
ibm.com/redbooks

IBM® WebSphere® Front cover

The Complete Guide to
CICS Transaction Gateway
Volume 1 Configuration and Administration

Rufus Credle
Sue Bayliss

Leigh Compton
Robert Jones

Manuela Mandelli
Richard Mercadante

A practical guide to the capabilities
and usage of the CICS TG product suite

Incremental setup from basic
connectivity through to security and
high availability

Focus on IPIC connectivity, high
availability, WebSphere
Application Server, and CICS
Explorer

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM CICS Transaction Gateway Volume 1 Configuration
and Administration

August 2014

SG24-8160-00

© Copyright International Business Machines Corporation 2014.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (August 2014)

This edition applies to CICS Transaction Gateway for z/OS V9.0, CICS Transaction Gateway Desktop Edition
V9.0, and CICS Transaction Gateway for Multiplatforms V9.0.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
Authors. xiii
Now you can become a published author, too! .xv
Comments welcome. .xv
Stay connected to IBM Redbooks . xvi

Part 1. Introduction . 1

Chapter 1. Basic concepts . 3
1.1 Overview of the CICS TG products. 4

1.1.1 More you must know about IBM CICS Transaction Gateway. 4
1.1.2 Business value . 5
1.1.3 Solution overview . 6
1.1.4 Solution architecture . 6
1.1.5 Usage scenarios . 8
1.1.6 Integration . 10
1.1.7 Supported platforms . 12

1.2 Connectivity and capability by CICS TG product . 13
1.3 CICS TG topologies . 14

1.3.1 Three-tier solutions . 14
1.3.2 Two-tier solutions . 15
1.3.3 CICS TG for z/OS . 15
1.3.4 CICS TG for Multiplatforms. 15
1.3.5 CICS TG Desktop Edition . 16

1.4 High availability features . 16
1.4.1 Connection balancing . 16
1.4.2 Dynamic Server Selection. 16

1.5 Transactionality . 17
1.5.1 Sync-on-return . 17
1.5.2 Distributed Transaction Processing . 17

1.6 Security . 18

Chapter 2. CICS Transaction Gateway for z/OS installations . 21
2.1 Installing CICS TG for z/OS . 22

2.1.1 Ordering CICS TG from Shopz . 22
2.2 Anatomy of CICS TG for z/OS . 22
2.3 CICS TG basic structure . 24

2.3.1 Gateway daemon . 25
2.4 Adding facilities to CICS TG . 26

2.4.1 Automatic restart of a CICS TG region . 27
2.4.2 Using EXCI to communicate with CICS TS. 27
2.4.3 Clients passing a large amount of data to the CICS TS application 28
2.4.4 Client applications needing transactionality over EXCI. 28
2.4.5 Client applications needing distributed LUWs. 29
2.4.6 Using historical statistical data analysis . 29
2.4.7 Using real-time statistical data analysis . 29
© Copyright IBM Corp. 2014. All rights reserved. iii

2.4.8 Multiple Gateway daemons started on the same LPAR . 30
2.4.9 Security . 30
2.4.10 Setting up high availability . 30

2.5 The benefits of CICS TG for z/OS. 30

Chapter 3. CICS Transaction Gateway for Multiplatforms and Desktop Edition
installations . 33

3.1 Preparing to install CICS TG Multiplatforms and CICS TG Desktop Edition in a distributed
environment . 34

3.1.1 The Passport Advantage site . 34
3.1.2 Files provided within the installable eImage . 34

3.2 Anatomy of CICS TG in a Windows environment . 35
3.3 Anatomy of CICS TG on UNIX . 36
3.4 The CICS TG and Client daemons and runtime components . 38

3.4.1 The Client daemon . 38
3.4.2 The Gateway daemon. 38
3.4.3 The IPIC protocol . 39
3.4.4 The configuration tool . 39
3.4.5 Resource adapters . 40

Part 2. CICS Transaction Gateway capabilities . 41

Chapter 4. Connecting to CICS . 43
4.1 CICS communication protocols . 44

4.1.1 What’s in a name? . 44
4.1.2 IP interconnectivity (IPIC) . 45
4.1.3 EXCI . 46
4.1.4 TCPIP . 47
4.1.5 SNA Advanced Program-to-Program Communication (APPC). 49

4.2 CICS TG APIs and connection type . 49
4.3 Quality of service and connection types . 50

4.3.1 IPIC . 51
4.3.2 EXCI . 55
4.3.3 TCPIP . 58
4.3.4 SNA. 60

4.4 IPIC autoinstall for WebSphere Application Server clusters . 64

Chapter 5. Understanding the Gateway daemon . 67
5.1 Three-tier concepts . 68
5.2 Gateway daemon resources . 70

5.2.1 Protocol handlers . 70
5.2.2 The threading model . 71
5.2.3 Estimating the number of connection manager threads . 73
5.2.4 Estimating the number of worker threads . 74

5.3 Connecting to CICS servers . 74
5.3.1 All platforms: IPIC . 75
5.3.2 Multiplatform and Desktop Edition specific: TCPIP. 77
5.3.3 Multiplatform and Desktop Edition specific: SNA . 77
5.3.4 z/OS specific: EXCI. 77

5.4 System resources . 78
5.4.1 Gateway daemon runtime environment . 79
5.4.2 Information available at run time. 79
5.4.3 Gateway daemon memory requirements . 81

5.5 z/OS specific resources . 81
iv IBM CICS Transaction Gateway Volume 1 Configuration and Administration

5.5.1 Region size consideration in CICS TG for z/OS . 82
5.5.2 Storage and EXCI in the Gateway daemon for z/OS . 84
5.5.3 Using a 64-bit Gateway daemon on z/OS. 85

5.6 z/OS Workload Manager suggestions for CICS TG for z/OS . 86
5.6.1 WLM system-provided special service classes. 86
5.6.2 Storage Critical option. 87
5.6.3 MAXCPUTIME . 87

5.7 Statistics . 87

Chapter 6. CICS Transaction Gateway solution options . 89
6.1 Deployment topologies . 90

6.1.1 Remote mode . 92
6.1.2 Local mode . 93

6.2 CICS TG APIs and connection type . 93
6.2.1 JCA client applications . 94
6.2.2 Base class Java applications . 95
6.2.3 Microsoft .NET framework-based applications . 95
6.2.4 ECIv2 and ESIv2 applications. 96
6.2.5 ECI, ESI, and EPI v1 applications. 97

6.3 Transactional models . 97
6.3.1 Two-phase commit . 98
6.3.2 JCA and transactions . 100

6.4 Choosing a Gateway topology . 101

Chapter 7. High availability concepts . 103
7.1 High availability overview . 104
7.2 Connection balancing . 105

7.2.1 Single point of failure: Single Gateway daemon . 105
7.2.2 z/OS shared ports . 107
7.2.3 Multiplatform IP load balancing solutions . 112

7.3 Dynamic server selection . 116
7.3.1 Default server . 117
7.3.2 The CICS request exit. 118
7.3.3 DSSPOLICY (z/OS only). 119
7.3.4 DFHXCURM (z/OS only). 120
7.3.5 Client API user exits . 120
7.3.6 Client daemon Workload Manager on Windows. 121

7.4 Importance of scaling and growing in a continuous availability system 122
7.5 Considerations for XA transaction support on z/OS . 124

Chapter 8. Security . 131
8.1 Security basics . 132

8.1.1 The components of a security system. 132
8.1.2 The role of cryptography . 134

8.2 Network security . 134
8.2.1 Secure Sockets Layer and Transport Layer Security . 134
8.2.2 Digital signatures, certificates, and key rings . 135
8.2.3 Enabling SSL in the CICS TG. 138
8.2.4 Securing IPIC connections . 138
8.2.5 Securing connections to the Gateway daemon. 140

8.3 Passwords, PassTickets, and password phrases . 141
8.4 Identity propagation. 142
8.5 The external security interface . 143
 Contents v

Part 3. Configuration . 145

Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 147
9.1 Configuration overview . 148
9.2 CICS definitions for IPIC . 149

9.2.1 System initialization parameters . 150
9.2.2 The mirror transaction. 150
9.2.3 TCPIPSERVICE resource definition . 151
9.2.4 IPCONN resource definition . 153

9.3 The sample application programs . 156
9.3.1 Transferring, compiling, and linking the CICS sample programs 157
9.3.2 Defining and installing the CICS sample program . 158
9.3.3 Data conversion for the COMMAREA samples . 160

9.4 Securing IPIC with SSL. 162
9.4.1 Create a key ring for CICS . 163
9.4.2 The KEYRING system initialization parameter . 165
9.4.3 Configure a TCPIPSERVICE for SSL . 165

9.5 Configuring IPIC autoinstall for WebSphere Application Server clusters 167

Chapter 10. CICS Transaction Gateway for z/OS configuration 171
10.1 Configure the Gateway daemon . 172

10.1.1 Configuration summary. 172
10.1.2 The CTGBATCH launcher . 173
10.1.3 Configuration file . 174
10.1.4 Environment variables . 176
10.1.5 Overriding the configuration file . 178
10.1.6 Started procedure and Gateway daemon user ID. 179

10.2 Testing the Gateway daemon . 181
10.2.1 Start the Gateway daemon . 181
10.2.2 Test using the CTGTESTR job . 181

10.3 Configure basic security . 184
10.3.1 CICS TS configuration for USERAUTH(VERIFY) . 184
10.3.2 Test using the CTGTESTR job . 185

10.4 Configure secure connections. 186
10.4.1 Secure the Gateway daemon . 186
10.4.2 SSL application to Gateway daemon . 189
10.4.3 SSL IPIC to CICS . 193
10.4.4 Restricting cipher suites . 195

10.5 Adding XA support . 198
10.5.1 The CTGRRMS address space . 198
10.5.2 System configuration for CTGRRMS . 199
10.5.3 Gateway daemon configuration for XA transactions . 201
10.5.4 Verifying the configuration for XA transactions . 203

Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition
configuration . 205

11.1 Installing CICS TG . 206
11.1.1 Installing on a Windows platform . 206
11.1.2 Installing on a UNIX (AIX) platform . 206

11.2 Configure the Gateway daemon . 207
11.2.1 System-level configuration . 207
11.2.2 Gateway daemon configuration summary. 209
11.2.3 The PRODUCT section. 209
11.2.4 The GATEWAY section . 211
vi IBM CICS Transaction Gateway Volume 1 Configuration and Administration

11.2.5 The IPICSERVER section. 216
11.3 Starting and stopping CICS TG. 220

11.3.1 The Windows platform . 220
11.3.2 The UNIX and Linux platforms . 224

11.4 Testing the Gateway daemon . 227
11.4.1 Start the Gateway daemon . 228
11.4.2 Test the connection. 228
11.4.3 Test the channel and container support . 229

11.5 Configuring secure connections . 230
11.5.1 Secure the Gateway daemon . 231
11.5.2 Test the secure Gateway connection . 239
11.5.3 Add client authentication. 244
11.5.4 Secure the IPIC connection . 248

11.6 Client daemon configuration . 255
11.6.1 The CLIENT section . 255
11.6.2 The DRIVER section. 257
11.6.3 The SERVER section . 258
11.6.4 The LOADMANAGER section (Windows). 259

Chapter 12. Integrating with WebSphere Application Server 261
12.1 Java EE application servers supported by CICS TG . 262
12.2 The CICS resource adapters . 262
12.3 Topologies. 262
12.4 WebSphere Application Server settings . 265

12.4.1 Connection management . 265
12.4.2 Transaction management . 265
12.4.3 Security Management . 267
12.4.4 WebSphere Application Server z/OS-specific settings for EXCI. 268

12.5 Installing the ECI resource adapter . 269
12.5.1 Install the ECI resource adapter . 270
12.5.2 Upgrading the ECI resource adapter . 273

12.6 Creating and configuring a Java EE Connector Architecture connection factory . . . 276
12.6.1 Creating a Java EE Connector Architecture connection factory 277
12.6.2 Configuring the connection pool properties. 280
12.6.3 Configuring a Java EE Connector Architecture connection factory for CICS TG local

mode. 283
12.6.4 Configuring a Java EE Connector Architecture connection factory for CICS TG

remote mode. 285
12.7 Testing end-to-end . 286

12.7.1 Deploying and configuring the IVT . 287
12.7.2 Running the IVT . 289

12.8 Configuring the XA connection . 289
12.9 Flowing the user ID and password on an ECI request . 290
12.10 Securing the connection with Secure Sockets Layer . 291
12.11 Transaction tracking with Cross Component Trace . 292

Chapter 13. High availability configuration . 295
13.1 High availability use case . 296
13.2 High availability topology. 296
13.3 Connection balancing . 299

13.3.1 Sysplex Distributor . 300
13.3.2 Enabling WLM recommendations for TCP/IP port sharing 304
13.3.3 Testing TCP/IP port sharing using WLM. 306
 Contents vii

13.3.4 Modifying or deleting a TCPIP port sharing definition . 308
13.4 Highly available Gateway group . 309
13.5 Configuring DSSPOLICY . 311

13.5.1 Policy based on dynamic server selection (z/OS only) 311
13.6 WebSphere Application Server cluster . 314

13.6.1 WebSphere Application Server high availability topology. 314
13.6.2 Using ECI resource adapter in a WebSphere Application Server cluster 316
13.6.3 Configuring a Java EE Connector Architecture connection factory for CICS TG

remote mode. 317
13.7 XA considerations . 318

Chapter 14. Explorer plug-in . 321
14.1 Introduction . 322
14.2 Installing CICS TG plug-in for CICS Explorer . 322
14.3 Creating and administering z/OS Gateway daemons . 323

14.3.1 Creating a z/OS Gateway daemon using z/OS Explorer 324
14.3.2 Starting and stopping a z/OS Gateway daemon. 330

14.4 Preparing a Gateway daemon to use Explorer . 333
14.5 Connecting to a Gateway daemon . 333

14.5.1 Backing up and restoring connection definitions. 335
14.6 Viewing information for a Gateway daemon . 339

14.6.1 CICS TG Explorer view. 340
14.6.2 Gateway daemons view . 347
14.6.3 CICS connections view . 348

Chapter 15. Troubleshooting techniques . 349
15.1 Troubleshooting z/OS installations . 350

15.1.1 Obtaining CTGRRMS traced. 350
15.2 Gateway daemon source of information . 351
15.3 Gateway Daemon and Java shared class caches . 352

15.3.1 Startup messages . 352
15.3.2 Useful commands to display the shared class cache . 353

Part 4. Appendixes . 357

Appendix A. Running the precompiled Java sample EciB1 from batch on z/OS . . . 359
Use precompiled EciB1 from batch . 360
z/OS UNIX script . 360
Batch JOB CTGECIB1 . 361
EciB1 command-line syntax. 362

Appendix B. Modifying the sample BasicCICSRequestExit . 363
B.1 Introduction to the CICS request exit samples . 364
B.2 Modify the sample CICS Request Exit . 364

B.2.1 Modify the CICS request exit . 364
B.3 Compile the Java sample request exit . 365

B.3.1 Compile the Java sample request exit using UNIX System Services. 365
B.3.2 Compile the Java exit using the batch sample job . 365

B.4 SupportPac CA1T. 369
B.4.1 Workload balancing . 369
B.4.2 Request validation . 370

Related publications . 371
IBM Redbooks . 371
viii IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Online resources . 371
Help from IBM . 373
 Contents ix

x IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
BladeCenter®
CICS®
CICS Explorer®
CICSPlex®
DB2®
Global Technology Services®
HiperSockets™
IBM®
Language Environment®
MVS™
OMEGAMON®

Parallel Sysplex®
Passport Advantage®
POWER®
Power Systems™
POWER7®
PureApplication®
RACF®
Rational®
Redbooks®
Redpaper™
Redpapers™
Redbooks (logo) ®

System i®
System x®
System z®
Tivoli®
TXSeries™
VTAM®
WebSphere®
z/OS®
z/VSE®
z10™

The following terms are trademarks of other companies:

Intel, Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xii IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/legal/copytrade.shtml

Preface

In this IBM® Redbooks® publication, you will gain an appreciation of the IBM CICS®
Transaction Gateway (CICS TG) product suite, based on key criteria, such as capabilities,
scalability, platform, CICS server support, application language support, and licensing model.

Matching the requirements to available infrastructure and hardware choices requires an
appreciation of the choices available. In this book, you will gain an understanding of those
choices, and will be capable of choosing the appropriate CICS connection protocol, APIs for
the applications, and security options. You will understand the services available to the
application developer when using a chosen protocol.

You will then learn about how to implement CICS TG solutions, taking advantage of the latest
capabilities, such as IPIC connectivity, high availability, and Dynamic Server Selection.
Specific scenarios illustrate the usage of CICS TG for IBM z/OS®, and CICS TG for
Multiplatforms, with CICS Transaction Server for z/OS and IBM WebSphere® Application
Server, including connections in CICS, configuring simple end-to-end connectivity (all
platforms) with verification for remote and local mode applications, and adding security, XA
support, and high availability.

Authors

This book was produced by a team of specialists from around the world working at IBM
Hursley Park, United Kingdom.

Rufus Credle is a Certified Consulting IT Specialist at the
ITSO, Raleigh Center. In his role as project leader, he conducts
residencies and develops IBM Redbooks and Redpapers™
materials. Subjects include network operating systems,
enterprise resource planning (ERP) solutions, voice
technology, high availability, clustering solutions, web
application servers, pervasive computing, IBM, and OEM
e-business applications, WebSphere Commerce, IBM industry
technology, System x®, and IBM BladeCenter®. Rufus’ various
positions during his IBM career include assignments in
administration and asset management, systems engineering,
sales and marketing, and IT services. He has a BS degree in
Business Management from Saint Augustine’s College. Rufus
has been employed at IBM for 34 years.
© Copyright IBM Corp. 2014. All rights reserved. xiii

Sue Bayliss is a Software Engineer in the UK. She has 20
years experience testing IBM software, including CICS
Transaction Gateway, CICS Transaction Server, and
WebSphere Application Server.

Leigh Compton is a Consulting IT Specialist with IBM
Advanced Technical Skills in the US. She holds a degree in
Education from Auburn University, along with graduate courses
in Software Engineering and Information Science. She has 37
years of experience with CICS, and specializes in connectivity,
integration, and security, along with CICS modernization.

Robert Jones works at the IBM Hursley Software Laboratory
(United Kingdom), in the CICS strategy and technical planning
team, with responsibility for the IBM CICS Transaction Gateway
suite of products. He has worked on the development of CICS
Transaction Gateway products since 2002, specializing on the
IBM z/OS platform. He also produced the first CICS TG plug-in
for IBM CICS Explorer®.

Manuela Mandelli is a Senior Software Specialist Professional
and Certified Product Specialist Software for Technical Support
Service of IBM Global Technology Services®. She is based in
Milan, Italy.

She has 27 years of experience in supporting IBM Software
products on mainframes. Her areas of expertise include CICS
Transaction Server for z/OS, CICS Transaction Gateway, and
IBM Session Manager.

She is a member of the CICS TS and CICS Tools Level 2
support team for Europe.

http://it.linkedin.com/pub/manuela-mandelli/58/286/51a
xiv IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://it.linkedin.com/pub/manuela-mandelli/58/286/51a

Thanks to the following people for their contributions to this project:

Tamikia Barrow-Lee, Richard Conway, Robert Haimowitz
International Technical Support Organization, Raleigh and Poughkeepsie Center

Geoff Pirie, Andy Bates, Clare Sprenger, Pete Dally, Colin Alcock, Kate Robinson, Steve Day,
Phil Wakelin, Alan Hollingshead, Andy Murphy, Andrew Smithson
TP Development, IBM Hursley Park UK

Dario Facchinetti, Anna Defendi, Sergio Nolo
TSS, IBM Vimercate, Italy

Ted Caffarelli
IBM Buffalo USA

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

Richard Mercadante is a Technical Support Professional
supporting both the CICS Transaction Gateway and IBM
TXSeries™ CICS products.

He is based out of Pittsburgh, Pennsylvania in the US. He has
over 35 years experience in the technology field with over 11
years supporting the CICS Transaction Gateway product.

He holds a degree in Administration and Management from La
Roche College and a Certificate of Computer Systems Design
from the University of Pittsburgh.

His areas of expertise include distributed operating systems
and the CICS Transaction Gateway.
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Part 1 Introduction

By the end of Part 1, you will be able to choose the appropriate CICS Transaction Gateway
(CICS TG) product based on key criteria, such as capabilities, scalability, platform, CICS
server, application language support, and licensing model. You will also have a good
understanding of terminology to be used throughout the book.

Part 1
© Copyright IBM Corp. 2014. 1

2 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 1. Basic concepts

This chapter describes the CICS Transaction Gateway (CICS TG) product family and
provides positioning information for the individual products. It also introduces the main
concepts for solution architects who require a broad awareness of the available capabilities.

The following topics are covered in this chapter:

� 1.1, “Overview of the CICS TG products” on page 4
� 1.2, “Connectivity and capability by CICS TG product” on page 13
� 1.3, “CICS TG topologies” on page 14
� 1.4, “High availability features” on page 16
� 1.5, “Transactionality” on page 17
� 1.6, “Security” on page 18

1

© Copyright IBM Corp. 2014. 3

1.1 Overview of the CICS TG products

The IBM CICS Transaction Gateway (CICS TG) product suite is the flexible, high-performing,
security-rich, and scalable connector technology for all CICS servers. CICS TG-based
solutions are production proven in client environments worldwide, with successful
deployments across every major industry.

There are three CICS TG products available to suit a wide range of requirements (see
Figure 1-1):

� IBM CICS Transaction Gateway for z/OS
� IBM CICS Transaction Gateway for Multiplatforms
� IBM CICS Transaction Gateway Desktop Edition

Figure 1-1 The IBM CICS Transaction Gateway products

The CICS TG products give application developers intuitive programming interfaces to access
CICS business logic from multiple languages. They also use standard CICS
intercommunication facilities, therefore requiring the minimal configuration changes to get
started.

1.1.1 More you must know about IBM CICS Transaction Gateway

CICS TG products provide application integration in approximately half of all clients using
CICS server products today, processing billions of transactions each day, worldwide.

Each CICS TG product enables integration for Java applications, servlets, or applets, .NET
Framework-based applications, C, C++, and COBOL applications.

Enterprise
1000s

100s

CICS TS for VSE
TxSeries

CICS TS for i

CICS TG
for z/OS

Licensed
by PVU

Licensed
by VU

CICS TS
for z/OS

Platform support
AIX

Windows
Linux (z/p/x)

Oracle Solaris
HP-UX

C/C++.NET

JEEJava

C/C++.NET

JEEJava

DE DE DE Licensed
by AU

C/C++.NET Java

CICS TG
Desktop Edition

CICS TG for
Multiplatforms
4 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Both CICS TG for z/OS and CICS TG for Multiplatforms provide integration for Java Platform
Enterprise Edition (Java EE)-certified application servers, with exclusive features for
WebSphere Application Server products, such as identity propagation and cross-component
trace (XCT). These two server-grade CICS TG products can be scaled to suit the capacity
and availability requirements of the application workload. The CICS TG Desktop Edition
product is licensed for single users. It is aimed at providing direct connectivity to CICS servers
for desktop applications.

Running on IBM z/OS and Microsoft Windows, Linux, and UNIX operating systems, CICS TG
products provide connectivity to all IBM CICS server products:

� CICS Transaction Server for z/OS
� TXSeries for Multiplatforms
� CICS Transaction Server for IBM z/VSE®
� CICS Transaction Server for i

1.1.2 Business value

CICS TG products deliver proven integration technology and have a long track record of
reliable and robust connectivity for all CICS server products. Application developers use
standard tools, such as Eclipse, the IBM Rational® Application Developer family, and
Microsoft Visual Studio. System administrators use standard facilities on their platform of
choice for installation, maintenance, and configuration.

CICS TG products use industry-standard transports and standard CICS intercommunication
facilities, offering maximum flexibility to adapt solutions as business requirements evolve over
time. As networking technology advances, CICS TG products transparently reap benefits
delivered through the TCP/IP and secure socket libraries. As server hardware and operating
systems advance, CICS TG components and applications automatically benefit through
optimizations in compilers and Java run time. Examples include EC12 processor
optimizations, large page support with 64-bit Java and zAAP offload on z/OS, or IBM
POWER7® processor optimizations on IBM AIX®.

CICS TG application programming interfaces (APIs) provide developers with intuitive access
to CICS business logic and data. Portability of application code across hardware and
operating systems delivers longevity for the initial investment as platform technologies evolve.
For example, application code originally developed for use with CICS TG for Multiplatforms on
UNIX or Windows might be reused in a larger scale deployment with CICS TG for z/OS. In a
three-tier solution, applications developed for different runtime environments can share
access to CICS servers through the same Gateway daemon.

The Java EE-certified CICS connectors offer flexibility when choosing a Java EE application
server vendor, and fully uses unique features of the IBM WebSphere Application Server
products. Java EE applications deployed to IBM PureApplication® System integrate with
CICS business logic and data through CICS TG, using the Web Application pattern.

CICS TG for z/OS uses the unique capabilities offered by z/OS, taking advantage of the
qualities of service and scalability offered by IBM System z® IBM Parallel Sysplex®. Support
for industry-standard hypervisors also enables deployment of CICS TG for Multiplatforms to
virtualized servers, including Linux for System z and workload partitions (WPARs) on IBM
AIX.
Chapter 1. Basic concepts 5

1.1.3 Solution overview

This topic summarizes the capabilities provided by the CICS Transaction Gateway products.

CICS TG programming interfaces provide a tight coupling between applications, although the
CICS TG runtime components provide scalability, availability, and security for the solution.
Tight coupling is appropriate when there is a well-defined relationship between the CICS
business logic and the non-CICS applications. However, Web Services are more appropriate
when a loose coupling is required. Loose coupling is appropriate for exposing business logic
when the partner system is unspecified.

All CICS TG products provide the following APIs for multiple programming languages:

� External Call Interface (ECI) provides access to CICS programs, with data encapsulated
as COMMAREAs or channels and containers

� External security interface (ESI) provides access to Password Expiry Management (PEM)
capabilities, such as verifying a password or changing a password

The CICS TG for Multiplatforms and CICS TG Desktop Edition products additionally provide
the external presentation interface (EPI) for access to CICS terminal transactions through
virtual 3270 terminals. Integration with CICS Transaction Server for z/OS (CICS TS), or CICS
TS for z/VSE terminal-based transactions requires a Systems Network Architecture (SNA)
Advanced Program-to-Program Communication (APPC) connection, provided through an
additional product, such as IBM Communications Server for Data Center Deployment or IBM
Host Access Client Package. EPI also offers integration with CICS TS for i terminal-based
transactions using either a TCPIP or SNA (APPC) connection, and with TXSeries
terminal-based transactions using a TCPIP connection.

1.1.4 Solution architecture

There are three models of deployment for CICS TG applications, where the location of the
application relative to the CICS TG product installation influences which APIs an application
might use. Figure 1-2 on page 7 shows the CICS Transaction Gateway architecture options.
6 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 1-2 CICS Transaction Gateway solution architecture options

The three models of deployment can be summarized as noted in the following list:

� Three-tier remote mode:

– Application is on a separate machine from the CICS TG product installation.

– Application requests flow to CICS through a remote Gateway daemon component.

� Two-tier remote mode:

– Application is colocated with the CICS TG product installation.

– Application requests flow to CICS through a colocated Gateway daemon.

� Two-tier local mode:

– Application is colocated with the CICS TG product installation.

– Application requests flow directly to the CICS server.

Two-tier local mode represents the shortest end-to-end path length to process an application
request. However, 3-tier remote mode provides the greater qualities of service in terms of
flexibility, availability, and scalability.

Although CICS TG Desktop Edition includes the remote mode API components for Java, ECI
V2, ESI V2, and .NET Framework-based applications, the product license restricts their use
to applications colocated with the product installation.

Remote
TG APIs

CICS TG

Local-IP
App

TCP/IP

localhost

Local
TG APIs

Local
App

cross

memory

Remote
TG APIs

Remote
App

Java / JCA
ECI V2 / ESI V2

.NET

2-tier remote APIs

Java / JCA
ECI V2 / ESI V2

.NET

3-tier remote APIs

TCP/IP

CICS TG machine

CICS
servers

CICS
servers

CICS
servers

Java / JCA
ECI V1 / ESI V1

EPI V1 / COM

2-tier local APIs
Chapter 1. Basic concepts 7

1.1.5 Usage scenarios

The following scenarios describe actual client deployments, where CICS TG was selected as
the integration technology from a range of possible solutions. The flexibility offered by the
CICS TG products is often cited as a winning factor when selecting integration middleware for
CICS.

Retail banking
An expanding international banking group had a branch-based application founded directly
upon SNA network protocols to provide communications with a central mainframe. To apply
modern levels of security, improve overall stability, and establish a scalable, robust, and
extensible service, they decided to migrate to a TCP/IP-based middleware technology.

After evaluating a range of options, they chose to use CICS Transaction Gateway on z/OS,
connecting each Windows desktop through the TCP/IP network using the CICS TG, ECI
Version 2, API. The solution included eight Gateway daemons running on four z/OS logical
partitions (LPARs) (two Gateway daemons per LPAR) to provide the required capacity and
availability.

Within six months of the project starting, the new solution helped process nearly 15 million
transactions per day. It now connects more than 3,000 branches with approximately 10
Windows desktop machines per branch. IBM CICS Transaction Gateway software has helped
the banking group to deliver a stable, secure, and high-performance transaction processing
solution for a significant part of its business. The success of this project has made this
solution a strong contender for future projects within the group.

Financial services
A key financial services provider for multiple banks in a leading European economy
recognized the need to transform its core services to serve a rapidly expanding market. It
recognized that sustained growth requires a standard but highly scalable solution for
transforming 3270-based applications for web enablement. The solution must be flexible
enough to accommodate new applications without disrupting existing applications and cope
with significant increases in workload within relatively short periods.

CICS Transaction Gateway enabled a smooth transformation to the use of modern Java
Enterprise Edition applications, running on WebSphere Application Server and integrated
with CICS Transaction Server for z/OS. CICS TG provides flexible configuration options,
supporting a mixture of application and system architectures and allowing use by multiple
projects. CICS TG provides high-performing and scalable access to proven CICS business
logic, requiring minimal changes to CICS systems and applications. The final solution
reduced costs, risks, and time-to-market by the increased reuse of applications and skills (see
Figure 1-3 on page 9).
8 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 1-3 Scalable WebSphere Application Server integration solution

The workload handled by the new system increased by 300% over the following two years.
The peak number of transactions processed through their CICS TG integration platform in
one day reached 12.5 million. Workloads through this system peak at between 120 and 130
transactions per second, while maintaining response times below 0.1 seconds.

This client has also deployed CICS TG for z/OS in a similar pattern for other solutions, the
largest of which processes more than 200 transactions per second. Overall, the company
process more than 50 billion transactions each year, with peak rates of 250 million
transactions in one day and 30 million transactions in one hour.

Integration Platform
CICS Transaction Gateway

Front end
WebSphere Application Server

Back end
CICS Transaction Server and DB2

Data Data

Partner

Service

Function FunctionFunctionFunction

3rd party
applictions

Call
Center

Self-
Service Branch
Chapter 1. Basic concepts 9

1.1.6 Integration

CICS Transaction Gateway integrates with a wide selection of IBM software:

� Middleware products, such as WebSphere Message Broker and WebSphere Application
Server

� Performance tuning and monitoring tools, such as CICS Performance Analyzer and IBM
Tivoli® OMEGAMON® XE for CICS on z/OS

� Application development and testing products such as Rational Application Developer and
Rational Integration Tester

Figure 1-4 shows a summary of various product integrations.

Figure 1-4 CICS Transaction Gateway product integration summary

CICS portfolio
CICS Performance Analyzer (CICS PA) takes System Management Facility (SMF) type 111
records, generated by CICS TG for z/OS, and offers a powerful range of options for
summarizing large sets of historical statistics, potentially generated by multiple Gateway
daemons. Predefined reports available from CICS PA are included in the following list:

� Activity Summary
� Usage and Capacity
� Configuration Summary
� Client Workload
� CICS Workload

Custom reports can be defined based on conditions that are defined in terms of CICS
Transaction Gateway statistics and threshold values.

CICS

Unix/Linux/Windows
Native applications
(C/C++/COBOL)

.NET Framework-based
applications (VB, C#)

Rational
Application Developer

Microsoft
Visual Studio

Java applications

Java servlets
and applets

Web Services

Web browsers

EJB

OEM JEE app servers

WebSphere
Message

Broker

PureApplication System
Workload Deployer

WebSphere Application Server

CICS Explorer

CICS PA

Tivoli Omegamon
XE for CICS

ITCAM for
Transactions

CICS DA

Rational
Integration

Tester

z/OS Explorer

CICS
TG
10 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

CICS Deployment Assistant (CICS DA) is able to discover and visualize Gateway daemon
address spaces running anywhere within the sysplex, and shows CICS TG in a wider context
of CICS, IBM DB2®, and WebSphere MQ resources.

CICS Explorer (and z/OS Explorer) can use the CICS TG plug-in to provide visibility of
multiple Gateway daemons running as part of any CICS TG product on any platform. A
system administrator has live access to many runtime attributes for each Gateway daemon
and its associated CICS connections, and the ability to actively verify basic connectivity.

WebSphere products
CICS TG for z/OS and CICS TG for Multiplatforms provide the CICS resource adapters for
use with the WebSphere Application Server family of products. They allow Java EE
application developers to use CICS resources through the standard JCA interfaces.

The ECI resource adapter represents the most popular means of CICS integration for Java
EE application developers, providing access to CICS business logic and data through a
standard CICS program link. It also provides options on transactional behavior including
distributed two-phase commit, based on the eXtended Architecture (XA) specification, from
The Open Group. Combined with CICS TG for z/OS in a high availability configuration, XA
transaction support delivers a robust, scalable solution maximizing the highest qualities of
service available.

The EPI resource adapter enables Java EE application developers targeting WebSphere
Application Server for Multiplatforms to access terminal-based transactions on any CICS
server.

WebSphere Message Broker includes a CICS node enabling integration with a remote-mode
CICS Transaction Gateway configuration. This allows WebSphere Message Broker to
immediately use established CICS TG solutions, or build scalable and highly available CICS
connectivity through a new CICS TG solution.

IBM Integration Designer is an Eclipse-based software development tool that renders your
current IT assets into service components for reuse in service-oriented architecture (SOA)
solutions. IBM Integration Designer bundles the CICS TG for Multiplatforms product, which is
licensed for application development and test purposes.

PureApplication System
CICS TG enables the integration of Java EE applications deployed to a private cloud with
CICS servers outside the cloud. IBM PureApplication System provides Virtual application
patterns, which include Virtual application pattern components. Transaction processing
components include the Existing CICS Transaction Gateway component, allowing Java EE
applications deployed within the cloud to access CICS business logic through an existing
Gateway daemon, running outside the cloud.

The Existing CICS Transaction Gateway component is available within the IBM Web
Application Pattern, which provides a set of components that are typical for web applications.
After building the virtual application in the Virtual Application Builder, you can deploy the
application and the system determines the underlying topology configuration.

The Existing CICS Transaction Gateway component is also included in the Virtual application
builder of IBM Workload Deployer appliance.
Chapter 1. Basic concepts 11

Tivoli products
There are two products in the IBM Tivoli Monitoring portfolio that monitor CICS TG to help
with problem identification, resolution, and prevention:

� IBM Tivoli OMEGAMON XE for CICS on z/OS delivers a range of capabilities for the z/OS
or CICS system administrators:

– In-depth monitoring of CICS TG instances running on z/OS
– Remote mode and WebSphere Application Server for z/OS applications
– Alerts for communication problems between CICS TG for z/OS and CICS TS for z/OS
– Up-to-the-second details about transaction rate, I/O, and CPU consumption
– Trend analysis to assist with future capacity planning
– Easy access to monitoring tools of other System z applications

� IBM Tivoli Composite Application Manager for Transactions provides transaction tracking
and visualization capabilities. It helps to identify transaction response and availability
issues, enabling faster problem resolution through the following features:

– End-to-end analysis of transaction response time and performance
– Full transaction tracking of flows through CICS TG on both z/OS and Multiplatforms
– Identification of connections from WebSphere through CICS TG to CICS (and onward)
– Automatic identification for points of slowdown and deviation from typical response

times

Rational products
IBM Rational Application Developer includes CICS TG for Multiplatforms, licensed for
application development and test purposes. The Java Platform 2, Enterprise Edition
Connector architecture tooling also provides wizards to assist with the generation of Java
classes from COBOL copybooks, enabling Java application developers to work intuitively with
data structures originating from CICS COBOL business logic.

Rational Integration Tester, a component of IBM Rational Test Automation Solution, includes
a code-free solution for continuous integration testing of CICS programs through CICS TG.
Conversely, it also provides the ability to virtualize CICS server responses, enabling
continuous integration testing of Java or JCA applications using the ECI API. Record and
replay of ECI requests further facilitate the building of test cases based on real-world data, or
automation of existing test cases.

1.1.7 Supported platforms

Each CICS TG product includes several runtime components that are supported on
Multiplatforms. Within the context of the CICS TG products, the term Multiplatforms broadly
refers to these operating systems and architectures:

� AIX (IBM POWER®)
� Windows (Intel)
� Red Hat Enterprise Linux (Intel, POWER, and System z)
� Red Hat Enterprise Linux-compatible distributions (Intel)
� Red Hat Enterprise Desktop (Intel)
� SUSE Linux Enterprise Server (Intel, POWER, and System z)
� SUSE Linux Enterprise Desktop (Intel)
� Solaris (SPARC)
� HP-UX (Itanium)

The specific releases of supported operating systems and hardware architectures are
constantly evolving over time and vary accordingly with each new release of the CICS TG
products. So, this list represents a high-level summary.
12 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Each release of CICS TG for z/OS requires a specific minimum release of z/OS, and is
typically supported on subsequent releases of z/OS unless explicitly stated otherwise by IBM.

CICS TG for Multiplatforms and CICS TG Desktop Edition support the Multiplatforms
operating systems and architectures, but are also subject to licensing terms and conditions.
For example, installing CICS TG Desktop Edition on a UNIX or Linux workstation is supported
for a single user, but not for a UNIX or Linux server machine supporting multiple concurrent
users.

CICS TG products typically support all in-support releases of all CICS server products,
including the following list:

� CICS Transaction Server for z/OS
� TXSeries for Multiplatforms
� CICS Transaction Server for z/VSE
� CICS Transaction Server for i

Each CICS TG product includes runtime components for use by Java applications with
supported releases of Java Standard Edition (SE). In addition to IBM-supplied Java runtime
environments, any certified Java-compatible Java SE Runtime Environment is also
supported. By contrast, the Gateway daemon must run under an IBM supplied Java runtime
environment of a specified release, for a given CICS TG product and release.

Both CICS TG for z/OS and CICS TG for Multiplatforms products include JCA resource
adapters for use with Java EE-certified application server products, such as IBM WebSphere
Application Server. Java EE-certified application server products, other than WebSphere
Application Server, must successfully install and run the CICS TG JCA installation verification
and test (IVT) program to gain entitlement to IBM support.

Both CICS TG for z/OS and CICS TG for Multiplatforms products include redistributable
runtime libraries suitable for deployment on any of these Multiplatforms operating systems.
This allows many types of remote applications to connect through a Gateway daemon, no
matter which server platform is used.

The web page, Supported Software for CICS Transaction Gateway (CICS TG) products,
provides links to the software requirements information center topic for all in-support releases
of each CICS TG product. Each information center also includes a hardware requirements
topic. Visit the following link for more information:

http://www.ibm.com/support/docview.wss?uid=swg21239203

1.2 Connectivity and capability by CICS TG product

Selecting the appropriate CICS TG product can be influenced by many competing
characteristics of the overall solution. There are variations in the capabilities of the CICS TG
products. Within each product, there is a direct relation between the APIs available for use by
an application, and the available CICS connection protocols.

Table 1-1 on page 14 summarizes the capabilities and options for connectivity between
combinations of CICS TG and CICS server products.
Chapter 1. Basic concepts 13

http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/support/docview.wss?uid=swg21239203

Table 1-1 Capabilities for CICS TG and CICS server products

1.3 CICS TG topologies

The CICS Transaction Gateway products provide a highly flexible approach to integrating
CICS servers with many types of applications. When selecting the topology to use for a
particular application, the solution architect needs to consider where the application will run in
relation to where the CICS TG product is installed, together with the qualities of service
required to meet the requirements of the user.

For CICS TG for z/OS and CICS TG for Multiplatforms, the fundamental choice lies in using a
3-tier or 2-tier solution. The CICS TG Desktop Edition product license restricts usage to 2-tier
solutions.

1.3.1 Three-tier solutions

In a 3-tier solution, an application uses the CICS TG API components to interact with a CICS
server through an intermediary component, the Gateway daemon. This type of solution is
known as remote mode in the CICS TG reference material (and this book), because the
application runs on a machine that is remote to where the CICS TG product is installed.

A remote mode configuration uses two network links: one link from the CICS TG API
components to the Gateway daemon, and a second link from the Gateway daemon to the
CICS server. The Gateway daemon runs on the machine where the CICS TG product is
installed. The CICS TG API components required by the application can be redistributed and
have a relatively small footprint compared to the CICS TG product.

A 3-tier solution offers a wide range of capabilities to an overall solution including better
scalability, availability, flexibility, monitoring, and statistics. The additional level of indirection
enables the middleware to bring more value to the solution over time without changes to
application code. Also, it effectively removes affinities between application code and CICS
server infrastructure, allowing for transparent operation through reorganization of CICS
servers.

CICS protocol Available with CICS TG
products

Connects with CICS server
products

Used with CICS TG APIs

IPIC z/OS
Multiplatforms Desktop
Edition

CICS TS for z/OS
TXSeries for Multiplatforms

ECI COMMAREA and Channels
ESI (CICS TS for z/OS only)

EXCI z/OS CICS TS for z/OS ECI COMMAREA

TCP/IP Multiplatforms Desktop
Edition

CICS TS for z/OS
CICS TS for z/VSE
TXSeries for Multiplatforms
CICS TS for i

ECI COMMAREA
EPI (TXSeries for Multiplatforms and
CICS TS for i)

SNA APPC Multiplatforms Desktop
Edition

CICS TS for z/OS
CICS TS for z/VSE
CICS TS for i

ECI COMMAREA
EPI
ESI
14 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

1.3.2 Two-tier solutions

In a 2-tier solution, an application uses the CICS TG API components to interact directly with
a CICS server. This type of solution is known as local mode, because the application runs on
a machine where a CICS TG product is installed.

A local mode configuration uses a single network link from the CICS TG product to the CICS
server. The CICS TG API components use the facilities of the local CICS TG product directly.

There is a special case for 2-tier solutions, where the application runs on the machine where
the CICS TG product is installed, but connects through the Gateway daemon (using the local
network adapter). This might be necessary when a local application uses one of the CICS TG
APIs requiring a Gateway daemon connection, such as .NET, ECI Version 2, or ESI Version 2.
This style of configuration allows the use of these remote APIs with the CICS TG Desktop
Edition product.

1.3.3 CICS TG for z/OS

CICS TG for z/OS is typically installed within the same LPAR as CICS TS for z/OS. This
provides the Gateway daemon with a low-latency link to CICS servers for remote mode
applications connecting through the Gateway daemon, or local mode applications deployed
on a colocated WebSphere Application Server for z/OS node.

WebSphere Application Server for z/OS is the primary use case for local mode operating with
CICS TG for z/OS. However, WebSphere Application Server for z/OS can be used with a
colocated Gateway daemon (2-tier remote), for example, to use high availability features.

The CICS TG for z/OS pricing model is reference-based on the CICS workload, and is
measured in Value Units. If a given workload is processed by a single Gateway daemon, or
distributed between multiple Gateway daemons each, the overall cost is comparable. For this
reason, it is common to use CICS TG for z/OS in remote mode with multiple Gateway
daemons sharing a common workload. Each Gateway daemon typically runs below maximum
capacity but is able to take up additional load if required.

When an IPIC connection is made between a Gateway daemon and a CICS region or
WebSphere Application Server and a CICS region within the same LPAR, then IBM
Communications Server for z/OS can optimize that connection using Fast Local Sockets. Fast
Local Sockets maximize cross-memory facilities between address spaces within the same
z/OS LPAR to provide optimized TCP/IP connections.

CICS TG for z/OS is best suited for integration with CICS TS for z/OS, but IPIC connections
also offer the option to integrate with TXSeries for Multiplatforms.

1.3.4 CICS TG for Multiplatforms

CICS TG for Multiplatforms is installed on Windows, UNIX, or Linux servers, including Linux
for System z, and offers a high degree of flexibility for deployment options and integration.

It can be used in both 3-tier solutions and 2-tier solutions, integrating with all supported CICS
server products. Although it can be scaled through deployment to multiple servers, the pricing
model differs from the z/OS product in that each server is licensed separately.

CICS TG for Multiplatforms can use TCP/IP-based connectivity and SNA-based connectivity,
depending on the details of the required integration. However, SNA APPC connections
require an additional product to provide the underlying SNA communications layer.
Chapter 1. Basic concepts 15

CICS TG for Multiplatforms provides the widest range of CICS TG APIs, including Java EE
resource adapters for Java EE application servers, such as WebSphere Application Server for
Multiplatforms, and terminal-based transactions through EPI.

1.3.5 CICS TG Desktop Edition

CICS TG Desktop Edition is installed on individual user machines, and is licensed on a
per-user basis. It provides all of the APIs available with CICS TG for Multiplatforms, except
the JCA resource adapters, and can only be used in 2-tier solutions. It is capable of
supporting the workload of a single user, and scalability is achieved through the installation of
the product and application to multiple user machines.

CICS TG Desktop Edition provides an upgrade path for users of the discontinued product,
IBM CICS Universal Client, bringing support for modern compilers and operating systems. It
includes the features of that product, but also adds more APIs: Java base classes, ECI V2,
ESI V2, and .NET Framework-based APIs.

1.4 High availability features

Each of the CICS TG products includes capabilities to maintain the availability of the link
between the application and the CICS servers. However, as the CICS TG products have
evolved and new capabilities have been added, older techniques have been superseded but
retained for compatibility.

1.4.1 Connection balancing

Remote mode solutions can be scaled by creating multiple Gateway daemons and balancing
connections from applications between them. This can be achieved on z/OS through a
combination of port sharing within a z/OS LPAR and connection balancing between LPARs,
using Sysplex Distributor, or an external device. For Multiplatforms, connections can also be
balanced between multiple Gateway daemons running on physically separate machines, or
on virtualized server instances.

In both cases, the application workload connects to a logical Gateway daemon, which might
consist of any number of real Gateway daemon instances all providing access to equivalent
business logic and data.

1.4.2 Dynamic Server Selection

Traditional CICS TG applications specify a CICS server name in the request, which must
resolve to an actual CICS server at run time. For the CICS TG products, Dynamic Server
Selection refers to the process of modifying the target CICS server at run time, based on
some predetermined algorithm. This allows the CICS server infrastructure and application
logic to evolve independently, with dynamic routing of requests and transparent failover.

Modern Dynamic Server Selection is available for remote mode solutions, through a
configurable policy with CICS TG for z/OS, or through a Gateway daemon user-exit, available
for each CICS TG product.
16 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Although older techniques are still available, only the Gateway daemon-based Dynamic
Server Selection functions interoperate with all CICS connection protocols, including IPIC,
channel and container-based ECI requests, XA transactions, request monitoring exits, and
CICS TG statistics.

1.5 Transactionality

CICS TG application programmers must consider the types and effects of different
transaction models associated with the APIs that they are using. EPI requests invoke CICS
terminal transactions by transaction ID. By their nature, such requests are already limited to
committing or backing out updates to recoverable resources when control is returned to the
terminal. By contrast, ECI requests can be made in isolation, or in composite into a single
transaction.

This topic summarizes the transactional models available for use with ECI applications,
including considerations for CICS TG products, CICS server products, CICS connections,
and CICS TG APIs. For greater detail, see the explanation in 6.3, “Transactional models” on
page 97.

1.5.1 Sync-on-return

When an ECI application invokes business logic on a CICS server, it can result in one or more
updates to recoverable resources. When the CICS business logic represents a self-contained
operation, any updates made to recoverable resources will be synchronized when the
operation ends. This is known as sync-on-return, because CICS performs a sync point on
involved recoverable resources, at the point of return.

Sync-on-return is the most simple and commonly used transaction model with CICS TG
products. However, it is not sufficient when the application needs to synchronize updates to
recoverable resources resulting from multiple ECI calls.

Each of the CICS TG products supports ECI sync-on-return, for all of the supported
programming languages, topologies, CICS servers, and runtime environments.

1.5.2 Distributed Transaction Processing

When a sequence of CICS business logic invocations is combined to form a composite
operation, and the composite operation must be atomic, distributed transaction processing
(DTP) is used to coordinate synchronization of recoverable resources.

The method of DTP employed for a particular solution depends on the specific CICS TG
product, topology, the type of CICS servers involved, CICS communications protocol, the
CICS TG API, and the application runtime environment.

Extended logical unit of work
Extended logical units of work (LUW) provide a single-phase commit model of DTP, allowing
multiple ECI calls to be enrolled in a single transaction, before the application logic decides to
commit or roll back. Single phase commit carries the risk of an uncertain outcome in the event
of a failure, such as a communications failure, or timeout.

Each of the CICS TG products supports ECI extended LUWs for all of the supported
programming languages, topologies, CICS servers, and runtime environments.
Chapter 1. Basic concepts 17

XA transactions
XA transactions deliver a full two-phase commit model of DTP, delivering full transactional
integrity. Two-phase commit avoids the need for application logic to compensate for potential
inconsistencies following an unexpected condition in the overall system.

XA transaction support is available with the CICS TG for z/OS and CICS TG for Multiplatforms
products, and is limited to JCA applications deployed to a Java EE-certified application server
using the ECI resource adapter.

The CICS TG for z/OS product supports ECI XA transactions in local mode (WebSphere
Application Server for z/OS), and remote mode. Sysplex-wide high availability configurations
are supported including use of Dynamic Server Selection. Both IPIC and EXCI connections to
CICS TS can be used with XA transactions, and Resource Recovery Services (RRS)
underpins the overall solution for full sysplex utilization.

The CICS TG for Multiplatforms supports ECI XA transactions in local mode from a Java
EE-certified application server, using IPIC connections to CICS TS for z/OS V3.2, or later.

Out of all the CICS server products, only CICS TS for z/OS includes support for XA
transactions.

1.6 Security

There are many security features available for use with CICS TG-based solutions. These
range from unencrypted unauthenticated, to fully encrypted and secure authentication
through the latest cipher suites.

All remote mode applications can connect to a Gateway daemon using a non-secure
TCP/IP-based connection. Remote mode applications based on the Java base classes, JCA,
and .NET Framework-based APIs can also establish a secure connection with the Gateway
daemon. Secure connections use server authentication, and can optionally require client
authentication.

CICS server connections are established by CICS TG runtime components from the middle
tier (remote mode) or the first tier (local mode), using one of the protocols listed in Table 1-1
on page 14. By default, these connections use non-secure network transports, or a
cross-memory-based transport in EXCI. Although cross-memory interfaces can be regarded
as being implicitly secure, only IPIC connections can be directly configured to use modern
standards of encryption and authentication.

CICS TG application credentials are traditionally based on a user ID and password that must
be authenticated successfully before the application request can be processed. More secure
credentials include password phrases, and Secure Sockets Layer (SSL) with client
authentication.
18 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Identity assertion is a common security pattern requiring a pre-authenticated user ID as a
credential. With CICS TS for z/OS, identity assertion is possible when the connection is
trusted. The state of trust depends on either the relative location of the partner system, or the
type of connection used:

� Connection is IPIC SSL from a local mode application or Gateway daemon, on any
platform

� Connection is IPIC and originates from a z/OS LPAR within the same sysplex

� Connection is EXCI

With TXSeries, an IPIC connection can be defined to accept pre-authenticated requests by
setting the RemoteSysSecurity attribute to “trusted”, in the CD.stanza file.

For full details about security options, see Chapter 8, “Security” on page 131.

Note: A Linux on System z LPAR cannot be regarded as a trusted partner based on its
location. Instead, an IPIC SSL connection must be used as the basis for trust.
Chapter 1. Basic concepts 19

20 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 2. CICS Transaction Gateway for
z/OS installations

This chapter describes the file structures of CICS Transaction Gateway (CICS TG) on z/OS,
as the result of the SMP/E for z/OS installation.

It also introduces several fundamental concepts related to the structure of CICS TG for z/OS
to better identify the required z/OS and CICS TG elements to implement the best solution,
based on key criteria, such as capabilities and scalability. The following concepts are covered
in this chapter:

� 2.1, “Installing CICS TG for z/OS” on page 22
� 2.2, “Anatomy of CICS TG for z/OS” on page 22
� 2.3, “CICS TG basic structure” on page 24
� 2.4, “Adding facilities to CICS TG” on page 26
� 2.5, “The benefits of CICS TG for z/OS” on page 30

2

© Copyright IBM Corp. 2014. All rights reserved. 21

2.1 Installing CICS TG for z/OS

This section explains how to manage all the z/OS and CICS Transaction Gateway elements
for controlling an installation.

2.1.1 Ordering CICS TG from Shopz

CICS TG can be ordered using Shopz. It can be in ServerPac or IBM Custom-Build Product
Delivery Offering (CBPDO) format. Shopz will analyze your current installation, determine the
correct product migration, and present your new configuration based on z/OS.

Shopz is an Internet application that you can use to order z/OS software products and
services. Using Shopz, you can order corrective and preventive service over the Internet, with
delivery over the Internet or by tape. The ordering service with Shopz reduces your research
time and effort by using your uploaded SMP/E consolidated software inventory (CSI) to
ensure that all applicable services, including reach-ahead service, for the installed Function
Module IDs (FMIDs) in the target zones are selected. The Shopz web address is listed:

http://www.ibm.com/software/shopzseries

Shopz provides entitled service ordering and service delivery capabilities for the z/OS
platform products electronically using the Internet. Shopz is the primary ordering and delivery
method for software service for ordering and receiving z/OS.

2.2 Anatomy of CICS TG for z/OS

Whatever format you use to perform the CICS TG installation, the result of the SMP/E
installation creates ISPF data sets and files in zFS. These data set files and z/FS files are
used to run CICS TG.

All CICS TG installations create the IBM MVS™ data sets. The content of the MVS data sets
is described in Table 2-1.

Table 2-1 z/OS data set list

Data set name Member name Description

hlq.SCTGAUTH CTGARM Authorized program facility
(APF)-authorization modules

hlq.SCTGDLL CTGSTATS Dynamic link library (DLL)
modules

hlq.SCTGHFS *VSAM file To create and mount the z/OS
UNIX files

hlq.SCTGINCL CTGSMF
CTGSTATS
CTGSTDAT

The C header files for System
Management Facility (SMF)
22 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/software/shopzseries
http://www.ibm.com/software/shopzseries

The data set name must be a unique name. It is built by a different level of qualifier. The first
part of the name is called the high-level qualifier (hlq). The standard convention identifies the
hlq with a name that allows you to refer to a particular version, release, and modification of a
specific product, in our example, the hlq is CICSTG.V9R0M0.

A suggested place to start your CICS TG installation is by using the samples provided by the
SCTGSAMP library. MVS data set members CTGCONF and CTGENV are the configuration files. They
can be used to start CICS TG. You can create the startup job using CTGJOB or CTGPROC, based
on whether you want to start CICS TG as a batch job or a started procedure.

SCTGSAMP also contains scenarios that show how to perform tasks, such as configuring
connections to CICS, or configuring Secure Sockets Layer (SSL) security. For a detailed
description of the scenarios, see the CICS TG Information Center:

http://ibm.co/1tfLphd

hlq.SCTGINST CTGACCPT
CTGALLOC
CTGAPPLY
CTGDDDEF
CTGISMKD
CTGIZFS0
CTGIZFS1
CTGMKDIR
CTGRECV
CTGRECVE
CTGSMPSU

SMP/E installation jobs

hlq.SCTGLINK CTGINIT LNKLST member

hlq.SCTGLOAD CTGBATCH CICS TG load modules

hlq.SCTGMAC CTGSMFA z/OS assembler macro for SMF
formatting job

hlq.SCTGSAMP CTGASIS
CTGCONF
CTGCONV
CTGENV
CTGJOB
CTGPROC
CTGSMFB
CTGSMFR
CTGSMFRD
CTGSSLPW
CTGSTAT1
CTGSTJOB
CTGS01A1
CTGS02A1
CTGS03A1
CTGS03A2
CTGS04A1
CTGS05NV
CTGS08A1
CTGTESTL
CTGTESTR

Samples and scenarios
information

hlq.SCTGSID CTGSTATS Statistic information

Data set name Member name Description
Chapter 2. CICS Transaction Gateway for z/OS installations 23

Table 2-2 describes the content of the files created in the z/OS UNIX environment.

Table 2-2 z/OS UNIX files description

The directory name will be prefixed by your installation directory. The default is
/usr/lpp/cicstg/ctg900, where the last subdirectory, for example, ctg900, refers to a
particular version, release, and modification of the product.

The deployable directory contains cicseci.rar (the CICS ECI resource adapter), which
provides one-phase and two-phase transaction support when installed into the Application
Server. The ctgredist.tar.gz contains the rar file for .NET and assembler.

The sample directory contains sample Java programs and configuration files to set up the
scenarios described previously.

2.3 CICS TG basic structure

This section describes the relationship between the CICS TG for z/OS components and the
z/OS system, when the remote mode topology is used. The local mode topology will be
described later in this book.

This section will provide the CICS TG basic component descriptions to support a better
understanding of the CICS TG anatomy and how it interacts with a z/OS system.

Figure 2-1 on page 25 shows the main CICS TG runtime components.

z/OS UNIX directories Subdirectories Description

bin resource Executable binaries

classes CICS TG Java classes

deployable Deployable EAR and RAR files
and ctgredist.tar.gz
containing the redistributable
components for developing
both C and .NET applications

docs CICS TG API reference
documentation

IBM

msgs

samples configuration
Java
scenarios
server

CICS TG samples and
scenarios files
24 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 2-1 CICS TG runtime components

2.3.1 Gateway daemon

When implementing a 3-tier solution, at least one Gateway daemon needs to be started
because it is the CICS TG component used to listen on a TCP/IP protocol port for client
requests.

The Gateway daemon can be started as a procedure (a sample is supplied in member
CTGPROC of SCTGSAMP), or as a batch job (a sample is supplied in member CTGJOB).

To benefit from the z/OS started task management, it is suggested that you launch the
Gateway daemon as a procedure. Commonly, there are specific security policies related to
user ID assignment to batch jobs. These policies can influence the need to have a privileged
user assigned to the Gateway daemon. Another factor is the selection of the WLM Service
Classes where the Gateway daemon has to run. Based on needs, the selection of service
classes can provide a performance benefit. It can depend on how CICS TG address space is
started.

However you start the Gateway daemon (procedure or batch job), the CTGBATCH is invoked.

CTGBATCH is an IBM Language Environment® batch mode program, which is supplied with
CICS TG to start the Gateway daemon using a JCL started task. This program also passes
the required environment variables to the UNIX System Services ctgstart script and routes
messages to z/OS data sets and the JES log.

The ctgstart command will then create a Java virtual machine (JVM) where the Gateway
daemon will run.

SCTGLOAD(CTGBATCH)

libctgjni.so and
libctgmvs.so wil l be loaded
in the Gateway daem on from

installation di rectory /bin

Configuration fi les

Sam ple in
SCTGSAMP (CTGJOB)or
SCTGSAMP(CTGPROC)

Sam ple in
SCTGS AMP (CTGENV)

and
SCTGSAMP(CTGCONF)

JVM

Gateway
daem on

CTGBATCH

ctgstart

Gateway daemon address space

Unix system servic es

JNI l ibrary

EXCI
Chapter 2. CICS Transaction Gateway for z/OS installations 25

Gateway daemon behavior is influenced by the following configuration files:

� The environment variables can be specified in different ways (for example, in the STDENV
DD statement, a z/OS data set, or even a z/OS UNIX file). For a detailed description, see
the CICS TG Information Center:

http://ibm.co/1rxRuFr

A sample is provided in the data set member CTGCONF of CTGSAMP data set, or in
<install_path>/samples/configuration/ctgenvvarsamp. The environment variables also
contain the name of the configuration file that has to be loaded (CICSCLI parameter).

� The configuration file (also called the ini file) is a z/OS UNIX file or MVS data set that has
to be provided to initialize the CICS TG. A sample is provided in member CTGCONF of
CTGSAMP or in the <install_path>/samples/configuration/ctgsamp.ini. The
configuration file, at a minimum, must contain the GATEWAY SECTION with a TCP protocol
handler definition identifying the IP address and the port on which the Gateway daemon
will listen.

The default configuration used by CICS Transaction Gateway is the z/OS UNIX file:

<install_path>/bin/ctg.ini

The Gateway daemon is a Java program that resources some native libraries, also called
Java Native Interface (JNI) libraries, to interface with the z/OS system. They enable the
Gateway daemon to interact with the z/OS console, to extract statistics information, such as
the memory utilization, and to use sophisticated functions, such as Resource Recovery
Services (RRS), IBM RACF® interface, and external CICS interface (EXCI) connections with
CICS Transaction Server (CICS TS).

2.4 Adding facilities to CICS TG

This section describes the CICS TG dependencies on z/OS components or products for
additional implementation, such as monitoring, security, restarting, and connectivity.

Figure 2-2 on page 27 shows how the z/OS elements interact with CICS TG.
26 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/ctgzos/envvarsum.html

Figure 2-2 How CICS TG components interact with z/OS components

2.4.1 Automatic restart of a CICS TG region

You can benefit from the ability of z/OS to control the Gateway daemon automatic restart, by
implementing the Automatic Restart Manager (ARM) facility. CICS TG can then use ARM for
the automated restart of an MVS subsystem.

MVS automatic restart management is a sysplex-wide integrated automatic restart
mechanism that can restart the following components:

� An abended MVS subsystem (or if a monitor program notifies ARM of a stall condition)
� A failed MVS image

Member CTGPROC, in the SCTGSAMP data set, provides a sample startup procedure to register
and deregister to ARM using the CTGARM module.

If you need detailed information about the ARM configuration, see CICS Transaction Gateway
for z/OS Version 6.1, SG24-7161.

2.4.2 Using EXCI to communicate with CICS TS

The external CICS interface (EXCI) is an application programming interface (API). This API
enables a non-CICS program running in z/OS to invoke a CICS program to pass and receive
data.

JVM
ARM

RRMS

Gateway
daemon

CTGBATCH

CICS TS

ctgstart

DFHXCOPTIPIC

RACF SSL

S MF 111

Omegamon XE for CICS

CICS PA

CTGASI

Gateway daem on address space

Unix system services

JNI l ibrary

EXCI

Note: To use CTGARM, the SCTGAUTH load library must be defined as APF-authorized.
Chapter 2. CICS Transaction Gateway for z/OS installations 27

This programming interface allows a user to allocate and open sessions (pipes) to a CICS
system and to pass distributed program link (DPL) requests over them. CICS inter-region
communication (IRC) supports these requests and each pipe maps onto one multiregion
operation (MRO) session.

CICS TG acts as a non-CICS program and calls a remote program in CICS TS using DPL,
passing COMMAREA data.

To set up the EXCI environment, CICS TG needs to load some CICS TS modules and the
behavior can be controlled using the macro DFHXCOPT.

If you need additional information about the configuration of the EXCI connection to CICS,
see CICS Transaction Gateway for z/OS Version 6.1, SG24-7161.

2.4.3 Clients passing a large amount of data to the CICS TS application

If your application needs to manage data larger than 32K, you can benefit from the
implementation of the channel and containers solution.

To benefit from the channel and containers solution, you need to implement the IPIC
connection to CICS TS. You can also benefit from the increased number of sessions, as
compared to using the EXCI interface.

For more information about IPIC considerations, see 4.1.2, “IP interconnectivity (IPIC)” on
page 45.

2.4.4 Client applications needing transactionality over EXCI

If the client application needs to maintain the data integrity over an EXCI connection,
extended Logical Unit of Work (LUW) is used by the client.

To provide the infrastructure needed to guarantee the transactionality, CICS TG implements
the use of unauthorized Resource Recovery Services (RRS). For a complete explanation of
transactional models, see 6.3, “Transactional models” on page 97.

If you need additional information about the configuration of extended LUW support in CICS
TG, see CICS Transaction Gateway for z/OS Version 6.1, SG24-7161.

Note: The configuration of EXCI server connections is the same for both local and remote
modes.

Note: Resource recovery consists of the protocols and program interfaces that allow an
application program to make consistent changes to multiple protected resources.

Recoverable Resource Management Services (RRMS) consists of three z/OS
components:

� Registration Service
� Context Services
� Resource Recovery Services
28 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

2.4.5 Client applications needing distributed LUWs

If the client application needs to maintain the data integrity in different systems, the extended
architecture (XA) protocol is needed and the XA support in the Gateway daemon must be
enabled. For more information about this topic, see 6.3.1, “Two-phase commit” on page 98.

To provide support for XA transactions, the Gateway daemon makes use of RRMS facilities
that require the calling address space to be registered as an authorized resource manager. A
new address space called CTGRRMS acts as an agent for the Gateway daemon, providing
access to the RRS capabilities required to support XA transactions.

CTGRRMS is a non-terminating address space, which will usually remain active until the next
IPL of the z/OS image or logical partition (LPAR). CTGRRMS does not execute code itself
beyond its own initialization. However, it provides services used by any Gateway daemon in
the same LPAR that supports XA transactions.

During initialization, a Gateway daemon with XA transaction support enabled checks the
availability of the CTGRRMS address space. If CTGRRMS is not available, the Gateway
daemon requests the CTGRRMS Address Space Initiator (ctgasi) to start CTGRRMS.

If XA is implemented over the EXCI protocol, all the information about the transaction will be
stored in RRS.

If XA is implemented over IPIC connections, CICS TG needs to store only the CICS APPLID
that received the request in Dynamic Server Selection (DSS). Failing XA transactions can be
resolved only by the CICS region that started them. If DSS is used across LPARs, the XA
coordinator cannot know which CICS received the request and then tries the recovery on the
initial CICS.

If you need more information about the XA configuration, see CICS Transaction Gateway for
z/OS Version 6.1, SG24-7161.

2.4.6 Using historical statistical data analysis

CICS TG for z/OS can take advantage of z/OS System Management Facility (SMF) to record
statistical data in SMF type 111 records. The statistics collection can be interval or end-of-day
driven. Members CTGSMFRD, CTGSMFR, and CTGSMFB in SCTGSAMP are provided to generate a user
program to extract the SMF data, and run it.

SMF111 can be also analyzed by OMEGAMON XE for Messaging and the CICS
Performance Analyzer tool. It is also possible to view the statistics data with CICS Explorer.
See Chapter 14, “Explorer plug-in” on page 321.

If you need more information about monitoring and statistics, see The Complete Guide to
CICS Transaction Gateway: Volume 3 Systems Monitoring, SG24-7562-01.

2.4.7 Using real-time statistical data analysis

CICS TG provides a statistical API, which is dynamically called during run time. Member
CTGSTATS in the SCTGDLL library provides the CICS TG API.

Note: Member CTGINIT of SCTGLINK must be APF-authorized.
Chapter 2. CICS Transaction Gateway for z/OS installations 29

IBM Tivoli OMEGAMON XE for CICS on z/OS implements this functionality to provide
real-time statistics data.

For more information about monitoring and statistics, see The Complete Guide to CICS
Transaction Gateway: Volume 3 Systems Monitoring, SG24-7562-01.

2.4.8 Multiple Gateway daemons started on the same LPAR

If more than one CICS TG is started in the same LPAR, there is redundancy on the modules
loaded. For this reason, you can benefit from creating a Java shared class cache. It allows
multiple Gateway daemons, within an LPAR, to consolidate class storage. The Java shared
class cache is automatically created by default and it is called cicstgxxx, where xxx is the
CICS TG version, modification, and level. It can be disabled in ctgstart, by coding the option
-nosharedclasses.

2.4.9 Security

When connecting client applications to CICS, it is important to maintain appropriate controls
over CICS programs, data, and other resources. With the CICS TG, the infrastructure and
APIs enable authentication of the client system and the user. After the user has been
authenticated, CICS, in conjunction with the external security manager, can apply the
authorization rule to restrict access to sensitive applications and data.

If the connection between client/server applications needs to preserve confidentiality for the
data being transmitted over the network, CICS TG can benefit from support for the standard
SSL and Transport Layer Security (TLS) protocols to encrypt the transmitted data.

For a more thorough discussion of the security considerations, mechanisms used to secure
connections, and transmission of security credentials to the CICS system, see Chapter 8,
“Security” on page 131.

2.4.10 Setting up high availability

CICS TG can use different strategies to guarantee the quality of service required, such as
Dynamic Server Selection (DSS) and CICS TG Gateway group technologies. These
technologies can help you in implementing a high availability system even when your
business transactions create some affinities between specific entities.

Various solutions are described in more detail in Chapter 7, “High availability concepts” on
page 103.

For an example and more information, see Using CICS Transaction Gateway, High
Availability, and the CICS Explorer, REDP-4782.

2.5 The benefits of CICS TG for z/OS

CICS Transaction Gateway is available on a variety of platforms, providing different
capabilities and qualities of service.

Each product delivers the core capability for enterprise modernization and connectivity for
CICS assets. However, depending on deployment choice, CICS TG can deliver different
benefits.
30 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

For a detailed table and an overview of the broad benefits achievable with different CICS TG
products, visit the following link:

http://www.ibm.com/software/products/us/en/cics-ctg/
Chapter 2. CICS Transaction Gateway for z/OS installations 31

http://www.ibm.com/software/products/us/en/cics-ctg/
http://www.ibm.com/software/products/us/en/cics-ctg/

32 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 3. CICS Transaction Gateway for
Multiplatforms and Desktop
Edition installations

This chapter describes the installation and file structure of CICS Transaction Gateway (CICS
TG) on both the Windows and AIX platforms. This includes the resulting file structure of
installed components and the location of key components. This section contains details for
both Multiplatforms and Desktop Edition.

The following concepts are covered in this chapter:

� 3.1, “Preparing to install CICS TG Multiplatforms and CICS TG Desktop Edition in a
distributed environment” on page 34

� 3.2, “Anatomy of CICS TG in a Windows environment” on page 35

� 3.3, “Anatomy of CICS TG on UNIX” on page 36

� 3.4, “The CICS TG and Client daemons and runtime components” on page 38

3

© Copyright IBM Corp. 2014. All rights reserved. 33

3.1 Preparing to install CICS TG Multiplatforms and CICS TG
Desktop Edition in a distributed environment

The CICS TG installation image can be obtained from either IBM or an authorized IBM
Business Partner. These sources can be accessed through the IBM Passport Advantage®
site.

3.1.1 The Passport Advantage site

The CICS TG is made available through an installable image referred to as the eImage. This
is true regardless of the platform, which includes AIX, HPUXIA64, Linux (Linux on Intel, Linux
on Power, and Linux on System z), Solaris, and Windows.

The Passport Advantage site is a single point of contact to download and manage your
purchased software. To use this site, valid IBM identification is required. You are limited to
software for which you hold a valid license.

Passport Advantage Online enables you to perform the following actions:

� Access entitled software: Download or request a media pack.

� Renew IBM software subscription and support or acquire licenses for your sites by
browsing the popular offerings catalog or IBM quotes (available in many but not all
countries).

� Review and update contact information for your site’s designated contacts.

� View Proof of Entitlement certificates for your sites.

� Subscribe to eNotifications to receive automatic notification when new software upgrades,
matching your preferences and entitlement, become available.

� Generate reports to track transaction history, download history, or active entitlements at
the enterprise or site level.

The Passport Advantage site can be accessed by the following link:

http://www.ibm.com/software/lotus/passportadvantage/

3.1.2 Files provided within the installable eImage

For the following example, the Windows platform will be used. The contents of the
downloaded eImage are shown in Figure 3-1 on page 35.

Note: You must be authorized by your site’s primary contact or primary contact
designate to take advantage of eNotifications.
34 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/software/lotus/passportadvantage/
http://www.ibm.com/software/lotus/passportadvantage/

Figure 3-1 eImage contents

The following files are contained in the download and described in the following list:

� The installer.exe executable file contains the installation media and the installer itself.

� The readme.html file contains installation information, such as installation instructions,
upgrade instructions, and any service updates that are included.

3.2 Anatomy of CICS TG in a Windows environment

The file structure of an installed CICS TG on Windows is illustrated in Table 3-1.

Table 3-1 Installed file contents

Directory name Purpose

CICS Transaction Gateway Product root directory, install response file, and product.xml
version file

bin Executable binaries

classes CICS TG Java classes

copybook Development COBOL copybooks

deployable Deployable EAR files, RAR files, and ctgredist.zip containing the
redistributable components for developing C and .NET applications
on AIX, HPUXIA64, Linux on IBM System i®, Linux on IBM Power
Systems™, Linux on System z, Solaris Sparc, and Windows

docs/javadoc API documentation reference for Java, CICS TG ECI and ESI
Version 2, .NET, and CICS TG Statistics

include Development C and C++ header files

jvm17 Java software development kit (SDK)

lib Product lib and dll files

lib64 64-bit ctgclient.dll

license Product license text

msgs Product message text and help files

properties CICS TG product version files

samples CICS TG samples and scenarios files

uninstall90 uninstall executable
Chapter 3. CICS Transaction Gateway for Multiplatforms and Desktop Edition installations 35

The CICS TG is designed to run as a Windows service. It is started and stopped through this
service, as illustrated in Figure 3-2.

Figure 3-2 Running CICS TG Windows service

Now that the CICS TG is started, as shown in Figure 3-2, the running processes for the
CICSTG (daemon and service) can be verified as running as shown in Figure 3-3.

Figure 3-3 Active processes of a running CICS TG on Windows

3.3 Anatomy of CICS TG on UNIX

For the following example, the AIX platform will be used. The contents of the downloaded
eImage are shown in Figure 3-4.

Figure 3-4 Unpacking the CICS TG for Multiplatform installation image contents on AIX

s1(root)/tmp/ctg_9_install_image:>gunzip -c ctg_9_install.tar.gz | tar -xvf-
x installer, 155880741 bytes, 304455 tape blocks
x readme.txt, 14937 bytes, 30 tape blocks
s1(root)/tmp/ctg_9_install_image:>ls -la
total 605600
drwxr-xr-x 2 root system 256 04 Apr 16:51 .
drwxrwxrwt 28 bin bin 20480 04 Apr 16:50 ..
-rwxr-xr-x 1 root system 154136615 04 Apr 16:41 ctg_9_install.tar.gz
-rwxr-xr-x 1 11889 11889 155880741 15 Nov 00:00 installer
-rw-r--r-- 1 11889 11889 14937 15 Nov 00:00 readme.txt
s1(root)/tmp/ctg_9_install_image:>
36 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The following files are contained in the download and described in the following list:

� The installer executable file contains the installation media and the installer itself.

� The readme.txt file contains install information, such as instructions for installing and
upgrading, and any service updates that are included.

The file structure of an installed CICS TG on AIX is illustrated in Table 3-2.

Table 3-2 Installed file contents

The CICS TG on AIX runs as a daemon and is started and stopped using the ctgd daemon
script. This not only starts and stops the CICS TG, but it also allows it to run as a background
process. For more information about configuring and using the CTGD, see Chapter 11, “CICS
Transaction Gateway Multiplatforms and Desktop Edition configuration” on page 205.

Directory name Purpose

CICS Transaction Gateway Product root directory, install response file, and product.xml
version file

bin Executable binaries

classes CICS TG Java classes

copybook Development COBOL copybooks

deployable Deployable EAR, RAR files, and ctgredist.zip containing the
redistributable components for developing C and .NET applications
on AIX, HPUXIA64, Linux on System i, Linux on Power Systems,
Linux on System z, Solaris Sparc, and Windows

docs/javadoc API documentation reference for Java, CICS TG ECI and ESI
Version 2, .NET, and CICS TG Statistics

icons gui icon .gif files

include Development C and C++ header files

installlogs Current installation log files

jvm17 Java SDK

lib Product lib and dll files

license Product license text

msgs Product message text and help files

properties CICS TG product version files

samples CICS TG samples and scenarios files

uninstall90 uninstall executable
Chapter 3. CICS Transaction Gateway for Multiplatforms and Desktop Edition installations 37

3.4 The CICS TG and Client daemons and runtime components

Regardless of the distributed platform on which the CICS TG is installed, all versions share
the same components. Figure 3-5 illustrates the components of CICS TG for Multiplatforms
and its positioning in the product architecture. The JCA resource adapters are shipped as
part of the CICS TG product for deployment to a supported Java EE application server (for
example, WebSphere Application Server).

Figure 3-5 Remote mode components of CICS TG for Multiplatforms product

3.4.1 The Client daemon

The Client daemon is an integral part of CICS TG on all distributed platforms. The Client
daemon provides the local interface to C, C++, COM, and COBOL client applications to
enable communication with CICS. It provides Systems Network Architecture (SNA) and
TCP/IP protocol connectivity to CICS using the same technology as IBM CICS Universal
Client. You can configure these protocols with other protocol-specific parameter values using
the CICS TG Configuration tool (ctgcfg) or by directly editing the CICS configuration file.

3.4.2 The Gateway daemon

The Gateway daemon listens for incoming remote client requests and manages the threads
and connections necessary to ensure good performance. The Gateway daemon handles
remote client requests using its protocol handlers component. The Gateway daemon can be
configured to support both TCP/IP and Secure Sockets Layer (SSL) protocols. You can
configure these protocols and set Gateway daemon-specific parameters using the CICS TG
Configuration tool (ctgcfg).

Graphics Specialist need to redraw this diagramJNI

JEE
App

Remote platform

SSL

TCP

TCP

JCA CICS resource
adapters

CCI

Java client
application

.NET Framework API

Native application

.NET application

Base classes

CTG Client assembly

ECIv2

Gateway
daemon

CICS TG

CICS
Server

CICS 3270
terminal
emulator

cicsterm

SNA

TCP/IP

IPIC

Remote JEE Application
Server

Multiplatforms server

Configuration
file

ctg.ini

Workers

Connection Managers

Client
daemon
(cclclnt)

ECI EPI ESI

Local Client
daemon
application
(C, C++, COM)
38 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

3.4.3 The IPIC protocol

The CICS Transaction Server for z/OS Version 3.2 (CICS TS) introduced the IPIC protocol. It
is used for intercommunication with CICS regions over TCP/IP. CICS TG V7.1 or later
supports the IPIC protocol. The IPIC support is provided in the CICS TG as a separate
component called the IPIC protocol driver. This driver is independent of the Client daemon
component. The IPIC configuration for local mode is different from local mode configuration
supported by other protocols with the Client daemon. The IPIC protocol can be configured by
using the CICS TG Configuration tool (ctgcfg) or by directly editing the CICS configuration
file. More information about local and remote mode configuration is available in Chapter 6,
“CICS Transaction Gateway solution options” on page 89.

The following limitations apply when connecting using the IPIC protocol:

� You cannot use the EPI or ESI application programming interfaces.
� You cannot use the ECI asynchronous calls.
� You cannot use the cicscli command for CICS server definitions.

3.4.4 The configuration tool

Configuration settings are stored by default in the ctg.ini file, the <install_path>/bin
directory on UNIX and Linux, and in the <product_data_path> directory on Windows. You can
specify a different location and optionally change the name of the configuration file by setting
the CICSCLI environment variable. A sample configuration file (ctgsamp.ini) is in the
C:\Program Files (x86)\IBM\CICS Transaction Gateway\samples\configuration for
Windows and /opt/IBM/cicstg/samples/configuration for UNIX.

The ctgcfg utility can be used for the following activities:

� CICS TG APPLID, APPLID Qualifier, Default Server, key ring file, and key ring password
can be configured on the CICS Transaction Gateway page.

� In the Gateway daemon section, you can configure gateway-supported protocols: TCP/IP
and SSL. You can also configure Gateway daemon-specific resources, logging, monitoring
facilities, and Statistics API settings.

� In the Client daemon section, you can configure the Client daemon-specific resource and
the logging facilities. You can also configure the Workload Manager (WLM)-specific
parameters. WLM is supported only on the Windows platform.

� In the CICS Servers section, you can add new server connection definitions to CICS by
right-clicking the CICS servers in the navigation panel of the ctgcfg tool. You can select
TCP/IP, SNA, IPIC, and named pipes (supported only on the Windows platform) protocols
to connect to CICS.

More information about using the ctgcfg utility is provided in Chapter 11, “CICS Transaction
Gateway Multiplatforms and Desktop Edition configuration” on page 205.

Note: Before the release of Version 7.2 of CICS TG, the ctg.ini was by default in the
product bin directory on Windows.

Note: Support for named pipes was removed in CICS TG Version 8.1.
Chapter 3. CICS Transaction Gateway for Multiplatforms and Desktop Edition installations 39

3.4.5 Resource adapters

Resource adapters are used in support of Java EE Connector architecture client applications.
To understand resource adapters, it is important to understand Java EE Connector
architecture.

Purpose of Java EE Connector architecture
Java EE Connector architecture defines a standard architecture for connecting the Java
Platform Enterprise Edition (Java EE) platform to heterogeneous enterprise information
systems (EIS). Examples of an EIS include transaction processing systems, such as the
CICS TS and Enterprise Resource Planning systems (SAP).

The connector architecture enables an EIS vendor to provide a standard resource adapter. A
resource adapter is a middle-tier between a Java application and an EIS, which enables the
Java application to connect to the EIS. A resource adapter plugs into application servers
supporting the Java EE Connector architecture.
40 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Part 2 CICS Transaction
Gateway capabilities

Part 2 shows you how to choose the appropriate CICS connection protocol, APIs for the
applications, and security options and understand the services available to the application
developer through that protocol. You also look at 3-tier solutions and those CICS Transaction
Gateway (CICS TG) capabilities that provide high availability.

Part 2
© Copyright IBM Corp. 2014. All rights reserved. 41

42 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 4. Connecting to CICS

This chapter describes the communication protocols available for connecting the CICS
Transaction Gateway (CICS TG) products with CICS server products. It describes at a high
level the APIs supported by each protocol and the qualities of service provided.

This chapter contains the following topics:

� 4.1, “CICS communication protocols” on page 44
� 4.2, “CICS TG APIs and connection type” on page 49
� 4.3, “Quality of service and connection types” on page 50
� 4.4, “IPIC autoinstall for WebSphere Application Server clusters” on page 64

4

© Copyright IBM Corp. 2014. All rights reserved. 43

4.1 CICS communication protocols

This section provides an overview of the various communication protocols available for use
with CICS Transaction Gateway products and supported CICS server products. A more
detailed technical analysis of their capabilities and qualities of service is provided in 4.3,
“Quality of service and connection types” on page 50.

Over time and advances in technology, a mixture of wire protocols has been implemented by
the CICS Family of products, each with its own characteristics and capabilities. There are now
many possible combinations of products and protocols. It is often difficult to decide which will
satisfy a specific set of application requirements.

Table 4-1 summarizes the communication protocols available to connect CICS TG products
with CICS Transaction Server (CICS TS) and TXSeries products.

Table 4-1 Capabilities for CICS TG and CICS server products

4.1.1 What’s in a name?

Before proceeding any further, it is important to provide historical information regarding the
names of the CICS connection protocols, known as TCPIP, ECI over TCP/IP, or ECI over IP.

At the time of its inception, the world of external CICS communications was viewed as being
either Systems Network Architecture (SNA) or TCP/IP-based. The protocol drivers in the
CICS TG products became known as SNA and TCPIP. Although convenient at the time, the
choice of TCPIP subsequently proved to be too generic, and today causes confusion due to
other CICS protocols also being built on top of TCP/IP networks. Today, both the IPIC and
TCPIP CICS protocols operate over a TCP/IP network, as well as HTTP/HTTPS, Web
Services, and no doubt more to follow in the future.

CICS protocol Available with CICS TG
products

Connects with CICS server products

IPIC z/OS
Multiplatforms Desktop Edition

CICS TS for z/OS
TXSeries for Multiplatforms

External CICS
interface (EXCI)

z/OS CICS TS for z/OS

TCPIP Multiplatforms Desktop Edition CICS TS for z/OS
CICS TS for z/VSE
TXSeries for Multiplatforms
CICS TS for System i

SNA Multiplatforms Desktop Edition CICS TS for z/OS
CICS TS for z/VSE
CICS TS for System i

Note: The CICS TCPIP protocol (without a slash) is a CICS Family communications
protocol, operating over TCP/IP networks (with a slash). However, it is not the only CICS
communications protocol to operate over TCP/IP networks.
44 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The TCPIP CICS Family protocol is often referred to as ECI over TCP/IP in the context of
CICS TS for z/OS, or CICS TS for z/VSE, because those particular CICS server products only
support ECI requests when using this protocol. Also, it is defined as “Protocol: ECI” in a CICS
TCPIPService resource definition. However, the TXSeries and CICS TS for System i also
support external presentation interface (EPI) requests with this protocol, and so ECI over
TCP/IP is not always an appropriate name for this CICS Family protocol.

The subsequent sections of this topic provide a summary of each CICS communication
protocol, in the context of the CICS TG products, CICS server products, and the CICS TG
APIs.

4.1.2 IP interconnectivity (IPIC)

IPIC is a type of intersystem communications, introduced in CICS TS for z/OS V3.2. It
provides a TCP/IP network-based alternative to intersystem communication (ISC) over
Systems Network Architecture (ISC over SNA). It supersedes the older TCPIP protocol for
ECI applications, providing enhanced capabilities, qualities of service, and cross-platform
availability.

IPIC connections enable the integration of CICS-to-CICS, and CICS TG-to-CICS
communications, into a TCP/IP-based network infrastructure. It also enables the use of
Secure Sockets Layer (SSL) to provide secure connectivity.

IPIC is the only CICS protocol implemented by all of the CICS TG products, and is therefore
available on all supported platforms. Before the CICS TG V7.1 products delivered support for
IPIC, the only connectivity available with the CICS TG for z/OS product was EXCI.

IPIC provides ECI access to CICS TS for z/OS and TXSeries products over the TCP/IP
network, supporting both COMMAREA and channel programs, and two-phase commit.
Additionally, IPIC connections to CICS TS for z/OS support the external security interface
(ESI) for password verification and change. IPIC does not provide external presentation
interface (EPI) support.

Figure 4-1 shows how IPIC connectivity can be used with CICS TS for z/OS V3.2, or later.
This general pattern is true for all CICS TG deployments, except that JCA resource adapters
are not included with CICS TG Desktop Edition.

Figure 4-1 IPIC connectivity with CICS TS for z/OS

Remote mode:
Java ECI+ESI

JCA ECI
.NET ECI+ESI
ECI V2+ESI V2

IPIC

IPICctg

COMMAREA
programs

Channel
programs

PEM
requests

Local mode:
Java ECI+ESI

JCA ECI
CICS TG API
applications

Gateway daemon
(all CICS TG) CICS TS for z/OS
Chapter 4. Connecting to CICS 45

Figure 4-2 shows how IPIC connectivity can be used with TXSeries for Multiplatforms V7.1, or
later. This general pattern is true for all CICS TG deployments, except that the JCA resource
adapters are not included with CICS TG Desktop Edition.

Figure 4-2 IPIC connectivity with TXSeries

4.1.3 EXCI

The External CICS Interface (EXCI) provides a means for non-CICS address spaces on z/OS
to link to programs in a CICS region. For example in Figure 4-3 on page 47, EXCI allows
batch jobs to connect to CICS and also allows the CICS Transaction Gateway for z/OS to
make calls to CICS. The use of EXCI imposes some limits on both the client program and the
CICS server program. The invoked CICS program must be a COMMAREA-based program.
For the client application, use of EXCI limits the ECI request to only that portion which EXCI
supports, and prevents use of external presentation interface (EPI) to invoke 3270
applications or ESI to invoke password functions in CICS.

Note: The high-level difference between CICS TS for z/OS and TXSeries in terms of
support for IPIC connectivity is that TXSeries does not support external security interface
(ESI) requests for password expiry management, and it does not support password
phrases.

Remote mode:
Java ECI
JCA ECI
.NET ECI
ECI V2

Local mode:
Java ECI
JCA ECI

CICS TG API
applications

Gateway daemon
(all CICS TG) TXSeries

IPIC

IPICctg

COMMAREA
programs

Channel
programs
46 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 4-3 EXCI connections with CICS TS for z/OS

4.1.4 TCPIP

When connecting to TXSeries and CICS TS for System i servers, the TCPIP connection
protocol supports both ECI and EPI application programming interfaces. However, ECI
requests are limited to COMMAREA-based application requests. When connecting to CICS
TS for z/OS and CICS TS for VSE servers, this protocol supports only COMMAREA-based
ECI requests, and is also referred to as ECI over TCP/IP.

Figure 4-4 on page 48 shows how TCPIP connectivity can be used with CICS TS for z/OS
and CICS TS for VSE. This general pattern is true for all CICS TG for Multiplatforms and
CICS TG Desktop Edition deployments, except that JCA is not included with CICS TG
Desktop Edition.

Local mode:
Java ECI
JCA ECI

Remote mode:
Java ECI
JCA ECI
.NET ECI
ECI V2

CICS TG API
applications

MROctg

COMMAREA
programs

EXCI

MRO
EXCI

z/OS Sysplex

Gateway daemon
(CICS TG for z/OS) CICS TS for z/OS

Note: The TCPIP connection protocol is not supported with the CICS TG for z/OS product.
Chapter 4. Connecting to CICS 47

Figure 4-4 TCPIP connections with CICS TS for z/OS and CICS TS for z/VSE

Figure 4-5 shows how TCPIP connectivity can be used with TXSeries and CICS TS for i. This
general pattern is true for all CICS TG for Multiplatforms and CICS TG Desktop Edition
deployments, except that JCA is not included with CICS TG Desktop Edition.

Figure 4-5 TCPIP connections with TXSeries and CICS TS for i

Local mode:
Java ECI
JCA ECI

Remote mode:
Java ECI
JCA ECI
.NET ECI
ECI V2

CICS TG API
applications

ctg

Client
daemon

Client daemon
APIs:

ECI

TCPIP COMMAREA
programs

Multiplatforms OS

Gateway daemon
(CICS TG for MP/DE)

CICS TS for z/OS
CICS TS for VSE

Local mode:
Java ECI+EPI
JCA ECI+EPI

Remote mode:
Java ECI+EPI
JCA ECI+EPI

.NET ECI
ECI V2

CICS TG API
applications

ctg

Client
daemon

Client daemon
APIs:

ECI+EPI

TCPIP COMMAREA
programs

Multiplatforms OS

Gateway daemon
(CICS TG for MP/DE)

TXSeries
CICS TS for i

3270
transactions
48 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

4.1.5 SNA Advanced Program-to-Program Communication (APPC)

Advanced Program-to-Program Communication (APPC), also known as Logical Unit TYPE
6.2 (LU 6.2), is a Systems Network Architecture (SNA) protocol that supports both
system-to-system communication and system-to-device communication. SNA connections
are only supported in CICS TG for Multiplatforms and CICS TG Desktop Edition. As shown in
Figure 4-6, the SNA connection protocol supports all of the gateway APIs to all CICS servers
except TXSeries.

Figure 4-6 SNA APPC connections with the CICS TS family of products

4.2 CICS TG APIs and connection type

All CICS TG products provide both ECI and ESI programming interfaces for multiple
programming languages. ECI provides access to CICS programs, with data encapsulated as
COMMAREAs or channels and containers. ESI provides access to Password Expiry
Management (PEM) capabilities, such as verify password or change password.

The CICS TG for Multiplatforms and CICS TG Desktop Edition products additionally provide
the EPI for access to CICS terminal transactions through virtual 3270 sessions.

Table 1-1 on page 14 summarizes the capabilities and options for connectivity between
combinations of CICS TG and CICS server products. Table 4-2 on page 50 presents the
same information, from the viewpoint of which API is required.

Note: An additional product, such as IBM Communication Manager, is required to provide
SNA connectivity.

Local mode:
Java ECI+ESI+EPI

JCA ECI+EPI

Remote mode:
Java ECI+ESI+EPI

JCA ECI+EPI
.NET ECI+ESI
ECI V2+ESI V2

CICS TG API
applications

SNA
APPC

ctg

COMMAREA
programs

Client
daemon

Multiplatforms OS

Client daemon
APIs:

ECI+ESI+EPI

SNA
server PEM

requests

3270
transactions

Gateway daemon
(CICS TG for MP/DE)

CICS TS for z/OS
CICS TS for VSE

CICS TS for i

Note: Not all of the CICS TG programming interfaces are available in each CICS TG
product, and not all programming interfaces included within a CICS TG product are
available for use with all types of CICS connection. The choice of programming API might
impose limitations on the connection type that you use.
Chapter 4. Connecting to CICS 49

Table 4-2 Options for connectivity between combinations of CICS TG products and APIs

4.3 Quality of service and connection types

This section takes each of the available CICS connection protocols and breaks out the
capabilities and qualities of service.

There is a choice of network protocols for connecting to CICS. All protocols support ECI
COMMAREA requests. Table 1-1 on page 14 shows the supported options for connecting to
different CICS servers using the various protocols and client APIs. With the availability of IPIC
connectivity and especially support for SSL on IPIC connections, it is now feasible to migrate
many CICS TG solutions to IPIC, except for EPI-based applications. These will still require an
SNA connection to support access to terminal-based transactions with CICS TS for z/OS and
CICS TS for z/VSE. Because IPIC connections are the strategic direction for the CICS TG,
this book will use IPIC connections in all examples and scenarios.

API
IBM CICS connection

CICS TG for z/OS CICS TG for
Multiplatforms

CICS TG Desktop
Edition

ECI a

a. Channels and containers are only available for ECI requests using IPIC CICS connections.

EXCI
IPIC

IPIC
SNA
TCPIP

IPIC
SNA
TCPIP

ESIb

b. ESI is only applicable to IPIC connections to CICS TS for z/OS, or when using the SNA
connection protocol to CICS TS for VSE and CICS TS for i.

IPIC IPIC
SNA

IPIC
SNA

EPI N/A SNA
TCPIP c

c. EPI requests using TCPIP CICS connections are possible with TXSeries and CICS TS for i
servers.

SNA
TCPIP d

d. EPI requests using TCPIP CICS connections are possible with TXSeries and CICS TS for i
servers.

The CICS TG information centers each include the topic, “Which API can be used?”, which
provides a full cross-reference between programming language API support and CICS
communications protocol available for the CICS TG for Multiplatforms and CICS TG Desktop
Edition products:

http://ibm.co/1n2ltV6

The following topic is equivalent for the CICS TG for z/OS product:

http://ibm.co/WnWuSN

Note: EPI client applications connect to TXSeries using the TCPIP protocol rather than
SNA, and to CICS TS for i using either TCPIP or SNA.
50 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1n2ltV6
http://ibm.co/WnWuSN

Performance is often a key factor in the evaluation of technology, but it is beyond the scope of
this book. However, a good comparison of connection protocols is available in the IBM
Redpaper™ publication, IBM CICS Performance Series: A Processor Usage Study of Ways
into CICS, REDP-4906:

http://www.redbooks.ibm.com/abstracts/redp4906.html

4.3.1 IPIC

This topic describes characteristics of CICS connections using the IPIC protocol, from the
perspective of the CICS Transaction Gateway.

Key differentiators
IPIC connectivity continues to evolve and mature since its introduction in 2007, and now
offers multiple benefits over the other CICS Family communication protocols:

� Channels and container support for ECI provides an improved method of exchanging data
with CICS programs in amounts that far exceed the 32-KB limit that applies to
COMMAREAs and additionally provides an optimized and more structured data interface.

� Very high offload to specialty processors, such as IBM zSeries Application Assist
Processor (zAAP), when using CICS TG for z/OS.

Although the Gateway daemon is a Java-based address space, it switches to native code
for all CICS communications protocols, except IPIC. When CICS TG for z/OS is deployed
in a system with zAAP engines enabled, the offload will significantly reduce the general
CPU cost per transaction.

� Higher concurrent workload capacity, especially compared to EXCI.

� Secure SSL/Transport Layer Security (TLS) connectivity to CICS TS for z/OS, or
TXSeries, regardless of where the CICS TG product is deployed.

� Password phrases are supported for ECI and ESI with CICS TS for z/OS.

� Best transaction tracking capabilities, due to the provision of origin data, and integration
with the Cross Component Trace (XCT) facility in WebSphere Application Server V8.5, or
later.

� IPIC local mode is the only configuration offering extended architecture (XA) transaction
support, for the CICS TG for Multiplatforms product.

� No support for EPI applications.

Because the CICS TG implementation of IPIC is Java and TCP/IP-based, it transparently
benefits from ongoing improvements to these parts of the underlying software, for example:

� The IBM Java software development kit (SDK) regularly exploits the latest hardware
offerings, for improvements in performance

� The IBM Java Secure Socket Extension (JSSE) library offers continually improving
security capability, such as TLS 1.2 support, and exploitation of encryption hardware

� TCP/IP stack optimizations, for example, dynamic right sizing, or Remote Direct Memory
Access (RDMA) over Converged Ethernet (RoCE) exploitation

Transactions
IPIC connections can be used for synconreturn, extended logical unit of work (LUW), and XA
transaction-based ECI requests. While all of the CICS server products support synconreturn
and extended LUW transactions, CICS TS for z/OS is the only CICS server product providing
support for XA transactions with IPIC connectivity.
Chapter 4. Connecting to CICS 51

http://www.redbooks.ibm.com/abstracts/redp4906.html

The CICS TG for z/OS product supports XA transactions when the ECI resource adapter is
deployed in local mode, for example, with WebSphere Application Server for z/OS, or remote
mode, for example, with a certified Java EE application server, on any platform.

The CICS TG for Multiplatforms product supports XA transactions when the ECI resource
adapter is deployed in local mode. It does not support XA transactions in remote mode.

The CICS TG Desktop Edition does not support XA transactions, because the Java EE
resource adapters are not included.

From the application programming perspective, XA transactions are available exclusively
through the ECI resource adapter, when a connection factory is configured to enlist in a global
transaction. This can be achieved with either container-managed transaction (CMT) or
bean-managed transactions (BMTs).

Security
IPIC connectivity offers the greatest selection of security options within the range of the CICS
Family communication protocols. It allows for the selective implementation of various types of
security, from identity assertion through to SSL client authentication, with full control over
cipher suites.

Bind time security can be used to apply a security check when a request to establish a
connection is received from, or sent to, a remote system. Its purpose is to prevent an
unauthorized system from connecting to CICS. For IPIC, bind security is supported by the
exchange of Secure Sockets Layer (SSL) certificates.

Link security restricts the resources that a user can access, depending on the remote system
from which they are accessed. The practical effect of link security is to prevent a remote user
from attaching a transaction or accessing a resource for which the link user ID has no
authority.

With CICS TS for z/OS, the authority of the link comes from one of these user IDs:

� A user ID that is specified on an IPConn definition
� A user ID that is associated with a certificate received from the partner system, through an

External Security Manager

User security can be used to check the received security context that flows from the requestor
and determine the user ID under which the transaction executes. For ECI requests, the
received security context (user ID and either password, or password phrase) is usually
specified by the ECI application, or for Java EE applications, it can be specified in the ECI
connection factory custom properties: userName and Password. With IPIC connections using
SSL, the received security context can be derived from a client certificate.

Identity assertion is a special form of user security, where the transaction operates under the
user ID specified by the requestor, without a password or password phrase credential. This is
allowed in CICS TS for z/OS with IPIC connections, when the partner system meets these
conditions:

� In a z/OS logical partition (LPAR) within the same sysplex
� Using a secure SSL IPIC connection

Note: Only the CICS TG for z/OS product provides support for XA transactions in a 3-tier
(remote mode) topology. Therefore, only CICS TG for z/OS can provide the combination of
XA transaction support and Dynamic Server Selection capabilities for high availability, such
as DSSPOLICY, or the CICS Request Exit.
52 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Identity propagation can be viewed as an extension of identity assertion, allowing a
pre-validated distributed identity, from a non-System Authorization Facility (SAF)-based
security domain, to be propagated from WebSphere Application Server to CICS. Identity
propagation is only available with IPIC connections.

For further detail about identity propagation support in CICS Transaction Gateway, see the
Information Center topic, Identity propagation:

http://ibm.co/1mYB2xG

For full details, see z/OS Identity Propagation, SG24-7850:

http://www.redbooks.ibm.com/abstracts/sg247850.html

IPIC supports ESI requests, allowing application programs to perform password expiry
management (PEM) operations, including change and verify password.

For full details about IPIC security with CICS TS for z/OS, see the Information Center topic,
Implementing IPIC security:

http://ibm.co/WjtHyu

Capacity limits
Capacity for IPIC connections is determined by the number of sessions made available. The
total number of IPIC sessions, across multiple connections, that can be created, are subject
to available Java heap storage in either the Gateway daemon, or the Java EE application
server (local mode).

Each IPIC connection is configured to have a specific number of logical sessions available,
and a hard limit on that number is imposed by architectural limits in the CICS server product.
Since the introduction of IPIC with CICS TS for z/OS V3.2, this limit remains at 999 sessions.

Given that multiple IPIC connections can be used concurrently, to multiple CICS server
instances (or to a single CICS server instance), it is clear that the number of concurrent
requests is now constrained only by the capacity for work in the connected CICS servers, the
Gateway daemon (number of work threads), or the source of the workload, for example,
WebSphere Application Server.

At run time, a negotiation is made during connection establishment and the session limit is
determined to be the lower of the two values, defined on each side.

Note: With the CICS TG for z/OS product, full exploitation of IPIC capacity is only possible
by disabling EXCI support. If EXCI support is not disabled, the maximum number of
concurrent requests per Gateway daemon is constrained by the LPAR configuration value,
LOGONLIM. This optional CICS configuration value has a default of 100 and a maximum
possible value of 250.

Note: Before CICS TG V9.0, local mode IPIC connections always negotiated to 100
sessions. With CICS TG V9.0, or later, the ECI connection factory allows the number of
sessions to be defined, through the custom property ipicSendSessions.
Chapter 4. Connecting to CICS 53

http://www.redbooks.ibm.com/abstracts/sg247850.html

High availability options
Remote mode configurations can use multiple Gateway daemon address spaces, within one
or more LPARs, to form a highly available Gateway group. A single port of entry can be used
to balance connections between client applications and Gateway daemons, allowing the
group of Gateway daemons to act as a single logical Gateway daemon. Such a configuration
can provide redundant capacity to take up extra workload in the event of a planned or
unplanned outage. It can also be used as a pattern to scale capacity. IPIC connectivity can be
used in such configurations.

The TCPIPService listener port for an IPIC connection between CICS TG and CICS TS for
z/OS must not be used in conjunction with any TCP/IP port sharing technology for the
following reasons. First, XA transaction recovery must be completed with the same CICS
server instance, and so reconnection with the same CICS region must be assured. Also,
CICS TS for z/OS V4.1 delivered scalability improvements, using multiple TCP/IP sockets for
each IPIC connection, and these related sockets must connect to the same CICS server
instance.

IPIC connections can be used with any of the available Dynamic Server Selection capabilities
available in the CICS TG products. However, individuals, who want to migrate from EXCI and
who used the DFHXCURM exit program, must convert to either a DSSPOLICY definition, or
implement equivalent logic in the Java-based CICS Request Exit.

Timeout behavior
IPIC connectivity caters for request timeout at both the application request level and at a
connection establishment level.

ECI application programs can optionally specify a timeout value on a request-by-request
basis. If this value expires before a response is received from the CICS server, the application
receives a timeout error response. The mirror transaction in the CICS server is abended, or
marked to abend when it completes, depending on whether it is defined with the SPURGE
attribute set to YES.

CICS TG V9.0 introduced an alternative ECI request timeout option for IPICSERVER
definitions, ecitimeout. This is designed as a safety mechanism, allowing system
administrators to impose an overriding time limit for ECI requests, particularly where
application code does not specify a sensible timeout value. This is especially useful for those
migrating from EXCI, where the granularity for timeout was at the level of a Gateway daemon,
or WebSphere Application Server instance (through the DFHXCOPT table). It supersedes
any application-coded ECI timeout value at run time.

The server retry interval specifies the time in seconds between attempts to reconnect to a
CICS server over an IPIC connection, following a loss of connectivity. This capability is
available only in remote mode, and it is predefined to be inactive for local mode IPIC
connections.

The server idle timeout value specifies the period of inactivity, after which an IPIC connection
and the CICS server are closed. This capability can be configured in remote mode, but it is
disabled for local mode IPIC connections.

Note: The default value for server idle timeout on IPIC connections, local and remote
mode, changed from 60 to 0 seconds (zero means disabled) starting from CICS TG V9.0.
54 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The connect timeout value specifies the time to wait for CICS to respond during connection
establishment. A higher value might be inappropriate for IPIC connections that participate in a
high availability group, because it is preferable to fail over quickly when a CICS server
becomes unavailable.

Autoinstall
Specific IPIC connection resources (IPConns in CICS TS and Communication Definitions in
TXSeries) can be dynamically created at run time, rather than explicitly defined and installed,
one by one. This is often useful when connections with many partner systems are required, or
short-lived connections, such as might be required in a development or test environment.

The following description of autoinstall applies to the CICS TS for z/OS product.

When an IPIC TCPIPService is defined, the Urm attribute is set to DFHISAIP, by default.
DFHISAIP is a CICS-supplied, pre-built autoinstall user program. When a partner system, such
as CICS Transaction Gateway, attempts to establish an IPIC connection with CICS TS for
z/OS, it looks for a matching IPConn definition to use. If no matching IPConn definition is found,
the autoinstall user program is invoked to generate an IPConn definition automatically.

The autoinstall of IPConn resources can be disabled in CICS TS for z/OS, by specifying the
value No in the Urm attribute of the TCPIPService definition.

For further details about using IPIC autoinstall with CICS TG and WebSphere Application
Server, see 4.4, “IPIC autoinstall for WebSphere Application Server clusters” on page 64.

For a good overview of IPIC autoinstall with CICS TS for z/OS, see the Information Center
topic, Autoinstalling IPIC connections; preliminary considerations:

http://ibm.co/1rxNyVn

4.3.2 EXCI

This topic describes characteristics of CICS connections using the EXCI protocol, from the
perspective of the CICS Transaction Gateway.

Key differentiators
EXCI connectivity is the original protocol used by CICS TG for z/OS to connect with CICS TS
for z/OS. For this reason, it offers limited qualities of service due to architectural constraints:

� Available only on the z/OS platform, in remote and local mode configuration.

� Support for ECI applications is provided:

– No channel and container support. Only the COMMAREA convention is supported for
exchanging data with CICS programs, and so application requests are constrained to
the 32-KB architectural limit.

– Limited timeout capability.

� No support for EPI and ESI applications.

� Password phrases are supported for ECI requests.

� XA transaction support.
Chapter 4. Connecting to CICS 55

� Performance with EXCI can be favorable when compared like for like with IPIC, in terms of
overall transaction CPU cost.

The potential for offload to zAAP engines is limited compared to IPIC, because a
significant portion of the implementation is ineligible.

� Scalability of EXCI is constrained by the architectural limitations of EXCI pipes.

Transactions
EXCI connections can be used for synconreturn, extended LUW, and XA transaction-based
ECI requests. The CICS TG for z/OS product supports XA transactions when the ECI
resource adapter is deployed in local mode, for example, with WebSphere Application Server
for z/OS, or remote mode, for example, with a certified Java EE application server.

Security
The security options available for CICS TG configurations using EXCI connections are less
complex than IPIC, but effective. Because EXCI uses cross-memory communications, there
is no need to consider encryption techniques, such as SSL, and the Gateway daemon never
supplies a password or password phrase credential to CICS.

Bind time security, also called multiregion operation (MRO) bind security, verifies that the
system wanting to connect to CICS is authorized to do so. It is implemented using two
DFHAPPL FACILITY class profiles: DFHAPPL.<DFHJVPIPE> and DFHAPPL.<APPLID>.

Link security is an additional level of authorization checking applied to the attaching
transaction. A specific user ID (the link user ID) can be thought of as the user ID associated
with the partner system sending a request to CICS. This can be explicitly defined within the
CICS region SESSIONS definition for the EXCI connection; otherwise, the user ID of the
Gateway daemon address space is used. Both the link user ID and the flowed user ID must
be authorized to access all transactions and resources invoked as a result of the request.

User security causes a check to be made against the flowed user ID when an inbound
request attaches the transaction in CICS. For ECI requests, the received security context is
usually specified by the ECI application, or for Java EE applications, by the ECI connection
factory custom property, userName. With EXCI connections, only the user ID credential is
flowed to CICS TS for z/OS. It is assumed that the user ID has already been authenticated,
either by the Gateway daemon in remote mode, or in WebSphere Application Server for z/OS,
in local mode.

Surrogate user checking is another security mechanism available for EXCI connectivity, which
is useful when the EXCI client (Gateway daemon or WebSphere Application Server) address
space user ID is the same as the target CICS region user ID. This might be true when using a
common user ID for started procedures.

In such a case, the link security check is bypassed and so a surrogate user check is advised.
A surrogate user check is performed to verify that an EXCI client address space user ID is
authorized to issue DPL calls for another user (that is, is authorized as a surrogate of the user
ID specified on the ECI request).

For full details about EXCI security with CICS TS for z/OS, see the Information Center topic,
Implementing EXCI security:

http://ibm.co/1n2j4cW

Note: If you are using extended LUW and XA transaction ECI requests on EXCI
connections in a sysplex environment, the CICS Transaction Gateway instance must run
on the same LPAR as the CICS server. This is a CICS TS for z/OS limitation.
56 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1n2j4cW

Capacity limits
Capacity for EXCI connections is constrained by an architectural limit of CICS TS for z/OS,
imposed on each EXCI client address space. Each ECI request uses a single EXCI pipe, and
the maximum number of pipes available per address space is governed at the LPAR level, by
the LOGONLIM parameter. LOGONLIM has a default value of 100, and a maximum configurable
value of 250.

Running a Gateway daemon with EXCI enabled effectively constrains its overall capacity, by
imposing the same restriction (LOGONLIM) on the maximum number of worker threads.

CICS TG for z/OS offers two usage models for EXCI pipes. The pipe reuse model known as
ALL allows worker threads to cache pipes, offering improved performance, but compromising
concurrent capacity when connecting with multiple CICS TS for z/OS regions. To avoid the
possibility of running out of EXCI pipes, the number of concurrent requests must be
constrained to LOGONLIM divided by the possible number of CICS regions available for
connection.

The EXCI pipe reuse model known as ONE does not cache pipes to worker threads and so
allows full exploitation of the maximum number of EXCI pipes defined by LOGONLIM.

Each EXCI connection is configured to have a specific number of logical sessions available,
and it is limited by the RECEIVECOUNT parameter defined in the CICS MRO SESSIONS
definition. This needs to be at least equal to the maximum number of worker threads in a
connected Gateway daemon or the pool size for local mode connection factories in
WebSphere Application Server for z/OS.

High availability options
Remote mode configurations can use multiple Gateway daemon address spaces, within one
or more LPARs, to form a highly available Gateway group. A single port of entry can be used
to balance connections between client applications and Gateway daemons, allowing the
group of Gateway daemons to act as a single logical Gateway daemon. Such a configuration
can provide redundant capacity to take up extra workload in the event of a planned or
unplanned outage. It can also be used as a pattern to scale capacity. EXCI connectivity can
be used in such configurations.

In remote mode, EXCI connectivity can also be used with any of the Dynamic Server
Selection capabilities available in the CICS TG for z/OS product. However, it is a preferred
practice to avoid the use of a Dynamic Server Selection function of the Gateway daemon,
together with the EXCI exit program, DFHXCURM. This combination will lead to confusion
because the target CICS system selected by the Gateway daemon can be subsequently
modified by DFHXCURM. Gateway daemon monitoring and statistics values will be ambiguous
because the usage of DFHXCURM is transparent to the Gateway daemon.

Local mode configurations with WebSphere Application Server for z/OS can use a cluster of
servant regions for high availability and use EXCI connectivity. However, each servant region
is also subject to the LOGONLIM capacity constraint, and must use a dedicated, specific EXCI
connection to avoid sharing the limited number of sessions (RECEIVECOUNT) in the target CICS
region.

For a more thorough description of workload management within the CICS TG, see 7.3,
“Dynamic server selection” on page 116.

Note: CICS Transaction Gateway capabilities for Dynamic Server Selection are not
available in local mode, but the EXCI user exit DFHXCURM can be used.
Chapter 4. Connecting to CICS 57

Timeout behavior
The granularity of the possible timeouts in an EXCI connection is limited. You can set a
TIMEOUT in the EXCI options table DFHXCOPT. This setting is then used by the EXCI to
terminate any requests that have been waiting too long for a DPL_Request command to
complete. It is also possible to have a transaction timeout (such as RTIMEOUT and
DTIMEOUT) but it is not an end-to-end timeout.

Autoinstall
There is no autoinstall of EXCI MRO connections.

Although there is no autoinstall capability for EXCI, generic connections offer a useful
alternative in development and test environments. Using a generic EXCI connection
(CONNTYPE: GENERIC) allows Gateway daemon, WebSphere Application Server, and EXCI
batch jobs to share a single connection, avoiding the need to install individual connections.
However, be careful to ensure that an adequate number of sessions are available, through the
associated SESSION definition attribute, RECEIVECOUNT.

Because it is not possible to reserve a subset of sessions within the generic EXCI connection
for a particular EXCI client, they are not advised for use with CICS TG for z/OS configurations
in production.

4.3.3 TCPIP

This topic describes characteristics of CICS connections using the TCPIP protocol, from the
perspective of the CICS Transaction Gateway.

Key differentiators
TCPIP connectivity is the original CICS Family protocol to operate on TCP/IP-based
networks. For this reason, it has some limitations when compared with IPIC:

� Available only with the CICS TG for Multiplatforms and CICS TG Desktop Edition
products, in remote and local mode configuration

� Provides connectivity to all supported CICS servers

� Provides ECI capability with all supported CICS servers

No channel support. Only the COMMAREA convention is supported for exchanging data
with CICS programs, and so application requests are constrained to the 32-KB
architectural limit.

� Provides EPI capability with TXSeries and CICS TS for i

� No support for ESI

� No SSL - encryption only possible by using virtual private network (VPN) solutions

Transactions
TCPIP connections can be used for synconreturn and extended LUW transaction ECI
requests to all supported CICS server products. There is no support for XA transactions.
58 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Security
TCPIP connectivity to CICS servers offers the following security options:

� Bind time security can be used to prevent unauthorized remote systems from connecting
to CICS. There is no specific method for implementing bind time security with TCPIP.
However, the goal of bind time security can be achieved using standard TCP/IP firewall
solutions.

� Link security is not supported for TCPIP CICS server connections.

� User security can be used to check the received user ID and password that flow from the
requestor and determine the user ID under which the transaction operates. This can be
used by the CICS server to restrict the CICS resources that can be accessed by a user.
For ECI requests, the received user ID and password are usually specified by the ECI
application. Or for Java EE applications, it can be specified in the ECI connection factory
custom properties: userName and password. For EPI requests, the user ID and password
can be set by the user application at the terminal or connection level, with the value for the
terminal taking precedence. Or for Java EE applications, it can be specified in the EPI
connection factory custom properties: userName and password.

With CICS TS for z/OS, there are only two options for user security with the TCPIP protocol:

� No security:

– No authentication takes place.
– Transactions are attached in CICS under the authority of the CICS default user.

� User ID and password authentication:

– The flowed user ID and password are authenticated by the External Security Manager.
– Transactions are attached in CICS under the authority of the flowed user ID.

There is no capability to attach transactions under the authority of the flowed user ID without
a password credential.

Capacity limits
Unlike the other CICS communication protocols available for use with the CICS TG products,
the TCPIP protocol is not constrained by a maximum number of logical sessions associated
with the connection definition.

TCPIP connectivity is provided by the Client daemon component of both the CICS TG for
Multiplatforms and the CICS TG Desktop Edition products. The maximum number of
concurrent requests is limited by the maximum number of requests that the Client daemon is
configured to process, across all defined CICS server connections. This is determined by the
Client daemon configuration option, MAXREQUESTS.

High availability options
Remote mode applications using TCPIP connections can use the Dynamic Server Selection
capabilities available in the Gateway daemon, the default CICS server definition, and the
CICS request exit.

For CICS TG for Multiplatforms or CICS TG Desktop Edition on the Windows platform, an
additional option, for both remote and local mode applications, is the Windows Workload
manager. This capability allows a set of TCPIP connections to be treated as a single logical
CICS server connection, with the option to provide weighting on the distribution of requests.
Chapter 4. Connecting to CICS 59

However, it is a preferred practice to avoid the use of a Dynamic Server Selection function of
the Gateway daemon, together with the Windows Workload manager capability. This
combination will lead to confusion because the target CICS system selected by the Gateway
daemon can be subsequently modified by the Windows Workload manager feature.

Timeout behavior
TCPIP connectivity caters for request timeout at both the application request level and at a
connection establishment level.

ECI application programs can optionally specify a timeout value. If this value expires before a
response is received from the CICS server, the application receives a timeout error response.
The mirror transaction in the CICS server is abended, or marked to abend when it completes,
depending on whether it is defined with the SPURGE attribute set to YES.

The server retry interval specifies the time in seconds between attempts to reconnect to a
CICS server over a TCPIP connection, following a loss of connectivity. Unlike IPIC
connections, which allow a server retry interval to be defined on a per-connection basis,
TCPIP (and SNA) connections share a single value, defined at the Client daemon level.

The server idle timeout value specified on a server definition for the TCPIP connection
protocol specifies the period of inactivity, after which a TCPIP connection to a CICS server is
closed.

The connect timeout value specifies the time to wait for CICS to respond during connection
establishment. This capability is defined on a per-connection basis. A higher value is might be
inappropriate when using Dynamic Server Selection because it is preferable to fail over
quickly when a CICS server becomes unavailable.

EPI application programs can optionally specify a terminal install timeout value, and a read
timeout value. The install timeout controls the time to wait for a terminal to be installed on a
CICS server. If a response is not received from the server within the specified time, control is
returned to the user application with an appropriate return code. The read timeout value
controls the maximum length of time that the CICS Transaction Gateway will wait for a
response from the user application after it has issued an EXEC CICS RECEIVE or CONVERSE
command.

Autoinstall
For connections to TXSeries using the CICS Family TCPIP protocol, connections can be
autoinstalled. For connections to CICS TS for z/OS or CICS TS for z/VSE using the CICS
Family TCPIP protocol, connections must be predefined.

4.3.4 SNA

This topic describes characteristics of CICS connections using the SNA (APPC) protocol,
from the perspective of the CICS Transaction Gateway.
60 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Key differentiators
CICS connections using the SNA protocol have these differentiators:

� Available only with the CICS TG for Multiplatforms and CICS TG Desktop Edition
products, in remote and local mode configuration.

� Support for ECI, ESI, and EPI.

No channel support with ECI. Only the COMMAREA convention is supported for
exchanging data with CICS programs, and so application requests are constrained to the
32-KB architectural limit.

� It requires an additional software product to provide SNA connectivity, such as IBM
Communications Server for Data Center Deployment.

The CICS TG for Multiplatforms and CICS TG Desktop Edition products, up to and
including V9.0, require 32-bit SNA API libraries. Some SNA server products might install
64-bit SNA API libraries on 64-bit platforms, by default. For more information about how to
install 32-bit SNA API libraries on 64-bit platforms, see your SNA server documentation.

� SNA APPC is not supported between CICS TG products and TXSeries. Use IPIC or
TCPIP.

� It is possible to set up a connection using Enterprise Extender, which provides an SNA
transport over TCP/IP, where the LU6.2 protocol is encapsulated in TCP/IP packets for
transmission across the consolidated IP backbone.

Example configurations using Enterprise Extender are in the IBM publication, Migrating an
SNA connection from TCP62 to Enterprise Extender, GC34-6889-00.

For supported products and levels, see the Supported Software topic in the Information
Center of CICS TG for Multiplatforms.

Transactions
SNA connections can be used for synconreturn and extended LUW transaction ECI requests
to all supported CICS server products. There is no support for XA transactions.

Security
SNA APPC connectivity to CICS servers offers the following security options:

� Bind time security can be used to prevent an unauthorized system from binding a session
to CICS. A security check can be applied when a request to establish an APPC session is
received from, or sent to, a remote system; that is, when the session is bound. In SNA
terms, this is known as session security.

With CICS TS for z/OS, SNA APPC bind time security is implemented using a combination
of CICS system initialization parameters (SEC=YES and XAPPC=YES), with the SAF profile,
APPCLU.

� Link security is an additional level of authorization checking applied to the attaching
transaction. A specific user ID (the link user ID) can be thought of as the user ID
associated with the partner system sending a request to CICS.

With CICS TS for z/OS, this can be explicitly defined within the CICS region CONNECTION
definition (SECURITYNAME), or SESSION definition (USERID) for the SNA APPC connection. If
you do not specify a link user ID, CICS TS for z/OS uses the CICS default user ID. Both
the link user ID and the flowed user ID must be authorized to access all transactions and
resources invoked as a result of the request.
Chapter 4. Connecting to CICS 61

� User security can be used to check the received user ID and password that flow from the
requestor and determine the user ID under which the transaction operates. This can be
used by the CICS server to restrict the CICS resources that can be accessed by a user.
For ECI requests, the received user ID and password are usually specified by the ECI
application. Or for Java EE applications, it can be specified in the ECI connection factory
custom properties: userName and password. For EPI requests, the user ID and password
can be set by the user application at the terminal or connection level, with the value for the
terminal taking precedence. Or for Java EE applications, it can be specified in the EPI
connection factory custom properties: userName and password.

With CICS TS for z/OS, there are only two options for user security with the SNA APPC
protocol:

� No security:

– No authentication takes place.
– Transactions are attached in CICS under the authority of the CICS default user.

� User ID and password authentication:

– The flowed user ID and password are authenticated by the External Security Manager.
– Transactions are attached in CICS under the authority of the flowed user ID.

There is no capability to attach transactions under the authority of the flowed user ID without
a password credential.

SNA APPC supports ESI requests, allowing application programs to perform password expiry
management (PEM) operations, including change and verify password.

For full details about SNA APPC security with CICS TS for z/OS, see the Information Center
topic, Implementing LU6.2 security:

http://ibm.co/1szvVqU

Capacity limits
The workload capacity for SNA APPC connectivity is primarily governed by sessions.

With CICS TS for z/OS, the SESSIONS definition (MAximum) is configured to specify the
maximum number of sessions to be supported, and the number of contention-winner
sessions (CICS-owned sessions). These values are negotiated during change number of
sessions (CNOS) flows, when the sessions are actually bound; the negotiated values depend
on the settings specified in the partner SNA node.

The maximum number of sessions must be at least as big as the MAXREQUESTS parameter in
the CLIENT section of the CICS TG configuration file, to prevent creating a bottleneck to
throughput. The contention-winner sessions must be set to 001 to ensure that START requests
for terminal transactions are shipped serially from the server to the client.

With CICS TG for Multiplatforms, or CICS TG Desktop Edition, the partner SNA node is
configured through an SNA server product, such as IBM Communications Server, where the
number of sessions is defined in relation to the mode name for the APPC connection.

The maximum number of concurrent requests is also limited by the maximum number of
requests that the Client daemon is configured to process, across all defined CICS server
connections. This is determined by the Client daemon configuration option, MAXREQUESTS.
62 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1szvVqU

High availability options
SNA APPC connectivity can exploit the z/OS Communications Server generic resource
function to balance workload between available CICS TS for z/OS regions. CICS TS for z/OS
regions are assigned two APPLIDs, a generic one and a specific one. The IBM VTAM®
component of z/OS Communication Server maintains a mapping between the generic
APPLID, and the specific CICS APPLIDs that are members of a generic resource name.

The CICS TG for Multiplatforms or CICS TG Desktop Edition product is configured with an
SNA connection, using the generic CICS APPLID. This also allows VTAM to perform dynamic
workload balancing of the sessions across the available CICS TS for z/OS regions.

Remote mode applications using SNA APPC connections can exploit the Dynamic Server
Selection capabilities available in the Gateway daemon, the default CICS server definition,
and the CICS request exit.

For CICS TG for Multiplatforms or CICS TG Desktop Edition on the Windows platform, an
additional option, for both remote and local mode applications, is the Windows Workload
manager. This capability allows a set of SNA APPC connections to be treated as a single
logical CICS server connection, with the option to provide weighting on the distribution of
requests.

However, it is a preferred practice to avoid using the Dynamic Server Selection function of the
Gateway daemon together with the Windows Workload manager capability. This combination
will lead to confusion because the target CICS system selected by the Gateway daemon can
be subsequently modified by the Windows Workload manager feature.

Timeout behavior
SNA APPC connectivity caters for request timeout at the application level and at the
configuration level.

ECI application programs can optionally specify a timeout value. If this value expires before a
response is received from the CICS server, the application receives a timeout error response.
The mirror transaction in the CICS server continues to runs until the CICS program ends.

For synconreturn requests, the CICS program will complete its syncpoint normally,
irrespective of the ECI timeout value, and the mirror transaction ends. For extended LUW
requests, the mirror transaction is suspended, waiting for a further request. If the mirror
transaction PROFILE is defined with a suitable read timeout value (RTIMOUT) and is defined
with the SPURGE attribute set to YES, it will abend due to read timeout expiration.

The server retry interval specifies the time in seconds between attempts to reconnect to a
CICS server over an SNA connection, following a loss of connectivity. Unlike IPIC
connections, which allow a server retry interval to be defined on a per-connection basis, SNA
(and TCPIP) connections share a single value, defined at the Client daemon level.

The server idle timeout value specified on a server definition for the SNA connection protocol
specifies the period of inactivity, after which an SNA connection to a CICS server is closed.

EPI application programs can optionally specify a terminal install timeout value, and a read
timeout value. The install timeout controls the time to wait for a terminal to be installed on a
CICS server. If a response is not received from the server within the specified time, control is
returned to the user application with an appropriate return code. The read timeout value
controls the maximum length of time that the CICS Transaction Gateway will wait for a
response from the user application after it issues an EXEC CICS RECEIVE or CONVERSE
command.
Chapter 4. Connecting to CICS 63

Autoinstall
Specific SNA APPC connection resources can be dynamically created at run time, rather than
explicitly defined and installed, one by one. This is often useful when connections with many
partner systems are required, or short-lived connections, such as might be required in a
development or test environment.

The following description of autoinstall applies to the CICS TS for z/OS product.

The CICS ISC capability must be enabled, if not already (ISC=YES). You must select your
preferred autoinstall program. The CICS-supplied autoinstall exit program, DFHZATDY, can be
used to provide APPC autoinstall (AIEXIT=DFHZATDY). The correct 'template' connection that
will be used to create the new connection must also be installed.

When an APPC device attempts to log on to the CICS TS for z/OS region, a check for a
matching APPC connection definition is made. If no matching definition is found, the
autoinstall program is driven to generate a definition, based on the closest matching template
definition.

4.4 IPIC autoinstall for WebSphere Application Server clusters

When using the CICS ECI resource adapter in a local mode topology from WebSphere
Application Server to establish an IPIC connection to CICS TS, it is a preferred practice to
specify APPLIDQUALIFIER and APPLID values in the Java EE Connector architecture
connection factory custom properties, to identify the source of requests in monitoring data.

With a single application server configuration, the IPConn resource in CICS TS can be
predefined or autoinstalled. However, if you are using a WebSphere Application Server
cluster configuration, autoinstalled connections, which use the CICS default IPIC autoinstall
user program, DFHISAIP, or predefined IPIC connections will encounter problems due to
duplicate client identifiers.

The problem occurs when a Java EE application uses a cluster scope Java EE Connector
architecture connection factory or multiple Java EE Connector architecture connection factory
definitions with the same APPLIDQUALIFIER and APPLID values and displays the following
symptoms:

1. The first application server in the cluster sends an ECI request to CICS TS causing an
IPIC connection to be installed (either predefined or autoinstalled) and acquired.

2. Then, a different application server sends another ECI request. CICS TS tries to use the
same IPCONN resource definition already installed, because the APPLIDQUALIFIER and
APPLID values match, but rejects the request because that IPCONN resource is still in the
acquired state by the first application server. The following error message DFHIS1015 is
issued to the MSGUSR job log of the CICS TS region:

“Unable to accept connection for IPCONN ipConnName. IPCONN client session state
is invalid.”

One solution to this problem is to leave the APPLIDQUALIFIER and APPLID values in the
connection factory blank. In that case, DFHISAPI will generate values upon connection.
However, this makes transaction tracking difficult because the generated values are transitory
and will not be so useful for audit or debug purposes.

Note: CICS TS for z/OS can be configured with a maximum number of concurrent logon
requests (AIQMAX), which can result in the temporary suspension autoinstall activity.
64 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

CICS TS 5.1 provides a better solution to this limitation through new sample IPIC autoinstall
programs DFH$ISAI (Assembler) and DFH0ISAI (COBOL). These create IPCONN resources
based on a template IPCONN resource definition, whose name and Applid attribute values
must match the APPLIDQUALIFIER and APPLID of the partner respectively. If the connection
request is accepted, the autoinstalled IPCONN name and its Applid attribute value will be
dynamically generated using the partner APPLID followed by a unique integer suffix. The
Networkid attribute will be set to the APPLIDQUALIFIER.

For example, assume the following definitions:

� Java EE Connector architecture connection factory custom properties:

– APPLIDQUALIFIER value CTGAPQAL

– APPLID value CTGAPPL

� CICS TCPIPSERVICE resource definition attributes:

URM value DFH0ISAI

� CICS IPCONN resource definition template called CTGAPQAL with attribute:

Applid value CTGAPPL

The following steps show the behavior for connecting from a WebSphere Application Server
cluster:

1. The first IPIC connection request from an application server to that CICS TS region results
in an IPCONN resource definition called CTGAPPL1 with an Applid attribute value of
CTGAPPL1 and Networkid attribute value of CTGAPQAL being installed.

2. The next IPIC connection request to that CICS TS region from a different application
server instance results in an IPCONN resource definition called CTGAPPL2 with an Applid
attribute value of CTGAPPL2 and Networkid attribute value of CTGAPQAL being installed.

3. Subsequent connection requests from the same application server will reuse the IPCONN
resource installed by the first request from that application server and will remain installed
and acquired until the application server is shut down.

The sample autoinstall user programs DFH$ISAI and DFH0ISAI are provided as precompiled
load modules in the load library, CICSHLQ.SDFHLOAD, and can be used directly, provided that
the APPLID value in the ECI connection factory definition is no more than seven characters in
length. Alternatively, the samples can be customized using the source code provided in the
partitioned data set, CICSHLQ.SDFHSAMP. For more information, see the CICS TS Information
Center topic, Sample autoinstall user program to support predefined connection templates:

http://ibm.co/1wG5Rbh

The CICS TG Information Centers include several scenarios that demonstrate how to
configure IPIC connections:

� SC01. Configuring a secure autoinstalled IPIC connection
� SC02. Configuring a secure predefined IPIC connection
� SC07. Configuring SSL between CICS TG and CICS TS
� SC08. Configuring an autoinstalled IPIC connection

Note: The alternative Urm appends a counter value to the APPLID value in the connection
factory. Because the maximum length of the APPLID attribute is eight characters, the value
set in the connection factory determines the maximum possible number of application
server instances able to connect with a common identification.
Chapter 4. Connecting to CICS 65

http://ibm.co/1wG5Rbh

66 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 5. Understanding the Gateway
daemon

CICS TG is implemented in remote mode when the client application and CICS TG are
running on different machines and the Gateway daemon listens on a specific port for
incoming client requests. This is also called a 3-tier solution.

In a remote mode configuration, the CICS Transaction Gateway runs a process known as a
Gateway daemon, which listens on a specific port, receives requests from remote client
applications, forwards those requests to specific CICS servers, and communicates the result
back to the remote client application.

This chapter provides insight into the Gateway daemon process and allows you to understand
the implication of different Gateway daemon configurations. It also describes how to influence
the management of connections and thread resources in the Gateway daemon.

It also provides insight into the system dependencies of the Gateway daemon configuration,
allowing you to perform basic tuning suggestions to improve Gateway daemon performance.

All the formulas that are provided are based on observations, and they provide a general
guideline to configure the system. Every configuration has different requirements, and so your
configuration must be verified with the Gateway statistics or the operating system tools. Some
values that are provided are subject to change, based on the level of the operating system
where the Gateway daemon is running.

The following topics are covered in this chapter:

� 5.1, “Three-tier concepts” on page 68
� 5.2, “Gateway daemon resources” on page 70
� 5.3, “Connecting to CICS servers” on page 74
� 5.4, “System resources” on page 78
� 5.5, “z/OS specific resources” on page 81
� 5.6, “z/OS Workload Manager suggestions for CICS TG for z/OS” on page 86
� 5.7, “Statistics” on page 87

5

© Copyright IBM Corp. 2014. All rights reserved. 67

5.1 Three-tier concepts

CICS TG can be used in two modes: local and remote. There are also a number of possible
combinations of implementing the networking and system infrastructure between the client
applications, CICS TG components, and CICS servers. The different combinations are
referred to as topologies.

Remote mode operation uses the Gateway daemon as a long-running process. The Gateway
daemon listens on a specified port for incoming requests (using a TCP/IP connection), then it
forwards those requests to a CICS server using one of the listed protocols: EXCI, IPIC,
TCPIP, or SNA.

Figure 5-1 shows different topologies. Topology 2 and 3 show a remote mode configuration
where the Gateway daemon is representing the middle tier of a 3-tier solution.

Figure 5-1 CICS TG topology examples

The client applications, using a CICS TG API, are able to invoke CICS programs through the
Gateway daemon. However, the connection between the client applications and the Gateway
is not always implicitly created. ECI V2, ESI V2, .NET, and Java base class applications need
to manage the connection by using explicit open and close, API calls. Java EE application
servers have managed connection factories, with a pool of cached connections already
created.

Figure 5-2 on page 69 shows the connections management based on the APIs and
technology used.

z/OS

Application server and
CICS TG

Application Server

CICS TG

W ebSphere
Appl ica tion
Server and
CICS TG

CICS

Network
HTTP/HTTPS

Topology 1

Topology 4

CICS TG

Topology 2

Topology 3
68 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 5-2 Flow of control through a Gateway daemon

The Gateway daemon is designed to act as a network concentrator, able to serve potentially
many remote applications through relatively restricted CICS connections. The client can
connect in various ways. When the Gateway daemon uses IPIC connections, almost all of the
run time takes place with the Java virtual machine (JVM). Other protocols require additional
native runtime components as shown in Example 5-2 on page 85.

JAVA, .NET,
ECIv2 and ESIv2 Networking CICS TG CICS TS

Gateway.open

Gateway.flow
Tcp or SSL

Handshake

Protocol
Handler

Connection
Managers

Workers

IPIC
CICS mirror
transaction

Wait for work

Networking CICS TG CICS TS

Tcp or SSL

Handshake

Protocol
Handler

Connection
Managers

Workers

IPIC CICS mirror
transaction

Wait for work

WebSphere managed
connections

JEE applications

WebSphere
connection timeout

HandshakeConnection pool
recycled
Chapter 5. Understanding the Gateway daemon 69

Figure 5-3 CICS TG components related to CICS communication protocols

5.2 Gateway daemon resources

This section describes the resources that the Gateway daemon needs to satisfy the client
requests.

5.2.1 Protocol handlers

This section discusses the protocol handlers.

TCP and SSL
The Transmission Control Protocol (TCP) and Secure Sockets Layer (SSL) protocol handlers
represent the entry point to the Gateway daemon for remote client applications. The Gateway
daemon provides two connection protocols: TCP and SSL. Use SSL connectivity when the
data between the client and the Gateway daemon must be secure. Table 5-1 summarizes the
API restrictions using SSL.

Table 5-1 Remote API components and connection protocol support

TCP/IP Gateway daemon
(for z/OS)

z/OS

CICS

CICSGateway daemon
(for Multiplatforms Client daemon

EXCI code

TCP/IP SNA or TCP/IP

EXCI

TCP/IP
Gateway daemon

CICS
IPIC

Remote mode applications TCP SSL

All APIs in Java Yes Yes

All APIs in JCA Yes Yes

.NET Yes With SupportPac CA76a

a. Download available at http://www.ibm.com/support/docview.wss?uid=swg24034001

ECI v2 Yes No

ESI v2 Yes No
70 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/support/docview.wss?uid=swg24034001
http://www.ibm.com/support/docview.wss?uid=swg24034001

Protocol handlers are defined in the GATEWAY section of the configuration file. You need to
define the port where the Gateway will listen, and the bind parameter if you have more than
one active IP address.

To verify that SSL security is enabled on the Gateway daemon, check the following points:

� Whether the SSL ciphers have been enabled in the Gateway daemon. The following
message is written to the Gateway daemon information log:

CTG8489I The following cipher suites are provided by JSSE: with all the cipher
suites supported

� If the SSL protocol handler is successfully started on the configured port, you will see the
following message in the Gateway daemon information log:

CTG6524I Successfully started handler for the ssl: protocol on port 8573

For additional clarification about security, see Chapter 8, “Security” on page 131, and for
implementation, see 10.4, “Configure secure connections” on page 186.

Statistics and administration handlers
On all platforms, CICS TG provides statistics information about the status and the activities
performed by the Gateway daemon. It can help you in tuning the Gateway daemon
configuration and for post-processing analysis of the information collected by the statistics
engine of the Gateway daemon. To enable the statistics, define the statsapi statistics API
protocol handler, in the GATEWAY section of the CICS TG configuration file.

You can display the statistics using the administration interface (CICS Explorer for example)
or retrieve the information using statistics APIs in a user program.

To verify that the statsapi port is enabled on the Gateway daemon, check the following
message in the Gateway daemon information log:

CTG6524I Successfully started handler for the statsapi: protocol on port 2989

If the Gateway daemon is installed on multiplatforms, we need also to define an additional
handler for administering the Gateway daemon. When an administrative request is received
by a Gateway daemon from the ctgadmin command, it is processed by a restricted handler.
On Multiplatforms, this handler is defined in the Gateway daemon section using the
parameter ctgadmin.

To verify that the admin port is enabled on the Gateway daemon, check the following
message in the Gateway daemon error log:

CTG8455I Successfully started the local administration handler on port 2810

5.2.2 The threading model

The Gateway daemon uses two thread pools to maintain the link between the client request
and the target CICS. When an application opens a connection to a Gateway daemon, a
connection manager thread is allocated. This thread represents the active application
connection. When the application sends a flow, the Gateway daemon needs to send the
request to CICS, allocating a worker thread to represent the active request to CICS. The
Gateway daemon can handle multiple requests simultaneously, at the capacity that is
configured in the Gateway daemon configuration file.

Note: You can have at most one TCP and one SSL handler.
Chapter 5. Understanding the Gateway daemon 71

Connection manager threads manage the connections from a particular remote client. When
a connection manager thread receives a request, it allocates a worker thread from a pool of
available worker threads to run the request, and it remains allocated. The worker thread is
allocated to process CICS requests on behalf of connection manager threads. When a worker
thread finishes the processing, it returns to the pool of available worker threads. The
connection manager threads can be deallocated if an explicit close is issued, or it can be just
reused by a new request.

For each connected client, one connection manager thread is used in the Gateway daemon.
This thread is held until the client closes the connection, or the Gateway times out the
connection. To perform an ECI request using an allocated connection manager thread, a
thread must be allocated from the worker thread pool for the duration of the ECI request.

Figure 5-4 shows the interactions between the different threads.

Figure 5-4 The threading model through the Gateway daemon

It is important to consider the thread limits in the system when setting the number of
connection manager and worker threads. The limit for the system threads is set so high that it
cannot be realistically reached; the real limit is driven by the amount of virtual memory
available to the process and by the CPU capacity.

On z/OS, this might be restricted by the total number of MVS Task Control Blocks (one is
created for each UNIX System Services thread). This limit is governed by the UNIX System
Services parameters MAXTHREADS and MAXTHREADTASKS in the BPXPRMxx member of
SYS1.PARMLIB. The Gateway daemon creates the connection manager and worker threads
using the UNIX System Services thread facility. The total number of threads in use by the
Gateway daemon can be displayed using the MVS system command /D OMVS,L,PID=nnnn,
where nnnn is the process ID of the JVM running the Gateway daemon, as displayed using
the SDSF PS menu option. Consider also the UNIX System Services parameter MAXPROCUSER.
It specifies the maximum number of processes that a single user (same UID) can have
concurrently active. If a Gateway daemon is started with a user with a UID of 0, it is not limited
by the MAXPROCUSER value (a superuser is always allowed to run so that it can be invoked to
solve a problem).

To display the current UNIX configuration setting, you can also run the MVS system
command /D OMVS,OPTIONS.

To temporarily modify the settings for MAXTHREADS and MAXTHREADTASKS, use the /SETOMVS
MAXTHREADS=nn or /SETOMVS MAXTHREADTASKS=nn commands. To permanently change the
values, modify the BPXPRMxx member.

Application Networking CICS TG CICS TS

Gateway.open

Gateway.flow
(ECIRequest)

Tcp or SSL

Handshake

Protocol
Handler

Connection
Managers

Workers

IPIC
CICS mirror
transaction

Wait for work
72 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

5.2.3 Estimating the number of connection manager threads

The best way to calculate the number of required connection manager threads depends on
whether you are using a Java EE application or a base Java application. With Java EE
applications, the number of connection manager threads depends on the size of the
connection pool defined in the connection factory of the JCA connection pools.

WebSphere Application Server maintains a pool of open TCP/IP connections to the Gateway
daemon. The number of connections in the pool, at any time, depends on the number of
concurrent requests for the CICS server defined by the connection factory and how quickly it
is configured to close inactive connections.

To avoid a resource shortage when WebSphere Application Server is running under high
load, control your setting of maxconnect. The maxconnect setting is in the Gateway daemon
initialization file. It must be greater than or equal to maximum connections in the connection
pool. If you are using multiple WebSphere Application Server instances or multiple resource
adapters, maxconnect must be greater than or equal to the sum of the connections for all of
the connection factories.

For remote client applications (Java base classes, ECIv2, and .NET), which must explicitly
manage the connections to the Gateway daemon (open-flow-close method), the number of
connections in use depends on the design of the user application. For example, the general
sequence of events for an application with Java base class is to open a connection using
JavaGateway.open(), issue any number of requests through JavaGateway.flow(), and close
the connection using JavaGateway.close(). Each instance of a JavaGateway object
maintains one TCP/IP socket between an open and a close. The number of connection
manager threads must be greater than or equal to the concurrent number of JavaGateway
objects that have been opened by the user’s applications.

It is possible to configure the Gateway daemon so that an application will wait for a connection
manager’s threads to become free. The connecttimeout parameter in the Gateway daemon
configuration file controls this value. Only consider reducing the connection manager threads
available in the pool and relying on this timeout if applications open and close connections
frequently.

A thorough evaluation of the maximum number and the initial number of connection manager
threads avoids redundant storage allocation and any additional CPU workload due to the
management of inactive threads. A thorough evaluation of the maximum number and the
initial number of connection manager threads can make the CICS TG startup time faster.

In the configuration file, you control the maximum number of connection manager threads
with the parameter maxconnect.

The configuration parameter, initconnect, identifies the number of connection manager
threads created at the Gateway daemon startup.

Note: For CICS TG Desktop Edition, 5 is the maximum value of maxconnect and
initconnect.
Chapter 5. Understanding the Gateway daemon 73

5.2.4 Estimating the number of worker threads

The number of worker threads depends on the concurrent number of requests from remote
clients and on the numbers of CICS sessions available to process the incoming requests.
When a worker thread has finished processing the request, it returns to the pool of available
worker threads. For this reason, there is no need to code the maximum number of worker
threads higher than the maximum of connection manager threads.

When considering the CICS TG maximum number of worker threads, take into account how
the following CICS Transaction Server (CICS TS) configuration parameters affect the
Gateway daemon:

� MAXTASKS in CICS TS: The Gateway daemon cannot start more mirror transactions than
CICS TS can concurrently run. If you have more than one CICS TS, you need to consider
how the workload is distributed.

� TRANCLASS in CICS TS: The mirror transactions that the Gateway daemon attaches in
CICS TS can be controlled by the number of concurrent running tasks defined in a
particular transaction class. You must also take into account the PURGETHRESHOLD value, in
the TRANCLASS definition.

� Regardless of the solution you decide to use to connect to CICS TS (IPIC, EXCI, or ECI
over IP), you cannot exceed the upper limit of the protocol connection definition. This
aspect will be described later in this chapter.

� Remember that CICS TS can be configured to have multiple connections with other CICS
TS. To process the distributed program link (DPL) requests sent by the Gateway daemon,
you might need to send the request to another CICS system, such as an Application
Owner Region (AOR). This kind of topology can introduce additional elements that must
be considered.

� The application can also invoke some processes in CICS TS that create affinities or need
sequential access to resources. Any possible constraint has to be taken into account.

If the number of communication manager threads is higher than the worker threads, it is
possible that the Gateway daemon is queuing for free worker threads. You can establish how
long your request will queue for an available worker thread by specifying the workertimeout
parameter in the CICS Transaction Gateway daemon configuration file.

In the configuration file, you control the maximum number of worker threads with the
parameter maxworker.

The configuration parameter, initworker, identifies the number of worker manager threads
created at the Gateway daemon during initialization.

5.3 Connecting to CICS servers

This section describes the main implications that must be evaluated when configuring the
Gateway daemon depending on the protocols selected to connect to CICS TS.

The storage implications with the different protocols used are expanded in 5.4, “System
resources” on page 78.

Note: For CICS TG Desktop Edition, 5 is the maximum value of the maxworker and
initworker.
74 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

For selection guidelines based on the protocol that is used to connect the Gateway to a CICS
TS, see Chapter 1, “Basic concepts” on page 3 and Chapter 4, “Connecting to CICS” on
page 43.

5.3.1 All platforms: IPIC

The Gateway daemon can connect to CICS TS using IPIC protocol, independent of where the
CICS TG is installed. It can be secured with SSL.

IPIC provides ECI access to CICS applications over the TCP/IP protocol, supporting both
COMMAREA and CICS channel applications.

You can configure the IPIC connection in the IPICSERVER section of the configuration file and it
needs to match the CICS TS definition. Figure 5-5 shows the relationship between the
different elements.

Figure 5-5 Relationship between CICS TG and CICS TS definitions for an IPIC connection

When you are configuring the number of worker threads, you need to take the sendsessions
parameter into account. If you have multiple IPIC server definitions, remember to add the
sendsessions number to the worker thread count to allow the Gateway to manage all the
sessions.

The sendsessions parameter, in the IPICSERVER section of the configuration file, specifies the
number of simultaneous CICS tasks that are allowed over the CICS connection. You must
specify the same number for the value in the receivecount parameter of the IPCONN
definition on the CICS server. If you do not specify a value or specify a lower value in
receivecount than the value specified in the sendsessions parameter, the value used might
be reduced.

You can also find a benefit using the CICS IPCONN autoinstall. During the first connection
from CICS TG to CICS, CICS creates the IPCONN definition. Unlike autoinstall for other
resources, autoinstall for IPCONN resources does not require model definitions, although
they are advised.

CICS TS

P
ort 9001

IPCONN

TCPIPSERVICE AAA

CICS TG

SECTION PRODUCT
Applid=CTG1
ApplidQualifier=CTGITSO
SECTION IPICSERVER = CICSTOR
Description = IPIC Server
Hostname =www.itso.ibm.com
Port = 9001
TcpKeepAlive = Y
Ssl = N
Sendsession=40

www.itso.ibm.com

APPLID=CTG1
NetworkID(CTGITSO)
HOST(11.22.33.44)
TCPIPS(AAA)
RECEIVECOUNT(40)

11.22.33.44
Chapter 5. Understanding the Gateway daemon 75

Client applications usually flow data in ASCII format and the CICS user program is able to
manage data in EBCDIC in the COMMAREA. The CICS mirror program (DFHMIRS) invokes the
services of the data conversion program (DFHCCNV) to perform the necessary code page
conversion of the COMMAREA.

The CICS channel and container solution allows you to send and receive more than 32 KB of
application data in a single ECI request. This ability requires you to consider additional points
when you are configuring your Gateway.

The data conversion model, used by channel applications, is controlled by the application
developer using simple API commands, and DFHCNV is not needed anymore. CICS TS uses
z/OS Unicode Services instead. You can check whether the z/OS Unicode Services are
correctly implemented using the following z/OS system command:

D UNI,ALL

Consider the performance and storage allocation implications of passing a large amount of
data through channels. For example, when a large amount of data is to be passed to a remote
program or transaction, it might affect performance.

If your applications need to use a container size greater than 1 MB, it might be necessary to
increase the JVM resources and the memory size for the Gateway daemon and CICS. A
channel might use more storage than a COMMAREA designed to pass the same data
because container data can be held in more than one place. COMMAREAs are accessed by
pointers. The data in containers is copied between programs.

For the complete list of benefits of using channel and container technology, see the CICS TS
Information Center topic, Benefits of channels.

IPIC on CICS TG for z/OS specific items

IPIC can benefit from the System z Application Assist Processor (zAAP) because the IPIC
workload can be offloaded to these processors. Offloading the IPIC workload significantly
reduces the CPU cost per transaction. Although EXCI is limited to 32-K payloads using a
COMMAREA, IPIC payloads can be as large as you need, using channels and containers.

When the EXCI layer is loaded, the maximum number of worker threads is capped at 250.
Specifying CTG_EXCI_INIT=YES and maxworker to more than 250 will cause the following
message to be issued during the Gateway daemon startup and the value of the maxworker is
reduced to be equal to the EXCI logon limit (LOGONLIM):

CTG6406W the maximum worker threads has been reduced to the EXCI logon limit 250

IPIC connections to CICS are not limited by LOGONLIM because they do not use EXCI pipes.
But if the EXCI layer is loaded, it is assumed that the EXCI connections will be used, so the
maxworker restriction is applied. To allow IPIC to use more than 250 worker threads,
CTG_EXCI_INIT=NO must be set to prevent the EXCI layer being loaded.

Note: Applications can only use ESI with CICS TG for z/OS when the CICS connection is
IPIC.
76 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

5.3.2 Multiplatform and Desktop Edition specific: TCPIP

CICS TS has no way to limit the number of concurrent requests that are sent to a TCP/IP
connection. Applications in error can submit an excessive number of requests to a server. In
this event, to prevent runaway conditions and avoid a possible denial of service attack that
can affect CICS TS, it is suggested to code an accurate number of worker threads.

The maxrequests parameter can also be used to prevent this situation.

5.3.3 Multiplatform and Desktop Edition specific: SNA

Using an SNA connection, the maxrequests parameter in the ctg.ini file must be the same
or more than the number of sessions defined in CICS.

The first value, in the CICS session parameter, is the maximum number of sessions that can
be supported. The second value specifies the number of contention-winner sessions
(CICS-owned sessions). These values are negotiated during change number of sessions
(CNOS) flows. When the sessions are actually bound, the negotiated values depend on the
settings specified in the partner SNA node.

This solution also requires a supported SNA provider product (for example, IBM
Communications Server) to be installed and configured in the same machine where CICS TG
is installed.

5.3.4 z/OS specific: EXCI

The external CICS interface (EXCI) is used by the Gateway daemon for z/OS to send
requests to the CICS TS region using cross-memory services.

To load the code to support the EXCI protocol, you need to set the environment variable
CTG_EXCI_INIT to YES. At this point, the Gateway will also load the EXCI options table,
DFHXCOPT. There is no suffixed version of this program, so the first DFHXCOPT table in the
STEPLIB concatenation is loaded.

DFHXCOPT allows you to specify whether you want the surrogate-user check, whether you want
the timeout value for requests over EXCI, and whether the trace is active.

When a request is sent over an EXCI connection, a pipe is allocated; the Gateway does not
perform any deallocate after it flows the initial ECI request for a given worker thread.

Note: TCPIP is the name of a driver type and it is not TCP/IP, the transport.

Note: CICS TG Desktop Edition runs only in 2-tier remote mode.

Tip: Specify ABENDBKOUT=YES in DFHXCOPT if you want to back out updates made by a
long-running mirror following a transaction abend.
Chapter 5. Understanding the Gateway daemon 77

An EXCI pipe stays allocated for the lifetime of the thread. An EXCI pipe is only deallocated if
one of the following events occurs:

� An error is received by the Gateway worker thread on an Open_Pipe call (such as when a
CICS connection has been closed).

� The Gateway daemon terminates.

� The worker thread allocates another pipe to a different CICS applid, and the
CTG_PIPE_REUSE environment variable is set to ONE.

Every address space that uses EXCI pipes, such as a Gateway daemon, is limited to a
maximum number of pipes that it can allocate to all attached CICS regions. The EXCI pipe
limit is governed by the z/OS system-wide LOGONLIM parameter and the upper limit is 250.

Also, consider that deallocating an EXCI pipe has a cost in terms of CPU consumption. For
this reason, it is important to select the best way for your installation to reuse the EXCI pipe.

This is governed by the parameter CTG_PIPE_REUSE.

CTG_PIPE_REUSE=ALL means that the pipes will be permanently allocated to a particular CICS
server and are not available for use with other CICS servers. It is suggested that
CTG_PIPE_REUSE=ALL is only specified when the Gateway daemon uses EXCI connections to
one CICS server. If you do specify CTG_PIPE_REUSE=ALL and EXCI connections to more than
one CICS server are defined, ensure that you do not run out of EXCI pipes by limiting the
number of worker threads that can allocate the pipes. To ensure that you do not run out of
EXCI pipes by limiting the number of worker threads that can allocate the pipes, use this
formula to configure the number of worker threads:

MaxWorkers <= Pipes Limit / Number of servers

CTG_PIPE_REUSE=ONE means that if requests are made to multiple CICS servers, the pipe will
be deallocated and another pipe will be allocated, before the call to the second CICS server
takes place.

If subsequent requests are made to the same CICS server, no pipe deallocation and
reallocation will take place. In this case, consider using the following formula:

MaxWorkers <= Pipes Limit

For all connected Gateway daemons, on z/OS, the CICS region requires both a CONNECTION
definition and a SESSIONS definition. The CONNECTION definition identifies the remote system,
and the SESSIONS definition associated with this connection determines the properties of the
sessions.

The maximum pipe usage in a CICS region is also limited by the RECEIVECOUNT parameter
defined in the CICS MRO SESSIONS definition (this can be up to 999).

5.4 System resources

This section describes how the Gateway daemon interacts with system components and
important considerations when you configure it.

Note: To modify the LOGONLIM, you need to modify the SYS1.PARMLIB(DFHSSIxx) member.
78 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

5.4.1 Gateway daemon runtime environment

During startup, the Gateway daemon uses a combination of the configuration file and an
environment variable to form the runtime environment and to successfully start the required
processes. When needed, you can also pass some override parameters to the Gateway
daemon.

Table 5-2 shows the different resources involved in the Gateway daemon startup.

Table 5-2 Gateway startup resources

Java Runtime Environment is required to use the CICS TG core components. Use the latest
Java update for your Java Runtime Environment (JRE) on Multiplatform and Desktop Edition.
For z/OS, use the IBM SDK for z/OS, Java Technology Edition.

The Gateway daemon for z/OS can be started using CTGBATCH, which invokes the z/OS UNIX
script, ctgstart, as a batch job. It is still possible to start the Gateway in the UNIX System
Services environment; however, you cannot benefit from the z/OS facilities, such as the
visibility of the logs in System Display and Search Facility (SDSF), z/OS console commands,
and Gateway daemon-specific storage size of the address space.

The Gateway daemon for UNIX or Linux can be started as a background process, using the
ctgd start command, and it runs under a specific user ID.

The Gateway daemon for Windows runs as a service that is started manually by default.

5.4.2 Information available at run time

The CICS TG has numerous log files. Table 5-3 on page 80 summarizes where the locations
of the log files based on the platform.

Platform Configuration file
location

Environment variable Override

z/OS Specified in CICSCLI
in the environment
variable.

Specified in the DD
STDENV

- In the EXEC PARM at
ctgstart level
or
- CTGSTART_OPTS
in the environment
variable

Windows Default to
<product_data_path>/
ctg.ini. It can be
changed using the
CICSCLI environment
variable.

Specify as a system
environment variable

- Using the utility
ctgservice -R or
- starting the cicscli -
R process

UNIX/Linux Default to
<install_path>/bin/c
tg.ini. It can be
changed using
CICSCLI environment
variable.

- Specify as
environment variable
or
- in CTGDCONF, if ctgd
start is used. The
default ctgd
configuration file is
<install_path>/bin/c
tgd.conf

- Starting the cicscli
process
or
- CTGD_PARMS
environment variable
Chapter 5. Understanding the Gateway daemon 79

The Client daemon log, Gateway daemon info log, and Gateway daemon error logs are
available.

Table 5-3 Location of log files

Operating
system

Log name Default location Override location

Windows Client daemon log <product_data_path>
directory. By
default, it is
C:\ProgramData\IBM\
CICS Transaction
Gateway\cicscli.log

logfile=<filename> in the
CLIENT section of the
configuration file

Client daemon info
log

<product_data_path>
directory. By
default, it is
C:\ProgramData\IBM\
CICS Transaction
Gateway\cicscli.log

logfileinfo=<filename> in
the CLIENT section of the
configuration file

Gateway daemon
error log

<product_data_path>
directory. By
default, it is
C:\ProgramData\IBM\
CICS Transaction
Gateway\cicstg.log

log@error.parameters=filen
ame=<name> in the GATEWAY
section of the configuration
file

Gateway daemon
info log

<product_data_path>
directory. By
default, it is
C:\ProgramData\IBM\
CICS Transaction
Gateway\cicstg.log

log@info.parameters=filena
me=<name> in the GATEWAY
section of the configuration
file

On UNIX and
Linux platforms

Client daemon log By default, it is
/var/cicscli/cicscl
i.log

logfile=<filename> in the
CLIENT section

Client daemon info
log

<product_data_path>
directory. By
default, it is
/var/cicscli/cicscl
i.log

logfileinfo=<filename> in
the CLIENT section

Gateway daemon
info log

console Specify in the GATEWAY section
of the configuration file
log@error.dest=<file> to
have
log@error.parameters=filen
ame=<name> active

Gateway daemon
error log

console Specify in the GATEWAY section
of the configuration file
log@info.dest=<file> to
have
log@info.parameters=filena
me=<name> active
80 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The Gateway daemon log handler allows you to specify the maximum log size also.

5.4.3 Gateway daemon memory requirements

To avoid out-of-memory conditions in the Gateway daemon, you need to carefully consider
many elements. Most of the Gateway daemon resources are allocated in the Java heap and
Java stack, and you can control them using the parameters -Xmx and -Xss.

The JVM maintains two memory areas: the Java heap, and the native (or system) heap.
These two heaps have different purposes and are maintained by different mechanisms.

The Java heap contains the instances of Java objects and it is maintained by garbage
collection. In the z/OS environment, the maximum size of the Java heap is preallocated
during JVM startup as one contiguous area, even if the minimum heap size setting is lower.
But in other platforms, the Java heap is incrementally acquired; for this reason, it must be
carefully sized.

The Java heap is a repository for active, orphaned objects and free memory. When an object
can no longer be reached from any object referenced in the running program, the object can
be garbage-collected.

When the JVM cannot allocate an object from the heap because of lack of contiguous space,
a memory allocation fault occurs, and the garbage collector is called. This process is a normal
process invoked to tidy up the heap storage, but it consumes CPU time. For this reason, a
meticulous evaluation of the heap storage is important. In effect, the heap size determines
how often and how long the JVM spends performing the garbage collection.

The -Xgcpolicy options control the behavior of the garbage collector. For CICS Transaction
Gateway, the best performance is provided by optthruput. The Gateway daemon default is
also optthruput.

To tune the heap size, review the maximum and average SE_CHEAPGCMIN statistic value,
through a workload cycle, as a percentage of SE_SHEAPMAX to ensure that the value is in the
range of 40% - 70%. If the percentage is over 70%, increase the maximum heap size. If the
percentage is under 40%, reduce the maximum heap size.

The system, or native heap, is allocated by using the malloc and free mechanisms of the
operating system. Native heap is used for the underlying implementation of particular Java
objects, such as the allocation of the Java threads.

5.5 z/OS specific resources

This section describes the z/OS specific resources and how to evaluate their correct usage.

z/OS Gateway daemon log JES Joblog STDOUT and STDERR DD
statements in the Gateway
daemon startup job

Operating
system

Log name Default location Override location
Chapter 5. Understanding the Gateway daemon 81

5.5.1 Region size consideration in CICS TG for z/OS

Gateway daemon for z/OS memory management is complex. Several concepts are required
to better tune the Gateway configuration.

An easy way to estimate the real amount of native heap required by the Gateway daemon at
run time is to set the initial and maximum number of connection managers and worker
threads to the same. This forces the Gateway daemon to create all the threads at startup and
you can verify the actual storage consumption and act accordingly.

This suggestion will give you a reasonable sizing of the memory needed by your Gateway
daemon. After that, you can start to tune the storage requirement more carefully.

Table 5-4 describes a base suggestion about how to evaluate the necessary storage
allocation. This table represents a guideline, not an accurate formula, and the values can
change depending on environmental factors, such as operating system release or Language
Environment runtime options.

Table 5-4 Observed use of memory in a 31-bit Gateway daemon

The Java heap can be modified at the Gateway daemon startup by using the -Xmx option. The
default heap size specified by the CICS Transaction Gateway is 128 MB, and this is typically
increased for production configurations.

The JVM is a z/OS UNIX process that runs in its own Language Environment enclave. The
JVM Heap, control blocks, and other data areas are handled by the Language Environment
heap and it is governed by the Language Environment HEAP runtime option. Language
Environment stack is allocated per thread with an initial size and can grow, according to the
ANYHEAP runtime option values.

CTGBATCH runtime options, provided by default, are shown in Example 5-1, and you can
override these parameters with the Language Environment runtime option specification at the
Gateway daemon startup. Any change in the runtime option must be carefully evaluated.

Example 5-1 Default CTGBATCH runtime options

(ABTERMENC(ABEND),ALL31(ON),ERRCOUNT(0),
 STORAGE(NONE,NONE,NONE ,0K),
 TRAP(ON,SPIE),LIBSTACK(4K,4K,FREE),
 STACK(128K,128K,ANY,KEEP),
 ANYHEAP(16K,8K,ANY,FREE),
 BELOWHEAP(8K,4K,FREE),
 HEAP(32K,32K,ANY,KEEP,8K,4K),
 RPTOPTS(OFF),RPTSTG(OFF),POSIX(ON),
 TERMTHDACT(UADUMP),NOUSRHDLR)

Java heap can be modified at the Gateway daemon startup by using the -Xmx option. The
default heap size specified by the CICS Transaction Gateway is 128 MB.

Storage type Usage

Native 356 KB per thread

Java heap 300 KB per IPIC session

Java heap 1.6 KB per thread

Java heap 4800 KB core Gateway daemon
82 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

There are no options with which you can manage the native heap because this is done by the
Gateway daemon for you. You only need to define enough region size to allocate the native
heap requested.

JVM is constructed in its own Language Environment enclave, created by the Language
Environment pre-init module. The JVM is a z/OS UNIX process. The JVM Heap,
controlblocks, and other data areas are handled by Language Environment heap and it is
governed by the Language Environment HEAP runtime option.

The JVM Heap and native storage used by the Gateway daemon is all managed by Language
Environment.

The storage allocated by Language Environment is constrained by the Gateway daemon
address space storage. For a 31-bit Gateway daemon, address space storage is set by the
REGION parameter in the JCL (EXEC or JOB statement).

The following parameters can also limit the values that you can choose for the REGION
parameter:

� The ASSIZEMAX parameter of the OMVS segment of a RACF user ID; for more information
see z/OS V1R13.0 Security Server RACF Command Language Reference,
SA22-7687-16:

http://www-01.ibm.com/support/docview.wss?uid=pub1sa22768716.

� The UNIX System Services MAXASSIZE parameter is specified in SYS1.PARMLIB(BPXPRMxx);
for more information, see the UNIX System Services Planning. The value specified for
ASSIZEMAX overrides any value provided by the MAXASSIZE parameter.

� If you use REGION=0M, the actual region size used is governed by the optional
implementation of the system exit routine IEFUSI.

If you decide to set REGION=0M, it indicates that the address space must be given as much
memory as possible, which can result in a system abend878 or abend80A.

The local system queue area (LSQA) grows from the top to the bottom and REGION size
grows from the bottom to the top. The free storage that is available is in the middle of the two.
If there is no limit in the REGION size, it can grow until it reaches the LSQA limit, causing an
abend.

Abend878 and abend80A happen if there is not enough contiguous MVS storage available to
satisfy an MVS GETMAIN request. This potential problem is illustrated in Figure 5-6 on page 84.
Chapter 5. Understanding the Gateway daemon 83

http://www-01.ibm.com/support/docview.wss?uid=pub1sa22768716

Figure 5-6 Typical memory allocation for a 31-bit Gateway daemon address space on z/OS

Footnote 1 in Figure 5-6 shows that for LSQA/SWA/229/230", the size normally grows to a
high-water-mark and then remains constant.

For more information about memory usage, see the topic, Avoiding out of memory conditions
for additional suggestions, in the CICS TG Information Center:

http://ibm.co/Wjxls7

5.5.2 Storage and EXCI in the Gateway daemon for z/OS

The EXCI support in the Gateway influence the storage allocation needs.

When EXCI is enabled (by default), the following formula to calculate potential maximum
virtual storage requirements of the Gateway daemons is in operation:

70000 + (heap max/ 1024) + (128 * maxconnect) + (1200 * maxworker)

When EXCI is disabled (environment variable CTG_EXCI_INIT=NO), the following formula is in
operation:

70000 + (heap max/ 1024) + (128 * maxconnect) + (650 * maxworker)

Note: Java.lang.OutOfMemory is not always a sign of insufficient heap. If there is an error
in the thread creation, it manifests, in Java, as out of memory.

Address sample Storage area User Usage

x80000000
ELSQA (1)

Core GW 193 MB

ELSQA bottom Threads 83 KB / thread

<<<<<<<<<<<Free Extended Storage>>>>>>>>>>>

ETOP

Extended user region

Native 356 KB / thread

Java heap 300 KB / IPIC session

1.6 KB / thread

x1A000000 4800 KB Core GW

x10000000 Extended Global MVS allocated (fixed at IPL and valid
for all the address spaces)

160 MB

<<<<<<<<<<<16 MB Line>>>>>>>>>>>

Global MVS allocated (fixed at IPL and valid
for all the address spaces)

8 MB

x00800000 LSQA (1)

<<<<<<<<<<<Free Storage>>>>>>>>>>>

x00006000 User region

x00000000 System 24 KB
84 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/Wjxls7
http://pic.dhe.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.tg.doc/ctgunx/f0200040.html

5.5.3 Using a 64-bit Gateway daemon on z/OS

If you run your Gateway with large numbers of clients and large container payloads (that
require a heap size more than 2048 MB), consider using a 64-bit z/OS Gateway. This is
possible implementing the 64-bit Java technology, using the 64-bit JDK.

Configuring the Gateway to run as a 64-bit z/OS Gateway, consider the z/OS JCL parameter
MEMLIMIT. It sets the limit on how much virtual storage above the bar the Gateway can use. If
you do not set MEMLIMIT, the system default is 0, which means that no address space can use
virtual storage above the bar. You can set an installation default MEMLIMIT through SMFPRMxx in
PARMLIB or by using the IEFUSI exit.

You can also benefit from the -Xcompressedrefs Java option. It allows you to compress
references. The JVM stores all references to objects, classes, threads, and monitors as 32-bit
values. The -Xcompressedrefs and -Xnocompressedrefs command-line options enable or
disable compressed references in a 64-bit JVM. Only 64-bit JVMs recognize these options.

A command-line option can be used with -Xcompressedrefs to allocate the heap specified
with the -Xmx option, in a memory range of your choice. This option is
-Xgc:preferredHeapBase=<address>, where <address> is the base memory address for the
heap.

In Example 5-2, the heap storage of 2048 MB is located at the 4 GB mark. This leaves the
lowest 4 GB of address space for use by other processes, and the references are kept in the
64-bit storage.

Example 5-2 Heap storage at 4 GB mark example

CTGSTART_OPTS=-j-Xms256M -j-Xmx2048M -j-Xgc:preferredHeapBase=0x100000000
-j-Xcompressedrefs

For a detailed explanation about tips for Java on z/OS, see this website:

http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html

The 64-bit z/OS Gateway implementation also permits the use of z/OS large pages. The z/OS
large page provides better performance by decreasing the number of translation lookaside
buffer (TLB) misses that an application can incur. The large page support increases the page
size from 4 KB to 1 MB. It was introduced in z/OS V1R10 for the IBM z10™ EC models. You
need to check your hardware level and operating system level for the support of z/OS large
pages. When large pages are used in addition to the existing 4 KB page size, they are
expected to reduce memory management overhead for maximizing applications.

To implement these large pages, you need to specify the amount of real storage to be used
for managing them. Management is done by coding the keyword LFArea in IEASYSxx, as
shown in Example 5-3 on page 86.

Note: The TRACESZE defined in DFHXCOPT will be allocated as 16 Kb if the trace is OFF.
Carefully consider the size of the trace because it will be allocated for each of the worker
threads.
Chapter 5. Understanding the Gateway daemon 85

http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html

Example 5-3 Coding for z/OS large page

LFArea=(xx%| xxxxxxM | xxxxxxG)
xx% - Percentage of online storage at IPL to be used for large pages
xxxxxxM or xxxxxxG – Amount of online storage at IPL to be used for large pages

Large pages are backed by 256 contiguous 4 KB real storage frames. Large pages will not be
pageable. For this reason, you need to estimate the real storage usage.

With z/OS V1R13, a new command was introduced that lets you display the LFAREA current
usage, as shown in Example 5-4.

Example 5-4 New command to display the amount of LFAREA

D VIRTSTOR,LFAREA

IAR019I 11.34.10 DISPLAY VIRTSTOR 846
SOURCE = 00
TOTAL LFAREA = 100M
LFAREA AVAILABLE = 100M
LFAREA ALLOCATED (1M) = 0M
LFAREA ALLOCATED (4K) = 0M
MAX LFAREA ALLOCATED (1M) = 12M
MAX LFAREA ALLOCATED (4K) = 0M

For an additional description of large pages, see z/OS Version 1 Release 13 Implementation,
SG24-7946.

5.6 z/OS Workload Manager suggestions for CICS TG for z/OS

MVS Workload Manager provides a solution for managing workload distribution, workload
balancing, and distributing resources to competing workloads.

Workload management allows you to make the best use of your resources, maintain the
highest possible throughput, and achieve the best possible system responsiveness. With
workload management, you define performance goals and assign a business importance to
each goal.

This section will describe parameters that can influence the Gateway daemon performance.

5.6.1 WLM system-provided special service classes

WLM provides service classes for various system and subsystem address spaces; one of
them is called SYSSTC. Started tasks in SYSSTC are assigned a high dispatching priority. If the
default service class is left blank, these started tasks are assigned to SYSSTC. For this reason,
CICS TG can benefit from this workload association when started as a procedure, without
any change in WLM service class association.

The main point is that CICS TG must not be run in the BATCH service class. For maximized
utilization of your resources, remember that the Gateway daemon is an important address
space that provides workload to CICS, and it must not be considered as a batch job.
86 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

5.6.2 Storage Critical option

In a constant Gateway daemon workload, the WLM storage critical parameter has no effect.
However, if Gateway daemons do not receive workload during the night, the storage can be
stolen from the region. Then, when the workload flow starts again, it can cause a delay until
the system gets back the stolen pages. You can assign long-term storage protection to critical
address space by using the Storage Critical option of the WLM policy.

With this option, WLM protects an address space by restricting the storage donation to other
address spaces. This option can be useful for an address space that needs to retain virtual
pages in main storage during long periods of inactivity because it cannot afford paging delays
when it becomes active again. Without this function, if main storage enters contention, a
stealing algorithm steals the pages least referenced. With long-term storage protection
assigned, this transaction address space loses main storage (by stealing) only from
transactions of equal or greater importance that need the storage to meet performance goals.
The storage of protected service classes is only taken when z/OS runs short on main storage.

5.6.3 MAXCPUTIME

If your Gateway daemon is running for a long time, and it is serving a large workload, you
need to consider the z/OS UNIX parameter MAXCPUTIME. z/OS WLM can suspend the
Gateway daemon address space if the maximum CPU time provisioned for an address space
is exceeded.

MAXCPUTIME is a time limit (in seconds) limiting the CPU time that a process is allowed to use.
It is applicable to all the processes that run as daemons (in UNIX System Services terms, a
daemon is a process that is started in the background), and therefore, the Gateway daemon is
also subject to these limitations.

You can set a system-wide MAXCPUTIME limit in the BPXPRMxx member, or you can set the limit
for the Gateway daemon user ID. Use the RACF commands ADDUSER or ALTUSER to specify the
CPUTIMEMAX limit on a per-process basis, for example:

ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

Alternatively, specify the parameter CPUTIMEMAX in the OMVS segment for the RACF user ID
of the Gateway daemon.

5.7 Statistics

CICS Transaction Gateway is a key part of your IT infrastructure. It is therefore essential to
optimize your CICS TG system efficiency to eliminate resource bottlenecks and to improve
productivity.

The statistics produced by CICS TG allow you to analyze the CICS TG status in the following
areas:

� Ensure optimal performance of CICS TG.
� Use your hardware assets optimally.
� Focus on CICS TG resource utilization.

Statistics are available in all CICS TG products, and they can be displayed through modify
commands on z/OS and through the ctgadmin command-line tool on other platforms. They
are also available for use by external tools, such as the CICS TG plug-in for CICS Explorer
and IBM Tivoli OMEGAMON XE for CICS.
Chapter 5. Understanding the Gateway daemon 87

CICS TG also provides a mechanism to record interval and end-of-day statistics to System
Management Facility (SMF) on z/OS and to an XML file on other platforms. CICS TG SMF
records can be analyzed using CICS Performance Analyzer, or by writing your own program
to format the statistical records.

For detailed information about the statistics feature, see Exploring Systems Monitoring for
CICS Transaction Gateway V7.1 for z/OS, SG24-7562.
88 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 6. CICS Transaction Gateway
solution options

This chapter describes the connectivity between a client application and a CICS program
through the CICS Transaction Gateway (CICS TG). It compares local mode and remote mode
connections and outlines considerations for the connection options in relation to the client
platform and APIs in use.

This chapter covers the following topics:

� 6.1, “Deployment topologies” on page 90
� 6.2, “CICS TG APIs and connection type” on page 93
� 6.3, “Transactional models” on page 97
� 6.4, “Choosing a Gateway topology” on page 101

6

© Copyright IBM Corp. 2014. All rights reserved. 89

6.1 Deployment topologies

The CICS TG supports two types of client connections referred to as local mode and remote
mode. The mode that you use depends on your application topology. If the client application
executes on the same server where the CICS TG is running, local mode is appropriate. If the
client application executes on a separate server from where the CICS TG is running, only
remote mode is supported. Figure 6-1 shows the local and remote mode configurations with
CICS TG for Multiplatforms.

Figure 6-1 Local mode and remote mode clients with CICS TG for Multiplatforms

In Figure 6-1, applications running on Server A can connect to the Gateway daemon on
Server B across the network. These are remote mode clients. C, C++, and COBOL programs
using the original ECI, external presentation interface (EPI), and external security interface
(ESI) are not capable of connecting across the network and therefore must execute on the
same server where the CICS TG is installed. Their local mode connections use the Client
daemon directly. Local mode Java applications executing on Server B use the CICS TG code
within their own Java virtual machine (JVM) rather than connecting to the Gateway daemon.
They can use the IPIC driver or connect to the Client daemon when using the TCP/IP and
Systems Network Architecture (SNA) protocols.

Note: Remote mode client applications can be executing in single user systems and
servers.

Server BServer A

JEE
application

server

Java clients

ECI v2 C clients

.NET clients

JCA Resource
Adapters

Gateway
daemon

COM, C++, and
COBOL clients

Protocol
Handler

IPIC
Driver

JCA Resource
Adapters

Client daemon

IPIC
Driver

TCPIP and
SNA

Drivers

JEE application server

Remote clients Local clients

CICS
90 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Local and remote mode clients can also be used with CICS TG for z/OS. Figure 6-2 shows
the same capability for deploying remote client applications as the capability with CICS TG for
Multiplatforms. However, the only local clients supported with CICS TG for z/OS are Java and
JCA clients. Also, z/OS has no Client daemon. The Gateway daemon and local mode Java
clients access the external CICS interface (EXCI) protocol through a Java Native Interface
(JNI) call to the CICS-supplied EXCI module.

Figure 6-2 Local mode and remote mode clients with CICS TG for z/OS

CICS TG Desktop Edition is a special case when it comes to remote and local clients. The
license limits its use to a single user, and it does not permit redistributing components. This
means that remote mode client applications, such as Microsoft .NET Framework-based
applications or those using the ECI version 2 (ECIv2), must be deployed into the same
desktop system where CICS TG is installed. Figure 6-3 on page 92 illustrates these local
client applications that use the remote mode configuration and standard local mode clients.

z/OSServer A

CICS

JEE
application

server

Java clients

ECI v2 C clients

.NET clients

JCA Resource
Adapters

Gateway
daemon

Protocol
Handler

IPIC
Driver

JCA Resource
Adapters

EXCI module

IPIC
Driver

WebSphere Application Server

Remote clients Local clients
Chapter 6. CICS Transaction Gateway solution options 91

Figure 6-3 Client applications with CICS TG Desktop Edition

6.1.1 Remote mode

A remote mode configuration uses the Gateway daemon. The client establishes an IP
connection to the Gateway daemon by specifying the IP address or host name of the server
where the Gateway daemon is executing. The configuration of the CICS TG specifies on
which port the Gateway daemon is listening and whether Secure Sockets Layer (SSL) is to be
used.

The CICS TG supports the following client applications as remote clients:

� JCA client applications
� Java client applications
� ECIv2 C client applications
� .NET client applications

Remote client applications communicate with the Gateway daemon using the following
protocols:

� Transmission Control Protocol (TCP)
� SSL

By default, the TCP port is bound to 2006 and the SSL port is bound to 8050. Both server
authentication and client authentication mechanisms can be used with the SSL protocol.

The license for CICS TG Desktop Edition restricts the use of remote mode clients to
programs that are executing on the same machine where CICS TG is installed. These locally
installed remote mode client programs can be coded to use the Java, ECIv2, or .NET client
interfaces provided by CICS TG.

Workstation

Gateway
daemon

COM, C++, and
COBOL clients

Protocol
Handler

Client daemon

IPIC
Driver

TCPIP and
SNA

Drivers

Local clients

CICS

Java clients

ECI v2 C clients

.NET clients
92 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

6.1.2 Local mode

On distributed platforms, local non-Java CICS TG client applications communicate directly
with the Client daemon. Local Java (and JCA) client applications do not require the Gateway
daemon but use the Gateway classes provided by CICS TG to communicate with the CICS
system.

CICS TG for z/OS only supports Java and JCA clients in local mode. CICS TG for
Multiplatforms supports the following client application types as local clients:

� C and COBOL client applications
� C++ client applications
� COM client applications
� JCA client applications
� Java client applications

CICS TG Desktop Edition supports all of the previously listed client types except for JCA.

On z/OS, the client application uses the Internet Protocol interconnectivity (IPIC) or EXCI
protocols. For distributed platforms, the client uses the IPIC driver or connects directly to the
Client daemon.

For a local mode configuration, there is no need to start the Gateway daemon. Note that on
Windows platforms, the CICS TG runs as a Windows service which automatically starts the
Gateway daemon.

Local mode client applications must set the ECI request calls to local:, under the URL
parameter. When using the IPIC protocol in a local mode configuration, you do not need to
configure the server connection definition in the configuration file. The connection definition is
included in the server name parameter on the ECI request call or in the Java EE Connector
architecture connection factory.

6.2 CICS TG APIs and connection type

Each CICS TG product consists of API runtime components providing services to CICS TG
applications, and CICS connectivity components for communicating with CICS servers. The
CICS connectivity components are included in the product installation, and are licensed to run
on the machine where the product is installed. The API runtime components are also included
in the product installation, and several of these can be freely deployed to any number of
Multiplatform machines for remote mode (3-tier) operation.

Not all API services are available in each product. The choice of programming API can
impose limitations as to which product and connection type can be used. See Table 6-1 on
page 94.

Note: Java and JCA client applications are supported in local mode if the client application
and CICS TG are on the same server. However, they will not be able to use the features
provided by the Gateway daemon.
Chapter 6. CICS Transaction Gateway solution options 93

Table 6-1 Product and connection types based on the API Programming chosen

1. Available for local or remote mode JCA connection factories, EXCI, or IPIC.
2. Available for local mode JCA connection factories, IPIC only.
3. Colocated application and Gateway daemon connect through the local network adapter.
4. Application, runtime component, and product must be colocated due to license restrictions.
5. Uses cross-memory service between application and Client daemon.

6.2.1 JCA client applications

JCA client applications are supported in both local and remote mode.

JCA connects enterprise information systems, such as CICS, to the Java EE platform. JCA
supports the quality of service (QoS) for security credential management, connection pooling,
and transaction management provided by a Java EE application server. QoS is provided
through system-level contracts between a resource adapter provided by CICS TG and the
Java EE application server.

CICS TG supplies two JCA resource adapters to be used by client applications. These
resource adapters provide high-level common client interfaces (CCI) to the ECI and EPI for
sending requests to CICS. The resource adapter can be deployed into a Java EE application
server to allow Java EE enterprise applications to access CICS. When JCA is used in a Java
EE application server, connection pooling, security, and transaction context are managed by
the Java EE application server, not by the application.

Installation of the JCA resource adapter into the Java EE application server provides the
basis for defining managed connection factories. In a Java EE application server, you create
the connection factory by configuring it using an administrative interface, such as the
WebSphere Application Server administrative console. You set custom properties, such as
security parameters, transactional properties, and the Gateway connection URL (either a
remote connection to the Gateway daemon or a local connection) for the connection factory.
This type of environment is called a managed environment, and allows the Java EE
application server to manage the QoS for each of the connections.

For JCA applications, which are not running within a Java EE application server, the
application is responsible for creating the connection factory and setting its custom
properties. This type of environment is called a non-managed environment and offers no QoS
for the connections.

API component Application run time CICS TG
for z/OS

CICS TG for
Multiplatforms

CICS TG
Desktop
Edition

Java base classes Java SE Remote
Local

Remote
Local

Local3,4

JCA resource
adapters

Java Platform,
Enterprise Edition (Java
EE) application server

Remote
Local1

Remote
Local2

N/A

ECIv2 and ESIv2 Multiplatforms C/C++
Multiplatforms COBOL

Remote Remote
Local3

Local3,4

.NET ECI and ESI .NET Framework Remote Remote
Local3

Local3,4

ECI, ESI, and EPI v1 Multiplatforms C/C++
Multiplatforms COBOL
COM

N/A Local5 Local5
94 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Restrictions
The following list shows important restrictions:

� Only ECI and EPI are supported by the JCA resource adapters.

� Automatic Transaction Initiation (ATI) is not supported by the EPI resource adapter.

� With CICS TG for Multiplatforms, XAResource transaction management is only available
when using a local mode IPIC connection.

� The TCPIP or SNA network connections from the Client daemon into the CICS region are
managed and reused by the Client daemon component of the CICS TG. They are not
subject to the JCA connection pooling system contract.

6.2.2 Base class Java applications

CICS Transaction Gateway enables Java client applications to communicate with programs
on a CICS server by providing base classes for ECI and external security interface (ESI), and
external presentation interface (EPI) support classes.

A Java client application must create and manage its own connection to the CICS server
before it can send a request. The application creates a logical connection between the
Gateway daemon and itself when the application is running in remote mode. If a Java client
application is running in local mode, the application creates a connection between the CICS
server and itself, bypassing the Gateway daemon.

Restrictions
The following list shows important restrictions:

� When connecting to a remote CICS Transaction Gateway, resources allocated to a
particular connection and identifiers specified on the request objects on a particular
connection are available only to that connection.

� If you specify the local: protocol, all Java Gateways that are created in the same JVM,
that is, the same process, have access to each other’s allocated resources or specified
identifiers.

� The Java base classes do not supply any provision for connection pooling. Standard
connection management by the application (create, open, use, close, and destroy) can
result in excessive overhead. The application can benefit from a user-created connection
pool manager.

� ESI is only supported on IPIC and SNA connections.

� ESI is only supported when connecting to CICS servers on z/OS.

� EPI can only be used on SNA connections to all CICS servers and on TCP/IP connections
to TXSeries.

6.2.3 Microsoft .NET framework-based applications

The .NET classes are supported on all Windows platforms. They can be used to build 32-bit
and 64-bit remote mode applications.

The GatewayConnection class represents a connection to a Gateway daemon. The
connection is opened in the constructor and remains open until the application explicitly
closes the connection.
Chapter 6. CICS Transaction Gateway solution options 95

The .NET Framework offers a number of advantages when developing remote client
applications:

� A consistent model, provided by the .NET class library, for all supported programming
languages.

� High levels of security for applications used in remote mode topologies; method-level
security using industry standard security technologies can be explicitly defined.

� Separation of application logic from presentation logic for easier maintenance and
upgrade.

� Simplified debugging plus the availability of runtime diagnostics.

� Simpler application deployment.

Restrictions
The following list shows the restrictions for .NET Framework:

� The .NET classes are not supported in local mode.

� The .NET classes do not support EPI applications.

� ESI applications can only be used on IPIC and SNA connections.

� ESI applications are only supported when connecting to CICS Transaction Server for z/OS
(CICS TS).

� There is no provided connection pooling facility. Standard connection management by the
application (create, open, use, close, and destroy) can result in excessive overhead. The
application can benefit from a user-created connection pool manager.

6.2.4 ECIv2 and ESIv2 applications

The ECIv2 API was introduced in the CICS TG V7.2 release. It enables a client application to
communicate with a CICS TG running on a remote machine in much the same manner as the
Java APIs. This function is similar to the function that is provided by the existing Client APIs in
the CICS TG. However, an application written using ECIv2 is not required to run on the same
machine as a CICS TG installation. Originally, ECIv2 only supported COMMAREA-based
applications. CICS TG V8.0 introduced enhanced capabilities for ECIv2 clients by adding
support for channels and containers.

In CICS TG V8.1, security capabilities of the CICS TG and its client applications were
enhanced with the addition of support for password management for remote C applications
using the ESIv2 API.

Restrictions
The following list shows the restrictions for ECIv2 and ESIv2 applications:

� As mentioned for the Microsoft .NET framework-based applications and base Java
classes, there is no provided facility for connection pooling. Applications that are designed
to connect to the Gateway daemon, flow one or two requests, and then close the
connection can experience performance problems under a heavy load. The application
can benefit from a user-created connection pool manager.

� ECIv2 and ESIv2 applications are only supported in remote mode deployments.
96 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

6.2.5 ECI, ESI, and EPI v1 applications

These original programming APIs are only supported on CICS TG for Multiplatforms and
CICS TG Desktop Edition. They require the Client daemon for communication to the CICS
server.

In addition to the callable interfaces for C and COBOL programs, these restrictions also apply
to the class libraries for C++ and COM applications.

Restrictions
The following list shows the restrictions for ECI, ESI, and EPI v1 applications:

� No support for remote mode connections. These applications must execute on the same
system where CICS TG is installed.

� IPIC connections are not supported.

� Channels and containers are not supported. Only COMMAREA applications can be
accessed by ECI client applications.

� ESI requests are only supported on SNA connections.

� COM applications are restricted to ECI and EPI. ESI is not supported.

6.3 Transactional models

Within networked transactional systems, each system is either referred to as a resource
manager or a transaction manager. The transaction manager controls the outcome of the
transaction and is responsible for the recovery of its own resources. It must also be able to
coordinate multiple resource managers. The resource managers control access to
recoverable resources, and have to implement the necessary network flows and logging
procedures to provide transactional coordination.

The CICS TG is capable of extending a transactional context into CICS from the client
application. The transaction type can be an extended unit of work (equivalent to a Java local
transaction) or two-phase commit (Java global transaction or XAResource). Additionally, the
ECI request can flow to CICS as a non-transactional or SYNCONRETURN request.

CICS Transaction Gateway supports all three transactional models on EXCI and IPIC
connections. The TCP/IP and SNA protocols support non-transactional and extended units of
work.

CICS transactions are work that is initiated in a CICS region and that runs as a CICS task
under a four-character transaction ID (tranid). At task initiation, CICS implicitly starts a
unit-of-work (UOW) for all CICS transactions. This is usually the initial boundary of the
transactional work to be undertaken. All updates to recoverable resources or requests to
other transactional systems are now part of this UOW, until either a synchronization point
(sync point) is reached within the CICS program or the CICS transaction finishes and the task
terminates as illustrated in Figure 6-4 on page 98.
Chapter 6. CICS Transaction Gateway solution options 97

Figure 6-4 CICS synchronization points

When an inter-system distributed program link (DPL) request is used, the CICS transaction
that is linked to can be coordinated by the remote system. In this instance, the mirror task
remains suspended until the end of the transaction, which is referred to as a long-running
mirror task as illustrated in Figure 6-5.

Figure 6-5 Link with long-running mirror task

Long-running mirror tasks are used to support both extended UOW and XAResource
transactions. The CICS task is entered in the same way as a non-SYNCONRETURN DPL
request and the programs in the CICS task are not allowed to issue commands that affect the
state of the UOW. The CICS task’s UOW is subordinate to the client application or the Java
EE application server.

6.3.1 Two-phase commit

Two-phase commit is a designed set of flows that transaction managers use to ensure all
resource managers in a transaction can be reliably coordinated, regardless of any failure.

Figure 6-6 on page 99 summarizes the flows according to the XA specification. Other
protocols, such as CICS LU6.2, might use other terminology and variants on the flows. For
further details about CICS sync point flows, see the CICS Transaction Server Information
Center topic, Syncpoint flows:

http://ibm.co/1p37zCh

Transaction initiation

Load initial program

Start of task EXEC CICS
SYNCPOINT End of task

Unit-of-work 1 Unit-of-work 2
98 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 6-6 Two-phase commit

In the first phase (or stage 1), the transaction manager asks all the resource managers to
prepare to commit recoverable resources. Each resource manager can vote either positively
(prepared) or negatively (failed to prepare). If a resource manager replies positively, it is then
obliged to follow the eventual outcome of the transaction as determined at the next stage. The
resource manager is now described as in-doubt, because it has delegated eventual
transaction control to the transaction manager. If a resource manager replies negatively, the
transaction manager assumes that a backout is needed and the transaction will be backed
out by all resource managers.

In stage 2, providing all the resource managers voted positively, the transaction manager
replies to each resource manager with a commit flow. Upon receipt of the commit flow, the
resource manager finalizes updates to recoverable resources, and releases any locks held on
the resources. The resource manager then responds with a final committed flow, which
indicates to the transaction manager that it is no longer in-doubt.

Although the two-phase commit process is usually a prerequisite to distributed transactional
support, there are certain instances where a single-phase commit process can be sufficient.
This is referred to as last resource optimization, and it is implemented by a variety of
transaction managers. It essentially allows the commit decision to be delegated to the
one-phase commit resource, allowing the one-phase commit to participate in a global
transaction with any number of two-phase commit capable resources, as illustrated in
Figure 6-7 on page 100.

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

Transaction
Manager

Global
Transaction

Stage 1 - Prepare

Transaction
Manager

Resource
Manager

Resource
Manager

1

2

3

4

Chapter 6. CICS Transaction Gateway solution options 99

Figure 6-7 Two-phase commit with last resource optimization

At transaction commit, the transaction manager first prepares the two-phase commit resource
managers, and if this is successful, the one-phase commit-resource is then called to commit.
The two-phase commit resources are then committed or rolled back depending on the
response of the one-phase commit resource, effectively delegating transaction coordination
to the one-phase commit resource.

Unlike with a two-phase commit resource, there is no recovery from a communication failure
with a one-phase commit resource. Such a communication failure during commit of the
one-phase commit resource introduces the risk of a mixed outcome to the transaction. The
two-phase commit resources are by default rolled back, but the outcome of the one-phase
commit resource is unknown; it might have committed or rolled back. Applications must
therefore be configured to accept the additional risk of such heuristic outcomes.

Last resource optimization is implemented within WebSphere Application Server as last
participant support, and within CICS and Advanced Program-to-Program Communication
(APPC) flows as last agent optimization. However, applications that are deployed to exploit
last participant support are subject to an increased risk of a mixed outcome in a global
transaction if the one-phase commit resource fails during the commit processing.

6.3.2 JCA and transactions

The JCA specifies the system contract for transaction management (and other system
contracts such as connection management and security management) that exists between
the Java EE application server and the enterprise information system (in this scenario, CICS).

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

Transaction
Manager

Global
Transaction

Stage 1 - Prepare

Transaction
Manager

Resource
Manager

Resource
Manager

1

2

4

5

Resource
Manager

(one phase)

Resource
Manager

(one phase)

3

100 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

A resource adapter is required to implement one of the following listed transaction
management contracts, as defined in the resource adapter’s deployment descriptor (ra.xml):

XATransaction A resource adapter that can participate fully in a two-phase commit
process and can influence the outcome of the global transaction.

LocalTransaction A resource adapter that can participate in transactions that are local to
the resource manager but that cannot participate in two-phase commit
transactions (other than as an agent only or a last participant).

NoTransaction A resource adapter with no transactional properties that can
participate in a transactional context but is not influenced by and has
no effect on the outcome of the transaction.

CICS TG includes a CICS ECI resource adapter, which provides support for both
LocalTransaction and XATransaction. The resource adapter provides LocalTransaction
support when deployed on any supported Java EE application server. It can also provide
XATransaction support when deployed with the custom property xasupport=on in any
supported Java EE application server, as noted in the following list:

� Connecting to a remote CICS TG for z/OS
� When configured in a local mode with CICS TG for Multiplatforms

It also provides global transaction support when using WebSphere Application Server for
z/OS with CICS TG on z/OS in local mode.

When the CICS ECI resource adapter is deployed in WebSphere Application Server with the
custom property xasupport=off, the application server uses its last participant support when
including CICS resources with other resources in a common global transaction.

Restrictions
The following restrictions apply to transactional support:

� CICS TG for Multiplatforms can only deliver support for XAResource coordination when
configured in local mode within a Java EE application server.

� Local transactions are not supported when using WebSphere Application Server for z/OS
with CICS TG for z/OS in local mode, because the resource adapter provides global
transaction support with MVS Resource Recovery Services (RRS).

6.4 Choosing a Gateway topology

Depending on the programming API that you select, you might not have a choice of local
versus remote topology. That is, ECIv2 and Microsoft .NET Framework-based applications
are only implemented in remote mode. COM and C++ applications are only supported in local
mode with CICS TG for Multiplatforms and CICS Desktop Edition. The original ECI, ESI, and
EPI v1 interfaces are only available with CICS TG for Multiplatforms and CICS Desktop
Edition and can only be configured in local mode.

When designing the topology for client applications, CICS Transaction Gateway, and CICS
servers, you will need to be aware of the restrictions listed under each of these programming
APIs. The design of your application can make it necessary to implement a specific
configuration to meet its functional requirements.

Similarly, your choice of advanced capabilities can restrict your choice of deployment options.
When using CICS TG for Multiplatforms, XATransaction support is only available when
executing in a supported Java EE application server configured in a local mode.
Chapter 6. CICS Transaction Gateway solution options 101

A local mode configuration is best suited to smaller scale systems. A local mode configuration
has the following features:

� Fewer components to manage than in remote mode
� Simplified network topology

Remote mode provides the following additional Gateway daemon capabilities:

� Gateway daemon statistics and monitoring facilities
� Network concentration for multiple remote clients
� High availability support
102 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 7. High availability concepts

This chapter introduces high availability concepts to build a foundation for Chapter 13, “High
availability configuration” on page 295, where a sample scenario is described.

This chapter describes the available options to avoid a single point of failure (SPOF) and how
to enable a system for scaling.

This chapter covers the following topics:

� 7.1, “High availability overview” on page 104
� 7.2, “Connection balancing” on page 105
� 7.3, “Dynamic server selection” on page 116
� 7.4, “Importance of scaling and growing in a continuous availability system” on page 122
� 7.5, “Considerations for XA transaction support on z/OS” on page 124

7

© Copyright IBM Corp. 2014. All rights reserved. 103

7.1 High availability overview

A high availability system is a system that delivers an agreed-on level of service during
scheduled periods of availability. To achieve a high availability system, you have to eliminate
any unscheduled unavailability that can occur. Practically, high availability systems strive for
at least 99.9% availability during the scheduled time.

Continuous operation is the theoretical operation of a system for 24 hours per day, 365 days
per year. In a continuous operation system, you make no provision for scheduled
unavailability. All changes and maintenance must be applied in a nondisruptive manner.

Continuous availability combines the characteristics of both continuous operation and high
availability. No unavailability of any nature is allowed.

For the purpose of this book, high availability (HA) is the ability of a CICS Transaction
Gateway (CICS TG) to continue to provide its services regardless of component failures or
planned outages.

To fully understand which role CICS TG is playing in a continuous availability system, and
which is the best strategy provided by CICS TG to avoid unavailability, you need to identify the
single points of failure (SPOF).

The SPOF is a part of a system, which, if it fails, will prevent the system from working fully.
SPOFs are undesirable in any system with a goal of high availability. Duplication and
redundancy are the basic principles used to eliminate any SPOF.

Another important consideration is the possible cause of unavailability. When you create a
redundant infrastructure to avoid a SPOF, you need to allow the user to interact with a single
entity, even if more than one system is up and running to satisfy requests. This is called a
single system image.

To have a well-balanced single system image, you can also consider dynamic workload
balancing and the possibility of incremental growth. The workload must be equally distributed
through the systems to guarantee a quality of service (QoS), so the high availability system
needs to be flexible for scaling.

CICS TG has to answer to these questions:

� What does HA mean?

CICS TG HA is used to make CICS regions highly available to remote clients that access
CICS using the facilities of the CICS TG remote APIs. Applications will appear
continuously available to the users.

� When is the CICS TG HA needed?

It is used to meet service level agreements (SLA) and other obligations.

� Why is the CICS TG HA needed?

It allows at least one Gateway daemon instance to remain active during planned
maintenance activities. It allows the restart of the Gateway daemon if new resources must
be installed. It minimizes the impact of an outage.
104 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

� How can CICS TG HA be implemented?

By using the Sysplex Distributor capabilities and TCP/IP port sharing to provide a single
system image, cloned Gateway daemon instances eliminate points of failure, provide a
workload balancing mechanism, and eliminate or reduce the impact of any affinities.

CICS TG offers the capability to modify the CICS server specified by the application, or to
provide one when it is not specified. This is possible using the Dynamic Server Selection
(DSS) facilities, such as the default server setting, CICS Request Exit, or on z/OS,
DSSPOLICY.

7.2 Connection balancing

This section highlights the SPOF exposure of various solutions from the client perspective
considering only the link between the client and the Gateway daemon. Then, it describes the
CICS TG answer to the exposures.

When the users connect to the application through the network, they are not interested in the
design of the network and its complexity. If the application runs and responds as expected, it
is not important to know how many CICS TG and CICS Transaction Server (CICS TS)
instances are managing the request. The user will see only a single system image system. If
the SLA was not affected, it is not important for the user to know, for example, whether a
particular Gateway daemon was shut down and whether a peer Gateway daemon processed
the requests instead.

If the infrastructure is hidden to the user, it is also possible to scale it transparently if the
workload increases. A Gateway daemon can share the same IP port with another CICS TG
instance, allowing easy scaling of the system, but it also appears as a single system image to
the user.

7.2.1 Single point of failure: Single Gateway daemon

If the client attempts to connect to a specific Gateway daemon, and that Gateway daemon is
not available, the request cannot be satisfied. Figure 7-1 shows the impact of having a single
Gateway daemon solution; it is a SPOF in the overall solution, and access to the CICS
systems might not be possible.

Figure 7-1 The single point of failure of a single Gateway solution

Gateway
daemon

Cics
CICS
Chapter 7. High availability concepts 105

To resolve this issue, you can add another Gateway daemon instance to the solution to act as
a substitute when the primary Gateway daemon is not available. Figure 7-2 shows a possible
solution to the issue.

Figure 7-2 Multiple Gateway daemon solution removes the SPOF

In TCP/IP networking, Internet Protocol (IP) addresses are typically assigned to physical
network interfaces. This point illustrates another issue: to use the substitute Gateway
daemon, the client must switch the connection from the address of the unavailable Gateway
daemon to the address of the running one. To avoid manual intervention, the shared port
solution provides an answer.

To guarantee the single system image, the ability to scale, and to avoid the SPOF, you need
to share the TCP/IP port between the different Gateways, so the client can address a single
port, and the infrastructure will be transparent to the user.

Figure 7-3 shows that the clients see only TCP/IP port 2006, and both Gateways are
addressed.

Figure 7-3 Implementation of shared ports

Gateway
daemon

Cics
CICS

Gateway
daemon

TCP/IP

TC
P

/IP 2006

Gateway
daemon 1

Gateway
daemon 2

IP stack

CICS
106 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

7.2.2 z/OS shared ports

This section describes the capabilities offered by z/OS to share the TCP/IP ports between
multiple Gateway daemons. It is useful to introduce terminology to assist the description:

� Stack is commonly used to refer to the TCP/IP address space.

� A virtual IP address (VIPA) allows the use of IP addresses, representing TCP/IP stacks,
applications, or clusters of applications, that are not tied to any specific physical interface.
There is an association between a VIPA and an actual physical interface.

� A VIPA definition can be static, where it is typically associated with a particular TCP/IP
stack, or dynamic, which is known as a DVIPA. A DVIPA is defined by a VIPADYNAMIC
statement in the TCPIP profile on multiple stacks, and it can be automatically moved
between stacks within a Parallel Sysplex. The DVIPA definitions used with Gateway
daemons are also known as multiple application-instance DVIPA.

� A VIPADYNAMIC definition can include the VIPADISTRIBUTE statement to define a
distributed DVIPA. This is used to designate stacks and ports where connections for a
particular DVIPA can be distributed.

� An advertised DVIPA is known to external systems, or client applications. Typically, work
arriving to this external address is distributed to specific stacks on logical partitions
(LPARs) within the Parallel Sysplex.

For further detail about the DVIPA topology, see the topic, Multiple application-instance
DVIPA, in the Networking on z/OS Information Center:

http://ibm.co/1p37Gh8

For further explanation of terminology related to virtual IP addressing, see the topic, Static
VIPAs, dynamic VIPAs, distributed DVIPAs, in the z/OS Communications Server: IP
Configuration Guide:

http://ibm.co/UgHcxM

TCP/IP port sharing and the Sysplex Distributor
The z/OS Communications Server IP (also known as TCP/IP for z/OS) provides a function
called TCP/IP port sharing.

This technology allows you to have multiple Gateway daemons, on the same logical partition
(LPAR), that listen on the same port. If one Gateway daemon is unavailable, the other
instances process the workload transparently for the user.

TCP/IP port sharing
TCP/IP port sharing also provides connection balancing via round-robin or Workload
Manager (WLM) distribution, based on the weight fraction, normalized value.

For TCP/IP port sharing, the parameters SHAREPORTWLM and SHAREPORT influence the routing:

� When SHAREPORT is specified on the PORT statement, incoming client connections are
distributed by the stack across the listeners, using a weighted round-robin distribution
method based on their Server Efficiency Fraction (SEF) values.

SEF measures how well a target server is accepting new TCP connection requests and
managing its backlog queue for socket accept operations.
Chapter 7. High availability concepts 107

http://ibm.co/1p37Gh8
http://ibm.co/UgHcxM

� When SHAREPORTWLM is specified on the PORT statement, incoming client connections are
distributed by the stack across the listeners, using WLM recommendations based on the
Target Server Responsiveness (TSR) values for each listener:

– Target Connectivity Success Rate (TCSR) is the measure of how many new TCP
connection requests are received by the target stack.

– TSR is calculated by combining two factors, the values for TCSR and SEF.

TSR is evaluated at intervals of approximately one minute. If a target server experiences
response problems, new connection requests are diverted away from that server.

In this solution, there is still a SPOF, which is the LPAR. If the LPAR fails, the user will not be
able to work. To solve this problem, you can use the z/OS Sysplex Distributor.

Sysplex Distributor
z/OS Parallel Sysplex combines parallel processing with data sharing across multiple
systems to enable your application to benefit from harnessing the power of plural z/OS
mainframe systems. Yet, it makes these systems behave as a single, logical computing
facility. This combination gives the z/OS Parallel Sysplex unique availability and scalability
capabilities. The Sysplex Distributor provides TCP/IP connection balancing between listener
ports of equivalent services, in different stacks.

Figure 7-4 shows an example of a Sysplex Distributor and TCP/IP implementation.

Figure 7-4 Example of z/OS shared ports and Sysplex Distributor

Note: SEF values are shown using the TCPIP display command, from TSO, provided that
shared ports are configured:

D TCPIP,<TCPIP job name>,NETSTAT,VDPT,DETAIL

Note: Port sharing can be used in combination with Sysplex Distributor.

Sysplex Distributor

Sysplex

Coupling

facility

LPAR 1

port sharing

Gateway 1

Gateway 2

LPAR 2

port sharing

Gateway 3

Gateway 4

Advertised IP
address for

Gateway clones

VIPA

Each Gateway binds to the
Advertised DVIPA

Advertised DVIPA

Bind address : Advertised DVIPA

Bind address : Advertised DVIPA

XCF

XCF

XCF

TCP/IP

Advertised DVIPA
108 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The Gateway daemon protocol handler listener ports (TCP and SSL) can be bound to the static
VIPA addresses of their respective LPARs (in this book, 192.168.0.1 and 192.168.0.2).
However, this can be regarded as a security exposure, because it allows connections to be
established through both the advertised DVIPA (in this book, 1.2.3.4), and the static VIPAs.
Binding to the advertised DVIPA limits the means by which an application can connect,
providing greater control to the system administrator.

Figure 7-5 shows the main configuration steps needed for the implementation illustrated in
Figure 7-4 on page 108.

Figure 7-5 Sysplex Distributor and TCP/IP port sharing implementation

For a complete description of these features, see IBM z/OS V1R12 Communications Server
TCP/IP Implementation: Volume 3 High Availability, Scalability, and Performance,
SG24-7898.

Sysplex Distributor and TCP/IP port sharing make use of Workload Manager (WLM) and its
ability to gauge server load and provide a WLM recommendation.

For Sysplex Distributor, when the distribution method for a target server is BASEWLM or
SERVERWLM, the weights to the target server are modified to reflect its ability to handle new
connection requests. Target servers whose weights are lowered because of this are less
favored by the distribution algorithm:

� BASEWLM provides capacity recommendations in the form of weights for each system.
When determining a WLM system weight recommendation, WLM assigns a relative
weight to each system in the sysplex, with the highest weight going to the system with the
most available capacity. The available capacity is based on the system’s available general
CPU capacity. BASEWLM uses the total available system capacity as the base for the
weight.

DNS

PROFILE.TCPIP

CTG.INI

VIPADEFINE : Designates one or more dynamic VIPAs (DVIPAs)

that this stack should initially own and support

VIPADISTRIBUTE enables the Sysplex Distributor function for a
dynamic VIPA for which new connection requests can be

distributed to other stacks in the sysplex.

VIPABACKUP Designates one or more dynamic VIPAs |(DVIPAs)
for which this stack provides automatic backup if the owning

stack fails

Clients know only the
advertised name that is

mapped to a DVIPA
address by DNS

In the TCP protocol setting

Bind statement identifies
the advertised DVIPA

address
Chapter 7. High availability concepts 109

� SERVERWLM provides capacity recommendations based on the importance of the
workload that the server is running. When determining a WLM server-specific
recommendation, WLM determines the service class of the server’s address space. Then,
WLM assigns a weight based on how well that server is meeting the goals of its service
class, and the amount of displaceable workload available, given the importance of the
service class.

The value of the SEF and the policy selected for balancing the TCP/IP causes incoming
connections to be distributed among a set of TCP/IP listeners. Selection is based on WLM
server-specific recommendations, modified by the SEF values for each listener.

CICS TG WLM health
You can also increase the efficiency of your connection balancing function by enabling health
reporting in the Gateway daemon. The Gateway daemon tracks the success rate of CICS
requests and reports a health rating of 0 - 100 to WLM. The health rating can be used to
influence the selection of a target Gateway daemon, when a new connection request is
received, in combination with SEF.

You can enable the health reporting and set the frequency used to report the Gateway
daemon health level to WLM using the GATEWAY section of the CICS TG configuration file, as
shown in Example 7-1. The default health interval is 60 seconds.

Example 7-1 Configuring the Gateway daemon to enable health reporting to WLM

healthreporting=on
healthinterval=60

When CICS TG for z/OS is configured to report server-specific health values to WLM, the
health values are dynamically calculated for a given Gateway daemon as a percentage value,
based on the number of failing ECI and ESI requests in a configured interval. Over the
intervals, the Gateway daemon monitors the following error codes to determine the health of
communications with CICS:

� ECI_ERR_NO_CICS
� ECI_ERR_RESOURCE_SHORTAGE
� ECI_ERR_SYSTEM_ERROR
� ESI_ERR_NO_CICS
� ESI_ERR_RESOURCE_SHORTAGE
� ESI_ERR_SYSTEM_ERROR

How to handle failback for restarted Gateway daemons: If IP connection balancing is in
used across a group of cloned Gateway daemons, restarted Gateways might not be
allocated connections if all existing connections are being reused from a connection pool.
To ensure that such Gateway daemons can be efficiently used in a failback situation, set
the CICS TG idletimeout or the Java EE Connector architecture connection factory
connection pool properties for aged timeout or unused timeout in WebSphere Application
Server to ensure that connections are periodically recycled.

Note: The health reporting function is influential when used in conjunction with the
SHAREPORTWLM option, and is ignored when the SHAREPORT option is used.
110 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The health values for each Gateway daemon will then be used by IBM Communications
Server to prioritize the distribution of new socket connections by port sharing or Sysplex
Distributor to Gateway daemons in the load balancing group. Gateway daemons reporting a
higher health value receive a greater proportion of the incoming connections than those
reporting a lower health value.

Each Gateway daemon instance within a Gateway group must have health reporting enabled
to achieve workload distribution based on the health metric.

Server-specific health can be used in conjunction with Dynamic Server Selection (described
later in this chapter) to provide a mechanism to prevent storm drain scenarios by the removal
of a specific Gateway daemon from IP connection balancing within the sysplex when all of its
available CICS servers are offline (see Figure 7-6). In addition, because WLM also provides
feedback on displaceable CPU capacity, it can be useful in allocating connections to LPARs
where there is a sufficient general-purpose or a System z Application Assist Processor
(zAAP) to run the required workload.

Figure 7-6 CICS TG and health reporting with port sharing

Be aware of the following issues when you use SHAREPORTWLM with CICS TG health reporting:

� The Health value reported by the CICS TG Gateway daemon statistic GD_CHEALTH is
updated on an interval basis. The Health value reported by WLM is updated to match this
value; however, this is only effective when the next ECI connection request is received on
the shared port after the health interval has occurred.

� The normalized values of the WLM server-specific weights are displayed in the WLM
“NormalizedWeight” value of NETSTAT reports. The original raw weights received from
WLM are proportionally reduced for use by the distribution algorithm and they incorporate
the TSR value. If SHAREPORTWLM is specified on the PORT profile statement, connections are
distributed in a weighted round-robin fashion using these normalized weights.

Note: Health reporting is effective only in TCP/IP load balancing topologies with CICS TG
running in remote mode, in combination with a WLM configuration.

LPAR

Distributing
Stack

V
I
P
A

Sysplex
Distributor

LPAR

CICS

CICS

Round robin
distribution

Gateway
daemon

Dynamic
Server

Selection

Dynamic
Server

Selection

Failover route to
backup LPAR

WLM

CICSCICS

Health=0%
CICSCICS

Gateway
daemon

Dynamic
Server

Selection

Dynamic
Server

Selection
Chapter 7. High availability concepts 111

� As the health of one or more Gateway daemons reduces, the WLM NormalizedWeight
values are adjusted to be in proportion to the Health values. The NormalizedWeight value
is used to determine how to proportionally distribute the requests received on the shared
port. Therefore, the worse the health of one Gateway daemon, the fewer connections will
be routed to it. When the NormalizedWeight value is zero, no more connections are routed
to that Gateway daemon.

� Because WLM will not route requests to a Gateway daemon whose NormalizedWeight is
zero, manual intervention is required to recover the Gateway daemon:

– Ensure that at least one of the CICS servers defined to the Gateway daemon is active
and able to process requests successfully and that any resource limits encountered
have been resolved.

– Reset the health of the Gateway daemon using this command:

F jobname,APPL=HEALTH,RESET

The next ECI request to the shared port will cause WLM to update its Health value for that
Gateway daemon to 100 (to match the statistic value) and update its NormalizedWeight value
to include this Gateway daemon back into the WLM distribution algorithm.

7.2.3 Multiplatform IP load balancing solutions

To avoid one of the SPOFs that a multiplatform system can have, you can benefit from various
solutions that can be implemented either by the hardware, hypervisors, or operating system
facilities.

A similar solution to z/OS TCP/IP shared ports can be implemented using external hardware
TCP/IP balancers. This technology allows multiple Gateway daemons on independent
operating system instances to receive connections through a common advertised address. If
one Gateway daemon becomes unavailable, other instances can process the workload
transparently to the user.

CICS TG supports the use of virtualization environments as defined by the Virtualization
Policy for IBM Software. For more details, see the following technote:

http://www.ibm.com/support/docview.wss?uid=swg21304599

AIX workload partitions (WPARs) are one example of using virtualization to run multiple
Gateway daemons on multiplatforms. In the next topic, we explore these AIX facilities in
detail.

IBM workload partitions for AIX
The workload partitions (WPARs) provide a way to partition work within an AIX logical
partition (LPAR). WPARs allow a single instance of AIX to be divided into multiple virtual
partitions, so that the system administrator can quickly deploy multiple, isolated AIX
environments without the overhead of managing individual AIX images. There are two types
of WPARs:

� Application WPAR: A single process and its children run in their own partition.
� System WPAR: An entire AIX environment that can be either shared or detached.

Note: If the health of a Gateway daemon is significantly worse than other Gateway
daemons listening on the same shared port, it is possible that the NormalizedWeight
value might fall to zero while the Health value is nonzero (although, in this case, Health
will normally be a low value, for example, 5).
112 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/support/docview.wss?uid=swg21304599

If a system WPAR is shared, it mounts the global environment’s /usr and /opt partitions as
read-only and shares them. If a system WPAR is detached, it has a clone of the global
environment, and all file systems are local to the WPAR. Figure 7-7 on page 113 shows a
shared and detached system WPAR created in the same LPAR. The shared WPAR has
read-only access to /usr and /opt in the global environment. The detached WPAR has no
access to the global environment and maintains its own file systems.

Figure 7-7 Deploying system WPARs

The following section explores the different types of WPARs and the ways in which you can
use them when deploying IBM CICS TG on AIX.

Application WPARs
The simplest kind of WPAR is the application WPAR, which is a lightweight environment
suitable for executing one or more application processes. CICS TG supports application
WPARs for client applications running either in remote mode, or where the IPIC protocol is
used, in local mode. Figure 7-8 on page 114 shows a Gateway daemon running in the global
environment with three application WPARs, each running a different type of application
connecting to that Gateway daemon.
Chapter 7. High availability concepts 113

Figure 7-8 Deploying application WPARs

Application WPARs are appropriate when the client applications in application WPARs run in
their own isolated environment, complete with their own network stack, and the application
instances are easy to identify during monitoring. CICS TG can benefit, because a problem
within an application does not affect the rest of the LPAR or any other WPARs running within
it.

If you need to run multiple applications in the same LPAR, where multiple, long-duration
applications are running in the same LPAR, you can run each application in its own WPAR.
Doing so isolates each application from the other parts of the system, so that if an application
fails, the failure is contained within the WPAR without affecting the other applications.

System WPARs (shared)
A shared system WPAR appears as an AIX instance, but it shares the global environment’s
/usr and /opt file systems and mounts them in the WPAR as read-only. An example of how
to use system WPARs to run CICS TG is illustrated in Figure 7-9 on page 115. This example
shows a CICS TG installation configured to run in the global environment with three shared
system WPARs created within the global environment LPAR. The first system WPAR uses the
ctg.ini configuration file in the global environment, and the other two WPARs have their own
local configurations but still use the installed CICS TG executables.

If you need to expand the capacity of an existing LPAR that uses TCP/IP connections while
maintaining the low administrative overhead of a single product installation and single
configuration, you can benefit from the shared system WPARs.
114 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 7-9 Deploying shared system WPARs

By default, in a shared system WPAR installation, the configuration files are shared across all
the shared WPARs, because the configuration files are in the /opt/IBM/cicstg/bin directory.
Sharing a configuration works well for TCP/IP connections to CICS, but for System Network
Architecture (SNA) and Internet Protocol interconnectivity (IPIC), which require unique values
to identify the gateway instance, sharing is restricted and only the first gateway using the
configuration that connects to CICS can establish a connection. Other connections are
rejected.

When you plan to run CICS TG as a background process using the ctgd process, this sharing
limitation can be overcome by setting the CTGDCONF environment variable in each of the
system WPARs to point to the local ctgd.conf that sets the CICSCLI environment variable to
be the ctg.ini file in the WPAR, which contains unique identifiers for that instance of the
CICS TG. The ctgd process checks for the presence of this environment variable before using
the defaults. If ctgd is not used, and if ctgstart or cicscli is used, you must set the CICSCLI
environment variable directly to point to the local ctg.ini file.

The main advantage of a shared system WPAR topology is that the system software,
including CICS TG, the SNA Remote API Client, and the C/C++ compilers, are installed once
in the global environment and are then available to all shared system WPARs without any
additional installation. Shared system WPARs can therefore have a relatively small footprint
when compared with WPARs that are not shared.

In shared system WPAR scenarios (for example, when communicating with CICS over
TCP/IP), the configuration can also be common across all CICS TG instances. If Gateway
daemons must be uniquely identified (for example, when using IPIC or SNA protocols to
communicate with CICS), each WPAR must have its own local configuration, which must be
managed independently of the global environment. Shared system WPARs also enable more
efficient utilization of the LPAR and let you create a workload manager in the global
environment to distribute work between the WPARs.

Detached system WPAR
A detached system WPAR is an entirely self-contained AIX installation, complete with its own
isolated file system and network stack. An example of how you can use a detached system
WPAR to run CICS TG is illustrated in Figure 7-10 on page 116.
Chapter 7. High availability concepts 115

Figure 7-10 shows CICS TG installed in the global environment, and three detached system
WPARs. Unlike the shared system WPARs in the previous section, these installations are
isolated, and the program and configuration files are installed separately.

Figure 7-10 Deploying detached system WPARs

Detached system WPARs offer the benefits of LPARs but have a smaller processor and
memory footprint, enabling you to further carve up LPARs to submanage resources while
running multiple gateways in the same LPAR. This improved utilization of the LPAR enables
you to create a workload manager in the global environment to distribute work between the
WPARs.

If you need to run multiple versions of the CICS TG concurrently, with multiple machines or
LPARs that are each hosting a different release of CICS TG, this topology is likely to use a
large amount of machine resources or LPAR resources. A more efficient solution is to
consolidate the hardware into a single LPAR with each instance running as a detached
system WPAR.

If you also want to test a new release before you deploy it, you can use the detached system
WPAR to test a new release of CICS TG in the current operating environment with existing
applications. There is no impact on the existing installations and configurations. For
configuration guidelines, see the article:

http://ibm.co/1kEaHAo

7.3 Dynamic server selection

This section highlights the SPOF exposure from the Gateway point of view, considering only
the connection between the Gateway daemon and CICS TS. This section also includes the
CICS TG answers to the exposures.
116 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1kEaHAo

If the Gateway is only connected to a CICS region, and it is not available, the client is not able
to process the request. Figure 7-11 shows how CICS TS can be a SPOF even if more than
one Gateway daemon is active.

Figure 7-11 CICS as SPOF

The Gateway daemon is able to dynamically retry failed requests by retrying with an
alternative CICS server, so the client application is not affected.

Dynamic server selection (DSS) consists of several CICS TG functions, providing the ability
for the CICS TG run time to dynamically select a CICS server for any given ECI request. This
feature allows each Gateway daemon to route requests appropriately, selecting a local CICS
region or routing specific requests to a specialized group of CICS regions.

DSS allows the Gateway daemon to select the CICS server dynamically at run time for
requests from client applications that do not need to know which server will process their
requests, but which can be selected at run time.

DSS can be controlled dynamically using the CICS request exit in all the CICS TG products or
can be implemented with other features described later.

7.3.1 Default server

If there is no server name in the ECI requests, you can assign a default server name at run
time, using the defaultserver parameter in the PRODUCT section of the Gateway configuration
file.

Figure 7-12 on page 118 shows an example of default server implementation.

Gateway
daemon CICS

CICS
Gateway
daemon
Chapter 7. High availability concepts 117

Figure 7-12 Example of default server implementation

7.3.2 The CICS request exit

The Gateway daemon provides an exit point that can call the CICS request exit to select a
CICS server name for an ECI or ESI request. The CICS request exit can be used for request
retry, DSS, and for rejecting invalid requests. If the server name returned by a CICS request
exit is null, the request is sent to the default CICS server if one is specified in the configuration
file.

The CICS request exit provides maximum flexibility for complex routing decisions, allowing
custom-written server selection logic.

A fully functional working sample that uses text-based configuration files is provided in CICS
SupportPac CA1T. This SupportPac provides the capability to configure workload
management via round-robin or failover polices. It offers primary and secondary levels of
failover and configurable timeouts to enable failback to primary CICS regions after they are
restarted and online policy updates. It is also possible to request validation rules.

To download the SupportPac, see this website:

http://www.ibm.com/support/docview.wss?uid=swg24021484

Figure 7-13 on page 119 shows a scenario of the CICS request exit implementation with
round-robin and failover implementation. The platform where the Gateway daemon is
installed is not important.

TCP/IP Gateway
daemon

ECI request without Server name specified

defaultserver=CICS1

CICS1

CICS2

CICS3
118 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/support/docview.wss?uid=swg24021484

Figure 7-13 Shows an example of a CICS request exit implementation

7.3.3 DSSPOLICY (z/OS only)

DSSPOLICY is a feature of the CICS TG for z/OS product. It is policy-based DSS that
supports generic and server-specific rules, and a choice of round-robin or failover algorithms.

DSSPOLICY is an alternative to CICS request exit for which no programming skills are
required. It is quick and easy to implement in the Gateway daemon configuration file, using
DSSGROUP and DSSPOLICY definitions.

You can map your CICS servers to groups and apply a selection algorithm to them. The
selection algorithm can be round-robin or failover, depending on your goal. The DSSPolicy
maps application requests to a DSSGROUP. This implementation allows you agile and easy
management of your routing selection.

Figure 7-14 on page 120 shows a sample implementation of DSS. In this sample, there are
two groups: Group1 routes all the requests for CICSX server and Group2 routes all the
requests without a specified server name. Group1 uses the round-robin algorithm and
Group2 uses the failover algorithm. The example shows ECI requests arriving with no
specified server. All requests will be sent to CICSA3 or CICSA4 if CICSA3 is not available.

The ECI request arriving with server name CICSA4 will not be affected. The ECI request
arriving with server name CICSX will be round-robin routed to CICSA1, CICSA2, and
CICSA5.

This example shows the behavior of an ECI request, but the same behavior can be applied
also in Extended ECI and XA requests. DSS will retry failed requests around all defined
servers in this list, therefore hiding CICS failures from the client system.

Note: Transaction ID, program name, and user ID are also available to the CICS request
exit for XA transactions, as of Version 9.0.

TCP/IP Gateway
daemon

CICS request
exit

Cics

Cics

CICS

Cics

Cics

CICS

RoundRobin

FailOver

Note: Java programming skills are not required to use the sample CICS request exit
program provided in SupportPac CA1T.

Note: LOGICALSERVER section definitions for CICS TG for z/OS are deprecated and
superseded by policy-based DSS definitions.
Chapter 7. High availability concepts 119

Figure 7-14 Sample DSSPolicy scenario

DSSPolicy information has the following limitations compared to the CICS request exit
(CA1T):

� No ability to refresh configuration while the Gateway daemon is running
� No ability to switch policy while the Gateway daemon is running

7.3.4 DFHXCURM (z/OS only)

The CICS EXCI user replaceable module, DFHXCURM, also provides the ability to retry
failed ECI requests. However, its usage is no longer suggested with CICS TG, because it
does not support IPIC connections and is not integrated with CICS TG statistics and systems
monitoring.

7.3.5 Client API user exits

The Client daemon provides user exits to modify the target CICS server for ECI and EPI
requests destined to CICS servers using the TCPIP or SNA protocol drivers.

For further details, see the ECI Client API exits and the EPI Client API exits topics in the CICS
TG for Multiplatforms Information Center:

http://ibm.co/1ldvUkI

LPAR 2# Define dynamic server selection policy
SECTION DSSPOLICY = POLICY1
SUBSECTION MAPPINGS
<NONE>=GROUP2
CICSX=GROUP1
ENDSUBSECTION
ENDSECTION

Define dynamic server selection group
SECTION DSSGROUP = GROUP1
Servers=CICSA1,CICSA2,CICSA5
Algorithm=ROUNDROBIN
ENDSECTION
SECTION DSSGROUP = GROUP2
Servers=CICSA3,CICSA4
Algorithm=FAILOVER
ENDSECTION

ECI Server CICSX

LPAR 1

Gateway
daemon

CICSA1

CICSA2

CICSA3

CICSA4

CICSA5

ECI Server CICSA4

ECI no Server
1

2

3

(*)

Note: At least for remote mode ECI applications using the Gateway daemon, it is advised
to use the CICS request exit instead of Client API exits, because the CICS request exit is
better integrated with the CICS TG statistics and request monitoring facilities.
120 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1ldvUkI

7.3.6 Client daemon Workload Manager on Windows

The Windows versions of the CICS TG for Multiplatforms and CICS TG Desktop Edition
products include a feature called Workload Manager (WLM). It is possible to use Workload
Manager to distribute work across multiple CICS servers, but only if the CICS servers are
connected with the TCPIP or SNA protocols.

WLM allows you to distribute work across available and equivalent CICS servers, and also to
favor one CICS server over another (biasing). It is also possible to handle requests that fail to
reach a target CICS server and to redirect them.

WLM implements a classification of the CICS server in server groups (it is also possible to
insert the program names that have to run in a specific server group).

WLM has two algorithms to route the ECI requests:

� The round-robin algorithm assumes that all server groups are equally valid for selection.

� The biasing algorithm provides a way of balancing workload by specifying that workload
distribution. A server group can be a favorite and it will receive more work. For example, if
there are two server groups with a bias of 75 and 25, program requests are sent in a ratio
of 3:1 to the first server group.

If a request to route an ECI call to a particular CICS server fails, indicating that the server is
no longer available, the server is removed from the list of available servers.

If a request fails to reach the target CICS server, the WLM tries again, this time sending it to a
different server that it knows is available. The server that failed is removed from the list of
active servers. It is added back after a period of time, which you specify in the server group
timeout field. If the server fails again, the process is repeated.

WLM is able to maintain the affinity created by an extended Logical Unit of Work (LUW),
routing all the requests to the same CICS server.

Figure 7-15 on page 122 shows a scenario with a Windows WLM implementation containing
two server groups using a round-robin distribution of the workload.

Note: At least for remote mode ECI applications using the Gateway daemon, it is
suggested to use the CICS request exit instead of WLM, because the CICS request exit is
better integrated with the CICS TG statistics and request monitoring facilities.

Note: WLM cannot be used with servers that are connected using the IPIC protocol.
Chapter 7. High availability concepts 121

Figure 7-15 Shows an example of Windows WLM implementation

7.4 Importance of scaling and growing in a continuous
availability system

A highly available CICS TG configuration enables you to increase throughput in line with an
increasing workload. The HA implementation allows you to scale your environment easily,
because the infrastructure is already in place.

The workload and the amount of data transmitted for each payload can trigger the need to
scale.

Another important consideration is the capacity on which the CICS TG must normally run.
Theoretically, in an HA implementation, a single region is able to process all the incoming
requests as a failover backup.

You need to evaluate the maximum risk exposure that you will accept, compared with the
MIPS available, and tune the workload capacity of each Gateway.

CICS TG for z/OS provides a highly optimized inbound CICS connector infrastructure for a
wide variety of clients. The key factor affecting the scalability of a CICS TG solution is usually
the payload size of each request. The amount of data transmitted for each payload depends
on both the application design and whether COMMAREA or channel-based requests are sent
to CICS:

� When using channel-based requests, only containers within the channel that have been
modified are returned back to the calling application. Therefore, an efficient design
ensures that different containers are used for input and output to ensure that only the data
required is transmitted.

� When using COMMAREA-based requests, CICS provides the ability to dynamically
truncate the inbound or outbound data flows that contain trailing blank (null) data.

TCP/IP Gateway
daemon Windows

WLM

CICS1

CICS2

CICS3

CICS4

CICS5

Server Group CICS server

GROUP1 CICS1
CICS2
CICS3

GROUP2 CICS4
CICS5

Client daemon Group1

Group2

SNA or TCP/IP
122 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

A two-phase commit provides an optimized mechanism for supporting distributed units of
work between Java EE application servers and CICS, with a small delta cost per transaction.
However, as with any use of distributed transactions, the number of interactions during the
scope of the unit-of-work (UOW) can have significant effects on scalability, because CICS
transactions will remain active longer and locks will be held longer on recoverable resources.

Using Secure Sockets Layer (SSL) for security can add overhead both to the process of
connection establishment and also to the encryption of each request. The first priority is to
ensure that connections are reused wherever possible, because the most significant
overhead is the SSL handshake during connection establishment. Additionally, usage of SSL
cipher suites, such as Data Encryption Standard (DES), Advanced Encryption Standard
(AES), or Triple DES, that are supported using the System zCentral Processor Assist for
Cryptographic Function (CPACF) hardware, ensures that the cost of encryption is as low as
possible.

Limiting factors on z/OS
CICS TG provides a wide range of facilities to help applications scale when faced with
increasing system load. However, there are key considerations that need to be taken into
account to ensure Gateway daemons can scale to their maximum extent:

� Multitasking

A single CICS TG region has the potential to run hundreds of threads (TCBs) that can run
in parallel with other applications to fully use available processors. So, there is a physical
limit in scalability by the capacity of a single CPU and the frequency at which other
applications give up control.

� Optimizers and appliances

CICS TG provides the ability to use a variety of optimizers and appliances to improve
scalability, including the following range of options:

– System z Application Assist Processor (zAAP)

zAAP processors are speciality processors to offload Java workloads from the System
z general-purpose central processors (CPs), with the aim of reducing processing costs.
A significant amount of CICS TG code is written in Java, and IPIC connections are the
largest users.

– System z Integrated Information Processors (zIIPs)

zIIP processors are similar in concept to zAAPs but they are designed to offload
TCP/IP and XML processing.

– Cryptographic coprocessors, such as the CPACF and CEX2, can be used to accelerate
public and private key encryption.

You can also benefit from the facilities provided by CICS Configuration Manager to scale your
CICS TG implementation easily because CICS Configuration Manager is able to discover and
clone CICS TG regions.

Tip: z/OS V1.11 added a new capability that enables zAAP-eligible workloads to run
on the zIIP. This new capability is ideal for clients without enough zAAP-eligible
workload or zIIP-eligible workload to justify a specific speciality engine.
Chapter 7. High availability concepts 123

7.5 Considerations for XA transaction support on z/OS

This section introduces basic concepts related to XA transactions. An XA transaction is a
recoverable unit of work performed by one or more resource managers in a distributed
transaction processing environment, which is coordinated by an external transaction manager
where the Extended Architecture (XA) protocol is used for syncpointing and recovery.

In CICS TG for z/OS, the use of XA transactions together with high availability features
requires the creation of a highly available Gateway group, formed of Gateway daemons with
matched capabilities, and access to Resource Recovery Services (RRS). In combination with
highly available Gateway groups spanning a Parallel Sysplex, XA transactions can be used
transparently with CICS TG Dynamic Server Selection (DSS) features, enabling both
workload distribution and failover capabilities. Figure 7-16 shows the potential scope of an XA
transaction.

Figure 7-16 HA transaction example

In a high availability configuration, you must consider many aspects. For a full understanding,
see the example situations in the next section.

Figure 7-17 on page 125 shows the normal flow of an XA transaction: a transaction starts,
flows some ECI requests, and then commits, proceeded by a prepare commit. Each
participant in the XA transaction needs to respond positively to the prepare commit to commit
successfully.

CICS TS

Web
Service
Client

CICS Program

Business
logic

B

Other/Any

CICS
Transaction

Gateway

CICS TG (z/OS)

WebSphere
Application
Server Web

Service
Support

WAS (any platform)

J
2
C

VSAM

DB2

DB2

EJB

SOAP EXCI

RRS

TCP/IP

XA

Global
transaction
124 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 7-17 Normal case of an XA transaction

If something goes wrong, and you need to roll back an in-flight XA transaction, the transaction
coordinator needs to guarantee the data integrity. All the resources must be rolled back, but if
the XA rollback cannot flow (connection lost), it will not cause a problem because CICS will
roll back when the transaction ends abnormally.

Figure 7-18 on page 126 shows the logical flow of an in-flight failure. The failure is
communicated to the transaction manager, which will evaluate the actions required to
guarantee the data integrity.

1. XAStart

2. XAEci

3. XAEci

4. XAPrepare

EJB

Exit from EJB method or

UserTransaction.commit()

Transaction commit

Resource Adapter

5. XACommit

Interaction.execute()

1st Interaction.execute()

All resources reply positively to XA prepare phase

CICS transaction ends as soon as EJB component finishes
syncpointing

LPAR 1

CICSA1

CICSA2
Gateway
daemon

LPAR 2

Gateway
daemon

CICSB1

CICSB2

CICSB3

Gateway
daemon

TC
P

/IP port sharing

2

3

4

5

1

22
3
4
5

S
ysplex distributor

Gateway
daemon

TC
P

/IP port sharing

RRS

HA Group
Chapter 7. High availability concepts 125

Figure 7-18 In-flight failure of XA transaction

When a failure occurs in the middle of a sync point processing (for example, between
prepareCommit and XAcommit), an in-doubt UOW situation arises because the coordinator
cannot know the actual status of the unit of work. The resolution of the in-doubt situation will
happen when the connection is reestablished.

A Gateway group that uses TCP/IP load balancing can be viewed as a single logical Gateway
daemon. A Gateway daemon instance in an HA group can recover in-doubt XA transactions
on behalf of another Gateway daemon within the HA group. Figure 7-19 on page 127 shows
an example of in-doubt processing.

Note: CICS can independently select the action to be taken when a task is in in-doubt
status. The parameter WAIT=YES in the transaction definition specifies whether a unit of
work is to wait, pending recovery from a failure that occurred after it had entered the
in-doubt period, before taking the action specified by ACTION.

Consider the heuristic decision carefully, evaluating also the actions of other transaction
managers.

1. XAStart

2. XAEci

3. XAEci

5. XAPrepare

EJB Resource Adapter

6. XARollback

Interaction.execute()

1st Interaction.execute()

LPAR 1

CICSA1

CICSA2
Gateway
daemon

LPAR 2

Gateway
daemon

CICSB1

CICSB2

CICSB3

Gateway
daemon

TC
P

/IP port sharing

2

3

5

6

1

22
3
5
6

S
ysplex distributor

Gateway
daemon

TC
P

/IP port sharing

RRS
Connection failure
CICS failure
CTG failure
Txn abend

Exit from EJB method or

UserTransaction.commit()

Transaction rollback

4. CICS syncpoint rollback

All resources rollback work on failure (presumed abort)
XARollback (5) may not flow depending on the
situation
CICS transaction rolls back upon notification of
connection loss
126 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 7-19 In-doubt situation

DSS is also integrated with the two-phase commit XA transaction support provided by CICS
TG. DSS is designed to ensure that, after a CICS server has been dynamically selected for
any given ECI request, all future requests within the scope of the UOW will be routed to the
same CICS server until the UOW completes. Figure 7-20 on page 128 shows an example of
in-doubt processing.

1. XAStart

2. XAEci

3. XAEci

4. XAPrepare

EJB Resource Adapter

5. XARollback

or XACommit

Interaction.execute()

1st Interaction.execute()

LPAR 1

CICSA1

CICSA2
Gateway
daemon

LPAR 2

CICSB1

CICSB2

CICSB3

Gateway
daemon

2

3

4

5

1

21
2
3
4

S
ysplex distributor

Gateway
daemon

TC
P

/IP port sharing

Exit from EJB method or

UserTransaction.commit()

Transaction rollback

6. CICS Mirror task ends

Retry

Connection
failure

In-doubt failures occur in the timing window during
syncpointing. All in-doubt resources locked until transaction
resolved

Resolution of recoverable CICS resources requires
restarting of connectivity with the XA transaction manager

RRS

Gateway
daemon

TC
P

/IP port sharing

5

Chapter 7. High availability concepts 127

Figure 7-20 Dynamic server selection and XA transactions

There are certain situations that leave some residual data in RRS and a Gateway cold start
might be needed. If one Gateway issues the XAPrepare and the connection between the
Gateway daemon and the CICS server is lost, another Gateway can take part in the XA
transaction, issuing the XARollback or XACommit to the CICS that is enlisted in the XA
transaction. Figure 7-21 on page 129 shows an example.

1. XAStart

2. XAEci

3. XAEci

4. XAPrepare

EJB

Exit from EJB method or

UserTransaction.commit()

Transaction commit

Resource Adapter

5. XACommit

Interaction.execute()

1st Interaction.execute()

LPAR 1

CICSA1

CICSA2
Gateway
daemon

LPAR 2

Gateway
daemon

CICSB1

CICSB2

CICSB3

Gateway
daemon

TC
P

/IP port sharing

2

3

4

5

1

22

2 retry

S
ysplex distributor

RRS

HA Group

Gateway
daemon

TC
P

/IP port sharing

3

4

5

Gateway daemon
persists server selection
for all further requests in
the same XA transaction
128 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 7-21 Situation needs a cold start

The implication of CICSPlex SM routing
If IBM CICSPlex® SM is in use for routing distributed program link (DPL) requests from
routing regions to application-owning regions (AORs), CICS UOW affinity support is used to
ensure that all requests within an XA transaction are routed to the same AOR to prevent
potential transactional deadlocks.

These transactional deadlocks can occur if two requests within the same distributed UOW are
dynamically routed to two different AORs, but subsequently access the same recoverable
resource, such as a shared Virtual Storage Access Method (VSAM) file. If this occurs, the
second request in the UOW will suspend, because it will wait for a lock when trying to update
the shared resource, which has already been locked by the first CICS task (see Figure 7-22
on page 130).

Note: To avoid transactional deadlocks, it is often necessary to ensure that all distributed
program link (DPL) requests that are dynamically routed to remote regions are routed to
the same AOR if they are within the same distributed UOW. CICS TS V4.2 provides built-in
support for this through CICSPlex SM WLM support for UOW affinities.

4. XAPrepare

EJB Resource Adapter

5. XARollback

or XACommit

LPAR 1

CICSA1

CICSA2
Gateway
daemon

LPAR 2

CICSB1

CICSB2

CICSB3

Gateway
daemon

4

5

4

Gateway
daemon 1

TC
P

/IP port sharing

Exit from EJB method or

UserTransaction.commit()

Transaction rollback

RRS

Gateway
daemon 2

TC
P

/IP port sharing

5

Gateway daemon 2 processes
XARollback after in-doubt failure

UR in Gateway daemon 1
will move to InForget state

Connection
failure

S
ysplex distributor

4 retry
Chapter 7. High availability concepts 129

Figure 7-22 Possible deadlock situation

Impact of XA transactions on an HA solution
These are the details of the impact of XA transactions on an HA solution:

� If ECI requests are to be routed from a Gateway daemon to a CICS region on a different
LPAR, IPIC connections must be used because the external CICS interface (EXCI) does
not support the use of Resource Recovery Services (RRS) for transactional requests sent
between LPARs.

� Specify one or more IPICSERVER section server names or application identifiers (APPLIDs)
of EXCI-connected servers in a comma-separated string. If XA support is enabled,
IPICSERVER section server names cannot be mixed with APPLIDs of EXCI-connected
servers within the same DSS group.

LPAR 1

LPAR 2

Gateway
daemon

Gateway
daemon

TC
P

/IP
port sharing

CICSA2
Gateway
daemon

Gateway
daemonTC

P
/IP

port sharing

RRS

HA Group

TOR
Routing
region

CICSA2

CICSA3

CICSA4

TOR
Routing
region

CPSM

CPSM

ECI1

S
ysplex distributor

ECI2
130 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 8. Security

This chapter introduces the security considerations when connecting applications to CICS
programs with CICS Transaction Gateway (CICS TG). It then describes how the CICS TG
addresses the issues of authentication, authorization, data integrity, and confidentiality. It also
examines how CICS and CICS TG work together with an external security manager, such as
Resource Access Control Facility (RACF), to provide these facilities. Details are included that
describe the mechanisms used to secure connections and to transmit security credentials to
the CICS system.

This chapter covers the following topics:

� 8.1, “Security basics” on page 132
� 8.2, “Network security” on page 134
� 8.3, “Passwords, PassTickets, and password phrases” on page 141
� 8.4, “Identity propagation” on page 142
� 8.5, “The external security interface” on page 143

8

© Copyright IBM Corp. 2014. All rights reserved. 131

8.1 Security basics

Effective identity management, authorization, and access control capabilities are the
essential elements of a comprehensive enterprise security program. These security services
are necessary to control the access to resources and sensitive information within the
Information Technology (IT) environment.

8.1.1 The components of a security system

A complete security system puts the necessary infrastructure in place to provide a core set of
capabilities:

� Identification
� Authentication
� Authorization
� Confidentiality
� Auditing
� Nonrepudiation

This section describes the purpose of each capability, and provides some context within a
typical CICS system.

Identification
This is the ability to assign an identity to the entity accessing the system. Typically, the identity
is used to control access to resources. Depending on the security model in which the
identification is performed, the identity can be called a user ID, a UID, or a principal.

In general, a CICS user is an entity (a person or a program) that is identified by a user
identifier (or user ID). All CICS users must be defined to the External Security Manager
(ESM). When the security manager is RACF, information about each user is stored in a user
profile.

Authentication
Authentication is the process of validating the identity claimed by the user. Authentication is
performed by verifying the authentication information provided by the claimed identity. The
authentication information is generally referred to as the accessor’s credentials. A credential
can be the accessor’s name and password or it can be a token provided by a trusted party, for
example, a Kerberos ticket or an X.509 certificate.

CICS supports several schemes for authenticating users. In many cases, the user’s
authenticity is verified by checking a password or password phrase supplied by the user.
Depending on topology, authentication can be based on the user ID passed with the External
Call Interface (ECI) request, a Secure Sockets Layer (SSL) client certificate, or a distributed
identity (identity propagation).

Authorization
Authorization is the process of checking whether an identity, which has already been
authenticated, must be provided access to a resource that it is requesting. A typical
implementation of authorization is to pass a security context, which contains the identity that
has been authenticated, to the access control mechanism.
132 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

In conjunction with the ESM, CICS provides a variety of security and control mechanisms.
These mechanisms can limit the activities of CICS users to only those functions that any
particular individual user is authorized to use. CICS provides three types of authorization
checks to protect its applications, the resources they use, and the operational environment:

1. Transaction security ensures that users that attempt to run a transaction are entitled to do
so.

2. Resource security ensures that users who use CICS resources are entitled to do so.

3. Command security ensures that users who use CICS system programming commands
are entitled to do so.

To provide the necessary security for your CICS systems, CICS uses the Multiple Virtual
Storage (MVS) System Authorization Facility (SAF) to route authorization requests to an
ESM, such as RACF, at appropriate points within CICS transaction processing. The user’s
identity is passed on this call and the ESM return code indicates whether the user is
authorized to perform that function.

Confidentiality
Confidentiality ensures that an unauthorized party does not obtain the meaning of the
transferred or stored data. Typically, confidentiality is achieved by encrypting the data.

CICS and CICS TG support the SSL transport protocol to ensure that information remains
private as it passes over the connection. The data exchanged between the sender and
receiver is encrypted and only the client and the server can interpret the information.

Auditing
Auditing can be used to maintain a record of security-related events, such as a user signing in
to a system or out of a system, or the details of who modified a given resource, and when.
The provision of an audit trail is typically mandatory in enterprise organizations, allowing
post-mortem analysis to be conducted in a security breach.

Auditing is a function of the External Security Manager on z/OS. A typical implementation of
auditing is the RACF auditor tool. For more information about the RACF auditor tool, see z/OS
Security Server RACF Auditor’s Guide, SA22-7684:

http://ibm.co/1rxQ65V

Integrity
Integrity ensures that transmitted or stored information has not been altered in an
unauthorized or accidental manner. Typically, it is a mechanism to verify whether what is
received over a network is the same as what was sent.

Nonrepudiation
Nonrepudiation means that a data sender and a data receiver are able to provide legal proof
to a third party that the sender did send the information and that the receiver received the
identical information. Neither side is able to deny.

The IBM Redbooks publication, Securing Access to CICS Within an SOA, SG24-5756,
contains a more thorough description of the security functions and security considerations
when accessing CICS programs from client applications.
Chapter 8. Security 133

http://ibm.co/1rxQ65V

8.1.2 The role of cryptography

In computer security, cryptography provides the following processes:

� Encrypting converts usable data into a ciphertext, which conceals the meaning of the data
from any unauthorized recipient.

� Decrypting converts ciphertext back to usable data.

� Hashing uses a one-way (irreversible) calculation to condense a long message into a
compact bit string called a message digest.

� Generating a digital signature involves encrypting a message digest with a private key to
create the electronic equivalent of a handwritten signature.

A digital signature is used to verify the identity of the signer. This verification ensures that
nothing has been altered in the signed document from the time that it was signed, and is a
basis for nonrepudiation.

Most cryptographic systems combine two elements:

� An algorithm that specifies the mathematical steps that are required to encrypt the data.
� A cryptographic key (a string of numbers or characters) or keys.

The algorithm uses the key to select one relationship between plaintext and ciphertext out of
the many possible relationships that the algorithm provides. The selected relationship
determines the composition of the algorithm’s result.

8.2 Network security

In a 3-tier system, remote mode applications communicate with a Gateway daemon over a
TCP/IP network connection. The Gateway daemon might then use a further network
connection to communicate with a CICS server. Both of these network connections can be
secured with SSL for Java, JCA, and .NET applications, when using IPIC connections to the
CICS server.

Implementing SSL with data encryption provides confidentiality of the messages transmitted
on the connection. SSL also offers client authentication based on digital certificates.

8.2.1 Secure Sockets Layer and Transport Layer Security

CICS supports several security protocols to provide secure communication over a TCP/IP
network:

� SSL 3.0
� Transport Layer Security (TLS) 1.0
� TLS 1.1
� TLS 1.2

In this book, the term SSL is used as a general reference to these protocols, unless explicitly
qualified.

Note: CICS Transaction Server for z/OS V5.1 (CICS TS) APAR PM97207 provides support
for TLS 1.1 and TLS 1.2.
134 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The SSL protocol operates between the application layer and the TCP/IP layer. This allows it
to encrypt the data stream itself, which can then be transmitted securely, transparent to the
application layer. SSL also provides a means for establishing the identity of one or both
participants in the connection.

Authentication occurs at connection time, and it is independent of the application or the
application protocol. With SSL, authentication is performed by an exchange of certificates,
which are blocks of data in a format described in the International Telecommunication Union
(ITU) Telecommunication Standardization Sector (ITU-T) standard X.509. The X.509
certificates can be issued and digitally signed by an external authority known as a certificate
authority.

For more information about the X.509 standard, see the ITU-T Recommendation on
Public-key and attribute certificate frameworks:

http://bit.ly/1n2jC2K

8.2.2 Digital signatures, certificates, and key rings

SSL uses digital signatures and digital certificates for establishing a trusted relationship
between a sender and a receiver of information sent over a network connection.

Digital signature
A digital signature is a unique, mathematically computed signature that demonstrates the
authenticity of a transmission.

Digital certificate
A digital certificate allows unique identification. It is essentially an electronic ID card, issued
by a trusted third party, which is known as a certificate authority. Digital certificates form part
of the X.509 protocol. This framework provides for authentication across networks. A digital
certificate serves two purposes: it establishes the owner’s identity and it makes the owner’s
public key available.

A digital certificate contains the following information:

� The public key of the person being certified

� The name and address of the person being certified, also known as the Distinguished
Name (DN)

� The digital signature of the certificate authority

� The issue date

� The expiry date

A digital certificate alone is not proof of an identity; it allows verification of the owner’s identity,
by providing the public key needed to check the owner’s digital signature. Therefore, the
digital certificate owner must protect the private key that belongs with the public key in the
digital certificate. If you send your digital certificate containing your public key to someone
else, your private key prevents that person from misusing your digital certificate and posing as
you. If the private key is stolen, anyone can pose as the legitimate owner of the digital
certificate.
Chapter 8. Security 135

http://bit.ly/1n2jC2K

Certificate authority (CA)
A digital certificate is issued by a CA and has an expiry date. When requesting a digital
certificate, you supply your distinguished name. The digitally signed certificate includes your
distinguished name and the distinguished name of the CA. This allows verification of the CA.

To communicate securely, the receiver must trust the CA that issued the certificate that the
sender is using. Therefore, when a sender signs a message, the receiver must have the
corresponding CA’s signer certificate and public key designated as a trusted root key. Your
web browser has a default list of signer certificates for trusted CAs. If you want to trust
certificates from another CA, you must receive a certificate from that CA and designate it as a
trusted root key.

Key ring
A key ring is a repository containing public keys, private keys, and digital certificates used by
a network communications security protocol, such as SSL. Each certificate consists of at
least a public key, and metadata related to the identity that it represents, such as a
distinguished name.

SSL requires access to key rings for the establishment of secure connections. In the Java
Secure Socket Extension (JSSE) implementation of SSL, the key ring is known as the Java
KeyStore (JKS) file.

The SSL handshake
When an SSL connection is established, the client and server agree on which version of the
SSL/TLS protocol they will use. They select a cipher suite, optionally authenticate each other,
and use public key encryption techniques to generate a shared value to be used as the seed
for encrypting and decrypting transmitted data.

The SSL handshake consists of several phases:

� Server authentication

In the first phase, the server responds to a client’s request by sending its certificate and
cipher preferences.

� Client authentication (optional)

The server requests that the client identify itself during the SSL handshake by providing its
client certificate. Client authentication can only be requested by the server.

� Key negotiation

The client then generates a master key, which it encrypts with the server’s public key, and
then transmits the encrypted master key to the server. The server authenticates itself to
the client by returning a message authenticated with the keys derived from the master key.

Subsequent data is secured using the cipher suite that was negotiated during the handshake.
Figure 8-1 on page 137 shows the SSL handshake without client authentication.

Note: The encryption algorithm and key strength are selected by the client and server
during the handshake. It is possible to negotiate to plaintext because two of the defined
cipher suites specify no encryption.
136 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 8-1 SSL handshake without client authentication

Figure 8-2 on page 138 illustrates the SSL handshake when client authentication has been
requested by the server.

Client Server

Client starts SSL handshake; sends
list of supported ciphers

Server selects cipher

Client authenticates server’s
certificate and gets server’s public
key

Server sends its certificate to client

Client creates key exchange
message and encrypts with server’s
public key; sends to server

Server decrypts client’s key
exchange with its private key.

Client creates Change Cipher
message; sends to server

Client calculates symmetrical key,
creates Finish message and encrypts
with symmetrical key; sends to server

Server decrypts the Finish message
received from client.

Server creates Change Cipher
message; sends to client

Client decrypts Finish message
received from server

Server calculates symmetrical key,
creates Finish message and
encrypts with symmetrical key;
sends to client.
Chapter 8. Security 137

Figure 8-2 SSL handshake with client authentication

8.2.3 Enabling SSL in the CICS TG

The CICS Transaction Gateway supports the JSSE implementation of SSL. JSSE, as
supplied with the Java Software Development Kit (SDK), is the only supported SSL option.
Two tools, iKeyman and keytool, are shipped in both the Java Runtime Environment (JRE)
and SDK packages. The keytool command is issued from the command line, and iKeyman is
a graphical tool. These tools are used to work with digital certificates, which are then stored in
a keystore on the local file system.

Because the JSSE code is 100% Java, it is platform independent and there is no z/OS
specific code. However, there are a couple of functions in other Java security components
that provide z/OS specific capabilities that JSSE can use. These functions include the ability
to take advantage of the hardware cryptographic devices that can be present on the z/OS
platform along with storing certificates in RACF. The hwkeytool command can be used to
create certificates compatible with the System z hardware cryptography. RACF administration
commands support the generation, importing, exporting, and storing of certificates.

8.2.4 Securing IPIC connections

An Internet Protocol interconnectivity (IPIC) connection can be established between the
Gateway daemon and the CICS server or directly to the CICS server from a Java application
server when a local mode connection is being used.

Client Server

Client starts SSL handshake; sends
list of supported ciphers

Server selects cipher

Client authenticates server’s
certificate and gets server’s public
key

Server sends its certificate to client,
includes request for client’s
certificate.

Client creates key exchange
message and encrypts with server’s
public key; sends to server along with
client’s certificate and verification.

Server validates/authenticates the
client’s certificate; decrypts client’s
key exchange with its own private
key.

Client creates Change Cipher
message; sends to server

Client calculates symmetrical key,
creates Finish message and encrypts
with symmetrical key; sends to server

Server decrypts the Finish message
received from client.

Server creates Change Cipher
message; sends to client

Client decrypts Finish message
received from server

Server calculates symmetrical key,
creates Finish message and
encrypts with symmetrical key;
sends to client.
138 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

IPIC connections enforce the following securities:

� Bind security to prevent an unauthorized client system from connecting to CICS

� Link security to restrict the resources that can be accessed over a connection to a CICS
server

� User security to restrict the CICS resources that can be accessed by a user

Bind security
For IPIC, bind security is supported by the exchange of SSL client certificates. The following
list shows important configurations that allow the CICS TG to connect successfully, and to
prevent an unauthorized system from connecting:

� The SEC system initialization parameter in CICS must be set to YES.

� The TCPIPSERVICE definition in CICS must specify:

– SSL(CLIENTAUTH) or SSL(YES).

– CIPHERS (cipher_suite_code_list).

– Optionally, CERTIFICATE (X.509_certificate_label). The named certificate is used
as the server certificate. If CERTIFICATE is not specified, the default certificate defined
in the key ring for the CICS region user ID is used.

� The following list shows what must be configured for the Gateway daemon:

– Set the key ring parameters.

– Set the ssl parameter in the IPICSERVER section of the configuration file to Y.

– Optionally, if you want to limit the cipher suites that are enabled for the connection, set
the ciphersuites parameter to a comma-separated list of cipher suites to use.

� Local mode configurations must define the CICS server name:

ssl://<server_name>:<port>

The CICS TG and CICS TS information centers provide the detailed description of the
definitions required to configure SSL for IPIC connections. The CICS TG information center
also contains scenarios illustrating how to perform the configuration tasks for both CICS TG
and the CICS server.

Link security
There are two ways that you can specify the link user for IPIC connections. You can use the
SECURITYNAME attribute, or an SSL certificate in the IPCONN definition in CICS. The client’s
certificate is mapped by the external security manager to a specific user ID, which is defined
as the link user. Therefore, you can specify separate link users depending on which certificate
you are using.

To specify a link user, set LINKAUTH in the IPCONN definition in CICS to one of the following
settings:

� SECUSER to use the user ID that is specified in the SECURITYNAME attribute to establish link
security

� CERTUSER to use an SSL client certificate mapped to a user ID to establish link security

When specifying CERTUSER, the IPCONN resource must refer to a TCPIPSERVICE definition
that is configured for SSL and client authentication. The certificate must be mapped in the
external security manager to your chosen user ID.
Chapter 8. Security 139

User security
IPIC connections can be configured to enforce user security to restrict the CICS resources
that can be accessed by a user. The level of user security checking is specified by setting the
USERAUTH attribute in the IPCONN definition in CICS. The USERAUTH setting in the IPCONN
definition is comparable to the ATTACHSEC setting on other connection definitions.

� If USERAUTH=IDENTIFY is specified, a user ID that is already verified must be supplied. If the
connecting CICS TG for z/OS component (a Gateway daemon or an application using
local mode) and the CICS TS for z/OS region are not in the same Parallel Sysplex, a
client-authenticated SSL connection is required.

� If USERAUTH=VERIFY is specified, a user ID and password or password phrase must be
supplied. If password phrases are to be used, the CICS server must support password
phrases.

Two other user security options exist in which CICS does not accept a user ID or password
from clients. In these cases, a predefined user is assigned to each task that is started. The
following list shows those other security options:

� If USERAUTH=LOCAL is specified, all requests run under the link user ID or the default user ID
if there is no link user ID.

� If USERAUTH=DEFAULTUSER is specified, all requests run under the default user.

Identity propagation can be used as an alternative to specifying a user ID.

8.2.5 Securing connections to the Gateway daemon

When using a remote mode topology, the connection between Java and .NET clients and the
Gateway daemon can be secured using SSL. SSL is not available for clients using ECIv2. If
the client will be flowing the user ID and password, an SSL connection is advised to protect
the confidentiality of this information.

Security exits
The CICS Transaction Gateway products include a feature for the manipulation, validation, or
auditing of application requests between Java and JCA client applications and the Gateway
daemon. The feature is known as the security exits. Although security exits can be used for
reasons other than security, several examples of their use are listed:

� Compressing data over the wire (therefore obscuring)
� Rejecting requests based on request content or metadata

Note: The CICS TG Information Centers include scenarios to show how to configure the
following options:

� SSL security on the Gateway daemon
� SSL server authentication and (optionally) SSL client authentication
� Sending an ECI request to the CICS server to check that the SSL connection works

For more information about these options, see the following scenarios:

� Scenario SC06 in the CICS TG for Multiplatforms Information Center:

http://ibm.co/1tfM7v1

� Scenario SC05 in the CICS TG for z/OS Information Center:

http://ibm.co/1zStHVw
140 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/ctgunx/sc06_ovr.html
http://ibm.co/1zStHVw
http://ibm.co/1tfM7v1
http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/ctgunx/sc06_ovr.html
http://ibm.co/1tfM7v1
http://ibm.co/1tfM7v1
http://ibm.co/1tfM7v1

CICS TG includes a set of Java components that define a simple yet flexible model for
implementing custom security exits. Two of these can be used independently of whether SSL
is also used:

� com.ibm.ctg.security.ServerSecurity

This interface is used for server-side security classes that do not require the exposure of
SSL client certificates.

� com.ibm.ctg.security.ClientSecurity

This interface is used for all client-side security classes.

Two additional classes are designed to work in conjunction with the SSL environment on the
Gateway daemon:

� com.ibm.ctg.security.JSSEServerSecurity

The JSSEServerSecurity interface is an alternative to the Server Security interface and
works in conjunction with the SSL protocol. The interface allows access to a client
certificate passed during the initial SSL handshake. The exposure of the client certificate
depends on configuring the CICS TG to support client authentication.

� com.ibm.ctg.util.RACFUserid

This class (only available in the CICS TG for z/OS) is used to map an X.509 Client
Certificate to a RACF user ID. The certificate must already be associated with a valid
RACF user ID or an error is returned from RACF.

The CICS TG products include sample programs to illustrate the use of the security exits.
They are principally designed to compress the data stream between the client application and
the Gateway daemon:

� ClientCompression implements ClientSecurity and demonstrates data compression.

� ServerCompression implements ServerSecurity and demonstrates data compression.

� SSLServerCompression implements JSSEServerSecurity and demonstrates how to
expose an SSL client certificate.

The source for these samples is in the following directory:

<install_path>/samples/java/com/ibm/ctg/samples/security

8.3 Passwords, PassTickets, and password phrases

During authentication, the identity of a user can be established by supplying both the user ID
and a password. A password is typically a short sequence of letters, numbers, and certain
special characters. On z/OS, a password can be up to eight characters long, and it might not
be limited to uppercase, depending on the system configuration.

Note: Aside from being limited to Java and JCA applications, another limitation of the
security exits is the requirement for the application to specify the name of the Java classes
to be used. This places an affinity into the remote client application, and also makes it
difficult to implement when the Gateway daemon needs to serve a mixed set of
applications.

Note: Support for mixed-case passwords was introduced with CICS TG for z/OS V7.0.
Chapter 8. Security 141

Password phrases differ from traditional passwords in that they are longer than passwords,
ranging from 9 to 100 characters long. This greater length is thought to provide more powerful
security. Otherwise, they operate on the same principle as passwords, and they are used in
exactly the same way. Not all CICS systems or CICS TG releases support the use of
password phrases.

A PassTicket is a program-generated character string to use directly instead of a password or
password phrase. A PassTicket looks very much like a password, and it can be used by CICS
TG applications directly in place of a normal password. However, PassTickets are only valid
for a single authentication operation, and they expire within a short time after generation. The
basis of the technology relies on the use of a shared secret key.

Using PassTickets removes the need to transmit reusable passwords, and password phrases,
over the network. It also makes it possible for client systems to authenticate themselves to the
server, without the need to securely manage reusable credentials in the client system.

For more information about PassTickets, see the topic, The RACF PassTicket, in the z/OS
Information Center:

http://ibm.co/UgHsga

8.4 Identity propagation

Identity propagation is the capability where a non-z/OS identity (a distributed identity) is
propagated into the z/OS environment and then is used for these functions:

� To provide credentials for authorization by being mapped to an existing security user ID
� To be available throughout the z/OS sysplex for auditing and reporting

The distributed identity of an authenticated user is determined by the distributed application
and passed along to the receiving subsystem on z/OS. The subsystem, such as CICS, then
uses the ESM (such as RACF) to search for a mapping between the distributed identity and a
SAF user ID. The logon is failed if no mapping is found.

The distributed identity is then associated with the SAF user ID within the security context for
the specific request. Both the SAF user ID and the distributed identity will now be included in
any audit records that relate to the processing of the request.

Figure 8-3 on page 143 shows a conceptual overview of identity propagation.

Note: Password phrase support was introduced by the CICS TG V8.1 products, and it can
be used when connecting to CICS TS for z/OS V4.2, or later, using an IPIC connection.
CICS TG for z/OS V9.0 added further support, allowing authentication of password
phrases for external CICS interface (EXCI) connections and any supported release of
CICS TS for z/OS.
142 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/UgHsga

Figure 8-3 Identity propagation

One requirement for identity propagation is that the connection between the CICS TG and
CICS must be an IPIC connection. A client-authenticated SSL connection is required unless
CICS Transaction Gateway and CICS Transaction Server are on z/OS and in the same
sysplex.

In the information center for CICS TG for z/OS, Scenario SC04 shows how to configure CICS
TG for z/OS, CICS TS, RACF, and WebSphere Application Server on AIX. Specifically, this
scenario shows how to implement identity propagation of a user’s security information (the
distributed identity), which is held in IBM Tivoli Directory Server. When this is passed to CICS
Transaction Server, the identity is mapped to a user ID in RACF.

For a more thorough description of identity propagation (ID propagation) and detailed
examples for implementation, see z/OS Identity Propagation, SG24-7850:

http://www.redbooks.ibm.com/abstracts/sg247850.html

8.5 The external security interface

The external security interface (ESI) provides a security management API to manage user
IDs and passwords. ESI enables user applications to perform security-related tasks, such as
viewing the status of user IDs and updating passwords held by an ESM.

The original implementation of ESI was an interface to Password Expiration Management
(PEM), and part of the Advanced Program-to-Program Communication (APPC) architecture.
Its use was restricted to CICS TG on distributed platforms (CICS TG for Multiplatforms or the
now discontinued CICS Universal Client), and then only when the gateway products
connected to CICS using Systems Network Architecture (SNA). As of CICS TG V8.1, ESI is
supported over IPIC connections, therefore available to all CICS TG products.

ESI can be used to verify and change the user ID and password information stored in the
ESM. Two primary functions provided by ESI are verifying passwords and changing
passwords. These invoke the corresponding CICS commands EXEC CICS VERIFY PASSWORD
and EXEC CICS CHANGE PASSWORD. These commands interface with the ESM, such as RACF,
to perform the operation that you want.

JEE
Application
Server

ECI
Resource
Adapter

Login
Module

LDAP

Windows

CICS
TG CICS CICS

IPIC MROTCP/IP

z/OS

IPIC

Distributed
Identity

RACF SMF
Distributed

Identity
Mapped to
RACF ID

RACF ID
DN and
Realm
Chapter 8. Security 143

http://www.redbooks.ibm.com/abstracts/sg247850.html

144 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Part 3 Configuration

This part shows how to configure connections in CICS, configure simple end-to-end
connectivity (all platforms) with verification for remote and local mode applications, and add
security, extended architecture (XA) support, and high availability.

Part 3
© Copyright IBM Corp. 2014. All rights reserved. 145

146 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 9. Configuring IPIC in CICS
Transaction Gateway for z/OS

This chapter describes the configuration of IPIC connections in CICS Transaction Server for
z/OS (CICS TS), used by both the CICS TG for z/OS and CICS TG for Multiplatforms
scenarios in this book, including the sample CICS programs we used for validation. Using
IPIC delivers the most feature-rich set of capabilities for CICS TG, and IPIC is available for
use by all of the CICS TG products.

This chapter explains how to secure IPIC connections using Secure Sockets Layer (SSL)
server authentication, and how an alternative IPIC autoinstall user exit is used to handle
multiple connections originating from a WebSphere Application Server cluster.

For an overview of the CICS connection protocols and several of the issues related to using
autoinstall with IPIC, see Chapter 4, “Connecting to CICS” on page 43.

This chapter covers the following topics:

� 9.1, “Configuration overview” on page 148
� 9.2, “CICS definitions for IPIC” on page 149
� 9.3, “The sample application programs” on page 156
� 9.4, “Securing IPIC with SSL” on page 162
� 9.5, “Configuring IPIC autoinstall for WebSphere Application Server clusters” on page 167

9

© Copyright IBM Corp. 2014. All rights reserved. 147

9.1 Configuration overview

In this chapter, we will describe the customizations made to our CICS TS for z/OS region,
TOR1, required to establish and verify IPIC connectivity with a CICS TG for z/OS installation,
and a CICS TG for Multiplatforms installation. The CICS TS definitions described are
consistent with the CICS TG definitions described in Chapter 10, “CICS Transaction Gateway
for z/OS configuration” on page 171 and Chapter 11, “CICS Transaction Gateway
Multiplatforms and Desktop Edition configuration” on page 205.

Figure 9-1 shows the topology of the basic system described through these three chapters.
This topology forms the basis of the High Availability topology described in Chapter 13, “High
availability configuration” on page 295.

Figure 9-1 The basic system topology implemented in Part 3 of the book

The basic CICS TS configuration includes a single Terminal/Transport owning region (TOR)
with IPIC connectivity allowing a Gateway daemon to connect to the CICS TS region, and two
CICS programs installed in the TOR, representing the business logic to be invoked through
CICS TG. The IPIC connection is secured using SSL server authentication.

A typical CICS TS configuration uses an Application Owning Region (AOR) to separate the
target business logic from the TOR regions. However, to allow this book to focus on the CICS
TG concepts, a single combined TOR/AOR region is used.

Note: In this chapter, unqualified references to “CICS TS” refer to the product, CICS
Transaction Server for z/OS.

Note: The CICS Transaction Gateway product Information Centers contain a scenario,
Configuring SSL security between a Java Client and the Gateway daemon, Client
Authentication.

LP01

ITSOCTG0

z/OS Sysplex

Windows

CICSTOR1

SSL(NO) Port (9000) SSL(YES) Port (9001)

TCPIPServices

IPIC SSL IPIC

CTGTESTR

CTGTESTR ssl:2950

tcp:2006
EC01 EC03

Test batch
jobs

CICS test
programs

CTG-Win

EciB1

EciB3

IPIC SSL
tcp:2006

Test Java
programs ssl:8050
148 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The basic CICS TS configuration is designed to handle up to 50 concurrent ECI requests. Of
course, this is a relatively low number, but the aim of the scenario is to start with a relatively
simple end-to-end solution, and then demonstrate scalability and availability through
Chapter 13, “High availability configuration” on page 295.

Table 9-1 summarizes the CICS TS configuration settings for this chapter.

Table 9-1 CICS TOR configuration summary

9.2 CICS definitions for IPIC

To establish an IPIC connection to a CICS server, the following components must be in place:

� TCP/IP support must be active in the CICS region.

� There must be an installed TCPIPSERVICE resource, using the IPIC protocol.

� The CICS TS region must contain an installed IPCONN resource.

The IPCONN resource can be derived from an explicit IPCONN resource definition, or
through the autoinstall mechanism.

This section describes the configuration changes made to the CICSTOR1 region, providing
non-secure IPIC connections for use by the Gateway daemon configurations described in
Chapter 10, “CICS Transaction Gateway for z/OS configuration” on page 171 and Chapter 11,
“CICS Transaction Gateway Multiplatforms and Desktop Edition configuration” on page 205.
We used predefined IPCONN resources rather than autoinstall for the basic system, because
they allow you to directly associate definitions between the chapters.

CICS TS configuration for autoinstall of IPIC connections is covered in 9.5, “Configuring IPIC
autoinstall for WebSphere Application Server clusters” on page 167, and it is required by the
high availability configuration described in Chapter 13, “High availability configuration” on
page 295.

Configuration parameter Value

CICS APPLID CICSTOR1

CICS region User ID CICSRS3

CICS KEYRING Cics.Cicstor1

TCPIPSERVICE port for IPIC, no SSL 9000

TCPIPSERVICE port for IPIC SSL 9001

TCPIPSERVICE certificate for IPIC SSL Cicstor1-IPIConnection

TCPIPSERVICE host for logical partition (LPAR) LP01 lp01.redbooks.ibm.com

Note: Securing IPIC connections using SSL is described in 9.4, “Securing IPIC with SSL”
on page 162, which builds on the steps described in this section. It is therefore suggested
to read both sections when implementing secure IPIC connectivity.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 149

9.2.1 System initialization parameters

A CICS region is enabled for TCP/IP-based communication services, such as IPIC, or ECI
over TCP/IP connections by setting the TCPIP system initialization parameter to YES. We set
this system initialization parameter in our CICS region using the system initialization table
(SIT) override option:

TCPIP=YES

Confirm that TCPIP services are available to the CICS region using the command:

CEMT INQUIRE TCPIP

The output from the CEMT command indicates that TCPIP is open, as shown in Figure 9-2.

Figure 9-2 Verifying TCPIP services are active in the CICS region

The ISC system initialization parameter
The CICS Transaction Server for z/OS Information Center states that the ISC system
initialization parameter must be set to YES to use IPIC connections. We found that this is not
necessary when using IPIC exclusively with CICS Transaction Gateway components (a
Gateway daemon, or a local mode application).

Because a combined TOR/AOR CICS region is used in the basic system for this book, and
the sample CICS programs do not use remote resources, setting the ISC parameter to YES is
not strictly necessary. However, such simple configurations are uncommon except within
development or test environments, and for production environments, the ISC parameter
typically must be set to YES.

9.2.2 The mirror transaction

For a CICS region to process an ECI request from CICS Transaction Gateway, a “mirror
transaction” must be defined. A mirror transaction issues a DPL request on behalf of the ECI
application, invoking the CICS program specified by the ECI request.

By default, the transaction ID of the mirror is either CSMI, or CPMI. When using the CICS
Transaction Gateway for z/OS, the default is CSMI. When using the CICS Transaction Gateway
for Multiplatforms, or CICS Transaction Gateway Desktop Edition, the default is CPMI.

The default mirror transaction ID can be overridden in the ECI application by setting a
transaction program name (TPN) name, or through the TPName attribute for a JCA connection
factory (in a WebSphere Application Server). A non-default mirror transaction ID can be used
to demarcate separate lines of business for routing requests, to distinguish levels of resource
access within business logic by the invoking application, or simply for monitoring purposes.

Note: The default value for the TCPIP system initialization parameter is NO.

I TCPIP
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcp Ope Act(00001) Max(00255) Cic

Note: When a CICS program issues a dynamic program link (DPL) for a remote system
from a CICS region with ISC set to NO, an ABEND AEY9 is issued.
150 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

In this book, only the default mirror transactions CSMI and CPMI are used. Definitions for both
of these transactions are included in the CICS-supplied Resource Definition Online (RDO)
group, DFHISC. This group is installed by issuing the following command from a CICS terminal:

CEDA INSTALL GROUP(DFHISC)

9.2.3 TCPIPSERVICE resource definition

This section describes the definition of a “listener port” in CICS, a well-known entry point for
non-secure IPIC connection requests from partner systems, such as CICS Transaction
Gateway.

On the CICSTOR1 region, create a TCPIPSERVICE definition GW1IPIC in group T1IPIC by
issuing the following command from a CICS terminal:

CEDA DEFINE TCPIPSERVICE(GW1IPIC) GROUP(T1IPIC)

Accept the default values for all parameters, except for the following parameters:

� Urm: NO

Specifying NO disables autoinstall for IPIC partners connecting to this TCPIPSERVICE.

� POrtnumber: 9000

The port on which TOR is listening for inbound IPIC connection requests.

� PROtocol: IPIC

The protocol to be used by partner systems connecting through this service.

� Backlog: 00010

Allow a sensible number of partner systems to queue for connection. Consider the number
of independent IPIC connections likely to be established through this TCPIPSERVICE.

� Host: lp01.redbooks.ibm.com

Binding the listener port to the unadvertised static virtual IP address (VIPA) on logical
partition (LPAR) LP01 limits the likelihood of unwanted connections and unintentionally
sharing the IPIC connection. For further details, see “Binding of listener ports” on
page 300.

Note: The CICS-supplied RDO group DFHISC also includes the PROGRAM definition for
the COMMAREA conversation table, DFHCNV, described in 9.3.3, “Data conversion for the
COMMAREA samples” on page 160.

Note: Backlog is limited by the system default value, somaxconn. CICS TS for z/OS
V5.1, APAR PM85188, brings many improvements to IPIC connectivity, including a
change to the meaning of zero for the TCPIPSERVICE attribute, Backlog. A zero value
now indicates that the system default value, somaxconn, needs to be used.

Note: The Ipaddress attribute of the TCPIPSERVICE is superseded by the Host
attribute, which adds IPv6 support.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 151

The full TCPIPSERVICE definition is shown in Example 9-1.

Example 9-1 TCPIPSERVICE definition for IPIC connections defined in TOR

TCpipservice : GW1IPIC
 GROup : T1IPIC
 DEScription : IPIC connection for CICS TG
 Urm : NO
 POrtnumber : 09000
 STatus : Open
 PROtocol : IPic
 TRansaction : CISS
 Backlog : 00010
 TSqprefix :
 Host : lp01.redbooks.ibm.com
 (Mixed Case) :
 Ipaddress :
 SOcketclose : No
 MAXPersist : No
 MAXDatalen : 000032
SECURITY
 SSl : No
 CErtificate :
 (Mixed Case)
 PRIvacy :
 CIphers :
 AUthenticate :
 Realm :
 (Mixed Case)
 ATtachsec :
DNS CONNECTION BALANCING
 DNsgroup :
 GRPcritical : No

The TCPIPSERVICE definition was then installed by issuing the following command from a
CICS terminal:

CEDA INSTALL TCPIPSERVICE(GW1IPIC) GROUP(T1IPIC)

The CICS log messages shown in Example 9-2 indicates that the TCPIPSERVICE resource
was successfully installed and opened.

Example 9-2 CICSTOR1 region log messages for IPIC connection GW1IPIC

DFHSO0133 10/29/2013 13:12:25 CICSTOR1 TCPIPSERVICE GW1IPIC has been installed.
DFHSO0107 10/29/2013 13:12:25 CICSTOR1 TCPIPSERVICE GW1IPIC has been opened on

port 09000 at IP address 192.168.0.1.

With the TCPIPSERVICE installed, the next step is to consider the IPCONN resources, which
represent specific IPIC connections between partner systems and the CICS region.

Note: Despite defining the TCPIPSERVICE using the domain name server (DNS) host
name, lp01.redbooks.ibm.com, the DFHSO0107 message shows the IP address.
152 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

9.2.4 IPCONN resource definition

This section describes the steps required to define, install, and verify IPCONN resources that
are dedicated for use by specific partner systems. In this case, the specific partner systems
are Gateway daemons. One z/OS Gateway daemon is described in Chapter 10, “CICS
Transaction Gateway for z/OS configuration” on page 171, and another Multiplatforms
Gateway daemon is described in Chapter 11, “CICS Transaction Gateway Multiplatforms and
Desktop Edition configuration” on page 205.

Define the IPCONN for the Gateway daemon on z/OS
On the TOR, create an IPCONN definition CTG1 in group T1IPIC by issuing the following
command from a CICS terminal:

CEDA DEF IPCONN(CTG1) GROUP(T1IPIC)

Set the following attribute values as shown in Example 9-3:

� APplid: ITSOCTG0

Match the Applid value specified in the configuration file PRODUCT section of the connecting
Gateway daemon.

� Networkid: CTGALP00

Match the ApplidQualifier value specified in the configuration file PRODUCT section of the
connecting Gateway daemon.

� Tcpipservice: GW1IPIC

The name of the TCPIPSERVICE resource definition defined previously.

� Receivecount: 50

The maximum number of logical sessions available for this IPCONN resource, allowing up
to 50 concurrent application requests over this connection.

Example 9-3 Predefined IPCONN definition in TOR

Ipconn : CTG1
 Group : T1IPIC
 DEScription : IPIC definition for CICS TG
IPIC CONNECTION IDENTIFIERS
 APplid : ITSOCTG0
 Networkid : CTGALP00
 Host :
 (Mixed Case) :
 Port : No
 Tcpipservice : GW1IPIC
IPIC CONNECTION PROPERTIES
 Receivecount : 050
 SENdcount : 000
 Queuelimit : No
 MAxqtime : No
OPERATIONAL PROPERTIES

Note: The Receivecount attribute limits the possible number of concurrent requests an
IPCONN can accept, and it is directly related to the SendSessions attribute of the CICS TG
IPICSERVER definition. The actual limit can be negotiated to a lower value by the partner
CICS TG component during connection establishment. It cannot be negotiated to a higher
value.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 153

AUtoconnect : No
 INservice : Yes
 SECURITY
 SSl : No
 CErtificate :
 CIphers :
 Linkauth : Secuser
 SECurityname :
 Userauth : Local
 IDprop : Notallowed
 RECOVERY
 Xlnaction : Keep
 MIRROR TASK PROPERTIES
 MIrrorlife : Request

The IPCONN definition is installed by issuing the following command from a CICS terminal:

CEDA INSTALL IPCONN(CTG1) GROUP(T1IPIC)

CICS log message DFHIS3030 indicates that the IPCONN resource was successfully installed:

DFHIS3030 I 11/08/2013 09:40:45 CICSTOR1 IPCONN CTG1 installed.

Further verify the status of the IPCONN resource by using the following command from the
CICS terminal:

CEMT INQUIRE IPCONN(CTG1)

The expanded output from the CEMT command is shown in Example 9-4.

Example 9-4 The full output from the CEMT INQUIRE command for an IPCONN resource

I IPCONN(CTG1)
 RESULT - OVERTYPE TO MODIFY
 Ipconn(CTG1)
 Applid(CTG1ITSO)
 Networkid(CTGALP00)
 Servstatus(Inservice)
 Connstatus(Released)
 Ssltype(Nossl)
 Purgetype()
 Receivecount(050)
 Sendcount(000)
 Tcpipservice(GW1IPIC)
 Port()
 Host()
 Hosttype()
 Ipresolved(0.0.0.0)
 Ipfamily(Unknown)
 Pendstatus(Notpending)
 Recovstatus(Norecovdata)
 Uowaction()
 Uowaction()
 Queuelimit()
 Maxqtime()
 Userauth(Identify)
 Linkauth(Secuser)
 Idprop(Notallowed)
154 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

 Securityname()
 Certificate()
 Ciphers()
 Partner()
 Mirrorlife(Request)

The Constatus attribute has a value of Released until the specific partner system, the z/OS
Gateway daemon with the Gateway ID CTGALP00.CTG1ITSO establishes the IPIC connection in
10.2.2, “Test using the CTGTESTR job” on page 181.

Defining the IPCONN for the Gateway daemon on Multiplatforms
Creating the IPCONN resource definition to connect with the Gateway daemon on Windows,
which is described in Chapter 11, follows the same procedure as “Define the IPCONN for the
Gateway daemon on z/OS” on page 153, replacing only the following attributes and values:

� Applid(CTGMWIN1)
� Networkid(CTGMP)

11.5.4, “Secure the IPIC connection” on page 248 adds a secure IPIC connection from the
Gateway daemon on Multiplatforms and therefore requires an additional IPCONN definition
using the TCPIPSERVICE definition GW1IPICS, described by 9.4, “Securing IPIC with SSL” on
page 162.

Verifying the TCPIPSERVICE attributes
There are many tuning parameters in TCP/IP that might have a dramatic effect on the
performance of the overall solution. Some of these parameters overlap with CICS resource
definitions, such as the Backlog attribute of the TCPIPSERVICE resource. A conflict might
occur when the system-wide maximum (somaxconn) is lower than the value specified in the
TCPIPSERVICE definition, because CICS continues to show that the higher value is in effect.

The netstat command shows the true value that is in effect, with the MAXIMUMBACKLOG
attribute.

The netstat command (either the TSO or UNIX System Services version) can provide
extensive information about open TCP/IP listener ports, and active connections, including the
true backlog value (the MAXIMUMBACKLOG attribute). The following TSO command provides
detailed output regarding all TCP/IP resources owned by the CICS region, CICSTOR1:

d tcpip,tcpip,netstat,all,cli=cicstor1

Example 9-5 shows an extract of the netstat command output related to the TCPIPSERVICE
GW1IPIC, listening on port 9000.

Example 9-5 Output from the TSO netstat command for a specific CICS region

CLIENT NAME: CICSTOR1 CLIENT ID: 00004792
LCLSOCK: 192.168.0.1..9000 FGNSOCK: 0.0.0.0..0
 BYTESIN: 0000000000 BYTESOUT: 0000000000
 SEGMENTSIN: 0000000000 SEGMENTSOUT: 0000000000
 STARTDATE: 03/25/2014 STARTTIME: 16:49:08
 LAST TOUCHED: 16:49:08 STATE: LISTEN
 RCVNXT: 0000000000 SNDNXT: 0000000000
 CLIENTRCVNXT: 0000000000 CLIENTSNDNXT: 0000000000
 INITRCVSEQNUM: 0000000000 INITSNDSEQNUM: 0000000000
 CONGESTIONWINDOW: 0000000000 SLOWSTARTTHRESHOLD: 0000000000
 INCOMINGWINDOWNUM: 0000000000 OUTGOINGWINDOWNUM: 0000000000
 SNDWL1: 0000000000 SNDWL2: 0000000000
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 155

 SNDWND: 0000000000 MAXSNDWND: 0000000000
 SNDUNA: 0000000000 RTT_SEQ: 0000000000
 MAXIMUMSEGMENTSIZE: 0000000536 DSFIELD: 00
 ROUND-TRIP INFORMATION:
 SMOOTH TRIP TIME: 0.000 SMOOTHTRIPVARIANCE: 1500.000
 REXMT: 0000000000 REXMTCOUNT: 0000000000
 DUPACKS: 0000000000 RCVWND: 0000131072
 SOCKOPT: 80 TCPTIMER: 00
 TCPSIG: 00 TCPSEL: 00
 TCPDET: C0 TCPPOL: 00
 TCPPRF: 00
 QOSPOLICY: NO
 ROUTINGPOLICY: NO
 RECEIVEBUFFERSIZE: 0000065536 SENDBUFFERSIZE: 0000065536
 CONNECTIONSIN: 0000000000 CONNECTIONSDROPPED: 0000000000
 MAXIMUMBACKLOG: 0000000010 CONNECTIONFLOOD: NO
 CURRENTBACKLOG: 0000000000
 SERVERBACKLOG: 0000000000 FRCABACKLOG: 0000000000
 CURRENTCONNECTIONS: 0000000000 SEF: 100
 QUIESCED: NO
 APPLICATION DATA: DFHICICSTOR1CISSIPIC TEST

The APPLICATION DATA field is a useful cross-check, showing that port 9000 is owned by
CICSTOR1, the associated TCPIPSERVICE resource is defined to use transaction CISS, and
the protocol is IPIC. The send and receive buffer sizes, which are indicated by attributes
RECEIVEBUFFERSIZE and SENDBUFFERSIZE, are interesting also. They need to be set to at least
64 KB for optimum efficiency.

9.3 The sample application programs

This section describes the steps taken to install and configure CICS TS to use the CICS
COBOL sample programs that are provided in the CICS Transaction Gateway products.

CICS TG products include client application samples in multiple programming languages
(Java, Java EE, C, C++, C#, and Visual Basic), and also CICS program samples in COBOL.
For CICS Transaction Gateway for Multiplatforms and CICS Transaction Gateway Desktop
Edition, these samples are in the product installation samples directory. For CICS Transaction
Gateway for z/OS, the samples directory is in the product installation z/OS UNIX file system.

Within the samples directory, the server subdirectory contains the following source code for
CICS COBOL programs:

� ec01.ccp: A COMMAREA program that returns a formatted time/date string

� ec02.ccp: A COMMAREA program that returns a simple run counter

� ec03.ccp: A channel program that takes an input data container and returns three
containers:

– A data/time container

– The length of the input data and returns uses channels and containers in a CICS
program

– An output container that contains a copy of the input data, or an error message
156 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

These are relatively simple CICS programs, which are designed to be invoked by the various
CICS TG ECI sample programs. In this book, we used the ec01.ccp and ec03.ccp programs.

To make these CICS COBOL programs available to our CICS systems, the source code must
be transferred to a z/OS partitioned data set (PDS), compiled, linked, defined, and installed to
CICS.

9.3.1 Transferring, compiling, and linking the CICS sample programs

To translate, compile, and link the CICS sample programs, they must be copied into an MVS
data set or PDS. For convenience, we used a CICSRS3.CICS.SOURCE PDS.

Because we installed the CICS Transaction Gateway for z/OS on the same LPAR as CICS
TS, we can simply copy the COBOL sample programs directly from the z/OS UNIX file system
to our PDS with a single TSO command:

OGETX '/usr/lpp/cicstg/ctg900/samples/server' 'CICSRS3.CICS.SOURCE' LC SUFFIX(ccp)
TEXT

Users with CICS Transaction Gateway for Multiplatforms or CICS Transaction Gateway
Desktop Edition use an appropriate FTP program in ASCII transfer mode to copy the CICS
sample programs to an MVS data set.

The next step translates, compiles, and links the CICS sample COBOL programs in a single
batch JOB, CTGECIS, that is shown in Example 9-6.

Example 9-6 Batch job to translate, compile, and link the CICS sample COBOL programs

//CTGECIS JOB CLASS=E,MSGCLASS=A,MSGLEVEL=(2,0)
/*JOBPARM SYSAFF=LP01
//* --
//EC01 EXEC DFHYITVL,TRNPARM='COBOL2,CICS,SP',
// PROGLIB='CICSRS3.CICS.LOAD',
// INDEX='CICSTS51.CICS',OUTC='*'
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS3.CICS.SOURCE(EC01)
//LKED.SYSIN DD *
 NAME EC01(R)
/*
//*
//EC02 EXEC DFHYITVL,TRNPARM='COBOL2,CICS,SP',
// PROGLIB='CICSRS3.CICS.LOAD',
// INDEX='CICSTS51.CICS',OUTC='*'
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS3.CICS.SOURCE(EC02)
//LKED.SYSIN DD *
 NAME EC02(R)
/*
//*
//EC03 EXEC DFHYITVL,TRNPARM='COBOL2,CICS,SP',
// PROGLIB='CICSRS3.CICS.LOAD',
// INDEX='CICSTS51.CICS',OUTC='*'
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS3.CICS.SOURCE(EC03)
//LKED.SYSIN DD *

Note: Issue the OGETX command from the Interactive System Productivity Facility (ISPF)
command processor panel (typically, option 6 on the ISPF menu). Option 6 is usually
preferable, because it does not convert the commands that you enter into uppercase.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 157

 NAME EC03(R)
/*
//*

After submitting the batch job CTGECIS, the CICS sample COBOL programs are translated by
the CICS translator, compiled by the COBOL compiler, and linked to the load library
CICSRS3.CICS.LOAD. The CICS-supplied procedure DFHYITVL produces a significant amount of
output, but the return code summary provides a good indication of the outcome, as shown in
Example 9-7.

Example 9-7 Extract from the CTGECIS batch job output

11.27.01 JOB10894 IRR010I USERID CICSSYSP IS ASSIGNED TO THIS JOB.
11.27.02 JOB10894 ICH70001I CICSSYSP LAST ACCESS AT 11:26:59 ON MONDAY, OCTO
11.27.02 JOB10894 $HASP373 CTGECIS STARTED - INIT F - CLASS E - SYS LP01
11.27.02 JOB10894 -ASID 0043 SC66 --TIMINGS
11.27.02 JOB10894 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB
11.27.02 JOB10894 -CTGECIS EC01 00 137 20 551177
11.27.02 JOB10894 -CTGECIS EC01 00 484 94 551177
11.27.02 JOB10894 -CTGECIS EC01 00 45 8 551177
11.27.02 JOB10894 -CTGECIS EC01 00 200 43 551177
11.27.02 JOB10894 -CTGECIS EC02 00 141 18 551177
11.27.03 JOB10894 -CTGECIS EC02 00 494 94 551177
11.27.03 JOB10894 -CTGECIS EC02 00 40 6 551177
11.27.03 JOB10894 -CTGECIS EC02 00 197 43 551177
11.27.03 JOB10894 -CTGECIS EC03 00 175 20 551177
11.27.03 JOB10894 -CTGECIS EC03 00 560 100 551177
11.27.03 JOB10894 -CTGECIS EC03 00 41 7 551177
11.27.03 JOB10894 -CTGECIS EC03 00 204 44 551177

For more information about the CICS-supplied procedure DFHYITVL, see the CICS TS for
z/OS Information Center topic, Using the CICS-supplied procedures to install application
programs:

http://ibm.co/UgHzID

9.3.2 Defining and installing the CICS sample program

This section describes the CICS configuration steps required to define and install the CICS
PROGRAM resources associated with the CICS TG-supplied sample programs, and how to
create a DFHCNV table to perform data conversion for the COMMAREA-based samples,
EC01 and EC02.

PROGRAM definitions for the samples
On the CICSTOR1 region, create a PROGRAM definition EC01 in group TORCTG by issuing the
following command from a CICS terminal:

CEDA DEFINE PROGRAM(GW1IPIC) GROUP(TORCTG)

Set the following attribute values as shown in Example 9-8 on page 159:

� DEScription: CICS TG EC01 server sample
� Language: COBOL
� DAtalocation: Any

The full PROGRAM definition for EC01 is shown in Example 9-8 on page 159.
158 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/UgHzID

Example 9-8 Program definition for EC01

PROGram : EC01
 Group : TORCTG
 DEScription : CICS TG EC01 server sample
 Language : COBOL
 RELoad : No
 RESident : No
 USAge : Normal
 USElpacopy : No
 Status : Enabled
 RSl : 00
 CEdf : Yes
 DAtalocation : Any
 EXECKey : User
 COncurrency : Threadsafe
 Api : Cicsapi
REMOTE ATTRIBUTES
 DYnamic : No
 Status : Enabled
 RSl : 00
 CEdf : Yes
 DAtalocation : Any
 EXECKey : User
 COncurrency : Threadsafe
 Api : Cicsapi
REMOTE ATTRIBUTES
 DYnamic : No
 REMOTESystem :
 REMOTEName :
 Transid :
 EXECUtionset : Dplsubset
JVM ATTRIBUTES
 JVM : No
 JVMClass :
 REMOTESystem :
 REMOTEName :
 Transid :
 EXECUtionset : Dplsubset
JVM ATTRIBUTES
 JVM : No
 JVMClass :
 JVMServer :
 JVMProfile :
JAVA PROGRAM OBJECT ATTRIBUTES
 Hotpool : No

Example 9-8 was used as a template to define EC02 and EC03, simply changing the
PROGRAM and description fields accordingly.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 159

9.3.3 Data conversion for the COMMAREA samples

Traditional CICS programs suitable for invocation through an ECI request or linking via
Dynamic Program Link (DPL) use a well known convention to exchange data. This convention
is known as a COMMAREA. For CICS, it consists of unstructured data with a maximum size
of 32 KB. When a CICS COMMAREA program is invoked from a remote system, a
requirement might exist to convert all, or part, of a COMMAREA between code pages.
COMMAREA data conversion can be implemented at a system level through the use of the
CICS conversion table known as DFHCNV.

For a general overview of the data conversion process with CICS TS, see the CICS TS for
z/OS Information Center topic, The conversion process:

http://ibm.co/1szxnth

Test programs EC01 and EC02 return EBCDIC text data by default, which is not ideal for client
applications running on a distributed platform. We created a CICS DFHCNV table with entries
for the EC01 and EC02 programs, enabling input and output data to be converted to ASCII code
page 437, which is suitable for the client application, and EBCDIC code page 037, which is
suitable for the CICS program.

Example 9-9 shows the source code required to assemble a DFHCNV table for CICS
programs EC01 and EC02. On our test system, it is stored in the CICSRS3.CICS.SOURCE PDS as
member ECICNV.

Example 9-9 DFHCNV table entries for the CICS sample programs EC01 and EC02

DFHCNV TITLE 'DFHCNV ASCII TO EBCDIC CONVERSION TABLE'
 DFHCNV TYPE=INITIAL,CDEPAGE=437
*
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC01
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=17, *
 LAST=YES
*
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC02
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=39, *
 LAST=YES
*
 DFHCNV TYPE=FINAL
 END

The DFHCNV TYPE=INITIAL macro defines the default client and server code pages to use for
entries that omit specific code pages. Specifying the CDEPAGE parameter with the value 437 is
equivalent to setting CLINTCP=437, SRVERCP=037.

The values for the OFFSET and DATALEN parameters of the DFCNV macro are determined by
an in-depth knowledge of the COMMAREA data structure that is expected by each CICS
program. In EC01 and EC02, the entire COMMAREA is considered to be character data.
Therefore, the OFFSET attribute is 0, and the DATALEN attribute reflects the overall length.

Note: CICS programs using channels and containers, such as the sample program EC03,
handle data conversion at the application level, and operate independently of DFHCNV.
160 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1szxnth

However, actual COMMAREA structures typically contain a mixture of character and binary
data. For conversions, more complex sequences of DFHCNV macro entries are required,
applying code page conversion in specific zones of the COMMAREA.

The source code for each CICS program defines this structure as DFHCOMMAREA. In the
CICS sample programs EC01 and EC02, both have structured COMMAREA data ending with a
single byte, whose value is set to LOW-VALUES. This final byte acts as a null-terminator,
allowing the output to easily be processed as a string by a C program, and it does not need to
be converted. Therefore, the values shown in Example 9-9 on page 160 are both one byte
less than the size of the corresponding DFHCOMMAREA definitions.

Assemble and link-edit the DFHCNV table source code using the JCL job shown in
Example 9-10. This step creates a DFHCNV load module in the same load library as the
CICS sample program load modules, described in 9.3.1, “Transferring, compiling, and linking
the CICS sample programs” on page 157.

Example 9-10 JCL job to assemble and link-edit a DFHCNV table

//ECICNV JOB CLASS=E,MSGCLASS=A,MSGLEVEL=(2,0)
/*JOBPARM SYSAFF=LP01
//*--
// SET INPUT='CICSRS3.CICS.SOURCE'
// SET OUTPUT='CICSRS3.CICS.LOAD'
// SET INDEX='CICSTS51.CICS'
//ASSEM EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&&TEMPPDS(MACROS),DISP=(,PASS),
// SPACE=(CYL,(1,1,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
//SYSUT1 DD DISP=SHR,DSN=&INPUT.(ECICNV)
//*--
//ASM EXEC PGM=ASMA90,REGION=2048K,
// COND=(3,LT,ASSEM),
// PARM=('SYSPARM(INITIAL)',DECK,NOOBJECT,ALIGN)
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=&INDEX..SDFHSAMP,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD SPACE=(CYL,(1,1))
//SYSUT2 DD SPACE=(CYL,(1,1))
//SYSUT3 DD SPACE=(CYL,(1,1))
//SYSIN DD DSN=&&TEMPPDS(MACROS),DISP=(OLD,PASS)
//SYSPUNCH DD DSN=&&OBJMOD,DISP=(,PASS),
// SPACE=(CYL,(1,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
//*--
//BLDMBR EXEC PGM=IEBUPDTE,PARM=NEW,
// COND=((3,LT,ASSEM),(7,LT,ASM))
//SYSPRINT DD DUMMY
//SYSUT2 DD DSN=&&TEMPPDS,DISP=(OLD,PASS)
//SYSIN DD DSN=&&OBJMOD,DISP=(OLD,PASS)
//*--
//LKED EXEC PGM=IEWL,
// PARM=(LIST,XREF,LET,NCAL),
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 161

// COND=((3,LT,ASSEM),(7,LT,ASM),(3,LT,BLDMBR))
//SYSPRINT DD SYSOUT=*
//*SYSLIB DD DSN=SYS1.TELCMLIB,DISP=SHR
//SYSPUNCH DD DSN=&&TEMPPDS,DISP=(OLD,PASS)
//SYSUT1 DD SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&OUTPUT.(DFHCNV),DISP=SHR
//SYSLIN DD DSN=&&TEMPPDS(LNKCTL),DISP=(OLD,PASS),
// VOL=REF=*.ASSEM.SYSUT2
//*--
//DELTEMP EXEC PGM=IEFBR14
//DD1 DD DSN=&&OBJMOD,DISP=(OLD,DELETE)
//DD2 DD DSN=&&TEMPPDS,DISP=(OLD,DELETE)

There is no simple method to verify the details encapsulated within a DFHCNV load module,
other than through a formatted dump of the CICS region, or a third-party utility. To append or
change the conversion table, the load module is regenerated in its entirety from the amended
macro source.

For more information about the DFHCNV macro, see the CICS TS for z/OS Information
Center topic, Using the CICS-supplied procedures to install application programs:

http://ibm.co/1u0TQRI

9.4 Securing IPIC with SSL

To demonstrate end-to-end secure connectivity, we use self-signed certificates. The CICS
sample REXX script SDFHSAMP(DFH$RING) was customized to create a new key ring, add a
CERTAUTH certificate, and add a personal certificate for a CICS region to the new key ring.

The certificate authority (CA) certificate was used to sign personal certificates for the
Gateway daemon and client applications. This section describes the steps to create these
resources, and how they were used to configure a secure IPIC connection in the CICS region
CICSTOR1. Figure 9-3 on page 163 shows the basic system configuration, now including
details about the components that use RACF key rings or Java keystores.
162 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1u0TQRI

Figure 9-3 The basic system topology that includes details of RACF key rings and Java keystores

Each component in the system requiring secure connectivity requires a personal certificate to
identify itself. Because the z/OS Gateway daemon and CICS region CICSTOR1 have personal
certificates signed by our signer CA, the signer CA must be imported into the key ring, or
keystore, of each connected system. It must also be marked as trusted, which is indicated by
an entry type of trustedCertEntry, when using keytool.

The result is that each Gateway daemon trusts the personal certificate of the CICS region,
CICSTOR1, and that test batch jobs trust the personal certificate of the z/OS Gateway daemon.

The import process is described in 10.4.2, “SSL application to Gateway daemon” on
page 189 for the Gateway daemon on z/OS, and Java client applications, and again for the
Gateway daemon on Multiplatforms in 11.5.4, “Secure the IPIC connection” on page 248.

9.4.1 Create a key ring for CICS

Use DFH$RING to create a key ring and a CA signer certificate for the CICS region TOR1. This
signer certificate is a fundamental component of the overall configuration, because it also is
required to be imported to the Gateway daemon key ring to establish a secure IPIC
connection.

To build a key ring in the RACF database that is suitable for use in a CICS region, access is
required to the appropriate profiles in the FACILITY class. For details, see the CICS TS for
z/OS Information Center topic, Setting up profiles in RACF:

http://ibm.co/1yEmB5s

LP01

ITSOCTG0

CTG-Win

z/OS Sysplex

EciB1

Windows

CICSTOR1

SSL(NO) Port (9000) SSL(YES) Port (9001)

TCPIPServices

IPIC SSL IPIC

EciB3

CTGTESTR

CTGTESTR ssl:2950

tcp:2006
EC01 EC03

IPIC SSL
tcp:2006

Test batch jobs

Test Java
programs

CICS test
programs

Client application
java key stores

Client_MWIN1.jks

Gateway-MWIN1.jks
Gateway daemon
java key store

eci_keyring.jks

Cics.Cicstor1CTGGW-KEYRING

RACF key rings

ssl:8050
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 163

http://ibm.co/1yEmB5s

Make a working copy of the CICS TS sample REXX script, SDFHSAMP(DFH$RING). On our test
system, it is stored in the partitioned data set CICSSYSP.CICS.EXEC. Edit DFH$RING, making the
changes shown in Example 9-11.

Example 9-11 Values used in DFH$RING to create an internal signer certificate

organization = 'Leading Edge CICS Enterprise'
department = 'CICS Test Department'
certifier = 'CICS-Sample-Certification'
city = 'Gotham City'
state = 'Xanadu'
country = 'US'

To invoke the DFH$RING REXX script from TSO, use the following syntax:

EXEC 'hlq.SDFHSAMP(DFH$RING)' 'firstname lastname webservername [FORUSER(userid)
] '

To create the key ring for the CICSTOR1 region user ID CICSRS3, issue the EXEC command:

EXEC 'CICSSYSP.CICS.EXEC(DFH$RING)' 'Cics Cicstor1 CICSTOR1 FORUSER(CICSRS3)'

The DFH$RING REXX script produces output detailing each of the four certificates that it has
created and finally provides a summary of the new key ring, shown in Example 9-12.

Example 9-12 The new CA signer certificate and key ring for CICSTOR1

Digital ring information for user CICSRS3:

 Ring:
 >Cics.Cicstor1<
 Certificate Label Name Cert Owner USAGE DEFAULT
 -------------------------------- ------------ -------- -------
 Verisign Class 1 Primary CA CERTAUTH CERTAUTH NO
 Verisign Class 2 Primary CA CERTAUTH CERTAUTH NO
 IBM World Registry CA CERTAUTH CERTAUTH NO
 CICS-Sample-Certification CERTAUTH CERTAUTH NO
 Cicstor1-Web-Server ID(CICSRS3) PERSONAL NO
 Cicstor1-IP-Connection ID(CICSRS3) PERSONAL NO
 Cicstor1-Default-Certificate ID(CICSRS3) PERSONAL YES

The CA signer certificate with label CICS-Sample-Certification has been generated, and
then used to sign three personal certificates, for use by CICS region resources. In this book,
we will use the Cicstor1-IP-Connection certificate to provide server authentication on a
secure IPIC connection.

For more information about the CICS-supplied REXX script DFH$RING, see the topic, Building
a key ring with certificates using DFH$RING, in the CICS Transaction Server for z/OS
Information Center topic:

http://ibm.co/1yEqJTg
164 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.doc%2Fdfht5%2Ftopics%2Fdfht5_settingprofiles.html
http://ibm.co/1yEqJTg

9.4.2 The KEYRING system initialization parameter

Before the CICS region can accept secure SSL connection requests, it must be configured to
use those security resources created in 9.4.1, “Create a key ring for CICS” on page 163. The
KEYRING system initialization parameter identifies a System Authorization Facility (SAF)
certificate repository for use by secure TCPIPSERVICEs and IPCONN resources, installed
within a CICS region.

We set the KEYRING system initialization parameter and we enabled security in our CICS
region by using system initialization table (SIT) overrides:

KEYRING=Cics.Cicstor1
SEC=YES

The CICS log message, DFHXS1103, confirms that security is active in the CICS region:

DFHXS1103I S20351T1 Default security for userid CICSUSER has been established.

9.4.3 Configure a TCPIPSERVICE for SSL

This section highlights the minimum requirements to implement server authentication in CICS
TS.

The TCPIPSERVICE definition in CICS TS includes the SSl parameter, with possible values
of Yes, No, or Clientauth. Predefined or auto-installed IPIC connections are secure when the
associated TCPIPSERVICE includes an SSL parameter of Yes or Clientauth.

On the CICSTOR1 region, create a TCPIPSERVICE definition GW1IPICS in group T1IPIC by
issuing the following command from a CICS terminal:

CEDA DEFINE TCPIPSERVICE(GW1IPICS) GROUP(T1IPIC)

We accepted default values for all parameters, except the following parameters:

� POrtnumber: 9001

The port on which TOR is listening for inbound secure IPIC connection requests.

� PROtocol: IPic

The protocol to be used by partner systems connecting through this service.

� Backlog: 00010

Allow a sensible number of partner systems to queue for connection. Consider the number
of independent IPIC connections likely to be established through this TCPIPSERVICE.

Note: Both the TCPIPSERVICE and the IPCONN resource types in CICS TS include an
SSl attribute, with possible values of Yes, No, or Clientauth, and a Ciphers attribute. Only
the TCPIPSERVICE attribute values are relevant to IPIC connections with CICS TG
components (Gateway daemon or a local mode application).

At run time, the IPCONN resource shows the SSltype attribute with a value Nossl,
regardless of whether the IPIC connection to the CICS TG component is using SSL.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 165

Example 9-13 on page 166 shows the SECURITY section of a TCPIPSERVICE definition,
where the SSl attribute value is set to Yes and the CIphers attribute is the default set for
STRONG encryption. The certificate with the Cicstor1-IP-Connection label is signed by the
same CA signer certificate, CICS-Sample-Certification that is used to sign the Gateway
daemon personal personal certificate in “Create and populate the Gateway daemon key ring”
on page 186.

Example 9-13 Enabling SSL on an IPIC TCPIPSERVICE definition

SECURITY
 SSl : Yes Yes | No | Clientauth
 CErtificate : Cicstor1-IP-Connection
 (Mixed Case)
 PRIvacy : Supported Notsupported | Required | Supported
 CIphers : 050435363738392F303132330A1613100D0915120F0C0306
 AUthenticate : No | Basic | Certificate | AUTORegister
 | AUTOMatic
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify

The TCPIPSERVICE definition was then installed by issuing the following command from a
CICS terminal:

CEDA INSTALL TCPIPSERVICE(GW1IPICS) GROUP(T1IPIC)

The CICS log messages shown in Example 9-14 indicate that the TCPIPSERVICE resource
was successfully installed and opened.

Example 9-14 CICSTOR1 region log messages for IPIC connection GW1IPICS

DFHSO0133 10/29/2013 14:12:25 CICSTOR1 TCPIPSERVICE GW1IPICS has been installed.
DFHSO0107 10/29/2013 14:12:25 CICSTOR1 TCPIPSERVICE GW1IPICS has been opened on

port 09001 at IP address 192.168.0.1.

Then, verify the status of the TCPIPSERVICE resources by using the following command
from a CICS terminal:

CEMT INQUIRE TCPIPSERVICE(GW1*)

The output is shown in Figure 9-4, where the TCPIPSERVICE without security, GW1IPIC, has
an Ssltype attribute with a value of Nos, which is a contraction of Nossl in this summary view.
The TCPIPSERVICE with security, GW1IPICS, shows an Ssltype attribute with a value of Ssl.

Figure 9-4 Verifying the SSL attribute of the installed TCP/IP services

 I TCPIPSERVICE
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcpips(GW1IPIC) Ope Por(09000) Ipic Nos Tra(CISS)
 Con(00004) Bac(00010) Maxd(000000) Urm(NO)
 Tcpips(GW1IPICS) Ope Por(09001) Ipic Ssl Tra(CISS)
 Con(00000) Bac(00010) Maxd(000000) Urm(NO) Sup
166 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

9.5 Configuring IPIC autoinstall for WebSphere Application
Server clusters

The configuration described in Chapter 13, “High availability configuration” on page 295 uses
a WebSphere Application Server cluster in remote mode. It also includes additional
considerations when using a WebSphere Application Server cluster in local mode to establish
IPIC connections to CICS TS, where a single connection factory definition is installed to each
member of the cluster.

This local mode cluster configuration encounters issues when the connection factory
definition, following the preferred practice, defines an APPLID. Problems arise using IPIC
autoinstall with the CICS default IPIC autoinstall user program DFHISAIP, or using predefined
IPIC connections, due to a naming clash when an attempt is made to establish a second
IPCONN from a partner with the same APPLID. For a more detailed explanation, see 4.4,
“IPIC autoinstall for WebSphere Application Server clusters” on page 64.

For the purpose of implementing 13.6, “WebSphere Application Server cluster” on page 314,
the CICS regions are configured for IPIC autoinstall, using the new IPIC autoinstall sample
program, DFH0ISAI, introduced in CICS TS for z/OS V5.1.

We were able to use the sample as provided without requiring further customization. The only
limitation is that the value of the Applid attribute, specified in the custom properties of the
Java EE Connector Architecture connection factory definition, must be no more that seven
characters. This limit is because the sample autoinstall program appends a unique integer
suffix to the Applid value specified in the request and the IPCONN resource definition name
is restricted to eight characters.

The source code for the CICS TS sample autoinstall user program, which is named DFH0ISAI,
to support predefined connection templates is provided in the CICS PDS CICSHLQ.SDFHSAMP
and the pre-compiled load module is provided in CICSHLQ.SDFHLOAD.

The WebSphere Application Server cluster configuration described in Chapter 13 uses a Java
EE Connector Architecture connection factory with an Applid Qualifier value of CTGWASZ
and an Applid value of ITSOZOS. To avoid duplicate IPCONN resources being installed, the
CICS TS-supplied IPIC autoinstall program DFH0ISAI is required.

The following steps describe how our CICS region was configured to use the DFH0ISAI:

1. DFH0ISAI is supplied precompiled in the CICS TS load library, CICSHLQ.SDFHLOAD, and is
already available without modifying DFHRPL.

2. Create a PROGRAM resource definition for DFH0ISAI in the same way that you create a
resource definition in “PROGRAM definitions for the samples” on page 158:

a. Issue the following command to define program DFH0ISAI in group T1IPIC:

CEDA DEF PROGRAM(DFH0ISAI) GROUP(T1IPIC)

b. Accept the default values for all parameters, except for the following parameters:

• Language: COBOL

• DAtalocation: Any

Note: The PROGRAM definition and installation steps can be skipped if program autoinstall is
enabled.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 167

3. Install the PROGRAM resource definition by issuing the following command:

CEDA INSTALL PROGRAM(DFH0ISAI) GROUP(T1IPIC)

4. Create a TCPIPSERVICE resource definition, in the same way as described in 9.2.3,
“TCPIPSERVICE resource definition” on page 151:

a. Issue the following command to define the TCPIPSERVICE resource WASIPIC in group
T1IPIC:

CEDA DEF TCPIPSERVICE(WASIPIC) GROUP(T1IPIC)

b. Accept the default values for all parameters, except for the following parameters:

• Urm: DFH0ISAI

The CICS TS sample autoinstall user program to support predefined connection
templates.

• POrtnumber: 9002

The port on which TOR is listening for inbound IPIC requests from WebSphere
Application Server.

• PROtocol: IPic

The protocol to be used by partner systems that connect through this service.

• Backlog: 00010

Allow a sensible number of partner systems to queue for connection. A backlog
value of at least 4 (two sockets for each IPIC connection) will suffice for our pair of
WebSphere Application Server servant regions in 13.6, “WebSphere Application
Server cluster” on page 314, but 10 gives you space for growth.

• Host: lp01.redbooks.ibm.com

Bind the listening port to a static IP address for LPAR lp01 to avoid binding to
multiple addresses. For further details, see “Binding of listener ports” on page 300.

5. Install the TCPIPSERVICE resource definition by issuing the following command:

CEDA INSTALL TCPIPSERVICE(WASIPIC) GROUP(T1IPIC)

6. Create an IPCONN template resource definition, in the same way as described in 9.2.4,
“IPCONN resource definition” on page 153. The IPCONN template name must match the
Applid Qualifier value defined in the Java EE Connector Architecture connection factory
custom properties definition in WebSphere Application Server, in this example, CTGWASZ:

a. Issue the following command to define the IPCONN resource CTGWASZ in group T1IPIC:

CEDA DEF IPCONN(CTGWASZ) GROUP(T1IPIC)

b. Accept the default values for all parameters, except for the following parameters:

• Ipconn: CTGWASZ

Match the Applid Qualifier value specified in the Java EE Connector Architecture
connection factory custom properties definition in WebSphere Application Server.

• APplid: ITSOZOS

Match the Applid value specified in the Java EE Connector Architecture connection
factory custom properties definition in WebSphere Application Server. This must be
a maximum of seven characters to allow the autoinstall program to append a unique
integer suffix.

• Tcpipservice: WASIPIC

The name of the TCPIPSERVICE resource definition defined previously.
168 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

• Receivecount: 100

Support up to 100 concurrent application requests over this connection.

7. Install the IPCONN resource definition by issuing the following command:

CEDA INSTALL IPCONN(CTGWASZ) GROUP(T1IPIC)

The WebSphere Application Server cluster configuration described in Chapter 13, “High
availability configuration” on page 295 uses a Java EE Connector Architecture connection
factory with an Applid Qualifier value of CTGWASZ and an Applid value of ITSOZOS.
Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS 169

170 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 10. CICS Transaction Gateway for
z/OS configuration

This chapter describes a basic remote mode configuration of CICS Transaction Gateway for
z/OS (CICS TG), using an IPIC connection to CICS Transaction Server for z/OS (CICS TS)
and corresponding verification steps. It then describes two alternative security configurations
before adding support for two-phase commit (XA) transactions.

This chapter covers the following topics:

� 10.1, “Configure the Gateway daemon” on page 172
� 10.2, “Testing the Gateway daemon” on page 181
� 10.3, “Configure basic security” on page 184
� 10.4, “Configure secure connections” on page 186
� 10.5, “Adding XA support” on page 198

10
© Copyright IBM Corp. 2014. All rights reserved. 171

10.1 Configure the Gateway daemon

This section explains how to configure a Gateway daemon for z/OS with an non-secure IPIC
connection to a CICS TS for z/OS terminal-owning region (TOR). It introduces the common
method for starting the Gateway daemon, the CTGBATCH utility. It is assumed that the CICS
region, CICSTOR1, is configured as described in Chapter 9, “Configuring IPIC in CICS
Transaction Gateway for z/OS” on page 147, including an IPIC connection for the Gateway
daemon to use.

You can configure the Gateway daemon on z/OS through a combination of the following
resources:

� Configuration file
� Environment variables
� Java properties
� Overrides
� Started procedure or job control language (JCL)
� System defaults
� Language Environment runtime options

The Gateway daemon determines its operational parameters from the configuration file,
overrides, and Java properties. The environment in which the Gateway daemon runs is
determined by a combination of other z/OS-specific factors.

The various files that encapsulate a Gateway daemon configuration can be stored in various
locations, including both the UNIX file system and MVS data sets. The examples in this book
place the configuration file and environment variables together in a single MVS-partitioned
data set (PDS), because this placement simplifies the task of configuration and allows backup
or version control of the configuration data.

10.1.1 Configuration summary

The workload requires 200 concurrently connected clients, with the capacity to process up to
100 concurrent requests, and a maximum 64 KB payload size. To support payloads greater
than 32 KB, IPIC connectivity is required. Table 10-1 summarizes the basic configuration
details that are required for the Gateway daemon.

Table 10-1 Gateway daemon basic configuration values

Attribute Value

APPLID qualifier CTGALP00

APPLID ITSOCTG0

TCP handler port number/bind address 2016/lp01.redbooks.ibm.com

SSL handler port number (bind address) 8070/lp01.redbooks.ibm.com

Stats handler port number (bind address) 2980/lp01.redbooks.ibm.com

Maximum connection manager threads 200

Maximum worker threads 100

IPICSERVER host/port/APPLID (non-SSL) lp01.redbooks.ibm.com/9000/S2035T1

IPICSERVER host/port/APPLID (SSL) lp01.redbooks.ibm.com/9001/S2035T1
172 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Product system files
CICS TG for z/OS is SMP/E maintained and consists of several MVS data sets and a product
directory on the z/OS UNIX file system. Table 10-2 lists the location of the CICS TG
installation resources.

Table 10-2 z/OS product files

CICS TG configuration resources
CICS TG for z/OS configuration resources can be stored in MVS data sets or on the z/OS
UNIX file system. Opting for a PDS allows the CICS TG configuration file and the environment
variables to be stored in one location, which provides easier cloning, version control, and
backup. The procedure JCL must be in a standard location.

Table 10-3 lists the locations selected for this implementation.

Table 10-3 CICS TG configuration resources

10.1.2 The CTGBATCH launcher

On z/OS, the Gateway daemon runs as a UNIX System Services process and can be started
using a variety of techniques. Given a UNIX System Services runtime environment and the
required environment variables, invoking the ctgstart shell script attempts to start the
Gateway daemon. However, the preferred method is to use the CICS TG-supplied MVS utility,
CTGBATCH, which is in the SCTGLOAD data set.

The CTGBATCH utility provides a z/OS runtime “container” for the Gateway daemon, allowing
integration with fundamental z/OS facilities, such as the z/OS console, and logging to Job
Entry Subsystem (JES) output. It establishes the runtime environment for the Gateway
daemon, controlling the specific level of Java, logging destinations, and overall memory
resources.

The CTGBATCH utility takes a UNIX System Services path to the target executable (for example,
ctgstart) through the PARM parameter. It sets environment variables that are supplied through
the STDENV DD card and then executes the target script or program.

Example 10-1 shows a CTGBATCH job step for executing the ctgstart shell script.

Example 10-1 The CTGBATCH job step

// SET CTGHLQ='CTG.V9R0M0'
// SET CTGHOME='/usr/lpp/cicstg/ctg900'
// SET CTGENV='CICSRS4.CTG900.CONFIG(CTG0INI)'
/ SET LEOPTS='/'

Product/system files Location

MVS CTG.V9R0M0

z/OS UNIX file system /usr/lpp/cicstg/ctg900

z/OS UNIX file system /usr/lpp/java/J7.0/bin

File Location Description

CTG0CONF CICSRS4.CTG900.CONFIG CICS TG configuration file

CTG0ENV CICSRS4.CTG900.CONFIG CICS TG environment variables

CTGGWX SYS1.PROCLIB Procedure JCL to start the Gateway daemon
Chapter 10. CICS Transaction Gateway for z/OS configuration 173

//CTGRUN EXEC PGM=CTGBATCH,REGION=500M,
// PARM='&LEOPTS.&CTGHOME./bin/ctgstart'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
/STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DSN=&CTGENV.,DISP=SHR

The CTGBATCH utility is functionally similar to the BPXBATCH z/OS-supplied utility and it can be
used to run any UNIX System Services shell script or executable program. However, it has
special features that are designed for use with the Gateway daemon. These features include
a debug option that is useful for checking environment variables and runtime settings. In
addition to the default English language support, the CTGBATCH utility provides globalization for
Chinese and Japanese.

Another key difference is the structure of the PARM string. The CTGBATCH parameter string is
split into the following parts:

� Language Environment runtime options
� The target z/OS UNIX program or script
� Parameters for the target program or script

These first two components of the PARM string are delimited by a forward-slash character (/).
Using this character can be confusing, because the second component, the target program,
or script can be a fully qualified z/OS UNIX path that starts with a forward-slash character. It is
convenient to include the Language Environment option string delimiter in a variable, as
shown in Example 10-1 on page 173, where an empty set of Language Environment options
together with the delimiter is represented as a forward-slash character.

The Gateway daemon writes informational log messages to a UNIX standard out destination.
Warning and error logs messages are written to the UNIX standard error destination. You can
map these standard output destinations to a JES spool output, hierarchical file system (HFS)
files, or MVS data sets using CTGBATCH DD cards STDOUT and STDERR. The examples in this
book map these outputs to JES spool output using STDOUT and STDERR DD statements, as
shown in Example 10-1 on page 173.

10.1.3 Configuration file

The CICS TG configuration file uses a common format, syntax, and set of resources for each
of the CICS TG products. There are product-specific components and limitations, but this
topic describes a configuration based on IPIC connections.

When storing the configuration in an MVS data set, be careful with the maximum line length
due to the file LRECL value. The SCTGSAMP(CTGCONF) sample shows how to use continuation
characters for those entries that typically require multiple lines.

Note: Although this configuration file is for use with the CICS TG for z/OS product, it is also
usable with the Multiplatform Gateway daemon simply by adding definitions for log files.
174 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

PRODUCT section
In Example 10-2, the PRODUCT section includes configuration details that apply to all
components of the Gateway daemon at run time. The APPLID qualifier and APPLID are
mandatory only when XA support is enabled, but this setting is a preferred practice when
using IPIC connections to easily identify the Gateway daemon as an IPIC partner.

Example 10-2 The CICS TG configuration file PRODUCT section

SECTION PRODUCT
 Applid = ITSOCTG0 # The APPLID of the Gateway daemon
 ApplidQualifier = CTGALP00 # The APPLID qualifier of the Gateway daemon
 DefaultServer = CICSTOR1 # The default server used by the Gateway daemon
ENDSECTION

GATEWAY section
In Example 10-3, the GATEWAY section encapsulates important characteristics, such as the
connection manager and work thread pools, and the protocol handlers for the ports of entry.

Example 10-3 The CICS TG configuration file PRODUCT section

SECTION GATEWAY
Define Gateway daemon thread pools
 InitConnect = 1
 MaxConnect = 200
 InitWorker = 1
 MaxWorker = 100

Protocol handler for TCP/IP requests
 protocol@tcp.handler = com.ibm.ctg.server.TCPHandler
 protocol@tcp.parameters = bind=lp01.redbooks.ibm.com;\
 connecttimeout=2000;\
 idletimeout=600000;\
 pingfrequency=60000;\
 port=2016;\
 solinger=10;

Protocol handler for statistics API requests
 protocol@statsapi.handler = com.ibm.ctg.server.RestrictedTCPHandler
 protocol@statsapi.parameters = bind=lp01.redbooks.ibm.com;\
 connecttimeout=2000;\
 maxconn=5;\
 port=2980;

Disable the reading of input from UNIX System Services stdin
 NoInput = on
ENDSECTION

There is no need to configure a logging destination for the Gateway daemon on z/OS in the
configuration file, because the standard stdout and stderr are used automatically.
Informational log messages are written to stdout and are mapped by the CTGBATCH STDOUT DD
statement. Similarly, warning and error log messages are written to stderr and mapped by
the CTGBATCH STDERR DD statement.
Chapter 10. CICS Transaction Gateway for z/OS configuration 175

The bind attribute on the protocol handler definitions accepts either domain name server
(DNS) host names or IP addresses. Using a host name is more readable and flexible,
allowing actual IP addresses to be changed without updating such references. However, if the
host name cannot be resolved, the Gateway daemon will fail to initialize, issuing the error
message:

CTG6525E Unable to start handler for the tcp: protocol, port: 0, because:
[java.lang.IllegalArgumentException: bind= unknown.itso.ibm.com]

IPIC connection
Each IPIC connection to a CICS server is defined by an IPICSERVER section (Example 10-4)
of the configuration file.

Example 10-4 An IPIC server definition

SECTION IPICSERVER = CICSTOR1
 Description = IPIC Server
 Hostname = lp01.redbooks.ibm.com
 Port = 9000
 TcpKeepAlive = Y
 Ssl = N
 CICSApplid = S20351T1
 CICSApplidQualifier = USIBMSC
 SendSessions = 50
ENDSECTION

10.1.4 Environment variables

The CTGBATCH utility reads environment variables from the STDENV DD card that can be mapped
to either an MVS data set, UNIX file system, or in line with the JCL. Multi-line values can be
specified using the back slash (\) special continuation character.

The Gateway daemon must run under a user ID with an OMVS segment.

Numerous environment variables are available. However, for this book, examples run with
external CICS interface (EXCI) disabled. Therefore, a minimal set of values are required, as
shown in Example 10-5.

Example 10-5 CICS TG environment variables

PATH=/bin:/usr/lpp/java/J7.0/bin
CICSCLI=//'CICSRS4.CTG900.CONFIG(CTG0CONF)'
CTG_EXCI_INIT=NO
CLASSPATH=/usr/lpp/cicstg/ctg90/classes/ctgsamples.jar
COLUMNS=80
TMPDIR=/tmp
TZ=EST0EDT

Note: The CTGBATCH utility does not automatically execute either the default profile
(/etc/profile) or the user’s own profile (.profile) before executing the target script or
program. Therefore, the target script or UNIX System Services program does not start with
the same environmental settings observed when that user ID starts an OMVS session. For
this reason, the CTGBATCH utility must be configured with the most fundamental PATH
settings, such as PATH=/bin:/usr/bin, to successfully execute a shell script, such as
ctgstart.
176 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

_BPX_SHAREAS=YES
_BPXK_SETIBMOPT_TRANSPORT=TCPIP
_CEE_DMPTARG=/tmp/jvmdump

The details of the environment variables are listed:

PATH Must be configured to allow target executable shell scripts to
find the fundamental UNIX commands, such as echo or awk,
which are in the /bin directory. The ctgstart script also
requires the Java command, from the appropriate version of
the SDK.

CICSCLI Specifies the location of the CICS TG configuration file that
defines the core runtime characteristics of the Gateway
daemon.

CTG_EXCI_INIT Controls whether the EXCI protocol is to be available. Setting
this environment variable to YES requires multiple, further
environment variables to be considered and set. It also limits
the maximum number of worker threads that are available to
the Gateway daemon to the value of LOGONLIM (100 is the
default value. CICS imposes a maximum of 250.) The
examples in this book implement a solution based on IPIC
connectivity and do not require EXCI.

CLASSPATH Optional: Used to specify the location of Java code for use with
Gateway daemon user exits, such as the security exits, request
monitor exits, or CICS request exit. We added the
ctgsamples.jar file to use the precompiled CICS TG sample,
BasicCICSRequestExit.

TMPDIR Defines a location on the file system for the z/OS UNIX file
system. This location must always have free space that is
writable by the Gateway daemon user ID.

Value for PATH environment variable: The value specified for the PATH environment
variable is explicit. The CTGBATCH utility does not append the specified value with any
system default value.

Product files and the CLASSPATH variable: You do not need to specify the location of
the CICS TG product files (ctgserver.jar and ctgclient.jar). These files are appended
automatically to the classpath variable by the ctgstart script.

When TMPDIR becomes full: If the z/OS UNIX file system location used by TMPDIR
becomes full, fundamental shell script statements cannot be evaluated. In this case, the
Gateway daemon might fail to start, which can be confusing if TMPDIR happens to be full
intermittently, because the Gateway daemon might fail to initialize. Then, the Gateway
daemon subsequently succeeds without a change to the overall configuration.
Chapter 10. CICS Transaction Gateway for z/OS configuration 177

_BPX_SHAREAS Controls how z/OS UNIX processes are mapped to MVS
address spaces. Setting this option to YES ensures that the
Gateway daemon processes run within a single MVS address
space. This setting is more efficient and makes it clear which
job name to use with the MODIFY command for system
administration tasks.

_BPXK_SETIBMOPT_TRANSPORT Specifies the job name of the TCPIP address space for z/OS
UNIX programs to use by default. This setting is useful when
the Gateway daemon is running in a logical partition (LPAR)
with multiple TCP/IP address spaces.

COLUMNS Is used only by the ctgstart script to format the maximum
width of any log messages issued by the script itself. The
default is 40, but a setting of 80 is more appropriate for running
under the CTGBATCH utility.

TZ Determines the time zone that is used in time stamps for log
messages and diagnostic traces that are produced by the
Gateway daemon. For eastern standard time, use EST0EDT.

_CEE_DMPTARG Specifies the z/OS UNIX path for Java Core dump, Java Heap
dump, and System dumps generated automatically or by the
CICS TG dump commands. Similar to TMPDIR, this setting
needs to be a location on the z/OS UNIX file system that is
writable by the Gateway daemon user ID and with plenty of free
space.

For more information about the available environment variables and their use, see the CICS
TG for z/OS Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

10.1.5 Overriding the configuration file

Certain configuration file values can be overridden at run time by passing parameters to the
ctgstart script. Unfortunately, the JCL PARM attribute of the PGM command used to pass
parameters to the script has a maximum length of 100 characters. After specifying the fully
qualified path to the ctgstart script, little space remains for useful configuration override
values. The CTGSTART_OPTS environment variable provides a solution for this limitation,
allowing full use of the facility to override CICS TG configuration file settings.

This environment variable allows you to use a CICS TG configuration file as a template for
multiple Gateway daemons within a Gateway group. Each Gateway daemon instance within
the group shares a common set of characteristics. Example 10-6 shows how to use the
CTGSTART_OPTS environment variable to specify two ctgstart override options, split over two
lines in the STDENV data.

Example 10-6 Overriding the CICS TG configuration file

CTGSTART_OPTS=-j-Xmx256M \
-requestExits=com.ibm.ctg.samples.requestexit.BasicExitSample
178 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

10.1.6 Started procedure and Gateway daemon user ID

For test or evaluation purposes, starting a Gateway daemon using a JOB can be acceptable.
However, to avoid affinities to specific user IDs, it is a preferred practice to use a started task.
This method allows a Gateway daemon to be used by any administrator with the required
authority, and the Gateway daemon always runs under a dedicated started task user ID.

It is also a preferred practice to define a security profile that encapsulates the set of
permissions that are required to run a Gateway daemon and to connect the started task user
ID to that security profile.

In RACF terms, create a group, CTGGRP. In the FACILITY class, permit the group with READ
access to the BPX.STOR.SWAP profile and UPDATE access to the CTG.RRMS.SERVICE profile, using
the commands shown in Example 10-7. This example creates a started task CTGGW user ID
and connects it to the CTGGRP group.

Example 10-7 PERMIT commands profiles in the FACILITY class

PERMIT BPX.STOR.SWAP CLASS(FACILITY) CTGGRP ACCESS(READ)
PERMIT CTG.RRMS.SERVICE CLASS(FACILITY) CTGGRP ACCESS(UPDATE)

You can use the BPX.STOR.SWAP profile to restrict those address spaces that can make
themselves non-swappable. Use this method for the Gateway daemon; otherwise, the
Gateway daemon can become unresponsive to application requests following a period of
inactivity.

The CTG.RRMS.SERVICE profile can restrict access to authorized recoverable resource
management services (RRMS) capabilities. These capabilities are required by Gateway
daemons that are enabled with XA transaction support.

You can use the TSO RLIST FACILITY command with the sub-option AUTHUSER to list the user
IDs or groups and their access to a particular profile. Example 10-8 shows the output from
such a command relevant to the CTGGRP group.

Example 10-8 Extract from the output of TSO RLIST FACILITY BPX.STOR.SWAP AUTHUSER

CLASS NAME
----- ----
FACILITY BPX.STOR.SWAP

USER ACCESS ACCESS COUNT
---- ------ ------ -----
CTGGRP READ 000000

You can use a similar command to verify access to the CTG.RRMS.SERVICE profile. The started
task JCL uses the CTGBATCH launcher program to call the ctgstart shell script and provides
access to all of the configuration resources that are required by the Gateway daemon.

Example 10-9 on page 180 shows a sample that is stored as the CTGGWX member of the
SYS1.PROCLIB data set.

Maintenance note: When applying maintenance to SCTGLINK(CTGINIT), a separate user
ID with CONTROL access to CTG.RRMS.SERVICE is required to restart CTGRRMS.
Chapter 10. CICS Transaction Gateway for z/OS configuration 179

Example 10-9 Gateway daemon started task JCL

//CTGGWX PROC CTGID='0'
//* Gateway daemon resources
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGHOME='/usr/lpp/cicstg/ctg900'
// SET CTGENV='CICSRS4.CTG900.CONFIG'
//* Use default LE run-time options
// SET LEOPTS='/'
//* Call CTGBATCH
//CTGRUN EXEC PGM=CTGBATCH,REGION=500M,
// PARM='&LEOPTS.&CTGHOME./bin/ctgstart'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//* Map stdout and stderr to JES output
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//* Load CTGID-specific environment variables
//STDENV DD DSN=&CTGENV.(CTG&CTGID.ENV),DISP=SHR
//* Uncomment for CTGBATCH debug output
//*CTGDBG DD DUMMY *
// PEND
//

A started task can be associated with a specific user ID in numerous ways. With RACF, you
can use the STARTED general resource class to associate a specific user ID with started tasks
by name. The Gateway daemon CTGGW started task user ID is associated with any started task
beginning with CTGGW, using commands shown in Example 10-10.

Example 10-10 Associating a user ID with a started task

SETR GENERIC(STARTED)
RDEFINE STARTED CTGGW*.** STDATA(USER(CTGGW))
SETROPTS RACLIST(STARTED) REFRESH

The Gateway daemon is started using the /S CTGGW MVS start command. By default, the
CTGID JCL variable is set to 0 (zero). Therefore, the environment variables are taken from the
CTG0ENV member of the CICSRS4.CTG900.CONFIG data set. The CICSCLI environment variable
defines the configuration file as the CTG0INI member of the CICSRS4.CTG900.CONFIG data set.

Example 10-11 shows key log messages from the Gateway daemon initialization, reflecting
the configuration resources in use.

Example 10-11 Identifying configuration resources from the Gateway daemon log

IEFC653I SUBSTITUTION JCL - DSN=CICSRS4.CTG900.CONFIG(CTG0ENV),DISP=SHR

CTG8400I Using configuration file //'CICSRS4.CTG900.CONFIG(CTG0INI)'

CTG6577I Java details: Version=1.7.0 - 31-bit, Path=/usr/lpp/java/J7.0/bin/java

The CTGID JCL variable allows the same JCL started task to start multiple Gateway daemon
instances. Using the standard MVS start command, this method leads to multiple Gateway
daemon address spaces using the same CTGGWX job name. This same job name causes a
problem for system administration, because only one address space receives a modify
command directed to a specific job name.
180 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

To circumvent this problem, two possible options allow manipulation of the JOB name that
identifies the started task, through options on the START (/S) command.

� Give each instance a unique JOBNAME parameter on the START command. Then, use the job
name on subsequent modify commands. For example, specify the CTGGW0 job name:

/S CTGGWX,JOBNAME=CTGGW0
/F CTGGW0,APPL=SHUT

� Qualify the MVS start and modify commands with an identifier, and use the identifier on
subsequent modify commands. For example, specify the GW0 identifier:

/S CTGGWX.GW0
/F CTGGWX.GW0,APPL=SHUT

10.2 Testing the Gateway daemon

Now, you can test the Gateway daemon that you configured in 10.1, “Configure the Gateway
daemon” on page 172 using the CTGTESTR sample JOB. Copy the sample JOB from the
CTG.V9R0M0.SCTGSAMP product installation data set to a working data set. You must customize
the CTGTESTR sample to specify Gateway daemon-specific parameter values. It is a preferred
practice to edit a copy of the SMP/E-maintained version.

10.2.1 Start the Gateway daemon

Verify that the Gateway daemon was initialized successfully. Verify that the Gateway daemon
is listening for application requests on the intended port number. Example 10-12 shows those
key log messages from the Gateway daemon initialization, indicating these details.

Example 10-12 Verifying key Gateway daemon configuration and successful initialization

CTG8426I The APPLID is ITSOCTG0
CTG8427I The APPLID qualifier is CTGALP00
CTG8667I EXCI Support is disabled
CTG6981I Successfully initialized JNI library
CTG6502I Initial Connection managers = 1, Maximum Connection managers = 200
CTG6526I Initial workers = 1, Maximum workers = 100
CTG6505I Successfully created the initial connection manager and Worker threads
CTG6524I Successfully started handler for the tcp: protocol on port 2016
CTG6524I Successfully started handler for the statsapi: protocol on port 2980
CTG6512I CICS Transaction Gateway initialization complete

10.2.2 Test using the CTGTESTR job

The CTGTESTR sample job uses the CTGBATCH utility to invoke the ctgtest z/OS UNIX shell
script. This shell script runs the EciB2 Java sample program
(com.ibm.ctg.samples.eci.EciB2), with parameter values that specify a target Gateway
daemon, CICS server, security credentials, CICS program, and data length.

The following inline STDENV data for the CTGBATCH utility configures CTGTESTR to send a request
to CICSTOR1 through the Gateway daemon. As with the Gateway daemon started task JCL,
the CTGBATCH PARM string is limited to 100 characters. CTGTESTR circumvents this limit by
allowing parameters for the ctgtest shell script to be passed using the CTGTEST_OPTS
environment variable.
Chapter 10. CICS Transaction Gateway for z/OS configuration 181

Example 10-13 shows the name/value-pair parameters that are required by the EciB2 sample
program to drive the CICS program EC01 in CICS server CICSTOR1.

Example 10-13 Customizing CTGTESTR through the environment variables

//STDENV DD *
PATH=/bin:/usr/lpp/java/J7.0/bin
CTGTEST_OPTS=jgate=tcp://localhost \
jgateport=2016 server=CICSTOR1 \
prog0=EC01 commarealength=18
/*

The output from CTGTESTR is written to the JES output, STDOUT. Example 10-14 shows
successful test of the Gateway daemon that is configured in 10.1, “Configure the Gateway
daemon” on page 172.

Example 10-14 CTGTESTR stdout output for CICS program EC01 without security

ctgtest: Executing EciB2 with parameters:
jgate=tcp://localhost jgateport=2016 server=CICSTOR1 prog0=EC01 commarealength=18

CICS Transaction Gateway Basic ECI Sample 2
 Test Parameters
CICS TG address : tcp://localhost:2016
Client security : null
Server security : null
CICS Server : CICSTOR1
UserId : null
Password : null
Data Conversion : ASCII
COMMAREA : null
COMMAREA length : 18
Number of programs given : 1
 [0] : EC01
Connect to Gateway
Successfully created JavaGateway
Call Programs
About to call : EC01
 COMMAREA :
 extend_mode : 0
 LUW_token : 0
 Commarea : 20/06/13 10:09:24
Return code : ECI_NO_ERROR(0)
Abend code : null
Successfully closed JavaGateway

Because you can use EciB2 to drive a user-specified CICS program, you must specify an
adequate COMMAREA length. Undersized COMMAREA length parameters can cause the target
CICS program to ABEND or produce unpredictable results.
182 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

EC01 includes defensive code to check the length of the input COMMAREA. Running CTGTESTR
with a COMMAREA length of 10 bytes causes the CICS program EC01 to fail. The EciB2 sample
returns the following details:

ECI_ERR_TRANSACTION_ABEND(-7)
Abend code : ECOM

EciB2 is a useful test tool because it is flexible and allows you to set a useful range of ECI
request parameters. You can use it to invoke multiple CICS program calls in a sequence of
independent synchronized on return calls or in a transactional manner by using an extended
logical unit of work.

Example 10-15 shows the full EciB2 usage information that is output when no parameters are
supplied.

Example 10-15 EciB2 usage information output

ctgtest: Executing EciB2 with parameters:
CICS Transaction Gateway Basic ECI Sample 2
This sample can be used to test ECI calls to CICS applications from Java
Applications.
You can specify the Gateway URL and relevant ECI call parameters as input
to the application, and either call a single CICS program or call
multiple CICS programs within one extended Logical Unit of Work. The code
page of the COMMAREA flowed on the ECI call can be controlled as an input
parameter.
Note: jgateport is ignored for local mode (jgate=local:)
IPIC_url syntax is <protocol>://<host>:<port>, where protocol is "tcp"
or "ssl" and <host>:<port> represent the CICS IPIC TCPIP service definition
Usage:
 java com.ibm.ctg.samples.eci.EciB2 [jgate=gateway_URL]
 [jgateport=gateway_port]
 [clientsecurity=client_security_class]
 [serversecurity=server_security_class]
 [server=cics_server_name or IPIC_url]
 [userid=cics_user ID]
 [password=cics_password]
 [prog<0..9>=prog_name]
 [COMMAREA=comm_area]
 [COMMAREAlength=comm_area_length]
 [status]
 [trace]

Determining a COMMAREA length: In this case, the EC01 CICS program (source code is
in the CICS TG product z/OS UNIX samples/server/ec01.ccp file), it is easy to determine
that a COMMAREA length of 18 bytes is adequate by inspecting the DFHCOMMAREA definition:

01 DFHCOMMAREA.
 05 LK-DATE-OUT PIC X(8).
 05 LK-SPACE-OUT PIC X(1).
 05 LK-TIME-OUT PIC X(8).
 05 LK-LOWVAL-OUT PIC X(1).

Important: A CICS program might not include defensive logic that is related to the
COMMAREA input length. Supplying an insufficient length might lead to unpredictable
behavior.
Chapter 10. CICS Transaction Gateway for z/OS configuration 183

 [ascii | ebcdic | asis]
Example:
 java com.ibm.ctg.samples.eci.EciB2 jgate=tcp://server.ibm.com jgateport=2016
 server=mycics prog0=EC01 COMMAREA=mydata userid=myuid password=mypwd

10.3 Configure basic security

The only change required to enable the verification of user ID and password (or password
phrase) credentials is in the USERAUTH parameter of the CICS TS for z/OS Ipconn definition.
Implementing security based on a prevalidated user ID without a password, using
USERAUTH(IDENTIFY), is described in “Asserted identity using the secure CICS connection” on
page 195.

10.3.1 CICS TS configuration for USERAUTH(VERIFY)

Setting USERAUTH to VERIFY causes the target CICS region to perform authentication on the
security credentials included in the ECI request. The change is minimal, because the
configuration described in this chapter uses IPIC connections exclusively.

Example 10-16 shows the SECURITY section of the IPConn definition, which represents the
IPIC connection from the Gateway daemon to CICSTOR1. During the initial configuration,
without security, the Userauth parameter value was Local. It is now changed to Verify.

Example 10-16 Configuring the Ipconn to perform password verification

OVERTYPE TO MODIFY CICS RELEASE = 0680
 CEDA ALter Ipconn(CTG0)
+ INservice ==> Yes Yes | No
 SECURITY
 SSl ==> No No | Yes
 CErtificate ==> (Mixed Case)
 CIphers ==>
 Linkauth ==> Secuser Secuser | Certuser
 SECurityname ==>
 Userauth ==> Verify Local | Identify | Verify | Defaultuser
 IDprop ==> Notallowed Notallowed | Optional | Required
 RECOVERY
 Xlnaction ==> Keep Keep | Force
 MIRROR TASK PROPERTIES
 MIrrorlife ==> Request Request | Task | Uow

Before this definition can be updated, the IPConn must be set out of service and discarded.
Before the Ipconn can be set out of service, it must be in a released state. To prevent the
Gateway daemon from reconnecting automatically, set the TCPIPService that is associated
with the Ipconn definition to be closed using the CEMT command:

CEMT SET TCPIPS(GW1IPIC) CLOSED
CEMT SET IPCONN(CTG0) OUT

When EXCI is enabled: When EXCI is enabled, ECI requests destined for a CICS server
through an EXCI connection are authenticated by the Gateway daemon rather than the
target CICS region. Additional configuration of the Gateway daemon is required.
184 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The Gateway daemon log shows the following CTG8433E error message in the JES output
STDERR, because the CICS region has released the IPIC connection, and the automatic
reconnection attempt fails:

CTG8433E Connection failure for IPIC connection to CICS server CICSTOR1 reason =
java.net.ConnectException : EDC8128I Connection refused.

The updated IPConn definition can now be installed. The TCPIPService is returned to the
open state using the CEMT command. The IPIC connection from the Gateway daemon is
reestablished when one of these events occurs:

� The first ECI request to use it is processed
� The server retry interval for the Gateway daemon IPIC server definition expires

The CICS region log shows the following messages:

S20351T1 Number of RECEIVE sessions for IPCONN CTG0 set to 100. Number requested
100. Limit 100.
S20351T1 Client web session 1 from applid ITSOCTG0 accepted for IPCONN CTG0.
S20351T1 Client web session 2 from applid ITSOCTG0 accepted for IPCONN CTG0.

The Gateway daemon JES output STDOUT shows the following message:

CTG8429I Established new IPIC connection to CICS server CICSTOR1 with: negotiated
session limit=30, CICSAPPLID=S20351T1 CICSAPPLIDQUALIFIER=USIBMSC ,
HOSTNAME=lp01.redbooks.ibm.com, PORT=9000, sockets=2

10.3.2 Test using the CTGTESTR job

You can use CTGTESTR with security credentials to validate the secure IPIC connection.
Example 10-17 shows where to add a user ID and password parameter in the CTGTESTR job to
test the secure IPIC connection.

Example 10-17 Adding a user ID and password parameter to the CTGTESTR parameters

//STDENV DD *
PATH=/bin:/usr/lpp/java/J7.0/bin
CTGTEST_OPTS=jgate=tcp://localhost \
jgateport=2016 server=CICSTOR1 \
userid=ctguser password=ctgpass \
prog0=EC01 commarealength=18
/*

With a valid set of credentials, the output from CTGTESTR is much the same as shown in
Example 10-14 on page 182, except that user ID and password values are not null.
Example 10-18 shows an extract of the EciB2 output, when an invalid set of credentials is
supplied to CTGTESTR, indicating that CICSTOR1 has performed security validation as a result of
the ECI request.

Example 10-18 Extract from EciB2 for invalid security credentials

About to call : EC01
 COMMAREA :
 extend_mode : 0
 LUW_token : 0
 Commarea :
Return code : ECI_ERR_SECURITY_ERROR(-27)
Abend code : null
Chapter 10. CICS Transaction Gateway for z/OS configuration 185

This example shows that CICS has validated the security credentials provided and that the
ECI request has completed with an appropriate error response.

10.4 Configure secure connections

This section explains how to enable and verify secure connectivity between these
components:

� Remote mode applications and the Gateway daemon on z/OS
� The Gateway daemon and CICS TS for z/OS

The Gateway daemon and the CICS region both use RACF key rings, and resources are
provided to verify secure connectivity using a batch JOB.

Having established secure connectivity to the CICS TS for z/OS region, you allow the user ID
for the ECI request to be asserted by the client application by modifying the USERAUTH
attribute of the CICS IPConn definition from VERIFY to IDENTIFY, which removes the need for a
password credential.

This section builds on the Gateway daemon configuration that was described in the preceding
sections of this chapter. It assumes that the CICS TS for z/OS region has a secure IPIC
connection configured, as described in Chapter 9, “Configuring IPIC in CICS Transaction
Gateway for z/OS” on page 147, using a self-signed certificate authority (CA). The signer
certificate of the CA is a key component in this configuration.

10.4.1 Secure the Gateway daemon

The first step in establishing secure connectivity to or from the Gateway daemon is to provide
it with the necessary credentials to authenticate itself with securely connected components.
In this topic, a self-signed certificate authority (CA) is used to create a personal certificate for
the Gateway daemon.

Create and populate the Gateway daemon key ring
Each RACF user ID can own multiple key rings, but each key ring has a single owner. A key
ring might contain multiple personal certificates, together with multiple CA signer certificates.
Each certificate is identified by a label that must be unique to the user ID with which the
certificate is associated. One personal certificate within the key ring is marked as the default
certificate.

To enable secure connectivity for the Gateway daemon, define a key ring in the PRODUCT
section of the configuration file. The default personal certificate within the specified key ring is
selected automatically to represent the Gateway daemon.

Commercial CA signer certificates: These types of certificates are typically included in
Secure Sockets Layer (SSL) runtime libraries and do not need to be added manually to key
rings or keystores.

Default certificate: There is no capability within the Gateway daemon to select a specific
personal certificate from the key ring. The default certificate is always used.
186 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

A specific key ring is created for the Gateway daemon CTGGW started task user ID using the
following command:

RACDCERT ADDRING(CTGGW-KEYRING) ID(CTGGW)

A personal certificate is created for the Gateway daemon with the label
ITSO-GATEWAY-DAEMON-CERT. It is signed by the CA with the label CICS-Sample-Certification,
the same CA that is used to sign the personal certificate of the CICS region that is described
in Chapter 9, “Configuring IPIC in CICS Transaction Gateway for z/OS” on page 147. The
personal certificate is associated with the Gateway daemon CTGGW started task user ID. We
used the following RACF command:

RACDCERT ID(CTGGW) GENCERT SUBJECTSDN(OU('ITSO REDBOOKS') O('IBM') CN('ITSO
GATEWAY DAEMON CERT') C('USA')) WITHLABEL('ITSO-GATEWAY-DAEMON-CERT') SIGNWITH
(CERTAUTH LABEL('CICS-Sample-Certification'))

Add the Gateway daemon personal certificate to the key ring as the default using the following
RACDCERT CONNECT command:

RACDCERT CONNECT(LABEL('ITSO-GATEWAY-DAEMON-CERT') RING(CTGGW-KEYRING) DEFAULT
USAGE(PERSONAL)) ID(CTGGW)

The CA signer certificate is required in the Gateway daemon key ring to establish a secure
IPIC connection with the CICS region, as described in 10.4.3, “SSL IPIC to CICS” on
page 193. Add the signer certificate to the Gateway daemon key ring, using the following
RACDCERT CONNECT command:

RACDCERT CONNECT(CERTAUTH LABEL('CICS-Sample-Certification') RING(CTGGW-KEYRING)
USAGE(CERTAUTH)) ID(CTGGW)

Verify the Gateway daemon key ring
Verify the contents of the Gateway daemon key ring, using the following RACDCERT LISTRING
command:

RACDCERT LISTRING(CTGGW-KEYRING) ID(CTGGW)

Example 10-19 shows the output from the RACDCERT LISTRING command, confirming the
inclusion of the CICS-Sample-Certification signer certificate and the
ITSO-GATEWAY-DAEMON-CERT Gateway daemon personal certificate as the key ring default
certificate.

Example 10-19 Listing the details for the Gateway daemon key ring

Digital ring information for user CTGGW:

 Ring:
 >CTGGW-KEYRING<
 Certificate Label Name Cert Owner USAGE DEFAULT
 -------------------------------- ------------ -------- -------
 CICS-Sample-Certification CERTAUTH CERTAUTH NO
 ITSO-GATEWAY-DAEMON-CERT ID(CTGGW) PERSONAL YES

Default key pair: By default, RACDCERT GENCERT generates a key pair using software, with
the RSA algorithm and the private key stored in the RACF database as a non-ICSF RSA
key. Alternative key types are documented in the RACFDCERT GENCERT topic of z/OS Security
Server RACF Command Language Reference, SA22-7687.
Chapter 10. CICS Transaction Gateway for z/OS configuration 187

Verify the key ring membership of the certificate authority
Display information related to the CA signer certificate with the CICS-Sample-Certification
label using the following RACDCERT CERTAUTH command:

RACDCERT CERTAUTH LIST(LABEL('CICS-Sample-Certification')

Example 10-20 shows the output from the RACDCERT CERTAUTH command, including the Ring
Associations summary.

Example 10-20 Listing the details for the certificate authority signer certificate

Digital certificate information for CERTAUTH:

 Label: CICS-Sample-Certification
 Certificate ID: 2QiJmZmDhZmjgcPJw+Jg4oGUl5OFYMOFmaOJhomDgaOJlpVA
 Status: TRUST
 Start Date: 2005/01/01 00:00:00
 End Date: 2024/12/31 23:59:59
 Serial Number:
 >00<
 Issuer's Name:
 >CN=CICS Sample Certification Authority.OU=CICS Test Department.O=Lead
 >ing Edge CICS Enterprise.L=Gotham City.SP=Xanadu.C=US<
 Subject's Name:
 >CN=CICS Sample Certification Authority.OU=CICS Test Department.O=Lead
 >ing Edge CICS Enterprise.L=Gotham City.SP=Xanadu.C=US<
 Key Usage: CERTSIGN
 Key Type: RSA
 Key Size: 768
 Private Key: YES
 Ring Associations:
 Ring Owner: CICSTOR1
 Ring:
 >Cics.Cicstor1<
 Ring Owner: CTGGW
 Ring:
 >CTGGW-KEYRING<

The Ring Associations summary confirms entries for the CICS-Sample-Certification CA
signer certificate in both the Cics.Cicstor1 CICS region key ring and the CTGGW-KEYRING
Gateway daemon key ring.

Configure the Gateway daemon to use the new key ring
You can configure the Gateway daemon to use the CTGGW-KEYRING key ring in the PRODUCT
section of the configuration file. Example 10-21 shows the PRODUCT section based on 10.1.3,
“Configuration file” on page 174 after appending the KeyRing and ESMKeyRing parameters.
Setting the ESMKeyRing parameter to ON instructs the Gateway daemon to read the KeyRing
value as a RACF key ring, rather than as a Java keystore (.jks) file.

Example 10-21 Configuring the Gateway daemon with a key ring

SECTION PRODUCT
 Applid = ITSOCTG0 # The APPLID of the Gateway daemon
 ApplidQualifier = CTGALP00 # The APPLID qualifier of the Gateway daemon
 DefaultServer = CICSTOR1 # The default server used by the Gateway daemon
 KeyRing=CTGGW-KEYRING
188 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

 ESMKeyRing=ON
ENDSECTION

For remote applications to make secure connections to the Gateway daemon, an SSL
protocol handler is required. Example 10-22 shows the protocol handler definition that is
required in the GATEWAY section of the configuration file, based on 10.1.3, “Configuration file”
on page 174.

Example 10-22 Configuring the Gateway daemon with an SSL protocol handler

Protocol handler for SSL requests
 protocol@ssl.handler = com.ibm.ctg.server.SslHandler
 protocol@ssl.parameters = bind=;\
 clientauth=off;\
 connecttimeout=2000;\
 idletimeout=600000;\
 pingfrequency=60000;\
 port=8070;\
 solinger=10;

Verify that the Gateway daemon initializes successfully and that it is listening for secure
application requests on the intended port number. Example 10-23 shows those key log
messages from the Gateway daemon initialization, indicating these details.

Example 10-23 Verifying Gateway daemon initialization for secure connections

CTG8405I JSSE provider info: IBM JSSE2 7.0 Provider Implementation, IBM
Corporation, 7.0 build_20120529
CTG8489I The following cipher suites are provided by JSSE:
TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 SSL_RSA_WITH_AES_128_CBC_SHA256
 SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
(many more ciphers listed)

CTG6524I Successfully started handler for the ssl: protocol on port 8070

10.4.2 SSL application to Gateway daemon

You can use the pre-built Java sample program, com.ibm.ctg.samples.eci.EciB1, to verify
the secure connection to the Gateway daemon. The sample ECI program requires a Java
keystore that contains the signer certificate for the Gateway daemon personal certificate. You
can create the keystore and populate it using the z/OS SDK command-line utility program,
keytool, in OMVS.
Chapter 10. CICS Transaction Gateway for z/OS configuration 189

Export the CA signer certificate for keytool
Export the signer certificate, with the CICS-Sample-Certification label, to an MVS data set,
and then copy it to a z/OS UNIX file using the RACDCERT EXPORT and OPUT commands. The
CICSRS4 TSO user ID, with an OMVS segment and /u/cicsrs4 z/OS UNIX home directory,
issues the following commands:

RACDCERT CERTAUTH EXPORT(LABEL('CICS-Sample-Certification'))
DSN('CICSRS4.CERTAUTH.CICS.B64') FORMAT(CERTB64)

OPUT 'CICSRS4.CERTAUTH.CICS.B64' '/u/cicsrs4/ctgtest/cics.ca.cer'

You can visually inspect the exported signer certificate to verify that it is in the correct format.
Example 10-24 shows the content of the /u/cicsrs4/ctgtest/cics.ca.cer z/OS UNIX file
displayed in OMVS using the cat command.

Example 10-24 The base64-encoded signer certificate after export and copy to a z/OS UNIX file

-----BEGIN CERTIFICATE-----
MIIDCDCCApKgAwIBAgIBADANBgkqhkiG9w0BAQUFADCBqDELMAkGA1UEBhMCVVMx
DzANBgNVBAgTBlhhbmFkdTEUMBIGA1UEBxMLR290aGFtIENpdHkxJTAjBgNVBAoT
HExlYWRpbmcgRWRnZSBDSUNTIEVudGVycHJpc2UxHTAbBgNVBAsTFENJQ1MgVGVz
dCBEZXBhcnRtZW50MSwwKgYDVQQDEyNDSUNTIFNhbXBsZSBDZXJ0aWZpY2F0aW9u
IEF1dGhvcml0eTAeFw0wNTAxMDEwNDAwMDBaFw0yNTAxMDEwMzU5NTlaMIGoMQsw
CQYDVQQGEwJVUzEPMA0GA1UECBMGWGFuYWR1MRQwEgYDVQQHEwtHb3RoYW0gQ2l0
eTElMCMGA1UEChMcTGVhZGluZyBFZGdlIENJQ1MgRW50ZXJwcmlzZTEdMBsGA1UE
CxMUQ0lDUyBUZXN0IERlcGFydG1lbnQxLDAqBgNVBAMTI0NJQ1MgU2FtcGxlIENl
cnRpZmljYXRpb24gQXV0aG9yaXR5MHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAOIJ
GMO5hs3+Dt6yeUl684+542wta5rg5mD6tp2cnbvNXEstrwoQZ7ZwNDRYekOEy2Mc
7Kw7bTkd/ftqVCmZRYKi4TtwJcm0+aQphSGJWv5TOOtd6DnY3HR2ENoO1ffE0QID
AQABo4GEMIGBMD8GCWCGSAGG+EIBDQQyEzBHZW5lcmF0ZWQgYnkgdGhlIFNlY3Vy
aXR5IFNlcnZlciBmb3Igei9PUyAoUkFDRikwDgYDVR0PAQH/BAQDAgEGMA8GA1Ud
EwEB/wQFMAMBAf8wHQYDVR0OBBYEFJiVCIzDeLA/1aWOpygJNpB09zGYMA0GCSqG
SIb3DQEBBQUAA2EADICu8Hmeny8cUAmfKyaJCkb313IH+QOaeKzIeEaOldVMUsYv
n6V8D3W66RwcqywqSJyhIZDEpvCo17gVEc7Lnh63cxnvN6oD/0uX3Zrp9CFOdLEJ
vNru4VKeqd/LURs1
-----END CERTIFICATE-----

Create and populate the client keystore
Still in OMVS, use the SDK keytool utility to create a new key database of type JKS, and
import the CA signer certificate in a single step. You must specify a password when creating a
new key database. A password is also required for any subsequent keytool utility operations.
Example 10-25 on page 191 shows the keytool command that is used to create the Java
keystore /u/cicsrs4/ctgtest/eci_keyring.jks file and the resulting output.

./keytool -import -file /u/cicsrs4/ctgtest/cics.ca.cer -keystore
/u/cicsrs4/ctgtest/eci_keyring.jks -storepass keyringpassw0rd

Important: Do not use the BINARY option to the OPUT command. Otherwise, the z/OS UNIX
file will not include important new line characters that are required for importing with the
keytool utility.

Invoking the keytool command: The current working directory (CWD) is set to the bin
directory of the SDK, and the keytool command is qualified with the z/OS UNIX shorthand
path for the CWD (./). It is equally valid to include the SDK bin directory in the z/OS UNIX
PATH and then invoke the keytool command without this prefix.
190 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The keytool command displays the details of the signer certificate to be imported, and the
following prompt for you to decide whether to proceed with the import:

Trust this certificate? [no]:

Responding yes to this prompt results in a confirmation that the certificate import is
successful:

Certificate was added to keystore

Verify the contents of the new Java keystore, again using the keytool utility. Example 10-25
shows the keytool command, using the list option with the verbose (-v) switch, and the
resulting console output.

Example 10-25 The keytool command to inspect the Java keystore contents

CICSRS4 @ SC66:/Z1DRC1/usr/lpp/java/J7.0/bin>./keytool -list -keystore
/u/cicsrs4/ctgtest/eci_keyring.jks -storepass keyringpassw0rd -v

Keystore type: jks
Keystore provider: IBMJCE

Your keystore contains 1 entry

Alias name: mykey
Creation date: Jul 4, 2013
Entry type: trustedCertEntry

Owner: CN=CICS Sample Certification Authority, OU=CICS Test Department, O=Leading
Edge CICS Enterprise, L=Gotham City, ST=Xanadu, C=US
Issuer: CN=CICS Sample Certification Authority, OU=CICS Test Department, O=Leading
Edge CICS Enterprise, L=Gotham City, ST=Xanadu, C=US
Serial number: 0
Valid from: 12/31/04 11:00 PM until: 12/31/24 10:59 PM
Certificate fingerprints:
 MD5: A2:5E:80:74:F6:EA:51:27:CA:D7:B3:91:C9:38:6D:62
 SHA1: BA:0E:05:9B:94:13:2B:D6:54:0A:72:2B:04:41:39:40:EC:97:04:38
 SHA256:
4D:6B:76:B1:E9:80:7D:ED:86:62:C6:0B:F5:C7:CA:F9:B2:AB:12:0A:62:1C:CC:45:B5:C7:80:6
4:BB:04:14:64
 Signature algorithm name: SHA1withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.16.840.1.113730.1.13 Criticality=false
(unprintable characters, likely ASCII text)
#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
CA:true
PathLen:2147483647
]

#3: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
 Key_CertSign
 Crl_Sign
Chapter 10. CICS Transaction Gateway for z/OS configuration 191

]

#4: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 98 95 08 8c c3 78 b0 3f d5 a5 8e a7 28 09 36 90 x........6.
0010: 74 f7 31 98 t.1.
]
]

This example shows that the keystore /u/cicsrs4/ctgtest/eci_keyring.jks file is of type
JKS, and the Extensions section of the single certificate entry includes the text CA:true,
indicating that this is a CA signer certificate.

This keystore is used by a Java client application (or JCA connection factory) to establish a
secure connection with the Gateway daemon. The presence of the CA signer certificate
enables the client application SSL runtime libraries to authenticate the Gateway daemon
personal certificate that is sent by the Gateway daemon as part of the SSL handshake
process.

Verify the secure application connection
The CTGTESTR does not provide the facility to specify a client keystore for use in establishing
an SSL connection to the Gateway daemon. Alternatively, the
com.ibm.ctg.samples.eci.EciB1 (EciB1) Java sample does, and it is supplied precompiled in
the CICS TG product classes/ctgsamples.jar file.

Example 10-26 shows the output from the EciB1 Java sample program, when provided with
the parameters:

ssl://lp01.redbooks.ibm.com 8070 /u/cicsrs4/ctgtest/eci_keyring.jks
keyringpassw0rd

Example 10-26 Using the EciB1 Java sample program to verify secure connectivity

ecib1: Executing EciB1 with parameters: ssl://lp01.redbooks.ibm.com 8070
/u/cicsrs4/ctgtest/eci_keyring.jks keyringpassw0rd
ecib1: Classpath=
/usr/lpp/cicstg/ctg900/classes/ctgsamples.jar:/usr/lpp/cicstg/ctg900/classes/ctgcl
ient.jar
CICS Transaction Gateway Basic ECI Sample 1
Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]
To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on
The address of the Gateway has been set to ssl://lp01.redbooks.ibm.com port:8070.
CICS servers defined:

Sample script to run the EciB1 Java sample program: You can run the EciB1 CICS TG
Java sample program manually from OMVS using the standard Java launcher command.
You can use a sample z/OS UNIX shell script (ecib1), which is included with this book, to
allow the Java EciB1 sample to be invoked with keystore parameters through a JOB. The
full details of this script and JOB are included in Appendix A, “Running the precompiled
Java sample EciB1 from batch on z/OS” on page 359.
192 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

 1. CICSTOR1 -IPIC Server
Choose server to connect to, or q to quit:
Program EC01 returned with data:-
 Hex: 30332f30372f31332031303a33333a34320
 ASCII text: 03/07/13 10:33:42

The Gateway URL, ssl://lp01.redbooks.ibm.com, and port number, 8070, indicate that
EciB1 will establish a secure connection to the Gateway daemon listening on port 8070, for
TCP/IP host lp01.redbooks.ibm.com. We must use either the host name for the static virtual
IP address (VIPA), or the IP address, 192.168.0.1, rather than localhost, because the
Gateway daemon protocol handler is explicitly bound to that address.

The client application has established a secure connection to the Gateway daemon and has
flowed an ECI request for CICS program EC01. However, the IPIC connection used is still not
secured by SSL.

10.4.3 SSL IPIC to CICS

Although the Gateway daemon and the CICS region described in this scenario are colocated
within the same LPAR, some users regard such a configuration as inherently secure, because
local adapter connections can be optimized on z/OS through the Fast Local Sockets facility.
However, a Gateway daemon and a CICS region connected by IPIC might not be colocated,
and so securing such a connection is a valid requirement.

In this topic, the IPIC connection to the CICS TS for z/OS region described in “IPIC
connection” on page 176 is modified to use SSL. The Gateway daemon RACF key ring
configured in 10.4.1, “Secure the Gateway daemon” on page 186 for use by secure remote
application connections is also used for secure IPIC connections to CICS. The CA signer
certificate is required at run time to authenticate the identity of the CICS region.

To secure the IPIC connection, changes are required to the TCPIPService definition in the
target CICS region and to the IPIC Server definition in the Gateway daemon configuration file.

Configure the CICS TCPIPService for IPIC SSL
Chapter 9, “Configuring IPIC in CICS Transaction Gateway for z/OS” on page 147 includes
configuration of secure IPIC connections in CICS TS for z/OS. This section highlights the
minimum requirements for server authentication and the use of a common CA signer
certificate.

The CICS TS for z/OS TCPIPService definition includes the SSl parameter, with possible
values of Yes, No, or Clientauth. Predefined and auto-installed IPIC connections to a
Gateway daemon use secure connections when the associated TCPIPService includes an SSL
parameter of Yes or Clientauth.

CICS server selection: Running on OMVS, the user is prompted to select a CICS server.
The ecib1 script automatically provides the keyboard input of 1, which selects the first
CICS server available.
Chapter 10. CICS Transaction Gateway for z/OS configuration 193

Example 10-27 shows the SECURITY section of a TCPIPService definition, where the SSl
attribute value is set to Yes and the CIphers attribute is the default set for STRONG
encryption. The certificate with the CICSTOR1-ssl label is signed by the same CA signer
certificate, CICS-Sample-Certification, which is used to sign the Gateway daemon personal
personal certificate in “Create and populate the Gateway daemon key ring” on page 186.

Example 10-27 Enabling SSL on an IPIC TCPIPService definition

SECURITY
 SSl : Yes Yes | No | Clientauth
 CErtificate : CICSTOR1-ssl
 (Mixed Case)
 PRIvacy : Supported Notsupported | Required | Supported
 CIphers : 050435363738392F303132330A1613100D0915120F0C0306
 AUthenticate : No | Basic | Certificate | AUTORegister
 | AUTOMatic
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify

Configure the Gateway IPIC Server for SSL
The IPIC Server definition in the Gateway daemon configuration file includes a parameter to
control the use of SSL. Example 10-28 shows the IPIC Server configuration that was
previously defined in “IPIC connection” on page 176 modified to enable the use of SSL. The
CICS TCPIPService SSl attribute determines whether server or client authentication is used.

Example 10-28 An IPIC server definition with SSL enabled

SECTION IPICSERVER = CICSTOR1
 Description = IPIC Server
 Hostname = lp01.redbooks.ibm.com
 Port = 9001
 TcpKeepAlive = Y
 Ssl = Y
 CICSApplid = S20351T1
 CICSApplidQualifier = USIBMSC
 SendSessions = 50
ENDSECTION

The Ssl parameter in the IPIC server definition can be set to Y (yes) or N (no). The Gateway
daemon key ring, described in 10.4.1, “Secure the Gateway daemon” on page 186, contains
the certificates used for server authentication and client authentication.

Note: CICS TS for z/OS TCPIPService and IPConn resource types both include an SSl
attribute, with possible values of Yes, No, or Clientauth, and a Ciphers attribute. Only the
TCPIPService attribute values are relevant to IPIC connections with CICS TG components
(Gateway daemon, or a local mode application).

At run time, the IPConn resource shows the SSltype attribute with a value Nossl, regardless
of whether the IPIC connection to the CICS TG component is using SSL.
194 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Verify the secure CICS connection
Gateway daemon log messages, CICS log messages, and CICS resource inquiry commands
do not reveal any detail to indicate when an IPIC connection is using SSL. However, the CICS
TG statistic CSx_PROTOCOL, where x is the name of the IPIC Server definition, indicates a value
of either IPIC’ or IPICSSL. This statistic can be inspected from TSO, using the modify
command, or from the CICS connections view of the CICS TG perspective of the CICS
Explorer.

Example 10-29 shows the modify command and sample output from the command:

/F CTGGWX.GW0,APPL=STATS,GS=CSCICSTOR1, ST=S

Example 10-29 Display startup statistics for CICS server CICSTOR1

CTG8239I Response received from CICS Transaction Gateway
CSCICSTOR1 - CICS Server (instance)
 CSCICSTOR1_SPROTOCOL=IPICSSL (CICS server protocol)
 CSCICSTOR1_SIPADDR=lp01.redbooks.ibm.com (CICS server TCP/IP
address)
 CSCICSTOR1_SIPPORT=9001 (CICS server TCP/IP port)
 CSCICSTOR1_SSESSMAX=100 (Number of requested IPIC sessions)

The secure connection is tested using the EciB1 sample, as described in “Verify the secure
application connection” on page 192. The input parameters and output appear unchanged,
compared to Example 10-26 on page 192. Securing the IPIC connection from the Gateway
daemon to the CICS server with SSL is a transparent change for remote-mode applications.

Asserted identity using the secure CICS connection
After you verify the secure IPIC connection, you can change the USERAUTH attribute of the
IPConn definition from VERIFY to IDENTIFY. Then, repeat the test using the EciB1 sample, as
described in “Verify the secure application connection” on page 192, but this time, omit the
password credential.

10.4.4 Restricting cipher suites

During the establishment of a secure connection, the intersection of cipher suites that are
available to both parties defines the set of the potential algorithms available for use. It is
possible to explicitly define independent sets of cipher suites for use between the following
components:

� Remote-mode applications and the Gateway daemon
� The Gateway daemon and the CICS server (using IPIC)

Note: USERAUTH(IDENTIFY) is always permitted by CICS TS for z/OS when the IPIC
connection uses SSL, regardless of the location or platform of the Gateway daemon. It is
also permitted for non-SSL IPIC connections, when the Gateway daemon is on an MVS
image within the same sysplex as the CICS TS for z/OS region.

Although it is not typical to secure intra-sysplex connections between Gateway daemons
and CICS regions, it is sometimes required. It suits the purpose of this chapter, by
illustrating the configuration of a secure IPIC connection.
Chapter 10. CICS Transaction Gateway for z/OS configuration 195

Cipher suites for remote-mode application connections
You can restrict the cipher suites that are available for use between remote-mode applications
and the Gateway daemon using the ciphersuites attribute of the SSL protocol handler in the
GATEWAY section of the configuration file. Example 10-30 shows the SSL protocol handler
definition from “Configure the Gateway daemon to use the new key ring” on page 188,
appended with a restricted set of cipher suites.

Example 10-30 Configuring a restricted set of cipher suites for remote-mode applications

Protocol handler for SSL requests
 protocol@ssl.handler = com.ibm.ctg.server.SslHandler
 protocol@ssl.parameters = bind=;\
 clientauth=off;\
 connecttimeout=2000;\
 idletimeout=600000;\
 pingfrequency=60000;\
 port=8070;\
 solinger=10;\
 ciphersuites=\
 SSL_ECDHE_RSA_WITH_RC4_128_SHA,\
 SSL_RSA_WITH_RC4_128_SHA,\
 SSL_ECDH_ECDSA_WITH_RC4_128_SHA,\
 SSL_ECDH_RSA_WITH_RC4_128_SHA;

The CTG8489I Gateway daemon initialization log message lists all of the available cipher
suites. The CTG8401I log message shown in Example 10-31 lists the restricted cipher suites
that are configured for use by the SSL protocol handler.

Example 10-31 Verifying a restricted set of cipher suites available for remote-mode applications

CTG8401I The following cipher suites are available for the SSL protocol handler:
 SSL_ECDH_RSA_WITH_RC4_128_SHA
 SSL_RSA_WITH_RC4_128_SHA
 SSL_ECDH_ECDSA_WITH_RC4_128_SHA
 SSL_ECDHE_RSA_WITH_RC4_128_SHA

You can determine the specific cipher suite by a particular remote-mode application by
enabling connection logging in the Gateway daemon using the following configuration option:

ConnectionLogging = on # Log clients connecting and disconnecting

Example 10-32 shows a pair of log messages that correspond to the secure connection of a
client application, and subsequent disconnection from a client application. Both log messages
include details of the protocol (TLSv1) and the cipher suite
(SSL_ECDHE_RSA_WITH_RC4_128_SHA).

Example 10-32 Connection logging message showing specific cipher suite in use

CTG6506I Client connected: [ConnectionManager-99] - ssl@a6268494
[SSL_ECDHE_RSA_WITH_RC4_128_SHA:
Socket[addr=/127.0.0.1,port=40342,localport=8070]] using protocol TLSv1

CTG6507I Client disconnected: [ConnectionManager-99] - ssl@a6268494
[SSL_ECDHE_RSA_WITH_RC4_128_SHA: Socket
[addr=/127.0.0.1,port=40342,localport=8070]] using protocol TLSv1, reason = Java
client application closed the connection
196 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Cipher suites for IPIC connections to CICS servers
The Gateway daemon configuration allows independent control over the cipher suites for
each IPIC SSL connection definition. The configuration is similar to specifying cipher suites
for the SSL protocol handler, where a comma-separated list defines the set of cipher suites to
allow. Similar to the SSL protocol handler definition, line-continuation characters, such as a
backslash (\), are used for legibility, as shown in Example 10-33.

Example 10-33 Configuring a restricted set of cipher suites for an IPIC connection

SECTION IPICSERVER = CICSTOR1
 Description = IPIC Server
 Hostname = lp01.redbooks.ibm.com
 Port = 9001
 TcpKeepAlive = Y
 Ssl = Y
 CICSApplid = S20351T1
 CICSApplidQualifier = USIBMSC
 SendSessions = 100
 CipherSuites=\
 SSL_RSA_WITH_NULL_MD5,\
 SSL_RSA_WITH_DES_CBC_SHA,\
 SSL_DHE_RSA_WITH_DES_CBC_SHA,\
 SSL_DHE_DSS_WITH_DES_CBC_SHA,\
 SSL_DH_anon_WITH_DES_CBC_SHA,\
 SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA,\
 SSL_RSA_FIPS_WITH_DES_CBC_SHA
ENDSECTION

The IPIC connection is established when the first ECI request specifying the CICS server
name is received. Example 10-34 shows the log messages, which include the restricted set of
cipher suites in use.

Example 10-34 Verifying a restricted set of cipher suites available for remote-mode applications

CTG8477I About to connect to server CICSTOR1
CTG8488I The following cipher suites are enabled for IPIC server CICSTOR1:
 SSL_RSA_FIPS_WITH_DES_CBC_SHA
 SSL_RSA_WITH_DES_CBC_SHA
 SSL_DH_anon_WITH_DES_CBC_SHA
 SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
 SSL_DHE_DSS_WITH_DES_CBC_SHA
 SSL_RSA_WITH_NULL_MD5
 SSL_DHE_RSA_WITH_DES_CBC_SHA

Relationship between the cipher suites and Gateway daemon key ring
The personal certificate for the Gateway daemon is created using a specific key type, for
example, RSA. The selected key type imposes a restriction of its own on the possible set of
cipher suites to use at run time by the Gateway daemon. In “Create and populate the
Gateway daemon key ring” on page 186, the default key type of RSA was used. Therefore,
any restricted set of cipher suites to be used with this personal certificate must include at
least one based on the RSA algorithm.

If an SSL connection (SSL protocol handler or IPIC SERVER) is restricted to a set of cipher
suites without support for the key type of the Gateway daemon personal certificate, the
connection will fail during the SSL handshake.
Chapter 10. CICS Transaction Gateway for z/OS configuration 197

SP800-131A compliance
Compliance with the National Institute of Standards and Technology (NIST) SP800-131A
standard is achieved through the Java system properties for the IBM Java Secure Socket
Extension (JSSE) runtime library, com.ibm.jsse2.sp800-131. Example 10-35 shows how to
use the CTGSTART_OPTS environment variable to restrict encryption algorithms to the
“transition” set. This setting requires all SSL connections with the Gateway daemon to
support at least Transport Layer Security (TLS) 1.0. The “strict” set requires all SSL
connections with the Gateway daemon to support at least TLS 1.2.

Example 10-35 Configuring the Gateway daemon for SP800-131A compliance through STDENV

CTGSTART_OPTS=-j-Dcom.ibm.jsse2.sp800-131=transition

The same IBM JSSE property is also used with Java client applications to ensure the use of
stronger encryption algorithms. For further details, see the CICS TG Information Center
SP800-131A compliance topic:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Full SP800-131 compliance (strict) is available for the CICS TG V9.0 products by applying
the following maintenance:

� CICS TG for z/OS V9.0 APAR PM98779
� CICS TG for Multiplatforms V9.0.0.2 (V9.0 Fix Pack 2)
� CICS TG Desktop Edition V9.0.0.2 (V9.0 Fix Pack 2)

TLS 1.2 IPIC connectivity is available for CICS Transaction Server for z/OS V5.1 by applying
the SP800-131A APAR PM97207.

10.5 Adding XA support

To enable the Gateway daemon for XA transaction support, the Gateway daemon started task
user ID requires the correct security permissions, and further system configuration is required
to successfully start the non-terminating address space, CTGRRMS.

10.5.1 The CTGRRMS address space

The CTGRRMS address space provides a proxy service within the scope of a single MVS image
to RRMS capabilities for Gateway daemons requiring XA transaction support. It is a special
type of address space, known as a non-terminating address space, that does not consume
CPU beyond initialization and requires a minimal amount of storage.

Each LPAR runs a maximum of one CTGRRMS address space. When at least one Gateway
daemon on an LPAR requires XA transaction support, a CTGRRMS address space is required to
run on that LPAR.
198 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

You can start the CTGRRMS address space using one of the following methods:

� Implicit start:

– During initialization of a Gateway daemon with XA transaction support, the CTGRRMS
address space is started, if it is not already running.

– Typically, the first Gateway daemon with XA transaction support to initialize after an IPL
of the z/OS LPAR triggers the start of the CTGRRMS address space.

� Explicit start

A system administrator uses the ctgasi z/OS UNIX command to explicitly start the
CTGRRMS address space.

An implicit start of CTGRRMS is the usual pattern of operation. Explicit lifecycle operations, such
as start, stop, or restart using the ctgasi command, can be required to apply maintenance, or
during problem determination. However, when configured correctly, the start and use of
CTGRRMS is transparent to the Gateway daemon administrator.

10.5.2 System configuration for CTGRRMS

The single CICS TG product load-module used by the CTGRRMS address space is CTGINIT,
which is in the product load library, SCTGLINK. The SCTGLINK load library must have the
following characteristics:

� Defined as authorized program facility (APF)-authorized
� Included in the MVS library lookaside (LLA) address space

The Gateway daemon started task user ID or the system administrator user ID must have at
least UPDATE level access to the CTG.RRMS.SERVICE in the FACILITY class to start CTGRRMS.

APF authorization
The CICS TG load library, SCTGLINK, is made APF-authorized by adding it to the APF list by
using the SETPROG APF command:

SETPROG APF,ADD,DSNAME=CTG.V9R0M0.SCTGAUTH,VOLUME=TSTO0D

You can verify the APF-authorized status of load libraries by using the MVS display
/D PROG,APF command. For the examples in this book, multiple versions of CICS TG for z/OS
are installed on the system, and all systems share a common high-level qualifier, CTG.

Example 10-36 shows the output from the MVS display command, when the DSNAME option is
used to summarize the APF authorization of CICS TG product load libraries on the LP01
LPAR.

Making dynamic updates: You can use the SETPROG APF command to make dynamic
updates to the APF-authorized status of a load library. To make the APF authorization
persistent, include an APF ADD statement in a system PARMLIB(PROGxx) member:

APF ADD
 DSNAME(CTG.V9R0M0.SCTGLINK) VOLUME(TSTO0D)
Chapter 10. CICS Transaction Gateway for z/OS configuration 199

Example 10-36 Output from MVS command /D PROG,APF,DSN=CTG*

RESPONSE=LP01
 CSV450I 07.06.15 PROG,APF DISPLAY 031
 FORMAT=DYNAMIC
 ENTRY VOLUME DSNAME
 1 TSTO21 CTG.V6R1M0.SCTGAUTH
 2 TSTO25 CTG.V7R0M0.SCTGAUTH
 3 TSTO25 CTG.V7R0M0.SCTGLINK
 4 TSTO29 CTG.V7R1M0.SCTGAUTH
 5 TSTO29 CTG.V7R1M0.SCTGLINK
 6 TSTO0D CTG.V8R0M0.SCTGAUTH
 7 TSTO0D CTG.V8R0M0.SCTGLINK
 8 TSTO0D CTG.V9R0M0.SCTGAUTH
 9 TSTO0D CTG.V9R0M0.SCTGLINK

Library lookaside (LLA) address space
The CICS TG load library, SCTGLINK, is added to the library lookaside address space,
alternatively known as the LNKLST, by using the following SETPROG LNKLST commands:

SETPROG LNKLST,DEFINE,NAME=T1,COPYFROM=CURRENT
SETPROG LNKLST,ADD,NAME=T1,DSNAME=CTG.V9R0M0.SCTGLINK,
VOLUME=TSTO0D
SETPROG LNKLST,ACTIVATE,NAME=T1

The LNKLST name T1 is used as a temporary location to hold a concatenation of the currently
active LNKLST and the SCTGLINK load library until the SET PROG LNKLST,ACTIVATE command is
issued.

You can verify the contents and order of entries in the LLA LNKLST by using the following
command:

D PROG,LNKLST

For clarity, include only one SCTGLINK load library entry on the LLA LNKLIST.

Implementing automatic restart manager: The SCTGAUTH load library is not relevant to
XA transaction support but it needs to be APF-authorized, if required. This load library
includes the CTGARM utility program, which is used for implementing automatic restart
manager (ARM) support with a Gateway daemon. For more information, see the CICS TG
for z/OS Information Center Automatic restart management topic:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Making harden persist changes: You can use the SETPROG LNKLST commands to make
dynamic updates to the LLA data set concatenation. However, to harden persist these
changes, add similar commands to the system PARMLIB(PROGxx) member:

LNKLST DEFINE NAME(LNKLSTT1) COPYFROM(CURRENT)
LNKLST ADD NAME(LNKLSTT1) DSNAME(CTG.V9R0M0.SCTGLINK)
VOLUME=TSTO0D
LNKLST ACTIVATE NAME(LNKLSTT1)
200 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Multiple releases of CICS TG for z/OS and CTGRRMS
When multiple releases of CICS TG for z/OS are available within the same z/OS LPAR,
CTGRRMS must use the highest available version of CTGINIT to ensure compatibility with all
releases of the Gateway daemon that might run on the LPAR. Back-level Gateway daemons
are compatible with higher-level versions of CTGRRMS, unless explicitly stated in the migration
documentation for a specific release.

For CICS system programmers, who are familiar with the DFHIRP load library, the CTGINIT load
module follows similar concepts in terms of system configuration.

For the full details about configuration of XA transaction support, search for the CICS TG for
z/OS Information Center Configuring XA support topic:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

10.5.3 Gateway daemon configuration for XA transactions

XA transaction support is enabled in the Gateway daemon through the xasupport parameter,
in the GATEWAY section of the Gateway daemon configuration file:

xasupport=on

APPLID qualifier and APPLID parameters
Setting the APPLID qualifier and APPLID parameters for a Gateway daemon is a preferred
practice, because they provide a structured naming convention to identify each Gateway
daemon as a communication node. They can be useful for tracking requests, monitoring, or
general problem determination.

When XA transaction support is enabled, setting the APPLID qualifier and APPLID
parameters becomes mandatory. Peer-recovery of XA transactions within a highly available
Gateway group requires peer-Gateway daemons to share a common APPLID qualifier.

The PRODUCT section of the Gateway daemon configuration file, shown in “PRODUCT section”
on page 175, contains this information:

Applid = ITSOCTG0 # The APPLID of the Gateway daemon
ApplidQualifier = CTGALP00 # The APPLID qualifier of the Gateway daemon

The Gateway daemon APPLID qualifier and APPLID are used for these functions:

� To generate a Recovery Manager name for registration with Resource Recovery Services
(RRS), shown in the Gateway daemon log message CTG9295I:

CTG9295I The Gateway daemon is running with resource manager name
'CICSTG.CTGALP00.ITSOCTG0'

� To identify the Gateway daemon as an IPIC partner, shown in the CICS region log
message DFHIS3000:

DFHIS3000 07/08/2013 12:56:36 CICSTOR1 IPCONN CTG0 with applid
CTGALP00.ITSOCTG0 autoinstalled successfully using autoinstall user program

DFHISAIP
and template (NONE) after a connection request was received on tcpipservice

GW1IPIC from
host 192.168.0.1.

Compatibility note: As of CICS TG V9.0, CTGINIT is backwardly compatible with Gateway
daemons of all previous releases.
Chapter 10. CICS Transaction Gateway for z/OS configuration 201

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

� To identify the Gateway daemon is monitoring and statistics:

GD_SAPPLID=ITSOCTG0 (CICS TG APPLID)
GD_SAPPLIDQ=CTGALP00 (CICS TG APPLID qualifier)

Cold start
A failure during distributed-sync point processing can lead to an XA transaction entering the
in-doubt state. XA transactions are represented in RRS by units of recovery (URs).
Incomplete URs persist until they are completed due to resynchronization (for example,
driven by the Java EE application server), or manual intervention through RRS panels or
CICS systems administration.

During initialization, the Gateway daemon retrieves the list of all incomplete URs associated
with itself (from a previous run). Gateway daemon log message CTG8628I includes details
regarding the number of URs retrieved from RRS:

CTG8628I Retrieved interest in 0 units of recovery from RRS; 0 are in-doubt

The difference between the number of retrieved interests, and the (equal, or lower) number of
in-doubt URs, is the number of incomplete URs that can be cleared by a cold start of the
Gateway daemon.

By default, all incomplete URs associated with a Gateway daemon Recovery Manager name
persist through a restart of the Gateway daemon, and they are reported by the CTG8628I log
message.

When the Gateway daemon start type is COLD, those incomplete but not in-doubt URs are
completed. This is achieved with a ctgstart option “-start=cold” (using the CTGSTART_OPTS
environment variable), or using the Start parameter in the GATEWAY section of the Gateway
daemon configuration file:

Start = cold # Clear URs that are in-forget when starting

The Gateway daemon initialization log message CTG8986I indicates when the start type is
COLD:

CTG8986I CICS Transaction Gateway start type is COLD

Maximum concurrent XA transactions
The Gateway daemon tracks both in-flight and incomplete XA transactions, for which it has an
interest. This number can be greater than the number of concurrent requests to CICS
(MAXWORKER), and greater than the maximum connected client applications (MAXCONNECT), due
to the inclusion of incomplete XA transactions.

The CTG_XA_MAX_TRAN environment variable controls the total number of XA transactions that
a single Gateway daemon can track at any one time and has a default value of 1024. Although
the value of the MAXCONNECT parameter represents a reasonable basis for CTG_XA_MAX_TRAN,
exceptional circumstances might result in a large number of incomplete XA transactions
within a short time. Therefore, it is advisable to overestimate for this upper limit.

The Gateway daemon storage that is associated with tracking each XA transaction is
approximately 200 bytes. For example, setting the CTG_XA_MAX_TRAN parameter to 8192
requires approximately 1.6 MB of storage.

Note: Normal start is the default and is performed when no start parameter value is
specified. The only acceptable value that you can specify with the start parameter is
“cold”.
202 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

10.5.4 Verifying the configuration for XA transactions

Now, you can verify that the Gateway daemon, the CTGRRMS address space, and RRS are
initialized.

Because XA transaction support is used only by enterprise applications that are running in a
Java EE-certified application server, you cannot verify the capability for XA transaction
support using a stand-alone test program. For details about deploying and using the CICS
TG-supplied JCA installation verification test (IVT) enterprise application to fully verify XA
transaction support, see 12.7.1, “Deploying and configuring the IVT” on page 287.

Verify the Gateway daemon support for XA transactions
Example 10-37 shows the Gateway daemon initialization log messages that are related to XA
transaction support.

Example 10-37 Gateway daemon initialization log messages related to XA transaction support

CTG8426I The APPLID is ITSOCTG0
CTG8427I The APPLID qualifier is CTGALP00
CTG6737I XA transaction support is enabled
CTG9295I The Gateway daemon is running with resource manager name

'CICSTG.CTGALP00.ITSOCTG0'
CTG8628I Retrieved interest in 0 units of recovery from RRS; 0 are in-doubt

You can use the resource manager name that is indicated by the CTG9295I log message to
investigate the status of extended LUW and XA transactions through the RRS menus.

Confirm the status of the CTGRRMS address space
If not already running, a Gateway daemon that is enabled for XA transactions starts the
CTGRRMS address space. Using the System Display and Search Facility (SDSF) Display Active
(DA) option, a single CTGRRMS address space per LPAR can be shown. However, there is no
JES output from this address space and, as shown in Example 10-38, no entries in the
ProcStep, JobID, or Owner DA columns.

Example 10-38 An extract from the SDSF DA panel showing the CTGRRMS address space

JOBNAME StepName ProcStep JobID Owner C Pos DP Real
CTGRRMS CTGRRMS NS FF 84

Register the relationship with RRMS
When initialized with XA transaction support, a Gateway daemon becomes a resource
manager with RRS.

From the first RRS panels, selecting option 2, Display/Update RRS-related Resource
Manager information, and entering the RM name indicated by the Gateway daemon log
message CTG9295I returns the RRS Resource Manager List panel.

Terminology note: By contrast, when XA transaction support is not enabled, a Gateway
daemon becomes a work manager with RRS.
Chapter 10. CICS Transaction Gateway for z/OS configuration 203

Example 10-39 shows the Gateway daemon in the Run state, which indicates a successful
initialization and registration with RRS.

Example 10-39 The RRS Resource Manager List showing the Gateway daemon status

 RRS Resource Manager List Row 1 to 1 of 1
Command ===> Scroll ===> PAGE

Commands: v-View Details u-View URs r-Remove Interest d-Delete RM
 n-Unregister RM

S RM Name State System Logging Group
 CICSTG.CTGALP00.ITSOCTG0 Run LP01 ITSOLP00

From the RRS Resource Manager List panel, you can inquire about the status of the Gateway
daemon as a Resource Manager and individual URs associated with the Gateway daemon.
204 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 11. CICS Transaction Gateway
Multiplatforms and Desktop
Edition configuration

This chapter explains the installation and configuration of CICS Transaction Gateway (CICS
TG) for Multiplatforms, using Windows for illustration and citing any major differences for
UNIX/Linux platforms. The information provided also applies to the CICS TG Desktop Edition
product, and the limitations of that product are highlighted, where applicable. The examples
that are provided use a remote mode configuration and include end-to-end secure
connectivity in a 3-tier system.

This chapter includes the following sections:

� 11.1, “Installing CICS TG” on page 206
� 11.2, “Configure the Gateway daemon” on page 207
� 11.3, “Starting and stopping CICS TG” on page 220
� 11.4, “Testing the Gateway daemon” on page 227
� 11.5, “Configuring secure connections” on page 230
� 11.6, “Client daemon configuration” on page 255

11
© Copyright IBM Corp. 2014. All rights reserved. 205

11.1 Installing CICS TG

As mentioned previously in 3.1, “Preparing to install CICS TG Multiplatforms and CICS TG
Desktop Edition in a distributed environment” on page 34, the installation image consists of
two files: the installer file and a readme file. This section works with the installer file. For the
purpose of this book, Windows Server 2012 and AIX 7.1 were used.

11.1.1 Installing on a Windows platform

CICS TG uses the InstallAnywhere installation manager. To start the installation, download
the product archive file, or eImage, to a temporary directory. Open the directory to verify the
contents. Product installation (and uninstallation) steps must be performed by a user with
Administrator authority.

The installation can be done in one of the following modes. The default mode is GUI.

� A GUI mode installation can be launched using the following command:

installer

� A console mode installation can be launched using the following command:

installer -i console

� An unattended installation can be launched using the following command:

installer -i silent -DLICENSE_ACCEPTED=true

If the installation is successful, the following message displays:

Installation: Successful.

You can find the installation logs in the following directory:

C:\Program Files (x86)\IBM\CICS Transaction Gateway\installlogs

11.1.2 Installing on a UNIX (AIX) platform

CICS TG uses the InstallAnywhere installation manager. To start the installation, download
the eImage to a temporary directory. Open the directory to verify the contents.

For UNIX platforms, the CICS TG installation process requires that the Korn shell is installed
on the system.

The installation of the CICS TG product must be performed by a user with root authority.

Before you install the CICS TG product, check the umask setting of the installing user to
ensure that files created during the installation are readable by the users that will run CICS
TG. A umask setting of 077 restricts access to the user who installed CICS TG; a umask setting
of 022 allows all users to run CICS TG.
206 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The installation can be done in one of the following modes. The default mode is GUI.

� A GUI mode installation can be launched using the following command:

installer

� A console mode installation can be launched using the following command:

installer -i console

� An unattended installation can be launched using the following command:

installer -i silent -DLICENSE_ACCEPTED=true

If the installation is successful, the following message displays:

Installation: Successful.

You can find the installation logs in the /opt/IBM/cicstg/installlogs directory.

11.2 Configure the Gateway daemon

This section describes the steps to configure the Gateway daemon for IPIC connectivity with
the CICS region, CICSTOR1, based on the definitions described in Chapter 9, “Configuring IPIC
in CICS Transaction Gateway for z/OS” on page 147. The CICS TG configuration is equally
valid for connection with a TXSeries region with an equivalent IPIC connection definition.

Now that CICS TG is installed, you need to configure it by creating a configuration file
(ctg.ini). To create a new configuration, either use the Configuration Tool or edit a copy of
the sample configuration file supplied in the product sample configuration directory:

<install_path>/samples/configuration/ctgsamp.ini

11.2.1 System-level configuration

This section describes the configuration steps required to be performed at the system level
before you create a CICS TG configuration file.

Location of the configuration file
CICS TG runtime components rely on a convention to locate the CICS TG configuration file.
Either the configuration file is in a default location or the location is defined by the
environment variable CICSCLI. The convention used for the location of the configuration file
uses the following sequence:

1. The location of the configuration file is defined by the CICSCLI environment variable.

2. If the CICSCLI environment variable is not defined, load the configuration file ctg.ini from
the default location:

– The <product_data_path> directory on Windows platforms, using the default file name:

c:\ProgramData\IBM\CICS Transaction Data\ctg.ini

– The <install_path>/bin directory on UNIX systems, using the default file name:

/opt/ibm/cicstg/bin/ctg.ini

Default values: The sample configuration file ctgsamp.ini specifies the default value of
each configuration attribute, where appropriate.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 207

If the CICSCLI environment variable is defined, the configuration tool will automatically attempt
to load from, and save to, the defined location and file name. Otherwise, the configuration tool
will automatically use the default location and file name.

The CICS TG configuration tool can save the configuration file to a specific file name and
location, independent of the CICSCLI environment variable and the default location. To do this,
use the menu option, File Save as.

The Gateway daemon and Client daemon components load their configurations by following
the same convention.

Setting the CICSCLI environment variable
For Windows systems, the CICSCLI environment variable must be set as a system variable to
be used by the IBM CICS Transaction Gateway service. Figure 11-1 shows the new CICSCLI
system variable created by going to Control Panel System Advanced system
settings Environment variables and then by selecting New.

Figure 11-1 Setting the CICSCLI system variable on Windows

For UNIX and Linux systems, the CICSCLI environment variable can be set by various means.
For production systems, it is suggested to set the CICSCLI environment variable using the
configuration file for the CICS TG daemon script, ctgd, as described in “Using the ctgd script”
on page 225.

For development and test systems, the CICSCLI environment variable can be set in the current
shell using the export command:

export CICSCLI=/etc/cicstg/cicstg.ini

Note: Setting a system variable on Windows requires Administrator privileges.
208 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

11.2.2 Gateway daemon configuration summary

To start using CICS TG, the majority of the configuration file parameters can be left at their
default values. However, to use CICS TG in remote mode with IPIC connectivity, the minimum
suggested configuration that we define includes these items:

� The PRODUCT section, where we need to identify the Gateway daemon to CICS on the
network for administrative and audit purposes

� The GATEWAY section. For this section, set the following parameters:

– adminport: Confirm that this port is not already in use on your system.

– protocol@tcp.handler and protocol@tcp.parameters: Enable the Gateway daemon to
accept requests using the TCP protocol and select the port on which it listens.

– One IPICSERVER section, where we need to define at least one CICS server.

Other parameters can be set to further customize your CICS TG configuration, including
configuration of the Client daemon when the CICS Family TCPIP protocol or Systems
Network Architecture (SNA) Advanced Program-to-Program Communication (APPC)
connectivity is required. The configuration described here is based on IPIC connectivity, but
11.6, “Client daemon configuration” on page 255 uses a CICS Family TCPIP protocol
connection to show how a Client daemon connection is configured.

The following sections describe the steps required to configure the Gateway daemon to
perform these tasks:

� Enable the tcp and statsapi protocol handlers for the Gateway daemon.
� Define an Internet Protocol interconnectivity (IPIC) connection to a CICS Transaction

Server for z/OS (CICS TS) server.

11.2.3 The PRODUCT section

The PRODUCT section of the configuration file defines product-wide settings. Figure 11-2 shows
the CICS Transaction Gateway panel of the configuration tool that is used to generate the
PRODUCT section of the configuration file.

Figure 11-2 The CICS Transaction Gateway panel in the configuration tool
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 209

Table 11-1 summarizes the values used in the PRODUCT section of the CICS TG configuration
file. The APPLID qualifier and APPLID values are not mandatory for the CICS TG for
Multiplatforms or CICS TG Desktop Edition products. However, defining an APPLID qualifier
and APPLID is a preferred practice for users of IPIC connections, because it helps to identify
a Gateway daemon as an IPIC partner for administration, monitoring, and audit purposes. If
they are omitted, CICS TG generates values specifically for IPIC connectivity.

The default server attribute is optional in the CICS TG configuration file, but it also represents
a preferred practice. It is applied to application requests that do not specify a CICS server.
The configuration tool forces the selection of a defined CICS server. However, at this stage,
we have not defined our CICS servers, and so the only possible option is the example CICS
server definition, ServerA.

The default server attribute can be set to our intended value after the CICS server is defined,
as explained in 11.2.5, “The IPICSERVER section” on page 216. The key ring attributes are
used for Secure Sockets Layer (SSL) connectivity, and they are described in “Configure the
Gateway daemon to use the new keystore” on page 234.

For more details, see the CICS Transaction Gateway for Multiplatforms Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Table 11-1 PRODUCT section user-initialized parameters

Figure 11-3 shows the PRODUCT section of the CICS TG configuration file, as it is generated by
the configuration tool at this intermediate stage. If you attempt to save the configuration at this
point, the configuration tool will alert you that there are errors, because the definition of
ServerA is incomplete.

Figure 11-3 Intermediate PRODUCT section generated from the configuration tool

Note: Some clients prefer that application requests that omit a value for the CICS server
fail, rather than be routed to a default CICS server. This can be achieved by setting the
default server to an undefined CICS server name. With the CICS TG for Multiplatforms and
CICS TG for Desktop Edition products, this results in such application requests receiving
an error, such as ECI_ERR_UNKNOWN_SERVER. This can only be achieved by manually editing
the configuration file.

Configuration parameter Parameter value Parameter usage

Applid CTGMWIN1 APPLID identifies the instance of CICS TG on
server connections, in messages and data
output, and tasks in a CICSplex.

Applid Qualifier CTGMP APPLID qualifier is a high-level qualifier for the
APPLID.

Default Server ServerA
(temporary)

Specify a CICS server name that is used by
CICS Transaction Gateway for client application
requests in which no CICS server name is
specified.

SECTION PRODUCT
 APPLID=CTGMWIN1
 APPLIDQUALIFIER=CTGMP
 DEFAULTSERVER=ServerA
ENDSECTION
210 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

11.2.4 The GATEWAY section

The GATEWAY section of the configuration file defines operating parameters for the Gateway
daemon. In the CICS TG configuration tool, the definitions that are used to generate the
GATEWAY section of the configuration file are defined using the Gateway daemon panel and its
Resources, Logging, and Monitoring tabs, which include panels for each type of protocol
handler.

Gateway daemon settings
Figure 11-4 shows the Resources tab on the Gateway daemon settings panel of the
configuration tool. Default values are used for each attribute on this tab except for “Enable
reading input from console.” This option is only suitable for development environments on
UNIX or Linux platforms, where the Gateway daemon is invoked explicitly through the
ctgstart command rather than with the CICS TG daemon script, ctgd, as described in
11.3.2, “The UNIX and Linux platforms” on page 224.

Figure 11-4 The Resources tab of the Gateway daemon settings panel of the configuration tool

Figure 11-5 on page 212 shows the GATEWAY section of the CICS TG configuration file
generated by the configuration tool.

Note: For the CICS TG Desktop Edition product, the following restrictions apply:

� Maximum number of connection manager threads (maxconnect) is limited to five.
� Maximum number of worker threads (maxworker) is limited to five.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 211

Figure 11-5 The first part of the GATEWAY section, generated by the configuration tool

Logging, monitoring, and statistics
The remaining two tabs in the Gateway daemon settings panel relate to log files (Figure 11-6,
the Logging tab), request monitoring and statistics (Figure 11-7 on page 214, the Monitoring
tab).

Figure 11-6 The Logging tab of the Gateway daemon settings panel

Gateway daemon log files
The option to display TCP/IP host names causes the Gateway daemon to perform a domain
name server (DNS) lookup on client IP addresses, which can have a performance impact.
This action can be useful in a development environment, but it is typically disabled for
production systems.

Logging client connections provides a useful audit log of client application location and
activity patterns, but it can produce excessive output if the remote applications do not cache
their connections between requests.

SECTION GATEWAY
 closetimeout=10000
 connectionlogging=on
 cicslogging=on
 initconnect=1
 initworker=1
 maxconnect=100
 maxworker=100
 noinput=on
 dnsnames=off
 trace=off
 workertimeout=10000
 adminport=2810
ENDSECTION
212 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Defining a single Gateway daemon log message file allows informational, warning, and error
log messages to be written to a single destination. The choice of using a single log file or
separate log files is up to you, but be aware that using a single file has the advantage of
showing the error and warning messages within the context of informational log messages.

Location of Gateway daemon log files
Determine the location of the CICS TG log files to use a file name and a directory that are not
part of the product installation directory structure. The following guidelines represent the
preferred practice on each platform:

� Windows: The default location for the log files is the IBM\CICS Transaction Gateway
subdirectory, in the Windows common application data directory, for example:

C:\ProgramData\IBM\CICS Transaction Gateway

� UNIX/Linux systems: The default location for the log files is the <install_path>/bin
directory. It is suggested to configure the Gateway daemon log files to use the default
location of the Client daemon log files (/var/cicscli). This configuration can be
implemented using the following pair of log handler definitions:

log@info.dest=file
log@info.parameters=filename=/var/cicscli/cicstg.log;maxfiles=1;filesize=0;
log@error.dest=file
log@error.parameters=filename=/var/cicscli/cicstg.log;maxfiles=1;filesize=0;

Configuring CICS TG statistics
The Monitoring tab is used to configure the timing of CICS TG statistics collections, and
whether they are recorded to an external file at collection interval boundaries. Figure 11-7 on
page 214 shows this configuration, where the default interval of 3 hours is accepted with a
logical end of day at local midnight. (The regular statistics intervals align with the logical end
of day.) Figure 11-7 on page 214 also shows that statistics recording is enabled. A full set of
CICS TG statistics is encoded as XML at the end of each statistics interval and appended to
the defined statistics log file, providing a historical record of CICS TG activity.

The specified Statistics log filename attribute is actually used as a template. Each time
that the Gateway daemon starts, a time stamp is used to create a new statistics log file. The
time stamp is inserted before the file name extension, or appended to the file name if no
extension is specified. For example, using the configuration shown in Figure 11-7 on
page 214, a statistics log file can be created when the Gateway daemon starts on this path:

C:\monitoring\ctgstats_20140129-144745.xml

If the Statistics log file name is defined to a location that is not available, the Gateway daemon
issues an error log message, CTG8476E. Example 11-1 shows the error that is generated when
the target directory (C:\monitoring) does not exist.

Example 11-1 The Gateway daemon error log message when the statistics log destination is not available

CTG8478E Unable to create statistics log file C:\monitoring\ctgstats_20140207-102525.xml, error:
C:\monitoring\ctgstats_20140207-102525.xml (The system cannot find the path specified.)
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 213

Figure 11-7 The Monitoring tab on the Gateway daemon settings panel of the configuration tool

A sample formatting program, Ctgstat2, is provided to process the XML-formatted statistics
log file and produce human-readable output. For more details, search for the CICS TG for
Multiplatforms Information Center topic, Java Ctgstat2 statistics recording sample:

http://ibm.co/1plHD3c

Request monitoring exits
Request monitoring exits are not defined in this configuration because monitoring and
statistics are not the focus of this book. For details about configuring request monitoring exits,
search for the CICS TG for Multiplatforms Information Center topic, Request monitoring exits
configuration:

http://ibm.co/1szyold

These parameter settings cause the entries shown in Figure 11-8 on page 215 to be
generated in the GATEWAY section of the configuration file.

Note: Statistics recording for CICS TG for Multiplatforms and CICS TG Desktop Edition is
available in Version 9.0 or later.

Note: When the statistics log file is defined without a fully qualified path, the statistics log
file is created relative to the default path for the platform. Here are the details:

� Windows: The log file is created in the IBM\CICS Transaction Gateway directory, in the
Windows common application data directory, for example, C:\ProgramData\IBM\CICS
Transaction Gateway. Note that double backslash characters (\\) are required to
represent a single backslash in a Windows path due to Java string-formatting
conventions.

� UNIX and Linux: The log file is created in the /var/cicscli directory.
214 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1plHD3c
http://ibm.co/1szyold

Figure 11-8 The logging and statistics components of the configuration file

Configure the tcp and statsapi protocol handlers
The final part of the GATEWAY section contains the Gateway daemon protocol handler
definitions. The protocol handlers define the entry points to the Gateway daemon for
application requests, statistics API tools (such as the CICS Explorer and IBM Tivoli
OMEGAMON for CICS), and administration functions through the ctgadmin utility.

A common option of the TCP, SSL, and Statistics API protocol handler definitions is the bind
address. This attribute restricts the protocol handler to listening on a specific IP address, and
it supports both IPV4 and IPV6 formats. The default for this parameter is no bind restrictions,
and the protocol handler binds to all host addresses available on the system.

Figure 11-9 shows the TCP/IP settings panel in the CICS TG configuration tool that is used to
define the tcp protocol handler.

Figure 11-9 Gateway daemon TCP/IP settings panel of the configuration tool for the tcp protocol
handler

log@statistics.dest=file
log@statistics.parameters=filename=C:\\monitoring\\ctgstats.xml

log@info.dest=file
log@info.parameters=filename=cicstg.log;maxfiles=1;filesize=0;

log@error.dest=file
log@error.parameters=filename=cicstg.log;maxfiles=1;filesize=0;

statint=030000
stateod=000000
statsrecording=on
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 215

Figure 11-10 shows the Gateway daemon tcp and statsapi protocol handler definitions that
are generated by the configuration tool (the long second line wraps to a new line due to the
limited width of this page).

Figure 11-10 The tcp and statsapi protocol handler definitions generated by the configuration tool

Protocol handler definitions can be split between multiple lines using the backslash character
as a line continuation marker. For examples, see the product sample configuration file,
ctgsamp.ini.

For more details about Gateway daemon tcp protocol handler definitions, search for the CICS
TG for Multiplatforms Information Center topic, TCP protocol parameters:

http://ibm.co/1szyvNy

For more information about Gateway daemon statsapi protocol handler definitions, search
for the information center topic, Statistics API protocol parameters:

http://ibm.co/1szyBF3

11.2.5 The IPICSERVER section

The IPICSERVER section of the configuration file defines a connection from the Gateway
daemon to a CICS server using the IPIC protocol. The configuration tool creates IPICSERVER
definitions in the configuration file whenever a CICS server is defined with the Network
protocol attribute set to IPIC. If this attribute is set to TCP/IP or SNA, a SERVER definition is
created.

As described in 11.2.3, “The PRODUCT section” on page 209, at least one CICS server,
ServerA, is defined automatically, but incompletely, by the configuration tool. Figure 11-11 on
page 217 shows this CICS server entry after it is modified to match the TCPIPService
definition installed in CICSTOR1 (as described in 9.2.3, “TCPIPSERVICE resource definition”
on page 151) and the IPConn definition (described in “Defining the IPCONN for the Gateway
daemon on Multiplatforms” on page 155).

protocol@tcp.handler=com.ibm.ctg.server.TCPHandler
protocol@tcp.parameters=connecttimeout=2000;idletimeout=600000;pingfrequency=60
000;port=2006;bind=;solinger=0;
protocol@statsapi.handler=com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters=port=2980;bind=;connecttimeout=2000;maxconn=5

Note: For this configuration, the default values for all attributes on the tcp and statsapi
protocol handlers are used.
216 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1szyvNy
http://ibm.co/1szyBF3

Figure 11-11 The Server connection panel of the configuration tool for IPIC connection CICSTORI

The Host name, Port, Send sessions, Target APPLID, and Target APPLID qualifier attributes
are set to match the definitions in Chapter 9, “Configuring IPIC in CICS Transaction Gateway
for z/OS” on page 147. Default values are acceptable for the Server retry interval, Send
TCP/IP KeepAlive packets, and Use SSL attributes.

The Connection timeout default value of 0 means that the Gateway daemon will wait forever,
or until there is a network error, to establish an IPIC connection to a CICS server, for example,
if the server is not immediately available because it is being recycled. It is better to specify a
non-zero value, but the correct value will depend on specific requirements.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 217

If a CICS server is unavailable, the Server retry interval value added to the Connect timeout
value represents the maximum time that an application might wait before receiving an error
response. If a connection attempt does not complete before reaching the Connect timeout
value, the Gateway daemon will not attempt to connect again until the Server retry interval
expires. Application requests that are received by the Gateway daemon during the Server
retry interval for the IPIC connection will immediately receive an error response.

The Server idle timeout default value of 0 means that an established IPIC connection will
remain connected when the workload stops. Again, there is no correct setting to suit all
situations, but we chose a value of 60 (1 hour) simply to illustrate the decision point.

The ECI timeout attribute allows the system administrator to override application-specific
timeout values. It is especially useful for situations when a badly designed application
specifies an ECI timeout of 0.

Figure 11-12 shows the IPICSERVER section of the CICS TG configuration file, which is
generated by the configuration tool.

Figure 11-12 The IPICSERVER section for CICSTORI generated by the configuration tool

Note: The Server retry interval attribute is available in CICS TG products starting with
Version 8.1.

Note: The ECITIMEOUT attribute is available in CICS TG products starting with Version 9.0.

SECTION IPICSERVER = CICSTORI
 DESCRIPTION=CICS TOR region 1 IPIC
 SRVIDLETIMEOUT=60
 HOSTNAME=lp01.redbooks.ibm.com
 PORT=9000
 CONNECTTIMEOUT=15
 SRVRETRYINTERVAL=60
 TCPKEEPALIVE=Y
 SENDSESSIONS=50
 ECITIMEOUT=120
 CICSAPPLID=S20351T1
 CICSAPPLIDQUALIFIER=USIBMSC
 SSL=N
ENDSECTION

Note: For CICS TG Desktop Edition, IPIC send sessions (sendsessions) are limited to a
maximum value of 5.
218 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Table 11-2 summarizes the attributes and values used to define the CICS server CICSTORI,
representing an IPIC connection to the CICS region, CICSTOR1.

Table 11-2 IPICSERVER definition for CICSTORI

For additional information about defining IPIC connections, see the Configuring IPIC topic in
the CICS Transaction Gateway for Multiplatforms Information Center:

http://ibm.co/1qPtXid

Update the default server definition
With the CICS server CICSTORI now defined, it can now be selected as the default server on
the CICS Transaction Gateway panel of the configuration tool. Figure 11-13 shows the
updated PRODUCT section of the CICS TG configuration file.

Figure 11-13 Completed PRODUCT section including the correct default server definition

Configuration parameter Parameter value Parameter usage

Server name CICSTORI Use this name for all requests to access
the server from client applications.

Description CICS TOR region 1 IPIC The description for the server. This is
optional but useful to identify this server
definition.

Hostname lp01.redbooks.ibm.com The host name to which the CICS
TCPIPService is bound.

Port 9000 The port number on which the target
CICS server is listening.

Send sessions 50 The number of simultaneous
transactions, or CICS tasks, that are
allowed over the connection. This is
limited by the ReceiveCount attribute of
the CICS IPCONN definition.

Target APPLID S20351T1 The APPLID of the target CICS server.
This field is optional unless the
CICSAPPLIDQUALIFIER is specified. If
specified, the CICSAPPLID must match
the APPLID of the target CICS server.

Target APPLID qualifier USIBMSC This field is optional unless CICSAPPLID
is specified. If specified, the
CICSAPPLIDQUALIFIER must match
the network ID of the target CICS server.

Use SSL N This indicates that the connection is not
using the SSL protocol.

Use only these cipher suites Required ciphers or blank This is only required for SSL
connections.

SECTION PRODUCT
 APPLID=CTGMWIN1
 APPLIDQUALIFIER=CTGMP
 DEFAULTSERVER=CICSTORI
ENDSECTION
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 219

http://ibm.co/1qPtXid

The CICS TG configuration file can now be used to start the Gateway daemon and run a test
Java application.

11.3 Starting and stopping CICS TG

Depending on the platform that you are using, you can start and stop CICS TG using several
methods. This section explains how to use Services for Windows platforms and the ctgd
command for UNIX platforms. It also describes using the ctgadmin command on all
distributed platforms. For details about these topics, see the CICS Transaction Gateway
Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

11.3.1 The Windows platform

For the Windows platform, the suggested method of starting CICS TG in a production
environment is by using the Services option. This allows the CICS TG service to start
automatically when the Windows machine is restarted.

The ctgadmin command provides an alternative means of controlling the CICS TG service,
more suited to development and test environments, where configuration options are likely to
be changed more frequently. For more detail, see “Using the ctgadmin command” on
page 223.

When using the Windows service, remember the following important tips:

� To interact with Services through the standard Windows services administration
interfaces, you must have Administrator authority.

� You can interact with Services using either the Local Server Services manager or the
command line. Here is an example of starting the CICS TG service from the command
line:

net start "IBM CICS Transaction Gateway"

� After the CICS TG configuration file is in place and verified, it makes sense to modify the
Startup Type to Automatic to ensure that CICS TG is always initialized following events,
such as a reboot of the Windows machine. Follow these steps:

a. From the Control Panel, choose Administrative tools to go into the Services
administration window (Figure 11-14 on page 221) on the system that is running
CICS TG.

Note: The full name of the Windows service installed by the CICS TG products is IBM
CICS Transaction Gateway. In this chapter, it is referred to as the CICS TG service.

Note: CICS TG for Multiplatforms V9.0 and CICS TG Desktop Edition V9.0 APAR
PI06582 allow an Administrator to grant permission for starting and stopping the
CICS TG service to any user or group.
220 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Figure 11-14 The IBM CICS Transaction Gateway entry in the Services administration window

b. Search through the services on the system until you find the IBM CICS Transaction
Gateway service. By default, the Startup Type is set to Manual. Right-click the service
entry and select Properties.

c. In the dialog box labeled IBM CICS Transaction Gateway Properties (Local Computer),
go to the General tab and select Automatic from the Startup Type drop-down list, as
shown in Figure 11-15.

d. Click Apply.

Figure 11-15 Modifying the startup type for the IBM CICS Transaction Gateway service

With the Startup type set to Automatic, the CICS TG service will now start whenever the
system is restarted.

� You can still choose to control the service manually, such as for a development or test
system where the configuration is modified frequently. Simply click Start or Stop in the
Service administration window (Figure 11-14).
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 221

Overriding the CICS TG configuration
Certain characteristics of the Gateway daemon cannot be determined by attributes specified
in the CICS TG configuration file. One example is a parameter specifically for the Java virtual
machine (JVM), such as the maximum heap size. The size of the Java heap must sometimes
be increased from the default size to support larger workloads.

It can also be useful to make adjustments in a development environment, such as to evaluate
the effects of a change, without modifying the CICS TG configuration file, or to override
default values in a shared CICS TG configuration file.

The ctgservice command on Windows allows you to make these customizations. Overrides
that are specified using the ctgservice command are stored in the Windows registry and
remain in place when the CICS TG service is restarted or the machine is restarted.
Figure 11-16 shows the output from using the ctgservice command shown here to specify a
512 MB Java heap and a request monitoring exit for the Gateway daemon:

ctgservice -R -A-j-Xmx512
 -A-requestExits=com.ibm.ctg.samples.requestexit.BasicMonitor

Figure 11-16 Using the ctgservice command to configure the Gateway daemon

Figure 11-17 on page 223 shows the help text from the ctgservice command.

Note: If the CICS TG service fails to start, a generic Windows error dialog box suggests
that you “Review the System Event Log and Contact the service vendor”. It can also
provide a service-specific error code, such as 109 even though “109” is not a documented
CICS TG error code. Contrary to the advice in the Windows error dialog box, better
guidance for such problems is provided in the Application Event Log. Messages, such as
CTG9549E, refer to appropriate further diagnostics, such as the Gateway daemon error log.

Note: On Multiplatforms, the default Java heap size is 128 MB.

CTG9512I CTGSERVICE - CICS Transaction Gateway Windows Service Utility
CTG9513I (C) Copyright IBM Corporation 2009, 2013. All rights reserved.

CTG9518I Gateway daemon parameter overrides are:
 -A-j-Xmx512
 -A-requestExits=com.ibm.ctg.samples.requestexit.BasicMonitor
222 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-17 Command-line help output for the ctgservice command

Using the ctgadmin command
You can also interact with Windows services by using the ctgadmin command. To begin, type
this string:

C:\Users\Administrator>ctgadmin -a start

The details are listed for the full suite of ctgadmin command options for the Windows platform.
Note that both a start option and a shut option are available. For more information about
action-specific options, enter -? after specifying -a or -msg (for example, ctgadmin -a trace
-?).

� Usage:

ctgadmin [-adminport <number>] [-dbg [<filename>]] -a <action> [<action
specific options>] | -msg <message id>

C:\Users\Administrator>ctgservice -?
CTG9512I CTGSERVICE - CICS Transaction Gateway Windows Service Utility
CTG9513I (C) Copyright IBM Corporation 2009, 2013. All rights reserved.

Command options are:
-R Register Gateway daemon parameter overrides
 [-A<Param1> [-A<Param2> ...]]
-T Display Gateway daemon parameter overrides

The following parameter overrides are valid:
 -port=<port_number> - TCP/IP port for tcp protocol
 -sslport=<port_number> - SSL port for ssl protocol
 -keyring=<keyring> - keyring for use with the ssl protocol
 -keyringpw=<keyring_pw> - keyring password for use with the ssl protocol
 -adminport=<port_number> - TCP/IP port for local administration
 -statsport=<port_number> - TCP/IP port for statistics API requests
 -initconnect=<number> - Initial number of connection manager threads
 -maxconnect=<number> - Maximum number of connection manager threads
 -initworker=<number> - Initial number of worker threads
 -maxworker=<number> - Maximum number of worker threads
 -trace - Enable standard trace
 -dnsnames - Use DNS to display symbolic TCP/IP host names
 -tfile=<filename> - Trace file name
 -x - Enable full detailed trace
 -tfilesize=<number> - Maximum trace file size in kilobytes
 -truncationsize=<number> - Maximum size of trace data blocks in bytes
 -dumpoffset=<number> - Byte offset in data to start trace output
 -stack - Switch on exception stack trace
 -j<argument> - argument to pass to the JVM
 -classpath=<class path> - additional entries to append to JVM class path
 -requestExits=<exits> - list of classes to be used for request exit
monitoring

Parameter overrides override those in the configuration file
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 223

� Command options:

-a <action> The action to be performed

-adminport <number> The port used to communicate with the CICS TG service (default is
2810)

-dbg [<filename>] Output trace to stderr, or <filename> if specified

-msg <message id> Display an explanation for the specified message

� Available actions:

start Start the CICS TG service
shut Shut down the CICS TG service
trace Display or change Gateway daemon trace settings
stats Display statistics about the CICS TG
dump Requests status dumps from the CICS TG
rmexit Interact with the request monitoring exits
crexit Interact with the CICS request exit

11.3.2 The UNIX and Linux platforms

For the UNIX and Linux platforms, while you can manually control the Client and Gateway
daemon processes independently through the command-line shell, it is a preferred practice to
control both daemon processes as a pair. Operating both daemon processes as a single
service is a preferred practice for production systems, because restarting one without the
other is not a supported operation.

The supplied daemon script, ctgd, provides a UNIX System V service interface where you
can enable both Client and Gateway daemon processes to start during system initialization.

Independent control of the Client and Gateway daemon processes can be appropriate for a
development or test system, where the configuration is modified frequently. In these
instances, the ctgstart command is used directly from the command-line shell to start the
Gateway daemon. With command-line input enabled, the Gateway daemon can be shut down
by entering Q (quit) or I (Immediate) in the ctgstart shell session. Similarly, the cicscli
command can be used to manually administer the Client daemon.

Configuring CICS TG as a daemon process
To configure the CICS TG daemon process by using ctgd, the system administrator must
customize a copy of the sample shell script, ctgdsamp.conf. This secondary shell script is
invoked by ctgd to establish several necessary details about the system through specific
environment variables:

� The install path to Java

� The location of the CICS TG configuration file

� Configuration overrides for the ctgstart script

� The Gateway daemon administration port (used by the ctgadmin command)

This overrides the port number specified in the restrictedtcphandler, defined in the
CICS TG configuration file. This is useful when using a shared configuration file.

Note: The ctgd command provides a way for both the system itself, and a system operator,
to control the CICS TG service.
224 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The sample configuration script for ctgd, ctgdsamp.conf, includes comments for each
environment variable. It is provided in the product directory:

<install_path>/samples/configuration

Example 11-2 shows a sample configuration script for ctgd, including override values for the
Gateway daemon in the CTGD_PARAMS environment variable (where the Gateway daemon JVM
is configured with a maximum Java heap size of 512 MB and a request monitoring exit). The
ctgstart script requires the user and group security attributes for the Gateway daemon and
Client daemon processes, plus the port number where the Gateway daemon will listen for
ctgadmin requests. The three exported variables shown in the sample, CICSCLI, CTG_JAVA,
and CLASSPATH, are explicitly exported because they are required by the CISC TG processes
at run time. Other script variables with a prefix of CTGD are used exclusively within the scope
of the ctgd daemon script and therefore do not require an export statement.

Example 11-2 Sample ctgd configuration script that is called by ctgd and defined by CTGDCONF

CTGD_USER=nobody
CTGD_GROUP=nobody
CTGD_ADMINPORT=2810
CTGD_PARAMS="-j-Xmx512M -requestExits=com.ibm.ctg.samples.requestexit.BasicMonitor
"
export CICSCLI=/opt/ibm/cicstg/bin/ctg.ini
export CTG_JAVA=/opt/ibm/cicstg/jvm17/bin/java
export CLASSPATH=/opt/ibm/cicstg/classes/ctgsamples.jar

The daemon script, ctgd, uses the environment variable CTGDCONF to determine the
configuration script’s location and file name. This means that CTGDCONF must be set at the
system level for ctgd to locate the configuration script during system initialization. UNIX and
Linux system administrators can use their preferred method of setting CTGDCONF, if it is
available when ctgd is invoked during system initialization.

If the CTGDCONF environment variable is not set, ctgd expects to find a script in the default
location:

<install_path>/bin/ctgd.conf

Using the ctgd script
After it is configured, ctgd can be used to start the CICS TG service automatically during
system initialization and stop the CICS TG service automatically during system shutdown. In
this way, ctgd manages both the Gateway daemon and Client daemon processes in unison.

Automatic control of the CICS TG daemon service can be implemented according to the
convention best suited to a particular operating system. Systems administrators on AIX might
prefer to add an entry for ctgd to the file /etc/inittab, for example:

<install_path>/bin/ctgd

Alternative implementations rely on adding a symbolic link to the ctgd shell script,
<install_path>/bin/ctgd, to the appropriate system directory, for example, /etc/init.d on
Linux systems.

Note: Values specified in the ctgd configuration script override equivalent attributes
specified in the CICS TG configuration file.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 225

The ctgd script can also be used directly by a system administrator to start and stop the CICS
TG service. To run the ctgd script from a command line, open a shell session and enter the
following command:

ctgd {start|stop}

For more information about ctgd, search for the CICS TG for Multiplatforms Information
Center topic, Running the Gateway daemon as a background process:

http://ibm.co/1mphTA7

Using the ctgadmin command
The ctgadmin command provides the ability to interact with the Gateway daemon and has one
overlapping feature with ctgd, which is shutdown. The preferred practice is to use ctgd for
start or stop operations, and ctgadmin for other administrative purposes.

A full list of ctgadmin command functions on UNIX and Linux follows:

� Usage:

ctgadmin [-adminport <number>] [-dbg [<filename>]] -a <action> [<action
specific options>] | -msg <message id>

� Command options:

-a <action> The action to be performed

-adminport <number> The port used to communicate with the Gateway daemon (default
is 2810)

-dbg [<filename>] Output trace to the standard error destination (stderr) stderr, or
<filename> if specified

-msg <message id> Display an explanation for the specified message

� Available actions:

shut Shut down the Gateway daemon
trace Display or change Gateway daemon trace settings
stats Display statistics about the CICS TG
dump Requests status dumps from the CICS TG
rmexit Interact with the request monitoring exits
crexit Interact with the CICS request exit

Remember: You must have a valid ctgd.conf file to execute the ctgd command. The
default location and name for the ctgd configuration file is <install path>/bin/ctgd.conf.

Note: In contrast to ctgadmin on Windows operating systems, there is no start action on
UNIX and Linux systems because running the CICS TG processes as a service is not
mandatory. If ctgd is not configured, there can be no daemon service to start.
226 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1mphTA7

Using console mode
The final way to administer CICS TG is by using the ctgstart script, and the cicscli
command, through a user console. This method is acceptable for a development or test
system where the configuration is modified frequently. Be aware that the CICS TG processes
run under the security context of the console user.

The ctgstart script is used to start both the Gateway daemon and the Client daemon. It has
this syntax:

ctgstart <options> [<-j>JVMArg1 <-j>JVMArg2...] [<-c>CicscliArg1
<-c>CicscliArg2...]

The ctgstart script accepts many optional parameters, shown in Example 11-3 on page 227,
to override attributes that are otherwise taken from the CICS TG configuration file.

Example 11-3 Parameters for the ctgstart script

-port=<port_number> TCP/IP port for TCP protocol
-sslport=<port_number> SSL port for SSL protocol
-keyring=<keyring> Key ring for use with the SSL protocol
-keyringpw=<keyring_pw> Key ring password for use with the SSL protocol
-adminport=<port_number> TCP/IP port for local administration
-statsport=<port_number> TCP/IP port for statistics API requests
-initconnect=<number> Initial number of connection manager threads
-maxconnect=<number> Maximum number of connection manager threads
-initworker=<number> Initial number of worker threads
-maxworker=<number> Maximum number of worker threads
-trace Enable standard trace
-quiet Disable reading/writing to/from console
-dnsnames Use DNS to display symbolic TCP/IP host names
-tfile=<filename> Trace file name
-x Enable full detailed trace
-tfilesize=<number> Maximum trace file size in kilobytes
-truncationsize=<number> Maximum size of trace data blocks in bytes
-dumpoffset=<number> Byte offset in data to start trace output
-stack Switch on exception stack trace
-j<argument> Argument to pass to the JVM
-classpath=<class path> Additional entries to append to JVM class path
-c<argument> Argument to pass to the cicscli command
-requestExits=<exits> List of classes to be used for request exit monitoring

11.4 Testing the Gateway daemon

You can now test the Gateway daemon that you configured in 11.2, “Configure the Gateway
daemon” on page 207.

This section explains how to test the Gateway daemon by using the Java sample programs,
EciB1 and EciB3. The source code for these sample programs is in the product directory:

<install_path>\samples\java\com\ibm\ctg\samples\eci

Note: The Client daemon is administered through the cicscli command, but that
command is not described here because the focus of this chapter is IPIC connectivity and
security. The Client daemon is not used for IPIC connectivity.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 227

There is no need to compile the Java samples from the source code because the CICS TG
product installation includes a JAR file with precompiled versions of each sample. To use the
precompiled Java samples, ensure that the CICS TG product files ctgsamples.jar and
ctgclient.jar are included on the CLASSPATH environment variable of the test system.

11.4.1 Start the Gateway daemon

Verify that the Gateway daemon initialized successfully. Verify that it is listening for application
requests on the intended port number. Example 11-4 on page 228 shows selected log
messages from the Gateway daemon initialization.

Example 11-4 Log messages verifying Gateway daemon configuration and initialization

CTG8400I Using configuration file C:\config\ctg.ini
CTG8426I The APPLID is CTGMWIN1
CTG8427I The APPLID qualifier is CTGMP
CTG6577I Java details: Version=1.7.0 - 32-bit, Path=C:\Program Files
(x86)\IBM\CICS Transaction Gateway\jvm17\bin\java.exe
CTG6502I Initial Connection managers = 1, Maximum Connection managers = 100
CTG6526I Initial workers = 1, Maximum workers = 100
CTG6505I Successfully created the initial connection manager and Worker threads
CTG6524I Successfully started handler for the tcp: protocol on port 2006
CTG6524I Successfully started handler for the statsapi: protocol on port 2980
CTG8481I Statistics recording is enabled to statistics log file
C:\monitoring\ctgstats_20140207-103224.xml
CTG6512I CICS Transaction Gateway initialization complete
CTG6411I Interval statistics are active with the statistics interval length set to
3 hours, 0 minutes and 0 seconds
CTG6415I The statistics end of day time is set to 00:00:00 Greenwich Mean Time

11.4.2 Test the connection

Use the EciB1 sample to run a basic test to prove connectivity with the Gateway daemon. You
can run this sample in remote mode to flow an ECI request through the Gateway daemon to a
CICS server. Provided the CICS server has the EC01 program installed, as described in 9.3,
“The sample application programs” on page 156, EciB1 returns the current date and time, as
determined by EC01.

This program is useful for testing connectivity to the Gateway daemon and CICS server,
regardless of the platform on which CICS TG is installed or how the CICS server is
connected. With the environment configured, run the following command:

Java com.ibm.ctg.samples.eci.EciB1 localhost 2006

The sample program presents a list of CICS servers that are defined in the Gateway daemon
configuration file and prompts you to select one of those servers. In the example shown in
Figure 11-18 on page 229, the TCP/IP protocol server is selected and the time and date from
the CICS server are returned.

Note: If CICS TG is installed on a different machine than your test system, ensure that you
use the IP address or host name for that machine rather than localhost, as shown in the
example.
228 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-18 EciB1 test output using the IPIC connection

11.4.3 Test the channel and container support

Perform further testing with the EciB3 sample program, which uses channels and containers.
This program is supported only when using the IPIC protocol. EciB3 requires that the CICS
server program EC03 is available, as described in 9.3, “The sample application programs” on
page 156.

Run the following command:

Java com.ibm.ctg.samples.eci.EciB3 localhost 2006

If this test runs successfully, it sends user-entered text using channels and containers to the
selected CICS server. The data that is sent to the EC03 program is returned in an output
container, together with separate containers for the current date and time, and the length of
the user data. See Figure 11-19 on page 230.

CICS Transaction Gateway Basic ECI Sample 1

Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to localhost port:2006.

CICS servers defined:

 1. CICSTORI -CICS TOR region 1 IPIC

Choose server to connect to, or q to quit:
1

Program EC01 returned with data:-

 Hex: 32302f30362f31332030353a31323a34340
 ASCII text: 20/06/13 05:12:44
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 229

Figure 11-19 EciB3 test output using IPIC connection with ECI channel and container support

11.5 Configuring secure connections

In a remote mode configuration, SSL can be used on client connections to the Gateway
daemon and on IPIC connections between the Gateway daemon and the CICS server (CICS
TG for z/OS regions and TXSeries regions). This section describes the steps required to
configure and test both parts of a secure 3-tier system.

The following levels of security are possible:

� Secure Sockets Layer (SSL) server authentication
� SSL client authentication

During server authentication, a connection is established only if the client trusts the server
based on the information that is presented by the server to the client in its certificate. If client
authentication is enabled, the client also sends its certificate information to the server. A
connection is then established only if the client trusts the server and if the server trusts the
client, based on the information exchanged in both certificates.

In addition, the following types of certificates can be used:

� Self-signed certificates
� Signed authority certificates

The signed authority certificate is typically provided to you (or purchased). The self-signed
certificate is created by the user and it is considered less secure, but it is adequate for the
purpose of this book. The following subsections use a self-signed client certificate for the
application-to-Gateway daemon secure connection, and they use the exported self-signed
certificate authority (CA) from the CICS configuration (described in 9.4.1, “Create a key ring
for CICS” on page 163) for the Gateway-to-CICS secure connection.

CICS Transaction Gateway Basic ECI Sample 3

Usage: java com.ibm.ctg.samples.eci.EciB3 [Gateway URL]
 [Gateway port number]
 [SSL keyring
 SSL password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the gateway has been set to localhost port 2006
CICS servers defined:
 1. CICSTORI -CICS TOR region 1 IPIC

Choose server to connect to, or Q to quit: 1

Enter text to send to the CICS program: This is REDBOOKS test data

Program EC03 returned 4 containers in channel "SAMPLECHANNEL":
 [CHAR] CICSDATETIME = 20/06/2013 07:34:50
 [CHAR] INPUTDATA = This is REDBOOKS test data
 [CHAR] OUTPUTMESSAGE = Input data was: This is REDBOOKS test data

 [BIT] INPUTDATALENGTH = 0000001a
230 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

11.5.1 Secure the Gateway daemon

The first step in establishing secure connectivity to or from the Gateway daemon is to provide
it with the necessary credentials to authenticate itself with securely connected components.
Here, a self-signed personal certificate is created for the Gateway daemon.

Create and populate the Gateway daemon key ring
To configure the Gateway daemon for SSL server authentication, first create a Java keystore
and a certificate for the Gateway daemon to identify itself. To create a Java keystore and
Gateway daemon personal certificate, use the iKeyman tool, which is in the jvm/bin directory
of CICS TG product installation. To start the tool, enter iKeyman at a command prompt or
through Windows Explorer, as shown in Figure 11-20. Alternatively, you can use the keytool
command-line utility, which is in the same directory.

Figure 11-20 Locating and launching the iKeyman tool on Windows

Note: The creation of Java keystores in the following subsections is described using the
IBM Key Management (iKeyman) tool. However, this tool is only available with an
IBM-supplied Java Runtime Environment (JRE). The preferred practice today is to use the
keytool command-line utility, which is included in IBM and non-IBM JRE implementations.
You can use keytool in place of iKeyman to create the Java keystores described in this
chapter, using the same syntax shown in “Create and populate the client keystore” on
page 190.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 231

Figure 11-21 shows the window that opens when the tools starts, before a keystore is created
or opened.

Figure 11-21 The opening view of the iKeyman tool

Follow these steps to create the Gateway daemon personal certificate by using the iKeyman
tool:

1. Select Key Database File New to create a Java keystore file.

Set the Key database type to JKS and choose a suitable location and file name (in this
example, we use C:\config\Gateway-MWIN1.jks). In addition, provide a password for the
Gateway daemon Java keystore (we use the password cmVkYm9vawZ9).

If the Java keystore is created, ikeytool returns to the default view and shows the
following status message:

The requested action has successfully completed! The current key store is also
shown in ikeyman Window title.

2. Select Personal Certificates from the Key database content drop-down list, if it is not
already selected, and then click New Self-Signed. This action displays the dialog box for
creating a new self-signed certificate, shown in Figure 11-22 on page 233.
232 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-22 Create New Self-Signed Certificate dialog box

3. Complete the certificate request based on the guidelines in Table 11-3. The subset of
entry fields used is adequate for the purpose of this book, but you can choose to include
more details, as appropriate.

Table 11-3 Gateway daemon certificate values

iKeyman field Value

Key Label Enter a label to identify the Gateway certificate, such as
Gateway-mwin1-itso.

Version Select X509 V3.

Key Size Select 1024.

Common Name Enter the host name of the Gateway daemon machine, such as
ctgwin1.redbooks.ibm.com.

Organization Enter the name of your organization, such as ITSO.

Organizational Unit Enter the unit within your organization, such as Redbooks.

Country Select a two-character ID from the list.

Validity Period The default is 365 days.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 233

4. Select OK. This selection generates a certificate that includes a public/private key pair and
places them in the Java keystore. The name of the self-signed certificate, as you entered it
in the Key Label field, is displayed in the Personal Certificates area of the window
(Figure 11-23).

Figure 11-23 The Gateway daemon keystore with a self-signed personal certificate

Configure the Gateway daemon to use the new keystore
Now that the certificates are in place, you can configure CICS TG to use them. This involves
updating the PRODUCT section of the CICS TG configuration file with the details of the Gateway
daemon key ring file (the Java keystore created in “Create and populate the Gateway daemon
key ring” on page 231). Figure 11-24 on page 235 shows the updated CICS Transaction
Gateway panel of the configuration tool, which equates to the PRODUCT section of the
configuration file.
234 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-24 The CICS Transaction Gateway panel in the configuration tool with key ring details

The Key ring file and Key ring password fields must be completed if the SSL protocol is
configured for client requests to the Gateway daemon, or if the SSL protocol is to be used for
IPIC connections to CICS servers. Use the guidelines presented in Table 11-4.

Table 11-4 PRODUCT section parameters and values for the Gateway daemon key ring

Figure 11-25 on page 236 shows the updated PRODUCT section of the CICS TG configuration
file, including details of the Gateway daemon key ring.

Parameter Value Usage

Key ring file C:\Users\Admini
strator\Gateway
-MWIN1.jks

Java keystore file. Provide either the fully
qualified path to the file or the file name if it is in
the <install_path>/bin directory.

Key ring password cmVkYm9vawZ9 Password for the Java keystore file. When the
password is entered using the configuration tool,
it is encrypted automatically.

Note: CICS TG V9.0 introduced SSL for IPIC connections in remote mode configurations.
In previous releases, the key ring is defined by the SSL protocol handler in the GATEWAY
section of the CICS TG configuration file. To use SSL for IPIC connections in V9.0, or later,
the key ring file and key ring password are defined in the PRODUCT section of the CICS TG
configuration file. The SSL protocol handler then shares the same key ring file attributes as
any IPIC connections using SSL.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 235

Figure 11-25 Updated PRODUCT section generated through the configuration tool

The keystore, Gateway-MWIN1.jks, contains the personal certificate that identifies the
Gateway daemon. This is a prerequisite for secure connectivity from remote applications, and
secure IPIC connections with CICS servers.

Configure the SSL protocol handler
For remote applications to connect securely to the Gateway daemon, an SSL protocol
handler is required. Figure 11-26 on page 237 shows the SSL settings panel that is used to
create a protocol handler definition for the GATEWAY section of the configuration file.

The SSL protocol handler shares a common set of attributes with a tcp protocol handler.
Therefore, many of the attributes match the default values that are used in “Configure the tcp
and statsapi protocol handlers” on page 215.

SECTION PRODUCT
 APPLID=CTGMWIN1
 APPLIDQUALIFIER=CTGMP
 DEFAULTSERVER=CICSTORI
 KEYRING=C:\config\Gateway-MWIN1.jks
 KEYRINGPW=Y21Wa1ltOXZhd1o5
 KEYRINGPWSCRAMBLED=on
ENDSECTION

Note: The value of the KEYRINGPW attribute of the generated configuration file does not
match the value of the password specified in the iKeyman tool and on the CICS Transaction
Gateway panel of the CICS TG configuration tool. By default, the configuration tool
generates an obfuscated representation of the key ring password and turns on the
KEYRINGPWSCRAMBLED attribute.

Note: The key ring file and key ring password fields are pre-filled because they were
already defined on the CICS Transaction Gateway settings panel for the PRODUCT section of
the configuration file. The key ring configuration was moved to the PRODUCT section
beginning with CICS TG V9.0 products, when SSL IPIC connections were introduced.
Before V9.0, the Gateway daemon key ring was only used by the SSL protocol handler.
236 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-26 The SSL settings panel in the configuration tool for the SSL protocol handler

The parameters listed in Table 11-5 on page 238 apply to the SSL protocol handler. These
parameters can be set in the configuration tool on the SSL settings panel, as shown in
Figure 11-26, when the “Enable protocol handler” option is activated. Adding the SSL protocol
handler also requires that the Gateway daemon key ring is configured (see “Configure the
Gateway daemon to use the new keystore” on page 234).
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 237

Table 11-5 SSL protocol handler parameters

If the “Use only these cipher suites” list contains entries, a remote application must use one of
those cipher suites to connect to the Gateway daemon. If the remote application runtime
environment does not support any of the cipher suites listed, it is unable to establish a
connection. If the list contains no entries, a Java client application can connect using any
available cipher suite.

When using the configuration tool, ensure that the “Enable protocol handler” setting is
selected for each required protocol handler definition. This setting causes the protocol
handler definitions to be added to the configuration file, as shown in Figure 11-27.

Figure 11-27 The tcp, ssl, and statsapi protocol handler definitions, generated by the configuration tool

Verify the Gateway daemon initialization
Verify that the Gateway daemon initialized successfully. Verify that it is listening for secure
application requests on the intended port number. Example 11-5 on page 239 shows
selected log messages from the Gateway daemon initialization that indicate these outcomes.

SSL settings field Value Usage

Use only these cipher suites Optionally add a set of
valid cipher suite names

Restrict the cipher suites available for
use by remote applications connecting to
the Gateway daemon SSL protocol
handler

Key ring file Value inferred from the
PRODUCT section

Java keystore file

Key ring password Value inferred from the
PRODUCT section

Password for Java keystore file

Note: The default ports for each protocol handler definition are 2006 for tcp, 8050 for ssl,
and 2980 for statsapi.

protocol@tcp.handler=com.ibm.ctg.server.TCPHandler
protocol@tcp.parameters=connecttimeout=2000;idletimeout=600000;pingfrequency=60
000;port=2006;bind=;solinger=0;
protocol@ssl.handler=com.ibm.ctg.server.SslHandler
protocol@ssl.parameters=connecttimeout=2000;idletimeout=600000;pingfrequency=60
000;port=8050;bind=;solinger=0;
protocol@statsapi.handler=com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters=port=2980;bind=;connecttimeout=2000;maxconn=5
238 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Example 11-5 Gateway daemon initialization log messages for the SSL protocol handler

CTG8405I JSSE provider info: IBM JSSE2 7.0 Provider Implementation, IBM
Corporation, 7.0 build_20120529
CTG8489I The following cipher suites are provided by JSSE:
TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 SSL_RSA_WITH_AES_128_CBC_SHA256
 SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
[Numerous additional ciphers deleted for space reasons]

CTG6524I Successfully started handler for the ssl: protocol on port 8050

With ctgadmin, you can verify the key ring file that is being used by a Gateway daemon by
using the ctginfo option of the dump action:

ctgadmin -a dump -ctginfo

The CICS Transaction Gateway Informational Dump output is written to the Gateway daemon
info log under log message CTG8285I. Check the value of the KEYRING parameter in the
Gateway properties section.

If the key ring configuration is incorrect (for example, an incorrect password is specified), the
Gateway daemon will fail to initialize and display this error log message:

CTG8491E Unable to read key ring C:\config\Gateway-MWIN1.jks reason =
java.io.IOException: Keystore was tampered with, or password was incorrect

11.5.2 Test the secure Gateway connection

The same Java sample applications that are used in 11.4, “Testing the Gateway daemon” on
page 227 can also be used to verify the configuration of the Gateway daemon SSL protocol
handler. However, a client application keystore file must first be created and configured to
establish the secure connection.

Export the Gateway daemon’s public certificate
First, you need to extract the Gateway daemon’s public certificate so that it can be shared
with clients that want to connect to the Gateway daemon. With the gateway_mwin1_itso
Personal certificate highlighted in the Key database content panel, follow these steps:

1. Click Extract Certificate, which opens the dialog box shown in Figure 11-28 on page 240.

2. In the Data type drop-down list, select Binary DER data.

3. Enter the name and location of the output file to include the Gateway daemon public
certificate. This example uses gateway-mwin1-itso-cert.der.

4. Select OK.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 239

Figure 11-28 Extracting the public certificate for the Gateway daemon

Create and populate the client keystore

For Java client applications to connect to the Gateway daemon using SSL, a Java keystore
must be created for the client. The Gateway daemon’s public certificate must then be added
to the client’s keystore as a signer (also known as a trusted certificate).

Follow these steps to import the Gateway daemon certificate to a client keystore:

1. Use the iKeyman tool to create a Java keystore (.jks) file on the client machine (for
example, C:\config\Client_MWIN1.jks). Provide a password for the client application
Java keystore. For the purpose of demonstration, we used the password r3dbookCl1ent.

2. Select Signer Certificates from the Key database content drop-down list, as shown in
Figure 11-29 on page 241, and then, click Add.

Note: Store the exported certificate in a safe place. It must be imported into a Java
keystore that is used by remote applications that connect to this Gateway daemon using
SSL.
240 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-29 Selecting the type of certificate to add to the keystore

3. The Open dialog box, shown in Figure 11-30, is where you provide the location of the
public certificate file to be imported. You can type the details or browse to select the
Gateway daemon public certificate file, gateway-mwin1-itso-cert.der, which was
exported in “Export the Gateway daemon’s public certificate” on page 239.

Figure 11-30 Adding the Gateway daemon signer certificate to the remote application Java keystore

4. Assign a label to the certificate to identify it in the keystore (see Figure 11-31 on
page 242), and then, click OK.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 241

Figure 11-31 Specifying a label for the signer certificate

Figure 11-32 shows the iKeyman tool’s main view after the exported Gateway daemon
certificate was added to the remote application Java keystore.

Figure 11-32 Gateway daemon signer certificate in the remote application keystore

Verify the secure application connection
SSL connectivity between a client application and the Gateway daemon can be tested by
using the sample Java application EciB1, as shown in Figure 11-33 on page 243. This
example uses the keystore file (Client-MWIN1.jks) for the remote application and specifies its
password (r3dbookCl1ent).

Note: If an ssl protocol handler is configured to support only server authentication, you
are now ready to use the secure connection between the remote application and the
Gateway daemon. If the ssl protocol handler requires client authentication, you also need
to follow the steps in 11.5.3, “Add client authentication” on page 244.
242 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-33 Testing the SSL connection with Java sample EciB1

If the test is successful, it returns the time and date from the host system as shown in the
output in Figure 11-34.

Figure 11-34 Simple EciB1 test output using the SSL protocol handler

You can verify secure connectivity between the remote application and the Gateway daemon
by enabling connection logging, as described in “Gateway daemon log files” on page 212.
Selecting the “Log Client connections and disconnections” option on the Logging tab of the
Gateway daemon settings panel turns on the connectionLogging attribute in the GATEWAY
section of the CICS TG configuration file.

Figure 11-35 shows the result of enabling connection logging when a secure connection is
established between a remote application and the Gateway daemon.

Figure 11-35 Connection logging in the Gateway daemon for remote applications

C:\Users\Administrator>java com.ibm.ctg.samples.eci.EciB1 ssl://localhost 8050
C:\config\Client-MWIN1.jks r3dbookCl1ent

CICS Transaction Gateway Basic ECI Sample 1

Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to localhost port:8050.

CICS servers defined:

 1. CICSTORI -CICS TOR region 1 IPIC

Choose server to connect to, or q to quit:
1

Program EC01 returned with data:-

 Hex: 32302f30362f31332030353a33323a32340
 ASCII text: 20/06/13 05:32:24

[0] CTG6506I Client connected: [ConnectionManager-0] -
ssl@a98ae9c5[SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA:
Socket[addr=/127.0.0.1,port=57109,localport=8050]] using protocol TLSv1

[0] CTG6507I Client disconnected: [ConnectionManager-0] -
ssl@a98ae9c5[SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA:
Socket[addr=/127.0.0.1,port=57109,localport=8050]] using protocol TLSv1, reason = Java
client application closed the connection
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 243

11.5.3 Add client authentication

The scenario described in 11.5.2, “Test the secure Gateway connection” on page 239,
enables the client application and the Gateway daemon to communicate using SSL server
authentication. However, the authentication handshake is one-sided because only the identity
of the server is authenticated.

To allow a two-way handshake, client authentication needs to be enabled so that both the
client application and Gateway daemon personal certificates are exchanged. An additional
self-signed personal certificate must be created in the remote application Java keystore. This
self-signed client application certificate, in turn, is extracted as a public certificate so that it
can be added to the Gateway daemon’s Java keystore as a signer (or trusted) certificate.

This process closely matches the pattern that we applied to configure server authentication
using iKeyman, which is described in 11.5.2, “Test the secure Gateway connection” on
page 239. Follow these steps:

1. In the iKeyman tool, open the remote application Java keystore that you created in “Create
and populate the client keystore” on page 240. In this configuration, it is the file
C:\config\Client-MWIN1.jks.

2. Select Personal Certificates from the Key database content drop-down list, if it is not
already selected.

3. Click New Self-Signed to open the Create New Self-Signed Certificate dialog box
(Figure 11-36).

Figure 11-36 Creating a new self-signed personal certificate for the remote application Java keystore
244 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

4. Enter the appropriate details for the client application self-signed personal certificate, click
OK, and then, save the Java keystore. In this example, the value specified for the Key label
field is Client_MWIN1_itso, and the common name is an identifier unique to the
organization that refers to this specific client application instance, rather than to a specific
machine.

The value of the Key label field is used to provide a meaningful name to the certificate. It
can be used as a primary identifier for the certificate in other Java keystore tools, such as
keytool.

5. In the IBM Key Management (iKeyman) main view, click Extract... Certificate to extract the
public certificate, selecting Binary DER in the Data type field. In this example, the target
file is C:\config\Client-mwin1-itso-cert.der.

6. Switch back to the Gateway daemon Java keystore. In this example, open the Java
keystore file C:\config\Gateway-MWIN1.jks.

7. Select Signer Certificates from the Key database content drop-down list, and then, click
Add. Select the remote application public certificate file
(C:\config\Client-mwin1-itso-cert.der) and provide a suitable label. In this example,
the label is client-mwin1-001.

8. Save the Gateway daemon Java keystore.

The Gateway daemon Java keystore and the client application Java keystore now contain the
resources required to use SSL client authentication.

An additional change is required to enable client authentication for the ssl protocol handler.
Go to the CICS TG configuration tool, shown in Figure 11-37 on page 246, and select Use
client authentication.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 245

Figure 11-37 Enabling client authentication on the SSL settings panel in the configuration tool

Selecting this option turns on the clientauth attribute in the SSL protocol handler definition of
the CICS TG configuration file, as shown in Figure 11-38.

Figure 11-38 SSL protocol handler definition with client authentication enabled

For more details, search for the CICS TG Information Center topic, Configuring SSL:

http://ibm.co/1p38yCv

The CICS TG Information Center also contains useful scenario documentation, including the
topic, Configuring SSL security between a Java Client and the Gateway daemon (SC06).

protocol@ssl.handler=com.ibm.ctg.server.SslHandler
protocol@ssl.parameters=clientauth=on;connecttimeout=2000;idletimeout=600000;pingfrequen
cy=60000;port=8050;bind=;solinger=0;
246 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1p38yCv

Verify the client authentication configuration
The Java sample application EciB1 can be used to verify SSL connectivity with client
authentication between the client application and the Gateway daemon. Figure 11-39 shows
the command used to run EciB1 with the required parameters. A secure connection is
attempted when the Gateway URL parameter includes the prefix ssl:// with the port number
for the ssl protocol handler (8050), the location of the client application Java keystore file, and
the password for that Java keystore.

Figure 11-39 Testing the SSL connection with Java sample application EciB1

If this application runs successfully, it returns the time and date from the host system, as
shown in the output in Figure 11-40.

Figure 11-40 Simple EciB1 test output using the SSL protocol handler and client authentication

C:\Users\Administrator>java com.ibm.ctg.samples.eci.EciB1 ssl://localhost 8050
C:\config\Client-CTGMWIN1.jks r3dbookCl1ent

CICS Transaction Gateway Basic ECI Sample 1

Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to ssl://localhost port:8050.

CICS servers defined:

 1. CICSTORI -CICS TOR region 1 IPIC

Choose server to connect to, or q to quit:
1

Program EC01 returned with data:-

 Hex: 32302f30362f31332030363a31303a30390
 ASCII text: 20/06/13 06:10:09

Note: This test can be important because CICS TG offers no log messages or system
statistics to verify that a Gateway daemon is using client or server authentication with the
ssl protocol handler. However, remote applications with a public certificate that is not
trusted by the Gateway daemon will fail to connect.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 247

11.5.4 Secure the IPIC connection

To allow secure SSL connectivity with a CICS TS region (or TXSeries region), the Gateway
daemon must be able to authenticate the personal certificate of the partner system. Typically,
the public certificate authority (CA) certificates that are preloaded into a keystore are
sufficient when the personal certificate is signed by a public certificate authority, such as
VeriSign. In this part of the book, self-signed certificates are created by using a generated
certificate authority, rather than a public certificate authority.

In 9.4.1, “Create a key ring for CICS” on page 163, we create our own certificate authority,
CICS-Sample-Certification, and use it to sign the personal certificate of the CICS region,
CICSTOR1. To configure the Gateway daemon to use SSL server authentication on an IPIC
connection with CICSTOR1, the CA signer certificate must be imported to the Gateway daemon
Java keystore file.

The steps to obtain the CA signer certificate are described in “Export the CA signer certificate
for keytool” on page 190. The CA signer certificate file that is exported from RACF,
cics.ca.cer, can be transferred from z/OS to the Windows server by using binary mode FTP.

Adding the CA signer certificate to the Gateway daemon keystore
Follow these steps to use the iKeyman utility to import the CA signer certificate to the Gateway
daemon keystore:

1. Launch iKeyman and open the Java keystore for the Gateway daemon. In this example, the
Java keystore file is Gateway-MWIN1.jks.

2. Select Signer Certificates from the Key database content drop-down list, as shown in
Figure 11-41, and then, click Add and browse to the location of the CA certificate that you
transferred using FTP.

Figure 11-41 Adding a signer certificate to the Gateway daemon Java keystore
248 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

3. The Open dialog box, shown in Figure 11-42, asks for details about the location of the CA
signer certificate file that you are importing. Type the details or browse to find and select
the CA signer certificate file. In this example, the file is cics.ca.cer.

Figure 11-42 Details for CA signer certificate being added to Gateway daemon Java keystore

4. Give the certificate an identifying label, as shown in Figure 11-43, and then, click OK.

Figure 11-43 Labeling the CA signer certificate

The CA certificate is now included in the set of signer certificates in the Gateway daemon
keystore, as shown in Figure 11-44.

Figure 11-44 Signer certificates in the Gateway daemon Java keystore
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 249

After saving the Gateway daemon Java keystore, it is ready to be used for an IPIC SSL
connection to the CICS TCPIPService GW1IPICS, which was defined in 9.4.3, “Configure a
TCPIPSERVICE for SSL” on page 165. The SSl attribute of the CICS TS TCPIPService
definition determines whether server or client authentication is required on this IPIC
connection.

Configure the secure IPIC server connection
The Gateway daemon is now configured to authenticate the identity of the partner CICS
region, which has a personal certificate that is signed by the CA signer certificate,
CICS-Sample-Certification. Here, we create a secure IPICSERVER definition using server
authentication using the CICS TG configuration tool (ctgcfg).

In the navigation tree, right-click the CICS Servers node, and then, select New Server. The
attributes for this CICS server definition are similar to those for the non-SSL IPIC server
connection that we defined in 11.2.5, “The IPICSERVER section” on page 216, except that
this one uses port number 9001 for the CICS TCPIPService GW1IPICS, and you must select the
Use SSL option.

Figure 11-45 on page 251 shows the CICS server connection, CICSTORS, defined to use IPIC
SSL.

Note: SSL connectivity to a CICS server is supported only when using the IPIC protocol.
250 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-45 Server connection panel showing new CICS server definition for IPIC SSL connection CICSTORS

Each IPICSERVER definition in the CICS TG configuration file includes a parameter to control
the use of SSL. Figure 11-46 on page 252 shows the IPICSERVER definition in the
configuration file as it was generated by the configuration tool, including the SSL attribute with
the value Y.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 251

Figure 11-46 The IPICSERVER section for CICSTORS generated by the configuration tool

Table 11-6 lists the attributes of an IPIC SSL connection definition, including the values used
for the connection to the TCPIPService GW1IPICS, in the CICS region CICSTOR1.

Table 11-6 IPICSERVER definition for CICSTORS

SECTION IPICSERVER = CICSTORS
 DESCRIPTION=CICS TOR region 1 IPIC-SSL
 SRVIDLETIMEOUT=0
 HOSTNAME=lp01.redbooks.ibm.com
 PORT=9001
 CONNECTTIMEOUT=0
 SRVRETRYINTERVAL=60
 TCPKEEPALIVE=Y
 SENDSESSIONS=50
 ECITIMEOUT=0
 CICSAPPLID=S20351T1
 CICSAPPLIDQUALIFIER=USIBMSC
 SSL=Y
ENDSECTION

Configuration parameter Value Usage

Server name CICSTORS Use this name for all requests to access
the server from remote applications.

Description CICS TOR region 1
IPIC-SSL

Description for the server (optional, but
useful to identify this server definition).

Hostname lp01.redbooks.ibm.com Host name for the server.

Port 9001 Port number on which the target CICS
server is listening.

Send sessions 50 Number of simultaneous transactions or
CICS tasks that are allowed over the
connection (limited by the ReceiveCount
defined on the IPCONN definition).

Target APPLID S20351T1 APPLID of the target CICS server
(optional unless the
CICSAPPLIDQUALIFIER is specified, in
which case the CICSAPPLID must
match the APPLID of the target CICS
server).

Target APPLID qualifier USIBMSC Optional unless CICSAPPLID is
specified (in which case the
CICSAPPLIDQUALIFIER must match
the network ID of the target CICS
server).

Use SSL Y A value of Y Indicates that the SSL
protocol is to be used on this IPIC
connection. Enabling SSL requires a key
ring file to be defined in the PRODUCT
section.
252 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The Gateway daemon does not produce log messages indicating the use of SSL for IPIC
connections during initialization, or when the connection is established. However, the set of
statistics associated with each IPIC connection can be queried to verify the use of SSL.

Verify the client authentication configuration
This subsection uses the Java sample application EciB1 to make an ECI request to CICSTOR1,
using the secure IPIC connection CICSTORS. It also uses a secure connection between the
remote application and the Gateway daemon. It shows the log messages and statistics
associated with the secure IPIC connection.

Figure 11-47 shows EciB1 with parameters to specify the SSL protocol for the Gateway URL,
the Gateway daemon SSL protocol handler port (8050), the Java keystore file for the remote
application, and the password for that Java keystore.

Figure 11-47 Testing the SSL connection with sample application EciB1

In this case, the secure connection to CICSTOR1 is chosen. If this application runs successfully,
it returns the time and date from the host system, as shown in the output in Figure 11-48 on
page 254.

Use only these cipher suites Required ciphers or blank Specifies the cipher suites that CICS TG
can use to connect to this CICS region.
Cipher suites must be supported by the
Java Secure Socket Extension (JSSE)
provider used by CICS TG. If this
parameter is omitted, all available cipher
suites can be used.

C:\Users\Administrator>java com.ibm.ctg.samples.eci.EciB1 ssl://localhost 8050
C:\Users\Administrator\CTGMWIN1_client_key.jks redbooks

Configuration parameter Value Usage
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 253

Figure 11-48 Output verifying end-to-end secure connectivity

Gateway daemon log messages (Example 11-6), CICS log messages, and CICS resource
inquiry commands (CEMT INQuire) do not reveal that an IPIC connection is using SSL.
However, the CICS TG statistic CSx_PROTOCOL (where x is the name of the IPICSERVER
definition) indicates a value of either IPIC or IPICSSL. This statistic can be inspected by using
the command-line utility ctgadmin, or from the CICS connections view of the CICS TG
perspective of the CICS Explorer.

Example 11-6 Gateway daemon log messages showing establishment of an IPIC connection

02/07/14 13:20:47:661 [0] CTG8477I About to connect to server CICSTORS
02/07/14 13:20:48:391 [0] CTG8429I Established new IPIC connection to CICS server
CICSTORS with: negotiated session limit=50, CICSAPPLID=CICSPAZ8
CICSAPPLIDQUALIFIER=USIBMSC , HOSTNAME=lp01.redbooks.ibm.com, PORT=9001, sockets=2

Example 11-7 shows the output of the following request to display the statistics for the CICS
server CICSTORS, which we are filtering for so-called Startup statistics (note the “s”).

ctgadmin -a stats -gs=CSCICSTORS -st=s

Example 11-7 Output of a request to display startup statistics for CICS server CICSTOR1

CTG8239I Response received from CICS Transaction Gateway
CSCICSTORS - CICS Server (instance)
 CSCICSTORS_SPROTOCOL=IPICSSL (CICS server protocol)
 CSCICSTORS_SIPADDR=lp01.redbooks.ibm.com (CICS server TCP/IP address)
 CSCICSTORS_SIPPORT=9001 (CICS server TCP/IP port)
 CSCICSTORS_SSESSMAX=100 (Number of requested IPIC sessions)

CICS Transaction Gateway Basic ECI Sample 1

Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]

To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

The address of the Gateway has been set to ssl://localhost port:8050.

CICS servers defined:

 1. CICSTORI -CICS TOR region 1 IPIC
 2. CICSTORS -CICS TOR region 1 IPIC-SSL

Choose server to connect to, or q to quit:
2

Program EC01 returned with data:-

 Hex: 32302f30362f31332030363a31303a30390
 ASCII text: 20/06/13 06:10:09
254 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

The combination of the CSx_SPROTOCOL statistic and the Gateway daemon log message
CTG8429I verifies that the IPIC connection CICSTORS is successfully established and that it is
secure.

11.6 Client daemon configuration

The Client daemon component is not required for IPIC-only configurations. However, if you
require connectivity based on either SNA APPC or the CICS Family TCP/IP protocol, the
Client daemon must be configured.

This section describes the additional configuration steps that are required to use the CICS
Family TCP/IP protocol, but it does not go into significant detail. IPIC is the strategic option for
CICS Family intercommunications.

Solutions based on SNA APPC and the CICS Family TCP/IP protocol are described in an
earlier publication, CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133, and in the CICS TG for Multiplatforms Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

To configure the Client daemon with a TCP/IP or SNA APPC connection, these items must be
present in the CICS TG configuration file:

� The CLIENT section

Defines general properties of the Client daemon

� A DRIVER section

Defines the TCPIP or SNA protocol driver

� A SERVER section

Defines at least one CICS server

As with the Gateway daemon, the Client daemon can be configured by using the CICS TG
configuration tool. The Client daemon configuration is stored in the CICS TG configuration
file, together with the PRODUCT and GATEWAY sections that are described in 11.2, “Configure the
Gateway daemon” on page 207. Like the Gateway daemon, the Client daemon uses the value
of the CICSCLI environment variable to determine the location of the CICS TG configuration
file.

11.6.1 The CLIENT section

The CLIENT section of the configuration file defines the operating parameters and log file
locations for the Client daemon. You use the Client daemon configuration panel in the
configuration tool to specify the attributes for the Client daemon. Because this book is more
focused on IPIC, each attribute is not examined in detail here.

Figure 11-49 on page 256 shows the Resources tab of the Client daemon configuration
panel. We reviewed and accepted each of the default values suggested by the CICS TG
configuration tool.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 255

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp
http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Figure 11-49 Resources tab of the Client daemon configuration panel in CICS TG configuration tool

Figure 11-50 shows the Logging tab of the Client daemon configuration panel. We reviewed
and accepted each of the default values suggested by the CICS TG configuration tool.

Figure 11-50 Logging tab of the Client daemon configuration panel in the CICS TG configuration tool

Note: For the CICS TG Desktop Edition product, the Client daemon is limited to
processing a maximum of 32 concurrent requests.
256 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

By default, all log files are written to the product data path on Windows platforms, defined by
the environment variable, ProgramData, or the /var/cicscli directory on UNIX and Linux
platforms.

Figure 11-51 shows the CLIENT section, as generated by the configuration tool.

Figure 11-51 The CLIENT section, as generated by the configuration tool

11.6.2 The DRIVER section

The DRIVER section of the CICS TG configuration file defines the CICS connection protocols
available for use by the Client daemon. The required DRIVER sections are automatically
generated when using the CICS TG configuration file. Here, we explain the attributes and
possible values of the DRIVER section.

Example 11-8 shows the syntax of a DRIVER section in the configuration file.

Example 11-8 The syntax of the DRIVER section in the CICS TG configuration file

SECTION DRIVER = <TCPIP | SNA>
 DRIVERNAME=<driver DLL identifier>
ENDSECTION

The appropriate values are shown for each protocol for the DRIVERNAME attribute:

� SNA driver:

– CCLWNTSN for Windows operating systems
– CCLIBMSN for UNIX and Linux operating systems

� CICS Family TCP/IP protocol:

– CCLWNTIP for Windows operating systems
– CCLIBMIP for UNIX and Linux operating systems

Figure 11-52 on page 258 shows the DRIVER section of the CICSTG configuration file for the
CICS Family TCP/IP protocol, as generated by the configuration tool for the Windows
platform.

SECTION CLIENT = *
 ENABLEPOPUPS=N
 TERMINSTLOGGING=N
 LOGFILE=cicscli_error.log
 LOGFILEINFO=cicscli_info.log
 MAXBUFFERSIZE=32
 MAXREQUESTS=256
 MAXSERVERS=10
 MAXWRAPSIZE=0
 SRVRETRYINTERVAL=60
 TERMINALEXIT=EXIT
 TRACEFILE=cicscli.bin
 USEOEMCP=Y
 LOADMANAGER=N
ENDSECTION

Note: You can set the MAXWRAPSIZE and TRACEFILE parameters by selecting Configuration
tool Options Trace settings.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 257

Figure 11-52 The DRIVER section for the CICS Family TCP/IP protocol

11.6.3 The SERVER section

Each SERVER section defines the properties of a connection to a CICS server, using one of the
network protocols available with the Client daemon (SNA or TCP/IP). Here, we create a new
CICS server definition, CICSTORT, using the CICS Family TCP/IP protocol.

Use the CICS TG configuration tools (Figure 11-53) to add a new CICS server definition using
the CICS Family TCP/IP protocol.

Figure 11-53 Adding a new CICS server definition using the CICS Family TCP/IP protocol

Figure 11-54 on page 259 shows the SERVER section for the CICS Family TCP/IP connection
to CICSTOR1, as generated by the configuration tool.

SECTION DRIVER = TCPIP
 DRIVERNAME=CCLWNTIP
ENDSECTION
258 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 11-54 The SERVER section for CICSTORT, as generated by the configuration tool

For additional details about the SERVER definition shown in Figure 11-54, see the topic,
Configuring CICS server connections, in the CICS Transaction Gateway for Multiplatforms
Information Center:

http://ibm.co/1nGgBB0

Table 11-7 lists the parameters for the SERVER section.

Table 11-7 SERVER parameters for CICSTORT

11.6.4 The LOADMANAGER section (Windows)

The CICS TG for Multiplatforms and CICS TG Desktop Edition products include a feature for
load balancing, which is called Workload Manager (WLM), that is exclusive to the Windows
operating systems. The LOADMANAGER section of the configuration file is generated by the
configuration tool based on attributes that are set on the Workload Manager settings panel.

The WLM feature is designed to provide both round-robin and weight-biased workload
distribution for Client daemon-based CICS server connections. The feature can be set to
influence the distribution of work by both program ID and user-defined server groups.

SECTION SERVER = CICSTORT
 DESCRIPTION=CICS TOR region 1 TCP
 SRVIDLETIMEOUT=0
 REGION=SRVRWLM
 UPPERCASESECURITY=Y
 PROTOCOL=TCPIP
 NETNAME=lp01.redbooks.ibm.com
 PORT=9090
 CONNECTTIMEOUT=0
 TCPKEEPALIVE=Y
ENDSECTION

Note: The REGION parameter is added if the CICS server is defined in a Workload Manager
Server Group. For more information, see 11.6.4, “The LOADMANAGER section
(Windows)” on page 259.

Configuration parameter Value Usage

Server name CICSTORT Use this name for all requests to access
the server from client applications.

Description CICS TOR region 1 TCP Optional, but useful to identify this server
definition.

Network protocol TCP/IP The communication protocol being used.

Port 9090 The server port number to which the
Client daemon connects.

Host name or IP address lp01.redbooks.ibm.com The character-based or numeric TCP/IP
identifier for the host on which the CICS
server is running.
Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration 259

http://ibm.co/1nGgBB0

Because the Workload Manager feature is part of the Client daemon component,
IPIC-connected servers cannot be included in the LOADMANAGER section of the configuration
file. However, the Gateway daemon CICS Request Exit provides an alternative facility for
workload distribution. It is available for use with any of the CICS communications protocols
supported by CICS TG products, and on all platforms.

For additional details about using the WLM feature on Windows systems, see the Windows
Workload Manager section of the CICS Transaction Gateway for Multiplatforms Information
Center:

http://ibm.co/1nkLQqV
260 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1nkLQqV

Chapter 12. Integrating with WebSphere
Application Server

This chapter describes the use of WebSphere Application Server as an example of
integrating a Java Platform, Enterprise Edition (Java EE) application server with CICS
Transaction Server (CICS TS) through CICS Transaction Gateway (CICS TG). It includes key
considerations for using the CICS resource adapters in the following topologies:

� Local and remote mode
� Non-transactional and extended architecture (XA) transactions
� Non-secure and Secure Sockets Layer (SSL) scenarios

Additionally, it describes how to install the CICS TG ECI resource adapter and configure a
JCA connection factory to use Internet Protocol interconnectivity (IPIC) connections to CICS
TS in both local and remote mode. Finally, it uses the JCA installation verification test (IVT) to
test the end-to-end flow.

This chapter includes the following topics:

� 12.1, “Java EE application servers supported by CICS TG” on page 262

� 12.2, “The CICS resource adapters” on page 262

� 12.3, “Topologies” on page 262

� 12.4, “WebSphere Application Server settings” on page 265

� 12.5, “Installing the ECI resource adapter” on page 269

� 12.6, “Creating and configuring a Java EE Connector Architecture connection factory” on
page 276

� 12.7, “Testing end-to-end” on page 286

� 12.8, “Configuring the XA connection” on page 289

� 12.9, “Flowing the user ID and password on an ECI request” on page 290

� 12.10, “Securing the connection with Secure Sockets Layer” on page 291

� 12.11, “Transaction tracking with Cross Component Trace” on page 292

12
© Copyright IBM Corp. 2014. All rights reserved. 261

12.1 Java EE application servers supported by CICS TG

The CICS TG JCA resource adapters are compatible with a number of Java EE application
servers:

� WebSphere Application Server for Multiplatforms

� WebSphere Application Server for z/OS

� Java EE certified application servers that run the JCA resource adapter installation
verification test (IVT) successfully, including all non-IBM application servers, such as
Oracle WebLogic, Glassfish, JBoss, and others

For information about the supported Java EE application server versions, available protocols,
and transaction support, see the CICS TG for Multiplatforms Information Center:

http://ibm.co/1nV0QuI

12.2 The CICS resource adapters

CICS TG provides the following JCA resource adapters:

� The ECI resource adapter (cicseci.rar) provides a high-level common client interface
(CCI) to the ECI for sending ECI requests to CICS servers.

� The external presentation interface (EPI) resource adapter (cicsepi.rar) provides a
high-level CCI interface to the EPI to install terminals and run 3270-based transactions on
a CICS server.

JCA resource adapters implement qualities of service through the following system contracts:
connection management, transaction management, and security management.

For information about how to program using the JCA resource adapters, see Developing
Connector Applications for CICS, SG24-7714:

http://www.redbooks.ibm.com/abstracts/sg247714.html?Open

You can also consult the CICS TG Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

12.3 Topologies

Figure 12-1 on page 263 describes the protocols supported for each topology.

Important: The IVT that is provided with CICS TG must run successfully before
problems can be reported to IBM.

Support note: This information does not apply to CICS Transaction Gateway Desktop
Edition.

Note: Before CICS TG Version 8.1, two versions of the ECI resource adapter were
provided: cicseci.rar (for local transaction support) and cicseciXA.rar (for global
transaction support).
262 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.redbooks.ibm.com/abstracts/sg247714.html?Open
http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

Figure 12-1 Commonly used WebSphere Application Server topologies

The following list describes supported topologies, where the topology numbers refer to the
numbers used in Figure 12-1:

� WebSphere Application Server for Multiplatforms:

– Topology 1: Local mode IPIC, SNA, or TCP/IP connections to CICS servers:

• XA transactions are supported for IPIC connections to CICS TS.

– Topology 2: Two-tier or 3-tier remote mode connections to a Multiplatforms Gateway
daemon, providing IPIC, SNA, or TCP/IP connections to CICS servers:

Note: The TCP/IP or SNA network connections from the Client daemon to the CICS
region are managed and reused by the Client daemon component of the CICS TG.
They are not subject to the JCA connection pooling system contract.

Note: XA transactions are not supported for remote mode connections to Gateway
daemons on Multiplatforms.

TCP/IP based communication between Linux for System z and z/OS can use the
IBM HiperSockets™ function to provide a highly efficient cross-memory transport.
Therefore, configurations with WebSphere Application Server and CICS TG
installed on Linux for System z can benefit from the HiperSockets function when
using TCP/IP or IPIC connections to CICS TS.

CICS
Server

IPIC

EXCI

tcp / ssl

IPIC / EXCI (local mode)

CICS TG
for

Multiplatforms

WebSphere
Application Server

Multiplatforms

JEE
App

JCA CICS
resource
adapters

CCI

tcp / ssl IPIC / SNA / TCPIP

IPIC / SNA / TCPIP (local mode)

tcp / ssl

WebSphere
Application Server

z/OS

JEE
App

JCA CICS
resource
adapters

CCI

CICS TG
for

z/OS

(remote mode)

(remote mode)

(remote mode)

1

2

3

4

5

Chapter 12. Integrating with WebSphere Application Server 263

– Topology 3: Three-tier remote mode connection to a z/OS Gateway daemon, providing
external CICS interface (EXCI) or IPIC connections to CICS TS regions:

• XA transactions are supported.

� WebSphere Application Server for z/OS:

– Topology 4: Local mode EXCI or IPIC connection to CICS TS regions:

• XA transactions are supported.

– Topology 5: Two-tier or 3-tier remote mode connection to a z/OS Gateway daemon,
providing EXCI or IPIC connections to CICS TS regions:

• XA transactions are supported.

This book focuses on the following topologies:

� WebSphere Application Server for Multiplatforms using a local mode IPIC connection to
CICS TS, as shown in topology 1 in Figure 12-1 on page 263.

� WebSphere Application Server for Multiplatforms using a remote mode connection to a
Gateway daemon on z/OS, which connects to CICS TS using IPIC, as shown in topology 3
in Figure 12-1 on page 263.

� WebSphere Application Server for z/OS using a local mode IPIC connection to CICS TS,
as shown in topology 4 in Figure 12-1 on page 263.

Table 12-1 lists the values used in this chapter to configure WebSphere Application Server to
communicate with the CICS TS region configured in Chapter 9, “Configuring IPIC in CICS
Transaction Gateway for z/OS” on page 147 and the z/OS Gateway daemon configured in
Chapter 10, “CICS Transaction Gateway for z/OS configuration” on page 171.

Table 12-1 Resource definition values used in this chapter

Note: If CICS TG for z/OS and CICS TS are not configured in the same logical
partition (LPAR), EXCI is only supported for ECI SYNCONRETURN requests.

Note: If CICS TG for z/OS and CICS TS are not configured in the same LPAR, EXCI
is only supported for ECI SYNCONRETURN requests.

Component Attribute Value

CICS TS Host name lp01.redbooks.ibm.com

CICS TS IPIC TCPIPSERVICE port 9001

z/OS Gateway daemon Host name lp01.redbooks.ibm.com

z/OS Gateway daemon TCP protocol handler port 2016

z/OS Gateway daemon SSL protocol handler port 8070

z/OS Gateway daemon SECTION IPICSERVER CICSTOR1

WebSphere Application
Server

Node name itsoNode01

WebSphere Application
Server

Server name itsoServer01

WebSphere Application
Server

Cluster name itsoCluster
264 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

12.4 WebSphere Application Server settings

The management of connections, transactions, and security is controlled within WebSphere
Application Server through a combination of configuration parameters and application
deployment descriptors. This section focuses on the configuration parameters.

12.4.1 Connection management

In WebSphere Application Server, connections for use by the ECI resource adapter are
controlled through the use of a connection pool. Each Java EE Connector Architecture
connection factory defines its own connection pool.

If the Java EE Connector Architecture connection factory is defined at a cluster scope, a
separate instance of the connection pool is created in each application server that uses
connection factory. For example, for a cluster with two application servers that use the same
Java EE Connector Architecture connection factory with a connection pool Maximum
Connections property setting of 100, you can generate up to 200 connections (two servers
times 100 connections).

For information about defining and customizing connection pool settings, see 12.6.2,
“Configuring the connection pool properties” on page 280.

12.4.2 Transaction management

The ECI resource adapter supports two-phase commit global transactions from WebSphere
Application Server for the following topologies:

� Using CICS TG for Multiplatforms, XA transactions are only supported for local mode IPIC
connections to CICS TS.

� Using CICS TG for z/OS, XA transactions are supported for both local and remote mode
IPIC or EXCI connections to CICS TS.

However, if you are using the ECI resource adapter for local transaction support, the scope of
the transaction is limited to the Resource Manager (that is, the associated connection factory
and the specified CICS server). These Resource Manager local transactions only support
one-phase commit processing. WebSphere Application Server provides last-participant
support to allow an ECI interaction to participate in a global transaction, provided that it is the
only one-phase-commit resource in the global transaction. This approach has an increased
risk that a transaction has a heuristic outcome.

The WebSphere Application Server transaction service is a server runtime component that
can coordinate updates to multiple resource managers to ensure atomic updates of data. See
the WebSphere Application Server Information Center for detailed information about these
settings:

http://ibm.co/1ldLJIc
Chapter 12. Integrating with WebSphere Application Server 265

Table 12-2 provides a summary of the settings that are available for controlling transaction
timeouts and heuristic outcomes.

Table 12-2 WebSphere Application Server Transaction service settings

Transaction service properties are defined at the application server scope and can be
configured using the following steps:

1. Log in to the administration console.

2. Click the serverName from the Servers Server types WebSphere Application
Servers navigation menu.

3. Select Container Services Transaction service.

4. Select the Configuration tab

5. From the General Properties dialog box, edit the properties, as required.

6. Click OK.

7. Save the changes to the master configuration.

8. If you are using a clustered WebSphere Application Server configuration, repeat for each
application server in your cluster and synchronize the changes to the nodes.

9. Restart the application server or cluster for the changes to take effect.

Property Description

Total transaction lifetime
timeout

Default maximum time allowed for a transaction started on this server
before the transaction service initiates timeout completion. Any
transaction that does not begin completion processing before this
timeout occurs is rolled back.

Maximum transaction
timeout

Maximum time for transactions that run in this server to complete.
This value needs to be greater than or equal to the total transaction
lifetime timeout and greater than or equal to the application component
timeout.

Heuristic retry limit Number of times that the application server retries a completion signal,
such as commit or rollback, after a transient exception from a resource
manager or remote partner.

If the application server abandons the retries, the resource manager or
remote partner is responsible for ensuring that the resource or partner
branch of the transaction is completed appropriately. The application
server raises (on behalf of the resource or partner) an exception that
indicates a heuristic hazard.

Heuristic retry wait Time that the application server waits before retrying a completion
signal, such as commit or rollback, after a transient exception from a
resource manager or remote partner.

Enable logging for
heuristic reporting

Enable application server transaction service to log when it is about to
commit a one-phase commit resource from transactions that involve
both a one-phase commit and two-phase commit resources.

This is useful when you use last participant support, where there is an
increased risk that a transaction has a heuristic outcome.

Heuristic completion
direction

Specifies the direction that is used to complete a transaction that has a
heuristic outcome; either the application server commits or rolls back
the transaction, or it depends on manual completion by the
administrator.
266 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

12.4.3 Security Management

The security considerations discussed in Chapter 8, “Security” on page 131 are applicable to
topologies using the ECI resource adapter with WebSphere Application Server.

The Java EE Connector Architecture connection factory custom properties include the
following security-related options:

� userName and password

The user ID and password to be sent to CICS if no other security credentials are available.

� ClientSecurity and ServerSecurity

The fully-qualified names of the ClientSecurity and ServerSecurity classes to use in
each interaction with CICS.

For more information about the CICS TG Security classes, see the CICS TG Information
Center:

http://ibm.co/1jZe7Df

� keyRingClass and keyRingPassword

The fully qualified name and password of the Java keystore to use on SSL connections.
This stores the certificate used to identify WebSphere Application Server during client
authentication on an SSL connection to CICS TS (local mode over IPIC) or CICS TG
(remote mode). It also stores the public certificate expected to be received from either
CICS TS or CICS TG as a trusted certificate, so that it can authenticate the remote system
during the SSL handshake.

� cipherSuites

Can be used when establishing an SSL connection to restrict the cipher suites that this
connection factory can use.

An alternative to hardcoding userName and password in the Java EE Connector Architecture
connection factory custom properties is to use either of the following options:

� Component-managed sign-on: Security credentials are propagated to CICS by the Java
EE application. They are used when the res-auth element in the deployment descriptor
resource reference is set to Application.

� Container-managed sign-on: Security credentials are propagated to CICS by the
WebSphere Application Server Web or Enterprise JavaBeans (EJB) container. Used when
the res-auth element in deployment descriptor resource reference is set to Container.

To use container-managed sign-on, a Java Authentication and Authorization Service (JAAS)
authentication alias is defined to WebSphere Application Server that contains the user ID and
password. This user ID and password combination is then associated with a specific
connection factory using the resource reference mapping option “modify resource
authentication method” of the Java EE application. Applying the JAAS authentication alias to
the application resource reference is more secure than applying it directly to the Java EE
Connector Architecture connection factory.

Note: Container-managed security is suggested because it is a preferred practice to
separate the business logic of an application from qualities of service, such as security.
Chapter 12. Integrating with WebSphere Application Server 267

When using CICS TG for z/OS, the following additional security options are available:

� Identity propagation, a unified security solution that enables additional user auditing and
authorization by passing a distributed identity to CICS instead of a user ID and password.

For details about configuring identity propagation, see the CICS TG Information Center:

http://ibm.co/1szBAx5

You can also consult z/OS Identity Propagation, SG24-7850:

http://www.redbooks.ibm.com/abstracts/sg247850.html

� Client certificate mapping to associate an X.509 certificate with a RACF user ID is
supported in remote mode connections to CICS TG.

For details about configuring client certificate mapping, see the CICS TG Information
Center:

http://ibm.co/1raxcCT

Further description of the security considerations for the topology with WebSphere
Application Server on Multiplatforms using a remote mode connection to CICS TG for
z/OS is available in CICS and SOA: Architecture and Integration Choices, SG24-5466,
which is available at this website:

http://www.redbooks.ibm.com/abstracts/sg245466.html

12.4.4 WebSphere Application Server z/OS-specific settings for EXCI

Extra configuration is required in WebSphere Application Server for z/OS if using local mode
EXCI connections to connect to CICS TS. The following steps are required:

1. Define the EXCI libraries to WebSphere Application Server:

Add the libraries containing any customized versions of the EXCI options table
(DFHXCOPT) and the EXCI load modules to the STEPLIB environment variable of the
WebSphere Application Server servant region start procedure. Ensure that any load
library that contains a customized version of the EXCI options table DFHXCOPT is ahead
of the CICS EXCI load library SDFHEXCI in the concatenation order.

2. Define a RACF surrogate security profile:

If surrogate security checking is enabled in the EXCI options table DFHXCOPT
(SURROGCHK=YES), when a Java EE server flows an EXCI request to CICS TS using CICS
TG in local mode, the Java EE server will be subject to RACF surrogate security checking.
The WebSphere Application Server servant region user ID requires access to act as a
surrogate for the user ID flowed in the EXCI request. This can be achieved by granting the
WebSphere Application Server servant region user ID read access to the userid.DFHEXCI
SURROGAT class profile, where userid is the user ID flowed in the EXCI request.

For example, to authorize the WebSphere Application Server servant region user ID
WASUSER to switch to the user ID EXCIUSER, which is flowed in the ECI request, use this:

RDEFINE SURROGAT EXCIUSER.DFHEXCI UACC(NONE) OWNER(EXCIUSER)
PERMIT EXCIUSER.DFHEXCI CLASS(SURROGAT) ID(WASUSER) ACCESS(READ)

Note: This book does not cover topologies using EXCI; however, the following information
is included for reference.
268 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1raxcCT
http://www.redbooks.ibm.com/abstracts/sg245466.html
http://www.redbooks.ibm.com/abstracts/sg247850.html

It is possible to disable surrogate security by either reassembling the EXCI options table
DFHXCOPT, with SURROGCHK=NO, or by using a generic RACF surrogate profile with
universal READ access, such as this example:

RDEFINE SURROGAT *.DFHEXCI UACC(READ) OWNER(EXCIUSER)

3. Set WebSphere Application Server environment variables as described in the topic
Deploying the ECI resource adapter on WebSphere Application Server for z/OS in the
CICS TG Information Center:

– CTG_EXCI_INIT=YES
– CTG_PIPE_REUSE
– DFHJVPIPE

Follow these steps to define WebSphere Application Server environment variables:

a. Log in to the administration console. Then, select Environment WebSphere
variables from the navigation menu.

b. Set the Scope as appropriate, and click New.

c. Enter the Name and Value environment variables and optionally the Description
variable:

• Name: CTG_EXCI_INIT
• Value: NO

d. Click OK.

e. Save the changes to the master configuration. If you are using a clustered WebSphere
Application Server configuration, synchronize the changes to the nodes.

12.5 Installing the ECI resource adapter

This section describes how to install the ECI resource adapter using the WebSphere
Application Server administration console. The installation of an ECI resource adapter is
similar for all the topologies shown in Figure 12-1 on page 263. The instructions indicate the
differences that are required for local and remote mode topologies.

Note: For a local connection, the JCA connection pool that is managed by WebSphere
Application Server is a set of local connection objects. The connection objects do not map
onto network connections, and they do not map onto EXCI pipes because EXCI pipes are
allocated directly by the Java virtual machine (JVM) threads within the Java EE servant
region.
Chapter 12. Integrating with WebSphere Application Server 269

The following list notes important prerequisites:

� WebSphere Application Server is installed and configured with either a stand-alone server
or application server cluster, and the administration console and administration user ID are
available.

� A compatible version of the ECI resource adapter file (cicseci.rar) is available on either a
machine with browser access to the WebSphere Application Server administration
console (local file system) or on the same machine as the WebSphere Application Server
installation, the file must be readable by the WebSphere Application Server administration
user ID (remote file system):

– For information about selecting a suitable version of the CICS resource adapter, see
the technote “Choosing the correct CICS Resource Adapter to deploy in WebSphere
Application Server” at the following website:

http://www.ibm.com/support/docview.wss?uid=swg21306754

– The cicseci.rar file is in the CICS TG <install_path>/deployable directory.

– The cicseci.rar files for previous versions of CICS TG are available from SupportPac
CC03: CICS JCA resource adapters for use with Java EE application servers at the
following website:

http://www.ibm.com/support/docview.wss?uid=swg24008817

If you want to upgrade from a previous version of the ECI resource adapter, see 12.5.2,
“Upgrading the ECI resource adapter” on page 273.

12.5.1 Install the ECI resource adapter

Follow these steps to install the ECI resource adapter into WebSphere Application Server:

1. Log in to the WebSphere Application Server administration console.

2. Select Resource Adapters from the Resources Resource Adapters section of the
navigation menu.

3. Click Install RAR.

4. From the Install RAR file dialog box that is shown in Figure 12-2 on page 271, complete
these steps:

a. Set the Scope to the WebSphere Application Server node where the resource adapter
is to be installed to, for example, itsoNode01.

Important: Resource adapters can only be installed at the node scope. If you are
installing to an application server cluster, the resource adapter must be installed into
each of the nodes used by the cluster.
270 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/support/docview.wss?uid=swg21306754
http://www-01.ibm.com/support/docview.wss?uid=swg21306754
http://www.ibm.com/support/docview.wss?uid=swg24008817
http://www.ibm.com/support/docview.wss?uid=swg24008817
http://www.ibm.com/support/docview.wss?uid=swg21306754
http://www.ibm.com/support/docview.wss?uid=swg24008817
http://www.ibm.com/support/docview.wss?uid=swg24008817

Figure 12-2 Install RAR File dialog box

b. Specify the installation path for the RAR file in the Path section:

• Select Local file system if the cicseci.rar file is on the system from which you are
accessing the browser.

• Select Remote file system if the cicseci.rar file is on the same system as
WebSphere Application Server.

• Click Browse to navigate the file system, select the cicseci.rar file, and click
Open.

c. Click Next.

5. The Resource adapters General Properties dialog box shown in Figure 12-3 on page 272
includes a predefined name and description for the ECI resource adapter:

a. Accept the default name and description.

b. If WebSphere Application Server is using a local mode connection to CICS TG, set the
Native library path to the CICS TG bin directory, for example, /opt/IBM/cicstg/bin.

c. Click OK.

Figure 12-3 on page 272 shows the Resource adapters General Properties dialog box.

Native library path: The Native library path value is not required if using CICS TG
in remote mode.
Chapter 12. Integrating with WebSphere Application Server 271

Figure 12-3 Resource adapter General Properties dialog box

6. The administration console returns you to the Resource adapters dialog box and prompts
you to save the changes:

a. Set the Scope to All scopes. The new resource adapter ECIResourceAdapter is now
visible in the table of available resource adapters.

b. Save the changes to the master configuration.

7. If you are using a WebSphere Application Server cluster configuration, repeat the previous
steps to install the ECI resource adapter to all nodes in the cluster. This extra configuration
is required so that the cicseci.rar file is available to all application servers in the cluster
at run time.
272 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

8. If you are using a WebSphere Application Server cluster configuration, create a resource
adapter instance at the cluster scope.

Use the following steps:

a. Select Resource Adapters from the Resources Resource Adapters section of the
navigation menu.

b. Set the Scope to the cluster, for example, itsoCluster.

c. Click New. Then, enter ECIResourceAdapterCluster for Name. Optionally, enter a
description, for example, ECI Resource Adapter for cluster.

d. In Archive Path, select Choose an archive path from the list of installed RARs
(recommended). This path defaults to the ${CONNECTOR_INSTALL_ROOT}/cicseci.rar
file if the resource adapter is installed to all nodes in the cluster.

e. If WebSphere Application Server is using a local mode connection to CICS TG, set the
Native library path to the CICS TG bin directory, for example, /opt/IBM/cicstg/bin.

f. Click OK. Save the changes to the master configuration and synchronize the changes
to the nodes.

For instructions to create a Java EE Connector Architecture connection factory definition, see
12.6, “Creating and configuring a Java EE Connector Architecture connection factory” on
page 276.

12.5.2 Upgrading the ECI resource adapter

If you have an existing version of the ECI resource adapter installed, you can upgrade to a
more recent version resource adapter, if the versions are compatible and the resource
adapters implement the same version of the JCA specification. For CICS TG, for example,
you can perform these tasks:

� Upgrade from CICS TG V7.2 to the V8.0 resource adapter, because they both implement
the JCA 1.5 specification.

� Upgrade from CICS TG V8.1 to the V9.0 resource adapter, because they both implement
the JCA 1.6 specification.

� Do not upgrade from CICS TG V7.2 or V8.0 to the V8.1 or V9.0 resource adapter,
because of differences between the JCA 1.5 and 1.6 specifications.

An attempt to upgrade to an incompatible version resource adapter, for example, upgrading
from CICS TG Version 8.0 to the 9.0 resource adapter will be rejected with the message:

Error Incompatibilities were found when comparing the new RAR with the selected
resource adapter or resource adapters. The following incompatibilities were found:
Error J2CA0660I: The new RAR file is not compatible with the Resource Adapter. The
JCA Spec versions of the Resource Adapter and RAR are different. Resource Adapter
JCA version: 1.5. RAR File JCA Version: 1.6.

Important: Java EE Connector Architecture connection factories can be created only at
the same scope as the resource adapter that is installed. To define one Java EE
Connector Architecture connection factory for use by a cluster, you must first define a
resource adapter reference at the cluster scope.

Native library path: The Native library path value is not required if using CICS TG
in remote mode.
Chapter 12. Integrating with WebSphere Application Server 273

The advantage of upgrading a resource adapter is that the associated Java EE Connector
Architecture connection factory definitions are retained. Also, any new custom properties
introduced by the newer version resource adapter are added to the existing Java EE
Connector Architecture connection factory definitions, with the option to either accept the
default value or customize the value as required on a per connection factory basis.

Follow these steps to check which version resource adapter is currently installed:

1. Log in to the WebSphere Application Server administration console. Then, select
Resource Adapters from the Resources Resource Adapters section of the
navigation menu.

2. Click the resource adapter name, for example, ECIResourceAdapter. Then, select View
Deployment Descriptor from Additional properties. The resourceAdapter-version
element displays the value, for example, for CICS TG Version 9.0.0.1,
<resourceadapter-version> 9.0.0.1</resourceadapter-version>.

Follow these steps to upgrade the ECI resource adapter in WebSphere Application Server:

1. First, back up your existing WebSphere Application Server configuration by using the
backupConfig command. See the WebSphere Application Server Information Center for
details:

http://ibm.co/1kEqgbehttp://ibm.co/1kEqgbe

2. Log in to the WebSphere Application Server administration console. Then, select
Resource Adapters from the Resources Resource Adapters section of the
navigation menu.

3. From the Resource adapters dialog box, set the Scope to All scopes. Then, select the
resource adapter to update, and click Update RAR.

4. From the Update a resource adapter dialog box, specify the installation path for the new
RAR file, in the Path:

– Select Local file system if the cicseci.rar file is on the system from which you are
accessing the browser.

– Select Remote file system if the cicseci.rar file is on the same system as
WebSphere Application Server.

5. Click Browse to navigate to the file system, select the cicseci.rar file, and click Open.
Then, click Next.

6. Review the configuration information that is displayed for the new RAR file.

The information displayed includes Name, Current RAR version, New RAR version,
Scope, and any resource adapter instances created from the installed resource adapter,
which are marked with an asterisk (*). The resource adapter instances will be
automatically updated at the same time.

Note: The Update RAR function was introduced in WebSphere Application Server Version
7.0, which supports JCA 1.5. Use of JCA 1.6 resource adapters is supported from
WebSphere Application Server Version 8.0.
274 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 12-4 shows an example when upgrading the cicseci.rar from CICS TG Version
8.1.0.1 to Version 9.0.0.1 in a configuration where a resource adapter instance
ECIResourceAdapterCluster was previously created from the resource adapter
ECIResourceAdapter at the cluster scope.

Figure 12-4 List of resource adapter configurations to be upgraded

7. Click Next.

8. From the Configure new resource properties dialog box as shown in Figure 12-5 on
page 276, optionally edit any properties added by the new version of the resource
adapter:

a. Select a Java EE Connector Architecture connection factory name, for example, ECI,
which is displayed under the resource adapter name in the Select a resource list.

b. In the Edit resource properties section, use the provided table to set the values for new
properties that will be applied to the selected resource (the default values are
displayed).

c. Optional: Select the Set for all check box to apply the property value to all the
resources of the same type.

d. Click Apply.

e. Click Next.

Figure 12-5 on page 276 shows an example of the Configure new resource properties
dialog box when upgrading from the CICS TG Version 8.1.0.1 to Version 9.0.0.1
resource adapter. This shows the introduction of a new custom property
ipicSendSessions.

Note: Properties are only displayed if the new resource adapter provides properties
that did not exist in the previously installed resource adapter version. You can also edit
these properties in the Java EE Connector Architecture connection factory definitions
after completing the update.
Chapter 12. Integrating with WebSphere Application Server 275

Figure 12-5 Configure new resource properties dialog box

9. Review the summary panel and click Finish.

When you click Finish, all the configuration changes are saved automatically.

10.Restart the application servers that contain the updated RAR file.

For instructions to create a Java EE Connector Architecture connection factory definition, see
12.6, “Creating and configuring a Java EE Connector Architecture connection factory” on
page 276.

12.6 Creating and configuring a Java EE Connector
Architecture connection factory

This section describes how to use the WebSphere Application Server administration console
to create and configure a Java EE Connector Architecture connection factory for the ECI
resource adapter. It covers both local and remote mode IPIC connections to CICS TS. The
creation of a Java EE Connector Architecture connection factory is similar for all the
topologies shown in Figure 12-1 on page 263. The following instructions indicate the
differences that are required for local and remote mode topologies.

A basic prerequisite to getting started is installing the ECI resource adapter; see 12.5.1,
“Install the ECI resource adapter” on page 270.
276 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

12.6.1 Creating a Java EE Connector Architecture connection factory

This section describes how to create a Java EE Connector Architecture connection factory for
the ECI resource adapter using the WebSphere Application Server administration console.

Use the following steps to create a Java EE Connector Architecture connection factory in
WebSphere Application Server:

1. Log in to the WebSphere Application Server administration console.

2. Select Resource Adapters from the Resources Resource Adapters section of the
navigation menu.

3. Set the Scope:

– If you are using a stand-alone WebSphere Application Server configuration, select the
node Scope to which you installed the resource adapter, for example, itsoNode01.

– If you are using a clustered WebSphere Application Server configuration, select the
cluster Scope to which you defined the resource adapter instance, for example,
itsoCluster.

4. Click the name of the resource adapter or resource adapter instance. This ensures that
the Java EE Connector Architecture connection factory is associated with the correct
resource adapter:

– If you are using a stand-alone WebSphere Application Server configuration, select the
resource adapter, ECIResourceAdapter.

– If you are using a clustered WebSphere Application Server cluster configuration, select
the resource adapter instance, ECIResourceAdapterCluster.

5. From the Additional properties section, click J2C connection factories.

6. Click New to create a new Java EE Connector Architecture connection factory using the
ECI resource adapter.

7. The Java EE Connector Architecture connection factories General Properties dialog box is
displayed, as shown in Figure 12-6 on page 279. This allows you to define the name, Java
Naming and Directory Interface (JNDI) name, and description for the Java EE Connector
Architecture connection factory. Each Java EE Connector Architecture connection factory
must have a unique Name and JNDI name.

– The Name is used by WebSphere Application Server administration to reference this
Java EE Connector Architecture connection factory; it is not used by Java EE
applications. It must be unique within the WebSphere Application Server cell.

– The JNDI name is used by Java EE applications to access the Java EE Connector
Architecture connection factory. It provides a single symbolic name for applications to
access CICS and masks the details of the underlying Gateway daemon and CICS
topology. A common naming convention is to prefix the JNDI name with eis to indicate
that it is a JNDI name for an enterprise information system.

a. Enter the Name:

• For the local mode topologies (numbers 1 and 4 in Figure 12-1 on page 263), enter
ECILocal for Name.

• For the remote mode topology (number 3 in Figure 12-1 on page 263), enter
ECIRemotezOS for Name.
Chapter 12. Integrating with WebSphere Application Server 277

b. Enter the JNDI Name:

• For the local mode topologies (numbers 1 and 4 in Figure 12-1 on page 263), enter
eis/ECILocal for JNDI Name.

• For the remote mode topology (number 3 in Figure 12-1 on page 263), enter
eis/ECIRemotezOS for JNDI Name.

c. Enter a Description. The description is optional but it can help to identify the purpose of
the connection factory.

For the local mode topologies (numbers 1 and 4 in Figure 12-1 on page 263), you can
enter the following description:

Enter Local mode IPIC connection to CICS TS for Description

For the remote mode topology (number 3 in Figure 12-1 on page 263), you can enter
the following description:

Enter Remote mode connection to CICS TG for z/OS for Description

d. Click OK.

Configuration note: The Java EE Connector Architecture connection factory General
properties dialog box also includes security settings for authentication that you can
configure. This example does not flow authentication credentials and accepts the
default values.
278 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 12-6 Java EE Connector Architecture connection factory general properties for the local mode topology

8. The administration console returns you to the Java EE Connector Architecture connection
factories dialog box. The new Java EE Connector Architecture connection factory is now
visible in the table:

a. Save the changes to the master configuration.

b. If you are using a clustered WebSphere Application Server configuration, synchronize
the changes to the nodes.

These are the default
Security settings.

Suitable
for this non-secure
scenario configuration.
Chapter 12. Integrating with WebSphere Application Server 279

12.6.2 Configuring the connection pool properties

This section describes how to configure the connection pool properties for a Java EE
Connector Architecture connection factory. In remote mode, the connection pool represents
physical network connections between the WebSphere Application Server and the Gateway
daemon.

Table 12-3 describes the connection pool properties available on a Java EE Connector
Architecture connection factory.

Table 12-3 Java EE Connector Architecture connection factory connection pool properties

Property Description

Connection
timeout

Interval after which a connection request times out and a
ConnectionWaitTimeoutException is thrown. Occurs when there are no
connections available in the free pool and no new connections can be created.
This usually occurs because the maximum connections value has been
reached.

Consider reducing this value to be sufficiently long enough to queue requests
but to time out requests early if no connection becomes available.

Maximum
connections

Maximum number of physical connections that can be created in this pool.
These are the physical connections to the back-end resource. This needs to
take into account the number of concurrent connections requested expected
during a peak load.

For remote mode connections, this needs to correspond to the CICS TG
maximum number of connection manager threads (maxconnect).

Minimum
connections

Minimum number of physical connections to maintain. If the size of the
connection pool is at or below the minimum connection pool size, the Unused
timeout thread does not discard physical connections. However, the pool does
not create connections solely to ensure that the minimum connection pool size
is maintained.

For remote mode connections, this needs to correspond to the CICS TG initial
number of connection manager threads (initconnect). Consider increasing
from the default value to prevent timeouts and allow smooth transition from
periods of low activity to peak workloads.

Reap time Interval between runs of the pool maintenance thread. Set the Reap Time value
less than the values of Unused timeout and Aged timeout. The pool
maintenance thread discards any connections remaining unused for longer than
the Unused timeout value or that remain active longer than the Aged timeout
value, until it reaches the number of connections specified in Minimum
Connections. The Reap Time interval also affects performance. Smaller intervals
mean that the pool maintenance thread runs more often and degrades
performance.
280 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Use the following steps to configure the connection pool:

1. Configure the connection pool properties:

a. Click the name of the Java EE Connector Architecture connection factory, for example,
ECI.

b. Click Connection pool properties in Advanced properties. The Connection pool
dialog box is displayed as shown in Figure 12-7 on page 282.

c. Edit the properties to meet your runtime requirements. For a description of the
properties, see “Connection management” on page 265.

Unused timeout Interval after which unused or idle connections are discarded. Set the Unused
timeout value higher than the Reap timeout value for optimal performance.
Consider reducing this value so that connections are closed after a shorter
period of inactivity.

If TCP/IP connection balancing is in use across a group of cloned Gateway
daemons, repeated failures of requests to a Gateway daemon will cause it to be
removed from the workload distribution. When the Gateway daemon recovers,
no connections will be established to it, if all existing connections from the client
are being reused from a connection pool. To ensure that such Gateway
daemons can be efficiently used in a failback situation, set Unused timeout to
ensure that connections are recycled periodically.

Aged timeout Interval before a physical connection is discarded. Set the Aged timeout value
higher than the Reap timeout value for optimal performance.

See the comment, which is also applicable to this parameter, under Unused
timeout regarding Gateway daemon failback situations.

Purge Policy Specifies how to purge connections when a stale connection or fatal connection
error is detected. Two values are supported:
� EntirePool: all connections in the pool are marked stale. A connection in

use is closed and issues a stale connection exception during the next
operation on that connection. Subsequent getConnection() requests from
the application result in new connections to the database opening. When
using this purge policy, there is a slight possibility that some connections in
the pool are closed unnecessarily when they are not stale. However, this
closure is a rare occurrence. In most cases, a purge policy of EntirePool is
the best choice.

� Failing Connection Only: Only the connection that caused the stale
connection exception is closed. Although this eliminates the possibility that
valid connections are closed unnecessarily, it makes recovery from an
application perspective more complicated because there is a possibility that
the next getConnection() request from the application can return a
connection from the pool that is also stale, resulting in more stale
connection exceptions.

Property Description
Chapter 12. Integrating with WebSphere Application Server 281

For the purpose of this chapter, which is running the IVT application with small
numbers of concurrent requests, we used the default values. For information about the
values used in the high availability scenario, see 13.6.3, “Configuring a Java EE
Connector Architecture connection factory for CICS TG remote mode” on page 317.

• Connection timeout = 180 secs
• Maximum connections = 10
• Minimum connections = 1
• Reap time = 180 secs
• Unused timeout = 1800 secs
• Aged timeout = 0
• PurgePolicy = EntirePool

Figure 12-7 shows the Connection pools dialog box.

Figure 12-7 Java EE Connector Architecture connection factory connection pool default values

d. Save the changes to the master configuration.

e. If you are using a clustered WebSphere Application Server configuration, synchronize
the changes to the nodes.
282 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Before the Java EE Connector Architecture connection factory can be used, the custom
properties must be configured to connect to CICS TS. This configuration is specific to the
topology that you are implementing. For instructions to customize the Java EE Connector
Architecture connection factory definition to connect to CICS TS, see the appropriate
following section:

� 12.6.3, “Configuring a Java EE Connector Architecture connection factory for CICS TG
local mode” on page 283

� 12.6.4, “Configuring a Java EE Connector Architecture connection factory for CICS TG
remote mode” on page 285

12.6.3 Configuring a Java EE Connector Architecture connection factory for
CICS TG local mode

This section describes how to configure the Java EE Connector Architecture connection
factory custom properties for the topologies where WebSphere Application Server uses a
local mode connection.

The following list notes a few examples:

� WebSphere Application Server on Multiplatforms using CICS TG for Multiplatforms in local
mode to connect to CICS TS (as shown by topology 1 in Figure 12-1 on page 263)

� WebSphere Application Server on z/OS using CICS TG for z/OS in local mode to connect
to CICS TS (as shown by topology 4 in Figure 12-1 on page 263)

A prerequisite to configuring a Java EE Connector Architecture connection factory is that a
Java EE Connector Architecture connection factory was defined. For instructions, see 12.6,
“Creating and configuring a Java EE Connector Architecture connection factory” on page 276.
Then, proceed to the configuration process.

Use the following steps to configure the Java EE Connector Architecture connection factory
custom properties using the WebSphere Application Server administration console:

1. Log in to the WebSphere Application Server administration console.

2. Select J2C connection factories from the Resources Resource Adapters section of
the navigation menu.

3. In the Java EE Connector Architecture connection factories dialog box, follow these steps:

a. Set the Scope to All scopes.

b. Select the Java EE Connector Architecture connection factory created in 12.6.1,
“Creating a Java EE Connector Architecture connection factory” on page 277, for
example, ECILocal.

4. The administration console displays the Java EE Connector Architecture connection
factories General Properties dialog box. In the Additional properties section, select
Custom properties.
Chapter 12. Integrating with WebSphere Application Server 283

5. In the Java EE Connector Architecture connection factories Custom properties dialog box,
follow these steps:

a. Edit the properties:

• Set APPLID to ITSOAIX

This is used to identify the client on the IPIC request made to CICS TS. The CICS
TS server uses this information to determine the IPIC connection that will be used
by the request. For example, the CICS TS default IPIC connection autoinstall
program uses the last four characters to generate the IPCONN resource definition
name, which must be unique for IPIC connections to that CICS TS region. It will be
used as the APPLID in the installed IPCONN resource definition.

• Set APPLIDQUALIFIER to CTGWASA

This is used to identify the client on the IPIC request made to CICS TS. The CICS
TS server uses this information to determine the IPIC connection that will be used
by the request. It will be used as the NETWORKID in the installed IPCONN
resource definition.

• Set the connectionURL to local:

To use a local mode connection.

• Set serverName to tcp://lp01.redbooks.ibm.com:9001

This is the IPIC URL of the target CICS server. This example uses a TCP
connection to a CICS TS server with the lp01.redbooks.ibm.com host name whose
IPIC TCPIPSERVICE is listening on port 9001.

Optionally, the URL can also specify the Applid or ApplidQualifier and Applid values
of the target CICS region to validate that the connection is established to the
intended CICS region. When the connection is established, CICS validates these
values, and if they do not match the values defined for the CICS server that
received the request, the connection is rejected. To do this, use the following
syntax:

protocol://hostname:port#cicsApplid
protocol://hostname:port#cicsApplidQualifier.cicsApplid

Note: If you are using a WebSphere Application Server cluster topology and the
CICS TS sample IPIC connection autoinstall program to generate unique IPCONN
resource definitions, additional restrictions exist on the APPLID and
APPLIDQUALIFIER values:

� APPLID must be fewer than eight characters to allow CICS to append the
additional unique characters.

� APPLIDQUALIFIER must be unique for each WebSphere Application Server
cluster or stand-alone application server connecting to the same CICS TS
region.

For more details, see “Avoiding problems using local mode IPIC connections” on
page 318.
284 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

• Set ipicSendSessions to 100

This is only applicable to local mode and sets the maximum number of
simultaneous transactions, or CICS tasks, that is allowed over the connection. The
actual number of send sessions used is determined by this connection factory
property, or the IPCONN RECEIVECOUNT parameter in CICS TS, whichever is lower,
negotiated at connection establishment.

• Accept the default values for other properties.

b. Save the changes to the master configuration.

c. If you are using a clustered WebSphere Application Server configuration, synchronize
the changes to the nodes.

12.6.4 Configuring a Java EE Connector Architecture connection factory for
CICS TG remote mode

This section describes how to configure the Java EE Connector Architecture connection
factory custom properties for the topologies where WebSphere Application Server connects
to CICS TG in remote mode, for example:

� WebSphere Application Server on Multiplatforms using CICS TG for z/OS in remote mode
to connect to CICS TS (as shown by topology 3 in Figure 12-1 on page 263)

A prerequisite to configuring a Java EE Connector Architecture connection factory is that a
Java EE Connector Architecture connection factory was defined. For instructions, see 12.6,
“Creating and configuring a Java EE Connector Architecture connection factory” on page 276.
Then, proceed to the configuration process.

Use the following steps to configure the Java EE Connector Architecture connection factory
custom properties using the WebSphere Application Server administration console:

1. Log in to the WebSphere Application Server administration console.

2. Select J2C connection factories from the Resources Resource Adapters section of
the navigation menu.

3. In the Java EE Connector Architecture connection factories dialog box, follow these steps:

a. Set the Scope to All scopes.

b. Select the Java EE Connector Architecture connection factory that you created in the
previous sections, for example, ECIRemotezOS.

4. The administration console displays the Java EE Connector Architecture connection
factories General Properties dialog box. In the Additional properties section, select
Custom properties.

5. In the Java EE Connector Architecture connection factories Custom properties dialog box,
edit the following properties:

– Accept the default (blank) values for applid and applidqualifier.

These values are optional values to identify WebSphere Application Server as the
client to the Gateway daemon.

– Set connectionURL to tcp://lp01.redbooks.ibm.com.

This URL is the URL to connect to the TCP protocol handler of the z/OS Gateway
daemon on host name lp01.redbooks.ibm.com.

Note: The ipicSendSessions property was introduced in CICS TG Version 9.0.
Chapter 12. Integrating with WebSphere Application Server 285

– Set portNumber to 2016.

This setting is the port of the TCP protocol handler of the z/OS Gateway daemon.

– Set serverName to CICSTOR1.

This setting is the name of the target CICS server that is defined in an IPICSERVER
SECTION of the CICS TG configuration file.

– Accept the default values for other properties.

6. Save the changes to the master configuration. If you are using a clustered WebSphere
Application Server configuration, synchronize the changes to the nodes.

12.7 Testing end-to-end

You can use the CICS TG JCA resource adapter installation verification test (IVT) to test an
end-to-end flow from a Java EE application running in WebSphere Application Server that is
flowing an ECI request to CICS TS.

The IVT is a Java EE application that provides a web interface and that makes both
non-transactional and transactional ECI calls to CICS using a Java EE Connector
Architecture connection factory that is associated with the ECI resource adapter.

The following scenarios, as illustrated in Figure 12-1 on page 263, were tested during the
writing of this book:

� Topology 1

WebSphere Application Server on Multiplatforms using a local mode IPIC connection to
CICS TS

� Topology 3

WebSphere Application Server on Multiplatforms using a remote mode connection to
CICS TG for z/OS to connect to CICS TS using IPIC

� Topology 4

WebSphere Application Server on z/OS using a local mode IPIC connection to CICS TS

Each test is repeated using both local and two-phase commit transactions, that is, Java EE
Connector Architecture connection factory custom properties, xaSupport=off and
xaSupport=on.

The following prerequisites are needed to complete the test:

1. Install the ECI resource adapter (see 12.5.1, “Install the ECI resource adapter” on
page 270).

2. Create a Java EE Connector Architecture connection factory (see 12.6.1, “Creating a Java
EE Connector Architecture connection factory” on page 277), and configure it for local
mode, for example, ECILocal (see 12.6.3, “Configuring a Java EE Connector Architecture
connection factory for CICS TG local mode” on page 283).

3. Create a Java EE Connector Architecture connection factory (see 12.6.1, “Creating a Java
EE Connector Architecture connection factory” on page 277), and configure it for remote
mode, for example, ECIRemotezOS (see 12.6.4, “Configuring a Java EE Connector
Architecture connection factory for CICS TG remote mode” on page 285).
286 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

These high-level steps are used to run the test:

1. Deploy and configure the IVT to use the appropriate Java EE Connector Architecture
connection factory (see 12.7.1, “Deploying and configuring the IVT” on page 287).

If the IVT is already installed, map the Resource Reference to the Java EE Connector
Architecture connection factory (see “Mapping the resource reference to the Java EE
Connector Architecture connection factory” on page 289).

2. Run the IVT (see 12.7.2, “Running the IVT” on page 289).

12.7.1 Deploying and configuring the IVT

Follow these steps to deploy and configure the IVT using the WebSphere Application Server
administration console:

1. Log in to the WebSphere Application Server administration console.

2. Select WebSphere enterprise applications from the Applications Application type
section of the navigation menu.

3. Click Install.

4. From the Path to the new application dialog box, shown in Figure 12-8, specify the path of
the IVT ear file.

Figure 12-8 Path to the new application dialog box

The IVT is provided as ECIIVT.ear in the <install_path>/deployable directory. Follow
these steps:

– Select Local file system if the ECIIVT.ear file is on the system from which you are
accessing the browser.

– Select Remote file system if the ECIIVT.ear file is on the same system as WebSphere
Application Server.

– Click Browse to navigate to the appropriate file system, and then select the
cicseci.rar file. Click Open.

5. Click Next.

6. From the How do you want to install the application dialog box, shown in Figure 12-9 on
page 288, select Detailed - Show all installation options and parameters. This option
allows you to map the resource reference name that is defined in the IVT application with
the JNDI name that you specified for the Java EE Connector Architecture connection
factory.
Chapter 12. Integrating with WebSphere Application Server 287

Figure 12-9 How do you want to install the application dialog box

7. Click Next.

8. Step through the install application wizard:

a. Map modules to servers:

Map the ECIIVTEJB and ECIIVTWeb modules to the WebSphere Application Server
application server or cluster. If you have a separate web server, also map the
ECIIVTWeb module to it.

b. Map resource references to resources:

Ensure that the Target Resource JNDI Name for the ECIIVTEJB module matches the
JNDI name of the Java EE Connector Architecture connection factory that you defined
earlier, for example, eis/ECIRemotezOS for the remote mode connection to the Gateway
daemon on z/OS, as shown in Figure 12-10.

c. Click Browse for Target Resource JNDI Name, and select the appropriate Java EE
Connector Architecture connection factory from the displayed list. Then, click Apply.

d. For all other steps, accept the default values. Click Finish.

Figure 12-10 Map resource reference to resources dialog box

Wait for the installation to complete. The following message displays on the administration
console:

Application ECIIVT installed successfully

9. Click Save to save the changes to the master configuration. If you are using a clustered
WebSphere Application Server configuration, synchronize the changes to the nodes.

10.The Enterprise Application dialog box displays showing the ECIIVT application in a
stopped state. Start the IVT application.
288 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Mapping the resource reference to the Java EE Connector Architecture
connection factory
An alternative to specifying the deployment option is to use the “Fast Path” installation option
and to update the resource reference mapping after the application is deployed. To do so, use
the following steps:

1. Select WebSphere enterprise applications from the Applications Application type
section of the navigation menu.

2. Click the application name, for example, ECIIVT.

3. Click Resource references in the References section. Ensure that the Target Resource
JNDI Name for the ECIIVTEJB module matches the JNDI name of the Java EE Connector
Architecture connection factory as described in 12.6, “Creating and configuring a Java EE
Connector Architecture connection factory” on page 276.

4. Click OK.

5. Save the changes to the master configuration. If the application was running, restart it to
activate the change.

12.7.2 Running the IVT

Run the IVT by entering the following URL in a browser:

http://app_server_host:port/ECIIVTWeb/index.jsp

Here is an example:

http://aix.redbooks.ibm.com:9080/ECIIVTWeb/index.jsp

If the test is successful, it returns a web page that displays the date and time on the CICS
server and a success confirmation message.

12.8 Configuring the XA connection

This section describes how to configure the ECI resource adapter Java EE Connector
Architecture connection factory to use XA transactions. For a description of the transaction
support that is provided by CICS TG when using WebSphere Application Server, see 12.4,
“WebSphere Application Server settings” on page 265.

The ability to flow an XA transaction relies on using a supported topology. The ability to flow
an XA transaction is controlled through a combination of configuration parameters and
application deployment descriptors. The ECI resource adapter supports two-phase commit
global transactions from WebSphere Application Server for the following topologies:

� Using CICS TG for Multiplatforms, XA transactions are supported only for local mode IPIC
connections to CICS TS.

� Using CICS TG for z/OS, XA transactions are supported for both local and remote mode
IPIC or EXCI connections to CICS TS.

Restart note: After installing the resource adapter and defining the Java EE Connector
Architecture connection factory, the WebSphere Application Server or cluster must be
restarted.
Chapter 12. Integrating with WebSphere Application Server 289

The Java EE Connector Architecture connection factory for the ECI resource adapter
contains a custom property xaSupport. To enable XA transactions, set xaSupport=on.

For more details about using XA transactions with WebSphere Application Server in a high
availability environment, see Chapter 13, “High availability configuration” on page 295.

12.9 Flowing the user ID and password on an ECI request

If the CICS server requires user ID and password authentication for incoming requests,
WebSphere Application Server needs to flow a user ID and password on the ECI request.

To use container-managed sign-on, a Java Authentication and Authorization Service (JAAS)
authentication alias that contains the user ID and password is defined to WebSphere
Application Server. This user ID and password combination is then associated with a specific
connection using the resource reference mapping of the Java EE application using the default
authentication method. It is more secure to apply the JAAS authentication alias to the
application than directly to the connection factory. Follow these steps:

1. Log in to the administration console.

2. Open the Global security dialog box from the Security Global security section of the
navigation menu.

3. From the Authentication section, click Java Authentication and Authorization
Service J2C authentication data.

4. Click New.

5. Enter the following details for Java EE Connector Architecture authentication data:

– Set Alias to cicsuserAuthAlias.
– Set User ID to ITSOUSER.
– Set Password to password.
– Click OK.

6. Select WebSphere enterprise applications from the Applications Application type
section of the navigation menu.

7. Click the application name, for example, ECIIVT. Then, in the References section, click
Resource references.

8. Select the module that uses the Java EE Connector Architecture connection factory, for
example, ECIIVTEJB, and then click Modify Resource Authentication Method.

9. In Specify authentication method, select Use default method, and then select
Authentication data entry from the list, for example, scope/cicsuserAuthAlias.

10.Click Apply.

11.Click OK.

12.Save the changes to the master configuration. If you are using a clustered WebSphere
Application Server configuration, synchronize the changes to the nodes.

Note: the value entered for the Java EE Connector Architecture authentication data
alias is automatically prefixed with the scope at which it was created.
290 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

12.10 Securing the connection with Secure Sockets Layer

You can configure WebSphere Application Server for Multiplatforms to connect using SSL to
both a CICS TS region using IPIC (in a local mode topology) and a z/OS Gateway daemon (in
a remote mode topology). In both cases, WebSphere Application Server acts in the role of the
client, and the steps that are required to configure SSL on the connection are the same.

When using the ECI resource adapter in WebSphere Application Server to establish SSL
connections, a Java keystore (.jks) file is required to store the SSL certificates. The path to
the keystore and its password are specified in the custom properties of the Java EE
Connector Architecture connection factory. The keystore can be created using various key
management tools, for example, the iKeyman tool. The Keystore must exist on the file system
of the machine where WebSphere Application Server is installed.

To meet prerequisites, verify that the SSL is configured in the Gateway daemon and on the
CICS TS IPIC connection. Obtain the SSL public certificates that are used to secure the
Gateway daemon and CICS TS region from the CICS TG and CICS TS administrators. For
more information, see 10.4, “Configure secure connections” on page 186 and 9.4.1, “Create a
key ring for CICS” on page 163.

Configure WebSphere Application Server to use SSL on a connection to either a Gateway
daemon or CICS TS region (using IPIC):

1. Create a Java keystore (.jks) file for use by WebSphere Application Server acting as the
client end of the SSL connection:

a. Use the iKeyman tool provided in the Java bin directory of the CICS TG <install_path>,
for example, /opt/IBM/cicstg/jvm17/bin/ikeyman, to create a Java keystore file.

For example, create a Java keystore file called aix_was_key.jks with password
redbooks in directory /usr/IBM/WebSphere.

b. Ensure that the permissions of the Java keystore file permit the user ID under which
WebSphere Application Server is running to read the file.

2. For server authentication, import the SSL public certificates used to secure the Gateway
daemon and CICS TS region into the WebSphere Application Server keystore as trusted
certificates, which are also known as signer certificates.

In the SSL configuration used in this book, the CICS TS region and z/OS Gateway
daemon SSL certificates are signed with the same RACF certificate authority (CA)
certificate, which was exported as cicsroot.cer. Use the iKeyman tool to add
cicsroot.cer as a signer certificate to aix_was_key.jks.

3. If client authentication is enabled on the SSL connection in the Gateway daemon or CICS
TS, follow these steps:

a. Use the iKeyman tool to create a client certificate in the WebSphere Application Server
Java keystore file aix_was_key.jks as a personal certificate. This certificate is used by
WebSphere Application Server to identify itself on the SSL connections. For example,
create a certificate called was_aix_itso.

Note: Client authentication was not tested from WebSphere Application Server in this
book.

Note: For testing purposes, a self-signed certificate is sufficient. For production
systems, the use of a third-party CA signed certificate is suggested.
Chapter 12. Integrating with WebSphere Application Server 291

b. Export the WebSphere Application Server’s public certificate was_aix_itso and send it
to the CICS TG and CICS TS administrators, so that they can add it as a trusted
certificate to the RACF key rings that are used by the z/OS Gateway daemon and the
CICS TS region.

4. Edit the existing Java EE Connector Architecture connection factory definition custom
properties to use the SSL connections:

– Set keyRingClass to the fully qualified path of the WebSphere Application Server Java
keystore file, for example, /usr/IBM/WebSphere/aix_was_key.jks.

– Set keyRingPassword to the password of the WebSphere Application Server Java
keystore file, for example, redbooks.

– For local mode connection to CICS TS over IPIC connection:

• Set serverName to specify ssl as the protocol and the CICS TS IPIC SSL port as the
port value, for example, ssl://lp01.redbooks.ibm.com:9001.

– For remote mode connection to a Gateway daemon, follow these steps:

• Set connectionURL to specify ssl as the protocol and the host name of the Gateway
daemon, for example, ssl://lp01.redbooks.ibm.com.

• Set portNumber to specify the Gateway daemon SSL protocol handler port, for
example, 8070.

– Optional: Restrict the cipher suites to be used on the Cipher Suites property.

– Leave other properties unchanged.

For more information about how to configure SSL between WebSphere Application Server on
Multiplatforms using local mode IPIC connection to CICS TS and SSL between a Java client
and a Gateway daemon, see the CICS TG Information Center:

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

12.11 Transaction tracking with Cross Component Trace

You can use Cross Component Trace (XCT) to track individual requests as they flow between
WebSphere Application Server, CICS TG, and CICS TS, assisting you with both problem
diagnosis and system planning and configuration. The XCT facility is available when using
IPIC connections and WebSphere Application Server Version 8.5 or later. As a request flows
through the system, the related XCT information is recorded in the WebSphere High
Performance Extensible Logging (HPEL) log, CICS TG request monitoring exit data, and
CICS task association data.

Note: This assumes that the TCPIPSERVICE in CICS TS listening on port 9001 was
configured to support SSL connections.
292 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/index.jsp

To enable XCT in WebSphere Application Server, use the following steps:

1. Log in to the WebSphere Application Server administration console.

2. Click the application server name, for example, itsoServer01, from the
Troubleshooting Logs and trace section of the navigation menu.

3. Enable High Performance Extensible Logging (HPEL):

a. Click Switch to HPEL Mode. This option will not be displayed if HPEL is already
enabled.

b. Save the changes to the master configuration.

4. Enable XCT:

a. After saving the information in the Switch to HPEL Mode dialog box, the Change log
detail levels dialog box for the application server is displayed. Alternatively, you can
open this dialog box by navigating to Troubleshooting Logs and trace
serverName Change log detail levels.

b. In the Correlation section, select Enable log and trace correlation and Include
request IDs in log and trace records and create correlation log records.

c. Save the changes to the master configuration.

5. If you are using a clustered WebSphere Application Server configuration, repeat these
steps for all application servers in the cluster, and synchronize the changes to the nodes.

The XCT information in WebSphere Application Server is written to the HPEL log. The XCT
information can be viewed in several ways:

� To view XCT information using the administration console, use the following options:

a. Click Troubleshooting Logs and trace serverName View HPEL logs and
trace from the navigation menu.

b. Optional: Expand Content and Filtering Details to filter the HPEL log records
displayed. For example, to view only entries for the ECI resource adapter, set Include
logger to com.ibm.websphere.XCT and set Message contents to ECIRA*.

� To view XCT information using the command line, use the following options:

Use the WebSphere Application Server logViewer.bat command or logViewer.sh script.
For information about using the command, use the -help option on the command line, or
see the WebSphere Application Server Information Center:

http://ibm.co/1qPvJzP

For example, to see only entries for the ECI resource adapter, use the following syntax:

WAS_HOME/profiles/profileName/bin/logviewer.sh -format advanced -message
ECIRA

� Alternatively, use the IBM WebSphere Cross Component Trace Logviewer, which is
available as a plug-in to the IBM Support Assistant:

a. Download the IBM Support Assistant (ISA) Workbench from this website:

http://www.ibm.com/software/support/isa

b. Start the ISA Workbench, and then click Update Find New Tools Add-ons.

c. Select the tool JVM-based Tools IBM WebSphere Cross Component Trace
Logviewer. Follow the prompts to complete the installation.

d. Restart the ISA Workbench. Then, follow the instructions that are provided with the
Logviewer to view the XCT entries in the HPEL logs.
Chapter 12. Integrating with WebSphere Application Server 293

http://www.ibm.com/software/support/isa

For more information about using XCT with CICS TG and example output from WebSphere
Application Server, CICS TG request monitoring, and CICS TS task association data, see the
CICS TG Information Center:

http://ibm.co/1mpkdan
294 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 13. High availability configuration

This chapter describes the steps to implement a high availability (HA) system for a 3-tier
remote mode scenario, where a Java EE application in WebSphere Application Server uses
the ECI resource adapter to connect to z/OS Gateway daemons and the Gateway daemons
connect to CICS Transaction Server (CICS TS) regions using the Internet Protocol
interconnectivity (IPIC) connection protocol.

The configuration described in this chapter uses options that are specific to the CICS
Transaction Gateway for z/OS product (CICS TG). For a description of the high availability
concepts, which includes options available for CICS TG for Multiplatforms, see Chapter 7,
“High availability concepts” on page 103.

We use Sysplex Distributor and TCP/IP port sharing to distribute requests from WebSphere
Application Server to multiple z/OS Gateway daemons configured as a Gateway group across
two logical partitions (LPARs) of a z/OS Parallel Sysplex. Dynamic server selection (DSS) is
used to distribute the workload to different CICS terminal-owning regions (TORs).

This chapter contains the following topics:

� 13.1, “High availability use case” on page 296
� 13.2, “High availability topology” on page 296
� 13.3, “Connection balancing” on page 299
� 13.4, “Highly available Gateway group” on page 309
� 13.5, “Configuring DSSPOLICY” on page 311
� 13.6, “WebSphere Application Server cluster” on page 314
� 13.7, “XA considerations” on page 318

13
© Copyright IBM Corp. 2014. All rights reserved. 295

13.1 High availability use case

The use case for this scenario is to provide scalability and failover for the 3-tier remote mode
topology, where a Java EE application in WebSphere Application Server on Multiplatforms
uses the ECI resource adapter to connect to a highly available Gateway group. IPIC
connections are used between the Gateway daemons and the CICS TS regions.

The Java EE application workload is driven by a total of 200 users, with an expected number
of 100 concurrent requests.

In normal operating conditions, the workload needs to be equally distributed across the
system components. However, the configuration needs to be able to cope with the following
failure scenarios: loss of a single CICS region, loss of a single Gateway daemon, or loss of a
z/OS LPAR. In the worst case scenario, each Gateway daemon must be capable of handling
the entire workload.

The CICS TG JCA resource adapter installation verification test (IVT) will be used. The IVT is
a Java EE application that provides a web interface and makes both non-transactional and
transactional ECI calls to CICS using a Java EE Connector Architecture connection factory
associated with the ECI resource adapter. The workload is driven using Rational Performance
Tester, details of which are beyond the scope of this chapter.

13.2 High availability topology

This section describes the high availability topology used in this chapter.

The high availability environment used in this chapter, as shown in Figure 13-1 on page 297,
includes the following key components:

� A z/OS Parallel Sysplex with two LPARs. Each LPAR hosts multiple Gateway daemons
and CICS TS regions.

� Each Gateway daemon is configured to connect to all TORs using IPIC.

� Dynamic server selection provides a flexible mechanism for dynamically controlling the
flow of work to the CICS regions.

� A highly available Gateway group provides workload balancing and failover between the
Gateway daemons.

� Sysplex Distributor and TCP/IP port sharing are used to distribute ECI requests from
WebSphere Application Server to the Gateway group.

� A WebSphere Application Server cluster on AIX hosts the Java EE application, which
flows the ECI requests.

Each of these components will be discussed in more detail in the following sections.

This chapter does not discuss Secure Sockets Layer (SSL), but the SSL configurations
described in previous chapters are applicable to this high availability scenario.

Figure 13-1 on page 297 shows the high availability environment implemented in this chapter.

Note: All the Gateway daemons are connected to all the CICS TS regions, but not all of
these connections are indicated in the diagram, to simplify the image.
296 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 13-1 High availability topology implemented in this chapter

Assumptions
The instructions to implement the high availability environment described in Figure 13-1 make
the following assumptions:

� Four CICS TS regions shown as TOR1, TOR2, TOR3, and TOR4 are active across the two
LPARs (LP01 and LP02) of the Parallel Sysplex. Each CICS TS region has the sample
server programs EC01 and EC03 installed. Each CICS TS region is configured with
predefined IPIC connections:

– The CICS TS region configuration is based on Chapter 9, “Configuring IPIC in CICS
Transaction Gateway for z/OS” on page 147, scaled to provide four TORs.

– The TCPIPSERVICEs are configured to listen on the static virtual IP addresses (VIPAs)
lp01.redbooks.ibm.com (192.168.0.1) and lp02.redbooks.ibm.com (192.168.0.2).

– The IPCONN resource definition receivecount is increased to 100, so that in the worse
case scenario, a single TOR is capable of handling the entire anticipated workload.

� A WebSphere Application Server cluster was configured on AIX. The ECI resource
adapter was installed, the Java EE Connector Architecture connection factory was
configured, and the IVT application was installed. See Chapter 12, “Integrating with
WebSphere Application Server” on page 261.

� 4 Gateway daemons, shown as CTG1, CTG2, CTG3, and CTG4, all listen for new connections
on a common port, 2006, and are bound to distributed dynamic VIPA (DVIPA),
lp00.redbooks.ibm.com (1.2.3.4).

LP01 LP02

z/OS Sysplex

IPIC IPIC

CTG1 CTG3

TCP/IP Shareport

CTG2 CTG4

TCP/IP Shareport

TOR4TOR2TOR3TOR1

Sysplex Distributor

Application
server

AIX

Application
serverIVT

Browser

HTTP Server

Application server cluster

ECI Connection Factory

IVT

ECI Connection Factory
Chapter 13. High availability configuration 297

Table 13-1 lists the resources and values used to configure the high availability topology
described in this chapter.

Table 13-1 HA topology resource summary

Component Attribute Value

z/OS TCP/IP LP01 Hostname/IP address lp01.redbooks.ibm.com/192.168.0.1

z/OS TCP/IP LP02 Hostname/IP address lp02.redbooks.ibm.com/192.168.0.2

Sysplex Distributor DVIPA Hostname/IP address lp00.redbooks.ibm.com/1.2.3.4

Sysplex Distributor Ports in port list 2006

TCP/IP Profile Shared port definition port 2006

TCP/IP Profile Shared port definition jobname CTG*

TCP/IP Profile Dynamic cross-system
coupling facility (XCF) address
(LPAR)

10.1.100.1 (LP01)
10.1.100.2 (LP02)

Gateway daemon Jobnames/APPLIDs (owning
LPAR)

CTG1ITSO/ITSOCTG1 (LP01)
CTG2ITSO/ITSOCTG2 (LP02)
CTG3ITSO/ITSOCTG3 (LP01)
CTG4ITSO/ITSOCTG4 (LP02)

Gateway daemon APPLIDQUALIFIER
all Gateway daemons

CTGALP00

Gateway daemon tcp protocol handler bind
address/port
all Gateway daemons

lp00.redbooks.ibm.com/2006

Gateway daemon DSSPOLICY Mapping name CICSTOR

Gateway daemon IPICSERVER
name/CICS TCPIPSERVICE
address/port
all Gateway daemons

CICSTOR1/lp01.redbooks.ibm.com/9011
CICSTOR2/lp02.redbooks.ibm.com/9012
CICSTOR3/lp01.redbooks.ibm.com/9013
CICSTOR4/lp02.redbooks.ibm.com/9014

Gateway daemon statsapi protocol handler bind
address/port (Gateway
daemon)

lp01.redbooks.ibm.com/2981 (CTG1ITSO)
lp02.redbooks.ibm.com/2982 (CTG2ITSO)
lp01.redbooks.ibm.com/2983 (CTG3ITSO)
lp02.redbooks.ibm.com/2984 (CTG4ITSO)

CICS TS CICS region APPLID values
(owning LPAR)

S20351T1 (LP01)
S20351T2 (LP02)
S20351T3 (LP01)
S20351T4 (LP02)

CICS TS TCPIPSERVICE definition
hostname/port
(owning CICS region)

lp01.redbooks.ibm.com/9011 (S2035T1)
lp02.redbooks.ibm.com/9012 (S2035T2)
lp01.redbooks.ibm.com/9013 (S2035T3)
lp02.redbooks.ibm.com/9014 (S2035T4)

CICS TS IPCONN definition
ReceiveCount

100
298 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

13.3 Connection balancing

This section describes how balancing TCP/IP requests into the z/OS Gateway daemons is
achieved in the high availability environment described in this chapter.

Connection balancing of TCP/IP requests from the client application is achieved by using
TCP/IP port sharing to distribute requests across the Gateway daemons in the same LPAR
and using Sysplex Distributor to distribute requests across the Parallel Sysplex. For more
information about the concepts of connection balancing, see 7.2, “Connection balancing” on
page 105.

The Gateway daemon health reporting information is used in calculating the IBM z/OS
Workload Manager (WLM) health. WLM health can be used as an additional mechanism to
influence the TCP/IP load balancing algorithm, in both TCP/IP port sharing and Sysplex
Distributor. This causes requests to be proportionally distributed to the healthier Gateway
daemons.

Perform these tasks to use the z/OS Gateway daemon and WLM health information for load
balancing decisions:

� For Sysplex Distributor, set SERVERWLM on the VIPADISTRIBUTE statement.
� For TCP/IP port sharing, set SHAREPORTWLM on the TCP/IP profile PORT definition.

For more details about how WLM server-specific recommendations are calculated and used
to influence the load balancing algorithm, see 7.2.2, “z/OS shared ports” on page 107.

The information about how this is implemented in this scenario is described in 13.3.1,
“Sysplex Distributor” on page 300 and 13.3.2, “Enabling WLM recommendations for TCP/IP
port sharing” on page 304.

Figure 13-2 on page 300 shows the Sysplex Distributor and TCP/IP port sharing environment
configuration used in this chapter.
Chapter 13. High availability configuration 299

Figure 13-2 Sysplex Distributor and TCP/IP port sharing configuration

Binding of listener ports
In this implementation, we want to ensure that only those client applications using the
advertised DVIPA address can connect to a Gateway daemon. So, the tcp protocol handler
definition specifies a bind address of lp00.redbooks.ibm.com (1.2.3.4). In this way, external
application programs do not need any knowledge of the LPAR static VIPA, but even if they
have this knowledge, they cannot bypass the Sysplex Distributor by attaching directly to the
Gateway daemon.

By contrast, the CICS TCPIPService definitions bind to the static VIPA for their LPAR. The
CICS TCPIPService listener ports are not shared (they must not be for CICS TG IPIC
connections), and are of no interest to the external applications. Only the IPICServer
definitions in the Gateway daemon configuration file need to reference the address and port
numbers associated with the TCPIPService definitions. Similarly, the statistics API protocol
handlers for each Gateway daemon must not be shared, and so, they are also bound to the
static VIPA for their LPAR.

13.3.1 Sysplex Distributor

In a high availability environment with multiple Gateway daemons configured across different
LPARs in a Parallel Sysplex, Sysplex Distributor can provide a single system image view of
the TCP/IP stacks in the individual LPARs. Sysplex Distributor defines an IP address
(dynamic VIPA) for this single system image, which client applications can use to connect to
the Gateway daemons.

LP01 LP02

CTG2
port 2006

CTG1
port 2006

CTG3
port 2006

TCP/IP SHAREPORTWLM
IP 192.168.0.1

port 2006

TCP/IP SHAREPORTWLM
IP 192.168.0.2

port 2006

TOR4TOR2

z/OS Sysplex

IPIC

CTG4
port 2006

Sysplex Distributor
DVIPA 1.2.3.4

port 2006

ECI Connection Factory

IVT

AIX WebSphere Application Server

WLM

IPIC IPIC

TOR3TOR1

IPIC

tcp
300 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

When client applications attempt to establish a connection to a z/OS Gateway daemon’s
advertised IP address and port, Sysplex Distributor distributes requests to one of the
available Gateway daemons within the single system image. After a connection is
established, requests from the client application continue to use the same connection.

In the high availability environment shown in Figure 13-1 on page 297, TCP/IP port sharing is
used to distribute requests across multiple Gateway daemons within the same LPAR. Sysplex
Distributor is used to distribute the client requests across the TCP/IP stacks of the individual
LPARs. Sysplex Distributor will be configured to use the z/OS Gateway daemon and WLM
health information for its load balancing decisions. The Sysplex Distributor dynamic VIPA
hostname is lp00.redbooks.ibm.com, and the IP address is 1.2.3.4.

Configuring Sysplex Distributor
Follow these steps to use Sysplex Distributor to distribute requests between multiple Gateway
daemons in different LPARs of a Parallel Sysplex:

1. Install and configure Sysplex Distributor and its prerequisites on all LPARs in the Parallel
Sysplex that hosts the Gateway daemons.

For details about installing and configuring Sysplex Distributor, see the z/OS
Communications Server Information Center:

http://ibm.co/1u0WrLk

2. Enable dynamic Cross-System Coupling Facility (XCF), which is a requirement of Sysplex
Distributor, on each host. The dynamic XCF IP addresses are used by the distributing
TCP/IP host when it redirects packets to a target host.

IPCONFIG statements in the TCP/IP profile data are used to defined dynamic XCF IP
addresses. Example 13-1 shows the configuration statements to enable dynamic XCF
address 10.100.0.1 on LPAR LP01.

Example 13-1 Enable dynamic XCF on LPAR LP01

IPCONFIG
 DATAGRamfwd
 DYNAMICXCF 10.100.0.1 255.255.255.0 1
 SYSPLEXRouting
 IGNORERedirect
 SOURCEVIPA

Example 13-2 on page 302 shows the configuration statements to enable dynamic XCF
for static VIPA address 10.100.0.2 on LPAR LP02.

Note: One important aspect of using Sysplex Distributor is that the instances of the
Gateway daemon must be functional clones, for example, configured as a highly available
Gateway group. Also, the Gateway daemons must be able to handle any XA transaction
affinities that can arise during the execution of a client request.

Note: Dynamic XCF addresses are used internally, and they are not to be referenced
directly by the CICS TG or CICS TS configuration. Do not advertise dynamic XCF
addresses to external applications.
Chapter 13. High availability configuration 301

Example 13-2 Enable dynamic XCF on LPAR LP02

IPCONFIG
 DATAGRamfwd
 DYNAMICXCF 10.100.0.2 255.255.255.0 1
 SYSPLEXRouting
 IGNORERedirect

VARSUBNETTING

3. Configure Sysplex Distributor to use the z/OS Gateway daemon and WLM health
information for load balancing decisions.

Add configuration statements in the TCP/IP profile data set as shown in the following
examples.

Example 13-3 shows the configuration statements on LPAR LP01 to define the advertised
DVIPA address 1.2.3.4 to distribute requests received on port 2006 across the LPARs
with dynamic XCF addresses 10.100.0.1 (LP01) and 10.100.0.2 (LP02), using the
server-specific WLM recommendations (keyword SERVERWLM).

Example 13-3 Define DVIPA for port 2006 on LPAR LP01 using SERVERWLM

VIPADYNAMIC
VIPADEFINE MOVEABLE IMMEDIATE 255.255.252.0 1.2.3.4
VIPADISTRIBUTE DEFINE DISTMETHOD SERVERWLM 1.2.3.4
 PORT 2006
 DESTIP 10.100.0.1 10.100.0.2
ENDVIPADYNAMIC

Example 13-4 shows the configuration statements on LPAR LP02 to define the advertised
DVIPA address 1.2.3.4 to distribute requests received on port 2006 across the LPARs with
dynamic XCF addresses 10.100.0.2 (LP02) and 10.100.0.1 (LP01), using the
server-specific WLM recommendations (keyword SERVERWLM).

Example 13-4 Define DVIPA for port 2006 on LPAR LP02 using SERVERWLM

VIPADYNAMIC
VIPADEFINE MOVEABLE IMMEDIATE 255.255.252.0 1.2.3.4
VIPADISTRIBUTE DEFINE DISTMETHOD SERVERWLM 1.2.3.4
 PORT 2006
 DESTIP 10.100.0.2 10.100.0.1
ENDVIPADYNAMIC

In this chapter, port 2006 on the DVIPA is explicitly defined to distribute connections between
LP01 and LP02. This allows the CICS TG remote application to connect with one of the four
individual Gateway daemon TCP protocol handler ports. In addition, if the Gateway daemons
define an SSL protocol handler, a second PORT statement (for example, PORT 8050) is added to
the VIPDISTRIBUTE definition.

Note: An alternative approach to explicitly listing individual port numbers is to omit the PORT
parameter from the Sysplex Distributor VIPADISTRIBUTE statement. In this case, any server
binding a listening port to the DVIPA is eligible for connection workload balancing.
302 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

In Example 13-3 on page 302 and Example 13-4 on page 302, the DESTIP statement on the
VIPADISTRIBUTE definition specifies the dynamic XCF addresses (as defined on the IPCONFIG
DYNAMICXCF statement) of the TCP/IP stacks in the sysplex that are to be target stacks for the
dynamic VIPA. Alternatively, DESTIP ALL can be specified, causing all TCP/IP stacks in the
sysplex that have defined a dynamic XCF address of the same type as the IP address
specified in this VIPADISTRIBUTE statement to be defined as target stacks for the dynamic
VIPA.

If only one server binds to the distributed DVIPA and port and establishes a listening socket,
that server will get all of the work. When a second server binds to the distributed DVIPA using
the same port and establishes a listening socket, it will immediately become eligible to
participate in connection workload balancing.

For more information about using and configuring Sysplex Distributor, see IBM z/OS V1R13
Communications Server TCP/IP Implementation: Volume 3 High Availability, Scalability, and
Performance, SG24-7998, which is available at this website:

http://www.redbooks.ibm.com/abstracts/sg247998.html

Verifying the Sysplex Distributor definitions
In this book, Sysplex Distributor is configured to be active on one LPAR with the other LPAR
defined as a backup, so that if the distributing stack fails, the backup can take over the
distributing function.

For this chapter, the advertised DVIPA address is active on LPAR LP01 with the other LPAR
LP02 able to act as a backup. This can be shown by issuing the following command from the
z/OS System Display and Search Facility (SDSF) panel on each LPAR:

d tcpip,tcpip,netstat,vipadyn

Example 13-5 shows the output on LPAR LP01 showing that DVIPA is active.

Example 13-5 LPAR LP01 is configured as the active stack for Sysplex Distributor

DYNAMIC VIPA:
 IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
 1.2.3.4 255.255.252.0 ACTIVE VIPADEFINE DIST/DEST

Example 13-6 shows the output on LPAR LP02 showing that DVIPA is a backup.

Example 13-6 LPAR LP02 is defined as a backup stack for Sysplex Distributor

DYNAMIC VIPA:
 IP ADDRESS ADDRESSMASK STATUS ORIGINATION DISTSTAT
 1.2.3.4 255.255.252.0 BACKUP VIPADEFINE DIST/DEST

To view where requests to port 2006 are being routed, issue the following command from the
z/OS SDSF panel on the active LPAR (LP01):

d tcpip,tcpip,netstat,vdpt

Example 13-7 on page 304 shows the output from this command. The equal WLM values
indicate an equal weighting between the LPARs. The TOTALCONN values show that an equal
number of requests were distributed to each LPAR.
Chapter 13. High availability configuration 303

http://www.redbooks.ibm.com/abstracts/sg247998.html

Example 13-7 Sysplex Distributor request distribution

DYNAMIC VIPA DESTINATION PORT TABLE FOR TCP/IP STACKS:
DEST IPADDR DPORT DESTXCF ADDR RDY TOTALCONN WLM TSR FLG
1.2.3.4 02006 192.168.0.1 002 0000000015 01 100
1.2.3.4 02006 192.168.0.2 002 0000000015 01 100

For a high-level summary of the configuration, use the TSO netstat command, suboption
home:

d tcpip,tcpip,netstat,home

Example 13-8 A summary of the configuration from the netstat home command

HOME ADDRESS LIST:
ADDRESS LINK FLG
192.168.0.1 OSA2040LNK P
10.1.100.1 EZASAMEMVS
10.1.100.1 EZAXCF02
1.2.3.4 VIPL090C0444
127.0.0.1 LOOPBACK
5 OF 5 RECORDS DISPLAYED

The second column in the output from the netstat home command, shown in Example 13-8,
provides each address entry with an indication of its type. A link value beginning with the
characters “OSA” indicates that the address is associated with a physical network adapter. The
entries beginning with “EZA” come from dynamic XCF addresses. The entry beginning with
“VIPL” is for the externally advertised DVIPA.

13.3.2 Enabling WLM recommendations for TCP/IP port sharing

TCP/IP port sharing is used in high availability environments where multiple Gateway
daemons are configured in the same LPAR to provide a single IP address and port for client
applications to use to connect to the Gateway daemons.

When client applications attempt to establish a connection to a z/OS Gateway daemon’s
advertised IP address and port, TCP/IP port sharing distributes connections to one of the
available Gateway daemons listening on the shared port in that LPAR. After a connection is
established, requests from the client application continue to use the same connection.

In the high availability environment shown in Figure 13-1 on page 297, TCP/IP port sharing
uses a WLM server-specific recommendation. This includes the z/OS Gateway daemon
health reporting information in the workload balancing algorithm.

To enable TCP/IP port sharing to use the Gateway daemon health information for load
balancing decisions, set SHAREPORTWLM on the TCP/IP profile PORT definition, as shown in
Example 13-9 on page 305.

Note: One important aspect of using TCP/IP port sharing is that the instances of the
Gateway daemon must be functional clones, for example, configured as a highly available
Gateway group. Also, the Gateway daemons must be able to handle any XA transaction
affinities that can arise during the execution of a client request.
304 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Example 13-9 TCP/IP profile SHAREPORTWLM definition

PORT
2006 TCP CTG* SHAREPORTWLM

The steps to enable port sharing based on WLM server-specific recommendations are
described in “Configuring WLM recommendations for TCP/IP port sharing” on page 305.

CICS TG health reporting
The z/OS Gateway daemons can monitor certain error codes to determine the health of
communications with CICS TS. When CICS TG health reporting is enabled, the Gateway
daemon health is initially set to 100 and it is calculated to represent the percentage of
requests that succeeded during the health interval. Therefore, ECI requests through a
Gateway daemon that fail to complete successfully because the CICS TS server is
unavailable cause the health of the Gateway daemon to be reduced. The minimum value is 0.
For more details, see “CICS TG WLM health” on page 110.

In the high availability environment shown in Figure 13-1 on page 297, health reporting is
enabled in the Gateway daemons by setting the following configuration file parameters:

� healthreporting=on
� healthinterval=60 (the default value)

When the Gateway daemon is started with health reporting enabled, the following message is
written to the STDOUT log:

CTG6422I Health reporting is enabled.

Configuring WLM recommendations for TCP/IP port sharing
Use the following steps to set up TCP/IP port sharing based on WLM server-specific
recommendations to distribute requests to the Gateway daemon tcp protocol handler port
2006, between multiple Gateway daemons in the same LPAR:

1. Check that port 2006 is not currently reserved.

Display ports that are currently reserved:

– Either issue the SDSF command: /D TCPIP,,N,PORTL
– Or, issue the UNIX System Services command: netstat -o

If the port is currently registered as a shared port but not based on WLM server-specific
recommendations, the Flags attribute is DAS instead of DASW as shown in Example 13-10.
In this case, delete the existing TCP/IP profile definition, as described in 13.3.4, “Modifying
or deleting a TCPIP port sharing definition” on page 308.

Example 13-10 Example output for TCP/IP shared port not using WLM

PORT# PROT USER FLAGS RANGE SAF NAME
2006 TCP CTG* DAS
Chapter 13. High availability configuration 305

2. Add a PORT entry for port 2006 to the TCP/IP profile for the LPAR as a shared port using
WLM server-specific recommendations.

By adding the entry to the TCP/IP profile, the definition will be automatically activated after
a TCP/IP restart or IPL of the LPAR.

– The TCP/IP profile will probably already contain the PORT statement followed by
definitions for existing reserved ports. Add the statement for the Gateway daemon port
2006 as shown in Example 13-11. This example adds a definition for port 2006 to be
reserved as a TCP/IP shared port using WLM server-specific recommendations for
z/OS jobnames starting with CTG (notice the asterisk (*) at the end of the name), that is,
the jobnames used by the Gateway daemon address spaces.

Example 13-11 Example definition to add a TCP/IP shared port using WLM

PORT
2006 TCP CTG* SHAREPORTWLM ; Gateway daemons

3. Repeat these steps on each LPAR where TCP/IP port sharing is to be activated for
Gateway daemons in the Gateway group.

13.3.3 Testing TCP/IP port sharing using WLM

Use the following steps to test that TCP/IP port sharing using WLM works correctly:

1. Display the reserved ports:

– Either issue the SDSF command: /D TCPIP,,N,PORTL

– Or, issue the UNIX System Services command: netstat -o

The output is in the format shown in Example 13-12, where SW in the Flags value
indicates that the port is shared and that the port uses WLM server-specific
recommendations.

Example 13-12 Example netstat output for a TCP/IP shared port using WLM

PORT# PROT USER FLAGS RANGE SAF NAME
2006 TCP CTG* DASW

2. Start the Gateway daemons:

– Ensure that the Gateway daemon jobnames start with the value defined in the shared
port definition, for example, CTG. They need to start successfully and listen on the
shared port.

Note: If you start a Gateway daemon listening on a reserved port with a jobname that
does not match the value defined in the TCP/IP profile for the shared port, the Gateway
daemon fails to start with the following message written to the STDERR log:

"CTG6525E Unable to start handler for the tcp: protocol, port: 2006, because:
java.net.BindException: EDC5111I Permission denied"
306 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

3. Display the WLM information:

– Either issue the TSO command: NETSTAT ALL (PORT 2006

– Or, issue the UNIX System Services command: netstat -A -P 2006

The output contains an entry for each Gateway daemon using the WLM shared port,
where the "Client Name" is the Gateway daemon jobname. The WLM information is
displayed at the bottom of each output entry. Example 13-13 displays example output
information, immediately after starting a Gateway daemon to use a TCP/IP shared
port.

Example 13-13 Example netstat output showing initial WLM health information

SharePort: WLM
 RawWeight: 000 NormalizedWeight: 000
 Abnorm: 0000 Health: 000

4. Send an ECI request in remote mode to the shared port (for example, using the CICS TG
EciB1 sample). Repeat for the number of Gateway daemons listening on the shared port.
The requests round-robin to each Gateway daemon because they all start with an equal
health weighting.

5. Display the Health information for CICS TG and WLM:

– Issue the SDSF command: F jobname,APPL=STATS,GS=GD_CHEALTH

– Issue the TSO command: NETSTAT ALL (PORT 2006 or issue the UNIX System
Services command: netstat -A -P 2006

Assuming that the target CICS server was available and the requests succeeded, the
health reported by the CICS TG statistic and the WLM Health value for each Gateway
daemon are both 100. The WLM NormalizedWeight starting values for each Gateway
daemon start with the same value (that is, have an equal weighting) as shown in
Example 13-14.

Example 13-14 Example netstat output showing WLM health values of 100

Output for Gateway daemon 1 GD_CHEALTH=100:
SharePort: WLM
 RawWeight: 000 NormalizedWeight:006
 Abnorm: 0000 Health: 100

Output for Gateway daemon 2 GD_CHEALTH=100:
SharePort: WLM
 RawWeight: 000 NormalizedWeight:006
 Abnorm: 0000 Health: 100

Example 13-15 on page 308 shows sample output from the UNIX System Services
command, netstat -A -P 2006, in a scenario with two Gateway daemons, where all requests
in the first Gateway daemon are successful, but 20% of the requests in the second Gateway
daemon failed during the last health interval, resulting in a Health value of 80%. Also, the
NormalizedWeight values have been adjusted to advise a 5:4 ratio for distributing requests in
favor of the first Gateway daemon.

Note: This is an extract of the WLM information from all the information displayed by
the netstat command.
Chapter 13. High availability configuration 307

Example 13-15 Sample netstat output showing WLM health balancing

Output for Gateway daemon 1 GD_CHEALTH=100:
SharePort: WLM
 RawWeight: 000 NormalizedWeight:005
 Abnorm: 0000 Health: 100

Output for Gateway daemon 2 GD_CHEALTH=80:
SharePort: WLM
 RawWeight: 000 NormalizedWeight:004

 Abnorm: 0000 Health: 080

13.3.4 Modifying or deleting a TCPIP port sharing definition

If you no longer want to use TCP/IP port sharing or you want to change an existing shared
port definition, for example, to switch between SHAREPORT and SHAREPORTWLM, delete the
existing shared port definition. It is possible to dynamically modify or delete a port sharing
definition using the TCPIP OBEY command. The OBEY command reads the details of the
required change from a partitioned data set (PDS) member.

Use the following steps to delete the shared port definition for port 2006 associated with
jobnames that start with CTG*:

1. Shut down any Gateway daemons using the shared port.

2. Add a DELETE PORT entry for shared port 2006 in a PDS member:

– Create a new member in a z/OS data set, with the attributes RECFM=FB and LRECL=80,
for example:

REDBOOKS.TCPIP.PARMS(DPORTWLM)

– Ensure that the port, jobname, and SHAREPORTWLM or SHAREPORT values match those
values in the equivalent add port definition.

Example 13-16 shows an example definition to delete a TCP/IP shared port currently
defined using SHAREPORTWLM (WLM server-specific recommendations).

Example 13-16 Example definition to delete a TCP/IP shared port using WLM

; Delete Shared Port 2006 using WLM used by
; jobs with JOBNAME CTG*
DELETE PORT 2006 TCP CTG* SHAREPORTWLM

Example 13-17 shows an example definition to delete a TCP/IP shared port currently
defined using SHAREPORT.

Example 13-17 Example definition to delete a TCP/IP shared port

; Delete Shared Port 2006 used by
; jobs with JOBNAME CTG*
DELETE PORT 2006 TCP CTG* SHAREPORT

3. Delete the shared port definition:

– Issue the SDSF command:

/V TCPIP,,OBEY,DSN= REDBOOKS.TCPIP.PARMS(DPORTWLM)

The response displays:

EZZ0053I COMMAND VARY OBEY COMPLETED SUCCESSFULLY
308 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

4. Check that the shared port definition is no longer active by using one of the following
commands:

– From SDSF, issue the display command: /D TCPIP,,N,PORTL

– From UNIX System Services (OMVS), issue the netstat command: netstat -o

The output from either command will not include an entry for port 2006.

13.4 Highly available Gateway group

A highly available (HA) Gateway group uses TCP/IP load balancing. An HA Gateway group
can be regarded as a single logical Gateway daemon. Gateway daemons are defined as
belonging to a HA Gateway group by a common APPLID qualifier, within the scope of Parallel
Sysplex. The APPLID qualifier definition is mandatory for XA support, but it is a preferred
practice to always configure each Gateway daemon with a fully qualified APPLID. Naming
conventions and the use of fully qualified APPLIDs must also be considered when configuring
IPIC server connections, uniquely identifying a Gateway daemon instance within an HA
Gateway group, and within the scope of the Parallel Sysplex.

Each Gateway daemon in an HA group must have identical configuration details for the
following components:

� The tcp and ssl protocol handlers
� IPIC server definitions
� DSSPOLICY definitions
� CICS request exit configuration
� Security settings
� XA support

In the high availability environment shown in Figure 13-1 on page 297, four z/OS Gateway
daemons (CTG1, CTG2, CTG3, and CTG4) are configured in a single Gateway group on multiple
LPARs in a Parallel Sysplex to provide scalability and failover. The configuration is based on
the z/OS Gateway daemon (CTG0) configuration defined in Chapter 10, “CICS Transaction
Gateway for z/OS configuration” on page 171. The configuration is extended so that each of
the Gateway daemons is configured to connect to all the CICS TS regions (TOR1, TOR2, TOR3,
and TOR4) using the IPIC protocol. The Gateway daemons in Figure 13-3 on page 310
summarize the configuration used by the highly available Gateway group.
Chapter 13. High availability configuration 309

Figure 13-3 Highly available Gateway group configuration

Use the following steps to configure four Gateway daemons in Gateway group CTGALP00:

1. Create a single configuration file to be shared between the Gateway daemons in the
Gateway group:

a. Start with the configuration file created in Chapter 10. See 10.1, “Configure the
Gateway daemon” on page 172., which defines the tcp protocol handler (listening on
port 2006) and the IPIC server definitions. The configuration of DSSPOLICY and CICS
request exits are described in 13.5, “Configuring DSSPOLICY” on page 311.

• Set InitConnect to 50. Expect a potential of 200 user connection requests to be
distributed across four Gateway daemons.

• Set MaxConnect to 200. Allow any of the Gateway daemons to handle a maximum of
200 connection requests in a worse case scenario.

• Set InitWorker to 25. Expect a potential of 100 concurrent requests to be
distributed across four Gateway daemons.

• Set MaxWorker to 100. Allow any of the Gateway daemons to handle a maximum of
100 concurrent requests in a worse case scenario.

b. Modify the tcp protocol handler tcp.parameters definition to bind to the DVIPA
address 1.2.3.4 defined to Sysplex Distributor in “Configuring Sysplex Distributor” on
page 301:

protocol@tcp.parameters=bind=lp00.redbooks.ibm.com;port=2006;...

LP01 LP02

z/OS Sysplex

CTG1ITSO
Start up JCL

Environment
Variables

CTG1ENV

CTGSTART_OPTS=
-applid=CTGITSO1

-statsport=2981

Configuration file

tcp protocol port 2006

APPLIDQUALIFIER to CTGALP00

DSSPOLICY & DSSGROUP
IPICSERVER CICSTOR1

IPICSERVER CICSTOR2

IPICSERVER CICSTOR3

IPICSERVER CICSTOR4

CTG3ITSO
Start up JCL

Environment
Variables

CTG3ENV

CTGSTART_OPTS=
-applid=CTGITSO3

-statsport=2983

CTG2ITSO
Start up JCL

Environment
Variables

CTG2ENV

CTGSTART_OPTS=
-applid=CTGITSO2

-statsport=2982

CTG4ITSO
Start up JCL

Environment
Variables

CTG4ENV

CTGSTART_OPTS=
-applid=CTGITSO4

-statsport=2984
310 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

c. Ensure that the statsapi protocol handler in each Gateway daemon is bound to the
static VIPA for its LPAR, for example, for CTG1ITSO on LPAR LP01:

protocol@statsapi.parameters=bind=lp01.redbooks.ibm.com;port=2980;...

The port number used in this statsapi protocol handler definition is not important,
because each Gateway will specify an assigned port number, using the ctgstart
option, statsport.

d. Modify the configuration file to set the Gateway group name via the APPLIDQUALIFIER
value:

Set APPLIDQUALIFIER to CTGALP00.

2. Create a unique environment file for each Gateway daemon:

a. Use the environment file created in Chapter 10. See 10.1, “Configure the Gateway
daemon” on page 172, as an example.

b. Set the CICSCLI parameter to specify the configuration file.

c. Set the CTGSTART_OPTS= overrides to specify unique values:

• -applid=CTGITSOn where CTGITSOn is a unique value for each Gateway
daemon, for example, CTGITSO1 or CTGITSO2.

• -statsport=298n where 298n is a unique value for each Gateway daemon, for
example, 2981 or 2982.

3. Create JCL to start each Gateway daemon as a procedure:

– Use the JCL created in Chapter 10. See 10.1, “Configure the Gateway daemon” on
page 172 as an example, ensuring that it specifies the unique environment file for each
Gateway daemon.

– Set the procedure name as CTGnITSO, where CTGnITSO is a unique value for each
Gateway daemon, for example, CTG1ITSO or CTG2ITSO.

13.5 Configuring DSSPOLICY

This section describes the configuration of dynamic server selection using DSSPOLICY on
z/OS.

13.5.1 Policy based on dynamic server selection (z/OS only)

This section shows the mappings between the logical CICS server name and Gateway
groups, applying an algorithm of selection.

Note: If the bind statement for the Statistics API handler is omitted, or a value is
omitted (bind=;), the special address inaddrany is used. In this case, the statistics
API handler binds to all the IP addresses, including the DVIPA. The statistics API
handler must not bind on a DVIPA address, because there is no sense in distributing
these connections.

Note: The statistics API port (statsport) must not be shared.
Chapter 13. High availability configuration 311

The configuration is based on three steps:

1. GATEWAY section

In this section, you must specify the policy, from the list of DSSPOLICY sections defined in
the configuration file, that you are going to use. Only one policy can be active at any time.
It cannot be changed dynamically at run time, but it can be modified on the subsequent
Gateway startup.

DSSPOLICY = POLICY1

It identifies the active policy.

2. DSSGROUP section

In this section, you can define the CICS servers to be used as a group and the algorithm to
be used to route work between them.

SECTION DSSGROUP = GROUP1

Servers = CICSTOR1,CICSTOR2,CICSTOR3,CICSTOR4

Algorithm = RoundRobin

ENDSECTION

Servers identifies the server names of the SECTION IPICSERVER for IPIC of the CICS
servers across which we want to distribute the workload.

Algorithm can be RoundRobin or Failover. If RoundRobin algorithm is selected, the
workload is spread, one after the other to the servers identified in the DSSGROUP. If Failover
is selected, only the first CICS server in the list is selected, and the second server will
receive the workload only if the first one is unavailable.

Using the RoundRobin algorithm, it is important to consider the parameter
srvretryinterval in the Gateway configuration file. If the CICS server that is currently
connected becomes disconnected, an attempt is made to reconnect one second after the
CICS server becomes disconnected. If the connection attempt fails, the ECI requests are
routed to the second IPIC CICS Server in the list. Any additional attempts on the
disconnected CICS are made at the interval specified by the srvretryinterval parameter.
We can have more than one DSSGROUP definition with different policies defined.

3. DSSPOLICY section

The DSSPOLICY defines the mappings between the logical CICS server name and groups.
The client requests (ECI) can contain only a symbolic name to identify the CICS that will
receive the call, or it can be absent. In this case, the policy provides the mapping.

There are a few options that we can use to define the mappings:

NONE: No server name specified by the client application.

ANY: Any server name that does not match an existing mapping. If ANY is specified, it is not
possible to send a request to a specific APPLID anymore.

Name: A specific name.

SECTION DSSPOLICY = POLICY1

SUBSECTION MAPPINGS

CICSX=GROUP1

<NONE>=GROUP2

Note: In XA transaction support, we cannot mix IPIC and EXCI connected CICS in the
Servers definition.
312 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

<ANY>=GROUP3

ENDSUBSECTION

ENDSECTION

Mappings are applied in order of precedence, from most specific to least specific. In
Example 13-18, the mappings in DSSPOLICY PRODPOL1 are applied for ECI requests
specifying a CICS server name of CICSTOR, then the <NONE> mapping is applied for ECI
requests that omit a CICS server name. Any other ECI request is subject to the <ANY>
mapping.

Example 13-18 shows a sample implementation in which we have two policies: one policy for
test and one policy for production environment.

There are also four DSSGROUPs with different IPICSERVER definitions and different
algorithms.

Example 13-18 Dynamic server selection configuration

DSSPOLICY = PRODPOL1 # Active policy

SECTION DSSGROUP = GROUP1
Servers = CICSTOR1,CICSTOR2,CICSTOR3,CICSTOR4
Algorithm = RoundRobin
ENDSECTION
SECTION DSSGROUP = GROUP2
Servers = CICSTOR1,CICSTOR3
Algorithm = RoundRobin
ENDSECTION
SECTION DSSGROUP = GROUP3
Servers = CICSTOR2,CICSTOR4
Algorithm = Failover
ENDSECTION

SECTION DSSPOLICY = PRODPOL1 # Active policy
SUBSECTION MAPPINGS
CICSTOR=GROUP1
<NONE>=GROUP2
<ANY>=GROUP3
ENDSUBSECTION
ENDSECTION
SECTION DSSPOLICY =TESTPOL1 # Backup policy
SUBSECTION MAPPINGS

CICSX=GROUP4
ENDSUBSECTION
ENDSECTION

Figure 13-4 on page 314 shows the ECI requests flow. If the ECI is sent with server name
CICSTOR, the request is RoundRobin-routed (1 - 4) to GROUP1 (CICSTOR1, CICSTOR2, CICSTOR3,
and CICSTOR4).

If the ECI is sent without a server name, the requested is RoundRobin-routed (5, 6) to GROUP2
(CICSTOR1 and CICSTOR3).

If the ECI is sent with a general server name (not CICSTOR, but not blank), the requested is
routed (7) to GROUP3 (CICSTOR2, and if it is not available, to CICSTOR4).
Chapter 13. High availability configuration 313

There is also another policy defined, TESTPOL1, but it is not activated. It is only to show that
you can have more than one policy, but only one must be active at a time.

Figure 13-4 Shows the ECI request flows based on the active DSSPOLICY

During the Gateway startup, you will receive the following messages on the console as shown
in Example 13-19.

Example 13-19 Message sent to console

CTG9903I Current DSS policy is PRODPOL1
 <ANY>=CICSTOR2,CICSTOR4(FAILOVER)
 <NONE>=CICSTOR1,CICSTOR2(ROUNDROBIN)
 CICSTOR=CICSTOR1,CICSTOR2,CICSTOR3,CICSTOR4(ROUNDROBIN)

13.6 WebSphere Application Server cluster

This section describes considerations for using WebSphere Application Server clusters with
the ECI resource adapter in a high availability environment.

13.6.1 WebSphere Application Server high availability topology

This section focuses on the high availability features provided by CICS TG and considerations
for configuring CICS TG in a high availability scenario. Therefore, certain aspects of the
WebSphere Application Server configuration are intentionally simplified and only described
briefly.

LP02
ECI Server different from

CICSTOR and blank

LP01

S20351T1

S20351T3

S20351T2

S20351T4

ECI without a Server name

ECI Server name CICSTOR 1

4

Active policy=PRODPOL1

3

2
5

6

7

8
SECTION DSSGROUP = GROUP1
Servers = CICSTOR1,CICSTOR2,CICSTOR3,CICSTOR4
Algorithm = RoundRobin
ENDSECTION
SECTION DSSGROUP = GROUP2
Servers = CICSTOR1,CICSTOR3
Algorithm = RoundRobin
ENDSECTION
SECTION DSSGROUP = GROUP3
Servers = CICSTOR2,CICSTOR4
Algorithm = failover
ENDSECTION
...
SECTION DSSPOLICY = PRODPOL1
SUBSECTION MAPPINGS
CICSTOR=GROUP1
<NONE>=GROUP2
<ANY>=GROUP3
ENDSUBSECTION

Requests from 1 to 4

Requests 5 and 6

Requests 7 and 8
314 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

A WebSphere Application Server cluster is a group of cloned application servers that are
managed together and participate in workload management. When you install an application
into a cluster, the application is automatically installed on each application server in the
cluster. Because each cluster member contains the same applications, client requests can be
distributed to any of the application servers.

Figure 13-5 shows the WebSphere Application Server cluster configuration used in this
chapter.

Figure 13-5 WebSphere Application Server configuration on AIX

A WebSphere Application Server Network Deployment topology uses deployment managers
and node agents, in addition to the application servers:

� Deployment managers are administrative agents that provide a centralized management
view for all nodes in a cell, as well as the management of clusters and the workload
balancing of application servers across one or more nodes. Each cell contains one
deployment manager.

� Node agents are administrative agents that represent a node to your system and manage
the servers on that node. Node agents monitor application servers on a host system and
route administrative requests to servers.

Managed node profile
itsoNode01

Node Agent

Application server itsoServer02Application server itsoServer01

ECI Resource
adapter

(node scope)

IVT

Deployment
Manager

J2C Connection Factory
(cluster scope)

IVT

ECI Resource
adapter instance
(cluster scope)

Connection
pool

Connection
pool

IVT
(cluster)

Application server cluster itsoCluster

Managed node profile
itsoNode02

Node Agent

ECI Resource
adapter

(node scope)

Deployment Manager profile
itsoDMgr
Chapter 13. High availability configuration 315

Considerations for configuring a high availability WebSphere Application Server configuration:

� The WebSphere Application Server cluster used in this chapter consists of two application
servers hosted on the same physical machine. In a production environment, it is
suggested to configure the application servers and their associated managed nodes on
different (physical or virtual) machines, to provide horizontal scaling. Also, scale the
number of application servers to meet capacity demands.

� Java EE applications with a web interface installed in WebSphere Application Server can
be invoked directly by using the application server’s HTTP transport. However, for high
availability scenarios, the use of a separate HTTP server, for example, IBM HTTP Server,
is suggested. On Multiplatforms, the WebSphere Application Server Network Deployment
product includes the IBM HTTP Server and Web Server Plugins installation files. The Web
Server Plugins are used to configure the IBM HTTP Server, so that it can distribute HTTP
requests to WebSphere Application Server application servers and can also be
administered from the administration console as a Web Server.

� The configuration used in this chapter uses a single IBM HTTP Server to distribute
requests to the WebSphere Application Server cluster. In a production environment, it is
suggested to configure multiple HTTP servers on different (physical or virtual) machines,
to provide horizontal scaling, with each capable of distributing requests to each of the
application servers. A load balancer, such as the load balancer provided by WebSphere
Edge Components, can be used to distribute requests between the HTTP servers.

For information about installing and configuring a clustered topology, see the WebSphere
Application Server Information Center.

13.6.2 Using ECI resource adapter in a WebSphere Application Server cluster

This section describes additional considerations when using the CICS ECI resource adapter
in a WebSphere Application Server clustered configuration.

Installing ECI resource adapter and configuring Java EE Connector
Architecture connection factory
Chapter 12, “Integrating with WebSphere Application Server” on page 261 describes how to
install the ECI resource adapter and configure a Java EE Connector Architecture connection
factory. This section highlights the considerations when using a WebSphere Application
Server cluster configuration:

� Access the administration console from the deployment manager. When saving
configuration changes, ensure that the changes are synchronized to the nodes through
the node agents.

� Because JCA resource adapters can only be installed at the WebSphere Application
Server node scope, they must be installed to each node used by the clustered application
servers.
316 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

� Also, Java EE Connector Architecture connection factories can only be created at the
same scope as an installed JCA resource adapter. To avoid the need to define a Java EE
Connector Architecture connection factory for each node used by a clustered application
server and manually ensure that the definitions are kept identical, a better solution is to
create a resource adapter instance at the cluster scope. For instructions to create a
resource adapter instance, see 12.5.1, “Install the ECI resource adapter” on page 270. A
single Java EE Connector Architecture connection factory can then be created at the
cluster scope and shared between the clustered application servers. A separate instance
of the connection pool is created in each application server. For example, for a cluster with
two application servers that use the same Java EE Connector Architecture connection
factory with a connection pool Maximum Connections property setting of 100, you can
generate up to 200 connections (two servers with 100 connections each).

� For remote mode connections, the Java EE Connector Architecture connection factory
custom property serverName specifies the name of a CICS server defined in the Gateway
daemon configuration file. However, to implement high availability for the CICS TS regions
using Dynamic server selection (see 13.5, “Configuring DSSPOLICY” on page 311), use a
value defined in the Gateway daemon configuration file DSSPOLICY MAPPINGS
definition.

For this high availability topology, set serverName=CICSTOR.

� When you install Java EE applications, which use the Java EE Connector Architecture
connection factory, ensure that they are mapped to the cluster instead of individual
application servers. Also, if the application contains any web components, ensure that
these web components are also mapped to any Web Servers defined to the WebSphere
Application Server cell.

13.6.3 Configuring a Java EE Connector Architecture connection factory for
CICS TG remote mode

This section describes considerations for configuring a Java EE Connector Architecture
connection factory in a clustered topology.

Table 13-2 displays the Java EE Connector Architecture connection factory custom properties
used in this configuration.

Table 13-2 Java EE Connector Architecture connection factory custom properties used in this configuration

Table 13-3 on page 318 displays the connection pool settings for the Java EE Connector
Architecture connection factory used in this configuration.

Property name Property value Description

connectionURL tcp://lp00.redbooks.ibm.com Remote mode connection to the Gateway daemons tcp protocol
handler. This uses the host name of the DVIPA for the sysplex.

port 2006 The tcp protocol handler port defined for the Gateway daemons.
Defined as a TCP/IP shared port and added to Sysplex
Distributor port list.

serverName CICSTOR Values specified in the Gateway daemon DSSPOLICY section
MAPPINGS property. Allow DSS to determine the CICS TS region
to use.

xaSupport off Enable XA transaction support. See 13.7, “XA considerations” on
page 318.
Chapter 13. High availability configuration 317

Table 13-3 Connection pool settings used in this configuration

Avoiding problems using local mode IPIC connections
When you use a WebSphere Application Server cluster configuration with multiple application
servers, problems can occur using either auto-installed connections that use the CICS default
IPIC autoinstall user program DFHISAIP or using predefined IPIC connections to connect to
CICS TS. This issue is described in more detail in 4.4, “IPIC autoinstall for WebSphere
Application Server clusters” on page 64. The steps to implement the solution used in this
book are described in 9.5, “Configuring IPIC autoinstall for WebSphere Application Server
clusters” on page 167.

Additional considerations for WebSphere Application Server on z/OS
If you use WebSphere Application Server for z/OS, an additional high availability configuration
option is available. The WebSphere Application Server cluster can be configured to work with
Sysplex Distributor to provide either workload balancing or failover for incoming requests from
a browser or client application.

13.7 XA considerations

This section describes additional considerations to implement global transactions in a high
availability environment.

Property name Property value Description

Connection timeout 60 secs If connection cannot be obtained from the pool within 60 seconds, time
out the request.

Maximum connections 100 Because we have two application servers in the cluster, we have a
maximum of 200 connections (matching the number of users).

Minimum connections 50 Because we have two application servers in the cluster, this effectively
means that a minimum of 100 connections are maintained in the
connection pool, which matches the expected number of concurrent
requests. Increasing from a default of 1 reduces delays in obtaining
connections after periods of low activity or the application servers being
restarted.

Reap time 180 secs The default value

Unused timeout 600 seconds Remove unused connections after 3 minutes, which can be useful to
ensure connections are established to Gateway daemons that have
previously been removed from the TCP/IP workload balancing
distribution. When a Gateway daemon health value falls to zero, WLM
will cause Sysplex Distributor and TCP/IP port sharing to no longer
distribute requests to it. However, when it recovers, all the connections
in the connection pool will be connecting to other Gateway daemons.
While connections exist in the pool, they will be used and no attempts
will be made to establish connections to currently available Gateway
daemons.

Aged timeout 600 seconds See unused timeout.

Purge policy Entire pool When a stale connection or fatal connection error is detected, all
connections in the pool are marked stale. A connection in use is closed
and issues a stale connection exception during the next operation on
that connection. Subsequent getConnection() requests from the
application result in new connections opening.
318 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

To allow each of the Gateway daemons to recover XA transactions on behalf of any of the
other Gateway daemons, you must permit access for the Gateway daemon user ID to one of
the appropriate MVSADMIN.RRS.COMMANDS RACF facilities when XA support is enabled.
For more details, see the “Configuring for XA transaction support” topic in the CICS TG
Information Center.

In the high availability environment shown in Figure 13-1 on page 297, we chose to permit the
Gateway daemons to perform recovery operations for transactions associated with any
system name or logging group. This is achieved by permitting the Gateway daemon user ID
ALTER access to the MVSADMIN.RRS.COMMANDS.** facility.

To run the IVT Java EE application to use global transactions, set the Java EE Connector
Architecture connection factory custom property xaSupport=on and restart the WebSphere
Application Server cluster for the change to take effect. The IVT EJB specifies
Transaction=Required in its deployment descriptor so it will initiate the global transaction.

For more details about the concepts for implementing XA in a high availability environment,
see 7.5, “Considerations for XA transaction support on z/OS” on page 124.

For more information about configuring XA support in z/OS Gateway daemons, see 10.5,
“Adding XA support” on page 198.
Chapter 13. High availability configuration 319

320 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 14. Explorer plug-in

This chapter provides an overview of installing IBM CICS Transaction Gateway plug-in for
CICS Explorer into IBM Explorer for z/OS, and using it to configure, start, and stop a z/OS
Gateway daemon. It also describes the CICS Transaction Gateway perspective, explaining
how to view status and activity information for Gateway daemons on all platforms.

This chapter explains how to configure a z/OS Gateway daemon using IBM Explorer for z/OS,
use CICS TG plug-in for CICS Explorer to connect to Gateway daemons, and navigate the
CICS Transaction Gateway perspective.

This chapter contains the following topics:

� 14.1, “Introduction” on page 322
� 14.2, “Installing CICS TG plug-in for CICS Explorer” on page 322
� 14.3, “Creating and administering z/OS Gateway daemons” on page 323
� 14.4, “Preparing a Gateway daemon to use Explorer” on page 333
� 14.5, “Connecting to a Gateway daemon” on page 333
� 14.6, “Viewing information for a Gateway daemon” on page 339

14
© Copyright IBM Corp. 2014. All rights reserved. 321

14.1 Introduction

IBM Explorer for z/OS (z/OS Explorer) and IBM CICS Explorer both provide a common,
intuitive, Eclipse-based rich client platform for architects, developers, programmers, and
administrators. These products contain powerful task-oriented views, context-sensitive
resource editors, and wizards to provide integrated access to a broad range of CICS and
z/OS data and control capabilities. Both products are extendable through the IBM repository
of compatible products, including IBM CICS Transaction Gateway plug-in for CICS Explorer,
to fulfill each user’s roles and responsibilities.

z/OS Explorer provides a common connection management and single sign-on component to
simplify access to z/OS-based subsystems, and an intuitive and secure way to view, edit, and
manage z/OS data sets and z/OS file system (zFS) files, submit JCL, and view JES output
and job logs.

CICS Explorer integrates the visibility and control of the CICS run time and its resource
definitions within a single, consistent user interface. A wide range of IBM CICS and Problem
Determination tools can be installed into CICS Explorer from the IBM web-based repository.
This helps both novice and experienced CICS users get more from CICS, and accelerates the
transfer of knowledge, skills, and preferred practices to the next generation.

You can use either of the following common approaches to obtain the capabilities of z/OS
Explorer, CICS Explorer, and CICS TG plug-in for CICS Explorer:

� Install z/OS Explorer with CICS Explorer software development kit (SDK) plug-in and
CICS TG plug-in for CICS Explorer.

� Install CICS Explorer, which embeds z/OS Explorer, and then install CICS TG plug-in for
CICS Explorer.

CICS TG plug-in for CICS Explorer
CICS TG plug-in for CICS Explorer can be used in either z/OS Explorer or CICS Explorer. It
allows users to view status and activity for Gateway daemons on both Multiplatforms and
z/OS by using the statistics API. This includes information for the connections to the CICS
servers from each Gateway daemon.

The examples in this chapter use z/OS Explorer, but the same functionality is available in
CICS Explorer.

14.2 Installing CICS TG plug-in for CICS Explorer

This section describes how to obtain and install z/OS Explorer with the CICS Explorer SDK
plug-in and the IBM CICS Transaction Gateway plug-in for CICS Explorer.

z/OS Explorer can be installed by using either IBM Installation Manager (IM), which is the
suggested method, or by using the Eclipse P2 software update method. IM installs the
Explorer product code and plug-ins from a network repository.

Note: z/OS Explorer is also embedded within other IBM products, including IBM Rational
Developer for System z. For more information about the installation options and
capabilities of these products, see these websites:

� z/OS Explorer: http://www.ibm.com/software/htp/cics/ibmexplforzos/

� CICS Explorer: http://www.ibm.com/software/products/us/en/cics-explorer
322 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/software/htp/cics/ibmexplforzos/
http://www.ibm.com/software/products/us/en/cics-explorer
http://www-01.ibm.com/software/htp/cics/ibmexplforzos/
http://www.ibm.com/software/products/us/en/cics-explorer

We selected the following Explorer components:

� z/OS Explorer Version 2.1.0.0
� CICS Explorer SDK Version 5.1.1.0
� IBM CICS Transaction Gateway plug-in for CICS Explorer 2.0.1.0

To install z/OS Explorer with the CICS Explorer and CICS Transaction Gateway plug-ins using
IM, perform the following steps:

1. Download z/OS Explorer from the IBM download site:

http://www.ibm.com/software/htp/cics/ibmexplforzos/downloads.html

2. Follow the installation instructions for “Scenario 1 - Install z/OS Explorer and Installation
Manager” from the download site, noting the following points:

a. From the Install Packages “Select packages to install” dialog box, select the following
components:

• z/OS Explorer
• CICS Explorer SDK
• IBM CICS Transaction Gateway plug-in for CICS Explorer

b. Click Cancel when prompted for authentication with an IBM ID and jazz.net ID,
because this authentication is not required for the selected packages. See the z/OS
Explorer installation instructions for more details about these authentication prompts.

c. From the Install Packages “Review the summary information” dialog box, confirm that
the chosen packages and any subcomponents are selected.

d. Wait for the installation to complete and ensure that it completes successfully.

3. Launch z/OS Explorer:

The Welcome page opens and contains a First Steps section that explains how to define
connections to systems in z/OS Explorer. It also contains tutorials for the IBM CICS
Transaction Gateway plug-in and CICS Explorer.

14.3 Creating and administering z/OS Gateway daemons

This section describes how to use z/OS Explorer to create, start, and stop a z/OS Gateway
daemon. It includes information about creating the z/OS partitioned data set (PDS) members
and UNIX System Services files, and submitting z/OS jobs.

Table 14-1 summarizes the values that are used to configure the new Gateway daemon.

Table 14-1 Values used to configure new Gateway daemon

Gateway daemon Attribute Value

z/OS Test Gateway daemon Jobname CTGTJOB

z/OS Test Gateway daemon JCL ‘CTGUSER.CTGITSO(
CTGTJOB)’

z/OS Test Gateway daemon Environment variables ‘CTGUSER.CTGITSO(
CTGTENV)’

z/OS Test Gateway daemon Configuration file /u/cicstguser/ctg/ctg.ini

z/OS Test Gateway daemon Hostname lp01.redbooks.ibm.com

z/OS Test Gateway daemon Statistics API handler port 2989
Chapter 14. Explorer plug-in 323

http://www.ibm.com/software/htp/cics/ibmexplforzos/downloads.html

14.3.1 Creating a z/OS Gateway daemon using z/OS Explorer

This section describes how to create the CICS TG configuration and environment files and
JCL to start and stop a z/OS Gateway daemon using z/OS Explorer. For detailed information
about configuring a z/OS Gateway daemon, see 10.1, “Configure the Gateway daemon” on
page 172.

The CICS TG for z/OS configuration consists of two parts:

� A set of environment variables. The environment variables are stored as a PDS member.
A sample environment variables PDS member is in CTG.V9R0M0.SCTGSAMP(CTGENV).

� A text-based configuration file. The configuration file can be stored as either a PDS
member or as a UNIX System Services file. Sample configuration files are in PDS
member CTG.V9R0M0.SCTGSAMP(CTGCONF) and
/usr/lpp/cicstg/ctg900/samples/configuration/ctgsamp.ini.

For this example, the configuration file will be created as a UNIX System Services file to
demonstrate how the z/OS Explorer can work with UNIX System Services files and
directories.

IBM for z/OS Explorer consists of various perspectives. A perspective defines the initial set
and layout of views in the Workbench window. Each perspective provides a set of functionality
aimed at accomplishing a specific type of task or works with specific types of resources. The
available perspectives depend on which plug-ins have been installed. For this example, it
includes the z/OS (the default), CICS Transaction Gateway, and CICS SM perspectives.

Each perspective consists of multiple views. The z/OS perspective contains the following
views:

� Data sets: Lists all the data sets that you are authorized to view and that match the data
set name qualifier specified. You can open a data set to view the members.

� z/OS UNIX files: Shows the zFS file system structure and contents. The files are shown in
a tree structure and you can expand the tree to show individual files.

z/OS Test Gateway daemon tcp protocol handler port 2009

z/OS Test Gateway daemon SECTION IPICSERVER CICSTOR1

z/OS Test Gateway daemon APPLID/APPLIDQUALIFIER CTGAPP/CTGAPPQ

CICS Transaction Server for
z/OS (CICS TS)

IPIC TCPIPSERVICE port 9011

CICS TS IPIC TCPIPSERVICE hostname lp01.redbooks.ibm.com

z/OS FTP hostname and port lp99.redbooks.ibm.com
21

z/OSMF (z/OS Management
Facility)

hostname and port lp99.redbooks.ibm.com
32208

z/OS credentials User ID/password CTGUSER/password

Gateway daemon Attribute Value

Note: The ability to store the configuration file in a PDS was introduced in CICS TG for
z/OS V8.1.
324 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

� Editor: A text editor is used to view and edit content of PDS members and UNIX System
Services files.

� Jobs: Lists the completed and running jobs that you are authorized to view and that match
the job name prefix and owner ID specified.

� z/OS job: Shows all the output data sets for a specified job.

� Properties: Displays all the properties, or attributes, of the selected resource.

� Console: History of the actions performed, such as submitting a job, or changing and
saving a file.

Figure 14-1 shows the z/OS perspective of IBM for z/OS Explorer.

Figure 14-1 z/OS perspective of z/OS Explorer

z/OS Explorer establishes connections to z/OS using FTP and connections to the z/OS
Management Facility (z/OSMF). z/OSMF is a management product for z/OS that provides
support for a modern, web browser-based console for z/OS. It is intended to enable IT
personnel, such as system programmers, administrators, and others, to more easily manage
a mainframe by simplifying the configuration and management of a z/OS system. For more
information about z/OSMF, see the IBM z/OS Management Facility:

http://www.ibm.com/systems/z/os/zos/zosmf/

EDITOR

z/OS UNIX Files view

Jobs view
Chapter 14. Explorer plug-in 325

http://www.ibm.com/systems/z/os/zos/zosmf/

An FTP connection is required to use the function in the z/OS perspective. A z/OSMF
connection provides additional functionality: the ability to view the output of active jobs while
they are running and delete or cancel active jobs. When you define a z/OSMF connection,
you also define an FTP connection. z/OS Explorer then chooses the connection that is most
suitable for the task that you are performing.

Use the following steps to create the configuration resources for the Gateway daemon:

1. Create a connection to z/OSMF:

a. Select Windows Manage Connections to open the Host Connections view as
shown in Figure 14-2 on page 327.

b. Define credentials to access z/OS. In the Credentials pane, click Add and complete the
New credentials dialog box:

i. Set Credentials name to ITSO zOS credentials.

ii. Set User ID to CTGUSER.

iii. Set Password or Passphrase to password.

iv. Optional: Select Save password.

v. Click OK.

c. Define an FTP connection to z/OS. In the Connections pane, click Add z/OS FTP
and complete the Add z/OS FTP Connection dialog box:

i. Set Name to ITSO Sysplex FTP.

ii. Set Host name to lp99.redbooks.ibm.com.

iii. Set Port to 21.

iv. Click Save and Close.

d. Define a Secure Sockets Layer (SSL) connection to the z/OSMF. In the Connections
pane, click Add z/OSMF FTP and complete the Add z/OSMF Connection dialog
box:

i. Set Name to ITSO Sysplex zOSMF.

ii. Set Host name to lp99.redbooks.ibm.com.

iii. Set Port to 32208.

iv. Select Secure connection.

v. Set FTP connection to ITSO Sysplex FTP.

vi. Click Save and Connect.

vii. The first time that you connect, a Sign-on prompt is displayed. Select Use existing
Credentials and set it to ITSO zOS credentials. Click OK. Confirm the credential
details and click OK.
326 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-2 Host Connections view

2. Open the z/OS perspective:

This is the default perspective, but if it is not currently open, open it by selecting
Window Open Perspective Other z/OS (default).

3. Create a configuration file in UNIX System Services from the z/OS UNIX Files view:

a. Create a new UNIX System Services directory and configuration file, for example,
/u/cicstguser/ctg/ctg.ini:

i. Enter /u/cicstguser in the Path field (in this example, this directory already exists).

ii. Right-click in the z/OS UNIX Files view and select New Directory.

iii. In the New z/OS directory dialog box, enter ctg as the New directory name and click
Finish.

iv. In the z/OS UNIX Files view, open the new directory by double-clicking ctg.

v. Right-click in the z/OS UNIX Files view and select New File.

vi. In the New z/OS file dialog box, enter ctg.ini as the New file name and click
Finish.

vii. Double-click ctg.ini to open it in the editor. (The file is initially empty; leave the file
open.)

b. Copy the contents of the CICS TG sample configuration file
/usr/lpp/cicstg/ctg900/ctg/samples/configuration/ctgsamp.ini into the new
configuration file, for example, /u/cicstguser/ctg/ctg.ini:

i. Enter CICS TG /usr/lpp/cicstg/ctg900/samples/configuration in the Path field.

ii. Double-click ctgsamp.ini to open it in the editor. (Leave the file open.)

iii. Press Ctrl+A to select all the contents of ctgsamp.ini. Press Ctrl+C to copy and
then press Ctrl+P to paste the contents into ctg.ini. Press Ctrl+S to save the new
ctg.ini file.

iv. Close the ctgsamp.ini file.

Note: UNIX System Services paths and file names are case-sensitive.

Note: As an alternative to using the keyboard shortcuts, use the File and Edit
menus from the z/OS Explorer toolbar.
Chapter 14. Explorer plug-in 327

c. Customize the configuration file to enable the tcp protocol and statistics API handlers
and define an IPICSERVER definition to a CICS TS region. Edit the following values in
the configuration file /u/cicstguser/ctg/ctg.ini in the editor:

i. In the PRODUCT section, uncomment the SECTION and ENDSECTION statements.

ii. In the PRODUCT section: uncomment and set APPLID to CTGAPP and set
APPLIDQUALIFIER to CTGAPPQ.

iii. In the GATEWAY section, uncomment the SECTION and ENDSECTION statements.

iv. In the GATEWAY section, uncomment the Protocol handler for statistics API requests
definitions and change the port to a unique value, for example, 2989.

v. In the GATEWAY section, uncomment the Protocol handler for TCP/IP requests
definitions and change the port to a unique value, for example, 2009.

vi. In the IPICSERVER section, uncomment the SECTION and ENDSECTION statements.

vii. In the IPICSERVER section, change the server name to CICSTOR1.

viii.In the IPICSERVER section, uncomment and set the Hostname to
lp01.redbooks.ibm.com and set the Port to 9011.

ix. Save the file by pressing Ctrl+S.

x. Check the attributes of the configuration file by right-clicking the file name, for
example, ctg.ini, and selecting Properties. The user ID under which the Gateway
daemon runs requires at least read access to the file.

Example 14-1 shows the properties specified in the ctg.ini file. (The other properties
were left to use the default values.) For information about other configuration
properties, see 10.1.3, “Configuration file” on page 174.

Example 14-1 The ctg.ini file properties

SECTION PRODUCT
 Applid = CTGAPP # The APPLID of the Gateway daemon

ApplidQualifier = CTGAPPQ # The APPLID qualifier of the Gateway daemon
ENDSECTION

SECTION GATEWAY
Protocol handler for statistics API requests

 protocol@statsapi.handler = com.ibm.ctg.server.RestrictedTCPHandler
 protocol@statsapi.parameters = bind=;\
 connecttimeout=2000;\

maxconn=5;\
port=2989;

 # Protocol handler for TCP/IP requests
 protocol@tcp.handler = com.ibm.ctg.server.TCPHandler
 protocol@tcp.parameters = bind=;\
 connecttimeout=2000;\

idletimeout=600000;\
pingfrequency=60000;\
port=2009;\
solinger=10;

ENDSECTION
328 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

SECTION IPICSERVER = CICSTOR1 # Arbitrary name for the server
Hostname = lp01.redbooks.ibm.com # The server's TCP/IP name or IPv4 or

IPv6 address
Port = 9011 # The listening TCPIPSERVICE port in CICS

ENDSECTION

4. On the Data Sets view, create an environment variables file as a PDS member in a new
PDS:

a. To create the PDS that will contain the environment variables file and JCL to start and
stop the z/OS Gateway daemon, follow these steps:

i. Right-click in the Data Sets view, and select New Source or JCL Data Set, which
opens the New Data Set dialog box.

ii. Set Data Set Name to CTGUSER.CTGITSO.

iii. Accept the default values for other properties, including the Type of Library, Record
Format = Fixed Blocked, and Record Length = 80.

iv. Click Finish.

b. To create a new member in the PDS, right-click the PDS name, for example,
CTGUSER.CTGITSO, in the Data Sets view, and select New Data Set Member. This
opens the New Data Set Member dialog box. Enter the following values:

i. Set Partition Data Set Name to CTGUSER.CTGITSO.

ii. Set Member Name to CTGTENV.

iii. Select Open Editor.

iv. Click Finish.

The empty CTGTENV is opened in the editor. (Leave the file open.)

c. Copy the contents of the sample environment variable PDS member from the CICS TG
installation PDS CTG.V9R0M0.SCTGSAMP(CTGENV) to the new PDS CTGUSER.CTGITSO:

i. Enter CTG.V9R0M0.SCTGSAMP in the Qualifier field.

ii. Double-click CTGENV to open it in the editor.

iii. Press Ctrl+A to select all contents. Press Ctrl+C to copy, and then press Ctrl+P to
paste the contents into CTGUSER.CTGITSO(CTGTENV). Press Ctrl+S to save the new
CTGTENV file.

d. Customize the environment variable PDS member CTGTENV in the editor:

i. Set CICSCLI=/u/cicstguser/ctg/ctg.ini (location of the configuration file).

ii. Set PATH=/bin:/usr/lpp/java/J7.0/bin.

iii. Comment STEPLIB, DFHJVSYSTEM_00, and CTG_PIPE_REUSE. These are not required
because this example does not use external CICS interface (EXCI) connections.

iv. Uncomment statement CTG_EXCI_INIT=NO, because this example does not use
EXCI connections. This allows our z/OS Gateway daemon IPIC connections to use
more than 250 connections.

v. Accept the default values for the other parameters. For information about other
environment variables, see 10.1.4, “Environment variables” on page 176.

vi. Save the file by pressing Ctrl+S.

Example 14-2 on page 330 shows the contents of the CTGTENV environment variable PDS
member.
Chapter 14. Explorer plug-in 329

Example 14-2 CTGTENV file contents

CICSCLI=/u/cicstguser/ctg/ctg.ini
PATH=/bin:/usr/lpp/java/J7.0/bin
_BPX_SHAREAS=YES
CTG_EXCI_INIT=NO
AUTH_USERID_PASSWORD=NO
COLUMNS=80

14.3.2 Starting and stopping a z/OS Gateway daemon

z/OS Explorer can be used to submit z/OS jobs and view the job output. This section
describes how to stop and start a z/OS Gateway daemon by submitting z/OS jobs.

Starting a z/OS Gateway daemon
A z/OS Gateway daemon address space can be started as either a job or procedure, both
requiring JCL stored as a PDS member. This example starts the Gateway daemon using a
job, based on the sample PDS member provided in CTG.V9R0M0.SCTGSAMP(CTGJOB).

Create JCL to start the Gateway daemon as a job in a PDS member of an existing PDS:

1. From the Data Sets view, enter CTGUSER.CTGITSO in the Qualifier field.

2. To create a new member in the PDS, right-click the PDS name, for example,
CTGUSER.CTGITSO, in Data Sets view and select New Data Set Member. This opens the
New Data Set Member dialog box.

3. In the New Data Set Member dialog box, enter the following values:

– Set Partition Data Set Name to CTGUSER.CTGITSO.

– Set Member Name to CTGTJOB.

– Select Open Editor.

– Click Finish.

The empty CTGTJOB is opened in the editor. (Leave the file open.)

4. Copy the contents of the sample JCL to start the Gateway daemon PDS member from the
CICS TG installation PDS CTG.V9R0M0.SCTGSAMP(CTGJOB) to the new PDS
CTGUSER.CTGITSO:

a. Enter CTG.V9R0M0.SCTGSAMP in the Qualifier field.

b. Double-click CTGJOB to open it in the editor.

c. Press Ctrl+A to select all the contents. Press Ctrl+C to copy and press Ctrl+P to paste
the contents into CTGUSER.CTGITSO(CTGTJOB). Press Ctrl+S to save the new CTGTJOB
file.

5. Customize the environment variable PDS member CTGTJOB in the editor:

a. Change the job name to CTGTJOB.

b. Add a JOBPARM SYSAFF statement to indicate the LPAR on which the address space will
run, for example, /*JOBPARM SYSAFF=LP01.

c. Change <Install path> to the fully qualified path of the CICS TG UNIX System
Services installation directory, for example, /usr/lpp/cicstg/ctg900.

d. Change <Install hlq> to the high-level qualifier (HLQ) of the CICS TG installation, for
example, CTG.V9R0M0.
330 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

e. Change <STDENV DSN> to the environment variable PDS member, for example,
CTGUSER.CTGITSO(CTGTENV).

f. Press Ctrl+S to save your changes. You might receive a prompt informing you that the
file changed in the host and asking whether you want to overwrite the file. Click Save.

Example 14-3 shows the contents of the JCL to start the Gateway daemon. Ensure that
the values on the SET CTGHOME, CTGHLQ, CTGUSR, and LEOPTS statements are enclosed in
single quotation marks.

Example 14-3 JCL to start Gateway daemon

//CTGTJOB JOB (0),MSGCLASS=X,CLASS=A,NOTIFY=&SYSUID,REGION=500M
/*JOBPARM SYSAFF=LP01
// SET CTGHOME='/usr/lpp/cicstg/ctg900'
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGUSR='CTGUSER.CTGITSO(CTGTENV)'
// SET LEOPTS='/'
//CTG EXEC PGM=CTGBATCH,
// PARM='&LEOPTS.&CTGHOME./bin/ctgstart -noinput '
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DSN=&CTGUSR.,DISP=SHR
//

Use these steps to start the Gateway daemon from the z/OS perspective:

1. Submit the ‘CTGUSER.CTGITSO(CTGTJOB)’ job:

a. From the Data Sets view, navigate to ‘CTGUSER.CTGITSO’.

b. Right-click the PDS member CTGTJOB and select Submit z/OS Job.

c. From the Perform Operation dialog box, confirm that the correct job was selected and
click OK.

2. Check that the Gateway daemon job is running:

a. From the Jobs view, set the filter Job name to CTGTJOB and the filter User to *. Then,
click the Refresh icon.

b. Expand CTGTJOB to see the job log. Either double-click each file to open it in the
editor or view the log steams in the z/OS Job view.

c. The JESMSGLG contains the following message: CTG6512I CTGAPP CICS Transaction
Gateway initialization complete.

CTGAPP is the APPLID value specified in the PRODUCT section of Gateway daemon
configuration file.

Stopping a z/OS Gateway daemon
A z/OS Gateway daemon can be stopped by issuing a modify command to the address
space, for example, /F jobname,APPL=SHUT, for a normal shutdown. z/OS Explorer does not
yet provide the function to issue a modify command directly, but it can submit a job to issue
the command.
Chapter 14. Explorer plug-in 331

Use the following steps to create a job to issue the z/OS Gateway daemon shutdown
command:

1. From the Data Sets view, enter CTGUSER.CTGITSO in the Qualifier field.

2. Right-click the PDS name, for example, CTGUSER.CTGITSO, in the Data Sets view and select
New Data Set Member.

3. In the New Data Set Member dialog box, enter the following values:

– Set Partition Data Set Name to CTGUSER.CTGITSO.

– Set Member Name to CTGTSTOP.

– Select Open Editor.

– Click Finish.

The empty CTGTSTOP is opened in the editor.

4. In the editor view, paste the text that is shown in Example 14-4.

Example 14-4 JCL to stop a z/OS Gateway daemon

//CTGTSTOP JOB (0),CLASS=A,MSGCLASS=A,NOTIFY=&SYSUID,REGION=500M
/*JOBPARM SYSAFF=LP01
//STOP EXEC PGM=IEFBR14
// F CTGTJOB,APPL=SHUT
//

This example will run on LPAR LP01 and attempt to shut down the z/OS Gateway daemon
address space with the jobname CTGTJOB.

Use the following steps to submit a job to issue the z/OS Gateway daemon shutdown
command from the z/OS perspective:

1. Submit the ‘CTGUSER.CTGITSO(CTGTSTOP)’ job:

a. From the Data Sets view, navigate to ‘CTGUSER.CTGITSO’.

b. Right-click PDS member CTGTSTOP and select Submit z/OS Job.

c. From the Perform Operation dialog box, confirm that the correct job was selected and
click OK.

2. Check that the job ran successfully and that the Gateway daemon shut down:

a. From the Jobs view, set the filter Job name to CTGTSTOP and the filter User to *. Then,
click the Refresh icon.

b. Expand CTGTSTOP to see the job log. Either double-click each file to open it in the
editor or view the log steams in the z/OS Job view. The JESYSMSG log contains the
following message: CTGTSTOP STOP - STEP WAS EXECUTED - COND CODE 0000.

c. From the “Jobs” view, set the filter Job name to CTGTJOB and the filter User to *. Then,
click the Refresh icon to see the Gateway daemon address space job.

d. Expand CTGTJOB to see the job log. Either double-click each file to open it in the
editor or view the log steams in the z/OS Job view. The JESMSGLG contains the
following message: CTG6511I CTGAPP GATEWAY DAEMON HAS SHUT DOWN where CTGAPP is
the APPLID value specified in the PRODUCT section of the Gateway daemon configuration
file.
332 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

14.4 Preparing a Gateway daemon to use Explorer

The CICS TG statistics API allows remote users to obtain live statistical data from a Gateway
daemon at run time. The CICS TG plug-in for CICS Explorer uses this facility to retrieve
information about the Gateway daemon status.

The CICS TG plug-in for CICS Explorer connects to an active Gateway daemon using the
Gateway daemon statistics API protocol handler port. To view the details of a Gateway
daemon using the plug-in, ensure that the statistics API protocol handler port has been
enabled. It is not enabled, by default.

Configure the statistics API handler
To define a statistics API handler definition in the configuration file, use the following steps:

1. Edit the Gateway daemon configuration file.

2. In the SECTION GATEWAY, add the following entry. (The sample configuration file
ctgsamp.ini contains a commented out version of this entry.)

Example 14-5 Statistics API requests protocol handler definition

Protocol handler for statistics API requests
protocol@statsapi.handler = com.ibm.ctg.server.RestrictedTCPHandler
protocol@statsapi.parameters = bind=;\

connecttimeout=2000;\
maxconn=5;\
port=2989;

This example uses the default port value 2989. If required, modify this value to ensure that
it is unique on the target system.

3. Restart the Gateway daemon.

14.5 Connecting to a Gateway daemon

This section describes how to configure a connection to a Gateway daemon. These
instructions demonstrate how to create a new connection using the Host Connections view
dialog box:

Use the following steps to add a connection for a Gateway daemon to z/OS Explorer:

1. Select Windows Manage Connections to open the Host Connections view.

2. In the Connections pane, click Add CICS Transaction Gateway as shown in
Figure 14-3 on page 334.
Chapter 14. Explorer plug-in 333

Figure 14-3 Host Connections dialog box to add CICS Transaction Gateway

3. Add a connection to the z/OS Gateway daemon configured in 14.3.1, “Creating a z/OS
Gateway daemon using z/OS Explorer” on page 324. From the Add CICS Transaction
Gateway Connection dialog box that is shown in Figure 14-4, enter the following values:

– Set Name to zOS Test Gateway.

– Set Host name to lp01.redbooks.ibm.com.

– Set Port number to 2989 (statistics API handler port).

– Click Save and Connect.

Figure 14-4 Add CICS Transaction Gateway Connection

– The connection zOS Test Gateway appears in the Connections pane under the
Transaction Gateway heading as shown in Figure 14-5 on page 335.
334 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-5 Host Connections view displaying a Gateway daemon connection

4. Repeat the steps for each Gateway daemon to which you want to connect, for example,
the Gateway daemons configured in Chapter 10, “CICS Transaction Gateway for z/OS
configuration” on page 171, Chapter 11, “CICS Transaction Gateway Multiplatforms and
Desktop Edition configuration” on page 205, and Chapter 13, “High availability
configuration” on page 295.

As an alternative to manually defining host connections on each instance of z/OS Explorer or
CICS Explorer, definitions can be shared. If your systems administrator has already created a
shared host connections definitions file, this file can be loaded or imported. For more
information, see “Export and import of Gateway daemon, CICS TS, and z/OS connections” on
page 336.

14.5.1 Backing up and restoring connection definitions

This section describes the options provided by the CICS TG plug-in for CICS Explorer and
z/OS Explorer for importing and exporting connection definitions.

Export and import of connection groups and connection links
This information relates to the custom connection group and associated connection link
definitions created in the custom option of the CICS TG Explorer view.

If you uninstall the CICS TG plug-in for CICS Explorer, all custom connection group and
associated connection link definitions are deleted. Two options are available to avoid losing
these definitions:

� Export all custom group definitions before uninstalling the CICS TG plug-in for CICS
Explorer and import the definitions after installing the new version of the plug-in.

� Use the update feature when installing a new version of the CICS TG plug-in for CICS
Explorer to preserve custom group definitions.

Use the following steps from the CICS TG Explorer view to export a connections group and
the associated connection link definition:

1. Click the View Menu (triangle) icon on the CICS TG Explorer view toolbar and select
Custom.

2. Select the connection groups to export, for example, zOSGatewayGroup. Right-click your
selection and click Export as shown in Figure 14-6 on page 336.
Chapter 14. Explorer plug-in 335

3. Use the Save As dialog box to specify the target file name (with a file extension of .ctg)
and a path, for example, C:\temp\Explorer_GatewayConns.ctg.

4. Click OK.

Figure 14-6 Export CICS TG custom connection group

The connection groups and the associated connection links that are previously exported can
be imported to the root level or nested inside an existing connection group. Use the following
steps from the CICS TG Explorer view to import the gateway connections in a connections
group:

1. Click the View Menu (triangle) icon on the CICS TG Explorer view toolbar and select
Custom.

2. Right-click inside the CICS TG Explorer at the root of where the imported connection
groups are to be created and click Import as shown in Figure 14-7.

3. Use the Open dialog box to select the previously exported custom group file (file extension
.ctg) to import, for example, C:\temp\Explorer_GatewayConns.ctg.

4. Click OK.

Figure 14-7 Import CICS TG custom connection group

Export and import of Gateway daemon, CICS TS, and z/OS connections
This information applies to all connection definitions created in the Host Connections view. It
includes CICS TG, CICS System Management, and z/OS definitions.
336 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

As an alternative to each user manually defining their own connection definitions, a set of
shared definitions can be created by a system administrator using z/OS Explorer and
exported to a central location. The exported file must have a file extension of .pref. Any user
with access to the file location can load or import the definitions in their copy of z/OS
Explorer:

� When you load connections, a link is created to an external connection definition file, and
the connections are shown in the Host Connections view. The definitions can be viewed
but not changed. Any changes to the shared connections file are reflected the next time
that z/OS Explorer starts. This has the advantage of keeping definitions synchronized
across multiple workspaces, but it requires a network connection to the location of the
shared definitions file. If the connection file is deleted or moved, the connections are lost
from z/OS Explorer.

� When you import connections, the details are copied into your local workspace and must
be manually updated if any details change. Importing a connection definition that already
exists in z/OS Explorer and is associated with a credential updates only the existing
connection definition details. It does not change the credential.

This approach can also be used to back up and restore the host connections in a local
workspace, which have previously been created manually.

Use the following steps from the Host Connections view to export connection definitions:

1. Select Windows Manage Connections to open the Host Connections view.

2. Click the Export Connections to File icon (blue arrow) on the Host Connections view
toolbar, as shown in Figure 14-8 on page 338.

3. Use the Export Connections to File dialog box to specify the target file name (file
extension of .pref) and path, for example, C:\temp\Explorer_connections.pref.

4. Click OK.

Note: This approach exports all host connections currently defined in the Host
Connections view and imports all host connections defined in the .pref file. There is not an
option to select individual connections.
Chapter 14. Explorer plug-in 337

Figure 14-8 Export host connections to a file

Use the following steps from the Host Connections view to load or import connection
definitions:

1. Select Windows Manage Connections to open the Host Connections view.

2. Click Load Connections from file or URL icon (green arrow) on the Host Connections
view toolbar, as shown in Figure 14-9 on page 339.

3. Use the Load Connections to File dialog box to select the previously exported connection
definition file, for example, C:\temp\Explorer_connections.pref, and select the Load or
Import radio button.

4. Click OK.
338 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-9 Load or import host connections

14.6 Viewing information for a Gateway daemon

This section describes how to view Gateway daemon information by using the CICS
Transaction Gateway perspective. It assumes that a Gateway daemon has already been
configured with at least one connection to CICS and that the Gateway daemon is running.

Open the CICS Transaction Gateway perspective by using the following steps:

1. From the z/OS Explorer toolbar, select Windows Open Perspective Other.

2. From the Open Perspective dialog box, select CICS Transaction Gateway and click OK.

The CICS Transaction Gateway perspective contains the following views, which are described
in more detail in the referenced sections:

� CICS TG Explorer view: See 14.6.1, “CICS TG Explorer view” on page 340.
� Gateway daemons view: See 14.6.2, “Gateway daemons view” on page 347.
� CICS connections view: See 14.6.3, “CICS connections view” on page 348.
� Properties view
� Console view
Chapter 14. Explorer plug-in 339

14.6.1 CICS TG Explorer view

The CICS TG Explorer view displays the Gateway daemons and their associated CICS server
connections. The Gateway daemons that are displayed are those Gateway daemons whose
connections were defined using the Managed Connections view. (See 14.3, “Creating and
administering z/OS Gateway daemons” on page 323.) It can also test the connections to the
Gateway daemon and from the Gateway daemon to its defined CICS servers.

Sorting and organizing the view
The Gateway daemons can be displayed in various ways:

� By APPLID qualifier
� As a flattened list
� By custom connection groups

Each of these views is described in more detail:

� The Gateway daemons can be displayed as a tree view sorted by APPLID qualifier (the
default option):

– Click the View Menu (triangle) icon on the CICS TG Explorer view toolbar and select
APPLID qualifier.

– This view is useful when you use z/OS Gateway groups to see all z/OS Gateway
daemons, which all share a common APPLID qualifier value, in the same group.

Figure 14-10 displays an example APPLID qualifier view. It shows five z/OS Gateway
daemons in a Gateway group (APPLID qualifier CTGALP00), an AIX Gateway daemon
(APPLID qualifier CTGMP), and the z/OS test Gateway daemon created earlier in this
chapter (APPLID qualifier CTGAPPQ).

Figure 14-10 CICS TG Explorer APPLID qualifier view

� The Gateway daemons can be displayed as a flattened list that is sorted in alphabetic
order:

– Click the View Menu (triangle) icon on the CICS TG Explorer view toolbar and select
List.

– Figure 14-11 on page 341 displays an example List view. It shows an AIX Gateway
daemon and six z/OS Gateway daemons, including the z/OS test Gateway daemon
that was created earlier in this chapter.

Note: If a new Gateway daemon connection is defined and connected, but it is not
displayed in this view, restart z/OS Explorer.
340 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-11 CICS TG Explorer List view

� The Gateway daemons can be displayed by using custom connection groups of selected
Gateway daemons.

The first time that you select the custom option, the CICS TG Explorer view is empty. The
custom option allows custom connection groups to be created and the required Gateway
daemon connections to be assigned to each group.

Use the following steps to create a connection group and assign the Gateway daemon
connections to it:

a. Click the View Menu (triangle) icon on the CICS TG Explorer view toolbar and select
Custom.

b. Right-click inside the CICS TG Explorer view and select New Connection group.
(Alternatively, click File New Connection Group from z/OS Explorer.) The New
connection group dialog is displayed.

c. On the New connection group dialog shown in Figure 14-12 on page 342, follow these
steps:

i. Set the Connection group to /. (The forward slash indicates the root node.)

This defines the position in the custom group hierarchy, the first connection group
must start at the root node. Subsequent connection groups can be nested in a
hierarchy. In this case, use Browse to select an existing connection group to use as
the parent for the new group.

ii. Set the Connection group name to zOSGatewayGroup.

iii. Click Finish.
Chapter 14. Explorer plug-in 341

Figure 14-12 New connection group dialog

d. Right-click the connection group name, for example, zOSGatewayGroup, and select
New Connection link. (Alternatively, click File New Gateway connection
link from z/OS Explorer.) The New connection link dialog is displayed.

e. On the New connection link dialog shown in Figure 14-13 on page 343, follow these
steps:

i. Set the Connection group name to zOSGatewayGroup.

ii. From the Available connections, select the Gateway daemon connections that you
want to add to the connection group from the displayed list. Multiple connections
can be added to the custom group by pressing the Shift or Ctrl keys while selecting.

iii. In this example, we chose to add four of the ITSO zOS Gateway daemons.

iv. Click Finish.
342 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-13 New connection link dialog

Figure 14-14 displays an example custom view. It shows a single connection group
with four z/OS Gateway daemons.

Figure 14-14 CICS TG Explorer custom view

f. Create another connection group called TestGatewayGroup and add the following
connection links: ITSO AIX gateway, ITSO zOSGateway0, and zOS Test Gateway.

Testing the connection to the Gateway daemon
The CICS TG plug-in for CICS Explorer can be used to test the connection to a Gateway
daemon. Follow these steps:

1. From your preferred CICS TG Explorer view option (APPLID qualifier, List, or Custom),
right-click the Gateway daemon name, for example, zOS Test Gateway, and click Test
Gateway connection, as shown in Figure 14-15 on page 344.
Chapter 14. Explorer plug-in 343

Figure 14-15 Test Gateway connection dialog

2. The result is displayed in the Console view, as shown in Example 14-6.

Example 14-6 Example output from test gateway connection

Attempting to open connection to Gateway daemon using host lp01.redbooks.ibm.com
on port 2,009
Success: Opened connection to lp01.redbooks.ibm.com on port 2,009

Testing connections to CICS servers
The CICS TG Explorer view also displays the CICS server connection definitions for each
Gateway daemon.

Figure 14-16 on page 345 shows an expanded version of the CICS TG Explorer view sorted
by the APPLID qualifier:

� The numbers in parentheses after the Gateway daemon connection name indicate the
number of active CICS connections and the number of defined CICS server connections.
For example, Gateway daemon connection ITSO zOSGateway1 displays (4/4), which
indicates that the Gateway daemon configuration file contains four CICS server definitions,
all of which are currently active. Also, zOS Test Gateway displays (0/1), which indicates
that the Gateway daemon configuration file contains a single CICS server definition, which
is not currently active.

� The CICS server definitions are displayed below each Gateway daemon by expanding the
Gateway connection name. For example, the Gateway daemon connection ITSO
zOSGateway1 has four server definitions: CICSTOR1, CICSTOR2, CICSTOR3, and CICSTOR4. The
Gateway daemon connection zOS Test Gateway has one server definition, CICSTOR1.

Note: For z/OS Gateway daemons, EXCI connections to CICS servers are only displayed
while they are active.
344 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure 14-16 CICS TG Explorer expanded view showing CICS connections

The CICS TG plug-in for CICS Explorer can be used to test the connection to a CICS region
using the Gateway daemon in remote mode. By default, the test is configured to call CICS
server program PONG with a 32-byte COMMAREA; however, this can be customized.

In the following example, the default configuration was customized to use the CICS TG
sample server program EC01 instead. This program requires an 18-byte COMMAREA.

Use the following steps to test an IPIC connection to CICS TS by running program EC01:

1. Configure z/OS Explorer to set the parameters to use to test the connection, for example,
the CICS program to be invoked, COMMAREA length, user ID, and password required:

a. On the z/OS Explorer toolbar, select Window Preferences.

b. Select CICS Transaction Gateway.

c. On the CICS Transaction Gateway preferences page, as shown in Figure 14-17 on
page 346, follow these steps:

i. Set the Program name to EC01.

ii. Set the COMMAREA size (bytes) to 18.

iii. The User ID and Password can be left as blank, provided that the CICS server has
not implemented link security.

iv. Click OK.

Note: The PONG program is available from CICS SupportPac CH50 (CTGPING).
Chapter 14. Explorer plug-in 345

Figure 14-17 CICS TG preferences to customize the CICS program that is used to test the connection

2. From your preferred CICS TG Explorer view style, right-click the CICS server connection
name, for example, CICSTOR1 for Gateway daemon connection zOS Test Gateway, and click
Test CICS connection, as shown in Figure 14-18.

Figure 14-18 Test CICS connection dialog

3. The result is displayed in the Console view, as shown in Example 14-7.

Example 14-7 Example output from Test CICS connection action

Attempting to open connection to Gateway daemon using host
lp01.redbooks.ibm.com on port 2,009
Attempting to run program EC01 on CICS server CICSTOR1
Success: Time spent in ECI call was: 156 ms
346 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

14.6.2 Gateway daemons view

The Gateway daemons view displays status and activity information for Gateway daemons.
This view includes the values of properties specified in the configuration file and values
obtained from the CICS TG startup, lifetime, and current statistics information. The Gateway
daemons view displays information for the CICS TG connections that are currently selected in
the CICS TG Explorer view. The CICS TG connection must be in the connected state.

To view the status and activity information for a Gateway daemon, follow these steps:

1. From the CICS TG Explorer view, ensure that the CICS TG connection, zOS Test Gateway,
shows as connected (blue connection icon):

– If the CICS TG connection is not currently connected (gray connection icon), right-click
the connection name, for example, zOS Test Gateway, and select Refresh status.

– If the connection fails, ensure that the Gateway daemon is running and listening on the
statistics API port specified in the CICS TG connection definition.

2. From the CICS TG Explorer view, select the CICS TG connection, zOS Test Gateway. It is
possible to select multiple Gateway daemon connections by pressing the Shift or Ctrl keys.

– The Gateway daemons view now displays the status and activity information for the
Gateway daemon as shown in Figure 14-19.

Figure 14-19 Gateway daemons view

The columns can be sorted by clicking the column headings, and the order can be rearranged
by clicking and dragging the column headings. This view can be customized by using these
options under the View Menu (triangle) icon:

� Column Layout Gateway displays Gateway daemon property information.

� Column Layout Requests displays information about requests made to that Gateway
daemon.

� Column Layout Resources displays information about the Gateway daemon
resources.

� Customize Columns allows columns to be added or removed from the view.

� Choose filter attributes allows columns to be selected that can be used to filter requests.
The default filter column displayed on the toolbar is for the Name. For Multiplatforms CICS
TG connections, Name is the connection name. For z/OS CICS TG connections, Name is
the Gateway daemon job or procedure name.

The Reset Columns option can be used to reset the view to the default options.

For a description of each column (property) value, see the CICS TG plug-in for CICS Explorer
help. From the z/OS Explorer toolbar, select Help Help Contents CICS TG Plug-in
Users Guide Views Gateway daemons views.

Note: In this example, the value -1 for SSLPort indicates that the SSL protocol
handler was not defined for this Gateway daemon.
Chapter 14. Explorer plug-in 347

All of the status and activity information can also be viewed in the Properties view. This
information is displayed when a single Gateway daemon is selected in the Gateway daemons
view. The Properties view has two formats:

� Information is arranged in categories, for example, Client daemon, Gateway daemon,
Connections, IPIC, and EXCI.

� Information is sorted in the alphabetical order of the properties.

To switch between the values, click the Show categories icon on the Properties view toolbar.

14.6.3 CICS connections view

The CICS connections view displays the status and activity information for the CICS server
connections. The values are obtained from the CICS TG statistics information. The CICS
connections view displays information for the CICS TG connections currently selected in the
CICS TG Explorer view. The CICS TG must be connected. Multiple connections can be
selected.

To view the status and activity information for the CICS server connections for a Gateway
daemon, from the CICS TG Explorer view, select the CICS TG connection, for example, zOS
Test Gateway. The CICS connections view now displays the status and activity information for
the CICS server connections for the zOS Test Gateway.

Figure 14-20 shows the CICS server connection CICSTOR1 status for the Gateway daemon
CTGTJOB.

Figure 14-20 CICS connections view

For a description of each of the column (property) values, see the CICS TG plug-in for CICS
Explorer help. From the z/OS Explorer toolbar, select Help Help Contents CICS TG
Plug-in Users Guide Views CICS connections views.

This concludes our brief tour of the CICS Transaction Gateway perspective that is provided
with the IBM CICS Transaction Gateway plug-in for CICS Explorer. For more information
about the options that are available with the views and statistics displayed, see the “CICS TG
Plug-in User Guide” by clicking Help Help Contents.
348 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Chapter 15. Troubleshooting techniques

This chapter provides techniques, materials, and utilities of use for troubleshooting
configuration issues with IBM CICS Transaction Gateway (CICS TG).

This chapter contains the following topics:

� 15.1, “Troubleshooting z/OS installations” on page 350
� 15.2, “Gateway daemon source of information” on page 351
� 15.3, “Gateway Daemon and Java shared class caches” on page 352

15
© Copyright IBM Corp. 2014. All rights reserved. 349

15.1 Troubleshooting z/OS installations

This section includes various techniques, materials, and utilities specifically for
troubleshooting with CICS TG for z/OS.

15.1.1 Obtaining CTGRRMS traced

The CICS TG for z/OS utility ctgasi includes the tracedump option -td, used to format the
CTGRRMS internal trace table. This can be invoked directly from a z/OS UNIX shell such as
OMVS. However, CICS TG for z/OS also includes sample JCL to invoke the z/OS UNIX utility
in the CTGASIS member of the SCTGSAMP product data set. Example 15-1 shows a modified
version CTGASIS, switching the -s (start) option for the -td option to dump the internal trace
table.

Example 15-1 JCL to obtain a dump of the CTGRRMS internal trace table

//CTGASIS JOB (0),MSGCLASS=X,CLASS=A,NOTIFY=&SYSUID,REGION=96M,
// USER=CTGGW
/*JOBPARM SYSAFF=SC66
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGHOME='/usr/lpp/cicstg/ctg900'
// SET LEOPTS='/'
//*
//* Main step: Stop the CTGRRMS services
//*
//CTG EXEC PGM=CTGBATCH,
// PARM='&LEOPTS.&CTGHOME./bin/ctgasi -td'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DUMMY
//* Define CTGDBG DD DUMMY to enable CTGBATCH debug mode
//*CTGDBG DD DUMMY
//*
//

If the TSO user ID used to submit the CTGASIS JCL does not have at least CONTROL or
UPDATE access to the CTG.RRMS.SERVICE profile in the FACILITY class, the ctgasi command
will fail with the error log messages shown in Example 15-2, and CTGBATCH completes with
return code 8.

Example 15-2 Output from ctgasi when the user ID has insufficient authority

CTG6209E ctgasi - user ID is not authorized, SAFRC = 00000008 00000008 00000000
CTG6202E ctgasi - CTGRRMS Services Address Space Initiator failed, RC=00000008

What else can I do with the ctgasi utility
Example 15-3 shows the help message output from the ctgasi utility.

Example 15-3 The help messages from the ctgasi utility

CTG6201I ctgasi - CTGRRMS Services Address Space Initiator
 CTG6200I (C) Copyright IBM Corporation 2005, 2010. All rights reserved.
 CTG6221I Command format is:
350 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

 CTG6222I ctgasi [-r [-f] | -s [-f] | -td | -?] [-v]
 CTG6223I Where the action performed is modified by the optional parameters:
 CTG6224I -r | -refresh Stop the CTGRRMS services and start a new instance
 CTG6225I -s | -shutdown Stop the CTGRRMS services
 CTG6226I -td | -tracedump Dump a formatted initialization trace
 CTG6227I -f | -force Override registered user checks if required
 CTG6228I -v | -verbose Display extended messages while ctgasi is running
 CTG6229I -? Display help on the command
 CTG6230I ctgasi - completed successfully

You can use the refresh option to restart the CTGRRMS services, for example, if you apply
CICS TG for z/OS maintenance to the SCTGLINK(CTGINIT) product load library.

15.2 Gateway daemon source of information

For a guide about the logs provided by the Gateway daemon, see 5.4.2, “Information available
at run time” on page 79.

You can also add additional logging information as shown in the Table 15-1.

Table 15-1 Additional logging

Table 15-2 on page 352 provides a sample of the other log resources that are available.

Operating
system

Additional logging
available

How to code location

Windows and
UNIX and z/OS

Messages returned from
CICS in IPIC error flows

cicslogging=<on> in
the GATEWAY section of
the configuration file

Gateway daemon
error log

Windows and
UNIX

Terminal installation and
deletion requests

terminstlogging=<Y> in
the CLIENT section of the
configuration file

Client daemon
log

Windows and
UNIX and z/OS

Log each time that a client
application connects to or
disconnects from the
Gateway daemon

connectionlogging in
the GATEWAY section of
the configuration file

Gateway daemon
error log

z/OS Messages are returned with
Domain Name System
(DNS) instead of the
IP address

dnsnames=<on> in the
GATEWAY section of the
configuration file

Gateway daemon
error log
Chapter 15. Troubleshooting techniques 351

Table 15-2 More available log resources

15.3 Gateway Daemon and Java shared class caches

The Gateway daemon on z/OS allows you to have multiple Gateway daemons in a logical
partition (LPAR) to consolidate the same class storage. In this section, we show several
commands that can help you troubleshoot with CICS TG for z/OS.

15.3.1 Startup messages

The shared class cache is active, by default. Example 15-4 shows the message issued by the
Gateway daemon when the class cache is successfully started.

Example 15-4 Output from Gateway daemon when the class cache is successfully started

CTG6134I The Gateway daemon JVM will use the class cache options
-Xshareclasses:name=cicstg900%g,groupAccess,nonpersistent,nonfatal

By default, the shared class cache is named based on the Gateway product and version. If
you need to change it because you need to test two Java levels, use the following
environment variable file with this coding:

CTGSTART_OPTS=-j-Xshareclasses:name=cicstgMM

Example 15-5 shows the message issued by the Gateway daemon when it is started.

Example 15-5 Output from Gateway daemon when the class cache name is overridden

CTG6134I The Gateway daemon JVM will use the class cache options
-Xshareclasses:name=cicstgMM

If you try to start the Gateway using an unsupported Java version, you receive the messages
shown in Example 15-6 on page 353 and the Gateway daemon will not start.

Platform Resource Location

Windows Windows event log jvmdbg.log in the
<product_data_path>

UNIX and Linux System error log Run the errp command to
create the system error log

AIX SNA SNA error log /var/sna/sna.err

Linux SNA SNA error log /var/opt/ibm/sna/sna.err

z/OS MVS console log

z/OS CICS Transaction Server
(CICS TS)

MSGUSR

z/OS Logrec EREP
352 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Example 15-6 Output from Gateway daemon when an unsupported Java version is used

CTG6134I The Gateway daemon JVM will use the class cache options
-Xshareclasses:name=cicstg900%g,groupAccess,nonpersistent,nonfatal
CTG6109E The JVM is not at the required level to run this application
08/23/13 07:30:40:260 [0] CTG0827W CTGBATCH Child completed with a non-zero return
code 11

If you want to disable the shared class cache, you need to code this environment variable this
way:

CTGSTART_OPTS=-j-Xshareclasses:none

15.3.2 Useful commands to display the shared class cache

This section shows the use of a Java utility for troubleshooting with CICS TG for z/OS.

To check that the cache was created and the status of all the shared class cache is present in
the LPAR, run the job shown in Example 15-7.

Example 15-7 JCL to display the status of the shared class cache in the system

//CTG5MM JOB CLASS=A,USER=CTGGW,REGION=500M,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC66
// SET CTGHOME='/pp/ctg900'
// SET ALLCACHE='-Xshareclasses:listAllCaches'
// SET JAVAHOME='/usr/lpp/java/J7.0_64/bin'
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGUSR='CICSRS3.JCL(CTG5ENV)'
// SET LEOPTS='/'
//JAVCC EXEC PGM=CTGBATCH,
// PARM='/&JAVAHOME./java &ALLCACHE.'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DSN=&CTGUSR.,DISP=SHR
//

Example 15-8 on page 354 shows an example of the output.

Note: With Java V6, the option to code in CTGSTART_OPTS was -noshareclasses.
Chapter 15. Troubleshooting techniques 353

Example 15-8 Output of listAllCaches

Listing all caches in cacheDir /tmp/javasharedresources/
Cache name level persistent OS shmid OS semid last
detach time
Compatible shared caches
cicstgMM Java7 64-bit no 24581 12297 Fri Aug
23 07:23:14 2013
Incompatible shared caches
cicstg900CTGGRP Java6 64-bit no 24582 12298 Fri Aug
23 07:30:38 2013
cicstgMM Java6 64-bit no 24583 12299 Fri Aug
23 07:34:11 2013
ctgMM Java6 64-bit no 24584 12300 Fri Aug
23 07:35:25 2013

To check the class cache statistics, run the job shown in Example 15-7 on page 353.

Example 15-9 JCL to display the statistics of a specific shared class cache in the system

//CTG5MM JOB CLASS=A,USER=CTGGW,REGION=500M,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC66
// SET CTGHOME='/pp/ctg900'
// SET ALLCACHE='-Xshareclasses:name=cicstgMM,printStats'
// SET JAVAHOME='/usr/lpp/java/J7.0_64/bin'
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGUSR='CICSRS3.JCL(CTG5ENV)'
// SET LEOPTS='/'
//JAVCC EXEC PGM=CTGBATCH,
// PARM='/&JAVAHOME./java &ALLCACHE.'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DSN=&CTGUSR.,DISP=SHR
//

Example 15-8 shows an example of the output.

Example 15-10 Output of printStats

Current statistics for cache "cicstgMM":
shared memory ID = 24581
Cache created with:
 -Xnolinenumbers = false
 BCI Enabled = false
Cache contains only classes with line numbers
base address = 0x000002000011B700
end address = 0x0000020001100000
allocation pointer = 0x00000200006637D0
cache size = 16776656
free bytes = 7555388
ROMClass bytes = 5538000
AOT bytes = 1030452
Reserved space for AOT bytes = -1
Maximum space for AOT bytes = -1
JIT data bytes = 44388
354 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Reserved space for JIT data bytes = -1
Maximum space for JIT data bytes = -1
Zip cache bytes = 1056048
Data bytes = 111824
Metadata bytes = 109356
Metadata % used = 1%
Class debug area size = 1331200
Class debug area used bytes = 514982
Class debug area % used = 38%
Raw class data area size = 0
Raw class data used bytes = 0
Raw class data area % used = 100%
ROMClasses = 1789
AOT Methods = 406
Classpaths = 3
URLs = 0
Tokens = 0
Zip caches = 22
Stale classes = 0
% Stale classes = 0%
Cache is 51% full

To remove a specific class cache, run the job shown in Example 15-7 on page 353.

Example 15-11 JCL to remove a specific shared class cache from the system

//CTG5MM JOB CLASS=A,USER=CTGGW,REGION=500M,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=SC66
// SET CTGHOME='/pp/ctg900'
// SET ALLCACHE='-Xshareclasses:name=cicstgMM,destroy'
// SET JAVAHOME='/usr/lpp/java/J7.0_64/bin'
// SET CTGHLQ='CTG.V9R0M0'
// SET CTGUSR='CICSRS3.JCL(CTG5ENV)'
// SET LEOPTS='/'
//JAVCC EXEC PGM=CTGBATCH,
// PARM='/&JAVAHOME./java &ALLCACHE.'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD DSN=&CTGUSR.,DISP=SHR
//

Example 15-8 on page 354 shows an example of the output.

Example 15-12 Output of the shared class cache destroy operation

JVMSHRC010I Shared cache "cicstgMM" is destroyed

Two files are created In the z/FS directory, tmp/javasharedresources, for each shared class
cache as shown in Example 15-13 on page 356. The files are semaphore and memory.
Chapter 15. Troubleshooting techniques 355

Example 15-13 List of the files created in the Java temporary directory

$ [SC66] /SC66/tmp/javasharedresources: ls
C260M2A64_memory_cicstg900CTGGRP_G21 C260M2A64_semaphore_cicstgMM_G21
C260M2A64_memory_cicstgMM_G21 C260M2A64_semaphore_ctgMM_G21
C260M2A64_memory_ctgMM_G21 C260M3A32_memory_cicstg900CTGGRP_G21
C260M2A64_semaphore_cicstg900CTGGRP_G21 C260M3A32_semaphore_cicstg900CTGGRP_G21

It is possible, in certain circumstances, for residual information in the Java temporary
directory to cause problems, and the content of this directory must be proactively deleted. It is
then re-created on the first new reference to the class cache.

Note: All the Gateway daemon address spaces that use the same shared class cache
must be shut down before you take actions on the shared class cache.
356 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Part 4 Appendixes

This part includes additional information and examples.

Part 4
© Copyright IBM Corp. 2014. All rights reserved. 357

358 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Appendix A. Running the precompiled Java
sample EciB1 from batch on z/OS

This appendix includes sample materials that allow a z/OS system administrator to use the
precompiled Java sample program, EciB1. This program is useful for testing configurations,
including Secure Sockets Layer (SSL) connections.

A

© Copyright IBM Corp. 2014. All rights reserved. 359

Use precompiled EciB1 from batch

This section provides a sample JCL JOB and z/OS UNIX shell script to run the precompiled
CICS Transaction Gateway (CICS TG)-supplied sample program, EciB1
(com.ibm.samples.eci.EciB1).

Normally, EciB1 is run from a workstation and requires the user to provide keyboard input to
select a target CICS server and, optionally, supply user ID/password security credentials.
However, by using a combination of the CTGBATCH utility and a small z/OS UNIX shell script,
EciB1 can be driven from a batch JOB with the correct environment variable settings.

z/OS UNIX script

Example A-1 shows the z/OS UNIX shell script that we used to call the z/OS UNIX shell
script, ecib1. On our test systems, this script file was stored on the z/OS UNIX file system in
the /u/cicsrs4/ctgtest/ecib1 directory. Read and execute permissions are set by using the
z/OS UNIX command chmod a+rx /u/cicsrs4/ctgtest/ecib1. Permissions can also be set
by using the TSO ISHELL menu system or by using the z/OS perspective in the CICS
Explorer or z/OS Explorer.

Example A-1 z/OS UNIX shell script - ecib1

#!/bin/sh
ecib1 - run CICS TG Java sample com.ibm.ctg.samples.eci.EciB1
echo "ecib1: Executing EciB1 with parameters: " $ECIB1_OPTS
echo "ecib1: Classpath=" $CLASSPATH
echo "$ECIB1_SERVER_NUM
$ECIB1_USERID
$ECIB1_PASSWORD

" | java com.ibm.ctg.samples.eci.EciB1 $ECIB1_OPTS

This z/OS UNIX shell script is not intended to be used directly from the z/OS UNIX shell
(OMVS) and relies on having the correct runtime environment provided. The required runtime
environment is established by the partner batch JOB, CTGECIB1.

Note: The EciB1 sample calls the CICS program EC01 on a selected CICS server;
therefore, EC01 needs to be available on the target CICS server for a successful run. The
COBOL source for EC01 is in the CICS TG product installation path
samples/server/ec01.ccb.

Note: The three blank lines that follow “$ECIB1_PASSWORD” are intentional and required.
They simulate keyboard input to the EciB1 application, which otherwise stops to wait for
user input.
360 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Batch JOB CTGECIB1

Example A-2 shows the batch JOB JCL that we used to call the z/OS UNIX shell script, ecib1.
It uses the CTGBATCH utility program, and it provides the required environment variable values
using the in-line STDENV DD statement.

Example A-2 Batch JOB JCL CTGECIB1

//CTGECIB1 JOB CLASS=E,MSGCLASS=A,MSGLEVEL=(2,0),REGION=128M
/*JOBPARM SYSAFF=SC66
//**
//* CICS TG Gateway daemon Java compiler job *
//**
// SET CTGHLQ='CTG.V9R0M0'
// SET TARGET='/u/cicsrs4/ctgtest/ecib1'
//ECIB1 EXEC PGM=CTGBATCH,
// PARM='/&TARGET'
//STEPLIB DD DSN=&CTGHLQ..SCTGLOAD,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD *
PATH=/bin:/usr/bin:/usr/sbin:/usr/lpp/java/J7.0/bin
CLASSPATH=/usr/lpp/cicstg/ctg900/classes/ctgsamples.jar:\
/usr/lpp/cicstg/ctg900/classes/ctgclient.jar
ECIB1_OPTS=ssl://localhost 8070 \
/u/cicsrs4/ctgtest/eci_keyring.jks keyringpassw0rd
ECIB1_SERVER_NUM=1
ECIB1_USERID=CICSRS4
ECIB1_PASSWORD=CICSRS4
_BPX_SHAREAS=YES
/

The z/OS UNIX shell script ctgecib1 relies on the values of four environment variables to
control the program behavior:

� ECIB1_OPTS

Command-line parameters for the EciB1 sample program.

� ECIB1_SERVER_NUM

Simulated keyboard input to select the CICS server from the list of available CICS servers.
The server is returned by the target Gateway daemon.

� ECIB1_USERID

Optional value for the ECI request user ID.

� ECIB1_PASSWORD

Optional value for the ECI request password (requires a user ID).

Note: The backslash (‘\’) continuation character is used in the STDENV data to specify
values for environment variables that exceed the line length limits for JCL.
Appendix A. Running the precompiled Java sample EciB1 from batch on z/OS 361

It also relies on the values of three more environment variables to define the required runtime
resources and behavior:

� PATH

Includes entries for the Java launcher and z/OS UNIX system commands

� CLASSPATH

Requires the ctgsamples.jar and ctgclient.jar files

� _BPX_SHAREAS

Not mandatory, but specifying YES forces created processes to run within a single address
space

EciB1 command-line syntax

Specifying the correct value for the ECIB1_OPTS environment variable requires an
understanding of the syntax expected by the EciB1 sample program. Example A-3 shows the
usage messages from EciB1 that explain the meaning of the positional command-line
parameters (separated by space characters).

Example A-3 Java sample EciB1 command-line parameters

CICS Transaction Gateway Basic ECI Sample 1
Usage: java com.ibm.ctg.samples.eci.EciB1 [Gateway URL]
 [Gateway port number]
 [SSL keyring]
 [SSL password]
To enable client tracing, run the sample with the following Java option:
 -Dgateway.T.trace=on

In Example A-2 on page 361, the following value is specified for ECIB1_OPTS:

ssl://localhost 8070 /u/cicsrs4/ctgtest/eci_keyring.jks keyringpassw0rd

The sample program attempts to establish an SSL connection to a Gateway daemon that is
running on the same LPAR and listening on port 8070 for the localhost adapter. The sample
program uses the specified Java Key Store (JKS) file and password.

If the sample program is able to connect to the specified Gateway daemon, the simulated
keyboard input is then used to select a target CICS server to flow the ECI request for CICS
program EC01.
362 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Appendix B. Modifying the sample
BasicCICSRequestExit

This appendix includes sample materials to allow a z/OS system administrator to modify the
sample BasicCICSRequestExit (CICS Request Exit) that is provided by IBM CICS
Transaction Gateway (CICS TG).

B

© Copyright IBM Corp. 2014. All rights reserved. 363

B.1 Introduction to the CICS request exit samples

CICS TG provides two request exit samples:

� BasicCICSRequestExit: This sample shows you how to implement a basic CICS request
exit. It is based on a predefined server list. If the request arrives with a CICS server name
present in the list, the remapping takes place. If the server name is not found, the request
is not changed.

� RoundRobinCICSRequestExit: This sample shows you how to implement a basic CICS
request exit to perform workload management. Each time that a request arrives to the
Gateway, it returns the next CICS server from a predefined list. The request exit ignores
the CICS server that is specified in the application request.

This chapter modifies the BasicCICSRequestExit Java sample.

The suggested development platform is the Eclipse development environment, where you can
track your change management and where you have all the necessary tools to modify,
compile, and test the Java programs. If Eclipse is not installed, but you still want to test the
exit, you can use the Java compiler command javac directly to create the Java class.

B.2 Modify the sample CICS Request Exit

This section shows you how to modify and compile the BasicCICSRequestExit in z/OS by
using commands in the UNIX System Services environment.

B.2.1 Modify the CICS request exit

To modify the sample, go in to the UNIX System Services environment using the TSO
command OMVS or ISHELL.

The program source is in the product installation libraries:

<install_path>/samples/java/com/ibm/ctg/samples/ha/BasicCICSRequestExit.java

Copy the sample program into a directory to which you have write access. Edit the copy of the
program using the oedit command to define an entry to map the CICS server value CICSITSO
to server CICSTOR1 by replacing the existing constructor code.

Example B-1 Constructor code

public BasicCICSRequestExit() {

serverMappings = new Hashtable<String, String>();

serverMappings.put("CICSITSO", "CICSTOR1");

}

Note: You will receive a truncation warning: “The data you are editing is variable
length data with at least one record that ends with a blank”. Saving the data
results in the removal of any trailing blanks from all records. You can issue the PRESERVE ON
command if you do not want the blanks removed.
364 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

With the preceding changes in the BasicCICSRequestExit, all of the ECI requests that specify
the server name CICSITSO will be routed to CICSTOR1.

B.3 Compile the Java sample request exit

This section shows two techniques to compile the modified exit.

B.3.1 Compile the Java sample request exit using UNIX System Services

The following steps show how to compile BasicCICSRequestExit in z/OS using UNIX System
Services commands. When you complete all the changes to the sample, you must compile
the source. Follow these steps:

1. Remember that the JAVA_HOME in your .profile needs to point to the correct Java level
and that the Java bin directory must be included in the PATH environment variable.
Example B-2 shows what you need to add.

Example B-2 The .profile modification

export JAVA_HOME=usr/lpp/java/J7.0
export PATH=$JAVA_HOME/bin:$PATH

2. Ensure that the CLASSPATH environment variable contains the ctgclient.jar, for example,
by using this command:

export CLASSPATH=<install_path>/classes/ctgclient.jar

3. Compile the program by using the javac command:

javac BasicCICSRequestExit.java

B.3.2 Compile the Java exit using the batch sample job

You can run the sample job that provided in this section to create the Java class. The intent of
the provided sample is to show you how to create a Java class from a z/OS batch job simply.
Follow these steps:

1. Give the correct permission to the Java source.

chmod 644 BasicCICSRequestExit.java

You can also use CICS Explorer, as shown in Figure B-1 on page 366.
Appendix B. Modifying the sample BasicCICSRequestExit 365

Figure B-1 Change the file property

You can decide the permission based on the minimum that is shown in Figure B-2 on
page 367.
366 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

Figure B-2 Change the permission

2. Create the Example B-3 script in your user directory by using the oedit ctgjavac
command.

Example B-3 The ctgjavac script

#!/bin/sh
echo '***************************************'
echo '*** CICS TG javac script ***'
echo '***************************************'
echo ''
echo CLASSPATH=${CLASSPATH}
echo SRCPATH=${SRCPATH}
echo SRCFILES=${SRCFILES}
echo OUTPATH=${OUTPATH}
echo command: ${JAVAHOME}/javac -verbose -d ${OUTPATH} -cp ${CLASSPATH}
${SRCPATH}/${SRCFILES} ${JAVAHOME}javac -d ${OUTPATH} -cp ${CLASSPATH}
${SRCPATH}/${SRCFILES}

You can use CICS Explorer to edit the file as showed in Figure B-3 on page 368.
Appendix B. Modifying the sample BasicCICSRequestExit 367

Figure B-3 Edit the z/OS UNIX files

3. Change the javac attributes:

chmod a+x /u/cicssr3/ctgjavac

4. Create the batch job to start the script as shown in Example B-4.

Example B-4 CTGBATCH sample

//CTGMM JOB CLASS=A,USER=CICSRS3,REGION=500M,NOTIFY=&SYSUID
//**
//* CICS TG Gateway daemon Java compiler job *
//**
//JAVAC EXEC PGM=BPXBATCH,
// PARM='SH /u/cicsrs3/ctgjavac'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD *
PATH=/bin:/usr/bin:/usr/sbin:/java/J7.0/bin
JAVAHOME=/usr/lpp/java/J7.0/bin/
CLASSPATH=/usr/lpp/cicstg/ctg900/classes/ctgclient.jar:\
SRCPATH=/usr/lpp/cicstg/ctg900/samples/java/com/ibm/ctg/samples/ha/
SRCFILES=BasicCICSRequestExit.java
OUTPATH=/usr/lpp/cicstg/ctg900/userclass/
_BPX_SHAREAS=YES
/

The following explanations refer to Example B-4:

– SRCPATH specifies the location of your Java source.

– SRCFILES specifies the file name of your Java source.

– OUTPATH specifies where you want to put the Java class that is created.

5. The CICS request exit must be activated in the Gateway daemon configuration file by
setting this property:

CICSRequestExit = com.ibm.ctg.samples.ha.BasicCICSRequestExit

6. When the Java class is ready, you need to make it available in the CLASSPATH by adding it
in the Gateway environment variable.
368 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

B.4 SupportPac CA1T

SupportPac CA1T provides a good example of how to create high availability (HA) and
request validation rules. Two workload balancing polices (round-robin policy or failover
policy) are supplied, both of which use server rules from the HA configuration file to remap
and retry failed requests. It is also possible to reload policy without restarting the Gateway.

SupportPac CA1T provides a combined workload balancing and request validation
infrastructure to be used with CICS Transaction Gateway. It also allows validation rules to be
applied on an inclusive basis or on an exclusive basis. When combined with a policy reload
operation (the CA1T_RELOAD command), the validation rules can be used in exclusive mode to
proactively reject requests for specific transactions, programs, or user IDs.

Configuration is based on a set of rules defined in the configuration files. Rules for workload
balancing can be generic by each Gateway, based on server aliases, or on the payload type
(channel or COMMAREA). Rules for request validation can be specified based on user IDs,
transaction IDs, or program names. A configurable retry interval is provided to improve the
efficiency of request distribution when you use workload balancing.

A configuration file failover mechanism is provided to enable failover between primary and
secondary groups of CICS regions. All rules can be dynamically updated while the Gateway
daemon is running. Workload balancing or request validation policies can be defined.

B.4.1 Workload balancing

Two workload balancing policies (round-robin or failover) are supplied. Both policies use
server rules from the HA configuration file to remap and retry failed requests. Example B-5
shows a server rule that defines the server alias SERVER1 as mapping to three actual CICS
servers CICSA, CICSB, and CICSC.

Example B-5 A CA1T server mapping rule

SERVER1=CICSA,CICSB,CICSC

The round-robin policy distributes requests evenly between CICS servers CICSA, CICSB, and
CICSC. By contrast, the failover policy distributes requests in a hierarchical order so that all
requests are sent to CICSA, provided that it is available. If CICSA is unavailable, requests are
sent to CICSB. If CICSB is unavailable, requests are sent to CICSC.

If you use primary and secondary configuration files, the rules from the secondary file are
activated whenever a request is to be retried and all CICS servers for the rule are unavailable.
The rules from the primary configuration file are automatically reactivated after the duration
set by the CTG_HAAUTOSWAP variable expires, or when a CA1T_SWAP command is issued.

Note: For either policy, after the exit determines a previous request failed with an error
message that the request can be tried again, the failing CICS server is bypassed until the
retry interval elapses.
Appendix B. Modifying the sample BasicCICSRequestExit 369

B.4.2 Request validation

With CICS TG for z/OS V9.0, request validation is supported for both extended architecture
(XA) and non-XA ECI requests by using the TRANSID, PROGRAM, and USERID rules to
validate or reject each request. Before CICS TG for z/OS V9.0, only non-XA ECI requests
achieved this form of request validation.

Each request is validated against the rules defined in the HA configuration file in the Gateway
daemon. Rejected requests are not tried again, and the following error is returned:
ECI_ERR_INVALID_CALL_TYPE (-14).

Example B-6 shows rules to reject requests by using the default INCLUSIVE validation mode.

Example B-6 CA1T request validation rules

TRANSID=CSMI
USERID=NULL
PROGRAM=PROG1,PROG2

This configuration rejects ECI requests that do not match all of the criteria:

� Use the default mirror transaction CSMI.
� Do not specify a user ID.
� Specify the CICS program PROG1 or PROG2.

The readme file that is provided by SupportPac CA1T explains how to implement the CICS
Request Exit, and it provides details about the full capabilities:

http://www.ibm.com/support/docview.wss?uid=swg24021484

Note: As of V9.0 of the CICS TG product suite, CICS TG for Multiplatforms and CICS TG
Desktop Edition do not support XA requests in remote mode. This distinction is irrelevant.
370 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://www.ibm.com/support/docview.wss?uid=swg24021484

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� CICS and SOA: Architecture and Integration Choices, SG24-5466

� CICS Transaction Gateway for z/OS Version 6.1, SG24-7161

� CICS Transaction Gateway V5 The WebSphere Connector for CICS, SG24-6133

� Developing Connector Applications for CICS, SG24-7714

� Exploring Systems Monitoring for CICS Transaction Gateway V7.1 for z/OS, SG24-7562

� IBM CICS Performance Series: A Processor Usage Study of Ways into CICS, REDP-4906

� IBM z/OS V1R12 Communications Server TCP/IP Implementation: Volume 3 High
Availability, Scalability, and Performance, SG24-7898

� IBM z/OS V1R13 Communications Server TCP/IP Implementation: Volume 3 High
Availability, Scalability, and Performance, SG24-7998

� Securing Access to CICS Within an SOA, SG24-5756

� Threadsafe Considerations for CICS, SG24-6351

� Using CICS Transaction Gateway, High Availability, and the CICS Explorer, REDP-4782

� z/OS Identity Propagation, SG24-7850

� z/OS Version 1 Release 13 Implementation, SG24-7946

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Supported software for CICS Transaction Gateway (CICS TG) products:

http://www.ibm.com/support/docview.wss?uid=swg21239203

� Shopz:

http://www.ibm.com/software/shopzseries

� Scenarios:

http://ibm.co/1tfLphd
© Copyright IBM Corp. 2014. All rights reserved. 371

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/docview.wss?uid=swg21239203
http://www.ibm.com/software/shopzseries

� Summary of environment variables:

http://ibm.co/1rxRuFr

� CICS Transaction Gateway family:

http://www.ibm.com/software/products/us/en/cics-ctg/

� Passport Advantage and Passport Advantage Express:

http://www.ibm.com/software/lotus/passportadvantage/

� Which API can be used? Multiplatform:

http://ibm.co/1n2ltV6

� Which API can be used? Desktop:

http://ibm.co/WnWuSN

� IBM CICS Performance Series: A Processor Usage Study of Ways into CICS:

http://www.redbooks.ibm.com/abstracts/redp4906.html

� Identity propagation:

http://ibm.co/1mYB2xG

� z/OS Identity Propagation:

http://www.redbooks.ibm.com/abstracts/sg247850.html

� Implementing IPIC security:

http://ibm.co/WjtHyu

� Autoinstalling IPIC connections; preliminary considerations:

http://ibm.co/1rxNyVn

� Implementing MRO security:

http://ibm.co/1n2j4cW

� Implementing LU6.2 security:

http://ibm.co/1szvVqU

� Sample autoinstall user program to support predefined connection templates:

http://ibm.co/1wG5Rbh

� CA76: CICS Transaction Gateway V9 SSL connectivity for .NET applications:

http://www.ibm.com/support/docview.wss?uid=swg24034001

� Avoiding out-of-memory conditions:

http://ibm.co/Wjxls7

� Hints and Tips for Java on z/OS:

http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html

� CICS Transaction Server for z/OS V5.1 CICS Intercommunication Guide, SC34-2858-01:

http://ibm.co/1nGk8iR

� Syncpoint flows in CICS Transaction Server:

http://ibm.co/1p37zCh

� CICS Transaction Gateway and Virtualization Environments:

http://www.ibm.com/support/docview.wss?uid=swg21304599
372 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

http://ibm.co/1p37zCh
http://www.ibm.com/software/products/us/en/cics-ctg/
http://www.ibm.com/software/lotus/passportadvantage/
http://www.redbooks.ibm.com/abstracts/redp4906.html
http://www.ibm.com/support/docview.wss?uid=swg24034001
http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html
http://www.ibm.com/support/docview.wss?uid=swg21304599

� CICS Transaction Gateway and AIX workload partitions:

http://ibm.co/1kEaHAo

� CA1T: High availability exits for use with CICS TG:

http://www.ibm.com/support/docview.wss?uid=swg24021484

� ECI Client API exits:

http://ibm.co/1qPwicK

� z/OS V1R13.0 Security Server RACF Command Language Reference, SA22-7687-16:

http://www-01.ibm.com/support/docview.wss?uid=pub1sa22768716

� Configuring SSL security between a Java Client and the Gateway daemon (SC06):

http://ibm.co/1p3a07O

� ITU-T Recommendations:

http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.509

� Configuring SSL security between a Java Client and the Gateway daemon (SC05):

http://ibm.co/1zStHVw

� Using the CICS-supplied procedures to install application programs:

http://ibm.co/UgHzID

� The conversion process:

http://ibm.co/1szxnth

� Defining the conversion table:

http://ibm.co/1u0TQRI

� Setting up profiles in RACF:

http://ibm.co/1yEmB5s

� Building a key ring with certificates by using DFH$RING:

http://ibm.co/1yEqJTg

� Using the CICS-supplied procedures to install application programs:

http://ibm.co/UgHzID

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 373

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-01.ibm.com/support/docview.wss?uid=pub1sa22768716
http://www.ibm.com/support/docview.wss?uid=swg24021484
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=X.509
http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.applicationprogramming.doc%2Ftopics%2Fdfhp3_installprog_cicsproc.html
http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.intercommunication.doc%2Ftopics%2Fdfht80l.html
http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.doc%2Fdfht5%2Ftopics%2Fdfht5_settingprofiles.html
http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.intercommunication.doc%2Ftopics%2Fdfht80z.html
http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.intercommunication.doc%2Ftopics%2Fdfht80z.html

374 IBM CICS Transaction Gateway Volume 1 Configuration and Administration

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

The Com
plete Guide to CICS Transaction Gatew

ay Volum
e 1 Configuration and Adm

inistration

IBM
 CICS Transaction Gatew

ay
Volum

e 1 Configuration and

IBM
 CICS Transaction Gatew

ay
Volum

e 1 Configuration and
Adm

inistration

IBM
 CICS Transaction Gatew

ay Volum
e 1 Configuration and Adm

inistration

IBM
 CICS Transaction Gatew

ay
Volum

e 1 Configuration and
Adm

inistration

IBM
 CICS Transaction Gatew

ay
Volum

e 1 Configuration and
Adm

inistration

®

SG24-8160-00 ISBN 0738439738

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

The Complete Guide to
CICS Transaction Gateway
Volume 1 Configuration and Administration

A practical guide to
the capabilities and
usage of the CICS TG
product suite

Incremental setup
from basic
connectivity through
to security and high
availability

Focus on IPIC
connectivity, high
availability,
WebSphere
Application Server,
and CICS Explorer

In this IBM Redbooks publication, you will gain an appreciation of the
IBM CICS Transaction Gateway (CICS TG) product suite, based on key
criteria, such as capabilities, scalability, platform, CICS server support,
application language support, and licensing model.

Matching the requirements to available infrastructure and hardware
choices requires an appreciation of the choices available. In this book,
you will gain an understanding of those choices, and will be capable of
choosing the appropriate CICS connection protocol, APIs for the
applications, and security options. You will understand the services
available to the application developer when using a chosen protocol.

You will then learn about how to implement CICS TG solutions, taking
advantage of the latest capabilities, such as IPIC connectivity, high
availability, and Dynamic Server Selection. Specific scenarios illustrate
the usage of CICS TG for IBM z/OS, and CICS TG for Multiplatforms,
with CICS Transaction Server for z/OS and IBM WebSphere Application
Server, including connections in CICS, configuring simple end-to-end
connectivity (all platforms) with verification for remote and local mode
applications, and adding security, XA support, and high availability.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Introduction
	Chapter 1. Basic concepts
	1.1 Overview of the CICS TG products
	1.1.1 More you must know about IBM CICS Transaction Gateway
	1.1.2 Business value
	1.1.3 Solution overview
	1.1.4 Solution architecture
	1.1.5 Usage scenarios
	1.1.6 Integration
	1.1.7 Supported platforms

	1.2 Connectivity and capability by CICS TG product
	1.3 CICS TG topologies
	1.3.1 Three-tier solutions
	1.3.2 Two-tier solutions
	1.3.3 CICS TG for z/OS
	1.3.4 CICS TG for Multiplatforms
	1.3.5 CICS TG Desktop Edition

	1.4 High availability features
	1.4.1 Connection balancing
	1.4.2 Dynamic Server Selection

	1.5 Transactionality
	1.5.1 Sync-on-return
	1.5.2 Distributed Transaction Processing

	1.6 Security

	Chapter 2. CICS Transaction Gateway for z/OS installations
	2.1 Installing CICS TG for z/OS
	2.1.1 Ordering CICS TG from Shopz

	2.2 Anatomy of CICS TG for z/OS
	2.3 CICS TG basic structure
	2.3.1 Gateway daemon

	2.4 Adding facilities to CICS TG
	2.4.1 Automatic restart of a CICS TG region
	2.4.2 Using EXCI to communicate with CICS TS
	2.4.3 Clients passing a large amount of data to the CICS TS application
	2.4.4 Client applications needing transactionality over EXCI
	2.4.5 Client applications needing distributed LUWs
	2.4.6 Using historical statistical data analysis
	2.4.7 Using real-time statistical data analysis
	2.4.8 Multiple Gateway daemons started on the same LPAR
	2.4.9 Security
	2.4.10 Setting up high availability

	2.5 The benefits of CICS TG for z/OS

	Chapter 3. CICS Transaction Gateway for Multiplatforms and Desktop Edition installations
	3.1 Preparing to install CICS TG Multiplatforms and CICS TG Desktop Edition in a distributed environment
	3.1.1 The Passport Advantage site
	3.1.2 Files provided within the installable eImage

	3.2 Anatomy of CICS TG in a Windows environment
	3.3 Anatomy of CICS TG on UNIX
	3.4 The CICS TG and Client daemons and runtime components
	3.4.1 The Client daemon
	3.4.2 The Gateway daemon
	3.4.3 The IPIC protocol
	3.4.4 The configuration tool
	3.4.5 Resource adapters

	Part 2 CICS Transaction Gateway capabilities
	Chapter 4. Connecting to CICS
	4.1 CICS communication protocols
	4.1.1 What’s in a name?
	4.1.2 IP interconnectivity (IPIC)
	4.1.3 EXCI
	4.1.4 TCPIP
	4.1.5 SNA Advanced Program-to-Program Communication (APPC)

	4.2 CICS TG APIs and connection type
	4.3 Quality of service and connection types
	4.3.1 IPIC
	4.3.2 EXCI
	4.3.3 TCPIP
	4.3.4 SNA

	4.4 IPIC autoinstall for WebSphere Application Server clusters

	Chapter 5. Understanding the Gateway daemon
	5.1 Three-tier concepts
	5.2 Gateway daemon resources
	5.2.1 Protocol handlers
	5.2.2 The threading model
	5.2.3 Estimating the number of connection manager threads
	5.2.4 Estimating the number of worker threads

	5.3 Connecting to CICS servers
	5.3.1 All platforms: IPIC
	5.3.2 Multiplatform and Desktop Edition specific: TCPIP
	5.3.3 Multiplatform and Desktop Edition specific: SNA
	5.3.4 z/OS specific: EXCI

	5.4 System resources
	5.4.1 Gateway daemon runtime environment
	5.4.2 Information available at run time
	5.4.3 Gateway daemon memory requirements

	5.5 z/OS specific resources
	5.5.1 Region size consideration in CICS TG for z/OS
	5.5.2 Storage and EXCI in the Gateway daemon for z/OS
	5.5.3 Using a 64-bit Gateway daemon on z/OS

	5.6 z/OS Workload Manager suggestions for CICS TG for z/OS
	5.6.1 WLM system-provided special service classes
	5.6.2 Storage Critical option
	5.6.3 MAXCPUTIME

	5.7 Statistics

	Chapter 6. CICS Transaction Gateway solution options
	6.1 Deployment topologies
	6.1.1 Remote mode
	6.1.2 Local mode

	6.2 CICS TG APIs and connection type
	6.2.1 JCA client applications
	6.2.2 Base class Java applications
	6.2.3 Microsoft .NET framework-based applications
	6.2.4 ECIv2 and ESIv2 applications
	6.2.5 ECI, ESI, and EPI v1 applications

	6.3 Transactional models
	6.3.1 Two-phase commit
	6.3.2 JCA and transactions

	6.4 Choosing a Gateway topology

	Chapter 7. High availability concepts
	7.1 High availability overview
	7.2 Connection balancing
	7.2.1 Single point of failure: Single Gateway daemon
	7.2.2 z/OS shared ports
	7.2.3 Multiplatform IP load balancing solutions

	7.3 Dynamic server selection
	7.3.1 Default server
	7.3.2 The CICS request exit
	7.3.3 DSSPOLICY (z/OS only)
	7.3.4 DFHXCURM (z/OS only)
	7.3.5 Client API user exits
	7.3.6 Client daemon Workload Manager on Windows

	7.4 Importance of scaling and growing in a continuous availability system
	7.5 Considerations for XA transaction support on z/OS

	Chapter 8. Security
	8.1 Security basics
	8.1.1 The components of a security system
	8.1.2 The role of cryptography

	8.2 Network security
	8.2.1 Secure Sockets Layer and Transport Layer Security
	8.2.2 Digital signatures, certificates, and key rings
	8.2.3 Enabling SSL in the CICS TG
	8.2.4 Securing IPIC connections
	8.2.5 Securing connections to the Gateway daemon

	8.3 Passwords, PassTickets, and password phrases
	8.4 Identity propagation
	8.5 The external security interface

	Part 3 Configuration
	Chapter 9. Configuring IPIC in CICS Transaction Gateway for z/OS
	9.1 Configuration overview
	9.2 CICS definitions for IPIC
	9.2.1 System initialization parameters
	9.2.2 The mirror transaction
	9.2.3 TCPIPSERVICE resource definition
	9.2.4 IPCONN resource definition

	9.3 The sample application programs
	9.3.1 Transferring, compiling, and linking the CICS sample programs
	9.3.2 Defining and installing the CICS sample program
	9.3.3 Data conversion for the COMMAREA samples

	9.4 Securing IPIC with SSL
	9.4.1 Create a key ring for CICS
	9.4.2 The KEYRING system initialization parameter
	9.4.3 Configure a TCPIPSERVICE for SSL

	9.5 Configuring IPIC autoinstall for WebSphere Application Server clusters

	Chapter 10. CICS Transaction Gateway for z/OS configuration
	10.1 Configure the Gateway daemon
	10.1.1 Configuration summary
	10.1.2 The CTGBATCH launcher
	10.1.3 Configuration file
	10.1.4 Environment variables
	10.1.5 Overriding the configuration file
	10.1.6 Started procedure and Gateway daemon user ID

	10.2 Testing the Gateway daemon
	10.2.1 Start the Gateway daemon
	10.2.2 Test using the CTGTESTR job

	10.3 Configure basic security
	10.3.1 CICS TS configuration for USERAUTH(VERIFY)
	10.3.2 Test using the CTGTESTR job

	10.4 Configure secure connections
	10.4.1 Secure the Gateway daemon
	10.4.2 SSL application to Gateway daemon
	10.4.3 SSL IPIC to CICS
	10.4.4 Restricting cipher suites

	10.5 Adding XA support
	10.5.1 The CTGRRMS address space
	10.5.2 System configuration for CTGRRMS
	10.5.3 Gateway daemon configuration for XA transactions
	10.5.4 Verifying the configuration for XA transactions

	Chapter 11. CICS Transaction Gateway Multiplatforms and Desktop Edition configuration
	11.1 Installing CICS TG
	11.1.1 Installing on a Windows platform
	11.1.2 Installing on a UNIX (AIX) platform

	11.2 Configure the Gateway daemon
	11.2.1 System-level configuration
	11.2.2 Gateway daemon configuration summary
	11.2.3 The PRODUCT section
	11.2.4 The GATEWAY section
	11.2.5 The IPICSERVER section

	11.3 Starting and stopping CICS TG
	11.3.1 The Windows platform
	11.3.2 The UNIX and Linux platforms

	11.4 Testing the Gateway daemon
	11.4.1 Start the Gateway daemon
	11.4.2 Test the connection
	11.4.3 Test the channel and container support

	11.5 Configuring secure connections
	11.5.1 Secure the Gateway daemon
	11.5.2 Test the secure Gateway connection
	11.5.3 Add client authentication
	11.5.4 Secure the IPIC connection

	11.6 Client daemon configuration
	11.6.1 The CLIENT section
	11.6.2 The DRIVER section
	11.6.3 The SERVER section
	11.6.4 The LOADMANAGER section (Windows)

	Chapter 12. Integrating with WebSphere Application Server
	12.1 Java EE application servers supported by CICS TG
	12.2 The CICS resource adapters
	12.3 Topologies
	12.4 WebSphere Application Server settings
	12.4.1 Connection management
	12.4.2 Transaction management
	12.4.3 Security Management
	12.4.4 WebSphere Application Server z/OS-specific settings for EXCI

	12.5 Installing the ECI resource adapter
	12.5.1 Install the ECI resource adapter
	12.5.2 Upgrading the ECI resource adapter

	12.6 Creating and configuring a Java EE Connector Architecture connection factory
	12.6.1 Creating a Java EE Connector Architecture connection factory
	12.6.2 Configuring the connection pool properties
	12.6.3 Configuring a Java EE Connector Architecture connection factory for CICS TG local mode
	12.6.4 Configuring a Java EE Connector Architecture connection factory for CICS TG remote mode

	12.7 Testing end-to-end
	12.7.1 Deploying and configuring the IVT
	12.7.2 Running the IVT

	12.8 Configuring the XA connection
	12.9 Flowing the user ID and password on an ECI request
	12.10 Securing the connection with Secure Sockets Layer
	12.11 Transaction tracking with Cross Component Trace

	Chapter 13. High availability configuration
	13.1 High availability use case
	13.2 High availability topology
	13.3 Connection balancing
	13.3.1 Sysplex Distributor
	13.3.2 Enabling WLM recommendations for TCP/IP port sharing
	13.3.3 Testing TCP/IP port sharing using WLM
	13.3.4 Modifying or deleting a TCPIP port sharing definition

	13.4 Highly available Gateway group
	13.5 Configuring DSSPOLICY
	13.5.1 Policy based on dynamic server selection (z/OS only)

	13.6 WebSphere Application Server cluster
	13.6.1 WebSphere Application Server high availability topology
	13.6.2 Using ECI resource adapter in a WebSphere Application Server cluster
	13.6.3 Configuring a Java EE Connector Architecture connection factory for CICS TG remote mode

	13.7 XA considerations

	Chapter 14. Explorer plug-in
	14.1 Introduction
	14.2 Installing CICS TG plug-in for CICS Explorer
	14.3 Creating and administering z/OS Gateway daemons
	14.3.1 Creating a z/OS Gateway daemon using z/OS Explorer
	14.3.2 Starting and stopping a z/OS Gateway daemon

	14.4 Preparing a Gateway daemon to use Explorer
	14.5 Connecting to a Gateway daemon
	14.5.1 Backing up and restoring connection definitions

	14.6 Viewing information for a Gateway daemon
	14.6.1 CICS TG Explorer view
	14.6.2 Gateway daemons view
	14.6.3 CICS connections view

	Chapter 15. Troubleshooting techniques
	15.1 Troubleshooting z/OS installations
	15.1.1 Obtaining CTGRRMS traced

	15.2 Gateway daemon source of information
	15.3 Gateway Daemon and Java shared class caches
	15.3.1 Startup messages
	15.3.2 Useful commands to display the shared class cache

	Part 4 Appendixes
	Appendix A. Running the precompiled Java sample EciB1 from batch on z/OS
	Use precompiled EciB1 from batch
	z/OS UNIX script
	Batch JOB CTGECIB1
	EciB1 command-line syntax

	Appendix B. Modifying the sample BasicCICSRequestExit
	B.1 Introduction to the CICS request exit samples
	B.2 Modify the sample CICS Request Exit
	B.2.1 Modify the CICS request exit

	B.3 Compile the Java sample request exit
	B.3.1 Compile the Java sample request exit using UNIX System Services
	B.3.2 Compile the Java exit using the batch sample job

	B.4 SupportPac CA1T
	B.4.1 Workload balancing
	B.4.2 Request validation

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

