IBM z/OS V2.1 DFSMS
Technical Update

Understand the features and functions of z/OS V2.1 DFSMS

Contains implementation hints and tips

Provides functional hands-on code samples

Mary Lovelace
Jose Dovidauskas
Anthony Fletcher
Gert Laumann
Norbert Schlumberger
Note: Before using this information and the product it supports, read the information in “Notices” on page xi.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.2 Catalog Search Interface enhancements</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3 Sample programs and REXX for CSI reporting.</td>
<td>32</td>
</tr>
<tr>
<td>2.5.4 Running reports with CSI programs</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Catalog parmlib member enhancements</td>
<td>37</td>
</tr>
<tr>
<td>2.6.1 How to prepare for catalog parmlib</td>
<td>38</td>
</tr>
<tr>
<td>2.6.2 Activating IGGCATxx catalog parmlib</td>
<td>39</td>
</tr>
<tr>
<td>2.6.3 IGGCATxx new options in DFSMS V2.1</td>
<td>39</td>
</tr>
<tr>
<td>2.6.4 How to display settings on Catalog parmlib</td>
<td>40</td>
</tr>
<tr>
<td>2.7 Catalog DFSMS GDG enhancements</td>
<td>41</td>
</tr>
<tr>
<td>2.7.1 Enable FIFO processing of GDG processing</td>
<td>41</td>
</tr>
<tr>
<td>2.7.2 Setting processing through JCL</td>
<td>42</td>
</tr>
<tr>
<td>2.8 Catalog RNLs Health Check</td>
<td>42</td>
</tr>
<tr>
<td>2.8.1 SDSF Health Checker panel</td>
<td>42</td>
</tr>
<tr>
<td>2.8.2 IGGCATxx catalog parmlib</td>
<td>42</td>
</tr>
<tr>
<td>2.9 MODIFY CATALOG, LIST enhancement</td>
<td>43</td>
</tr>
<tr>
<td>2.10 Improved catalog recovery features</td>
<td>44</td>
</tr>
<tr>
<td>2.10.1 F CATALOG, RECOVER, LOCK(ucat name)</td>
<td>44</td>
</tr>
<tr>
<td>2.10.2 F CATALOG, RECOVER, UNLOCK(ucat name)</td>
<td>44</td>
</tr>
<tr>
<td>2.10.3 F CATALOG, RECOVER, SUSPEND(ucat name)</td>
<td>45</td>
</tr>
<tr>
<td>2.10.4 F CATALOG, RECOVER, RESUME(ucat name)</td>
<td>45</td>
</tr>
<tr>
<td>2.10.5 Catalog define and delete parameters</td>
<td>46</td>
</tr>
<tr>
<td>2.10.6 Catalog forward recovery using new features</td>
<td>47</td>
</tr>
<tr>
<td>2.10.7 Catalog recovery using BCSRECOVER</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 3. IDCAMS enhancements</td>
<td>51</td>
</tr>
<tr>
<td>3.1 Large block size for LBI support</td>
<td>52</td>
</tr>
<tr>
<td>3.1.1 Use of function</td>
<td>52</td>
</tr>
<tr>
<td>3.1.2 Coexistence</td>
<td>52</td>
</tr>
<tr>
<td>3.2 IDCAMS support for RLS</td>
<td>53</td>
</tr>
<tr>
<td>3.2.1 Overview</td>
<td>53</td>
</tr>
<tr>
<td>3.2.2 Use</td>
<td>54</td>
</tr>
<tr>
<td>3.2.3 Coexistence</td>
<td>54</td>
</tr>
<tr>
<td>3.3 DELETE PDS or PDSE member with mask</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1 Use</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2 Coexistence</td>
<td>56</td>
</tr>
<tr>
<td>3.4 ALTER NULLIFY management class</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1 Overview</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2 Use</td>
<td>57</td>
</tr>
<tr>
<td>3.4.3 Coexistence</td>
<td>57</td>
</tr>
<tr>
<td>3.5 DIAGNOSE of GDGs</td>
<td>57</td>
</tr>
<tr>
<td>3.5.1 Overview</td>
<td>58</td>
</tr>
<tr>
<td>3.5.2 Use</td>
<td>58</td>
</tr>
<tr>
<td>3.5.3 Coexistence</td>
<td>58</td>
</tr>
<tr>
<td>Chapter 4. Virtual Storage Access Method enhancements</td>
<td>61</td>
</tr>
<tr>
<td>4.1 VSAM RLS enhancements</td>
<td>62</td>
</tr>
<tr>
<td>4.1.1 VSAM RLS directory-only caching</td>
<td>62</td>
</tr>
<tr>
<td>4.1.2 VSAM RLS Buffer Management Facility 64-bit enhancements.</td>
<td>63</td>
</tr>
<tr>
<td>4.1.3 VSAM RLS Dynamic Volume Count</td>
<td>64</td>
</tr>
<tr>
<td>4.2 VSAM non-RLS enhancements</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1 VSAM SHOWCB buffer option</td>
<td>65</td>
</tr>
<tr>
<td>4.2.2 VSAM SMB specification in SMS data class</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3 Specifying eligibility for VSAM replication</td>
<td>68</td>
</tr>
<tr>
<td>4.3 DFSMS support for zHPF</td>
<td>71</td>
</tr>
</tbody>
</table>
Chapter 5. PDSE enhancements

5.1 PDSE Version 2 scalability and usability .. 78
 5.1.1 Compatibility .. 78
5.2 PDSE member generation support ... 78
5.3 Guaranteed PDSE data set format allocation 78
 5.3.1 Use ... 79
 5.3.2 Coexistence .. 80
5.4 PDSE larger member size ... 81
 5.4.1 Compatibility .. 81
5.5 Generation Data Group support .. 81
 5.5.1 Scenario 1: Define a Generation Data Group 81
 5.5.2 Scenario 2: Define a PDSE version 1 in a GDG 82
 5.5.3 Scenario 3: Define a PDSE Version 2 in a GDG 83
 5.5.4 Scenario 4: Access the PDSEs using DFSMS V1.13 84
 5.5.5 Scenario 5: Allocate a PDSE Version 1 in a GDG on DFSMS V1.13 85

Chapter 6. SMS enhancements .. 91

6.1 New IGDSMSxx parameters ... 92
 6.1.1 IGD030I error message ... 92
6.2 Provide accurate volume space statistics 92
 6.2.1 Use ... 92
 6.2.2 Coexistence .. 93
6.3 Alter ACDS and COMMDS to SHAREOPTIONS(3 3) 93
 6.3.1 Use ... 94
 6.3.2 Coexistence .. 95
6.4 SMS ACS read-only variable for EAVs 95
 6.4.1 EAV overview ... 95
 6.4.2 EATTR overview ... 96
 6.4.3 Use ... 96
 6.4.4 Coexistence .. 97
6.5 DFSMS storage tiers .. 98
 6.5.1 Storage tier hierarchies .. 99
6.6 Option to suppress specific SMS messages 100
 6.6.1 Use ... 100
 6.6.2 Coexistence .. 101

Chapter 7. DFSMSdfp enhancements .. 103

7.1 IEBCOPY COPYGROUP ... 104
 7.1.1 Scenarios .. 104
7.2 IEBCOPY user exit capabilities ... 121
 7.2.1 Exit capabilities ... 121
7.3 IEBCOPY return code feedback ... 125
7.4 Open Close and End of volume (OCE) partial release 127
 7.4.1 Before DFSMS V2.1 ... 127
 7.4.2 DFSMS V2.1 enhancement ... 128
 7.4.3 Illustration scenarios ... 128
7.5 OCE RAS enhancements .. 133
 7.5.1 S837 RC08 ABEND elimination .. 133
 7.5.2 S837 RC08 ABEND in DFSMS V1.13 135
7.6 IEAAPx comments .. 137
7.7 DCBE invalidation message IEC190I 137
7.7.1 Maintenance .. 138
7.8 XTIOT HealthCheck 142
 7.8.1 XTIOT HealthCheck enablement 142
 7.8.2 XTIOT HealthCheck verification 142
 7.8.3 XTIOT HealthCheck implementation considerations 143

Chapter 8. DFSMSdss enhancements 145
 8.1 DFSMSdss data set change indicator reset with RESTORE 146
 8.1.1 DFSMSdss setting of DS1DSCH before DFSMS V2.1 146
 8.1.2 DFSMSdss setting of DS1DSCH options when using DFSMS V2.1 146
 8.1.3 Scenarios of the effects of DUMP options 147
 8.1.4 Security protection over use of RESET with DUMP or RESTORE 155
 8.2 DEBUG option SMSMSG 155
 8.3 RESTORE command 161
 8.3.1 Scenarios for RESTORE keywords 161
 8.4 zFS change activity support 169

Chapter 9. System Data Mover enhancements 171
 9.1 XRC offline volumes 172
 9.2 Migration and coexistence considerations 173
 9.2.1 Additional support 173

Chapter 10. SMS exploiting hardware enhancements 175
 10.1 Cluster and extent pool exploitation 176
 10.1.1 Volume selection for multi-volume data sets .. 176
 10.2 DFSMShsm storage tiers 177
 10.2.1 Primary Space Management 177
 10.2.2 DFSMShsm V2.1 Storage Tier basics 177
 10.2.3 Storage Tier process 178
 10.3 JES3 SMS tape support 188
 10.3.1 Device Allocation Assistance (private/specific mounts) 188
 10.3.2 Scratch Allocation Assistance (Scratch Mounts) 188
 10.3.3 Implementing TS7700 Allocation Assistance for JES3 189
 10.4 DADSM CVAF/DEVICE support 191
 10.4.1 Rebuilding of VTOC index in VTOC full scenario 191
 10.4.2 Reclaim of orphaned FORMAT 3 DSCBs in DADSM convert routine 192
 10.4.3 CVAFFILT macro uses the multi-DSCB read interface of CVAF 192
 10.4.4 PARTREL macro enhancement 192
 10.4.5 Erase On Scratch enhancement 192

Chapter 11. DFSMShsm enhancements 193
 11.1 Exploiting Storage Tiers in space management 194
 11.1.1 Storage Tiers migration concept 194
 11.2 Extend number of tape volumes for migrated or backed up data sets 196
 11.2.1 Using and invocation 196
 11.3 Migration subtasking throughput enhancements 197
 11.3.1 Subtasking before DFSMShsm V2.1 197
 11.3.2 Migration subtasks implementation 198
 11.4 GDG support for PDSE 198
 11.5 DFSMShsm Fast Replication enhancements 199
 11.5.1 Concept review 199
 11.5.2 Implementation and use 200
11.6 Reliability, availability, serviceability, and usability improvements .. 203
 11.6.1 DFSMShsm no longer captures UCBs into below the 16-M line .. 203
 11.6.2 Automatic recycle retry for a tape takeaway .. 203
 11.6.3 Automatic recycle retry for a duplex error .. 204
 11.6.4 QUERY ACTIVE(TCBADDRESS) command improvements .. 204
 11.6.5 Enhance ARC0936I with catalog return and reason code ... 204
 11.6.6 Update ARCHRCAL macro to use different TCB .. 204
 11.6.7 SMSVSAM server termination handling ... 205

Chapter 12. DFSMSrmm enhancements ... 207
 12.1 DFSMSrmm overview .. 208
 12.2 SMS management class expiration attributes for tape .. 208
 12.2.1 Using SMS management class in a system-managed tape environment 209
 12.2.2 Update your tape-related SMS management classes .. 212
 12.2.3 SMS management class in a non-system-managed tape environment 214
 12.3 RETENTIONMETHOD(EXPDT) enhancements ... 218
 12.3.1 Using LASTREF option .. 219
 12.3.2 Using RETAINBY option ... 220
 12.3.3 Using EDGUX100 exit to specifying the retention method to be used 220
 12.3.4 Show new retention method settings ... 222
 12.3.5 ADDDATASET and CHANGEDATASET subcommand enhancements 223
 12.3.6 ADDVOLUME and CHANGEVOLUME subcommand enhancements 225
 12.3.7 New REXX exec variables .. 225
 12.3.8 Using RMM TSO subcommands with system REXX .. 226
 12.4 Testing MCATTR and RETENTIONMETHOD settings .. 227
 12.4.1 MCATTR(VRSELXDI) and RETENTIONMETHOD(VRSEL) 228
 12.4.2 MCATTR(ALL) and RETENTIONMETHOD(VRSEL) .. 229
 12.4.3 MCATTR(NONE) and RETENTIONMETHOD(VRSEL) .. 230
 12.4.4 MCATTR(VRSELXDI) and RETENTIONMETHOD(EXPDT) 231
 12.4.5 MCATTR(ALL) and RETENTIONMETHOD(EXPDT) ... 232
 12.4.6 MCATTR(NONE) and RETENTIONMETHOD(EXPDT) .. 232
 12.4.7 MCATTR(ALL) with RETENTIONMETHOD(EXPDT) and SMSACS(YES) 233
 12.5 DFSMSrmm conversion support .. 234
 12.5.1 Conversion samples provided ... 235

Appendix A. APARs to be reviewed for DFSMS V2.1 ... 237
 DFSMS V2.1 suggested APARS ... 238
 Information APARS ... 238
 APAR II14670 LISTCAT LEVEL change in DFSMS V2.1 .. 238
 APAR II14708 PDSE maintenance for DFSMS V2.1 .. 239
 Fix APARs ... 240
 APAR OA42081 NFS applicable to DFSMS V1.13 ... 241
 APAR OA42239 PDSE DFSMS V2.1 roll up .. 242
 APAR OA42283 PDSE .. 245
 APAR OA42300 PDSE .. 246
 APAR OA42347 DFSMShsm ... 248
 APAR OA42358 PDSE .. 249
 APAR OA42390 PDSE .. 250
 APAR OA42406 OCE Fix roll up .. 252
 APAR OA42488 IECOPY user exit .. 254
 APAR OA42540 PDSE binder .. 256
 APAR OA42541 Catalog ... 257
 APAR OA42543 XTIOT Health Checker .. 259
APAR OA42551 RLS DSS	...	261
APAR OA42553 SDM	...	263
APAR OA42654 SDM	...	265
APAR OA42267 XTIOT use (also applicable to DFSMS V1.13)	...	267
APAR OA42675 PDSE	...	269
APAR OA42986 NFS applies to DFSMS V1.13 as well	...	270
APAR OA42846 Single striped, multi-volume sam tailored compressed data set	...	272
APAR OA42891 PDSE	...	273
APAR OA42904 z/HPF	...	275
APAR OA42935 IEBCOPY	...	276
APAR OA43003 VSAM RLS	...	278
APAR OA43112 VSAM	...	280
APAR OA43128 DFSMSmm applicable to DFSMS V2.1 and V1.13	...	281
APAR OA43153 VSAM	...	283
APAR OA43162 DSS Storage Tier	...	284
APAR OA43169 DFSMShsm	...	285
APAR OA43191 RLS	...	286
APAR OA43195 Catalog	...	287
APAR OA43198 PDSE	...	288
APAR OA43214 PDSE	...	289
APAR OA43220 DSS Storage Tier	...	291
APAR OA43221 DSS Storage Tier	...	292
APAR OA43234 PDSE	...	293
APAR OA43234 PDSE	...	295
APAR OA43417 DSS Storage Tier	...	296
APAR OA43430 DFSMSdtp	...	297
APAR OA43583 PDSE (also applies to pre-DFSMS V2.1)	...	298
APAR OA43701 SAM EF V2 (also applies to pre-DFSMS V2.1)	...	300

Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

DFSMS suggested and required fixes for pre-DFSMS V2.1

APAR OA35808 RMM	...	304
APAR OA36403 RLS	...	307
APAR OA36409 RLS	...	308
APAR OA36414 DFSMShsm RLS	...	310
APAR OA36415 RLS	...	312
APAR OA36422 DSS RLS	...	313
APAR OA36443 RLS related	...	315
APAR OA36492 RLS and catalog	...	317
APAR OA36536 PDSE member size	...	318
APAR OA36576 DFSMShsm Storage Tiers	...	320
APAR OA36916 RLS	...	323
APAR OA37336 PDSE in GDG DSS support	...	325
APAR OA37349 PDSE in GDG DFSMShsm support	...	326
APAR OA37582 DSS support of DFSMShsm Storage Tier	...	329
APAR OA38185 EXCP support for z/HPF on z/OS V1.12 and V1.13	...	331
APAR OA39530 PDSE V2	...	337
APAR OA39551 SAM EF V2 compatibility	...	338
APAR OA39618 Catalog	...	340
APAR OA39619 VSAM	...	341
APAR OA39620 DSS	...	343
APAR OA39621 DFSMShsm	...	344
APAR OA39869 SAM EF V2 .. 347
APAR OA39871 SAM EF V2 .. 349
APAR OA39872 Catalog .. 350
APAR OA39873 SAM EF V2 DSS .. 352
APAR OA40252 DFSMShsm Fast Replication 354
APAR OA40259 EF V2 .. 357
APAR OA40587 RLS ... 359
APAR OA40844 PDSE V2 .. 360
APAR OA41517 AMS ... 362
APAR OA41790 PDSE V2 .. 363
APAR OA41864 PDSE ... 365
APAR OA42058 RMM ... 367
APAR OA42043 SAM EF V2 .. 368
APAR OA42529 DFSMShsm ... 371
APAR OA42541 Catalog ... 373
APAR OA42551 RLS DSS ... 374
APAR OA42562 DFSMShsm Storage Tiers 376
APAR OA42267 XTIOT use .. 378
APAR OA42846 Single Striped, Multi-volume SAM Tailored Compressed data set 380
APAR OA42947 VSAM RLS .. 381
APAR OA43537 ICF Catalog hang .. 382
APAR OA43583 PDSE (also applies to DFSMS V2.1) 383
APAR OA43701 SAM EF V2 (also applies DFSMS V2.1) 386

Appendix C. Sample assembler code .. 389
IEBCOPY FAMS abend diagnosis .. 390
IEBCOPY User Exit Capability illustration sample code 394
Sample job to list VTOC to show DS1DSCHA flag 399
Sample job to initialize data set for OCE Partial Release 414

Related publications ... 417
IBM Redbooks .. 417
Other publications ... 417
Online resources .. 418
Help from IBM .. 418
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

CICS®
DB2®
DS8000®
ECKD™
FICON®
FlashCopy®
GDPS®
IBM®
InfoSphere®
MVS™
OS/390®
Parallel Sysplex®
QMF™
RACF®
Redbooks®
Redbooks (logo) ®
RMF™
System Storage®
System z®
Tivoli®
z/Architecture®
z/OS®
z10™

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Preface

Each release of IBM® z/OS® DFSMS builds upon the previous version to provide enhanced storage management, data access, device support, program management, and distributed data access for the z/OS platform in a system-managed storage environment.

This IBM Redbooks® publication provides a summary of the functions and enhancements integrated into z/OS V2.1 DFSMS. It provides you with the information that you need to understand and evaluate the content of this DFSMS release, along with practical implementation hints and tips.

This book is written for storage professionals and system programmers who have experience with the components of DFSMS. It provides sufficient information so that you can start prioritizing the implementation of new functions and evaluating their applicability in your DFSMS environment.

Authors

This book was produced by a team of specialists from around the world working at the IBM International Technical Support Organization, Poughkeepsie Center.

Mary Lovelace is a Consulting IT Specialist at the IBM International Technical Support Organization. She has more than 25 years of experience with IBM in large systems, storage, and storage networking product education, system engineering and consultancy, and systems support. She has written many Redbooks publications about z/OS storage products, IBM Tivoli® Storage Productivity Center, Tivoli Storage Manager, and Scale Out Network Attached Storage.

Jose Dovidauskas is a retired Senior IT Specialist in IBM Brazil. He has 21 years of experience in storage products. He has worked at IBM for 34 years. His areas of expertise include the IBM GDPS® family of solutions, DFSMS, z/OS, and other storage-related software products and offerings.

Anthony Fletcher is an IT Specialist working with the Global Services Delivery (GSD) z/OS software platform of IBM Global Services on-demand Infrastructure Services, based in New Zealand. He works for New Zealand and Australia. He has over 37 years of experience in z/OS, IBM OS/390®, and their predecessors and related components, both as a customer of IBM and with IBM Global Services. He is a team leader for the mainframe operations of four diverse clients in the banking, airline, investment, and telecommunications industries. Anthony holds a degree in Electrical Engineering from SALFORD University, Lancashire, UK. His main areas of expertise include DFSMS, DFSMSrmm, and DFSMShsm. In addition, he has a working knowledge of IBM RACF®. He has been involved with writing several IBM Redbooks publications. He also has experience in installing non IBM products for the GSD platform.

Gert Laumann is an IT Specialist in Integrated Technology Delivery, Server Systems Operations/Storage Management in IBM Denmark. He has 28 years of experience in z/OS, working with storage management since 1989. He is the team leader for the Danish mainframe storage team. His experience is mostly with IBM products (DFSMSdfp, DFSMSdss, DFSMShsm, and DFSMSrmm), but he has also worked with OEM software and hardware products. His focus has mainly been automation and standardization across mainframe customer platforms. He currently helps customers share IBM DASD and tape hardware.
Norbert Schlumberger is an IT Architect with IBM Germany. He has 35 years of experience in storage software and storage management for IBM and customer systems, including 24 years of experience with DFSMSrmm. He has developed, delivered, and taught DFSMSrmm education to customers around the world. He has many tools available, such as a Tape Copy Tool to support the DFSMSrmm business. His areas of expertise include performing conversions from vendor tape management products to DFSMSrmm and new DFSMSrmm implementations. Norbert provides marketing support for DFSMSrmm, including IBM 3494 and IBM 3495 ATLs, VTSs, and TS7700 Virtual Engines. He has worked at IBM for 39 years.

Thanks to the following people for their contributions to this project:

Dave Bennin
Rich Conway
Bob Haimowitz
IBM Development Support Team, Poughkeepsie Center

Robert Gensler
Glenn Wilcock
IBM Systems & Technology Group

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at:
ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

► Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks
► Send your comments in an email to:
 redbooks@us.ibm.com
► Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400
Stay connected to IBM Redbooks

- Find us on Facebook:
 http://www.facebook.com/IBMRedbooks
- Follow us on Twitter:
 https://twitter.com/ibmredbooks
- Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
- Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:
- Stay current on recent Redbooks publications with RSS Feeds:
 http://www.redbooks.ibm.com/rss.html
DFSMS V2.1 release summary

This chapter provides a summary of the features and functions in z/OS V2.1 DFSMS. The enhancements are listed based on the component of DFSMS. The implementation and use of the enhancements are described in the remaining chapters of this publication.

This chapter covers the following topics:

- DFSMS catalog enhancements
- VSAM and VSAM RLS enhancements
- PDSE enhancements
- SMS enhancements
- DFSMSdfp enhancements
- DFSMSdss enhancements
- DFSMShsm enhancements
- DFSMSrmm enhancements
- Advanced Copy Services enhancements
- DADSM/CVAF enhancements
- Object Access Method enhancements
1.1 DFSMS catalog enhancements

The catalog component of DFSMS V2.1 provides the following enhancements:

- **VSAM record-level sharing (RLS) directory-only caching**
 This enhancement adds the new `DIRONLY` parameter to DATACLAS RLSCFCACHE, which specifies that RLS not cache the data or index part of the VSAM data set in the coupling facility cache structure.

- **Generation data set (GDS) support for PDSE data sets**
 This enhancement removes the restriction against defining an SMS-managed partitioned data set extended (PDSE) as a generation data set (GDS). Both allocating a PDSE and defining a generation data group with generation data sets, including PDSEs, is unchanged. Details are provided in Chapter 2, “Catalog enhancements” on page 9.
 The LISTCAT ENTRY output is enhanced to indicate when a generation data set is a PDSE by adding the DSNTYPE field with a value of LIBRARY.

- **New Catalog Search Interface (CSI) field names**
 You can now access the following fields using the Catalog Search Interface:
 - ASSOC
 - ASSOCSYB
 - BUFND
 - BUFN
 - HILVLRBA
 - NDXLVLS
 - SEQSTRBA
 - STRNO
 - TRACKS

- **JES3 allocation assist tape TS7700**
 For scratch and specific allocations, this enhancement allows you to use JES3 to direct the allocations to candidate clusters for scratch mounts or to particular distributed library clusters for specific mounts in the TS7700 Virtualization Engine.

- **Validate and remove an incorrect DEB address from the DEB table**
 This function introduces the new PURGE,PURGE=FORCE option for the DEBCHK macro that tells the catalog to validate and remove an incorrect DEB address from the DEB table. This is used when a DEB is FREEMAINed, but for some reason the DEB table was not updated to remove that DEB address from the table.

- **IDCAMS support for large block interface (LBI)**
 This enhancement allows IDCAMS REPRO and PRINT commands to perform on data sets with a blocksize larger than 32 K, up to the maximum that the LBI interface supports, if the LBI feature is enabled. The blocksize is still limited to 32 K when the LBI feature is not enabled.

- **Catalog contention detection enhancements**
 The new `MODIFY CATALOG,CONTENTION` command can be used to specify a new wait time or action (or both) for one of the reason classes or catalog resources for which contention detection is available (ALLOCLCK, SYSIGGV2, SYSZTIOT, and SYSZVVDS).

- **Generation data group enhancements**
 You can now specify the order in which the generation data set list is to be returned for data set allocation when the generation data group (GDG) name is supplied on the DD
Catalog alias enhancements

- IDCAMS now resolves the symbolic related name for an alias to make sure that requests are oriented to the correct catalog. Previously, orientation was to the master catalog, which could cause unexpected results. The restriction on the IDCAMS DEFINE ALIAS command that the resolved value for entryname must be a catalog entry that is located in the same catalog that contains the value for aliasname has been removed.

- IDCAMS DEFINE ALIAS command will record the alias creation date. This date can be helpful when cleaning up obsolete high-level qualifiers. If an alias has no associated data sets, the alias creation date can be used to determine whether this is a new alias for which no data sets have been created yet, or this is an obsolete alias that should be deleted.

- IDCAMS will now check when deleting a catalog entry that has an associated alias to verify that the alias is related to the entry being deleted, before deleting the alias record. For example, non-VSAM record A has alias association C, but alias C has association D in its X record. In this case, the alias C should not be deleted when data set A is deleted. This check is done for all non-VSAM, GDS, and UCON records.

1.2 VSAM and VSAM RLS enhancements

z/OS V2.1 introduces the following enhancements for VSAM and VSAM RLS:

- The restriction is removed that data sets accessed by VSAM RLS could not use dynamic volume count. Dynamic volume count enables the dynamic addition of volumes to a DASD data set without increasing the number of candidate volumes stored in the catalog.

- The SHOWCB macro has added two new subparameters, BUFNOL and BUFUSE. These enhancements are used to display fields of an access method control block (ACB).

- A new data set attribute identifies whether a data set is eligible for VSAM replication.

- Expanded and new keywords for specifying record access bias and ACB RMODE31 values for a data class.

1.3 PDSE enhancements

z/OS V2R1 adds the following PDSE enhancements:

- Increased PDSE member size limits

 The maximum PDSE member size increases from 15,728,639 records to 2,146,435,071 records. The larger size limit applies to PDSEs being accessed with various sets of characteristics, including DSORG and MACRF values, whether they are open for input or output, and whether BLOCKTOKENSIZE=LARGE is specified.

- New PDSE version

 z/OS V2.1 introduces a new version of PDSE data sets that can provide for improved performance, reduced path lengths, and improved index searches. New data sets can be allocated as belonging to the new version (version 2) by specifying a new positional parameter in the DSNTYPE keyword of the DD statement or TSO/E ALLOCATE command, or by specifying a new parmlib option (PDSE_VERSION) in IGDSMSnn members. Unless version 2 is specified, new allocations continue to create the current version 1 PDSE data
sets. Externally, version 1 and version 2 PDSEs look the same, and both versions can be open for input/output with no changes for the users.

1.4 SMS enhancements

In z/OS V2R1 SMS introduces these enhancements:

- Using clusters and extent pools in SMS volume selection
 SMS improves volume selection to use clusters and extent pools. SMS now prefers volumes that are in the same cluster when:
 - Allocating or extending a multi-volume data set if the accessibility attribute is CONTINUOUS or CONTINUOUS PREFERRED.
 - Allocating the target data set for the data set fast replication function. When allocating a striped data set, SMS now attempts to allocate the stripes across separate extent pools.
- Providing accurate space statistics
 You can now use a VARY SMS command to update space statistics in the ACDS for a pool storage group or a DASD volume.
- Providing an option to suppress SMS messages
 SMS provides a new keyword in the IGDSMSxx parmlib member that allows an installation to suppress specific SMS messages.
- Providing an option to guarantee that a PDS is created
 SMS provides a new keyword in the IGDSMSxx parmlib member and SETSMS command that allows you to direct SMS to honor any value for DSNTYPE that specifies that a PDSE is to be allocated, regardless of whether directory blocks have been requested.

1.5 DFSMSdfp enhancements

z/OS V2.1 adds the following DFSMSdfp enhancements:

- The IEBCOPY utility is enhanced with user exit capabilities for specifying control statements and for specific member selection.
- The IEBCOPY group copy function is expanded to include PDS to PDS member group copies. A new statement, COPYGROUP, provides the same functions as the existing COPYGRP statement, and expands it to support group copies when both the input and the output data set are PDS format.
- The IEBCOPY SELECT statement has been enhanced to allow wildcard characters in the specification of member names, when used with the COPYGROUP statement. Member name filter pattern masking, using the asterisk (*) and percent (%) characters, allows you to specify a wide range of similar member names. If you use member name filter pattern matching on a SELECT statement with COPYGROUP, you can also code a corresponding EXCLUDE statement with member name filter pattern matching.
- The IEBCOPY utility is enhanced to provide an ABEND code and the associated reason code in a structure returned in register 0, for certain ABENDs. Starting in z/OS V2.1, IEBCOPY returns this information if an ABEND occurs in the FAMS subcomponent.
- IEBCOPY introduces a new COPYGROUP statement that provides the same function as the COPYGRP statement but also performs that same function for a PDS to PDS copy.
With COPYGRP, when the input and output data sets are both PDSEs, the operation is treated as a simple COPY operation, not a group copy.

1.6 DFSMSdss enhancements

z/OS V2.1 introduces the following enhancements for DFSMSdss:

- A **RESET** keyword has been added to the **RESTORE FULL** and **RESTORE TRACKS** commands. It specifies whether the data-set-changed indicator is reset for the data sets on the volume being restored. You can protect the use of **RESET** with the **RESTORE** command. In addition, you can now protect the use of **RESET** with the **DUMP** command.

- A **DEBUG(SMSMSG)** option has been added to the **CONVERTV** command, the **COPY** command for logical and physical data sets, and the **RESTORE** command for logical and physical data sets. It instructs DFSMSdss to include ACS WRITE statements in the job output.

- The **FCCGVERIFY** keyword on the **CGCREATED** command now accepts multiple volume serials.

- The **REPLACEUNCONDITIONAL** keyword on the **RESTORE** command now works for physical data sets.

- The **RENAMEUNCONDITIONAL** keyword on the **RESTORE** command, which previously worked only on non-VSAM physical data sets, will now work on VSAM physical data sets, as well.

1.7 DFSMShsm enhancements

In z/OS V2R1, DFSMShsm is enhanced with the following new functions:

- **Storage tiers**

 In previous releases, DFSMShsm treated all data in Level 0 (L0) as being in one single tier in the overall storage hierarchy, with no policies to enable automated data movement within that L0 tier. In this release, DFSMShsm is enhanced to move data from one class of devices to another within the L0 hierarchy.

- **Increased tape limit**

 To allow DFSMShsm to migrate and back up larger data sets, the DFSMShsm limit of the number of tapes that a DFSMShsm migration or backup data set can span has been increased from 40 to 254. **RECYCLE** will now also process connected sets of up to 254 volumes.

- **Migration subtasking**

 A **MIGRATIONSUBTASKS(YES | NO)** parameter has been added to the **SETSYS** command. It allows DFSMShsm to run multiple subtasks concurrently under each migration task for primary space management, on-demand migration, and interval migration on level 0 volumes that migrate data sets to ML1 or ML2 volumes.

 The **ADDITIONALSUBTASKS(nn)** subparameter allows you to dynamically change the number of additional subtasks that the system can use, running under each migration task. These additional subtasks add to the number of subtasks that the system already uses when the **MIGRATIONSUBTASKS** parameter is specified.

 By processing data sets in migration subtasks for a level 0 volume migration task, the aggregate throughput of all the migration tasks is improved.
Fast replication enhancements

- Recovering a data set to a new name during fast replication data set recovery. A `NEWNAME(newdsname)` parameter has been added to the `FRRECOV` command. It allows DFSMShsm to use a new, fully qualified data set name for the recovered backup version or dump copy.

- Recovering a data set to any volume during fast replication data set recovery. DFSMShsm fast replication data set recovery will no longer be restricted to recovering data sets back to the original volumes. If DFSMShsm is not able to recover a data set to the original volumes, it will instead select the most eligible volumes with the most free space within the storage group. There are no changes to the DFSMShsm commands.

- IBM FlashCopy® consistency groups

 DFSMShsm fast replication backup now supports FlashCopy consistency groups. A new FlashCopy consistency group option is added to the SMS copy pool definition. If set to “Yes” for the copy pool, it indicates that the copy pool backup version must be data-consistent. If the FlashCopy consistency group function fails, the `FRBACKUP` command is terminated and the new or in-process copy pool backup version is invalided. The FlashCopy consistency group option can be used in combination with other FlashCopy options.

Serviceability and usability enhancements:

- Automatically generate a new recycle command when tape take-away occurs during recycle

 A `RECYCLETAKEAWAYRETRY(YES | NO)` parameter has been added to the `SETSYS` command. It allows DFSMShsm to automatically generate a new `RECYCLE` command for a tape when the original recycle must terminate due to the takeaway process, or when the tape is in use by another DFSMShsm task. Two additional subparameters, `MAXRETRYATTEMPTS(nn)` and `DELAY(ssss)`, allow you to set the maximum number of recycle retry attempts and to set the delay interval in seconds between recycle attempts, respectively.

 In addition, a `SELECT(RECYCLETAKEAWAY)` subparameter has been added to the `LIST TAPETABLEOFCONTENTS` command. It displays the volumes that were not completely recycled because they were taken away by recall or another DFSMShsm task.

- Using recycle instead of tapecopy for failed alternate tape

 A `(TAPECOPY | RECYCLE)` subparameter has been added to both the `BACKUP` and the `MIGRATION` parameters of the `SETSYS DUPEX` command. It specifies whether a tapecopy or a recycle will be immediately attempted, after an error occurs on the duplex alternate tape and the alternate tape is demounted and discarded so that DFSMShsm can continue to write to the original tape.

- Resetting the data-set-changed indicator for data sets restored during full volume recover processing

 A `RECOVERRESET` keyword has been added to the `DEFINE DUMPCLASS` command. It specifies whether the data-set-changed indicator in the VTOC entry is reset for all data sets that are restored during full volume recover processing.

- Additional output from `QUERY ACTIVE(TCBADDRESS)`

 The output returned from the `QUERY ACTIVE(TCBADDRESS)` command will now include the tape Volser, device address, and task name.

- SMSVSAM server errors

 When an SMSVSAM server error occurs, DFSMShsm will now detect the error and quiesce all CDS I/O activity. When the SMSVSAM server initializes, DFSMShsm will
automatically close and reopen the CDSs, and resume all requests waiting for CDS I/O operations.

1.8 DFSMSrmm enhancements

The functional enhancements available with z/OS V2.1 DFSMSrmm provide you with these benefits:

- DFSMSrmm operational enhancements
 - Retain data sets based on the number of days since they were last referenced.
 Data sets managed by the EXPDT retention method can be retained or expired based on the number of days since the data set was last referenced. A new LastReferenceDays attribute is added to the data set record as a binary number.
 The value is taken from the new LASTREF suboperand of the DFSMSrmm parmlib OPTION RM(EXPDT) operand.
 If the volume set is retained by SET or VOLUME, the LastReferenceDays data set attribute will be kept equal for all files of a multi-volume data set. The latest LastReferenceDays update to a single file in a multivolume data set is propagated to all files that belong to the same multi-volume data set.
 However, for volume set retained by FIRSTFILE the LastReferenceDays data set attribute will be set but not equalized across the multi-volume data set because the expiration date depends only of the first file of the first volume, and its LastReferenceDays.
 - EXPDT retention method now allows retention to be based on a single volume or volume set, or on a controlling first file.
 You now have the option of retaining volumes with the EXPDT retention method based on a single volume or volume set, or on a controlling first file.
 - DFSMS management class attributes.
 You can now set the expiration date in DFSMSrmm for a tape data set with a DFSMS management class. When you enable use of management class attributes by DFSMSrmm, the management class expiration attributes (except the management class Expiration attribute Retention limit) are retrieved by DFSMSrmm during OPEN for output and used to set the expiration date for the tape data set, and also to set the LASTREF extra days in the tape data set record on retention method EXPDT managed volumes.

- Web page for DFSMSrmm conversion support.
 Information on migrating to DFSMSrmm from other products, former found in the EDGCM01 documentation member of SYS1.SAMPLIB, has been updated and moved to the z/OS website designated for “as-is” downloads as a compressed sequential XMIT file of a PDS. The z/OS downloads website can be found at:
 http://www.ibm.com/systems/z/os/zos/downloads/#asis

1.9 Advanced Copy Services enhancements

z/OS V2.1 adds the Advanced Copy Services enhancement where XADDPAIRed primary volumes can remain offline when you issue the XSTART command for restart or the XADDPAIR command for suspended pairs. Utility volumes and secondary volumes must be online when
you issue the XADDPAIR command. Refer to Chapter 9, “System Data Mover enhancements” on page 171 for additional information.

1.10 DADSM/CVAF enhancements

The LSPACE macro now allows the caller to have obtained the SYSVTOC ENQ resource on the volume before calling LSPACE for that volume. A new ENQHELD keyword on the LSPACE macro specifies whether the LSPACE caller’s address space has already obtained the SYSVTOC resource.

1.11 Object Access Method enhancements

z/OS DFSMS V2.1 provides the following enhancements to the object access method (OAM):

- OAM now supports tape block sizes larger than 32760. A new TAPESDB keyword on the SETOAM statement in the CBROAMxx parmlib member can be set to enable larger block sizes. When the first object is written to an OAM tape volume, the maximum block size for the volume is established. If support for larger tape block sizes is enabled, that maximum block size is set to the optimal system-determined block size for the device. Otherwise, a maximum block size of 32760 is used. The maximum block size for all objects written to a tape volume is the maximum block size for the volume established when the first object was written regardless of the current SETOAM TAPESDB setting.

- OAM now provides a new ALLOCRETRYMINUTES keyword on the SETOAM statement in the CBROAMxx parmlib member. This can be set to control how long OAM makes retry attempts or to bypass retry processing entirely and issue message CBR6400D immediately. This can be used with Automated Tape Allocation Manager processing.

- The minimum object size required to use Store Sequence processing (STOREBEG, STOREPRT, STOREEND) has been reduced from the previous limit of 256MB+1 to 50MB+1 for all objects except those being written to an optical volume.

- Previously, when OSMC moved an object to a different management class, existing backup copies of the object were kept. If the object moves to a management class that requires fewer (or no) OAM backup copies, the extra backup copies remained, but were no longer needed and wasted storage space. OAM now provides a new BACKUPDELETE keyword on the SETOSMC statement in the CBROAMxx parmlib member, which can be set to indicate that OSMC should delete all unneeded OAM backup copies when processing an object.

- OAM now provides a new SETTLIB statement for tape library settings. The optional SETTLIB statement and its associated keywords in the CBROAMxx parmlib member can be used to override the default behavior for some of the main cartridge entry messages in a system managed tape library environment.

The SETTLIB statement and keywords are processed when the OAM address space is started and cannot be updated by operator command. The SETTLIB statement can be used to specify:

- How OAM displays volume entry ignore messages during cartridge entry processing (DETAIL, SUMMARY, or SUPPRESS).

- Where OAM displays volume entry ignore messages during cartridge entry processing (on both the console and system log or only on the system log).

- Where OAM displays successful volume entry messages (CBR3610I) during cartridge entry processing (on both the console and system log or only on the system log).
Catalog enhancements

This chapter provides an overview of the new features and functions in catalog included in z/OS V2.1. The updates mainly address availability and performance limitations.

The following topics are covered in this chapter:
- Record Level Sharing support for catalog
- Preparing to migrate to an RLS enabled ICF Catalog
- Catalog maintenance considerations in RLS environment
- Catalog contention detection enhancements
- Catalog alias enhancements
- Catalog parmlib member enhancements
- Catalog DFSMS GDG enhancements
- Catalog RNLs Health Check
- MODIFY CATALOG,LIST enhancement
- Improved catalog recovery features
2.1 Record Level Sharing support for catalog

Record Level Sharing (RLS) access for VSAM is widely used today for transactional (DFSMStvs) and non-transactional applications. RLS provides multisystem sharing at a record level across a sysplex using the coupling facility (CF). VSAM RLS will use a CF-based Lock Manager and CF Cache Manager in the implementation of Record Level Sharing. The function requires data sets using RLS control to be DFSMS managed.

RLS is one of multiple access modes to VSAM and will be set at OPEN time. This can be done by using the JCL parameter RLS or by specifying MACRF=RLS in the ACB. Other types of access are nonshared resources (NSRs), local shared resources (LSRs), and global shared resources (GSRs). These access types can be referred to as non-RLS access to distinguish RLS from other modes of access.

2.1.1 RLS for catalog overview

DFSMS V2.1 introduces RLS usage for ICF catalogs and for volume catalogs (VOLCATS). The purpose of the enhancement is to meet requirements for better performance and availability on catalogs. Using RLS will provide locking at a record level improving performance by not having to serialize on the SYSIGGV2 bcsname. SMSVSAM will hold SYSIGGV2 bcsname SHARE while a catalog is opened for RLS access. This ensures catalog data integrity from programs relying on SYSIGGV2 to serialize the catalog.

Moving to 64-bit buffering using RLS reduces the I/O activity. In addition, availability is improved, if you do not have to do disruptive maintenance on your ICF catalogs due to split or catalog reorganization regularly.

The improvements discussed here are expected to reduce the need for customers having to split ICF catalogs to meet availability requirements and to solve performance bottlenecks.

2.1.2 Requirements for RLS

RLS exploitation for ICF catalogs requires the base RLS setup. This is an IBM Parallel Sysplex® and also the SMSVSAM address space to be active. As always required with VSAM RLS data sets, you need a storage class assigned with a Cacheset and Lockset identifying cache and lock structures in the coupling facility.

The SMSVSAM started task must be up and running. The SMSVSAM address space automatically starts at IPL if the RLSINIT (YES) keyword is specified in the IGDSMSxx member of SYS1.PARMLIB. If SMSVSAM is not started, you can start the address space after IPL by issuing the V SMS,SMSVSAM,ACTIVE command from the IBM MVS™ console.

You will need to define the SHCDS data sets, which are key for RLS recovery as they hold vital information for this. For example, an SMSVSAM restart depends on the SHCDSs being available. Following are the contents of the SHCDS:

- The name of the coupling facility lock structure in use.
- A list of subsystems and their status.
- A list of open data sets using the coupling facility.
- A list of data sets with unbound locks.
- A list of data sets in permit non-RLS state.
SHCDSs are basically VSAM linear data sets. Define and activate two of these for normal use and also one for spare purpose.

The data sets in scope for RLS exploitation must have their attributes changed as related to recoverable and unrecoverable options. Alter to LOG(NONE) if unrecoverable or to LOG(UNDO) or LOG(ALL) if the data set is recoverable. Also, add the storage class created for this RLS application to have the appropriate cache set and coupling facility Cache assigned.

Refer to z/OS DFSMSdfp Storage Administration, SC23-6860 for information about how to set up the initial RLS environment.

2.1.3 Support for ICF catalogs using RLS

New and existing parameters are needed to define new or alter existing ICF catalogs to support RLS access mode. The LOG parameter must be defined, however in this implementation, only unrecoverable catalogs will be supported (LOG(NONE)). You also need parameters to set the type of initial access (non-RLS or RLS) at the first access of the catalog.

Catalogs may be defined or altered in one of four states; Eligible, RLS quiesced, RLS enabled or in RLS mode. These states are discussed in detail in 2.1.4, “ICF catalog possible RLS states” on page 11.

New operator commands and define parameters have also been provided to support transition of ICF Catalogs between RLS and non-RLS access. These commands will work sysplex wide even when submitted from one LPAR only and have the catalogs do a serialized close across the sysplex. The status will end up being RLS enabled or RLS quiesced, ready for being accessed in RLS mode. Catalog requests issued during transition will not be failed. However, they will be suspended while the QUIESCE or ENABLE process happens. Regard these commands as migration or fallback tools. These commands are not intended for daily usage.

When an ICF catalog has been migrated to RLS mode, it should remain in RLS mode. The only exception is if you encounter an issue that forces you to revert to non-RLS mode.

Important: Moving to RLS accessed ICF catalogs from non-RLS accessed will only be supported for USERCATALOGS. It is not supported for MASTERCATALOGS.

2.1.4 ICF catalog possible RLS states

In an environment using RLS for the ICF catalogs, these can be in one of four states:

1. Eligible
 The catalog has been defined or altered to have the LOG attribute. This is mandatory to be able to access the catalog in RLS mode (as for all other VSAM data sets). OPEN in this state will still happen as non-RLS.

2. RLS quiesced
 RLS quiesced indicator is set to YES in the catalogs VVR entry. OPEN is only possible for non-RLS access.
3. RLS enabled

RLS enable indicator is set to YES in the catalogs VVR entry. As RLS enabled the catalog can only be opened in RLS mode.

4. RLS mode

A catalog in RLS mode can be defined as a catalog currently open in RLS mode or was last closed in RLS mode. The RLS-IN-USE indicator will also be set in the catalogs VVR. The catalog can be taken out of RLS mode by command. For pre-DFSMS V2.1 systems, this will either require SMSVSAM up and running or by using the IDCAMS SHCDS CFRESETDS(user_cat_name) command to reset the RLS-IN-USE indicator. In this case, it requires all instances of SMSVSAM to be shut down.

2.1.5 Comparison with other enhanced catalog features

RLS for catalog can coexist with other advanced catalog features. In this section, we compare enhanced catalog features with the RLS for catalog feature.

Enhanced Catalog Sharing
Enhanced Catalog Sharing places the catalogs self describing VVR in the CF (SYS1GGCAC_ECS) to reduce I/O. Catalog Data Space Cache (CDSC) uses Virtual Lookaside Facility (VLF) and is intended for shared catalogs. Virtual storage is possible within a range 256 - 2 GB. Cached records are stored in a data space.

In Storage Cache
In Storage Cache has a maximum of 3041 BCS records. Storage is obtained within the catalog address space. It is intended for non-shared catalogs.

The enhanced catalog features can be replaced by RLS. For the master catalog, it still makes sense to use enhanced catalog sharing since RLS mode is not supported for master catalogs at this point.

Catalogs using RLS will not need to access the VVR in cache. For catalogs in RLS mode the catalog records are placed in RLS local buffer pools or CF cache structures. The STORAGECLASS cachset defines which cache structure to use. The DATACLAS controls buffer pool (64 bit) and caching options through the RLSOVETHEBAR and RLSCFCACHE settings.

Locking happens at a record level to serialize access to individual catalog records instead of enqueuing on the SYS1GGV2 bcsname resource (entire catalog).

For other tuning parameters like STRNO, BUFND, BUFNI on DEFINE USERCATALOG command, these settings will be ignored in an RLS environment. RLS will obtain buffers dynamically as they may be needed (using System Managed Buffering).

2.1.6 New parameters on DEFINE USERCATALOG command

To support transition to RLS new parameters were added to the DEFINE USERCATALOG command. The parameters define the availability level for readiness to use RLS mode on the ICF catalogs.

Table 2-1 on page 13 is an overview of the parameters added in DFSMS V2.1. For SUSPEND and RESUME, the catalog will either be in SUSPEND state or RESUME state.
This is also the case for RLSQUIESCE and RLSENABLE, the two parameters directly related to RLS catalogs. The catalog status is either QUIESCED or ENABLED.

<table>
<thead>
<tr>
<th>New DEFINE user catalog parameters</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSPEND</td>
<td>Requests will be suspended until a RESUME has been issued. Mutually exclusive with LOCK parameter</td>
<td>RESUME</td>
</tr>
<tr>
<td>RESUME</td>
<td>Request for the catalog will be executed immediately. Command will release a SUSPEND state.</td>
<td>RESUME</td>
</tr>
<tr>
<td>RLSQUIESCE</td>
<td>The catalog will be accessed in non-RLS mode following the define.</td>
<td>RLSQUIESCE</td>
</tr>
<tr>
<td>RLSENABLE</td>
<td>The catalog will be accessed in RLS mode after the allocation.</td>
<td>RLSQUIESCE</td>
</tr>
<tr>
<td>RECONNECT</td>
<td>Request the new catalog to use existing ALIAS information.</td>
<td>N/A</td>
</tr>
<tr>
<td>LOG(NONE)</td>
<td>Catalog is eligible for access in RLS mode.</td>
<td>Value will appear as NULL</td>
</tr>
</tbody>
</table>

If the catalog is in LOCKED or SUSPENDED mode, an authorized user with READ access to the RACF STGADMIN profile can still access and repair a locked catalog. At the same time, other operations against the catalog will be failed or queued.

If the IGG.CATLOCK profile is not defined, or the RACF FACILITY class is not active, you cannot LOCK, UNLOCK, SUSPEND, or RESUME a catalog. An example of defining a USERCATALOG using the new define parameters is shown in Example 2-1.

Example 2-1 DEINE USERCATALOG using new DEFINE parameter

```
DEFINE USERCATALOG -
    (NAME(UCAT.RLSTST.BNC) ICFCATALOG -
    VOLUME(MHL1A0) TRK(50 50) -
    STORCLAS(SCRLS) -
    DATACLAS(WELCHRLS) -
    LOG(NONE) RECONNECT RLSENABLE -
    FREESPACE(20 20) -
    NOIMBED NOREPLICATE) -
    DATA (CISZ(32768))
```

Note, that LOG(NONE) is used to prepare for RLS, and RLSENABLE will enable OPEN in RLS mode.
2.2 Preparing to migrate to an RLS enabled ICF Catalog

When you have the base RLS environment in place, you can start migrating your first ICF catalog to use RLS mode. To summarize the basic requirements for RLS:

- SMSVSAM must be active.
- An RLS cache structure must have been defined in the Coupling Facility.
- An RLS Cache Set must have been defined.
- An RLS Lock Set Name must have been defined.
- The catalogs in scope must be DFSMS managed.

It is suggested that all systems in the sysplex have migrated to DFSMS V2.1 before starting the migration. This is because shared catalogs cannot be accessed in RLS mode if they are opened on a pre-DFSMS V2.1 system.

2.2.1 Sizing the RLS catalog environment for RLS buffers and CF cache

To assure sufficient RLS local buffering and coupling facility cache size for your RLS managed ICF catalogs, look at the buffer sizes in your current environment. Add up the buffer sizes based on the number of catalogs and the type of caching. Look into the following values:

- Current Catalog Data Space Cache - using VLF.
 Capture current MAXVIRT value (in 4 K blocks). Sum up the total for the entire sysplex.

- In Storage Cache (ISC) - default.
 Calculate 3041 records per catalog. BCS records vary in size. An average size chosen could be 2000 bytes (total is then 608,200 bytes per catalog). Regard this as a minimum and add additional as needed to meet performance requirements. Again, calculate the total for the sysplex.

Buffer calculation scenario

Let us calculate a sample scenario. You have a sysplex with four LPARs sharing 50 ICF catalogs (10 ISC managed and 40 in CDSC).

Your COFVLFxx member specifies 16384 for the MAXVIRT value (times 4 K). This is a total of 67,108,864 bytes for the VLF managed catalogs. For four systems, this is 268,435,456 bytes.

The 10 ICF catalogs using ISC cache currently uses (10*3041*2000) bytes = 60,820,000. For four LPARs, this adds up to 24,3280,000 bytes.

The total requirement in buffering all existing catalogs will then total as shown in Table 2-2.

<table>
<thead>
<tr>
<th>Component</th>
<th>Current usage in bytes</th>
<th>Current usage in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>COFVLFxx</td>
<td>268,435,456</td>
<td>262,144</td>
</tr>
<tr>
<td>ISC</td>
<td>243,280,000</td>
<td>2,375,781</td>
</tr>
<tr>
<td>Total in Bytes/MB</td>
<td>511,715,456</td>
<td>4,997,221</td>
</tr>
</tbody>
</table>
The current buffer need totals over 500 MB. A coupling facility cache size of 500 MB could then be allocated as a start and monitored as conversion of the ICF Catalogs to RLS access mode progresses.

RlsFixedPoolsize and RlsAboveTheBarMaxPoolSize parameters

To meet the requirement in the scenario above as to RLS local buffers, set RlsFixedPoolsize in IGDSMSxx to 500 MB. This value specifies the maximum number of buffers under and above the bar. To limit use of storage above the bar use the *RlsAboveTheBarMaxPoolSize* parameter. Set this parameter to limit use for the RLS buffer (default is 0).

Coupling Facility Structure Sizer tool

The Coupling Facility Structure Sizer Tool (CFSizer) is a web-based application that will return structure sizes based on the latest CFLEVEL for the IBM products that use the coupling facility. CFSIZER can be used to generate the exact settings and the JCL for creating the Cache Structure. The CFSIZER can be found at the following site:

http://www-947.ibm.com/systems/support/z/cfsizer

1. To size a structure, open the CFSizer web page. Click the **VSAM RLS** the product links in the left side navigation bar as shown in Figure 2-1.

![CFSizer tool main page](image)

Figure 2-1 CFSizer tool main page

2. In the VSAM RLS page, select one or more structures to size by clicking the check box for the cache structure you want to size. At least one structure must be checked to submit a request for a structure size. Enter the required information and click **Submit** to continue. We selected the **VSAM RLS CACHE structure** as shown in Figure 2-2 on page 16.
3. The CFSizer presents you with sample CFRM statements based on the input you provided. You can cut and paste these statements into your CFRM policy and modify them as necessary. Figure 2-3 shows the results of our input.

It is suggested that you create a dedicated structure for ICF catalogs. This is to assure that if catalog buffers are flushed from cache, it is based on the catalog activity, and not based on other activity in the coupling facility.
After having upgraded all systems in the sysplex to DFSMS V2.1, you may start using RLS mode on ICF catalogs. This is done by either defining a completely new ICF catalog for test purpose or by altering an existing ICF Catalog to have the LOG(NONE) attribute. The LOG(NONE) attribute will put the catalog in RLS quiesced mode. By default, non-RLS catalogs will the value NULL in the LOG parameter.

An example of a DEFINE is shown in Example 2-2. Note the LOG(NONE) option. Keywords like STRNO and BUFND and BUFNI have been removed because they will not be used in an RLS environment.

Example 2-2 DEFINE USERTOCATALOG example of ICF catalog for RLS support

```plaintext
DEFINE USERTOCATALOG -
  (NAME(UCAT.RLSTST) IFCCATALOG -
   VOLUME(MHL1A0) TRK(5 1) -
   STORCLAS(SCRLS) -
   DATACLAS(WELCHRLS) -
   LOG(NONE) -
   FREESPACE(20 20) -
   NOIMBED NOREPLICATE) -
   DATA (CISZ(4096))
```

A LISTCAT following immediately after the DEFINE shows that the user catalog has the required LOG(NONE) attribute and also is VSAM QUIESCED already. No RLS QUIESCE command is needed at this point. Example 2-3 is sample output from the LISTCAT command.

Example 2-3 LISTCAT output from newly defined ICF user catalog defined with LOG(NONE)

<table>
<thead>
<tr>
<th>RLSDATA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>---------------------</td>
<td>RECOVERY REQUIRED --(NO)</td>
</tr>
<tr>
<td>VSAM QUIESCED</td>
<td>------(YES)</td>
<td>RLS IN USE ---------(NO)</td>
</tr>
</tbody>
</table>

To make the ICF catalog we defined fully RLS enabled, issue the F CATALOG,RLSENABLE command. Example 2-4 shows the SYSLOG after issuing this command.

Example 2-4 How to enable an ICF Catalog for RLS access mode

```plaintext
F CATALOG,RLSENABLE(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I MODIFY CATALOG UCAT.RLSTST TO STATE RLSENABLE SUCCESSFUL
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```

The MODIFY CATALOG command in Example 2-4 is directed towards a specific ICF catalog. If you want a system-wide scope to change all RLS enabled catalogs in one command across the sysplex, issue the F CATALOG,RLSENABLE,SYSTEM command. The same command syntax is valid for RLSQUIESCE.

A LISTCAT of the user catalog will now show the VSAM QUIESCED field changed from YES to NO. This means that the catalog is no longer quiesced, but enabled for RLS. RLS enablement is also indicated by RLS IN USE field, which has changed to YES as shown in Example 2-5 on page 18.
Another way of displaying the RLS readiness of an ICF catalog is to use the **F CATALOG,OPEN** command. This command lists all open catalogs and displays settings for the open catalogs in this environment. Example 2-6 shows sample output.

Example 2-6 Display of RLS enabled ICF Catalog using MODIFY CATALOG command

```
-F CATALOG,OPEN
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC348I ALLOCATED CATALOGS
CAS***************************************************************
* FLAGS -VOLSER-USER-CATALOG NAME
* YS
U-R-SBXHS8 0001 UCAT.RLSTST
***************************************************************
Y/N-ALLOCATED TO CAS, S-SMS, V-VLF, I-ISC, C-CLOSED, D-DELETED,
* R-SHARED, A-ATL, E-ECS SHARED, K-LOCKED,
* U-RLS, W-SUSPENDED
CAS***************************************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```

Note the U indicator for an RLS-enabled catalog. If you have a lower-level system in your sysplex, and a shared RLS candidate catalog is open in this system, you get an error message when trying to enable this catalog. The error message is shown in Example 2-7.

Example 2-7 Error message, trying to RLS enable a catalog shared with a lower-level system

```
F CATALOG,RLSENABLE(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC353I SERVICE 'CLRC' RETURNED RC-236-030, QUIESOFF, UCAT.RLSTST
IEC353I MODIFY CATALOG UCAT.RLSTST TO STATE RLSENABLE UNSUCCESSFUL
IEC353I CATALOG ADDRESS SPACE MODIFY UNSUCCESSFUL
```

You get a similar error message when trying to do the RLS enable using IDCAMS **ALTER** command. The error message is shown in Example 2-8.

Example 2-8 Error message in IDCAMS ALTER RLSENABLE on shared catalog

```
IDCAMS SYSTEM SERVICES  TIME: 17:37:27
ALTER   -
         -
UCAT.RLSTST
RSENABLE
IDC3014I CATALOG ERROR
IDC3009I ** VSAM CATALOG RETURN CODE IS 236 - REASON CODE IS IGGOCLRC-30
IDC0532I **ENTRY UCAT.RLSTST NOT ALTERED
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 8
IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 8
```
2.2.3 Fallback from using RLS mode on ICF Catalogs

SMSVSAM recovery is essential for ICF catalogs using RLS and of course for other exploiters. SMSVSAM is the server for all RLS processing, and RLS processing fails if SMSVSAM for some reason is not available.

z/OS V2R1.0 DFSMSdfp Storage Administration, SC23-6860 has a detailed description on recovery of SMSVSAM and the RLS environment.

For ICF catalogs using RLS, the process to disable the use of RLS should SMSVSAM and the RLS environment encounter problems is straightforward. Use the F CATALOG,RLSQUIESCE(ucat name) command or the F CATALOG,RLSQUIESCE,SYSTEM command and catalog management will revert to normal catalog and VSAM I/O.

Before enabling RLS use on ICF catalogs, it is also suggested that you have a fallback plan in place. New catalog commands support fallback, but earlier level systems need SMSVSAM active to switch catalogs out of RLS mode.

2.3 Catalog maintenance considerations in RLS environment

New keywords have been introduced in support of RLS enablement for catalogs. In this section, we look at catalog maintenance in an RLS environment.

2.3.1 Backing up RLS managed catalogs

Backing up your RLS managed user catalogs with IDCAMS can be done as in prior releases. There are new IDCAMS keywords to manage RLS source or target catalogs; RLSSOURCE(NO|YES|QUIESCE) and RLSTARGET(NO|YES|QUIESCE). Using these parameters will influence processing as follows:

- **NO**
 - Indicates the source and target data sets will be opened using non-shared resources (NSR).
- **YES**
 - Indicates that the source and target data sets will be opened using Record Level Sharing (RLS) and the data set will have consistent read integrity.
- **QUIESCE**
 - Indicates that the source and target data sets will be opened using Record Level Sharing (RLS) and the data set will be quiesced before processing any entries.

IDCAMS backup

Using IDCAMS for backing up a catalog, you can choose to access the catalog using RLS or not. When QUIESCE is specified, RLS access will be QUIESCED during backup and will be resumed when IDCAMS finishes backup. Using this parameter assures integrity, but also suspends availability during backup. Example 2-9 on page 20 shows a sample IDCAMS job with RLSSOURCE(QUIESCE).
Example 2-9 Sample IDCAMS export (backup) of a user catalog using RLSSOURCE parameter

//CAT004 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DD1 DD DISP=(,CATLG),
// DSN=MHLRES1.BACKUP1.RLSTST1,
// SPACE=(TRK,(2,1),RLSE)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
EXPORT UCAT.RLSTST OUTFILE(DD1) TEMPORARY -
RLSSOURCE(QUIESCE)

DFSMSdss backup
When using DFSMSdss for backing up RLS managed catalogs there is no specific keyword for QUIESCE. DFSMSdss will do the QUIESCE implicitly during backup and enable RLS when the backup is finished. Example 2-10 is an example of DFSMSdss backing up a catalog.

Example 2-10 Example of catalog backup using DSS as the backup tool

//MHLRES1D JOB
//STEPT006 EXEC PGM=ADRDSSU,REGION=4096K
//SYSPRINT DD SYSOUT=*
//TAPE DD DISP=(NEW,CATLG),
// DSN=MHLRES1.DSS.BACK2.MHLRES1A,SPACE=(TRK,(2,1)),
// UNIT=3390,DCB=(BLKSIZE=27920)
//SYSIN DD *
DUMP DS(INC(UCAT.RLSTST)) -
OUTDDNAME (TAPE)
/*

DFSMSHsm backup
DFSMSHsm is also able to back up catalogs. You need to ensure that DFSMSHsm has access to IGG.CATLOCK in order to be able to work with a locked catalog. Otherwise, DFSMSHsm is a privileged user and is able to back up catalogs. DFSMSHsm will back up aliases and restore those also when restoring the catalog.

Remember to LOCK or SUSPEND the catalog before doing the restore to control the integrity of that catalog.

2.3.2 Using REPRO MERGECAT on an RLS managed catalog

Running the REPRO MERGECAT function in a shared environment from a non-RLS enabled ICF catalog to an RLS enabled ICF catalog requires the QUIESCE done on the target catalog, before you are allowed to do a REPRO MERGECAT. Attempting to do the REPRO MERGECAT without having the target catalog quiesced for RLS access ends up giving the error in Example 2-11.

Example 2-11 REPRO MERGECAT message when running from non-RLS to RLS managed catalog

REPRO -
INDATASET(UCAT.VSBOX01) -
OUTDATASET(UCAT.RLSTST.MHLRES1A) -
LEVEL(MHLRES1A) -
MERGECAT
2.3.3 Reporting on catalogs

To track your catalog efficiency there are several reporting options. This is the case for both non-RLS managed and RLS managed catalogs. In the following section, we look into the reporting options.

I/O statistics of catalog address space report

Reporting on both non-RLS and RLS managed catalogs is done through MODIFY CATALOG commands or through standard z/OS tools.

Using the **F CATALOG,REPORT,PERFORMANCE** command gets you the I/O statistics of the catalog address space since the last IPL or since the last reset of these statistics through the **MODIFY CATALOG,REPORT,PERFORMANCE(RESET)** command. An example of the output from this report is shown in Example 2-12. Note the “Statistics since” time stamp that shows the starting time for this summary report.

Example 2-12 Example of MODIFY CATALOG,REPORT,PERFORMANCE output

```
F CATALOG,REPORT,PERFORMANCE
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC359I CATALOG PERFORMANCE REPORT
*CAS**********************************************************************************
*  Statistics since  9:51:36.31 on  09/26/2013        *
*  -----CATALOG EVENT----   --COUNT--  ---AVERAGE---  *
*  Entries to Catalog          2,134K     5.491 MSEC  *
*  BCS ENQ Shr Sys             3,624K     0.837 MSEC  *
*  BCS ENQ Excl Sys            1,317K     1.933 MSEC  *
*  BCS DEQ                     4,559K     0.037 MSEC  *
*  VVDS RESERVE CI             1,190K     0.052 MSEC  *
*  VVDS DEQ CI                 1,190K     0.056 MSEC  *
*  VVDS RESERVE Shr            5,522K     0.097 MSEC  *
*  VVDS DEQ CI                 1,190K     0.052 MSEC  *
*  SPHERE ENQ Excl Sys        452,247      0.084 MSEC  *
*  SPHERE DEQ                  452,251      0.074 MSEC  *
*  CAXWA ENQ Shr              71,017      0.011 MSEC  *
*  CAXWA ENQ Excl             71,017      0.002 MSEC  *
*  VDSPM ENQ                   4,803K     0.027 MSEC  *
*  VDSPM DEQ                   4,803K     0.001 MSEC  *
*  RPL ENQ                     92,968      0.136 MSEC  *
*  RPL DEQ                     92,968      0.004 MSEC  *
*  BCS Get                     1,807K     0.312 MSEC  *
*  BCS Put                    430,989      1.040 MSEC  *
*  BCS Erase                  719,093      0.002 MSEC  *
*  NDSPM DEQ                  430,989      1.040 MSEC  *
*  VLF Delete Minor           719,093      0.002 MSEC  *
*  VLF Define Major           719,093      0.002 MSEC  *
*  VLF Identify               719,093      0.002 MSEC  *
*  RMM Tape Exit              719,093      0.002 MSEC  *
*  RMM Tape Exit              719,093      0.002 MSEC  *
```
The REPORT PERFORMANCE command should be issued regularly to identify potential performance bottlenecks, as your catalogs are a key component in I/O activity.

Cache data space efficiency
The F CATALOG,REPORT,CACHE command reports on the cache data space efficiency. The hit rate is reported and should be at least 20% to reach a reasonable value. Statistics must be measured over time to be valid. Measuring for an hour might not represent your normal catalog access.

You can reset the statistics by issuing F CATALOG,CLOSE command. When the catalog is reopened after this, a new cache structure is built. Through this all counters have been reset except for the purge values. An example of the cache report is shown in Example 2-13 on...
page 23. This will only have ISC statistics, but you also see statistics from VLF-managed catalogs if there are any in your environment.

Example 2-13 Example of output from F CATALOG,REPORT,CACHE command

```
F CATALOG,REPORT,CACHE
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC359I CATALOG CACHE REPORT 545
*CAS******************************************************************
*   HIT% -RECORDS- -SEARCHES --FOUND-- -DELETES- -SHR UPD- --PURGE-- *
*                                                                    *
* UCAT.RLSTST.BNC                              (ISC)               *
  0     4,757   800,025        11         0         0     1,648  *
* UCAT.ZOSR1A                                 (ISC)               *
  0         1         1         0         0         0         0  *
* UCAT.VTFMTAPE                               (ISC)               *
  0         1         1         0         0         0         0  *
* UCAT.VSTEST1                                (ISC)               *
  50%        1         2         1         0         0         0  *
* MCAT.SANDBOX.ZIC.SBOX00                     (ISC)               *
  59%       84    10,026     5,990         0         0        17  *
*CAS******************************************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```

I/O statistics of specific user catalog

The MODIFY CATALOG,REPORT,CATSTATS(catname) gives you I/O statistics including BUFND, BUFNI, and STRNO information about a specific user catalog as specified in the catname parameter.

Example 2-14 Sample report using MODIFY CATALOG,REPORT,CATSTATS parameter

```
CATALOG,REPORT,CATSTATS(UCAT.RLSTST)
EC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
EC359I CATALOG I/O STATS REPORT
*CAS******************************************************************
  ADDS  UPDATES     GETS   GETUPD  DELETES  BUFNI  BUFND  STRNO *
* UCAT.RLSTST                                                      *
  0        0       88        4        0       1      2   180  *
*CAS******************************************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```

The new CATSTATX parameter on the MODIFY CATALOG,REPORT,CATSTATX(catname) command reports the same information as MODIFY CATALOG,CATSTATS, but it includes CA-reclaim and CA-reuse information as well. This command can report on one or more catalogs with the use of "*" or wildcards in the catname specification.

Example 2-15 is an example of catalog reporting using the CATSTATX parameter.

Example 2-15 Report on user catalog using the new CATSTATX parameter

```
CATALOG,REPORT,CATSTATX(UCAT.RLSTST)
EC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
EC359I EXTENDED CATALOG STATS
*CAS************************************************************************
  CATALOG NAME       = UCAT.RLSTST                                     *
*CAS************************************************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```
The information about CA-reclaim, AVG ELAPSED TIME, and AVG CPU TIME has been added in z/OS V2.1.

Reporting on RLS managed catalogs
RMFMON III has RLS activity reports. Choose SYSPLEX option, there are several reports on RLS. See RMFMON III Sysplex panel with these reports displayed in Figure 2-4.

RMF Sysplex Report Selection Menu
Selection ===>
Enter selection number or command for desired report.

Sysplex Reports
1 SYSSUM Sysplex performance summary (SUM)
2 SYSRTD Response time distribution (RTD)
3 SYSWKM Work Manager delays (WKM)
4 SYSENQ Sysplex-wide Enqueue delays (ES)
5 CFOVER Coupling Facility overview (CO)
6 CFYSYS Coupling Facility systems (CS)
7 CFACT Coupling Facility activity (CA)
8 CACHSUM Cache summary (CAS)
9 CACHDET Cache detail (CAD)
10 RLSSC VSAM RLS activity by storage class (RLS)
11 RLSDS VSAM RLS activity by data set (RLD)
12 RLSLRU VSAM LRU overview (RLL)

Data Index
D DSINDEX Data index (DI)

Figure 2-4 RMF3 reports on RLF activity

Following are possible selections related to RLF:
- VSAM RLS activity by storage class
- VSAM RLS activity by data set
- VSAM LRU overview
Coupling facility lock structure report

The **D SMS,CFLS** command displays information about the coupling facility lock structure. This information includes the lock rate, lock contention rate, false contention rate, average number of requests waiting for locks, the lock structure size, and primary structure information. If the lock structure is in duplex mode, secondary structure information will also be displayed. Output from this command will look similar to Example 2-16.

Example 2-16 Output from D SMS,CFLS command

```
D SMS,CFLS
IEE932I 853
IGW320I 07:42:24 Display SMS,CFLS(IGWLOCK00 )
PRIMARY STRUCTURE:IGWLOCK00 VERSION:CBE13E2B5CE22FD3 SIZE:14336K
RECORD TABLE ENTRIES:27365 USED:6
LOCK STRUCTURE MODE: SIMPLEX  STATUS: ENABLE
System Interval  LockRate  ContRate  FContRate  WaitQLen
SC64    1 Minute      0.0   0.000    0.000             0.00
SC64    1 Hour        0.0   0.000    0.000             0.00
SC64    8 Hour        0.0   0.000    0.000             0.00
SC64    1 Day         0.0   0.000    0.000             0.00
  (04)   1 Minute      0.0   0.000    0.000             0.00
  (04)   1 Hour        0.0  1.923    0.000             0.00
  (04)   8 Hour        0.0  5.048    0.000             0.00
  (04)   1 Day         0.0  4.968    0.000             0.00
```

*************** LEGEND ***************

LockRate = number of lock requests per second
CONTRATE = % of lock requests globally managed
FCONTRATE = % of lock requests falsely globally managed
WaitQLen = Average number of requests waiting for locks

SMF reports

SMF is another source of information. You need a reporting tool that can process the SMF data. Choose the option that you have in your shop.

SMF type 42 subtypes 15 through 19 can be used for summary reporting on RLS use. These subtypes are available:

- Subtype 15. VSAM RLS Storage Class Response Time Summary
- Subtype 16. VSAM RLS Data Set Response Time Summary
- Subtype 17. VSAM RLS Coupling Facility Lock Structure Usage
- Subtype 18. VSAM RLS CF cache partition usage
- Subtype 19. VSAM RLS local buffer manager LRU statistics summary

Use command **V SMS,MONDS(spherename),ON** to collect subtype 16 statistics. Additionally data set collection for SMF type 42 must be turned on, when using IBM RMF™ III.

For catalogs and VSAM in general, all the catalog-specific SMF records can be used. These are:

- Type 60. VVR Updated
- Type 61. ICF Define
- Type 62. VSAM OPEN
- Type 64. VSAM CLOSE (new for catalogs in z/OS 1.13)
- Type 65. ICF Delete
- Type 66. ICF Alter
2.3.4 Migration considerations

It is required that SMSVSAM is enabled on all systems in the sysplex using RLS mode for catalogs. This is valid for DFSMS V2.1 systems as for lower-level systems participating in the sysplex.

It is also required that all systems in the sysplex have migrated to DFSMS V2.1 before implementing RLS mode for shared ICF catalogs. Even if you put on toleration support on the earlier systems, a candidate catalog to move to RLS will only be usable in an earlier system in RLS Quiesced mode. It will not be usable when the catalog enters RLS Enabled mode.

2.3.5 Benchmarks for ICF catalogs using RLS mode

Benchmarks comparing VLF managed and RLS managed catalogs shows significant improvements in performance. One particular benchmark on massive DELETES showed that elapse time was reduced 90%, while CPU usage was reduced over 75%. On CREATES, numbers were 56% and 81% in reduction. For GENERIC READS however the saving was 32% in elapse time, but CPU usage was higher; over 15%.

For DIRECT READS the corresponding figures are a 24% reduction in elapse time and a CPU consumption that is 14% higher.

We did a small study creating and deleting 300,000 data sets in a non-RLS managed environment compared to an RLS managed environment.

An RLS quiesced ICF catalog was created, and the 300,000 data set creates and deletes were done in eight batch jobs sequentially. Elapse time and CPU time was captured on those. Next, the ICF catalog was RLS enabled and the same 300,000 data sets were created and deleted in the same way, again capturing elapse time and CPU time.

In the graphical presentation in Figure 2-5, the improvement on elapse time using RLS managed catalogs is obvious in our case. In average, elapse time on data set creates were reduced by 57.2%.

![Figure 2-5](image)

Deleting the same 300,000 data sets, the comparison between non-RLS managed and RLS managed deletes showed a 31.8% reduction in elapse time moving from a non-RLS managed ICF catalog to an RLS managed ICF catalog. This is shown in Figure 2-6 on page 27.
Comparing the CPU consumption on the 300,000 data set creates and data set deletes in a non-RLS managed environment with creates and deletes in an RLS managed environment only showed a little improvement moving from a non-RLS managed ICF catalog to an RLS managed ICF catalog in our scenario.

2.3.6 Tolerations APARs related to ICF catalogs and RLS

The following APARs are required on earlier systems when accessing catalogs that might have been opened for RLS on z/OS V2.1:

- OA36403
- OA36409
- OA36916
- OA36492
- OA36422
- OA36414

2.3.7 Documentation

When planning for implementation of RLS for catalogs, consult the following documentation:

- z/OS DFSMS Managing Catalogs, SC23-6853
- z/OS DFSMS Access Method Services Commands, SC23-6846
- z/OS DFSMSdfp Storage Administration, SC23-6860

2.4 Catalog contention detection enhancements

The initial version of catalog contention detection (introduced in DFSMS V1.12) provided the framework for checking contention of resources between ICF catalogs (initially only on the task input/output table SYSZTIOT). The function only gave a means to notify the operator which tasks waited outside the specified wait-time (default 10 minutes) and provided the information required to address the potential catalog contention.
A SYMREC record would be written to LOGREC and message IEC393I displaying information about the waiting task or tasks would appear. This procedure would next happen repeatedly at preset intervals.

Also a new CATALOG MODIFY command was introduced: F CATALOG,CONTENTION. This command can both display current settings and change these dynamically.

The enhancement to Contention Detection gives better diagnostics whenever a contention problem occurs. Immediate action improves the probability of a successful recovery.

2.4.1 Enhancement overview

DFSMS V2.1 introduces monitoring of additional resources and also the possibility of triggering an action per resource monitored. Wait-time and actions by resource must be set in the IGGCATxx member of SYS1.PARMLIB catalog member.

In addition to notification, the system can also redrive. When redrive is active the first time a service task with an active resource passes the contention threshold, the service task is abended and the request is resubmitted to catalog for processing.

The new resources now being monitored are SYSZVVDS, SYSIGGV2, SYSZTIOT, and ALLOCLCK.

2.4.2 Contention detection problems

The resources monitored are essential resources used in catalog management. The function of each individual resource is explained in more detail in this section.

- **SYSZVVDS.** Used to serialize access to associated VVDS records.
- **SYSIGGV2.** Used to serialize access to associated catalog resources.
- **SYSZTIOT.** Used to control access to task input/output table resources.
- **ALLOCLCK.** A catalog Address Space internal lock that assures serialization of access to most catalog allocation events

If the catalog parmlib is not activated, the default for all resources is a wait-time of 10 minutes and notification only, no action. The default wait-time of 10 minutes can be overwritten by IGGCATxx member of SYS1.PARMLIB settings in the format `resource(minutes,action)`.

An example of the settings is shown in Example 2-17.

Example 2-17 Catalog parmlib settings for monitored resources

```plaintext
SYSZTIOT(11,N)  
SYSZVVDS(12,R) 
SYSIGGV2(13,R)  
ALLOCLCK(0,N) 
```

Valid actions are:

- **N** for notify. This is the default action and cannot be disabled.
- **R** for redrive.

In this example, ALLOCLCK notification is disabled (set to 0). For the remaining resources, monitoring and an action is enabled. The remaining parameters in IGGCATxx can be changed through command (only some resources), through IPL or through a catalog restart.
Validation will happen through a catalog restart and if one parameter is in error, it will be skipped and maintain the previous value.

Resource monitor
The catalog detection function monitors resources looking into wait-time, and alerts those exceeding wait-time. Below is the action sequence that starts based on the extended wait-time.

1. A symptom record is written to LOGREC, and message IEC393I is issued providing information about the task.
2. If the same task is still pending after another 5 minutes, message IEC393I is issued again.
3. Issuing message IEC393I next continues at 15-minute intervals until the wait has ended.
 At end the status will be updated in the next system check (within 30 seconds).

Redrive action
In addition to the notification above, a redrive action can be triggered. If this action is set, the task having exceeded wait-time is canceled and also resubmitted for execution. Remember redrive does not fail the job, just resubmits the catalog requests. The abend issued is 91A-13 and is accompanied by a dump with reason code 246. A LOGREC record with the same reason code is generated.

At abend time, the redrive action frees all previously allocated resources and through this, removes the contention without operator intervention. The proactive and automatic handling of this catalog problem reduces the risk of having multiple resources queue up, some of which could have a critical impact on the entire system.

The resubmitted request may successfully complete. If it should hang again, the redrive action will not happen. Only the notification part (LOGREC write and message IEC393I) occurs.

Redriving a catalog request is not always possible as the initial request might have completed part of the request. Redriving the request again might fail due to this. A manual clean-up would in this case be required.

2.4.3 Example of catalog contention
Seeing the message IEC393I might not necessarily mean that you have a critical problem. A way to assure you that have captured the documentation is to take a dump using the F CATALOG, TAKEDUMP command. Example 2-18 shows a sample command and the resulting output.

Example 2-18 Example of catalog,takedump command

```
F CATALOG, TAKEDUMP
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEA045I AN SVC DUMP HAS STARTED AT TIME=13.32.04 DATE=09/30/2013 681
FOR ASIDS(003B,0001)
QUIESCE = YES
IEA794I SVC DUMP HAS CAPTURED: 682
DUMPID=005 REQUESTED BY JOB (CATALOG )
DUMP TITLE=CAS DYNAMIC DUMP-IGGCLGA RC246 RSN100
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
IEF196I IGD101I SMS ALLOCATED TO DDNAME (SYS00014)
IEF196I DSN (DUMP.D130930.H17.SC64.CATALOG.S00005 )
IEF196I STORCLAS (SCDUMP) MGMTCLAS (MCDB22) DATACLAS ( )
```
The new IECT393I message provides more information about the problem that occurred. The format of the message is shown in Example 2-19.

Example 2-19 Example of contents in message IEC393I

IEC393I CATALOG CONTENTION 778
WARNING: CATALOG TASK CONTENTION WAIT-TIME WAS EXCEEDED.
RESOURCE(SYSZTIOT)JOBNAME(HZSPROC)ASID(0014)TCB(007CA968)

Using the IEC393I message, you can extract the job name and use the command F CATALOG,LISTJ(jobname) to get more information from this display. Also, issue the command F CATALOG,LIST to have information about all current catalog tasks. It is always a good idea to have output from these commands in the SYSLOG for diagnostics and problem solving or later error reporting, for example in a PMR.

Intervention at this point could be to issue the command F CATALOG,END(taskid),REDRIVE to try to redrive the active catalog task, if this was not already automated. If this is not possible, the command F CATALOG,ABEND(taskid) can abend the task and remove the critical contention.

Additionally, to identify tasks outside of catalog address space (CAS) causing contention, the command D GRS,RES=(SYSZTIOT,*) is useful for the diagnostics.

2.4.4 Changing catalog contention detection settings

The contention detection settings in the IGGCATxx catalog parmlib member can be dynamically changed if you want to make changes to defaults or values already set. This can be done with a catalog modify command as shown in Example 2-20.

Example 2-20 Example of changing contention detection setting

MODIFY CATALOG,CONTENTION(SYSZTIOT,,R)

The setting above enables a redrive action on the SYSZTIOT resource if a wait-time violation should occur. Wait-time setting will in this case remain unchanged. Remember that this setting will not be permanent, but will be reset to the IGGCATxx value during IPL or catalog restart, if a value is set in IGGCATxx. To have a dynamic setting become permanent, you must change the setting in the IGGCATxx parmlib member.

Tip: Valid wait-time settings are zero for disabled and otherwise 5 - 999 minutes.

Current settings can always be displayed with the F CATALOG,CONTENTION command. Example 2-21 is an example of output display from this command.

Example 2-21 Display of catalog contention settings

F CATALOG,CONTENTION
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC359I CATALOG CONTENTION REPORT
*CAS**
Migration considerations

There are no special considerations for migration. Changes can be implemented dynamically and in the IGGCATxx parmlib member.

Documentation

IGGCATxx parmlib member setup is documented in MVS Initialization and Tuning Reference z/OS V2.1, SA23-1380. Also, consult z/OS Managing Catalog, SC23-6853 for more information.

2.5 Catalog alias enhancements

Catalog clean-up is sensitive as access to data depends on the full integrity in catalogs. Need for specific data varies over the years and data set entries may decline and even disappear. This can leave aliases behind without data sets connected at them. You can identify unnecessary aliases, but you also need to verify that they are obsolete. Doing this verification can be difficult though, as data set aliases do not have the creation date stored historically.

With DFSMS V2.1, a new alias creation stores the alias record with a creation date in the master catalog record (type X). This eases later identification as to when the alias was created and if it is potentially a completely new one that was never used.

Example 2-22 is a LISTCAT of an alias created in a pre-DFSMS V2.1 release.

Example 2-22 LISTCAT of a data set alias created before DFSMS V2.1

```
ALIAS --------- MHLRES1
  IN-CAT --- MCAT.SANDBOX.Z1C.SBOX00
  HISTORY
    RELEASE----------------2 CREATION--------0000.000
  ASSOCIATIONS
    USERCAT--UCAT.VSBOX01
```

The CREATION date fields show zeros only and in theory this alias might have been created recently or many years back.

For comparison, a LISTCAT was issued on an alias created on a DFSMS V2.1 system where the alias creation date now is being stored. See Example 2-23.

Example 2-23 LISTCAT of data set alias created under DFSMS V2.1

```
ALIAS --------- MHLRESD
  IN-CAT --- MCAT.SANDBOX.Z1C.SBOX00
```
Only data sets created with DFSMS V2.1 and after have the creation date available.

2.5.1 Additional verification on delete ALIAS

Before DFSMS V2.1, a delete of an alias was honored if the alias name could be found. In DFSMS V2.1, additional verification will be done on the association cell of the base record, assuring that the backwards pointer is correct.

If the resolved name is not found in the master catalog, if the resolved name is a symbolic name, the symbolic is resolved and the code re-orient to the correct user-catalog depending on the high-level qualifier (HLQ).

2.5.2 Catalog Search Interface enhancements

Catalog Search Interface (CSI) was created to offer a faster interface to ICF catalogs compared to CAMLST and IDCAMS search. CSI can offer generic search through filtering and multiple entries in the program in one search. CSI can be invoked from high-level programs through a callable interface (GUPI) and can return search results for one or more entries at a time.

Updates in DFSMS V2.1

In DFSMS V2.1, new fields are externalized to improve the usability of CSI. The new fields are listed here:

- **STRNO.** Number of concurrent requests.
- **BUFND.** Number of buffers requested for Data component.
- **BUFNI.** Number of buffers requested for Index component.
- **INDXLVLS.** Number of index levels seq-set-rba.
- **HILVLRBA.** RBA of High Level Index Record.
- **ASSOC.** A repeating list of catalog records associated with this entry.
- **ASSOCSYB.** Indicates if the entry is symbolic-relate.
- **TRACKS.** Total tracks per volume.

Basically, the CSI feature is one load module IGGCSI00 that can be called, linked to, or linked into a user module. IGGCSI00 cannot be used in these environments:

- In a dynamic allocation exit
- During an OPEN/CLOSE/EOV exit
- In cross-memory mode
- In SRB mode
- In disabled mode

2.5.3 Sample programs and REXX for CSI reporting

Doing a CSI search requires fields describing options that control CSI processing, filtering criteria, types of catalog entries to be returned, generic (or specific) filter key for entry names to be processed, or catalog field names to be returned.
To get started with CSI, you will find three assembler programs and a REXX in SYS1.SAMPLIB. The assembler programs only have to be assembled and linked to be ready for use.

You might have specific reporting needs and may consequently need to change the source code accordingly. The programs and description of each are described here:

- **IGGCSILC.** Input is the catalog name. Output is a listing of all entry names in the catalog printed along with a summary of the number of each entry type found and the total of all entries found.
- **IGGCSIVG.** Input is the catalog name. Output is a summary for each catalog name showing the total unused space by VSAM type. A total for all catalog names supplied is printed after the last catalog name is processed.
- **IGGCSIVS.** Input is a six character volser number, followed by the catalog name. The output is a listing of all data sets that reside in the given catalog and are on the given volume.
- **IGGCSIRX.** IGGCSIRX is a REXX exec that prompts you for a search key and returns you the data set name, its type, and volume serial numbers.

2.5.4 Running reports with CSI programs

Following are examples of how to run the provided CSI programs in batch jobs. The corresponding output reports are displayed.

IGGCSILC sample program

The first example in Example 2-24 shows how a report using the IGGCSILC program is created.

```plaintext
Example 2-24  Sample job running CSI program IGGCSILC

//CSI0001 EXEC PGM=IGGCSILC
//*THE INPUT TO IGGCSILC IS AN 80-BYTE SYSIN DD RECORD. THE CATALOG NAME
//*OF THE CATALOG TO BE LISTED SHOULD BE LEFT JUSTIFIED IN COLUMN 1 OF
//*THE RECORD.
//*A LISTING OF ALL ENTRY NAMES IN THE CATALOG IS PRINTED ALONG WITH A
//*SUMMARY OF THE NUMBER EACH ENTRY TYPE FOUND AND THE TOTAL OF ALL
//*ENTRIES FOUND.
//SYSOUT DD SYSOUT=*  
//SYSIN DD *
UCAT.DB0BTARG
```

As shown in Example 2-25, one or more catalog names are input for the report. The output shows a list of all data set names in the catalogs that are listed plus a summary at the end of the report.

```plaintext
Example 2-25  Sample output from IGGCSILC program

LISTING FROM CATALOG -- UCAT.DB0BTARG
CLUSTER ------ 00000000000000000000000000000000000000000000
DATA ------ UCAT.DB0BTARG
INDEX ------ UCAT.DB0BTARG.CATINDEX
NONVSAM ------ DB0BT.ADSNLOAD
NONVSAM ------ DB0BT.ADSNMACS
```
IGGCSIVG sample program

The IGGCSIVG program creates a summary of unused space per VSAM data set type by ICF catalog. The catalog names are entered as input. Example 2-26 is a sample batch job for this program.

Example 2-26 Sample job for running catalog report using CSI program IGGCSIVG

```
//CSI0001 EXEC PGM=IGGCSIVG
//*INPUT
//*THE INPUT TO IGGCSIVG IS AN 80-BYTE SYSIN DD RECORD. THE CATALOG NAME
//*OF THE CATALOG TO BE PROCESSED MUST BE LEFT JUSTIFIED AND START IN
//*COLUMN 1 OF THE INPUT RECORD. MULTIPLE INPUT RECORDS CAN BE SUPPLIED.
//*OUTPUT
//*UNUSED SPACE BY VSAM TYPE. A TOTAL FOR ALL CATALOG NAMES
//*SUPPLIED IS PRINTED AFTER THE LAST CATALOG NAME IS PROCESSED.
//*SYSOUT DD SYSOUT=*
//*SYSOUT DD DISP=SHR,DSN=MHLRES1.CSI.PRINT.VBA133
//*SYSSIN DD *
UCAT.DBODATA
```

The output from the IGGCSIVG program has a summary per catalog on unused VSAM space as shown in Example 2-27. At the end of the report, there is a summary of all the catalog's input to the program.

Example 2-27 Sample output from the IGGCSIVG program

```
CATALOG NAME: UCAT.DBODATA

<table>
<thead>
<tr>
<th></th>
<th>BYTES UNUSED</th>
<th>BYTES ALLOCATED</th>
<th>% OF DS</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDS</td>
<td>36,187,750,400</td>
<td>48,436,510,720</td>
<td>3,186</td>
<td>0</td>
</tr>
<tr>
<td>KSDS</td>
<td>376,832</td>
<td>425,984</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>ESDS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RRDS</td>
<td>40,796,160</td>
<td>40,992,768</td>
<td>1</td>
<td>40,796,160</td>
</tr>
<tr>
<td>TOTAL</td>
<td>36,228,923,392</td>
<td>48,395,091,968</td>
<td>3,192</td>
<td>0</td>
</tr>
</tbody>
</table>

CATALOG NAME: UCAT.DBOAIMAG

0100 0004 FS
```

BYTES UNUSED BYTES ALLOCATED % OF DS MIN
Chapter 2. Catalog enhancements

<table>
<thead>
<tr>
<th></th>
<th>Bytes Unused</th>
<th>Bytes Allocated</th>
<th>% of DS</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>179,743,985,664</td>
<td>41,162,670,080</td>
<td>3,449</td>
<td>0</td>
</tr>
</tbody>
</table>

IGGCSIVS sample program

The third provided CSI report program is IGGCSIVS. The function of this program is to list all data sets in a given user catalog that has entries on a specific volume.

Input will be the volser and the catalog name in scope, as shown in Example 2-28.

Example 2-28 Sample job for running catalog report using CSI program IGGCSIVS

```
//CSI0001 EXEC PGM=IGGCSIVS
//*INPUT
//*THE INPUT to IGGCSIVS IS AN 80-BYTE SYSIN DD RECORD. THE SIX-CHARACTER VOLUME SERIAL NUMBER SHOULD BE LEFT JUSTIFIED AND STARTS IN COLUMN 1 OF THE INPUT RECORD. THE CATALOG NAME OF THE CATALOG TO BE SEARCHED STARTS IN COLUMN 7. MULTIPLE INPUT RECORDS CAN BE SUPPLIED.
//*OUTPUT
//*THE OUTPUT IS A LISTING OF ALL DATA SETS THAT RESIDE IN THE GIVEN CATALOG AND ARE ON THE GIVEN VOLUME.
//*SYSOUT DD SYSOUT=* SYSIN DD *
SBOXA8UCAT.VSBOX01
```

Example 2-29 contains sample output from the IGGCSIVS program listing all data sets on volser SBOXA8 belonging to ICF catalog UCAT.VSBOX01 as requested in the SYSIN DD statement in Example 2-28.

Example 2-29 Sample output from IGGCSIVS program

```
DATA SETS FOUND IN CATALOG UCAT.VSBOX01 HAVING VOLSER SBOXA8

ADHUSER.DB9A.ATEXT.D090306.I01240.DATA
ADHUSER.DB9A.D.D090305.H19.M42.Z2
ADIS.SC63.ISPF42.ISPPROF
```

IGGCSIRX CSI REXX

The IGGCSIRX REXX is found in SYS1.SAMPLIB. It is used to display fully qualified data set names, an alias, a GDG entry, or any catalog entry type. For the data set name, the catalog name, and the entry type the volser is returned. Example 2-30 on page 36 is an example. The
REXX is called. You are requested to enter a key (data set name and alias). The response is returned to your display.

Example 2-30 Running IGGCSIRX CSI REXX in foreground

<table>
<thead>
<tr>
<th>ENTER FILTER KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHLRES1.CSI.PRINT.VBA133</td>
</tr>
<tr>
<td>CATALOG UCAT.VSBOX01</td>
</tr>
<tr>
<td>NONVSAM MHLRES1.CSI.PRINT.VBA133 MLD52B</td>
</tr>
</tbody>
</table>

If you type in an alias, a GDG name, or other types of catalog entries other than a data set name, the catalog name and type is returned for this key.

CATSRCHI: improved search facility

An improved version of IGGSRCIX REXX CATSRCHI is now offered “as is”. This REXX has full data set names or data set filters as input and generates a list based on the selection criteria.

The CATSRCHI REXX is available for download from the IBM FTP site:

ttp://ftp.software.ibm.com/ - userid: anonymous and password: your email address

The full path in our environment is:

There are two members at this website:

- II14316.clist.clist. File holding the CATSRCHI rexx code.
- II14316.tso.cntl. File holding the JCL running the REXX.

An example of the search input could be as shown in Example 2-31. The example shows a generic search on a high-level qualifier level. The `fieldname` parameter specifies the fields on which information is requested.

Example 2-31 Running a generic search using CATSRCHI in a batchjob

```
//MHLRES1A JOB (999,POK),MSGLEVEL=1,NOTIFY=MHLRES1
//*JOBPARM SYSAFF=SC64
/*/ 
//STEP1 EXEC PGM=IKJEFT1B
//SYSPROC DD DISP=SHR,DSN=MHLRES1.TSO.CLIST
//*POINT TO YOUR CLIST DATA SET.
//SYSPRINT DD SYSOUT=* 
//SYSTSPRT DD SYSOUT=* 
//SYSTSIN DD * 
%CATSRCHI MHLRES4.** -
  FIELDNAMES(XHARBADS XHRU BA XACIFLAG VOLSER -
                COMPIND NOEXTNT AMDKEY PHYBLKSZ EXTENT)
/*
```

The output from the CATSRCHI REXX displays the externalized field names. For non-VSAM files, only the data set name and the VOLSER is displayed. A VSAM file appears with cluster, data component, and index component, as shown in Example 2-32.

Example 2-32 Sample output from CATSRCHI rexx displaying externalized fields

```
CLUSTER MHLRES4.NSMS.CARENO.TEST01 
XHARBADS = no data
```
XHURBA = no data
XACIFLAG = no data
COMPIND = no data
NOEXTNT = no data
AMDKEY = no data
PHYBLKSIZE = no data
EXTENT = no data

DATA MHLRES4.NSMS.CARENO.TEST01.DATA
XHURBA = 55296
Volume MHLS1A XHURBA = 55296
XACIFLAG - Data set is not EA (extended addressing)
On volser(s) SBOXEF
COMPIND - No flags set
Data set has 1 extents on 1 volumes
Volume SBOXEF NOEXTNT = 1
Relative key position = 41
Key length = 10
PHYBLKSIZE = x'00004800'

Data set has 1 extents on SBOXEF
Extent Seq number = 1 Extent tracks = 1
Extent low cchhr = 0000000B Extent Start RBA = 0
Extent high cchhr = 0000000B Extent End RBA = 55295
Number of extents from all VVR entries is 1

INDEX MHLRES4.NSMS.CARENO.TEST01.INDEX
XHURBA = 25088
Volume SBOXEF XHURBA = 512
XACIFLAG - Data set is not EA (extended addressing)
On volser(s) SBOXEF
COMPIND - No flags set
Data set has 1 extents on 1 volumes
Volume SBOXEF NOEXTNT = 1
Relative key position = 41
Key length = 10
PHYBLKSIZE = x'00000200'

Data set has 1 extents on SBOXEF
Extent Seq number = 1 Extent tracks = 1
Extent low cchhr = 0000000E Extent Start RBA = 0
Extent high cchhr = 0000000E Extent End RBA = 25087
Number of extents from all VVR entries is 1

Documentation on CSI
Additional information about CSI can be found in z/OS V2R1.0 DFSMS Managing Catalogs, SC23-6853.

2.6 Catalog parmlib member enhancements

The catalog parmlib member IGGCATxx was introduced in z/OS V1.13. The main purpose of this new feature was to remove the bottlenecks in the current 80 character line specification in
SYS1.NUCLEUS or SYS1.IPLPARM. It is also to make catalog changes more dynamic and independent of having to do an IPL.

The parameters that are listed here were part of the initial implementation:

- VVDSSPACE
- TASKMAX
- NOTIFYEXTENT
- DELFORCEWNG
- DSNCHECK
- SYMREC
- UPDTFAIL
- VVRCHECK
- DELFORCEWNG
- EXTENDEDALIAS

In DFSMS V2.1 additional parameters were added to the IGGCATxx catalog parmlib.

2.6.1 How to prepare for catalog parmlib

If not already done, you must populate the IGGCATxx member in SYS1.PARMLIB with the options that you want to move to the parmlib function. It is suggested to define all possible parameters once you decide to implement the catalog parmlib function to visualize all options available. But initially perhaps only use default values. You have the possibility to quickly change these values easily having the defaults available and visible in the IGGCATxx catalog parmlib.

Example 2-33 is a sample where all options in the catalog parmlib are displayed with the corresponding default value.

Example 2-33 Example of IGGCATxx member showing options with default value

```
ALIASLEVEL(1)  AUTOADD(OFF)  CATMAX(1024)  DELFORCEWNG(OFF)  DELRECOWWNG(YES)  DSNCHECK(YES)  DUMP(OFF)  
EXTENDEDALIAS(NO)  GDFGIFOENABLE(NO)  NOTIFYEXTENT(80)  SYMREC(YES)  SYS%(OFF)  TAPEHLQ(SYS1)  
TASKMAX(180)  TASKMIN(60)  
TASKTABLESIZE(200)  UPDTFAIL(YES)  VVDSSPACE(40,40)
```

Most of these options can be changed dynamically by `MODIFY CATALOG` commands. The system applies all IGGCATxx values at IPL time as well as at a restart of the Catalog Address Space.
Activating a new IGGCATxx catalog parmlib configuration change also validates the individual settings. Example 2-34 is a sample Modify Catalog Restart command, where the IGGCAT00 member contains an error.

Example 2-34 Example of error message after restart of Catalog Address Space

IEC355I IDACAT14, CATALOG ADDRESS SPACE IS RESTARTING
IEE252I MEMBER IGGCAT00 FOUND IN SYS1.PARMLIB
IEC386W INVALID KEYWORD DETECTED IN IGGCAT00 AT LINE:DELFORCEWNG(OFF)

All valid settings are updated in IGGCATxx after a catalog restart. The settings in error remain unchanged.

2.6.2 Activating IGGCATxx catalog parmlib

To have the system start using the IGGCATxx member in SYS1.PARMLIB, you must specify the IGGCATxx member suffix in IEASYSxx member by specifying CATALOG=xx. If CATALOG=01 is specified, the system looks for an IGGCAT01 member in SYS1.PARMLIB. If there is no CATALOG specification in the IEASYSxx member, the system will, by default, look for an IGGCAT00 member. If this is not found, the old setup using SYS1.NUCLEUS or SYS1.IPLPARM will be used.

Activation happens either by a catalog restart command or through IPL.

2.6.3 IGGCATxx new options in DFSMS V2.1

In this section, we look at the new options and their function made available in DFSMSV2.1:

- **TASKMIN(n)**. Catalog service task lower limit (number of tasks that can run concurrently). Default is 60. Minimum is 24 and maximum is 180.
- **TAPEHLQ(name)**. High-level qualifier of a Tape Volume catalog. Default is SYS1. Valid character set includes alphabetic, numerics, and the national characters @,#,$.
- **SYS%(ON|OFF)**. Specifies whether SYS% to SYS1 conversion is enabled. Default is OFF.
- **AUTOADD(ON|OFF)**. Specifies whether Enhanced Catalog Sharing (ECS) Autoadd is to be turned on or off. Default is OFF. When ON, catalogs will be added to ECS on their next reference if they are eligible for ECS.
- **DUMP(ON|OFF)**. Specifies whether dynamic dumping is to be turned on or off. Default is OFF.
- **ALIASLEVEL(n)**. Specifies the MLA search level. ALIASLEVEL has a default value of 1, with a minimum of 1 and a maximum of 4.
- **DUMPON(rc,rsn,mod,cnt)**. Specifies the return (rc) and reason codes (rsn) to take a dump on if a match is found in a valid catalog module (mod). The optional cnt value specifies how many times to skip before taking the dump. The default for cnt is 1.
- **TASKTABLESIZE(n)**. Specifies the maximum possible tasks running at a particular time. This includes both catalog and non-catalog tasks. TASKTABLESIZE is an IPL only parameter. TASKTABLESIZE is ignored on a CAS restart (no error message is issued). TASKTABLESIZE has a default value of 200, with a minimum of 200 and a maximum of 400.
CATMAX(n). The maximum number of catalogs that can be open at any given time on the system. The default is 1024. Valid values are 1 - 9999. When the maximum number of open catalogs is reached, close of least recently used catalogs will start.

VVRCHECK(YES|NO). Specifies if you want to enable enhanced VVR checking on VVDS I/O. The default is NO.

2.6.4 How to display settings on Catalog parmlib

Display of current settings in CAS can be done through the `F CATALOG,REPORT` command. The display output shows the IGGCATxx settings except for resource values, as shown in Example 2-35.

Example 2-35 IGGCATxx settings displayed by `F CATALOG,REPORT` command

```
F CATALOG,REPORT
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC359I CATALOG REPORT OUTPUT
*CAS******************************************************************************************************************************************
* CATALOG COMPONENT LEVEL = HDZ2210 *
* CATALOG ADDRESS SPACE ASN = 0098 *
* SERVICE TASK UPPER LIMIT = 180 *
* SERVICE TASK LOWER LIMIT = 60 *
* HIGHEST & SERVICE TASKS = 3 *
* & ATTACHED SERVICE TASKS = 3 *
* MAXIMUM & OPEN CATALOGS = 1,024 *
* ALIAS TABLE AVAILABLE = YES *
* ALIAS LEVELS SPECIFIED = 1 *
* SYS% TO SYS1 CONVERSION = OFF *
* CAS MOTHER TASK = 00790680 *
* CAS MODIFY TASK = 007FC558 *
* CAS ANALYSIS TASK = 007FC0F8 *
* CAS ALLOCATION TASK = 007FC328 *
* CAS ASYNC TASK = 0077AE88 *
* CAS SYSPLEX COMMAND TASK = 0077AA28 *
* CAS SYSPLEX QUIESCE TASK = 0077AC58 *
* VOLCAT HI-LEVEL QUALIFIER = SYS1 *
* NOTIFY EXTENT = 80% *
* DEFAULT VVDS SPACE = (10, 10) TRKS *
* ENABLED FEATURES = DSNCHECK DELFORCEWNG SYMREC *
* ENABLED FEATURES = UPDTFAIL *
* DISABLED FEATURES = VVRCHECK AUTOTUNING BCSCHECK *
* DISABLED FEATURES = DELRECOVWNG EXTENDEDALIAS *
* DISABLED FEATURES = ECS AUTOADD DUMPON GDGFIFO *
* INTERCEPTS = (NONE) *
*CAS******************************************************************************************************************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
```

To see which catalog parmlib you are using on this system, use the `D IPLINFO,CATALOG display` command. This shows which IGGCATxx parmlib member is active. The output from the command is shown in Example 2-36 on page 41.
Example 2-36 D IPLINFO,CATALOG display output

D IPLINFO,CATALOG
IEE255I SYSTEM PARAMETER 'CATALOG': 00

The IGGCATxx catalog parmlib suffix on this system is “00”. In this case, the catalog parmlib member name is IGGCAT00.

Documentation
See MVS Initialization and Tuning Reference z/OS V2.1, SA23-1380; and z/OS Managing Catalogs, SC23-6853, for details about the catalog parmlib feature.

2.7 Catalog DFSMS GDG enhancements

Current GDG processing is from newest to oldest (LIFO). Given the processing order, GDG data sets are presented from oldest (lowest generation data set number) to newest in sequence. Based on requirements, DFSMS V2.1 added a new attribute so that GDG data sets can be processed in reverse order. The new attribute is GDGFIFOENABLE.

Processing GDG data sets in first-in first-out (FIFO) order often reduces the need for doing SORT, as data often is time stamped and needs to be processed accordingly.

2.7.1 Enable FIFO processing of GDG processing

To activate the FIFO processing of GDG data sets, you first must enable this in catalog parmlib with the GDGFIFOENABLE(YES) parameter. The default for this parameter is NO. Therefore, if you try to create a new GDG using a new keyword FIFO without changing the default, you will see the error message that is shown in Example 2-37.

Example 2-37 Error message returned if you try to define GDG without activating GDGFIFOENABLE

DEFINE GENERATIONDATAFILE GROUP -
 (NAME(MHLRES1.TEST.FIFO.GDG) -
 EMPTY FIFO -
 SCRATCH -
 LIMIT(10))
IDC0010I GDG FIFO ALLOCATION ORDER FEATURE NOT ENABLED.
IDC3003I FUNCTION TERMINATED. CONDITION CODE IS 12

GDGFIFOENABLE(YES) must be set in catalog parmlib to be able to create a GDG with the FIFO option. You can activate this setting by restarting CAS or doing an IPL after updating the IGGCATxx member. There is no dynamic MODIFY command available for this setting.

The FIFO option is available on a DEFINE GDG statement or on the IDCAMS alter statement.

FIFO processing scenario

To illustrate the change in processing order, we create a scenario:

1. Two GDG entries were created, one with the default option (last-in first-out (LIFO)), the other one with the FIFO option provided. Two data sets were allocated in each GDG.

2. Next, we did an IDCAMS print to process the data sets and the allocation of the DD statements shows the two different processing orders. The data sets were processed from newest to oldest with the LIFO option, as seen in Example 2-38 on page 42.
3. For the FIFO option, the GDG data sets are processed in reverse order, as seen in Example 2-39.

Example 2-39 Processing order of GDG data set with FIFO option enabled

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>DDNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGD104I</td>
<td>MHLRES1.TEST.FIFO.GDG.G0001V00</td>
<td>RETAINED, DDNAME=DD1</td>
</tr>
<tr>
<td>IGD104I</td>
<td>MHLRES1.TEST.FIFO.GDG.G0002V00</td>
<td>RETAINED, DDNAME=</td>
</tr>
</tbody>
</table>

2.7.2 Setting processing through JCL

The JCL parameter **GDGORDER** can be used to influence the concatenation order. This keyword overwrites any LIFO or FIFO setting on the GDG. Example 2-40 shows an example of the GDGORDER=FIFO JCL parameter.

Example 2-40 Overwriting LIFO/FIFO setting on GDG using the JCL parameter

```
//SMFDATA DD DSN=MHLRES1.TEST.LIFO.GDG,DISP=SHR,GDGORDER=FIFO
```

Valid settings for the **GDGORDER** parameter are USECATLG, FIFO, and LIFO.

Documentation

See more details in *z/OS V2R1.0 MVS JCL Reference*, SA23-1385.

2.8 Catalog RNLs Health Check

We suggest converting the resources SYSIGGV2/SYSZVVDS/SYSVTOC in the GRS RNL to avoid serious deadlocks involving these. The exception can be for resources placed on disk outside the sysplex.

With DFSMS V2.1, a new health check (Catalog_Rnls) will now be monitoring these resources and creates an alert, if suggested conversions are not met. The customer benefits from this if incorrect settings are detected and can be changed before facing a hang-up situation.

2.8.1 SDSF Health Checker panel

The new health check can be found in the Health Checker panel in SDSF.

1. To reach this, go to the SDSF main menu and type **CK** to enter the Health Checker menu.

 The **Catalog_Rnls** is to be found as shown in Figure 2-7 on page 43.
Figure 2-7 SDSF Health Checker panel with the new Catalog_RNLS health check

2. Run the Health Checker real time by selecting the health check-in scope. In this scenario, select Catalogs_RNLS. The output from the health check is shown in Example 2-41. If successful, the status is updated accordingly.

Example 2-41 Result of running Catalog_RNLS health check

CHECK(IBMCATALOG,CATALOG_RNLS)
SYSPLEX: SANDBOX SYSTEM: SC64
START TIME: 09/13/2013 23:35:08.042348
CHECK DATE: 20120827 CHECK SEVERITY: LOW

IGGHCI10I CHECK(IBMCATALOG,CATALOG_RNLS) ran successfully and found no exceptions.

END TIME: 09/13/2013 23:35:08.044066 STATUS: SUCCESSFUL

3. During the health check, if any of the resources are not converted a notification is created that a potential deadlock situation can occur and on which of the resources. The user is suggested to follow instructions in the health check as to how to resolve and prevent the potential deadlock situation.

Documentation
The book z/OS V2R1.0 MVS Planning: Global Resource Serialization, SA23-1389 explains how to convert resources in more detail. Regarding Catalog RNL reserves, refer to chapter 2, page 44.

2.9 MODIFY CATALOG,LIST enhancement

The latch number has been added to F CATALOG,LIST output. Message IEC347I has been changed to display latches, when any contention occurred.

Example 2-42 on page 44 is the pre-DFSMS V2.1 display.
Latch information has been added in DFSMS V2.1, as shown in Example 2-43.

Example 2-43 MODIFY CATALOG LIST display having latch information added

IEC347I LIST CATALOG TASK(S)
*CAS**
* FLAGS - TASK ADDR - JOBNAME / STEPNAME - ELAPSED TIME - ID *
* ------ 00891D78 DUMPSRV / DUMPSRV 00.01.55 02 *
* WAITING FOR Get LatchShr # 00001 FROM 09F06730 FOR 00.01.23 *
*O-OLDEST, W-WAIT, A-ABEND, E-ENQ, R-RECALL, L-RLS *
*CAS**

2.10 Improved catalog recovery features

New parameters have been provided for in DFSMS V2.1 on the DELETE and DEFINE
USERCATALOG statement to keep and maintain alias information about deletion and later
creation of an ICF catalog. Using the new DELETE USERCATALOG NODISCONNECT and DEFINE
USERCATALOG RECONNECT parameters, you will no longer have to maintain the ALIAS pointers
yourself.

Reconnect will also support rebuilding alias information even if the ICF catalog is defined on
another volume or device type.

Another significant enhancement for ICF Catalogs is the new MODIFY RECOVER command that
has been added in DFSMS V2.1 to support catalog forward recovery procedures. This new
command will work for both RLS managed and non-RLS managed catalogs:

2.10.1 F CATALOG,RECOVER,LOCK(ucat name)

This command locks and closes the catalog sysplex wide. The catalog appears as LOCKED
in a catalog display. Trying to access the catalog, you get the return code 186, with the
message “UNABLE TO ACCESS LOCKED CATALOG”. A LOCK is generally used when the
catalog is being reorganized or recovered. LOCK fails any user request while the LOCK is
active.

2.10.2 F CATALOG,RECOVER,UNLOCK(ucat name)

This command releases a LOCK set by a previous RECOVER LOCK command or by an IDCAMS
ALTER LOCK command.
2.10.3 \texttt{F CATALOG,RECOVER,SUSPEND(ucat name)}

This command does a serialized close of the catalog across the sysplex. The suspend prevents unauthorized request to the catalog. In a catalog display, the catalog appears as in a suspended state.

Compared to the \texttt{LOCK} parameter, \texttt{SUSPEND} queues up incoming requests in the users address space and does not fail the job.

2.10.4 \texttt{F CATALOG,RECOVER,RESUME(ucat name)}

The \texttt{RESUME} command resumes a suspended catalog that was earlier brought in this state by a \texttt{RECOVER SUSPEND} command.

The user catalog name can be specified generically or as a fully qualified catalog name.

Example 2-44 shows the messages when using the \texttt{RECOVER} command to prevent access and again opening for access. The first example shows a lock of the catalog.

Example 2-44 \textit{LOCK an ICF Catalog using a RECOVER LOCK command}

\begin{verbatim}
F CATALOG,RECOVER,LOCK(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I MODIFY CATALOG UCAT.RLSTST TO STATE LOCK SUCCESSFUL
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
\end{verbatim}

To bring the ICF Catalog out of a locked status, use the \texttt{RECOVER UNLOCK} command as shown in Example 2-45.

Example 2-45 \textit{UNLOCK an ICF Catalog from a LOCKED state by command}

\begin{verbatim}
F CATALOG,RECOVER,UNLOCK(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I MODIFY CATALOG UCAT.RLSTST TO STATE UNLOCK SUCCESSFUL
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
\end{verbatim}

To set the ICF Catalog in a suspended state before doing maintenance or recovery, use the \texttt{RECOVER SUSPEND} command as shown in Example 2-46.

Example 2-46 \textit{Example of suspending an ICF Catalog using the RECOVER SUSPEND command}

\begin{verbatim}
F CATALOG,RECOVER,SUSPEND(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I MODIFY CATALOG UCAT.RLSTST TO STATE SUSPEND SUCCESSFUL
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED
\end{verbatim}

When the maintenance or recovery has been done to the suspended ICF catalog, resume the ICF catalog from the suspended state, issuing the \texttt{RECOVER RESUME} command. All catalog requests outside of the maintenance work will be queued up while this is ongoing. Example 2-47 on page 46 is the output from the \texttt{RESUME} command.
Example 2-47 Resume of ICF Catalog being in suspended state

F CATALOG,RECOVER,RESUME(UCAT.RLSTST)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I MODIFY CATALOG UCAT.RLSTST TO STATE RESUME SUCCESSFUL
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED

Remember to have the appropriate access to the IGG.CATLOCK resource to be able to issue the commands in this section.

The **IDCAMS ALTER LOCK|SUSPEND** command now works sysplex-wide assuring full integrity.

2.10.5 Catalog define and delete parameters

New parameters **NODISCONNECT|RECONNECT** to be used along with the **DELETE USERCATALOG** command are available with DFSMS V2.1. **NODISCONNECT** retains alias information at the deletion of a user catalog. If you use this parameter, the new parameter **RECONNECT** can be used on the **DEFINE USERCATALOG** command to have the newly defined catalog connected to the existing alias information so that you do not have to rebuild this information manually.

NODISCONNECT | RECONNECT subparameter scenario

For visualization of how the new **NODISCONNECT | RECONNECT** subparameters work, a DELETE of a user catalog is done using the keyword **NODISCONNECT**. The user catalog is defined again with the **RECONNECT** parameter. Example 2-48 is an example of deleting a user catalog using the **NODISCONNECT** parameter.

Example 2-48 Delete of user catalog using the NODISCONNECT parameter

```plaintext
//IDCAMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
   DELETE UCAT.RLSTST USERCATALOG RECOVERY NODISCONNECT
/*

Next, the user catalog was defined again with the **RECONNECT** keyword to connect to the existing alias pointers as shown in Example 2-49.

**Example 2-49  Example of defining a user catalog using RECONNECT parameter**

```plaintext
//IDCAMS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE USERCATALOG -
 (NAME(UCAT.RLSTST) ICFCATALOG -
 VOLUME(MHL1A0) TRK(5 1) -
 STORCLAS(SCRLS) -
 DATACLASS(WELCHRLS) -
 LOG(NONE) RECONNECT -
 FREESPACE(20 20) -
 NOIMBED NOREPLICATE) -
 DATA (CISZ(4096))
/*

The only **ALIAS** in this user catalog was **RLSTST** with one data set created. When we looked up the alias using ISPF 3.4 after the define of the usercatalog, the alias was visible. At this
point, there are none with no data sets. A restore from a backup had to be done. In our scenario, it is a DFSMSdss backup.

The backup job was started but failed immediately with the error in Example 2-50.

Example 2-50 DSS restore of a user catalog fails due to missing access to IGG.CATLOCK

```
ICH408I USER(MHLRES1 ) GROUP(SYS1 ) NAME(MHLRES1/MARY LOVELAC)
  IGG.CATLOCK CL(FACILITY)
  INSUFFICIENT ACCESS AUTHORITY
  ACCESS INTENT(READ     ) ACCESS ALLOWED(NONE    )
```

The preceding example shows that DFSMSdss does an implicit LOCK|SUSPEND of a user catalog before importing data from backup.

To correct the error, READ access to the IGG.CATLOCK facility class is provided. The restore was restarted and ended successfully this time, as shown in Example 2-51.

Example 2-51 Sysout from DSS restore of user catalog pre-allocated with keyword RECONNECT

```
ADR442I (001)-FRLBO(01), DATA SET UCAT.RLSTST PREALLOCATED, IN CATALOG MCAT.....
ADR360I (001)-TDVSM(02), PROCESSING SUSPENDED USER CATALOG UCAT.RLSTST
ADR963I (001)-TDLOG(02), CLUSTER UCAT.RLSTST WAS DUMPED USING RECORD LEVEL SHARING
  GMT TIMESTAMP IS: 2013.275 00:04:50.8
ADR489I (001)-TDLOG(02), CLUSTER UCAT.RLSTST WAS RESTORED
  CATALOG          OCAT.SANDBOX.Z1C.SBOX00
  COMPONENT        UCAT.RLSTST
  COMPONENT        UCAT.RLSTST.CATINDEX
ADR372W (001)-TDNVS(03), ALIAS RLSTST NOT RESTORED FOR USER CATALOG UCAT.RLSTST,
ADR480W (001)-TDLOG(01), THE FOLLOWING DATA SETS WERE NOT PROCESSED FROM THE LOG
  RLSTST
ADR454I (001)-TDLOG(01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED
```

Before processing the restore DFSMSdss does a suspend of the catalog. The catalog is protected against concurrent updates. DFSMSdss also has the awareness that the dump was taken using RLS access (implicit QUIESCE before doing the dump, and RESUME after the DUMP had finished).

DFSMSdss finds the user catalog preallocated and consequently does not restore the alias, as this information is already in place.

The SUSPEND issued by DFSMSdss is resumed again after successful restore.

2.10.6 Catalog forward recovery using new features

Forward recovery of a catalog is done differently using the newest DFSMS V2.1 enhancements. You will still need backups as your recovery checkpoint and SMF data to perform forward recovery from this checkpoint to a current point in time. In this section, we describe the steps for a catalog forward recovery at the DFSMS V2.1 level:

1. Using DFSMSdss as the backup tool, the RLS-managed catalogs will be quiesced. DFSMSdss will enqueue on SYSIGGV2 for the non-RLS managed catalogs as done in DFSMS before V2.1.

2. Forward recovery to a new volume should be preceded by issuing the `F CATALOG,RECOVER,SUSPEND(ucat name)` command. This will queue up catalog requests
against this catalog without failing them. Most importantly, the SUSPEND will close the catalog across the sysplex ensuring integrity.

3. You are now ready to delete the catalog from its current location (knowing you have a valid backup). Delete should happen with the new NODISCONNECT parameter to maintain alias pointers. Only DSCBs and VVRs are deleted.

4. Next, redefine the catalog using the new RECONNECT parameter (counterpart to NODISCONNECT). Use parameters VOLSER(vvvvvv), LOG(NONE), SUSPEND and RLSQUIESCE or RLSENABLE along with this.

Using the VOLSER, this will be updated across the sysplex and RECONNECT will connect existing alias information, while the SUSPEND parameter assures integrity.

5. Next, restore can happen using DFSMSdss. DFSMSdss will sense the suspended status and will restore the empty catalog without using additional serialization except from the SUSPEND.

6. When the restore has been successfully completed, you will need to do forward recovery from the time the catalog backup was taken up until the current point. This can happen by using the ICFRU tool that uses selected SMF records for the forward recovery.

7. The only outstanding action is now to release the SUSPEND of the catalog. Do this with the MODIFY CATALOG,RECOVER,RESUME(ucat name) command.

2.10.7 Catalog recovery using BCSRECOVER

This section explains how to use DFSMSdss as the backup and restore tool for the ICF catalog using the new BCSRECOVER parameter for DFSMSdss. BCSRECOVER should be used along with the SUSPEND parameter to assure the best possible integrity and availability.

As mentioned earlier, DFSMSdss will QUIESCE a catalog in use by RLS when backing up the catalog. For non-RLS managed catalogs, DFSMSdss will enqueue on the SYSIGGV2 resource.

Restoring an ICF catalog using DFSMSdss can be done using the BCSRECOVER parameter with the subparameter SUSPEND. The BCSRECOVER(SUSPEND) parameters will do a sysplex wide suspend that will suspend incoming requests while restore is ongoing. Once this has finished, the requests can be resumed.

Using the BCSRECOVER(LOCK) parameter instead, DFSMSdss invokes a sysplex-wide lock of the catalog. Compared to SUSPEND, LOCK fails all incoming unauthorized requests while restore is ongoing. A sample job is shown in Example 2-52.

Example 2-52 DSS restore job using BCSRECOVER SUSPEND parameters

```plaintext
//STEP006 EXEC PGM=ADRDSSU,REGION=4096K
//SYSPRINT DD SYSOUT=*  
//DASD   DD DISP=SHR,UNIT=3390,VOL=SER=SBOX1A  
//TAPE   DD DISP=SHR,  
//      DSN=MHLRES1.DSS.BACK1.MHLRES1A,SPACE=(TRK,(2,1)),  
//      UNIT=3390,DCB=(BLKSIZE=27920)  
//SYIN   DD *
//RESTORE DATASET(   -  
//      INCLUDE(   -  
//         UCAT.RLSTST )) -  
//INDDNAME(TAPE) -  
//OUTDDNAME(DASD) -  
//BCSRECOVER(SUSPEND)  
```
Example 2-53 shows the sysout from a BCSRECOVER. Alias and user catalog data is recovered.

Example 2-53 Sysout from DSS restore of user catalog and BCSRECOVER SUSPEND parameters

ADR360I (001)-TDVSM(01), PROCESSING LOCKED USER CATALOG UCAT.RLSTST

ADR489I (001)-TDLOG(02), CLUSTER UCAT.RLSTST WAS RESTORED
 CATALOG MCAT.SANDBOX.Z1C.SBOX00
 COMPONENT UCAT.RLSTST
 COMPONENT UCAT.RLSTST.CATINDEX

ADR393I (001)-TDNVS(01), ALIAS RLSTST RESTORED FOR USER CATALOG UCAT.RLSTST

ADR454I (001)-TDLOG(01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED
 UCAT.RLSTST

ADR006I (001)-STEND(02), 2013.274 23:59:37 EXECUTION ENDS

ADR013I (001)-CLTSK(01), 2013.274 23:59:37 TASK COMPLETED WITH RETURN CODE 0000

After restoring the ICF catalog, a check with the command **F CATALOG,OPEN** shows that the catalog is no longer suspended. See Example 2-54.

Example 2-54 Check of catalog after DSS restore using SUSPEND parameter

F CATALOG,OPEN

IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE

IEC348I ALLOCATED CATALOGS 655

*CAS***
 * FLAGS -VOLSER-USER-CATALOG NAME
 * YSU-R- SBXHS8 0001 UCAT.RLSTST
 more catalogs listed
 **
 * Y/N-ALLOCATED TO CAS, S-SMS, V-VLF, I-ISC, C-CLOSED, D-DELETE
 * R-SHARED, A-ATL, E-ECS SHARED, K-LOCKED, U-RLS, W-SUSPENDED
 *CAS**

Using **SUSPEND |LOCK** subparameters only applies to existing (pre-allocated) catalogs. If the catalog does not exist, DFSMSdss defines the catalog as locked to ensure that the catalog is not accessible before DFSMSdss completes restore processing.

Programs using BCSRECOVER require READ access to RACF FACILTY CLASS resource IGG.CATLOCK.
Chapter 3. IDCAMS enhancements

This chapter provides an overview of the features and function in IDCAMS included in DFSMS V2.1.

IDCAMS is the program name for access method services (AMS). It is used to create and maintain catalogs and data sets.

These are the enhancements that we discuss in this chapter:

- Large block size for LBI support
- IDCAMS support for RLS
- DELETE PDS or PDSE member with mask
- ALTER NULLIFY management class
- DIAGNOSE of GDGs
3.1 Large block size for LBI support

The large block interface (LBI) was introduced around 10 years ago. It allows programs and utilities to use block sizes larger than 32760 bytes when recording data to tape. It uses less tape storage and provides fast data transfer.

Before DFSMS V2.1, IDCAMS did not support LBI. Any attempt to run IDCAMS PRINT or REPRO to print or copy a data set that was created with block size larger than 32760 bytes gets an error message IDC3300I, followed by IDC3321I with a return code 12. Also, an abend 013 with return code E1 is externalized in the job SYSOUT.

In DFSMS V2.1, IDCAMS PRINT and REPRO support data sets with a block size up to the access method limit, which currently is 256 K.

The block size is still limited to 32760 bytes for data sets that do not support LBI. SYSIN and SYSPRINT do not support LBI.

3.1.1 Use of function

Example 3-1 shows a sample REPRO job that we used in a z/OS V2.1 system to REPRO the sequential data set MHLRES3.VSAM.UPDT1 on disk to the new data set MLHRES3.LBI.SC64.TEST on tape. Notice that we used a BLKSIZE of 240000.

We ran the same job in a z/OS V1.13 system. The job also ran successfully, but the block size was adjusted to 32700 bytes because IDCAMS on z/OS V1.13 does not support an LBI. The number of transferred blocks was much bigger than when we ran this job in the z/OSV 2.1 system.

Example 3-1 REPRO using LBI

//MHLRES3A JOB (999,POK),\'MHLRES3\',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM SYSAFF=*
//REPRO EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=MHLRES3.VSAM.UPDT1,DISP=SHR
//DD2 DD DSN=MHLRES3.LBI.SC64.TEST,DISP=(,CATLG),
// DISTR=(RECFM=FB,LRECL=300,BLKSIZE=240000),
// UNIT=VT3590, LABEL=(,SL)
//SYSIN DD *
REPRO INFILE(DD1) -
OUTFILE(DD2)
/*

3.1.2 Coexistence

If you create data sets on the z/OS V2.1 system, and intend to read them on z/OS V1.13 or older systems, we suggest you not specify a block size larger than 32760 bytes for output data sets.

We tried to print the data set MHLRES3.LBI.SC64.TEST that we created in Example 3-1 in a z/OS V1.13 system, using the job shown in Example 3-2 on page 53.
Example 3-2 PRINT on z/OS 1.13 of a LBI data set

//MHLRES3P JOB (999,POK), 'MHLRES3',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
//*JOBPARM SYSAFF=*
//PRINT EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 PRINT INDATASET(MHLRES3.LBI.SC64.TEST) - COUNT(1)
/*

The job failed with message IEC141I abend 013 rc E1. Return code E1 means that a
magnetic tape data set with a block size greater than 32,760 is being opened for input or
output extend processing, but the large block interface is not being used. Messages IDC3300I
and IDC3321I are also shown in the job log as shown in Example 3-3.

Example 3-3 Error messages associated with LBI not being used

IDC3300I ERROR OPENING MHLRES3.LBI.SC64.TEST
IDC3321I ** OPEN/CLOSE/EOV ABEND EXIT TAKEN

3.2 IDCAMS support for RLS

In DFSMS V2.1 IDCAMS is enhanced to support commands PRINT, REPRO, EXPORT, and
IMPORT to open VSAM data sets that are already open in RLS mode by other applications,
for example IBM CICS®. In this section, we describe the function in DFSMS V2.1 and provide
samples.

3.2.1 Overview

Before DFSMS V2.1, IDCAMS can only open VSAM data sets using nonshared resources
(NSRs). Because of this, it had a limited support to access data sets already opened by other
applications in RLS mode. You could use only PRINT, REPRO, and EXPORT commands to data
sets that were defined with cross region SHAREOPTION 2. For example, you could make a
copy of a VSAM data set opened in RLS mode to CICS, if the data set was created with
SHAREOPTION(2 3). However, there is not any guarantee that the copy has integrity.

Now in DFSMS V2.1, IDCAMS can use the keywords RLSSOURCE and RLSTARGET to be able to
open VSAM data sets using RLS. Here is a brief description of the syntax and the associated
keywords:

► RLSSOURCE

For PRINT, REPRO, and EXPORT commands, it specifies how the input data set is to be
opened. The following are RLSSOURCE options:

NO Tells IDCAMS to open the data set using NSR. This is the default.
YES IDCAMS opens the data set in RLS mode, with consistent read
 integrity.
QUIESCE IDCAMS quiesces a VSAM data set. It switches from RLS mode to
 non-RLS mode before processing any entry in the data set.

► RLSTARGET
For **REPRO** and **EXPORT** commands, it specifies how the target data set is to be opened, either NO, YES, or QUIESCE. The description for these options is the same as for **RLSSOURCE**.

3.2.2 Use

In this section, we provide some examples on how to use the RLS enhancements that are provided in IDCAMS in DFSMS V2.1.

In Example 3-4, we show you a sample PRINT job. Here we print a VSAM KSDS data set that is already open in RLS mode for another application. We request IDCAMS to open the VSAM data set in RLS mode by using the **RLSSOURCE(YES)** parameter on the **PRINT** command.

Example 3-4 Printing a VSAM data set in RLS mode

```plaintext
//MHLRES3P JOB (999,POK), 'MHLRES3', CLASS=A, MSGCLASS=T,
// NOTIFY=&SYSUID, TIME=1440, REGION=6M
// *JOBPARM SYSAFF=* 
//PRINT EXEC PGM=IDCAMS, REGION=0M
//DD1 DD DSN=MHLRES3.VSAM.KSDS, DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *

PRINT INFILE(DD1) - 
  RLSSOURCE(YES) - 
  COUNT(1)
/*

Example 3-5 shows the JCL to copy the MHLRES3.VSAM.KSDS data set contents to MHLRES3.VSAM.NEW.KSDS. We requested that IDCAMS opens MHLRES3.VSAM.KSDS in RLS mode by specifying RLSSOURCE(YES). We also requested our target data set, MHLRES3.VSAM.NEW.KSDS, to be open in RLS mode by specifying RLSTARGET(YES).

**Example 3-5  REPRO of two VSAM KSDS data sets in RLS mode**

```plaintext
//MHLRES3R JOB (999,POK), 'MHLRES3', CLASS=A, MSGCLASS=T,
// NOTIFY=&SYSUID, TIME=1440, REGION=6M
// *JOBPARM SYSAFF=*
//REPRO EXEC PGM=IDCAMS, REGION=0M
//DD1 DD DSN=MHLRES3.VSAM.KSDS, DISP=SHR
//DD2 DD DSN=MHLRES3.VSAM.NEW.KSDS, DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO INFILE(DD1) -
 OUTFILE(DD2) -
 RLSSOURCE(YES) -
 RLSTarget(YES)
/*

3.2.3 Coexistence

We do not find any coexistence issues for using these IDCAMS RLS enhancements in DFSMS V2.1 while having VSAM data sets opened in RLS mode by z/OS V1.13 or V1.12 systems.
However, trying to use the new keywords **RLSSOURCE** and **RLSTARGET** in a z/OS V1.12 or z/OS V1.13 results in a *IDC3211I KEYWORD IS IMPROPER* message, and the command is not executed.

3.3 DELETE PDS or PDSE member with mask

IDCAMS in z/OS 1.12 provided the support to delete all members of a partitioned data set (PDS or PDSE) in a single operation.

IDCAMS in DFSMS V2.1 enhances the **DELETE** command to be more flexible in performing the delete of members of a partitioned data set. It now allows a mask to be specified in a **DELETE** command for PDS and PDSE members.

3.3.1 Use

There are some rules for specifying a mask in deleting PDS or PDSE members in an **IDCAMS DELETE** command:

- A mask for a member name can contain an asterisk (*) or a percent sign (%):
 - An asterisk means match 0 or more characters in the member name.
 - A % means match one character.

- A single asterisk (*) tells IDCAMS to delete all members in a PDS/PDSE data set.

- Double asterisks (**) also tell IDCAMS to delete all members in a PDS/PDSE data set. In addition, IDCAMS lists all deleted member names.

Here we provide some examples on how to use a mask for deleting selected members of a partitioned data set. In these examples, we assume that we must have a partitioned data set with the following members before each **DELETE** command:

- ABC
- ABCDEFGC
- AC
- A1C
- DEF

DELETE example 1

In Example 3-6, we are using an IDCAMS **DELETE** command to delete only MEMBERS ABC and A1C from partitioned data set MHLRES3.PDSE.TEST.

```
Example 3-6   Using IDCAMS to delete members of a PDSE

//MHLRES33  JOB (999,POK), 'MHLRES3',CLASS=A,MSGCLASS=T,
  // NOTIFY=&SYSUID,TIME=1440,REGION=6M
  //REPRO    EXEC PGM=IDCAMS,REGION=0M
  //SYSPRINT DD   SYSOUT=*  
  //SYSIN    DD   *
    DELETE MHLRES3.PDSE.TEST(A%C)
  /*
  MHLRES3.PDSE.TEST(A%C)
  */
```

The resulting job log output in Example 3-7 on page 56 shows that ABC and A1C are deleted after running this job.
Example 3-7 Job log results of DELETE

DELETE MHLRES3.PDSE.TEST(A%C)
IDC0549I MEMBER ABC DELETED
IDC0549I MEMBER A1C DELETED

Members ABCDEFGC, AC, and DEF are not deleted after running the job in Example 3-6 on page 55.

DELETE example 2
You can use the following IDCAMS DELETE command to select all members with a name starting with A and ending with C to be deleted:

DELETE MHLRES3.PDSE.TEST(A*C)

The resulting job log output would show the messages in Example 3-8 showing the deleted member names.

Example 3-8 Job log of DELETE command with mask

DELETE MHLRES3.PDSE.TEST(A*C)
IDC0549I MEMBER ABC DELETED
IDC0549I MEMBER ABCDEFGC DELETED
IDC0549I MEMBER AC DELETED
IDC0549I MEMBER A1C DELETED

3.3.2 Coexistence

You are able to delete members of partitioned data sets using IDCAMS DELETE with a mask provided in DFSMS V2.1, even if they are shared between z/OS systems.

However, you are not able to run these DELETE with a mask commands in a z/OS system before V2.1. For example, if you try to run the same job as Example 3-6 on page 55 in a z/OS V1.13 system, you get the message in Example 3-9 and the job fails.

Example 3-9 Error message attempting to run DELETE with mask on a system before DFSMS V2.1

IDC3203I ITEM 'MHLRES3.PDSE.TEST(A%' DOES NOT ADHERE TO RESTRICTIONS

3.4 ALTER NULLIFY management class

IDCAMS in DFSMS V2.1 allows you to use the ALTER command to remove the management class information of an SMS-managed data set from the catalog in which it is cataloged.

3.4.1 Overview

For SMS-managed data sets, the management class information resides in an NVR (for non-VSAM data sets) or VVR (for VSAM data sets) in each VVDS on the volumes where the extents for the data set are allocated. You can specify NULLIFY(MANAGEMENTCLASS) in the ALTER command in order to nullify the management class of an SMS-managed data set. Its abbreviation is NULLIFY(MGMTCLAS).
3.4.2 Use

In Example 3-10, we show you the SMSDATA information that we take from a LISCAT ALL of data set MHLRES3.CLIST. It shows that this data set has SMS management class MCDB22 assigned to it.

Example 3-10 LISTCAT before ALTER

```
SMSDATA
  STORAGECLASS ---STANDARD  MANAGEMENTCLASS---MCDB22
  DATACLASS --------(NULL)  LBACKUP ---0000.000.0000
```

We decided to remove this management class information by running an IDCAMS ALTER NULLIFT(MGMTCLAS) batch job, as shown in Example 3-11.

Example 3-11 ALTER NULLIFY(MGMTCLAS) example

```
//MHLRES3A JOB (999,POK),’MHLRES3’,CLASS=A,MSGCLASS=T,
//  NOTIFY=&SYSUID,TIME=1440,REGION=6M
//ALTER  EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD  SYSOUT=* 
//SYSIN    DD  *
  ALTER MHLRES3.CLIST NULLIFY(MGMTCLAS)
/*
```

We took another LISTCAT ALL of this data set in order to confirm that the management class information was removed from the catalog, as seen in Example 3-12.

Example 3-12 LISTCAT after the ALTER NULLIFY(MGMTCLAS)

```
SMSDATA
  STORAGECLASS ---STANDARD  MANAGEMENTCLASS---(NULL)
  DATACLASS --------(NULL)  LBACKUP ---0000.000.0000
```

3.4.3 Coexistence

You are to use the ALTER NULLIFY(MANAGEMENT CLASS) command on any system with DFSMS V2.1, even if they are shared with z/OS V1.13 or previous releases of z/OS.

However, if you try to use this command in a system with z/OS V1.13 or previous releases of z/OS, you get the message IDC3211I KEYWORD 'MGMTCLAS' IS IMPROPER and the ALTER is not completed.

3.5 DIAGNOSE of GDGs

The IDCAMS DIAGNOSE command scans a basic catalog structure (BCS) or a VSAM volume data set (VVDS) component of an ICF catalog to validate data structures and detect structure errors. You can use DIAGNOSE to check the structure and the content of a BCS or a VVDS, to cross-check BCS and VVDS information, to detect missing records and several types of mismatches and structural problems in a catalog.
3.5.1 Overview

DIAGNOSE has been enhanced in DFSMS V2.1 to detect a mismatch between the actual number of GDG extension cells and a count it keeps inside the record that describes a base GDG.

Extension records are created when the maximum record size of the BCS cannot contain a new component entry. This can occur as a result of the creation of a new generation data set. The first piece of information in an extension record is the extension cell. Catalog must keep a counter inside the record that describes the base GDG; this counter holds the number of extension cells that exist for a GDG.

There may be error situations where the counter and the real number of extension cells do not match. This can lead to some processing errors that are undetectable until batch processing fails.

DIAGNOSE in DFSMS V2.1 helps users to quickly identify the cause of GDG processing errors.

3.5.2 Use

Example 3-13 shows a sample job for a DIAGNOSE command. In this example, we check the BCS component of catalog MHLRES.TEST.UCAT for structural errors, like the mismatch between the number of extension cells, and the counter of extension cells.

Example 3-13 DIAGNOSE BCS

```plaintext
//MHLRES3D  JOB  'JOE',NOTIFY=MHLRES3,
//          MSGCLASS=T
//*------------------------------------------------------------------*
//DIAG      EXEC PGM=IDCAMS
//DD1       DD   DSN=MHLRES3.TEST.UCAT,DISP=SHR
//SYSPRINT  DD   SYSOUT=* 
//SYSIN     DD   *

DIAGNOSE IFCATALOG -
   INFILE(DD1)
```

If DIAGNOSE detects a mismatch in the number of GDG extension cells, it issues the following message in the job log:

```
IDC31379I GDG BASE EXT CELL COUNT DOES NOT MATCH THE EXT CELLS COUNT
```

If the count of number of extension cells is 0, but there are extension cells, DIAGNOSE presents the following message in the job log:

```
IDC31379I GDG BASE EXT CELL COUNT DOES NOT MATCH THE EXT CELLS COUNTV
```

Refer to the manual z/OS DFSMS Managing Catalogs Version 2 Release 1, SC23-6853 for more information about using the DIAGNOSE command.

3.5.3 Coexistence

There are no coexistence issues between the IDCAMS DIAGNOSE command on DFSMS V2.1 and z/OS 1.13 or earlier releases.
If you try to run the same *DIAGNOSE* command as shown in Example 3-13 on page 58 in a system with z/OS 1.13 or older releases of z/OS, it does not detect this type of mismatch between the number of GDG extension cells and the counter of GDG extension cells.
Virtual Storage Access Method enhancements

This chapter provides an overview of the features and functions that apply to Virtual Storage Access Method (VSAM), introduced in DFSMS V2.1.

We also provide an overview of the IBM System z® High-Performance FICON® (zHPF) support for EXCP, and the support for sequential extended format (SAM EF) Version 2 data sets.

In this chapter, we describe the enhancements that are available with DFSMS V2.1:

- VSAM RLS enhancements
- VSAM non-RLS enhancements
- DFSMS support for zHPF
- Sequential Extended Format Version 2

Several of the enhancements apply to VSAM RLS:

- VSAM RLS directory-only caching
- VSAM RLS Buffer Management Facility 64-bit enhancement
- VSAM RLS Dynamic Volume Count

These enhancements apply to VSAM access not in RLS mode:

- SHOWCB enhancements
- System-managed buffering enhancements
4.1 VSAM RLS enhancements

In this section, we look at the enhancements in DFSMS V2.1 that apply to VSAM RLS.

4.1.1 VSAM RLS directory-only caching

VSAM RLS uses one or more cache structures allocated in Coupling Facility images in the sysplex as a buffer shared between all systems in a sysplex. This buffer has VSAM data that has been accessed by one or more partitions in the sysplex.

RLS CF Cache Value before DFSMS V2.1

You can control the amount of data to be cached by each VSAM RLS data set by assigning them different SMS data classes with different values for the RLS CF Cache Value. These are the valid values for DFSMS releases before V2.1:

- **ALL** - VSAM data and index components will be cached in the CF. This is the default value.
- **NONE** - Only the index will be cached in the CF.
- **UPDATESONLY** - Only write requests will be cached in the CF.

Some VSAM RLS customers need a way to continue to use the CF cache structures as a sysplex data sharing mechanism but without writing any actual data to the cache structure.

RLS CF Cache Value in DFSMS V2.1

In DFSMS V2.1, there is a new **DIRONLY** value for the RLS CF Cache specification in SMS data class that tells RLS to not cache any data or index CI in RLS cache structures.

DIRONLY indicates that RLS will not cache the data or index parts of the VSAM data set in the coupling facility cache structures. In this case, RLS uses the cache structures to keep track of data that resides in DASD and in the local buffer, but data or index CIs are not stored in the cache structure itself.

Installations that benefit from directory-only caching:

- Installations with limited coupling facility storage but still need to share VSAM data sets across a parallel sysplex. They are able to define small cache structures and use them only to maintain data consistency.
- Installations with single system sysplex configurations also benefit from this feature. These installations do not need to have their data sets stored in the cache structure because their local cache buffers contain valid data always since there are no other systems that update the VSAM data sets in RLS mode.
- Depending on their application's design and workload, some RLS users, including single system sysplex users, can also experience performance improvements when using directory-only cache. This is because RLS skips writing the data to XCF cache structure every time the data is updated.
- Installations that want to prevent applications that use VSAM RLS to fill the cache structures with data that does not need to be shared among z/OS images in the sysplex.

Use and invocation

You need to define a new SMS data class, or alter an existing one, to specify RLS CF Cache Value of **D**, as shown in Figure 4-1 on page 63. You must also modify your ACS routines to assign new VSAM data sets to this data class accordingly.
Chapter 4. Virtual Storage Access Method enhancements

4.1.2 VSAM RLS Buffer Management Facility 64-bit enhancements

VSAM RLS customers have been able to take advantage of 64-bit storage for RLS buffering in a system in the sysplex. You can specify the amount of storage above the 2 GB bar that a system is going to use as a local buffer by specifying RlsAboveTheBarMaxPoolSize in the IGDSMSxx parmlib member, as shown in Example 4-2.

Example 4-2 Sample IGDSMSxx parmlib RlsAboveTheBarMaxPoolSize

[RlsAboveTheBarMaxPoolSize{{ sysname, maxrls; ...}}[ALL,maxrls]]

Figure 4-1 DIRONLY Define and Alter data class

Migration and coexistence consideration

Systems before z/OS V2.1 are not able to open VSAM RLS data sets that are created in z/OS V2.1 with an RLS CF Cache Value of DIRONLY.

We tried to run job MHRES3U in a z/OS V1.13 partition in our sysplex. This job runs a program that does updates to a VSAM RLS data set named MHLRES3.DIRONLY.KSDS. This data set was defined in a z/OS V2.1 partition, with a Data Class that has DIRONLY defined as RLS CF Cache Value. We received the error message in Example 4-1 when our program tried to open the data set.

Example 4-1 Error message on a pre-DFSMS V2.1 system

IEC161I 132-0814,MHLRES3U,UPDDIR,VSAM,,,MHLRES3.DIRONLY.KSDS

where ccc = 814 - RLS Directory Only Cache
You can specify a different above the bar amount for each system in the sysplex, or specify the same value for all the systems in the sysplex.

You also must tell VSAM RLS that a data set is eligible for buffers that are allocated in the 64-bit storage by assigning them an SMS data class construct with RLS above the 2 GB bar specified as shown in Example 4-3.

Example 4-3 RLS above the 2 GB bar parameter

| RLS Above the 2-GB Bar . . . : YES |

As many users have increased the use of 64-bit buffers, the number of control blocks needed to support these additional buffers has increased also. The problem is that these control blocks resided in the limited storage space of SMSVSAM data space, competing for space with VSAM data allocated in the 31-bit buffers.

In DFSMS V2.1, some RLS-related control blocks were moved from the VSAM data space into 64-bit storage. This brings RLS users two benefits:

- Relieve some space for the local 31-bit buffers.
- May improve performance when processing a large amount of VSAM RLS data because SMSVSAM can reduce the premature flushing of the 31-bit buffers due to aging algorithms.

4.1.3 VSAM RLS Dynamic Volume Count

Dynamic Volume Count (DVC) provides the capability to dynamically add volumes to an SMS-managed data set, for both VSAM and non-VSAM formats, when a data set extends.

During define processing, Dynamic Volume Count allows for a larger number of volumes to be considered without increasing the number of candidate volumes stored in the catalog. During existing data set allocation, it provides a way to increase the number of TIOT/JFCB entries that are created, so that more volumes can be dynamically allocated as required. This occurs as part of EOV processing to extend to a new volume, during the lifetime of the allocation.

During extend to a new volume, SMS checks whether the data set has a candidate volume entry in the catalog. If there is no candidate volume entry for the data set, and the number of volumes for the data set is less than the Dynamic Volume Count value, SMS adds a candidate volume entry using the ALTER ADDVOLUME interface to the catalog for the selected volume. Thus, the user application does not need to close the data set and perform ALTER ADDVOLUME to increase the volume count.

DFSMS V2.1 allows you now to specify and effectively use DVC for VSAM data sets in RLS mode. This prevents space-related abends when VSAM data sets need to grow while they are in RLS mode.

Usage

In order for your VSAM RLS data sets to take advantage of DVC, you must assign them an SMS data class with the following attributes:

- Space Constraint Relief = Y
- Dynamic Volume Count = x, where x represents a value 1 - 59.

Figure 4-2 on page 65 shows the new attributes in the ISMF Data Class Alter panel.
4.2 VSAM non-RLS enhancements

In this section, we look at the enhancements in DFSMS V2.1 that apply to VSAM non-RLS access.

4.2.1 VSAM SHOWCB buffer option

You can use the SHOWCB macro to cause VSAM to move the contents of various fields in an access method control block (ACB), an exit list, or a request parameter list to a work area inside your program. For example, you can use this area to identify an error and print a message, or to keep statistic information about the VSAM data set, like the number of buffers being used for the data and index I/Os.

The SHOWCB macro is enhanced in DFSMS V2.1 to include two new fields that you can use to verify buffer utilization for a VSAM data set:

BUFNOL
Number of I/O buffers allocated for the data component or index component during BLDVRP or system-managed buffering (SMB) for LSR processing.

BUFUSE
Allows you to query the number of buffers in the LSR or NSR buffer pool that are currently being used.

This information can be helpful for deciding about changing the size of an LSR buffer pool.

Both fields return a value of 0, if you open your VSAM data set in RLS mode.
Use

Example 4-4 is an example of how you can code a SHOWCB macro on your application program to get the values of BUFNOL and BUFUSE.

Example 4-4 SHOWCB example

<table>
<thead>
<tr>
<th>SHOW</th>
<th>SHOWCB</th>
<th>ACB=CONTROL,</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AREA=DISPLAY,</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIELDS=(BUFNOL,</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BUFUSE),</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LENGTH=8</td>
<td></td>
</tr>
</tbody>
</table>

DISPLAY DS 0F
BUFNOL DS F
BUFUSE DS F
RKP DS F

The following SHOWCB parameters were used in this example:

ACB Specifies the address of the ACB (CONTROL in our example) for the data set that we need to see the buffer values.

AREA Specifies the area where SHOWCB should store the FIELDS that we are asking for. We can externalize the information in AREA by using it in a WTO instruction, or recording it in a separate data set, for further analysis.

FIELDS Specifies what type of information we want to extract. In our case, the BUFNOL and BUFUSE values.

LENGTH Specifies 8 bytes, as both BUFNOL and BUFUSE are 4 bytes in size.

For more information about the SHOWCB macro, refer to the manual z/OS DFSMS Macro Instructions for Data Sets Version 2 Release 1, SC23-6852.

4.2.2 VSAM SMB specification in SMS data class

VSAM supports the use of SMB for VSAM data sets for batch processing. Before DFSMS V2.1, you can provide SMB access bias (ACCBIAS) and RMODE31 specifications in JCL, but not at a system level. If you need to change any of these options for a group of VSAM data sets, potentially you need to scan hundreds of JCL DD AMP to change them.

Now in DFSMS V2.1, you can specify ACCBIAS and RMODE31 values in SMS data classes that you can assign to your VSAM data sets as you need.

Use

You can let VSAM manage buffering by using the following specifications in an SMS data class (refer to Figure 4-3 on page 68):

- Data Set Name Type EXT

 The VSAM data set must be defined with the extend format attribute in order to be eligible for SMB.

- Record Access Bias

 Specifies whether to let VSAM determine how many and which type of buffers to use when accessing VSAM extended format data sets by batch processing. This is known as
system-managed buffering, and is available to VSAM data sets in any record organization that are allocated in the extended format. The values that you can use for Record Access Bias are the same that you can specify in JCL AMP statements:

- **S (System)**

 Specifies VSAM to use SMB, determining the buffer algorithms based on the ACB MACRF macro and storage class specification.

- **U (User)**

 Tells VSAM to obtain buffers the same way as if without SMB. This is the default value.

- **DO**

 Uses SMB with direct access optimization.

- **DW**

 SMB weighted for direct processing.

- **SO**

 SMB with sequential optimization.

- **SW**

 SMB weighted for sequential processing.

RMODE31

Specifies whether for VSAM to allocate the buffers and control blocks in 31-bit addressable storage. You can use this field independently of SMB. With SMB, the default location is in 31-bit addressable storage (above the 16-megabyte line). Without SMB, the default is in 24-bit addressable storage (below the line).

The following values can be specified for RMODE31 in data class:

- **ALL**

 All buffers and control blocks reside above the line.

- **BUFFER**

 Only buffers reside above the line.

- **CB**

 Only control blocks reside above the line.

- **NONE**

 Buffers and control blocks reside below the line.

Using a data class definition, you can modify these Record Access Bias and RMODE 31 values without having to edit individual JCL statements, and the modification is no longer limited to one single job step. See Figure 4-3 on page 68.
4.2.3 Specifying eligibility for VSAM replication

DFSMS V2.1 provides a method to identify VSAM data sets that are eligible for replication. You can use a new data set attribute, LOGREPLICATE, to identify each VSAM data set that is eligible for replication. You can specify it in IDCAMS DEFINE or ALTER command, or in an SMS data class construct that you assign to the data set.

The VSAM replication in itself is performed by IBM InfoSphere® Classic Replication Server for VSAM that is the VSAM feature for the IBM InfoSphere Classic Replication Server for z/OS product suite. Refer to Figure 4-4 on page 69. In that figure, we have a site where the production workload is running and a standby site. The standby does not run any production workload normally, but it has standby z/OS instances and subsystems already up and waiting for work. These sites can be thousands of miles apart from each other.

CICS on the production site performs reads, writes, deletes, and updates records in VSAM data sets residing on the same site. Those operations that modify the contents of the VSAM data sets are recorded in one or more logstreams in the production site.

The capture engine of IBM InfoSphere Classic Replication Server for VSAM captures those updates made to the logstreams, and sends them, through a TCP/IP connection, to the standby site.

At the standby site, the apply engine receives the updates that are sent from the production site and applies them to VSAM data sets residing at the standby site.

In case we have a disaster on our production site, the production workload can be routed to the standby site.

Figure 4-3 Record Access Bias and RMODE31 specifications in data class

Migration and coexistence
The AMP parameter specifications in JCL override Record Access Bias and RMODE31 specifications in SMS data class. You can code data classes and ACS routines according to your needs, and modify or leave the JCL specifications as they are now if you are happy with them.
This model environment is called Active-Standby. The implementation of this Active-Standby model allows production workload to run in only one site.

Use

You can specify the LOGREPLICATE attribute by specifying LOGREPLICATE in an IDCAMS DEFINE or ALTER command. The default of IDCAMS DEFINE command is NOLOGREPLICATE. Example 4-5 shows a sample job for a DEFINE of a VSAM KSDS data set with LOGREPLICATE attribute. This attribute tells VSAM that this data set is eligible for VSAM replication, and that updates made to this data set will be reflected in the replication logs pointed out by the LOGSTREAMID parameter.

Example 4-5 DEFINE of a VSAM KSDS data set with LOGREPLICATE attribute

```plaintext
//MHLRES3D  JOB   'JOE',NOTIFY=MHLRES3,
//          MSGCLASS=T
//DEF       EXEC PGM=IDCAMS
//SYSPRINT  DD SYSOUT=* 
//SYSIN     DD  * 
DEFINE CLUSTER(NAME(MHLRES3.VSAMREP.KSDS) -
  KEYS(8,0) RECORDSIZE(300 300) SPEED - 
  FREESPACE(15 15) -
  SHAREOPTIONS(3 3) -
  DATACLASS(DCEXTSEQ) -
  STORAGECLASS(SCRLS) -
  RECORDS(1000000 100000) -
  LOGREPLICATE -
  LOGSTREAMID(LOGA) -
  VOLUMES(VOL1 VOL2)) -
  DATA(CONTROLINTERVALSIZE(4096)) 
/* 
```
As an alternative, you can also assign an SMS data class with Log Replicate Y. Figure 4-5 shows an example of a data class construct that we called DCVSAMRE, with both Log Replicate Y and Logstream Id specified.

```plaintext
DATA CLASS DEFINE
Command ==> 

SCDS Name . . . : SYS1.SMS.MHLRES3.SCDS
Data Class Name : DCVSAMRE

To DEFINE Data Class, Specify:
  Shareoptions Xregion ... 3  (1 to 4 or blank)
    Xsystem ... 3  (3, 4 or blank)
  Reuse ............ N  (Y or N)
  Initial Load ....... R  (S, R or blank)
  BWO ............... (TC, TI, NO or blank)
  Log ............... (N, U, A or blank)
  Logstream Id ........ LOGA
  FRlog ............... (A, N, R, U or blank)
  RLS CF Cache Value .... A  (A, N, U or D)
  RLS Above the 2-GB Bar .. N  (Y or N)
  Extent Constraint Removal N  (Y or N)
  CA Reclalm ............ Y  (Y or N)
  Log Replicate ........ Y  (Y or N)

Use ENTER to perform Verification; Use UP Command to View previous Panel;
Use HELP Command for Help; Use END Command to Save and Exit; CANCEL to Exit
```

Figure 4-5 Log Replicate Y

You can modify the LOGREPLICATE of an existing VSAM data set by using IDCAMS ALTER. Example 4-6 shows a sample job to assign the attribute LOGREPLICATE to the existing MHLRES3.VSAMR1.KSDS data set.

```plaintext
Example 4-6   ALTER LOGREPLICATE attribute

//MHLRES3A JOB (999,POK),'MHLRES3',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
//ALTER   EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD  SYSOUT=* 
//SYSIN   DD *

ALTER MHLRES3.VSAMR1.KSDS - 
LOGREPLICATE -
LOGSTREAMID(LOGA) /*
```

If you assign a LOGREPLICATE attribute to a VSAM data set, you must also assign the LOGSTREAMID to it, where updates to the VSAM data set are going to be logged.

Figure 4-6 on page 71 shows the RLSDATA portion of a LISTCAT ENTRIES ALL IDCAMS command where you see the LOGREPLICATE attribute, and the LOGSTREAMID also.
Figure 4-6 LISTCAT ENTRIES showing LOGREPLICATE

Coexistence

Support for the VSAM replication is also routed to z/OS V1.13, through a list of APARs. You must apply the program temporary fixes (PTFs) for the following APARs in order to be ready for VSAM replication support:

- OA38198 (Catalog)
- OA38200 (DFSMShsm)
- OA38201 (IDCAMS)
- OA38202 (RLS)
- OA38203 (SMS)
- OA38204 (ISMF)
- OA38205 (NaviQuest)
- OA38209 (VSAM)
- OA38210 (DFSMSdss)
- OA38211 (RLS)
- OA38550 (FAMS)

4.3 DFSMS support for zHPF

IBM System z High Performance FICON (zHPF) is an enhancement to the Fibre Channel connection (FICON) protocol. It reduces the number of information units exchanged between a channel and the controller during an I/O operation. Sending small blocks of data over FICON involves additional handshaking between the channel engine and the FICON adapter in the control unit. zHPF has reduced the processor usage of this process. zHPF allows the collapsing of command chains and data-chained channel command word (CCW) strings into a single command called the transport control word (TCW). This configuration provides a substantial performance improvement in data transfer, especially in online environments.

The initial support for zHPF, provided in z/OS v1.11, was for data sets accessed through the DFSMS data manager component, including VSAM data sets.

z/OS V1.13 added support for QSAM, BSAM, and BPAM and allowed EXCPVR callers to use zHPF channel programs.

DFSMS V2.1 extends zHPF support to EXCP callers. We expect to achieve significant I/O performance improvements for programs using EXCP. This support is also provided for z/OS V1.12 and z/OS V1.13 through the APAR OA38185.

4.3.1 zHPF requirements

These are the prerequisites for implementing zHPF in a z/OS system:

- Systems zEC12, z114, z196, IBM z10™, or newer processors.
FICON Express8S cards on the host provide the most benefit, but older cards are also supported. The old FICON Express adapters are not supported.

In order to have the EXCP support for zHPF, your system must at least be at z/OS V1.12 with PTF for APAR OA38185 applied. In DFSMS V2.1 support is on the base code.

DS8700, DS8800, DS8870, or newer disk subsystems. These disk subsystems must have the zHPF Licensed Feature Key activated.

zHPF is transparent to applications. However, z/OS configuration changes are required. Hardware configuration definition (HCD) must have channel-path identifier (CHPID) type FC defined for all the CHPIDs that are defined to the disk control units, which also support zHPF.

For z/OS, you must set ZHPF=YES in IECIOSxx in SYS1.PARMLIB or issue the SETIOS ZHPF=YES command. ZHPF=NO is the default setting. We suggest you use the ZHPF=YES setting after the required configuration changes and prerequisites are implemented.

4.4 Sequential Extended Format Version 2

In previous z/OS releases, before z/OS V2.1, DFSMSdss is not able to use ESS or IBM DS8000® FlashCopy function in order to copy or move a single striped extend format sequential data set. This happens because each block has as a suffix, a block number that delimits the boundaries of the data set in a disk volume. FlashCopy cannot adjust those boundaries.

If you try to copy a sequential extended format (SAM EF) data set using DFSMSdss COPY function with the CONCURRENT(REQUIRED), the COPY succeeds, but without invoking the FlashCopy function. You will see a message like Example 4-7 in the COPY job log.

Example 4-7 Error message FlashCopy is not invoked
ADR918I (001)-AMOVE(08), FAST REPLICATION COULD NOT BE USED FOR DATA SET MHLRES3.SAM.TEST, RETURN CODE 12

Similarly, DFSMSdss is not able to call FlashCopy if the source data set is a single volume single striped SAM EF data set, but the target requires a multivolume allocation.

DFSMS V2.1 introduces a new format for extended format data sets: Format 2, also referred as Version 2 format in some publications. This new format does not have the volume boundary awareness on sequential extended format data sets.

4.4.1 Use

In this section, we describe the steps you need to take in order to take advantage of the new Format 2 enhancement.

There is a new parameter PS_EXT_FORMAT(1|2) in IGDSMSxx PARMLIB member that tells the format in which the system should create extended format data sets:

- PS_EXT_FORMAT(1) is the default value that tells the system to create the extended format in the old format.
- PS_EXT_FORMAT(2) tells the system to create any new extended format data set in the new format. The associated catalog entry indicates whether the data set is version 1 or version 2. The data set version will be displayed via IDCAMS LISTCAT and DCOLLECT.
Figure 4-7 is a sample portion of a LISTCAT IDCAMS command issued against a version 2 extended format single stripe data set.

```
-------0
VOLSER-----------------*  DEVTYPE------X'00000000'
FSEQN-------
-------0
VOLSER-----------------*  DEVTYPE------X'00000000'
FSEQN-------
-------0
VOLSER-----------------*  DEVTYPE------X'00000000'
FSEQN-------
-------0
ASSOCIATIONS--------(NULL)
ATTRIBUTES
  VERSION-NUMBER--------2
  STRIPE-COUNT-----------1
  EXTENDED
***
```

Figure 4-7 LISCAT sample

You can also issue the SETSMS PS_EXT_VERSION(2) command to active Version 2 extended data sets creation from the z/OS console.

The D SMS,OPTIONS command shows you what version your system is creating new extended format data sets.

Even if your system is set up to only create old version 1 extended format data sets by default, you can create Format 2 extended format data sets by explicitly coding DSNTYPE=(EXTREQ,2). An example is shown in Example 4-8. In this example, we create a new sequential data set, requesting it to be in Version 2 extend format, by specifying DSNTYPE=(EXTREQ,2) in the DD card.

For dynamic allocations, you can request the data set to be created in Version 2 format by specifying DALDSNV in the DYNALLOC macro. For more information about the DYNALLOC macro, refer to the publication z/OS MVS Programming: Authorized Assembler Services Guide Version 2 Release 1, SA23-1371.

Example 4-8 Requesting Version 2 format

```
//MHLRES3  JOB   'JOE',NOTIFY=MHLRES3,
//          COND=((8,EQ),(12,EQ),(16,EQ),(888,EQ)),
//          MSGCLASS=T,REGION=32M
//*--------------------------------------------------------
//IEF       EXEC PGM=IEFBR14
//I         DD   DSN=MHLRES3.SAM.TEST,DISP=(,CATLG),
//          SPACE=(TRK,(30,3),RLSE),UNIT=3390,
//          DCB=(RECFM=FB,LRECL=300,BLKSIZE=27900),
//          DATACLAS=DCEXTSEQ,STORCLAS=SCSDR0,
//          DSNTYPE=(EXTREQ,2)
```

We only specified DCEXTSEQ data class in order to get its volume count, instead of specifying several candidate volumes in JCL.
When Sustained Data Rate (MBps) in a Storage Class construct is 0 or blank, the system creates new extended format data sets with only a single stripe. Refer to Figure 4-8.

The Accessibility C (CONTINUOUS) field in the Storage Class Alter panel tells the system to allocate and extend a data set in only one disk subsystem that is capable of doing point-in-time copies. FlashCopy is the function that allows point-in-time copies in a DS8000 disk subsystem.

Figure 4-8 Storage Class with Accessibility Continuous

After loading MHLRES.SAM.TEST data set with test data, we submitted the job shown in Example 4-9 to test FlashCopy usage.

Example 4-9 DFSMSdss COPY EXAMPLE

```plaintext
//MHLRES3C  JOB   'JOE',NOTIFY=MHLRES3,
//          MSGCLASS=T,REGION=32M,CLASS=A
/*------------------------------------------------------------------*
//STEP1    EXEC  PGM=ADRDSSU
//SYSPRINT DD    SYSOUT=*     
//SYSIN    DD    *             
COPY -
DATASET( INCLUDE( MHLRES3.SAM.TEST)) -
RENAMEUNCONDITIONAL((MHLRES3.SAM.TEST,MHLRES3.SAM.FLASH)) -
CONCURRENT(REQUIRED) -
DEBUG(FRMSG(DETAILED),SMSMSG)
/*
```

CONCURRENT(REQUIRED) tells DFSMSdss to use virtual concurrent copy, by invoking hardware functions like FlashCopy to perform the copy of the data set.
Chapter 4. Virtual Storage Access Method enhancements

The DEBUG(FRMSG(DETAILED),SMSMSG) is just a way to verify if your copy is working as you planned. You can remove them if you are not trying to identify errors during COPY processing:

- FRMSG(DETAILED) gives us details about the utilization of FlashCopy or SnapShot. You can use it to determine why some data sets are not being copied through fast replication techniques (FlashCopy or SnapShot).
- SMSMSG instructs DFSMSdss to display ACS WRITE statements to the job output.

Figure 4-9 shows a sample of messages that you see with DEBUG(FRMSG(DETAILED),SMSMSG) specified. Message ADR806I tells us that our data set MHLRES3.SAM.TEST was copied using a Fast Replication function (FlashCopy in our case).

![Sample Messages]

4.4.2 Migration and coexistence

We suggest you not set Version 2 extended format data sets in your IGDSMSxx parmlib member, or by using a SETSMS command, until all your sharing and backup systems are at z/OS V2.1 level, or compatibility APARS have been applied to older systems. The following are the compatibility APARs that you should apply on z/OS V1.12 and V1.13:

- OA39551
- OA39869
- OA39871

After applying these APARs to z/OS V1.12 and z/OS V1.13 systems, you are able to read and do any other operation other than create a Version 2 extended format data set.

Issue reported on APAR OA43701

At the time of writing, there is an issue with multi-volume single striped SAM Extended Format Version 2 data sets that are allocated using the Guaranteed Space storage class attribute. If such a data set is opened for EXTEND or opened for OUTPUT or OUTIN when allocated DISP=MOD, the volume label on the second to last volume may be overwritten by application data.
If you have storage classes with the Guaranteed Space attribute, avoid implementing SAM Extended Format Version 2 before this APAR has PTFs ready for z/OS V2.1, V1.13, and also V1.12. You can do this by:

- Specify DSNTYPE=(EXT,1) or DSNTYPE=(EXT) on the JCL
- Specify EXT_VERSION(1) in IGDSMSxx parmlib member and do not specify DSNTYPE=(EXT,2) on the JCL.

If you have a volume with its label damaged by an occurrence of this issue, you can recover the volume by using the following procedure:

1. Vary the volume offline to all systems.
2. Run the ICKDSF job step in Example 4-10 to rebuild the volume label.

```
Example 4-10  ICKDSF job step to rebuild the volume label

//********************************************************** */
//* This step rebuilds CYL 0 HEAD 0 to point to VTOC */
//* Change the VOLID to the required volser, UNIT to device */
//* number, and VTOCCPTR to the CYLINDER and HEAD where the */
//* VTOC is */
//* ********************************************************** */
//RFMT EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
    REFORMAT UNIT(dddd) NVFY VTOCPTR(Cyl,Head) PURGE VOLID(vvvvvv)
/*
```

A successful vary online is a good indication that the volume label has been fixed.
Chapter 5. PDSE enhancements

This chapter provides an overview of the features and function in PDSE included in z/OS V2.1. The following enhancements are described in this chapter:

- PDSE Version 2 scalability and usability
- PDSE member generation support
- Guaranteed PDSE data set format allocation
- PDSE larger member size
- Generation Data Group support

In addition, the IEBCOPY utility has been enhanced to provide improved support for PDS and PDSE data sets. This is documented in 7.1, “IEBCOPY COPYGROUP” on page 104.
5.1 PDSE Version 2 scalability and usability

z/OS V2.1 through DFSMS V2.1 provides Version 2 of PDSE data sets that can provide for improved performance, reduced path lengths, and improved index searches.

New data sets can be allocated in Version 2 format by specifying the new version on the DSNTYPE keyword on the JCL DD statement or on the TSO/E ALLOCATE statement, or through an option in the ISPF 3.2 panel.

There is also a new option PDSE_VERSION on the SYS1.PARMLIB member IGDSMSxx that makes all PDSE data sets created according to the PDSE_VERSION setting by default. If PDSE_VERSION is set, specific data sets can be created in the other format if necessary.

PDSE Version 1 and Version 2 formats are usable without changing access routines but a Version 2 PDSE can only be created using DFSMS V2.1 or later.

5.1.1 Compatibility

PDSE Version 2 data sets can be used on DFSMS V1.12 and DFSMS V1.13 provided the compatibility fixes are installed.

PDSE Version 2 data sets cannot be created on systems before DFSMS V2.1.

5.2 PDSE member generation support

PDSE members that are deleted or replaced cannot be retrieved. The function to retain and allow retrieval of old members is known as the PDSE member generation support.

The member generations support requires APAR OA42358. The text of APAR OA42358 as of the time of writing of this IBM Redbooks publication can be found in "APAR OA42846 Single striped, multi-volume sam tailored compressed data set" on page 272.

5.3 Guaranteed PDSE data set format allocation

Before DFSMS V2.1, specifying DSNTYPE=LIBRARY, or DSNTYPE=(LIBRARY,x) does not guarantee that a PDSE is going to be created. You would have to specify DSORG=PO, or specify directory blocks in the space in allocation in order for a PDSE to be created. Otherwise, a sequential data set is created instead.

If a data set is allocated using a referback to an existing data set that is not in PDSE format, attributes could be picked up that cause a PDS (or PS) data set to be allocated even though DSNTYPE=LIBRARY was specified.

Now in DFSMS V2.1, SMS provides a new parameter in IGDSMSxx parmlib member that directs SMS to create a PDSE when you specify DSNTYPE=LIBRARY or (LIBRARY,x) in JCL that is HONOR_DSNTYPE_PDSE. The syntax of the parameter is:

HONOR_DSNTYPE_PDSE(NO) NO is the default, and processing remains as in releases before DFSMSV2.1.

HONOR_DSNTYPE_PDSE(YES) Applies only when DSNTYPE=LIBRARY or DSNTYPE=(LIBRARY,x) is specified in the creation of
Chapter 5. PDSE enhancements

5.3.1 Use

With this enhancement, you are able to allocate a PDSE when you specify DSNTYPE=LIBRARY or DSNTYPE=(LIBRARY,x) in JCL, whether DSORG or directory blocks is specified in space allocation. This simplifies the way you code your JCL.

Example 5-1 shows sample JCL with DSNTYPE=LIBRARY without DSORG specified. We did not specify directory blocks in our SPACE parameter.

Example 5-1 Sample allocation of a PDSE through IEFBR14

```
//MHLRES3I JOB 'JOE',NOTIFY=MHLRES3,
  // MSGCLASS=T,REGION=32M
  //IEF EXEC PGM=IEFBR14
  //I DD DSN=MHLRES3.PDSE.TEST2,DISP=(,CATLG),
  // SPACE=(TRK,(30,3),RLSE),UNIT=3390,VOL=SER=MLD201,
  // DCB=(RECFM=FB,LRECL=300,BLKSIZE=27900),
  // DATACLAS=DCEXTSEQ,STORCLAS=SCSDR0,
  // DSNTYPE=LIBRARY
```

The PDSE created is shown in Figure 5-2 on page 80.
5.3.2 Coexistence

Verify that you have APAR OA42239 (see Example A-4 on page 242) applied to your z/OS V2.1 systems before taking advantage of this enhancement. OA42239 fixes several DFSMS V2.1 problems, but in particular avoids allocating a PDSE if HONOR_DSNTYPE_PDSE is specified but the allocation request did not include DSNTYPE.

Systems with z/OS 1.13 or older releases of z/OS do not recognize the HONOR_DSNTYPE_PDSE parameter, and do not show it in the output of a DFSMS,OPTIONS command.

Running the job in Example 5-1 on page 79 in a system with z/OS V1.13 or older creates a sequential data set, instead of a PDSE.

If you try to issue the SETSMS HONOR_DSNTYPE_PDSE(YES) command on a z/OS V1.13 system, you get the message in Figure 5-2 and the command does not take effect.

Example 5-2 Error message on a pre-DFSMS V2.1 system

IGD029I ERROR FOR SETSMS COMMAND
ERROR IS INVALID KEYWORD: HONOR_DSNTYPE_PDSE

If you specify the HONOR_DSNTYPE_PDSE parameter in a IGDSMSxx parmlib member, and try to activate it through the SET SMS=xx command from a z/OS V1.13 or earlier system, you get messages IGD030I and IGD074D, as shown in Figure 5-3 on page 81.
5.4 PDSE larger member size

DFSMS V2.1 increases the PDSE member size to approximately 2,146,435,071 records. This is an increase from the previous limit of 15,728,639 records. This is lower than the limit for PDS data set member size.

The DFSMS V2.1 member size limit is higher than the limit for PDS members.

5.4.1 Compatibility

The larger PDSE member size limit is available on releases before DFSMS V2.1 provided that the appropriate compatibility fixes are installed.

5.5 Generation Data Group support

The system catalog support has been enhanced to allow creation of a PDSE format data set within a Generation Data Group (GDG). The PDSE can be Version 1 or Version 2.

In this section, we show several scenarios for creating a PDSE within a GDG.

5.5.1 Scenario 1: Define a Generation Data Group

In this scenario, we define a GDG. This is applicable for DFSMS V2.1 as well as prior releases. The GDG may be used for any type of data set that supports allocation in a GDG.

Example 5-3 shows an example of a job to create a GDG. Even though this scenario is to show examples of the allocation of PDSE data sets in a GDG, the presence of the qualifier PDSE in the name is not significant. This GDG could be used to allocate any data set format if the data set name starts with MHLRES2.GDG.PDSE.

Example 5-3 JCL to allocate a GDG for tests

```bash
//MHLRES2G JOB 99990000,MHLRES2,CLASS=T,NOTIFY=&SYSUID.
// EXEC PGM=IDCAMS
// SYSPRINT DD SYSOUT=*  
// SYSIN DD *
DEFINE GDG(NAME(MHLRES2.GDG.PDSE) LIMIT(5) )
```
5.5.2 Scenario 2: Define a PDSE version 1 in a GDG

In this scenario, we allocate a PDSE version 1 in a GDG set in a DFSMS V2.1 system.

In Example 5-4, we show the job to allocate a PDSE as a member of GDG MHLRES2.GDG.PDSE. The data set is allocated as a PDSE because of the DSNTYPE statement specifying LIBRARY. Specifically, a PDSE version 1 data set is wanted. The default setting on the running system is to allocate version 1 PDSE data set.

Example 5-4 JCL to allocate a PDSE data set as a member of a GDG

```
//MHLRES2G JOB (999,POK),'MHLRES2',CLASS=A,                              JOB13837
     NOTIFY=&SYSUID,TIME=1440,REGION=6M                                      00002000
/*JOBPARM L=999,SYSAFF=*                                                  00003000
//S1 EXEC PGM=IEFBR14                                                   00004000
//BIG1 DD  DSN=MHLRES2.GDG.PDSE(+1),DISP=(NEW,CATLG),                   00005100
     SPACE=(TRK,(02,200)),UNIT=3390,                                    00005213
     DSORG=P0,LRECL=80,BLKSIZE=27920,DSNTYPE=(LIBRARY,1),            000005313
     RECFM=FB                                                          00005400
```

In Example 5-5, we show the messages resulting from the allocation of the PDSE as a member of GDG MHLRES2.GDG.PDS. There is no indication in the output that the data set is in version 1 format. The messages do show that the data set was allocated with the data set name MHLRES2.GDG.PDSE.G0002V00. The G0002V00 suffix confirms that a member of the GDG was allocated.

Example 5-5 Log output showing allocation messages

```
1 //MHLRES2G JOB (999,POK),'MHLRES2',CLASS=A,                                  JOB13837
     NOTIFY=&SYSUID,TIME=1440,REGION=6M                                      00002000
     IEFC653I SUBSTITUTION JCL -                                            00003000
     (999,POK),'MHLRES2',CLASS=A,NOTIFY=MHLRES2,TIME=1440,REGION=6M            00004000
2 /*JOBPARM L=999,SYSAFF=*                                                00005000
3 //S1 EXEC PGM=IEFBR14                                                  00005500
4 //BIG1 DD  DSN=MHLRES2.GDG.PDSE(+1),DISP=(NEW,CATLG),                   00005800
     SPACE=(TRK,(02,200)),UNIT=3390,                                    00005900
     DSORG=P0,LRECL=80,BLKSIZE=27920,DSNTYPE=(LIBRARY,1),            000051031
     RECFM=FB                                                          00005400
STMT NO. MESSAGE
- 4 IGD01010I SG ACS GETS CONTROL &ACSENVIR=ALLOC                       00005800
  4 IGD01010I STORCLAS = STANDARD                                     00005900
ICH70001I MHLRES2 LAST ACCESS AT 13:43:05 ON FRIDAY, SEPTEMBER 20, 2013  00006000
IEF236IALLOC. FOR MHLRES2G S1                                      00006100
IGD101I SMS ALLOCATED TO DDNAME (BIG1 )                                00006200
     DSN (MHLRES2.GDG.PDSE.G0002V00)                                      00006300
     STORCLAS (STANDARD) MGMTCLAS (MCD822) DATACLAS (                    00006400
     VOL SER NOS= MLD42B                                                 00006500
IEF142I MHLRES2G S1 - STEP WAS EXECUTED - COND CODE 0000                  00006600
IGD107I MHLRES2.GDG.PDSE.G0002V00 ROLLED IN, DDNAME=BIG1               00006700
```

The format of the data set can be checked using ISPF option 3.2.

In Example 5-6 on page 83, we show the output from ISPF 3.2. The data set version is shown in field Data set version. The fact that the data set is a PDSE is shown by the Data set name type being LIBRARY.
5.5.3 Scenario 3: Define a PDSE Version 2 in a GDG

In this scenario, we allocate a PDSE Version 2 in a GDG set in DFSMS V2.1.

In Example 5-7, we show the JCL to allocate a PDSE using Version 2 format. The system default for PDSE allocation is Version 1. The DSNTYPE=(LIBRARY,2) is required to specify Version 2 format.

Example 5-7 JCL to allocate PDSE in Version 2 format

```plaintext
//MHLRES2G JOB (999,POK),'MHLRES2',CLASS=A,
//             NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* 
//S1      EXEC PGM=IEFBR14
//BIG1     DD  DSN=MHLRES2.GDG.PDSE(+1),DISP=(NEW,CATLG),
//             SPACE=(TRK,(02,200)),UNIT=3390,
//             DSORG=PO,LRECL=80,BLKSIZ=27920,DSNTYPE=(LIBRARY,2),
//             RECFM=FB
```

The job messages are essentially the same as in Example 5-5 on page 82.

In Example 5-8, we show that as a result of specifying DSNTYPE=(LIBRARY,2) the Data set version is set to 2.

Example 5-8 ISPF 3.2 listing of information about data set MHLRES2.GDG.PDSE.G0003V00
5.5.4 Scenario 4: Access the PDSEs using DFSMS V1.13

In this scenario, we verify that PDSE data sets allocated in DFSMS V2.1, in Version 2 format and as a member of a GDG, can be accessed in DFSMS V1.13. This scenario requires that the necessary compatibility fixes are installed.

We accessed the following data sets using ISPF 3.2:

- MHLRES2.GDG.PDSE.G0002V00
- MHLRES2.GDG.PDSE.G0003V00

G0002V00 is Version 1 as shown in Example 5-6 on page 83, and G0003V00 is Version 2 as shown in Example 5-8 on page 83.

ISPF on releases before DFSMS V2.1, even with compatibility fixes installed, do not show the Data set version.

In Example 5-9, we show that the Data set version information is not present. If it had been shown, it would be after the Data set name type display.

Example 5-9 ISPF 3.2 listing of data set MHLRES2.GDG.PDSE.G000v00 using DFSMS V1.13

Data Set Information
Command ===>

Data Set Name . . . : MHLRES2.GDG.PDSE.G0003V00

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 2
Storage class . . . : STANDARD Allocated extents . : 1
Volume serial . . . : MLD20C Maximum dir. blocks : NOLIMIT
Device type : 3390
Data class : **None**
Organization . . . : P0 Current Utilization
Record format . . . : FB Used pages : 5
Record length . . . : 80 % Utilized : 20
Block size : 27920 Number of members . : 0
1st extent tracks . : 2
Secondary tracks . : 200
Data set name type : LIBRARY Dates
Data set version . : 2 Creation date . . . : 2013/09/20
 Referenced date . . : ***None***
 Expiration date . . : ***None***
5.5.5 Scenario 5: Allocate a PDSE Version 1 in a GDG on DFSMS V1.13

In this scenario, we attempt to allocate a PDSE Version 1 in a GDG set on a DFSMS V1.13 system. In this scenario, the allocation should fail.

We ran the same JCL as shown in Example 5-7 on page 83 on DFSMS V1.13, and as expected the job failed. In Example 5-10, we show the messages resulting from running a job to allocate a PDSE to a GDG using DFSMS V1.13.

Example 5-10 Job messages showing catalog error when allocating PDSE to GDG on DFSMS V1.13

```
J E S 2  J O B  L O G  --  S Y S T E M  S C 6 3  --  N O D E
14.37.33 JOB13844 ---- FRIDAY, 20 SEP 2013 ----
14.37.33 JOB13844 IRR010I USERID MHLRES2 IS ASSIGNED TO THIS JOB.
14.37.33 JOB13844 ICH70001I MHLRES2 LAST ACCESS AT 14:19:40 ON FRIDAY, SEPTEMBER 20, 2013
14.37.33 JOB13844 $HASP373 MHLRES2G STARTED - INIT 1 - CLASS A - SYS SC63
14.37.33 JOB13844 - --TIMINGS (MINS.)--
14.37.33 JOB13844 $HASP395 MHLRES2G ENDED
```

```
------ JES2 JOB STATISTICS ------
20 SEP 2013 JOB EXECUTION DATE
  8 CARDS READ
  55 SYSOUT PRINT RECORDS
  0 SYSOUT PUNCH RECORDS
  3 SYSOUT SPOOL KBYTES
0.00 MINUTES EXECUTION TIME
1 //MHLRES2G JOB (999,POK),'MHLRES2',CLASS=A,
 // NOTIFY=&SYSUID,TIME=1440,REGION=6M
 /*JOBPARM L=999,SYSAFF=SC63
 IEFCS653I SUBSTITUTION JCL - (999,POK),'MHLRES2',CLASS=A,NOTIFY=MHLRES2
2 //S1 EXEC PGM=IEFBR14
3 //BIG1 DD DSN=MHLRES2.GDG.PDSE(+1),DISP=(NEW,CATLG),
 // SPACE=(TRK,(02,200)),UNIT=3390,
 // DSORG=PO,RECFM=FB
STMT NO. MESSAGE
- 3 IGD01010I SG ACS GETS CONTROL &ACSENVIR=ALLOC
 3 IGD01010I &STORCLAS = STANDARD
ICH70001I MHLRES2 LAST ACCESS AT 14:19:40 ON FRIDAY, SEPTEMBER 20, 2013
```
In Example 5-11, we show the JCL used to allocate a PDSE using DFSMS V1.13 and specifying DSNTYPE=(LIBRARY,2). PDSE Version 2 data sets cannot be created on releases before DFSMS V2.1, but they can be used on prior releases.

Example 5-11 JCL to create a PDSE Version 2 on DFSMS V2.1

```
//MHLRES2G JOB (999,POK), 'MHLRES2', CLASS=A,
               NOTIFY=&SYSUID, TIME=1440, REGION=6M
/*JOBPARML=999, SYSAFF=SC63
//S1      EXEC PGM=IEFBR14
//BIG1     DD  DSN=MHLRES2.V2.PDSE, DISP=(NEW, CATLG),
//                     SPACE=(TRK,(02,200)), UNIT=3390,
//                     DSORG=PO, LRECL=80, BLKSIZE=27920, DSNTYPE=(LIBRARY,2),
//                     RECFM=FB
```

In Example 5-12, we show the messages from the job allocating a PDSE using DSNTYPE=(LIBRARY,2).

Releases before DFSMS V2.1 do not allocate PDSE Version 2 format data sets, but the DSNTYPE=(LIBRARY,2) has been accepted, although the format will be Version 1.

Example 5-12 JOB messages resulting from allocating a PDSE on DFSMS V1.3 with LIBRARY,2

```
1 //MHLRES2G JOB (999,POK), 'MHLRES2', CLASS=A,
               NOTIFY=&SYSUID, TIME=1440, REGION=6M
/*JOBPARML=999, SYSAFF=SC63
IEF0631I SUBSTITUTION JCL - (999,POK), 'MHLRES2', CLASS=A, NOTIFY=MHLRES2
2 //S1      EXEC PGM=IEFBR14
3 //BIG1     DD  DSN=MHLRES2.V2.PDSE, DISP=(NEW, CATLG),
//                     SPACE=(TRK,(02,200)), UNIT=3390,
//                     DSORG=PO, LRECL=80, BLKSIZE=27920, DSNTYPE=(LIBRARY,2),
//                     RECFM=FB
```

STMT NO. MESSAGE

3 IGD01010I SG ACS GETS CONTROL &ACSENVIR=ALLOC
3 IGD01010I &STORCLAS = STANDARD CH70001I MHLRES2 LAST ACCESS AT 14:37:33 ON FRIDAY, SEPTEMBER 20, 2013
EF236I ALLOC. FOR MHLRES2G S1
GD101I SMS ALLOCATED TO DDNAME (BIG1)
 DSN (MHLRES2.V2.PDSE)
 STORCLAS (STANDARD) MGMTCLAS (MCDB22) DATACLAS ()
 VOL SER NOS= MLDB35
 // RECFM=FB
STMT NO. MESSAGE
- 3 IG010101I SG ACS GETS CONTROL &ACSENVIR=ALLOC
 3 IG010101I &STORCLAS = STANDARD
ICH70001I MHLRES2 LAST ACCESS AT 14:37:33 ON FRIDAY, SEPTEMBER 20, 2013
IEF236I ALLOC. FOR MHLRES2G S1
IGD101I SMS ALLOCATED TO DDNAME (BIG1)
 DSN (MHLRES2.V2.PDSE)
 STORCLAS (STANDARD) MGMTCLAS (MCDB22) DATACLAS ()
 VOL SER NOS= MLDB35
IEF142I MHLRES2G S1 - STEP WAS EXECUTED - COND CODE 0000
IGD104I MHLRES2.V2.PDSE RETAINED, DDNAME=BIG1
IEF373I STEP/S1 /START 2013263.1440
IEF032I STEP/S1 /STOP 2013263.1440
 CPU: 0 HR 00 MIN 00.00 SEC SRB: 0 HR 00 MIN 00.00 SEC
 VIRT: 4K SYS: 288K EXT: 0K SYS: 10636K
IEF375I JOB/MHLRES2G/START 2013263.1440
IEF033I JOB/MHLRES2G/STOP 2013263.1440

In Example 5-13, we show that even though DSNTYPE=(LIBRARY,2) was specified when
allocating the data set on DFSMS V1.13, the data set was allocated as Version 1 because
only Version 1 data sets can be allocated before DFSMS V2.1.

Example 5-13 ISPF 3.2 listing showing Version 2 data set allocated on DFSMS V1.13 is Version 1

Data Set Information
Command ===>

<table>
<thead>
<tr>
<th>Data Set Name</th>
<th>MHLRES2.V2.PDSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Data</td>
<td>Current Allocation</td>
</tr>
<tr>
<td>Management class</td>
<td>MCDB22</td>
</tr>
<tr>
<td>Storage class</td>
<td>STANDARD</td>
</tr>
<tr>
<td>Volume serial</td>
<td>MLDB35</td>
</tr>
<tr>
<td>Device type</td>
<td>3390</td>
</tr>
<tr>
<td>Data class</td>
<td>None</td>
</tr>
<tr>
<td>Organization</td>
<td>P0</td>
</tr>
<tr>
<td>Record format</td>
<td>FB</td>
</tr>
<tr>
<td>Record length</td>
<td>80</td>
</tr>
<tr>
<td>Block size</td>
<td>27920</td>
</tr>
<tr>
<td>1st extent tracks</td>
<td>2</td>
</tr>
<tr>
<td>Secondary tracks</td>
<td>200</td>
</tr>
<tr>
<td>Data set name type</td>
<td>LIBRARY</td>
</tr>
<tr>
<td>Data set version</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To demonstrate that PDSE Version 2 data sets created on DFSMS V2.1 can be accessed and
updated on DFSMS V1.13, we put data in the data set using DFSMS V2.1, then read that
data and added more data using DFSMS V1.13.
Then, returned to DFSMS V2.1 and verified that both the original data and the updates using DFSMS V1.13 were in the data set.

In Example 5-14, we show the data entered into a PDSE Version 2 data set, then updated on DFSMS V1.13.

Example 5-14 PDSE Version 2 data set as populated using DFSMS V2.1 then updated using DFSMS V1.13

```
EDIT       MHLRES2.GDG.PDSE.G0003V00(DEMODATA) - 01.01
Command ==> ****** ********************************* Top of Data **************
==MSG> -Warning- The UNDO command is not available until you change
==MSG> your edit profile using the command RECOVERY ON.

000100 This data was entered using DFSMS V2.1
000110 and it is a version 2 data set
000200 This data was entered using DFSMS V2.1
000210 and it is a version 2 data set
000300 This data was entered using DFSMS V2.1
000310 and it is a version 2 data set
000400 This data was entered using DFSMS V2.1
000410 and it is a version 2 data set
000500 This data was entered using DFSMS V2.1
000510 and it is a version 2 data set
000600 This data was entered using DFSMS V2.1
000610 and it is a version 2 data set
000700 This data was entered using DFSMS V2.1
000710 and it is a version 2 data set
000800 This data was entered using DFSMS V2.1
000810 and it is a version 2 data set
000900 This data was entered using DFSMS V2.1
000910 and it is a version 2 data set
001000 This data was entered using DFSMS V2.1
001100 and it is a version 2 data set
001200 *********
001300 The above data was read successfully using DFSMS V1.13
001400 *********
001500 This data was entered using DFSMS V1.13
001600 and it is accepted even even thou it is a version 2 data set
001700 This data was entered using DFSMS V1.13
001800 and it is accepted even even thou it is a version 2 data set
001900 This data was entered using DFSMS V1.13
002000 and it is accepted even even thou it is a version 2 data set
002100 This data was entered using DFSMS V1.13
002200 and it is accepted even even thou it is a version 2 data set
002300 This data was entered using DFSMS V1.13
002400 and it is accepted even even thou it is a version 2 data set
002500 This data was entered using DFSMS V1.13
002600 and it is accepted even even thou it is a version 2 data set
002700 This data was entered using DFSMS V1.13
002800 and it is accepted even even thou it is a version 2 data set
002900 This data was entered using DFSMS V1.13
003000 and it is accepted even even thou it is a version 2 data set
003100 This data was entered using DFSMS V1.13
003200 and it is accepted even even thou it is a version 2 data set
```
Compatibility

The default setting for PDSE version can be set in DFSMS V2.1 systems to be Version 1 (default) or Version 2. This setting can then be overridden for a particular PDSE data set allocation to whatever is required for that PDSE.

The `PDSE_VERSION(1|2)` statement is in member IGDSMSxx of SYS1.PARMLIB.

Note: The PDSE_VERSION statement might not be specified in member IGSSMSxx of a system before DFSMS V2.1. There is no compatibility for this statement.

PDSE Version 2 data sets cannot be allocated using releases before DFSMS V2.1.

If a data set is allocated using DFSMS V2.1 as a member of a GDG, it can be accessed and used from DFSMS V1.13.

A PDSE data set may not be defined as a member of a GDG when using DFSMS releases before DFSMS V2.1.

Updates are required in DFSMS V1.12 and DFSMS V1.13 to use PDSE version 2 data sets. Examples of fixes that are required on pre-DFSMS V2.1 systems can be found in Appendix B, “APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12” on page 303.

For IBM products, a current listing of compatibility fixes can be obtained by loading the IBM enhanced HOLDDATA files, then using SMP/E to search on the pre-DFSMS V2.1 system for the z/OS V2.1 compatibility fixes.
This chapter provides an overview of the features and function in SMS included in z/OS V2.1. They include:

- New IGDSMSxx parameters
- Provide accurate volume space statistics
- Alter ACDS and COMMDS to SHAREOPTIONS(3 3)
- SMS ACS read-only variable for EAVs
- DFSMS storage tiers
- Option to suppress specific SMS messages
6.1 New IGDSMSxx parameters

DFSMS V2.1 introduces several new parameters that you specify in the IGDSMSxx parmlib member:

- **HONOR_DSNTYPE_PDSE**: Specifies that a partitioned data set is to be created regardless of the values for other data set attributes, such as data set organization or directory blocks.
- **PDSE_VERSION**: Specifies a default version number (1 or 2) for data sets that are allocated with DSNTYPE value of LIBRARY.
- **SUPPRESS_SMSMSG**: Specifies an option to suppress messages IGD17054I, IDG17227I, and IGD17395I.
- **PS_EXT_FORMAT**: Indicates the format (1 or 2) in which the system creates extend format data sets.

6.1.1 IGD030I error message

If you try to activate any of the new parameters, through a SET SMS=xx z/OS console command, from a z/OS V1.13 or earlier system, you receive message IGD030I. You also receive message IGD030I when you IPL a z/OS V1.13 or earlier system pointing to an IGDSMSxx parmlib member that contains any of these new parameters in it.

For more information about the PDSE parameters, see Chapter 5, “PDSE enhancements” on page 77.

For information about the new sequential extended data set format 2, see 4.4, “Sequential Extended Format Version 2” on page 72.

6.2 Provide accurate volume space statistics

SMS in DFSMS V2.1 provides more accurate volume space statistics. Before DFSMS V2.1, SMS was enhanced to return accurate space statistics in the following situations:

- When Common Access VTOC Facility (CVAF) informs SMS that a volume space usage has changed.
- When a volume is varied online for the first time.
- When users issue IGDCNS calls to retrieve volume information that does not contain updated space statistics.
- When SMS issues LSPACE and updates volume information with the most current space statistics.

However, there were some special cases where the space statistics remained outdated. This can happen, for example, when a user issues **ICKDSF REFORMAT REFVTOC** in a system outside the SMSplex.

6.2.1 Use

When a volume is resized, the disk subsystem sends an Unsolicited Stated Change Interrupt to all the systems. This interrupt causes device support code to be invoked in each system. Each system sends a Read Device Characteristics CCW in order to get the new size for that
device. Each system updates the size information that resides in the Device Class Extension (DCE) that is an extension for the UCB for that device.

Now in DFSMS V2.1, when SMS receives a request for space information, it compares the information in the DCE with the information inside the SMS address space. It automatically refreshes the space information inside the active configuration data set (ACDS) of SMS, returning accurate space statistics to the caller that requested this information.

VARY SMS command to update space statistics

In z/OS 2.1, there is a new VARY SMS command to force SMS to update space statistics for a volume in a storage group. The syntax of the command is shown in Example 6-1.

Example 6-1 VARY SMS syntax

```
V SMS,{STORGRP(storgrp) | SG(storgrp) |
  VOLUME(volser) | VOL(volser)},
  {SPACE | S}
```

where:

- **storgrp** Refers to a pool storage group.
- **volser** A volser in a pool storage group.

For example, if you want your SMS active configuration to immediately get accurate space statistics for a storage group called BIGSTUFF, you issue the `V SMS, SG(BIGSTUFF), SPACE` command from a z/OS console.

6.2.2 Coexistence

If the caller that requested space information comes from a z/OS V1.13 or earlier system, it will not refresh the space statistics in the ACDS, if a volume has been resized from a system outside the SMSplex.

If the caller is a z/OS V2.1 system, all the systems in the SMSplex benefit from this enhancement, as the ACDS is shared among all systems in the SMSplex.

6.3 Alter ACDS and COMMDS to SHAREOPTIONS(3 3)

SMS in DFSMS V2.1 now checks whether the ACDS or COMMDS were defined with SHAREOPTIONS(3 3) and tries to alter it, if it was defined with different sharing options. This enhancement helps users avoid potential problems due to incorrect sharing options.

Using SHAREOPTIONS(3,3) when allocating an ACDS or COMMDS allows full authority to read from and write to the ACDS or COMMDS from any system. The ACDS and COMMDS must be accessed from all systems in the complex simultaneously.

If SMS detects a lower value for SHAREOPTIONS when the CDS is activated, SMS attempts to alter the value to SHAREOPTIONS(3,3), and issues a message to inform the user of the result of the change:

- If the change is successful, SMS issues new message IGD098I
- If the change is not successful, it issues message IGD099I

In both cases, the activation process continues as before.
6.3.1 Use

Example 6-2 shows a sample job for allocating a new ACDS. We specified SHAREOPTIONS(2,3). This is not the SHAREOPTIONS that are adequate for the ACDS. We defined it this way to test the automatic alter to SHAREOPTIONS(3,3) that is going to be done by SMS.

Example 6-2 Sample ACDS definition with wrong SHAREOPTIONS(2,3)

```
//MHLRES3A JOB (999,POK),'MHLRES3',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
//DEF1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=*  //SYSIN DD *
DEFINE   CLUSTER(                      +
         NAME(SYS1.SMS.V2R1.ACDS)   +
         LINEAR                     +
         VOLUME(SBOX12)            +
         CYL(10 1)                 +
         SHAREOPTIONS(2,3)         +
         DATA(                     +
         NAME(SYS1.SMS.V2R1.ACDS.DATA) REUSE)
/*
```

After defining the new ACDS, we replaced the current ACDS with the newly defined ACDS by issuing the following commands:

1. **SETSMS SAVEACDS(SYS1.SMS.V2R1.ACDS)**
 This command saves the current active SMS configuration into the newly defined ACDS.

2. **SETSMS ACDS(SYS1.SMS.V2R1.ACDS)**
 This command activates the new ACDS.

During the activation process, SMS detected that our new ACDS was defined with SHAREOPTIONS(2,3), and automatically altered it to SHAREOPTIONS(3,3), as shown in Figure 6-1.

Figure 6-1 SMS alters to SHAREOPTIONS(3,3) during activation process
6.3.2 Coexistence

There is not any coexistence issue with this DFSMS V2.1 enhancement when you share ACDS and COMMDS between systems at z/OS V2.1 and z/OS V1.13 or earlier releases of z/OS.

6.4 SMS ACS read-only variable for EAVs

DFSMS V2.1 provides a new ACS read-only variable &EATTR for extended address volume (EAV) support. This variable contains the EATTR value as specified in JCL, IDCAMS DEFINE or ALLOCATE, dynamic allocations, and data class constructs. EATTR means the extend attributes for EAV.

ACS routines become more intelligent and easier to code. You can select the proper SMS constructs to your data sets, so the data sets can be allocated or not to an EAV storage group.

6.4.1 EAV overview

An EAV is a volume with more than 65,520 cylinders. An EAV increases the amount of addressable DASD storage per volume beyond 65,520 cylinders by changing how tracks on IBM ECKD™ volumes are addressed.

The benefit of this support is that the amount of z/OS addressable disk storage is significantly increased. This helps customers who are approaching the four-digit device number limit by providing constraint relief for applications using large amounts of data.

EAV support was first introduced in z/OS V1.10, and was limited to VSAM data sets. Also, the initial support for EAV allowed a maximum of 262,668 cylinders or 223 GB in volume size.

z/OS V1.11 extended this support to non-VSAM data sets, and also introduced a new attribute, EATTR, to be used at allocation time, for controlling the allocation of VSAM and non-VSAM data sets in regard to when EAS can be used. EAS is the area on EAV whose cylinder addresses are equal to or greater than 65,536, as shown in Figure 6-2 on page 96.

At the time the EATTR attribute was created, there was not an ACS read-only variable to be checked by the ACS routines.
6.4.2 EATTR overview

You can specify this attribute EATTR in IDCAMS DEFINE and ALLOCATE, JCL, dynamic allocation, and data classes constructs. You can use IDCAMS ALTER to modify this attribute in existing data sets. There is no JCL override of the current EATTR value for existing data sets. To change the EATTR value after a new allocation requires you to run the IDCAMS ALTER command.

The &EATTR that is passed to the ACS routines contains the EATTR value that you can specify in IDCAMS, JCL, dynamic allocation, and data classes are:

- **NO**
 No extended attributes. The data set cannot have extended attributes (format 8 and 9 DSCBs) and cannot reside in EAS. This is the default behavior for non-VSAM data sets.

- **OPT**
 Extended attributes are optional. The data set can have extended attributes (format 8 and 9 DSCBs) and can optionally reside in EAS. This is the default behavior for VSAM data sets.

- **Blank**
 No specification. It assumes the default behavior depending on the type of the data set; VSAM or non-VSAM.

6.4.3 Use

Example 6-3 on page 97 shows some lines of ACS code taken from a storage group ACS routine. We create a filtlist called ZOS21 that has the system names of the systems that are already at z/OS V2.1 in our SMSplex: SC63, SC64, and SC70. We assign a BIGSTUFF
storage group for data sets that were created with EATTR=OPT in JCL, dynamic allocation, IDCAMS, and TSO also. This storage group BIGSTUFF has only two 1 TB EAV volumes.

SC65 is still at z/OS 1.13 level, so we avoid executing the ACS code that tests the &EATTR read-only variable on that system.

Example 6-3 Example of storage group ACS routine

```
FILTLIST MHLRES INCLUDE(MHLRES%.**)  
FILTLIST ZOS21 INCLUDE('SC63','SC64','SC70')  
  .  
  .  
  WHEN (&DSN = &MHLRES AND &STORCLAS NE SCLIB%) DO  
    SELECT(&SYSNAME)  
      WHEN ('SC65') DO  
        SET &STORGRP = 'SGMHL01'  
        EXIT  
      END  
      WHEN(&ZOS21) DO  
        IF &EATTR = 'OPT' THEN  
          SET &STORGRP = 'BIGSTUFF'  
        ELSE  
          SET&STORGRP = 'SGMHL01'  
        END  
      END  
    END  
END
```

Example 6-4 shows a sample IEFBR14 job that we used to test this ACS routine.

Example 6-4 Sample IEFBR14 job with EATTR=OPT

```
//MHLRES3T  JOB   'JOE',NOTIFY=MHLRES3,  
//          MSGCLASS=T,REGION=32M  
//IEF       EXEC PGM=IEFBR14  
//I         DD   DSN=MHLRES3.EATTR.TEST8,DISP=(,CATLG),  
//          SPACE=(CYL,(300,300)),UNIT=3390,  
//          EATTR=OPT,  
//          DCB=(RECFM=FB,LRECL=300,BLKSIZE=27900),  
//          DATACLAS=DCEXTSEQ,STORCLAS=SCLIB0
```

The data set MHLRES3.EATTR.TEST8 was created successfully on one of our EAV volumes in storage group BIGSTUFF.

6.4.4 Coexistence

The read-only variable &EATTR is only available on z/OS V2.1 systems. SMS at z/OS V1.13 or lower releases does not recognize the &EATTR variable.

If you have systems at z/OS V1.13 or prior releases in your SMSplex, and plan to start using the &EATTR read-only variable, you must code your ACS routines to branch around any reference to &EATTR when they run in a system with z/OS V1.13 or earlier releases of z/OS.

Example 6-3 shows a sample piece of a storage group ACS code, where we first test if the new allocation is going to occur in system SC65. This system is at z/OS V1.13. We avoid it testing the &EATTR when the new allocation happens in our system SC65.
6.5 DFSMS storage tiers

A storage tier is a class of devices that has a defined set of performance, availability, accessibility, and capacity characteristics.

The three fundamental storage tiers consist of disk, optical, and tape devices. Disk being defined as the highest tier and tape the lowest. Until recently, there have only been minor variations in the characteristics of the devices available within each of these fundamental tiers. But, with recent advances in storage technology, these fundamental tiers can be further divided into more discrete tiers. New technologies introduced significant variations in the disk storage tier. For example, we can have the following technologies available for allocation of our data sets in disk:

- Solid-state drives (SSD)
- Hard disk drives (HDD)
- Serial Advanced Technology Attachment (SATA) drives

Each one of these technologies provides different performance levels to data access. Also, each one has a different cost to store your data. Before DFSMS V2.1, there was not a way to automatically move less active data between these technologies, from the fastest and more expensive, to the slowest and cheaper.

Figure 6-3 on page 99 shows the classic storage hierarchy that is around 30 years old. It is a three-tier hierarchy:

- Level 0 (L0) or Primary disks
 This is the primary level that contains data that is directly accessible by users and applications. Data at this level is owned by users and applications and optionally managed by DFSMShsm.

- Migration Level 1 (ML1)
 When DFSMShsm-managed L0 data remains inactive for a specified (policy-based) duration of time, DFSMShsm moves the data down in the hierarchy. Data at this level is in a proprietary format and cannot be directly accessed by users or applications. ML1 data is owned by DFSMShsm. Storage devices at this level may only be disk. DFSMShsm does not distinguish between any variations in disk technology used at this level.

- Migration Level 2 (ML2)
 As the unreferenced age of data increases, the data is moved to the lowest level in the hierarchy, ML2. ML2 is generally auxiliary storage and hence the least expensive. Similar to ML1, all ML2 devices are treated equally.
Today, with the possibility of several technologies present on the Level 0 tier, it comes the opportunity to break Level 0 into multiple tiers.

6.5.1 Storage tier hierarchies

The existing three-layer hierarchy is being separated into two distinct hierarchies; the primary hierarchy and the migration hierarchy, as seen in Figure 6-4 on page 100. The primary hierarchy consists of all the storage tiers that contain application and user data in its native format. The data in this hierarchy is directly accessible by applications and users and is composed of tiers. The data in these tiers is DFSMShsm-managed.

Figure 6-4 on page 100 shows an example of a primary storage hierarchy subdivided into three tiers:
- SSD
- HDD
- SATA disks

Data on primary storage hierarchy can be moved across the tiers by DFSMShsm, according to management class attributes assigned to SMS-managed data sets. These attributes, also called class transition attributes, are not new to DFSMS. They have been used for class transition for OAM non-structured data. DFSMS V2.1 allows these attributes to be used for class transitions of structured data, that is, your application data sets.
6.6 Option to suppress specific SMS messages

DFSMS V2.1 provides a new `SUPPRESS_SMSMSG` option in IGDSMSxx parmlib member to suppress some specific informational messages. There are messages that may occur often, and some installations do not want to view these messages when they appear at the job log. The messages that can be suppressed by using this option are:

- `IGD17054I DATA SET NOT FOUND FOR DELETE/RENAME ON VOLUME volser DATA SET IS dsn`
- `IGD17227I JOBNAME jobname PROGRAM NAME progname STEPNAME stepname DDNAME ddname DATA SET dsn WAS ALLOCATED TO A SUBSEQUENT MULTI-TIERED STORAGE GROUP. ALLOCATED STORAGE GROUP WAS sg1. CANDIDATE STORAGE GROUPS ARE: sg2, sg3...`
- `IGD17395I DATA SET dsn WAS NOT ALLOCATED IN THE SAME STORAGE FACILITY IMAGE BECAUSE (text) MODID(modid) RC(rc) RSN(rsn)]`

These messages cannot be suppressed by the message processing facility (MPF) of z/OS, nor can they be suppressed by installation exits.

6.6.1 Use

You can specify this new parameter `SUPPRESS_SMSMSG` in your IGDSMSxx parmlib member as shown in Example 6-5.

```
Example 6-5  Sample SUPPRESS_SMSMSG parameter

SUPPRESS_SMSMSG(YES,IGD17054I,IGD17227I,IGD17395I)
```
To activate this modification, you can issue the \texttt{SET SMS=xx} command from the z/OS console.

The default behavior of SMS is not to suppress any of these messages.

You can also suppress those messages by using the \texttt{SETSMS} command. For example, you can tell SMS to suppress all occurrences of messages IGD17054I and IGD17227I by issuing the following command from the z/OS console:

\texttt{SETSMS SUPPRESS_SMSMSG(YES,IGD17054I,IGD17227I)}

You can use the \texttt{D SMS,OPTIONS} command to confirm that suppression for these SMS messages is active or not active. Figure 6-5 shows a piece of the output of the message IGD002I as a result of issuing this command. It shows that we are suppressing messages IGD17054I, and IGD17227I, and not suppressing IGD17395I in our SMSplex.

\begin{verbatim}
D SMS,OPTIONS
 IGD002I 08:56:51 DISPLAY SMS 312
 ACDS = SYS1.SMS.ACDS.NEW
 COMMDS = SYS1.SMS.COMMDS
 ACDS LEVEL = z/OS V2.1
 .
 .
 .
 CA_RECLAIM = DATAclas
 PS_EXT_VERSION = 1
 SUPPRESS_SMSMSG = IGD17054I(YES) IGD17227I(YES) IGD17395I(NO)
\end{verbatim}

\textit{Figure 6-5} Displaying \texttt{SUPPRESS_SMSMSG}

6.6.2 Coexistence

Activating the suppression of these SMS messages in z/OS V2.1 system has no effect on systems at DFSMS V1.13 or prior versions sharing the same ACDS.

If you issue \texttt{SETSMS SUPPRESS_SMSMSG} from a system at DFSMS V1.13 or earlier, you receive message IGD029I, as it does not recognize the \texttt{SUPPRESS_SMSMSG} parameter.

If you try to activate an IGDSMSxx member with the \texttt{SUPPRESS_SMSMSG} parameter, you receive message IGD030I.
DFSMSdfp enhancements

In this chapter, we describe the DFSMSdfp features and functions introduced in z/OS V2.1 DFSMS. The following topics are included in this chapter:

- IEBCOPY COPYGROUP
- IEBCOPY user exit capabilities
- IEBCOPY return code feedback
- Open Close and End of volume (OCE) partial release
- OCE RAS enhancements
- IEAAPPxx comments
- DCBE invalidation message IEC190I
- XTIOT HealthCheck
7.1 IEBCOPY COPYGROUP

Before DFSMS V2.1, IEBCOPY had a COPYGRP statement, which is still available, that did not process groups when using a PDS. That has been complemented by the new COPYGROUP command, which has additional functions that makes it applicable to all types of PDS and PDSE formats and all operations between them.

The significant feature of COPYGROUP (and in the case of PDSE for COPYGRP) is that it can be used to ensure that a member and all its aliases are copied together, and that if an alias is selected the main member and any other aliases are copied together.

COPYGROUP can also be used with SELECT minor statements, which specify a member or alias using wildcards. If SELECT is used with wildcards, EXCLUDE can be used to refine the selection list. The EXCLUDE minor statement operates on the set of members generated by the SELECT minor statement.

When no member selection is done, all aliases are copied whether using COPY, COPYGRP, or COPYGROUP.

COPYGROUP may be used to perform the following:

- COPY PDS to PDS, PDS to PDSE, PDSE to PDS, and PDSE to PDSE
- UNLOAD PDS to PS, and PDSE to PS
- LOAD PS to PDSE, and PS to PDS

A group consists of a member and all its aliases. If a member is selected, the member and all its aliases are included. The member may be the main member or any of the aliases, but they will all be copied, or none will be copied, if there is some condition preventing all from being copied.

Note: This is different from the COPYGRP function where only the selected member will be copied when the output data set is a PDS. If the output is a PDSE, the member and all its aliases will be copied.

The SELECT minor statement can be used with the COPYGROUP command to specify wildcards to facilitate member selection. Wildcards are not permitted when using the COPYGRP statement. When SELECT has been used with wildcards, EXCLUDE can be used.

Note: To use the minor statements SELECT (and EXCLUDE where applicable), the INDD and OUTDD statements must be specified on the main statement, such as COPY, COPYGRP, or COPYGROUP. The default DDNAMEs of SYSUT1 and SYSUT2 are not usable for this function.

7.1.1 Scenarios

We generated and ran a number of jobs to illustrate the basic capabilities of the COPYGROUP statement.

In the examples that follow, the following data sets are used:

- SYS1.LINKLIB for INDD
- MHLRES2.SYS1.LINKLIB.IEBCOPY1 for OUTDD
Data set MHLRES2.SYS1.LINKLIB.IEBCOPY1 was allocated new before running the first job.

In Table 7-1, we list a number of scenarios relating to the IEBCOPY COPYGROUP statement. We describe these scenarios in this section.

Table 7-1 Scenarios provided to show COPYGROUP functions

<table>
<thead>
<tr>
<th>Scenario number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Scenario 1” on page 106</td>
<td>Copy from PDS to empty PDS. Use COPYGROUP with INDD and OUTDD. SELECT a member that has an alias. Observe that the alias is copied as well as the main member.</td>
</tr>
<tr>
<td>“Scenario 2” on page 107</td>
<td>Copy from PDS to output PDS that is not empty. Use COPYGROUP with INDD and OUTDD. SELECT a member that has already been copied that has an alias. Observe that neither the member or the alias is copied.</td>
</tr>
<tr>
<td>“Scenario 3” on page 107</td>
<td>PDS to PDS output not empty. COPYGROUP INDD,R OUTDD. SELECT a member that has an alias. Observe that both the member and the alias are copied.</td>
</tr>
<tr>
<td>“Scenario 4” on page 108</td>
<td>PDS to PDS output not empty. COPY INDD OUTDD. SELECT a member that has an alias. Observe that only the member is copied.</td>
</tr>
<tr>
<td>“Scenario 5” on page 109</td>
<td>PDS to PDS output not empty. COPYGROUP INDD OUTDD. SELECT the alias of a member. Observe that the alias is not copied because the member is present.</td>
</tr>
<tr>
<td>“Scenario 6” on page 110</td>
<td>PDS to PDS output not empty. COPYGROUP INDD,OUTDD. SELECT the alias of a member. Observe that neither the alias or the main member is replaced because of a COPYGROUP conflict.</td>
</tr>
<tr>
<td>“Scenario 7” on page 111</td>
<td>PDS to PDS output not empty. COPY INDD,R OUTDD. SELECT the member and related alias of the member. Observe that neither the alias or the main member is replaced because of a COPYGROUP conflict.</td>
</tr>
<tr>
<td>“Scenario 8” on page 113</td>
<td>Using the COPYGROUP statement, demonstrate the use of SELECT minor statement with wildcard character to specify the primary members to be copied. Expect to see alias names included when their primary member is specified for inclusion.</td>
</tr>
</tbody>
</table>
Scenario 1
In this scenario, copy from PDS to empty PDS. Use COPYGROUP with INDD and OUTDD.
SELECT a member that has an alias. Observe that the alias is copied as well as the main member.

In Example 7-1, you find the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select a member.

Example 7-1 JCL to copy a member of a PDS to empty PDS

```
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T,
   NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* 
/* example of use of COPYGROUP to contrast with COPYGRP
//S1 EXEC PGM=IEBCOPY
//SYSPRINT DD  SYSOUT=* 
//INDD     DD  DISP=SHR,DSN=SYS1.LINKLIB 
//OUTDD    DD  DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
//SYSIN    DD  * 
COPYGROUP INDD=INDD,OUTDD=OUTDD 
SELECT MEMBER=(ARCABA) 
```

In Example 7-2, you find the IEBCOPY messages showing that the alias is copied together with the main member.

Example 7-2 IEBCOPY messages showing member ARCABA copied as well as alias ABA

```
IEBCOPY MESSAGES AND CONTROL STATEMENTS                              PAGE     1
IEB1135I IEBCOPY  FMID HDZ2210  SERVICE LEVEL UA70502  DATED 20130821 DFSMS  
   02.01.00 z/OS     02.01.00 HBB7790  CPU 2827
IEB1035I MHLRES2C  S1       19:50:39 MON 16 SEP 2013 PARM='' 
   GRPCOPY COPYGROUP    INDD=((INDD,R)),OUTDD=OUTDD                       00010006
   SELECT MEMBER=(ARCABA) 
IEB1013I COPYING FROM PDS   INDD=INDD     VOL=Z21RB1 DSN=SYS1.LINKLIB 
   TO PDS  OUTDD=OUTDD    VOL=MLD12F 
   DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
IGW01553I ALIAS ABA  OF COPIED PRIMARY ARCABA  HAS BEEN COPIED 
IGW01552I MEMBER ARCABA  HAS BEEN COPIED   AND REPLACED 
IGW01550I 2 OF 2 SPECIFIED  MEMBERS WERE COPIED 
IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE 
```
Scenario 2
In this scenario copy from PDS to an output PDS that is not empty. Use COPYGROUP with INDD and OUTDD. SELECT a member that has already been copied that has an alias. Observe that neither the member or the alias is copied.

In Example 7-3, you find the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select a member that already exists in the output PDS.

Example 7-3 JCL to copy a member of a PDS to a PDS that already has the member

```
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T,
   NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* 
/* example of use of COPYGROUP to contrast with COPYGRP 
//S1 EXEC PGM=IEBCOPY 
//SYSPRINT DD  SYSOUT=* 
//INDD    DD  DISP=SHR,DSN=SYS1.LINKLIB 
//OUTDD   DD  DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
//SYSIN   DD  * 
COPYGROUP INDD=INDD,OUTDD=OUTDD 
SELECT MEMBER=(ARCABA) 
```

In Example 7-4, you find the IEBCOPY messages showing that the alias is not copied because the main member already exists.

Example 7-4 IEBCOPY messages showing neither the member or the alias is copied

```
IEBCOPY MESSAGES AND CONTROL STATEMENTS                              PAGE     1 
IEB1135I IEBCOPY  FMID HDZ2210  SERVICE LEVEL UA70502  DATED 20130821 DFSMS 
02.01.00 z/OS    02.01.00 HBB7790  CPU 2827 
IEB1035I MHLRES2C  S1       13:34:14 TUE 17 SEP 2013 PARM='' 
COPYGROUP INDD=INDD,OUTDD=OUTDD                                        00010000 
SELECT MEMBER=(ARCABA)                                                 00020000 
IEB1013I COPYING FROM PDS   INDD=INDD     VOL=Z21RB1 DSN=SYS1.LINKLIB 
IEB1014I           TO PDS  OUTDD=OUTDD    VOL=MLD83A 
DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
IGW01557W MEMBER ARCABA  NOT COPIED BECAUSE THE NAME ALREADY EXISTS IN 
THE OUTPUT DATASET CAUSING A COPY GROUP NO-REPLACE CONFLICT 
IGW01558W MEMBER ABA  NOT COPIED BECAUSE IT BELONGS TO A GROUP 
IN WHICH A PREVIOUS NAME PROCESSED ENCOUNTERED COPY GROUP NO REPLACE CONFLICT 
IGW01550I 0 OF 2 SPECIFIED MEMBERS WERE COPIED 
IEB1130I A WARNING MESSAGE FROM FAMS PROCESSING APPEARS ABOVE -- DIAGNOSTIC 
INFORMATION IS X'2810022D' 
IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE 
```

Scenario 3
This scenario shows a PDS to PDS copy where the output data set is not empty using COPYGROUP INDD,R OUTDD. SELECT a member that has an alias. Observe that both the member and the alias are copied.
In Example 7-5, you find the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select a member that already exists in the output PDS. In this example, INDD=((INDD,R)) is specified so that the member is replaced, and the alias is copied.

Example 7-5 JCL to copy a member that already exists, but with replace specified

```plaintext
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T,
//NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* 
/* example of use of COPYGROUP to contrast with COPYGRP 
/S1 EXEC PGM=IEBCOPY 
/*SYSPRINT DD SYSOUT=* 
//INDD DD DISP=SHR,DSN=SYS1.LINKLIB 
//OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
//SYSIN DD * 
COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD 
SELECT MEMBER=(ARCABA) 
```

In Example 7-6, you find the IEBCOPY messages showing that the alias was copied because the main member was replaced as a result of INDD=((INDD,R)).

Example 7-6 IEBCOPY messages showing that member ARCABA was replaced and ABA copied

```
IEBCOPY MESSAGES AND CONTROL STATEMENTS PAGE 1
IEB1135I IEBCOPY FMID HDZ2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS
02.01.00 z/OS 02.01.00 HBB7790 CPU 2827
IEB1035I MHLRES2C S1 14:03:11 TUE 17 SEP 2013 PARM='' 
COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD 00000000 
SELECT MEMBER=(ARCABA) 00020000 
IEB1013I COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB 
IEB1014I           TO PDS OUTDD=OUTDD    VOL=MLD83A 
DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
IGW01554I ALIAS ABA OF COPIED PRIMARY ARCABA HAS BEEN COPIED 
AND REPLACED 
IGW01552I MEMBER ARCABA HAS BEEN COPIED AND REPLACED 
A PRIMARY WITH ALIAS(ES) 
IGW01550I 2 OF 2 SPECIFIED MEMBERS WERE COPIED 
IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE 
```

Scenario 4

In this scenario, a copy of a PDS to PDS where the output data set is not empty. COPY INDD OUTDD. SELECT a member that has an alias is specified. Observe that only the member is copied.

In Example 7-7, we show the JCL that was run to show the use of the COPY statement with the SELECT minor statement to select a member that has an alias but we do not want the alias to be copied. In this example, INDD=((INDD,R)) was specified so that the member will be replaced.

Example 7-7 JCL to use COPY to copy a member without any alias

```plaintext
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T, 
//NOTIFY=&SYSUID,TIME=1440,REGION=6M 
/*JOBPARM L=999,SYSAFF=* 
/* example of use of COPYGROUP to contrast with COPYGRP 
```
In Example 7-8, you find the IEBCOPY messages showing that only the specified main member was copied.

Example 7-8 IEBCOPY messages showing that COPY copied just the specified member

<table>
<thead>
<tr>
<th>IEBCOPY MESSAGES AND CONTROL STATEMENTS</th>
<th>PAGE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEB1135I IEBCOPY FMID HD2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS 02.01.00 z/OS 02.01.00 HBB7790 CPU 2827</td>
<td></td>
</tr>
<tr>
<td>IEB1035I MHLRES2C S1 14:20:38 TUE 17 SEP 2013 PARM=''</td>
<td></td>
</tr>
<tr>
<td>COPY IND=((INDD,R)),OUTDD=OUTDD</td>
<td></td>
</tr>
<tr>
<td>SELECT MEMBER=(IKJEFA00)</td>
<td></td>
</tr>
<tr>
<td>IEB1013I COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB</td>
<td></td>
</tr>
<tr>
<td>IEB1014I TO PDS OUTDD=OUTDD VOL=MLD83A</td>
<td></td>
</tr>
<tr>
<td>DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1</td>
<td></td>
</tr>
<tr>
<td>IEB167I FOLLOWING MEMBER(S) COPIED FROM INPUT DATA SET REFERENCED BY INDD</td>
<td></td>
</tr>
<tr>
<td>IEB154I IKJEFA00 HAS BEEN SUCCESSFULLY COPIED</td>
<td></td>
</tr>
<tr>
<td>IEB1098I 1 OF 1 MEMBERS COPIED FROM INPUT DATA SET REFERENCED BY INDD</td>
<td></td>
</tr>
<tr>
<td>IEB144I THERE ARE 747 UNUSED TRACKS IN OUTPUT DATA SET REFERENCED BY OUTDD</td>
<td></td>
</tr>
<tr>
<td>IEB149I THERE ARE 9 UNUSED DIRECTORY BLOCKS IN OUTPUT DIRECTORY</td>
<td></td>
</tr>
<tr>
<td>IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE</td>
<td></td>
</tr>
</tbody>
</table>

Scenario 5

In this scenario, we show a copy of a PDS to a PDS where the output data set is not empty using COPYGROUP INDD OUTDD. SELECT the alias of a member is specified. Observe that the alias is not copied because the member is present.

In Example 7-9, we show the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select an alias of a member that already exists in the output.

Example 7-9 JCL to copy alias ACCOUNT

| MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T, |
| -- NOTIFY=&SYSUID,TIME=1440,REGION=6M |
| /*JOBPARM L=999,SYSAFF=*/ |
| /* example of use of COPYGROUP to contrast with COPYGRP |
| //S1 EXEC PGM=IEBCOPY |
| //SYSPRINT DD SYSOUT=* |
| //INDD DD DISP=SHR,DSN=SYS1.LINKLIB |
| //OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 |
| //SYSIN DD * |
| COPYGROUP INDD=INDD,OUTDD=OUTDD |
| SELECT MEMBER=(ACCOUNT) |

In Example 7-10 on page 110, we show the IEBCOPY messages showing that the specified alias member was not copied because of a NO-REPLACE CONFLICT, which is as expected.
Scenario 6

In this scenario, we copy PDS to PDS where the output data set is not empty. COPYGROUP INDD,R OUTDD is specified. SELECT the alias of a member. Observe that neither the alias or the main member is replaced because of a COPYGROUP conflict.

In Example 7-11, you find the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select an alias of a member that already exists in the output. In this case, replace the main member name using INDD=((INDD,R)).

Example 7-11 JCL to copy a member alias for a main member that exists, but replace it

```
//MHLRES2C JOB (999,POK),'MHLRES2','CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=*  
*/
/* example of use of COPYGROUP to contrast with COPYGRP  
//S1  EXEC PGM=IEBCOPY  
//SYSPRINT DD  SYSOUT=*  
//INDD  DD  DISP=SHR,DSN=SYS1.LINKLIB  
//OUTDD  DD  DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1  
//SYSIN  DD  *  
COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD  
SELECT MEMBER=(ACCOUNT)  
```

In Example 7-12, you find the IEBCOPY messages showing that this COPYGROUP did not complete successfully because of a CONDITIONAL-REPLACE conflict. COPYGROUP is designed to ensure that members of a group are consistent, and that they do not affect members of any other group.

Example 7-12 IEBCOPY messages illustrating CONDITIONAL-REPLACE conflict

```
IEBCOPY MESSAGES AND CONTROL STATEMENTS PAGE 1
IEB11351 IEBCOPY FMID HDZ2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS
02.01.00 z/OS 02.01.00 HBB7790 CPU 2827
IEB10351 MHLRES2C S1 14:56:23 WED 18 SEP 2013 PARM=''  
COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD 00010011
```
The reason for the COPY GROUP CONDITIONAL-REPLACE CONFLICT is the COPY that was done in Scenario 4. We specified to copy member IKJEFA00 but did not also specify alias ACCOUNT, and because we were using COPY there was no automatic inclusion of ACCOUNT.

The listing of the members of the output data set MHLRES2.SYS1.LINKLIB.IEBCOPY1 is shown in Example 7-13.

The significant points to note are:
- Members ABA and the alias ARCABA have the same TTR reference 000121
- Member ACCOUNT shows that it is an alias of IKJEFA00 and has TTR reference 00031F
- Member IKJEFA00 shows that it is at TTR 00032C

This effectively means that ACCOUNT and IKJEFA00 are not the same member any longer although they might have the same content. COPYGROUP recognizes this and refuses to do the copy.

This situation cannot be corrected by using COPYGROUP. It must be corrected by using COPY and specifying (in this case) both the main member name IKJEFA00 and its alias ACCOUNT.

Scenario 7
In this scenario, we copy PDS to PDS where the output data set is not empty using COPY INDD,R OUTDD. SELECT the member and related alias of the member. Observe that neither the alias or the main member is replaced because of a COPY GROUP conflict.
In Example 7-14, you find the JCL that was run to show the use of the COPY statement with the SELECT minor statement to select a member and its alias that already exist in the output data set. In this case, we need to replace the main member name and alias so we used \texttt{INDD=((INDD,R))}.

\textbf{Example 7-14 JCL to COPY member and alias to correct inconsistency}

```
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
/* example of use of COPYGROUP to contrast with COPYGRP */
//S1 EXEC PGM=IEBCOPY
//SYSPRINT DD  SYSOUT=* 
/INDD DD DISP=SHR,DSN=SYS1.LINKLIB
//OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1
//SYSIN DD *
COPY INDD=((INDD,R)),OUTDD=OUTDD
SELECT MEMBER=(IKJEFA00)
SELECT MEMBER=(ACCOUNT)
```

In Example 7-15, we show the IEBCOPY messages showing that this COPY did complete successfully because both the member name and its alias were specified on the SELECT minor statement.

\textbf{Example 7-15 IEBCOPY messages showing that both member and alias were copied}

```
IEBCOPY MESSAGES AND CONTROL STATEMENTS PAGE 1
IEB1135I IEBCOPY FMID HD2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS
02.01.00 z/OS 02.01.00 HBB7790 CPU 2827
IEB1035I MHLRES2C S1 17:34:22 WED 18 SEP 2013 PARM='' 
COPY INDD=((INDD,R)),OUTDD=OUTDD 00010000
SELECT MEMBER=(IKJEFA00) 00020000
SELECT MEMBER=(ACCOUNT) 00030009
IEB1013I COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB
IEB1014I TO PDS OUTDD=OUTDD VOL=MLD83A DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1
IEB1013I COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB
IEB1014I TO PDS OUTDD=OUTDD VOL=MLD83A DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1
```

The reason for the COPY GROUP CONDITIONAL-REPLACE CONFLICT is the COPY that was done in Scenario 4. We specified to copy member IKJEFA00 but did not also specify alias ACCOUNT, and because we were using COPY there was no automatic inclusion of ACCOUNT.

The listing of the members of the output data set MHLRES2.SYS1.LINKLIB.IEBCOPY1 is shown in Example 7-16 on page 113.

The following significant points are worth noting:

- Members ABA and the alias ARCABA have the same TTR reference 000121 as before.
Member ACCOUNT shows that it is an alias of IKJEFA00 and has TTR reference 000406.
Member IKJEFA00 shows that it is at TTR 000406.

This effectively means that ACCOUNT and IKJEFA00 are now the same member and are at a new location in the output data set.

Example 7-16 Listing of members in output data set showing TTR consistency within groups

<table>
<thead>
<tr>
<th>Command</th>
<th>MHLRES2.SYS1.LINKLIB.IEBCOPY1</th>
<th>Scroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWSE</td>
<td></td>
<td>CSR</td>
</tr>
<tr>
<td>Name</td>
<td>Prompt</td>
<td>Alias-of</td>
</tr>
<tr>
<td>_________</td>
<td>_______</td>
<td>_________</td>
</tr>
<tr>
<td>ABA</td>
<td>ABA</td>
<td>ARCABA</td>
</tr>
<tr>
<td>ACCOUNT</td>
<td>ACCOUNT</td>
<td>IKJEFA00</td>
</tr>
<tr>
<td>ARCABA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKJEFA00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We illustrated the value of using COPYGROUP to ensure that members and their aliases remain consistent.

Scenario 8

Using the COPYGROUP statement demonstrates the use of the SELECT minor statement with wildcard character to specify the primary members to be copied. Expect to see alias names included when their primary member is specified for inclusion.

SYS1.LINKLIB is the source data set.

There are a number of members that start with ANTX, and a number that start with IKJ. Select these with ANTX*, and I%J* respectively.

In Example 7-17, you find the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statement to select two sets of members:

- With prefix ANTX and their aliases.
- With prefix IxK (where x is any character in position two) and their aliases.

The members may already exist in the output data set so we used INDD=((INDD,R)) so that they will get replaced.

Example 7-17 JCL to run COPYGROUP with SELECT statements with wildcards

```
//MHLRES2C JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T, NOTIFY=&SYSUID,TIME=1440,REGION=6M /*JOBPARM L=999,SYSAFF=* /* example of use of COPYGROUP to contrast with COPYGRP //S1 EXEC PGM=IEBCOPY //SYSPRINT DD SYSOUT=* //INDD DD DISP=SHR,DSN=SYS1.LINKLIB //OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 //SYSIN DD * COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD SELECT MEMBER=(ANTX*) SELECT MEMBER=(I%J*)
```

In Example 7-18 on page 114, we show the IEBCOPY messages resulting from the member name SELECT specifications. In particular, we see that there are many alias names that are automatically selected even though their names do not match the specified name selection pattern. We noted that 75 members and aliases were copied.
Example 7-18 IEBCOPY messages showing main members selected using wildcards

IEBCOPY MESSAGES AND CONTROL STATEMENTS
IEB11351 IEBCOPY FMID HDZ2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS
02.01.00 z/OS 02.01.00 HBB7790 CPU 2827
IEB10351 MHLRES2C S1 20:25:25 WED 18 SEP 2013 PARM=''
COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD
SELECT MEMBER=(ANTX*)
SELECT MEMBER=(I%J*)
IEB10131 COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB
IEB10141 TO PDS OUTDD=OUTDD VOL=MLDA39
DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1
IGW01264I TOTAL PRIMARY NAMES: 3047, FILTER PATTERN MATCHES: 37
IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY IKJEFA00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER ANTXCRSM HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER ANTXICAL HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01554I ALIAS CDELPAR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01553I ALIAS CDELPATH OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01554I ALIAS CESTPAIR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS CESTPATH OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS CGROUP OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS CQUERY OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01553I ALIAS CRECOVER OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS CSUSPEND OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS FCESTABL OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS FCQUERY OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS FCWITHDR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01554I ALIAS GETMSG OF COPIED PRIMARY IKJCNUGW HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJCNANT HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJCNASR HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01554I ALIAS IKJCNUMI OF COPIED PRIMARY IKJCNASR HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS IKJCT467 OF COPIED PRIMARY IKJCT469 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJCT469 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEES40 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFA00 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEFA30 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFA40 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFD38 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFD40 HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS IKJEFF03 OF COPIED PRIMARY IKJEFF04 HAS BEEN COPIED
 AND REPLACED
IEBCOPY MESSAGES AND CONTROL STATEMENTS

PAGE 2
IGW01552I MEMBER IKJEFF04 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEFF10 HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS IKJEFF15 OF COPIED PRIMARY IKJEFF04 HAS BEEN COPIED
 AND REPLACED
IGW01552I MEMBER IKJEFF18 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFF19 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFF50 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEFF51 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFF53 HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS IKJEFF55 OF COPIED PRIMARY IKJEFF50 HAS BEEN COPIED
 AND REPLACED
IGW01552I MEMBER IKJEFF57 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFT25 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFXSR HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCA00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCM00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCM00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLDDR HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLDD100 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLDD199 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLEHENP HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLHENU HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRMSG HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRM01 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRM03 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJRBBU0 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJTSOEV HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01554I ALIAS RQUERY OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
 AND REPLACED
IGW01553I ALIAS RSESSION OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS RVOLOME OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01554I ALIAS TSOENV OF COPIED PRIMARY IKJTSOEV HAS BEEN COPIED
 AND REPLACED
IGW01554I ALIAS UADSREFM OF COPIED PRIMARY IKJRBBU0 HAS BEEN COPIED
 AND REPLACED
IGW01553I ALIAS XADD OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01554I ALIAS XADDPAIR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
 AND REPLACED
IGW01553I ALIAS XADVANCE OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XCLIP OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XCOUPLE OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XDEL OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XDELPAIR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XEND OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XQUERY OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XRCV OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
IGW01553I ALIAS XRECOVER OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED
Scenario 9

In this scenario, the COPYGROUP statement is used to demonstrate the use of SELECT and EXCLUDE minor statements with wildcard characters to specify the members to be copied. Expect to see alias names excluded when their primary member is specified for exclusion.

SYS1.LINKLIB is the source data set.

There are a number of members that start with ANTX, and a number that start with IKJ.

Select these with ANTX*, and I%J* respectively and check whether any other members with a character other than K in position two of the member name.

Exclude the subset of I%J members that have EFF in positions 4 - 6 of the name.

In Example 7-19, we show the JCL that was run to show the use of the COPYGROUP statement with the SELECT minor statements to specify two sets of members and use of the EXCLUDE minor statement to exclude members from the second SELECT set:

- Select members with prefix ANTX and let COPYGROUP pick up their aliases.
- Select members with prefix IxK (where x is any character in the second position) and let COPYGROUP pick up their aliases.
- Exclude members with prefix IxJEFF to specify a subset of those with prefix IxK. Let COPYGROUP pick up their aliases and exclude them as well.

Note: The EXCLUDE minor statement is only allowed after a SELECT minor statement.

The members may already exist in the output data set so we used INDD=((INDD,R)) so that they will get replaced.

Example 7-19 JCL showing COPYGROUP with SELECT and EXCLUDE using wildcards

000010 //MHLRES2C JOB (999,POK), 'MHLRES2',CLASS=A,MSGCLASS=T,
000020 //NOTIFY=&SYSUID,TIME=1440,REGION=6M
000030 /*JOBPARM L=999,SYSAFF=*
000031 /* example of use of COPYGROUP to contrast with COPYGRP
000040 /*S1 EXEC PGM=IEBCOPY
000050 //SYSPRINT DD SYSPUT=*
000051 //INDD DD DISP=SHR,DSN=SYS1.LINKLIB
000060 //OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1
000080 //SYSIN DD *
000100 COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD
000200 SELECT MEMBER=(ANTX*)
000300 SELECT MEMBER=(I%J*)
In Example 7-20, you find the IEBCOPY messages resulting from the COPYGROUP major and SELECT and EXCLUDE minor statements. In particular, we see that there are many alias names that are automatically selected even though their names do not match the specified name selection pattern.

We noted that 64 member names were copied. This contrasts with the corresponding messages from Scenario 8 as in Example 7-18 on page 114 where 75 members were copied.

The difference is due to the EXCLUDE minor statement that has caused members and aliases to be omitted.

Example 7-20 IEBCOPY messages showing the number of members copied due to EXCLUDE

```
<table>
<thead>
<tr>
<th>IEBCOPY MESSAGES AND CONTROL STATEMENTS</th>
<th>PAGE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEB11351 IEBCOPY FMID HD22210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS 02.01.00 z/OS 02.01.00 HBB7790 CPU 2827</td>
<td></td>
</tr>
<tr>
<td>IEB10351 MHLRES2C S1 20:29:11 WED 18 SEP 2013 PARM=''</td>
<td></td>
</tr>
<tr>
<td>COPYGROUP INDD=((INDD,R)),OUTDD=OUTDD 00010000</td>
<td></td>
</tr>
<tr>
<td>SELECT MEMBER=(ANTX*) 00020000</td>
<td></td>
</tr>
<tr>
<td>SELECT MEMBER=(I%J*) 00030000</td>
<td></td>
</tr>
<tr>
<td>EXCLUDE MEMBER=(I%JEFF*) 00040018</td>
<td></td>
</tr>
<tr>
<td>IEB10131 COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB</td>
<td></td>
</tr>
<tr>
<td>IEB10141 TO PDS OUTDD=OUTDD VOL=MLDA39 DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1</td>
<td></td>
</tr>
<tr>
<td>IGW01264I TOTAL PRIMARY NAMES: 3047, FILTER PATTERN MATCHES: 29</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY IKJEFA00 HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXCRSM HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXICAL HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
<tr>
<td>IGW01554I ALIAS ACCOUNT OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED</td>
<td></td>
</tr>
</tbody>
</table>
```
IGW01552I MEMBER IKJCNANT HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJCNASR HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJCNUGW HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01554I ALIAS IKJCNUMI OF COPIED PRIMARY IKJCNASR HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS IKJCT467 OF COPIED PRIMARY IKJCT469 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJCT469 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEES40 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFA00 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJEFA10 HAS BEEN COPIED AND REPLACED
IEBCOPY MESSAGES AND CONTROL STATEMENTS

PAGE 2
IGW01552I MEMBER IKJEFA20 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFA30 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFA40 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFD38 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFD40 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFT25 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJEFXSRS HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCA00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCM00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJHCR00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLDI00 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLDI99 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLHENP HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJLHENU HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRMSG HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRM01 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJPRM03 HAS BEEN COPIED AND REPLACED
IGW01552I MEMBER IKJRBBU0 HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01552I MEMBER IKJTSEOV HAS BEEN COPIED AND REPLACED
A PRIMARY WITH ALIAS(ES)
IGW01554I ALIAS RQUERY OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS RSESSION OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS RVOLUME OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS TSOENV OF COPIED PRIMARY IKJTSEOV HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS UADSREFM OF COPIED PRIMARY IKJRBBU0 HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS XADD OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS XADDPAIR OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
IGW01554I ALIAS XADVANCE OF COPIED PRIMARY ANTXITSO HAS BEEN COPIED AND REPLACED
Scenario 10

We illustrated the functions of the COPYGROUP statement when processing PDS to PDS functions. COPYGROUP expanded on COPYGRP functions by including the capability to handle PDS to PDS that were not available with COPYGRP. COPYGRP when used on PDS behaves like COPY; that is it does not copy the related members.

In Example 7-21, you find the job used to demonstrate that COPYGRP only copies what is specified. In this case member AD was selected, which is one alias of the main member name IRRENV00, which was not selected.

Example 7-21 JCL for job to show COPYGRP on PDS not copying the group of data sets

```jcl
//MHLRES2C JOB (999,POK),"MHLRES2",CLASS=A,MSGCLASS=T,
  NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* */
/* example of use of COPYGRP to contrast with COPYGROUP */
//S1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=* 
//INDDD DD DISP=SHR,DSN=SYS1.LINKLIB 
//OUTDD DD DISP=SHR,DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1 
//SYSIN DD *
COPYGRP INDD=INDD,OUTDD=OUTDD 
SELECT MEMBER=(AD)
```

In Example 7-22 on page 120, we show that IEBCOPY COPYGRP only copied member AD, which is an alias.
Example 7-22 IEBCOPY messages showing only member AD was copied

IEBCOPY MESSAGES AND CONTROL STATEMENTS

IEB1135I IEBCOPY FMID HDZ2210 SERVICE LEVEL UA70502 DATED 20130821 DFSMS
02.01.00 z/OS 02.01.00 HBB7790 CPU 2827

IEB1035I MHLRES2C S1 12:33:21 THU 19 SEP 2013 PARM=''

COPYGRP INDD=INDD,OUTDD=OUTDD 00010007

SELECT MEMBER=(AD) 00020007

IEB1013I COPYING FROM PDS INDD=INDD VOL=Z21RB1 DSN=SYS1.LINKLIB

IEB1014I TO PDS OUTDD=OUTDD VOL=MLDA39

DSN=MHLRES2.SYS1.LINKLIB.IEBCOPY1

IEB167I FOLLOWING MEMBER(S) COPIED FROM INPUT DATA SET REFERENCED BY INDD

IEB1098I 1 OF 1 MEMBERS COPIED FROM INPUT DATA SET REFERENCED BY INDD

IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE

Example 7-23 shows the resulting members in the output data set. Alias name AD was copied, and has retained the information that it is an alias of main member of IRRENV00.

Also shown are member names IKJTSOEV and RQUERY. The member name IRRENV00, which should be between those two is missing.

This situation can be corrected by running IEBCOPY with COPYGRP or COPY statement and selecting the main member name IRRENV00 and all the aliases.

Alternatively, the COPYGROUP statement can be used to correct the situation more easily but only after the member AD has been deleted. If member AD is not deleted, a CONFLICT will occur.

Example 7-23 Listing of the output data set showing member AD as alias of IRRENV00

<table>
<thead>
<tr>
<th>LIBRARY</th>
<th>MHLRES2.SYS1.LINKLIB.IEBCOPY1</th>
<th>Row 0000001 of 0000078</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command ==></td>
<td>MHLRES2.SYS1.LINKLIB.IEBCOPY1</td>
<td>Scroll ==> CSR</td>
</tr>
<tr>
<td>Name</td>
<td>Prompt</td>
<td>Alias-of</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>ABA</td>
<td>ARCABA</td>
<td>00004140</td>
</tr>
<tr>
<td>ACCOUNT</td>
<td>IKJEFA00</td>
<td>00001430</td>
</tr>
<tr>
<td>AD</td>
<td>IRRENV00</td>
<td>00040708</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKJTSOEV</td>
<td></td>
<td>000000D8</td>
</tr>
<tr>
<td>RQUERY</td>
<td>ANTXITSO</td>
<td>00069CD8</td>
</tr>
</tbody>
</table>

Scenarios 1 - 10 illustrate the advantage of using the DFSMS V2.1 new COPYGROUP statement.

PDS or PDSE to PDS operations

The original COPYGRP statement does work for PDSE output data sets. The restriction is only for PDS output data sets when COPYGRP behaves if the COPY statement had been specified, subject to the syntax rules for COPYGRP.
Unloading PDS to PDSE data sets to physical sequential data sets
COPYGRP will only work (in group mode) for PDSE to physical sequential (PS). If the input is a PDS, only the name specified on a SELECT statement will be copied.

COPYGROUP will work for PDSE or PDS to PS.

Loading unloaded PDS or PDSE data sets from PS data sets
COPYGRP will only work for PS to PDSE.

COPYGROUP will work for PS to PDS or to PDSE.

Compatibility
The COPYGROUP statement is not available on DFSMS releases before DFSMS V2.1.

The COPYGRP statement as provided in DFSMS V2.1 is functionally the same as on releases before DFSMS V2.1.

7.2 IEBCOPY user exit capabilities

There are significant enhancements to the user exit capability for IEBCOPY. They are only available when IEBCOPY is invoked from another program. The new exit capability allows:

- Generation of an input stream for IEBCOPY without using a JCL-managed SYSIN stream.
- Feedback of output to be added to the SYSPRINT stream.

7.2.1 Exit capabilities

There are two exit options, either one or both can be used. We created an example of the use of the control statement exit to supply SYSIN statements.

Control statement exit
The control statement exit can be used to specify statements to be passed as though from SYSIN, and to provide data to be passed to the IEBCOPY SYSPRINT stream.

We created a program (IEBCPYL) to illustrate the use of the control statement exit, while also using the page number setting option that was available before DFSMS V2.1.

The assembler source for IEBCPYL is provided in the appendix at Example C-6 on page 394.

In Example 7-24, we show the JCL to run the program IEBCPYL that invokes the IECOPY copy program to use the control statement exit. The IEBCPYL program is for illustrative purposes only and issues diagnostic write to operator (WTO) messages. The JCL is standard for IECOPY but note that no SYSIN is present. Normally, the absence of a SYSIN JCL statement would cause IECOPY to generate an internal COPY from DD SYSUT1 to DD SYSUT2 to pass to the SYSIN stream.

The exit generates the following statements:
- COPY INDD=SYSUTX,OUTDD=SYSUTY
- SELECT MEMBER=A

Example 7-24 JCL to invoke IEBCPYL to use the Control Statement Exit capability
//MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10,
We show the result of running program IEBCPYL in two parts. The first part is the job log that shows the WTO messages along with the usual SYSOUT. The second part shows the IEBCOPY messages.

The control statement exit invoked by IEBCPYL is called IEBCPYC for this example.

The assembler source for IEBCPYC is provided in the appendix in Example C-8 on page 396.

In Example 7-25, we show the system output from running the IEBCPYL program. The WTO messages are:

- **GOT TO IEBCPYEC**: Issued each time the IEBCPYC is entered
- **CPLST_CONTROL_INIT**: Issued when IEBCOPY calls IEBCPYC for initialization
- **CPLST_CONTROL_DATA - n**: Issued when IEBCOPY calls IEBCPYC for data or to END

Example 7-25 Output resulting from running IEBCPYL (JOBLOG)

```

15.17.46 JOB19260 ----- SUNDAY, 27 OCT 2013 -----  
15.17.46 JOB19260 IRR010I USERID MHLRES2 IS ASSIGNED TO THIS JOB.  
15.17.46 JOB19260 ICH70001I MHLRES2 LAST ACCESS AT 15:17:11 ON SUNDAY, OCTOBER  
27, 2013  
15.17.46 JOB19260 $HASP373 MHLRES2E STARTED - INIT 1 - CLASS A - SYS  
SC64  
15.17.46 JOB19260 IEF403I MHLRES2E - STARTED - TIME=15.17.46 - ASID=0024 - SC64  
15.17.46 JOB19260 +GOT TO IEBCPYEC  
15.17.46 JOB19260 +CPLST_CONTROL_INIT  
15.17.46 JOB19260 +GOT TO IEBCPYEC  
15.17.46 JOB19260 +CPLST_CONTROL_DATA - 1  
15.17.46 JOB19260 +GOT TO IEBCPYEC  
15.17.46 JOB19260 +CPLST_CONTROL_DATA - 2  
15.17.46 JOB19260 +GOT TO IEBCPYEC  
15.17.46 JOB19260 +CPLST_CONTROL_DATA - 3  
15.17.46 JOB19260 +GOT TO IEBCPYEC  
15.17.46 JOB19260 +CPLST_CONTROL_DATA - E  
15.17.46 JOB19260 PROGRAM : IEBCPYL IN STEP : COPY - COND CODE : 0000  
15.17.46 JOB19260 TOTAL CPU (SECS) BLKS READ/WRITE TOTAL SWAPS  
15.17.46 JOB19260 0.07 1.154  
15.17.46 JOB19260 IEF404I MHLRES2E - ENDED - TIME=15.17.46 - ASID=0024 - SC64  
15.17.46 JOB19260 $HASP395 MHLRES2E ENDED  
------ JES2 JOB STATISTICS ------  
27 OCT 2013 JOB EXECUTION DATE  
13 CARDS READ
```
Chapter 7. DFSMSdfp enhancements

111 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
6 SYSOUT SPOOL KBYTES
0.01 MINUTES EXECUTION TIME

1 //MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10,
JOB19260
 // MSGCLASS=J,
00020000
 // REGION=1M,
00030018
 // MSGLEVEL=1,CLASS=A,
00040000
 // NOTIFY=&SYSUID
00050000
 IEFC653I SUBSTITUTION JCL -
(1234567,COMMENT),MHLRES2,TIME=10,MSGCLASS=J,REGION=1M,MSGLEVEL=1,CLASS=A,
 NOTIFY=MHLRES2
 2 /*JOBPARM S=*
00060000
 3 //COPY EXEC PGM=IEBCPYL,REGION=1M
00070018
 4 //STEPLIB DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD
00080000
 5 //SYSPRINT DD SYSOUT=*
00090000
 6 //SYSUDUMP DD SYSOUT=*
00100000
 7 //SYSUTX DD DISP=SHR,DSN=SYS1.SIEALNKE
00110019
 8 //SYSUTY DD DISP=(,DELETE),UNIT=SYSALLDA,SPACE=(TRK,(050,1,100)),
00120019
 // DCB=(SYS1.SIEALNKE),DSNTYPE=LIBRARY
00130000
STMT NO. MESSAGE
-
 8 IGD01008I SC ACS GETS CONTROL &ACSENVIR=ALLOC
 8 IGD01008I STORCLAS SET TO
ICH70001I MHLRES2 LAST ACCESS AT 15:17:11 ON SUNDAY, OCTOBER 27, 2013
IEF236I ALLOC. FOR MHLRES2E COPY
IEF237I 960D ALLOCATED TO STEPLIB
IEF237I JES2 ALLOCATED TO SYSPRINT
IEF237I JES2 ALLOCATED TO SYSUDUMP
IEF237I 960D ALLOCATED TO SYSUTX
IGD100I A72B ALLOCATED TO DDNAME SYSUTY DATACLASS ()
GOT TO IEBCPYEC
CPLST_CONTROL_INIT
GOT TO IEBCPYEC
CPLST_CONTROL_DATA - 1
GOT TO IEBCPYEC
CPLST_CONTROL_DATA - 2
GOT TO IEBCPYEC
CPLST_CONTROL_DATA - 3
GOT TO IEBCPYEC
CPLST_CONTROL_DATA - E
IEF142I MHLRES2E COPY - STEP WAS EXECUTED - COND CODE 0000
In Example 7-26, we show the IEBCOPY output resulting from running program IEBCPYL.

- The page number has been set to PAGE 4 to illustrate use of the PAGE NUM option.
- The COPY INDD=SYSUTX,OUTDD=SYSUTY statement has been generated and executed. The copy step failed due to lack of space in the output data set.
- The COPY INDD=SYSUTX,OUTDD=SYSUTY has been generated again, together with the SELECT MEMBER=A statement. The copy step failed because member A is not in the input data set.

Example 7-26 Output resulting from running IEBCPYL (IEBCOPY)
IEB1014I TO PDSE OUTDD=SYSUTY VOL=SBOX76
DSN=SYS13300.T151746.RA000.MHLRES2E.R0111849
IGW01550I 0 OF 1 SPECIFIED MEMBERS WERE COPIED
IEB177I A WAS SELECTED BUT NOT FOUND IN ANY INPUT DATA SET
IEB151I JOB HAS TERMINATED WITH ERROR(S)
IEB147I END OF JOB - 8 WAS HIGHEST SEVERITY CODE

Member selection exit
The member selection exit can be used to refine the list of members from a data set to be
processed. It is invoked by IEBCOPY if requested, and is called by IEBCOPY, which passes a
data area like the one passed to the control statement exit. Additional data is provided relating
to the member list.

Compatibility
The enhanced user exit capability is not provided on systems before DFSMS V2.1.

Note: The PARM list that can be passed to DFP utilities is extended to four addresses for
IEBCOPY with DFSMS V2.1. The fourth address is for use with the new IEBCOPY exits.

It is possible that some existing programs have three addresses specified but have not
indicated that the third address is the last provided. This would not have mattered before
DFSMS V2.1 since IEBCOPY was only looking for up to three addresses. With DFSMS
V2.1, if the third address is not flagged as the last one, IEBCOPY attempts to process a
fourth address with unpredictable results.

7.3 IEBCOPY return code feedback
If IEBCOPY is invoked from another program, feedback is available in DFSMS V2.1 to assist
with diagnosis of any problems with the FAMS routines. The information is returned in
General Register 0. The return code presented in Register 15 is not new.

The FAMS code is used when processing data sets in PDSE format.

We have written sample code that shows a way to document the special diagnosis
information that is available starting with DFSMS V2.1.

To test the analysis routine for the data that might be returned in Register 0, the program
accepts a PARM value that can be set up to simulate what might be returned in register 0.

The program calls IEBCOPY then presents messages with the results of the analysis.

In Example 7-27, we show the JCL to run program IEBCPYF. The program is in data set
MHLRES2.IEBCOPY.DFSMS21.LOAD. The source for this program is in the appendix in
Example C-1 on page 390.

As shown in Example 7-27, the PARM is not used because there is a blank before the
keyword PARM.

Example 7-27 JCL to run program IEBCPYF
//MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10,
// MSGCLASS=J,
// REGION=500K,
Example 7-28 shows the messages resulting from running the JCL in Example 7-27 on page 125.

This job was set up so that it would have problems with the IEBCOPY operation, but the problems are not in the FAMS code.

The IEBCOPY process ends with return code 8, which is also reflected in the messages from IEBCPYF. In this case, since the FAMS code did not abend, register 0 was set to all zeros.

Example 7-29 shows the messages resulting from running the JCL in Example 7-27 on page 125 but the blank before the PARM= operand was removed so that the PARM takes effect. In Example 7-29, we show the effect of running with a PARM.
Compatibility

The Register 0 feedback is not formally provided on systems before DFSMS V2.1. The contents of register 0 may not have been set explicitly, so although the program could run, any interpretation would be unreliable.

7.4 Open Close and End of volume (OCE) partial release

In this section, we describe the Open, Close, and End of volume (OCE) partial release enhancements in DFSMS V2.1. First, we look at the OCE partial release in systems before DFSMS V2.1.

7.4.1 Before DFSMS V2.1

In systems before DFSMS V2.1, unused space at the end of a data set is released under these conditions:

- Sequential or partitioned data set.
- RLSE is coded on the DD statement or the management class specifies it.
- During DFSMShsm space management or when a program closes the data set that is open for writing.

If the data set has multiple volumes, the space is released only on one volume. Space is not released on subsequent volumes that the data set may have expanded to previously. An exception is for striped data sets where space is released on all volumes if possible.
7.4.2 DFSMS V2.1 enhancement

If a data set is SMS-managed, all the unused space in the data set on all volumes will be released:

- The Format 1 or 8 data set control block (DSCB) will remain with no extents.
- The catalog entry will still show the volume serials.
- Space is released even if the storage class specifies Guaranteed Space.

7.4.3 Illustration scenarios

We generated an environment to show the different behavior of partial release between a DFSMS V1.13 system and DFSMS V2.1 system. Scenario 1 to scenario 3 are from a DFSMS V1.13 system.

Scenario 1

In this scenario, we created a data set specifying that it occupy three volumes.

In Example 7-30 we show the JCL used to allocate the sample data set called MHLRES2.TESTREL.PS. This allows use of three volumes for data set MHLRES2.TESTREL.PS. Ten cylinders primary plus 15 extents will be allocated on the first volume then 16 extents on each of the other two volumes, making 48 extents in all.

Example 7-30 JCL to allocate data set MHLRES2.TESTREL.PS on three volumes

```
//MHLRES2H JOB (999,POK), 'MHLRES2',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*/ ALLOCATE SEQUENTIAL DATA SET ON 3 VOLUMES
/*JOBPARM L=999,SYSAFF=* 
//TSO     EXEC PGM=IEFBR14
//ALLOC    DD  DSN=MHLRES2.TESTREL.PS,DISP=(NEW,CATLG),
//             UNIT=(SYSDA,3)
//             SPACE=(CYL,(10,1)),
//             DCB=(LRECL=80,RECFM=FB,BLKSIZE=160)
```

To illustrate the effect of using a data set to its full extent then show the effect of releasing space after the data set had been used to a much smaller extent, we created a program to use the data set. The sample program code is provided in the appendix section “Sample job to initialize data set for OCE Partial Release” on page 414.

The program has two modes:

- Run until the data set was full and all extents used (ending with abend SB37)
- Run and write only 1000 records

Scenario 2

In Example 7-31, we show the JCL to write records to completely fill the data set MHLRES2.TESTREL.PS. The JCL statement containing the RLSE parameter is commented out.

Example 7-31 JCL to write to data set on three volumes

```
//MHLRES2H JOB (1234567,COMMENT),MHLRES2,TIME=10,
// MSGCLASS=J,
// REGION=500K,
// MSGLEVEL=1,CLASS=A,
// NOTIFY=&SYSUID
```
/*JOBPARM S=*
//COPY EXEC PGM=GENREC1,REGION=500K PARM='SHORT'
//STELIB DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD
//SYSPRINT DD SYSDUMP=*
//PRINT DD SYSDUMP=*
//GENDCB DD DISP=SHR,DSN=MHLRES2.TESTREL.PS
//* SPACE=(TRK,1,RLSE)
//SYSIN DD DUMMY

In Example 7-32, we show that the data set MHLRES2.TESTREL.PS has had 57 cylinders allocated in 48 extents.

Example 7-32 ISPF display of initialized data set MHLRES2.TESTREL.PS

Data Set Information
Command ===>
Data Set Name : MHLRES2.TESTREL.PS
General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 57
Storage class . . . : STANDARD Allocated extents . : 48
Volume serial . . . : MLD83A +
Device type : 3390
Data class : **None**
Organization . . . : PS Current Utilization
Record format . . . : FB Used cylinders . . : 57
Record length . . . : 80 Used extents . . . : 48
Block size : 160
1st extent cylinders: 10
Secondary cylinders : 1
Data set name type :
SMS Compressible. . : NO Dates
Creation date . . . : 2013/10/12
Referenced date . . : 2013/10/12
Expiration date . . : ***None***

To display multiple volumes press Enter or enter Cancel to Exit.

In Example 7-33, we show the three volumes the data set MHLRES2.TESTREL.PS is allocated on.

Example 7-33 ISPF display of volumes used by data set MHLRES2.TESTREL.PS

Data Set Information
C Esseessssssssss Volume Information sssssssssssN
 e e
D e Command ===>
 e e
G e All allocated volumes:
 e More:
 e Number of volumes allocated: 3
 e e Allocation
 e MLD83A MLD835 MLD32E
 e
In Example 7-34, we show that on the first of the three volumes that data set MHLRES2.TESTREL.PS is allocated on has used 375 tracks. This is 25 cylinders (1 of 10 plus 15 of 1 cylinder each).

Example 7-34 ISPF display showing data set MHLRES2.TESTREL.PS on the first volume

In Example 7-35, we show that on the second of the three volumes that data set MHLRES2.TESTREL.PS is allocated on has used 240 tracks. The 240 tracks are 16 cylinders. The same attributes apply on the third volume, which is not shown.

Example 7-35 ISPF display showing data set MHLRES2.TESTREL.PS on the second volume

Scenario 3
In this scenario, we write 1000 records (the number itself is not significant but it is much less than could fit in the full three volume data set. In this case, we specify that unused space is to be released by including the JCL statement containing the RLSE statement.

The program PARM specified PARM=SHORT, which causes it to write only 1000 records.

In Example 7-36, we show the JCL that was used to write 1000 records to the data set MHLRES2.TESTREL.PS.

Example 7-36 JCL to write 1000 records in data set MHLRES2.TESTREL.PS

//MHLRES2H JOB (1234567,COMMENT),MHLRES2,TIME=10, // MSGCLASS=J,
In Example 7-37, we show that after writing only 1000 records in the data set MHLRES2.TESTREL.PS on a DD statement that specified the RLSE parameter, the overall allocation reduced from 57 to 33 cylinders. This reduction has occurred on the first volume of the three because the 1000 records were written to only the first volume. There are two volumes with 16 cylinders each still allocated and unused.

Example 7-37 ISPF display showing that data set MHLRES2.TESTREL.PS using 33 CYLs

Scenario 4
In this scenario, we repeated scenario 3 but this time running on a DFSMS V2.1 system.

We ran the JCL as in Example 7-36 on page 130 with the only change being to run it on a DFSMS V2.1 system. The ISPF data set information panel is shown in Example 7-38.

Example 7-38 ISPF display showing data set MHLRES2.TESTREL.PS has reduced to 1 CYL
The potential allocation attributes remain even though there is no space allocated on the additional two volumes.

The data set can be expanded to the three volumes by providing suitable JCL SPACE attributes. The space allocated depends on what is specified in the run that writes to the data set, not in what was originally allocated.

In Example 7-39, we show the JCL to write to fill data set MHLRES2.TESTREL.PS based on SPACE=(CYL,(10,1)) SPACE attributes that will be added to what was retained in the data set after releasing the space.

Example 7-39 JCL to fill data set MHLRES2.TESTREL.PS based on SPACE=(CYL,(10,1))

```jcl
//MHLRES2H JOB (1234567,COMMENT),MHLRES2,TIME=10,
  // MSGCLASS=J,
  // REGION=500K,
  // MSGLEVEL=1,CLASS=A,
  // NOTIFY=&SYSUID
/*JOBPARM S=* EXEC PGM=GENREC1,REGION=500K PARM='SHORT'
//STEPLIB DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD
//SYSPRINT DD SYSOUT=*
//PRINT DD SYSOUT=* 
//SYSUDUMP DD SYSOUT=* 
//GENDCB DD DISP=SHR,DSN=MHLRES2.TESTREL.PS,
  // SPACE=(CYL,(10,1))
//SYSIN DD DUMMY
```

Example 7-40 shows that data set MHLRES2.TESTREL.PS has expanded to 46 cylinders allocated across 48 extents, which is the limit for three volumes.

Example 7-40 ISPF display showing data set MHLRES2.TESTREL.PS after expansion

```
Data Set Information
Command ==> 

Data Set Name . . . . : MHLRES2.TESTREL.PS
```
<table>
<thead>
<tr>
<th>General Data</th>
<th>Current Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management class . . : MCDB22</td>
<td>Allocated cylinders : 46</td>
</tr>
<tr>
<td>Storage class . . . : STANDARD</td>
<td>Allocated extents . : 48</td>
</tr>
<tr>
<td>Volume serial . . . : MLD83A +</td>
<td></td>
</tr>
<tr>
<td>Device type : 3390</td>
<td></td>
</tr>
<tr>
<td>Data class : None</td>
<td></td>
</tr>
<tr>
<td>Organization . . . : PS</td>
<td></td>
</tr>
<tr>
<td>Record format . . . : FB</td>
<td>Current Utilization</td>
</tr>
<tr>
<td>Record length . . . : 80</td>
<td>Used cylinders . : 46</td>
</tr>
<tr>
<td>Block size : 160</td>
<td>Used extents . . : 48</td>
</tr>
<tr>
<td>1st extent cylinders: 1</td>
<td></td>
</tr>
<tr>
<td>Secondary cylinders : 1</td>
<td>Dates</td>
</tr>
<tr>
<td>Data set name type :</td>
<td>Creation date . . . : 2013/10/12</td>
</tr>
<tr>
<td></td>
<td>Referenced date . . : 2013/10/12</td>
</tr>
<tr>
<td></td>
<td>Expiration date . . : None</td>
</tr>
<tr>
<td>SMS Compressible . . : NO</td>
<td></td>
</tr>
</tbody>
</table>

Compatibility

The enhanced space release function is not provided in releases before DFSMS V2.1.

A data set that has had space partially released on a pre-DFSMS V2.1 system will have all unused space released if it is written to a DFSMS V2.1 system, even if the new data only goes to the first volume of two or more volumes. That is, as data sets are processed on DFSMS V2.1 their excess space is released.

7.5 OCE RAS enhancements

There are three enhancements: reliability, availability, and serviceability (RAS):

- S837 RC08 ABEND elimination
- Comments in SYS1.PARMLIB IEAAPxx member
- DCBE invalidation message IEC190I

7.5.1 S837 RC08 ABEND elimination

In order to access data on DISK or TAPE, tasks must set up the necessary definitions. Whether from job control language (JCL) or via dynamic allocation, data sets need to be allocated.

For output data sets, it is also necessary for at least one volume to be specified. This can be specified directly or through the System Managed Storage (SMS) function.

A volume count can be specified in the JCL or via SMS, but it is by default five. Until DFSMS V2.1, if any more than five volumes are required, the higher number (including the initial five) must be specified.

When access to a data set is defined, a Job File Control Block (JFCB) is allocated in storage, and one of the fields in the JFCB has room for up to five volumes.

If provision for more than five volumes is specified, a JFCB Extension is required. If a volume count of more than five is specified in JCL or via dynamic allocation, the JFCB extension is also created then.
Until the DFSMS V2.1 enhancement was implemented, if a task required more than five volumes and had not been specified, the task would issue S837 RC08 abend and fail. The task would typically have to be restarted with an update to specify provision for more volumes. DFSMS V2.1 automatically creates a JFCB extension for the additional volumes.

We created a job that required more than five volumes for output without specifying a volume count to demonstrate that the automatic creation of a JFCB extension works.

The JCL for the job is shown in Example 7-41. On the TAPE DD statement, there is no VOL specification.

Example 7-41 Tape job that requires more than five volumes running without a volume count in JCL

```
//MHLPRES2D  JOB 99990000,UAALFO,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S**
//DFDSS PROC
//DFDSS EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=A
// PEND
// EXEC DFDSS
//DASD DD DISP=SHR,UNIT=3390,VOL=SER=SERVR1
//TAPE DD UNIT=VT3590,
// DISP=(NEW,PASS),
// DSN=MHLRES2.DSSDUMP.Z21RA1
//SYSIN DD *
DUMP OUTDDNAME(TEAPE) INDD(DASD) ALLEXCP ALLEXDATA(*) OPTIMIZE(4)
```

The job ran and used 18 volumes. Select parts of the job output are shown in Example 7-42.

Example 7-42 Output from TAPE job requiring more than five volumes without a volume count specified

```
//MHLPRES2D  JOB 99990000,UAALFO,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S**
//DFDSS PROC
//DFDSS EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=A
// PEND
// EXEC DFDSS
//DASD DD DISP=SHR,UNIT=3390,VOL=SER=SERVR1
//TAPE DD UNIT=VT3590,
// DISP=(NEW,PASS),
// DSN=MHLRES2.DSSDUMP.Z21RA1
//SYSIN DD *
DUMP OUTDDNAME(TEAPE) INDD(DASD) ALLEXCP ALLEXDATA(*) OPTIMIZE(4)
IEC502E RK 0442,VT0027,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC501A M 0442,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC705I TAPE ON 0442,VT0028,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1,MEDIA5
IEC502E RK 0442,VT0028,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC501A M 0442,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC705I TAPE ON 0442,VT0029,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1,MEDIA5
IEC502E RK 0442,VT0029,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC501A M 0442,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC705I TAPE ON 0442,VT0030,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1,MEDIA5
IEC502E RK 0442,VT0030,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC501A M 0442,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC705I TAPE ON 0442,VT0031,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1,MEDIA5
IEC502E RK 0442,VT0031,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
IEC501A M 0442,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21RA1
```
Several more IEC705I and IEC502E messages and other output, through to

IEF285I MHLRES2.DSSDUMP.Z21RA1 DELETED
IEF285I VOL SER NOS= VT0024,VT0025,VT0026,VT0027,VT0028,
IEF285I VOL SER NOS= VT0029,VT0030,VT0031,VT0033,VT0034,
IEF285I VOL SER NOS= VT0035,VT0036,VT0037,VT0038,VT0039,
IEF285I VOL SER NOS= VT0040,VT0041,VT0042.
IEF375I JOB/MHLRES2D/START 2013255.2216
IEF033I JOB/MHLRES2D/STOP 2013255.2226
CPU: 0 HR 00 MIN 04.11 SEC SRB: 0 HR 00 MIN 00.64 SEC
PAGE 0001 5695-DF175 DFSMSDSS V2R01.0 DATA SET SERVICES 2013.255 22:16
DUMP OUTDDNAME(TAPE) INDD(DASD) ALLEXCP ALLDATA(*) OPTIMIZE(4) + 0013000
ADMIN
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'DUMP '
ADR109I (R/I)-RI01 (01), 2013.255 22:16:09 INITIAL SCAN OF USER CONTROL STATEME
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.255 22:16:09 EXECUTION BEGINS
ADR006I (001)-STEND(02), 2013.255 22:26:26 EXECUTION ENDS
ADR013I (001)-CLTSK(01), 2013.255 22:26:26 TASK COMPLETED WITH RETURN CODE 0000
ADR012I (SCH)-DSSU (01), 2013.255 22:26:26 DFSMSDSS PROCESSING COMPLETE. HIGHES

The IEF285I messages show that 18 volumes were used.

7.5.2 S837 RC08 ABEND in DFSMS V1.13

As an illustration of the consequence of omitting a volume count on an output DD statement when more than five volumes could be required, we ran the same job on a z/OS V1.13 system. The JCL is in Example 7-41 on page 734. The output illustrated in Example 7-43 shows that the job failed.

Example 7-43 Output from TAPE job running on z/OS V1.13 showing ABEND S837 RC08

output from TAPE job requiring more than 5 volumes without a volume count specifi
10.36.16 JOB12856 IEC502E RK 042A,VT0051,SL,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.Z21R
10.36.16 JOB12856 *IEC501A M 042A,PRIVAT,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DSSDUMP.
10.36.16 JOB12856 IEC705I TAPE ON 042A,VT0052,SL,COMP,MHLRES2D,DFDSS,MHLRES2.DS
10.36.53 JOB12856 IEC028I 837-08,IFG0554A,MHLRES2D,DFDSS,TAPE,042A,VT0052, 677
10.36.53 JOB12856 MHLRES2.DSSDUMP.Z21RA1
10.36.53 JOB12856 - --TIMINGS (MINS.)--
10.36.53 JOB12856 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK
10.36.53 JOB12856 -MHLRES2D DFS 08 46667 .02 .00 3.15
10.36.53 JOB12856 IEF234E K 042A,VT0052,PRV,MHLRES2D
10.36.53 JOB12856 IEF404I MHLRES2D - ENDED - TIME=10.36.53 - ASID=001E - SC63
10.36.53 JOB12856 MHLRES2D ENDED. NAME-UAALFO TOTAL CPU TIME=
10.36.53 JOB12856 $HASP395 MHLRES2D ENDED
------- JES2 JOB STATISTICS -------
13 SEP 2013 JOB EXECUTION DATE
13 CARDS READ
89 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
7 SYSOUT SPOOL KBYTES
3.15 MINUTES EXECUTION TIME
1 //MHLRES2D JOB 99990000,UAALF0,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=SC63
IEFC653I SUBSTITUTION JCL - 99990000,UAALF0,CLASS=A,NOTIFY=MHLRES2
2 //FDSS PROC
//FDSS EXEC PGM=ADRDSSU,REGION=OM
//SYSPRINT DD SYSOUT=A
//PEND
3 // EXEC DFSS
4 ++DFSS PROC
5 ++DFSS EXEC PGM=ADRDSSU,REGION=OM
6 ++SYSPRINT DD SYSOUT=A
7 //DASD DD DISP=SHR,UNIT=3390,VOL=SER=SERVR1
8 //TAPE DD UNIT=VT3590,
 // DISP=(NEW,PASS),
 // DSN=MHLRES2.DSSDUMP.Z21RA1
9 //SYSIN DD *
STMT NO. MESSAGE
3 IEFC001I PROCEDURE DFSS WAS EXPANDED USING INSTREAM PROCEDURE DEFINIT
ICH70001I MHLRES2 LAST ACCESS AT 23:28:19 ON THURSDAY, SEPTEMBER 12, 2013
IEF236I ALLOC. FOR MHLRES2D DFDS
IEF237I JES2 ALLOCATED TO SYSPRINT
IEF237I 6619 ALLOCATED TO DASD
IGD100I 042A ALLOCATED TO DDNAME TAPE DATACLASS ()
IEF237I JES2 ALLOCATED TO SYSIN
IEC028I 837-08,IFGO554A,MHLRES2D,DFDSS,TAPE,042A,VT0052,
 MHLRES2.DSSDUMP.Z21RA1
IEF142I MHLRES2D DFDSS - STEP WAS EXECUTED - COND CODE 0008
IEF285I MHLRES2D.MHLRES2D.JOB12856.D0000102.? SYSO
IEF285I SYS13256.T103344.RA000.MHLRES2D.R0402778 KEPT
IEF285I VOL SER NOS= SERVR1.
IEF285I MHLRES2D.MHLRES2D.JOB12856.D0000101.? SYSO
IEF373I STEP/DFDSS /START 2013256.1033
IEF032I STEP/DFDSS /STOP 2013256.1036
CPU: 0 HR 00 MIN 01.30 SEC SRB: 0 HR 00 MIN 00.27 SEC
VIRT: 2172K SYS: 348K EXT: 11732K SYS: 10352K
IEF285I MHLRES2.DSSDUMP.Z21RA1 DELETED
IEF285I VOL SER NOS= VT0048,VT0049,VT0050,VT0051,VT0052.
IEF375I JOB/MHLRES2D/START 2013256.1033
IEF373I STEP/DFDSS /START 2013256.1036
CPU: 0 HR 00 MIN 01.30 SEC SRB: 0 HR 00 MIN 00.27 SEC
PAGE 0001 5695-DF175 DFSMSDSS VIR13.0 DATA SET SERVICES 2013.256 10:33
DUMP OUTDDNAMETAPE INDD(DASD) ALLEXCP ALLDATA(*) OPTIMIZE(4) ADMIN 00130004
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'DUMP'
ADR109I (R/I)-RI01 (01), 2013.256 10:33:44 INITIAL SCAN OF USER CONTROL STATEMENTS
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.256 10:33:44 EXECUTION BEGINS
ADR049E (001)-STEND(01), 2013.256 10:36:53 DFSMSDSS FUNCTION TASK ABEND RECOVERY CODE=0008
ADR006I (001)-STEND(02), 2013.256 10:36:53 EXECUTION ENDS
Compatibility
The enhancement to eliminate the ABEND S837 RC08 is not provided for releases before DFSSMS V2.1.

7.6 IEAAPPxx comments

The SYS1.PARMLIB IEAAPPxx member is used to specify I/O appendages for special circumstances.

Before DFSMS V2.1, it was not possible to add comments to the IEAAPPxx member requiring documentation of the reason for particular settings to be held elsewhere.

DFSMS V2.1 has been updated to allow comments in two forms:

- An asterisk (*) in column one is typically used for comments at the start of the member.
- Comments anywhere in the member enclosed in the /* comment */ sequence.

An example of comments used in an IEAAPPOO sample member is shown in Example 7-44.

Example 7-44 IEAAPPOO member of SYS1.PARMLIB with comments

```
* MEMBER IEAAPPXX OF SYS1.PARMLIB SPECIFIES THE AUTHORIZED
* I/O APPENDAGES THAT ARE TO BE LOADED FOR SPECIAL I/O SITUATIONS.
* A CHANGE WITH DFSMS V2.1 ALLOWS COMMENTS IN THE MEMBER.
* THE COMMENTS MAY BE SPECIFIED BY * IN COLUMN 1
* AS IN THIS PART OF THE MEMBER, TYPICALLY USED FOR A PREFIX FOR
* THE MAIN CONTENTS.
* THE ENTRIES IN THIS MEMBER DENOTE THE SUFFIXES TO MODULES
* WHERE THE FIRST 6 CHARACTERS ARE IGG019
* COMMENTS CAN ALSO BE INSERTED ANYWHERE IN THE MEMBER IF ENCLOSED
* IN THE /* */ SEQUENCE OF CHARACTERS.
* THIS WOULD TYPICALLY BE USED TO DOCUMENT THE REASON FOR A */
* PARTICULAR LINE IN THE MEMBER */
SIAPP Y1,Y2,
EOEAPP X1,Z2,X3,X4,X5,X6, /* IGG019X3 IS USED FOR EOEAPP */
PCIAPP X3 /* AND FOR PCIAPP */
```

Compatibility
The enhancement to allow comments in IEAAPPxx is not provided for releases before DFSMS V2.1.

7.7 DCBE invalidation message IEC190I

The Data Control Block Extension (DCBE) is a designed extension to the standard DCB that is required for various data management functions.

The DCBE and related functions can only be used successfully if the linkages to the DCBE are correctly set up.
One of the major uses of the DCBE is to enable DASD EAV volume access. If this form of DASD is not being used, there may be no apparent effect caused by the incomplete setup. However, if EAV volumes are implemented at a later stage, problems will occur.

To proactively identify and correct these problems, with DFSMS V2.1 a check is made when a data set is opened to verify that the setup is complete.

If the setup is not complete, a version of message IEC190I is issued. The program issuing this message may continue to work when DASD EAV volumes are not in use, but the warning is issued to allow the program to be corrected.

7.7.1 Maintenance

During z/OS V2.1, testing a number of IBM products has been identified as requiring maintenance.

The following APARs relating to DFSMS V2.1 changes have been identified by searching IBMLINK. There are other instances of message IEC190I that relate to other conditions not changed with DFSMS V2.1.

Users may perform a similar search to determine whether there are any additional cases.

z/OS V2.1 by itself and z/OS V2.1 related programs

The APARs listed in this section are likely to be incorporated in the delivered system code. They are presented here as examples of problems you might encounter. The APAR number and the description text are listed:

- OA42701 AMATERSE INVOCATION RESULTS IN MSGIEC190I
 APAR OA42701 is an example of the situation where message IEC190I is issued, but the program continues to run.

- OA42694 ABEND0C4 IFG0554P
 APAR OA42694 is an example of a situation where message IEC190I is issued, but the using task abends. The presence of the IEC190I provides valuable information for program diagnosis.

- OA43037 IRRDBU00 MSGIEC190I
- OA43000 IEC190I DURING RECALL OF PDSE DATA SET
- OA42406 OCE FIX ROLLUP FOR HDZ2210

APARs OA42701

The content of the text for APAR OA42701 is shown in Example 7-45.

If this situation arises, it is an indication that the DCB/DCBE structure is incomplete. This may not cause problems with traditional DASD volumes but could cause problems with EAV DASD volumes.

Example 7-45 APAR OA42701: message issued and program continues

<table>
<thead>
<tr>
<th>APAR Identifier OA42701</th>
<th>Last Changed 13/09/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATERSE INVOCATION RESULTS IN MSGIEC190I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom IN INCORROUT</th>
<th>Status CLOSED PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity 3</td>
<td>Date Closed 13/07/26</td>
</tr>
<tr>
<td>Component 5752SC112</td>
<td>Duplicate of</td>
</tr>
<tr>
<td>Reported Release 790</td>
<td>Fixed Release 999</td>
</tr>
</tbody>
</table>
Component Name SVA UTILITIES Special Notice
Current Target Date 13/08/15 Flags
SCP
Platform

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 790 : UA70061 available 13/08/07 (F308)

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Under certain conditions executing an AMATERSE with the PACK option will result in a successful execution, but MSGIEC190I xxxxxx,STEP,SYUT3 INVALID DCBE: STORAGE NOT ADDRESSABLE is issued.

LOCAL FIX:

PROBLEM SUMMARY:
**
* USERS AFFECTED: All users of AMATERSE on release HBB7790. *
**
* PROBLEM DESCRIPTION: AMATERSE MSGIEC190I INVALID DCBE: *
* STORAGE NOT ADDRESSABLE *
**
* RECOMMENDATION: *
**
While PACK/UNPACKing a PDS data set, AMATERSE may successfully complete, but MSGIEC190I is issued. Also, AMATERSE fails to use system determined blocksize for PACK/SPACK output.

PROBLEM CONCLUSION:
AMATERSE's PACK and UNPACK processing is updated to correctly set the relevant DCB data, to prevent the IEC190I message. Also, AMATERSE's processing is changed to allow System Determined Blocksize for the PACK/SPACK output data set.

TEMPORARY FIX:

COMMENTS:
MODULES/MACROS: AMADECS AMAENCS

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APARs OA42694

The content of the text for APAR OA42694 is shown in Example 7-46. This problem is one that needs to be corrected.

Example 7-46 APAR OA42694: message issued and invoking task fails

<table>
<thead>
<tr>
<th>APAR Identifier</th>
<th>OA42694</th>
<th>Last Changed</th>
<th>13/08/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABENDOC4 IFG0554P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symptom AB ABENDOC4 Status CLOSED PER
Severity 3 Date Closed 13/07/01
Component 5695DF107 Duplicate of
Reported Release 210 Fixed Release 999
Component Name DATA MGMT SUPPO Special Notice
Current Target Date ..13/07/20 Flags
SCP
Platform

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69759 available 13/07/30 (F307)

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
0c4 in IFG0554P incorrectly accessing a 24bit ucb address as a 31bit address with a dirty high order byte.

LOCAL FIX:

PROBLEM SUMMARY:
Abend0c4 out of IFG0554P due to dirty high order UCB address.
Also invalid IEC190I INVALID DCBE: EXCP DCB WITHOUT A FOUNDATION EXTENSION.

PROBLEM CONCLUSION:
Abend0C4 and invalid IEC190I will no longer occur.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFG019RA IFG0193A IFG0554P

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

Program products
Fixes for IBM software products will not normally be delivered as part of the z/OS V2.1 code, so fixes for these situations must be addressed specifically. Here, we listed errors related to message IEC190I and the associated description that should be investigated:

- PM94936 z/OS 2.1 Compatibility fixes.
- IO18269 MSGIEC190I WHEN MODIFYING THE TARGET VOLUME ON THE VOLUMES AND STORAGE CLASSES PANEL OF Z/OSMF SOFTWARE DEPLOYMENT PLUGIN.
- PM96778 MSG IEC190I RECEIVED RUNNING IBM QMF™ WITH Z/OS 2.1

Non IBM program products
The term independent software vendor (ISV) is used to describe vendors that create products to use IBM software and hardware. There is often a close relationship between IBM and certain ISVs. IBM collects information about compatibility with its operating systems and the ISVs. It is primarily the responsibility of the users to obtain the latest information from the vendors.
Compatibility
The enhancement to message IEC190I is not provided in releases before DFSMS V2.1. However, in prior releases where the task is not affected the invalidation of the DCBE is still taking place. If this results in a set of control blocks that are incompatible with the DASD access intended, there may be an abend.

7.8 XTIOT HealthCheck

The SYS1.PARMLIB DEVSUPxx member allows specification of the NON_VSAM_XTIOT=YES option. This option allows application programs to use options on dynamic allocation with BSAM, BPAM, and QSAM and affects EXCP.

This is not a new feature but the default is NON_VSAM_XTIOT=NO and as a consequence may be overlooked.

7.8.1 XTIOT HealthCheck enablement

DFSMS V2.1 introduces a check to verify whether NON_VSAM_XTIOT=YES is set or not. This check is automatically included in the health check process and requires no set up.

7.8.2 XTIOT HealthCheck verification

After the health check process has run, typically immediately after an IPL, the results will be available from SDSF.

1. To view the status of this check, access SDSF and enter the CK command. The result is a list of all the checks. To locate the XTIOT check issue the SORT NAME command.

2. Scroll down the list to find OCE_XTIOT_CHECK.

3. Select this entry with S in column 1.

An example of output that shows that NON_VSAM_XTIOT=YES has not been set is shown in Example 7-47.

Example 7-47 Example of XTIOT HealthCheck result

```
CHECK(IBMOCE,OCE_XTIOT_CHECK)
SYSPLEX: SANDBOX SYSTEM: SC64
START TIME: 09/09/2013 10:34:43.397162
CHECK DATE: 20110410 CHECK SEVERITY: LOW

* Low Severity Exception *

IECH0101E OPEN macro support for XTIOT, uncaptured UCBs and DSAB above the line is not enabled for non-VSAM. IBM recommends setting NON_VSAM_XTIOT=YES in the DEVSUPxx member of PARMLIB.

Explanation: IBM suggests setting NON_VSAM_XTIOT=YES in the DEVSUPxx member of PARMLIB to decrease the chances of running out of virtual storage when allocating and concurrently opening many sequential and partitioned data sets.

System Action: The system continues processing.
```
7.8.3 XTIOT HealthCheck implementation considerations

Care must be taken when deciding to set `NON_VSAM_XTIOT=YES` because control blocks get relocated from 24-bit addressing to 31-bit addressing. Whether all program and application code can support this change depends on the way they have been written.

The XTIOT HealthCheck is new with DFSMS V2.1 and may prompt users to enable the function. This applies to releases before DFSMS V2.1 because `NON_VSAM_XTIOT=YES` is not new with DFSMS V2.1.

To check IBM product compatibility and recommended maintenance, search IBMLink using keyword XTIOT.

Refer to “APAR OA42267 XTIOT use (also applicable to DFSMS V1.13)” on page 267.

It is advisable to check with the vendors of non IBM code as to whether their code can handle `NON_VSAM_XTIOT=YES`. If a test system is available that can be used to test all applications, the DEVSUPxx update can be made, and the tests run.

If a problem arises typically (but not exclusively), a system ABENDS0C4 is issued. If this does occur, the DEVSUPxx member can be updated with `NON_VSAM_XTIOT=NO` and the command `SET DEVSUP=xx` can be issued to reset the option dynamically.

Compatibility

The enhanced HealthCheck for the use of `NON_VSAM_XTIOT=YES` is not provided in release before DFSMS V2.1.
DFSMSdss enhancements

This chapter provides an overview of the features and function in DFSMSdss included in z/OS V2.1. The following enhancements are provided:

- DFSMSdss data set change indicator reset with RESTORE
- DEBUG option SMSMSG
- RESTORE command
- zFS change activity support
8.1 DFSMSdss data set change indicator reset with RESTORE

DASD volumes have a volume table of contents (VTOC) in which control information for all data sets that are on the volume. This control information is stored in the data set control block (DSCB). There are several DSCB formats. For the purposes of this section, we are only concerned with Formats 1 and 8. These are the primary DSCBs for data sets on the original DASD configured volumes, and for DASD EAV volumes, respectively. The specific entry that relates to the information here is the data-set-changed or data set changed indicator (DS1DSCHA) bit, which is at the same relative offset in both format DSCBs.

DFSMSdss is used on its own or as part of a DFSMSHsm system to make copies of data sets. Different options are available in DFSMSdss for this purpose. Making copies of data sets is usually a housekeeping task and is usually configured to avoid making copies if a copy already exists and the source data set has not changed. The appropriate setting of the DS1DSCHA bit is essential to that function.

When a task accesses a data set, the DS1DSCHA bit will normally be turned ON so that the data set will be included in housekeeping tasks. When a copy of a data set is taken by DFSMSdss, it is available to be RESTORED.

After a data set has been RESTORED, the setting of the DS1DSCHA bit, for any data set, controls whether new copies will be made or not when housekeeping tasks are run.

If an entire volume is RESTORED, the setting of the DS1DSCHA bit for all data sets must be managed to avoid making new copies of each data set.

8.1.1 DFSMSdss setting of DS1DSCHA before DFSMS V2.1

DFSMSdss full volume RESTORE unconditionally resets (turns OFF) DS1DSCHA for each data set it restores. This indicates that until the data set is changed, it will not be selected by any housekeeping process that looks for changed data sets. In some circumstances, this process is not granular enough.

8.1.2 DFSMSdss setting of DS1DSCHA options when using DFSMS V2.1

If DFSMSHsm is in use in an installation, care must be taken when using DFSMSdss outside the control of DFSMSHsm. DFSMSHsm normally manages data set copies (backups) and volume DUMPS, and in this process manages the DS1DSCHA bit in the DSCB. If a DFSMSdss process is run that changes the DS1DSCHA bit without DFSMSHsm knowledge, the results may be other than expected.

There are DFSMSdss PATCH options that can control the setting of the DS1DSCHA bit, so these must be reviewed to avoid conflict with this enhancement.

DFSMSdss RESET keyword

The DFSMSdss **RESET** keyword specified when setting up a full volume or a tracks restore (from a full volume) may be used to control the action DFSMSdss is to take.

With DFSMS V2.1 the new options are:

- **RESET(DUMP)**

 This is the default. It is a conditional setting depending on what was set at DUMP time. If RESET was specified when the DUMP was run on a DFSMS V2.1 system, the
DS1DSCHA indicators will be turned off. If RESET was *not* specified when the DUMP was run, the DS1DSCHA indicators will not be changed from what they were on the source volume.

- **RESET(YES)**
 Unconditionally turn DS1DSCHA off regardless of what was set at DUMP time.

- **RESET(NO)**
 Unconditionally *do not* change DS1DSCHA settings from what they were on the source volume.

Running on DFSMS V2.1 and using a DFSMSdss DUMP from a prior release, the options are changed as follows:

- If RESET(DUMP) is specified, it is treated as though RESET(NO) was specified.
- If RESET is not specified the default is RESET(NO).

Important: The use of the RESET(DUMP) option described below for RESTORE requires that the DUMP RESET option has been used on a DFSMS V2.1 system.

8.1.3 Scenarios of the effects of DUMP options

We ran several jobs to show what the effect of the DUMP RESET and RESTORE RESET(DUMP|YES|NO) are.

In order to check what the DS1DSCHA setting is for data sets on a volume, we created a program to read the VTOC and report on up to 20 data sets. The common VTOC access facility (CVAF) returns DSCBs in the order that they are on the volume. Contrast, for example, with ISPF, which returns the data set in collating order.

The source of the program is in Example C-10 on page 399.

Scenario 1: Data set change indicator reset by DFSMSHsm backup

In Example 8-1, we show the JCL that was used to run the VTOC listing. The volume to be listed must be specified on the CVAFDD statement.

Example 8-1 JCL to run VTOC listing program showing DS1DSCHA setting

```plaintext
//MHLRES2Q JOB (1234567,COMMENT),UAALFO,TIME=10,
// MSGLEVEL=1,CLASS=A,
// NOTIFY=&SYSUID
/*JOBPARM $=* 
//CVSEQ8O PROC
//RUN      EXEC PGM=CVSEQ8D,REGION=0M
//STEPLIB DD DISP=SHR,DSN=MHLRES1.EAV.LOAD
//SYSUDUMP DD SYSOUT=* 
//OUTDD    DD SYSOUT=* 
//  EXEC CVSEQ8O
//CVAFDD  DD DISP=SHR,UNIT=3390,VOL=SER=SBOX1L
```

In Example 8-2 on page 148, we show the output from the VTOC listing program. This program has code in it to check the status of the EADSCB option since it is important that the environment is correct before using the output information.
The program lists up to 20 entries, but in this case one of the first 20 data sets on the volume is a Format 5 DSCB, so it is not listed.

In the listing, the DS1DSCHA flag follows the data set name and is set as follows:

- Y if the bit is on indicating that the data set has changed since last backup.
- N if the bit is off indicating that the data set has not changed since last backup.

As can be seen in the output, of the first 20 data sets on the volume only one has DS1DSCHA set to Y. That is the MHLRES2.CNTL.JCL data set.

Example 8-2 Listing of volume SBOX1l showing DS1DSCHA setting following the dsname

The DS1DSCHA bit is set off when a DFSMShsm backup of the data set is done. To demonstrate the effect of a DFSMShsm backup, the HBACKDS ‘MHLRES2.CNTL.JCL’ command was issued.
After receiving a message from DFSMShsm indicating that the backup had been run, we ran the VTOC listing program using JCL as shown in Example 8-1 on page 147.

In Example 8-3, we show the data set listing part of the VTOC listing program showing that the DS1DSCHA bit has been set off for the MHLRES2.CNTL.JCL data set.

Example 8-3 Listing of volume SBOX1L showing DS1DSCHA settings after data set backup

DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:
- DSN: SYS1.VTOCIX.SBOX1L N
- DSN: OMVS.SC65.USERS.OLD N
- DSN: SYS1.VVDS.VSBOX1L N
- DSN: OMVS.SC64.USRLOCAL N
- DSN: OMVS.SC63.HERING.TEST.HFS N
- DSN: OMVS.SC63.WEB.DB2V7 N
- DSN: MHLRES3.SMSTEST.PSSTRIP2 N
- DSN: OMVS.TWSRES6.HFS N
- DSN: OMVS.TROWELL.HFS N
- DSN: OMVS.D8BAO2S.HFS N
- DSN: OMVS.D8F2O2S.HFS.DATA N
- **DSN: MHLRES2.CNTL.JCL** N
- DSN: OMVS.XXX.AMTNTEST.SC65.ZFS.DATA N
- DSN: MHLRES2.SELECT N
- DSN: OMVS.SC63.WPS5PB1.BS01.CONFIG.ZFS.DATA N
- DSN: OMVS.BARI.HFS.DATA N
END OF DATA REACHED - ALL DATASETS PROCESSED

CVSEQ8D END OF OUTPUT MESSAGES

Scenario 2: DFSMSdss DUMP

In order to demonstrate the effect of the DFSMSdss RESTORE RESET options, we needed to create a physical DUMP of a volume using the RESET option. We chose volume SBOX1B for this demonstration.

We listed the first 20 data sets on volume SBOX1B using JCL similar to that shown in Example 8-1 on page 147. For this scenario, we changed the volume on the CVAFDD line from SBOX1L to SBOX1B.

In Example 8-4, we show data sets from volume SBOX1B. There are several data sets with the change indicator set to Y.

Example 8-4 Listing of data sets from volume SBOX1B showing DS1DSCHA bit settings are mixed

DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:
- DSN: SYS1.VTOCIX.SBOX1B N
- DSN: HFS.SC65.ILMRECON.HFS Y
- DSN: SYS1.VVDS.VSBOX1B N
- DSN: OMVS.SC65.XXX.HFS Y
- DSN: HFS.SC70.DEV Y
- DSN: HFS.SC64.ETC Y
- DSN: OMVS.SC63.DOMR5.MAIL3.HFS Y
- DSN: OMVS.SC63.USERS.DSSDUMP.ALLDATA Y
- DSN: OMVS.SC63.XML.HFS Y
- DSN: OMVS.HERING.SUBHFS2.TEST Y
- DSN: OMVS.ROGERS.TEST6.SAV Y
- DSN: OMVS.PRADIER.HFS Y
In Example 8-5, we show the job used to create the DFSMSdss DUMP of volume SBOX1B. In this case, the significant option is RESET on the DUMP command.

```
//MHLRES2D JOB 99990000,UAALF0,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=*  
/* JOB TO DUMP A VOLUME USING THE RESET OPTION SO THAT  
/* THE DECISION TO RESET THE CHANGED BIT WHEN RESTORING.  
//DFDSS PROC  
//DFDSS EXEC PGM=ADRDSSU,REGION=0M  
//SYSPRINT DD SYSOUT=A  
//PEND  
// EXEC DFDSS  
//DASD DD DISP=SHR,UNIT=3390,VOL=SER=SBOX1B  
//TAPE DD UNIT=VT3590,  
// DISP=(NEW,CATLG),  
// DSN=MHLRES2.DSSDUMP.SBOX1B  
//SYSIN DD *  
DUMP OUTDDNAME(TAPE) INDD(DASD) ALLEXCP ALLDATA(*) OPTIMIZE(4)-ADMIN RESET  
```

In Example 8-6, we show the messages issued by DFSMSdss when running the DUMP with RESET option. The significant message is:

```
ADR342I (001)-DDTFP(01), DATA SET CHANGE INDICATOR HAS BEEN RESET FOR ALL QUALIFIED DATA SETS ON VOLUME SBOX1B
```

```
DUMP OUTDDNAME(TAPE) INDD(DASD) ALLEXCP ALLDATA(*) OPTIMIZE(4)-ADMIN RESET
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'DUMP'
ADR109I (R/I)-RI01 (01), 2013.267 00:45:38 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.267 00:45:38 EXECUTION BEGINS
ADR342I (001)-DDTFP(01), DATA SET CHANGE INDICATOR HAS BEEN RESET FOR ALL QUALIFIED DATA SETS ON VOLUME SBOX1B
ADR006I (001)-STEND(02), 2013.267 00:47:26 EXECUTION ENDS
ADR013I (SCH)-DSSU (01), 2013.267 00:47:26 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0000
```
We used the VTOC listing program on volume SBOX1B to verify that the DS1DSCHA bit had been reset. In Example 8-7, we show the output from the VTOC listing program showing that all DS1DSCHA settings have been RESET to N.

Example 8-7 Listing of data sets from volume SBOX1B showing DS1DSCHA bit settings are all N

<table>
<thead>
<tr>
<th>DSN</th>
<th>Description</th>
<th>DS1DSCHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1.VTOCIX.SBOX1B</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>HFS.SC65.ILMRECON.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SYS1.VVDS.VSBOX1B</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.SC65.XXX.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>HFS.SC70.DEV</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>HFS.SC64.ETC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.SC63.DOMR5.MAIL3.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.SC63.USERS.DSSDUMP.ALLDATA</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.SC63.XML.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.HERING.SUBHFS2.TEST</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.ROGERS.TEST6.SAV</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.PRADIER.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.ROGERS.TEST.SAV.DATA</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.MORGAR1.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>LUTZ.LOADLIB</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.EJESWEB.HFS.DATA</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.MHLRES3.HFS</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MHLEAV1.TEST</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>OMVS.WATERS.HFS.DATA</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

END OF DATA REACHED - ALL DATASETS PROCESSED

Scenario 3: RESTORE without RESET(DUMP|YESINO) specified

In this scenario, we ran a DFSMSdss RESTORE job without specifying RESET so that the default would take effect.

Since the input DUMP data set was created with RESET specified, the result was expected to be that the target volume data sets had their DS1DSCHA indicator turned off.

In Example 8-8, we show the job to RESTORE volume SBOX1B to volume ML9E87. The COPYVOLID statement is required.

Example 8-8 JCL to RESTORE volume SBOX1B to volume ML9E87 with default RESET option

```jcl
//MHLRES2D JOB 99990000,UAALF0,CLASS=A,NOTIFY=&SYSUID /*JOBPARM S=* / * REST EXEC PGM=ADRDSSU,REGION=0M //SYSPRINT DD SYSOUT=A //DASD DD UNIT=3390,DISP=OLD,VOL=SER=ML9E87 //TAPE DD DISP=(OLD,KEEP), //DSN=MHLRES2.DSSDUMP.SBOX1B //SYSIN DD * RESTORE INDD(TAPE) OUTDD(DASD) PURGE COPYVOLID /*
```
In Example 8-9, we show the results of the RESTORE. The ADR342I message shows that the data set change indicators have been set to N (off). This is a result of the RESET option having been chosen when the DUMP was created, and that the REST(DUMP) option is the default for the RESTORE.

The ADR320I and ADR344I messages arose as a result of the COPYVOLID on the RESTORE command. Volume ML9E87 has been renamed to SBOX1B. Since it is a duplicate, it has been made unavailable, which in z/OS terms means that it is taken offline.

We ran a job to rename the duplicate SBOX1B back to ML9E87 so that we can put it back online and list the data sets on it.

In Example 8-10, we show the job to rename offline volume SBOX1B to ML9E87 using the ICKDSF program REFORMAT command.

We ran a job to rename the duplicate SBOX1B back to ML9E87 so that we can put it back online and list the data sets on it.

In Example 8-10, we show the job to rename offline volume SBOX1B to ML9E87 using the ICKDSF program REFORMAT command.

The messages from the job in Example 8-10 are shown in Example 8-11.
After the successful rename volume ML9E87 was still offline. The V 9E87, ONLINE command was issued to make it available again. We then used the VTOC listing program to show the data sets on the restored volume.

We ran the JCL as in Example 8-1 on page 147 but defining volume ML9E87 in place of SBOX1B. In Example 8-12, we show that the data set change indicators are all N (OFF) as expected.

The first data set listed is SYS1.VTOCIX.SBOX1B, which came from the original SBOX1B volume.

Example 8-12 Listing of data sets from volume ML9E87 showing DS1DSCHA bit settings are all N

DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:

<table>
<thead>
<tr>
<th>DSN:</th>
<th>Description</th>
<th>DS1DSCHA bit settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1.VTOCIX.SBOX1B</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>HFS.SC65.ILMRECON.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>SYS1.VVDS.VSBOX1B</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.SC65.XXX.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>HFS.SC70.DEV</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>HFS.SC64.ETC</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.SC63.DOMR5.MAIL3.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.SC63.USERS.DSSDUMP.ALLDATA</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.SC63.XML.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.HERING.SUBHFS2.TEST</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.ROGERS.TEST6.SAV</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.PRADIER.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.ROGERS.TEST.SAV.DATA</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.MORGA1.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>LUTZ.LOADLIB</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.EJESWEB.HFS.DATA</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.MHLRES3.HFS</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>MHLEAV1.TEST</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>OMVS.WATERS.HFS.DATA</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

END OF DATA REACHED - ALL DATASETS PROCESSED

Scenario 4: RESTORE with RESET(NO) specified

In this scenario, we ran a DFSMSdss RESTORE job specifying RESET(NO) so that the RESET setting in the DUMP data set would be overridden.
In Example 8-13, we show the job to RESTORE volume SBOX1B to ML9E87 with the
RESET(NO) option. This was expected to result in data sets on the restored volume having
the data set change indicators set as they were when the volume was dumped.

Example 8-13 JCL to RESTORE volume SBOX1B to volume ML9E87 with RESET (NO) option

```bash
//MHLRES2D JOB 99990000,UAALF0,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=* /*
//REST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=A
//DASD DD UNIT=3390,DISP=OLD,VOL=SER=ML9E87
//TAPE DD DISP=(OLD,KEEP),
// DSN=MHLRES2.DSSDUMP.SBOX1B
//SYSIN DD *
   RESTORE INDD(TAPE) OUTDD(DASD) PURGE COPYVOLID
      RESET(NO)
/*
```

In Example 8-14, we show the DFSMSdss messages from running the RESTORE with
RESET(NO) specified. There are no messages indicating that the data set change indicators
have been reset. The ADR320I and ADR344I are issued as expected.

Example 8-14 DSS messages from RESTORE with RESET(NO) specified

```
PAGE 0001 5695-DF175 DFSMSDSS V2R01.0 DATA SET SERVICES 2013.267 12:05
RESTORE INDD(TAPE) OUTDD(DASD) PURGE COPYVOLID RESET(NO) 00110006
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'RESTORE'
ADR109I (R/I)-RI01 (01), 2013.267 12:05:44 INITIAL SCAN OF USER CONTROL STATEMENTS
COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.267 12:05:44 EXECUTION BEGINS
ADR780I (001)-TDFP (01), THE INPUT DUMP DATA SET BEING PROCESSED IS IN FULL VOLUME
FORMAT AND WAS CREATED BY Z/OS DFSMSDSS VERSION 2 RELEASE 1 MODIFICATION LEVEL 0 ON 2013.267 00:45:38
ADR320I (001)-SBRTN(01), VOLUME SERIAL ML9E87 ON UNIT 9E87 IS CHANGED TO SBOX1B
ADR344I (001)-SBRTN(01), VOLSER ON UCB 9E87 IS A DUPLICATE. VOLUME MADE
UNAVAILABLE
ADR006I (001)-STEND(02), 2013.267 12:07:16 EXECUTION ENDS
ADR013I (001)-CLTSK(01), 2013.267 12:07:16 TASK COMPLETED WITH RETURN CODE 0000
```

We ran the same job as in Example 8-10 on page 152 to rename the duplicate volume
SBOX1B back to ML9E87.

We then ran the same job as in Example 8-12 on page 153 to list the data sets with the VTOC
listing program.

In Example 8-15, we show the results of running the CVOL listing program. The list shows
that the data set changed indicators are the same as they were before running the DUMP job.
This listing can be compared with the one in Example 8-4 on page 149.

Example 8-15 Listing of data sets from volume ML9E87 showing DS1DSCHA bit settings are mixed

```
DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:
 DSN: SYS1.VTOCIX.SBOX1B N
 DSN: HFS.SC65.ILMRECON.HFS Y
```
8.1.4 Security protection over use of RESET with DUMP or RESTORE

Security protection on the use of the RESET option on the **DUMP** command and on the **RESET(YES)** option on the **RESTORE** command is available.

RACF users

Resources are in the FACILITY CLASS. If these resources are not defined, all users have access to the RESET options. If the resources are defined, users must have READ access authorization to the RACF resource to use the RESET options:

- **DUMP** command RESET option

 Read access to the STGADMIN.ADR.DUMP.RESET resource is required.

- **RESTORE** command RESET(YES) option

 Read access to the STGADMIN.ADR.RESTORE.RESET.YES resource is required.

Other security system users

If using a security system other than RACF, it might be necessary to implement the equivalent of the RACF FACILITY profiles before the RESET option can be used.

8.2 DEBUG option SMSMSG

When DFSMSdss allocates data sets, it may use the System Managed Storage (SMS) function. SMS applies rules to the allocation of data sets, and may fail a request.

As an aid to problem resolution, several commands have a DEBUG option. To facilitate problem analysis when using SMS, the SMSMSG sub-option is provided in DFSMS V2.1. SMSMSG may be used with other DEBUG sub operands where appropriate.

When specified, the option DEBUG(SMSMSG) causes certain SMS messages produced by the control routines to be externalized.
The DEBUG(SMSMSG) option may be used with the following DFSMSdss commands:

- **CONVERTV**: Convert existing volumes to and from SMS management.
- **COPY**: For logical and physical data sets.
- **RESTORE**: For logical and physical data sets.

There may be ACS WRITE statements in the ACS routines. These are not affected by the DFSMSdss SMSMSG option of DEBUG. If coded, they may appear as well as any messages generated by SMSMSG.

Note: The DEBUG(SMSMSG) option depends on DFSMSdss using the ACS routines. If the DFSMSdss BYPASSACS option is specified, DEBUG(SMSMSG) will have no effect.

We provide scenarios to illustrate the use of the DEBUG(SMSMSG) option on the COPY and RESTORE statements.

Scenario 1: DFSMSdss COPY

In Example 8-16, we show the job to illustrate use of DEBUG(SMSMSG) with BYPASSACS specified. There are two copy statements in the job, DEBUG(SMSMSG) has to be specified on each.

We specified DEBUG(SMSMSG), but the presence of BYPASSACS resulted in no messages generated.

Example 8-16 JCL to run a DSS COPY job with DEBUG(SMSMSG) and BYPASSACS specified

```plaintext
//MHLRES2C JOB (999,POK), 'MHLRES2', CLASS=A, MSGCLASS=T,
// NOTIFY=&SYSUID, TIME=1440, REGION=6M
/*JOBPARM L=999, SYSAFF=* 
//COPY EXEC PGM=ADRDSSU 
 //*N DD VOL=SER=MLD00B, UNIT=3390, DISP=OLD 
 //OUT DD VOL=SER=MLDB35, UNIT=3390, DISP=OLD 
 //OUT2 DD VOL=SER=MLDB35, UNIT=3390, DISP=OLD 
 //SYSPRINT DD SYSOUT=* 
 //SYSIN DD * 
 COPY DATASET(INCLUDE(MHLRES2.SRCHFOR.LIST)) - 
 DEBUG(SMSMSG) - 
 OUTDD(OUT) - 
 ALLEXCP(*) - 
 STORCLAS(HSMFR) RENAMEU(YYY) - 
 BYPASSACS(**) ADMIN SHR 
 COPY DATASET(INCLUDE(MHLRES2.SUPERC.LIST)) - 
 DEBUG(SMSMSG) - 
 OUTDD(OUT2) - 
 ALLEXCP(*) - 
 STORCLAS(HSMFR) RENAMEU(YYY) - 
 BYPASSACS(**) ADMIN SHR 
```

In Example 8-17 on page 157, we show the effect of specifying DEBUG(SMSMSG). No message ADR803I is written. However, the IGD01010I messages that are from specific WRITE statements in the ACS routines do appear.
Example 8-17 DSS messages from COPY job with DEBUG(SMS MSG) specified showing no ADR803I

PAGE 0001 5695-DF175 DFSMSdss V2R01.0 DATA SET SERVICES 2013.270 14:38
COPY DATASET(INCLUDE(MHLRES2.SRCHFOR.LIST)) - 00170001
 DEBUG(SMS MSG) - 00170104
 OUTDD(OUT) - 00171000
 ALLDATA(*) ALLEXCP - 00180000
 STORCLAS(HSMFR) RENAMEU(YYY) - 00181000
 BYPASSACS(**) ADMIN SHR 00190000
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'COPY'
COPY DATASET(INCLUDE(MHLRES2.SUPERC.LIST)) - 00191001
 DEBUG(SMS MSG) - 00191104
 OUTDD(OUT2) - 00192001
 ALLDATA(*) ALLEXCP - 00193001
 STORCLAS(HSMFR) RENAMEU(YYY) - 00194001
 BYPASSACS(**) ADMIN SHR 00195001
ADR101I (R/I)-RI01 (01), TASKID 002 HAS BEEN ASSIGNED TO COMMAND 'COPY'
ADR109I (R/I)-RI01 (01), 2013.270 14:38:02 INITIAL SCAN OF USER CONTROL STATEMENTS
 COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR061I (001)-STEND(01), 2013.270 14:38:02 EXECUTION BEGINS
ADR709E (001)-VDSS (01), AN ERROR OCCURRED IN THE STORAGE MANAGEMENT SUBSYSTEM WHILE
 ALLOCATING DATA SET MHLRES2.SRCHFOR.LIST WITH
 NEWNAME YYY.SRCHFOR.LIST. SMS MESSAGES FOLLOW.
IGD01010I SG ACS GETS CONTROL &ACSENVIR=ALLOC
IGD01010I &STORCLAS = HSMFR
IGD01010I &STORGRP = SG1
IGD17261I VOLUME SELECTION HAS FAILED - THERE ARE NOT ENOUGH VOLUMES
 WITH SUFFICIENT SPACE FOR DATA SET
 YYY.SRCHFOR.LIST
IGD17277I THERE ARE (1) CANDIDATE VOLUMES OF WHICH (1) ARE ENABLED OR QUIESCED
IGD17331I DATA SET DATA SET YYY.SRCHFOR.LIST COULD
 NOT BE ALLOCATED. PREFERRED FAST REPlication WAS SPECIFIED
 BY THE CALLER.
IGD17290I THERE WERE 1 CANDIDATE STORAGE GROUPS OF WHICH THE FIRST 1
 WERE ELIGIBLE FOR VOLUME SELECTION.
 THE CANDIDATE STORAGE GROUPS WERE:SG1
IGD17279I 1 VOLUMES WERE REJECTED BECAUSE THEY WERE NOT ON THE INCLUDE LIST
DR809I (001)-VDSS (01), ADDITIONAL DIAGNOSTIC DATA FOR PRECEDING MESSAGE:
 SC=HSMFR MC=MCDB22 DC=
 REQPRI=000000020BLK REQSEQ=000004096BLK REQVOLS=01
DR801I (001)-DDDS (01), 2013.270 14:38:02 DATA SET FILTERING IS COMPLETE. 1 OF 1 DATA SETS
 WERE SELECTED: 0 FAILED SERIALIZATION
 AND 0 FAILED FOR OTHER REASONS
DR455W (001)-DDDS (02), THE FOLLOWING DATA SETS WERE NOT SUCCESSFULLY PROCESSED
 MHLRES2.SRCHFOR.LIST
DR006I (001)-STEND(02), 2013.270 14:38:02 EXECUTION ENDS
DR013I (002)-CLTSK(01), 2013.270 14:38:02 TASK COMPLETED WITH RETURN CODE 0008
ADR283W (002)-FILTC(01), DATA SET MHLRES2.SUPERC.LIST WAS NOT SELECTED, 2
DR383W (002)-DDDS (01), DATA SET MHLRES2.SUPERC.LIST NOT SELECTED
ADR455W (002)-DDDS (03), THE FOLLOWING DATA SETS WERE NOT SUCCESSFULLY PROCESSED
 MHLRES2.SUPERC.LIST
ADR470W (002)-DDDS (04), NO DATA SETS SELECTED FOR PROCESSING
ADR006I (002)-STEND(02), 2013.270 14:38:02 EXECUTION ENDS
ADR013I (002)-CLTSK(01), 2013.270 14:38:02 TASK COMPLETED WITH RETURN CODE 0008
In Example 8-18, we show the effect of coding message ADR803I on a command that does not have the BYPASSACS option.

We see that the ADR803I message indicates that the STORCLAS was found to not be NULL. It was set to HSMFR as specified in the COPY statement.

The IGD01010I message also reports that variable &STORCLAS is set to HSMFR.

The significance, and usefulness, of the ADR803I message is that it shows the internal processing that resulted in the STORCLAS setting. If the DFSMSdss processing had not worked due to storage class problems, the indication that the HSMFR storage class was being used might lead to what the problem was.

We see that in this example there are several problems due to other situations, but they do not result in any further ADR803I messages.

Example 8-18 DSS messages from COPY job with DEBUG(SMSMSG) and no BYPASSACS specified

PAGE 0001 5695-DF175 DFSMSDSS V2R01.0 DATA SET SERVICES 2013.270 14:43
COPY DATASET(INCLUDE(MHLRES2.SRCHFOR.LIST)) - 00170001
 DEBUG(SMSMSG) - 00170104
 OUTDD(OUT) - 00171000
 ALLEXCP - 00180000
 STORCLAS(HSMFR) RENAMEU(YYY) - 00181000
 ADMIN SHR 00190005
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'COPY'

COPY DATASET(INCLUDE(MHLRES2.SUPERL.LIST)) - 00191001
 DEBUG(SMSMSG) - 00191104
 OUTDD(OUT2) - 00192001
 ALLEXCP - 00193001
 STORCLAS(HSMFR) RENAMEU(YYY) - 00194001
 ADMIN SHR 00195005
ADR101I (R/I)-RI01 (01), TASKID 002 HAS BEEN ASSIGNED TO COMMAND 'COPY'
ADR109I (R/I)-RI01 (01), 2013.270 14:43:28 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.270 14:43:28 EXECUTION BEGINS
ADR803I (001)-ACS (01), SMS DIAGNOSTIC MESSAGES:
 IGD01008I STORCLAS NOT NULL. SET TO HSMFR
 SG ACS GETS CONTROL &ACSENVIR=ALLOC
 IGD01010I &STORCLAS = HSMFR
 IGD01010I &STORGRP = SG1
 IGD17206I VOLUME SELECTION HAS FAILED - THERE ARE NOT ENOUGH VOLUMES WITH SUFFICIENT SPACE FOR DATA SET
 YYY.SRCHFOR.LIST
 IGD17277I THERE ARE (1) CANDIDATE VOLUMES OF WHICH (1) ARE ENABLED OR QUIESCED
 IGD17331I DATA SET YYY.SRCHFOR.LIST COULD NOT BE ALLOCATED. PREFERRED FAST REPLICATION WAS SPECIFIED
 BY THE CALLER.
 IGD17290I THERE WERE 1 CANDIDATE STORAGE GROUPS OF WHICH THE FIRST 1 WERE ELIGIBLE FOR VOLUME SELECTION.
 THE CANDIDATE STORAGE GROUPS WERE: SG1

ADR012I (SCH)-DSSU (01), 2013.270 14:38:02 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0008 FROM:
 TASK 001
 TASK 002
Scenario 2: DFSMSdss RESTORE

When DFSMSdss is used to RESTORE a data set and the operation requires space to be allocated, the ACS routines would be used to select a suitable location.

The DEBUG(SMSMSG) option is expected to provide information about what the ACS chose to do. Without SMSMSG, the storage class selected for the allocation might not have been as selected, and to find out what was used it would be necessary to list the allocation.

In Example 8-19, we show the job to run DFSMSdss RESTORE with DEBUG(SMSMSG) specified. The job restores the HSM.BCDS data set with a rename to HSM.BCDS.TEST2, which does not exist on the selected output volume.

Example 8-19 JCL to run DSS RESTORE using DEBUG(SCSMSG) with new allocation

```
//MHLRES2D JOB 99990000,UAALFO,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=*  
 */  
//REST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=A
//DASD DD UNIT=3390,DISP=OLD,VOL=SER=SBOX1B
//TAPE DD DISP=(OLD,KEEP),
//DSN=MHLRES2.DUMP.HSM.BCDS
//SYSIN DD *
RESTORE INDD(TAPE) OUTDD(DASD) -  
DEBUG(SMSMSG) -  
REPLACEUNCONDITIONAL -  
DATASET(INCLUDE(HSM.BCDS)) -  
RENAMEU((HSM.BCDS,MHLRES2.HSM.BCDS.TEST2))
/*
In Example 8-20, we show the DFSMSdss messages resulting from RESTORE with DEBUG(SCSMSG).

The significant message is IDR803I, which shows IGD01008I STORCLAS NOT NULL. SET TO SCRLS. This information would not have been shown if DEBUG(SCSMSG) had not been set.

Example 8-20 DSS messages resulting from RESTORE with DEBUG(SMSMSG)

In Example 8-21, we show the results from the IDCAMS listing, which shows STORAGECLASS SCRLS, which corresponds to the ADR803I message as in Example 8-20.

By using DEBUG(SMSMSG) for diagnostic purposes, the additional overhead of setting up and running the IDCAMS job is avoided.

Example 8-21 IDCAMS display of details of MHLRES2.HSM.BCDS.TEST2
STORAGECLASS ------SCRLS MANAGEMENTCLASS--MCNOACT
DATACLASS --------HSMCDS LBACKUP --0000.000.0000
CA-RECLAIM---------(YES)
EATTR--------------(NULL)
BWO STATUS-------00000000 BWO TIMESTAMP---00000 00:00:00.0
BWO-----------------(NULL)
RLSDATA
   LOG ------------------NONE RECOVERY REQUIRED --(NO) FRLOG
   -------------(NULL)
   VSAM QUIESCED ------(NO) RLS IN USE ----------(NO)
LOGREPLICATE-----------------(NO)
   LOGSTREAMID-----------------------------NONE
   RECOVERY TIMESTAMP LOCAL------X'0000000000000000''

Compatibility
The DEBUG option is available on releases before DFSMS V2.1, but the SMSMSG suboption is not.

8.3 RESTORE command

There are updates to existing RESTORE command keywords in DFSMS V2.1:

- The REPLACEUNCONDITIONAL keyword on the RESTORE command now works for physical data sets.
- The RENAMEUNCONDITIONAL keyword on the RESTORE command, which previously worked only on non-VSAM physical data sets, will now work on VSAM physical data sets, as well.

In this section, we look at the keywords and provide scenarios to show how they work.

8.3.1 Scenarios for RESTORE keywords

We ran several jobs to demonstrate the updates to the DFSMSdss RESTORE command REPLACEUNCONDITIONAL and RENAMEUNCONDITIONAL keywords to show the effect of running these jobs in DFSMS V2.1 and in DFSMS V1.13.

We created a PHYSICAL format DFSMSdss DUMP of a non-VSAM, and of a VSAM data set to use later for the DFSMSdss RESTORE jobs.

DFSMSdss DUMP creation jobs
In Example 8-22 on page 162, we show the job to create a PHYSICAL format DUMP of the data set MHLRES2.CNTL.JCL, which is a non-VSAM data set. These enhancements to DFSMSdss RESTORE in DFSMS V2.1 relate to the RESTORE from a PHYSICAL DFSMSdss DUMP so the essential parameter is the option PHYSINDDDNAME(IN).

The data set MHLRES2.CNTL.JCL was in use so the TOLERATE(ENQF) option was used, which specifies that even if the data set is in use (enqueued or serialized), the enqueue failure should be tolerated.
Example 8-22  JCL to create DSS DUMP of non-VSAM data set

//MHLRES2D JOB (999,POK),'MHLRES2',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=6M
/*JOBPARM L=999,SYSAFF=* 
//COPY    EXEC PGM=ADRDSSU
//IN       DD  DISP=SHR,DSN=MHLRES2.CNTL.JCL
//OUT      DD  DSN=MHLRES2.DUMP.CNTL.JCL,DISP=(NEW,CATLG),
//         SPACE=(TRK,(500,150),RLSE)
//SYSPRINT DD  SYSOUT=* 
//SYSIN    DD  * 
DUMP DATASET(INCLUDE(MHLRES2.CNTL.JCL)) - 
   OUTDD(OUT) - 
   TOLERATE(ENQF) - 
   ALLDATA(*) ALPHAEX - 
   PHYSINDDNAME(IN) 

/*

In Example 8-22, we specify TOLERATE(ENQF).

Example 8-23  DSS messages from job to create DSS PHYSICAL format DUMP of non-VSAM data set

In Example 8-23, we show the DFSMSdss messages from the job creating the PHYSICAL format DFSMSdss DUMP data set. There are no messages explicitly confirming that the DUMP data set is in PHYSICAL format.

The return code 04 from this job is generated because of the message ADR411W in Example 8-23.

Example 8-24 on page 163, we show the job to create a PHYSICAL format DUMP of the data set HSM.BCDS, which is a VSAM data set. These enhancements to DFSMSdss RESTORE in DFSMS V2.1 relate to the RESTORE from a PHYSICAL DFSMSdss DUMP so the essential parameter is the option PHYSINDDNAME(IN).
Example 8-24  JCL to create DSS DUMP of VSAM data set

//MHLRES2D JOB (999,POK), 'MHLRES2',CLASS=A, MSGCLASS=T,
// NOTRY=SYSUID,TIME=1440,REGION=6M
//*JOBPARM L=999,SYSAFF=*  
//COPY EXEC PGM=ADDRSU  
//IN DD DISP=SHR,DSN=HSM.BCDS  
//OUT DD DSN=MHLRES2.DUMP.HSM.BCDS,DISP=(NEW,CATLG),  
// SPACE=(TRK,(500,150),RLSE)  
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *  
DUMP DATASET(INCLUDE(HSM.BCDS)) -  
OUTDD(OUT) -  
TOLERATE(ENQF) -  
ALLLDATA(*) ALLEXCP -  
PHYSINDDDNAME(IN) 
/*

In Example 8-23 on page 162, we show the DFSMSdss messages from the job creating the PHYSICAL format DFSMSdss DUMP data set. There are no messages explicitly confirming that the DUMP data set is in PHYSICAL format.

There is an indication that the data set HSM.BCDS has been recognized as a VSAM data set as shown in the ADR730W message: ADR730W (001)-FDSDU(01), CLUSTER HSM.BCDS IS OPEN

CLUSTER is a VSAM construct that does not apply to non-VSAM data sets. The return code 04 from this job was generated because of the message:

ADR411W (001)-DYNA (01), DATA SET HSM.BCDS IN CATALOG CATALOG.HSM ON VOLUME SBXHS8 WAS NOT SERIALIZED ON REQUEST

Example 8-25  DSS messages from job to create DSS PHYSICAL format DUMP of VSAM data set

PAGE 0001  5695-DF175 DFSMSDSS V2R01.0 DATA SET SERVICES   2013.268 19:30  
DUMP DATASET(INCLUDE(HSM.BCDS)) - 00170036  
OUTDD(OUT) - 00171000  
TOLERATE(ENQF) - 00171100  
ALLLDATA(*) ALLEXCP - 00172000  
PHYSINDDDNAME(IN) 00173000
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'DUMP '  
ADR109I (R/I)-RI01 (01), 2013.268 19:30:59 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR006I (001)-STEND(01), 2013.268 19:31:04 EXECUTION BEGINS
ADR109I (R/I)-RI01 (01), 2013.268 19:31:04 EXECUTION ENDS
ADR006I (001)-STEND(02), 2013.268 19:31:04 TASK COMPLETED WITH RETURN CODE 0004
ADR013I (SCH)-DSSU (01), 2013.268 19:31:04 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0004 FROM:

TASK 001
**DFSMXdss RESTORE jobs running on DFSMS V2.1**

In this part, we demonstrate the use of the updated REPLACEUNCONDITIONAL and RENAMEUNCONDITIONAL operands as used on DSS RESTORE commands.

**Non-VSAM data set restore with rename**

In Example 8-26, we show the job to RESTORE the data set MHLRES2.CNTL.JCL as a copy named MHLRES2.CNTL.JCL.REST1. The option REPLACEUNCONDITIONAL is specified so that if the data set MHLRES2.CNTL.JCL.REST1 already exists it will be replaced.

The RENAMEUNCONDITIONAL option is abbreviated to RENAMEU.

*Example 8-26   JCL to restore and rename non-VSAM data set

```jcl
//MHLRES2D JOB 99990000,UAALF0,CLASS=A,NOTIFY=&SYSUID
/*JOBPARM S=*
/*
//REST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=A
//DASD DD UNIT=3390,DISP=OLD,VOL=SER=SBOX1B
//TAPE DD DISP=(OLD,KEEP),
// DSN=MHLRES2.DUMP.CNTL.JCL
//SYSIN DD *
RESTORE INDD(TAPE) OUTDD(DASD) -
 REPLACEUNCONDITIONAL -
 DATASET(INCLUDE(MHLRES2.CNTL.JCL)) -
 RENAMEU((MHLRES2.CNTL.JCL,MHLRES2.CNTL.JCL.REST1))
/
```

In Example 8-27, we show the DSS messages resulting from the RESTORE.

In this case, we have confirmation that the input data set is in PHYSICAL format as shown by message ADR780I. We see that the data set MHLRES2.CNTL.JCL.REST1 was ALLOCATED.

*Example 8-27   DSS messages from RESTORE of non-VSAM data set where newname is new data set

```
PAGE 0001 5695-DF175 DFSMSDSS V2R01.0 DATA SET SERVICES 2013.268 16:53
RESTORE INDD(TAPE) OUTDD(DASD) - 00110007
 DATASET(INCLUDE(MHLRES2.CNTL.JCL)) - 00111008
 RENAMEU((MHLRES2.CNTL.JCL,MHLRES2.CNTL.JCL.REST1)) 00112008
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'RESTORE'
ADR109I (R/I)-RI01 (01), 2013.268 16:53:11 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.268 16:53:11 EXECUTION BEGINS
ADR780I (001)-TDDS (01), THE INPUT DUMP DATA SET BEING PROCESSED IS IN PHYSICAL DATA SET FORMAT AND WAS CREATED BY Z/OS DFSMSDSS
 VERSION 2 RELEASE 1 MODIFICATION LEVEL 0 ON 2013.268
15:51:11
ADR395I (001)-TDPNV(02), DATA SET MHLRES2.CNTL.JCL ALLOCATED WITH NEWNAME MHLRES2.CNTL.JCL.REST1, ON VOLUME(S): SBOX1B
ADR378I (001)-TDDS (01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED FROM VOLUME SBOX1L
 MHLRES2.CNTL.JCL RESTORED ON SBOX1B
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.268 16:53:11 EXECUTION ENDS
ADR013I (001)-CLTSK(01), 2013.268 16:53:11 TASK COMPLETED WITH RETURN CODE 0000
```
We ran the job as shown in Example 8-26 on page 164 again. In Example 8-28, we show the DFSMSdss messages resulting from the DFSMSdss RESTORE when the new data set name already exists. In this case, we see message ADR442I, which indicates that the data set was PREALLOCATED.

In this situation, the REPLACEUNCONDITIONAL option ensured that the data set was replaced.

Example 8-28  DSS messages from RESTORE of non-VSAM data set where newname exists

VSAM data set restore with rename

In Example 8-29, we show the job to restore data set HSM.CDS with rename to MHLRES2.HSM.BCDS. There is no requirement to identify this as a VSAM data set, DFSMSdss determines that from the DFSMSdss DUMP data set.

Example 8-29  JCL to RESTORE VSAM data set HSM.BCDS with rename
In Example 8-30, we show the messages resulting from the RESTORE. In this case, since the restored data set was a VSAM data set, additional messages are produced.

**DFSMSdss** has recognized that there is a DATA and INDEX component in the VSAM data set and has allocated these with the **MHLRES2.HSM.BCDS** prefix.

**DFSMSdss** has issued message ADR418I advising that the DATA and INDEX components may have to be cataloged. We found that the data set components **MHLRES2.HSM.BCDS.DATA** and **MHLRES2.HSM.BCDS.INDEX** were not cataloged.

**Example 8-30**  **DSS messages resulting from RESTORE of VSAM data set**

---

**In Example 8-31, we show the job to create the catalog entries for the VSAM data set components **MHLRES2.HSM.BCDS.DATA** and **MHLRES2.HSM.BCDS.INDEX**.**
In Example 8-32, we show the messages from the IDCAMS job to create the catalog entries for MHLRES2.HSM.BCDS.DATA, MHLRES2.HSM.BCDS.INDEX, and for the VSAM cluster name MHLRES2.HSM.BCDS.

When DFSMSdss allocated the DATA and INDEX components on the specified volume, it also stored data in the VSAM VOLUME RECORD (VVR) on the volume, and the IDCAMS job then used that information to complete the catalog information.

Example 8-32 IDCAMS messages from the catalog job

DFSMSdss RESTORE jobs running on DFSMS V1.13

We ran the jobs to DFSMSdss RESTORE of non-VSAM and VSAM data sets on DFSMS V1.13 to demonstrate the effect of using the REPLACEUNCONDITIONAL and RENAMEUNCONDITIONAL keywords when used on earlier systems.

In Example 8-33, we show the DFSMSdss messages resulting from trying to use the REPLACEUNCONDITIONAL and RENAMEUNCONDITIONAL options when running on DFSMS V1.13 and restoring from a physical format DUMP data set.

DFSMSdss issued message ADR780I, which indicates that the DUMP data has been recognized as being in physical format.

DFSMSdss messages ADR392E advises that the data set (using its new name) already exists, and because the REPLACEUNCONDITIONAL option is not supported for physical format DUMP data sets it is an error.

DFSMSdss message ADR415W warns that no processing has occurred.

Example 8-33 DSS messages from job to restore non-VSAM data set run on DFSMS V1.13
In Example 8-34, we show the DFSMSdss messages resulting from running a job on DFSMS V1.13 with RENAMEUNCONDITIONAL specified:

- DFSMSdss issued message ADR780I that indicates that the input data set is in DFSMSdss DUMP physical format.
- DFSMSdss issued message ADR332E advising that VSAM CLUSTER HSM.BCDS was not processed.
- DFSMSdss issued messages ADR382W and ADR415W, which expands on the ADR332E message.

**Example 8-34  DSS messages from job to restore VSAM data set run on DFSMS V1.13**

```
RENAMEU((MHLRES2.CNTL.JCL,MHLRES2.CNTL.JCL.REST1)) 00112008
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'RESTORE'
ADR109I (R/I)-RI01 (01), 2013.269 01:29:11 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.269 01:29:11 EXECUTION BEGINS
ADR780I (001)-TDDS (01), THE INPUT DUMP DATA SET BEING PROCESSED IS IN PHYSICAL DATA SET FORMAT AND WAS CREATED BY DFSMSDSS VERSION 2 RELEASE 1 MODIFICATION LEVEL 0 ON 2013.268 15:51:11
ADR392E (001)-TDPNV(01), MHLRES2.CNTL.JCL EXISTS ON SBOX1B WITH NEWNAME MHLRES2.CNTL.JCL.REST1
ADR382W (001)-TDDS (01), THE FOLLOWING DATA SETS WERE NOT PROCESSED FROM VOLUME SBOX1L DUE TO ERRORS
 MHLRES2.CNTL.JCL
ADR415W (001)-TDDS (01), NO DATA SETS WERE COPIED, DUMPED, OR RESTORED FROM LOGICALVOLUME SBOX1L
ADR415W (001)-TDDS (02), NO DATA SETS WERE COPIED, DUMPED, OR RESTORED FROM ANY VOLUME
ADR006I (001)-STEND(02), 2013.269 01:29:11 EXECUTION ENDS
ADR013I (SCH)-CLTSK(01), 2013.269 01:29:11 TASK COMPLETED WITH RETURN CODE 0008
ADR012I (SCH)-DSSU (01), 2013.269 01:29:11 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0008 FROM:

| TASK | 001 |
```

PAGE 0001  5695-DF175 DFSMSDSS V1R13.0 DATA SET SERVICES  2013.268 19:58
RESTORE INDD(TAPE) OUTDD(DASD) - 00110000
          REPLACEUNCONDITIONAL - 00110100
          TOLERATE(ENQF) - 00110210
          DATASET(INCLUDE(HSM.BCDS)) - 00111000
          RENAMEU((HSM.BCDS,MHLRES2.HSM.BCDS13)) 00112010
ADR101I (R/I)-RI01 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'RESTORE'
ADR109I (R/I)-RI01 (01), 2013.268 19:58:58 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED
ADR016I (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADR006I (001)-STEND(01), 2013.268 19:58:58 EXECUTION BEGINS
ADR780I (001)-TDDS (01), THE INPUT DUMP DATA SET BEING PROCESSED IS IN PHYSICAL DATA SET FORMAT AND WAS CREATED BY DFSMSDSS VERSION 2 RELEASE 1 MODIFICATION LEVEL 0 ON 2013.268 19:31:03
ADR411W (001)-DYNA (01), DATA SET HSM.BCDS IN CATALOG CATALOG.HSM ON VOLUME SBOX1B WAS NOT SERIALIZED ON REQUEST
ADR332E (001)-TDDS (01), CLUSTER HSM.BCDS IN CATALOG CATALOG.HSM NOT PROCESSED.
PHYSICAL DATA SET OPERATION DOES NOT SUPPORT RENAME OF VSAM DATA SETS

```

168 IBM z/OS V2.1 DFSMS Technical Update
8.4 zFS change activity support

The zFS change activity support is an enhancement that addresses a difference in the way zFS files must be handled compared to HFS files.

This support does not require any user interaction. The enhancement that it provides allows zFS files to be handled in a similar manner to other data sets as described in 8.1, “DFSMSdss data set change indicator reset with RESTORE” on page 146.
System Data Mover enhancements

This chapter introduces a change in DFSMS V2.1 addressing a performance issue in System Data Mover (SDM). SDM primary volumes are now allowed to be offline when volumes are added in an XRC session. Before this enhancement, the start of a session had to wait for all volumes to come online delaying a fast creation of an XRC session.

The following enhancements are described in this chapter:

- XRC offline volumes
- Migration and coexistence considerations
9.1 XRC offline volumes

Adding volumes in an XRC session with the XSTART command to restart a session or issuing an XADDPAIR command to resume suspended volumes will now allow the primary volumes in an XRC session to be offline. Previously, these actions would require the primary volumes to be online and would delay the resume of a suspended session for several minutes. Having to wait while the volumes were varied online impacts the recovery point objective (RPO) time.

Having the primary volumes in offline status can also remove the risk in having primary volumes known to other systems in online status, and potentially receive writes from these systems. In addition, being able to have XRC volumes offline, will also enable moving XRC volumes to Alternate Channel Subsets, where the current restriction is that these cannot be online.

The first time that you initialize an XRC session, you still must have all primary volumes online, but when the session is initialized, you can vary these offline.

Trying to add an offline volume to a new XRC session fails, as shown in Example 9-1.

Example 9-1 Error message displayed if XRC session is initialized with primary volume offline

ANTA5107E XADDPAIR FAILED FOR VOLUME PAIR(ML91AA,ML9BAF) FOR SESSION(ITSO01), RC=464 REAS=418

To see how an offline primary volume appears in an XRC query on a session that was resumed by XSTART or XADDPAIR, we put device address 91AA with volser ML91AA offline and then issued the TSO XQUERY DATASET(XRC.XQUERY) VOLUME(ALL) command.

The output from this command is shown in Example 9-2.

Example 9-2 Output from XQUERY command having put device 91AA offline

ANTA201I XQUERY VOLUME REPORT COMPLETE FOR SESSION(ITSO01)
As displayed above, the volser ML91AA still appears in the output listing with the volser identification and not just with the UCB address. This is exactly how the primary volumes appear in online status.

A new XQUERY CONFIGURATION command with the STATUS keyword will have options OFL or ONL. Using this command, you are able to identify either offline or online volumes depending on option setting.

Issuing the command: XQUERY ITS001 DATASET(XRC.XQUERY) DISP(SHR) CONFIGURATION VOLUME(ALL) STATUS(OFL) gives you all offline volumes, as shown in Example 9-3.

Example 9-3 Display of all XRC primary in offline status

```
ANTQ8200I XQUERY STARTED FOR SESSION(ITS001) ASNAME(ANTAS001)
ANTQ8202I XQUERY CONFIGURATION REPORT - 003
ANTQ8281I ---------PRIMARY---------- -----SECONDARY------
ANTQ8282I SSID SN ID DVCN CCA VOLSER  SSID DVCN CCA VOLSER
ANTQ8203I -------------------------------------------------------------
ANTQ8283I 8943 -- 01 91AA 2A  ML91AA  8957 9BAF 2F  ML9BAF
ANTQ8206I 1 VOLUME(S) MEET REQUESTED SPECIFICATION
ANTQ8238I TOTAL=10  DUP=5  CPY=0  PND=0  SUS=0  SEQ=0  UTL=5
ANTQ8260I PAV=0
ANTQ8231I DATA CONSISTENT(NO_TIME_AVAILABLE)   IDLE(00:37:26.2)
ANTQ8240I DATA EXPOSURE(NO_TIME_AVAILABLE)
ANTQ8232I SESSIONTYPE(XRC)  ERRORLEVEL(VOLUME)  HLQ(SDM)
ANTQ8201I XQUERY CONFIGURATION REPORT COMPLETE FOR SESSION(ITS001)
```

Note: Utility volumes and secondary volumes still must remain.

9.2 Migration and coexistence considerations

XRC primary volumes should be defined as coming offline at IPL by default, even though the initial XADDPAIR requires the volumes to be online. After a successful ADDPAIR, you can vary the primary volumes offline and leave them in this status.

It is also suggested to remove all unnecessary **VARY ONLINE** commands from scripts that are related to the previous requirement of having these volumes online.

If you are using any performance or capacity tool on this environment, you might have to move the task that collects information to an application LPAR that has the volumes online.

9.2.1 Additional support

XRC will now listen for ENF 31 and 32, preventing a dynamic activation from removing (or modifying) devices that are in the XRC configuration.

A UCB must be pinned before invoking IOS offline device service (IOSODS) macro and pinned while in use. This prevents a device from being deleted by a dynamic activate while the device is in use. The data mover listener goes through the list of devices to be deleted, and if any are devices “owned” by XRC, the device is pinned by the listen routine.
Documentation
Refer to the manuals z/OS DFSMS Advanced Copy Services, SC35-0428; and z/OS MVS System Messages Volume 1 (ABA - AOM), SA22-7631 for more details about setting up XRC.
Chapter 10. SMS exploiting hardware enhancements

In this chapter, we look at features and function in z/OS V2.1 that take advantage of hardware functions and attributes in their implementation.

The following enhancements are described in this chapter:

- Cluster and extent pool exploitation
- DFSMShsm storage tiers
- JES3 SMS tape support
- DADSM CVAF/DEVICE support
10.1 Cluster and extent pool exploitation

Before DFSMS V2.1, volume selection will try to allocate or extend a multivolume data set in the same Storage Facility Image (SFI), when the storage class accessibility attribute is set to Continuous or Continuous Preferred.

An SFI can also be translated as a storage control unit. With new support in DFSMS V2.1, DFSMS volume selection will have awareness of cluster and extent pool boundaries in the IBM System Storage® DS8000. This enables DFSMS to select volumes according to accessibility on fast copy replications and assure optimum performance on data striping.

Cluster and extent pools will have a close relationship in the DS8000, as Cluster 0 (also called server 0) and Cluster 1 (called server 1) will have one or more dedicated extent pools assigned to either even LCUs or odd LCUs. The extent pools will consist of a number of extents depending on the physical capacity installed. For mainframe storage, an extent will be 1113 cylinders (3390 mod 1). These extents can be put together forming logical volumes from 3390 mod 1 up to the EAV size of 1 TB.

10.1.1 Volume selection for multi-volume data sets

When allocating a new multi-volume data set or extending an existing one, DFSMS volume selection will now select a volume in the same cluster (and extent pools assigned to this cluster) if the ACCESSIBILITY parameter in the storage class is set to Continuous or Continuous Preferred. If a new allocation cannot occur within the same cluster, the allocation will be done within the same SFI (across the two clusters).

A notification is sent to the job log if your preference is not met, as shown in Example 10-1.

Example 10-1 Example of message if Accessibility requirement is not met

| IGD17395I DATA SET MLRESI.SFI.TEST001 |
| WAS NOT ALLOCATED IN THE SAME STORAGE FACILITY IMAGE |
| BECAUSE SELECTED VOLUMES HAD HIGHER PREFERENCE VALUE |

Before DFSMS V2.1, DFSMS issued IGD17395i if a multi-volume data set was not allocated or extended to volumes in the same SFI. DFSMS issues a new variant of IGD17395i if a multi-volume data set was allocated or extended to volumes in the same SFI, but not in the same cluster.

Volume selection for DFSMSdss Fast Replication operation

When copying data with a Fast Replication option, the target volume will now be selected within the same cluster if possible. If DFSMS fails to do so, allocation will be able to occur within the same SFI.

Volume selection for striped data sets

In releases before DFSMS V2.1, volume selection would try to distribute striped data sets across LCUs. For striped data sets, the support will now enable DFSMS volume selection to spread the allocation (stripes) over multiple extent pools. This will assure that different volumes are used and the individual stripes have no performance impact on one another. When extending a striped data set to a new volume, DFSMS volume selection prefers extent pools that are not already assigned to active stripes.

If DFSMS fails to be able to allocate stripes across extent pools, the allocation happens according to the previous implementation (across LCUs).
10.2 DFSMShsm storage tiers

DFSMShsm Primary Space Management is the function to maintain your primary disk as related to volumes and data sets. Only the most recently created and referenced data is typically retained on primary disk. If no longer needed, data is either deleted based on policy or migrated off the disk to tape. Space release is done along with extent consolidation on the individual data sets to optimize the environment.

Primary disk can either be DFSMS-managed volumes or non-DFSMS managed volumes added to DFSMShsm through the ADDVOL command.

10.2.1 Primary Space Management

Primary Space Management is initiated by the AUTOMIGRATE=YES option on the storage group definition for the DFSMS-managed volumes, or by command for the non-DFSMS managed volumes. DFSMShsm automigration happens in two phases.

Phase 1
The first phase includes functions, where no data is being moved. Examples are deletion of temporary and expired data sets, partial release, and Fast Subsequent Migration.

All data set actions are controlled by the management class settings. The management class settings determine if release, delete, or migration must be done. In the first phase, migration is limited to Fast Subsequent Migration.

Phase 2
The second phase consists of migrating eligible data sets until the low threshold is reached on the storage group. This may have been accomplished by phase 1 and extent reduction. Extent reduction ignores low threshold, as it usually does not actually free space on the volume. It combines extents so that the data set can continue to grow without running out of extents.

Note: If deletion of expired data sets, Fast Subsequent Migration, and space reduction of the remaining data sets achieves the specified free space, phase 2 will never start.

Migration will continue until the low water mark is reached or there are no more candidates to migrate. Eligible data sets are put onto the migration queue in a priority order based on the size and the age of the data set and are processed accordingly.

10.2.2 DFSMShsm V2.1 Storage Tier basics

The new Storage Tier function in DFSMShsm supports moving data from the DFSMShsm-managed primary volumes to the most optimum hardware tier solid-state device (SSD), normal response time disk (NRT) (also referred to as Enterprise disk) or long response time disk (also called Nearline or SATA disk) and ultimately to tape. Movement of data will happen as a class transition as part of the Primary Space Management function outlined previously.

To take advantage of the DFSMShsm Storage Tier function, the environment must be set up at a storage group level according to the different types of hardware tiers. Basically, each tier corresponds to one or more DFSMS storage groups. Data is directed to a specified tier according to the storage group requirement.
DFSMShsm has no awareness of the specific hardware types, only about the storage groups representing the tier. Class transition as used today for object data supports moving data between the tiers (storage groups) or assures that a recall happens to the correct tier. This support applies for zFS, IBM DB2® and CICS where the Serialization Exit provides special processing support for each of these.

Implementing Storage Tier requires some planning as to how to fit it into your current environment. Storage Tiering implementation most likely has a different approach than separating data in the current storage groups. Storage group distribution of data is most commonly based on type of data and requirements for backup and other requirements for separation. Separation requirements include having production separated from development data or isolation of system data, batch data, database data, and temporary files.

You might have an environment already optimized with the fewest possible storage groups and you will probably not want to add too many to support DFSMShsm Storage Tier. You might only have Enterprise disk (normal response time disk), and then you would stay with your current setup.

You might also have Nearline disk (long response disk) or plan to implement these along with Nearline disk. In this case, implement tiering of your primary disk in two tiers. If this would be possible by adding just one storage group for the nearline tier depends on your setup. Consider if you would put all your lower priority primary data in one storage group without taking into account the type of data (for example, database data or sequential data).

The intention of implementing Storage Tier is to assure that your data is always on the most optimum level as to performance and cost. In the graphical presentation in Figure 10-1, you see an example of two primary disk Storage Tiers (Enterprise and Nearline disk). Data will stay 90 days on the most expensive media, and then move to Nearline disk with a lower cost per GB before data will be migrated to tape after 366 days.

![Primary Storage Hierarchy](image)

Figure 10-1 Storage Tier concept with two tiers

10.2.3 Storage Tier process

A new flag that enables Storage Tier function per default will be defined in the MCVT. This new function will be active during primary space management by default with DFSMS V2.1.
To summarize the functions in primary space management with the new Storage Tier process:

- Delete expired data sets
- Release unused space and free up extents
- Process data sets in scope for transition
 - Move data sets eligible for class transition to a different storage tier if storage class or storage group changed
 - Change management class only if required
- Move migration candidates from Primary disk to ML1 or tape

Storage group priority setting

A new priority setting on the DFSMS storage group application decides the priority sequence in which storage groups are processed. The value can be in the range 1 - 100 with 50 being the default (1 the lowest, while 100 is the highest priority). This value has been added to make it possible to prioritize the sequence in which your storage groups will be processed during class transition. This assures that the most important storage groups are processed first and data offloaded to make the storage group ready to receive new allocations.

The Processing Priority field in the storage group application in ISMF is shown in Example 10-2.

Example 10-2 New storage group processing priority parameter

```
POOL STORAGE GROUP ALTER         Page 2 of 2
Command ===>

SCDS Name . . . . : SYS1.SMS.MHLRES3.SCDS
Storage Group Name  : BIGSTUFF

To ALTER Storage Group, Specify:

  Allocation/migration Threshold : High 99 (1-100) Low . . 1 (0-99)
  Alloc/Migr Threshold Track-Managed: High 99 (1-100) Low . . 1 (0-99)
  Guaranteed Backup Frequency . . . . . . . . . . . . (1 to 9999 or NOLIMIT)
  BreakPointValue . . . . . . . . . . . . . . . . . . . (0-65520 or blank)
  Processing Priority . . . . . . . . . . 50 (1-100)
```

You distinguish between your storage groups as to class transition using this to manage the sequence in which these storage groups are serviced by DFSMShsm class transition.

Class transition processing

Before the migration-eligibility checking, DFSMShsm determines if the data set is eligible for a class transition based on the class transition settings in the management class and DSCB information in VTOC.

DFSMShsm has an interface to the ACS routines already. In DFSMS V2.1, a new ACS environment of SPMGCLTR is defined to support class transitions. This is similar to the ones used for class transition on OAM object data.

If the data set is eligible for transition, DFSMShsm invokes the DFSMS ACS routines with ACS environment SPMGCLTR to determine if there will be a new management class, storage class, and storage group values assigned. If a data set is going to have a new management
class and keep the existing storage class and an existing storage group, DFSMShsm will invoke alter of the management class only.

If the storage class and the storage group are subject to change, and a class transition is going to happen, DFSMShsm places a Migration Data Set Queue Element (MDQE) at the top of the migration queue. Priority will be the highest, not as it is normally based on data set size and age.

Class transition happens in the second phase of primary space management. The individual MDQEs will also have a priority order based on type of transition. Preference order will be as follows:

1. All MDQEs that are candidates for both extent reduction and transition will be done first without checking storage group threshold.
2. All MDQEs that are candidates for extent reduction and migration will be processed next. This is done without checking the storage group threshold as extent reduction is mandatory. Data sets will just be migrated as extent reduction will happen on recall.
3. Next in line are the MDQEs that are candidates for class transition and migration. Storage group low threshold will be checked. If utilization is above the threshold, these data sets will be migrated.
4. Last in line, the MDQEs that are candidates for class transition only will be processed, but only if storage group low threshold is exceeded.

Besides the overall priority explained above, data sets will be copied based on size and age of the data set within the initial criteria selected. Copy will stop when the DFSMShsm low threshold is reached or if target storage group is out of capacity.

The reason behind putting transitions at the top of the queue is that the transitions may meet the need for offloading data from the individual volume (having met the low threshold for this volume). As DFSMShsm selects each data set for migration, it transfers control to the spacemanagement exit (ARCMDEXT) if the exit is installed and enabled.

Transition rules as to migration versus transition based on eligibility and the return code from the migration exit can be summarized as shown in Table 10-1.

<table>
<thead>
<tr>
<th>Eligibility status</th>
<th>Migration Exit RC=0 (Allow Migration)</th>
<th>Migration Exit RC=8 (Disable Migration)</th>
<th>Migration Exit RC=52 (Disable Migration and Class Transition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible for migration only</td>
<td>Migration</td>
<td>Data set processing fails with RC=45, reason 92</td>
<td>Data set processing fails with RC=45, reason 92</td>
</tr>
<tr>
<td>Eligible for migration and class transition</td>
<td>Migration</td>
<td>Class transition</td>
<td>Data set processing fails with RC=45, reason 92</td>
</tr>
<tr>
<td>Eligible for class transition only</td>
<td>Class transition</td>
<td>Class transition</td>
<td>Data set processing fails with RC=45, reason 92</td>
</tr>
</tbody>
</table>

Transition Copy Technique

For the actual class transition move of the individual data set, DFSMShsm will call DFSMSdss for all data set types. DFSMShsm will obtain the class Transition Copy Technique from the
management class. The new class transition field in the ISMF management class application is shown in Figure 10-2.

![Figure 10-2 Transition Copy Technique options on management class](image)

The Transition Copy Technique will decide how the copy is going to happen (Fast Replication or normal I/O processing) and the type of action on failure (managed by preferred or required option). The following possible settings occur on the Transition Copy Technique:

- FRP: Fast replication preferred
- FRR: Fast replication required
- STD: Standard
- PMP: Flashcopy to PPRC primary (preserve mirror preferred)
- PMR: Flashcopy to PPRC primary (preserve mirror required)

DFSMSdss performs the transition copy with the appropriate copy option and gives back control to DFSMShsm at the end of the copy. DFSMShsm issues a message on completion. For a copy using Fast Replication, this is handled differently by DFSMShsm. If there is not a valid backup, the request is handled as follows:

- Request for transition fails if FASTREPLICATION option is REQUIRED.
- If FASTREPLICATION option is PREFERRED, the copy is performed using standard I/O.

If there is a valid current backup, all replication requests will be processed as normal.

In a PPRC environment, the FCTOPPRCPRIMARY and RESERVEMIRROR replication keywords may also be used with the PREFERRED or REQUIRED options. If option PREFERRED is set, standard I/O operation is used if FCTOPPRCPRIMARY PRESERVEMIRROR cannot happen using Fast Replication copy. For a Fast Replication copy with the REQUIRED keyword set, Fast Replication using FCTOPPRCPRIMARY PRESERVEMIRROR will fail if this is not possible for some reason.

Class transition messages

The message issued by DFSMShsm after a successful transition of a data set is ARC0734I, displaying the result of the transition is shown in Example 10-3.

Example 10-3 Message displayed when class transition has happened to a data set

ARC0522I SPACE MANAGEMENT STARTING ON VOLUME ML921C(SMS) AT 06:39:21 ON 2013/10/11, SYSTEM SC64
ARC0734I ACTION=CLASS-TR FRVOL=ML9B14 TOVOL=MLD83A TRACKS= 4 RC= 0, REASON= 0, AGE= 7,
DSN=MHLRES1.SFI.TEST001

By default, failing messages are not issued for data sets that fail a transition because exclusive serialization could not be obtained. It is recommended that these data sets should
be analyzed by post processing the FSR records with failing return code RC68 and reason code if wanted. If the messages should be needed, you can issue the DFSMShsm patch in Example 10-4, and have the messages displayed.

Example 10-4 Patch enabling RC68 indicating serialization problem

PATCH .MGCB.+EF BITS{....1.....}

Last Successful Class Transition Date
To support class transition, a new field was created in the NVR/VVR called Last Successful Class Transition Date (LSCTD).

The LSCTD field is set and used by DFSMShsm to manage class transitions. DFSMShsm will use this field to determine if a data set has already been transitioned and should not be reprocessed. The LSCTD, if it exists, can be displayed for a particular data set with the LISTCAT command, as shown in Example 10-5.

Example 10-5 LISTCAT of data set having a nonzero value in Last Transition

NONVSAM ------ STORTIER.M01.D01.N01.PSFB
IN-CAT --- STRTRFVT.USERCAT
HISTORY
 DATASET-OWNER----- (NULL) CREATION--------2012.001
 RELEASE---------------2 EXPIRATION-------0000.000
 ACCOUNT-INFO----------------------- (NULL)
SMSDATA
 STORAGECLASS ---SCLASS22 MANAGEMENTCLASS-MCLASS01
 DATACLASS ------DCLASS01 LBACKUP ---2012.001.0701
 LAST TRANSITION-2012.013
VOLUMES
 VOLSER------------LSMS12 DEVTYPE------X'3010200F'
 ASSOCIATIONS--------(NULL)
 ATTRIBUTES

LSCTD field is also available via DCOLLECT output.

When a data set is successfully transitioned, LSCTD is set to zero. This occurs when the management class was changed, or set to the current date if the management class was not changed. DFSMShsm attempts to transition a data set if it has met the transition criteria and the LSCTD is zero.

Criteria on management class deciding class transition
The new Storage Tier class transition is based on criteria in the management class already being used for Object Management. Your criteria will depend on your environment (tiers in scope and data availability requirements) and requirement when to move data to the next tier or off to tape. There are three options that you must consider using when implementing storage tiering:

- **TIME SINCE CREATION**
 Time given in years, months, or days, since creation that must have elapsed before transition can happen. A value of 9999/12/31 will cause transition to not happen at all.

- **TIME SINCE LAST USE**
 Time given in years, months, or days, since the last reference of data that must have elapsed before transition can happen.
PERIODIC

A class transition can be scheduled to happen at a determined sequence monthly, quarterly, or yearly.

You can only set one of the options per management class. If your data has individual requirements, each group of data must have a transition management class assigned that meets the specific requirement for each group as related to transition.

Recall of data sets in a class transition environment

Data sets may miss class transition while being migrated. Imagine a data set is on Enterprise disk when being migrated. During the time the data set is migrated, it may meet the criteria set for a class transition to Nearline disk. Based on the creation date and the last referenced date stored in the MCD record, DFSMShsm is able to determine if a data set missed a transition. If so, DFSMShsm will run the ACS routines with the SPMGCLTR code and have any new, changed constructs returned. And in this case the data set will end up on Nearline disk.

The constructs and candidate storage groups will be handed over to DFSMSdss to have the recall occur to the correct tier.

Note: For RECOVER, ARECOVER, and FRRECOV a class transition change will not be verified.

Reporting on class transition

The FSR records will be updated to contain information about the new transition function. The REPORT command will have a new parameter FUNCTION(TRANSITION) that will extract reporting on class transition statistics only.

If REPORT is used without a keyword for a specific FUNCTION, all FUNCTIONS are listed including the new transition function. Example 10-6 shows the class transition report only.

Example 10-6 Example of REPORT on class transition function

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>------READ-----</th>
<th>------WRITTEN------</th>
<th>------REQUESTS-----</th>
<th>AVERAGE</th>
<th>-------AVERAGE TIME-------</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSM FUNCTION DATASETS TRK/BLK K-BYTES TRK/BLK K-BYTES SYSTEM USER FAILED AGE QUEUED WAIT PROCESS TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASS TRANSITION PRIMARY - PRIMARY 0000003 00000053 0000001347K 000000003400001368K 0000000003 0000000000 0000000000 0000000000 0000000000 0000000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the REPORT function with SUMMARY subparameter, the report will limit to the information as displayed in Example 10-7.

Example 10-7 REPORT function on class transition using the SUMMARY subparameter

Data set class transition = 00000003 requested, 00000000 failed

A new ARC0277I message now appears on the QUERY STATISTICS command. This display shows the number of data sets moved by class transition, the number of failed transitions, and the number of tracks and bytes moved. Example 10-8 on page 184 shows the output of the command.
Class transition in an IM and ODM environment

Class transition was designed to only happen in the primary space management cycle. However, if volumes and their corresponding data sets are only part of an on-demand migration (ODM) or interval migration (IM) migration type, class transition will not happen for these volumes.

An additional option has been added to support this scenario. Class transition will, through a SETSYS command, be able to occur in an environment with ODM or IM active. An example of this command is shown in Example 10-9.

Example 10-9 Example of class transition SETSYS command in an ODM or IM environment

SETSYS CLASSTRANSITION(EVENTDRIVENMIGRATION(Y|N SERIALIZATIONEXIT(Y|N)))

You can abbreviate the preceding SETSYS parameters as shown in Example 10-10.

Example 10-10 Abbreviated form of CLASSTRANSITION

SETSYS CLTR(EDM(Y|N SERL(Y|N)))

The default for EVENTDRIVENMIGRATION is Y (YES). With a setting of N (NO), class transition will not occur in an ODM or IM environment.

The subparameter SERIALIZATIONEXIT will decide whether the user data set serialization error exit during event driven migration should be used or not.

These additional defaults will apply to the EVENTDRIVENMIGRATION setting:

- If EDM is not specified, or if EDM is specified without keywords, the default is Y for EDM and for SERIALIZATIONEXIT it is N.
- If EDM is set to Y and there is no setting on SERIALIZATIONEXIT, the default for this will be N.

Serialization support

If the serialization exit is called through class transition, the Serialization Error Exit field in the management class decides which action should be taken. The following values are possible for this field:

- DB2
- CICS
- ZFS
- EXIT (call to user exit)
- NONE

If the call is for a DB2 table and SERIALIZATION(Y) is set, DB2 will be called and asked to close the table, if possible. The same is the case for the other applications listed, just different procedures. For a ZFS data set, this will be an unmount as an example. If the data set close is not successful, transition of this particular data set will not happen.

If the setting is NONE, the data set will not be transitioned if an exclusive enqueue fails. Class transition will continue with other candidates.
Figure 10-3 is the new management class panel in ISMF, where the Serialization Error Exit setting is displayed and updated.

<table>
<thead>
<tr>
<th>MANAGEMENT CLASS ALTER</th>
<th>Page 5 of 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command ===></td>
<td></td>
</tr>
<tr>
<td>SCDS Name : SYS1.SMS.MHLRES3.SCDS</td>
<td></td>
</tr>
<tr>
<td>Management Class Name : MCSATA</td>
<td></td>
</tr>
</tbody>
</table>

To ALTER Management Class, Specify:

- **Class Transition Criteria**
- **Transition Copy Technique** STD (FRP, FRR, STD, PMP or PMR)
- **Serialization Error Exit** NONE (DB2, CICS, ZFS, EXIT or NONE)

As this setting is application-oriented, each application should have a management class assigned with a setting that matches this specific application (DB2, CICS, or ZFS).

Ensure that only DB2, CICS, or zFS data sets are assigned to a management class with a Serialization Exit specified to one of these types.

Getting started with Storage Tier

Migrating to DFSMS V2.1, class transition is enabled by default, but you will need a few additional steps to have all requirements in place. This section will outline the steps you must go through.

Start identifying your needs and the benefit of doing class transition. Based on your environment and available tiers, determine what data should be included. You may be in a position where new hardware will be installed introducing new tiers or you just want to take advantage of the DFSMShsm Storage Tier function on your current multi-tier environment.

In ISMF you must complete these preparation tasks:

- Create one or more management classes to set the (individual) criteria for transitioning data between tiers. Criteria that you must look into is Time Since Creation, Time Since Last Use, or Periodic for the transition criteria. The Transition Copy Technique for the data mover is also important.
- Create at least one storage class with the accessibility option you have settled on (C, P, S, or N). This setting works with the management class option Transition Copy Technique.
- Create one or more target storage groups that match your tiers.
- Create transition code in the ACS routines that will capture the data sets in scope and direct these to the correct target tiers.

Also, consider your need for having Class Transition occur for IM or ODM managed data by deciding the settings for EVENTDRIVENMIGRATION and SERIALIZATION as discussed earlier in this chapter.

Having created the constructs for Class Transition, the ACS routines will need to have code added similar to the example in Example 10-11 on page 186. The ACS routine code will assure capture of the right data at the appropriate time moving these to the appropriate defined tiers.
Example 10-11 covers the management class ACS routine code that enters the SPMGCLTR environment called by DFSMSHsm. A candidate data set is found. It may only have the management class changed, or it may also be transitioned depending on criteria being met.

Example 10-11 ACS routine code that will do transition on management class

```plaintext
IF &ACSENVIR = 'SPMGCLTR' THEN
  SELECT (&MGMTCLAS)
    WHEN ('MCNORMAL') SET &MGMTCLAS = 'MCSATA'
    OTHERWISE SET &MGMTCLAS = &MGMTCLAS
  END

In Example 10-12, the storage class routine is invoked and assigns a storage class designed for NEARLINE disk (SATA).

Example 10-12  Storage class ACS routine code invoking Class Transition

```plaintext
IF &ACSENVIR = 'SPMGCLTR' THEN
 SELECT (&STORCLAS)
 WHEN ('ENTERPRISE') SET &STORCLAS = 'SCSATA'
 OTHERWISE SET &STORCLAS = &STORCLAS
 END
ELSE ...
```

For the actual transition to occur, data must be moved in this case from ENTERPRISE disk to Nearline. A new storage group covering Nearline (SATA) disk is assigned and DFSMSdss is called to do the actual transfer of the data set from the current tier (storage group) to the new tier.

Example 10-13 shows the ACS routine code that supports such a transition.

Example 10-13  Storage group ACS routine supporting class transition to new tier

```plaintext
IF &ACSENVIR = 'SPMGCLTR' THEN
 SELECT (&STORCLAS)
 WHEN ('SCSATA') SET &STORGRP = 'SGSATA'
 OTHERWISE SET &STORGRP = &STORGRP
 END
ELSE ...
```

Data will now have moved to a new tier (storage group). The new management class will determine the time data will reside on this tier before eventually being migrated to tape.

**Exceptions from class transition**

When FORCENONSMS is used in a RECALL command, this will happen as in pre-DFSMS V2.1 releases. The data set will be recalled to a non-SMS managed volume.

For extent reduction, DFSMSHsm will migrate the data set and immediately schedule a recall to the same volume (with same storage class and management class as when the data set was migrated). ACS routines will not be invoked in this case.

Common Recall Queue has been changed to have an indicator for Class Transition to be used for a recall.
New or changed messages
This section lists the new and changed messages in support of class transition.

ARC0277I message
The new ARC0277I message is now issued for QUERY STATISTICS (see Example 10-8 on page 184). The message provides the data sets moved by class transition, the number of failed transitions, the number of tracks moved, and the number of bytes moved.

ARC0278I message
The new ARC0278I message is additionally issued to display EVENTDRIVENMIGRATION and SERIALIZATIONEXIT values as the result of the QUERY SETSYS command.

ARC1271I message
The new ARC1271I CLASS TRANSITION FAILED message is issued when IDCAMS return code is given in the ARC0734I message. These reason codes may be included:

- 9999 Abend during ALTER command processing
- 9998 Abend during obtain Last Successful Class Transition Date
- 9997 Abend during Last Successful Class Transition Date setting

ARC0734I message
ARC0734I message with the new ACTION=CLASS-TR value after class transition processing is issued at the end of the class transition.

ARC0784I message
ARC0784I message with the new LAST SUCCESSFUL CLASS TRANSITION DATE value is issued when:

- Class transition is disabled (MCVTF_CLTR=OFF) and Last Successful Class Transition Date (LSTD) is not zero
- The data set is recalled as in before DFSMS V2.1 if the LSCTD exists

ARC1280I message
ARC1280I message with the new CLASS TRANSITION value is issued when DFSMShsm attempted class transition, but determined that the data set needed to be backed up.

Coexistence support
The following APARs are required on systems before DFSMS V2.1.

- OA36576: DFSMShsm coexistence support for Storage Tier
  Because of the changes in the record sizes in DFSMS V2.1, lower-level systems accessing those records should be sure to install the DFSMShsm PTF for OA36576 on each of the systems in the sysplex.

- OA37582: DFSMSdss coexistence support for Storage Tier
  This APAR provides support for data set COPY and RESTORE to detect data sets that have a last class transition date in the SMS subcell of a VVR.

For status on the general status on APARs related to Storage Tier, see Appendix A, “APARs to be reviewed for DFSMS V2.1” on page 237.

Documentation
For more details about DFSMShsm Storage Tier, consult the following documentation:

- z/OS DFSMS Installation Exits, SC23-6850
10.3 JES3 SMS tape support

This new TS7700 support for JES3 will be available with the release of DFSMS V2.1. For JES2, the Device Allocation Assistance (DAA) support was introduced in release 1.5 of the TS7700 virtual engine in December 2008. Scratch Allocation Assistance (SAA) came with the TS7700 2.0 release in May 2011.

To be able to take advantage of the new support, all systems in the JES3 plex must be at the DFSMS V2.1 level. JES3 can be at an earlier level, but you need to make changes to the INISH deck to enable the function.

10.3.1 Device Allocation Assistance (private/specific mounts)

Release 1.5 of the TS7700 code introduced DAA. Device Allocation Assistance is a function that allows the host to query the TS7700 Virtualization Engine to determine which clusters should be preferred for a private (specific) mount request. DAA returns an ordered allocation list of subsystems (logical control units with 16 devices per control unit image). The list is built in, and presented in preferred cluster order. This is to maximize local cache hits and minimize remote cache hits, but also at the same time balance the workload across a multi-cluster grid. With this support, scratch allocations were still randomized across eligible libraries and devices.

10.3.2 Scratch Allocation Assistance (Scratch Mounts)

SAA was introduced with the TS7700 2.0 code. SAA selects the cluster for scratch mount allocation based on management class. In a mixed environment consisting of both TS7720 and TS7740, users start to request allocations from specific workloads like DFSMSShsm to go to TS7720 for better response time. A new management class option has been introduced enabling the user to direct scratch mounts to a specific cluster. If no cluster is available, standard MVS allocation will be used (WTOR, WAITHOLD, WAITNOH, CANCEL). With 256 drives available, this will hardly be a problem in normal operation.

Figure 10-4 illustrates a configuration where two different types of workload are directed to a specific cluster (TS7740 or TS7720). One management class points to cluster 0 (TS7720) and another to cluster 1 (TS7740). Cluster 2 is used for a remote application.

![Figure 10-4 Example of three-cluster grid where workload is split through management class setting](image-url)
When the allocation request is issued for cluster 0 or cluster 1, only the candidate clusters LCUs and devices are returned. MVS Allocation selects a device from this list without any awareness of cluster.

### 10.3.3 Implementing TS7700 Allocation Assistance for JES3

All systems in a JES3 plex must migrate to DFSMS V2.1 before implementing the TS7700 Allocation Assistance.

To enable the support, a new keyword JES3_ALLOC_ASSIST=YES|NO in DEVSUPxx member in SYS1.PARMLIB must be added.

If option YES is set, the Allocation Assistance support is enabled for use with JES3. Before enabling the support, refer to *z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide For Tape Libraries*, SC23-6867 for more detail.

To enable this feature without an IPL, issue the `SET DEVSUP=xx` command.

A new esoteric (library-specific distributed name) is introduced to support Allocation Assistance support. The new esoteric must be added in the JES3 INISH deck.

Make sure that you have the outboard management classes in place that point to the specific libraries. Define this in the Add/Copy Management Classes panel on the TS7700 as shown in Figure 10-5. Only those clusters specified through the assigned management class are considered for the scratch mount request.

**Figure 10-5 Display of management class definition in TS7700**

Additionally, the Scratch and Device Allocation Assistance support must be explicitly enabled on the TS7700 through the `LIBRARY REQUEST` command. See Example 10-14.

**Example 10-14 LIBRARY REQUEST commands that enable Allocation support in TS7700**

```
LIBRARY REQUEST,composite-libraryname,SETTING,DEVALLOC,SCRATCH,ENABLE
LIBRARY REQUEST,composite-libraryname,SETTING,DEVALLOC,PRIVATE,ENABLE
```
The default for Scratch Allocation support is DISABLED, while for PRIVATE mounts, the default is ENABLED.

Consider defining the allocation preference in the ALLOCxx member as shown in Example 10-15.

**Example 10-15  Setting the Library preference across multiple TS7700 libraries**

```
TAPELIB_PREF(EQUAL|BYDEVICES)
```

This setting specifies the policy for balancing non-specific tape library requests (for example, scratch tape requests) across multiple tape libraries. The description of the TAPELIB_PREF parameters are:

- **EQUAL**
  
  Indicates that for non-specific tape library requests, all tape libraries must be treated as equal, and receive an equal share of the requests.

- **BYDEVICES**

  Indicates that non-specific tape library requests must be balanced across all tape libraries according to the number of online tape devices in the tape library. Tape libraries with more online tape devices will receive more non-specific tape requests than libraries with fewer online devices when all devices have the same attributes.

**JES3 allocation requirements**

In a JES3 environment, the setup consists of one processor called the global processor, while the remaining processors are called local processors. The global processors manage most of the JES3 processing like allocating resources to jobs before this is sent to the local processor for execution.

Depending on individual user setup, converter and interpreter processing may happen in the global processor or in one of the local processors. Furthermore, the processor in which the converter and interpreter processing happens may not be the same as the executing processor. It is suggested that all tape devices in the IBM Tape Library are connected to all processors in a JES3 plex to have these working on the same candidate list.

**JES3 esoterics**

The existing esoterics used in a JES3 environment for system-managed tape libraries and IBM Tape Libraries will continue to be used. The JES3 esoterics are listed below:

- Complex-wide name
- Library-specific name
- Library-specific device name
- Complex-wide device type

The new esoteric *library-specific distributed name* will have an eight character string consisting of LDX followed by a five-digit library number for the distributed library. This will only be used if DAA or SAA support is enabled.

**JES3 INISH deck**

The JES3 INISH deck must be updated if you migrate to the new TS7700 Allocation assistance support for JES3. The existing device statements covering, for example two libraries, must be split to be able to point to a specific library. An example of how this is done is in Example 10-16 on page 191.
Example 10-16  Example of JES3 device statements in INISH deck before and after update

DEVICE,XTYPE=(CLB12345,CA),XUNIT=(1100,*ALL,,OFF),NUMDEV=512

line above splits into >>>>

DEVICE,XTYPE=(DLB10001,CA),XUNIT=(1100,*ALL,,OFF),NUMDEV=256
DEVICE,XTYPE=(DLB10002,CA),XUNIT=(1200,*ALL,,OFF),NUMDEV=256

The SETNAME statements must have the new esoteric library-specific distributed name added to the existing esoterics as shown in Example 10-17.

Example 10-17  Example of JES3 SETNAME statements updated with the new esoteric.

SETNAME,XTYPE=DLB10001,NAMES=(LDGW3495,LDG12345,LDG3490E,LDE12345,LDX10001)
SETNAME,XTYPE=DLB10002,NAMES=(LDGW3495,LDG12345,LDG3490E,LDE12345,LDX10002)

One of the factors used by JES3 in selecting devices for volume mounting is the ADDRSORT parameter on the SETPARAM initialization statement. This parameter specifies that devices are either allocated in the same order as the DEVICE statement defining them (ADDRSORT=NO) or allocated by the order of their device numbers in ascending order (ADDRSORT=YES the default).

Documentation
For further detail, consult the following documentation:

* IBM TS7700 Virtualization Engine Customer Information Center
* z/OS Host Command Line Request User's Guide Version 3.0
  ibm.co/1qwVJya

10.4  DADSM CVAF/DEVICE support

DFSMS V2.1 provides DADSM/CVAF improvements as discussed in this section.

10.4.1  Rebuilding of VTOC index in VTOC full scenario

Before DFSMS V2.1, it was not possible to rebuild a VTOC index after the corresponding VTOC was full. Consequently, you had to go through a somewhat time consuming and disruptive process of extending and even moving the VTOC to accomplish this.

With DFSMS V2.1, it is possible for the CVAF convert routine to return VTOC records with free space so that these do not need to be written to disk. Rebuild of the INDEX is able to occur without the need for deleting data sets. Less time is spent on problem determination and impact on the system is reduced.

The ICK01322I message is set when the conversion has detected that there is room to expand the VTOC physically on the volume, as shown in Example 10-18 on page 192.

Prerequisites for this function are ICKDSF R17 and PM36724.
10.4.2 Reclaim of orphaned FORMAT 3 DSCBs in DADSM convert routine

This enhancement in DADSM converts routine identifies orphaned DSCBs during conversion from INDEXED to OS VTOC. The convert routine is called to build free space chains, but will now additionally identify orphaned FORMAT3 DSCBs and also convert these to FORMAT 0, creating more free DSCBs in the VTOC through this.

10.4.3 CVAFFILT macro uses the multi-DSCB read interface of CVAF

The CVAFFILT macro, with its underlying services is provided to obtain information about the data sets on an indexed or non-indexed VTOC. CVAFFILIT has been modified in DFSMS V2.1 to use the multi-DSCB Read Interface making it possible to read all DSCBs for one data set into CVAFDIR in one operation. The most important functions of CVAFDIR are:

- Reads or write one or more DSCBs by specifying the name of the data set they represent.
- Reads or write one or more DSCBs by specifying their addresses.

10.4.4 PARTREL macro enhancement

The PARTREL macro is called at data set close, at restart processing, during DFSMSShsm space management processing, or when directly called. PARTREL would not be attempted in some cases where module IGG020D1 determined that there were not enough format 0 DSCBs available to update the free space chain on an OS VTOC volume. In DFSMS V2.1, it is modified to account for all FORMAT 0 DSCBs, including those released in PARTREL processing.

10.4.5 Erase On Scratch enhancement

The purpose of this enhancement is to replace existing channel program used to erase tracks with Locate Record with Erase operation code. The existing Erase On Scratch (EOS) algorithm builds a Format Write R0 channel program to erase one track at a time. The main objective for this change has been to improve performance and to position for the future.

Basically the new EOS algorithm uses an LR Erase operation code and specifies 1 to N tracks. Specifying a range of tracks in a single channel program increases throughput.
DFSMSShsm enhancements

This chapter describes the various enhancements, functions, and features introduced with DFSMSShsm V2.1. The following DFSMSShsm functions are described in this chapter:

- Exploiting Storage Tiers in space management
- Extend number of tape volumes for migrated or backed up data sets
- Migration subtasking throughput enhancements
- GDG support for PDSE
- DFSMSshsm Fast Replication enhancements
- Reliability, availability, serviceability, and usability improvements
11.1 Exploiting Storage Tiers in space management

Before z/OS V2.1, DFSMSHsm treated all data in Level 0 (L0) as being in one single tier in the overall storage hierarchy. There were no policies to enable automated data movement within that L0 tier. In z/OS V2.1, DFSMSHsm is enhanced to move data from one class of devices to another within the L0 hierarchy. DFSMSHsm V2.1 implements class transition, when a data set migrates from an ML0 volume to an ML0 volume.

11.1.1 Storage Tiers migration concept

DFSMS V2.1 provides a policy-based automation for moving data sets within the ML0 volumes including active (opened) data sets.

The reason you would want to migrate data sets among ML0 3390 volumes is that these volumes are not the same as far as performance is concerned based on the disk technology. For example, in a DS8870 the 3390 volumes may be associated with physical disks, such as:

- Fast solid-state devices (SSDs)
- Medium fast enterprise-class drives that can be full disk encryption or not
- Slower Nearline SAS disk that also can be full disk encryption or not
- Slower SATA drives

Each layer of disk technology is called a tier. The association of a 3390 volume with the disks in the array of a tier is done through the DS8000 hardware console (DS storage manager).

The association of data sets and 3390 volumes at creation (or recall) time is done through assigning an SMS storage group (SG) to the data set. The SMS construct has the 3390 volumes candidates to contain the data sets assigned to this SG.

Concerning those tiers, to have the best performance for your business, two automatic mechanisms must be in place:

- To avoid bad performance (meaning higher I/O disconnect time) caused by 3390 data set volumes hot spots. It means data set extents with high I/O activity being located at 3390 associated with a slow tier. The solution is to use the DS8000 easy tier function. It has the automated capability of moving hot spots 3390 data set extents from a slower tier to a faster tier, such as SSD.

- To avoid bad performance (meaning higher I/O disconnect time) for 3390 volumes data sets with a not so high I/O activity (not a hot spot participant) but with key I/O operations for the system, such as catalogs, RACF database, JES2 checkpoint, important customer data sets. The solution is to allocate initially such data sets at ML0 3390 volumes associated with faster tiers and ask DFSMSHsm to later do a “class transition” (in this case, we do not use the word migration). Class transition means to move such data sets to ML0 3390 volumes associated with slower tiers after some time of no use. As expected, the MVS catalog is updated as a part of the class transition movement.

As an example, a user may tell DFSMSHsm to use data set class transition from a 3390 volume associated with an SSD tier to a 3390 volume associated with a SATA disk tier after five days of no use, and then becoming eligible for migration to ML2 after 30 days of continuous inactivity. Refer to Figure 11-1 on page 195, where three tiers are pictured.
The definition of DFSMSHsm space management function has been updated:

“DFSMShsm using policy-based automation ensures that 3390 volumes within the primary storage hierarchy (ML0) have enough free space for new data sets and to ensure that data sets are stored at the lowest acceptable tier (performance wise) in the storage hierarchy.”

With DFSMS V2.1, we have the following functions for the DFSMSHsm space management:

- **Automatic volume space management**
  - Primary space management
    It is executed on each requested DFSMSHsm-managed volume at a specified time of day. It has two phases:
    - Phase one deletes expired and temporary data sets, releases unused over allocated space.
    - Phase two migrates data sets (under control of the data set management class) optionally first from ML0 to ML0 (class transition), and second from ML0 to ML1 or to ML2. Migrations and optional class transition occur until the volume reaches its low threshold. This phase is executed if the first phase does not free enough space on the volume, that is, reaches the low threshold.
  - Interval space migration
    Ensures on an hourly basis that a specified amount of space is available on DFSMSHsm-managed ML0 volumes. It also has the two same phases of primary space management optionally including class transitioning operations. Interval space management only runs against storage groups that have this function enabled through the storage group SMS construct.
  - On-demand migration
    Introduced in DFSMS V1.13, it performs space management on a volume, as soon as it goes over high threshold. It is an optional replacement for on-the-hour interval space migration processing. It has the same two phases that include optionally class transition, as well.
Automatic secondary space management.

Secondary space migration moves data sets (under control of the data set management class) from ML1 to ML2 volumes and processes the migration cleanup function. Secondary space management is usually run before primary space management.

The **SETSYS** command may indicate if event-driven migration (on demand migration) and interval migration should process class transitions. Refer to the section “Class transition in an IM and ODM environment” on page 184 for more information about this **SETSYS** command.

Due to the introduction of class transition, some installations may need to adjust the number of DFSMShsm tasks executing space management to keep the same performance.

The advantages of class transitioning a data set (compared with migrating) are:

- Keep the data set at the business performance required tier.
- Data set is always available to the program task, that is, no need for a recall delay.
- The class transition may be applied to an opened data set under certain circumstances.
- Increase the number of days that the data set must be unreferenced before migrating directly to ML2.
- Class transition operation is faster and less resource consuming because it may use the DS8000 FlashCopy function. However, such function is only applied between volumes of the same physical DS8000. As a reminder, the previous releases of DFSMShsm already use FlashCopy for back-up purposes.

The following data sets would benefit from class transition:

- Data sets currently not eligible for migration because they always need to be immediately accessible. Or in other words, the recall delay is unacceptable.
- Data sets that are eligible for migration today, but there would be a benefit to keep them online for a longer period of time as the ones that go through cycles of activity and inactivity. In this case with class transition, you may avoid the data set going through many migration and recall iterations.

For the complete description of Storage Tiers in DFSMShsm V2.1 and how to implement it, refer to 10.2, “DFSMShsm storage tiers” on page 177, and 6.5, “DFSMS storage tiers” on page 98.

### 11.2 Extend number of tape volumes for migrated or backed up data sets

DFSMShsm migration and backup data sets can span up to a maximum of 40 tape volumes. Since the size of a virtual tape is limited to 6 GB, DFSMShsm cannot migrate or back up data sets larger than 600 GB to virtual tape volumes, assuming a 2.5:1 compaction factor. This fact is now a limitation for some users, mainly the ones using the typically small tape volume sizes configured for virtual tape subsystems, such as VTS.

#### 11.2.1 Using and invocation

The solution is to extend the maximum number of volumes that a migration or backup tape data set can span 40 - 254 volumes.
The tape recycle function is also enhanced to process connected sets of up to 254 volumes. The recycle function provides the capability of moving the valid data sets out from the original tapes and consolidates the data on another tape. This makes one tape with all unexpired data sets and leaving the recycled tapes available for reuse.

There is no user option to implement this new function in DFSMShsm V2.1. DFSMShsm automatically spans up to 254 tape volumes during data set migration, backup, and recycle.

FSR records have been extended from a maximum of 1260 bytes in length to 6396 bytes in order to contain up to 508 volume serials (254 input and 254 output):

- FSRs that list more than 144 tape volumes truncates when written to the DFSMShsm LOG log data sets. The existing 2048 fixed logical record length (RECL) prevents FSRs with more than 144 volumes from being written to the DFSMShsm log data sets in their entirety.
- Truncated FSRs affect ARCPRLOG and ARCPEDIT output. These are IBM supplied programs to list the DFSMShsm log data set.
- ARCPRLOG output displays only the portion of each FSR that was written to the log.
- When RECYCLE volumes are truncated, ARCPRLOG and ARCPEDIT output will display “TOVOL=******”.

11.3 Migration subtasking throughput enhancements

DFSMShsm migrates a data set in several steps:

- Preprocessing: This includes eligibility checking, enqueue for serialization, CDS updates, and catalog update
- Data movement: Moving ML0 data sets to ML0 (class transition), or to ML1 or to ML2
- Postprocessing: This includes dequeue, CDS updates, catalog update, and scratch

The target of this enhancement in DFSMShsm V2.1 is to increase the parallelism of data set migration, and consequently increase the data set migration throughput.

11.3.1 Subtasking before DFSMShsm V2.1

Before DFSMS V2.1, multitasking allows the parallel processing of multiple data sets migration (each one in each migration task). However, data set migration internal operations such as pre-processing, data movement, and postprocessing of each data set during are still performed sequentially. Figure 11-2 on page 198 shows an example of three data sets being migrated to ML2 (tapes) by one migration task. Only one task is shown for ease of explanation.

However, if the migration is to tapes, there is only one concurrent data movement to tape device per migration task, as shown in Figure 11-2 on page 198.
By implementing subtask migration, the aggregate throughput of all the migration tasks is improved.

### 11.3.2 Migration subtasks implementation

Two new keywords of the `SETSYS` command are added in DFSMShsm V2.1:

- **MIGRATIONSUBTASKS(YES | NO)**
  
  With the YES option, DFSMShsm runs multiple subtasks concurrently under each migration task for primary space management, on-demand migration, and interval migration. The number of these subtasks per migration task is decided internally by DFSMShsm.

- **ADDITIONALSUBTASKS(nn)**
  
  This is a subparameter of the `MIGRATION SUBTASKS` parameter. It allows you to dynamically change the number of additional subtasks that DFSMShsm can define, running under each migration task. These additional subtasks add to the number of subtasks that DFSMShsm already uses when the `MIGRATIONSUBTASKS` parameter is specified.

The total number of subtasks (per task) in a moment can vary, and it is lower, if a large value is specified with the maximum former migration tasks (MAXMIGRATIONTASKS) parameter. Conversely, the total migration subtasks used is higher, up to 15, if a smaller value is specified in the `MAXMIGRATIONTASKS` parameter.

### 11.4 GDG support for PDSE

DFSMShsm V2.1 is updated so that it can support PDSEs that are generation data sets. Generation data sets defined with DSNTYPE=LIBRARY will be PDSEs. As a result, DFSMShsm invokes DFSMSdss to dump and restore those data sets. Each of the DFSMShsm functions provides this support:

- Backup
- Recover
Systems before z/OS V2R1 that are running DFSMShsm ABACKUP and ARECOVER will detect SMS-managed PDSE GDS in the ALLOCATE list and fail the command.

DFSMShsm migration, recall, backup, and recovery functions will invoke DFSMSdss. The following existing messages were updated in both DFSMShsm and DFSMSdss:

▶ ARC1001I dsn MIGRATE FAILED, RC=0087, REAS=0006
▶ ARC1287I A DISCREPANCY WAS FOUND IN THE DATA SET VTOC ENTRY
▶ ARC1001I dsn BACKDS FAILED, RC=0087, REAS=0006
▶ ARC1387I A DISCREPANCY WAS FOUND IN THE DATA SET VTOC ENTRY
▶ ARC6172E DATA SET dsn IS NOT SUPPORTED IN AN ALLOCATE LIST FOR AGGREGATE GROUP group_name
▶ ADR285E DATA SET dsn WAS NOT PROCESSED BECAUSE pre-allocated DATA SET TYPE IS NOT SUPPORTED IN THIS RELEASE, 15
▶ ADR778E DATA SET dsn WAS NOT SELECTED BECAUSE THE DATA SET TYPE IS NOT SUPPORTED IN THIS RELEASE, 20

### 11.5 DFSMShsm Fast Replication enhancements

DFSMShsm may use fast replication for backing up data sets. Fast replication uses, through DFSMSdss, the FlashCopy function of DS8000 controllers. FlashCopy is point-in-time implementation that gives the appearance of an almost instantaneous data set (or volume) copy.

The DFSMShsm V2.1 fast replication enhancements are:

▶ DFSMSdss physical data set COPY and RESTORE commands
▶ DFSMShsm fast replication and physical data set recovery functionality

### 11.5.1 Concept review

Here, we introduce certain basic concepts:

▶ Consistency group is designed to guarantee the sequence of the multiple I/O operations connected to a non-atomic write along a process of Metro Mirror or FlashCopy, when a rolling over disaster is unfolding. A non-atomic write has several sequenced I/O operations, such as an update in place (read, update in memory and writes back). Consistency group guarantees (for integrity purpose) that the sequence of the I/O operation associated with dependent write are the same in the primary and in the secondary volume.

▶ Let us refresh the concept of restore and recovery in DFSMShsm. The data set level recovery is the opposite action of backup and the volume level restore is the opposite action of dump. By the way, DFSMShsm does not automatically recover or restore a data set, if it becomes damaged. The recover and restore process is driven by manual commands.
Fast replication uses volume-level fast replication to create backup versions for sets of storage groups. You can define a set of storage groups through the SMS copy pool construct. The DFSMShsm FRBACKUP command creates a fast replication backup version for each volume in every storage group defined within a copy pool.

11.5.2 Implementation and use

Here we discuss considerations for the implementation and use of the Fast Replication enhancements in DFSMS V2.1.

- DFSMSdss physical data set COPY and RESTORE commands

Here, we have two sub items:
- DS RENAME and REPLACE for COPY and RESTORE commands
  Before DFSMShsm V2R1, DFSMSdss only allows the rename of non-VSAM data sets during physical DS COPY and RESTORE.
  In DFSMS V2.1, a NEWNAME(newdsname) parameter has been added to the FRRECOV command. It allows DFSMShsm to use a new, VSAM fully qualified data set name for the recovered backup version or dump copy. It does not apply to VSAM alternate Index cluster. This function gives users access to the production data set and restored data set without having to restore the entire volume. The benefit of such improvement would allow users to recover a data set to another name for analysis without replacing the production data. This function is not implemented for VSAM data set restore operations.
  - Physical DS alternate SMS volume
    Before DFSMShsm V2.1, DFSMSdss physical DS COPY and RESTORE commands only support one output volume. Volume selection is not an option. If the target volume does not have enough space, the operation fails, like in the scenarios:
    - COPY FULL from source to target, COPY DS from target to source
    - DUMP FULL from target to tape, RESTORE DS from tape to source
    Space might no longer be available on source if the data set size changed. The pre allocated target might have had to be scratched/reallocated.
    DFSMShsm at V2R1 will no longer be restricted to recovering data sets back to the original volumes. If DFSMShsm is not able to recover a data set to the original volumes, it instead selects the most eligible volumes with the most free space within the storage group. There are no changes to the DFSMShsm commands.
    This enhancement is implemented by adding of a new user interaction module (UIM) exit:
      - Physical DS Alternate SMS Volume (EIOPTION 30)
      - Added to ADREID0 mapping
      - Allows program to pass a list of volumes that DFSMSdss can use to attempt to allocate data set on during physical DS copy and restore, when necessary
    This exit is only called when original target volume could not be used.

- DFSMShsm fast replication and physical data set recovery functionality

Here, we have three sub items:
- FlashCopy consistency group
  When application data set resides on multiple volumes, data-consistent copy might need to be created across multiple volumes for FRBACKUP command. Before DFSMS
V2R2, DFSMShsm does not have this support, although DFSMSdss has already implemented it.

At DFSMShsm V2R1 fast replication backup supports FlashCopy consistency groups. It freezes the source volumes causing subsequent writes to be held. After FlashCopy has completed, the held I/O is resumed.

**Note:** The consistency group must be formed and completed within a (default 2-minute) time window, therefore it is intended for backing up small LOG copy pools.

Specify whether the FlashCopy consistency group option is required to be used when the copy pool is backed up to disk with the new SMS copy pool settings:

- FlashCopy Consistency Group (Y or N)
  - Y: yes, perform consistency group FlashCopy.
  - N (default): no, do not perform consistency group FlashCopy.

If you specify Yes, DFSMShsm FRBACKUP function invokes DFSMSdss specifying:

- **FCFREEZE** on the COPY commands. “Freeze” places the source volume in an extended long busy state (suspended). All subsequent writes to the source volume are held. Associated dependent writes to any volumes also cannot complete.

- **CGCREATED ACCVOL FCCGVERIFY** command (in DFSMSdss) to thaw the source volumes after all volumes have been copied. The previously held I/O resumes. FCCGVERIFY validates the consistency of the copy.

DFSMSdss accepts multiple volume serial numbers on the FCCGVERIFY keyword of the **CGCREATED** command. The keyword accepts up to 255 volume serial numbers.

If the FlashCopy consistency group function fails, the **FRBACKUP** command is terminated and the new or in-process copy pool backup version is invalidated. An ARC1806E message is issued in the console:

**ARC1806E** FAST REPLICATION BACKUP HAS FAILED FOR COPY POOL cpname, RC=90

RC90 means that a data-consistent copy pool backup version could not be created successfully. The FlashCopy consistency group timer might have expired or reset before FRBACKUP finished processing all the volumes.

The FlashCopy consistency group option can be used in combination with other FlashCopy options, as:

- **LIST COPYPOOL(cpname)** command can be used to display (at FCCG=Y/N field) and determine whether the copy pool backup version was created using the FlashCopy consistency group option. Refer to Figure 11-3 on page 202 to see the output of such command.
LISTCOPYPOOL command output

COPYPOOL=CP6
ALLOW=PRC, FRB=PN, FRR=PN
VERSION VTOCENQ, DATE TIME FASTREPLICATION STATE DUMP STATE
0011 20120806 11:03:50 RECOVERABLE NONE
TOKEN(C)=C
TOKEN(H)=X
TOTAL NUM OF VOLUMES=00009, INCREMENTAL=N, CATINFO=Y, FCFRR=N, RECOVERYINCOMPLETE=N, FCCG=Y
SGNAME SOURCE - TARGET SOURCE - TARGET SOURCE - TARGET SOURCE - TARGET
SGRP1 SRC01B - TGT01B SRC02B - TGT02B
SGRP2 SRC03B - TGT05B SRC04B - TGT06B SRC05B - TGT07B
SGRP6 SRC31B - TGT31B SRC32B - TGT32B SRC33B - TGT33B SRC34B - TGT34B

Figure 11-3  LISTCOPYPOOL command output

Now, data-consistent copy can be created across multiple volumes. For example, DB2 customers can use this option on the LOG copy pool for a consistent, non-fuzzy backup of the logs and BSDS.

– Fast replication data set recovery to different volumes

Before DFSMSHsm V2R1, fast replication data set recovery must recover data sets to the original volumes where they resided at the time of backup. In order to achieve that, DFSMSHsm currently captures catalog information at the time of the fast replication backup to recover deleted and moved data sets back to the original volumes. However, the recovery might fail for reasons such as insufficient space.

Now, at DFSMSHsm V2R1, customers are able to recover data sets to different volumes than the original volumes.

DFSMShsm will first attempt to recover the data set to the original volumes.

If the initial allocation attempt failed, DFSMSHsm performs SMS volume selection within the primary storage group and retry data set recovery.

– Fast replication data set recovery with rename

Before DFSMSHsm V2R1, fast replication data set recovery does not allow data sets to be recovered to a new name.

Also, the RECOVER command currently does not allow VSAM data sets to be renamed when restoring from dump.

The solution at DFSMSHsm V2R1 is to enhance:
- FRBACKUP command to allow data set to be recovered to a new name
- RECOVER command to remove the restriction that VSAM data set must be recovered to the original name when restoring from dump

A new optional parameter: NEWNAME(newdsname) introduces the new name. If a data set exists with the same name as the new data set name you are specifying, you must specify the existing REPLACE parameter to replace the existing data set.

The benefit of such improvement would allow users to recover a data set to another name for analysis without replacing the production data.
11.6 Reliability, availability, serviceability, and usability improvements

Since the very beginning, there is a non-stop effort on the z/OS platform for improving reliability, availability, and serviceability (RAS). A list of the improvements for DFSMShsm at V2.1 are:

- DFSMShsm no longer captures unit control blocks (UCBs) into below the 16-M line
- Automatic recycle retry for a tape takeaway
- Automatic recycle retry for a duplex error
- QUERY ACTIVE(TCBADDRESS) command improvements
- Enhance ARC0936I with catalog return/reason code
- Update ARCHRCAL macro to use different TCB
- SMSVSAM server termination handling

11.6.1 DFSMShsm no longer captures UCBs into below the 16-M line

UCB is a control block used by the MVS component Input Output Supervisor (IOS) to represent a device or an additional alias address of a device, if you implement Parallel Access Volume (PAV). All UCBs are located above the 16-M line in ESQA. They can be:

- Captured UCBs, although located above the 16-M line, are also mapped and accessible by AMODE24 programs for compatibility needs. This is possible through the implementation of the IBM z/Architecture® concept of shared pages, that is, two virtual pages pointing to the same real storage frame.
- Non-capture UCBs, as defined in an HCD. They are not mapped below the 16-M line.

Because captured UCBs consume virtual storage below the 16-M line, large customers face periodic 878-Abends in the DFSMShsm address space. DFSMShsm has increased the available virtual storage below the 16-M line by not capturing UCBs below the line anymore.

11.6.2 Automatic recycle retry for a tape takeaway

DFSMShsm V2R1 can automatically generate a new Recycle command for the same original target tape when this Recycle must terminate due to:

- Takeaway process. A takeaway happens when a recall request needs the tape that is currently being written to by a space management task as migration to ML2, or
- When the recycle input tape is in use by another DFSMShsm task

Before DFSMShsm V2R1 space management task closes the ML2 cartridge after the takeaway. The space management task then requests a new scratch tape, and the partially filled ML2 tape is not reused to append any more data to it. This can result in many cartridges being only partially full and becoming candidates for subsequent recycles.

Automatically retrying a recycle is managed by the new option at SETSYS command:

```
SETSYS RECYCLETAKEAWAYRETRY(YES MAXRETRYATTEMPTS(nn) DELAY(mmmm) | NO)
```

- RECYCLETAKEAWAYRETRY is an optional parameter used to generate a new Recycle command for the same original tape when the original Recycle must terminate due to the takeaway process or when the input tape is in use by the other DFSMShsm task.
11.6.3 Automatic recycle retry for a duplex error

Before DFSMSHsm V2R1, when an alternate tape of a duplex copy pair fails to be created, DFSMSHsm generates an automatic request to create a tape copy of the original. At DFSMSHsm V2R1, when such error occurs, an option is available to generate a RECYCLE command instead of TAPECOPY command to create a new original and alternate tape.

This can be done through a new SETSYS option added to the Duplex Tape function. When an error occurs on the duplex alternate tape, the alternate tape is dismounted and discarded, DFSMSHsm continues to write to the original tape. When DFSMSHsm has completed writing the original tape, a TCN record for Recycle is created and written to OCDS. DFSMSHsm starts RECYCLE of the original tape to create a new duplex pair of tapes.

The new option CONTINUE (RECYCLE) creates a new duplex pair of tapes via the Recycle command after the original finishes:

```
SETSYS DUPLEX (BACKUP (Y ERRORALTERNATE(CONTINUE(TAPECOPY|RECYCLE)) | N) MIGRATION(Y ERRORALTERNATE(CONTINUE(TAPECOPY|RECYCLE) | MARKFULL) | N))
```

11.6.4 QUERY ACTIVE(TCBADDRESS) command improvements

At DFSMSHsm V2R1, the QUERY ACTIVE(TCBADDRESS) command is improved to display on top of the TCB address for data movement tasks to show: the tape volser, device address and task name. It is very clear that just the TCB address is not enough for task identification. This helps users with correctly identifying which TCB should be canceled. Users often know which tape drive that is in error, but do not know how to relate that to a particular DFSMSHsm TCB.

11.6.5 Enhance ARC0936I with catalog return and reason code

DFSMShsm ARC0936I message now contains additional diagnostic information. When FAST VVDS ACCESS interface returns RC12, REAS98, DFSMSHsm uses the information in the FVVPPROB field to put it into SUBREAS field of the ARC0936I message.

11.6.6 Update ARCHRCAL macro to use different TCB

The ARCHRCAL macro allows customer programs to recall a migrated data set. The syntax of the ARCHRCAL macro is changed to use a different TCB. A new TCBTOKEN=CURRENT parameter is added to the syntax. This parameter is provided to support changes in BCP for batch job recall processing.
11.6.7 SMSVSAM server termination handling

This support greatly improves the usability and robustness of DFSMShsm regarding its response to SMSVSAM server errors. When an SMSVSAM server error occurs, DFSMShsm detects the error, and quiesces all DFSMShsm CDS I/O activity. Once the SMSVSAM server initializes, DFSMShsm automatically closes and reopens the CDSs and resumes all requests waiting on CDS I/O operations.
DFSMSrmm enhancements

The DFSMSrmm enhancements in z/OS V2.1 DFSMS provide improvements in the areas of usability and maintainability. New function in this release includes the following:

- SMS management class expiration attributes for tape
- RETENTIONMETHOD(EXPDT) enhancements
- DFSMSrmm conversion support

The following DFSMSrmm enhancements are described in this chapter:

- DFSMSrmm overview
- SMS management class expiration attributes for tape
- RETENTIONMETHOD(EXPDT) enhancements
- Testing MCATTR and RETENTIONMETHOD settings
- DFSMSrmm conversion support

At the end of the chapter, you should be able to use the retention specified in your SMS management classes. You should understand how to select different retention methods for your volumes and to exclude some of your data sets from vital record processing.
12.1 DFSMSrmm overview

DFSMSrmm is a z/OS feature. In your enterprise, you probably store and manage removable media in several types of media libraries. For example, in addition to your traditional tape library, a room with tapes, shelves, and drives, you might have several automated, virtual, and manual tape libraries. You probably also have both onsite libraries and off-site storage locations, also known as vaults or stores.

With DFSMSrmm, you can manage your removable media as one enterprise-wide library across systems and SYSPLEXes. DFSMSrmm manages your installation’s tape volumes and the data sets on those volumes. DFSMSrmm also manages the shelves where volumes reside in all locations except in automated tape libraries.

DFSMSrmm manages all tape media, such as cartridge system tapes and 3420 reels, as well as other removable media you define to it. For example, DFSMSrmm can record the shelf location for optical disks and track their vital record status. It does not manage the objects on optical disks.

12.2 SMS management class expiration attributes for tape

You can now set the expiration date in DFSMSrmm for a tape data set with a DFSMS management class (MC). When you enable use of management class attributes by DFSMSrmm, the management class expiration attributes (except the management class Expiration attribute Retention limit) are retrieved by DFSMSrmm during OPEN for output and used to set the expiration date for the tape data set, and also to set the LASTREF extra days in the tape data set record on retention method EXPDT managed volumes. Regardless of whether the expiration attributes are retrieved from the management class, from a DFSMSrmm default parmlib option, or from an installation exit, an expiration date is calculated and will be used to manage expiration. Any attributes needed to continue management of retention, such as days non-usage are bound to the data set record in the DFSMSrmm CDS, depending on the retention method. This is a one-time action, thus avoiding any overhead of repeating the policy decisions as part of inventory management.

At OPEN for input the management class attributes are not considered for processing. At OPEN for output with disposition MOD the management class attributes are not considered for processing. The enablement in DFSMSrmm provides options to use or not use these management class attributes for all volumes. It provides an option for VRSEL managed volumes to exclude the management class attribute Expire after Date/Days. This last option is recommended if it is wanted that the processing of VRSEL managed volumes not change with DFSMSrmm V2.1.

Management class attributes for tape management

You can use ACS routines to assign a management class to a data set to allow DFSMSrmm to:

- Retrieve and use the management class attributes relevant for tape management.

    DFSMSrmm calls ACS routines directly to provide support for non-system-managed tape if you have enabled it with the EDGRMMxx parmlib option SMSACS. This DFSMSrmm processing enables you to use an SMS management class to manage system-managed and non-system-managed the usage of the management class attributes. The SMS management class attributes that can be retrieved are the expiration attributes Expire after Days Non-usage and Expire after Date/Days. They are bound to the DFSMSrmm data set attributes EXPDT and LASTREF when the data set is first written.
Match a DFSMSrmm data set vital record specification to the management class name. This processing applies only when the VRSEL retention method is used. DFSMSrmm calls ACS routines directly to provide support for non-system-managed tape, if you have enabled it with the EDGRMMxx parmlib option SMSACS. This DFSMSrmm processing enables you to use an SMS management class to manage system-managed and non-system-managed tape data sets.

Using SMS ACS processing you have an automated way to set the expiration date and LASTREF extra days of a data set from the management class expiration attributes 'Expire after Date/Days' and 'Expire after Days Non-usage'. You can tailor the use of the management class attributes by DFSMSrmm with the EDGRMMxx parmlib option MCATTR.

Using SMS ACS processing, you can consolidate policy assignment decisions in a single place whether you use system-managed tape or not. You can use SMS ACS routines to assign management class for your data sets instead of using vital record specification management values assigned by the EDG_EXIT100 exit. You can assign a management policy by name to either a non-system-managed or a system-managed tape data set.

If the use of the management class attributes is enabled by the EDGRMMxx parmlib OPTION MCATTR, you can use the management class Expiration Attributes (Expire after Date/Days and Expire after Days Non-usage) to set the data set EXPDT and LASTREF attributes, where appropriate.

You can use the SMS management class attributes for both system-managed and non-system-managed volumes. For non-system-managed volumes, you must set the EDGRMMxx parmlib option SMSACS(YES).

12.2.1 Using SMS management class in a system-managed tape environment

To use the SMS management class expiration attributes, you must change the MCATTR option in the EDGRMMnn parmlib member from the default MCATTR(NONE) to ALL or VRSELXDI to enable the use of DFSMS management class expiration attributes.

Update EDGRMMnn parmlib member

In Figure 12-1, you can see the MCATTR and RETENTIONMETHOD settings in the EDGRMMnn parmlib member to use DFSMS management class expiration attributes.

```
OPTION OPMODE(P) /* protect mode */ -
 ACCOUNTING(J) /* Account information */ -
 BACKUPPROC(RMGBKUP) /* backup procedure */ -
 BLP(RMM) /* bypass label process */ -
 CATRETPD(12) /* catalog retention */ -
 ...
 MAXRETPD(NOLIMIT) /* maximum retention */ -
 MCATTR(VRSELXDI) /* management class use */ -
 ...
 RETENTIONMETHOD(VRSEL) /* VRSEL retain process */ -
 RETPD(0) /* default retention */ -
 ...
 SMSACS(YES) /* SMSACS option */ -
 ...
```

Figure 12-1  Sample EDGRMMnn parmlib member
The following values apply to Figure 12-1 on page 209:

- **MAXRETPD**: Specifies the maximum retention period that a user can request for data sets on volumes. The following values are valid:
  - **NOLIMIT**: Specify NOLIMIT to use the dates 99365 or 99366, which mean to never expire. If the calculated date is 31 December 1999, the expiration date 1 January 2000 is used. The default is MAXRETPD(NOLIMIT).
  - **nnnnn**: Specify a value 0 - 93000 days. When a value 0 - 93000 days is specified, the value is added to the current.

- **MCATTR**: Specifies whether DFSMSrmm should be enabled to use DFSMS management class expiration attributes that apply to tape management. The following values are valid:
  - **ALL**: The use of all applicable management class attributes is enabled. The management class attributes are used as they are appropriate, depending on the retention method. The management class attribute Retention Limit is not applied.
  - **NONE**: No management class attributes are used. This is the default.
  - **VRSELXDI**: The use of management class attributes is enabled. The management class attributes are used as they are appropriate, depending on the retention method. The exception is the Expire after Date/Days attribute, which is ignored if the data set is on a volume managed by the VRSEL retention method. The management class Retention Limit attribute is not applied. VRSELXDI is recommended if it is wanted that the processing of VRSEL managed volumes is the same as in prior DFSMSrmm releases.

- **RM**: RETENTIONMETHOD can be abbreviated as RM. Use this operand to set the system-wide retention method default for new tape volume sets. New tape volume sets may be created during Open/Close/End-of-Volume (O/C/EOV) processing, or through DFSMSrmm commands. A tape volume set may be a multivolume set, or a single tape volume. The following values are valid:
  - **EXPDT**: Specify EXPDT to set the default retention method for new tape volume sets to be based on EXPDT. Data sets and volumes managed by this retention method are never processed by VRSEL inventory management. When you specify the EXPDT retention method, the DFSMSrmm inventory management EXPROC processing always attempts to return volumes to scratch on the same run as the volume is released (this is as though the SCRATCHIMMEDIATE attribute is set for the volume). DFSMSrmm maintains a consistent expiration date and time for all data set records of a multivolume data set, unless the volume set is retained by first file. EXPDT can be specified either as EXPDT or EXPDT(options). The available options are:
    - **LASTREF**: LASTREF specifies the default for the data set record LASTREF attribute. The LASTREF attribute specifies the number of days that the data set will be retained after the data set was last referenced by a read or write operation. LASTREF applies only to data sets on volumes managed by the EXPDT retention method. The parameter extra_days is a decimal number 0 - 93000. The value must not exceed the maximum retention period (MAXRETPD) specified in the EDGRMMxx parmlib member. An extra_days value of 0 has the same effect as the NOLASTREF operand. When a data set is added to DFSMSrmm on a volume managed by the EXPDT retention method and neither LASTREF nor NOLASTREF are specified for the data set, then DFSMSrmm uses the default LASTREF value. DFSMSrmm uses the data set LASTREF value to determine the data set expiration date. The extra days are added to the date of last reference. The data set expiration date is set to the maximum of the date calculated using data set LASTREF value and the date resulting from applying the EXPDT, RETPD, or default RETPD. Any reference to the data set by a read or write operation will change the expiration date.
• **NOLASTREF**: NOLASTREF is the default setting for the data set record LASTREF attribute. If neither LASTREF or NOLASTREF are specified in parmlib, NOLASTREF is used by default. NOLASTREF specifies that DFSMSrmm does not consider the data set last reference date when determining the data set expiration date. NOLASTREF applies only to data sets on volumes managed by the EXPDT retention method.

• **RETAINBY**: RETAINBY specifies how DFSMSrmm is to retain volumes or multivolume sets that are managed by the EXPDT retention method. In a multivolume set, RETAINBY is assigned only to the first volume in a multivolume sequence. All other volumes added to the set assume the same RETAINBY. It has several valid values described in “Using RETAINBY option” on page 220.

  – **VRSEL**: Specify VRSEL to set the default retention method for new tape volume sets to be VRSEL. This option enables DFSMSrmm inventory management to attempt to match data sets and volumes to vital record specifications, and if a match is found, to determine if the data set or volume is to be retained by VRS. The VRSEL retention method is controlled by all the other VRS-related options in parmlib including OPTION RETAINBY MOVEBY. The default is RETENTIONMETHOD(VRSEL). For volumes managed by the VRSEL retention method, use the RETAINBY option to obtain a similar function.

  – **RETPD**: Specifies the default retention period for all new data sets on volumes. Specify a value 0 - 93000 days. The specified value is added to the current date to determine the expiration date. Select a default retention for parmlib RETPD that is a small value to ensure that all tape data created outside the service levels is released as soon as possible. The MAXRETPD value that you specify in the parmlib limits the calculated expiration date. The default is RETPD(5).

  – **SMSACS**: Specify this operand to control whether DFSMSrmm calls SMS ACS processing to enable use of storage group and management class values with DFSMSrmm for non-system managed data. The following values are valid:

    – **NO**: Specify NO to prevent DFSMSrmm from calling the SMS ACS processing to obtain management class and storage group names. DFSMSrmm system-based scratch pooling, and scratch pooling and VRS management values based on the EDG_EXIT100 installation exit are used. The default is SMSACS(NO).

    – **YES**: Specify YES to enable DFSMSrmm calls to the SMS ACS processing to obtain management class and storage group names. If values are returned by the SMS ACS routines the values are used instead of the DFSMSrmm and EDG_EXIT100 decisions. If there is no expiration date in the JFCB or management class, DFSMSrmm uses the EDGRRMMxx RETPD value to calculate the new expiration date. If the RETPD value allows the volume to be retained longer, DFSMSrmm uses that date to update the volume’s expiration date.

Figure 12-2 on page 212 shows you the result of the **LISTCONTROL OPTION** subcommand if you have the default MCATTR option setting.
### 12.2.2 Update your tape-related SMS management classes

You have to specify your expiration settings in the SMS management classes related for tape. Figure 12-3 on page 213 shows an SMS management class used for tape data sets with specific expiration date settings.

Figure 12-2  EDGRMMnn parmlib member without using MC attributes
The following values apply to Figure 12-3:

- **EXPIRE AFTER DAYS NON-USAGE**: This attribute is used to specify when each data set in this management class will expire. The data sets will expire if they are not used within the number of days you specify. If you do not want the data sets to expire, specify NOLIMIT. This attribute is valid only if the retention period (RETPD) or expiration date (EXPDT) is not specified or is not derived from the data class. The retention attributes override the migration attributes. The following values are valid:
  - **1 to 93000**: Specify any value 1 - 5 digits.
  - **NOLIMIT**: Specify this attribute if you want to ignore the expiration time.

- **EXPIRE AFTER DATE/DAYS**: To specify either the expiration date for data sets or objects in this management class or the number of days before data sets or objects expire, beginning with the creation date. This attribute is valid only if the retention period (RETPD) or expiration date (EXPDT) is not specified or is not derived from the data class. The retention attributes override the migration attributes. The following values are valid:
  - **yyyy/mm/dd**: Specify four digits that specify a year, the month as 01 to 12, the day as 01 to 31.
  - **NOLIMIT**: Specify if you want the data set to not expire.
  - **0 to 93000**: One to five digits to specify the number of days.

- **RETENTION LIMIT**: To control what a user or data class can specify for retention period (RETPD) or expiration date (EXPDT) during allocation. The following values are valid:
  - **0**: Do not use the RETPD and EXPDT that the user or data class specified.
  - **1 to 93000**: Use this value only if the RETPD or EXPDT is more than this value.
  - **NOLIMIT**: Do not set a limit to the allowable RETPD or EXPDT.
The use of the management class is illustrated further in this chapter. We provide examples that show you what is happened with the different DFSMSrmm PARMLIB settings.

### 12.2.3 SMS management class in a non-system-managed tape environment

For non-system managed tape, DFSMSrmm calls the ACS routines to obtain a management class. The management class is used in place of the vital record specification management value assigned by the EDG_EXIT100 installation exit. When a management class name is assigned using ACS routines, the EDG_EXIT100 installation exit is not called for a vital record specification management value. The decision to call the EDG_EXIT100 installation exit is made each time a new data set is created on a tape based on whether a construct is assigned by ACS processing. You have the flexibility to identify one request to be handled by ACS and the next request to be handled by the EDG_EXIT100 installation exit. For compatibility, DFSMSrmm passes the vital record specification management value that is determined by the EDG_EXIT100 installation exit by using the pre-ACS interface in the MSPOLICY variable. You might use the vital record specification management value in the MSPOLICY variable as the base for management class assignment for system managed tape. Even when you use SMS ACS support to assign management class names, you can have separate policies for retention and movement by using a primary data set name vital record specification and a secondary management class vital record specification. Use the ACS routine to assign the management class as the secondary vital record specification and the DFSMSrmm data set name vital record specification to assign the primary vital record specification.

**Important:** If both EXPIRE AFTER DAYS NON-USAGE and EXPIRE AFTER DATE/DAYS specify NOLIMIT, the data sets or objects never expire. If either field has a value of NOLIMIT and the other field specifies an expiration date or the number of days until expiration, the data sets or objects expire at that specified time. If both fields specify an expiration date or the number of days until expiration, the data sets or objects expire on the later date.

Note: You can still use the EDG_EXIT100 installation exit to check for either EXPDT= or ACCODE= specifying special values and override them to ensure correct retention processing by DFSMSrmm.

**Management class assignment**

In addition to the description in the section 12.2.1, “Using SMS management class in a system-managed tape environment” on page 209, you must enable this by specifying the OPTION SMSACS in your EDGRMM parmlib member.

To assign a management class, you must have the SMS subsystem active and have a valid SMS configuration.

You use the ACS routines to process the special calls that DFSMSrmm makes to the SMS subsystem for ACS processing. DFSMSrmm requests that the management class routine is run. The environment variable is set to RMMVRS so that you can differentiate allocation requests for system-managed data sets from requests by DFSMSrmm for a management class name. When DFSMSrmm calls the ACS routines with the &ACSENVIR variable set to either RMMPOOL or RMMVRS, the storage class (&STORCLAS variable) is set to the word USERMM.
DFSMSrmm calls the ACS routines to request the assignment of storage group and management class names for non-system managed tape data sets. Table 12-1 lists the read-only variables that are set for DFSMSrmm requests.

Table 12-1 SMS read-only variables set by DFSMSrmm

<table>
<thead>
<tr>
<th>Variables</th>
<th>&amp;ACCT_JOB</th>
<th>&amp;ACCT_STEP</th>
<th>&amp;ACSENVIR</th>
<th>&amp;DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;DSN</td>
<td>&amp;DSORG</td>
<td>&amp;DSTYPE</td>
<td>&amp;EXPDT</td>
<td></td>
</tr>
<tr>
<td>&amp;FILENAME</td>
<td>&amp;GROUP</td>
<td>&amp;HLQ</td>
<td>&amp;JOB</td>
<td></td>
</tr>
<tr>
<td>&amp;LABEL</td>
<td>&amp;LIBNAME</td>
<td>&amp;LLQ</td>
<td>&amp;NQUAL</td>
<td></td>
</tr>
<tr>
<td>&amp;PGM</td>
<td>&amp;STORGRP</td>
<td>&amp;SYSNAME</td>
<td>&amp;SYSPLEX</td>
<td></td>
</tr>
<tr>
<td>&amp;UNIT</td>
<td>&amp;USER</td>
<td>&amp;XMODE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The SMS pre-ACS exit variables &MSPOOL, &MSPOLICY, &MSDEST, and &MSPARM read-only variables can be used by a tape management system only.

The following values apply to Table 12-1:

- **&ACCT_JOB**: The accounting information from the JOB statement. The maximum value is 142 characters.
- **&ACCT_STEP**: The accounting information from the STEP statement. The maximum value is 142 characters.
- **&ACSENVIR**: The environment on which the ACS routine was invoked. The following values are valid:
  - **RECALL**: For data set recall operations.
  - **RECOVER**: For data set recover operations.
  - **RENAME**: For data set alter rename operations.
  - **RMMPOOL**: For DFSMSrmm requests for a storage group name.
  - **RMMVRS**: For DFSMSrmm requests for a management class name.
  - **CONVERT**: For data set convert in place operations.
  - **ALLOC**: For new data set allocations. This is the default.
  - **STORE**: OSREQ object store environment.
  - **CHANGE**: OSREQ object change environment.
  - **CTRANS**: OSMC object class transition environment.
  - **other**: Installation exit can set its own value before reinvoking ACS. Max value: 8 characters.
- **&DD**: DDNAME in the DD statement of the data set.
- **&DSN**: The name of the data set or collection for which ACS processing is taking place. For VSAM data sets, only the cluster name is passed to the ACS routine. The component names are not. If the data set has an absolute or relative generation number, it is stripped from &DSN. The generation number is the low-level qualifier of the data set name.
- **&DSORG**: The data set organization. The following are valid values:
  - **PS**: Physical sequential
- **PO**: Partitioned
- **VS**: VSAM organization
- **DA**: BDAM organization
- **null**: No value specified

- **&DSTYPE**: The data set type. The following are valid values:
  - **GDS**: One generation data set of a generation data group, or any data set allocated with a relative generation number (such as A.B.C(+1)) or an absolute generation number (such as A.B.C.G0000V00).
  - **PERM**: Standard permanent data sets.
  - **TEMP**: Temporary data sets.
  - **null**: None of the above.

- **&EXPDT**: The expiration date in the form of YYYYDDD where YYYY is the four-digit number for the year. The maximum allowable value for yyyy is 9799. DDD is the three-digit number for the day of the year from 1 to 366. Note that expiration dates of 99365 and 99366 are considered NEVER-SCRATCH dates.

- **&FILENUM**: The value of the FILENUM ACS read-only variable. This variable corresponds to the data set sequence number on the JCL LABEL parameter. The default is 1. This field is optional.

- **&GROUP**: The RACF defined group to which you are connected, or the group specified in the GROUP keyword on the JCL JOB statement. If the environment is recall or recover, &GROUP is set only if the requester of the recall or recover is not a DFSMShsm authorized user. When DFSMShsm invokes the ACS routines, &GROUP is the group associated with &USER.

- **&HLQ**: The high-level qualifier of the data set or collection name.

- **&JOB**: The job name, the started task name, or the TSO/E user ID from the JOB statement, depending on the execution mode (&XMODE).

- **&LABEL**: The value of the LABEL ACS read-only variable. This variable corresponds to the label field of the JCL LABEL parameter. Allowable values are NL, AL, SL, NSL, SUL, AUL, BLP, LTM, or blank. The default is IBM Standard Label. This field is optional.

- **&LIBNAME**: The name for the LIBNAME ACS read-only variable, can contain a 1 - 8 character tape library name. This field is optional.

- **&LLQ**: The low-level (last) qualifier of the data set or collection name.

- **&MSPDEST**: The destination, specified in data set name format, for a tape management system-driven tape allocation. This value is specified through the AMS pre-ACS installation exit. The data set name format lets you specify a sequence of destinations to be identified, where each qualifier is a specific destination. For example, a data set vaulted first at location OUTD and then sent to OLTS can have an MSPDEST of ‘OUTD.OLTS’. The actual values depend on the support provided by your tape management system.

- **&MSPARM**: Additional information related to a tape management system-driven tape allocation. This is a variable length field that can be indexed. The value is specified through an external exit.

- **&MSPOLICY**: The name of a management policy associated with tape data for a tape management system-driven allocation. You can use the DFSMSrmm EDGUX100 installation exit to set MSPOLICY to a VRS management value name. You can also set the value of this variable using the SMS pre-ACS installation exit, or allow your tape management system to set it using the pre-ACS installation exit.
&MSPOOL: A tape pool name associated with the data set being allocated. In a system-managed tape environment with scratch pool support, you can use this variable to specify a default storage group, where the tape storage group is equivalent to the tape pool specified in the variable. If you use the DFSMSrmm EDGUX100 installation exit, you can set this variable to the pool name or prefix determined by the DFSMSrmm scratch pool processing. This variable can also be set through the pre-ACS installation exit.

&NQUAL: The number of qualifiers in the data set or collection name.

&PGM: The name of the program the system is running.

&SYSNAME: Specifies the system name of the system on which the ACS routine is executing. This field is optional.

&SYSPLEX: Specifies the Parallel Sysplex name of the system on which the ACS routine is executing. This field is optional.

&UNIT: IBM supplied or installation defined generic name for a device type (for example, 3380, SYSDA).

A slash (/) preceding a four-digit number represents a unit address (for example, /3380).

When you allocate a tape data set with DISP=MOD, and no unit information is specified in the JCL, this variable is blank and SMS might attempt to manage the tape data set as a DASD-resident data set.

&USER: The user ID of the person allocating the data set. When DFSMShsm invokes the ACS routines, &USER is either the requestor of the recall or recover, or the user ID of the DFSMShsm address space. If the environment is recall or recover, the variable is set only if the requestor of the recall or recover is not a DFSMShsm authorized user.

&XMODE: The execution mode in which the data set is being allocated. Following are valid values:

- BATCH: Batch execution mode
- TSO: TSO execution mode
- TASK: A started address space

Set up your SMS management class routine to ask for the ACSENVIR RMMVRS environment and select a management class setup for tape data sets. Example 12-1 is a sample management class routine for managing non-system-managed volumes. In this sample, all data set names starting with RMM, MHLRES7 or SCHLUM will be assigned a management class of NSRMMMC. All other tape data sets will become the management class catalog, except if a special meaning expiration date is selected.

**Example 12-1  Sample management class routine for managing non-system-managed volumes**

```plaintext
PROC 1 MGMTCLAS
...
FILTLIST RMMDSN INCLUDE(RMM.**, MHLRES7.**, SCHLUM.**) /* §02 */
...
IF &MGMTCLAS ^= ' ' THEN DO /* IF THE DATA SET ALREADY */ EXIT /* HAS A MANAGEMENT CLASS */ /* USE IT */ END /* */ /* */

RMM POLICY FILTER LISTS */
/**/
/* ACSENVIR = 'RMMPOOL' THEN EXIT /* §01 */
...*/
IF &ACSENVIR = 'RMMVRS' THEN DO /* §02 */
```
12.3 RETENTIONMETHOD( EXPDT) enhancements

With DFSMSrmm V2.1, there are two new attributes added to the RETENTIONMETHOD expiration data setting. They are listed here:

LASTREF Specifies the default for the data set record LASTREF attribute. The LASTREF attribute specifies the number of days that the data set will be retained after the data set was last referenced by a read or write operation. LASTREF applies only to data sets on volumes managed by the EXPDT retention method.

RETAINBY Specifies how DFSMSrmm is to retain volumes or multivolume sets that are managed by the EXPDT retention method.

These new options apply only to the EXPDT retention method, not to the VRSEL expiration method. The processing of volume sets managed by the VRSEL retention method is unchanged. The use of the new RETENTIONMETHOD settings is shown in Figure 12-4 on page 219.
12.3.1 Using LASTREF option

LASTREF extra days is added to the data set record for data sets on volumes managed by the EXPDT retention method. Then, the installation can manage its data based on the number of days since the data set was last read or written on volumes managed by the EXPDT retention method.

The LASTREF extra days apply to data sets on RM(EXPDT) managed volumes. LASTREF extra days cannot be specified for data sets on VRSEL-managed volumes. Extra days means the number of days that the data set will be retained after the data set was last referenced.

DFSMSrmm uses the LASTREF extra days to evaluate the data set expiration date. The extra days are added to the date of last reference. The data set expiration date is set to the maximum of the date calculated using LASTREF extra days, and the date from applying the EXPDT RETPD or default RETPD. Any reference to the data set by a write or read operation will redetermine the expiration date.

The LASTREF extra days option can be set only for data sets on volumes managed by the EXPDT retention method.

You can set the LASTREF extra days retention option in several ways:

- By the management class, when the use of the management class attributes is enabled by the EDGRMMxx member option MCATTR and there is a value in Expiry after days non-usage in the management class. The advantage is that you do not need to define the function to each data set explicitly through the JCL, data class, TSO DFSMSrmm command, or using the EDGRMMxx member. With management class assignment, we implement automation in the process. Refer to “Update your tape-related SMS management classes” on page 212 to see how to implement LASTREF extra days retention option in an SMS management class.

- By DFSMSrmm ADDDATASET subcommand, when the data set record is created.

- By DFSMSrmm CHANGEDATASET subcommand any time after the data set record has been created.
If the volume set is retained by SET or VOLUME, the LastReferenceDays data set attribute will be kept equal for all files of a multi-volume data set. The latest LastReferenceDays update to a single file in a multivolume data set is propagated to all files that belong to the same multi-volume data set. However, for volume set retained by FIRSTFILE the LastReferenceDays data set attribute will be set but not equalized across the multi-volume data set because the expiration date depends only of the first file of the first volume, and its LastReferenceDays.

Additional information about the EXPDT options LASTREF and NOLASTREF can be found in 12.2.1, “Using SMS management class in a system-managed tape environment” on page 209.

### 12.3.2 Using RETAINBY option

EXPDT retention method now allows retention to be based on a single volume or volume set, or on a controlling first file. You now have the option of retaining volumes with the EXPDT retention method based on a single volume or volume set, or on a controlling first file. Use the RETAINBY keyword of the RETENTIONMETHOD option to specify one of the following retention methods:

- **VOLUME**: DFSMSrmm expires volumes in a multi-volume set at the volume level. Each volume in the set has its own expiration date. Each file on a volume can increment the volume expiration date. RETAINBY(VOLUME) is the default value.

- **SET**: DFSMSrmm expires volumes in a multi-volume set at the volume set level. All volumes in the set have the same expiration date, which is the maximum expiration date of all volumes in the set (except if changed by the CV command). Any file on any volume of the set can increment the volume expiration date.

- **FIRSTFILE**: DFSMSrmm expires volumes in a multi-volume set at the volume set level. All volumes in the set have the same expiration date, which is the expiration date of the first file in the volume set (here a single volume is treated as a volume set with only one volume in it). The volumes will be released to scratch in the same run of DFSMSrmm inventory management.

### 12.3.3 Using EDGUX100 exit to specifying the retention method to be used

You can use the EDGUX100 installation exit to set the retention method to be used for new tape data sets. When you create a new tape volume set or rewrite an existing set from the first file, you can override the system default retention method. Example 12-2 is a sample EDGUX100 exit.

**Example 12-2  Sample EDGUX100 retention method selection table**

```plaintext
....

* Table to match job/data set/program name combinations for
* setting the Retention Method (RM).
* Entries are 8-byte jobname, 8-byte program name, and 44-byte
* dataset name. If an entry is matched, the retention method is set.
* Partial generic entries are supported - '%2' may be used to
* represent a single non-blank character, and '*2' is supported
* at the end of an entry only, to indicate a generic prefix.
* Some sample commented out entries are included. If you decide to
```
* change the format of this table, remember to update the RMENT DSECT accordingly.

***********************************************************************
SPACE 1 §NSC
EDGUX100 CSECT §NSC
RMTAB DS OF START OF RM TABLE §NSC
SPACE 1 §NSC
DC CL8'**' JOBNAME §NSC
DC CL44'**' DATA SET NAME §NSC
DC CL8'**' PROGRAM NAME §NSC
DC AL1(PL100_RM_VRSEL) RETENTION METHOD VRSEL §NSC
DC XL3'00' RESERVED §NSC
SPACE 1 §NSC
DC CL8'**' JOBNAME §NSC
DC CL44'MHLRES7.**' DATA SET NAME §NSC
DC CL8'**' PROGRAM NAME §NSC
DC AL1(PL100_RM_EXPDT) RETENTION METHOD VRSEL §NSC
DC XL3'00' RESERVED §NSC
SPACE 1 §NSC
DC CL8'**' JOBNAME §NSC
DC CL44'RMM.**' DATA SET NAME §NSC
DC CL8'**' PROGRAM NAME §NSC
DC AL1(PL100_RM_EXPDT) RETENTION METHOD EXPDT §NSC
DC XL3'00' RESERVED §NSC
SPACE 1 §NSC
DC CL8'RM END' END OF RM TABLE MARKER §NSC
***********************************************************************
* Table to match job/data set/program name combinations for setting the VRSELEXCLUDE attribute (VX).
* Entries are 8-byte jobname, 8-byte program name, and 44-byte dataset name. If an entry is matched, the VRSELEXCLUDE attribute is set.
* Partial generic entries are supported - '%' may be used to represent a single non-blank character, and '*' is supported at the end of an entry only, to indicate a generic prefix.
* Some sample commented out entries are included. If you decide to change the format of this table, remember to update the RMENT DSECT accordingly.

***********************************************************************
VXTAB DS OF START OF VX TABLE §NSC
SPACE 1 §NSC
DC CL8'**' JOBNAME §NSC
DC CL44'HSM.**' DATA SET NAME §NSC
DC CL8'**' PROGRAM NAME §NSC
SPACE 1 §NSC
DC CL8'**' JOBNAME §NSC
DC CL44'OAM.**' DATA SET NAME §NSC
DC CL8'**' PROGRAM NAME §NSC
SPACE 1 §NSC
DC CL8'VX END' END OF VX TABLE MARKER §NSC
***********************************************************************
* DSECT to map RMTAB table entries

***********************************************************************
RMENT DSECT , map of a RMTAB table entry §NSC
RMJOBN DS CL8 jobname §NSC
***********************************************************************
The following values apply to Example 12-2 on page 220:

**RMTAB**

All data set names ‘*’ will be retained by the VRSEL retention except the data set names starting with ‘MHLRES7.*’ and ‘RMM.*’

**VXTAB**

All data set names starting with ‘HSM.’ and ‘0AM.*’ are excluded from VRSEL processing as they are created or rewritten.

**Important:** The order in which the table entries are listed is important because the exit scans the table until it finds the first entry where the job name, data set name, and program name masks match the current request. You can change the priority of matching by changing the order of the table entries.

### 12.3.4 Show new retention method settings

The DFSMSrmm Volumes panel displays the values for RetentionMethod (RM), RetainBy, and Set Retained in the Ret column as shown in Figure 12-5 on page 223.
Chapter 12. DFSMSrmm enhancements

Figure 12-5  DFSMSrmm Volumes panel example

Each subcolumn is one character wide. The retention method is displayed in the first subcolumn, RetainBy in the second, Set Retained in the third. RetainBy is only provided for RM(EXPDT) volumes, Set Retained is only provided for RM(VRSEL) volumes. The possible values are listed here:

- **Retention Method**
  - E indicates Retention Method EXPDT
  - V indicates Retention Method VRSEL

- **RetainBy**
  - V indicates RetainBy value VOLUME
  - S indicates RetainBy value SET
  - F indicates RetainBy value FIRSTFILE

- **Set Retained**
  - Y indicates Volume is Set Retained
  - Blank indicates Volume is not Set Retained

### 12.3.5 ADDDATASET and CHANGEDATASET subcommand enhancements

Figure 12-6 on page 224 shows the new operands of the RMM ADDDATASET and CHANGEDATASET subcommands.
The following values apply to Figure 12-6:

**LASTREF**
- Specifies the number of days that the data set will be retained after the data set was last referenced. LASTREF(\textit{extra\_days}) applies only to data sets on EXPDT-managed volumes. LASTREF cannot be specified for data sets on VRSEL-managed volumes.

\textit{extra\_days} is a decimal number 0 - 93000. The value must not exceed the maximum retention period (MAXRETPD) specified in the DFSMSrmm EDGRMMxx parmlib member. An extra\_days value of 0 has the same effect as using NOLASTREF. DFSMSrmm uses the LASTREF extra\_days to evaluate the data set expiration date. The extra\_days are added to the date of last reference. The data set expiration date is set to the maximum of the date calculated using LASTREF extra\_days, and the date resulting from applying the EXPDT, RETPD, or default RETPD. Any reference to the data set by a read or write operation redetermines the expiration date.

If neither LASTREF or NOLASTREF is specified for a new data set, DFSMSrmm uses the LASTREF default value specified in the OPTION RETENTIONMETHOD(EXPDT) command in the parmlib member EDGRMMxx.

**NOLASTREF**
- Specifies that DFSMSrmm does not consider the data set last reference date when evaluating the data set expiration date.

NOLASTREF applies only to data sets on volumes managed by the EXPDT retention method. NOLASTREF cannot be specified for data sets on volumes managed by the VRSEL retention method.

When a file is added to a multivolume data set, the LASTREF or NOLASTREF attribute is copied from the preceding file. For a volume set retained by VOLUME or SET DFSMSrmm ensures that the LASTREF(\textit{extra\_days}) or NOLASTREF data set attribute is the same for all files of a multivolume data set. For a volume set retained by FIRSTFILE, no additional processing is performed to keep the LASTREF extra\_days attribute consistent across the multivolume data set because the expiration date depends only on the LASTREF extra\_days attribute of the first file of the first volume.

If neither NOLASTREF or LASTREF is specified for a new data set, DFSMSrmm uses the LASTREF default value specified in the OPTION RETENTIONMETHOD(EXPDT) command in the parmlib member EDGRMMxx.
12.3.6 ADDVOLUME and CHANGEVOLUME subcommand enhancements

Figure 12-7 shows the new operands of the RMM ADDDATASET and CHANGEDATASET subcommands.

The following values apply to Figure 12-7:

1. **RETAI**NBY: Specifies how DFSMSrmm is to retain an EXPDT-retained volume or multi-volume set:
   - **FIRSTFILE**: The expiration date of the first file is used to determine the expiration date of a single volume or a multi-volume set. All volumes in a multi-volume set will have the same expiration date and will be released to scratch in the same run of DFSMSrmm inventory management.
   - **SET**: DFSMSrmm uses the highest expiration date of all volumes in the set. All volumes in the set will have the same expiration date and will be released to scratch on the same run of DFSMSrmm inventory management.
   - **VOLUME**: The expiration date of the volume is considered for each volume separately and each file on a volume can increment the volume expiration date.

The RETAINBY operand cannot be specified for a volume managed by the VRSEL retention method. Use the RETAINBY operand only for volume sets that use the EXPDT retention method.

When a RETAINBY value is defined for a non-scratch volume, it is not overridden to the default during OPEN output processing, but can be changed using the CHANGEVOLUME subcommand.

If RETAINBY is omitted, the EXPDT(RETAI**NBY**) value specified in parmlib is used as the default value.

12.3.7 New REXX exec variables

Table 12-2 on page 226 lists the new variables in RMM subcommand order that you can use in your REXXX execs.
### Table 12-2   New REXX exec variables

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Abbreviation of subcommands</th>
<th>Contents</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDG@EXRB</td>
<td>LC OPT, LV VOL</td>
<td>RETENTIONMETHODEXPD RETAINBY</td>
<td>Nine characters</td>
</tr>
<tr>
<td>EDG@LRED</td>
<td>LC OPT, LD</td>
<td>Last reference extra days</td>
<td>Numeric: 0 - 93000</td>
</tr>
<tr>
<td>EDG@MCAT</td>
<td>LC OPT</td>
<td>SMS management class attributes</td>
<td>ALL, NONE VRSELXDI</td>
</tr>
<tr>
<td>EDG@RMSB</td>
<td>LV VOL</td>
<td>Retention method set by</td>
<td>Up to 10 characters. One of: CMD CMD_DEF CNVT EXPORT_DEF INERS_DEF LASTREF LCS_DEF OCE_DEF OCE_EXIT UNDEFINED</td>
</tr>
<tr>
<td>EDG@XDSB</td>
<td>LV VOL, LD</td>
<td>Expiration date set by</td>
<td>10 characters: blank (not set) CMD CMD_DEF CMD_VOLCAT CNVT EXPORT LASTREF LCS LCS_DEF OCE_DEF OCE_EXIT OCE_JFCB OCE_MAX OCE_MC OCE_VOLCAT TVEXTPURGE</td>
</tr>
</tbody>
</table>

### 12.3.8 Using RMM TSO subcommands with system REXX

DFSMSrmm displays the ID of the user that caused the most recent change to a record. If the most recent change was made by DFSMSrmm processing, the ID starts with an asterisk (*). Internal IDs include these values:

- **CAT**   Updates due to catalog status changes
- **HKP**   Updates due to inventory management
- **MIM**   Updates due to SARS MIM message interception
- **OAM**   Updates due to system-managed tape support
- **OCE**   Updates due to Open/Close/EOV support
- **UT**    Updates due to execution of EDGUTIL
- **WTO**   Updates due to message interception
12.4 Testing MCATTR and RETENTIONMETHOD settings

In this section, we use actual jobs to provide an overview of how the different MCATTR and RETENTIONMETHOD settings work. We used the same JCL to create four data sets in both an SMS-managed environment and a non-SMS managed environment. As you can see in the JCL in Figure 12-8, we created data sets both with and without a retention date set in the JCL.

```
//STEP01 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=* //SYSUT1 DD DSN=RMM.ADDONS.CNTL(IEBGENER),DISP=SHR //SYSUT2 DD DSN=RMM.TEST.RM.VRSEL.MCATTR.SETTINGS,DISP=(,KEEP), // UNIT=ATL3,LABEL=(1,SL),MGMTCLAS=NSRMMMC,RETPD=90 //SYSIN DD DUMMY
//STEP01A EXEC PGM=IEBGENER //SYSPRINT DD SYSOUT=* //SYSUT1 DD DSN=RMM.ADDONS.CNTL(IEBGENER),DISP=SHR //SYSUT2 DD DSN=RMM.TEST.RM.VRSEL.MCATTR.SETTINGS,DISP=(,KEEP), // UNIT=ATL3,LABEL=(1,SL),MGMTCLAS=NSRMMMC RETPD=90 //SYSIN DD DUMMY
//STEP02 EXEC PGM=IEBGENER //SYSPRINT DD SYSOUT=* //SYSUT1 DD DSN=RMM.ADDONS.CNTL(IEBGENER),DISP=SHR //SYSUT2 DD DSN=RMM.RM.VRSEL.MCATTR.ALL,DISP=(,KEEP), // UNIT=VT3590,LABEL=(1,SL),MGMTCLAS=NSRMMMC RETPD=90 //SYSIN DD DUMMY
//STEP02A EXEC PGM=IEBGENER //SYSPRINT DD SYSOUT=* //SYSUT1 DD DSN=RMM.ADDONS.CNTL(IEBGENER),DISP=SHR //SYSUT2 DD DSN=RMM.RM.VRSEL.MCATTR.ALL,DISP=(,KEEP), // UNIT=VT3590,LABEL=(1,SL),MGMTCLAS=NSRMMMC
//SYSIN DD DUMMY
```

Figure 12-8 Sample JCL used to test the different settings

To test the vital record processing as well, we specified a DSNAME VRS matching the data sets as shown in Figure 12-9 on page 228.
The following values apply to Figure 12-9:

- **Count**: Specifies how many days or how many cycles of a data set should be retained in the location specified in the Location field. How the cycles or days are counted is determined by the Retention type field. For example, if the retention type is BYDAYC the count specifies the number of cycles retained and each cycle is all data sets created on the same day.

- **Retention type**: Specifies how data sets are retained as vital records. The retention type specifies how each instance of a data set is managed and moved while under the control of this VRS. Possible values for the Retention type field are listed here:
  - **CYCLES**: Each occurrence of a data set is managed as a separate cycle.
  - **BYDAYC**: All data set occurrences that are created on the same date are managed as a cycle.
  - **DAYS**: Retention is based on days since creation.
  - **REFDAYS**: Retention is based on days since last referenced.
  - **XTRDAYS**: Is only valid on NAME type VRSs. Retention is based on days since the NAME VRS gained control of the data set.

### 12.4.1 MCATTR(VRSELXDI) and RETENTIONMETHOD(VRSEL)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(VRSELXDI), SMSACS(NO) and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.
Table 12-3  Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocated</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td>MCATTR</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>THS004</td>
<td>THS021</td>
<td>VT0058</td>
<td>VT0059</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration date Set by</td>
<td>2013/363</td>
<td>2013/273</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
</tr>
<tr>
<td>Retention Method Set by</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td>EXPDT Retain by</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
</tr>
<tr>
<td>Retention date after VRS</td>
<td>2014/008</td>
<td>2014/008</td>
<td>2014/008</td>
<td>2014/008</td>
</tr>
</tbody>
</table>

12.4.2 MCATTR(ALL) and RETENTIONMETHOD(VRSEL)

Table 12-3 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(ALL), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.

Table 12-4  Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td>MCATTR</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>THS011</td>
<td>THS000</td>
<td>VT0060</td>
<td>VT0061</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
</tbody>
</table>
Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you have specified MCATTR(NONE), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.

Table 12-5  Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td>MCATTR</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>TH5002</td>
<td>TH5016</td>
<td>VT0062</td>
<td>VT0063</td>
</tr>
<tr>
<td></td>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td></td>
<td>Retention Method Set by</td>
<td>VRSEL</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td></td>
<td>EXPDT Retain by</td>
<td>LCS_DEF</td>
<td>LCS_DEF</td>
<td>LCS_DEF</td>
</tr>
</tbody>
</table>

12.4.3 MCATTR(NONE) and RETENTIONMETHOD(VRSEL)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you have specified MCATTR(NONE), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.
12.4.4 MCATTR(VRSELXDI) and RETENTIONMETHOD(Expdt)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(ALL), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.

Table 12-6 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creation date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>LASTREF extra days</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VRS selected</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

12.4.4 MCATTR(VRSELXDI) and RETENTIONMETHOD(Expdt)

Table 12-6 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>MCATTR</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
<td>VRSELXDI</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETTPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>THS025</td>
<td>THS027</td>
<td>VT0066</td>
<td>VT0067</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_MC</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
</tr>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>Set by</td>
<td>LCS_DEF</td>
<td>LCS_DEF</td>
<td>OCE_DEF</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>EXPDT Retain by</td>
<td>VOLUME</td>
<td>VOLUME</td>
<td>VOLUME</td>
<td>VOLUME</td>
</tr>
<tr>
<td>Retention date after VRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data set information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creation date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_MC</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
</tr>
<tr>
<td>LASTREF extra days</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VRS selected</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
12.4.5 MCATTR(ALL) and RETENTIONMETHOD(EXPDT)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(ALL), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.

Table 12-7 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>MCATTR</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>THS025</td>
<td>THS027</td>
<td>VT0066</td>
<td>VT0067</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_MC</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
</tr>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>VRSEL</td>
<td>VRSEL</td>
</tr>
<tr>
<td>Set by</td>
<td>LCS_DEF</td>
<td>LCS_DEF</td>
<td>OCE_DEF</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>EXPDT Retain by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention date after VRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data set information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creation date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>2013/363</td>
<td>2013/293</td>
<td>2013/363</td>
<td>2013/273</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
<td>OCE_JFCB</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
<td>2013/363</td>
</tr>
<tr>
<td>LASTREF extra days</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VRS selected</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

12.4.6 MCATTR(NONE) and RETENTIONMETHOD(EXPDT)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(NONE), SMSACS(NO), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member.

Table 12-8 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>MCATTR</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
12.4.7 MCATTR(ALL) with RETENTIONMETHOD((EXPDT)) and SMSACS(YES)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(ALL), SMSACS(YES), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member. In this case, the non-SMS managed tape volumes will get the SMS management class retention attributes as well.

Table 12-9 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed Volume</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>THS010</td>
<td>THS012</td>
<td>VT0068</td>
<td>VT0069</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration date</td>
<td>2013/363</td>
<td>OCE_JFCB</td>
<td>2013/273</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td>2013/363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>LCS_DEF</td>
<td>EXPDT</td>
<td>LCS_DEF</td>
</tr>
<tr>
<td>Retain by</td>
<td>VOLUME</td>
<td>VOLUME</td>
<td>VOLUME</td>
<td>VOLUME</td>
</tr>
<tr>
<td>Creation date</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
<td>2013/273</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>2013/363</td>
<td>OCE_JFCB</td>
<td>2013/273</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LASTREF extra days</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VRS selected</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

12.4.7 MCATTR(ALL) with RETENTIONMETHOD((EXPDT)) and SMSACS(YES)

Table 12-3 on page 229 shows you the result of the allocation of the data sets in Figure 12-8 on page 227 if you specified MCATTR(ALL), SMSACS(YES), and RETENTIONMETHOD(VRSEL) in your EDGRMMnn parmlib member. In this case, the non-SMS managed tape volumes will get the SMS management class retention attributes as well.

Table 12-9 Retention method VRSEL and MCATTR VRSELXDI

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>MCATTR</td>
<td>ALL</td>
<td>ALL</td>
</tr>
<tr>
<td>SMSACS</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>JCL EXPDT/RETPD</td>
<td>90</td>
<td>default</td>
</tr>
<tr>
<td>SMS-managed volume</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Volume information</td>
<td>VT0072</td>
<td>VT0073</td>
</tr>
<tr>
<td>Assign date</td>
<td>2013/274</td>
<td>2013/274</td>
</tr>
<tr>
<td>Expiration date</td>
<td>2013/364</td>
<td>OCE_JFCB</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/364</td>
<td></td>
</tr>
</tbody>
</table>
Historically, DFSMSrmm provides conversion programs to simplify conversion from ISV tape management programs to DFSMSrmm. Beginning with z/OS V2.1, the DFSMSrmm conversion samples and documentation have been moved from SYS1.SAMPLIB to the “as-is z/OS downloads” web page as a compressed sequential XMIT file of a PDS. It can be found at the following site:

http://www-03.ibm.com/systems/z/os/zos/tools/downloads/index.html#asis

Figure 12-10 on page 235 shows you the z/OS DFSMSrmm conversion part of the “as-is z/OS downloads”.

### Table 12.5 DFSMSrmm conversion support

<table>
<thead>
<tr>
<th>Data set allocation</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Method</td>
<td>EXPDT</td>
<td>EXPDT</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_DEF</td>
<td>OCE_DEF</td>
</tr>
<tr>
<td>EXPDT Retain by</td>
<td>VOLUME</td>
<td>VOLUME</td>
</tr>
<tr>
<td>Retention date after VRS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Data set information

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation date</td>
<td>2013/274</td>
<td>2013/274</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>2013/364</td>
<td>2013/364</td>
</tr>
<tr>
<td>Set by</td>
<td>OCE_JFCB</td>
<td>OCE_MC</td>
</tr>
<tr>
<td>Original expiration date</td>
<td>2013/363</td>
<td></td>
</tr>
<tr>
<td>LASTREF extra days</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>VRS selected</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Chapter 12. DFSMSrmm enhancements

12.5.1 Conversion samples provided

In this section, we list the z/OS DFSMSrmm conversion samples that are still shipped with the product. Currently, the provided samples support conversions to DFSMSrmm from CA-1, TLMS, Control-M/Tape up to release 7.0, ZARA/Automedia up to release 1.7, TAPE2000 and ICF user catalogs.

Load module samples
The load module samples shipped with the product are listed here:

- **EDGCDYNM**: Source for TLMS extract program
- **EDGCSVDS**: Source for CA-1 extract program
- **EDGC5BIN**: Source for CA-1 5.0 and above extract program
- **EDGC5LDR**: Source for CA-1 5.0 and above extract program
- **EDGCRFMT**: Source for CA-1 5.0 and above extract program
- **EDGCSRDS**: Source for CA-1 extract program
- **EDGCVRSX**: Sample EDGUX100 exit
- **EDGCVRSG**: Macro used for EDGCVRSX/F
- **EDGCVRSF**: Part of sample EDGUX100 table
- **EDGCVRSE**: Part of sample EDGUX100 table
- **EDGCVRSL**: Sample to load EDGUX100 table
- **EDGC1PRM**: Parameters extract program from TMS parmlib
- **EDGC5UJL**: Convert data sets using unique Julian date
- **EDGCSPCC**: CA-1 special character conversion
- **EDGC1PPL**: Maps the TMS parameter area
**REXX exec samples**
The REXX exec samples shipped with the product and a brief description are listed here:

- **EDGRACS**: For TMS to create MC ACS statements
- **EDGRCSCR**: For TMS 5.0 and above pool conversion
- **EDGCVTC0**: To create LISTCAT commands by using the LISTCAT UCAT command
- **EDGCVTC4**: To create ADDRACK, ADDVOLUME, and CHANGECOUNT commands to build an RMM CDS from the ICF-CATALOG input
- **EDGCVTC5**: To create additional ADDVOLUME and CHANGECOUNT commands
- **EDGCVTC6**: To create CHANGECOUNT commands to build the volume chains
- **EDGRT2EX**: For TAPE2000 extract exec
- **EDGRCTT1**: To create the extended Control-M/Tape record
- **EDGRCTT2**: For Control-M/Tape media database (MDB) extract
- **EDGRCTT3**: For Control-M/Tape Rules extract
- **EDGRCZA1**: To modify the unloaded ZARA/AutoMedia records for future processing
- **EDGRCZA2**: To create L-, D-, K-, and O-Records for the EDGCNVNT conversion program
- **EDGRCZA3**: To create K-Records out of a ZARA/Automedia expiration report
- **EDGCLMS**: Sample conversion CLIST

**JCL samples**
The JCL samples shipped with the product are listed here:

- **EDGJYPRE**: To compile and link EDGCDYNM
- **EDGJDYNM**: To execute EDGCDYNM
- **EDGJ5PRE**: To compile and link the provided load module samples
- **EDGJSRDS**: To execute EDGCSRDS and EDGRACS
- **EDGJ5BIN**: To execute EDG5BIN
- **EDGJ5LDR**: To execute EDG5LDR and reformat the RDS and VPDD
- **EDGJSCCR**: To execute exec EDGRCSCR
- **EDGJVTC1**: To convert from manual management part 1
- **EDGJVTC2**: To convert from manual management part 2
- **EDGJVTC3**: To convert from manual management part 3
- **EDGJT2EX**: To execute EDGRT2EX TAPE2000 conversion exec
- **EDGJCTT1**: To execute EDGRTT1 CONTROL-M/Tape conversion exec
- **EDGJCTT2**: To execute EDGRTT2 CONTROL-M/Tape conversion exec
- **EDGJCTT3**: To execute EDGRTT3 CONTROL-M/Tape conversion exec
- **EDGJCZA1**: To execute EDGRCZA1 ASG-ZARA/AutoMedia conversion exec
- **EDGJCZA2**: To execute EDGRCZA2 ASG-ZARA/AutoMedia conversion exec
- **EDGJCZA3**: To execute EDGRCZA3 ASG-ZARA/AutoMedia conversion exec
- **EDGJSVDS**: To execute EDGCSVDS and reformat the RDS and VPDD
- **EDGCVRSP**: Procedure to run EDGCVRSL
APARs to be reviewed for DFSMS V2.1

The APARs listed in this appendix should be reviewed for impact to your installation before implementing z/OS V2.1 DFSMS.

Where APAR text is shown, it is at time of writing of this IBM Redbooks publication. The current version should be checked for updates. When an APAR has had a PTF shipped, and a problem is then found, the PTF will be marked “PE”, and also the original APAR may be updated to show the fixing APAR numbers.

There are two APAR lists in this IBM Redbooks publication. One for fixes that should be applied to DFSMS V2.1 before it is used, and one that should be applied to DFSMS V1.13 or DFSMS V1.12 before DFSMS V2.1 is used.

The lists that follow do not include every APAR that might be required, but is representative. If the PTFs for the listed APARs are applied, many other APARs will also be included.

The information in this Appendix is for DFSMS V2.1. The corresponding list for DFSMS V1.13 and V1.12 can be found at Appendix B, “APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12” on page 303.
DFSMS V2.1 suggested APARS

The APARs in this appendix are divided into two sections. There are informational APARs and then APARs that correct errors.

Information APARS

There are a number of Information APARS that provide additional information, or provide links to other Information APARS.

APAR II14670 LISTCAT LEVEL change in DFSMS V2.1

Example A-1 contains the cover letter for APAR II14670.

Example A-1  II14670

<table>
<thead>
<tr>
<th>APAR Identifier ...... II14670</th>
<th>Last Changed ........ 13/09/27</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTCAT LEVEL CHANGE IN 2.1</td>
<td></td>
</tr>
</tbody>
</table>

Symptom ...... IN INFO          Status ........... INTRAN
Severity ................... 3       Date Closed ........
Component .......... INFOV2LIB    Duplicate of ........
Reported Release ........ 001     Fixed Release ...........
Component Name V2 LIB INFO ITE | Special Notice                |
Current Target Date ..           Flags
SCP ...................          Platform ............

Status Detail: Not Available

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
The LISTCAT LEVEL function has been corrected in release 2.1 to report on entries matching the level specified where in prior releases a LISTCAT LEVEL may return a non-zero return code if no entries matching the level with additional qualifiers were found.

For example:

DEFINE GDG MY.GDG.BASE (no GDSs defined)

@ 1.13
LISTCAT LVL(MY.GDG.BASE)

IDC3012I ENTRY MY.GDG.BASE NOT FOUND
IDC3007I ** VSAM CATALOG RETURN-CODE IS 8
IDC1566I ** MY.GDG.BASE NOT LISTED

IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 4

@ 2.1
LISTCAT LVL(MY.GDG.BASE)

GDG BASE ------ MY.GDG.BASE
    IN-CAT --- MY.USER.CAT

LISTING FROM CATALOG --

    THE NUMBER OF ENTRIES PROCESSED WAS:
    AIX -------------------0
    ALIAS -------------------0
    CLUSTER -------------------0
    DATA -------------------0
    GDG -------------------1

IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

In 2.1, the behavior of LISTCAT LEVEL has been updated to mimic
that expected of ISPF 3.4 which returns entries matching the key
of the level specified as well as any keys with additional
qualifiers.

II14250 explains past enhancements to the LISTCAT LEVEL command

CATKEYS: CAT2013 IDC2013 IDCLISTC IDCNEW IDCOUTPUT CATINFO
        IDCINFO

LOCAL FIX:
Use the IDCNOGFL interface or change the LISTCAT LEVEL(A.B.C) to
a LISTCAT ENT(A.B.C.*) for comparable results to 1.13 and below.

APAR II14708 PDSE maintenance for DFSMS V2.1

Example A-2 contains the cover letter for APAR II14708.

Example A-2  II14708

APAR Identifier ...... II14708      Last Changed ......... 13/05/30
    ZOS DFSMS 2.1 HD22210 CURRENT PDSE MAINTENANCE

Symptom ...... DD DOC      Status ............ INTRAN
Severity .................. 3      Date Closed ........
Component ............ INFOV2LIB  Duplicate of ........
Reported Release ........ 001  Fixed Release ........
Component Name V2 LIB INFO ITE  Special Notice
Current Target Date .. Flags
SCP ...................
Platform ............

Status Detail: Not Available

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
This informational APAR contains a current list of DFSMS HDZ2210 apars/ptfs for PDSE which includes both HIPER and non-HIPER maintenance.

Compid: 5695DF115  Fmid: HDZ2210

DFSMS HDZ2210 will be found on z/OS 2.1 systems.

We encourage you to install all current maintenance and refer frequently to PSP upgrade ZOSV2R1 subset DFSMS for HIPER maintenance.

Reference II14255 for current PTFs for HDZ1180.
Reference II14403 for current PTFs for HDZ1190.
Reference II14459 for current PTFs for HDZ1A10.
Reference II14519 for current PTFs for HDZ1B10.
Reference II14580 for current PTFs for HDZ1C10.
Reference II14632 for current PTFs for HDZ1D10

***************************************************************
* PTFs for DFSMS HDZ2210 ( R210 )                          *
***************************************************************

LOCAL FIX:
none

Fix APARs

There are fixes required for pre-DFSMS V2.1 systems. Some of these are conditioning fixes that must be installed and in use on all systems in a SYSPLEX before any DFSMS V2.1 system is added to the SYSPLEX. See Appendix B, “APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12” on page 303.

Note: In some cases, there are no PTFs for the listed APARs, and some might have been superseded. The current listing from IBMLINK should be checked for current status and PTFs.
Example A-3 contains the cover letter for APAR OA42081.

**Example A-3  OA42081**

- **APAR Identifier ...... OA42081  Last Changed ....... 13/07/02**
- **REGR TESTS FOR #176 D1N IN SAF MODE WITH CHECKLIST' /HFS/  <NOSAF> SETTING FAILED:**

  - **Symptom ...... IN INCORROUT  Status ......... CLOSED PER**
  - **Severity ............... 3  Date Closed ........ 13/06/07**
  - **Component ......... 5695DF121  Duplicate of ........**
  - **Reported Release ......... 21N  Fixed Release ......... 999**
  - **Component Name NETWORK FILE SY  Special Notice**
  - **Current Target Date ..13/06/28  Flags**
  - **SCP .................**
  - **Platform .............**

  **Status Detail: SHIPMENT - Packaged solution is available for shipment.**

  **PE PTF List:**

  **PTF List:**
  - **Release C1N : UA69454 available 13/06/26 (F306 )**
  - **Release D1N : UA69455 available 13/06/26 (F306 )**
  - **Release 21N : UA69456 available 13/06/26 (F306 )**

  **Parent APAR:**
  - **Child APAR list:**

  **ERROR DESCRIPTION:**
  - **Regr tests for #176 D1N in SAF mode with checklist' /hfs/  <nosaf> setting failed:**

  **LOCAL FIX:**

  **PROBLEM SUMMARY:**
  - ********************************************************************
  - *** USERS AFFECTED: All NFSS users.  *  
  - ********************************************************************
  - *** PROBLEM DESCRIPTION: The function v4_access(  returns  *  
  - **invalid result in SAFEXP mode with the  *  
  - **export entry /hfs/ <nosaf>.  *  
  - ********************************************************************
  - *** RECOMMENDATION:  *  
  - ********************************************************************

  The local variable mode in h4_access( is not initialized if SAF mode and bypassaf flag in MB is set.
PROBLEM CONCLUSION:
Add MB->bypassaf check in h4_access().

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
GFSA4UMC

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42239 PDSE DFSMS V2.1 roll up

Example A-4 contains the cover letter for APAR OA42239.

Example A-4   OA42239

APAR Identifier ...... OA42239      Last Changed ........ 13/07/02
SMS V2R1 ROLLUP APAR

Symptom ...... IN INCORROUT         Status ........... CLOSED  PER
Severity ................ 4       Date Closed ........ 13/05/24
Component .......... 5695DF101      Duplicate of .........
Reported Release ....... 210       Fixed Release ......... 999
Component Name STORAGE MGMT SU        Special Notice
Current Target Date ..          Flags
SCP ......................
Platform ..............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69253 available 13/06/22 (F306)
Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
SMS V2R1 ROLLUP APAR FIXES

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: HDZ2210 USERS WHO UPGRADE THEIR SYSTEMS TO          *
*                DFSMS HDZ2210 DRIVER                                     *
******************************************************************************

* PROBLEM DESCRIPTION: THIS IS THE SMS V2R1 ROLLUP APAR. THIS            *
* APAR CONTAINS THE z/OS V2R1 FIXES FOR:
* ENHANCEMENT: ADD A NEW MESSAGE VARIANT
* FOR IGD068I TO BE ISSUED WHEN
* AN OPERATOR ATTEMPTS TO
* ACTIVATE A COMMUNICATION DATA
* SET OR AN ACTIVE CONFIGURATION
* DATA SET BY SPECIFYING IT IN
* THE IGDSMSxx PARMLIB MEMBER TO
* ENHANCE USABILITY AND
* SERVICEABILITY.
* ENHANCEMENT: ADD CODES TO DISREGARD THE
* NEW IGDSMSxx PARMLIB PARAMETER
* HONOR_DSNTYPE_PDSE WHEN THERE
* IS NO DSNTYPE SPECIFIED ON
* EITHER JCL OR DATA CLASS.
* OA42065: SMS ALLOWS COPY POOL BACKUP
* STORAGE GROUP NAME TO START
* WITH A NON-ALPHABETIC
* CHARACTER.
* OA42227: ABEND0B0 RC08 ATTEMPTING TO
* EXTEND A DATA SET TO A NEW
* VOLUME. JFCBX TOKEN IS ZEROES.
* OA41461: OVERALLOCATION OF PS EXTENDED
* FORMAT DATASET WHEN ALLOCATING
* IN BLOCKS AND USING DSS AND/OR
* HSM RESTORE/RECALL.
******************************************************************************

* RECOMMENDATION:
******************************************************************************

SUMMARY: THIS IS A SMS V2R1 ROLLUP APAR FOR OA42065, OA42227,
OA41461. PLEASE SEE THE SUMMARIES FOR THOSE APARS.

PROBLEM CONCLUSION:
THIS IS THE SMS V2R1 ROLLUP APAR FOR OA42065, OA42227, OA41461.
PLEACE SEE PROBLEM CONCLUSIONS FOR THOSE APARS.
THE NEW MESSAGE VARIANT FOR IGD068I SHOULD BE AS FOLLOWING:

IGD068I cds_type dsname SPECIFIED IS THE SAME AS THE ACTIVE
cds_type - ACTIVE cds_type IS STILL IN EFFECT

Explanation: An operator attempts to activate the active control
data set or a communication data set by specifying it in the
IGDSMSxx PARMLIB member, but that is the same as the currently
active one.

In the message text:

cds_type
  The configuration data set types:
  ACDS   - Active Configuration Data Set
  COMMDS - Communication Data Set
dsname
  The data set name

System action: Validation processing rejected the SMS request.
The currently active configuration data sets are still in effect
. The other PARMLIB parameters specified are still processed.

Operator response: Contact the system programmer.

System programmer response: No further action if there is no
need to change the system configuration. Otherwise, specify a
different configuration data set.

Source: Storage Management Subsystem (SMS)

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:   IGDCSDTV IGDICMGC IGDMCSMT IGDOPCDM IGDVTSCM
IGDVTSRC IGDVTSCL IGDVTSDDP

SRLS:      SA38067500

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA42283 PDSE

Example A-5 contains the cover letter for APAR OA42283.

Example A-5  OA42283

APAR Identifier ...... OA42283      Last Changed ....  13/09/26
ABENDOC4 PIC38 IGWIRRD8+0CB0 @ HD2210

Symptom ...... AB ABEND0C4          Status .......... CLOSED PER
Severity ............... 3      Date Closed ....... 13/07/03
Component .......... 5695DF115      Duplicate of .........
Reported Release .... 210      Fixed Release .......... 999
Component Name EXTENDED DATA S Special Notice HIPER
Current Target Date ..13/08/15 Flags
SCP ...................
Platform ............ DATALOSS

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:
PTF List:
Release 210 : UA69767 available 13/07/11 (F307 )

Parent APAR:   OA42051
Child APAR list:

ERROR DESCRIPTION:
ABENDOF4 PIC39 CSECT=IGWIRRD8+0CB0 @ HD2210 base
ABENDOC1 IGWIRPAD+0B4E @ HD2210 base
ABENDOC1 IGWIRPAD+17D4 @ HD2210 base
ABENDOC1 IGWIRPND+1848 @ HD2210 base
ABENDOF4 IGWIRPAD RSN1419A084 1419A084

LOCAL FIX:
None

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: PDSE which has been updated extensively on   *
* a release lower than 2.1 may                                      *
* have a sparse index. When 2.1 updates the                      *
* the index may be broken,                                         *
****************************************************************
* PROBLEM DESCRIPTION: See users affected.                       *
****************************************************************
* RECOMMENDATION:                                                *
****************************************************************
Modify PDSE processing to position to the correct place in the
index before attempting to remove empty pages,

PROBLEM CONCLUSION:
See Problem Summary

TEMPORARY FIX:
* HIPER *
*******

COMMENTS:

MODULES/MACROS: IGWIRCMT IGWIRDIS IGWIRICR IGWIRIEM IGWISTAM

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42300 PDSE

Example A-6 contains the cover letter for APAR OA42300.

Example A-6 OA42300

<table>
<thead>
<tr>
<th>APAR Identifier</th>
<th>Last Changed</th>
<th>PERFORMANCE DEGRADATION IN RLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA42300</td>
<td>13/07/02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Status</th>
<th>CLOSED</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF PERFM</td>
<td>Date Closed</td>
<td>13/05/30</td>
<td></td>
</tr>
<tr>
<td>Severity</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>5695DF122</td>
<td>Duplicate of</td>
<td></td>
</tr>
<tr>
<td>Reported Release</td>
<td>210</td>
<td>Fixed Release</td>
<td>999</td>
</tr>
<tr>
<td>Component Name</td>
<td>VSAM REC LEV SH</td>
<td>Special Notice</td>
<td>HIPER</td>
</tr>
<tr>
<td>Current Target Date</td>
<td>13/08/01</td>
<td>Flags</td>
<td>PERFORMANCE</td>
</tr>
<tr>
<td>SCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69307 available 13/06/04 (F306)
Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
A degradation of RLS performance is detected when processing clusters opened in rls, record-level sharing.

LOCAL FIX:

PROBLEM SUMMARY:
*********************************************************
* USERS AFFECTED: ALL VSAM RECORD-LEVEL SHARING, RLS USERS  *
* WITH RELEASE HDZ2210.                                     *
*********************************************************
* PROBLEM DESCRIPTION: PERFORMANCE DEGRADATION WHEN PROCESSING *
* RLS REQUESTS INCLUDING GET, PUT, ERASE.                    *
*********************************************************
* RECOMMENDATION:                                           *
*********************************************************
PERFORMANCE DEGRADATION DURING RLS REQUEST PROCESSING.

PROBLEM CONCLUSION:
RLS REQUEST PERFORMANCE IS CORRECTED.
KEYWORDS: RLPSP/K

TEMPORARY FIX:
*********
* HIPER *
*********

COMMENTS:

MODULES/MACROS:
IDAVRR10 IDAV193S IGWLJ020 IGWMRTE3 IGWSDRDM IGWSDRDS IGWSDSVT
IGWSDWRM IGWSDWRS IGWSRPD IGWSSCAN IGWSSCN2 IGWSSDCN IGWSSNOM
IGWSSCS IGW8RBID IGW8RCID IGW8RRES

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:
MESSAGE TO SUBMITTER:

APAR OA42347 DFSMSShsm

Example A-7 contains the cover letter for APAR OA42347.

Example A-7  OA42347

APAR Identifier ...... OA42347  Last Changed ........ 13/08/02
DFSMSHSM MIGRATES BEYOND STORAGE GROUP MIGRATION LOW THRESHOLD
DURING SPACE MANAGEMENT.

Symptom ...... IN INCORROUT  Status ............ CLOSED PER
Severity ................. 4  Date Closed ...... 13/06/25
Component ........... 5695DF170  Duplicate of ........
Reported Release ....... 210  Fixed Release ............ 999
Component Name DFSMSHSM, ISMF  Special Notice  ATTENTION
Current Target Date ..13/08/16  Flags
SCP ....................
Platform .............. PERVASIVE

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release 210 : UA69550 available 13/07/10 (F307 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
DFSMShsm migrates beyond storage group MIGR LOW threshold during
space management.

LOCAL FIX:
N/A

PROBLEM SUMMARY:
****************************************************************************
* USERS AFFECTED: All users of DFSMShsms Space Management  *
* functions on z/OS V2R1.  *
****************************************************************************
* PROBLEM DESCRIPTION: DFSMShsms migrates beyond storage group *
* migration low threshold during Space  *
* Management.  *
****************************************************************************

248  IBM z/OS V2.1 DFSMS Technical Update
* RECOMMENDATION:                                                *
****************************************************************
DFSMShsm migrates beyond storage group migration low threshold
during Space Management.

PROBLEM CONCLUSION:
DFSMShsm has been modified to correct this problem.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:   ARCSMPMQ

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42358 PDSE

Example A-8 is the controlling APAR for the PDSE member generations update. There are
many other APARs that constitute the whole collection.

Example A-8   OA42358
This is the APAR for SPE Line Item PDSE Member generations
Local fix
Problem summary

****************************************************************
* USERS AFFECTED: All PDSE users in z/OS V2R1                *
****************************************************************

* PROBLEM DESCRIPTION: PDSE is being enhanced to allow a user *
* to save a fixed number of previous *
* generations of each member, the number *
* of generations for each member is     *
* specified when the data set is created. *
* A new generation of each member will be *
saved whenever a member is replaced or deleted, PDF will provide services to view saved generations of members.

This feature will work only on PDSE Version 2 datasets.

Toleration APAR for this project is OA43433 (Install the PTFs for this APAR in R12 and R13 to avoid abnormal errors when using a PDSE (V2 and MAXGENS > 0)) in the lower releases.

PDF is enhanced to access generations and identify data sets which have generations. (OA42247 and OA42248)

New functions

DESERV FUNC=GET_G
DESERV FUNC=GET_ALL_G

New PARMS for FIND Macro:
G - Find a member generation

New PARMS for STOW Macro:
DG - delete a member generation
RG - replace an old member generation.
RECOVERG - Recover a member generation.

For further details please read the latest refresh of the manuals to know more about this new function.

******************************************************************************
RECOMMENDATION:
******************************************************************************
Provide new functions for PDSEs (See Description)

APAR OA42390 PDSE

Example A-9 contains the cover letter for APAR OA42390.

Example A-9  OA42390

APAR Identifier ...... OA42390      Last Changed ........ 13/07/02
PDF REPORTS NO MEMBERS FOR NON-EMPTY PDSE ON HDZ2210

Symptom ...... IN INCORROUT    Status ........... CLOSED PER
Severity ................. 2    Date Closed ......... 13/06/11
Component ............... 5695DF115    Duplicate of ......
Reported Release ......... 210    Fixed Release ........ 999
Component Name EXTENDED DATA S    Special Notice HIPER
Current Target Date ..13/06/30 Flags
SCP .................. Platform ............ DATALOSS

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69489 available 13/06/26 (F306 )

Parent APAR:
Child APAR list: OA42573

ERROR DESCRIPTION:
Existing PDSE appears to have no members. Read of directory for PDSE will return no member data for certain data sets.

LOCAL FIX:
You may be able to bypass this by adding a member to the PDSE with a very low key ' # ' for example.
The problem is related to an empty directory block and can be resolved by adding a record to that block.

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users access PDSEs updated on systems below *
* the HDZ2210 level may find the PDSE seems to *
* be empty on HDZ2210. The problem is most *
* likely on PDSEs where the members with the *
* first member names are deleted. *
****************************************************************
* PROBLEM DESCRIPTION: See Users affected. *
****************************************************************
* RECOMMENDATION: *
****************************************************************
Add code to the PDSE Index manager to tolerate empty Directory Blocks.

PROBLEM CONCLUSION:
See Problem Summary.

TEMPORARY FIX:
HIPER AA42390

ADD MEMBER WITH VERY LOW KEY ' # ' TO THE PDSE
COMMENTS:

MODULES/MACROS:
IGWDABDN IGWDACN2 IGWDADCD IGWDADPD IGWDARD1 IGWDDCR3 IGWDDDSF
IGWDLALR IGWDLCLS IGWDLDES IGWDPDMP IGWDRLDR

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42406 OCE Fix roll up

Example A-10 contains the cover letter for APAR OA42406.

Example A-10  OA42406

APAR Identifier ...... OA42406      Last Changed ........ 13/08/02
OCE FIX ROLLUP FOR HDZ2210

Symptom ...... IN INCORROUT         Status ........... CLOSED  PER
Severity ................... 3      Date Closed ........ 13/06/25
Component .......... 5695DF107      Duplicate of ........
Reported Release ....... 210      Fixed Release .......... 999
Component Name DATA MGMT SUPPO      Special Notice
Current Target Date ..13/08/30      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release 210 : UA69690 available 13/07/30 (F307 )

Parent APAR:
Child APAR list:
ERROR DESCRIPTION:
Fixes PCK in IFG019TR. Also adds ALIAS name in SMF14/15. Also
fixes an invalid IEC190I EXCP DCB without a foundation
extension..

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: This is a rollup APAR for HDZ2210.           *
****************************************************************
* PROBLEM DESCRIPTION: This APAR fixes 3 problems and          *
*        adds 1 additional function.                           *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
3 problems fixed:
1. Extraneous characters in IEC999I DEBADDR= message.
2. PCK in IFG019TR.
3. IEC190I invalid DCBE: EXCP DCB without foundation ext
   is invalidly issued.
Additional function:
1. Alias data set name added to SMF14 Additional Data Set
   characteristics section (type 5).

PROBLEM CONCLUSION:
See problem summary.
SMF14 Additional data set characteristics section (type 5):

New bit in SMF14: Byte SMF14BFG0:
SMF14ALS EQU X'10' ALIAS NAME PRESENT

New Alias name 44 character field:
SMF14ALI ALIAS DATA SET NAME

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFGSMF14 IFGOTCOA IFG019RA IFG019TR IFG0202H
IFG0202I

SRLS: SA22763025

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42488 IEBCOPY user exit

Example A-11 contains the cover letter for APAR OA42488.

Example A-11  OA42488

APAR Identifier ...... OA42488  Last Changed ....... 13/07/02
IEB1169T USING IEBCPARM AND IEBCPLST

Symptom ...... MS MSGIEB1169T  Status ........... CLOSED  PER
Severity ................... 3  Date Closed .......... 13/06/12
Component ............ 5695DF102  Duplicate of ........
Reported Release ...... 210  Fixed Release ............ 999
Component Name BASE ACCESS MET  Special Notice
Current Target Date ..13/07/31  Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69515 available 13/06/26 (F306 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
IEBCPARM and IEBCPLST are not presently included SYS1.MACLIB

LOCAL FIX:
n/a

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users wishing to use the IEBCOPY user exits *
* shipped in HDZ2210.                                          *
******************************************************************************
* PROBLEM DESCRIPTION: The required macros were not shipped.  *
* They should have been in SYS1.MACLIB.                         *
******************************************************************************
* RECOMMENDATION: 
The required macros were not shipped.

**PROBLEM CONCLUSION:**
The macros are shipped.

The description of the new IEBCOPY user exits is incomplete.

These IEBCPLST fields are expected to be updated by the user exit:
- CPLST_PARMLIST_RC
- CPLST_PARMLIST_USR
- CPLST_PARMLIST_MAXRETC
- CPLST_PARMLIST_MAXRSNC
- CPLST_CONTROL_OFLAGS
- CPLST_CONTROL_DATA_ADDR
- CPLST_CONTROL_DATA_LEN
- CPLST_MEMBER_OFLAGS
- CPLST_MEMBER_RC
- CPLST_MEMBER_NEWNAME_ADDR

If the control statement user exit gives a return code 4, it signals IEBCOPY to process all currently pending control statements. Otherwise, IEBCOPY will automatically execute the "in progress step" whenever it receives (from the exit a new "IEBCOPY command" (such as COPY, COPYGRP, etc.) control statement.

A control statement user exit may choose to never use return code 4 and completely depend on the standard IEBCOPY processing rules, but it must always return an RC=32 to signal an "End of control statement input data".

**TEMPORARY FIX:**

**COMMENTS:**

**MODULES/MACROS:**
IEBCPARM IEBCPARM IEBCPARM

**SRLS:**
NONE

**RTN CODES:**

**CIRCUMVENTION:**
MESSAGE TO SUBMITTER:

APAR OA42540 PDSE binder

Example A-12 contains the cover letter for APAR OA42540.

Example A-12    OA42540

APAR Identifier ...... OA42540      Last Changed ....... 13/08/02
ABEND0F4 RC24 RSN141AA7FE IGWIRPND+0DE2 @ OA42051

Symptom ...... AB ABENDxxx          Status ........... CLOSED PER
Severity .................  3       Date Closed ......... 13/06/27
Component ...........  5695DF115   Duplicate of ........
Reported Release ...... 210       Fixed Release ............ 999
Component Name EXTENDED DATA S      Special Notice       HIPER
Current Target Date ..13/09/15  Flags
SCP ...................
Platform .............. DATALOSS

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69724 available 13/07/11 (F307 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
HSM back up of a PDSE data set on z/OS 2.1 LPAR failed with
ABEND0F4 RC24 RSN141AA7FE IGWIRPND+0DE2 @ OA42051.

RSN141AA7FE equates IMF_DirStorePageBad1 indicating that the
front and rear compression data for LONG_NAME_PROCESS_RECORD is
not what is expected.

LOCAL FIX:
None

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: PDSE binder users.                                      *
******************************************************************************
* PROBLEM DESCRIPTION: Abend0F4 when accessing PDSEs contain               *
*   long alias names.                                                    *
******************************************************************************
* RECOMMENDATION:                                                        *

Long alias names that were not compressed were being uncompressed unnecessarily.

PROBLEM CONCLUSION:
The index manager has been updated to handle non compressed records correctly.

TEMPORARY FIX:

*********
* HIPER *
*********
INSTALL ++APAR AA42540.

COMMENTS:

MODULES/MACROS:   IGWDAALN IGWDABDN IGWDAICRN IGWDDCRR2 IGWDDCRR3
                  IGWIRCMT IGWIRPAD IGWIRPND

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42541 Catalog

Example A-13 contains the cover letter for APAR OA42541.

Example A-13   OA42541

APAR Identifier ...... OA42541      Last Changed ........ 13/10/02
                 ABEND $130 IN IDA0200T AFTER INSTALLING PTFS FOR OA36916

Symptom ...... IN INCORROUT      Status ............ CLOSED PER
Severity ...................... 2     Date Closed ........ 13/08/02
Component .......... 5695DF106    Duplicate of .........
Reported Release ....... D10     Fixed Release .......... 999
Component Name DFSMS VSAM  Special Notice PE
Current Target Date ..13/08/31  Flags
SCP ....................
Platform ..........

Status Detail: SHIPMENT - Packaged solution is available for
PE PTF List:   UA68644 UA68643

PTF List:
Release A10  : PTF not available yet
Release B10  : PTF not available yet
Release C10  : UA70130 available 13/08/28 (F308 )
Release D10  : UA70131 available 13/08/28 (F308 )
Release 210  : UA70146 available 13/08/28 (F308 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
An abend S130 may occur in IDA0200T at offset X'3600' after
installing the PTFs for OA36916. The error is a dequeue for a
resource that is not held.
The dequeue will show a request to dequeue SYSVSAM with a
catalog name as the resource and ending in a "N".

LOCAL FIX:
Remove the PTFs for OA36916
PEX/ UA68641
PEX/ UA68642

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All z/OS 1.10 VSAM users and above who       *
* OPEN and CLOSE a catalog as a normal VSAM Data Set.           *
****************************************************************
* PROBLEM DESCRIPTION: While closing a user catalog that has been opened with multiple ACBs, an ABEND S130 will result. *
****************************************************************
* RECOMMENDATION: Apply PTF.                                  *
****************************************************************

VSAM CLOSE processing was not correctly verifying
the last close for a user catalog.

PROBLEM CONCLUSION:
VSAM CLOSE processing was modified to correctly
determine the last close for a user catalog.
KEYWORDS: ZOS0201C/K

TEMPORARY FIX:
Appendix A. APARs to be reviewed for DFSMS V2.1

COMMENTS:

MODULES/MACROS: IDA0200T

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42543 XTIOT Health Checker

Example A-14 contains the cover letter for APAR OA42543.

Example A-14  OA42543

APAR Identifier ...... OA42543 Last Changed ......... 13/08/02
MSGIECHO101E IECHO101E HEALTH CHECKER
MSGIECHO100I IECHO100I

Symptom ...... MS IECHO101E Status ............. CLOSED  PER
Severity .................... 2 Date Closed .......... 13/07/02
Component .............. 5695DF107 Duplicate of ....
Reported Release ....... 210 Fixed Release .......... 999
Component Name DATA MGMT SUPPO Special Notice ATTENTION
Current Target Date ...13/08/30 Flags
SCP ...................
Platform .............. PERVASIVE

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69765 available 13/07/31 (F307 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
When the system is dynamically updated via the MVS command
SET DEVSUP=xx, the following message is issued even though
NON_VSAM_XTIOT=YES is specified in SYS1.PARMLIB(DEVSUPxx):
IECH0101E OPEN macro support for XTIOT, uncaptured UCBs and DSAB above the line is not enabled for non-VSAM. IBM recommends setting NON_VSAM_XTIOT=YES in the DEVSUPxx member of PARMLIB.

When this situation occurs ensure the following:

1) Check SYS1.PARMLIB(DEVSUPxx) to ensure commas are used for multi-line statements. Without the commas, only one line will be read.

2) If you are using multiple DEVSUPxx members then ensure NON_VSAM_XTIOT=YES is specified in all members.

If DEVSUPxx is updated successfully then a dynamic update from SET DEV$UP=xx will issue message IEA253I:

IEA253I DEVSUP XTIOT FOR NON-VSAM IS SUPPORTED

!!!NOTE: A dynamic update of DEVSUPxx will NOT update health checker. Health Checker will need to be refreshed by implementing one of the following:

- Restarting health checker via commands:
  F HZSPROC,STOP
  S HZSPROC
- Go to SDSF CK panel selecting R and E (refresh)
- F HZSPROC, RUN, CHECK=(IBMOCE, OCE_XTIOT_CHECK)
- F HZSPROC, REFRESH, CHECK=(IBMOCE, OCE_XTIOT_CHECK)

After Health Checker is refreshed, IECH0101E will be issued instead of IECH0101E. After this APAR is implemented, message IECH0100I will move from an "exception" to an "information" message class.

LOCAL FIX:

n/a

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: All. *
******************************************************************************
* PROBLEM DESCRIPTION: Incorrect message class. *
******************************************************************************
* RECOMMENDATION: *
******************************************************************************

The original submitter text was based on the incorrect assumption that updating DEVSUPxx keyword: NON_VSAM_XTIOT followed by system command: SET DEV$UP=xx would immediately be reflected in the Health Checker display for the OCE_XTIOT_CHECK.

After updating DEVSUPxx and issuing command SET DEV$UP=xx the following commands will reexecute the health checker:

F HZSPROC, RUN, CHECK=(IBMOCE, OCE_XTIOT_CHECK)
F HZSPROC,REFRESH,CHECK=(IBMOCE,OCE_XTIOT_CHECK)
This APAR however, does change the message class for IECH0100I to "information" from "exception".

PROBLEM CONCLUSION:
IECH0100I issued when NON_VSAM_XTIOT=YES is specified and activated in DEVSUPxx has been changed to message class "Information".

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFGHCM01 IFGHCOC1 IFGHCOC2

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42551 RLS DSS

Example A-15 contains the cover letter for APAR OA42551.

Example A-15  OA42551

APAR Identifier ...... OA42551  Last Changed ...... 13/10/02
ADR952E ADR957I DURING LOGICAL DUMP OF USERCATALOG WITH DSS DUE TO A FAILURE IN RLS DURING QUIESCE PROCESS 13/06/14 PTF PECHANGE

Symptom ...... MS MSGADR952E  Status ............ CLOSED PER
Severity .................. 2  Date Closed ........ 13/06/21
Component ............ 5695DF122  Duplicate of ........
Reported Release ........ D10  Fixed Release ............ 999
Component Name VSAM REC LEV SH  Special Notice PE
Current Target Date ..13/07/31  Flags
SCP ....................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.
PE PTF List:  UA68643 UA68644

PTF List:
Release A10 : PTF not available yet
Release B10 : PTF not available yet
Release C10 : UA69623 available 13/07/23 (F307 )
Release D10 : UA69624 available 13/07/23 (F307 )
Release 210 : UA69625 available 13/07/23 (F307 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
A logical dump of a usercat defined with a large number
of extents (approximately 30 and more) will fail with DSS
messages:

ADR952E (001)-DTDSC(01), THE IDAQDMP MACRO FAILED DURING QUIESCE
PROCESSING FOR FOR CLUSTER dsname WITH RETURN CODE
00000008 AND REASON CODE 61FF0001

This issue occurs after application of OA36422 and OA36403

Problem is due to workarea shortage during RLS locate request
for catalog information.

ADDITIONAL KEYWORDS:
RLSPSP/K
SMSVSAM RLS VSAMRLS

LOCAL FIX:
You can use DSS patch to circumvent the RLS quiesce processing
described in DFSMSdss Storage Administration
1.14.30 Bypassing RLS processing (OW32817)
PEX/ UA68641
PEX/ UA68642

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All Catalog users who issue DSS DUMP         *
*                 command to backup user catalog data sets.       *
****************************************************************

* PROBLEM DESCRIPTION: When performing the DSS DUMP function *
* to backup user catalog data sets with *
* about 30 extents, the following error *
* is generated: *
* *
* ADR952E (001)-DTDSC(01), THE IDAQDMP *
* MACRO FAILED DURING QUIESCE PROCESSING *
* FOR CLUSTER dsname WITH RETURN CODE *
* 00000008 AND REASON CODE 61FF0001 *
If a user catalog data set has approximately 30 or more extents, any attempt to back it up using the DSS DUMP will failed with ADR952E error message.

PROBLEM CONCLUSION:
The error is due to the work area being too small to handle a user catalog with many extents. The fix will allocate a larger work area and retry the operation when detecting the work area too small error.

KEYWORDS: RLSPSP/K ZOS0201C/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IDAVQCAT

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42553 SDM

Example A-16 contains the cover letter for APAR OA42553.

Example A-16    OA42553
APAR Identifier ...... OA42553      Last Changed ........ 13/10/03
AUTHORIZATION CHECKING FOR ANTRQST STATESAVE CALLERS

Symptom ...... IN INCORROUT        Status ............ CLOSED PER
Severity ............... 3          Date Closed ........ 13/08/20
Component .............. 5695DF117  Duplicate of ........
Reported Release ....... 210        Fixed Release .......... 999
Component Name SYSTEM DATA MOV  Special Notice
Current Target Date ..13/10/31      Flags
SCP ....................
Platform .............
Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA70479 available 13/09/18 (F309 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Change authorization checking for callers of ANTRQST STATESAVE

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users of ANTRQST API.                                  *
******************************************************************************
* PROBLEM DESCRIPTION: A return code 7010 can occur indicating            *
*              that a caller is not authorized even if                      *
*              the caller is in an authorized key and                      *
*              in supervisor state.                                        *
******************************************************************************
* RECOMMENDATION:                                                          *
******************************************************************************

PROBLEM CONCLUSION:
The problem has been corrected.
KEYWORDS: SDMAPI/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
ANTCDPI

SRLS:
NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA42654 SDM**

Example A-17 contains the cover letter for APAR OA42654.

*Example A-17  OA42654*

- **APAR Identifier ...... OA42654**
- **Last Changed ........ 13/09/04**
- **HANG IN SMSVSAM BETWEEN LOCK ALTER AND LOCK GRANT PROCESSING**

- **Symptom ...... IN INCORROUT**
- **Status ............ CLOSED PER**
- **Severity .............. 2**
- **Date Closed ........... 13/08/01**
- **Component .......... 5695DF122**
- **Duplicate of ........**
- **Reported Release ........ 210**
- **Fixed Release ............ 999**
- **Component Name VSAM REC LEV SH**
- **Special Notice \_ HIPER**
- **Current Target Date ..13/08/15**
- **Flags**
- **SCP ................... FUNCTIONLOSS**
- **Platform ............**

**Status Detail:** SHIPMENT - Packaged solution is available for shipment.

**PE PTF List:**

**PTF List:**

- **Release 210 : UA70040 available 13/08/08 (F308 )**

**Parent APAR:**

**Child APAR list:**

**ERROR DESCRIPTION:**

Hang encountered between two SMLS threads attempting to process the same lock. D SMS, SMSVSAM, DIAG(C) display shows contention building on the RHT latch:

```
IGW343I VSAM RLS DIAG STATUS (V.01)
|----RESOURCE----| |------ WAITER ------| |--HOLDER---| ELAPSED
TYPE ID JOB NAME ASID TASK ASID TASK TIME
-------- -------- -------- ---- -------- ---- -------- ---------
LATCH 7F5B93F8 CICS2ACA 01A3 00000000 000A 70C2D0C0 00:12:45
LATCH 7F5B93F8 CICS2ACB 01A2 00000000 000A 70C2D0C0 00:13:15
LATCH 7F5B93F8 CICS2ACC 01A6 00000000 000A 70C2D0C0 00:13:16
LATCH 7F5B93F8 CICS2ACA 01A3 00000000 000A 70C2D0C0 00:13:20
LATCH 7F5B93F8 CICS2ACA 01A3 00000000 000A 70C2D0C0 00:13:20
```

- The holder is a thread attempting to ALTER the Component2 lock.
and is waiting for the request to be granted. A waiter is also
processing the same lock attempting to grant it, but is
waiting on the RHT latch held by the first thread.

Additional Problems
During rebuild a cancel of CICS regions can orphan GRSLatch
and Sidb latch causing the REBUILD to hang

Additional keywords:
RLSHANG SMSVSAM IGWLNL17 IGWLNL77 IGWLNL19 IGWLNL78
DIWA COMP2 RHT SPLIT
RLS_GRS_LATCH_SET

LOCAL FIX:
Restart SMSVSAM

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All VSAM RLS users. *
****************************************************************
* PROBLEM DESCRIPTION: Hang in SMSVSAM between lock alter and *
* Lock grant processing. *
****************************************************************
* RECOMMENDATION: *
****************************************************************

Problem #1.
Problem occurs if 3 or more jobs are competing for a component2
lock. Job A is the holder and Job C (same system) waits for the
lock. Job A is about to release the lock and Job B (from other
system) tries to obtain it. Due to an un-initialized parameter
that SMSVSAM uses for lock processing, Job A may wait for Job B
to complete before it can grant the lock to the waiter (Job C),
resulting in a deadlock situation.

Problem #2.
Cancelling a job during record lock request processing can hang
due to internal routine error not releasing some of the internal
latches.

PROBLEM CONCLUSION:
Problem #1.
The code has been modified to initialize the parameter
correctly to prevent the deadlock situation.
Problem #2.
The code has been modified to release all the internal latches
if cancel occurs during record lock request processing.

KEYWORDS: RLSPP/K

TEMPORARY FIX:
*********
* HIPER *
*********
COMMENTS:

MODULES/MACROS:
IDAVRCLO IGWLNL12 IGWLNL17 IGWLNL19 IGWLNL20 IGWLNL36 IGWLNL40
IGWLNL60 IGWLNL77 IGWLNL78 IGWLNR10

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA42267 XTIOT use (also applicable to DFSMS V1.13)**

Example A-18 contains the cover letter for APAR OA42267.

*Example A-18  OA42267*

<table>
<thead>
<tr>
<th>APAR Identifier</th>
<th>Last Changed</th>
<th>IEC999I IFG0194D ABENDOC1 ABENDOC4 NON_VSAM_XTIOT DEVSUPXX TRKCALC RC04 IECOSCR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA42267</td>
<td>13/10/01</td>
<td></td>
</tr>
</tbody>
</table>

Symptom: AB ABENDOC4
Severity: 2
Component: 5695DF107
Reported Release: D10
Fixed Release: 999
Component Name: DATA MGMT SUPPO
Current Target Date: 13/09/30
SCP: 
Platform: 

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release D10: UA70761 available 13/10/01 (1000)
Release 210: UA70762 available 13/10/01 (1000)

Parent APAR:
Child APAR list:
ERROR DESCRIPTION:
When keyword NON_VSAM_XTIOT is set to YES in PARMLIB member
DEVSUPxx, IFG0194D +x'186A' UA68824 makes a TRKCALC call
without LOC=ANY and the UCB is a 31-bit address pulled directly
from the XTIOT. TRKCALC module IECOSCR1 takes an ABEND0C4 as a
result. IFG0194D may also take an intentional ABEND0C1 to
header IFG0194D TRKCALC_ERRORSEE_R15 ERROR when register 15 is
set to RC04. The joblog will show an IEC999I IFG0194D message.

LOCAL FIX:
Set NON_VSAM_XTIOT to NO in PARMLIB member DEVSUPxx

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All.                                        *
****************************************************************
* PROBLEM DESCRIPTION: Abend0c1 in IFG0194D.                   *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
IEC999I IFG0194D,POFFOR,POFFOR,TRKCALC ERROR SEE R15
due to an intentional abend0c1 after a TRKCALC failure.
TRKCALC is passed a 31bit UCB address without including
keyword: LOC=ANY in the macro invocation. OPEN is processing
with an XTIOT containing 31bit UCB addresses.

PROBLEM CONCLUSION:
IFG0194D now issues TRKCALC with the LOC=ANY keyword.

TEMPORARY FIX:

COMMENT:

MODULES/MACROS: IFG0194D

SRLS: NONE

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA42675 PDSE

Example A-19 contains the cover letter for APAR OA42675.

Example A-19   OA42675

APAR Identifier ...... OA42675      Last Changed ....... 13/09/26
ABENDOC4 PIC38 IGWIRRDB+OCB0 @ HDZ2210

Symptom ...... AB ABENDOC4          Status ........... CLOSED PER
Severity ................. 3          Date Closed ....... 13/07/03
Component ........... 5695DF115      Duplicate of ........
Reported Release ........ 210         Fixed Release .......... 999
Component Name EXTENDED DATA S     Special Notice HIPER
Current Target Date ..13/08/15       Flags
SCP ...................
Platform ............ DATALOSS

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA69767 available 13/07/11 (F307)

Parent APAR:    OA42051
Child APAR list:

ERROR DESCRIPTION:
ABENDOF4 PIC39 CSECT=IGWIRRDB+OCB0 @ HDZ2210 base
ABENDOC1 IGWIRPAD+OB4E @ HDZ2210 base
ABENDOC1 IGWIRPAD+17D4 @ HDZ2210 base
ABENDOC1 IGWIRPND+1848 @ HDZ2210 base
ABENDOF4 IGWIRPAD RSN1419A084 1419A084

LOCAL FIX:
None

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: PDSE which has been updated extensively on     *
* a release lower than 2.1 may                                     *
* have a sparse index. When 2.1 updates the                      *
* the index may be broken,                                        *
****************************************************************

PROBLEM DESCRIPTION: See users affected.

RECOMMENDATION:
****************************************************************
Modify PDSE processing to position to the correct place in the
index before attempting to remove empty pages,

PROBLEM CONCLUSION:
See Problem Summary

TEMPORARY FIX:
* HIPER *
*******

COMMENTS:

MODULES/MACROS:   IGWIRCMT IGWIRDIS IGWIRICR IGWIRIEM IGWISTAM

SRLS:       NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42986 NFS applies to DFSMS V1.13 as well

Example A-20 contains the cover letter for APAR OA42986.

Example A-20  OA42986

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA42986</th>
<th>Last Changed ........ 13/10/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNFSC VN_TRUNC SOC4 DUE TO UNINITIALIZED VARIABLE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom ...... AB ABENDOC4</th>
<th>Status ............ CLOSED PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity ................ 3</td>
<td>Date Closed ........ 13/08/22</td>
</tr>
<tr>
<td>Component ............... 5695DF121</td>
<td>Duplicate of ..........</td>
</tr>
<tr>
<td>Reported Release .......... 21N</td>
<td>Fixed Release ............ 999</td>
</tr>
<tr>
<td>Component Name NETWORK FILE SY</td>
<td>Special Notice</td>
</tr>
<tr>
<td>Current Target Date ..13/09/13</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP .....................</td>
<td></td>
</tr>
<tr>
<td>Platform .............</td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:

Release C1N    : UA70539 available 13/09/04 (F309 )
Appendix A. APARs to be reviewed for DFSMS V2.1

Release D1N : UA70540 available 13/09/04 (F309 )
Release 21N : UA70541 available 13/09/04 (F309 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
zNFSC vn_trunc SOC4 due to uninitialized variable

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users of zOS NFS Client                                *
******************************************************************************
* PROBLEM DESCRIPTION: OC4 abend in vn_trunc when accessing a file in an NFSv4 mount *
******************************************************************************
* RECOMMENDATION:                                                      *
******************************************************************************
An uninitialized variable led to attempting to write to incorrect memory, leading to an OC4 abend.

PROBLEM CONCLUSION:
Properly initializing the pRes variable in the vn_trunc NFSv4 path eliminated an OC4 abend.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
GFSCVNA C

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
**APAR OA42846 Single striped, multi-volume sam tailored compressed data set**

Example A-21 contains the cover letter for APAR OA42846.

---

**Example A-21 OA42846**

**APAR Identifier ...... OA42846**  
**Last Changed ....... 13/09/12**

APAR OA41459 CAN CAUSE LOOP IN IFG0232D

**Symptom ...... LP LOOP**
**Severity ................. 2**
**Component ............. 5695DF107**
**Reported Release ....... D10**

**Status ............ CLOSED PER**
**Date Closed .......... 13/08/05**
**Duplicate of ........**

Component Name DATA MGMT SUPPO
**Fixed Release .......... 999**
**Special Notice PE**

Current Target Date ..13/09/15
**Flags**

SCP .................

**Platform ............**

Status Detail: SHIPMENT - Packaged solution is available for shipment.

**PE PTF List:**
UA68273 UA68272 UA68824 UA68823

**PTF List:**

- **Release C10** : UA70205 available 13/09/12 (1000 )
- **Release D10** : UA70204 available 13/09/12 (1000 )
- **Release 210** : UA70203 available 13/09/12 (1000 )

**Parent APAR:**

**Child APAR list:**

**ERROR DESCRIPTION:**

APAR OA41459 can cause a LOOP in IFG0232D when there are fewer than 5 used physical blocks on the last volume for tailored compressed data sets during CLOSE TYPE=T (TCLOSE), this LOOP will hold ENQ on SYSZTIOT.

**LOCAL FIX:**

remove PTF for OA41459

**PROBLEM SUMMARY:**

******************************************************************************

* USERS AFFECTED: users of single striped, multi-volume sam tailored compressed data sets.

******************************************************************************

* PROBLEM DESCRIPTION: users of single striped, multi-volume sam tailored compressed data sets may see loops when close type=t leave is issued when open for input or issued twice when open for output on the last volume and there is very little data.
Appendix A. APARs to be reviewed for DFSMS V2.1

*                      (less than five physical blocks) on the *
* current volume.       *
****************************************************************
* RECOMMENDATION:      *
****************************************************************
users of single striped, multi-volume sam tailored compressed data sets may see loops when close type=t leave is issued.

PROBLEM CONCLUSION:
Change code so that the count of physical blocks used by the tailored dictionary are ignored for the second and subsequent volumes of a single striped, multi-volume data set.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFG0232D

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

_________________________________________________________________

**APAR OA42891 PDSE**

Example A-22 contains the cover letter for APAR OA42891.

*Example A-22 OA42891*

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA42891</th>
<th>Last Changed ....... 13/10/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE0036I 002-94 MAXIMUM ALLOWABLE NUMBER OF MEMBERS OF PDSE EXCEEDED</td>
<td></td>
</tr>
<tr>
<td>Symptom ...... AB ABEND</td>
<td>Status ........... CLOSED PER</td>
</tr>
<tr>
<td>Severity ................... 3</td>
<td>Date Closed ........ 13/08/13</td>
</tr>
<tr>
<td>Component ........ 5695DF115</td>
<td>Duplicate of ..........</td>
</tr>
<tr>
<td>Reported Release ........... 210</td>
<td>Fixed Release ............ 999</td>
</tr>
<tr>
<td>Component Name EXTENDED DATA S</td>
<td>Special Notice</td>
</tr>
<tr>
<td>Current Target Date ...13/10/31</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP .........................</td>
<td></td>
</tr>
<tr>
<td>Platform ...................</td>
<td></td>
</tr>
</tbody>
</table>
Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA70333 available 13/09/04 (F309 )

Parent APAR: OA40985
Child APAR list:

ERROR DESCRIPTION:
ABEND002 RC94 received when adding to a pdse that has less than the maximum Number of members allowed for a PDSE as displayed by ISPF 3.4 Info - I .
S002 rsn94 msgIEC036I

LOCAL FIX:
IEBCOPY PDSE to a newly allocated PDSE

PROBLEM SUMMARY:
******************************************************************************************************************************************************
* USERS AFFECTED: Users who create new PDSE members. *
******************************************************************************************************************************************************
* PROBLEM DESCRIPTION: An Abend002 RC94 occurs when adding a new member to a PDSE *
******************************************************************************************************************************************************
* RECOMMENDATION: *
******************************************************************************************************************************************************
Prevent Member counts from going negative

PROBLEM CONCLUSION:
A total member count was invalid and misrepresented that the maximum count had been reached.
The code has been modified to prevent the member counts from reaching an invalid range

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
IGWIRCMT

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA42904 z/HPF**

Example A-23 contains the cover letter for APAR OA42904.

<table>
<thead>
<tr>
<th>APAR Identifier</th>
<th>Last Changed</th>
<th>EXPOSURE IN z/HPF IN R2.1: CHECK FOR FCX_FMTWRITE TO IFG0555H</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA42904</td>
<td>13/08/02</td>
<td></td>
</tr>
</tbody>
</table>

Symptom ...... IN INCORROUT          Status .......... CLOSED PER
Severity ............ 3                Date Closed ......... 13/07/29
Component ........... 5695DF107       Duplicate of ........
Reported Release ......... 210       Fixed Release ............ 999
Component Name DATA MGMT SUPPO     Special Notice HIPER
Current Target Date ..13/08/30       Flags
SCP .......................                  DATALOSS
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release 210 : UA70011 available 13/07/31 (F307 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Check for FCX_FmtWrite to IFG0555H

LOCAL FIX:
none

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of SAM z/HPF writing multi-volume *
* data sets.                                                      *
****************************************************************
PROBLEM DESCRIPTION:
Data may be lost when writing a SAM z/HPF data set if the control unit is not at the latest EC level.

RECOMMENDATION:
Data may be lost when writing SAM z/HPF data if the control unit microcode is not at the latest level.

PROBLEM CONCLUSION:
Added check to verify the correct control unit microcode level before writing with z/HPF.

TEMPORARY FIX:
*********
* HIPER *
*********

MODULES/MACROS:
IFG0555H

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42935 IEBCOPY

Example A-24 contains the cover letter for APAR OA42935.

Example A-24  OA42935

APAR Identifier ...... OA42935  Last Changed ......... 13/10/03
ABEND C03 UNLOADING AN EMPTY PDSE USING IEBCOPY

Symptom ...... AB ABENDC03  Status ............ CLOSED PER
Severity ............... 2  Date Closed ........ 13/08/21
Component ............ 5695DF114  Duplicate of ........
Reported Release ....... 210  Fixed Release .......... 999
Component Name DFSMS UTILITIES      Special Notice
Current Target Date ..13/09/16      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release 210    : UA70502 available 13/09/12 (F309 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
When attempting to do an UNLOAD of an Empty PDSE using IEBCOPY
an Abend C03 occurs.

Errors received resemble:
IEC999I IFGOTCOA,IFGOTCOB,TEST2 ,UNLOAD ,
   DEB ADDR=8C2394-1,DSN = xxxxx.xxxxxx

SYSTEM COMPLETION CODE=C03

When the PDSE to be unloaded is empty, module IEBCFAMS is not
closing the output DCB, which causes the C03 abend during task
termination, since the DCB has been previously freed.

The SYSTRACE shows this storage was freed up as part of a large
area by IEBVTMI + x'COE'.

LOCAL FIX:
n/a

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users trying to unload an empty PDSE using IEBCOPY.    *
******************************************************************************
* PROBLEM DESCRIPTION: Users trying to unload an empty PDSE using IEBCOPY   *
* will see an abend C03 during step termination.                          *
******************************************************************************
* RECOMMENDATION: Abend C03 unloading an empty PDSE using IEBCOPY.        *
******************************************************************************
PROBLEM CONCLUSION:
Removed an asterisk that commented out a call to close the output data set.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
IEBCFAMS

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA43003 VSAM RLS

Example A-25 contains the cover letter for APAR OA43003. DFSMS V1.13 equivalent APAR is OA42947.

Example A-25   OA43003

APAR Identifier ...... OA43003      Last Changed ........ 13/09/19
POSSIBLE INCORRECT RBA RETURNED AFTER ESDS PUT UPDATE OR DELETE

Symptom ...... IN INCORROUT      Status ............ CLOSED PER
Severity .................. 3      Date Closed ........ 13/09/19
Component ............ 5695DF106   Duplicate of ........
Reported Release ........ 210     Fixed Release ............ 999
Component Name DFSMS VSAM   Special Notice
Current Target Date ..13/10/31      Flags
SCP ....................
Platform ............

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release 210 : PTF not available yet
Parent APAR: OA42947
Child APAR list:

ERROR DESCRIPTION:
For ESDS processing, it is possible for the RBA to be corrupted by application programs after it's initially passed in correctly. An application program specifies the correct RBA for a GET UPDATE request, VSAM RLS processes the GET UPDATE with the correct RBA successfully, then the application somehow corrupts the RBA, possibly by mistake, followed by a PUT UPDATE request. RLS also processes the PUT UPDATE successfully since RBA is not required. However, the incorrect RBA is returned at the end of the processing.

LOCAL FIX:
Avoid corrupting the RBA between requests.

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: VSAM users running with non-keyed GET, PUT *
*                 and ERASE processing.                          *
****************************************************************
* PROBLEM DESCRIPTION: A user application can corrupt the      *
*                      input RBA value after a GET UPDate      *
*                      request and the subsequent PUT or ERASE *
*                      request can return with an incorrect    *
*                      RBA value.                              *
****************************************************************
* RECOMMENDATION: APPLY PTF                                    *
****************************************************************
A user application specifies a correct RBA value for the GET
UPDATE request, then the application corrupts the RBA value. Since
VSAM is already positioned to the record, the next PUT or
ERASE request can run successfully but the returned RBA value in
RPL area is still corrupted.

PROBLEM CONCLUSION:
VSAM will save the input RBA value for non-keyed GET request
and the subsequent PUT or ERASE request will restore the RBA
value in RPL before returning to user application.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IDA019R1
APAR OA43112 VSAM

Example A-26 contains the cover letter for APAR OA43112.

Example A-26   OA43112

APAR Identifier ...... OA43112      Last Changed ........ 13/09/23
IDA019RV+05AO FEEDBACK CODE: 010804F8, IDA019RZ+61A PLH STACK
ERROR

Symptom ...... IN INCORROUT      Status ........... OPEN
Severity ............... 3      Date Closed ........
Component ........... 5695DF106   Duplicate of ....
Reported Release ........ 210     Fixed Release ........
Component Name DFSMS VSAM    Special Notice
Current Target Date ..13/12/31  Flags
SCP ....................
Platform ............

Status Detail: DESIGN/ CODE - APAR solution is being designed and coded.

PE PTF List:

PTF List:

Parent APAR:    OA40707
Child APAR list:

ERROR DESCRIPTION:
VSAM produces dump titled:
VSAM DYNAMIC RPL DUMP - IDA019RV+05AO FEEDBACK CODE: 010804F8.
The dump shows (in the first entry in the PLH stack) that
IDA019RZ+61A was attempting to return using a zero stack
pointer and so he had no module to return to. This produced
the RPL error code and dump.
The application is using LSR buffer pools, Asynchronous
VSAM calls, with many TCBs multitasking, and it is very busy.
The call that received the error was an Asynchronous Direct PUT
 to a cluster with an AIX.

The nature of this problem is very timing dependent and, we
would expect, rarely seen. The sequence leading to the
test can be seen by closely reviewing entries in the MVS
SYSTRACE for this call, processing at the same time from
the same TCB for other asynchronous calls. This current call
had gone to VSAM for the PUT, the IO was started, but we then
were interrupted by a timer interrupt (EXT 1005) in
IDA019RZ+57E (IDA019RZ is base 1.12 code). At this point
the MVS supervisor saves the regs for this Ext, interrupt in the
TCB.

Other work gets done under this same TCB, as long as it is
only IRB related work, or stems from IRB work, such as
previously started VSAM IO for this TCB.

Before we get to redispach this TCB after the EXT. interrupt
PSW, the PLH gets reused for AIX processing for another
request. This is all under this same TCB same. The AIX request
processes, the PLH stack is reused and goes to zero as the
AIX request completes.

We then dispatch the externally interrupted work in IDA019RZ+57E
using the regs saved in the TCB. He expects the PLH stack to
be as he left it, when the EXT. interrupt occurred, but the
stack is zeros. He then gets rpl feedback code 010804F8
when he tries to "return" at IDA019RZ+61A.

================================================================
This is a Sysroute of OA40707 for 2.1 only. The design of
the serviceability enhancement for OA40707 was restricted
by the storage available in the footsteps. This is a more
complete version and will include a timestamp and other
information.
================================================================

LOCAL FIX:

none

APAR OA43128 DFSMSrmm applicable to DFSMS V2.1 and V1.13

Example A-27 contains the cover letter for APAR OA43128.

Example A-27 OA43128

APAR Identifier ...... OA43128 Last Changed ........ 13/10/03
GARBLED TEXT ON JAPANESE PANEL EDGP@LIB

Symptom ...... IN INCORROUT Status ............ CLOSED PER
Severity ................. 3 Date Closed ............ 13/08/27
Component .............. 5695DF186 Duplicate of ........
Reported Release ........ 21K Fixed Release ............ 999
Component Name DFSMSRMM Special Notice
Current Target Date ..13/10/17 Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.
PE PTF List:

PTF List:
Release C1K   : UA70581 available 13/09/28 (F309 )
Release D1K   : UA70582 available 13/09/28 (F309 )
Release 21K   : UA70583 available 13/09/28 (F309 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Unreadable characters appear on Japanese panel EDGP@LIB, shipped with z/OS V2.1 ( R21K ) PTF/APAR UA69568 / OA42135.
Additional Keywords:
DFSMSrmm DFRMM RMM RMMCJH KANJI

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All DFSMSrmm users using KANJI panels.   *
****************************************************************
* PROBLEM DESCRIPTION: There is a problem with the Kanji panel *
*                      EDGP@LIB:                               *
*                       - in release V2R1 the panel contains   *
*                         garbled text;                        *
*                       - in releases V1R12, V1R13 the panel   *
*                         is missing.                         *
****************************************************************
* RECOMMENDATION: Apply the applicable PTS(s).                 *
****************************************************************

PROBLEM CONCLUSION:
The problem has been fixed.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
EDGP@LIB TDGP@LIB

SRLS:
NONE
RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA43153 VSAM

Example A-28 contains the cover letter for APAR OA43153.

Example A-28  OA43153

APAR Identifier ...... OA43153      Last Changed ........ 13/09/27
PLH "ROUND ROBIN" PROBLEM UNDER R210.

Symptom ...... IN INCORROUT         Status ........... OPEN
Severity ................... 2      Date Closed .........
Component .......... 5695DF106      Duplicate of .........
Reported Release ......... 210      Fixed Release ............
Component Name DFSMS VSAM           Special Notice
Current Target Date ..13/12/01      Flags
SCP ...................
Platform ............

Status Detail: REVIEW - APAR solution is being reviewed.

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
PLH "round robin" problem under r210.
Under r210 a POINT returns RPL FEEDBACK = x'93080010', and the
following GET returns x'00000000' along with the 1st record in
data set.
Under previous releases the POINT returned x'93080010' and the
following GET returned x'58080058' and no record.

LOCAL FIX:
If a POINT request is rejected, failed it should not be used as
the basis for a following GET NEXT (sequential GET). Since the
POINT request failed, if it is used with a subsequent GET the
results are unpredictable.

APAR OA43162 DSS Storage Tier

Example A-29 contains the cover letter for APAR OA43162.

Example A-29   OA43162

APAR Identifier ...... OA43162      Last Changed ........ 13/09/25
COPY USING STORAGE TIER, WITH DB2 DATABASE, LDS, ISGQUERY
RECEIVES ADR564E WITH RC4 AND RSN051B0405

Symptom ...... MS MSGADR564E        Status ........... OPEN
Severity ................. 2      Date Closed ........
Component .......... 5695DF175      Duplicate of .......
Reported Release ......... 210      Fixed Release ..........          0405
Component Name DFSMSDSS, ISMF       Special Notice
Current Target Date ..              Flags
SCP .................
Platform .............

Status Detail: DESIGN/COde - APAR solution is being designed and coded.

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Customer running Storage Tier through HSM, copy of a DB2 database, which is a VSAM LDS, customer will receive the following message:

ADR564E (001)-DDFLT(01), ISGQUERY ISSUED A RETURN CODE OF 00000004 AND REASON CODE OF 051B0405 FOR DATA SET xxxxxxxx

ISGQUERY returns information indicating with return code x'4', which indicated the ISGQUERY succeeded, but a warning is issued. For reason code xxxx0405, the AnswerAreaFull indicator has been returned. Either the answer area for the query is too small, or a RESUMETOKEN was not used correctly.

Additional info: STORTIERS/K

LOCAL FIX: 
N/A
**Example A-30 contains the cover letter for APAR OA43169.**

### APAR OA43169 DFSMShsm

#### Example A-30  OA43169

<table>
<thead>
<tr>
<th>APAR Identifier ......</th>
<th>OA43169</th>
<th>Last Changed ......</th>
<th>13/10/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEND878 OUT-OF-STORAGE CONDITION DUE TO ORPHANED X'11F8' BYTE ALLOCATIONS IN SUBPOOL 0 KEY 8.</td>
<td>13/09/10 PTF PEREMOVE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom ......</th>
<th>AB ABEND878</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity ............</td>
<td>2</td>
</tr>
<tr>
<td>Component ............</td>
<td>5695DF170</td>
</tr>
<tr>
<td>Reported Release .......</td>
<td>210</td>
</tr>
<tr>
<td>Component Name DFSMSHSM, ISMF</td>
<td>Special Notice HIPER</td>
</tr>
<tr>
<td>Current Target Date ..</td>
<td>13/09/27</td>
</tr>
<tr>
<td>SCP ..................</td>
<td>FUNCTIONLOSS</td>
</tr>
<tr>
<td>Platform ............</td>
<td>PERVERSIVE</td>
</tr>
</tbody>
</table>

**Status Detail:** SHIPMENT - Packaged solution is available for shipment.

**PE PTF List:**

**PTF List:**

- Release 210 : UA70684 available 13/09/24 (F309 )

**Parent APAR:**

**Child APAR list:**

**ERROR DESCRIPTION:**

S878 ABEND occurs because of orphaned X'11F8' byte allocations in SPO Key8. These allocations will exhaust user region above the 16M line and then proceed to exhaust it below the 16M line. In IPCS, " IP VERBX VSMDATA 'NOG SUM' " will show thousands of the following orphaned storage obtains:

- DQE: Addr 007C3000 Size 2000
- FQE: Addr 007C41F8 Size E08

**LOCAL FIX:**

Determine size of storage leak by seeing how long HSM was up prior to the S878 ABEND. Schedule regular restarts of HSM accordingly.

**PROBLEM SUMMARY:**

------------------------------------------------------------------
* USERS AFFECTED: All z/OS DFSMSHsm release hdz2210 users. *
------------------------------------------------------------------
* PROBLEM DESCRIPTION: Customer is experiencing ABEND878 during DFSMSHsm space management. *
------------------------------------------------------------------
* RECOMMENDATION: *  
****************************************************************
AB878 is occurring during DFSMShsm space management. Getmained storage is not being freed.

PROBLEM CONCLUSION:  
Apply the PTF for this APAR to resolve this problem.

TEMPORARY FIX:  
***********  
* HIPER *  
***********

COMMENTS:  
MODULES/MACROS:   ARCATTEC ARCMDSUV ARCMSTAI ARCMVDS  
SRLS:   NONE  
RTN CODES:  

CIRCUMVENTION:  
Apply ++APAR temporary fix when available. Estimated availability date is September 9, 2013.

MESSAGE TO SUBMITTER:  

APAR OA43191 RLS
Example A-31 contains the cover letter for APAR OA43191.

Example A-31   OA43191
APAR Identifier ...... OA43191   Last Changed ........ 13/09/30
HANG DURING REBUILD / REALLOCATE OF SMVSAM LOCK STRUCTURE
RLS_GRS_LATCH_SET
Symptom ...... WS WAIT     Status ............ OPEN
Severity .................... 2     Date Closed ........
Component ............ 5695DF122   Duplicate of ........
Reported Release ...... 210     Fixed Release ........
Component Name VSAM REC LEV SH  Special Notice  
Current Target Date ..14/03/31     Flags
SCP ....................  
Platform ............  

Status Detail: REVIEW - APAR solution is being reviewed.
Appendix A. APARs to be reviewed for DFSMS V2.1

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
A hang can be seen during a REBUILD or REALLOCATE of the SMSVSAM lock structure. The hang is seen when the lock structure is in SIMPLEX state. A large amount of contention will be reported on RLS_GRS_LATCH_SET with several holders and requestors for SHARED state and 1 requestor (Rebuild) for exclusive.

Additional Keyword:
RLS_GRS_LATCH_SET
NAME=SMSVSAM/RLS_GRS_LATCH_SET
RLSHANG
RLSPSP/K
SMSVSAM RLS VSAMRLS DF122

LOCAL FIX:
Restart SMSVSAM

APAR OA43195 Catalog

Example A-32 contains the cover letter for APAR OA43195.

Example A-32   OA43195
APAR Identifier ...... OA43195      Last Changed ....... 13/09/26
BAD RB ERROR 246-24 IN IGG0CLXA AT 2.1

Symptom ...... IN INCORROUT      Status ........... OPEN
Severity ................. 2      Date Closed ........
Component ........ 5695DF105      Duplicate of .......
Reported Release ........ 210    Fixed Release ........
Component Name ICF CATALOG & I      Special Notice
Current Target Date ..13/12/31   Flags
SCP ....................
Platform .............

Status Detail: DESIGN/CODE - APAR solution is being designed and coded.

PE PTF List:

PTF List:
Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
APAR OA36157 introduced a new error to capture a doc when control is improperly transferred between user address spaces and CAS.

In 2.1, new code was introduced in support of RLS Catalogs and related commands. One such code path will issue an informational message to inform a user of any suspended catalogs (IEC367W message) that are waiting for SMS VSAM to become available. It is possible, however, for this timer code path to be invoked for terminated catalogs as well as suspended catalogs. This causes the timer pop code to be erroneously called for terminated catalogs, leading to unexpected IRB interrupts, and 246-24 errors.

LOCAL FIX:
n/a

APAR OA43198 PDSE

Example A-33 contains the cover letter for APAR OA43198.

Example A-33   OA43198

APAR Identifier ...... OA43198    Last Changed ........ 13/09/02
ADD PDSE DATA SET NAME IN EREP SYMPTOM RECORD FOR ABENDOF4 RC24
IGWIRRDB RSN141FA7FD

Symptom ...... IN INCORROUT      Status ........... OPEN
Severity ............... 2    Date Closed ........
Component ........... 5695DF115  Duplicate of ........
Reported Release ...... 210    Fixed Release ........
Component Name EXTENDED DATA S Special Notice
Current Target Date ..13/12/31  Flags
SCP ...................
Platform ............

Status Detail: ANALYSIS - APAR is being investigated or debugged.

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:
ERROR DESCRIPTION:
The intent of this apar is to externalize the pdse data set name in the erep symptom record (symrec) for the ABENDOF4 141FA7FD detected from module IGWIRRDB to assist in the identification of the PDSE data set involved with the abend.

LOCAL FIX:

APAR OA43214 PDSE

Example A-34 contains the cover letter for APAR OA43214.

Example A-34 OA43214

APAR Identifier ...... OA43214 Last Changed ...... 13/09/23
ABENDOC1 IGWIRCMT COPYING INTO A PDSE DATA SET WITH A SPARSE ND NAME DIRECTORY INDEX

Symptom ...... AB ABEND Status .......... CLOSED PER
Severity ............... 3 Date Closed .......... 13/09/23
Component ........... 5695DF115 Duplicate of ........
Reported Release ........ 210 Fixed Release .......... 999
Component Name EXTENDED DATA S Special Notice
Current Target Date ..13/12/31 Flags
SCP ..................
Platform ............

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release 210 : PTF not available yet

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
IEBCOPY to copy a PDSE to a PDSE data set with sparse ND index results in following errors:

IGW01173S RC36 RSN06105AF8
ABENDOC1 out of IGWIRCMT+92EC @ UA69767

LOCAL FIX:

PROBLEM SUMMARY:
* USERS AFFECTED: PDSE which have been process on system levels below HDZ2210 and have very empty indices, can cause HDZ2210 to fail when attempting to add members to the PDSE. The emptiness of the PDSE indices can be determined by running the IEBPDSE utility against the data set. The error is most likely when the ND free space is greater than 75%.

* +IGW700I PDSE Directory Validation Successf
* +DSN:SYSPLEX.T1#04031.PDSE01
* +ADPages:164 IXRecords:10056
* +ADPagesInCore:11 ADPagesRead:153
* +ADTreeLevels:3
* +NDPages:3506 IXRecords:4000
* +NDPagesInCore:1 NDPagesRead:3505
* +NDTreeLevels:3
* +AD ND Tree Nodes:4000
* +ADPercentFree:43 NDPercentFree:96

* PROBLEM DESCRIPTION: See Users Affected.
* PROBLEM CONCLUSION: See Problem Summary.

* RECOMMENDATION: PDSE processing will be changed to correctly handle empty directory blocks and almost empty blocks.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IGWIRCMT IGWIRPAD IGWIRPND

SRLS: NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA43220 DSS Storage Tier

Example A-35 contains the cover letter for APAR OA43220.

Example A-35  OA43220

<table>
<thead>
<tr>
<th>APAR Identifier ......</th>
<th>OA43220</th>
<th>Last Changed .......</th>
<th>13/09/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSGADR560E DB2 CAF CONNECT FUNCTION RC08 RSN0F30012 ISSUED WHEN DOING CLASS TRANSITION IN HSM PSM TO TIER2 OF A DB2 TABLE SPACE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom ......</td>
<td>MS MSGadr560e</td>
<td>Status ...........</td>
<td>OPEN</td>
</tr>
<tr>
<td>Severity ...................</td>
<td>2</td>
<td>Date Closed ........</td>
<td></td>
</tr>
<tr>
<td>Component ...........</td>
<td>5695DF175</td>
<td>Duplicate of ........</td>
<td></td>
</tr>
<tr>
<td>Reported Release ........</td>
<td>210</td>
<td>Fixed Release ..........</td>
<td></td>
</tr>
<tr>
<td>Component Name DFSMSDSS, ISMF</td>
<td>Special Notice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Target Date ..</td>
<td>Flags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCP ..................</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform .............</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: DESIGN/CODE - APAR solution is being designed and coded.

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Four systems exist in the sysplex all running DB2 which has a table space in use on each system in the sysplex. HSM primary space management starts and begins processing class transition to move a DB2 table space to tier2 dasd. This fails with msgadr560e (001)-DDFLT(01), DB2 CAF CONNECT FUNCTION ISSUED A RETURN CODE OF 00000008 AND REASON CODE OF 00F30012 FOR SUBSYSTEM DBX3
additional info: STORTIERS/K

LOCAL FIX:
n/a
Example A-36 contains the cover letter for APAR OA43221.

Example A-36   OA43221

APAR Identifier ...... OA43221      Last Changed .... 13/09/27
ABENDOF4 IN IGWLNR10 + 064 AFTER APPLICATION OF OA42654

Symptom ...... AB ABENDOF4          Status .......... CLOSED PER
Severity .................... 3      Date Closed ......... 13/09/27
Component ............. 5695DF122   Duplicate of ........
Reported Release ........ 210   Fixed Release .......... 999
Component Name VSAM REC LEV SH Component Name: VSAM REC LEV SH
Special Notice  HIPER          Flags
Current Target Date ..13/12/31   Flags
SCP ................... FUNCTIONLOSS
Platform ............

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release 210   : PTF not available yet
Release 210   : Relief is available in the form of: CALL IBM

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
After applying fix for OA42654, testing received ABENDOF4 in
IGWLNR10+06E4 due to all latches not being owned.

Symptom string:
COMPID=DF122,CSECT=IGWLNR10+06E4,DATE=07/24/13,MAINTID=OA42654 ,
ABND=0F4,RC=00000024,RSN=66F32050

LOCAL FIX:
None

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All VSAM RLS users.                      *
****************************************************************
* PROBLEM DESCRIPTION: ABENDOF4 in IGWLNR10 at offset X'6E4' *
* after application of OA42654                                *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
Cancelling a job waiting for a lock request can cause an abend
due to an internal routine having erroneously released some of
the internal latches which were not owned.

PROBLEM CONCLUSION:
IGWLNR10 is modified to release all the internal latches only if they are owned.
KEYWORDS: RLSPSP/K

TEMPORARY FIX:
*********
* HIPER *
*********

COMMENTS:

MODULES/MACROS: IGWLNR10

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA43234 PDSE

Example A-37 contains the cover letter for APAR OA43234.

Example A-37 OA43234

APAR Identifier ...... OA43234 Last Changed ........ 13/09/18
ABENDOF4 RSN5EO61100 IGWFB120 BTREE INVALID TOPNODE

Symptom ...... AB ABEND Status ............ CLOSED PER
Severity ................. 3 Date Closed ........ 13/09/10
Component ............ 5695DF115 Duplicate of ........
Reported Release ........ 210 Fixed Release ............. 999
Component Name EXTENDED DATA S Special Notice
Current Target Date ..13/12/31 Flags
SCP ..................
Platform ............

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:
PTF List:
Release 210 : PTF not available yet

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
TITLE=COMPID=DF115,CSECT=IGWFB120+2838,DATE=03/12/13,MAINTID=
NONE   ,ABND=0F4,RC=00000024,RSN=5E061100

Subcomponent: PDSE B-Tree Services
Module name : IGWFB120
Reason      : BTree_InvalidTopNode

Module flow : IGWFB125 <- IGWIRLRU <- IGWIRLRT

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Abend can occur if the PDSE LRU returns a    *
*                 page buffer and the block is reassigned      *
*                 immediately.                                 *
****************************************************************
* PROBLEM DESCRIPTION: See Users affected.                     *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
Correct logic to save next block in btree before the block may be deleted.

PROBLEM CONCLUSION:
See Summary.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IGWIRLRU

SRLS:      NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA43234 PDSE

Example A-38 contains the cover letter for APAR OA43234.

Example A-38  OA43234

APAR Identifier ...... OA43234      Last Changed ........ 13/09/18
ABEND0F4 RSN5E061100 IGWFB120 BTREE INVALID TOPNODE

Symptom ...... AB ABEND             Status ........... CLOSED  PER
Severity ................... 3      Date Closed ........ 13/09/10
Component .......... 5695DF115      Duplicate of ........
Reported Release ........ 210       Fixed Release ........ 999
Component Name EXTENDED DATA S      Special Notice
Current Target Date ....13/12/31      Flags
SCP .................
Platform ..........

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

APAR OA43417 DSS Storage Tier

Example A-39 contains the cover letter for APAR OA43417.

Example A-39  OA43417

APAR Identifier ...... OA43417      Last Changed ........ 13/09/25
MSGADR567E RC67 RSN105 EXCI ERROR WHEN ATTEMPTING COPY A CICS
RLS DATA SETS USING STORAGE TIER PROCESSING.

Symptom ...... MS MSGadr567e        Status ........... OPEN
Severity ................... 2      Date Closed ........
Component .......... 5695DF175      Duplicate of ........
Reported Release ........ 210       Fixed Release ........
Component Name DFSMSDSS, ISMF      Special Notice
Current Target Date ........      Flags
SCP .................
Platform ..........

Status Detail: DESIGN/CODE - APAR solution is being designed
and coded.

PE PTF List:

PTF List:
ERROR DESCRIPTION:
Processing CICS RLS data set using storage tiers to copy the
data set receives the following error:
ADR568I (001)-EXCIC(01), INVOCATION OF CICS INTERFACES BEGIN
*===========DFSMSdss EXCI Client Program (ADREXCIC)======*
* Input Parameters: CICS CLOS APPLID="            "
* Linking to CICS EXCI server routine ADREXCIS
* The EXEC CICS LINK PROGRAM request failed. Return codes are:
* RESP=00000058 RESP2=000001AD. ABCODE:
*==================================End of DFSMSdss EXCI Client Program
(ADREXCIC)====*
ADR567E (001)-DDFLT(01), INVOCATION OF EXCI CICS INTERFACES FOR
DATA

SET RLTEST.VF01D.BANKACCT FAILED WITH RETURN CODE 00000008
AND REASON CODE 00000067
DIAGNOSTIC CODE IS 0C000105

Error is due to an invalid applid being used by ADRDSOCs.
additional info: STORTIERS/K

LOCAL FIX:
none

APAR OA43418 DSS Storage Tier

Example A-40 contains the cover letter for APAR OA43418.

Example A-40   OA43418

APAR Identifier ...... OA43418  Last Changed ...... 13/09/25
LOOP IN ADRDSOC +X'D04' THROUGH X'DBE' TRYING TO LOOP THROUGH
THE ANSWER AREA RETURNED BY GRS.

Symptom ...... LP LOOP  Status ............ OPEN
Severity ................... 2  Date Closed ........
Component ........... 5695DFI75  Duplicate of .........
Reported Release ........ 210  Fixed Release ........
Component Name DFSMSDSS, ISMF  Special Notice
Current Target Date .. Flags
SCP .........................
Platform .................

Status Detail: DESIGN/CODE - APAR solution is being designed
and coded.

PE PTF List:
PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Using Storage tier processing in DFSMSHsm to process CICS non-RLS data sets appears to hang. Analysis of the dump shows we are in a loop in ADRDSOC from +x'd04' through x'D8e' while processing the data returned in the answer area (ISGYQUAAR) by GRS.

additional information: STORTIERS/K

LOCAL FIX:
none

APAR OA43430 DFSMSdfp

Example A-41 contains the cover letter for APAR OA43430.

Example A-41  OA43430
APAR Identifier ...... OA43430      Last Changed ........ 13/09/20
BAD IEC205I MESSAGE AFTER 10 VOLSERS IN Z/OS2.1

Symptom ...... MS MSGIEC205I        Status ........... OPEN
Severity ............ 3       Date Closed ........
Component ........... 5695DF107  Duplicate of ........
Reported Release ...... 210      Fixed Release ........
Component Name DATA MGMT SUPPO  Special Notice
Current Target Date ..              Flags
SCP ...................
Platform ............

Status Detail: DESIGN/CODE - APAR solution is being designed and coded.

PE PTF List:

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
When creating a Multi-volume data set and not specifying a volume count the IEC205I message will not reflect correctly the
Following is an example of the bad message:
IEC205I TAPE,TGAIR@,BACKUP,FILESEQ=1, COMPLETE VOLUME LIST, 917
DSN=TGAIR.M9SG03.DUMP,
VOLS=A00760,A00761,A00762,A00763,A00764,A00765,A00766,A00767,
VOLS=A00768,A00769,3 TIONAL VOLS, TOTALBLOCS=454

LOCAL FIX:
Provide a volume count in JCL

APAR OA43583 PDSE (also applies to pre-DFSMS V2.1)

Example A-42 contains the cover letter for APAR OA43583.

Example A-42   OA43583

APAR Identifier ...... OA43583      Last Changed ........ 13/10/21
ABENDOF4 RC14 RSN25400018 IGWDLCLS+OC32 @ UA68850

Symptom ...... AB ABENDOF4          Status ........... CLOSED PER
Severity .................... 2      Date Closed ........ 13/10/21
Component ............... 5695DF115      Duplicate of ........
Reported Release ........ D10      Fixed Release ........... 999
Component Name EXTENDED DATA S Special Notice HIPER
Current Target Date ..14/01/15 Flags
SCP ....................... DATALOSS
Platform ............ DATALOSS

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release C10 : PTF not available yet
Release D10 : PTF not available yet
Release 210 : PTF not available yet

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
ABENDOF4 RC14 RSN25400018 out of the module IGWDLCLS+OC32 at
UA68850 maintenance level.

The reason code RSN25400018 translates to GETMAIN_FAILED.

VSM summary data (IP VERBX VSMDATA 'NOG SUMM') shows that
SMSPDSE1 extended private storage is almost exhausted:

LOCAL STORAGE MAP
Appendix A. APARs to be reviewed for DFSMS V2.1

Extended
LSQA/SWA/229/230

|                           | 80000000  <- Top of Ext. Private
| Extended                  | 80000000  <- Max Ext. User Region
| LSQA/SWA/229/230          | 32914000  <- ELSQA Bottom
|___________________________| 32908000  <- Ext. User Region Top
| (Free Extended Storage)  | 32900000  <- Ext. User Region

An IP VERBX SMSXDATA 'F(POOLS) JOBNAME(SMSPDSE1)' will show an extremely large allocation for the "JCDM DSC POOL FOR LSTB DREFD" pool:

```
<table>
<thead>
<tr>
<th>Exts</th>
<th>TotSize</th>
<th>TotCells</th>
<th>InUseCells</th>
<th>SP</th>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11315</td>
<td>1,205,002,240</td>
<td>1,131,500</td>
<td>1,131,500</td>
<td>124</td>
<td>50</td>
<td>JCDM DSC POOL FOR LSTB DREFD</td>
</tr>
</tbody>
</table>
```

The build up of the LSTB control structures is the result of PDSE index code that is attempting to join two index pages.

This failure can occur on PDSE data sets that are shared in a sysplex with mixed z/OS levels where at least one LPAR is at the HDZ2210 / z/OS 2.1 level.

LOCAL FIX:
Restart the SMSPDSE1 address space

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: PDSE index records can rarely be broken when *
* the data set is updated on a release HDZ2210 *
* which had been updated on a lower release. *
******************************************************************************

PROBLEM DESCRIPTION: See Users Affected.

RECOMMENDATION:
******************************************************************************
PDSE index manager will be modified to now join index pages which have created on HDZ2210 and a lower release.

PROBLEM CONCLUSION:
See Problem summary.

TEMPORARY FIX:
**HIPER**

**COMMENTS:**

**MODULES/MACROS:**
IGWIRCMT IGWIVRJ2

**SRLS:**
NONE

**RTN CODES:**

**CIRCUMVENTION:**

**MESSAGE TO SUBMITTER:**

---

**APAR OA43701 SAM EF V2 (also applies to pre-DFSMS V2.1)**

Example A-43 contains the cover letter for APAR OA43701.

**Example A-43 OA43701**

<table>
<thead>
<tr>
<th>APAR Identifier</th>
<th>Last Changed</th>
<th>VOLUME LABEL MAY BE OVERWRITTEN BY SAM EXTENDED FORMAT VERSION 2</th>
<th>DATA SET - Z/OS 2.1 ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA43701</td>
<td>13/10/28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Symptom:** IN INCORROUT  
**Severity:** 2  
**Component:** 5695DF102  
**Reported Release:** 210  
**Component Name:** BASE ACCESS MET  
**Current Target Date:** 13/12/15  
**Platform:** PERVASIVE  
**Special Notice:** HIPER  
**Status Detail:** TESTPACKAGING - Packaged solution is being tested.

**Status Detail:**

**PE PTF List:**

**PTF List:**

<table>
<thead>
<tr>
<th>Release</th>
<th>PTF not available yet</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

**Parent APAR:**

**Child APAR list:**
ERROR DESCRIPTION:
If a multi-volume single striped SAM Extended Format Version 2 data set is allocated using Guaranteed Space and then opened for EXTEND or opened for OUTPUT or OUTIN when allocated DISP=MOD, the volume label on the second to last volume may be overwritten by user data.

LOCAL FIX:
Do not use Version 2 if using Guaranteed Space allocation and either OPEN EXTEND or OPEN OUTPUT/OUTIN and DISP=MOD is used. To bypass this problem you must do one of the following:
1) Specify DSNTYPE=(EXT,1) or DSNTYPE=(EXT) on the JCL
OR
2) Specify EXT_VERSION(1) in IGDSMSxx parmlib member AND do not specify DSNTYPE=(EXT,2) on the JCL.

The volume can be recovered by varying it offline to all systems and running the following job.

```
RFMT EXEC PGM=ICKDSF
SYSPRINT DD SYSOUT=*
SYSIN DD *
REFORMAT UNIT(dddd) NVFY VTOCPTR(Cyl,HD) PURGE VOLID(vvvvvv)
```

A successful vary online is a good indication all should be fine.

PROBLEM SUMMARY:
************************************************************************* 
* USERS AFFECTED: All users of multi-volume single striped SAM * 
* extended format data sets allocated using * 
* guaranteed space. * 
************************************************************************* 
* PROBLEM DESCRIPTION: Multi-volume single striped SAM * 
* extended format version 2 data sets * 
* allocated using guaranteed space may * 
* overlay the volume label on the second * 
* to last volume if the first OPEN is for * 
* EXTEND or for OUTPUT or OUTIN and * 
* DISP=MOD is specified. In some cases, * 
* such as ISPF browse, OPEN for INPUT or * 
* INOUT will position to the volume * 
* label. Though version 2 data sets may * 
* not be created on releases prior to * 
* HDZ2210, this problem could occur if *
the data set was allocated on HDZ2210 and first opened on an earlier release.

**RECOMMENDATION:**

Multi-volume single striped SAM extended format version 2 data sets allocated using guaranteed space may overlay the volume label on the second to last volume.

**PROBLEM CONCLUSION:**

Changed code to correctly build internal control blocks to only allow access to the data set extents on the last volume.

**TEMPORARY FIX:**

* HIPER * AA43701

**COMMENTS:**

**MODULES/MACROS:**

IGGO193V

**SRLS:**

NONE

**RTN CODES:**

**CIRCUMVENTION:**

**MESSAGE TO SUBMITTER:**
APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

This APARs listed in this appendix should be reviewed for impact to your installation before implementing z/OS 2.1 DFSMS.

Where APAR text is shown, it is at time of writing of this IBM Redbooks publication. The current version should be checked for updates. When an APAR has had a PTF shipped, and a problem is then found, the PTF will be marked “PE”, and also the original APAR may be updated to show the fixing APAR numbers.

There are two lists in this Redbooks publication. One for fixes that should be applied to DFSMS V2.1 before it is used, and one that should be applied to DFSMS V1.13 or DFSMS V1.12 before DFSMS V2.1 is used.

The lists that follow do not include every APAR that might be required, but is representative. If the PTFs for the listed APARs are applied, many other APARs will also be included.

This list is for DFSMS V1.13 and DFSMS V1.12.

The corresponding list for DFSMS V2.1 can be found at Appendix A, “APARs to be reviewed for DFSMS V2.1” on page 237.
DFSMS suggested and required fixes for pre-DFSMS V2.1

In some cases, there are no PTFs for the listed APARs, and some may have been superseded. The current listing from IBMLINK should be checked for current status and PTFs.

Some of the APARs listed in this part are also applicable to DFSMS V2.1.

APAR OA35808 RMM

Example B-1 contains the cover letter for APAR OA35808.

Example B-1   OA35808

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA35808</th>
<th>Last Changed ........ 13/06/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF - TOLERATION FOR Z/OS DFSMSRMM V2R1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom ...... NF NF</th>
<th>Status ........... CLOSED UR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity ............ 4</td>
<td>Date Closed ........ 13/04/16</td>
</tr>
<tr>
<td>Component ........ 5695DF186</td>
<td>Duplicate of .......</td>
</tr>
<tr>
<td>Reported Release .... A10</td>
<td>Fixed Release ............ 999</td>
</tr>
<tr>
<td>Component Name DFSMSRMM</td>
<td>Special Notice ATTENTION</td>
</tr>
<tr>
<td>Current Target Date ..13/05/08</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP ...................</td>
<td>NEW FUNCTION</td>
</tr>
<tr>
<td>Platform .............</td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:

Release A10 : UA68801 available 13/05/02 ( )
Release B10 : UA68802 available 13/05/02 ( )
Release C10 : UA68803 available 13/05/03 (F305 )
Release D10 : UA68804 available 13/05/03 (F305 )

Parent APAR:
Child APAR list: OA42058

ERROR DESCRIPTION:
Toleration for future new function

LOCAL FIX:

PROBLEM SUMMARY:

****************************************************************
* USERS AFFECTED: All users of DFSMSrmm.               *
****************************************************************
* PROBLEM DESCRIPTION: This ARAR provides toleration for z/OS V2R1 DFSMSrmm.*
* PROBLEM CONCLUSION:

**APAR OA35808** provides coexistence support to allow systems at z/OS V1R10 (HDZ1A10) and above to coexist in an RMMplex with a z/OS V2R1 (HDZ2210) level system. This APAR is required on the lower level systems to tolerate new support introduced in z/OS V2R1, or for backout of the new function.

OA35808 recognizes and supports the new data set attribute LASTREF, and a new volume attribute RETAINBY.

Coexistence support pertains an existing set of consistent LASTREF extra_days in formation for a multi-volume data set created or maintained in V2R1 whenever retention information for a file in that set is added or changed in a lower release. New single data set records will get extra_days 0 assigned. An extra_days value of 0 has the same effect as using NOLASTREF. When an existing multi volume data set is enlarged with MOD and a new data set record is added to the RMM CDS because of EOV then the extra_days value for LASTREF is taken from the existing previous data set record.

Coexistence support pertains an existing volume set of consistent RETAINBY information and consistent volume expiration date for a multi-volume set created or maintained in V2R1 whenever retention information for a file or a volume in that set is added or changed in a lower release. EXPDT equalization for volume sets depending on the RETAINBY attribute will be rolled down. New single volumes will get RETAINBY 0 assigned. This has the same effect as using RETAINBY(VOLUME). When an existing multi volume set is enlarged and a new volume record is added to the RMM CDS because of EOV then the RETAINBY is taken from the existing previous volume record.

**COMMENTS:**

NF - TOLERATION FOR Z/OS DFSMSRMM V2R1

There are two new messages in z/OS MVS System Messages, Vol 5 (EDG-GFS) SA22-7635

EDG3369I FILE EXPIRATION ATTRIBUTES ACCEPTED BUT IGNORED FOR THE VOLUME EXPIRATION BECAUSE VOLUME IS RETAINED BY FIRSTFILE
Explanation: You issued an ADDDATASET or a CHANGEDATASET subcommand with a RETPD, EXPDT, or LASTREF operand for a file which is not the first file of the volume set. RMM detects that the data set resides on a volume managed by the EXPDT retention method with the RETAINBY-FIRSTFILE attribute. The data set will get the new expiration date or LASTREF attribute assigned, but the effective expiration date of the volume is unchanged as long the first file of the volume set is not changed.

System Action: The subcommand ends with return code 4 reason code 278
Operator Response: n/a.

Application Programmer Response: Check the expiration date of the volume. If it is lower than the needed expiration date of the data set, you can enlarge the expiration date of the first file of the volume set.
Source: DFSMSrmm

Source: DFSMSrmm

Detecting Module: EDGTSO

EDG3372I CHANGE OF EXPIRATION DATE NOT ALLOWED FOR VOLUMES RETAINED BY FIRST FILE

Explanation: You issued a CHANGEVOLUME subcommand with a RETPD or an EXPDT operand for a volume or volume set defined with RETAINBY-FIRSTFILE attribute. This is not supported. System action: The subcommand ends with return code 12 reason code 284.

Operator Response: n/a.

Application Programmer Response: To change the expiration date of all volumes of the set you can issue a CHANGEDATASET subcommand for the first file of the volume set. Alternatively the RETAINBY attribute of the volume set can be changed to RETAINBY(VOLUME) or RETAINBY(SET).
Source: DFSMSrmm

Detecting Module: EDGTSO

MODULES/MACROS: EDGDOC EDGDOCS EDGEXTSY EDGMFIO EDGMTAB EDGTSO EDGSOCE EDGSOC EDGT SO EDGTSORT EDGXMLAP
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

SRLS:      SA22763516  SA22763518  SA22763519  SA22763521

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA36403 RLS**

Example B-2 contains the cover letter for APAR OA36403.

<table>
<thead>
<tr>
<th>Example B-2</th>
<th>OA36403</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>APAR Identifier</strong></td>
<td>OA36403</td>
</tr>
<tr>
<td><strong>Last Changed</strong></td>
<td>13/09/13</td>
</tr>
<tr>
<td><strong>NEW FUNCTION</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Symptom**	NF NF
**Severity**	3
**Status**	CLOSED
**Date Closed**	13/04/05
**Component**	5695DF122
**Duplicate of**	
**Reported Release**	B10
**Fixed Release**	999
**Component Name**	VSAM REC LEV SH
**Special Notice**	ATTENTION
**Current Target Date**	13/04/30
**Flags**	
**SCP**	
**Platform**	

**Status Detail:** APARCLOSE - APAR is being closed.

**PE PTF List:**

<table>
<thead>
<tr>
<th><strong>PTF List:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release A10</td>
</tr>
<tr>
<td>Release B10</td>
</tr>
<tr>
<td>Release C10</td>
</tr>
<tr>
<td>Release D10</td>
</tr>
</tbody>
</table>

**Parent APAR:**

**Child APAR list:** OA36409 OA36414 OA36422 OA36492 OA36916

**ERROR DESCRIPTION:**

New function.

**LOCAL FIX:**

**PROBLEM SUMMARY:**

****************************************************************
* USERS AFFECTED: ALL RLS users. *

***************************************************************************
* PROBLEM DESCRIPTION: RLS Toleration APAR. *
***************************************************************************

* RECOMMENDATION: *
***************************************************************************

RLS Toleration APAR.
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMents:

RLS Toleration APAR.

KEYWORDS: RLSPSP/K

MODULES/MACROS: IDAVCBLK IDAVCBL2 IDAVCMAT IDAVCUBL IDAVQCAT IDAVQMP IDAVQDRV IDAVQMDA IDAVQPCP IDAVQSET IDAVQSR IDAVQXST IDAVQUEC IDAVRND IDAVRND2 IDAVRSS IDAVRSSF IDAVUCAK IDAVXMAT IGWLNIO1 IGWLN16 IGWLPQYS IGWSDISP IGWSDIS2 IGWSGMSG IGWSRTE3 IGW8QEXR

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA36409 RLS

Example B-3 contains the cover letter for APAR OA36409.

Example B-3 OA36409

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA36409</th>
<th>Last Changed ....... 13/09/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW FUNCTION</td>
<td></td>
</tr>
</tbody>
</table>

Symptom ...... NF NF	Status ............ CLOSED UR1
Severity .................... 3	Date Closed .......... 13/04/05
Component ............ 5695DF119	Duplicate of .........
Reported Release ........... B10	Fixed Release .......... 999
Component Name COMM FUNCTION/R	Special Notice ATTENTION
Current Target Date ..13/04/30	Flags
SCP  ..................  NEW FUNCTION
Platform ............

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
Release A10  : UA68641 available 13/04/15 (  )
Release B10  : UA68642 available 13/04/15 (  )
Release C10  : UA68643 available 13/04/16 (F304)
Release D10  : UA68644 available 13/04/16 (F304)

Parent APAR:  OA36403
Child APAR list:

ERROR DESCRIPTION:
New function.

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: ALL RLS users. *
******************************************************************************
* PROBLEM DESCRIPTION: RLS Toleration APAR. *
******************************************************************************
* RECOMMENDATION: *
******************************************************************************
RLS Toleration APAR.
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
RLS Toleration APAR.

MODULES/MACROS:  INTLPRTS

SRLS:  NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA36414 DFSMSHsm RLS

Example B-4 contains the cover letter for APAR OA36414.

Example B-4   OA36414

APAR Identifier ...... OA36414      Last Changed ........ 13/05/03
NEw FUNCTION - DFSMShsm TOLERATION COEXISTENCE SUPPORT FOR RLS
USER CATALOGS

Symptom ...... NF NF                Status ........... CLOSED UR1
Severity ....................... 3     Date Closed .......... 13/04/08
Component .......... 5695DF170      Duplicate of ........
Reported Release ....... B10       Fixed Release ............ 999
Component Name DFSMShsm, ISMF       Special Notice
Current Target Date ..13/07/31      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release A10   : UA68663 available 13/04/15 (   )
Release B10   : UA68664 available 13/04/15 (   )
Release C10   : UA68665 available 13/04/16 (F304 )
Release D10   : UA68666 available 13/04/16 (F304 )

Parent APAR:    OA36403
Child APAR list:

ERROR DESCRIPTION:
DFSMShsm toleration coexistence support for RLS user catalogs.

LOCAL FIX:

PROBLEM SUMMARY:
*******************************************************************************
* USERS AFFECTED: Users with DFSMSHsm hosts on z/OS V2R1         *
* which share CDSs and ICF catalogs with      *
* hosts running at z/OS V1R13, V1R12, V1R11, *
* PROBLEM DESCRIPTION: Changes in the RLS ICF user catalog function in z/OS V2R1 require that z/OS V1R10 through V1R13 hosts be updated. This APAR provides toleration support for Record Level Sharing (RLS) user catalogs that are processed using DFSMSHsm. *

* RECOMMENDATION: *

Changes in the RLS ICF user catalog function in z/OS V2R1 require that z/OS V1R13 through V1R10 hosts be updated.

Additional keywords: ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:

DFSMShsm has been modified such that the RLS user catalog support for z/OS V2R1 can be detected and processed appropriately.

With the toleration/coexistence PTFs installed, DFSMShsm will invoke DFSMSdss to support backup and recover of SMS managed RLS-eligible user catalogs on z/OS pre-V2R1 systems.

See DFSMSdss OA36422 for more information.

MODULES/MACROS: ARCBUDS ARCKUCAT ARCCAT ARCNVFYA ARWCNT ARCWDEFC ARCWLS TC

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA36415 RLS

Example B-5 contains the cover letter for APAR OA36415.

Example B-5   OA36415

APAR Identifier ...... OA36415      Last Changed ........ 13/05/03
NEW FUNCTION TOLERATION

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED  UR1
Severity ................... 4      Date Closed ......... 13/04/10
Component ........... 5695DF122       Duplicate of ........
Reported Release ....... A10       Fixed Release .......... 999
Component Name VSAM REC LEV SH     Special Notice
Current Target Date ..13/09/30      Flags
SCP ...........
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
          Release A10   : UA68691 available 13/04/15 (  )
          Release B10   : UA68692 available 13/04/15 (  )
          Release C10   : UA68693 available 13/04/17 (F304 )
          Release D10   : UA68694 available 13/04/17 (F304 )

Parent APAR:
Child APAR list: OA36443

ERROR DESCRIPTION:
Toleration apar for new function

LOCAL FIX:
No local fix

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of z/OS HDZ1A10 and above.        *
****************************************************************

PROBLEM CONCLUSION:
TEMPORARY FIX:

COMMENTS:
New function APAR.
KEYWORDS: RLSPSP/K

MODULES/MACROS: IDAV192A IDAV192B IDAV192C IDAV192F IDAV193A
IDAV194A IDAV200B IDAV200T IDAV201T IDAV202T IDAV203T IDAV231T
IDAV232T IDAV233T IGWMOLD IGWMPROP IGWSDCD2 IGWSDRDM IGWSDRRS
IGWSDWRM IGWSDWRS IGWSXMSG

SRLS: SA22763714

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA36422 DSS RLS

Example B-6 contains the cover letter for APAR OA36422.

Example B-6 OA36422

APAR Identifier ...... OA36422      Last Changed ........ 13/06/26
NEW FUNCTION - DFSMSDSS SUPPORT OF RLS USER CATALOGS TOLERATION/
COEXISTENCE

Symptom ...... NF NF                Status ........... CLOSED UR1
Severity ................... 3      Date Closed ......... 13/04/05
Component ........ 5695DF175      Duplicate of ........
Reported Release ......... B10      Fixed Release ............ 999
Component Name DFSMSDSS, ISMF Special Notice ATTENTION
Current Target Date .. Flags
SCP ................... NEW FUNCTION
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release A10 : UA68646 available 13/04/15 ( )
Release B10 : UA68647 available 13/04/15 ( )
Release C10 : UA68648 available 13/05/03 (F304)
Release D10 : UA68649 available 13/05/03 (F304)

Parent APAR: OA36403
Child APAR list:

ERROR DESCRIPTION:
New function - Toleration/coexistence for DFSMSdss handling of
RLS user Catalogs.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users of DFSMSdss processing User            *
*                 Catalogs.                                    *
****************************************************************
* PROBLEM DESCRIPTION: This APAR provides toleration support   *
*                      for Record Level Sharing (RLS)            *
*                      User Catalogs (BCS) that are            *
*                      processed using DFSMSdss commands.      *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Users of DFSMSdss attempting to process a User h
in any release prior to zOS V2.1 that is opened in RLS
mode will be failed on lower level systems. Errors that
could be encountered while attempting to process a User
Catalog that is opened in RLS mode in a prior release are
the following:
IEC161I 006-0122
IEC331I 4-86
ADR724E
ADR380E

If a User Catalog is not open in RLS mode on zOS V2.1,
DFSMSdss will successfully process the User Catalog on a
lower level system if no errors are encountered.

Documentation changes for OA36422:
The following new reason code Explanation and Application Programmer Response will be added in the zOS V1.13 MVS System Messages, Vol 1 (ABA-AOM) under existing message ADR380E.

Explanation: 87 The data set is a Catalog open for use with RLS access.

Application Programmer Response: Process the RLS Catalog using z/OS V2R1 or higher.

MODULES/MACROS: ADRCATLG ADRDDFLT ADRDTDSC ADRFMSCT ADRKVDSN ADRTDDS ADRTDLOG

SRLS: SA22763100

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER: corrected APAR number in responder text.

APAR OA36443 RLS related

Example B-7 contains the cover letter for APAR OA36443.

Example B-7 OA36443

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA36443</th>
<th>Last Changed ........ 13/09/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW FUNCTION TOLERATION</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom ...... NF PERFM</th>
<th>Status .......... CLOSED UR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity ............... 4</td>
<td>Date Closed ........ 13/04/10</td>
</tr>
<tr>
<td>Component ............ 5695DF106</td>
<td>Duplicate of ........</td>
</tr>
<tr>
<td>Reported Release ........ A10</td>
<td>Fixed Release ............ 999</td>
</tr>
<tr>
<td>Component Name DFSMS VSAM</td>
<td>Special Notice</td>
</tr>
<tr>
<td>Current Target Date ..13/06/30</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP ................</td>
<td></td>
</tr>
<tr>
<td>Platform .............</td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
<table>
<thead>
<tr>
<th>Release A10 : UA68691 available 13/04/15 ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release B10 : UA68692 available 13/04/15 ( )</td>
</tr>
<tr>
<td>Release C10 : UA68693 available 13/04/17 (F304)</td>
</tr>
</tbody>
</table>
**Error Description:**
Tolerance for new function

**Local Fix:**
No local fix

**Problem Summary:**
****************************************************************
* USERS AFFECTED: All users of z/OS HDZ1A10 and above.  *
****************************************************************
* PROBLEM DESCRIPTION: New function apar.                       *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
New function APAR.
ZOS0201C/K

**Problem Conclusion:**

**Temporary Fix:**

**Comments:**
New function tolerance.

**Modules/Macros:**
IDA0A05B IDA0192A IDA0192D IDA0192G IDA0200B
IDA0200T IDA0231B IDA0557E

**SRLS:**
NONE

**Rtn Codes:**

**Circumvention:**

**Message to Submitter:**
APAR OA36492 RLS and catalog

Example B-8 contains the cover letter for APAR OA36492.

Note: PTF fixes are in error. See APAR OA42551 and APAR OA42541.

Example B-8  OA36492

APAR Identifier ...... OA36492      Last Changed ........ 13/08/02
NEW FUNCTION TOLERATION APAR

Symptom ...... NF NF                Status ........... CLOSED UR1
Severity ................. 3           Date Closed ......... 13/04/05
Component ........... 5695DF105      Duplicate of .........
Reported Release ........ A10        Fixed Release .......... 999
Component Name ICF CATALOG & I      Special Notice
Current Target Date ..      Flags
SCP .................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10 : UA68641 available 13/04/15 ( )
Release B10 : UA68642 available 13/04/15 ( )
Release C10 : UA68643 available 13/04/16 (F304)
Release D10 : UA68644 available 13/04/16 (F304)

Parent APAR:    OA36403
Child APAR list: OA41517 OA42462

ERROR DESCRIPTION:
New function.

CATKEYS: CAT2012 CATRLS CATNEW

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: New Function                                 *
****************************************************************
* PROBLEM DESCRIPTION: TOLERATION SUPPORT for RLS for Catalog. *
* PROBLEM DESCRIPTION: TOLEATION SUPPORT for RLS for Catalog. *
* ZOS0201C/K                                                   *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************

Note:
PTF fixes are in error. See APAR OA42551 and APAR OA42541.
TOLERATION SUPPORT for RLS for Catalog function.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
None

**** PE13/06/14 FIX IN ERROR. SEE APAR OA42551 FOR DESCRIPTION
**** PE13/06/14 FIX IN ERROR. SEE APAR OA42541 FOR DESCRIPTION

MODULES/MACROS:   IGG0CLAH IGG0CLA9 IGG0CLC1 IGG0CLFA IGG0CLFB
                  IGG0CLFH IGG0CLFK IGG0CLFN IGG0CLFO IGG0CLKO IGG0CLKV

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA36536 PDSE member size

Example B-9 contains the cover letter for APAR OA36536.

Example B-9   OA36536

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA36536</th>
<th>Last Changed ....... 13/05/03</th>
</tr>
</thead>
</table>

Symptom ...... NF NEWFUNCTION | Status ............ CLOSED  UR1
Severity ...................... 2 | Date Closed ........... 13/04/11
Component ............ 5695DF102 | Duplicate of ........
Reported Release ........ A10 | Fixed Release .......... 999
Component Name BASE ACCESS MET | Special Notice
Current Target Date ..13/05/15 | Flags
SCP .........................
Platform .....................

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

Release A10 : UA68751 available 13/04/15 (     )
Release B10 : UA68752 available 13/04/15 (     )
Release C10 : UA68753 available 13/04/16 (F304 )
Release D10 : UA68754 available 13/04/16 (F304 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
COEXISTANCE APAR for PDSE.

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: All users of PDSEs that have z/OS release 2.1 installed. *
******************************************************************************
* PROBLEM DESCRIPTION: Compatibility for PDSE. *
******************************************************************************
* RECOMMENDATION: Compatibility PTF for PDSE z/OS release 2.1 *
******************************************************************************

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Compatibility/coexistence PTF for PDSE member size limitation.
ZOS0201C/K

MODULES/MACROS: IGG019BK

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
Example B-10 contains the cover letter for APAR OA36576.

**Note:** PTFs for this APAR are in error. See APAR OA42529.

---

**Example B-10**  
OA36576

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA36576</th>
<th>Last Changed ........ 13/08/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW FUNCTION: Coexistence for Storage Tiers - DFSMShsm Support.</td>
<td></td>
</tr>
</tbody>
</table>

**Symptom ...... NF NEW FUNCTION**  
**Severity ............... 4**  
**Component ........ 5695DF170**  
**Reported Release .......... A10**  
**Component Name DFSMShsm, ISMF**  
**Current Target Date ..13/05/31**  
**SCP .................**  
**Platform .............. XSYSTEM**

**Status Detail:** SHIPMENT - Packaged solution is available for shipment.

**PE PTF List:**

<table>
<thead>
<tr>
<th>PTF List:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release A10 : UA68714 available 13/04/15 ( )</td>
</tr>
<tr>
<td>Release B10 : UA68715 available 13/04/15 ( )</td>
</tr>
<tr>
<td>Release C10 : UA68716 available 13/04/17 (F304 )</td>
</tr>
<tr>
<td>Release D10 : UA68717 available 13/04/17 (F304 )</td>
</tr>
</tbody>
</table>

**Parent APAR:**  
**Child APAR list:** OA37582

**ERROR DESCRIPTION:**

**NEW FUNCTION**

**LOCAL FIX:**

**NEW FUNCTION**

**PROBLEM SUMMARY:**

* USERS AFFECTED: All users of an HSMplex with V2R1 and lower level DFSMShsm releases. *
* PROBLEM DESCRIPTION: z/OS V1R13, V1R12, V1R11, V1R10 levels of DFSMShsm need to tolerate *
  * the DSR, MCD and VSR records expanded due to the class transition function *

* Note: PTFs for this APAR are in error. See APAR OA42529.*
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

* introduced in V2R1 DFSMSshm release. *

****************************************************************
* RECOMMENDATION:                                              *
****************************************************************

z/OS V1R13, V1R12, V1R11 and V1R10 levels of DFSMSshm need to
tolerate the DSR, MCD and VSR records expanded due to the class
transition function introduced in V2R1 DFSMSshm release.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:

With the new class transition function there is a new type of
FSR record. ARCDSR and ARCVSR records derived from ARCFSR
records are expanded to contain the new function information.
To avoid record truncation on lower systems, these records
must be also expanded and all affected modules recompiled.
Work areas using these fields must be expanded as well.
To tolerate the expansion of the MCD record, all affected
modules must also be recompiled.

Recalls.
Recalls will be processed normally if no Last Successful Class
Transition Date (LSCTD) exists or the data set Management Class
does not contain Class Transition parameters. Recalls will be
directed to a V2.1 host using the Common Recall Queue (CRQ) if
a CRQ V2R1 host available in the Sysplex and if a LSCTD
exists or the data set Management Class does not contain Class
Transition parameters. If there is no V2.1 host or CRQ is not
established and a data set has gone through a Class Transition
rules, then the recalls will fail. The failing message
(ARC1179I Reason=7(new)) will be issued to state that the data
set should be recalled on a V2.1 system where Class
Transition rules can be followed.
DFSMShsm will not issue a warning message for RECOVER, FRRECOV
and ARECOVERs when a LSCTD is lost because backup/recover
processing does not lend itself to transitions as space
management does.

If a user wants to recall a data set on the pre-V2.1 system then
the new MCVTF_SKIP_CLTR flag should be patched ON
(PATCH .MCVT.+286 BITS(...1....) ). The warning ARCO784I
message 'LAST SUCCESSFUL CLASS TRANSITION DATA FOR DATA SET
dname NOT RETAINED DURING THE CLASS TRANSITION' will be issued
for the data sets recalled on pre-V2.1 system for which LSCTD
exists.
The default value of MCVTF_SKIP_CLTR flag is OFF.

++HOLD(DOC)

V1R10, V1R11, V1R12 and V1R13 MVS System Messages Vol 2(ARC-ASA)
SRL: SA22763218, SA22763219, SA22763220, SA22763221
1. A new reason code RSN07 will be added for RC79 for the ARC1179I message:

Explanation:
7 - Class Transition rules are not followed for recall of this data set.

Application Programmer Response:
Use DFSMShsm V2.1 or higher to recall this data set.

2. ARC0784I message will be extended:

ARC0784I {EXTENDED ATTRIBUTES | LAST SUCCESSFUL CLASS TRANSITION DATE} FOR DATA SET dsname {WERE | WAS} NOT RETAINED DURING THE RECALL | RECOVER | ARECOVER

Explanation:
The data set was recalled from a migration copy, but Class Transition rules are not followed for the recall of this data set.

z/OS V1R13 DFSMShsm Data Areas
SRL:GC521083XX

MCDMigration Control Data Set Data Set Record
(Table 84) will be modified:

456(1C8) 392(188) FIXED 4 MCDCSZ_HO High order for MCDSZ.
460(1CC) 396(18C) FIXED 15 MCD_STGR_LENGTH Fixed Storage group name length
462(1CE) 398(18E) CHAR 30 MCD_STGR_NAME Storage group name
492(1EC) 428(1AC) CHAR 4 MCD_CLTR_DATE CHAR The last class transition date or zero
496(1F0) 432(1B0) CHAR 24
520(208) 456(1C8) CHARACTER MCDEND End of record.

++HOLD(AO)
SPECIAL CONDITIONS:
AO: MSG=ARC1179I CHANGE=New RSN 07
AO: MSG=ARC0784I NEW=TEXT-INSERT
AO: ENDAO COMMENT='***End of the list of changes that could affect your automated operations. The DOC text has details of the changes.***'

++HOLD MTS
This PTF will not be fully effective on the system it is being applied until the PTF(s) are applied to all systems in the
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

sysplex.

New release        Keyword
z/OS V2R1          ZOS0201C/K
**** PE13/06/13 FIX IN ERROR. SEE APAR OA42529 FOR DESCRIPTION

MODULES/MACROS: ARCASTAI ARCAUDIT ARCAUDMS ARCAXREP ARCAZWC
ARCCP ARCCPOST ARCCPRTN ARCCSTAI ARCCTL ARCCVSX ARCDCOLL
ARCDSTAI ARCESTAI ARCFCRE ARCDEDEL ARCFSTAI ARCGDSRV ARCGSTAI
ARCGVDS ARCISTAT ARCJRELPE ARCJRPLT ARCJRSEL ARCJSTAE ARCJSTAI
ARCKBLDC ARCKDSR ARCKDELA ARCKMTRTA ARCKMTRMD ARCKOSDR APAR OA36916 RLS
ARKWRT ARKWRIT ARKMSDMSV ARKMSDSUV ARKMLCLN ARKMRECN ARKMSCNL
ARKMSG ARCMSTAI ARCMVCLN ARCMVDS ARCNCDSW ARCNDELR ARCMNVR1
ARCMNVR2 ARCNTR1 ARCNTRK ARCNTRDS1 ARCNVRF1 ARCNVRF1
ARKWRT ARCPRLG ARCPNLQ ARCPNPQ ARCPUEIM ARCPDVDS ARCPRT
ARCSTR ARCPVDS ARCSMINT ARCUDATA ARCTU1L ARCWMSM ARCXSTAI
ARCYSTAI ARCSMGS ARCRZREAD ARCRZRNXT ARCRZUPDT

SRLS:        SA2276321B GC521083XX SA22763219 SA22763220
             SA22763221

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA36916 RLS

Example B-11 contains the cover letter for APAR OA36916.

Example B-11   OA36916

<table>
<thead>
<tr>
<th>APAR Identifier ......</th>
<th>OA36916</th>
<th>Last Changed ........</th>
<th>13/09/13</th>
</tr>
</thead>
</table>

Symptom ...... NF NF                         Status ............... CLOSED UR1
Severity ............... 3                    Date Closed ........ 13/04/05
Component ............ 5695DF106              Duplicate of ........
Reported Release ....... A10                 Fixed Release .......... 999
Component Name DFSMS VSAM               Special Notice
Current Target Date ..13/04/30                  Flags
SCP ....................
Platform ................

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:
PTF List:
Release A10   : UA68641 available 13/04/15 (     )
Release B10   : UA68642 available 13/04/15 (     )
Release C10   : UA68643 available 13/04/16 (F304 )
Release D10   : UA68644 available 13/04/16 (F304 )

Parent APAR:    OA36403
Child APAR list:

ERROR DESCRIPTION:
New function.

LOCAL FIX:

PROBLEM SUMMARY:
********************************************************************************
* USERS AFFECTED: ALL RLS users.  *
********************************************************************************
* PROBLEM DESCRIPTION: RLS Toleration APAR.  *
********************************************************************************
* RECOMMENDATION: *
********************************************************************************

RLS Toleration APAR.
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:

RLS Toleration APAR.

MODULES/MACROS:   IDA0192A IDA0192C IDA0192X IDA0200B IDA0200T

SRLS:  NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA37336 PDSE in GDG DSS support

Example B-12 contains the cover letter for APAR OA37336.

Example B-12  OA37336

APAR Identifier ...... OA37336  Last Changed ...... 13/05/03
NEW FUNCTION - DFSMSDSS TOLERATION/COEXISTENCE OF PDSE DATA SETS
DEFINED AS A GENERATION DATA SET ( GDS ).

Symptom ...... NF NEWFUNCTION  Status ........... CLOSED UR1
Severity ................... 3  Date Closed ........... 13/04/10
Component .......... 5695DF175  Duplicate of ........
Reported Release ........ A10  Fixed Release ........... 999
Component Name DFSMSDSS, ISMF  Special Notice ATTENTION
Current Target Date ..  Flags
SCP ................... NEW FUNCTION
Platform .............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List: Release A10 : UA68720 available 13/04/15 ( )
           Release B10 : UA68721 available 13/04/15 ( )
           Release C10 : UA68722 available 13/04/16 (F304 )
           Release D10 : UA68723 available 13/04/16 (F304 )

Parent APAR:
Child APAR list: OA37349

ERROR DESCRIPTION:
TOLERATION/COEXISTENCE for DFSMSdss handling of PDSE
data sets defined as a Generation Data Set ( GDS )

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users of DFSMSdss COPY, DUMP, RESTORE and CONVERT.
******************************************************************************
* PROBLEM DESCRIPTION: This APAR provides toleration support for PDSE data sets defined as a GDS (Generation Data Set ) that are processed using DFSMSdss commands.
******************************************************************************
* RECOMMENDATION: 

Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12  325
PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
ZOS0201C/K

Users of DFSMSdss attempting to process an SMS-managed PDSE data set defined as a GDS in any release prior to z/OS V2.1 will be failed.

Documentation changes for OW37336:

The following new reason code explanation will be added to the zOS V1.13 MVS System Messages, Vol 1 (ABA-AOM) under existing message ADR2B5E:

Explanation: 15 The PDSE data set is defined as a generation data set (GDS).

The following new reason code explanation will be added to the zOS V1.13 MVS System Messages, Vol 1 (ABA-AOM) under existing message ADR778E:

Explanation: 20 The PDSE data set is defined as a GDS.

MODULES/MACROS:  ADREDFDLT ADRDTDSC ADRFDSDU ADRFDSRL ADRFDSRS ADRFRLBO ADRKVDSF ADRPCNVS ADRPPRNV ADRPRED

SRLS:  SA22763100

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA37349 PDSE in GDG DFSMShsm support**

Example B-13 contains the cover letter for APAR OA37349.

*Example B-13  OA37349*

APAR Identifier ...... OA37349  Last Changed ....... 13/05/03
NEW FUNCTION - DFSMSHSM TOLERATION COEXISTENCE FOR PDSE DATA
SETS DEFINED AS GENERATION DATA SETS (GDS)

Symptom ...... NF NEWFUNCTION       Status .......... CLOSED UR1
Severity ................... 4      Date Closed ......... 13/04/10
Component ............... 5695DF170  Duplicate of .........
Reported Release ....... A10      Fixed Release ............ 999
Component Name DFSMShsm, ISMF Special Notice
Current Target Date ..13/07/31 Flags
SCP ...................
Platform ...........

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10 : UA68728 available 13/04/15 ( )
Release B10 : UA68729 available 13/04/15 ( )
Release C10 : UA68730 available 13/04/17 (F304 )
Release D10 : UA68731 available 13/04/17 (F304 )

Parent APAR: OA37336
Child APAR list:

ERROR DESCRIPTION:
DFSMShsm toleration / coexistence support for PDSE generation data sets (GDS).

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users with DFSMShsm hosts on z/OS V2R1*
* which share CDSs and process PDSEs that are *
* generation data sets on hosts running at *
* z/OS V1R13, V1R12, V1R11, and/or V1R10 *
****************************************************************
*sin PROBLEM DESCRIPTION: The generation data groups (GDGs)
* support for PDSE generation data sets *
* (GDSs) in z/OS V2R1 requires z/OS *
* V1R10 through V1R13 hosts to be *
* updated. *
****************************************************************
* RECOMMENDATION: *
****************************************************************

Changes in the GDG support for PDSE in z/OS V2R1 require that z/OS V1R10 through V1R13 hosts to be updated.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
DFSMShsm has been modified so that the new PDSE generation data sets can be detected and handled appropriately.

With the toleration/coexistence PTF installed, SMS managed PDSE generation data sets created by z/OS V2R1 hosts will be failed by DFSMShsm or DFSMSdss on z/OS pre-V2R1 hosts with an existing DFSMShsm message or the new DFSMSdss MSGADR778E RC20.

MSGARC1001I dsn MIGRATE FAILED, RC=0087, REAS=0006
MSGARC1287I A DISCREPANCY WAS FOUND IN THE DATA SET VTOC ENTRY

MSGARC1001I dsn BACKDS FAILED, RC=0087, REAS=0006
MSGARC1387I A DISCREPANCY WAS FOUND IN THE DATA SET VTOC ENTRY

MSGARC6172E DATA SET dsn IS NOT SUPPORTED IN AN ALLOCATE LIST FOR AGGREGATE GROUP group_name

MSGADR778E DATA SET dsn WAS NOT SELECTED BECAUSE THE DATA SET TYPE IS NOT SUPPORTED IN THIS RELEASE, 20

The following publication updates will be made:
z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632
SRL: SA22763218, SA22763219, SA22763220, SA22763221
Update the Application Programmer Response section and add the following to the examples of unsupported situations for ABACKUP:
- datasetname represents an SMS-managed PDSE generation data set. Use DFSMShsm V2R1 or higher release to process the data set.

Add following text to the ARECOVER section:
Ensure the data sets specified in the ALLOCATE list are acceptable for processing. Some examples of unsupported data sets are:
- datasetname represents an SMS-managed PDSE generation data set. Use DFSMShsm V2R1 or higher release to process the data set.

MODULES/MACROS:   ARCKALLC ARCKBLDC ARCMDSUV ARCNOTR1

SRLS: SA22763218 SA22763219 SA22763220 SA22763221
RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA37582 DSS support of DFSMSshm Storage Tier**

Example B-14 contains the cover letter for APAR OA37582.

**Example B-14 OA37582**

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA37582</th>
<th>Last Changed ........ 13/05/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW FUNCTION - DFSMSDSS SUPPORT OF LAST CLASS TRANSITION DATE</td>
<td></td>
</tr>
<tr>
<td>TOLERATION/COEXISTENCE</td>
<td></td>
</tr>
<tr>
<td>Symptom ...... NF NEW FUNCTION</td>
<td>Status ........... CLOSED UR1</td>
</tr>
<tr>
<td>Severity ................... 4</td>
<td>Date Closed ........ 13/04/10</td>
</tr>
<tr>
<td>Component ........... 5695DF175</td>
<td>Duplicate of ..........</td>
</tr>
<tr>
<td>Reported Release .......... A10</td>
<td>Fixed Release ........... 999</td>
</tr>
<tr>
<td>Component Name DFSMSDSS, ISMF</td>
<td>Special Notice ATTENTION</td>
</tr>
<tr>
<td>Current Target Date ..</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP ...................</td>
<td>NEW FUNCTION</td>
</tr>
<tr>
<td>Platform ............</td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

<table>
<thead>
<tr>
<th>PTF List:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release A10 : UA68710 available 13/04/15 ( )</td>
</tr>
<tr>
<td>Release B10 : UA68711 available 13/04/15 ( )</td>
</tr>
<tr>
<td>Release C10 : UA68712 available 13/04/16 (F304 )</td>
</tr>
<tr>
<td>Release D10 : UA68713 available 13/04/16 (F304 )</td>
</tr>
</tbody>
</table>

Parent APAR: OA36576

Child APAR list:

**ERROR DESCRIPTION:**

NEW FUNCTION - Toleration/Coexistence for DFSMSdss handling of DFSMSshm Storage Tiers last class transition date

**LOCAL FIX:**

NEW FUNCTION

**PROBLEM SUMMARY:**
* USERS AFFECTED: All users of DFSMSdss V1R13, V1R12, V1R11 and V1R10 attempting to COPY or RESTORE a data set with a last class transition date from a DFSMShsm storage tier process.

* PROBLEM DESCRIPTION: This APAR provides toleration support when attempting to restore or copy a data set that has a last class transition date from a DFSMShsm storage tier process.

* RECOMMENDATION:

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
z/OS DFSMSdss V1R13, V1R12, V1R11 and V1R10 are modified to restore or copy data that has a last class transition date from a DFSMShsm storage tier process.

The last successful class transition date will be maintained the same except for preserving the date from the source. For these cases, message ADR556W will be issued with reason code of 3 to indicate that the class transition date was lost.

For preallocated data sets that are replaced, the date will not be modified. For preallocated data sets that are scratched and re-allocated, the date will be lost and ADR556W is issued.

When a data set is not replacing a preallocated target, but is being renamed or the management class is changing, then the date is cleared and ADR556W is not issued.

When a data set is not replacing a preallocated target, not being renamed and the management class didn't change, then the message ADR556W is issued indicating the date was lost.

ADR556W is an existing message, but reason code 3 is new. Also, the word "EXTENDED" has been removed from the message text.

ADR556W (ttt)-,mmm(yy), ATTRIBUTES FOR DATA SET dsname WERE NOT RETAINED DURING {COPY | RESTORE},rsn

Explanation: The data set was copied or restored but some extended attributes were lost for the following reasons (rsn):
1 Vendor attributes from the F9 DSCB of the dumped data set were not retained for the target data set because the volume on which it was placed did not support F8/F9 DSCBs.
2 Vendor attributes from the F9 DSCB of the dumped or copied data set were not retained for the target data set due to problems updating the target's F9 DSCB.
3 The last successful class transition date of the dumped or copied data set was not retained for the target data set because the release of z/OS on which it was processed did not support it.

System action: None.
Application Programmer Response:
1. If the extended attributes are desired, rerun the COPY or RESTORE and specify target volumes or an SMS group that supports F8/F9 DSCBs.
2. An error occurred while reading or writing an F9 DSCB. Retry the restore or copy for the data set.
3. If the last successful class transition date is desired, rerun the COPY or RESTORE on a release that supports it.

MODULES/MACROS: ADRCNVSM ADRCVSAM ADRMSGS ADRPCNVX ADRPCVSX
ADRSB105 ADRTDDS ADRTDLOG ADRTDPNV ADRXVSAM

SRLS: SA22763100

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA38185 EXCP support for zHPF on z/OS V1.12 and V1.13

Example B-15 contains the cover letter for APAR OA38185.

Example B-15  OA38185

APAR Identifier ...... OA38185       Last Changed ....... 13/10/07
NEW FUNCTION APAR - EXCP VIRTUAL SUPPORT FOR ZHPF

Symptom ...... NF FUNCTION       Status .......... CLOSED  UR1
Severity ............... 3    Date Closed ........ 12/10/04
Component ............. 5752SC1C3    Duplicate of .........
Reported Release ........ 770    Fixed Release ............ 999
Component Name IOS     Special Notice   ATTENTION
Current Target Date ..   Flags
SCP ..................
Platform .............

NEW FUNCTION
Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
 Release 770 : UA66846 available 12/10/17 (F210 )
 Release 780 : UA66847 available 12/10/17 (F210 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
NEW FUNCTION APAR

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users at HBB770 and above.                 *
P* PROBLEM DESCRIPTION: New function APAR to further enhance    *
P*                      the High Performance FICON for System z *
P*                      (zHPF) facility.                        *
P* (D/T2817, D/T2818, D/T2107)                                 *
P****************************************************************

* RECOMMENDATION:                                              *
****************************************************************

New function APAR to further enhance the High Performance FICON for System z (zHPF) facility.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
This APAR provides EXCP virtual support for zHPF.

The following Publication updates will be made:

. z/OS MVS System Codes (SA22-7626)

ABEND Code 800

Explanation: During processing of an I/O request, execute channel program (EXCP) processing encountered an error.
...
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

Code Explanation

01 An error occurred during channel program validity check processing. Either an access protection error or a page fix error occurred when:

* The EXCP IDAW routine tried to access the IDAW using an incorrect storage protection key.

* The EXCP CCW validity check routine tried to access the virtual channel program using an incorrect storage protection key.

* The CCW channel program attempted to execute a restricted operation.

* The EXCP zHPF validity check routine tried to access the virtual channel program using an incorrect storage protection key.

* An error occurred during page-fix or page-unfix processing. A page-fix error can occur if the EXCP processor tries to fix pages that are not assigned to the caller's address space identifier (ASID).

Note: An access protection or page-fix error can occur when there is an error in the channel program. Correct the channel program.

02 System error. Search problem reporting databases for a fix for the problem. If no fix exists, contact the IBM Support Center.

03 An error occurred during page-fix processing for a data extent block (DEB) for an EXCP V=R request.

...  

09 The IOBE specified that this is a zHPF channel program request, but zHPF channel programs are only supported for EXCPVR and EXCP virtual requests for non-VIO data sets. They are not supported for VIO data sets or EXCP V=R requests.

...  

0D A zHPF channel program for an EXCP virtual request specified a TCCB that crosses a page boundary.

0E The number of virtual TIDAWs in a zHPF channel program has exceeded the maximum allowed value (65,536). This can occur due to an error in the channel program. For example:
* A virtual TIDAW in the list is linked to a previous virtual TIDAW causing a loop.

* An incorrect TIDAL virtual storage address is specified in the TCW.

* The last virtual TIDAW in the list does not have the last TIDAW in the list flag turned on.

... 

MVS Data Areas Volume 2 (GA32-0854)

TCCW Translator Fix List(IECDFIX)

Update to FIX Information section:

FIX Map:

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>TYPE</th>
<th>LENGTH</th>
<th>NAME (DIM)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>STRUCTURE</td>
<td>0</td>
<td>FIX</td>
<td>Fix block chain pointer</td>
</tr>
<tr>
<td>(0)</td>
<td>ADDRESS</td>
<td>4</td>
<td>FIXCHAIN</td>
<td>Fix block chain pointer</td>
</tr>
<tr>
<td>(4)</td>
<td>ADDRESS</td>
<td>1</td>
<td>FIXInUse</td>
<td>Number of fix list entries in use - used only by the zHPF translator</td>
</tr>
<tr>
<td>(5)</td>
<td>CHARACTER</td>
<td>3</td>
<td>*</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

... (8) ADDRESS 4 FIXLSTST Start address of area to be fixed
  1... .... FIXCONT "X'80'" Fix list continuation flag
  (C) ADDRESS 4 FIXLSTEN End address of area to be fixed
  1... .... LASTENT "X'80'" Last fix entry flag
  1... .... FIXLast "X'80'" Last fix entry flag

... 

FIX List Equates

(C) X'8' 0 FIXHL "FIXLSTST-FIX" Header length
(C) X'8' 0 FIXEL "FIXLSTEN+L'FIXLSTEN-FIXLSTST" Fix list
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

<table>
<thead>
<tr>
<th>(C) X'13'</th>
<th>0</th>
<th>FIXNE</th>
<th>entry length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;19&quot; Number of fix list entries- 160 byte block caller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C) X'1E'</th>
<th>0</th>
<th>FIXNEL</th>
<th>entry length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;30&quot; Number of fix list entries- 248 byte block caller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C) X'F8'</th>
<th>0</th>
<th>FIXBL</th>
<th>Size of fix list block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FIXHL+FIXEL*FIXNEL</td>
</tr>
</tbody>
</table>

MVS Data Areas Volume 3 (GA32-0855)

zHPF Channel Program Information Area (IOSDZHPF)

Update to IOSDZHPF Information section:

IOSDZHPF Map:

---

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>HEX</th>
<th>TYPE</th>
<th>LENGTH</th>
<th>NAME (DIM)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>STRUCTURE</td>
<td>32</td>
<td>ZHPF_INFO</td>
<td>zHPF Channel Program Information Area</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ZHPF_VERSION</td>
<td>Version number</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>UNSIGNED</td>
<td>1</td>
<td>ZHPF_FLAG1</td>
<td>Capabilities flag 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZHPF_BIDI</td>
<td>bidirectional data transfer Indicates that all of the online paths for the device support bidirectional data for zHPF I/O requests.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZHPF_EXCPVR</td>
<td>zHPF is supported for EXCPVPR requests</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZHPF_Incorrect_Len</td>
<td>The incorrect length facility is supported by the processor</td>
<td></td>
</tr>
<tr>
<td>...1</td>
<td>....</td>
<td>1</td>
<td>ZHPF_EXCP</td>
<td>zHPF is supported for EXCP virtual requests</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td>1111</td>
<td>*</td>
<td>*</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>CHARACTER</td>
<td>2</td>
<td>*</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>UNSIGNED</td>
<td>4</td>
<td>ZHPF_MAXXFERSIZE</td>
<td>Maximum amount of data (in bytes) that can be transferred in a single Transport Control Area (TCA)</td>
<td></td>
</tr>
</tbody>
</table>

...
**Update to XCPS Information section:**

**XCPS Map:**

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>HEX</th>
<th>TYPE</th>
<th>LENGTH</th>
<th>NAME (DIM)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td></td>
<td>STRUCTURE</td>
<td>0</td>
<td>CPS</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td></td>
<td>CHARACTER</td>
<td>4</td>
<td>CPSCPS</td>
<td>CPS acronym</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>BITSTRING</td>
<td>1</td>
<td>CPSENTRY</td>
<td>Entry reason byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td>CHARACTER</td>
<td>3</td>
<td>CPSRESV1</td>
<td>Reserved</td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td>ADDRESS</td>
<td>4</td>
<td>CPSRQE</td>
<td>EXCP RQE address</td>
</tr>
<tr>
<td>(C)</td>
<td></td>
<td>ADDRESS</td>
<td>4</td>
<td>CPSIOSB</td>
<td>EXCP IOSB address</td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td>ADDRESS</td>
<td>4</td>
<td>CPSCPX</td>
<td>CPS extension address</td>
</tr>
<tr>
<td>(14)</td>
<td></td>
<td>CHARACTER</td>
<td>12</td>
<td>CPSRESV2</td>
<td>Reserved</td>
</tr>
<tr>
<td>(20)</td>
<td></td>
<td>CHARACTER</td>
<td>216</td>
<td>CPSWA</td>
<td>Work area for use by the channel program scan exit, includes prefix CCWs, set to 0's on initial entry</td>
</tr>
<tr>
<td>(20)</td>
<td></td>
<td>CHARACTER</td>
<td>104</td>
<td>CPS_THPFRegs</td>
<td>IECVTHPF register save area during zHPF channel program translation</td>
</tr>
<tr>
<td>(20)</td>
<td></td>
<td>X'F8'</td>
<td>0</td>
<td>CPSLEN</td>
<td>&quot;**&quot; CPS block length</td>
</tr>
</tbody>
</table>

**KEYWORDS:** ZHPF/K

**MODULES/MACROS:** IECDFIX IECDXCPS IECVEXCP IECVEXFR IECVEXPR IECVPBLK IECVTHPF IECVXCCW IOSDIOBE IOSDZHPF IOSVZHPF

**SRLS:** SA22762600 GA32085400 GA32085500 GA32085800

**RTN CODES:**

**CIRCUMVENTION:**

**MESSAGE TO SUBMITTER:**
APAR OA39530 PDSE V2

Example B-16 contains the cover letter for APAR OA39530.

Example B-16   OA39530

APAR Identifier ...... OA39530      Last Changed ........ 13/06/03
COEXISTANCE APAR FOR PDSE

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED  UR1
Severity ................... 2      Date Closed ......... 13/04/17
Component .......... 5695DF115      Duplicate of ........
Reported Release ........ B10      Fixed Release ............ 999
Component Name EXTENDED DATA S  Special Notice
Current Target Date ..13/05/31      Flags
SCP ...................
Platform ............

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
Release C10 : UA68849 available 13/05/07 (F305 )
Release D10 : UA68850 available 13/05/07 (F305 )

Parent APAR:
Child APAR list: OA41790 OA41864

ERROR DESCRIPTION:
Coexistence Apar for PDSE

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All PDSE users that have the ability to      *
* create PDSE V2 (z/OS V2R1) and want to be able to access in lower releases (R12 and R13).
****************************************************************

PROBLEM DESCRIPTION: This APAR will allow to process PDSE V2 datasets in Releases 12 and 13. PDSE V2 datasets are created in V2R1 and above releases.

RECOMMENDATION:
Modify PDSE code to allow the process of PDSE V2 datasets in R12 and R13.
PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Allow the process of PDSE V2 datasets in lower releases (R12 and R13)
ZOS0201C/K - coexistence keyword for z/OS v2.1

MODULES/MACROS:   IGWAMAMT IGWAMCV0 IGWAMPO IGWBIRP1 IGWBIPW1
IGWBLLP1 IGWBVPI1 IGWDAASU IGWDACN2 IGWDAICR IGWDAD01
IGWDAM00 IGWDADV0 IGWDHV00 IGWDDCR2 IGWDDC03 IGWDDOSF
IGWDLCLS IGWDFAS IGWDLSAS IGWDLSA IGWDLNAS
IGWDLRFL IGWDBRSP IGWDRRDR IGWDRRDR IGWDRRRX IGWDRSSF
IGWDRVPR IGWDRSNA IGWDSSTX IGWICOMM IGWICPSC IGWICPSG IGWICPSP
IGWICREM IGWIFCMM IGWIFMLT IGWIFMLT IGWIIUW IGWIIUW
IGWINEWT IGWINITM IGWIREAD IGWISRCM IGWISTRE IGWIVRJN IGWIVRJ2
IGWIVRSC IGWIVRSP IGWIOIP3

SRLS:       NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39551 SAM EF V2 compatibility

Example B-17 contains the cover letter for APAR OA39551.

Example B-17   OA39551
APAR Identifier ...... OA39551      Last Changed ........ 13/06/03
NEW FUNCTION TOLERATION

Symptom ...... NF NEW FUNCTION      Status ........... CLOSED UR1
Severity ................. 3      Date Closed ........ 13/04/17
Component ........... 5695DF107      Duplicate of .........
Reported Release .... D10      Fixed Release .......... 999
Component Name DATA MGMT SUPPO      Special Notice
Current Target Date ..13/05/15      Flags
SCP ......................
Platform ..............

Status Detail: APARCLOSURE - APAR is being closed.
PE PTF List:

PTF List:
Release C10 : UA68823 available 13/05/02 (F305 )
Release D10 : UA68824 available 13/05/03 (F305 )

Parent APAR:
Child APAR list: OA39869

ERROR DESCRIPTION:
Coexistence for future new function.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of SAM EF version 2 data sets.     *
****************************************************************
* PROBLEM DESCRIPTION: Compatibility support for SAM EF        *
* version 2 data sets. z/OS version 2.1 *
* is required to create SAM EF version 2 *
* data sets.                                              *
****************************************************************
* RECOMMENDATION:                                           *
****************************************************************
Compatibility support for SAM EF version 2 data sets.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Compatibility/coexistence support for SAM EF version 2 data sets. ZOS0201C/K

MODULES/MACROS:  IECEQU  IECPDINI IEZDEB  IFGSMF14 IFGWAX
IFG019RS IFG0193A IFG0194D IFG0195H IFG0196V IFG0202I IFG0232D
IFG0550P IFG0553X IFG0554N IFG0555H

SRLS:  NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39618 Catalog

Example B-18 contains the cover letter for APAR OA39618.

Example B-18   OA39618

APAR Identifier ...... OA39618      Last Changed ....... 13/05/03
CO-EXISTENCE APAR FOR NEW FUNCTION

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED  UR1
Severity ................... 4      Date Closed ........ 13/04/08
Component .......... 5695DF105      Duplicate of .........
Reported Release ........ D10      Fixed Release ............ 999
Component Name ICF CATALOG & I Special Notice
Current Target Date ..13/04/30      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10   : UA68659 available 13/04/15 (     )
Release B10   : UA68660 available 13/04/15 (     )
Release C10   : UA68661 available 13/04/16 (F304 )
Release D10   : UA68662 available 13/04/16 (F304 )

Parent APAR:
Child APAR list: OA39619 OA39620 OA39621

ERROR DESCRIPTION:
THIS IS A CO-EXISTENCE APAR FOR NEW FUNCTION

CATKEYS: CAT2012 CATNEW

LOCAL FIX:
N/A

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of z/OS HDZ1A10 and above.       *
****************************************************************
* PROBLEM DESCRIPTION: NEW FUNCTION APAR.                      *
****************************************************************
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
SUMMARY:
NEW FUNCTION APAR
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
NEW FUNCTION APAR

MODULES/MACROS:   IGG0CLEQ IGG0CLEV

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39619 VSAM

Example B-19 contains the cover letter for APAR OA39619.

Example B-19   OA39619

APAR Identifier ...... OA39619      Last Changed ....... 13/09/13
CO-EXISTENCE APAR FOR NEW FUNCTION

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED  UR1
Severity ................... 4      Date Closed ......... 13/04/08
Component ............ 5695DF106      Duplicate of ........
Reported Release ......... D10      Fixed Release ......... 999
Component Name DFSMS VSAM      Special Notice
Current Target Date ..13/04/30      Flags
SCP ....................
Platform ...............  

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:
PTF List:
Release A10 : UA68659 available 13/04/15 (  )
Release B10 : UA68660 available 13/04/15 (  )
Release C10 : UA68661 available 13/04/16 (F304 )
Release D10 : UA68662 available 13/04/16 (F304 )

Parent APAR: OA39618
Child APAR list:

ERROR DESCRIPTION:
THIS IS A CO-EXISTENCE APAR FOR NEW FUNCTION

LOCAL FIX:
N/A

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of z/OS HDZ1A10 and above.       *
****************************************************************
* PROBLEM DESCRIPTION: NEW FUNCTION APAR.                     *
****************************************************************
* RECOMMENDATION:                                            *
****************************************************************
NEW FUNCTION APAR
ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Co-existence support for new function.

MODULES/MACROS: IDA0192C

SRLS: NONE

RTN CODES:

CIRCUMVENTION:
MESSAGE TO SUBmitter:

APAR OA39620 DSS

Example B-20 contains the cover letter for APAR OA39620.

Example B-20 OA39620

APAR Identifier ...... OA39620 Last Changed ........ 13/05/03

CO-EXISTENCE APAR FOR NEW FUNCTION

Symptom ...... NF NEWFUNCTION Status ............ CLOSED UR1
Severity ................. 4 Date Closed .......... 13/04/11
Component ............. 5695DF175 Duplicate of ........
Reported Release ....... D10 Fixed Release .......... 999
Component Name DFMSdss, ISMF Special Notice ATTENTION
Current Target Date .. Flags
SCP .................... NEW FUNCTION
Platform ..............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10 : UA68740 available 13/04/15 ( )
Release B10 : UA68741 available 13/04/15 ( )
Release C10 : UA68742 available 13/04/16 (F304)
Release D10 : UA68743 available 13/04/16 (F304)

Parent APAR: OA39618
Child APAR list:

ERROR DESCRIPTION:
THIS IS A CO-EXISTENCE APAR FOR NEW FUNCTION

LOCAL FIX:
N/A

PROBLEM SUMMARY:
********************************************************************
* USERS AFFECTED: All users of DFMSdss z/OS HDZIA10 and above. *
* PROBLEM DESCRIPTION: NEW FUNCTION APAR. *
* RECOMMENDATION: *
********************************************************************
PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
NEW FUNCTION APAR

MODULES/MACROS: ADRBLDCN ADRCATLG ADRDDFLT ADRDTDSC ADRFDSU ADRFSDRL ADRKVDSF ADRPCVSM ADRSB004 ADRTDDS

SRLS: SA22763100

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39621 DFSMShsm

Example B-21 contains the cover letter for APAR OA39621.

Example B-21 OA39621

APAR Identifier ...... OA39621 Last Changed ....... 13/05/30
NEW FUNCTION: Coexistence for DFSMShsm Non-SMS VSAM LDS > 4GB Support

Symptom ...... NF INCORROUT Status ............ CLOSED URI
Severity ................. 4 Date Closed ........... 13/04/11
Component ........... 5695DF170 Duplicate of ........
Reported Release ....... D10 Fixed Release .......... 999
Component Name DFSMShsm, ISMF Special Notice ATTENTION
Current Target Date ..13/05/31 Flags
SCP .................. XSYSTEM

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List: Release A10 : UA68756 available 13/04/15

344 IBM z/OS V2.1 DFSMS Technical Update
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

Release B10 : UA68757 available 13/04/15
Release C10 : UA68758 available 13/04/17 (F304)
Release D10 : UA68759 available 13/04/17 (F304)

Parent APAR: OA39618
Child APAR list:

ERROR DESCRIPTION:
THIS IS A CO-EXISTENCE APAR FOR NEW FUNCTION

LOCAL FIX:
N/A

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of DFSMSshsm in an HSMplex with     *
* V2R1 and lower level DFSMSshsm releases.                      *
****************************************************************
* PROBLEM DESCRIPTION: z/OS V1R10, V1R11, V1R12 and V1R13      *
* levels of DFSMSshsm need to fail                             *
* backup, migration and ABACKUP of non-SMS VSAM LDS with the Extended *
* Addressability(EA) attribute                                *
* specified.                                                  *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
z/OS V1R10, V1R11, V1R12 and V1R13 levels of DFSMSshsm need to fail backup, migration and ABACKUP of non-SMS VSAM LDS with the Extended Addressability(EA) attribute specified.

New release        Keyword
z/OS V2R1          ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
On V2R1, non-SMS VSAM LDS's with the Extended Addressability(EA) are fully supported.
The z/OS V1R10, V1R11, V1R12 and V1R13 levels of DFSMSshsm need to fail backup, migration and ABACKUP this type of data set.

Non-SMS EA LDSes migrated, backed up or ABACKUPed on V2.1 system will be able to be recalled, recovered or arecovered on V1R10, V1R11, V1R12 and V1R13 levels of DFSMSshsm.
1. New reason code RSN67 will be added for RC58 for the ARC1258I message
Explanation:
67 - The data set being migrated is a non-SMS-managed VSAM linear data set which has the Extended Addressable(EA) attribute specified. This data set type is not supported for migration in pre-V2R1 systems.
Application Programmer Response:
   Use DFSMSHsm V2R1 or higher to migrate this data set.

2. New reason code RSN67 will be added for RC56 for the ARC1356I message
Explanation:
67 - The data set being backed up is a non-SMS-managed VSAM linear data set which has the Extended Addressable(EA) attribute specified. This data set type is not supported for backup in pre-V2R1 systems.
Application Programmer Response:
   Use DFSMSHsm V2R1 or higher to backup this data set.

3. New reason code RSN67 will be added for RC58 for the ARC1358I message
Explanation:
67 - The data set being backed up is a non-SMS-managed VSAM linear data set which has the Extended Addressable(EA) attribute specified. This data set type is not supported for backup in pre-V2R1 systems.
Application Programmer Response:
   Use DFSMSHsm V2R1 or higher to backup this data set.

4. ARC6172E message - a new text will be added to the Application Programmer Response section.
Application Programmer Response: For ABACKUP, ensure that all data sets specified in the INCLUDE, ALLOCATE, or ACCOMPANY lists are acceptable for processing. Some examples of unsupported situations are:
- data-set-name represents a GDG base.
- The data set organization is unsupported.
- The data set BLOCKSIZE or LRECL is invalid or larger than supported by the ABARS release being executed.
- data-set-name does not reside on a supported device.
- data-set-name is in the ACCOMPANY list, but is migrated.
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

- data-set-name is a z/FS data set.
- Non-VSAM data-set-name data set has Format 8 DSCB.
- Non-SMS VSAM linear data set which has the Extended Addressable(EA) attribute specified. Use DFSMShsm V2R1 or higher to perform ABACKUP for this data set.

New release Keyword
z/OS V2R1 ZOS0201C/K

MODULES/MACROS: ARCBDSMP ARCKALLC ARCKBLDC ARCKFILT ARCKFIL1 ARCKFIND ARCKGDGR ARCKPAG1 ARCKUCAT ARCNDFIND ARCNDFGDG ARCNVFYA ARCNVRFY ARCVVSC ARCWLOC ARCWNT ARCWCTL ARCWLOC ARCWLSTC

SRLS: SA22763218 SA22763219 SA22763220 SA22763221

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39869 SAM EF V2

Example B-22 contains the cover letter for APAR OA39869.

Example B-22 OA39869

APAR Identifier ...... OA39869 Last Changed ........ 13/06/03
NEW FUNCTION - TOLERATION

Symptom ...... NF NEW FUNCTION Status ........... CLOSED URI
Severity ................. 3 Date Closed ........... 13/04/17
Component .............. 56950F102 Duplicate of ........
Reported Release ........ D10 Fixed Release ............ 999
Component Name BASE ACCESS MET Special Notice
Current Target Date ..13/05/15 Flags
SCP .................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release C10 : UA68823 available 13/05/02 (F305 )
Release D10 : UA68824 available 13/05/03 (F305 )
Parent APAR: OA39551
Child APAR list: OA39870 OA39871 OA39872 OA39873 OA39875 OA40259 OA40477

ERROR DESCRIPTION:
Coexistence for future new function.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of SAM EF version 2 data sets.    *
****************************************************************
* PROBLEM DESCRIPTION: Compatibility support for SAM EF        *
*                                         version 2 data sets. z/OS version 2.1 *
*               is required to create SAM EF version 2          *
*               data sets.                                  *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
Compatibility support for SAM EF version 2 data sets.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Compatibility/coexistence support for SAM EF version 2 data sets. ZOS0201C/K

MODULES/MACROS: IGGESDRO IGGESDR1 IGGESDR2 IGGESDR3 IGG019BW IGG019VX IGG019V7 IGG019V8 IGG019V9 IGG0191N IGG0193V IGG0193W IGG0196I IGG0201V IGG055V1

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA39871 SAM EF V2

Example B-23 contains the cover letter for APAR OA39871.

Example B-23   OA39871

APAR Identifier ...... OA39871      Last Changed ........ 13/05/03
NEW FUNCTION TOLERATION

Symptom ...... NF NEW FUNCTION      Status ........... CLOSED  UR1
Severity ................... 3      Date Closed ......... 13/04/10
Component .......... 5695DF103      Duplicate of .........
Reported Release ........ D10      Fixed Release ............ 999
Component Name ACCESS METHOD S      Special Notice
Current Target Date ..13/06/30      Flags
SCP ...................
Platform ............

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
Release C10 : UA68732 available 13/04/16 (F304 )
Release D10 : UA68733 available 13/04/16 (F304 )

Parent APAR:    OA39869
Child APAR list:

ERROR DESCRIPTION:
Coexistence for future new function.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of SAM EF version 2 data sets      *
* created on a z/OS V2R1 or above system.                      *
****************************************************************
* PROBLEM DESCRIPTION: Compatibility support for SAM EF        *
* version 2 data sets. z/OS version 2.1                        *
* is required to create SAM EF version 2                      *
* data sets.                                                  *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
Summary: Compatibility support for SAM EF version 2 data sets.
FIXCAT KEYWORD: ZOS0201C/K
This APAR COREQs OA39872.
PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Compatibility/coexistence support for SAM EF version 2 data sets. FIXCAT KEYWORD: ZOS0201C/K

MODULES/MACROS:   IDCDC01  IDCDC02  IDCDC03  IDCDOUT  IDCLC01
IDCLC02  IDCLC03  IDLC04  IDLC05  IDLC06  IDLC07  IDLC08
IDLC09  IDLC10  IDCRP01  IDCTSLCO

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA39872 Catalog

Example B-24 contains the cover letter for APAR OA39872.

Example B-24   OA39872

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA39872</th>
<th>Last Changed ........ 13/05/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW FUNCTION TOLERATION</td>
<td></td>
</tr>
</tbody>
</table>

Symptom ...... NF NEW FUNCTION      Status ........... CLOSED  UR1
Severity ................... 3      Date Closed ........ 13/04/10
Component .......... 5695DF105      Duplicate of ........
Reported Release ........ D10      Fixed Release .......... 999
Component Name ICF CATALOG & I Special Notice
Current Target Date ..13/09/30      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release C10 : UA68732 available 13/04/16 (F304 )
Release D10 : UA68733 available 13/04/16 (F304 )
Parent APAR: OA39869
Child APAR list:

ERROR DESCRIPTION:
Coexistence for future new function.

CATKEYS: CAT2013 CATNEW

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: All users sharing systems with z/OS V2R1 or above. *
******************************************************************************

PROBLEM DESCRIPTION: Tolerance for new function in z/OS V2R1.

RECOMMENDATION:
******************************************************************************
Summary: FIXCAT KEYWORD: ZOS0201C/K
This APAR COREQS OA39871.

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Apply maintenance if sharing with a system using z/OS V2R1 or above.

MODULES/MACROS: IGGOCLE0 IGGOCLEF IGGOCLEN

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA39873 SAM EF V2 DSS

Example B-25 contains the cover letter for APAR OA39873.

Example B-25   OA39873

APAR Identifier ...... OA39873      Last Changed ........ 13/06/03
NEW FUNCTION - DFSMSDSS SUPPORT FOR VERSION 2 EXTENDED FORMAT
SEQUENTIAL DATA SETS TOLERATION/COEXISTENCE

Symptom ...... NF NEW FUNCTION      Status ........... CLOSED  UR1
Severity ................... 3      Date Closed ........ 13/04/17
Component ........... 5695DF175    Duplicate of ........
Reported Release ....... D10      Fixed Release ........... 999
Component Name DFSMSDSS, ISMF Special Notice       ATTENTION
Current Target Date .. Flags
SCP ...................                        NEW FUNCTION
Platform .............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release C10 : UA68831 available 13/05/02 (F305 )
Release D10 : UA68832 available 13/05/03 (F305 )

Parent APAR:   OA39869
Child APAR list:

ERROR DESCRIPTION:
NEW FUNCTION - TOLERATION/COEXISTENCE for DFSMSdss handling
of version 2 extended format sequential data sets.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users of DFSMSdss copy and restore          *
*   processing single striped multi-volume                      *
*   extended format sequential data sets.                       *
*                                                              *
****************************************************************

* PROBLEM DESCRIPTION: This APAR provides toleration support   *
*   for single striped multi-volume                             *
*   extended format sequential Version 2                       *
*   data sets.                                                 *
****************************************************************

* RECOMMENDATION:                                              *
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

Problem Conclusion:

Temporary Fix:

Comments:
DFSMSdss will be modified to process version 2 extended format single striped multi-volume sequential data sets during copy, dump, and restore. Processing version 2 extended format single striped data sets that were defined in z/OS V2.1 in a prior release may result in the version type to be converted. Whether the data set is converted or not the data set will be successfully copied, dumped, and restored if no errors are encountered.

During logical copy and restore if the target has to be allocated it will result in the target data set not defined as a version 2 type. If the target is preallocated the version type of the target will be preserved. If the target has to be scratched and reallocated the version type will not be preserved.

During physical data set copy and restore, the target version type will be the version type of the source data set.

ZOS0201C/K

Modules/Macros: ADRCNVSM ADRDALOC ADRDTDSC ADREXTND ADRFDSCO ADRFDRL ADRFRLOC ADRMRPAM ADRMRRFM ADRPROTD ADRPSCM ADRPSCM ADRPSCRM ADRSBRTN ADRSBI05 ADRSBI06 ADRSBI07 ADRSBI08 ADRTDDS ADRTDEXT ADRTDLOG ADRTDNVS ADRTDPNV ADRTDPVL ADRTDVF1 ADRTDUNL ADRTDVSM

SRLS: NONE

RTN Codes:

Circumvention:

Message to Submitter:
APAR OA40252 DFSMSHsm Fast Replication

Example B-26 contains the cover letter for APAR OA40252

Example B-26  OA40252

---

**APAR Identifier ...... OA40252   Last Changed ....... 13/05/03**

**NEW FUNCTION - DFSMSHSM TOLERATION COEXISTENCE SUPPORT FOR**

FLASHCOPY CONSISTENCY GROUP AND CAPTURE CATALOG INFO FUNCTIONS

---

**Symptom ...... NF NEW FUNCTION**

**Severity .................. 4**

**Component ............ 5695DF170**

**Reported Release ....... D10**

**Component Name DFSMSHSM, ISMF**

**Current Target Date ..13/05/31**

**Platform ............... XSYSTEM**

---

**Status Detail: SHIPMENT - Packaged solution is available for shipment.**

---

**PE PTF List:**

**PTF List:**

- **Release A10** : UA68734 available 13/04/15 ( )
- **Release B10** : UA68735 available 13/04/15 ( )
- **Release C10** : UA68736 available 13/04/17 (F304 )
- **Release D10** : UA68737 available 13/04/17 (F304 )

---

**Parent APAR:**

**Child APAR list:**

---

**ERROR DESCRIPTION:**

This APAR provides DFSMSHsm toleration coexistence support for FlashCopy Consistency Group support and catalog information data set (CIDS) compatibility.

---

**LOCAL FIX:**

---

**PROBLEM SUMMARY:**

*******************************************************************************

* USERS AFFECTED: DFSMSHsm fast replication users of *
* - FlashCopy consistency group function, or *
* - Capture Catalog Information REQUIRED/ *
* PREFERRED option *
* with DFSMSHsm hosts on z/OS V2R1 which *
* share SMS configurations, DFSMSHsm CDSS, *
* and applicable catalog information data *
* sets (CIDS) with hosts running at V1R13, *
* V1R12, V1R11, and/or V1R10. *
* *****************************************************************
* PROBLEM DESCRIPTION: Changes in the fast replication function in z/OS V2R1 require that z/OS V1R10 through V1R13 DFSMShsm hosts to be updated. This APAR provides toleration support for the DFSMShsm FlashCopy consistency group function and CIDS compatibility. *
* *****************************************************************
* RECOMMENDATION: *
* ****************************************************************
This PTF must be installed and active on all DFSMShsm systems using fast replication function in the SYSPLEX before V2R1 is installed into an existing SYSPLEX or before OA41298 can be applied to any system within the SYSPLEX, if DFSMShsm fast replication with CAPTURE CATALOG INFORMATION REQUIRED/PREFERRED function is used.

An HSM restart is required to activate this fix on each system of the SYSPLEX, however, a rolling restart is sufficient to accomplish the activation.

Additional keyword: ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
DFSMShsm has been modified such that
1. the new FlashCopy consistency group specification for z/OS V2R1 can be detected and handled appropriately.
2. When the Capture Catalog Information REQUIRED or PREFERRED option is specified for the copy pool, catalog information data sets (CIDS) created in either V2R1 or prior releases can be handled appropriately.

The following function has been updated: Fast Replication Backup (FRBACKUP). Copy pools that have the new FlashCopy Consistency Group field set to YES are required to be backed up by a V2R1 or later host.
FRBACKUP will fail backup of copy pools defined with FlashCopy Consistency Group = YES and issue existing MSGARC1806E with new RC89.
Backup versions with FRBF_FCCG_VER flag set (indicating it was created with with FlashCopy Consistency Group option at time of backup) will be deleted or rolled off normally.

LIST and ARCXTRCT functions will ignore the FRBF_FCCG_VER setting. Other fast replication command processing remains
The following publication updates will be made:

z/OS V2R1 MVS System Messages, Vol 2 (ARC-ASA), SA22-7632
SRL: SA22763218, SA22763219, SA22763220, SA22763221

Add new RC89 to the existing message ARC1806E.

ARC1806E FAST REPLICATION {BACKUP | RECOVERY | *****} HAS FAILED FOR {COPY POOL cpname | VOLUME volser | *****},
RC=retcode
Explanation:
Retcode Meaning
89 FlashCopy consistency group setting of Yes was defined for the copy pool but the function is not supported in the host environment where the FRBACKUP command was being processed.

Application Programmer Response:
Retcode Meaning
89 The fast replication backup command for copy pool cpname cannot be processed in a z/OS pre-V2R1 environment. Issue the FRBACKUP command for this copy pool on a system that supports the FlashCopy consistency group option.

++HOLD(AO)
SPECIAL CONDITIONS:
AO: MSG=ARC1806E CHANGE=New RSN 89
AO: ENDAO COMMENT='***End of the list of changes that could affect your automated operations. The DOC text has details of the changes.***'

++HOLD(MTS)
This PTF must be installed and active on all DFSMS/hsm systems using fast replication function in the SYSPLEX before V2R1 is installed into an existing SYSPLEX or before OA41298 can be applied to any system within the SYSPLEX, if DFSMS/hsm fast replication with CAPTURE CATALOG INFORMATION REQUIRED/PREFERRED function is used.

An HSM restart is required to activate this fix on each system of the SYSPLEX, however, a rolling restart is sufficient to accomplish the activation.

MODULES/MACROS: ARCFRB M ARCTCSI

SRLS: SA22763218 SA22763219 SA22763220 SA22763221
APPENDIX B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA40259 EF V2

Example B-27 contains the cover letter for APAR OA40259.

Example B-27   OA40259

APAR Identifier ...... OA40259      Last Changed ........ 13/06/03
NEW FUNCTION - TOLERATION

Symptom ...... NF NEW FUNCTION      Status ........... CLOSED  UR1
Severity ................... 3      Date Closed ......... 13/04/17
Component ........... 5695DF117      Duplicate of ........
Reported Release ....... D10      Fixed Release ............ 999
Component Name SYSTEM DATA MOV    Special Notice
Current Target Date ..13/05/15      Flags
SCP ................... Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release C10   : UA68825 available 13/05/02 (F305 )
Release D10   : UA68826 available 13/05/03 (F305 )

Parent APAR:    OA39869
Child APAR list:

ERROR DESCRIPTION:
Coexistence for future new function.

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: Users of DFSMSdss copy and restore                  *
*    processing single striped multi-volume extended format sequential data sets. *
******************************************************************************
* PROBLEM DESCRIPTION: This APAR provides toleration support    *

Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12  357
PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
DFSMSdss will be modified to process version 2 extended format single striped multi-volume sequential data sets during copy, dump, and restore. Processing version 2 extended format single striped data sets that were defined in z/OS V2.1 in a prior release may result in the version type to be converted. Whether the data set is converted or not the data set will be successfully copied, dumped, and restored if no errors are encountered.

During logical copy and restore if the target has to be allocated it will result in the target data set not defined as a version 2 type. If the target is preallocated the version type of the target will be preserved. If the target has to be scratched and reallocated the version type will not be preserved.

During physical data set copy and restore, the target version type will be the version type of the source data set.
KEYWORDS: D/T2105 D/T2107 ZOS0201C/K

MODULES/MACROS: ANTS8000 ANTS8001

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA40587 RLS

Example B-28 contains the cover letter for APAR OA40587.

Example B-28   OA40587

APAR Identifier ...... OA40587      Last Changed ........ 13/05/03
LARGE NUMBER OF ALTER REQUESTS IXC530I AND IXC534I FOR RLS
CACHE STRUCTURES

Symptom ...... IN INCORROUT         Status ........... CLOSED  PER
Severity ................. 2        Date Closed ........ 13/03/01
Component ........... 5695DF122     Duplicate of ..........
Reported Release ........ D10       Fixed Release .......... 999
Component Name VSAM REC LEV SH     Special Notice
Current Target Date ..13/04/30     Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release C10 : UA68236 available 13/04/10 (F304 )
Release D10 : UA68237 available 13/04/10 (F304 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
The data element to dir entry ratio for RLS caches is
controlled by RLS and when necessary RLS will issue an ALTER
request to adjust the ratio. These requests result in IXC530I
and IXC534I indicating an XCF Alter was requested.

Some Alter activity is expected but in some cases can become
excessive due to an improperly used variable in the RLS
algorithm. This apar may reduce the number of ALTER's
experienced due to RLS element/entry ratio adjustment requests

Additional Keywords:
RLSPSP/K

LOCAL FIX:
n/a

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All VSAM RLS users. ......................... *
****************************************************************
* PROBLEM DESCRIPTION: Users will see a high number of XCF messages IXC530I and IXC534I for RLS cache structures. A high number of these messages indicate that SMSVSAM is issuing ALTER requests to adjust the data element to directory entry ratio too often. This could also cause a CPU usage increase.

****************************************************************

* RECOMMENDATION: The data element to directory entry ratio for RLS caches structures is controlled by an RLS algorithm. When necessary RLS will issue an ALTER request to adjust the ratio. Some alter requests are expected but in some cases they can become excessive due to an improperly used variable in the RLS algorithm.

PROBLEM CONCLUSION: The algorithm to adjust the element to directory ratio has been fixed to use the right variable. This reduces the number of cache structure ALTER requests initiated by SMSVSAM.

KEYWORDS: RLSPSP/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IGWSDADR

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA40844 PDSE V2

Example B-29 contains the cover letter for APAR OA40844.

Example B-29 OA40844

APAR Identifier ...... OA40844 Last Changed ......... 13/06/03
DF102 (ISITMGD) TOLERATION APAR FOR LI3039
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED UR1
Severity ................... 2      Date Closed ........ 13/04/18
Component ............. 5695DF102      Duplicate of ........
Reported Release ........ C10      Fixed Release ............ 999
Component Name BASE ACCESS MET      Special Notice
Current Target Date .. Flags
SCP ...................
Platform ............

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
Release C10 : UA68849 available 13/05/07 (F305 )
Release D10 : UA68850 available 13/05/07 (F305 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:

LOCAL FIX:

PROBLEM SUMMARY:
*******************************************************************************
* USERS AFFECTED: All PDSE users that have the ability to         *
* create PDSE V2 (z/OS V2R1) and want to be            *
* able to access in lower releases (R12 and  *
* R13).                                           *
*******************************************************************************
* PROBLEM DESCRIPTION: This APAR will allow to process PDSE V2 *
* datasets in Releases 12 and 13. PDSE V2 *
* datasets are created in V2R1 and above *
* releases.                                        *
*******************************************************************************
* RECOMMENDATION:                                            *
*******************************************************************************
Modify BAM code to allow the process of PDSE V2 datasets in R12 and R13

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Allow the process of PDSE V2 datasets in lower releases (R12 and
ZOS0201C/K - coexistence keyword for z/OS v2.1

MODULES/MACROS:   IGGONPL IGG0194S IGWCIMGD

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA41517 AMS

Example B-30 contains the cover letter for APAR OA41517.

Example B-30   OA41517

APAR Identifier ...... OA41517      Last Changed ........ 13/05/03
NEW FUNCTION TOLERATION APAR

Symptom ...... NF NEWFUNCTION       Status ........... CLOSED  UR1
Severity ................... 3      Date Closed ........ 13/04/12
Component .......... 5695DF103      Duplicate of ........
Reported Release ......... D10      Fixed Release ............ 999
Component Name ACCESS METHOD S      Special Notice
Current Target Date ..13/05/31      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10 : UA68787 available 13/04/15 (   )
Release B10 : UA68788 available 13/04/15 (   )
Release C10 : UA68789 available 13/04/16 (F304 )
Release D10 : UA68790 available 13/04/16 (F304 )

Parent APAR:    OA36492
Child APAR list:

ERROR DESCRIPTION:
New function.
CATKEYS: CAT2012 CATRLS CATNEW

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: New Function                               *
****************************************************************
* PROBLEM DESCRIPTION: TOLERATION SUPPORT for RLS for Catalog    *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************

Summary: TOLERATION SUPPORT for RLS for Catalog function.

FIXCAT KEYWORD: ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
None

MODULES/MACROS:   IDCLC01

SRLS:      NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA41790 PDSE V2

Example B-31 contains the cover letter for APAR OA41790. This APAR provides a MACRO that is required by OA39530 and OA40844.

Example B-31   OA41790

APAR Identifier ...... OA41790      Last Changed ........ 13/06/03
COEXISTANCE APAR FOR PDSE

Symptom ...... NF NEWFUNCTION     Status ............ CLOSED  UR1
Severity ................... 2 Date Closed ........ 13/04/17
Component ............ 5695DF102 Duplicate of .........
Reported Release ........ C10 Fixed Release ........... 999
Component Name BASE ACCESS MET Special Notice
Current Target Date ..13/05/31 Flags
SCP ...................
Platform ............

Status Detail: APARCLOSURE - APAR is being closed.

PE PTF List:

PTF List:
Release C10 : UA68849 available 13/05/07 (F305 )
Release D10 : UA68850 available 13/05/07 (F305 )

Parent APAR: OA39530
Child APAR list:

ERROR DESCRIPTION:
Coexistence Apar for PDSE

LOCAL FIX:

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: All PDSE users that have PDSE V2 installed *
* (Multiple releases with V2R1 or higher as *
* one of the releases) *
******************************************************************************
* PROBLEM DESCRIPTION: This is a toleration APAR that will go *
* along with the zOSV2R1 changes made for *
* a new PDSE Version2 *
******************************************************************************
* RECOMMENDATION: *
******************************************************************************
Toleration APAR for PDSE Version 2 development item

PROBLEM CONCLUSION:

TEMPORARY FIX:

COMMENTS:
Modified IS it Managed macro to be used by PDSE Toleration
OA39530 and BAM Toleration APAR OA40844 for PDSE Version 2
development line item.
ZOS0201C/K - coexistence keyword for z/OS v2.1
MODULES/MACROS: IGWCISM

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

**APAR OA41864 PDSE**

Example B-32 contains the cover letter for APAR OA41864.

Example B-32  OA41864

APAR Identifier ...... OA41864  Last Changed ........ 13/09/30
PDSE ABENDOF4 with RSN14C6A424, RSN14C6A426, RSN13240323 or
RSN150A001E

Symptom ...... NF ABEND  Status ........... CLOSED  UR1
Severity ............... 2  Date Closed ........ 13/04/16
Component ............. 5695DF115  Duplicate of ........
Reported Release ........ D10  Fixed Release ........... 999
Component Name EXTENDED DATA S  Special Notice HIPER
Current Target Date ..13/06/30  Flags
SCP ................... DATALOSS
Platform ..............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release A10 : UA68807 available 13/04/29  
Release B10 : UA68808 available 13/04/29  
Release C10 : UA68809 available 13/04/30 (F304)
Release D10 : UA68810 available 13/04/30 (F304)

Parent APAR: OA39530
Child APAR list:

ERROR DESCRIPTION:
An error in the code that performs PDSE index record compression
may result in PDSE data set index corruption

Possible symptoms include, but are not limited to:
ABENDOF4 RC24 RSN14C6A424 out of the module IGWIVRJ2
ABENDOF4 RC24 RSN14C6A426 out of the module IGWIVRJ2
ABENDOF4 RC24 RSN13240323 out of the module IGWLHV01
ABENDOF4 RC20 RSN150A001E out of in the module IGWBITX1
Messages from IEBPDSE or IGWPIT indicating doubly allocated index pages and including but not limited to:
ABENDOF4 RC24 RSN01188011 out of the module IGWDAV00

==================================================
This item is a coexistance Apar for PDSE 2.1, however; the underlying issue exists in all supported releases and previously releases of PDSE. Therefore all PDSE user need to apply this maintenance.

LOCAL FIX:
None

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: Users sharing PDSE's in fix release with  *
* release 2.1 and later.                                      *
****************************************************************
* PROBLEM DESCRIPTION: Possible symptoms are abends at         *
* IGWLHV01+1418, IGWBITX1+10F8,                              *
* IGWIVRJ2+13B6 and doubly allocated                          *
* pages from IGWPIT.                                         *
*
* TITLE=COMPID=DF115,CSECT=IGWIVRJ2+13B6                     *
* ,DATE=03/04/13,MAINTID=OA39530                             *
* ,ABND=0F4,RC=00000004,RSN=14C6A426                         *
* TITLE=COMPID=DF115,CSECT=IGWLHV01+1418                    *
* ,DATE=03/18/11,MAINTID= NONE                               *
* ,ABND=0F4,RC=00000024,RSN=13240323                         *
* TITLE=COMPID=DF115,CSECT=IGWBITX1+10F8                    *
* ,DATE=03/18/11,MAINTID= NONE                               *
* ,ABND=0F4,RC=00000020,RSN=150A001E                          *
*
****************************************************************
* RECOMMENDATION:                                            *
****************************************************************
The PDSE is broken because an index record insert caused an incorrect recompression of subsequent records.

PROBLEM CONCLUSION:

ZOS0201C/K - coexistence keyword for z/OS V2.1

TEMPORARY FIX:
COMMENTS:
The recompression has been corrected to account for earlier recompression attributes.
ZOS0201C/K - coexistence keyword for z/OS V2.1

MODULES/MACROS: IGWICPIN

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42058 RMM

Example B-33 contains the cover letter for APAR OA42058.

Example B-33  OA42058

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA42058</th>
<th>Last Changed ........ 13/06/03</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE OA35808 FIX COMPLETION</td>
<td></td>
</tr>
</tbody>
</table>

Symptom ...... AE  Status .......... CLOSED PER
Severity .................. 2  Date Closed .......... 13/04/23
Component ........ 5695DF186  Duplicate of .........
Reported Release ....... A10  Fixed Release ............ 999
Component Name DFSMSRMM Special Notice
Current Target Date .. Flags
SCP ................... Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release A10 : PTF not available yet
Release B10 : PTF not available yet
Release C10 : UA68803 available 13/05/03 (F305 )
Release D10 : UA68804 available 13/05/03 (F305 )

Parent APAR: OA35808
Child APAR list:
ERROR DESCRIPTION:
OA35808 AE fix completion.

LOCAL FIX:

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: NONE  *
****************************************************************
* PROBLEM DESCRIPTION: OA35808 fix completion  *
****************************************************************
* RECOMMENDATION:  *
****************************************************************

PROBLEM CONCLUSION:
The problem has been fixed.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: EDGMFIO EDGMLCS

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42043 SAM EF V2

Example B-34 contains the cover letter for APAR OA42043.

Example B-34  OA42043

APAR Identifier ...... OA42043  Last Changed ...... 13/09/04
NEW FUNCTION - Coexistence for DFSMSshm SAM EF V2 data set
support
Symptom ...... NF INCORROUT  Status ............ CLOSED  UR1
Severity ................... 4      Date Closed ......... 13/07/25
Component ............ 5695DF170      Duplicate of ........
Reported Release ......... C10      Fixed Release ............ 999
Component Name DFSMSHSM, ISMF       Special Notice       ATTENTION
Current Target Date ..13/08/15      Flags
SCP .......................... NEW FUNCTION
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:

PTF List:
Release C10 : UA70008 available 13/08/07 (F308 )
Release D10 : UA70009 available 13/08/07 (F308 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
NEW FUNCTION

LOCAL FIX:
NEW FUNCTION

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All users of DFSMSHsm in an HSMplex with *
* V2R1 and lower level DFSMSHsm releases.  *
****************************************************************
* PROBLEM DESCRIPTION: z/OS V1R12 and V1R13 levels of *
* DFSMSHsm need to fail ARECOVER of SAM *
* Extended Format (EF) Version 2 (V2) *
* data sets on the ALLOCATE list.  *
* *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
z/OS V1R12 and V1R13 levels of DFSMSHsm need to fail ARECOVER
of SAM EF V2 data sets on the ALLOCATE list.
New release        Keyword
z/OS V2R1          ZOS0201C/K

PROBLEM CONCLUSION:

TEMPORARY FIX:
COMMENTS:
On V2R1 SAM Extended Format (EF) Version 2 (V2) data sets are fully supported. The z/OS V1R12 and V1R13 levels of DFSMShsm need to fail ARECOVER of this type of data set when it is on the ALLOCATION list with the existing message ARC6172E (MSGARC6172E). ARECOVER of this data set on the INCLUDE list will be successful.

SAM EF V2 data sets migrated and backed up on a V2.1 system will be able to be recalled and recovered on V1R12 and V1R13 levels of DFSMShsm.

New release        Keyword
z/OS V2R1          ZOS0201C/K

HOLD DOC
V1R12 and V1R13
MVS System Messages Vol 2 (ARC-ASA)
SRL: SA22763220, SA22763221

ARC6172E message - a new text will be added to the Application Programmer Response section:
For ARECOVER, ensure that all data sets specified in the INCLUDE, ALLOCATE, or ACCOMPANY lists are acceptable for processing:
- SAM data set which has the Extended Format of version 2 specified. Use DFSMShsm V2R1 or higher to perform ARECOVER for this data set.

MODULES/MACROS:
ARCNVRFY

SRLS:
SA22763220
SA22763221

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA42529 DFSMSHsm

Example B-35 contains the cover letter for APAR OA42529.

Example B-35   OA42529

APAR Identifier ...... OA42529      Last Changed ....... 13/10/02
ARC0187I I/O ERROR REPORTED FOR A 'D' RECORD BUT ERROR MESSAGE
SHOWS VSR RECORD WITH OA36576 APPLIED TO A 13/06/13 PTF PECHANGE

Symptom ...... MS MSGARC0187I       Status ........... CLOSED PER
Severity ............... 2      Date Closed ........ 13/08/14
Component ............ 5695DF170      Duplicate of ........
Reported Release ....... D10      Fixed Release ........ 999
Component Name DFSMSHSM, ISMF       Special Notice PE
Current Target Date ..13/09/12      Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:      UA68717 UA68716

PTF List:
Release A10 : PTF not available yet
Release B10 : PTF not available yet
Release C10 : UA70225 available 13/08/23 (F308 )
Release D10 : UA70229 available 13/08/23 (F308 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
With OA36576 applied to at least one HSM image in an HSMPlex,
ARC0187I I/O error messages can occur during HSM Secondary
Space Management. The message will indicate that the error
occurred on a 'D' type record, although the record key shows that
HSM was trying to read a VSR ('S'-type record):

ARC0187I I/O ERROR POSITIONING TO AN DFSMSHSM CONTROL DATA SET D
RECORD, KEY= VSRABC001 , RC=0012

SSM will continue to process. The VSR records that received the
ARC0187I message will not be checked for expiration processing
during that run of SSM.

LOCAL FIX:
Apply OA36576 to the HSM image that performs SSM.

PROBLEM SUMMARY:
*************************************************************************
* USERS AFFECTED: All z/OS V1R10, V1R11, V1R12, and V1R13 DFSMShsm users.*

****************************************************************
* PROBLEM DESCRIPTION: With OA36576 applied to at least one DFSMShsm image in an HSMPlex, ARC0187I I/O error messages can occur during DFSMShsm Secondary Space Management (SSM). OA42529 was created to resolve this issue. *

****************************************************************
* RECOMMENDATION: With OA36576 applied to at least one DFSMShsm image in an HSMPlex, ARC0187I I/O error messages can occur during DFSMShsm Secondary Space Management (SSM). OA42529 was created to resolve this issue. *

PROBLEM CONCLUSION:
OA42529 was created to back off DSR/VSR records to pre-OA36576 length and prepare systems for the application of the coexistence enablement APAR OA42562. OA42529 must be applied to all systems in an HSMplex before OA42562 is applied.

+++HOLD(MULTSYS) - The PTFs for OA42529 must be installed and active on all systems in the SYSPLEX before the PTFs for APAR OA42562 can be applied to any system within the sysplex.

KEYWORDS: ZOS0201C/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: ARCASTAI ARCAUDIT ARCAZWC ARCCPQST ARCCSTAI ARCCTL ARCCVSR ARCDCOLL ARCDSTAI ARCESTAI ARCCCRE ARCDEL ARCFSTAI ARCGSTAI ARCISTAT ARCJSTAE ARCJSTAI ARCMCLN ARCMSCLN ARCMSTAI ARCMVCLN ARCPRLG ARCPRT ARCU DATA ARCUTIL ARCXSTAI ARCYSTAI ARCXMSGS

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
APAR OA42541 Catalog

Example B-36 contains the cover letter for APAR OA42541.

Example B-36  OA42541

APAR Identifier ...... OA42541  Last Changed ........ 13/10/02
ABEND S130 IN IDA0200T AFTER INSTALLING PTFs FOR OA36916

Symptom ...... IN INCORROUT  Status ............ CLOSED  PER
Severity ................ 2 Date Closed ........ 13/08/02
Component ............ 5695DF106 Duplicate of ........
Reported Release ....... D10 Fixed Release .......... 999
Component Name DFSMS VSAM Special Notice PE
Current Target Date ..13/08/31 Flags
SCP ......................
Platform ..............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List: UA68644 UA68643

PTF List:
Release A10 : PTF not available yet
Release B10 : PTF not available yet
Release C10 : UA70130 available 13/08/28 (F308 )
Release D10 : UA70131 available 13/08/28 (F308 )
Release 210 : UA70146 available 13/08/28 (F308 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
An abend S130 may occur in IDA0200T at offset X'3600' after installing the PTFs for OA36916. The error is a dequeue for a resource that is not held.
The dequeue will show a request to dequeue SYSVSAM with a catalog name as the resource and ending in a "N".

LOCAL FIX:
Remove the PTFs for OA36916
PEX/ UA68641
PEX/ UA68642

PROBLEM SUMMARY:
****************************************************************************
* USERS AFFECTED: All z/OS 1.10 VSAM users and above who          *
*                OPEN and CLOSE a catalog as a normal         *
*                VSAM Data Set.                              *
****************************************************************************
* PROBLEM DESCRIPTION: While closing a user catalog that has been opened with multiple ACBs, an ABEND S130 will result. *

****************************************************************

* RECOMMENDATION: Apply PTF. *

****************************************************************

VSAM CLOSE processing was not correctly verifying the last close for a user catalog.

PROBLEM CONCLUSION:
VSAM CLOSE processing was modified to correctly determine the last close for a user catalog.

KEYWORDS: ZOS0201C/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IDA0200T

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42551 RLS DSS

Example B-37 contains the cover letter for APAR OA42551.

Example B-37 OA42551

APAR Identifier ...... OA42551 Last Changed ........ 13/10/02
ADR952E ADR957I DURING LOGICAL DUMP OF USERCATALOG WITH DSS DUE TO A FAILURE IN RLS DURING QUIESCE PROCESS 13/06/14 PTF PECHANGE

Symptom ...... MS MSGADR952E Status ............ CLOSED PER
Severity ............... 2 Date Closed ........ 13/06/21
Component ............ 56950FI22 Duplicate of .........
Reported Release ........ D10 Fixed Release ............ 999
Component Name VSAM REC LEV SH Special Notice PE
Current Target Date ..13/07/31 Flags
SCP .................
Platform ............
Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List: UA68643 UA68644

PTF List:
Release A10: PTF not available yet
Release B10: PTF not available yet
Release C10: UA69623 available 13/07/23 (F307)
Release D10: UA69624 available 13/07/23 (F307)
Release 210: UA69625 available 13/07/23 (F307)

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
A logical dump of a usercat defined with a large number of extents (approximately 30 and more) will fail with DSS messages:

ADR952E (001)-DTDSC(01), THE IDAQDMP MACRO FAILED DURING QUIESCE PROCESSING FOR FOR CLUSTER dsname WITH RETURN CODE 00000008 AND REASON CODE 61FF0001

This issue occurs after application of OA36422 and OA36403

Problem is due to workarea shortage during RLS locate request for catalog information.

ADDITIONAL KEYWORDS:
RLSPSP/K
SMSVSAM RLS VSAMRLS

LOCAL FIX:
You can use DSS patch to circumvent the RLS quiesce processing described in DFSMSdss Storage Administration 1.14.30 Bypassing RLS processing (OW32817)
PEX/ UA68641
PEX/ UA68642

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All Catalog users who issue DSS DUMP command to backup user catalog data sets. *
****************************************************************

* PROBLEM DESCRIPTION: When performing the DSS DUMP function to backup user catalog data sets with about 30 extents, the following error is generated:

*
* ADR952E (001)-DTDSC(01), THE IDAQDMP *
* MACRO FAILED DURING QUIESCE PROCESSING *
* FOR CLUSTER dsname WITH RETURN CODE *
* 00000008 AND REASON CODE 61FF0001 *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
If a user catalog data set has approximately 30 or more extents, any attempt to back it up using the DSS DUMP will failed with ADR952E error message.

PROBLEM CONCLUSION:
The error is due to the work area being too small to handle a user catalog with many extents. The fix will allocate a larger work area and retry the operation when detecting the work area too small error.
KEYWORDS: RLSPSP/K ZOS0201C/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IDAVQCAT

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42562 DFSMSHsm Storage Tiers

Example B-38 contains the cover letter for APAR OA42562.

Example B-38  OA42562

APAR Identifier ...... OA42562 Last Changed ........ 13/09/13
STORAGE TIERS COEXISTENCE ENABLEMENT

Symptom ...... IN INCORROUT Status ............ CLOSED PER
Severity ................... 2 Date Closed ........ 13/08/15
Component ............... 5695DF170 Duplicate of .......
Reported Release ........ A10 Fixed Release ........... 999

IBM z/OS V2.1 DFSMS Technical Update 376
Component Name DFSMSHSM, ISMF  Special Notice
Current Target Date . .13/09/12  Flags
SCP ................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for
shipment.

PE PTF List:

PTF List:
Release A10 : UA70331 available 13/08/21 ( )
Release B10 : UA70332 available 13/08/21 ( )
Release C10 : UA70338 available 13/08/23 (F308 )
Release D10 : UA70373 available 13/08/23 (F308 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
Storage Tiers coexistence enablement

LOCAL FIX:
N/A

PROBLEM SUMMARY:
******************************************************************************
* USERS AFFECTED: All V1R10,V1R11,V1R12 and V1R13 DFSMSHsm         *
* users.                                                        *
******************************************************************************
* PROBLEM DESCRIPTION: Enlarge DSR/VSR record lengths for       *
* for Storage Tiers coexistence.                              *
******************************************************************************
* RECOMMENDATION:                                              *
******************************************************************************
Enlarge DSR/VSR record lengths for Storage Tiers coexistence.

PROBLEM CONCLUSION:
DFSMShsm will be changed to increase DSR/VSR record lengths
for Storage Tiers coexistence.

++HOLD(MULTSYS) - The PTF(s) for OA42529 must be installed
and active on all systems in the SYSPLEX before the PTF(s) for
APAR OA42562 can be applied to any system within the sysplex.
The PTFs for OA42529 are UA70197, UA70198, UA70225, UA70229

++HOLD(MULTSYS) - OA42562 PTF(s) will not be fully effective
on the system it is being applied to until the PTF(s) for
this APAR are are applied to all systems in the SYSPLEX.
New release        Keyword
z/OS V2R1          ZOS0201C/K

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS:
ARCASTAI ARCAUDIT ARCAZWC ARCCPQST ARCCSTAI ARCCTL ARCCVSR
ARCDCOLL ARCDSTAI ARCESTAI ARCFCRE ARCFDEL ARCFSTAI ARCGSTAI
ARCISSAT ARCISSTE ARCISSST AIARMLCLN ARCMSCLN ARCMSTAI ARCMVCLN
ARCPRLOG ARCRPT  ARCUDATA ARCUTIL  ARCXSTAI ARCYSTAI ARCZMSGS

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42267 XTIOT use

Example B-39 contains the cover letter for APAR OA42267. This APAR is applicable to DFSMS V1.13 as well.

Example B-39   OA42267

<table>
<thead>
<tr>
<th>APAR Identifier ...... OA42267</th>
<th>Last Changed ........ 13/10/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC9991/ IFG0194D ABENDOC1 ABENDOC4 NON_VSAM_XTIOT DEVSUPXX TRKCALC RC04 IECOSCR1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom ...... AB ABENDOC4</th>
<th>Status ........... CLOSED PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity .................. 2</td>
<td>Date Closed ........ 13/09/16</td>
</tr>
<tr>
<td>Component ............ 5695DF107</td>
<td>Duplicate of ........</td>
</tr>
<tr>
<td>Reported Release .......... D10</td>
<td>Fixed Release ............ 999</td>
</tr>
<tr>
<td>Component Name DATA MGMT SUPPO</td>
<td>Special Notice</td>
</tr>
<tr>
<td>Current Target Date ..13/09/30</td>
<td>Flags</td>
</tr>
<tr>
<td>SCP .......................</td>
<td></td>
</tr>
<tr>
<td>Platform ...............</td>
<td></td>
</tr>
</tbody>
</table>

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:
PTF List:
Release D10   : UA70761 available 13/10/01 (1000 )
Release 210   : UA70762 available 13/10/01 (1000 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
When keyword NON_VSAM_XTIOT is set to YES in PARMLIB member
DEVSUPxx, IFG0194D +x'186A' UA68824 makes a TRKCALC call
without LOC=ANY and the UCB is a 31-bit address pulled directly
from the XTIOT. TRKCALC module IECOSCR1 takes an ABEND0C4 as a
result. IFG0194D may also take an intentional ABEND0C1 to
header IFG0194D TRKCALC_ERRORSEE_R15 ERROR when register 15 is
set to RC04. The joblog will show an IEC999I IFG0194D message.

LOCAL FIX:
Set NON_VSAM_XTIOT to NO in PARMLIB member DEVSUPxx

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: All.                                       *
****************************************************************
* PROBLEM DESCRIPTION: Abend0c1 in IFG0194D.                   *
****************************************************************
* RECOMMENDATION:                                              *
****************************************************************
IEC999I IFG0194D,POFFOR,POFFOR,TRKCALC ERROR SEE R15
due to an intentional abend0c1 after a TRKCALC failure.
TRKCALC is passed a 31bit UCB address without including
keyword: LOC=ANY in the macro invocation. OPEN is processing
with an XTIOT containing 31bit UCB addresses.

PROBLEM CONCLUSION:
IFG0194D now issues TRKCALC with the LOC=ANY keyword.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFG0194D

SRLS: NONE

RTN CODES:
CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42846 Single Striped, Multi-volume SAM Tailored Compressed data set

Example B-40 contains the cover letter for APAR OA42846.

Example B-40  OA42846

APAR Identifier ...... OA42846      Last Changed ........ 13/09/12
APAR OA41459 CAN CAUSE LOOP IN IFG0232D

Symptom ...... LP LOOP              Status ........... CLOSED  PER
Severity ................... 2      Date Closed ........ 13/08/05
Component .......... 5695DF107      Duplicate of .........
Reported Release ......... D10   Fixed Release .......... 999
Component Name DATA MGMT SUPPO Special Notice PE
Current Target Date ..13/09/15 Flags
SCP ...................
Platform ............

Status Detail: SHIPMENT - Packaged solution is available for shipment.

PE PTF List:    UA68273 UA68272 UA68824 UA68823

PTF List:
Release C10 : UA70205 available 13/09/12 (1000 )
Release D10 : UA70204 available 13/09/12 (1000 )
Release 210 : UA70203 available 13/09/12 (1000 )

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
APAR OA41459 can cause a LOOP in IFG0232D when there are fewer than 5 used physical blocks on the last volume for tailored compressed data sets during CLOSE TYPE=T (TCLOSE), this LOOP will hold ENQ on SYSZTIOT.

LOCAL FIX:
remove PTF for OA41459

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: users of single striped, multi-volume sam       *
* tailored compressed data sets.                                 *
****************************************************************
* PROBLEM DESCRIPTION: users of single striped, multi-volume sam *
* tailored compressed data sets may see loops when close type=t leave is *
* issued when open for input or issued twice when open for output on the last *
* volume and there is very little data (less than five physical blocks) on the *
* current volume.                                                 *
****************************************************************
* RECOMMENDATION:                                               *
****************************************************************
users of single striped, multi-volume sam tailored compressed data sets may see loops when close type=t leave is issued.

PROBLEM CONCLUSION:
Change code so that the count of physical blocks used by the tailored dictionary are ignored for the second and subsequent volumes of a single striped, multi-volume data set.

TEMPORARY FIX:

COMMENTS:

MODULES/MACROS: IFG0232D

SRLS: NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:

APAR OA42947 VSAM RLS

Example B-41 contains the cover letter for APAR OA42947. The DFSMS V2.1 equivalent APAR is OA43003.

Example B-41 OA42947

APAR Identifier ...... OA42947 Last Changed ......... 13/08/02
POSSIBLE INCORRECT RBA RETURNED AFTER ESDS PUT UPDATE OR DELETE
APAR OA43537 ICF Catalog hang

Example B-42 contains the cover letter for APAR OA43537.

Example B-42   OA43537

APAR Identifier ...... OA43537      Last Changed ....... 13/10/21
IDC3009I 50-43 ERROR FOLLOWED BY SYSZVDDS SYSIGGV2 HANG
Status Detail: DESIGN/CODE - APAR solution is being designed and coded.

PE PTF List: UA68643 UA68644

PTF List:

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
When multiple DELETE / EXPORT DISCONNECT jobs are ran to remove user catalogs from the master catalog simultaneously, a 50-43 error can occur followed by a hang involving SYSZVDS and SYSIGGV2 for the master. This timing issue only occurs during maintenance related procedures that involve this type of workload and would not occur during typical production. The 50-43 was introduced in OW45703 to detect cases where a VVDS Get for Update was issued and the next request was not the corresponding Put or End Update. In this case, two tasks failed to serialize with each other on the VVDS parameter control block which resulted in put/end updates not being issued and enqueues not being released.

CAS DYNAMIC DUMP-IGGOCLE0 RC50 RSN43

ISG343I 01.23.45 GRS STATUS 841
S=SYSTEMS SYSZVDS volser
S=SYSTEMS SYSIGGV2 master.catalog

CATKEYS: CAT2013 CATHANG CATBCS CATVVDS

LOCAL FIX:
F CATALOG,LIST will help identify holders of resources. F CATALOG,ABEND(id) can be issued to abend a specific task. F CATALOG,RESTART can alternatively be used to free the hang.

APAR OA43583 PDSE (also applies to DFSMS V2.1)

Example B-43 contains the cover letter for APAR OA43583.

Example B-43 OA43583

APAR Identifier ...... OA43583 Last Changed ........ 13/10/21
ABENDOF4 RC14 RSN25400018 IGWDLCLS+OC32 @ UA66850

Symptom ...... AB ABENDOF4 Status ............ CLOSED PER
Severity .................. 2 Date Closed ........... 13/10/21
Component .......... 5695DF115      Duplicate of .........
Reported Release ......... D10      Fixed Release ......... 999
Component Name EXTENDED DATA S      Special Notice           HIPER
Current Target Date ..14/01/15      Flags
SCP ...................
Platform ............ DATALOSS

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release C10 : PTF not available yet
Release D10 : PTF not available yet
Release 210 : PTF not available yet

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
ABENDOF4 RC14 RSN25400018 out of the module IGWDLCLS+0C32 at
UA68850 maintenance level.

The reason code RSN25400018 translates to GETMAIN_FAILED.

VSM summary data (IP VERBX VSMDATA 'NOG SUMM') shows that
SMSPDSE1 extended private storage is almost exhausted:

LOCAL STORAGE MAP

<table>
<thead>
<tr>
<th>Address</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended</td>
<td>80000000</td>
</tr>
<tr>
<td>LSQA/SWA/229/230</td>
<td>80000000</td>
</tr>
<tr>
<td>(Free Extended Storage)</td>
<td>32914000</td>
</tr>
<tr>
<td>Extended User Region</td>
<td>32908000</td>
</tr>
<tr>
<td></td>
<td>32900000</td>
</tr>
</tbody>
</table>

An IP VERBX SMSXDATA 'F(POOLS) JOBNAME(SMSPDSE1)' will show an
extremely large allocation for the "JCDM DSC POOL FOR LSTB
DREFD" pool:

************************************************************
Below the Bar Storage
Exts  TotSize  TotCells  InUseCells  SP  Key Description
************************************************************
11315  1,205,002,240  1,131,500  1,131,500  124 50 JCDM DSC POOL
FOR LSTB DREFD
The build up of the LSTB control structures is the result of PDSE index code that is attempting to join two index pages.

This failure can occur on PDSE data sets that are shared in a sysplex with mixed z/OS levels where at least one LPAR is at the HDZ2210 / z/OS 2.1 level.

LOCAL FIX:
Restart the SMSPDSE1 address space

PROBLEM SUMMARY:
****************************************************************
* USERS AFFECTED: PDSE index records can rarely be broken when *
* the data set is updated on a release HDZ2210 *
* which had been updated on a lower release. *
****************************************************************
* PROBLEM DESCRIPTION: See Users Affected. *
****************************************************************
* RECOMMENDATION: *
****************************************************************
PDSE index manager will be modified to now join index pages
which have created on HDZ2210 and a lower release.

PROBLEM CONCLUSION:
See Problem summary.

TEMPORARY FIX:
*********
* HIPER * AA45383
*********

COMMENTS:

MODULES/MACROS:
IGWIRCMT IGWIVRJ2

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:
MESSAGE TO SUBmitter:

APAR OA43701 SAM EF V2 (also applies DFSMS V2.1)

Example B-44 contains the cover letter for APAR OA43701.

Example B-44  OA43701

APAR Identifier ...... OA43701      Last Changed ......... 13/10/28
VOLUME LABEL MAY BE OVERWRITTEN BY SAM EXTENDED FORMAT VERSION 2
DATA SET - Z/OS 2.1 ONLY

Symptom ...... IN INCORROUT         Status ........... CLOSED  PER
Severity ................. 2        Date Closed ........ 13/10/28
Component ............ 5695DF102      Duplicate of ........
Reported Release ...... 210       Fixed Release ............ 999
Component Name BASE ACCESS MET      Special Notice HIPER
Current Target Date ..13/12/15      Flags
SCP ...................
Platform ............ PERVASIVE      DATALOSS

Status Detail: TESTPACKAGING - Packaged solution is being tested.

PE PTF List:

PTF List:
Release C10 : PTF not available yet
Release D10 : PTF not available yet
Release 210 : PTF not available yet

Parent APAR:
Child APAR list:

ERROR DESCRIPTION:
If a multi-volume single striped SAM Extended Format Version 2 data set is allocated using Guaranteed Space and then opened for EXTEND or opened for OUTPUT or OUTIN when allocated DISP=MOD, the volume label on the second to last volume may be overwritten by user data.

LOCAL FIX:
Do not use Version 2 if using Guaranteed Space allocation and either OPEN EXTEND or OPEN OUTPUT/OUTIN and DISP=MOD is used.
To bypass this problem you must do one of the following:
1) Specify DSNTYPE=(EXT,1) or DSNTYPE=(EXT) on the JCL OR
2) Specify EXT_VERSION(1) in IGDSMSxx parmlib member AND do NOT specify DSNTYPE=(EXT,2) on the JCL.

The volume can be recovered by varying it offline to all systems and running the following job.
Appendix B. APARs to be reviewed for DFSMS V1.13 or DFSMS V1.12

PROBLEM SUMMARY:
******************************************************
* USERS AFFECTED: All users of multi-volume single striped SAM *
* extended format data sets allocated using guaranteed space. *
******************************************************
* PROBLEM DESCRIPTION: Multi-volume single striped SAM extended format version 2 data sets allocated using guaranteed space may overlay the volume label on the second to last volume if the first OPEN is for EXTEND or for OUTPUT or OUTIN and DISP=MOD is specified. In some cases, such as ISPF browse, OPEN for INPUT or INOUT will position to the volume label. Though version 2 data sets may not be created on releases prior to HDZ2210, this problem could occur if the data set was allocated on HDZ2210 and first opened on an earlier release.
******************************************************
* RECOMMENDATION: *
******************************************************
Multi-volume single striped SAM extended format version 2 data sets allocated using guaranteed space may overlay the volume label on the second to last volume.

PROBLEM CONCLUSION:
Changed code to correctly build internal control blocks to only allow access to the data set extents on the last volume.

TEMPORARY FIX:
************
* HIPER * AA43701
************

COMMENTS:
MODULES/MACROS:
IGGO193V

SRLS:
NONE

RTN CODES:

CIRCUMVENTION:

MESSAGE TO SUBMITTER:
Sample assembler code

This appendix contains source for sample programs developed during this project to exercise features and functions in z/OS V2.1 DFSMS.
IEBCOPY FAMS abend diagnosis

In Example C-1 together with continuation in subsequent examples we show sample code to analyze the IEBCOPY REGISTER 15 and REGISTER 0 data that could be returned if the FAMS routine has an abend.

This example is provided as an example of what could be done. If the code needs to be assembled and linked, an example is provided in Example C-5 on page 393.

Example C-1  IEBCPYF program to display FAMS abend data 1 of 4

```
MACRO 00010099
&NAME SEGSTART 00020099
AMODE 24 00030099
&NAME STM 14,12,12(13) 00040099
 SAVE HIS REGS IN HIS SAVE AREA 00050099
R0 EQU 0 00060099
R1 EQU 1 00070099
R2 EQU 2 00080099
R3 EQU 3 00090099
R4 EQU 4 00100099
R5 EQU 5 00110099
R6 EQU 6 00120099
R7 EQU 7 00130099
R8 EQU 8 00140099
R9 EQU 9 00150099
R10 EQU 10 00160099
R11 EQU 11 00170099
RB EQU 12 00180099
R13 EQU 13 00190099
R14 EQU 14 00200099
R15 EQU 15 00210099
BALR 12,0 00220099
 SET UP ADDRESSABILITY
USING *,12 00230099
 USE REG 12 AS BASE REG
ST 13,SAVEREGS+4 00240099
 SAVE @ OF HIS SAVEAREA IN MINE
LA 03,SAVEREGS 00250099
 LOAD @ OF MY SAVE AREA IN REG 3
ST 03,8(13) 00260099
 SAVE @ OF MY SAVE AREA IN HIS
LR 13,03 00270099
 LOAD @ OF MY SAVE AREA IN REG 13
MEND 00280099
&NAME SEGEND 00290099
&NAME L 13,SAVEREGS+4 00300099
 LOAD REG13 WITH @ OF HIS SAVE
LM 14,12,12(13) 00310099
 RESTORE REGS FROM HIS SAVEAREA
XR R15,R15 00320099
BR 14 00330099
 RETURN TO CALLING RTN VIA REG 14
SAVEREGS DC 18F'0' 00340099
 SET UP SAVE AREA
MEND 00350099
MACRO 00360099
&NAME HEXTXT8 &KEY 00370099
UNPK &KEY.(09),SAVRO(5) 00380099
TR &KEY.(08),HEXTAB-240 00390099
UNPK &KEY.+8(09),SAVRO+4(5) 00400099
TR &KEY.+8(08),HEXTAB-240 00410099
MVI &KEY.+16,X'40' BLANK THE EXTRA BYTE 00420099
MEND 00430099
```
Example C-2  IEBCPYF program to display FAMS abend data 2 of 4

IEBCPYF SEGSTART
* THIS IS A SIMPLE PROGRAM TO LINK TO IEBCOPY THEN DISPLAY THE
* CONTENTS OF REGISTER 15, AND OF REGISTER 0
* R3 PARM
* R4 IEBCREAS DSECT
* R12 OVERALL BASE REGISTER
START DS OH
MVI TESTPARM,C'N'
L R15,0(R1) GET ADDRESS OF PARM
LH R3,0(R15) GET LENGTH OF PARM
CH R3,=H'0' CHECK PARM LENGTH
BE NOPARM
SH R3,=H'1' REDUCE FOR EXECUTE
EX R3,MVCPARM
MVC SAVR0(8),SYSPARM+9
MVI TESTPARM,C'Y'

NOPARM DS OH
LINK EP=IEBCOPY,PARAM=(OPTIONS),VL=1
* SAVE R15 AND RO
ST R15,SAVR15
CLI TESTPARM,C'Y'
BE SKIPRO
STG RO,SAVR0
SKIPRO DS OH
OPEN (PRINTDCB,(OUTPUT))
PUT PRINTDCB,PRINTHD1
* PREPARE R15 FOR PRINTING AND PRINT
L R15,SAVR15
CVD R15,CVDRWK
UNPK UNPKWRK+3(5),CVDRWK+4(4)
OI UNPKWRK+7,X'F0'
MVC MSG15V,UNPKWRK+4
MVC PRTBUF,BLANK
MVC PRTBUF(MSG15L),MSG15
* PREPARE RO FOR PRINTING AND PRINT
LA R4,SAVR0
USING IEBRSNAREA,R4
HEXTEXT MSG0V
PUT PRINTDCB,PRTBUF
* PRINT HEX FORM OF THE CONTENTS OF REGISTER 0
MVC PRTBUF,BLANK
MVC PRTBUF(MSG0L),MSG0
PUT PRINTDCB,PRTBUF
CLI TESTPARM,C'N'
BE NOTTEST
* IN TEST MODE
MVC PRTBUF,BLANK
PUT PRINTDCB,PRINTHD3

Example C-3  IEBCPYF program to display FAMS abend data 3 of 4

NOTTEST DS OH
* PREPARE ANALYSIS OF WHAT THE CONTENTS OF RO MEAN
Example C-4  IEBCPYF program to display FAMS abend data 4 of 4

MSG06 DC C' IEBRSN_ABENDED FLAG ' 01400099
    DC C' IS ON AND REASON CODE IS: ' 01410099
MSG06V DC CL4'XXX' 01420099
MSG06L EQU *-MSG06 01430099
PRINTHD1 DC CL133' REGISTER CONTENTS AFTER LINK TO IEBCOPY' 01440099
PRINTHD2 DC CL133' REGISTER 0 CONTENTS ANALYSIS' 01450099
PRINTHD3 DC CL133' *** WARNING - RUNNING WITH TEST PARM' 01460099
In order to use the source code, it must first be stored in a data set with member name IEBCPYF. The data set name used in this example is MHLRES2.IEBCOPY.DFSMS21.PDS. The data set can be PDSE or PDS. The only restriction is that the RECFM be F or FB and LRECL must be 80.

It is also necessary to create a data set to link the load module into. In this example the data set name used is MHLRES2.IEBCOPY.DFSMS21.LOAD. The LOAD data set can be PDS or PDSE and have RECFM U.

Once the source has been successfully assembled and linked, the program can be run using the example code in Example 7-27 on page 125.

In Example C-5, we show sample JCL to assemble and link program IEBCPYF.

Example C-5  JCL to assemble and link program IEBCPYF

```
//MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10, 00010000
 // MSGCLASS=J, 00020000
 // MSGLEVEL=1,CLASS=A, 00030000
 // NOTIFY=&SYSUID 00040000
 /*JOBPARM S=* 00041000
 //ASMHCL PROC 00050000
 //ASM EXEC PGM=ASMA90,REGION=0M, 00060000
 PARM='OBJECT,NODECK' 00070000
 //SYSLIN DD DSN=&&OBJ,DISP=(NEW,PASS),UNIT=SYSDA, 00080000
 SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120 00090000
 //SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB 00100000
 //SYSPRINT DD SYSOUT=* 00110000
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(5,5)) 00120000
 //PEND 00130000
 // EXEC ASMHCL 00140000
 //ASM.SYSIN DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.PDS(IEBCPYFA) 00150000
 /* 00160000
 //LKED.SYSLMOD DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD 00170000
 //LKED.SYSIN DD * 00180000
 SETSSI 00002100 00190000
 NAME IEBCPYF(R) 00200000
```
IEBCOPY User Exit Capability illustration sample code

In order to demonstrate the IEBCOPY User Exit Capability, we generated two programs:
- The program (IEBCPYL) to invoke the Control Statement Exit
- The Control Statement Exit module (IEBCPYC)

In Example C-6, we show the assembler source for the IEBCPYL program to load IEBCOPY and invoke the control statement exit IEBCPYC.

The use of the IEBCPARM DSECT=NO statement generates the work area passed to IEBCOPY. When IEBCOPY has been invoked, it will link to the IEBCPYC exit module until told to stop.

Example C-6  Assembler source for IEBCPYL program

```
MACRO
&NAME SEGSTART
AMODE 24
&NAME STM 14,12,12(13) SAVE HIS REGS IN HIS SAVE AREA
R0 EQU 0
R1 EQU 1
R3 EQU 3
R4 EQU 4
RB EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
BALR 12,0 SET UP ADDRESSABILITY
USING *,12 USE REG 12 AS BASE REG
ST 13,SAVEREGS+4 SAVE @ OF HIS SAVEAREA IN MINE
LA 03,SAVEREGS LOAD @ OF MY SAVE AREA IN REG 3
ST 03,8(13) SAVE @ OF MY SAVE AREA IN HIS
LR 13,03 LOAD @ OF MY SAVE AREA IN REG 13
MEND
MACRO
&NAME SEGEND
&NAME L 13,SAVEREGS+4 LOAD REG13 WITH @ OF HIS SAVE
LM 14,12,12(13) RESTORE REGS FROM HIS SAVEAREA
XR R15,R15
BR 14 RETURN TO CALLING RTN VIA REG 14
SAVEREGS DC 18F'0' SET UP SAVE AREA
MEND
IEBCPYF SEGSTART
* THIS IS A SIMPLE PROGRAM TO LINK TO IEBCOPY INSTRUCTING IT TO
* INVOKE THE CONTROL STATEMENT EXIT MODULE.
*
* R3 PARM
* R4 IEBCREAS DSECT
* R12 OVERALL BASE REGISTER
START DS 0H
LA R1,CPARM_PARMLIST
MVC CPARM_OPTIONS_SIZE,=H'0'
MVC CPARM_DDADNAMES_SIZE,=H'0'
MVC CPARM_PAGENUM_SIZE,=H'4'
MVC CPARM_PAGENUM_TEXT,=CL4'0004'
```
LOAD   EPLOC=IEBCPYEC
ST    R0,CPARM_EXIT_CONTROLSTMT_ADD
OI    CPARM_PARMLIST_EXITS,CPARM_PARMLIST_LASTFLAG
LA     R1,CPARM_PARMLIST
LINK   EP=IEBCOPY
FINISH DS    OH
SEGEND
DS   OD
IEBCPYEC DC C'IEBCPYC ' EXIT FOR CONTROL STATEMENTS
ORG
IEBCPARM DSECT=NO
IEBCREAS
END

In Example C-7, we show example JCL to generate program IEBCPYL. It processes the
source from data set MHLRES2.IEBCOPY.DFSMS21.PDS(IEBCPYLA) and creates the
program in MHLRES2.IEBCOPY.DFSMS21.LOAD, which must be shown as a STEPLIB
when executing program IEBCPYL.

Example C-7   JCL to assemble and link the IEBCPYL program

//MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10,
// MSGCLASS=J,
// MSGLEVEL=1,CLASS=A,
// NOTIFY=&SYSUID
/*JOBPARM S=*
//ASMHCL PROC
//ASM      EXEC PGM=ASMA90,REGION=0M,
//             PARM='OBJECT,NODECK'
//SYSLIN   DD  DSN=&&OBJ,DISP=(NEW,PASS),UNIT=SYSDA,
//             SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120
//SYSLIB   DD  DISP=SHR,DSN=SYS1.MACLIB
//SYSPRINT DD  SYSOUT=*  
//SYSUT1   DD  DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(5,5))
//*/
//LKED     EXEC PGM=HEWL,REGION=2048K,COND=(8,LE,ASM),
//             PARM='XREF,LIST,LET'
//SYSLIN   DD  DSN=&&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSPRINT DD  SYSOUT=*  
//SYSUT1   DD  DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(5,5))
// PEND
// EXEC ASMHCL
//ASM.SYIN DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.PDS(IEBCPYLA)
*/
//LKED.SYSLMOD DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD
//LKED.SYIN   DD *
SETSSI 00002100
NAME IEBCPYL(R)

Program IEBCPYL loads module IEBCPYC as the control statement exit.
In Example C-8, we show the source for the IEBCPYC module.

The statement IEBCPLST is significant because it generates the map of the area that is passed by IEBCOPY as a result of being invoked with the PARAM that names the IEBCPYC exit.

Communication back to IEBCOPY is through updates to specific areas of the data area mapped by IEBCPLST. In particular, note that R15 must not be used to send return codes to IEBCOPY.

This example code is intended to illustrate the possibilities for use of the control statement exit and as such contains diagnostic code.

The sections of code labeled CTRL1/2/3 and E manage the return of information to IEBCOPY then the last call to inform IEBCOPY not to return for further control statements.

Example C-8 Assembler source for IEBCPYC module

```assembly
&NAME SEGSTART
MACRO
&NAME SEGSTART
AMODE 24
&NAME STM 14,12,12(13) SAVE HIS REGS IN HIS SAVE AREA
R1 EQU 1
R3 EQU 3
R4 EQU 4
R5 EQU 5
RB EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
BALR 12,0 SET UP ADDRESSABILITY
USING *,12 USE REG 12 AS BASE REG
ST 13,SAVEREGS+4 SAVE @ OF HIS SAVEAREA IN MINE
LA 03,SAVEREGS LOAD @ OF MY SAVE AREA IN REG 3
ST 03,B(13) SAVE @ OF MY SAVE AREA IN HIS
LR 13,03 LOAD @ OF MY SAVE AREA IN REG 13
MEND
MACRO
&NAME SEGEND
&NAME L 13,SAVEREGS+4 LOAD REG13 WITH @ OF HIS SAVE
LM 14,12,12(13) RESTORE REGS FROM HIS SAVEAREA
XR R15,R15
BR 14 RETURN TO CALLING RTN VIA REG 14
SAVEREGS DC 18F'0' SET UP SAVE AREA
MEND
IEBCPYC SEGSTART
* THIS IS A SIMPLE PROGRAM TO GENERATE IEBCOPY CONTROL
* STATEMENTS TO PASS TO IEBCOPY.
*
* R3 PARM
* R4 WORK
* R5 CPLST DATA AREA
* R12 OVERALL BASE REGISTER
START DS 0H
LR R3,R1
WTO "GOT TO IEBCPYEC"
```

396 IBM z/OS V2.1 DFSMS Technical Update
USING CPLST_PARMLIST,R3
USING CPLST_CONTROL_AREA,R5
TM CPLST_PARMLIST_CONTROL_FLAGS,CPLST_CONTROL_INIT
BO INIT
TM CPLST_PARMLIST_CONTROL_FLAGS,CPLST_CONTROL_DATA
BO CONTROL
DC H'0'

INIT DS OH
WTO 'CPLST_CONTROL_INIT'
LA R4,CPLST_RC_INIT
B SETRC

CONTROL DS OH
CLI CONTROLF,C'1'
BE CTRL1
CLI CONTROLF,C'2'
BE CTRL2
CLI CONTROLF,C'3'
BE CTRL3
CLI CONTROLF,C'E'
BE CTRL4

* LAST TIME IN
CTRL4 WTO 'CPLST_CONTROL_DATA - E'
LA R4,CPLST_RC_END
LA R4,CPLST_RC_FINISH
B SETRC

CTRL1 WTO 'CPLST_CONTROL_DATA - 1'
MVI CONTROLF,C'2'
L R5,CPLST_PARMLIST_ENTRY_ADD
LA R4,COPY1
ST R4,CPLST_CONTROL_DATA_ADD
LA R4,L'COPY1
ST R4,CPLST_CONTROL_DATA_LEN
OI CPLST_CONTROL_OFLAG1,CPLST_CONTROL_IN
LA R4,CPLST_RC_CONTROL
B SETRC

CTRL2 WTO 'CPLST_CONTROL_DATA - 2'
MVI CONTROLF,C'3'
L R5,CPLST_PARMLIST_ENTRY_ADD
LA R4,COPY1
ST R4,CPLST_CONTROL_DATA_ADD
LA R4,L'COPY1
ST R4,CPLST_CONTROL_DATA_LEN
OI CPLST_CONTROL_OFLAG1,CPLST_CONTROL_IN
LA R4,CPLST_RC_CONTROL
B SETRC

CTRL3 WTO 'CPLST_CONTROL_DATA - 3'
MVI CONTROLF,C'E'
L R5,CPLST_PARMLIST_ENTRY_ADD
LA R4,COPY2
ST R4,CPLST_CONTROL_DATA_ADD
LA R4,L'COPY2
ST R4,CPLST_CONTROL_DATA_LEN
OI CPLST_CONTROL_OFLAG1,CPLST_CONTROL_IN
LA R4,CPLST_RC_CONTROL
B SETRC
In Example C-9, we show example JCL to generate module IEBCPYC. It processes the source from data set MHLRES2.IEBCOPY.DFSMS21.PDS(IEBCPYC) and creates the module in MHLRES2.IEBCOPY.DFSMS21.LOAD, which must be shown as a STEPLIB when executing program IEBCPYL.

Example C-9   JCL to assemble and link the IEBCPYC module

```plaintext
//MHLRES2E JOB (1234567,COMMENT),MHLRES2,TIME=10,
// MSGCLASS=J,
// MSGLEVEL=1,CLASS=A,
// NOTIFY=&SYSUID
/*JOBPARM S=*
//ASM PROC
//ASM EXEC PGM=ASMA90,REGION=0M,
// PARM='OBJECT,NODECK'
//SYSLIN DD DSN=&&OBJ,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(5,5))
//*
//LKED EXEC PGM=HEWL,REGION=2048K,COND=(8,LE,ASM),
// PARM='XREF,LIST,LET'
//SYSLIN DD DSN=&OBJ,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(5,5))
// PEND
// EXEC ASMHCL
//ASM.SYSLMOD DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.PDS(IEBCPYC)
/*
//LKED.SYSLMOD DD DISP=SHR,DSN=MHLRES2.IEBCOPY.DFSMS21.LOAD
//LKED.SYSLIN DD *
SETSSI 00002100
NAME IEBCPYC(R)
```
Sample job to list VTOC to show DS1DSCHA flag

In Example C-10, and in the successive examples, we show the assembler source code for the program to display the data set changed indicator (DS1DSCHA) for up to 20 data sets on a volume. This program also checks various EAV indicators on the volume.

Example C-10 Source for CVSEQ8D part 1 of 19

```
CVSEQ8D TITLE 'CVAF CVAFSEQ TEST MODULE' 00010008
CVSEQ8D CSECT 00020008
CVSEQ8D AMODE 31 00030008
CVSEQ8D RMODE 24 00040008
*** 00050000
* 00060000
* CVSEQ8D - MODULE THAT ISSUES THE CVAFSEQ MACRO AND PROCESS A 00070008
* A VOLUME TO RETURN DSCBS, 20 AT A TIME, IN PHYSICAL 00080000
* SEQUENTIAL ORDER USING A STARTING CCHHR OF ZERO. 00090000
* THE CVAFSEQ MACRO CALL WILL BE ISSUED THREE TIMES 00100000
* USING THE FOLLOWING EADSCB KEYWORD SETTINGS: 00110000
* - EADSCB KEYWORD NOT CODED (DEFAULTS TO EADSCB=NOTOK) 00120000
* - EADSCB=NOTOK CODED 00130000
* - EADSCB=OK CODED 00140000
* CV4EADOK BIT SETTING WILL BE DETERMINED FOR EACH CALL.* 00150000
* For a non EAV volume: 00160000
* Will expect all DSCBS on the volume returned in the 00170000
* order the datasets were created. 00180000
* For a EAV volume: 00190000
* Will expect RC04 / STAT082 returned from CVAFSEQ call 00200000
* WHEN THE EADSCB KEYWORD IS NOT CODED OR EADSCB=NOTOK IS 00210000
* coded. 00220000
* Will expect all DSCBS on the volume returned in the 00230000
* order the datasets were created when EADSCB=OK IS 00240000
* coded. 00250000
* This program will create an output report that 00260000
* should be similar to the examples listed below. 00270000
```

Example C-11 Source for CVSEQ8D part 2 of 19

```
--- 00320000
* EXAME 1: NON EAV VOLUME WITH OS VTOC 00330000
* --- 00340000
* CVSEQ8D START OF OUTPUT MESSAGES 00350000
* 00360000
* CVAFSEQ CALL: EADSCB KEYWORD NOT CODED 00370000
* CV4EADOK BIT IS NOT SET / EADSCB=NOTOK 00380000
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL 00390000
* X"00" DEC"000" 00 - CVSTAT CODE VERIFIED 00400000
* 00410000
```
Example C-12  Source for CVSEQ8D part 3 of 19

* EXAMPLE 2: EAV VOLUME WITH OS VTOC
* ----------------------------------
* CVSEQ8D START OF OUTPUT MESSAGES
* 00670000
* 00680000
* 00690000
* CVAFSEQ CALL: EADSCB KEYWORD NOT CODED
* 00720000
* CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* 00730000
* RC04 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT
* 00740000
* X"52" DEC"082" 52 - CVSTAT CODE VERIFIED
* 00750000
* 00760000
* CVAFSEQ CALL: EADSCB=NOTOK CODED
* 00770000
* CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* 00780000
* RC04 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT
* 00790000
* X"52" DEC"082" 52 - CVSTAT CODE VERIFIED
* 00800000
* 00810000
* CVAFSEQ CALL: EADSCB=OK CODED
* 00820000
* CV4EADOK BIT SET / EADSCB=OK
* 00830000
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL
* 00840000
* X"00" DEC"000" 00 - CVSTAT CODE VERIFIED
* 00850000
* 00860000
* DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:
* 00870000
* DSN: CV5MSC2.SEQ01
* 00880000
* DSN: CV5MSC2.PDS01
* 00890000
* DSN: CV5MSC2.VSAM01.DATA
* 00900000
* DSN: SYS1.VVDS.V1P9503
* 00910000
* DSN: CV5MSC2.PDSE01
* 00920000
* DSN: CV5MSC2.SEQ02
* 00930000
* DSN: CV5MSC2.VSAM02.DATA
* 00940000
* DSN: CV5MSC2.PDSE02
* 00950000
*
Example C-13  Source for CVSEQ8D part 4 of 19

* EXAMPLE 3: NON EAV VOLUME WITH IX VTOC
* -------------------------------------------------------------------
* CVSEQ8D START OF OUTPUT MESSAGES
* * CVAFSEQ CALL: EADSCB KEYWORD NOT CODED
* * CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* * RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL
* * X"00" DEC"000" 00 - CVSTAT CODE VERIFIED
* * CVAFSEQ CALL: EADSCB=NOTOK CODED
* * CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* * RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL
* * X"00" DEC"000" 00 - CVSTAT CODE VERIFIED
* * CVAFSEQ CALL: EADSCB=OK CODED
* * CV4EADOK BIT SET / EADSCB=OK
* * RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL
* * X"00" DEC"000" 00 - CVSTAT CODE VERIFIED
* DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENTIAL ORDER:
* DSN: SYS1.VTOCIX.VP9503
* DSN: CVS5MSC2.SEQ01
* DSN: SYS1.VVDS.V1P9502
* DSN: CVS5MSC2.PDS01
* DSN: CVS5MSC2.VSAM01.DATA
* DSN: CVS5MSC2.PDSE01
* DSN: CVS5MSC2.SEQ02
* DSN: CVS5MSC2.VSAM02.DATA
* DSN: CVS5MSC2.PDSE02
* END OF DATA REACHED - ALL DATASETS PROCESSED
* CVSEQ8D END OF OUTPUT MESSAGES

Example C-14  Source for CVSEQ8D part 5 of 19

* EXAMPLE 4: EAV VOLUME WITH IX VTOC
* -------------------------------------------------------------------
* CVSEQ8D START OF OUTPUT MESSAGES
* * CVAFSEQ CALL: EADSCB KEYWORD NOT CODED
* * CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* * RC04 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT
* * X"52" DEC"082" 52 - CVSTAT CODE VERIFIED
* * CVAFSEQ CALL: EADSCB=NOTOK CODED
* * CV4EADOK BIT IS NOT SET / EADSCB=NOTOK
* * CV4EADOK BIT IS NOT SET / EADSCB=NOTOK

Appendix C. Sample assembler code  401
RC04 verified - logical error status in CVSTAT
* X’52’ DEC’082’ 52 - CVSTAT code verified
* 01460000
* 01480000
* CVAFSEQ CALL: EADSCB=OK CODED
* CV4EADOK BIT SET / EADSCB=OK
* 01490000
* 01500000
* ROC0 verified - the request was successful
* X’00’ DEC’000’ 00 - CVSTAT code verified
* 01510000
* 01520000
* 01530000
* Datasets on the volume listed in physical sequential order:
* DSN: SYS1.VT0CIX.VP9503
* DSN: CV55MSC2.SEQ01
* DSN: SYS1.VWDS.V1P9SO2
* DSN: CV55MSC2.PDS01
* DSN: CV55MSC2.SSAMO1.DATA
* DSN: CV55MSC2.PDS£01
* DSN: CV55MSC2.SEQ02
* DSN: CV55MSC2.SSAMO2.DATA
* DSN: CV55MSC2.PDSE02
* 01540000
* 01550000
* 01560000
* 01570000
* 01580000
* 01590000
* 01600000
* 01610000
* 01620000
* 01630000
* End of data reached - all datasets processed
* 01640000
* 01650000
* 01660000
* 01670000
* CVSEQ8D end of output messages
* 01680000
* 01690000
* 01700000
* Note: this module requires the use of the CVSTCHK module which is called to interpret the CVSTAT code returned.

Example C-15  Source for CVSEQ8D part 6 of 19

***********************************************************************
** INITIALIZATION
** - obtain the necessary information from the DASD volume
** - open the output file and write necessary output messages
** - set starting CCHHR to zero
** - set end of data switch to no end of data
** MAINLINE
** - load the table with DSCB addresses to use for CVAFSEQ CALL
** - initialize buffer list
** - invoke CVAFSEQ1 routine - EADSCB=OK CODED
** - report on return code and CVSTAT code returned from call
** - initialize buffer list
** - invoke CVAFSEQ2 routine - EADSCB=NOTOK CODED
** - report on return code and CVSTAT code returned from call
** - initialize buffer list
** - invoke CVAFSEQ3 routine - EADSCB=OK CODED
** - invoke CVAFSEQ3 routine - EADSCB=OK CODED
** - report on return code and CVSTAT code returned from call
** - do while more table entries to process
** - invoke PRTBRTN routine to process DSCBS returned from CVAFSEQ
***********************************************************************
Appendix C. Sample assembler code

Example C-16  Source for CVSEQ8D part 7 of 19

* - PRINT OUT ALL DSNAMES ON THE VOLUME IN SEQUENTIAL ORDER 01970000
* FINALIZATION 01980000
* - WRITE NECESSARY MESSAGES AND CLOSE THE OUTPUT FILE AND EXIT 02000000
* CVSEQ8D - JOB INFORMATION 02010000
* NORMAL END OF JOB: 02020008
* - RC=00 AND OUTDD OUTPUT AS DETAILED ABOVE 02030000
* ABNORMAL END OF JOB: 02040000
* - ABEND 100 - ERROR OPENING VTOC ON THE DASD VOLUME THAT IS 02050000
*    ASSOCIATED WITH THE CVAFDD DD STATEMENT 02060000
* - ABEND 101 - ERROR OPENING THE OUTDD DATASET 02070000
* - ABEND 102 - ERROR CLOSING THE OUTDD DATASET 02080000

Example C-16  Source for CVSEQ8D part 7 of 19

***********************************************************************
* HOUSREEKEEPING 02100000
* - SAVE CALLER'S REGISTERS AND ESTABLISH A NEW REGISTER SAVE AREA 02110000
* STM   R14,R12,12(R13) STANDARD LINKAGE CONVENTION 02120000
BALR  R11,0 DCL R11 AS IMPLIED BASE REG 02130000
USING BASE,R11,R12 R12 IS ALSO BASE REG 02140000
BASE L R12,BASEADDR SET UP ADDRESSING FOR R12 02150000
B   CV000000 BRANCH AROUND DECLARES 02160000
BASEADDR DC A(BASE+4096) ADDRESSING FOR R12 02170000
CV000000 DS 0H INITIALIZATION SECTION 02180000
INITIAL  DS 0H INITIALIZATION SECTION 02190000
BAL   R14,IDVOLRTN INVOKE RTN TO IDENTIFY THE VOLUME(S) 02200000
OPEN   (OUTFILE,(OUTPUT)) OPEN THE OUTPUT MESSAGE FILE 02210000
TM   OUTFILE+48,X'10' IF OPEN OF OUTPUT FILE NOT OK 02220000
BO   OK1 ISSUE USER ABEND 101 02230000
ABEND 101 ISSUE USER ABEND 101 02240000
OK1  DS 0H 02250000
L   R1,UCBADD 02260000
MVC   VOLSER(6),28(R1) WRITE A RECORD TO THE OUTPUT FILE 02270000
MVC   CCHHRS,CCHHR0 INIT CCHHR START TO ZERO 02280000
MVI   SWEOED,NOEOED SET SWITCH TO NO END OF DATA 02290000
***********************************************************************
Example C-17  Source for CVSEQ8D part 8 of 19

* MAINLINE
  * 02490000
  * 02500000
  MAINLINE DS OH  MAINLINE SECTION  02510000
  BAL R14,LDTABRTN  INVOKE LDTABRTN TO LOAD TABLE  02520000
  BAL R14,INITBRTN  INVOKE INITBRTN TO INIT BUFF LIST  02530000
  BAL R14,CVAFSQ1  INVOKE CVAFSQ1 TO ISSUE CVAFSEQ  02540000
  PUT OUTFILE,BLNKLINE  WRITE THE REC TO OUTPUT FILE  02550000
  BAL R14,INITBRTN  INVOKE INITBRTN TO INIT BUFF LIST  02560000
  BAL R14,CVAFSQ2  INVOKE CVAFSQ2 TO ISSUE CVAFSEQ  02570000
  PUT OUTFILE,BLNKLINE  WRITE THE REC TO OUTPUT FILE  02580000
  BAL R14,INITBRTN  INVOKE INITBRTN TO INIT BUFF LIST  02590000
  BAL R14,CVAFSQ3  INVOKE CVAFSQ3 TO ISSUE CVAFSEQ  02600000
  PUT OUTFILE,BLNKLINE  WRITE THE REC TO OUTPUT FILE  02610000
  PUT OUTFILE,MSG0  WRITE THE REC TO OUTPUT FILE  02620000
  * 02630000
  CLI SWEOD,EOD  DOWHILE TABLE DATA TO PROCESS  02640000
  BE TABDONE  02650000
  BAL R14,PRTBRTN  INVOKE PRTBRTN TO PROCESS TBL  02660000
  * 02670000
  TABDONE DS OH  02680000
  PUT OUTFILE,EODMSG  WRITE THE REC TO OUTPUT FILE  02690000
  * 02700000
  ******************************************************************************** 02710000
  * 02720000
  * FINALIZATION
  * 02730000
  * 02740000
  FINAL DS OH  FINALIZATION SECTION  02750000
  PUT OUTFILE,BLNKLINE  WRITE A RECORD TO THE OUTPUT FILE  02760000
  PUT OUTFILE,ENOMSG  WRITE A RECORD TO THE OUTPUT FILE  02770000
  CLOSE (OUTFILE)  CLOSE OUTPUT FILE  02780000
  C R15,RCODE00  IF FILE CLOSE IS NOT OK  02790000
  BE OK2  02800000
  ABEND 102  ISSUE USER ABEND 102  02810000
  OK2 DS OH  02820000
  L R13,4(R13)  RESTORE REGISTER  02830000
  LM R14,R12,12(R13)  RESTORE CALLERS REGISTERS  02840000
  LA R15,0  SET RC TO 0  02850000
  BR R14  RETURN TO CALLER  02860000
  * 02870000
  ******************************************************************************** 02880000

Example C-18  Source for CVSEQ8D part 9 of 19

*  IDVOLRTN
  * 02890000
  * - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME
  * 02900000
  IDVOLRTN DS OH  IDENTIFY VOLUME ROUTINE  02910000
  ST R14,IDVLSAVE  STORE C(R14) INTO SAVE AREA  02920000
  RDJFCB (VTOCDCB,(INPUT))  READ JFCB / OPEN VTOC  02930000
  MVI JFCB1,X'04'  PUT IN ID FOR FORMAT 4  02940000
  MVC JFCB1+1(43),JFCB1  SETUP FOR VTOC OPEN  02950000
  OPEN (VTOCDCB,(INPUT)),TYPE=J  OPEN VTOC (OPEN TYPE=J)  02960000
  TM VTOCDCB+48,X'10'  IF OPEN OF VTOC NOT OK  02970000
  BO OK3  02980000
  ABEND 100  ISSUE USER ABEND 100  02990000
OK3 DS OH
SLR R3,R3 INIT R3 FOR DEB PTR
SLR R4,R4 INIT R4 FOR UCB PTR
ICM R3,'0111',VTOCDCB+45 GET DEB ADDRESS
ST R3,DEBADD SAVE DEB ADDRESS
ICM R4,'0111',33(R3) GET UCB ADDRESS
ST R4,UCBADD STORE UCB ADDRESS
IDVLEXIT DS OH EXIT FROM IDVOLRTN
L R14,IDVLSAVE LOAD C(IDVLSAVE) INTO R14
BR R14 EXIT

Example C-19 Source for CVSEQ8D part 10 of 19

LA R4,DSCB11 LOAD R4 WITH ADDRESS OF DSCB11
ST R4,DSCB11 STORE ADDRESS OF DSCB11 INTO TABLE
LA R4,DSCB12 LOAD R4 WITH ADDRESS OF DSCB12
ST R4,DSCB12 STORE ADDRESS OF DSCB12 INTO TABLE
LA R4,DSCB13 LOAD R4 WITH ADDRESS OF DSCB13
ST R4,DSCB13 STORE ADDRESS OF DSCB13 INTO TABLE
LA R4,DSCB14 LOAD R4 WITH ADDRESS OF DSCB14
ST R4,DSCB14 STORE ADDRESS OF DSCB14 INTO TABLE
LA R4,DSCB15 LOAD R4 WITH ADDRESS OF DSCB15
ST R4,DSCB15 STORE ADDRESS OF DSCB15 INTO TABLE
LA R4,DSCB16 LOAD R4 WITH ADDRESS OF DSCB16
ST R4,DSCB16 STORE ADDRESS OF DSCB16 INTO TABLE
LA R4,DSCB17 LOAD R4 WITH ADDRESS OF DSCB17
ST R4,DSCB17 STORE ADDRESS OF DSCB17 INTO TABLE
Example C-20  Source for CVSEQ8D part 11 of 19

INIT0010 DS OH  INIT BUFFER LIST WITH DSCB ADDR/LEN  03810000
 L  R5,DSCBA  LOAD R5 WITH DSCB ADDRESS FROM TABLE  03820000
 ST  R5,BFLEBUF-BFLE,(R7)  PLACE IN BUFFER LIST  03830000
 MVI  BFLELTH-BFLE(R7),DSCBLEN  FULL DSCB READ  03840000
 OI  BFLEFL,BFLECHR  CCHR TO BE RETURNED  03850000
 LA  R2,TBLLNG(R2)  POINT TO NEXT TABLE ENTRY  03860000
 LA  R7,BFLELN(R7)  POINT TO NEXT BUFFER LIST ENTRY  03870000
 BCT  R4,INIT0010  BRANCH TO INIT0010 IF C(R4) GT ZERO  03880000
 DROP  R2,R8  DROP R2,R7,R8  03890010
 *  DROP  R2,R7,R8  DROP R2,R7,R8  03891010
 INITEXIT DS OH  EXIT FROM INITBRTN  03900000
 L  R14,INITSAVE  LOAD C(INITSAVE) INTO R14  03910000
 BR  R14  EXIT  03920000
 *  03930000
*************************************************************************** 03940000
*  PRPTBRTN  *  03950000
*  - PROCESS TABLE WHICH CONTAINS ADDRESS OF DSCB FOR EACH ENTRY  *  03960000
*  RETURNED FROM CVAFSEQ CALL.  *  03970000
*  TABLE IS CURRENTLY 20 ENTRIES.  *  03980000
*  03990000
PRTBRTN DS OH  PROCESS TABLE ENTRIES  04000000
 ST  R14,PRPTBSAVE  STORE C(R14) INTO SAVE AREA  04010000
L     R4,COUNT LOAD COUNT IN R4 04020000
LA    R2,TABLE LOAD ADDRESS OF TABLE INTO R2 04030000
USING TBLMAP,R2 ESTABLISH ADDRESSABILITY TO TABLE 04040000
PRTB0000 DS OH PROCESS ENTRIES 04050000
L     R3,DSCBA ADDRESSABILITY TO DSCBA 04060000
CLC 0(1,R3),FMT4 IS IT A FMT4? 04070000
BNE PRTB0010 NO, THEN CONTINUE TO PROCESS DSN 04080000
B    PRTB0060 YES, BRANCH TO POINT TO NEXT ENTRY 04090000
PRTB0010 DS OH FMT5 CHECK 04100000
CLC 0(1,R3),FMT5 IS IT A FMT5? 04110000
BNE PRTB0020 NO, THEN CONTINUE TO PROCESS DSN 04120000
B    PRTB0060 YES, BRANCH TO POINT TO NEXT ENTRY 04130000
PRTB0020 DS OH FMT7 CHECK 04140000
CLC 0(1,R3),FMT7 IS IT A FMT7? 04150000
BNE PRTB0024 NO, THEN CONTINUE TO PROCESS DSN 04160000
B    PRTB0060 YES, BRANCH TO POINT TO NEXT ENTRY 04170000
PRTB0024 DS OH FMT9 CHECK 04180000
CLC 0(1,R3),FMT9 IS IT A FMT9? 04190000
BNE PRTB0030 NO, THEN CONTINUE TO PROCESS DSN 04200000
B    PRTB0060 YES, BRANCH TO POINT TO NEXT ENTRY 04210000
PRTB0030 DS OH DETERMINE IF END OF DATA WAS REACHED 04220000
CLC 0(1,R3),NODSN IS THERE '00' IN FIRST BYTE 04230000
BNE PRTB0040 NO, THEN CONTINUE TO PROCESS DSN 04240000
B    PRTB0060 YES, BRANCH TO POINT TO NEXT ENTRY 04250000
Example C-21 Source for CVSEQ8D part 12 of 19
PRTB0040 DS OH PROCESS DSN - FORMAT 04260000
USING IECSDSL1,R3 04261001
MVC DSNMSG(44),DS1DSNAME OVE DSN TO PRINT LINE 04270000
MVI DSNCHA,C'N' 04270100
TM DS1DSIND,DS1DSCHA IS THE CHANGED BIT ON 04270200
*    TM DS1DSCHA,DS1IND02 IS THE CHANGED BIT ON 04270300
*    BNO DSNCHANO 04270400
*    MVI DSNCHA,C'Y' 04270500
DSNCHANO EQU * 04270600
*    MVC DSNMSG(44),0(R3) MOVE DSN TO PRINT LINE 04270700
PRTB0050 DS OH PROCESS / FORMAT CCHDR 04280000
PUT OUTFILE,MSG1 WRITE A RECORD TO THE OUTPUT FILE 04290000
PRTB0060 DS OH PREPARE TO PROCESS NEXT TABLE ENTRY 04300000
LA    R2,TBLNLG(R2) POINT TO NEXT TABLE ENTRY 04310000
BCT R4,PRTB0000 BRANCH TO PRTB0000 IF C(R4) GT ZERO 04320000
MVI SWEOD,EOD YES, SET SWITCH TO END OF DATA 04330000
PRTBEXIT DS OH EXIT FROM PRTBRTN 04340000
L    R14,PRTBSAVE LOAD C(PRTBSAVE) INTO R14 04350000
BR    R14 EXIT 04360000
* 04370000
*****************************************************************************
* TSTRCRTN 04380000
* - TEST RETURN CODE FROM CVAFSEQ 04390000
* - FORMAT AND PRINT MESSAGES AS NEEDED 04400000
* - INVOKE CVSTAT MODULE TO CHECK CVSTAT CODE 04420000
* 04430000
TSTRCRTN DS OH CHECK RETURN CODE ROUTINE 04440000
ST    R14,TSTRSAVE STORE C(R14) INTO SAVE AREA 04450000

Appendix C. Sample assembler code 407
Example C-22  Source for CVSEQ8D part 13 of 19

<table>
<thead>
<tr>
<th>PROCOA</th>
<th>PUT OUTFILE,ROCOA</th>
<th>WRITE ROOA MESSAGE</th>
<th>04600000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRC04A</td>
<td>PUT OUTFILE,ROC04</td>
<td>WRITE ROC04 MESSAGE</td>
<td>04610000</td>
</tr>
<tr>
<td>PRC08A</td>
<td>PUT OUTFILE,ROC08</td>
<td>WRITE ROC08 MESSAGE</td>
<td>04620000</td>
</tr>
<tr>
<td>PRC12A</td>
<td>PUT OUTFILE,ROC12</td>
<td>WRITE ROC12 MESSAGE</td>
<td>04630000</td>
</tr>
<tr>
<td>PRC16A</td>
<td>PUT OUTFILE,ROC16</td>
<td>WRITE ROC16 MESSAGE</td>
<td>04640000</td>
</tr>
<tr>
<td>PRCER</td>
<td>PUT OUTFILE,RCER</td>
<td>WRITE RC ERROR MESSAGE</td>
<td>04650000</td>
</tr>
</tbody>
</table>

CALLCVST DS OH  CALL TO CVSTCHK ROUTINE  04690000
ST R14,CALLSAVE  STORE C(R14) INTO SAVE AREA  04800000
LA R1,PARADDR1  LOAD R1 WITH PARMLIST FOR CALL  04810000
L R15,=V(CVSTCHK)  SET UP CALL TO CVSTCHK  04820000
BALR R14,R15  INVOKE CVSTCHK EXTERNAL SUBPROGRAM  04830000
PUT OUTFILE,WFMTRC1  WRITE A RECORD TO THE OUTPUT FILE  04840000
CALLEXIT DS OH  EXIT FROM CALLCVST  04850000
L R14,CALLSAVE  LOAD C(CALLSAVE) INTO R14  04860000
BR R14  EXIT  04870000
*  04880000

********************************************************************************
*                           CVAFSQ1                                   *
*     - INVOKE THE CVAFSEQ MACRO AND READ THE DSCBS                   *
*       EADSCB KEYWORD NOT CODED - DEFAULTS TO EADSCB=NOTOK           *
*                                                                       *
CVAFSQ1	DS OH  CVAFSEQ - ROUTINE1  04900000		
ST	R14,CVS1SAVE	STORE C(R14) INTO SAVE AREA	04910000
LA	R2,CVPLIST	LOAD R2 WITH ADDR OF CVPLIST	04920000

********************************************************************************
*                           CALLCVST                                   *
*     - ROUTINE TO CALL CVSTCHK TO INTERPRET CVSTAT TABLE             *
*                                                                       *
CALLCVST	DS OH  CALL TO CVSTCHK ROUTINE  04930000		
ST	R14,CALLSAVE	STORE C(R14) INTO SAVE AREA	04940000
LA	R1,PARADDR1	LOAD R1 WITH PARMLIST FOR CALL	04950000
L	R15,=V(CVSTCHK)	SET UP CALL TO CVSTCHK	04960000
BALR	R14,R15	INVOKE CVSTCHK EXTERNAL SUBPROGRAM	04970000
PUT	OUTFILE,WFMTRC1	WRITE A RECORD TO THE OUTPUT FILE	04980000
CALLEXIT	DS OH  EXIT FROM CALLCVST  04990000		
L	R14,CALLSAVE	LOAD C(CALLSAVE) INTO R14	04900000
BR	R14	EXIT  04910000	

*  04920000

********************************************************************************
*                           CVAFSQ1                                   *
*     - INVOKE THE CVAFSEQ MACRO AND READ THE DSCBS                   *
*       EADSCB KEYWORD NOT CODED - DEFAULTS TO EADSCB=NOTOK           *
*                                                                       *
CVAFSQ1	DS OH  CVAFSEQ - ROUTINE1  04930000		
ST	R14,CVS1SAVE	STORE C(R14) INTO SAVE AREA	04940000
LA	R2,CVPLIST	LOAD R2 WITH ADDR OF CVPLIST	04950000

********************************************************************************
Appendix C. Sample assembler code

Example C-23  Source for CVSEQ8D part 14 of 19

*L     R3,UCBADD          LOAD R3 WITH UCB ADDRESS              04980000
* PUT   OUTFILE,CALLMR11   WRITE A REC TO OUTPUT FILE            04990000
* CVAFSEQ ACCESS=GT,              X05010000
   UCB=(R3),                 X05020000
   BRANCH=(YES,PGM),                     X05030000
   BUFLIST=BUFLISTH,             X05040000
   MF=(E,(R2))                  X05050000
* ST R15,RETCODE        STORE RC INTO RETCODE                 05070000
*                                X05080000

Example C-23  Source for CVSEQ8D part 14 of 19

* REPORT ON CV4EADOK BIT SETTING
*                                X05090000
*                                X05100000
  TM   CVFL4,CV4EADOK         SELECT BASED ON FLAG4             X05110000
  BNO  NOTOK1                X05120000
  PUT OUTFILE,OKMSG          WRITE OK MSG RECORD                 X05130000
  B   OK4                   X05140000
  NOTOK1   PUT OUTFILE,NOTOKMSG WRITE NOTOK MSG RECORD            X05150000
  OK4   DS   0H              X05160000
  *                                X05170000
  BAL R14,TSTRCRTN           INVOKE ROUTINE TO CHECK RC/STAT     X05180000
  *                                X05190000
  CVSEXIT DS     OH         EXIT FROM CVAFSQ1                     X05200000
  L     R14,CVS1SAVE        LOAD C(SAVE AREA) INTO R14           X05210000
  BR    R14                 EXIT                                 X05220000
  *                                X05230000
***********************************************************************
*                           CVAFSEQ2                                   *
*     - INVOKE THE CVAFSEQ MACRO AND READ THE DSCBS                   *
*       EADSCB=NOTOK IS CODED                                         *
*                                                                       *
CVAFSQ2  DS     0H             CVAFSEQ - ROUTINE2                   X05240000
*                                X05250000
  ST R14,CVS2SAVE            STORE C(R14) INTO SAVE AREA           X05260000
  LA R2,CVPLIST              LOAD R2 WITH ADDR OF CVPLIST         X05270000
  L     R3,DEBADD            LOAD R3 WITH DEB ADDRESS             X05280000
  PUT OUTFILE,CALLMR12       WRITE A REC TO OUTPUT FILE            X05290000
  *                                X05300000
  CVAFSEQ ACCESS=GT,         X05310000
     DEB=(R3),               X05320000
     BRANCH=(YES,PGM),                  X05330000
     BUFLIST=BUFLISTH,                X05340000
     EADSCB=NOTOK,                X05350000
     MF=(E,(R2))                X05360000
  *                                X05370000
  ST R15,RETCODE            STORE RC INTO RETCODE                  X05380000
  *                                X05390000
* REPORT ON CV4EADOK BIT SETTING
*                                X05400000
*                                X05410000
  TM   CVFL4,CV4EADOK         SELECT BASED ON FLAG4               X05420000
  BNO  NOTOK2                X05430000
  PUT OUTFILE,OKMSG          WRITE OK MSG RECORD                    X05440000
  B   OK5                   X05450000

Appendix C. Sample assembler code  409
NOTOK2 PUT OUTFILE,NOTOKMSG WRITE NOTOK MSG RECORD 05500000
OK5 DS OH 05510000
* 05520000
BAL R14,TSTRCRTN INVOKE ROUTINE TO CHECK RC/STAT 05530000
* 05540000
CVS2EXIT DS OH EXIT FROM CVAFSQ2 05550000
L R14,CVS2SAVE LOAD C(SAVE AREA) INTO R14 05560000
BR R14 EXIT 05570000
* 05580000
*********************************************************************** 05590000
Example C-24 Source for CVSEQ8D part 15 of 19
* 05600000
* - INVOKE THE CVAFSEQ MACRO AND READ THE DSCBS * 05610000
* EADSCB=OK IS CODED * 05620000
* 05630000
CVAFSQ3 DS OH CVAFSEQ - ROUTINE3 05640000
ST R14,CVS3SAVE STORE C(R14) INTO SAVE AREA 05650000
LA R2,CVPLIST LOAD R2 WITH ADDR OF CVPLIST 05660000
L R3,DEBADD LOAD R3 WITH DEB ADDRESS 05670000
PUT OUTFILE,CALLMR13 WRITE A REC TO OUTPUT FILE 05680000
* 05690000
CVAFSEQ ACCESS=GT, X05700000
DEB=(R3), X05710000
BRANCH=(YES,PGM), X05720000
BUFLIST=BUFLISTH, X05730000
EADSCB=OK, X05740000
MF=(E,(R2)) 05750000
* 05760000
ST R15,RETCODE STORE RC INTO RETCODE 05770000
* 05780000
* REPORT ON CV4EADOK BIT SETTING 05790000
* 05800000
TM CVFL4,CV4EADOK SELECT BASED ON FLAG4 05810000
BNO NOTOK3 05820000
PUT OUTFILE,OKMSG WRITE OK MSG RECORD 05830000
B OK6 05840000
NOTOK3 PUT OUTFILE,NOTOKMSG WRITE NOTOK MSG RECORD 05850000
OK6 DS OH 05860000
* 05870000
BAL R14,TSTRCRTN INVOKE ROUTINE TO CHECK RC/STAT 05880000
* 05890000
CVS3EXIT DS OH EXIT FROM CVAFSQ3 05900000
L R14,CVS3SAVE LOAD C(SAVE AREA) INTO R14 05910000
BR R14 EXIT 05920000
*********************************************************************** 05930000
* WORKING STORAGE * 05940000
DS OD 05950000
DC CL36'CVSEQ8D-WORKING STORAGE BEGINS HERE' 05960008
* 05970000
*********************************************************************** 05980000
Example C-25  Source for CVSEQ8D part 16 of 19

* EQUATES * 05990000
R0 EQU 0 06000000
R1 EQU 1 06010000
R2 EQU 2 06020000
R3 EQU 3 06030000
R4 EQU 4 06040000
R5 EQU 5 06050000
R6 EQU 6 06060000
R7 EQU 7 06070000
R8 EQU 8 06080000
R9 EQU 9 06090000
R10 EQU 10 06100000
R11 EQU 11 06110000
R12 EQU 12 06120000
R13 EQU 13 06130000
R14 EQU 14 06140000
R15 EQU 15 06150000
*********************************************************************** 06160000
* SAVE AREAS * 06170000
SAVE DC 18F'0' MAIN PROGRAM SAVE AREA 06180000
IDVLSAVE DC F'0' IDENTIFY VOLUME ROUTINE SAVE AREA 06190000
CALLSAVE DC F'0' CALL CVSTAT ROUTINE SAVE AREA 06200000
LDTBSAVE DC F'0' LOAD TABLE ROUTINE SAVE AREA 06210000
INITSAVE DC F'0' INIT BUFFER ROUTINE SAVE AREA 06220000
PRTBSAVE DC F'0' PRINT TABLE ROUTINE SAVE AREA 06230000
INITSAVE DC F'0' TEST RETURN CODE ROUTINE SAVE AREA 06240000
CVS1SAVE DC F'0' CVAFSEQ READ 1 ROUTINE SAVE AREA 06250000
CVS2SAVE DC F'0' CVAFSEQ READ 2 ROUTINE SAVE AREA 06260000
CVS3SAVE DC F'0' CVAFSEQ READ 3 ROUTINE SAVE AREA 06270000
*********************************************************************** 06280000
* CONSTANTS * 06290000
RCODE00 DC F'0' RETURN CODE 0 06300000
RCODE04 DC F'4' RETURN CODE 4 06310000
RCODE08 DC F'8' RETURN CODE 8 06320000
RCODE12 DC F'12' RETURN CODE 12 06330000
RCODE16 DC F'16' RETURN CODE 16 06340000
CCHHRS DC XL5'0000000000' STARTING CCHR 06350000
CCHHR0 DC XL5'0000000000' INIT WITH ZERO 06360000
FMT4 DC XL1'04' FMT4? 06370000
FMT5 DC XL1'05' FMT5? 06380000
FMT7 DC XL1'07' FMT7? (ONLY CERTAIN DEVICE TYPES) 06390000
FMT9 DC XL1'09' FMT9? (ONLY CERTAIN DEVICE TYPES) 06400000
NODSN DC XL1'00' END OF DATA? 06410000
*********************************************************************** 06420000

Example C-26  Source for CVSEQ8D part 17 of 19

* PROGRAM MESSAGES * 06430000
BLNKLINE DC CL133' ' 06440000
STRTMG DC CL133'CVSEQ8D START OF OUTPUT MESSAGES' 06450000
VOLTEXT ORG STRTMG+33 06460000
DC C'VOLUME: ' 06470000
VOLSER DC CL6' ' 06480000
ORG 06490000
### Example C-27  Source for CVSEQ8D part 18 of 19

<table>
<thead>
<tr>
<th>DSCB</th>
<th>DS</th>
<th>XL140</th>
<th>DSCB.Buffer Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCB01</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB01 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB02</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB02 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB03</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB03 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB04</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB04 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB05</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB05 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB06</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB06 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB07</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB07 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB08</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB08 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB09</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB09 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB10</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB10 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB11</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB11 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB12</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB12 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB13</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB13 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB14</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB14 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB15</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB15 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB16</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB16 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB17</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB17 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB18</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB18 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB19</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB19 BUFFER AREA</td>
</tr>
<tr>
<td>DSCB20</td>
<td>DS</td>
<td>XL140</td>
<td>DSCB20 BUFFER AREA</td>
</tr>
</tbody>
</table>

---

**ENDMSG** DC CL133'CVSEQ8D END OF OUTPUT MESSAGES 06500008
**CALLMR11** DC CL133' CVAFSEQ CALL: EADSCB KEYWORD NOT CODED 06510000
**CALLMR12** DC CL133' CVAFSEQ CALL: EADSCB=NOTOK CODED 06520000
**CALLMR13** DC CL133' CVAFSEQ CALL: EADSCB=OK CODED 06530000
**RC00MSG** DC CL133' RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL 06540000
**RC04MSG** DC CL133' RC04 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT 06550000
**RC08MSG** DC CL133' RC08 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT 06560000
**RC12MSG** DC CL133' RC12 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT 06570000
**RC16MSG** DC CL133' RC16 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT 06580000
**RCERMSG** DC CL133' UNEXPECTED RETURN CODE RETURNED FROM CVAFSEQ 06590000
**OKMSG** DC CL133' CV4EADOK BIT SET / EADSCB=OK 06600000
**NOTOKMSG** DC CL133' CV4EADOK BIT IS NOT SET / EADSCB=NOTOK 06610000
**EODMSG** DC CL133' END OF DATA REACHED - ALL DATASETS PROCESSED 06620000
**MSG0** DS OCL133 06630000
   DC CL50' DATASETS ON THE VOLUME LISTED IN PHYSICAL SEQUENT' 06640000
   DC CL83'IAL ORDER:' 06650000
**MSG1** DS OCL133 06660000
   DC CL7' DSN: ' 06670000
   DC CL82' 06680000
**DSNMSG** DS CL44' 06690000
**DSNCHA** DS C' 066B0000
   DC CL82' 066C0000

---

**BUFLST** DS 0F BUFFER LIST WORK AREA 06700000
**BUFLISTH** DC 2F'0' BUFFER LIST HEADER (2 FULL WORD) 06710000
**BUFLISTE** DC 60F'0' 20 BUFFER LIST ENTRIES (3 WORDS EACH) 06720000
**UCBADD** DC F'0' UCB ADDRESS SAVE AREA 06730000
**DEBADD** DC F'0' DEB ADDRESS SAVE AREA 06740000
**COUNT** DC F'0' TABLE COUNTER 06750000
**DSCB01** DS XL140 DSCB01 BUFFER AREA 06760000
**DSCB02** DS XL140 DSCB02 BUFFER AREA 06770000
**DSCB03** DS XL140 DSCB03 BUFFER AREA 06780000
**DSCB04** DS XL140 DSCB04 BUFFER AREA 06790000
**DSCB05** DS XL140 DSCB05 BUFFER AREA 067A0000
**DSCB06** DS XL140 DSCB06 BUFFER AREA 067B0000
**DSCB07** DS XL140 DSCB07 BUFFER AREA 067C0000
**DSCB08** DS XL140 DSCB08 BUFFER AREA 067D0000
**DSCB09** DS XL140 DSCB09 BUFFER AREA 067E0000
**DSCB10** DS XL140 DSCB10 BUFFER AREA 067F0000
**DSCB11** DS XL140 DSCB11 BUFFER AREA 06800000
**DSCB12** DS XL140 DSCB12 BUFFER AREA 06810000
**DSCB13** DS XL140 DSCB13 BUFFER AREA 06820000
**DSCB14** DS XL140 DSCB14 BUFFER AREA 06830000
**DSCB15** DS XL140 DSCB15 BUFFER AREA 06840000
**DSCB16** DS XL140 DSCB16 BUFFER AREA 06850000
**DSCB17** DS XL140 DSCB17 BUFFER AREA 06860000
**DSCB18** DS XL140 DSCB18 BUFFER AREA 06870000
**DSCB19** DS XL140 DSCB19 BUFFER AREA 06880000
**DSCB20** DS XL140 DSCB20 BUFFER AREA 06890000

---

* WORK AREAS* 067A0000

---

Example C-27  Source for CVSEQ8D part 18 of 19

---
Appendix C. Sample assembler code

RETCODE DC F'999' RETURN CODE SAVE AREA
WFMREC1 DS CL133' ' WORK FORMAT RECORD FOR OUTPUT
WCSTCD DC XL1'FF' CVSTAT CODE WORK AREA

******************************************************************************
* PARAMETER LIST FOR EXTERNAL SUBROUTINE
* DS OD
PARADDR1 DC A(WCSTCD,WFMREC1)

******************************************************************************
* DCB - OUTPUT FILE (OUTFILE)
OUTFILE DCB DDNAME=OUTDD, DSORG=PS,RECFM=FB,LRECL=133,BLKSIZE=1330,MACRF=PM

******************************************************************************
* TABLES
TABLE DC OH START OF TABLE DSCB ADDR
TDCB01 DS F'0' DSCB01 ADDRESS (140 BYTE DSCB)
TBLLNG EQU-*-TABLE LENGTH OF TABLE ENTRY
TDCB02 DS F'0' DSCB02 ADDRESS (140 BYTE DSCB)
TDCB03 DS F'0' DSCB03 ADDRESS (140 BYTE DSCB)
TDCB04 DS F'0' DSCB04 ADDRESS (140 BYTE DSCB)
TDCB05 DS F'0' DSCB05 ADDRESS (140 BYTE DSCB)
TDCB06 DS F'0' DSCB06 ADDRESS (140 BYTE DSCB)
TDCB07 DS F'0' DSCB07 ADDRESS (140 BYTE DSCB)
TDCB08 DS F'0' DSCB08 ADDRESS (140 BYTE DSCB)
TDCB09 DS F'0' DSCB09 ADDRESS (140 BYTE DSCB)
TDCB10 DS F'0' DSCB10 ADDRESS (140 BYTE DSCB)
TDCB11 DS F'0' DSCB11 ADDRESS (140 BYTE DSCB)
TDCB12 DS F'0' DSCB12 ADDRESS (140 BYTE DSCB)
TDCB13 DS F'0' DSCB13 ADDRESS (140 BYTE DSCB)
TDCB14 DS F'0' DSCB14 ADDRESS (140 BYTE DSCB)
TDCB15 DS F'0' DSCB15 ADDRESS (140 BYTE DSCB)
TDCB16 DS F'0' DSCB16 ADDRESS (140 BYTE DSCB)
TDCB17 DS F'0' DSCB17 ADDRESS (140 BYTE DSCB)
TDCB18 DS F'0' DSCB18 ADDRESS (140 BYTE DSCB)
TDCB19 DS F'0' DSCB19 ADDRESS (140 BYTE DSCB)
TDCB20 DS F'0' DSCB20 ADDRESS (140 BYTE DSCB)
TBLENBR EQU (*-TABLE)/TBLLNG NBR OF TABLE ENTRIES

******************************************************************************
* SWITCHES
SWEOO DC XL1'00' SWITCH - END OF DATA ?
EOD EQU X'FF' END OF DATA DETECTED
NOEOD EQU X'00' END OF DATA NOT DETECTED

******************************************************************************

Example C-28  Source for CVSEQ8D part 19 of 19

* VTOC DCB AREA
VTOCDCB DCB DDNAME=CVAFDD,MACRF=E,EXLST=XLST1,DSORG=PS,DCBE=VTOCDCBE
XLST1 DC X'87' DCBE 0CL176
DC AL3(JFCB1)
JFCB1 DS 0CL176
TESTNAME DS CL44
DS CL8
DS BL1
DS CL123
VTOCDCBE DCBE EADSCB=OK
Sample job to initialize data set for OCE Partial Release

In Example C-29 and Example C-30 on page 415, we show the assembler that was used for the OCE Partial Release scenarios in Chapter 7, “DFSMSdfp enhancements” on page 103. It is not intended to be run and is presented as illustration of how the scenarios were set up.

**Example C-29  Assembler code to initialize a data set for demonstration (1 of 2)**

```assembly
&NAME SEGSTART 00001099
MACRO
&NAME SEGSTART 00020000
AMODE 24 00030000
&NAME STM 14,12,12(13) SAVE HIS REGS IN HIS SAVE AREA 00040000
R1 EQU 1 00060000
R3 EQU 3 00080000
R4 EQU 4 00090000
RB EQU 12 00170000
R13 EQU 13 00180000
R14 EQU 14 00190000
R15 EQU 15 00200000
BALR 12,0 SET UP ADDRESSABILITY USING *,12 USE REG 12 AS BASE REG 00210000
ST 13,SAYEREGS+4 SAVE @ OF HIS SAVEAREA IN MINE 00230000
LA 03,SAYEREGS LOAD @ OF MY SAVE AREA IN REG 3 00240000
ST 03,8(13) SAVE @ OF MY SAVE AREA IN HIS 00250000
LR 13,03 LOAD @ OF MY SAVE AREA IN REG 13 00260000
MEND
MACRO
&NAME SEGEND 00290000
&NAME L 13,SAYEREGS+4 LOAD REG13 WITH @ OF HIS SAVE 00300000
LM 14,12,12(13) RESTORE REGS FROM HIS SAVEAREA 00310000
XR R15,R15 00320000
BR 14 RETURN TO CALLING RTN VIA REG 14 00330000
SAYEREGS DC 18F'0' SET UP SAVE AREA 00340000
MEND
GENREC1 SEGSTART 00440000
* THIS IS A SIMPLE PROGRAM TO GENERATE RECORDS TO FILL UP A DATA SET. 00450000
* UNI IT THE TASK GETS SB37 BY DEFAULT. 00460000
```
* PARM=SHORT WILL CAUSE THE PROGRAM TO WRITE ONLY 1000 RECORDS.

* R3  PARM

* R4  RECORD COUNT

* R12 OVERALL BASE REGISTER

START  DS   OH

MVI   SHORTRUN,C'N'
L     R15,0(R1) GET ADDRESS OF PARM
LH    R3,0(R15) GET LENGTH OF PARM
CH    R3,=H'0'  CHECK PARM LENGTH
BE    EXPARM
SH    R3,=H'1'  REDUCE FOR EXECUTE
EX    R3,MVCPARM
CLC   SYSPARM(5),=C'SHORT'
BNE   EXPARM

Example C-30  Assembler code to initialize a data set for demonstration (2 of 2)

^^^^^^^^^MVI   SHORTRUN,C'Y'
LA    R4,1000
EXPARM DS   OH
OPEN   (GENDCB,(OUTPUT))
LOOPBK DS   OH
PUT    GENDCB,PRINTHD1
CLI    SHORTRUN,C'N'
BE     LOOPBK  KEEP GOING UNTIL THE DATA SET IS FULL

* ONLY DO 1000 WRITES
BCT    R4,LOOPBK
FINISH DS   OH
SEGEND
ORG

PRINTHD1 DC   CL80'TEST DATA RANDOM AS IT CAN BE WITHOUT THINKING'
GENDCB DCB DDNAME=GENDCB,DSORG=PS,MACRF=(PM)
SHORTRUN DS   C
SYSPARM DC   CL100'SYSPARM SYSPARM'
MVCPARM MVC  SYSPARM(0),2(R15)
END
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

- z/OS DFSMS Shsm Primer, SG24-5272
- z/OS V1.13 DFSMS Technical Update, SG24-7961
- DFSMSrmm Primer, SG24-5983

You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

- z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide For Tape Libraries, SC23-6867
- z/OS DFSMS Installation Exits, SC23-6850
- z/OS DFSMShsm Storage Administration, SC23-6871
- z/OS DFSMSdss Storage Administration, SC23-6868
- z/OS DFSMShsm Diagnosis, GC52-1387
- z/OS DFSMSrmm Reporting, SC23-6875
- z/OS DFSMS Shsm Implementation and Customization Guide, SC23-6869
- z/OS MVS System Messages, Volume 2 (ARC-ASA), SA22-7632
- z/OS DFSMS Using New Functions, SC23-6857
- z/OS DFSMSdfp Storage Administration, SC23-6860
- z/OS DFSMSdfp Diagnosis, SC23-6863
- MVS System Messages, Vol 2 (ARC-ASA), SA38-0669
- z/OS DFSMS Managing Catalogs, SC23-6853
- z/OS DFSMS Access Method Services Commands, SC23-6846
- z/OS MVS Initialization and Tuning Guide, SA23-1379
- z/OS MVS Initialization and Tuning Reference, SA23-1380
Online resources

These websites are also relevant as further information sources:

- z/OS V2.1 Information Center
  http://pic.dhe.ibm.com/infocenter/zos/v2r1/index.jsp
- z/OS Hot Topics
  http://www-03.ibm.com/systems/z/os/zos/library/hot-topics/hot-topics.html
- TS7700 Customer Information Center

Help from IBM

- IBM support and downloads
  ibm.com/support

- IBM Global Services
  ibm.com/services
IBM z/OS V2.1 DFSMS Technical Update

Understand the features and functions of z/OS V2.1 DFSMS

Contains implementation hints and tips

Provides functional hands-on code samples

Each release of IBM z/OS DFSMS builds upon the previous version to provide enhanced storage management, data access, device support, program management, and distributed data access for the z/OS platform in a system-managed storage environment.

This IBM Redbooks publication provides a summary of the functions and enhancements integrated into z/OS V2.1 DFSMS. It provides you with the information that you need to understand and evaluate the content of this DFSMS release, along with practical implementation hints and tips.

This book is written for storage professionals and system programmers who have experience with the components of DFSMS. It provides sufficient information so that you can start prioritizing the implementation of new functions and evaluating their applicability in your DFSMS environment.

For more information:
ibm.com/redbooks