in Example 5-27.

Example 5-27 Commands to start the Resource Groups for both DB2 instances

-bash-4.1# chrg -o Online db2_db2inst1_ausipas088_0-rg
-bash-4.1# chrg -o Online db2_db2inst1_ausipas089_0-rg
Chapter 5. High availability and disaster recovery scenarios for DB2 153

8. Use the lssam command to confirm that all three Resource Groups are online, as shown in
Example 5-28.

Example 5-28 All three Resource Groups are now Online

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Online IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Online
IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
 |- Online
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

9. While logged on as db2inst1 on the first VM, run the command, db2pd -hadr -db itso.
Example 5-29 shows the output of this command, which indicates that the ITSO database
is started as the primary.

Example 5-29 Confirming that the database, ITSO, is started on the first VM as the primary

[db2inst1@ausipas088 ~]$ db2pd -hadr -db itso

Database Member 0 -- Database ITSO -- Active -- Up 0 days 00:34:19 -- Date
2014-11-05-15.44.26.172751

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = ausipas088
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = ausipas089
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 11/05/2014 15:10:21.174085 (1415200221)
154 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 150
 TIME_SINCE_LAST_RECV(seconds) = 5
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.003363
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.219
 LOG_HADR_WAIT_COUNT = 65
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 19800
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000045.LOG, 10, 232800446
 STANDBY_LOG_FILE,PAGE,POS = S0000045.LOG, 10, 232800446
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000045.LOG, 10, 232800446
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 11/05/2014 15:25:31.000000 (1415201131)
 STANDBY_LOG_TIME = 11/05/2014 15:25:31.000000 (1415201131)
 STANDBY_REPLAY_LOG_TIME = 11/05/2014 15:25:31.000000 (1415201131)
 STANDBY_RECV_BUF_SIZE(pages) = 4298
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 25600
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 11/05/2014 15:46:21.000000 (1415202381)
 READS_ON_STANDBY_ENABLED = N

Confirm that the database is available again
As noted previously in “Manually updating the DB2 HADR configuration on the VMs” on
page 151, the host names of the VMs where DB2 is now running have changed. For DB2
clients to connect to DB2 in the SDC, some changes to the DB2 client configuration need to
be made.

In a more realistic implementation, the use of an external load balancer or DNS aliases to
access the VMs running VM is more appropriate. DB2 clients are always configured using the
load balancer or DNS aliases. In a failover to the other data center, there is no need to
reconfigure the DB2 clients.

To confirm that the DB2 database ITSO is available again, complete the following steps:

1. Log on as db2inst1 to the DB2 client and run the db2 uncatalog database itso command
to uncatalog the database ITSO. Then run the db2 uncatalog node itsohadr command to
uncatalog the node ITSOHADR. The sample output for both commands is shown in
Example 5-30.

Example 5-30 Uncatalog the database, ITSO, and the node, ITSOHADR

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 uncatalog database itso
DB20000I The UNCATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 uncatalog node itsohadr
DB20000I The UNCATALOG NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
Chapter 5. High availability and disaster recovery scenarios for DB2 155

2. Now, add a node and database to the catalog, as shown in Example 5-31.

Example 5-31 Catalog the database, ITSO, and the updated node, ITSOHADR

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 catalog tcpip node itsohadr remote
ausipas088.austin.ibm.com server 50000
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 catalog database itso at node itsohadr
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

3. With the updated catalog entries, you can now connect to the DB2 database, ITSO, in the
SDC. Example 5-32 shows how to perform a simple query, which confirms that you
successfully performed a failover to the SDC.

Example 5-32 Performing a simple query to confirm that the data is still in the table

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 connect to itso user itsouser
Enter current password for itsouser:

 Database Connection Information

 Database server = DB2/LINUXX8664 10.5.3
 SQL authorization ID = ITSOUSER
 Local database alias = ITSO

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select * from author"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor

 1 record(s) selected.

5.6.7 Unplanned Failover to SDC

An unplanned failover to the SDC is the appropriate action if the PDC unexpectedly fails.
Examples of causes that can lead to an unplanned outage include natural disasters or an
unplanned power outage.

Note: Use the FQDN of the first VM in the SDC, which is the VM that is hosting the
primary ITSO database.

Note: With an unplanned failover, there is always going to be a brief outage of DB2. Take
into account the time to detect that the PDC is suffering from an outage, plus the time it
takes to failover to the SDC. This gives an indication for the Recovery Time Objective.
Because this scenario is using synchronous Block Storage Replication, there is no loss of
any committed transactions. Hence, the Recovery Point Objective is 0.
156 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Failover of Block Storage Volumes Replication
With an unplanned outage of the PDC, this scenario assumes that there is no longer access
to the PureApplication System (or any of the VMs) in the PDC. As a result, the only option
available to fail over the Block Storage Volumes is from the System Console of the system in
the SDC.

The Block Storage Volumes that need to fail over are noted in the following list:

� DB2_3 VM One - SDC
� DB2_3 VM Two - SDC

To perform the failover of these Block Storage Volumes, use the following steps:

1. Log on to System Console in the SDC and select System Block Storage Replication
and select the Block Storage Replication Profile, Redbooks-DR (see Figure 5-85).

Figure 5-85 Select the appropriate Block Storage Replication Profile

2. For each of the Block Storage Volumes, use the following process to do perform the actual
Failover:

a. Under Storage Volumes, click Failover (see Figure 5-86).

Figure 5-86 Engaging Failover
Chapter 5. High availability and disaster recovery scenarios for DB2 157

b. Click OK to perform the unplanned failover of the Block Storage Volume (see
Figure 5-87).

Figure 5-87 Failover engaged

3. After both Block Storage Volumes have been failed over, they no longer appear under
Storage Volumes of the Block Storage Replication Profile (see Figure 5-88).

Figure 5-88 Confirm the change in the Storage Volumes Profile

Attach Block Storage Volumes to Virtual System Instance in SDC
You can now attach the Block Storage Volumes to the Virtual System Instance in the SDC.
See “Attach cloned Block Storage Volumes to Virtual System Instance in SDC” on page 147.

Start DB2 on Virtual System Instance in SDC
See “Start DB2 on the Virtual System Instance in the SDC” on page 148for details about how
to start DB2 on the Virtual System Instance in the SDC.

Manually updating the DB2 HADR configuration on VMs
You now need to make some manual changes to the DB2 HADR configuration of the
database, ITSO. See “Manually updating the DB2 HADR configuration on the VMs” on
page 151 for more details about how to do this and its importance.

Note: The two Block Storage Volumes are no longer part of a replication pair. They
have become ordinary Block Storage Volumes. As a result, they can be attached to
VMs without any further steps.

Note: This time, you attach the actual Block Storage Volumes in the SDC because you did
not clone them.
158 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

After DB2 is running on both VMs, the output from the lssam command should look as shown
Example 5-33.

Example 5-33 All three Resource Groups are Online

-bash-4.1# lssam
Online IBM.ResourceGroup:db2_db2inst1_ausipas088_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas088_0-rs:ausipas088
Online IBM.ResourceGroup:db2_db2inst1_ausipas089_0-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs
 '- Online IBM.Application:db2_db2inst1_ausipas089_0-rs:ausipas089
Online IBM.ResourceGroup:db2_db2inst1_db2inst1_ITSO-rg Nominal=Online
 '- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs
 |- Online IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas088
 '- Offline
IBM.Application:db2_db2inst1_db2inst1_ITSO-rs:ausipas089
Online IBM.Equivalency:db2_db2inst1_ausipas088_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas088:ausipas088
Online IBM.Equivalency:db2_db2inst1_ausipas089_0-rg_group-equ
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_db2inst1_db2inst1_ITSO-rg_group-equ
 |- Online IBM.PeerNode:ausipas088:ausipas088
 '- Online IBM.PeerNode:ausipas089:ausipas089
Online IBM.Equivalency:db2_public_network_0
 |- Online IBM.NetworkInterface:eth1:ausipas089
 '- Online IBM.NetworkInterface:eth1:ausipas088

Confirm that the database is available again
See “Confirm that the database is available again” on page 155 for more details. This
completes the unplanned failover to the SDC.

Setup Block Storage Replication after the PDC has been recovered
This section does not document the steps in detail (because they vary depending on what
was lost in the PDC). After there is a deployed Virtual System Instance up and running in the
PDC again, take the following actions:

1. Stop DB2 on both VMs, as documented in “Stop DB2 on the Virtual System Instance in
the SDC” on page 134.

2. Detach the Block Storage Volumes from both VMs, as documented in “Detach Block
Storage volumes from the VMs in SDC” on page 136.

3. Configure Block Storage Replication from the SDC to the PDC, as documented in
Figure 5-78 on page 145. Table 5-14 shows how the setup should appear in this case.

Table 5-14 Configuration for Block Storage Replication after the PDC has been recovered

Note: When the PDC has been recovered, set up Block Storage Replication again.

Block Storage Replication
Profile

Source Block Storage
Volume (SDC)

Target Block Storage
Volume (PDC)

Redbooks DR DB2 VM one - SDC DB2 VM one - PDC

Redbooks DR DB2 VM two - SDC DB2 VM one - PDC
Chapter 5. High availability and disaster recovery scenarios for DB2 159

5.7 Validation

One of the key benefits of IBM PureApplication System is that the built-in expertise of
patterns helps accelerate the implementation of complex middleware solutions. However, it is
always a good idea to perform a number of rudimentary tests to validate that the deployed
pattern indeed delivers the expected result.

In the case of this scenario’s DB2 Virtual System Pattern, the following items are confirmed:

� Configure the DB2 client
� Connect to the DB2 database, using itsouser credentials and perform a simple query
� Confirm the DB2 HADR roles of both the primary and standby DB2 servers

5.7.1 Configure the DB2 client

First, you need to carefully document the host names and IP addresses of the two Virtual
Machines that have been deployed across the two PureApplication Systems. As shown in
Figure 5-89, you can obtain the (public) IP addresses by expanding the Virtual machine
perspective of the deployed Virtual System Instance.

Figure 5-89 Obtaining IP addresses of the Virtual Machines of the deployed Virtual System Instance

By expanding each of the Virtual Machines, you can also find the host name. For
convenience, Table 5-15 is populated with the Virtual Machine names, IP addresses, and host
names.

Table 5-15 Virtual Machine names, IP addresses, and host names

You can now configure the DB2 client described in 5.2, “DB2 Client Setup” on page 92. Start
by cataloging the node, which is pointed to the first Virtual Machine
(DB2_VM_one.1141397023508) as it hosts the primary DB2 database. This is shown in
Example 5-34.

Example 5-34 Catalog node hosting primary database on DB2 client

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 catalog tcpip node itsohadr remote
ipas-lpar-9-3-171-148.austin.ibm.com server 50000

Note: After Block Storage Replication has been setup, it also allows for a failback to the
PDC if required.

Virtual Machine Name IP address Host name

DB2_VM_one.1141397023508
9

9.3.171.148 ipas-lpar-9-3-171-148.austin.ib
m.com

DB2_VM_two.1141397023508
8

9.3.169.66 ausipas066.austin.ibm.com
160 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 list node directory

 Node Directory

 Number of entries in the directory = 1

Node 1 entry:

 Node name = ITSOHADR
 Comment =
 Directory entry type = LOCAL
 Protocol = TCPIP
 Hostname = ipas-lpar-9-3-171-148.austin.ibm.com
 Service name = 50000

With the node cataloged, you can proceed and catalog the database, ITSO, on the DB2
client. Example 5-35 shows how this is done.

Example 5-35 Catalog database on DB2 client

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 catalog database itso at node itsohadr
DB20000I The CATALOG DATABASE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 list database directory

 System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = ITSO
 Database name = ITSO
 Node name = ITSOHADR
 Database release level = 10.00
 Comment =
 Directory entry type = Remote
 Catalog database partition number = -1
 Alternate server hostname =
 Alternate server port number =

Note: The DB2 client is not aware of the fact that the database, ITSO, has been configured
using DB2 HADR. This is reflected by the fact that there is no data populated for Alternate
server host name and Alternate server port number.
Chapter 5. High availability and disaster recovery scenarios for DB2 161

5.7.2 Connect to the DB2 database and perform a simple query

Make sure that you can connect to the ITSO catalog database on the DB2 client. This
scenario uses the credentials of itsouser. Example 5-36 demonstrates the commands for
this process.

Example 5-36 Connecting to the DB2 database, ITSO, from the DB2 client

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 connect to itso user itsouser
Enter current password for itsouser:

 Database Connection Information

 Database server = DB2/LINUXX8664 10.5.3
 SQL authorization ID = ITSOUSER
 Local database alias = ITSO

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select count(*) from sysibm.sysjobs"

1

 0

 1 record(s) selected.

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 connect reset
DB20000I The SQL command completed successfully.

After the DB2 client has made its first connection, the client is now aware of the fact that the
database, ITSO, is set up with DB2 HADR. You can validate this by reviewing the database
alias ITSO on the DB2 client. As shown in Example 5-37, Alternate server host name and
Alternate server port number are automatically populated.

Example 5-37 Confirming that the DB2 client recognizes the DB2 HADR setup of the database, ITSO

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 list database directory

 System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = ITSO
 Database name = ITSO
 Node name = ITSOHADR
 Database release level = 10.00
 Comment =
 Directory entry type = Remote
 Catalog database partition number = -1
 Alternate server hostname = ausipas066.austin.ibm.com
 Alternate server port number = 50000

[db2inst1@ipas-lpar-9-3-171-4 ~]$
162 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.7.3 Confirm DB2 HADR roles of primary and standby DB2 servers

You can use the following steps on the primary and standby servers to confirm whether the
DB2 database is indeed set up as expected:

1. Log on to the Virtual Machine, DB2_VM_one.11413970235089 server, as the DB2 instance
owner (db2inst1) and confirm the HADR status (as shown in Example 5-38). You should
see that it reports PRIMARY for HADR_ROLE and CONNECTED for HADR_CONNECT_STATUS.

Example 5-38 Confirming DB2 HADR role of database on primary DB2 server

[db2inst1@ipas-lpar-9-3-171-148 ~]$ db2pd -hadr -database itso

Database Member 0 -- Database ITSO -- Active -- Up 0 days 00:52:07 -- Date
2014-10-22-10.35.10.776418

 HADR_ROLE = PRIMARY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 1
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = ipas-lpar-9-3-171-148
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = ausipas066
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 10/22/2014 09:43:09.302308 (1413970989)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 150
 TIME_SINCE_LAST_RECV(seconds) = 1
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.001300
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 2.262
 LOG_HADR_WAIT_COUNT = 2245
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 19800
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 STANDBY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_REPLAY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_RECV_BUF_SIZE(pages) = 4298
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 25600
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 10/22/2014 10:37:09.000000 (1413974229)
 READS_ON_STANDBY_ENABLED = N
Chapter 5. High availability and disaster recovery scenarios for DB2 163

2. Now, log on to the primary server as the DB2 instance owner (db2inst1) and confirm the
HADR status (as shown in Example 5-39). You should see that it reports STANDBY for
HADR_ROLE and CONNECTED for HADR_CONNECT_STATUS.

Example 5-39 Confirming DB2 HADR role of database on standby DB2 server

[db2inst1@ausipas066 ~]$ db2pd -hadr -database itso

Database Member 0 -- Database ITSO -- Standby -- Up 0 days 00:54:35 -- Date
2014-10-22-10.37.41.155340

 HADR_ROLE = STANDBY
 REPLAY_TYPE = PHYSICAL
 HADR_SYNCMODE = SYNC
 STANDBY_ID = 0
 LOG_STREAM_ID = 0
 HADR_STATE = PEER
 HADR_FLAGS =
 PRIMARY_MEMBER_HOST = ipas-lpar-9-3-171-148
 PRIMARY_INSTANCE = db2inst1
 PRIMARY_MEMBER = 0
 STANDBY_MEMBER_HOST = ausipas066
 STANDBY_INSTANCE = db2inst1
 STANDBY_MEMBER = 0
 HADR_CONNECT_STATUS = CONNECTED
 HADR_CONNECT_STATUS_TIME = 10/22/2014 09:43:09.299742 (1413970989)
 HEARTBEAT_INTERVAL(seconds) = 30
 HADR_TIMEOUT(seconds) = 150
 TIME_SINCE_LAST_RECV(seconds) = 2
 PEER_WAIT_LIMIT(seconds) = 0
 LOG_HADR_WAIT_CUR(seconds) = 0.000
 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.001300
 LOG_HADR_WAIT_ACCUMULATED(seconds) = 2.262
 LOG_HADR_WAIT_COUNT = 2245
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 19800
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380
 PRIMARY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 STANDBY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 HADR_LOG_GAP(bytes) = 0
 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000001.LOG, 133, 49651665
 STANDBY_RECV_REPLAY_GAP(bytes) = 0
 PRIMARY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_REPLAY_LOG_TIME = 10/22/2014 10:31:18.000000 (1413973878)
 STANDBY_RECV_BUF_SIZE(pages) = 4298
 STANDBY_RECV_BUF_PERCENT = 0
 STANDBY_SPOOL_LIMIT(pages) = 25600
 STANDBY_SPOOL_PERCENT = 0
 PEER_WINDOW(seconds) = 120
 PEER_WINDOW_END = 10/22/2014 10:39:39.000000 (1413974379)
 READS_ON_STANDBY_ENABLED = N
164 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5.8 Testing for outages

When implementing a DB2 HADR solution, an important action step is to demonstrate that
the DB2 can handle an outage of either database server. A critical focus is success in the
case of primary failure. This section describes a planned and an unplanned outage for the
primary database server. It is applicable to all DB2 scenarios described in this chapter.

5.8.1 Planned outage: DB2 takeover

This scenario simulates a planned outage of the primary database server. This can occur, for
example, when Operating System maintenance needs to be applied, or when the virtual
machine needs to be rebooted. This scenario demonstrates that a DB2 client connected to
the HADR database is not affected by these examples.

Establish a connection and commit transaction from the DB2 client
This scenario starts by connecting to the database, ITSO, from the DB2 client. Using this
connection, create a simple table and insert a single row. This data is committed to the
primary database, ITSO. Because this database has been set up with synchronous HADR,
the standby database, ITSO, should have received the committed data before the DB2 client
received confirmation that the commit had completed.

Example 5-40 CLP using autocommit by default

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 list command options

 Command Line Processor Option Settings

Backend process wait time (seconds) (DB2BQTIME) = 1
 No. of retries to connect to backend (DB2BQTRY) = 60
 Request queue wait time (seconds) (DB2RQTIME) = 5
 Input queue wait time (seconds) (DB2IQTIME) = 5
 Command options (DB2OPTIONS) =

 Option Description Current Setting
 ------ -- ---------------
 -a Display SQLCA OFF
 -b Auto-Bind ON
 -c Auto-Commit ON
 -d Retrieve and display XML declarations OFF
 -e Display SQLCODE/SQLSTATE OFF
 -f Read from input file OFF
 -i Display XML data with indentation OFF
 -j Return code for system calls OFF
 -l Log commands in history file OFF
 -m Display the number of rows affected OFF
 -n Remove new line character OFF
 -o Display output ON
 -p Display interactive input prompt ON
 -q Preserve whitespaces & linefeeds OFF

Note: Even though this scenario does not make an explicit call to commit the data, when
the insert call is performed, it automatically performs a commit. The DB2 command line
processor (CLP) client uses autocommit by default, which is shown in Example 5-40.
Chapter 5. High availability and disaster recovery scenarios for DB2 165

 -r Save output to report file OFF
 -s Stop execution on command error OFF
 -t Set statement termination character OFF
 -v Echo current command OFF
 -w Display FETCH/SELECT warning messages ON
 -x Suppress printing of column headings OFF
 -z Save all output to output file OFF

Example 5-41 shows the results of committing a transaction to the database ITSO.

Example 5-41 Committing a transaction to the database ITSO

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 connect to itso user itsouser
Enter current password for itsouser:

 Database Connection Information

 Database server = DB2/LINUXX8664 10.5.3
 SQL authorization ID = ITSOUSER
 Local database alias = ITSO

db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "CREATE TABLE AUTHOR (AUTHOR_NUMBER INT NOT
NULL PRIMARY KEY, AUTHOR_NAME VARCHAR(20) NOT NULL)"
DB20000I The SQL command completed successfully.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "INSERT INTO AUTHOR (AUTHOR_NUMBER,
AUTHOR_NAME) VALUES (1, 'Margaret Ticknor')"
DB20000I The SQL command completed successfully.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select * from author"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor

 1 record(s) selected.

Takeover from the DB2 database on the standby server
Before you perform a manual takeover, first confirm that your client is indeed connected to the
primary ITSO database. Example 5-42 shows that there is exactly one connection from
db2bp. The Application id reflects the IP address of the DB2 client.

Example 5-42 Confirming that the DB2 client is indeed connected to the primary ITSO database

[db2inst1@ipas-lpar-9-3-171-148 ~]$ db2 list applications

Auth Id Application Appl. Application Id
DB # of
 Name Handle
Name Agents
-------- -------------- ----------
-- -------- -----
ITSOUSER db2bp 760 9.3.171.4.37669.141022144356
ITSO 1
166 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

From the DB2 client, you can review the connection details as shown in Example 5-43. The
Host name here matches the DB2 server running the primary ITSO database.

Example 5-43 DB2 client connection details confirm that it is connected to the primary ITSO database

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
 Database name = ITSO
 Hostname = ipas-lpar-9-3-171-148.austin.ibm.com
 Service name = 50000

You can now perform a manual takeover from the DB2 server running the standby ITSO
database. Issue the command shown in Example 5-44 to perform the takeover.

Example 5-44 Performing a manual takeover from the DB2 server running the standby ITSO database

[db2inst1@ausipas066 ~]$ db2pd -hadr -database itso | grep -E
"HADR_ROLE|HADR_SYNCMODE|HADR_CONNECT_STATUS "
 HADR_ROLE = STANDBY
 HADR_SYNCMODE = SYNC
 HADR_CONNECT_STATUS = CONNECTED
[db2inst1@ausipas066 ~]$ db2 takeover hadr on database itso
[db2inst1@ausipas066 ~]$ db2pd -hadr -database itso | grep -E
"HADR_ROLE|HADR_SYNCMODE|HADR_CONNECT_STATUS "
 HADR_ROLE = PRIMARY
 HADR_SYNCMODE = SYNC
 HADR_CONNECT_STATUS = CONNECTED

Example 5-45 confirms that the DB2 server that was running the primary ITSO database is
now hosting the standby.

Example 5-45 Confirming that the DB2 server hosting the old primary for ITSO now hosts the standby

[db2inst1@ipas-lpar-9-3-171-148 ~]$ db2pd -hadr -database itso | grep -E
"HADR_ROLE|HADR_SYNCMODE|HADR_CONNECT_STATUS "
 HADR_ROLE = STANDBY
 HADR_SYNCMODE = SYNC
 HADR_CONNECT_STATUS = CONNECTED

Run SQL query from the DB2 client
Now that you are certain that you performed a successful manual takeover, consider again
the DB2 client. Before performing the takeover, the client had established a connection with
the old primary ITSO database. Example 5-46 shows that the DB2 client still functions as
though it is connected to the old primary ITSO database. However, after you perform another
query, the DB2 client encounters SQL30108N.

Example 5-46 Query to update DB2 client

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State
Chapter 5. High availability and disaster recovery scenarios for DB2 167

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
 Database name = ITSO
 Hostname = ipas-lpar-9-3-171-148.austin.ibm.com
 Service name = 50000

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select * from author"
SQL30108N A connection failed in an automatic client reroute environment. The
transaction was rolled back. Host name or IP address:
"ausipas066.austin.ibm.com". Service name or port number: "50000". Reason
code: "1". Connection failure code: "2". Underlying error: "32".
SQLSTATE=08506

Upon encountering SQL30108N, the DB2 client reestablishes a connection with the new
primary ITSO database. Example 5-47 demonstrates this by obtaining the connection state of
the DB2 client again. The information from the client now confirms that it is connected to the
new primary ITSO database. As a result, submitting the same query again succeeds. This
proves that you have successfully performed a manual takeover of the ITSO database.

Example 5-47 DB2 client has re-established a connection with the new primary ITSO database

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
 Database name = ITSO
 Hostname = ausipas066.austin.ibm.com
 Service name = 50000

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "SELECT * FROM AUTHOR"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor

 1 record(s) selected.

5.8.2 Unplanned outage - shutdown of primary database OS

This scenario simulates an unplanned outage of the primary database server. This can
happen, for example, when a Compute Node in the Cloud Group where the Virtual System
Pattern is deployed suffers a (fatal) hardware failure. This scenario demonstrates that a DB2
client connected to the HADR database is not affected by this example.
168 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Establish a connection and commit transaction from DB2 client
This scenario starts where 5.8.1, “Planned outage: DB2 takeover” on page 165 ended. You
should still have a connection established from the primary ITSO database on
ausipas066.austin.ibm.com. Example 5-48 shows how you commit another transaction using
that connection. The commit to the primary ITSO database synchronizes with the standby
ITSO database before returning the DB2 client (auto) commit call.

Example 5-48 Committing a transaction over the existing DB2 client connection

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
 Database name = ITSO
 Hostname = ausipas066.austin.ibm.com
 Service name = 50000
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "INSERT INTO AUTHOR (AUTHOR_NUMBER,
AUTHOR_NAME) VALUES (2, 'Kyle Brown')"
DB20000I The SQL command completed successfully.
[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "SELECT * FROM AUTHOR"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor
 2 Kyle Brown

 2 record(s) selected.

Shutdown primary DB2 server
Example 5-49 shows existing DB2 connections on the primary DB2 server.

Example 5-49 List existing DB2 connections on the primary DB2 server

[db2inst1@ausipas066 ~]$ db2 list applications

Auth Id Application Appl. Application Id
DB # of
 Name Handle
Name Agents
-------- -------------- ----------
-- -------- -----
ITSOUSER db2bp 252 9.3.171.4.35604.141022152438
ITSO 1

Example 5-50 shows a shutdown of the primary DB2 server operating system.

Example 5-50 Graceful shutdown of the primary DB2 server’s Operating System

login as: root
root@9.3.169.66's password:
-bash-4.1# hostname -f
ausipas066.austin.ibm.com
-bash-4.1# shutdown -h now
Chapter 5. High availability and disaster recovery scenarios for DB2 169

-bash-4.1#
Broadcast message from root@ausipas066
 (/dev/pts/2) at 15:48 ...

The system is going down for halt NOW!

With the primary DB2 server shutdown, you can confirm that the standby server has now
become the new primary (see Example 5-51).

Example 5-51 Confirming the standby server is now the primary server

[db2inst1@ipas-lpar-9-3-171-148 ~]$ db2pd -hadr -database itso | grep -E
"HADR_ROLE|HADR_SYNCMODE|HADR_CONNECT_STATUS "
 HADR_ROLE = PRIMARY
 HADR_SYNCMODE = SYNC
 HADR_CONNECT_STATUS = DISCONNECTED

Run SQL query from the DB2 client
Next, the scenario runs the same SQL query again using the DB2 connection to the database
that was already established before the shutdown of the primary. As shown in Example 5-52,
the DB2 client encounters condition SQL30108N and rolls back the transaction.

Example 5-52 DB2 client encounters a transaction rollback when performing a SQL query

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
 Database name = ITSO
 Hostname = ausipas066.austin.ibm.com
 Service name = 50000

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select * from author"
SQL30108N A connection failed in an automatic client reroute environment. The
transaction was rolled back. Host name or IP address:
"ipas-lpar-9-3-171-148.austin.ibm.com". Service name or port number: "50000".
Reason code: "1". Connection failure code: "1". Underlying error: "110".
SQLSTATE=08506

After encountering the SQL30108N condition, the DB2 client should automatically re-establish a
DB2 connection to the new primary DB2 server. This is demonstrated by performing another
SQL query, which completes without any issues. Note that this scenario did not establish a
new connection, for example, you do not have to authenticate again (see Example 5-53).

Example 5-53 Upon submitting the same SQL query again the DB2 transaction completes as expected

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 get connection state

 Database Connection State

 Connection state = Connectable and Connected
 Connection mode = SHARE
 Local database alias = ITSO
170 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

 Database name = ITSO
 Hostname = ipas-lpar-9-3-171-148.austin.ibm.com
 Service name = 50000

[db2inst1@ipas-lpar-9-3-171-4 ~]$ db2 "select * from author"

AUTHOR_NUMBER AUTHOR_NAME
------------- --------------------
 1 Margaret Ticknor
 2 Kyle Brown

 2 record(s) selected.
Chapter 5. High availability and disaster recovery scenarios for DB2 171

172 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 6. High availability and disaster
recovery scenarios for
WebSphere Application Server

This chapter describes how to implement scenarios that use GPFS as a persistent store for
transaction data. Chapter 3, “High availability and disaster recovery scenarios” on page 29
describes these scenarios at a high level.

The WebSphere Application Server transaction service writes information to a transaction log
for every global transaction that involves two or more resources, or that is distributed across
multiple servers. The transaction service maintains transaction logs to ensure the integrity of
transactions. It is essential to store transaction logs in a sophisticated file system such as the
IBM General Parallel File System (GPFS).

This chapter covers the following scenarios:

� Scenario WAS_1: WebSphere cell in the same rack, transactions in GPFS
� Scenario WAS_2: Single WebSphere Cell Across two racks in PDC
� Scenario WAS_3: Active/Passive, identical setups in PDC and SDC, with transactions

stored in GPFS

6

© Copyright IBM Corp. 2015. All rights reserved. 173

6.1 Scenario WAS_1: WebSphere cell in the same rack,
transactions in GPFS

This scenario involves a primary GPFS server and a WebSphere Application Server cluster.
Both are running in a single rack. WebSphere Application Server stores its transaction logs in
the file system that is managed by the GPFS server. The following are the steps that are
required to implement this scenario, which is shown in Figure 6-1:

1. Configure and deploy GPFS as a primary server.
2. Deploy a Shared Service for GPFS in a cloud group.
3. Configure a single cell WebSphere Application Server.
4. Add GPFS Client policy to WebSphere Application Server cell.
5. Deploy WebSphere Application Server pattern.
6. Test the HA scenario.

Figure 6-1 Scenario WAS_1

6.1.1 Configure Primary GPFS Server

This scenario involves only a single primary GPFS server. If a more sophisticated GPFS
cluster is needed, you can add a mirror server and a tiebreaker server in the same rack or in
separate racks, To start a single primary GPFS server, complete the following steps:

1. Allocate block storage volumes

Follow the instructions in 4.1.1, “Block storage configuration” on page 48 to create a
storage volume for the GPFS server.

2. Create a GPFS virtual application pattern of pattern type, GPFS Pattern Type 1.2

Follow the instructions in 4.3.1, “Active/Active GPFS deployment: Steps” on page 53 to
configure a Primary GPFS server. That section covers more than what is required for this
scenario. There is no need to configure a mirror or a tiebreaker.

3. Deploy the GPFS pattern that was created in step 2 with the storage volume created in
step 1 allocated to it. Follow the instructions in 4.3.1, “Active/Active GPFS deployment:
Steps” on page 53 for the deployment procedure.

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1
Middleware:
•WebSphere Application Server
V8.5.5

Notes:
•Transaction logs stored in
GPFS

WebSphere
Node

GPFS-P

Virtual System
Pattern=
174 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Create a Shared Service for GPFS

A shared service for GPFS instance provides linkage between GPFS server and its clients
in the same cloud group. The shared service for GPFS holds the private key to the GPFS
server. In version 2.0, PureApplication System allows only one such shared service for
GPFS per cloud group. See 4.5, “Deploy GPFS Shared Service” on page 63for detailed
procedures.

6.1.2 Build the WebSphere Application Server cluster pattern

For information about this process, see “Build the WebSphere Application Server cluster
pattern” in Appendix B, “Common WebSphere Application Server configuration tasks” on
page 265”.

The pattern name for this scenario can be set to, for example, RB HADR WAS 1a.

6.1.3 Add GPFS Client Policy

Open the WebSphere Application Server pattern in the pattern builder. Use the following
steps to add a GPFS Client Policy to custom nodes:

1. Add a GPFS Client Policy to each node of the WebSphere Application Server pattern that
needs to use the block storage. For this scenario, work on the custom nodes and
optionally the deployment manager.

a. Open the pattern builder for the WebSphere Application Server pattern.

b. Locate the custom node.

c. On the Custom Node component, click Add a Component Policy. It is the first icon
with a + on the left.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 175

After the policy is added, the GPFS Client Policy box is added at the bottom of the
CustomNode. See Figure 6-2.

Figure 6-2 GPFS Client Policy

2. Configure the GPFS Client Policy.:

a. Every GPFS Client is associated with a GPFS Server and a block storage that is
mounted to that GPFS server. When configuring a GPFS client, it is important to
specify the correct mount point of the block storage that the GPFS client is associated
with. The mount point is called the File System in a GPFS client. The GPFS Server Get
Cluster Status operation provides a list of defined file systems and associated file sets.
Another way to find a list of mount points of a GPFS server is by listing the GPFS
Server instance from PureApplication systems administration console. Select
Workload Console Instances Virtual Applications the GPFS server
instance Virtual machine perspective GPFSServer-Main. Scroll down to the
Block storage section. Under the Mount Point column, RBHADRWAS_4 in the file path
(/gpfs/RBHADRWAS_4) is the mount point. It is the file system required to define a
GPFS Client, see Figure 6-3 on page 177.
176 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 6-3 GPFS File System name

b. Specify the File System information using the mount point found in the previous step. In
this example, it is RBHADRWAS_4.

c. Specify a directory and file set, which are intended for the customNode. The GPFS
client creates a symbolic link with the name specified in the Directory to link on local
system field.

d. Specify a slash to put the symbolic link to the root directory. See Figure 6-4. If a slash
is not provided as part of the link, an error is issued.

Figure 6-4 GPFS Client Policy configuration

6.1.4 Deploy WebSphere Application Server cluster pattern

After the WebSphere Application Server pattern is configured with the GPFS client policy,
deploy and test it with an application. A test application was created for this publication.
Follow the instructions in Appendix A, “Sample Application” on page 253 to install the test
application after WebSphere Application Server is running.

The following is how to configure WebSphere Application Server so that each custom node in
the cell writes its transaction log to the shared block storage managed by GPFS. Follow the
instructions in “Deploy WebSphere Application Server cluster pattern: Single rack” on
page 269 in Appendix B, “Common WebSphere Application Server configuration tasks” on
page 265.

The pattern name used for this scenario is RB HADR WAS 1a.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 177

6.1.5 Create a WebSphere Application Server cluster

To create the WebSphere Application Server cluster, follow the instructions in “Create
WebSphere Application Server cluster” in Appendix B, “Common WebSphere Application
Server configuration tasks” on page 265.

6.1.6 Configure transaction services

Use the following steps to configure the transaction services:

1. Start the Deployment manager's (DMgr) administrative console.

2. From the DMgr administrative console, select Servers Server Types Application
servers.

3. Select server name ClusterMember1.

4. From the right pane, select Container services Transaction services.

5. In the Transaction log directory, enter the full path including the leading slash of the
symbolic link generated by GPFS client. In this example, /tranlog_was4_1Link.

6. Add a subdirectory, member1, under this folder. See Figure 6-5.

Figure 6-5 Configuring the transaction service

6.1.7 Test Scenario WAS_1 HA

Now that the GPFS server, shared service for GPFS, and WebSphere Application Server are
running, run a few transactions and kill one of the cluster members, which in this example is
ClusterMember1 or ClusterMember2.

See the instructions in “Validate BankTransaction application” on page 284.
178 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6.2 Scenario WAS_2: Single WebSphere Cell Across two racks
in PDC

This scenario illustrates how to use two racks in the primary data center (PDC) to achieve
high availability using GPFS. The storage volume that stores important data such as
WebSphere Application Server’s transaction logs in the PDC-1 rack can be replicated
synchronously to PDC-2 rack for use as a backup during a PDC-1 outage. With the
multi-domain deployment capability, you can deploy a WebSphere cell with some of the
cluster members on another rack in the vicinity. Create a primary GPFS server on the PDC-1
rack and its mirror server on the PDC-2 rack. Along with a Tiebreaker server, the three GPFS
servers make up an Active/Active GPFS cluster. See the topology diagram in Figure 6-6.

Figure 6-6 Single WebSphere Cell across two racks

The following is a list of the required steps:

1. Configure and deploy GPFS Mirror server at PDC-2.

2. Configure and deploy GPFS Tiebreaker server at PDC-2.

3. Configure and deploy GPFS Primary server at PDC-1.

4. Deploy GPFS Shared Service at PDC-1.

5. Configure WebSphere Application Server with GPFS client policy.

6. Deploy WebSphere pattern to multiple domains.

7. Configure WebSphere Application Server to write transaction log to GPFS storage
volume.

8. Test the HA scenario.

WebSphere
DMgr

WebSphere
Node

IHS

Middleware:
•WebSphere Application
Server V8.5.5

Notes:
•Transaction logs stored in
GPFS
• Uses Multi-rack
deployment of single
pattern across the 2 racksWebSphere

Node

GPFS
Primary

GPFS
Mirror

GPFS-Tie

Rack PDC-1 Rack PDC-2

GPFS Sync

Virtual System
Pattern=
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 179

6.2.1 Configure and Deploy GPFS Mirror Server at PDC-2

For more information about how to deploy a mirror GPFS server, see 4.3, “Configuring an
Active/Active (Mirrored) GPFS deployment” on page 53. The major steps required are listed
below:

1. Create a storage volume for the mirror GPFS server as shown in Figure 6-7:

a. From the system console, select Cloud Storage Volumes Create New.

b. Create a 10 GB block storage volume named RBWAS2b_mirror. The storage size must
match the target GPFS cluster’s primary GPFS server’s storage size. Select the correct
cloud group.

Figure 6-7 Create Storage Volume for Mirror Server

2. Deploy to the mirror GPFS server. If there is not a mirror GPFS server pattern, follow the
instructions in 4.3, “Configuring an Active/Active (Mirrored) GPFS deployment” on page 53
to create one.

a. From the workload console, select Patterns Virtual Applications Virtual
Applications.

b. Deploy Mirror GPFS Server pattern:

i. Name: RBHADR GPFS Mirror Server

ii. File System Name for Selected Shared Volume: RHWAS2a (see Figure 6-8 on
page 181)

Note: The File System Name should be the same for the Tie Server and Primary
Server although each of them has their own storage volume.
180 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 6-8 File System for Mirror Server

3. Select a Storage Volume:

a. Click Continue to Distribute.

b. Move curser to Mirror Server Manager 1 VM.

c. Click Edit.

d. Click the Storage Volume page.

e. Select the shared volume created for this server, RHWAS2a_mirror, as shown in
Figure 6-9.

f. Click Deploy.

Figure 6-9 Create Storage Volume for Mirror Server
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 181

6.2.2 Configure and Deploy Tiebreaker Server at PDC-2

The procedure to deploy a Tiebreaker Server is similar to the steps in 6.2.1, “Configure and
Deploy GPFS Mirror Server at PDC-2” on page 180.

1. Create storage volume for Tiebreaker Server, see Figure 6-10.

Figure 6-10 Create Storage Volume for Tiebreaker

2. Deploy tiebreaker GPFS server. The File System name mapped to the storage volume
should be the same as the Mirror server, see Figure 6-11.

Figure 6-11 File System for Tiebreaker

Note: The storage volume size of Tiebreaker can be smaller than the Mirror server.
Select the correct cloud group.
182 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. Select the storage volume. See Figure 6-12 for specific values.

Figure 6-12 Select Storage Volume for Tiebreaker

6.2.3 Configure and deploy GPFS Primary server on PDC-1

In this scenario, the Mirror server and Tiebreaker server are deployed before deploying the
Primary server. You can deploy the Primary pattern with the Mirror Server and Tiebreaker’s
manager VM addresses within it. See Figure 6-13 on page 184.

Follow the instructions in 4.3.1, “Active/Active GPFS deployment: Steps” on page 53 to
configure the GPFS Primary server on PDC. The main steps are highlighted below:

1. Create a storage volume for the Primary GPFS Server:

The storage volume size of Primary must be the same as the Mirror server. Select the
correct cloud group.

2. Deploy Primary GPFS server:

The File System name mapped to the storage volume should be the same as that for the
Mirror and Tiebreaker.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 183

Figure 6-13 Deploy Primary GPFS Server

3. Include Mirror and Tiebreaker manager’s IP address as the cluster members:

a. Expand Active Configuration (Mirror and Tie).

b. Enter the IP address of the Mirror server and Tiebreaker server.

4. Select the storage volume as shown in Figure 6-14.

Figure 6-14 Select Storage Volume
184 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6.2.4 Deploy GPFS Shared Service at PDC-1

Deploy the GPFS Shared Service after the Primary GPFS server is running. To complete the
deployment of GPFS Shared Service, use these steps:

1. Obtain the SSH Client key from the Primary GPFS server instance (Figure 6-15):

a. From the workload console, select Instances Virtual Applications RBHADR
GPFS Primary Server.

b. On the right pane, click Manage.

c. Stay on the right pane with GPFS-Manager highlighted. Scroll down to Manage Keys.

d. From the Key Type list, select Client.

e. Click Submit. Wait for the operation complete.

f. Check the result by clicking Report. This action opens a web page that displays the
content of the key.

g. Select all text including the IP address, key text, and comment.

h. Copy all text to the clipboard. This text is used when to start the GPFS Shared Service
in the next step.

Figure 6-15 Retrieve Key Operations and resulting key
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 185

2. Deploy the GPFS Shared Service (Figure 6-16):

a. From the workload console, select Cloud Shared Services.

b. Expand IBM Shared Service for GPFS.

c. Select IBM Shared Service for GPFS (External) 1.2.0.0.

d. Click Deploy.

e. Paste the SSH client key obtained in the previous step.

f. Select the correct Environment Profile. In this scenario, choose the profile that can
serve the multi-domain component. In this case it is the environment profile: Multirack
Content

g. Click Continue to distribute.

Figure 6-16 Shared Service for GPFS

6.2.5 Configure WebSphere Application Server with GPFS client policy

First, create a WebSphere Application Server cluster pattern. Next, add a GPFS client policy
to a custom node. Complete the following steps:

1. To create the WebSphere Application Server cluster pattern, see the instructions in “Build
the WebSphere Application Server cluster pattern” on page 266.

2. To add the GPFS client policy, follow the instructions in 6.1.3, “Add GPFS Client Policy” on
page 175.

6.2.6 Deploy WebSphere pattern to multiple domains

Next, deploy the WebSphere Application Server cell to two racks. One custom node is on the
PDC-1 and the other node is on the PDC-2. Both custom nodes write their transaction logs to
the same storage volume. The storage volume is on the PDC-1 and is mirrored and copied
synchronously to the storage volume that is on the PDC-2. In the event of a storage volume
outage on PDC-1, both custom nodes are automatically rerouted to the mirror GPFS server to
serve the data retrieved from the mirrored data store managed by the mirror GPFS server.

To deploy your pattern to multiple domains, your ID must be authorized to use the
environment profile for multiple domain. Your login ID should also be authenticated by an
LDAP server. Ensure that your environment has been configured to enable multiple domain
deployments. Listed here are the high-level steps to deploy a pattern with custom nodes
scattered across multiple domains. Complete deployment instructions are in “Deploy
WebSphere Application Server cluster pattern: Multiple rack” on page 270.
186 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

To deploy the WebSphere pattern to multiple domains, complete these steps:

1. Log in to PureApplication System using your user ID and password for multiple domain
user group.

2. Deploy the pattern the same way as when you deploy locally.

3. Choose the environment profile that is set for multiple domain deployment. This
configuration separates management and data networks as shown in Figure 6-17.

Figure 6-17 Environment Profile for WebSphere Application Server GPFS Client

4. At deployment time, select the domain to place each VM. Make the decision based on the
VM’s location and deploy it. See Figure 6-18 for an example. One custom node is placed
on Rack 26T while all other nodes are deployed to Rack 33, see Figure 6-18.

Figure 6-18 Put the VM in the rack of your choice

6.2.7 Configure WebSphere Application Server to write transaction log to
GPFS storage volume

For instructions, see 6.1.6, “Configure transaction services” on page 178.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 187

6.2.8 Test the Multi-domain WebSphere Split Cell HA using GPFS scenario

The storage volume that is managed by GPFS can be replicated from one rack to another
rack in the vicinity.

WebSphere Application Server stores its transaction logs on the volume that is managed by
the primary GPFS server on PDC-1. The transaction logs are copied over to the file system
managed by the mirrored server on PDC-2. The Tiebreaker server monitors the health of both
the primary and mirror servers. It decides which server should render the content of the file
systems to GPFS clients on either rack. It is transparent to those GPFS clients who are using
the data in the event of losing one of the GPFS servers or one of the storage volumes.

By splitting WebSphere Application cell across two racks, the application server can
continually take workload in case one of the cluster members goes down. After the GPFS
server cluster is up and WebSphere Application Server is running, use these steps to test this
scenario:

1. On PDC-1, stop the Primary GPFS server:

a. From Workload console, select Instances Virtual Applications.

b. Select RBHADR GPFS Primary Server.

c. Click Stop on the right pane. Wait for the stop operation to complete.

2. Test the application. The mirror server should take over the file serving work from the
Primary server that is down. Nothing needs to be done on PDC-2 to recover the outage of
PDC-1. The outage of PDC-1 should be transparent to WebSphere Application Server.
For more information, see “Validate BankTransaction application” on page 284.
188 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6.3 Scenario WAS_3: Active/Passive, identical setups in PDC
and SDC, with transactions stored in GPFS

This scenario, shown in Figure 6-19, involves a pair of WebSphere Application Server cells,
GPFS servers, and block storage volumes. In the PDC, the transaction log files of
WebSphere Application Server are stored in the block storage managed by GPFS. The block
storage is replicated either synchronously or asynchronously to another block storage that is
at the SDC. The SDC is configured to take both a planned and an unplanned outage of the
PDC.

Figure 6-19 WebSphere active/passive cell setup

WebSphere transaction log recovery requires the application servers at the SDC have the
same host names as those in the PDC. To avoid name resolution conflicts, special network
configuration is needed. There are different ways to achieve this. For instance, manipulate the
/etc/hosts to resolve local host names. Another way to achieve this is by setting up a special
DNS on each site, PDC and SDC, to reserve and resolve the host name for all the
WebSphere Application Server VMs. This configuration is described in detail in 4.9, “DNS
setup for primary and secondary (cross) rack scenarios” on page 81.

The SDC is configured to recover both planned and unplanned outages of the PDC. Although
the recovery procedure described in this scenario is for a planned outage, the same
procedure that takes place at the SDC also works for an unplanned outage. Table 6-1 outlines
the configuration steps and execution sequence starting from initiating all the components at
the PDC and SDC to the recovery from SDC.

Table 6-1 Configuration steps

Task Configuration Data Center

Network Configure IP group used for DR PDC

Configure IP group used for DR SDC

Rack PDC-1
Middleware:
•WebSphere Application
Server V8.5.5

Notes:
•Transaction logs stored in
GPFS
•VMs should have the same
host names in SDC as Rack
PDC for transaction
recovery
•WebSphere cell in SDC-1
deployed on passive
takeover.

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

GPFS
Primary

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

GPFS
Passive

Rack SDC-1

Replicate

Virtual System
Pattern=
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 189

Cloud Group Configure cloud group and
environment profile for DR

PDC

Configure cloud group and
environment profile for DR

SDC

Storage Volume Create primary storage volume PDC

Create standby storage volume SDC

Create primary Block Storage
Replication Profile

PDC

Create standby Block Storage
Replication Profile

SDC

Create storage volume
replication pair

PDC

Accept storage volume
replication pair

SDC

GPFS Deploy Passive GPFS Server SDC

Deploy Primary GPFS Server PDC

Add Passive GPFS Server as
member of the Primary GPFS
cluster

PDC

Obtain Primary GPFS Server's
client key

PDC

Deploy GPFS Shared Service
with the Primary GPFS Server's
client key

PDC

WebSphere Application
Server

Deploy WebSphere cell with
GPFS client policy

PDC

Configure WebSphere to store
transaction logs to block
storage

PDC

Serving WebSphere
applications

PDC

Export WebSphere pattern PDC

Import WebSphere pattern SDC

Planned Outage Prepare Primary GPFS Server
for failover

PDC

Shutdown WebSphere PDC

Task Configuration Data Center
190 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

6.3.1 Network configuration

For detailed steps, see 4.10, “Network configuration for WebSphere Application Server and
DB2 scenarios” on page 85.

6.3.2 Cloud Group and Environment Profile

The cloud group to which the WebSphere Application Server VMs belong to must include a
reserved IP group. All IP addresses in that IP group are reserved for WebSphere Application
Server’s VMs. The environment profile that WebSphere Application Server deployment uses
must include that reserved IP group. These prerequisites must be met on both PDC and SDC.

PDC
In this example, the IPAD HADR IP group that is reserved for WebSphere Application Server
VMs is included in the cloud group, RB DR Only. See Figure 6-20.

Figure 6-20 Include IP Group in WebSphere environment profile

Recovery Storage Volume Replication
Failover

SDC

GPFS Server Takeover SDC

Obtain current GPFS Primary
Server's client key

SDC

Deploy Shared Service with the
GPFS Server's client key

SDC

Deploy WebSphere cell with
GPFS client policy

SDC

Configure WebSphere to store
transaction logs to block
storage

SDC

Serving WebSphere
Application Server applications

SDC

Task Configuration Data Center
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 191

SDC
The cloud group requirement on SDC is the same. The cloud group must include the reserved
IP group. The environment profile not only has to include the reserved IP group for the
WebSphere Application Server deployment, but must also have the Assign by deployer
option in the IP addresses provided by field, selected as shown in Figure 6-21.

Figure 6-21 Defining the IP Group

6.3.3 Storage Volume

Chapter 4, “Infrastructure setup” on page 47 lists step-by-step instructions to create storage
volumes and block storage replication profiles on both PDC and SDC. Allocate a pair of
similarly-defined block storage volumes on each side of the data center and verify that
everything written to the primary storage is replicated to the storage volume on the passive
site.

Creating storage volumes and creating block storage replication profiles are independent
from each other. The block storage replication profile links a storage volume on SDC to a
storage volume on the PDC. It defines which one is the source and which is the target of a
replication action. It also provides a way to break the replication link or reverse the replication
direction.

PDC
Create a storage volume on the PDC for the primary GPFS server first. Then, wait for the
storage volume for the passive GPFS server to be created on the SDC. After that is done,
create an entry in the block storage replication profile that is initiated from PDC by picking the
storage volume for the passive GPFS server on SDC as the target. This action requires an
acceptance from SDC, so wait for the acceptance to take place.
192 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

SDC
Create a stage volume on the SDC for the passive GPFS server. Notify the administrator on
the PDC to initiate a block storage replication. Wait until the replication entry is created to
accept the replication. Figure 6-22 identifies the button to accept or reject the replication
request.

When a Passive GPFS Server is started with a storage volume allocated to it, the storage
volume is not mounted until the passive node becomes the primary.

Figure 6-22 Accept Replication

6.3.4 GPFS

The sequence to start a GPFS Server starts with the Passive GPFS server. When the
Passive GPFS server is started, the storage volume is allocated but not mounted. Therefore,
the GPFS shared service cannot be started. Therefore, WebSphere Application Server GPFS
clients cannot be deployed. WebSphere Application Server GPFS clients can only be
deployed after the PDC is unavailable and the Primary takeover occurs.

PDC
The PDC must wait until the SDC starts its Passive GPFS server and obtains the Passive
GPFS server's management VM IP address. That IP address is needed to add the Passive
Server to the GPFS cluster. After the address is obtained, start the Primary GPFS Server and
then start the GPFS Shared Service. After the GPFS Shared Service is started, deploy the
GPFS clients.

SDC
The SDC site needs to deploy the Passive GPFS Server before the PDC. After the Passive
server is running, supply the management VM IP address to the PDC. This is done so that the
PDC can deploy its Primary GPFS Server or add the Passive Server as its Passive cluster
member.

6.3.5 WebSphere Application Server

The WebSphere Application Server pattern can be deployed after the GPFS Shared Service
is running. Each GPFS client relies on the GPFS Shared Service to obtain the access key to
communicate with the GPFS Management node.

Note: Be aware of the direction of the arrow in the Direction column. The arrow is pointing
toward RBWAS3a, which means that the volume is receiving data from the Primary site.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 193

PDC
On the PDC side, WebSphere Application Server is deployed with the GPFS Client Policy
included in the pattern. A list of all the host names of WebSphere Application Server cluster
members is needed by the SDC administrator so that an identical WebSphere Application
Server cluster can be brought up with matched host names. The IP assignment is
automatically selected by the designated IP group at the deployment time. Table 6-2 shows
an example of such a list:

Table 6-2 PDC WebSphere Cluster Host Name/IP list

After the connection to the block storage managed by GPFS is established, configure
WebSphere Application Server to store its transaction log to the block storage. This is done
so the transaction log can be replicated to the remote SDC's storage volume. Configure this
for each custom node in the cell from the WebSphere Application Server's administrative
console. Figure 6-23 shows where to configure WebSphere Application Server to write its
transaction log to the mounted block storage.

Figure 6-23 Setting Transaction log to write to block storage

Node Type Host Name IP Address

CustomNode1 ipas-hadr-034.purescale.raleigh.ibm.com 172.20.95.34

DmgrNode ipas-hadr-035.purescale.raleigh.ibm.com 172.20.95.35

CustomNode2 ipas-hadr-032.purescale.raleigh.ibm.com 172.20.95.32

IHSNode ipas-hadr-038.purescale.raleigh.ibm.com 172.20.95.38

Note: The file path that is specified for the transaction log directory field includes a
symbolic link, /tranlog_was4_1Link, generated by GPFS. This symbolic link was specified
in the GPFS Client Policy included in the WebSphere Application Server pattern.
194 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

In this scenario, a test application, BankTransactionWeb, is installed. That application uses
J2C alias to access databases through XA JDBC driver. The application requires J2C alias for
security authentication. The J2C aliases must be identical on both PDC and SDC so that
WebSphere Application Server can fully recover on the SDC. Create a list of the J2C aliases
and provide it the SDC administrator. Follow these instructions to obtain the list:

1. Log in to WebSphere Application Server administration console, which is typically through
the web link http://dmgrIP:9060/ibm/console. In this scenario, it is
http://172.20.95.35:9060/ibm/console using ID: virtuser and the corresponding
password.

2. From the WebSphere Administrative Console, select Security Global security J2C
authentication data. Then, select each cluster member.

Figure 6-24 shows an example:

Figure 6-24 J2C Alias on PDC for database access

SDC
There is no action needed. Because the GPFS Server does not have the block storage
volume mounted yet, there is no need to start its GPFS Shared Service. Therefore, you
cannot start the WebSphere Application Server GPFS client. After the PDC is shut down,
start the GPFS Shared Service, and then deploy WebSphere Application Server. In a real
unplanned outage of the primary data center, the time to recovery is important. If WebSphere
Application Server can be deployed and kept in standby mode before the outage of the
primary occurs, the time to recovery can be shortened significantly.

To achieve this performance, deploy WebSphere Application Server ahead of time using the
Shared Service for GPFS instance on PDC. After the WebSphere Application Server is
running, stop its cluster members and put it in a standby mode. When the outage of PDC
occurs, a new Shared Service for GPFS is started. At this point, the WebSphere Application
Server’s GPFS Client can be connected to the newly established Shared Service for GPFS
instance on SDC.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 195

Deploying WebSphere Application Server cluster pattern for this scenario requires extra steps
to set up matching host names for all the WebSphere Application Server VMs that were
deployed on PDC. See 4.9, “DNS setup for primary and secondary (cross) rack scenarios” on
page 81 for how DNS is set up to keep the same host name for WebSphere Application
Server cluster members. When planning DR, a set of host names is reserved on each data
center as shown in Table 6-3.

Table 6-3 PDC WebSphere Cluster Host Name/IP list

On SDC, the same range of IP are reserved for DR. Notice that the IP subnet is different
whereas the host names on both sites are identical, as shown in Table 6-4.

Table 6-4 SDC WebSphere Cluster Host Name/IP list

Host Name IP Address

ipas-hadr-001.purescale.raleigh.ibm.com 172.20.95.1

ipas-hadr-002.purescale.raleigh.ibm.com 172.20.95.2

ipas-hadr-003.purescale.raleigh.ibm.com 172.20.95.3

.

ipas-hadr-040.purescale.raleigh.ibm.com 172.20.95.40

Host Name IP Address

ipas-hadr-001.purescale.raleigh.ibm.com 172.20.71.1

ipas-hadr-002.purescale.raleigh.ibm.com 172.20.71.2

ipas-hadr-003.purescale.raleigh.ibm.com 172.20.71.3

.

ipas-hadr-040.purescale.raleigh.ibm.com 172.20.71.40
196 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

When deploying the WebSphere Application Server pattern on SDC, the IP address for each
VM should not be automatically assigned by the IP group. Instead, the IP address should be
assigned manually by the deployer because its host name needs to match its counterpart on
PDC. Therefore, the IP group in the environment profile for this DR deployment is configured
as “IP address provided by Pattern Deployer” as shown in Figure 6-25.

Figure 6-25 IP address provided by Pattern Deployer

Deploy the WebSphere Application Server cluster pattern. Before assigning a VM and an IP
address, you need to find the VM’s host name on PDC first. For instance, if the deploying VM
is a deployment manager, DmgrNode, and if its host name is
ipas-hadr-035.purescale.raleigh.ibm.com, as shown in Table 6-2 on page 194, then its IP
address should be 172.20.71.35 as shown in Table 6-4 on page 196. The dialog box in
Figure 6-26 must be filled as 172.20.71.35 for the DmgrNode. The Host Name field should be
left blank as it is resolved by the DNS assigned to this IP group. The rest of the deployment
process should be the same as the normal deployment process.

Figure 6-26 Assign IP Address
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 197

6.3.6 Planned outage at PDC

A planned outage gives the PDC a chance to gracefully shut down the GPFS server and
other components. The overall goal is to put the primary GPFS Server in a position ready for
the SDC GPFS server to take over its primary role. The Primary GPFS server must unmount
the primary block storage and stop the replication from it to its counterpart at the SDC. To
achieve this, complete the following steps:

1. Allow the primary GPFS Server to switch roles.
2. Fail over at the block storage replication.

From the workload console, complete the following steps:

1. Select Workload Instances Virtual Applications

2. Locate the primary GPFS Server instance. On the right pane, click Manage.

3. On the right pane, under AGENT Operations, highlight the GPFS-Manager.

4. There are several operations available as shown in Figure 6-27:

a. From the right pane, expand Run Cluster Operation.

b. Select Prepare Primary for Takeover.

c. Click Submit.

d. Wait for the result to return, which is shown in the lower part of the window.

e. To view the report, select Result. The report indicates that the role changed and the
block storage was unmounted.

Figure 6-27 GPFS manager

After the block storage volume is released, go to the Block Storage Volume Replication to
stop the replication.

1. From the system console, select System Block Storage Replication.

2. Locate your block storage.
198 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. Select Failover. Notice that the arrow next to the block storage is pointing toward the
passive volume. This indicates who the receiver of the data movement is. After you click
Failover, the replication is stopped and the block storage is unlisted. An example is shown
in Figure 6-28.

Figure 6-28 Storage Volume Replication Failover

After the primary GPFS Server switches the role and unmounts the block storage,
WebSphere Application Server can no longer access the disk volume. You can either stop
WebSphere Application Server or leave it running. If you leave it running, after the GPFS
Server comes back to service, you can reconnect WebSphere Application Server (as GPFS
Clients) to the GPFS Server. You can also restart the GPFS Shared Service so that it points
to the newly recovered primary GPFS Server at the SDC. This scenario illustrates a complete
shutdown of the PDC, so you cannot reconnect WebSphere Application Server at PDC to the
GPFS Server at SDC.

6.3.7 Recovery

The recovery effort takes place at the SDC after PDC is shut down. Recovery requires two
steps. First, switch the Passive GPFS Server's role by taking over the primary. Second, start a
GPFS Shared Service instance and make it ready to accept GPFS clients.

SDC
From PureApplication System console, complete these steps:

1. Select Workload Console Instances Virtual Applications.

2. Locate your GPFS Passive Server.

3. Click your GPFS server to get its details.

4. From the right pane, select Manage Manager Agent.

5. From the right pane, expand Run Cluster Operation.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 199

6. Select Passive Takeover and click Submit, see Figure 6-29.

Figure 6-29 Switch the Passive GPSF server role

After the Passive Takeover task is complete, check the result from the lower pane. If no errors
exist, get the client key from the current GPFS Server as shown in Figure 6-30.

1. Stay on the right pane with GPFS-Manager highlighted.

2. Scroll down to Manage Keys.

3. Select Client from the Key Type list.

4. Select Submit.

Figure 6-30 Client key
200 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. Wait for the operation to complete. Check the result by clicking Report, which opens a
web page with the content of the key on display as shown in Figure 6-31.

Figure 6-31 Retrieve client key
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 201

6. Select all text including the IP address, key text, and comment and copy it to the clipboard
as shown in Figure 6-32. This information is used to start GPFS Shared Service in the
next step.

Figure 6-32 Private key
202 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Start Shared services
The GPFS Shared Services must be started with the current Primary GPFS Server's client
access key as shown in Figure 6-33.

From workload console, start the GPFS shared service:

1. Select Cloud Shared Services.

2. Locate the GPFS Shared Service.

3. In the Actions column, select Deploy.

Figure 6-33 Shared services

4. After the Deploy window opens, paste the client key from the clipboard and deploy the
Shared Service as shown in Figure 6-34.

Figure 6-34 Paste client key

After the Shared Services is deployed, configure the WebSphere Application Server pattern
with the same GPFS Client Policy specified earlier. Use the same File System and File
System Link. After WebSphere Application Server instances are running, go to the
WebSphere administrative console to configure its custom nodes to use the block storage for
its transaction log as shown in Figure 6-35 on page 204.

1. From WebSphere administrative console, select Servers Server Types WebSphere
Application Servers.

2. Enter the symbolic link that was generated by GPFS and add a subdirectory, such as
member1, as the value of the Transaction log directory.
Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server 203

Figure 6-35 Use GPFS storage to store tranlog

To locate the two J2C alias at PDC, do the following as shown in Figure 6-24 on page 195.
Issue WebSphere Application Server administrative commands to change the aliases at the
SDC so they are the same as those at the PDC. Follow this procedure to do the change:

1. Open an SSH session to the Deployment Manager VM.

2. Go to /opt/IBM/WebSphere/ProfilesDefaultDmgr01/bin.

3. Issue the following command from the command line as shown in Example 6-1.

Example 6-1 Issuing the security = AdminConfig.getid command

security = AdminConfig.getid('/Cell:CloudBurstCell_11414620702085/Security:/')
print security
print AdminConfig.required('JAASAuthData')
alias = ['alias', 'CloudBurstNode_11414426827263/SAVINGS']
userid = ['userId', 'db2inst1']
password = ['password', 'passw0rd']
jassattrs = [alias,userid,password]

print AdminConfig.create('JAASAuthData', security, jassattrs)
AdminConfig.save()

4. After this code runs successfully, start the WebSphere Application Server Cluster and
complete your recovery work.
204 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 7. High availability and disaster
recovery scenarios for
WebSphere Application Server
and DB2

This chapter provides the details of the WebSphere Application Server scenarios in
association with a DB2 database configured in a high availability and disaster recovery
(HADR) configuration. This chapter specifically covers scenarios WDB_1, WDB_2, and
WDB_3 as described in Chapter 3, “High availability and disaster recovery scenarios” on
page 29. Although the steps for deploying WebSphere Application Server are described here,
the steps for setting up DB2 are covered in Chapter 5, “High availability and disaster recovery
scenarios for DB2” on page 89. The examples use WebSphere Application Server V8.5.5.
software components that are included with the V2.0 pattern editor.

This chapter includes the following sections:

� Common assets used in scenarios
� Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed on a

single rack with transactions stored in database
� Scenario WDB_2: WebSphere Application Server cluster with DB2 HADR, split across two

racks with WebSphere transactions stored in database
� Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR replicated

across DR site, with WebSphere transactions stored in database

7

© Copyright IBM Corp. 2015. All rights reserved. 205

7.1 Common assets used in scenarios

Below are common assets that are used in the scenarios:

� Image parts

Core OS (IBM OS image for Red Hat Linux Systems 2.1.0.0 42): This is the default image
that is used by all the pattern (Figure 7-1).

Figure 7-1 Core OS image

� Policies

Scaling Policy: Currently, the only thing the scaling policy is used for is to increase or
reduce the number of nodes that are created on the component where it is enabled. In the
examples, the custom node component is set to two, because those nodes make up the
cluster members.

� Script packages and the parameters that are used in the pattern

Disable IPTables: This is a custom script that was written for this book. The “core OS” part
used to build the patterns by default comes with all ports shut down. This script shuts
down the firewall on each of the VMs so all ports are opened. This is not something that is
recommended, but has been done here for the sake of simplicity. A better option is to have
the script open only the ports that are necessary. This script is run at deployment time.

� Prerequisites

– Deployed DB2 environment

The patterns that make up the DB2 environment are described in Chapter 5, “High
availability and disaster recovery scenarios for DB2” on page 89. Each of the scenarios
uses an instance of DB2 HADR deployed by a different pattern. Both of the patterns,
WDB_1 and WDB_2, use an environment deployed based on scenario DB2_1. The
pattern WDB_3 uses an environment deployed based on concepts from both scenario
DB2_2 and DB2_3.

This scenario requires that the following databases have been created as part of the
DB2 HADR patterns deployed in Chapter 5, “High availability and disaster recovery
scenarios for DB2” on page 89:

• TRANLOG: This is the database that will be used to recover transactions.
• CHECKING: Application database used by the application used in the scenario
• SAVINGS: Application database used by the application used in the scenario

– Application: The application used in the scenario, the details of which are provided in
Appendix A, “Sample Application” on page 253.
206 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

7.2 Scenario WDB_1: WebSphere Application Server cluster and DB2
HADR deployed on a single rack with transactions stored in database

This scenario covers having the application running in a WebSphere Application Server
cluster using DB2 setup in HADR mode, all on the same rack as shown in Figure 7-2.

Figure 7-2 Overview of scenario WDB_1

7.2.1 Build the WebSphere Application Server cluster pattern

For instructions about this process, see “Build the WebSphere Application Server cluster
pattern” on page 266.

The pattern name for this scenario is RB HADR WS 1B.

7.2.2 Deploy WebSphere Application Server cluster pattern

For instructions about this process, see “Deploy WebSphere Application Server cluster
pattern: Single rack” on page 269.

The pattern name for this scenario is RB HADR WS 1B.

7.2.3 Create a WebSphere Application Server cluster

For instructions about this process, see “Create WebSphere Application Server cluster” on
page 273.

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1 Middleware and OS:
•WebSphere Application
Server V8.5.5
•DB2 10.5

Notes:
•Data in DB2
•Transactions in DB

WebSphere Node

DB2-P DB2-S
Sync

Virtual System
Pattern=
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 207

7.2.4 Install DB2 JDBC driver

Before creating a data source to connect the sample application to DB2, install the client DB2
database driver. This ensures that the application can connect to a database and run DB2
commands.

For instructions about this process, see “Configure database connectivity for BankTransaction
application” on page 273.

7.2.5 Create a JDBC Provider

The application uses a JDBC provider that provides the actual implementation of the JDBC
driver for access to DB2.

For instructions about this process, see “Configure database connectivity for BankTransaction
application” on page 273. The JDBC provider is scoped to the cell.

7.2.6 Create a J2C alias

Because the database has security enabled, it requires a user ID and password for the
connection. To provide these requirements, you must create an authentication resource by
creating a J2C alias.

For instructions about this process, see “Create a J2C alias” on page 278.

7.2.7 Create data sources

Create the following data sources scope at the cell level (CHECKING, SAVINGS, and
transaction data source).

For instructions about this process, see “Create data sources for SAVINGS, CHECKING, and
transaction data source” on page 280.

7.2.8 Install BankTransaction application

Now that you have configured the resources necessary for database connectivity, the
application can be installed.

For instructions about this process, see Appendix B: “Install BankTransaction application” on
page 284.

7.2.9 Validate the functionality of the application

The installation and configuration of the application must be validated. For instructions about
this process, see “Validate BankTransaction application” on page 284.

Note: The non-XA JDBC Provider needs to be created because WebSphere Application
Server requires that the data source used for pointing to the tranlog database needs to be
a non-XA one.
208 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

7.3 Scenario WDB_2: WebSphere Application Server cluster
with DB2 HADR, split across two racks with WebSphere
transactions stored in database

This scenario is similar to the scenario documented in 7.2, “Scenario WDB_1: WebSphere
Application Server cluster and DB2 HADR deployed on a single rack with transactions stored
in database” on page 207. The significant difference in this case is that the pattern is split
across both racks. As part of the deployment of the WebSphere Application Server pattern,
the pattern is deployed across the two racks in the same data center as shown in Figure 7-3.

Figure 7-3 Deploying across two racks same data center

The pattern built in the prior scenario does not need to be changed. You can use the same
pattern.

WebSphere
DMgr

WebSphere
Node

IHS

Rack PDC-1 Rack PDC-2

DB2-P DB2-S

WebSphere
Node

Middleware and OS:
•WebSphere Application
Server V8.5.5
•DB 10.5

Notes:
•WebSphere cell split
across 2 patterns
•DB2 HADR split pattern
•WebSphere Transactions
stored in DB

Sync

Virtual System
Pattern=
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 209

This chapter assumes that you have set up the two PureApplication Systems in the PDC to
support multi-rack deployment as described in 4.8, “Multisystem environment deployment” on
page 71. For this deployment, the Environment Profile RedBooks HADR External, which
supports multi-rack deployments, was used. It is also assumed that the databases used by
the Bank Transaction application have already been deployed using DB2 HADR OLTP Pattern
with the primary and secondary databases on the two different racks as shown in Figure 7-4.

Figure 7-4 Deployment, primary and secondary

To perform the deployment, complete these steps:

1. From the Workload Console, select Patterns Virtual System Patterns and look for the
RB HADR WAS 1B pattern. If the pattern has not been built, follow the directions in “Build the
WebSphere Application Server cluster pattern” on page 266.

2. Deploy the pattern by using the instructions in “Deploy WebSphere Application Server
cluster pattern: Multiple rack” on page 270.

3. Create the resources for clustering and database connectivity (if not created in the
previous scenario) using the directions in these sections:

a. “Create WebSphere Application Server cluster” on page 273

b. “DB2 JDBC Database driver installation” on page 274.

c. “Create a JDBC Provider” on page 275

d. “Create a J2C alias” on page 278

e. “Create data sources for SAVINGS, CHECKING, and transaction data source” on
page 280
210 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Install the application if not already installed from the previous scenario. Follow the
instructions in “Install BankTransaction application” on page 284.

5. Validate the scenario by following the instructions in “Validate BankTransaction
application” on page 284.

7.4 Scenario WDB_3: Identical WebSphere Application Server
cell and DB2 HADR replicated across DR site, with WebSphere
transactions stored in database

This scenario sets up a WebSphere Application Server Active/Passive Cell using transactions
that are stored in a database. The databases are also configured in an active/passive manner
using DB2 HADR. For WebSphere Application Server, you create identical cells on both PDC
and SDC as shown in Figure 7-5.

Figure 7-5 Scenario WDB_3

Creating the setup for this scenario includes the following steps:

1. Create a DB2 HADR Pattern.
2. Deploy the pattern on both PDC and SDC.
3. Enable block storage replication between PDC and SDC.
4. Create a WebSphere Application Server Pattern.
5. Deploy the same pattern across both PDC and SDC.

Rack PDC-1
Middleware:
•WebSphere V V8.5.5
•DB2 10.5

Notes:
•Transaction logs stored in
GPFS
•VMs should have the same
host names in SDC as Rack
PDC
•WebSphere Transactions
stored in DB
•Block storage replication
sync mode must be same
across all replication pair to
have consistency

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

WebSphere
DMgr

WebSphere
Node

IHS

WebSphere
Node

SDC-1

DB2-P DB2-S DB2-P DB2-S

Replicate

Sync Sync

Virtual System
Pattern=
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 211

Create the DB2 HADR Pattern
Although the detailed steps for setting up the DB2 HADR pattern are explained in Chapter 5,
the important high-level steps are listed here. Use the steps that are outlined in 5.3.3,
“Optional: Multiple HADR databases” on page 99 to create a DB2 HADR pattern, which is
shown in Figure 7-6.

Figure 7-6 DB2 HADR pattern

Deploy the DB2 HADR pattern on both PDC and SDC
The following are the steps to deploy the DB2 HADR pattern on the PDC and SDC:

1. Use the steps that are outlined in 5.6, “Scenario DB2_3: Two systems using block storage
replication” on page 119 to customize the pattern to use block storage and deploy the
patterns on both PDC and SDC racks.

2. Use the steps that are outlined in 5.6.4, “Enable Block Storage replication” on page 132:

a. Stop DB2 on the secondary VM.

b. Stop DB2 on the primary VM.

c. Detach block storage from each of the VMs.

d. Configure replication from the PDC rack using the Block Storage Replication menu.

e. Accept the request for replication using the Block Storage Replication menu on the
SDC rack.

Block Storage Replication should now be established between PDC and SDC.
212 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Create the WebSphere Application Server Pattern
The following are the steps to create the WebSphere Application Server pattern:

1. From the Workload Console, select Patterns Virtual System Patterns and look for the
RB_HADR_WAS_3_Existing_DB2HADR pattern. If the pattern has not been built, follow the
directions in Appendix B, “Common WebSphere Application Server configuration tasks”
on page 265. The pattern should resemble Figure 7-7.

Figure 7-7 WebSphere pattern with DMgr, custom nodes, and IBM HTTP Server

2. Export the pattern:

a. Click Export.

b. Enter file name that you can recognize because this pattern will be imported onto the
SDC rack (see Figure 7-8).

Figure 7-8 Export a pattern

3. Import the pattern on the SDC rack:

a. Log in to the SDC rack.

b. From the Workload console, select Patterns Virtual System
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 213

c. Click Import as shown in Figure 7-9.

Figure 7-9 Import option

d. Browse to the archive file created when you exported the pattern from PDC and click
OK as shown in Figure 7-10.

Figure 7-10 Exported pattern

After being imported, the same patterns exist on both the PDC and SDC.

Deploy the WebSphere Application Server Pattern
The following are the steps to deploy the WebSphere Application Server pattern:

1. On the PDC, deploy the WebSphere Application Server pattern that was created in
“Create the WebSphere Application Server Pattern” on page 213. Follow the instructions
in “Deploy WebSphere Application Server cluster pattern: Single rack” on page 269.

2. During deployment, an environment profile, that was created for the DR scenarios was
used. The details of the environment profile are documented in 4.7, “Network configuration
and cloud resources configuration” on page 65. See Figure 7-11.

Figure 7-11 Environment profile selected for deployment
214 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. Make note of the host names of each of the VMs that are part of your cell. You can find the
host name of a VM by expanding the virtual machine on the instances window as shown in
Figure 7-12.

Figure 7-12 Host name of Deployment Manager

Note: The host names the pattern instance in used in this publication were:

� Deployment Manager: ipas-hadr-001.purescale.raleigh.ibm.com; IP: 172.20.95.1

� Custom Node 1: ipas-hadr-002.purescale.raleigh.ibm.com; IP: 172.20.95.2

� Custom Node 2: ipas-hadr-003.purescale.raleigh.ibm.com; IP: 172.20.95.3

� IHS Node: ipas-hadr-040.purescale.raleigh.ibm.com; IP: 172.20.95.40
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 215

4. Deploy the pattern that you imported into SDC. Follow the instructions in “Deploy
WebSphere Application Server cluster pattern: Single rack” on page 269. When deploying
into SDC, use an environment profile that requires IP addresses to be specified at
deployment time. The cell is passive and is only activated in a DR situation. Because of
this requirement, the cell must have the same host names as the cell on the active server.
See Figure 7-13. Click Continue to Distribute. This action allows you to specify IP
addresses for each part.

Figure 7-13 Environment profile for specifying IP addresses

5. After the pattern is deployed, notice that although the IP address is different, the host
names that are assigned to each VM are the same as those assigned on the PDC, as
shown in Figure 7-14.

Figure 7-14 Host name and IP address
216 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Validate the test case
Use the following steps to validate the test case:

1. Set up the application using the administrative console on the PDC.

a. Create a WebSphere Application Server cluster called MyCluster, with a cluster
member on each custom node. Follow the instructions in “Create WebSphere
Application Server cluster” on page 273. See Figure 7-15 for an example.

Figure 7-15 WebSphere Application Server cluster configuration

b. Create two JDBC drivers. The application needs an XA JDBC Driver and the tranlog
requires a non-XA JDBC Driver. Use the instructions that are provided in “DB2 JDBC
Database driver installation” on page 274. Figure 7-16 shows a sample.

Figure 7-16 JDBC drivers

2. Create data sources according to the values in Table 7-1. The J2C Aliases must have the
same names on the PDC and SDC racks. You can use the instructions in “Create data
sources for SAVINGS, CHECKING, and transaction data source” on page 280 as a guide.

Table 7-1 Data sources for test case validation

Data Source JNDI JDBC Driver
Type

DB Server J2C Alias

CHECKING jdbc/checking XA 172.20.88.3 CloudBurstNode
_114151359667
16/CHECKING
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 217

c. Install the application named BankTransaction. Instructions are found in “Install
BankTransaction application” on page 284.

3. For each server under the Transaction Service, configure the Transaction log Directory.
See Figure 7-17.

Figure 7-17 Transaction Service configuration

Repeat these steps on SDC. Follow the instructions in these sections:

1. “Create the DB2 HADR Pattern” on page 212
2. “Deploy the DB2 HADR pattern on both PDC and SDC” on page 212
3. “Create the WebSphere Application Server Pattern” on page 213
4. “Deploy the WebSphere Application Server Pattern” on page 214

SAVINGS jdbc/savings XA 172.20.88.3 CloudBurstNode
_114151359667
16/CHECKING

Transaction data
source

jdbc/trands NON-XA 172.20.88.3 CloudBurstNode
_114151359667
16/CHECKING

Data Source JNDI JDBC Driver
Type

DB Server J2C Alias
218 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

However, there are a few differences:

1. Create the data sources (see “Create data sources for SAVINGS, CHECKING, and
transaction data source” on page 280) and use the same J2C Alias as on the cell in PDC.
However, the database should point to the primary DB2 VM deployed as part of the DB2
HADR pattern on SDC. See Table 7-2 for more details.

Table 7-2 Data source needed on the SDC

2. There is a requirement to have the J2CAliases the same as defined in PDC. Use
wsadmin to accomplish this task. Ideally, this step should be scripted. The commands for
setting the J2C Alias are shown in Figure 7-18.

Figure 7-18 Commands to set J2C Aliases

3. Install the application named BankTransaction by following the instructions on “Install
BankTransaction application” on page 284.

Set the Transaction Service for each Application Server in the cluster. Follow the
instructions at the following website to set up the appserver to use a database for
transaction recovery:

http://www-01.ibm.com/support/docview.wss?uid=swg27038432

4. Start both application servers.

Data Source JNDI JDBC Driver
Type

DB Server J2C Alias

CHECKING jdbc/checking XA 172.20.64.3 CloudBurstNode
_114151359667
16/CHECKING

SAVINGS jdbc/savings XA 172.20.64.3 CloudBurstNode
_114151359667
16/CHECKING

Transaction data
source

jdbc/trands NON-XA 172.2064.3 CloudBurstNode
_114151359667
16/CHECKING
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 219

http://www-01.ibm.com/support/docview.wss?uid=swg27038432

5. Test the application on PDC and ensure that transaction recovery is working. Use the
instructions in “Validate BankTransaction application” on page 284. The results shows that
the application is working as designed and the failure of one cluster member does not
cause a lost transaction.

6. Validate the transaction recovery on SDC:

a. Remember the amounts above. Transfer $100.00 from the Savings to the Checking
account.

b. While the application is waiting, shut down the various components in the following
order:

– Application Server JVMs. Use kill -9 because that is close to a unrecoverable failure.

– DB2 Secondary (follow the steps that are outlined in “Stop DB2 on the Virtual System
Instance in the PDC” on page 142.)

– DB2 Primary (follow the steps that are outlined in “Stop DB2 on the Virtual System
Instance in the PDC” on page 142.)

c. Detach the block storage volumes that are currently attached to the VMs in PDC.
Follow the steps that are outlined in “Detach Block Storage volumes from the VMs in
the PDC” on page 143. You should see a status similar to the status shown in
Figure 7-19.

Figure 7-19 Detaching a block storage volume

7. Perform a failover of the storage volumes from PDC to SDC.

a. From the system console on the PDC rack, go to System Block Storage
Replication Profiles.

b. Look for the volumes configured for replication. Click Failover as shown in Figure 7-20.

Figure 7-20 Failover

Note: If this was an unplanned failover, such as a rack failure, this option is not
possible. In that case, go to the same window on the other rack and click Failover.
220 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

8. Attach the volumes to the DB2 VMs in the SDC as shown in Figure 7-21.

Figure 7-21 Attaching volumes to the DB2 VMs

9. Log in to each of the DB2 VMs as root.

10.Start DB2 using the chrg command as documented in “Start DB2 on the Virtual System
Instance in the SDC” on page 148. If DB2 does not start, use the db2start command as
the instance owner.

11.For each VM, update the database configuration to show the correct local and remote
hosts as shown in Figure 7-22. For more information, see “Manually updating the DB2
HADR configuration on the VMs” on page 151.

Figure 7-22 Local and remote host names

12.Stop and restart the database instances in both VMs using the chrg command.

13.Because the databases are recovered, start the application server named MyServer1 in
SDC as shown in Figure 7-23.

Figure 7-23 Starting an application server
Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2 221

14.Start the BankTransaction application from a browser. Notice that the balance is showing
the correct values (see Figure 7-24).

Figure 7-24 Saving accounts balances

Note: Not all modes of database recovery are shown in this chapter because doing so
is beyond the scope of this chapter. For details about planned and unplanned failovers
of the database, see 5.6.6, “Planned Failover to SDC” on page 142 and 5.6.7,
“Unplanned Failover to SDC” on page 156.
222 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Chapter 8. High availability and disaster
recovery scenarios for
WebSphere MQ

This chapter describes several High Availability and Disaster Recovery (HADR) scenarios
around WebSphere MQ patterns in PureApplication System. There are several high
availability disaster recovery (HADR) options possible with WebSphere MQ such as MQ
Clustering and Multi-Instance Queue Manager (MIQM).

The scenarios in this chapter focus on the use of MIQM. With MIQM, multiple instances of the
same queue manager are configured on multiple systems, and each of those instances uses
a network storage shared file system such as NFS, GPFS, and so on, for the queue manager
data, logs, and more. MIQM provides high availability of WebSphere MQ Queue Managers
without using any High Availability Coordinator.

The MIQM has an active server and one or more standby servers that host the same queue
manager and the shared file system. When the active server fails, there is an automatic
switch to the standby server. The active server (queue manager) instance accepts requests
from applications or other queue managers. The lock on the queue manager data on the
shared file system is held by the active instance, while the standby server does periodic
checks to see whether the active queue manage is still active. The standby server instance
acquires the lock if the active queue manager fails. The standby becomes the new active
server.

The messaging provider in WebSphere Application Server (starting with V7.0.13) can
connect to a MIQM, specified through the WebSphere MQ messaging provider connection
factory or activation specification custom properties. Other WebSphere Java Message
Service (JMS) clients can use the automatic client reconnect to connect to MIQM.

For the network storage shared file system, you can use NFS, but PureApplication System
offers a better file sharing solution in GPFS.

8

© Copyright IBM Corp. 2015. All rights reserved. 223

The following link provides more details about how WebSphere MQIM works:

https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq_v7
/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=20091218113354709936

In this chapter, several common WebSphere MQ patterns are shown to provide HADR across
single or multiple PureApplication System systems, as shown in Table 8-1.

Table 8-1 Overview of the WebSphere MQscenarios.

The prerequisites for creating a WebSphere MQ MIQM topology is GPFS setup, which is
described in Chapter 4, “Infrastructure setup” on page 47.

The details of these scenarios are discussed in this chapter. You can also see details of the
WebSphere MQ scenarios in 3.5, “HADR scenarios for WebSphere MQ” on page 43.

The following topics are covered in this chapter:

� Common assets used in WebSphere MQ scenarios

� Scenario WMQ_1: WebSphere MQ Primary and standby in the same pattern deployed on
a single rack

� Scenario WMQ_2: WebSphere MQ primary and standby in different patterns deployed on
two different racks in the same data center

� Scenario WMQ_3: WebSphere MQ primary and standby in the different patterns deployed
on two different racks across different data centers

Scenario PDC SDC HA DR

WMQ_1 Yes No Yes No

WMQ_2 Yes - across 2
racks in PDC

No Yes No

WMQ_3 Yes Yes Yes Yes
224 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq_v7/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=20091218113354709936

8.1 Common assets used in WebSphere MQ scenarios

This section shows all the assets that are used to build the patterns that make up the solution
for the different scenarios. The assets include the WebSphere MQ images, the add-on
policies for GPFS, and the script packages The details of each of those assets are described
below.

8.1.1 Image Parts

The WebSphere MQ 7.5.0.x image is used for primary and standby QManagers. The image
should be imported in the Workload catalog for virtual images in the pattern editor, as shown
in Figure 8-1.

Figure 8-1 WebSphere MQ 7.5.0.x image

The key parameters of the WebSphere MQ image are shown in Figure 8-2. It creates a
default QManager, which is deleted by using a script package that is executed at deployment
time.

Figure 8-2 Parameters for default QManager
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 225

8.1.2 Policies

For all the scenarios, dedicated QManagers were created that use a shared directory
provided by GPFS.

The GPFS Client Policy add-on creates or uses an existing file set on the GPFS server file
system. The directories in the file set are linked to a local directory within the WebSphere MQ
VM. The locally linked file directory is then used for QManager data, logs, and errors. The
GPFS policy parameters that are used in the scenario are as follows:

� GPFS File System Information: RBHADRfileSystem was used. This file system was created
when the GPFS server environment was created. The same file system is used for all
scenarios in this book.

� GPFS file set directory: The scenario name is used as the unique file set directory, such
as WMQ_1, WMQ_2, and WMQ_3.

� Storage Maximum Limit: 100M (MB) was used for this file set.

� Directory to link on local system: /opt/MQShare. This is the local link directory on the
virtual machine that is specified when creating new QManagers.

8.1.3 Script packages and parameters used in the pattern

The following script packages are available to download. For details about how to download
these script packages for use, see Appendix C, “Additional material” on page 287.

WMQ-DelQMgr: This script deletes the default QManager that is created as part of WebSphere
MQ instance deployment. This script does not require any parameters and is run at
deployment time.

WMQ-HAQMGR-Primary: This script creates a primary QManager using the specified directory for
data and logs. The directory is the locally linked directory to the GPFS file set directory
created for this scenario. This script is run “on-demand” after the pattern has been deployed.
The key parameters are described below and shown in Figure 8-3 on page 227.

� PASCONN_QMGR_PORT: Unique port for the QManager. Port 1414 was used for this
scenario.

� PASCONN_QMGR_NAME: Name of the QManager. HADRQMgr was used.

� PASCONN_MOUNT_DIR: The directory where the QManager data and logs are created.
/opt/MQShare was used and was linked to the GPFS file set directory specified in the
GPFS client policy.
226 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Figure 8-3 WMQ-HAQMGR-Primary parameters

WMQ-HAQMGR-Standby: This script creates a standby QMgr using the specified directory for data
and logs. The directory used is the locally linked directory to the GPFS file set directory
created for this scenario. This script is run “on-demand” after the pattern has been deployed.
The key parameters are described below and shown in Figure 8-4:

� PASCONN_QMGR_NAME: Name of the QManager. This name should be the same as
the primary QManager, HADRQMgr.

� PASCONN_MOUNT_DIR: The directory where the QManager data and logs are created
by the primary QManager. /opt/MQShare was used in this scenario. This directory is linked
to the GPFS file set directory specified in the GPFS client policy that is created by the
primary QManager instance.

Figure 8-4 WMQ-HAQMGR-Standby parameters
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 227

WebSphere MQ Run MQSC Command: This script runs a single MQSC command on the
QManager. For example, you can create the Queue on the QManager using this script. This
script is run “on-demand” after the pattern has been deployed. The key parameters are as
follows, and are shown in Figure 8-5:

� QMGR_NAME: Name of the QManager, HADRQMgr.

� MQSC_COMMAND: Provide the MQSC command to run.

Figure 8-5 WebSphere MQ Run WMQSC Command parameters

WebSphere MQ Run MQSC Scripts: This script runs multiple MQSC commands from a file that
is packaged with the script compressed file. It is available for you to use. The “WebSphere
MQ Run MQSC Command” was chosen because the authors had few commands to run. This
script is configure to run “on-demand”.

8.1.4 Prerequisites

This scenario requires the following prerequisites:

� A deployed GPFS environment.

� An instance GPFS primary and optional mirror (for HA of the shared file system) servers
are deployed.

� IBM Shared Service for GPFS is deployed in the same cloud group where the pattern is
deployed. Based on the scenario, the GPFS shared service connects to either GPFS
Primary-Mirror or GPFS Primary-Passive configuration based on the scenario. The usage
is described in details along with the scenario.

8.2 Scenario WMQ_1: WebSphere MQ Primary and standby in
the same pattern deployed on a single rack

This scenario consists of two WebSphere MQ instances, one being the primary (active) and
the other being the standby QManager.

The following are the high-level steps of building the pattern, named “RB HADR WMQ_1”,
using the Pattern builder:

1. From the Image section of the palette, complete these steps:

a. Drag one WebSphere MQ image part to be the primary QManager.

b. Name the part WMQ_Primary.
228 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

c. Provide the parameters to create the default QManager. On this WebSphere MQ
Primary part, add the following script packages with the parameters described in 8.1,
“Common assets used in WebSphere MQ scenarios” on page 225:

• WMQ-DelQMgr

• WMQ-HAQMGR-Primary

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts

2. From the Image section of the palette, complete these steps:

a. Drag another WebSphere MQ image part to be the standby QManager.

b. Name the part WMQ_Standby.

c. Provide the parameters to create the default QManager. On this WebSphere MQ
Standby part, add the following script packages with the parameters described in 8.1,
“Common assets used in WebSphere MQ scenarios” on page 225:

• WMQ-DelQMgr

• WMQ-HAQMGR-Standby

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts

The pattern looks like Figure 8-6.

Figure 8-6 WebSphere MQ Primary and Standby
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 229

The GPFS client connects through the GPFS shared service to the GPFS Primary-mirror
setup as described in 4.3, “Configuring an Active/Active (Mirrored) GPFS deployment” on
page 53. The GPFS client policy parameters on both the WebSphere MQ parts look like
Figure 8-7.

Figure 8-7 GPFS client policy

3. The pattern is now ready for deployment on the single rack, as shown in Figure 8-8.
Complete these steps:

a. From the Workload Console, select Patterns Virtual System.

b. Select the pattern.

c. Click the Deploy option for the virtual system pattern to start the deployment.

d. Provide the passwords for the VMs. The system creates two VMs (WMQ_Primary and
WMQ_Standby).

Figure 8-8 Deploying the pattern

4. Create the QManagers and the Queue.
230 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

a. After the two VMs are deployed, run the following “on-demand” scripts that are part of
the deployed VM. These scripts must run in the following sequence:

i. On WMQ_Primary, run the WMQ-HAQMGR-Primary script with the parameters that are
shown in Figure 8-9.

Figure 8-9 WMQ-HADRQMgr-Primary script
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 231

ii. On WMQ_Standby, run WMQ-HAQMGR-Standby script with the parameters that are shown
in Figure 8-10.

Figure 8-10 WMQ-HADRQMgr-Standby script

iii. On WMQ_Primary, run WebSphere MQ Run MQSC Command script to create a
local persistent queue, with the parameters shown in Figure 8-11 (the MQSC
command is Define QLOCAL(HADRQ1) DEFPSIST(YES).

Figure 8-11 RunMQSCCommand script
232 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. Verify the environment using these steps:

a. To send and receive messages, use PuTTY to open two SSH sessions to
WMQ_Primary and WMQ_Standby. Use the IP addresses as shown in the virtual
instance console for this deployment (See Figure 8-12).

Figure 8-12 WMQ_Primary and WMQ_Standby IP addresses

b. Check the primary and standby QManagers by running the following commands:

• Using the WMQ_Primary VM SSH session, check the QManager:

su - mqm

dspmq (this shows the HADRQMgr running as primary, as shown in the following
output)

QMNAME(HADRQMgr) STATUS (Running)

• Using the WMQ_Standby VM SSH session, check the QManager:

su - mqm

dspmq (this shows the HADRQMgr running as primary, shown in the following
output)

QMNAME(HADRQMgr)STATUS (Running as standby)
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 233

c. On WMQ_Primary VM SSH session, put the test messages as described below and
shown in Figure 8-13:

cd /opt/mqm/samp/bin

./amqsput HADRQ1 HADRQMgr (this allows you to put the messages to the Queue.)

This is test 1
This is test 2
This is test 3
End
<enter> (this ends the sample)

Figure 8-13 Put test messages

d. Shut off (or terminate) the primary QManager, with the following options:

• Search for all processes that are related to HADRQMgr:

ps -ef | grep HADRQMgr

• In the output, process amqzxma0 has a parent PID of '1', whereas it is the parent for
most of the other processes. Note the process ID, and terminate that process ID,
using the following command (see Figure 8-14):

kill -9 <process-id>

Figure 8-14 Terminate (kill) the primary QManager

Note: This terminates the primary QManager processes. The standby then
automatically becomes the primary.
234 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

e. On the WMQ_Standby VM SSH session, check the QManager again and verify that it
now runs as a primary using the dspmq command. This shows the HADRQMgr
running as primary:

QMNAME(HADRQMgr) STATUS (Running)

f. Verify that you can retrieve the messages that were placed on the primary QManager
before it was terminated using these commands:

cd /opt/mqm/samp/bin

./amqsget HADRQ1 HADRQMgr (this reads any message in the Queue)

The output shown in Figure 8-15 is displayed.

Figure 8-15 Get test messages

8.3 Scenario WMQ_2: WebSphere MQ primary and standby in
different patterns deployed on two different racks in the same
data center

This scenario consists of two WebSphere MQ instances, one as the primary and the other as
the standby for a given QManager.

On rack 1 (PDC-1), perform the following steps:

1. Build a pattern named RB HADR WMQ_2 Primary.

a. Drag a WebSphere MQ image part from the Image section of the palette. This part will
be the primary QManager.

b. Name the part WMQ_Primary.

c. Provide the parameters to create the default QManager. On the WMQ_Primary part, add
the following script packages with the parameters described in 8.1.3, “Script packages
and parameters used in the pattern” on page 226:

• WMQ-DelQMgr

• WMQ-HAQMGR-Primary

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts

Note: This verifies that after putting the message in the primary queue and
terminating the primary queue, the standby QManager takes over as the primary,
and the messages are available in the new primary QManager. Starting the
QManager in the old primary VM makes it the standby QManager.
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 235

d. The pattern looks like Figure 8-16.

Figure 8-16 WebSphere MQ Primary pattern

The GPFS client connects through the GPFS shared service to the GPFS Primary-mirror
setup described in 4.3, “Configuring an Active/Active (Mirrored) GPFS deployment” on
page 53. The GPFS client policy parameters on the WebSphere MQ parts on both
patterns look like Figure 8-17.

Figure 8-17 GPFS client policy configuration
236 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

2. Deploy the pattern using these steps:

a. From the virtual system pattern workload console, click the Deploy option for the
virtual system RB HADR WMQ_1_Primary.

b. Provide the passwords for the WMQ_Primary part.

3. After the pattern is deployed, run the following scripts:

a. On WMQ_Primary, run WMQ-HAQMGR-Primary script with the parameters, shown in
Figure 8-18.

Figure 8-18 HADRQMgr-Primary script
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 237

b. On WMQ_Primary, run the WebSphere MQ Run MQSC Command script to create a
local persistent queue with the parameters, shown in Figure 8-19. The MQSC
command is Define QLOCAL(HADRQ2) DEFPSIST(YES).

Figure 8-19 RunMQSCCommand script

On rack 2 (PDC-2), build, deploy, and get the environment for the standby WebSphere MQ
VM by using these steps:

1. Build the pattern named RB HADR WMQ_2 Standby as shown below:

a. Drag a WebSphere MQ image part from the Image section of the palette to be the
standby QManager, and name the part WMQ_Standby.

b. Provide the parameters to create the default QManager.

c. On the WebSphere MQ Standby part, add the following script packages with the
parameters described in 8.1.3, “Script packages and parameters used in the pattern”
on page 226:

• WMQ-DelQMgr

• WMQ-HAQMGR-Standby

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts
238 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The pattern looks like Figure 8-20.

Figure 8-20 WebSphere MQ Standby pattern

2. The GPFS client policy parameters are the same as the primary WebSphere MQ pattern.
See Figure 8-17 on page 236 for a listing of the parameters.

3. Deploy the pattern by using these steps:

a. From the virtual system pattern workload console, click the Deploy option for the
virtual system RB HADR WMQ_2_Standby.

b. Provide the passwords for the WMQ_Standby part.

4. After it is deployed, run the WMQ-HAQMGR-Standby script on WMQ_Standby with the
parameters shown in Figure 8-21.

Figure 8-21 Parameters for WMQ-HAQMGR-Standby
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 239

The patterns are now deployed on the two racks (PDC-1 and PDC-2). The next steps are to
verify the environment:

1. Send and receive messages.

a. Using PuTTY, open two SSH sessions, one to the WMQ_Primary VM and another to the
WMQ_Standy VM. Use the IP addresses from the racks as shown in Figure 8-22.

Figure 8-22 Primary virtual system instance

2. Check the QManagers running as primary and standby:

a. On WMQ_Primary VM SSH session, check the QManager by running the following
commands:

su - mqm

dspmq (this shows the HADRQMgr2 running as primary)

QMNAME(HADRQMgr2) STATUS (Running)

b. On WMQ_Standby VM SSH session, check the QManager:

su - mqm

dspmq (this shows the HADRQMgr2 running as standby)

QMNAME (HADRQMgr2) STATUS (Running as standby)

3. On WMQ_Primary VM SSH session, put the test messages. This is similar to the example
shown in Figure 8-13 on page 234, except the queue and QManager names in the
command, as shown below:

cd /opt/mqm/samp/bin

./amqsput HADRQ2 HADRQMgr2 (this allows you to put the messages to the Queue)

This is test 1
This is test 2
This is test 3
End
<enter> (This ends the sample)

4. Shut off (or terminate) the primary QManager, with the following options:

a. Search for all processes that are related to HADRQMgr2:

ps -ef | grep HADRQMgr2

b. In the output, process amqzxma0 has a parent PID of '1', whereas it is the parent for
most of the other processes. Note the process ID, and terminate that process ID,
similar to the figure shown in Figure 8-14 on page 234.

kill -9 <process-id>
240 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. On the WMQ_Standby VM SSH session, check the QManager again and verify that it now
runs as a primary using the dspmq command:

QMNAME(HADRQMgr2) STATUS (Running)

6. Verify that you can retrieve the messages placed on the primary QManager before it was
terminated:

cd /opt/mqm/samp/bin

./amqsget HADRQ2 HADRQMgr2 (this reads any message in the Queue)

7. The output is similar to the output from scenario WMQ_1, as shown in Figure 8-15 on
page 235.

8.4 Scenario WMQ_3: WebSphere MQ primary and standby in
the different patterns deployed on two different racks across
different data centers

This scenario consists of a minimum of two WebSphere MQ instances, one being the primary
and the other being the standby for a specific QManager. The WebSphere MQ primary is
deployed on the rack (PDC-1) in the primary data center, whereas the WebSphere MQ
standby is deployed on the disaster recovery (SDC-1) rack at the second data center.

Note: This terminates the primary QManager. The standby QManager then
automatically becomes the primary.

Note: This verifies that after putting the message in the primary queue and terminating
the primary queue, the standby QManager takes over as the primary and the messages
are available in the new primary QManager. Starting the QManager in the old primary
VM makes it the standby QManager.
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 241

This setup uses a GPFS Passive configuration, where the GPFS Primary server is deployed
on the primary rack (PDC-1) and the GPFS Passive server is deployed on the disaster
recovery (DR) rack (SDC-1). Both servers use block storage. A replication pair is created
between the two block storage volumes of the GPFS server, as shown in Figure 8-23.

Figure 8-23 GPFS Passive before takeover

During the Passive takeover, complete the following manual steps are performed as shown
here:

1. On GPFS Primary server, click Prepare Primary for Takeover.

2. Perform manual Failover operation on the Passive Block Storage volume. This action
deletes the replication between the two block storage volumes.

3. On DR rack, for the GPFS Passive server, click Passive Takeover. This action makes the
GPFS Passive server the primary server.

4. On DR rack, redeploy GPFS Shared Service to point to the new GPFS Primary.
242 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

After the Passive takeover, the topology looks like Figure 8-24.

Figure 8-24 GPFS Passive after takeover

8.4.1 Steps for creating a WebSphere MQ active/passive scenario

On the primary rack (PDC-1) build, deploy, and set up the environment:

1. Build the pattern, named RB HADR WMQ_3 Primary, in the pattern builder editor.

a. Drag an WebSphere MQ image part from the Image section of the palette to be the
standby QManager.

b. Name the part WMQ_Standby.

c. Provide the parameters to create the default QManager by adding the following script
packages with the parameters described in “Script packages and parameters used in
the pattern” on page 226.

• WMQ-DelQMgr

• WMQ-HAQMGR-Standby

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 243

The GPFS client connects through the GPFS shared service to the GPFS
Primary-passive setup described in 4.4, “Configuring an Active/Passive GPFS
deployment” on page 61. The GPFS client policy parameters on the WebSphere MQ parts
on both the patterns look like those in Figure 8-25.

Figure 8-25 GPFS client policy

2. Deploy the pattern:

a. From the virtual system pattern workload console, click the Deploy option for the
virtual system RB HADR WMQ_3 Primary.

b. Provide the passwords for the WMQ_Primary part.
244 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. After it is deployed, run the following scripts on WMQ_Primary:

a. The WMQ-HAQMGR-Primary script with the parameters shown in Figure 8-26.

Figure 8-26 HADRQMgr-Primary script
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 245

b. The WebSphere MQ Run MQSC Command script to create a local persistent queue, with the
parameters shown in Figure 8-27 (the MQSC command is Define QLOCAL(HADRQ3)
DEFPSIST(YES).

Figure 8-27 WebSphere MQ Run MQSC Command script

On rack 2 (PDC-2), build, deploy, and get the environment for the standby WebSphere MQ
standby VM.

4. Build the pattern named RB HADR WMQ_3 Passive Standby in the pattern builder editor.

a. Drag a WebSphere MQ image part from the Image section of the palette to be the
standby QManager.

b. Name the part WMQ_Standby.

c. Provide the parameters to create the default QManager. Add the following script
packages with the parameters described in “Script packages and parameters used in
the pattern” on page 226:

• WMQ-DelQMgr

• WMQ-HAQMGR-Standby

• WebSphere MQ Run MQSC Command

• WebSphere MQ Run MQSC Scripts
246 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

The pattern looks like Figure 8-28.

Figure 8-28 WMQ_Standby pattern

The GPFS client policy parameters are the same as the primary WebSphere MQ pattern,
as shown in Figure 8-25 on page 244.

5. Deploy the pattern.

a. From the virtual system pattern workload console, click the Deploy option for the
virtual system pattern RB HADR WMQ_3 Passive Standby.

b. Provide the passwords for the WMQ_Standby part.
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 247

6. After it is deployed, run the WMQ-HAQMGR-Standby script on WMQ_Standby with the
parameters that are shown in Figure 8-29.

Figure 8-29 HADRMgr_Standby_Script

Now that the patterns are deployed on the two racks, the high-level steps are as follows:

1. From primary WebSphere MQ, send the message to the queue.

2. Terminate (kill) the WebSphere MQ primary process.

3. Perform GPFS passive failover.

4. From WMQ_Standby, receive the messages that were sent from WMQ_Primary.

These are the detailed steps based on the high-level steps:

1. From primary WebSphere MQ, send the message to the queue:

a. Using PuTTY, open SSH sessions to the WebSphere MQ Primary VMs each. Use the
IP addresses from the Primary rack, as shown in the virtual instance console for this
deployment, as shown in Figure 8-30.

Figure 8-30 Primary rack IP addresses

2. Check the QManagers on the primary:

a. On WMQ_Primary VM SSH session, run the following commands to check the
QManager:

su - mqm (change the user to mqm)

dspmq (this command shows HADRQMgr3 running as primary, as shown below)
248 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

QMNAME(HADRQMgr3) STATUS (Running)

b. On WMQ_Primary VM SSH session, put the test messages as follows:

cd /opt/mqm/samp/bin

c. Use the ./amqsput HADRQ3 HADRQMgr3 command to put the messages to the Queue:

This is test 1
This is test 2
This is test 3
End
<enter> (this ends the sample)

This procedure is similar to Figure 8-31.

Figure 8-31 Put the messages

3. Terminate (kill) the WebSphere MQ primary process:

a. Search for all processes related to HADRQMgr3 by using the ps -ef | grep HADRQMgr3
command. In the output, process amqzxma0 has a parent PID of '1', whereas it is the
parent for most of the other processes.

b. Note the process ID.

c. Terminate the process ID as shown in Figure 8-32:

kill -9 <process-id>

This command terminates the primary QManager.

Figure 8-32 Terminate the process
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 249

The next set of steps are to enable the WebSphere MQ standby on the SDC rack (DR rack):

1. On rack 1 (PDC-1) for the GPFS Primary Server:

a. From the Server instance console, select GPFS Manager Manage Operations.

b. Perform Prepare Primary For Takeover as shown in Figure 8-33. This would be done
for a planned failover. In case of an unplanned failover, this might not be an option and
you would start with the next step of passive takeover.

Figure 8-33 Preparing primary for takeover

2. On rack 2 (SDC-1) for the GPFS Passive Server:

a. From the Server instance console, select GPFS Manager Manage Operations.

b. Perform the Passive Takeover as shown in Figure 8-34.

Figure 8-34 Passive takeover

3. On rack 2 (SDC-1), complete these steps:

a. Delete the GPFS Shared service that was pointing to the Primary rack GPFS Primary
server.

4. On rack 2 (SDC-1), complete these steps:

a. Get the new GPFS Primary Server’s (original Passive Server’s) client key.

b. Use the client key to redeploy the GPFS shared service.

5. On rack 2 (SDC-1), complete these steps:

a. Go to the WebSphere MQ standby server instance.

b. For the WMQ_Standby GPFS Client, select Manage Operations.
250 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

c. Perform Connect to Server as shown in Figure 8-35.

Figure 8-35 Connect to server

The GPFS Passive takes over and the clients on the DR rack are connected to the new
GPFS Primary server with the QManager data from the old primary GPFS server.

6. On the WMQ_Standby VM SSH session, check the QManager again and verify that it now
runs as a primary:

su - mqm (change the user to mqm)

dspmq (this command shows the HADRQMgr3 running as primary)

QMNAME(HADRQMgr3) STATUS (Running)

7. Verify that you can retrieve the messages that were placed on the primary QManager:

cd /opt/mqm/samp/bin

./amqsget HADRQ3 HADRQMgr3 (this command reads any message in the Queue)

The output that is displayed is similar to Figure 8-15 on page 235.

Note: This procedure verifies that after putting the message in the primary queue,
terminating the primary queue, and completing the GPFS Passive takeover, the standby
QManager takes over as the primary, and the messages are available in the new primary
QManager.
Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ 251

252 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Appendix A. Sample Application

This appendix introduces the sample program that was used to test the use case scenarios in
this IBM Redbooks publication. The sample application (see Figure A-1) was developed to
simulate a bank account transaction.

Figure A-1 Sample program handling bank account transaction

The application uses XA Data Source in a transaction that is viewed as a set of tasks run as a
unit of work. XA Data Sources are Java Transaction API (JTA) compliant and allow the
resource manager to support distributed transaction management. In this example, an
amount is transferred from one bank account to another account. The two operations must
succeed to complete the entire money transfer transaction. If the two operations are
successfully completed, the transaction is committed. If not, the transaction is rolled back and
neither operation takes place.

Because the sample application requires access to a relational database to fulfill its business
objective, databases and tables for bank accounts must be created. Two databases for each
table were created. A data source was created that allows the application to connect and use
the database. After creating database tables through the DB2 command line processor and
configuring the data source from the administrative console, the application was deployed
and tested.

A

© Copyright IBM Corp. 2015. All rights reserved. 253

The following sections are covered in this appendix:

� Database Setup
� Application Coding Explanation
� Testing
254 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Database Setup

Two databases are created so that the sample program can simulate a distributed transaction
by connecting and accessing two different database resources.

The next sections cover the following requirements:

� Create CHECKING database and SAVINGS database
� List database directory
� Create tables
� Insert a single row into the SAVINGS table
� Terminate and configure CHECKING database and table

Create CHECKING database and SAVINGS database

Use SSH to connect to the Database server instance as db2inst1. Issue the db2 create
database command, as shown in Example A-1.

Example A-1 Create database CHECKING and SAVINGS

-bash-4.1$ db2 create database CHECKING
DB20000I The CREATE DATABASE command completed successfully.
-bash-4.1$ db2 create database SAVINGS
DB20000I The CREATE DATABASE command completed successfully.
-bash-4.1$

List database directory

After creating the databases, you need to verify that the database has been created by listing
the system database directory contents. Issue the list db directory command, as shown in
Example A-2.

Example A-2 Verify that the databases are created

-bash-4.1$ db2 list db directory

 System Database Directory

 Number of entries in the directory = 2

Database 1 entry:

 Database alias = SAVINGS
 Database name = SAVINGS
 Local database directory = /db2fs
 Database release level = f.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Database 2 entry:

 Database alias = CHECKING
Appendix A. Sample Application 255

 Database name = CHECKING
 Local database directory = /db2fs
 Database release level = f.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Create tables

A table is an unsorted set of records that consist of rows and columns. Each column has a
defined data type, and each row represents an entry in the table. You need to create both a
SAVINGS and a CHECKING table, and each table must contain the account number, name,
and balance amount. The sample application updates the balance amount value according to
the transaction type. The Account number is used as a primary key that uniquely identifies
records in the table.

To create tables from each database, complete the following steps and refer to Example A-3:

1. Create a table called SAVINGS from the database called SAVINGS.

2. From the SSH window, enter DB2 and then enter connect to SAVINGS.

3. Issue the CREATE TABLE SAVINGS (ACCOUNT_NUMBER INT NOT NULL PRIMARY KEY, NAME
VARCHAR(20) NOT NULL, AMOUNT DECIMAL(7,2)) command as shown in Example A-3.

Example A-3 Create table SAVINGS from database SAVINGS

-bash-4.1$ db2
(c) Copyright IBM Corporation 1993,2007
Command Line Processor for DB2 Client 10.1.4

You can issue database manager commands and SQL statements from the command
prompt. For example:
 db2 => connect to sample
 db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be
the first few keywords of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the Online Reference Manual.

db2 => connect to savings

 Database Connection Information

 Database server = DB2/LINUXX8664 10.1.4
 SQL authorization ID = DB2INST1
 Local database alias = SAVINGS
256 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

db2 => CREATE TABLE SAVINGS (ACCOUNT_NUMBER INT NOT NULL PRIMARY KEY, NAME
VARCHAR(20) NOT NULL, AMOUNT DECIMAL(7,2))
DB20000I The SQL command completed successfully.

Insert a single row into the SAVINGS table

Because the sample program uses the specific ACCOUNT_NUMBER, you need to initialize
the data by inserting a row (record). After inserting a row, verify the data in the row that you
inserted by querying it. Example A-4 provides the database command to insert a single row
into the SAVINGS table. The sample program uses a specific account number, 12345, for
SAVINGS and 54321 for CHECKING. You need to initialize both accounts. You can initialize
the balance amount value with any positive number.

Example A-4 Initialize a SAVINGS account with ACCOUNT_NUMBER “12345”.

db2 => INSERT INTO SAVINGS (ACCOUNT_NUMBER,NAME,AMOUNT) VALUES
(12345,'IPAS',20000.00)
DB20000I The SQL command completed successfully.
db2 => select * from SAVINGS

ACCOUNT_NUMBER NAME AMOUNT
-------------- -------------------- ---------
 12345 IPAS 20000.00

 1 record(s) selected.

db2 =>

Terminate and configure CHECKING database and table

Use similar steps to create the same structures in the CHECKING database. Because there
is a connection to the SAVINGS database, use the following steps to terminate the
connection to the SAVINGS database and then connect to the CHECKING database as
shown in Example A-5:

1. Issue the terminate command to delete the connection to the database, SAVINGS.

2. Connect to the database, CHECKING, to create a table called CHECKING.

3. Insert a row with the CHECKING account’s ACCOUNT_NUMBER, which is 54321.

Example A-5 Terminate SAVINGS database connection and connect to CHECKING for data setup

db2 => quit
DB20000I The QUIT command completed successfully.
-bash-4.1$ db2 terminate
DB20000I The TERMINATE command completed successfully.
-bash-4.1$ db2
(c) Copyright IBM Corporation 1993,2007
Command Line Processor for DB2 Client 10.1.4

Note: As you continue through this section, you will see information in “Terminate and
configure CHECKING database and table” on page 257 to address similar needs for the
CHECKING database.
Appendix A. Sample Application 257

You can issue database manager commands and SQL statements from the command
prompt. For example:
 db2 => connect to sample
 db2 => bind sample.bnd

For general help, type: ?.
For command help, type: ? command, where command can be
the first few keywords of a database manager command. For example:
 ? CATALOG DATABASE for help on the CATALOG DATABASE command
 ? CATALOG for help on all of the CATALOG commands.

To exit db2 interactive mode, type QUIT at the command prompt. Outside
interactive mode, all commands must be prefixed with 'db2'.
To list the current command option settings, type LIST COMMAND OPTIONS.

For more detailed help, refer to the Online Reference Manual.

db2 => connect to checking

 Database Connection Information

 Database server = DB2/LINUXX8664 10.1.4
 SQL authorization ID = DB2INST1
 Local database alias = CHECKING

db2 => CREATE TABLE CHECKING (ACCOUNT_NUMBER INT NOT NULL PRIMARY KEY, NAME
VARCHAR(20) NOT NULL, AMOUNT DECIMAL(7,2))
DB20000I The SQL command completed successfully.
db2 => INSERT INTO CHECKING (ACCOUNT_NUMBER,NAME,AMOUNT) VALUES
(54321,'IPAS',8000.00)
DB20000I The SQL command completed successfully.
db2 => select * from checking

ACCOUNT_NUMBER NAME AMOUNT
-------------- -------------------- ---------
 54321 IPAS 8000.00

 1 record(s) selected.

db2 =>

Application Coding Explanation

The application uses the UserTransaction interface, which provides the application the ability
to programmatically control transaction boundaries. UserTransaction can be obtained from
the SessionContext through java:comp/UserTransaction, as shown in Example A-6.

Example A-6 Method to obtain the UserTransaction

static UserTransaction getUserTransaction(HttpServletResponse resp) throws
IOException{

//printHTML(resp,"In getUserTransaction");
258 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

String msg;
UserTransaction utx = null;
try {

Context initialContext = new InitialContext();
utx = (UserTransaction) initialContext.lookup("java:comp/UserTransaction");

 }
catch (NamingException ex) {

msg="Cannot gejt UserTransaction: " + ex;
printHTML(resp,msg);

}

return utx;
}

The UserTransaction.begin() method creates a new global transaction and associates it
with the current calling thread. The UserTransaction.commit() method completes the
transaction that is associated with the current thread. When this method completes, the
thread is no longer associated with a transaction. The UserTransaction.rollback() method
rolls back the transaction that is associated with the current thread. When this method
completes, the thread is no longer associated with a transaction. Example A-7 shows these
methods. In this example, utx is used instead of the long form of the word, UserTransaction.

Example A-7 The UserTransaction methods invocation

UserTransaction utx=null;
utx = getUserTransaction(response);
 :
 try {
 utx.begin();
 :
 utx.commit();

 }catch (SQLException s){

:
 utx.rollback();
 }
 }

First phase (withdraw)

When a user transfers a certain amount from one account to another, the application retrieves
the existing balance of the account to withdraw.

If there not sufficient funds to withdraw, the program sends an error message and ends
execution.

If there are sufficient funds to withdraw, the first transaction deducts the balance by the
amount specified, updates the balance, and moves to the second phase.

If there is any error situation, the transaction is rolled back.
Appendix A. Sample Application 259

Second phase (deposit)

After the first phase succeeds, the application waits for one minute before running the second
phase of the transaction (deposit). The application retrieves the current balance of the
account, adds the amount, and updates the balance. After those two phases are successful,
the transaction is committed. If the second phase fails, the entire transaction is rolled back.

Testing

There are two bank accounts, Savings and Checking. The Savings account uses the
SAVINGS database. The Checking account uses the CHECKING database. Figure A-2
shows the empty balances.

Figure A-2 Initialize both accounts as zero

Sample Testing
You are now ready to test the two-phase commit transaction. This test verifies that an
application properly allows a user to transfer balance from one bank account to another.
When the user transfers a certain amount of balance, the first account must be deducted that
amount and then the second account must be increased that amount.

Use the following steps to test the application:

1. Deposit $50,000.00 to the SAVINGS account. See Figure A-3.

Figure A-3 Deposit to SAVINGS account
260 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

2. Transfer $20,000.00 from the SAVINGS account to the CHECKING account. See
Figure A-4.

Figure A-4 Transfer from SAVINGS account to CHECKING account

3. Withdraw $30,000 from the SAVINGS account. See Figure A-5.

Figure A-5 Withdraw from the SAVINGS account

4. Transfer $10,000 from the CHECKING account to the SAVINGS account. See Figure A-6.

Figure A-6 Transfer from CHECKING to SAVINGS
Appendix A. Sample Application 261

5. To test the rollback response to a failure of the first transaction, drop the CHECKING
database CHECKING table from DB2. Issue the DB2 CLP command as shown in
Example A-8.

Example A-8 Drop the CHECKING table

db2 => connect to checking

 Database Connection Information

 Database server = DB2/LINUXX8664 10.1.4
 SQL authorization ID = DB2INST1
 Local database alias = CHECKING

db2 => drop table checking
DB20000I The SQL command completed successfully.
db2 =>

6. Transfer $1,000 from the SAVINGS account to the CHECKING account. See Figure A-7.

Figure A-7 Roll-back test

7. This is a two-phase transaction and the second phase failed. The first phase that
deducted $1,000 from the savings must be rolled back. To check the balance of the
SAVINGS account, deposit $0.00 as shown in Figure A-8. The balance will be $10,000.00
if the rollback process was successful.

Figure A-8 Roll-back test
262 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

8. Re-create the table for CHECKING, if you want to continue other testing. Because the
application specifically handles CHECKING account number 54321, you need to initialize
the record by inserting a row with ACCOUNT_NUMBER = 54321, as shown in
Example A-9.

Example A-9 Re-create table CHECKING and initialize the record

db2 => CREATE TABLE CHECKING (ACCOUNT_NUMBER INT NOT NULL PRIMARY KEY, NAME
VARCHAR(20) NOT NULL, AMOUNT DECIMAL(7,2))
DB20000I The SQL command completed successfully.
db2 => INSERT INTO CHECKING (ACCOUNT_NUMBER,NAME,AMOUNT) VALUES
(54321,'IPAS',0.00)
DB20000I The SQL command completed successfully.
db2 =>
Appendix A. Sample Application 263

264 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Appendix B. Common WebSphere Application
Server configuration tasks

This appendix provides detailed instructions to perform common WebSphere Application
Server configuration operations needed in this book. These instructions are provided as a
convenience to the reader and should only be used in the context of this publication.

The following tasks are covered in this appendix:

� Build the WebSphere Application Server cluster pattern
� Deploy WebSphere Application Server cluster pattern: Single rack
� Deploy WebSphere Application Server cluster pattern: Multiple rack
� Create WebSphere Application Server cluster
� Configure database connectivity for BankTransaction application
� Install BankTransaction application
� Validate BankTransaction application

B

© Copyright IBM Corp. 2015. All rights reserved. 265

Build the WebSphere Application Server cluster pattern

The steps necessary to build the WebSphere Application Server cluster pattern are shown in
this section. The pattern provides a Deployment Manager, Custom Nodes, and IBM HTTP
Server.

1. From the Workload Console, select Patterns Virtual System Patterns.

2. Click Create New to start building a pattern.

a. Provide a name for the pattern. The example shown here is RB HADR WAS 1B.

b. The wizard shows a list of pre-built templates that are included with the WebSphere
Application Server component.

c. Select the template called WebSphere Application Server Cluster. This template
provides a Deployment Manager, Custom Nodes, and IBM HTTP Server.

d. Click Start Building as shown in Figure B-1.

Figure B-1 Build your pattern

3. After a brief time, a notification indicates that the new pattern was created.

Note: The pattern name for this example is RB HADR WAS 1B. Be sure to implement an
appropriate pattern name.
266 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

4. Select Patterns Virtual System Patterns and filter for example, RB HADR. You should
see your pattern listed as shown in Figure B-2.

Figure B-2 Verify pattern creation

5. Now that the pattern is created, edit and modify it, complete these steps:

a. Click the Edit icon to open the pattern in the pattern editor.

b. The pattern builder opens in a new window. It should look similar to Figure B-3.

Figure B-3 Pattern builder

6. Review and lock the pattern level parameters:

a. You can specify a password for root and virtuser either in the pattern editor or at
deployment time.

b. For the WebSphere administrative user name, you can use virtuser or use whatever
name you want. This case uses virtuser.
Appendix B. Common WebSphere Application Server configuration tasks 267

c. The password for the WebSphere administrative user can also be specified in the
pattern editor or left for the deployer to specify at deployment time as shown in
Figure B-4.

Figure B-4 Pattern parameters

d. Leave the default values for the component parts in the pattern.

7. Save the pattern by clicking Save.

8. Add scripts to the pattern to customize it.

a. Expand the Scripts section the left pane.

b. Find the script Disable IPTables by typing IPTables in the filter field.

c. Drag the script Disable IPTables onto DmgrNode, CustomNode, and IHSNode.

Note: The Disable IPTables script shuts down the firewall on each of the VMs. This
is not recommended for customers, but has been done here to simplify the
scenarios in this publication. A better option is to have the script open only the ports
that are necessary. This script is run at deployment time.
268 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

9. The pattern should resemble Figure B-5. Click Save.

Figure B-5 Add scripts to pattern parts

Deploy WebSphere Application Server cluster pattern: Single
rack

These instructions provide details about deploying the pattern created in “Build the
WebSphere Application Server cluster pattern” on page 266. Before continuing, verify the
name of the pattern you want to deploy. This deployment is for a single rack only.

1. Click Deploy to start the deployment of the virtual system pattern.

2. Provide the password for the VMs. This pattern deployment creates four VMs (Deployment
Manager, two Custom Nodes, and one IBM HTTP Server).
Appendix B. Common WebSphere Application Server configuration tasks 269

3. Check the status of the deployment by looking in the Instances Virtual System
Instances page as shown in Figure B-6.

Figure B-6 Pattern status

Deploy WebSphere Application Server cluster pattern: Multiple
rack

These instructions provide details about deploying the pattern that was created in “Build the
WebSphere Application Server cluster pattern” on page 266. Before continuing, verify the
name of the pattern you want to deploy. This deployment is for a multiple rack only.

There are several prerequisites:

� Your ID must be authorized to use the environment profile for multiple domains.

� Your login ID should also be authenticated by an LDAP server (not the local user
repository).

� Ensure that your environment has been configured to enable multiple domain
deployments.

To deploy the WebSphere Application Server cluster pattern, complete these steps:

1. Deploy the pattern.

a. Click the Deploy link for the pattern.

b. A new browser tab opens. Specify the following generic deployment parameters:

• Name

• Environment Profile (make sure to pick the environment profile that was created to
support multiple racks). See “Environment profiles” on page 70 for details.

• Priority

• SSH key
270 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

c. Specify the passwords for the root user, virtuser, and WebSphere admin user, see
Figure B-7.

Figure B-7 Virtual system pattern deployment

d. Click Continue to Distribute.

e. The next window allows you to distribute different parts of the pattern as separate
virtual machines on both the racks, as shown in Figure B-8.

Figure B-8 Distributing pattern parts

f. Click Deploy.
Appendix B. Common WebSphere Application Server configuration tasks 271

g. After the deployment completes, view the status in the Instances Virtual System
Instances window as shown in Figure B-9.

Figure B-9 Virtual system instances display

The pattern instance is spanning two cloud groups, one of which is on a different rack.

2. Verify that the pattern deployment was successful from WebSphere Application Server as
shown in Figure B-10.

a. Log in to the WebSphere Admin Console on the Deployment Manager.

b. Go to System Administration Nodes.

Figure B-10 WebSphere Application Server node management

One custom node virtual machine has a host name that is part of an IP group defined on
the second rack. This shows that the WebSphere cell was created with one cell member
on a different rack.
272 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Create WebSphere Application Server cluster

The high-level steps to create a WebSphere Application Server cluster are outlined below.

1. Log in to the WebSphere Application Server administrative console. Use the IP address
and host name of the Deployment Manager.

2. Create a cluster called MyCluster with a cluster member on each of the custom nodes that
are part of the topology shown in Figure B-11.

Figure B-11 Create a cluster

Configure database connectivity for BankTransaction
application

Database configuration is discussed in “Database Setup” on page 255. In this section,
database connectivity for the application is explained. This must be done before installing the
application.

Log in to the WebSphere Application Server’s administration server as virtuser. Because the
application requires two different data sources to connect to, update, and retrieve data, and
create the appropriate JDBC provider to communicate with RDBMS.
Appendix B. Common WebSphere Application Server configuration tasks 273

The next sections provide information about how to complete the following requirements:

� “DB2 JDBC Database driver installation” on page 274
� “Create a JDBC Provider” on page 275
� “Create a J2C alias” on page 278
� “Create data sources for SAVINGS, CHECKING, and transaction data source” on

page 280
� “Create data source for SAVINGS” on page 280

DB2 JDBC Database driver installation

Before creating a data source to connect the sample application to DB2, install the client DB2
database driver. This ensures that the application can connect to a database and run DB2
commands. The example in this chapter uses SSH to connect to the DB2 server instance as
db2inst. To get started, first create the opt/db2driver directory and copy db2jcc.jar and
db2jcc_license_cu.jar to the opt/db2driver directory.

To configure the JDBC database driver, log in to the WebSphere Application Server
administrative console, and use the following steps:

1. Click the WebSphere variables link in the Environment section.

2. Click the DB2UNIVERSAL_JDBC_DRIVER_PATH link.

3. In the Value field, enter: /opt/db2driver.

4. Click Apply.

Figure B-12 shows the configuration for the JDBC Database driver.

Figure B-12 Install DB2 JDBC client driver
274 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Create a JDBC Provider

The application uses a JDBC provider that provides the actual implementation of the JDBC
driver for access to DB2. Later, a data source is associated with a JDBC provider so that data
source provides the connection to DB2. Figure B-13 shows the configuration setup for the
JDBC Provider, and uses the following steps:

1. After logging in to the WebSphere Application Server administrative console, click the
JDBC Provider link in the JDBC category of the Resources section

2. Select the scope as cell using the drop-down menu

3. Click New.

Figure B-13 Creating a JDBC provider
Appendix B. Common WebSphere Application Server configuration tasks 275

4. As shown in Figure B-14, enter these specifications:

a. Database type as DB2

b. Provider type as DB2 Universal JDBC Driver Provider

c. Implementation type as XA data source (because the application requires two-phase
commit transactions)

d. Name is automatically filled as DB2 Universal JDBC Driver Provider (XA).

e. Click Next.

Figure B-14 Create a JDBC provider with XA data source implementation type

Note: Two-phase commit transactions allow a transaction to be rolled back during a
failure. This process allows an application to handle the failure event.
276 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. When the next page appears, review the information and click Next as shown in
Figure B-15.

Figure B-15 Create a JDBC provider - database class path

6. Click Finish as shown in Figure B-16.

Figure B-16 Create a JDBC provider - summary
Appendix B. Common WebSphere Application Server configuration tasks 277

7. Verify that the new JDBC Provider is created and save your results as shown in
Figure B-17.

Figure B-17 Create a JDBC provider- created JDBC provider

Create a J2C alias

Because the database has security enabled, it requires a user ID and password for the
connection. To provide these requirements, you must create an authentication resource by
creating a J2C alias using the following steps:

1. Go to the Security section and click the Global security link.

2. In the Authentication section, expand Java Authentication and Authorization Service
as shown in Figure B-18.

Figure B-18 Expand Java Authentication and Authorization Service section
278 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

3. Click the J2c authentication data link, as shown in Figure B-19.

Figure B-19 J2C authentication data link

4. Click New to create a J2C authentication alias.

5. Enter SAVINGS for the alias, db2inst1 for the User ID, and the password for the DB2
pattern. The results of this configuration are shown in Figure B-20.

Figure B-20 Create J2c alias for SAVINGS and CHECKING
Appendix B. Common WebSphere Application Server configuration tasks 279

Create data sources for SAVINGS, CHECKING, and transaction data source

For the application to use JNDI to access the SAVINGS database and the CHECKING
database, you must create the JDBC data sources. When data sources are created, the J2C
authentication aliases created in “Create a J2C alias” on page 278 are referred.

Create data source for SAVINGS

Use the following steps to create the data source for SAVINGS, as shown in Figure B-21:

1. Go to the JDBC section and click Data sources.

2. Select the Cell scope and click New.

3. Enter SAVINGS in the Data source name field, and the value jdbc/savings in the JNDI
name field. The JNDI name provides a naming context for the data source as used in
resource lookups by your application.

4. Click Next.

Figure B-21 Create data source for SAVINGS

Note: Repeat steps 4 and 5 for the CHECKING alias.
280 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

5. Click Select an existing JDBC driver and select DB2 Universal JDBC Driver Provider
(XA). This driver was created previously in “Create a JDBC Provider” on page 275. Then,
click Next as shown in Figure B-22.

Figure B-22 Select JDBC provider

6. Enter SAVINGS for the Database name. Then, enter your Server name and Port number,
and click Next. See Figure B-23.

Figure B-23 Enter database-specific properties
Appendix B. Common WebSphere Application Server configuration tasks 281

7. For all the security aliases, except mapping, from the drop-down menus, select J2C
authentication alias SAVINGS and click Next as shown in Figure B-24. Do not select the
mapping-configuration alias, which does not use a container-managed authentication
alias.

Figure B-24 Configuring J2C security alias

8. View the summary window and click Finish, as shown in Figure B-25.

Figure B-25 Finalizing the data source for SAVINGS
282 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

9. Repeat the process in “Create data source for SAVINGS” on page 280 to create another
data source called CHECKING. The final data sources are shown in Figure B-26.

Figure B-26 Data sources created for SAVINGS and CHECKING

10.Check each data source and click Test connection to verify the connection to the target
database.
Appendix B. Common WebSphere Application Server configuration tasks 283

Install BankTransaction application

The BankTransaction application is provided to help validate the scenarios in this publication.
You can find functional details in Appendix A, “Sample Application” on page 253.

1. Install the application BankTransaction using the EAR. See Appendix C, “Additional
material” on page 287 for instructions on downloading the sample application) as shown in
Figure B-27.

Figure B-27 Installing BankTransaction application

2. Start the application servers from the administrative console.

Validate BankTransaction application

These instructions show you how to run several transactions and terminate (kill) one cluster
member, either ClusterMember1 or ClusterMember2.

1. Validate that the application functions as shown in Figure B-28.

a. Start the bank transaction using the following URL:

http://<IP/HostName>/BankTransactionWeb/banktransaction.html

Figure B-28 Start the bank transaction

b. From the drop-down, select a transaction that transfers from checking to savings and
click Submit.

Note: To specify the option to use a database to store the transaction and
compensation logs, follow the directions outlined at the following website. In these
scenarios, two application servers are part of the cluster. Set this for each application
server.

http://www-01.ibm.com/support/docview.wss?uid=swg27038432
284 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

http://www-01.ibm.com/support/docview.wss?uid=swg27038432

c. There is a sleep configured in the application in between the two transactions of
withdrawing from checking and depositing to savings.

d. By looking at the SystemOut.log file, notice that the request was served as shown in
Figure B-29.

Figure B-29 SystemOut.log for withdrawal

e. Terminate the application server using kill -9.

f. Looking at the SystemOut.log file notice that the request has now been transferred to
the other server because transaction recovery was configured using a database. See
Figure B-30.

Figure B-30 SystemOut.log for deposit

2. The validation steps that are outlined in step 1 show how validation is handled on the
WebSphere Application Server. Chapter 5, “High availability and disaster recovery
scenarios for DB2” on page 89 discusses how the database itself can be failed over. After
the database recovers, the application should behave normally.
Appendix B. Common WebSphere Application Server configuration tasks 285

286 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks web server. Point your web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG248246

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG248246.

Using the web material

The additional web material that accompanies this book includes the following files:

� BankTransaction.ear: sample application used in scenarios

� RB-HADR-WMQ_1.zip: packaged code samples used in scenarios

� RB-HADR-WMQ_2_Primary.zip: packaged code samples used in scenarios

� RB-HADR-WMQ_2_Standby.zip: packaged code samples used in scenarios

� WMQ-DelQMgr.zip: packaged code samples used in scenarios

� WMQExecuteMQSC.zip: packaged code samples used in scenarios

� WMQExecuteSingleMQSC.zip: packaged code samples used in scenarios

� WMQ-HAQMGR-Primary.zip: packaged code samples used in scenarios

� WMQ-HAQMGR-Standby.zip: packaged code samples used in scenarios

C

© Copyright IBM Corp. 2015. All rights reserved. 287

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/SG248246

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and download the contents of the web
material files into this folder. Extract the SG248246.zip file into this folder to access the sample
application and code sample files.
288 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Always On: Assess, Design, Implement, and Manage Continuous Availability, REDP-5109

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� For a list of supported SVC hardware, see the IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/ex
tstorage_plan.dita?lang=en

� Supported hardware and procedures to enable the system to use external storage, refer to
the IBM Knowledge Center article “Planning to use external storage”:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/ex
tstorage_plan.dita?lang=en

� Configuring external storage is found in the Knowledge Center in the article Configuring
the system to use external storage devices:

http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/ex
tstorage_cfg.dita

� DB2 database:

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.
ha.doc/doc/c0011724.html

� DB2 JCC JDBC Provider:

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.j
ava.doc/src/tpc/imjcc_c0056186.html

� Automatic Client Reroute:

http://www.ibm.com/support/docview.wss?uid=swg21394840
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/DB2HADR/
page/Client%20Reroute
© Copyright IBM Corp. 2015. All rights reserved. 289

http://www.ibm.com/support/docview.wss?uid=swg21394840
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/DB2HADR/page/Client%20Reroute
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/DB2HADR/page/Client%20Reroute
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_plan.dita?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_cfg.dita
http://www-01.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/systemconsole/extstorage_cfg.dita
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0011724.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0011724.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_c0056186.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_c0056186.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� How to export/import Virtual System Patterns:

http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_exportvsys.
dita
http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_importvsys.
dita

� WebSphere Application Server: Storing transaction and compensation logs in a relational
database for high availability:

http://www-01.ibm.com/support/docview.wss?uid=swg27038432

� WebSphere MQIM:

https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq
_v7/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=2009121811335470993
6

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
290 Implementing High Availability and Disaster Recovery in IBM PureApplication Systems V2

https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq_v7/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=20091218113354709936
https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq_v7/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=20091218113354709936
https://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/com.ibm.iea.wmq_v7/wmq/7.0.1/Details/iea_701_120_multi_instancei.pdf?dmuid=20091218113354709936
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_exportvsys.dita
http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_importvsys.dita
http://www.ibm.com/support/knowledgecenter/SSCR9A_2.0.0/doc/iwd/pat_importvsys.dita
http://www-01.ibm.com/support/docview.wss?uid=swg27038432

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Im
plem

enting High Availability and Disaster Recovery in IBM
 PureApplication System

s V2

Im
plem

enting High Availability and
Disaster Recovery in IBM

Im
plem

enting High Availability and
Disaster Recovery in IBM

PureApplication System

s V2

Im
plem

enting High Availability and Disaster Recovery in IBM
 PureApplication

Im
plem

enting High Availability and
Disaster Recovery in IBM

PureApplication System

s V2

Im
plem

enting High Availability and
Disaster Recovery in IBM

PureApplication System

s V2

®

SG24-8246-00 ISBN 0738440337

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Implementing High
Availability and Disaster
Recovery in IBM
PureApplication Systems V2
Discover new features
in IBM
PureApplication
System V2.0

Examine how to use
GPFS with WebSphere
Application Server

Learn about Block
Storage Replication

This IBM Redbooks publication describes and demonstrates common,
prescriptive scenarios for setting up disaster recovery for common
workloads using IBM WebSphere Application Server, IBM DB2, and
WebSphere MQ between two IBM PureApplication System racks using
the features in PureApplication System V2.

The intended audience for this book is pattern developers and
operations team members who are setting up production systems
using software patterns from IBM that must be highly available or able
to recover from a disaster (defined as the complete loss of a data
center).

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview
	1.1 Define high availability and disaster recovery
	1.1.1 High availability
	1.1.2 Disaster recovery

	1.2 PureApplication System support for HA and DR
	1.2.1 IBM General Parallel File System (GPFS)
	1.2.2 Shared service for GPFS
	1.2.3 Block storage
	1.2.4 Block storage replication
	1.2.5 External storage
	1.2.6 Multisystem deployments

	1.3 Backup and recovery
	1.4 Always On (Continuous Availability)
	1.4.1 Always On Principles (Continuous Availability)
	1.4.2 Always On Patterns

	1.5 Overview of HADR use case scenarios

	Chapter 2. High availability and disaster recovery capabilities of PureApplication System V2.0
	2.1 Storage volumes
	2.1.1 The new type of storage volumes in PureApplication System V2.0

	2.2 Block storage overview
	2.2.1 Block storage replication

	2.3 Block storage replication
	2.3.1 Planned failover
	2.3.2 Unplanned failover

	2.4 External storage
	2.5 GPFS Overview
	2.6 GPFS topologies
	2.7 Active/Active GPFS deployment
	2.8 Active/Passive GPFS deployment
	2.9 Shared Service for GPFS
	2.10 GPFS file systems and file sets
	2.11 Load balancing

	Chapter 3. High availability and disaster recovery scenarios
	3.1 Overview for the scenarios
	3.1.1 Nomenclature
	3.1.2 Patterns
	3.1.3 Rack topology
	3.1.4 PureApplication Platform for testing scenarios
	3.1.5 Scenario basics

	3.2 HADR scenarios for WebSphere Application Server
	3.2.1 Scenario WAS_1: WebSphere cell in the same rack (PDC-1) with transactions in GPFS
	3.2.2 Scenario WAS_2: WebSphere cell across two racks in same data center
	3.2.3 Scenario WAS_3: WebSphere active-passive cells - identical setup in PDC and SDC, with WebSphere transactions stored in GPFS

	3.3 HADR scenarios for DB2
	3.3.1 Scenario DB2_1: DB2 HADR from the same pattern and deployed on a single rack (PDC-1)
	3.3.2 Scenario DB2_2: DB2 HADR from the same pattern and deployed the parts on two racks (PDC-1 and PDC-2)
	3.3.3 Scenario DB2_3: Identical DB2 HADR deployments across primary (PDC) and secondary DR (SDC) data centers

	3.4 HADR scenarios for WebSphere Application Server and DB2
	3.4.1 Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed on a single rack with transactions stored in database
	3.4.2 Scenario WDB_2: WebSphere Application Server cluster split across two racks in the same data center with DB2 HADR also split across the racks, with WebSphere transactions stored in database
	3.4.3 Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR replicated across DR site, with WebSphere transactions stored in DB

	3.5 HADR scenarios for WebSphere MQ
	3.5.1 Scenario WMQ_1: WebSphere MQ primary and standby in the same pattern deployed on a single rack
	3.5.2 Scenario WMQ_2: WebSphere MQ primary and standby in different pattern deployed on two different racks within the same data center
	3.5.3 Scenario WMQ_3: WebSphere MQ primary and passive in the different patterns deployed on separate racks across the data center

	Chapter 4. Infrastructure setup
	4.1 Block storage configuration
	4.1.1 Block storage configuration

	4.2 Block storage replication configuration
	4.2.1 Block storage replication: Steps

	4.3 Configuring an Active/Active (Mirrored) GPFS deployment
	4.3.1 Active/Active GPFS deployment: Steps

	4.4 Configuring an Active/Passive GPFS deployment
	4.4.1 Active/Passive GPFS deployment: steps
	4.4.2 Active/Passive setup and takeover

	4.5 Deploy GPFS Shared Service
	4.6 External storage configuration
	4.7 Network configuration and cloud resources configuration
	4.7.1 Network configuration
	4.7.2 Cloud resources configuration

	4.8 Multisystem environment deployment
	4.8.1 Management domains
	4.8.2 Deployment subdomains
	4.8.3 Additional requirements
	4.8.4 System configuration
	4.8.5 Create one or more deployment subdomains
	4.8.6 Cloud resources configuration

	4.9 DNS setup for primary and secondary (cross) rack scenarios
	4.9.1 Network setup

	4.10 Network configuration for WebSphere Application Server and DB2 scenarios
	4.10.1 PDC
	4.10.2 SDC

	Chapter 5. High availability and disaster recovery scenarios for DB2
	5.1 Introduction to DB2 HADR
	5.1.1 Primary, standby, and log shipping
	5.1.2 DB2 client and automatic client rerouting

	5.2 DB2 Client Setup
	5.2.1 Deploy DB2 client on PureApplication System
	5.2.2 Configure DB2 client

	5.3 Building a DB2 Virtual System Pattern
	5.3.1 Cloning the Default DB2 OLTP Pattern with HADR for Linux
	5.3.2 Modifying the new pattern, ITSO DB2 OLTP HADR Pattern
	5.3.3 Optional: Multiple HADR databases

	5.4 Scenario DB2_1
	5.4.1 Deployment
	5.4.2 Validation

	5.5 Scenario DB2_2: Two systems using a single pattern
	5.5.1 Deployment
	5.5.2 Validation

	5.6 Scenario DB2_3: Two systems using block storage replication
	5.6.1 Adding block storage to Virtual System Pattern
	5.6.2 Block Storage configuration
	5.6.3 Deploy Virtual System Pattern on both systems
	5.6.4 Enable Block Storage replication
	5.6.5 Validate the Virtual System Instance on the active system
	5.6.6 Planned Failover to SDC
	5.6.7 Unplanned Failover to SDC

	5.7 Validation
	5.7.1 Configure the DB2 client
	5.7.2 Connect to the DB2 database and perform a simple query
	5.7.3 Confirm DB2 HADR roles of primary and standby DB2 servers

	5.8 Testing for outages
	5.8.1 Planned outage: DB2 takeover
	5.8.2 Unplanned outage - shutdown of primary database OS

	Chapter 6. High availability and disaster recovery scenarios for WebSphere Application Server
	6.1 Scenario WAS_1: WebSphere cell in the same rack, transactions in GPFS
	6.1.1 Configure Primary GPFS Server
	6.1.2 Build the WebSphere Application Server cluster pattern
	6.1.3 Add GPFS Client Policy
	6.1.4 Deploy WebSphere Application Server cluster pattern
	6.1.5 Create a WebSphere Application Server cluster
	6.1.6 Configure transaction services
	6.1.7 Test Scenario WAS_1 HA

	6.2 Scenario WAS_2: Single WebSphere Cell Across two racks in PDC
	6.2.1 Configure and Deploy GPFS Mirror Server at PDC-2
	6.2.2 Configure and Deploy Tiebreaker Server at PDC-2
	6.2.3 Configure and deploy GPFS Primary server on PDC-1
	6.2.4 Deploy GPFS Shared Service at PDC-1
	6.2.5 Configure WebSphere Application Server with GPFS client policy
	6.2.6 Deploy WebSphere pattern to multiple domains
	6.2.7 Configure WebSphere Application Server to write transaction log to GPFS storage volume
	6.2.8 Test the Multi-domain WebSphere Split Cell HA using GPFS scenario

	6.3 Scenario WAS_3: Active/Passive, identical setups in PDC and SDC, with transactions stored in GPFS
	6.3.1 Network configuration
	6.3.2 Cloud Group and Environment Profile
	6.3.3 Storage Volume
	6.3.4 GPFS
	6.3.5 WebSphere Application Server
	6.3.6 Planned outage at PDC
	6.3.7 Recovery

	Chapter 7. High availability and disaster recovery scenarios for WebSphere Application Server and DB2
	7.1 Common assets used in scenarios
	7.2 Scenario WDB_1: WebSphere Application Server cluster and DB2 HADR deployed on a single rack with transactions stored in database
	7.2.1 Build the WebSphere Application Server cluster pattern
	7.2.2 Deploy WebSphere Application Server cluster pattern
	7.2.3 Create a WebSphere Application Server cluster
	7.2.4 Install DB2 JDBC driver
	7.2.5 Create a JDBC Provider
	7.2.6 Create a J2C alias
	7.2.7 Create data sources
	7.2.8 Install BankTransaction application
	7.2.9 Validate the functionality of the application

	7.3 Scenario WDB_2: WebSphere Application Server cluster with DB2 HADR, split across two racks with WebSphere transactions stored in database
	7.4 Scenario WDB_3: Identical WebSphere Application Server cell and DB2 HADR replicated across DR site, with WebSphere transactions stored in database

	Chapter 8. High availability and disaster recovery scenarios for WebSphere MQ
	8.1 Common assets used in WebSphere MQ scenarios
	8.1.1 Image Parts
	8.1.2 Policies
	8.1.3 Script packages and parameters used in the pattern
	8.1.4 Prerequisites

	8.2 Scenario WMQ_1: WebSphere MQ Primary and standby in the same pattern deployed on a single rack
	8.3 Scenario WMQ_2: WebSphere MQ primary and standby in different patterns deployed on two different racks in the same data center
	8.4 Scenario WMQ_3: WebSphere MQ primary and standby in the different patterns deployed on two different racks across different data centers
	8.4.1 Steps for creating a WebSphere MQ active/passive scenario

	Appendix A. Sample Application
	Database Setup
	Create CHECKING database and SAVINGS database
	List database directory
	Create tables
	Insert a single row into the SAVINGS table
	Terminate and configure CHECKING database and table

	Application Coding Explanation
	First phase (withdraw)
	Second phase (deposit)

	Testing

	Appendix B. Common WebSphere Application Server configuration tasks
	Build the WebSphere Application Server cluster pattern
	Deploy WebSphere Application Server cluster pattern: Single rack
	Deploy WebSphere Application Server cluster pattern: Multiple rack
	Create WebSphere Application Server cluster
	Configure database connectivity for BankTransaction application
	DB2 JDBC Database driver installation
	Create a JDBC Provider
	Create a J2C alias
	Create data sources for SAVINGS, CHECKING, and transaction data source
	Create data source for SAVINGS

	Install BankTransaction application
	Validate BankTransaction application

	Appendix C. Additional material
	Locating the web material
	Using the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

