
ibm.com/redbooks

IBM® Information Management Software

Smarter Business
Dynamic Information with IBM
InfoSphere Data Replication CDC

Chuck Ballard
Alec Beaton Mark Ketchie
Anzar Noor Frank Ketelaars

 Judy Parkes Deepak Rangarao
Bill Shubin Wim Van Tichelen

Log-based for real-time high volume
replication and scalability

High throughput replication with
integrity and consistency

Programming-free
data integration

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Smarter Business: Dynamic Information with IBM
InfoSphere Data Replication CDC

March 2012

International Technical Support Organization

SG24-7941-00

© Copyright International Business Machines Corporation 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (March 2012)

This edition applies to Version 6.5 of IBM InfoSphere Change Data Capture (product number
5724-U70).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xii
Now you can become a published author, too! . xvi
Comments welcome. xvii
Stay connected to IBM Redbooks . xvii

Chapter 1. Introduction and overview . 1
1.1 Optimized data integration . 2
1.2 InfoSphere architecture . 4

Chapter 2. InfoSphere CDC: Empowering information management. 9
2.1 The need for dynamic data . 10
2.2 Data delivery methods. 11
2.3 Providing dynamic data with InfoSphere CDC . 12

2.3.1 InfoSphere CDC architectural overview . 14
2.3.2 Reliability and integrity . 16

Chapter 3. Business use cases for InfoSphere CDC 19
3.1 InfoSphere CDC techniques for transporting changed data 20

3.1.1 Option 1: Database staging. 21
3.1.2 Option 2: Message queue (MQ) based integration 22
3.1.3 Option 3: File-based integration . 23
3.1.4 Option 4: InfoSphere DataStage Direct Connect 24

3.2 Data warehousing and business intelligence . 24
3.2.1 Active data warehousing . 24
3.2.2 Slowly changing dimensions . 26

3.3 Consolidation. 28
3.3.1 Consolidation: Sample implementation 1 . 29
3.3.2 Consolidation: Sample implementation 2 . 30

3.4 Distribution . 31
3.4.1 Distribution: Sample implementation 1 . 32
3.4.2 Distribution: Sample implementation 2 . 33

3.5 Database migration . 35
3.5.1 Database migration: Sample implementation 35

3.6 Application integration . 37
3.6.1 Application integration: Sample implementation 1 37
© Copyright IBM Corp. 2012. All rights reserved. iii

3.6.2 Application integration: Sample implementation 2 38
3.6.3 Application integration: Sample implementation 3 39

3.7 Integration with master data management . 40
3.7.1 Integration with master data management: Sample implementation 41

3.8 Integration with IBM Information Server . 43
3.8.1 Integration with IBM Information Server: Sample implementation . . 43

3.9 Operational business intelligence . 45
3.9.1 Operational business intelligence: Sample implementation 45

Chapter 4. Solution topologies . 47
4.1 Unidirectional replication . 48
4.2 Cascading replication . 49
4.3 Bidirectional replication . 52
4.4 Consolidation replication . 54
4.5 Data distribution replication . 57
4.6 Hub-and-Spoke replication with propagation . 58
4.7 Destination . 62

4.7.1 JMS Message Queue . 63
4.7.2 Flat files. 64
4.7.3 DataStage . 67
4.7.4 Web services. 71

Chapter 5. InfoSphere CDC features and functionality 75
5.1 Transformations . 77

5.1.1 Column functions . 78
5.1.2 Journal control fields . 80
5.1.3 Joining. 80
5.1.4 User exits for customizations . 82
5.1.5 Considerations for using transformational functionality. 83

5.2 Replication modes. 83
5.2.1 Refresh . 83
5.2.2 Continuous mirroring. 87
5.2.3 Scheduled end (net change) . 88

5.3 Filtering . 89
5.3.1 Row level. 89
5.3.2 Column level . 90

5.4 Apply methods. 91
5.4.1 Standard . 91
5.4.2 LiveAudit . 92
5.4.3 Adaptive Apply . 93
5.4.4 Summarization . 93
5.4.5 Row consolidation . 94
5.4.6 Soft deletes . 95
iv Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

5.4.7 Custom apply methods (user exits). 96
5.4.8 Flat files. 96
5.4.9 DataStage direct connect . 97
5.4.10 JMS message queues. 98

5.5 Conflict detection and resolution . 99

Chapter 6. Understanding the architecture. 103
6.1 Component overview. 104

6.1.1 InfoSphere CDC instances . 107
6.1.2 Interoperability between the InfoSphere CDC components 110

6.2 Management Console fundamentals. 111
6.2.1 Access Manager Interface . 112
6.2.2 Configuration Interface . 114
6.2.3 Monitoring Interface . 117
6.2.4 InfoSphere CDC API . 119
6.2.5 Access Server fundamentals . 120

6.3 The InfoSphere CDC engine . 120
6.3.1 Bookmarks . 120
6.3.2 The InfoSphere CDC Linux, UNIX, and Windows engine 122
6.3.3 The InfoSphere CDC for System i engine. 131
6.3.4 The InfoSphere CDC for z/OS engine. 132

6.4 Communications between source and target . 134
6.5 Summary . 135

Chapter 7. Environmental considerations . 137
7.1 Globalization with InfoSphere CDC. 138

7.1.1 Time zone considerations . 138
7.1.2 Encoding conversions . 147

7.2 Firewall configurations. 149
7.2.1 How InfoSphere CDC uses TCP/IP . 149
7.2.2 Firewalls . 152
7.2.3 InfoSphere CDC in a firewalled network environment 153
7.2.4 Configuring source port restrictions . 154
7.2.5 Troubleshooting CDC connection issues . 156

7.3 Log retention . 158
7.3.1 Log retention general guidelines . 158
7.3.2 Log retention platform-specific guidelines. 159

7.4 Remote processing capabilities. 162
7.4.1 Remote source . 163
7.4.2 Remote target . 164
7.4.3 Remote source and target. 165
7.4.4 Log shipping . 166

7.5 Using InfoSphere CDC in resilient environments 168
 Contents v

7.5.1 InfoSphere CDC reachability: Virtual IP . 169
7.5.2 InfoSphere CDC binary files and metadata for the Linux, UNIX, and

Windows engine . 170
7.5.3 InfoSphere CDC on a shared volume . 171
7.5.4 InfoSphere CDC on separate nodes with a shared database. 173
7.5.5 InfoSphere CDC on separate servers with separate databases . . . 175
7.5.6 System i resilient environments . 178
7.5.7 z/OS / Sysplex and InfoSphere CDC in resilient environments . . . 186

7.6 Change management . 190
7.6.1 Understanding InfoSphere CDC bookmarks. 191
7.6.2 Change Management sample environment 193
7.6.3 DDL changes in a service window . 193
7.6.4 DDL changes without a service window . 207

Chapter 8. Performance analysis and design considerations 211
8.1 High volume between two systems . 212

8.1.1 Latency and throughput . 212
8.1.2 InfoSphere CDC architecture . 213

8.2 Identification of potential bottlenecks . 214
8.3 Performance monitoring in InfoSphere CDC environments 215

8.3.1 Performance monitoring using the Management Console 215
8.3.2 System monitoring tools . 215

8.4 Using workflow for performance issues. 216
8.5 Installation considerations . 217

8.5.1 Silent installations and instance creation . 217
8.6 Design considerations . 221

8.6.1 Using multiple parallel subscriptions . 221
8.6.2 Using multiple InfoSphere CDC instances 223
8.6.3 Using an n-tiered architecture . 224
8.6.4 Using cascading replication to spread the workload 226
8.6.5 Continuous scraping . 227

Chapter 9. Customization and automation . 231
9.1 Options for managing InfoSphere CDC. 232
9.2 Management Console GUI . 232
9.3 Management Console commands. 233

9.3.1 Common uses for the Management Console commands 234
9.3.2 Compiling Management Console command scripts 234

9.4 InfoSphere CDC engine commands (CLI). 237
9.4.1 Running commands for the Linux, UNIX, and Windows engine . . . 237
9.4.2 Running CL commands for System i. 238
9.4.3 Running console commands for IBM System z 238
9.4.4 Sample scripts. 239
vi Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.4.5 Checking an InfoSphere CDC engine and subscriptions activity . . 246
9.4.6 Removing obsolete database logs . 257

9.5 InfoSphere CDC API . 262
9.5.1 Development environment setup . 263
9.5.2 Contents of the api.jar file . 263
9.5.3 Connecting to and managing the Access Server 270
9.5.4 Connecting to the data stores . 277
9.5.5 Configuring InfoSphere CDC replication . 283
9.5.6 Creating a subscription . 284
9.5.7 Procedure for mapping tables . 287
9.5.8 Table mapping example . 289
9.5.9 Procedure for removing mapped tables . 303
9.5.10 Table mapping removal example . 304
9.5.11 Row and column filtering. 309
9.5.12 Derived columns . 313
9.5.13 Encoding conversions (before and after Version 6.5) 315
9.5.14 Operations and user exits . 322
9.5.15 Common procedures (updating table definitions) 325
9.5.16 Deploying subscription changes and considerations 338
9.5.17 Starting, stopping, and monitoring subscriptions 339
9.5.18 Monitoring latency . 346
9.5.19 Monitoring event logs using the API . 359

9.6 Monitoring and integration with external monitoring solutions. 365
9.6.1 Components to monitor. 366
9.6.2 InfoSphere CDC instance activity . 366
9.6.3 Subscription activity . 367
9.6.4 Events . 367
9.6.5 Latency . 369

9.7 User exits . 369
9.7.1 Common uses for user exits . 370
9.7.2 User exit programs . 371
9.7.3 Derived expression user exits . 373
9.7.4 Table and row-level user exits . 383
9.7.5 Subscription-level (unit of work) . 402
9.7.6 Java user exit for flat file custom formatter 412
9.7.7 Notifications. 425

Appendix A. Single scrape events and errors . 431
Single scrape error events . 433

Appendix B. Additional material . 435
Locating the web material . 435
Using the web material . 436
 Contents vii

How to use the web material . 436

Glossary . 437

Abbreviations and acronyms . 445

Related publications . 449
IBM Redbooks . 449
Online resources . 449
Help from IBM . 449

Index . 451
viii Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2012. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
Cognos®
DataMirror®
DataStage®
DB2 Universal Database™
DB2®
Distributed Relational Database

Architecture™
DRDA®
eServer™

IBM®
iCluster®
IMS™
Informix®
InfoSphere®
iSeries®
Language Environment®
LiveAudit™
MVS™
RACF®
Redbooks®

Redbooks (logo) ®
Smarter Planet™
System i®
System p®
System z®
Tivoli®
Transformation Server®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Netezza, and N logo are trademarks or registered trademarks of IBM International Group B.V., an IBM
Company.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://www.ibm.com/legal/copytrade.shtml

Preface

A new generation of smarter products, embedded with increasingly sophisticated
software and instrumentation, able to connect to other devices, and respond
intelligently to user needs, is transforming the way the world works. These
products are the building blocks of smarter solutions in every industry, from
hospitals to manufacturing to the energy grid.

IBM® Smarter Planet™ software solutions are primarily event-driven. The trigger
for an action is not typically a direct user query or an administrative command. It
is an event triggered by an IT system, an automated business process, or a
physical sensor, such as the reading of an RFID tag or an anomaly detected in
the flow of electricity in a smart energy grid. Although event-driven systems can
be created based on software passing messages (using message-oriented
middleware or an enterprise service bus), the simplest and most flexible way to
achieve the same result is to monitor changes to data from existing applications.
This technique, using IBM InfoSphere® Change Data Capture (InfoSphere CDC)
technology, requires no changes to the application generating the event. This
technique allows the consumer of events to use a single and unified change
tracking interface.

In today's demanding environment, businesses expect real-time access to
personalized information and instantaneous updates, setting a new level of
expectations within organizations. To make more informed business decisions,
better serve customers, and increase operational efficiencies, organizations
need to be aware of changes to key data as they occur. These changes must be
immediately delivered to the people and processes that need to act upon them.
This ability to sense and respond to data changes is fundamental to Dynamic
Warehousing, Master Data Management, and other key initiatives. How would
you tie all these independent systems together and process the immense data
flow requirements while using your existing IT infrastructure?

In this IBM Redbooks® publication, we provide examples of InfoSphere Data
Replication change data capture technology being used to achieve a wide variety
of business purposes. We also demonstrate how to implement this technology to
best use your existing infrastructure and achieve the scalability you require.
© Copyright IBM Corp. 2012. All rights reserved. xi

In this book, we introduce you to InfoSphere Data Replication, which is
composed of a number of IBM technologies. One of those technologies is IBM
InfoSphere Change Data Capture (InfoSphere CDC). We provide an overview of
InfoSphere CDC and position it within the InfoSphere architecture.

In addition, we describe the various InfoSphere CDC topologies that can be used
to develop business solutions in various environments. We show how InfoSphere
CDC can scale to satisfy the requirements of enterprise environments, including
high availability. We also describe the flexibility and choices available for
managing your InfoSphere CDC environment.

InfoSphere CDC V6.5 and IBM InfoSphere Change Data Delivery V6.5 play roles
in capturing and delivering data across enterprise systems in real time. By
distributing real-time data across disparate information silos and key systems,
they enable businesses to gain immediate awareness of market landscape and
operational statistics to streamline business processes, improve customer
service, and capture time-sensitive opportunities. InfoSphere Change Data
Capture V6.5 and InfoSphere Change Data Delivery V6.5 introduce new
capabilities that continue to extend and improve real-time data integration across
heterogeneous environments. These advancements include enhanced
monitoring, debugging, and improved multi-byte character set (MBCS)
configuration. InfoSphere CDC V6.5 also addresses the need for increasing data
volumes by providing performance improvements while continuing to achieve
and reduce impact on mission-critical production systems.

The team who wrote this book

This book was produced by a team of specialists from around the world working
with the International Technical Support Organization, in San Jose, California.

Chuck Ballard is a Project Manager at the International
Technical Support organization in San Jose, California. He
has over 35 years experience, holding positions in the areas
of Product Engineering, Sales, Marketing, Technical
Support, and Management. His areas of expertise are
database, data management, data warehousing, business
intelligence, and process re-engineering. He has written
extensively on these subjects, taught classes, and
presented at conferences and seminars worldwide. Chuck

has both a Bachelor’s degree and a Master’s degree in Industrial Engineering
from Purdue University.
xii Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Alec Beaton is a Change Data Capture Specialist and
member of the IBM InfoSphere Change Data Capture
Center of Excellence. He is focused on making specialized
knowledge about this product available to tech sales and
IBM Business Partners through the InfoSphere CDC wiki
and FAQ systems. Before the acquisition of IBM
DataMirror® by IBM in 2007, Alec was involved with the
PointBase product line acquired earlier by DataMirror.
PointBase remains his secondary focus due to the use of the

pure Java database by InfoSphere CDC as its metadata repository. He has an IT
background that began in the 1980s, and has worked with various database
products, including IBM DB2®, Oracle, and SQL Server, and has programmed in
Java and C.

Mark Ketchie is a senior Client Technical Specialist (CTS)
focused on InfoSphere CDC for the North American tech
team. He was previously a DataMirror employee and joined
IBM as part of the DataMirror acquisition. Mark assists
regional CTSs in conducting InfoSphere CDC Proof of
Technologies (POTs) and Proof of Concepts (POCs). He
also assists as a liaison between customers and IBM
Support on critical support issues. Mark began working with
IBM Transformation Server® (now InfoSphere CDC) in 2000

as a Sales Engineer (SE). His duties included customer presentations and
demonstrations, producing POTs and POCs, customer training, and consulting.
His primary experience is with DB2 / UDB, DB2/400, Oracle, and Microsoft SQL
Server. His prior IT experience includes acting as a Project Lead, IT Manager,
and Sr. Programmer / Analyst.

Frank Ketelaars is a senior technical field specialist for a
worldwide team focused on IBM Replication solutions. In this
capacity, Frank conducts change data capture enablement
sessions for IBM tech sales teams and IBM Business
Partners across the globe. He assists IBM teams with the
design of replication configurations to meet client
requirements. Before the acquisition of DataMirror by IBM in
2007, Frank fulfilled an international role in the DataMirror
organization for almost 10 years, being involved both in

pre-sales and professional services engagements. He has hands-on experience
on various databases, programming languages, and platforms, with a high level
of expertise with IBM System i®. Frank has a Bachelor of Science degree from
Hogeschool Eindhoven, The Netherlands, and has 22 years of experience in the
information business.
 Preface xiii

Anzar Noor is a Senior Consultant with the Information
Management Professional Services World Wide Team
based in Markham, Canada. His main focus has been IBM
InfoSphere Change Data Capture and iReflect (Oracle to
Oracle High Availability) product implementations around the
world. He has performed many implementations of
InfoSphere CDC and iReflect since joining IBM in 2007. He
has successfully implemented InfoSphere CDC on various
platforms, including IBM AIX®, Sun, HP-UX, Linux,

AS/400®, and Windows, and multiple database technologies (Oracle DB2 and
SQL Server). Anzar came to IBM as part of the IBM acquisition of the DataMirror
corporation. He has been working with the InfoSphere CDC technology for over
11 years.

Judy Parkes is a manager with IBM Platform Integration &
Deployment Services, with responsibilities for InfoSphere
CDC Product Management, in IBM Software Group,
Information Management. Judy is based in Markham,
Canada.

Deepak Rangarao is a Senior Certified Technical Sales
Specialist with the IBM Netezza® Analytics team. He has
over 13 years of cross-industry experience in data
warehousing and analytics working for customers and
vendors in both a pre-sales and post-sales capacity in retail,
banking, telecommunication, and public services. Deepak
has taught at universities, on subjects that include electrical
engineering, Java network programming, and multimedia
and web development. Deepak holds a Master’s degree in

Information Technology from R.M.I.T in Melbourne, Australia.
xiv Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Bill Shubin is a technical specialist focusing on the
InfoSphere CDC products in a technical pre-sales role. He
has over 13 years experience with replication software
solutions and also has experience with IBM System i High
Availability replication solutions. Bill has hands-on
experience with various databases, including DB2 for
AS/400, DB2 for Linux, UNIX, and Windows, Oracle, and
SQL Server. Before the acquisition of DataMirror by IBM in
2007, he was with the DataMirror organization for almost 10

years, and had a pre-sales role covering the United States and a professional
services role covering North America. Bill is based in Southern California and
has a total of 25 years of experience in IT.

Wim Van Tichelen is a Principal Consultant within IBM
Software Group Benelux. He started his IT career as an IT
manager in a hospital over 20 years ago. Over the years, he
worked intensively with the InfoSphere CDC products all
over Europe, the Middle East, and Africa. As a principal
consultant, Wim guides customers at the business and
technical levels to implement IT solutions to deliver value to
organizations. His main focus is on InfoSphere CDC and
InfoSphere Foundation Tools.

Other Contributors:
Thanks to the following people for their contributions of either advice, guidance,
or actual written content to this project:

From IBM Locations Worldwide
Alex Lavrov, Information Management Client Technical Professional, IBM Sales &
Distribution, Software Sales, IBM Israel. We give a special thanks to Alex for his
significant written contributions. He also used his deep technical and
implementation skills on InfoSphere CDC to provide detailed technical reviews
and feedback, particularly regarding the sample code contained in the book.

We also give a special thanks to the following people for their extra effort and
dedication to the development of this book.

Jerome Chailloux, Channel Technical Sales, IT Specialist, Client Technical
Professional IBM Sales & Distribution, IBM France

Laura Cuell, Senior Data Replication Specialist, InfoSphere CDC Center of
Excellence, IBM Software Group, Information Management, Markham, Ontario

Mike Jory, Senior Software Development Manager, IBM Software Group,
Information Management, Markham, Ontario
 Preface xv

Matthias Reiss, Senior Technical Sales Professional, IBM Sales & Distribution,
Software Sales, IBM Germany

James Spyker, Senior Architect, InfoSphere CDC, IBM Software Group,
Information Management, Markham, Ontario

Victor Szabo, Software Developer, InfoSphere CDC, IBM Software Group,
Information Management, Markham, Ontario

Thanks also to the following people for their contributions to this project:

Elaine Pang, Change Data Capture Specialist, InfoSphere CDC Center of
Excellence, IBM Software Group, Information Management, Markham, Ontario

Glen Sakuth, Sr. Manager, World Wide CDC Center of Excellence, IBM Software
Group, Information Management, Markham, Ontario

Dan Snoddy, Development Manager UI Applications, IBM Software Group,
Information Management, Markham, Ontario

Igor Siljanovski, Information Management Development Manager - InfoSphere
CDC for IBM z/OS®, Markham, Ontario

From the International Technical Support Organization, San Jose, CA
Mary Comianos, Publication Management
Ann Lund, Residency Administration
Emma Jacobs, Graphics

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xvi Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xviii Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 1. Introduction and overview

This book describes the IBM InfoSphere Change Data Capture (InfoSphere
CDC) solution and how it fits in an Optimized Data Integration solution.
Optimized Data Integration addresses the increasing need of businesses for
timely access to changed data before making critical business decisions. It is a
solution that allows businesses to access, move, and deliver data in a timely and
cost-effective manner from the source systems on which it is located to the target
systems and applications where it is required.

In today's demanding business environment, users and consumers of business
data want real-time access to personalized information and instantaneous
updates, setting a new level of expectation for data within organizations. To
make more informed business decisions, better serve customers, and increase
operational efficiencies, organizations must ensure that they are aware of
changes to key data as they occur. These changes must be immediately
delivered to the people and processes that need to act upon them.

From data warehousing to service-oriented architecture (SOA), application
consolidation, and master data management, business leaders are aware of the
power of information to streamline processes, reduce costs, and make
businesses more efficient and effective. To be successful, these projects must
have steady and reliable delivery of timely business information from across the
enterprise, which can be both expensive and resource-intensive.

1

© Copyright IBM Corp. 2012. All rights reserved. 1

Change data capture technology helps businesses overcome these challenges
by capturing only changed operational data and transmitting it across the
enterprise. This approach provides substantial business value while helping to
reduce risk and to deliver cost and speed advantages that enhance traditional
data movement processes.

1.1 Optimized data integration

Most businesses have information management environments organized similar
to the one shown in Figure 1-1. These environments consist of transactional
source databases that contain the basic building blocks of raw data that all
companies generate and require to operate their operational systems (lower left).
As you move up and right from these source databases through the data usage
continuum, you find users, analytics, and the consuming applications that
companies use to derive business insight from their data (upper right). In the
middle, you find a reporting or data warehousing environment that most
companies use to organize and analyze their raw data to enable the delivery of
business insights.

Figure 1-1 Optimized data integration

Business Intelligence

Operational Source Systems
Structured/ Unstructured Data

Spreadsheets

Applications

Federated Data

Cubing Services

SOA Web
Service

Optimized Data Integration

Information
Server

Business User

InfoSphere
Information Server

IT

Warehouse

MDM
2 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The main goals of optimized data integration are to move and deliver data in the
most timely and cost-effective manner. These goals are achieved by optimizing
the consumption and latency period associated with data movement, moving
only the data requested by a user or that has been changed or updated on the
source systems. Moving only the changed data saves time and money by
moving only the subset of data that is required rather than moving the entire
source data set. This approach to data movement ensures that any organization
that moves data to support business intelligence (BI) and reporting systems,
applications consolidations and migrations, continuous availability solutions, or
general data distribution and synchronization scenarios, can do so knowing that
the raw data is delivered efficiently and effectively.

Figure 1-2 provides a simple schematic of how optimized data integration is most
commonly implemented to enable businesses to make better informed business
decisions, run smoother operations, win new customers, and increase their
bottom line.

Figure 1-2 How optimized data integration is used

Some examples of how optimized data integration is used include the following:

� Provides feeds of changed data for Data Warehouse or Master Data
Management (MDM) projects, enabling users to make operation and tactical
business decision making using the latest information.

� Dynamically routes data based on content to message queues to be
consumed by one or more applications, ensuring consistent, accurate, and
reliable data across the enterprise.

2) Two or more data centers for
Continuous Availability, Business
Continuity and Disaster Recovery.
Active to Active.
Consolidations / Migrations.

3) BI and reporting environments,
Operational Data Stores, Reporting DB’s,
ETL engines, MDM and Data Warehouses.

Transactional
Source System

Changed Data Only

1) Multiple systems with central system
and each other. Data distribution and
synchronization. Billing, Inventory,
Financials, Customer data, and so forth.
 Chapter 1. Introduction and overview 3

� Populates real-time dashboards for on-demand analytics, continuous
business monitoring, and business process management to integrate
information between mission-critical applications and web applications,
ensuring access to real-time data to customers and employees.

� Consolidates financial data across systems in different regions, departments,
and business units.

� Improves the operational performance of systems that are adversely affected
by shrinking nightly batch windows or expensive queries and
reporting functions.

1.2 InfoSphere architecture

Before beginning an in-depth discussion about change data capture, this section
describes how it fits in to the broader IBM InfoSphere Information Server
architecture strategy.

IBM InfoSphere Information Server helps business and IT personnel collaborate
to understand the meaning, structure, and content of any type of information
across any sources. It provides breakthrough productivity and performance for
cleansing, transforming, and moving this information consistently and securely
throughout the enterprise so it can be accessed and used in new ways to drive
innovation, increase operational efficiency, and help lower risk. With a unified
metadata foundation, IBM InfoSphere Information Server allows users from
various roles in the organization to establish a common vocabulary and
understanding of the business from end-to-end to enrich and
streamline operations.

InfoSphere Information Server achieves new levels of information integration
speed and flexibility by providing the following capabilities:

� A comprehensive and unified foundation for enterprise information
architectures, scalable to any volume and processing requirement

� Auditable data quality as a foundation for trusted information across
the enterprise

� Metadata-driven integration, providing breakthrough productivity and flexibility
for integrating and enriching information

� Consistent and reusable information services, along with application services
and process services, essential for enterprises
4 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Accelerated time to value with proven and industry-aligned solutions
and expertise

� Broadest and deepest connectivity to information across diverse sources,
such as structured, unstructured, mainframe, and applications

IBM InfoSphere Information Server provides every capability needed to integrate
information across heterogeneous systems, including understanding source
data, applying data quality, complex transformation, and various ways to deliver
information. It has a unique, metadata-driven design that helps align business
goals and IT activities, provides a consistent understanding of what things mean,
captures business specifications and uses them to automate development tasks,
and provides deeper insight into data by tracking its lineage.

InfoSphere Information Server is composed of four main pillars (Figure 1-3):

� Understanding your data
� Cleansing your data
� Transforming your data
� Delivering your data to where it is needed

Figure 1-3 InfoSphere Information Server

InfoSphere
Information Server

Understand Cleanse

Deliver Transform

Common
Metadata

Platform Services
Connectivity

Parallel Processing

Dep
lo

ym
en

t

Administration

Metadata
 Chapter 1. Introduction and overview 5

Here is a brief description of those four pillars:

� Understanding your data: InfoSphere Foundation Tools provides tools that
enable you to discover your data across systems by the following means:

– Through comprehensive data discovery and mapping

– With trusted information structures for business optimization through a
common business vocabulary to define an enterprise model and
design specifications

– Through governing the data over time by managing data quality and
monitoring data flows

� Cleansing your data: InfoSphere data quality capabilities ensure that you
have reliable and accurate information by identifying the source of data
quality problems, defining business rules to monitor and maintain quality,
removing duplicate data, and validating, standardizing, and enriching
the data.

� Transforming your data: InfoSphere data transformation extracts, transforms,
and loads data between multiple sources and targets, supporting massive
scalability requirements and delivering data in batch or real time.

� Delivering your data: InfoSphere data delivery provides timely and reliable
movement of heterogeneous data.
6 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

As shown in Figure 1-4, moving data and getting it to where it needs to be in a
timely manner has a key role in data integration projects. Enterprises have many
different, disparate, and heterogeneous data sources from which they require
updated and fresh data to make timely and trusted business decisions.
InfoSphere Information Server supports a broad range of data delivery styles to
address business and IT objectives.

Figure 1-4 InfoSphere Deliver Pillar

The Deliver Pillar addresses the key challenges encountered by businesses that
need to have trusted and up-to-date data to make decisions that positively affect
business, whether for strategic initiatives or to for improving company
efficiencies. A common challenge is heavily or overutilized source systems and
applications that contain business critical data that cannot afford additional
workload to query or extract data for reporting purposes. Batch windows are the
traditional approach for updating data warehouses or reporting databases. As
business data volume increases, the length of time required to bulk load these
data changes is increased, which can impact the operational systems. Change
data capture allows incremental data changes to be captured and delivered
throughout the enterprise with minimal processing cost or impact to source
systems. Batch windows can be shortened or eliminated by real-time feeds of
data changes, and large volumes of data can be moved quickly and efficiently.

The remaining chapters of this book provide details and examples about
implementation and operational aspects of InfoSphere Change Data Capture.

Data
Sources Business

Initiatives
legacy

apps

dbs

Xls., xml,
f lat

warehouse

z/OS

custom

BI

SAP

Warehouse

MDM

App
Consolidation

Optimized
Data

Integration

InfoSphere Data
Delivery Portfolio

Of Products

Subject
Matter

Experts
Business
Analysts

DBA

ERP
System

ManagerSystem
Architect

Developer

Data
Steward

Data
Analysts &
Architects

Executives
Enterprise
Architects

Platform Services

Understand Cleanse

TransformDeliver

Common
Metadata

InfoSphere
Information Server

Understand Cleanse

Deliver Transform

Common
Metadata

Platform Services

Metadata

DeploymentConnectiv ity
Parallel Processing

Administration
 Chapter 1. Introduction and overview 7

8 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 2. InfoSphere CDC:
Empowering information
management

Chapter 1, “Introduction and overview” on page 1 describes how the optimized
data integration solution addresses the increasing need for timely access to
changing data before making critical business decisions. The optimized data
integration solution allows businesses to access, move, and deliver data in a
timely and cost-effective manner from source systems on which the data is
located to the target system or application where the business requires the data.
That chapter also describes how the solution fits into the broader InfoSphere
Information Server landscape within the Deliver Pillar by providing timely and
reliable movement of heterogeneous data. InfoSphere data delivery capabilities
can be used in multiple projects across the enterprise. These projects include
keeping back-end inventory and front-end web applications synchronized,
distributing global data across regional offices, feeding a data warehouse or
MDM system, enabling real-time analytics, and optimizing ETL processes by
providing a real-time flow of data changes.

This chapter describes the need for dynamic data, the delivery methods that can
be used to move data, and how dynamic data can be provided by the IBM
InfoSphere Change Data Capture (InfoSphere CDC) technology.

2

© Copyright IBM Corp. 2012. All rights reserved. 9

2.1 The need for dynamic data

There are three basic types of data available that can be used for
informational purposes:

� Persistent or static: This type of data is, once created, not changed. As such,
it is typically accessed less frequently.

� Streaming: This type of data continuously flows. As such, it must be captured
as it passes by, or it is missed. It is dynamic in the sense that it is moving, but
there might be no indication that the data elements in the stream have
changed, or that they flow in a consistent pattern or period.

� Dynamic: This type of data is changed as changes become available due to
the execution of transactional events. Changes are not necessarily made on
a consistent periodic basis, and there might be small or large periods when
there is no data change activity.

Dynamic data is prevalent and represents constant change in an environment.
Consider a manufacturing business that builds parts or assemblies. The time to
build parts or assemblies varies, based on a number of parameters. This data
needs to be captured because it impacts manufacturing costs, and resource
quantities and availability, and is therefore needed in decision making processes.
As such, the value of the dynamic data is needed as it changes to support
application execution, and enables users to make more informed business
decisions by having the most current data.

As competitive and economic pressures increase, up-to-date and trusted
dynamic data is needed to make decisions that benefit the business. To be
successful, organizations must report and analyze corporate data quickly and
easily, regardless of what applications created the data, what platform they are
running on, and where or how they are stored. This situation occurs because the
data needs to be synchronized between systems and applications that are using
that data for informational purposes.

The ability to easily capture and deliver business-critical dynamic data
throughout your enterprise provides the following business benefits:

� Increase business agility: Make proactive business decisions based on
business relevant events, for example, to notify a customer when their
pre-paid phone card is almost empty.

� Make better decisions: Enable customers, employees, and partners to base
key decisions on up-to-date information, for example, to purchase additional
inventory when there are only two parts left.
10 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Access near real-time data without impacting operational systems: Gain
access to near real-time data without impacting source systems and
database resources.

2.2 Data delivery methods

When it comes to moving data, there are essentially three primary approaches:

� Virtual data delivery
� Bulk data delivery
� Incremental data delivery

These approaches can be further segmented into replication and change data
capture.

These data delivery methods are shown in Figure 2-1.

Figure 2-1 Data delivery methods

Incremental Data Delivery (CDC)

Bulk Data Delivery (ETL)

Region 1
Produ ct

Performance

Region 2
Product

Performance
Product

Performance
Real-time

Inventory Level

Virtual Data Delivery (Federation)

Database

Primary
Data Center

Backup
Data Center

Business
Application

Message
Qu eue

ETL

Federation

Change Data Capture

Change Data Capture

Analytical & Reporting Tools

Web Applications

Change Data Capture

Extract, Transform, Load
 Chapter 2. InfoSphere CDC: Empowering information management 11

Brief descriptions of the three approaches are as follows:

� Virtual or Federation: Generates a virtual consolidated view from multiple and
disparate sources systems as though they were a single source. This method
complements or extends the data warehouse view and is generally used
when some data cannot be physically moved due to licensing or security
reasons. This approach is frequently used as a first step, before using a fully
implemented data warehouse, to query multiple source systems without
physically consolidating them.

� Bulk Load or ETL: Data is extracted from the originating source system,
transformed, and output to the data warehouse or receiving application. This
approach is typically used on a scheduled batch basis when point-in-time
data is acceptable to meet the business needs. For example, ETL batch
processes are frequently run during end of day jobs, resulting in a data
warehouse or reporting database that presents data current to the
previous day.

� Incremental Data Delivery: Businesses that opt for this method of data
delivery require their data to provide up to the minute or near real-time
information. This method includes both replication and change data capture.
Replication is typically used for database to database data movement and
provides solutions for continuous business availability, live reporting, and
database or platform migrations. When using change data capture, the target
is not necessarily a database. In addition to the solutions included in
replication, this approach can also feed changes to an ETL process or deliver
data changes to a downstream application by using a message queue.

2.3 Providing dynamic data with InfoSphere CDC

Change data capture uses a developed technology to integrate data in near real
time. InfoSphere CDC detects changes by monitoring or scraping database logs.
The capture engine (the log scraper) is a lightweight, small footprint, and
low-impact process on the source server running where the database changes
are detected. After the log scraper finds new changed data on the source, that
data is pushed from the source agent to the target apply engine through a
standard Internet Protocol network socket. In a typical continuous mirroring
scenario, the change data is applied to the target database through standard
SQL statements.

The changed data is scraped from the source log, sent over the network, and
applied to the target database without passing through any intermediate tables,
files, or queues. A simple and intuitive user interface allows users to determine
what data needs to be integrated and what transformations need to be performed
on the data before being applied to the target database.
12 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

By having the data only interact with the database logs, additional load is not put
on the source database and no changes are required to the source application.
Change data capture uses both online / active and archive logs with each source
engine, optimized for the database and platform on which it is running. For
example, when running on the mainframe and monitoring DB2/z logs, the
standard DB2 instrumentation facility interface (IFI) is used.

Incremental data delivery is shown in Figure 2-2.

Figure 2-2 Incremental data delivery

RDBMS

Message
Queue

ETL

Warehouse
Data Marts

MDM
systems

Applications

Consumers

Change Data Capture

DB

Log
 Chapter 2. InfoSphere CDC: Empowering information management 13

2.3.1 InfoSphere CDC architectural overview

Figure 2-3 provides an overview of the InfoSphere CDC architecture.

Figure 2-3 Architectural overview

The key components of the InfoSphere CDC architecture are:

� Access Server: Controls all of the non-command-line access to the replication
environment. When you log on to Management Console, you connect to the
Access Server.

� Admin API: Operates as an optional Java based programming interface that
you can use to script operational configurations or interactions. After you
have set up replication, Management Console can be closed on the client
workstation without affecting active data replication activities between source
and target servers.

� Apply Agent: Acts as the agent on the target that processes changes sent by
the source.

� Command-line interface: Allows you to administer data stores and user
accounts, and to perform administration scripting, independent of
Management Console.

Management
Console

Access Server

Source Capture
Engine

SOURCE TARGET

MetaData

Target Engine

MetaData

Source
Database

Logs

TCP/IP
CDC

Refresh

Admin Agent Admin Agent

Refresh Reader

Log Reader

Admin API

Comm Layer

Admin API

Comm Layer

Apply Agent
14 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Communication Layer (TCP/IP): Acts as the dedicated network connection
between the source and the target.

� Data store: The source and target data stores represent the data files and
InfoSphere CDC instances required for data replication. Each data store
represents a database to which you want to connect and acts as a container
for your tables. Tables made available for replication are contained in a
data store.

� InfoSphere CDC Management Console: The interactive application that you
use to configure and monitor replication. It allows you to manage replication
on various servers, specify replication parameters, and initiate refresh and
mirroring operations from a client workstation. Management Console also
allows you to monitor replication operations, latency, event messages, and
other statistics supported by the source or target data store. The monitor in
Management Console is intended for time-critical working environments that
require continuous analysis of data movement.

� Metadata: Represents the information about the relevant tables, mappings,
subscriptions, notifications, events, and other particulars of a data replication
instance that you set up.

� Mirror: Performs the replication of changes to the target table or accumulation
of source table changes used to replicate changes to the target table at a later
time. If you have implemented bidirectional replication in your environment,
mirroring can occur to and from both the source and target tables.

� Refresh: Performs the initial synchronization of the tables from the source
database to the target. These tables are read by the Refresh reader.

� Replication Engine: Sends and receives data. The process that sends
replicated data is the source capture engine and the process that receives
replicated data is the target engine. An InfoSphere CDC instance can operate
as a source capture engine and a target engine simultaneously.

� Single Scrape: Acts as a source-only log reader and a log parser component.
It checks and analyzes the source database logs for all of the subscriptions
on the selected data store.

� Source transformation engine: Used to process row filtering, critical columns,
column filtering, encoding conversions, and other data to propagate to the
target data store engine.

� Source database logs: Maintained by the source database for its own
recovery purposes. The InfoSphere CDC log reader inspects these logs in the
mirroring process, but only looks for those tables that are mapped
for replication.

� Target transformation engine: Used to process data and value translations,
encoding conversions, user exits, conflict detections, and other data on the
target data store engine.
 Chapter 2. InfoSphere CDC: Empowering information management 15

The two types of target-only destinations for replication that are not
databases are:

� JMS Messages: Acts as a JMS message destination (queue or topic) for
row-level operations that are created as XML documents.

� IBM InfoSphere DataStage®: Processes changes delivered from InfoSphere
CDC that can be used by InfoSphere DataStage jobs.

2.3.2 Reliability and integrity

The InfoSphere CDC fault-tolerant architecture maintains data consistency and
provides recovery from network and database outages. Change data is sent from
the source database through the source or log scraper agent to the apply agent
through a TCP/IP connection. Only committed transactions are sent to the target.
To ensure that the source system transaction order is maintained, the
transactions are applied to the target in the same order as the change data found
in the source database log (Figure 2-4).

Figure 2-4 Reliability and integrity

2. Push

3a. Apply

3b. Confirm

Target Tables

What was the last transaction
(Bookmark) successfully applied?

Metadata

Push
Engine

X

Apply
Engine

1. Scrape

Source Tables

Journal/Log
16 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

As part of each replication thread, there is a mechanism to track which
transaction is being processed. That mechanism is called a bookmark. The
bookmark marks a point in the flow of committed changes. It contains all the
information necessary for InfoSphere CDC to be able to restart replication. The
InfoSphere CDC agent has a small metadata table stored in the target database
that contains the last successfully applied bookmark. Updates to target tables
are combined with an update to the bookmark table and applied to the target
database as a single unit of work. This setup ensures that the bookmark
accurately indicates what changes have been applied to the target database. If
there is any failure during the application, neither the change data or the
bookmark are updated.

If there is any disruption in the replication stream of source transactions,
InfoSphere CDC must reconstruct the source transactions with the data read
from the database log. The bookmark is the position in that stream that includes
all the information necessary for InfoSphere CDC to recreate that stream and
position it appropriately.

Whenever replication is restarted, either after normal or abnormal termination,
the InfoSphere CDC target agent notifies the source agent of the bookmark. The
source agent then positions the reader in the source database and
continues replication.
 Chapter 2. InfoSphere CDC: Empowering information management 17

18 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 3. Business use cases for
InfoSphere CDC

IBM InfoSphere Change Data Capture (InfoSphere CDC) can be used in any
organization where data is changing in one system (or more than one system for
bidirectional replication), and those changes must be replicated to other systems
within the enterprise. Although this situation is conceptually simple, the additional
features and functionality in InfoSphere CDC can be used to resolve many of the
typical business problems associated with managing your data environment.
This chapter describes the application of InfoSphere CDC and highlight some
business use cases from client experiences and internal projects.

3

© Copyright IBM Corp. 2012. All rights reserved. 19

3.1 InfoSphere CDC techniques for transporting
changed data

There are many methods for integrating data between applications. Some
methods work at the application level and others work at the database table or
transaction log level. This section focuses on the different techniques for
transporting changed data that can be used when using InfoSphere CDC.

In cases where you need to establish a reporting / shadow database that
matches the contents and structure of the source database, the topology in
Figure 3-1 suffices. Table changes are picked up from the source database
through its transaction log, then transported and applied to the target database.

Figure 3-1 Change data capture

For more complex data replication requirements, use InfoSphere CDC with
extract, transform, and load (ETL) tools. In those situations, InfoSphere CDC
replicates data to the target databases through ETL tools in various ways, such
as those described in the following options:

� Option 1: Database staging
� Option 2: Message queue (MQ) based integration
� Option 3: File-based integration
� Option 4: InfoSphere DataStage Direct Connect

1 2
InfoSphere

CDC
Source

Database
Target

Database
20 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3.1.1 Option 1: Database staging

This option (Figure 3-2) typically has the characteristics described in the
following list:

1. InfoSphere CDC captures changes made to source systems.

2. Changes are written to a staging area table or tables.

3. The ETL processes extract the changes from the staging table or tables, and
transform and clean the data as needed.

4. After the ETL processes are finished, the replication is resumed and the
staging tables are populated for the next run.

Figure 3-2 Change data capture - database staging

1

2
InfoSphere

CDC

Source
Systems

Staging
Table(s)

Downstream
ETL

Processes

3

4

Target
Database
 Chapter 3. Business use cases for InfoSphere CDC 21

3.1.2 Option 2: Message queue (MQ) based integration

The functionality of this option is delivered with IBM WebSphere® MQ
(WebSphere MQ). It is shown in Figure 3-3 and typically has the characteristics
shown in the following list:

1. InfoSphere CDC captures changes made to the source systems.

2. The captured changes are extracted and written to a message queue (MQ).

3. The downstream ETL processes (through the WebSphere MQ connector)
extract the new messages.

4. Those messages are then passed to other downstream processes to be
applied to the target database.

Figure 3-3 Change data capture - MQ-based integration

1

2
InfoSphere

CDC

Source
Systems

3
MQ

Downstream
ETL

Processes

4

Target
Database
22 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3.1.3 Option 3: File-based integration

This option (Figure 3-4) typically has the characteristics shown in the
following list:

1. InfoSphere CDC captures changes made to source systems.

2. Changes are then written to flat files.

3. The downstream ETL processes extract the changes from the flat files.

4. The data is then passed to other downstream processes to be applied to the
target database.

Figure 3-4 Change data capture - file-based integration

1

2
InfoSphere

CDC

Source
Systems

3Flat
File

Downstream
ETL

Processes

4

Target
Database
 Chapter 3. Business use cases for InfoSphere CDC 23

3.1.4 Option 4: InfoSphere DataStage Direct Connect

This option (Figure 3-5) typically has the characteristics shown in the
following list:

1. InfoSphere CDC captures the changed data from the source systems and
passes this data to a continuously active DataStage job.

2. The DataStage job receives transactions through the
CDC Transaction Stage operator.

3. In the job, the data can be transformed and passed on to other
downstream locations.

4. The CDC bookmark is maintained along with DataStage applying the
changes to the target database.

Figure 3-5 Change data capture - direct connection integration

3.2 Data warehousing and business intelligence

A data warehouse is part of a decision support systems environment that is
populated by extracting, transforming, and loading operational data from one or
more Online Transactional Processing (OLTP) systems. This data is then
available for reporting and analysis.

3.2.1 Active data warehousing

At one time, data warehousing and decision support was focused on analysis of
historical data. However, this analysis is not sufficient in today's competitive
market where decisions need to be based on more current data.

2

3
InfoSphere

CDC

Source
Systems

4 Downstream
ETL

Processes

5

Target
Database

1

24 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

There is an inherent cost to produce up-to-date reports in a traditional fashion
using batch extracts, and this cost is typically measured in resource utilization
(such as processor usage and processing time) split between data extraction
and report generation. This cost continues to increase as corporate data
volumes grow and business requirements increase.

Active data warehousing is the process of capturing transactions when they
occur, and immediately integrating those changes into the data warehouse. In an
active data warehouse, OLTP transactions are automatically captured upon
completion, transformed as required, and loaded immediately into the data
warehouse. InfoSphere CDC enables active data warehousing.

Active data warehousing: Sample implementation
In this example, clients run multiple operational applications in an IBM DB2/z
mainframe environment. Data from these operational applications are extracted
at the end of each day through ETL batch processing (with IBM DataStage ETL)
and loaded into the data warehouse, which services many lines of business. The
long-term objective of the data warehouse is to provide up-to-date business
intelligence (BI) and analytics at any point in the business day.

Although the initial batch implementation was successful, some issues and
requirements were identified. For example, the data warehouse was only as
current as the previous night’s batch update. However, the lines of business
required more up-to-date information during the business day to make insightful
decisions. There are typically two options available to accomplish this task:

1. Allow business users to run reports and queries on the production system
during the day, which increases resource utilization and cost.

2. Implement a solution that enables intra-day updates from the production
reporting applications to the data warehouse.
 Chapter 3. Business use cases for InfoSphere CDC 25

Active data warehousing: Proposed solution
The proposed solution is to implement IBM InfoSphere CDC to synchronize
changed data from the operational production applications with the DataStage
ETL server continuously during the business day. The solution is shown in
Figure 3-6, and provides the following benefits:

� Reduces the volume of changed data that needs to be extracted during the
nightly batch window (time and resources required), which in turn minimizes
the time that production applications are unavailable to users.

� Provides continuous claims data changes (through ETL staging tables),
which runs intra-day ETL updates to the data warehouse. This setup
improves the overall data visibility for lines of business.

Figure 3-6 Proposed data warehouse solution - ETL-based integration

3.2.2 Slowly changing dimensions

Dimensions are logical groupings of data, such a product, customer, and time.
Slowly changing dimensions (SCDs) are dimensions that change slowly over
time. The ability to process SCDs is required to track historical changes in
dimension tables. There are six different ways of working with SCDs, the most
common of which are the following:

� Type 1 SCD: Here the assumption is that the business does not worry about
historical changes to attributes in data. Any change in data attributes results
in over-writing existing column data. This replication is standard data
replication that inserts, updates, and deletes data rows to reflect data
operations in the source system.

DB2

Production Server (z/OS) ETL Server (p/AIX)
Enterprise

Data Warehouse

Operational
Application #2

DB2

DB2

Native
DB2
Log

DataStage
Transform

Load

CDC
Continuous

Operational
Application #1
26 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Type 2 SCD: With this method, there is a business need to track historical
changes to attribute values in data. Updates to data attributes are inserted as
new database records using a surrogate key to support the natural key. Two
additional columns, Effective Date and Active Indicator, are also included in
the database table to track the historical changes to the data. Type 2 SCD
allows for unlimited history preservation.

� Type 3 SCD: This method also caters to tracking historical changes to
attribute values in data. Although type 2 SCD allows for unlimited history
preservation, with type 3 SCD, historical information is stored as an additional
column, which limits history preservation.

InfoSphere CDC can be used to update the appropriate data for SCD tables
using a combination of the journal control fields and Java or Stored
Procedures-based user exits.

Slowly changing dimensions: Sample implementation
In this example, the client runs their operational system on IBM DB2 for Linux,
UNIX, and Windows. They have customer data being replicated from their
operational systems to the Enterprise Data Warehouse (EDW). Large volumes of
customer information are being replicated to the EDW with new customers and
updates to customer information, such as location.

The methodology used to update customer information is to use an ETL
mechanism with lookups to existing customer information to identify data
changes and update customer records as appropriate. Although this approach
works, the following problems and new requirements were identified:

� An increasing volume of customer updates results in increased latency.

� Increased workload on the EDW due to increased look-up queries.

� New business requirements dictate the need for near real-time customer
data updates.

� Updates to the customer records need to be preserved to be able to reflect
historical states.
 Chapter 3. Business use cases for InfoSphere CDC 27

Slowly changing dimensions: Proposed solution
The proposed solution is to implement IBM InfoSphere CDC to synchronize
customer updates from the operational application to the target database tables
continuously during the business day (Figure 3-7). The customer requirements
dictate unlimited history preservation, so a Type 2 SCD table structure is
maintained. Existing customer records are end-dated and the updates to
customer information are maintained with the effective date set as the data
replication date. The slowly changing dimensional information (customer data) is
handled using DB2 stored procedure-based user exits. The user exit stored
procedure performs UPDATE and INSERT operations to update SCD columns in
the target and end-date current data, and then inserts customer updates as a
new column with an effective date set to the data replication date. This solution
provided the following benefits:

� Reduces the latency in receiving customer data updates.

� Reduces ongoing workload on the EDW as a result of customer
lookup queries.

Figure 3-7 Using InfoSphere CDC to synchronize updates

3.3 Consolidation

Organizational business needs can drive the organization in a direction where
they need to consolidate their data for various reasons, such as to bring down
the cost, increase the quality of data, run decision making reports, or implement
data normalization.

DB2

Source DB server Source+Target
CDC instance

Subscription

Target DB server

CDC

Operational
Application

DB2

User exit – DB2
stored procedureNative

DB2
Log
28 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

IBM InfoSphere Change Data Capture is flexible, and can enable, as examples,
the following types of business requirements:

� Consolidation can be achieved at the database level, where clients want to
bring together their data from various source application databases and make
it available to users in one database.

� A client can consolidate the data from various tables into one table on the
target side.

� A client can merge data from multiple tables into one table at the row level.

3.3.1 Consolidation: Sample implementation 1

In this example, the client runs several divisions across the United States and
decides to consolidate their customer data from all of their divisions. All divisions
are keeping their data on their own source systems. The client wants to
consolidate all the data on the target database and then move it to another
database. The environment is as follows:

� There are 22 tables on each division, all having the same structure.

� The client wants all source data manipulation language (DML) operations
(inserts, updates, and deletes) performed on target database tables.

� The client wants access to all source system information (such as operation
type, and date and time) while data is replicating.

� The client wants to stop the data replication process every night and move
the data to the data warehouse.

� After processing the data to another database, the client wants to truncate the
target tables.

� In addition, the client does not want to perform an initial load from all the
source tables to the target tables.

Consolidation: Proposed solution 1
The solution includes using the InfoSphere CDC solution. InfoSphere CDC is
installed and configured on each division source and target servers. The client
configures all tables using the InfoSphere CDC Live Audit functionality. The
client also uses journal control fields for DML operation type and time stamp. The
initial load is performed outside of InfoSphere CDC. All table method and status
are set to Mirror and Active mode.
 Chapter 3. Business use cases for InfoSphere CDC 29

The solution is shown in Figure 3-8.

Figure 3-8 Customer consolidation

3.3.2 Consolidation: Sample implementation 2

The client is one of the world's largest manufacturers of adhesives and sealants.
They employ over 4000 people and their products are sold in over 120 countries.
In this example, the client has merged with another company that uses a
different ERP system than they do, so they want to consolidate the data for
analysis and reporting. With such large and global operations, they could only
gather their data at night to not impact the performance of their systems during
the day. However, data volume and reporting demands are growing and, at the
same time, the merger caused additional complications in data consolidation, so
business operations are not running as well as they should be.

To summarize:

� Corporate data is consolidated on a nightly basis from two ERP systems for
analysis and reporting, to avoid impacting daytime performance.

� The volume of data and reporting needs exceeds nightly batch load capacity
and hinders business performance.

Target
Database

CDC

Database

Database

Database

Database

Database
30 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Consolidation: Proposed solution 2
InfoSphere CDC consolidates data from ERP systems into a single database
and transforms it into a single format. The client implements an InfoSphere CDC
real-time solution into their infrastructure and realizes significant benefits, such
as the following:

� Flexible reporting and analysis schedules. Reporting can now be done at
any time.

� Using the most recent data from the consolidated ERP systems provides
more accurate reporting, and removes the previously existing
execution bottlenecks.

� The data consolidation of two different ERP systems is easily handled by
InfoSphere CDC transformation capabilities, and provides a single view of the
corporate ERP data.

� The batch time slot at night is free for other activities. As a result, the clients
business performance has improved with a 10% increase of on-time delivery
of orders and an 80% decline in late orders.

3.4 Distribution

Data and workload distribution is about moving data between different servers
that run parts of the same application.

This setup allows the workload to be efficiently distributed across multiple server
environments. Hardware vendors, such as IBM, are extending their server
ranges from the low end to the high end, which makes this proposition
increasingly viable. Software vendors often price their applications based on the
processing power band of the host server. It makes economic sense to offload
workload, for example, query and reporting, onto other servers. Some servers
handle batch work (such as query) better than interactive work (such as user
query and data analysis), and they also do this work at a much lower cost.
Moving data around to multiple servers in an organization also produces
improved availability resilience.
 Chapter 3. Business use cases for InfoSphere CDC 31

InfoSphere CDC can satisfy these data and workload distribution requirements in
near real-time scenarios. An example of data and workload distribution is shown
in Figure 3-9.

Figure 3-9 Data and workload distribution

3.4.1 Distribution: Sample implementation 1

In this example, a retail department store client has several stores, and a
distribution center, which runs a corporate IBM System i server. The client
requirement is to upgrade their electronic point of sale (EPOS) equipment in all
stores to SQL Server Clients. Within each store, the new EPOS terminals are
connected to a consolidation server also running SQL Server. It is important that
all SQL Server EPOS terminals have access to up-to-date information for the
many thousands of products that the company sells.

The master files are maintained centrally on the System i server at the
distribution center. The volume of sales transactions varies significantly
throughout the year and is highest in January during the yearly sell-off sale. It is
important that the distribution center is kept informed about sales transactions
throughout the day for stock level and distribution purposes.

Dynamic
ODS

EDW

ETL

MDR
RepositoryMetadata

Web
Applications

ESB CRM

B2B

BAM

BI
Appliance

Business Application
Production Systems

Real-Time CDC

Real-Time CDC

Real-Time CDC

Enterprise
Data Warehouse

Operational
Business Intelligence

Event-Driven SOA

Up-to-Date
Web Portals

Master
Data Management

ERP
Billing

Finance
POS
CRM
32 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Distribution: Proposed solution 1
The client implements a solution that uses InfoSphere CDC to distribute data
changes to the consolidation server in each store. Using the InfoSphere CDC
Scheduled End (formerly known as Net Change) functionality, only changes in
the master files are replicated, thus reducing the replication workload. Sales
transactions are mirrored continuously to the distribution center, which provides a
reliable and up-to-date position in each store. The solution is shown in
Figure 3-10.

Figure 3-10 InfoSphere CDC Scheduled End

3.4.2 Distribution: Sample implementation 2

A brokerage firm wants to develop an in-house Global Common Database
application that could be available at each of their locations worldwide. The
application allows entry of new trades from the stock exchange floors to an
application using a SQL Server database and running on Microsoft Windows.
The client has an existing communications infrastructure with utilities to
communicate between all their System i servers worldwide. The first location to
go live would be London and then the solution would be rolled out to other
locations. The database structures for SQL Server are different from the
structures on the System i servers.

SQL Server
EPOS

Terminals

Consolidation Server

SQL Server

Price Changes

Sales
Transactions
(continuous)

Distribution
Center

TCP/IP CDC

CDC
 Chapter 3. Business use cases for InfoSphere CDC 33

Distribution: Proposed solution 2
The client implements a solution that uses InfoSphere CDC to continuously
mirror data between SQL Server servers and System i servers using a local LAN
and TCP/IP plus an existing worldwide network to distribute data around the
world. The ALIAS functionality was used extensively to remap columns from SQL
Server tables to fields in System i physical files. SQL Server allows long column
names, but System i has a maximum field size of 10.

The implementation time is short, and exceeds the client's performance
expectations. The client initially considered developing an in-house replication
solution, but rejected it because it would have taken many months to develop,
have unknown performance, be expensive, and require a programmer each time
changes needed to be made. The solution that was used is shown in
Figure 3-11.

Figure 3-11 Global database

iSeries

iSeriesiSeries

NT/SQL

iSeries
iSeries

iSeries

CDC

. . . are quickly
mirrored on iSeries

servers in other
locations.

Trades made on the
stock exchange floor

in London . . .

London

Hong Kong

New York

Sydney
34 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3.5 Database migration

Database migrations might be necessary in many organizations. For example, if
the company changes their hardware, performs major database upgrades, or
switches their business application from one database to another. The basic idea
is that whenever a company must migrate their database from one server to
another, the process must be smooth, uninterrupted, have minimum downtime,
and be less expensive.

InfoSphere CDC can load data from one server to another using the InfoSphere
CDC Refresh functionality or the set bookmark capability to set the point from
which InfoSphere CDC starts capturing delta changes (after using other vendor
tools to load the data on the target database):

� The Refresh capability provides a full copy of the data on the target side while
your source applications are performing normal daily business operations
without any interruptions. After refreshing the data, InfoSphere CDC
continues capturing the delta changes and applying them on target side.

� If the client wants to use another vendor’s tool to load the data and then
capture the delta changes for their daily business activates. InfoSphere CDC
is flexible enough to adjust to this business need by using the Mark Table
Capture Point function.

3.5.1 Database migration: Sample implementation

SAP heterogeneous system copy is defined as the change of the hardware or
database platform for an SAP instance. Many SAP systems can be migrated with
SAP standard tools (such as R3load), which are also available to IBM and other
service providers. The requirements can become critical for very large SAP
databases, because they typically have small windows of downtime.

The overall approach for porting SAP instances with minimum downtime to
another hardware or database platform is based on a combination of using
InfoSphere CDC for the 30 - 50 largest tables in the SAP database. You then use
standard tools provided by SAP (such as R3load) for the remainder of the tables.
 Chapter 3. Business use cases for InfoSphere CDC 35

Database migration: Proposed solution
IBM implements an InfoSphere CDC solution SAP utility that fulfills the client
business requirements (Figure 3-12).

Figure 3-12 SAP heterogeneous system copy

The implementation consists essentially of the following actions:

1. Build the target DB2 database and SAP application by running SAPINST until
the database load is performed by SAPINST or the migration monitor.

2. Create the large tables in the target system using the SAP R3load utility. This
action ensures the consistency of the data definition required for the SAP
data dictionary.

3. Start initial data transfer using the Refresh function of InfoSphere CDC. This
function reads the data from the source database while the source SAP
system is up and running. This action might have a performance impact and
should be initiated during times with little workload on the table in question.

Alternatively, R3load can be used for initial synchronization. InfoSphere CDC
is then only used to replicate the delta changes starting from a marked Table
Capture Point, which must be consistent with the R3load export.

4. Start replicating the data by scraping the log files and apply the data to the
target table.

5. When tables on source and target are synchronized and a downtime window
is available, the remaining tables are migrated using the R3load utility.

DB2

Scrape Push Apply Confirm

TargetSource(s)

Oracle DB - Logs

IBM InfoSphere Change Data Capture

Publish Engine
and Metadata

Subscribe Engine
And Metadata

TCP/IP

Asynchronous

Java – based GUI
Unified Admin Point

With Monitoring

A sample text r eport
made for this
exa mple ;etter.

It could be wr itten
about this subject.

Or , it could be any
text desir ed.
36 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3.6 Application integration

In this example, an organization wants their different running applications linked
together so they can automate their business process.

InfoSphere CDC integrates client applications with each other, which can provide
the following benefits:

� InfoSphere CDC unidirectional functionality provides full integration of the
data from the applications.

� InfoSphere CDC bidirectional functionality allows the application and user to
enter the data from both sides (source and target). InfoSphere CDC makes
sure that the data is synchronized between the source and target databases.

� InfoSphere CDC can be used in such a way that data can be extracted from
the source database and provided to a client on a handheld
device application.

3.6.1 Application integration: Sample implementation 1

A client wants to integrate their billing application data with their CRM process to
better serve their customer needs and improve their business process. Here is
the list of their objectives and environment:

� Improve customer retention against lower-cost operators.

� Provide better customer service by being able to react in real time.

� No extra bandwidth for this type of processing (the billing system is
already overloaded).

� Pre-paid customers should receive short message service (SMS) messages
when low on minutes, which prevents customers from losing service, and
improves the customer experience. An additional benefit is that revenue
is increased.

� When customers activate a new phone, they should be able to start using it
immediately because of instantaneous billing.

Application integration: Proposed solution 1
IBM implements an InfoSphere CDC solution, which integrates the client’s billing
system data with their CRM system by using the InfoSphere CDC event server
messages functionality. InfoSphere CDC scrapes the data from source database
and generates XML messages that are passed to target queues. Then the
Enterprise Service Bus (ESB) application picks up the data from InfoSphere
CDC messages queues and makes them available to the CRM system.
 Chapter 3. Business use cases for InfoSphere CDC 37

The results are:

� Low impact (minimal additional workload on the billing system)
� High volume (typical for billing systems)
� Real-time (Changes are captured and responded to immediately.)
� Easy to implement (Uses the existing infrastructure.)
� Real-time visibility of customer billing information in the CRM system
� Minimal impact on the operational system
� Flexible for changing data requirements
� Minimal latency
� Scalability

The solution is shown in Figure 3-13.

Figure 3-13 Integrating billing and CRM

3.6.2 Application integration: Sample implementation 2

A leasing company is planning to integrate their front-end application with their
back-end application. The objective is that the customer wants quick quotations
using the front-end application.

The front-end application's strengths are user and web interfaces. The back-end
application's strengths are mainly in the calculation area. The quotations are
calculated quickly and with maximum flexibility.

To speed up the company’s integration process, the company decides to use the
strengths of both applications and have them work together. The front-end
application enters the information required for a quotation, and the back-end
application would do the calculations.

Integration between the applications is a great challenge, primarily because of
database differences, which includes code page differences.

Database CDC

CDC

CDC Source
System

CDC Target System
CRM

System

ESB Process

XML

Messages
38 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Application integration: Proposed solution 2
InfoSphere CDC is installed and configured with a bidirectional solution between
these two servers to meet client business objectives. The project has already
started and is struggling when InfoSphere CDC is implemented. The result is that
development costs are reduced and the application integration goes smoothly,
resulting in a quicker time to market. The solution is shown in Figure 3-14.

Figure 3-14 Application integration

3.6.3 Application integration: Sample implementation 3

A Fortune 500 retailer needed to integrate their website with their production
systems to serve their customers in real time while enhancing their own
internal operations.

To provide a superior shopping experience to its customers, the company
improves their online gift registry system by implementing real-time data
integration. For example, when a customer makes a purchase on the website,
the gift registry system is updated immediately, such that no duplicated purchase
can occur to cause customer dissatisfaction and lost sales through product
returns and refunds. At the same time, the inventory count is adjusted to reflect
the new product statistics to all other customers. As a retailer of exquisite
service, having real-time data is a mission-critical capability. By integrating the
web application to corporate systems, the company is able to deliver accurate
information that is updated continuously in real time.

Back-Office Application
(HP-Oracle)

-Front-Office Application

(System i)

CDC

CDC

Web users

Calculation
 Chapter 3. Business use cases for InfoSphere CDC 39

The company's internal operations also benefit greatly from real-time data.
Because the company's products are not produced in high volumes, inventory
management requires careful planning, especially with 150 stores and product
demand that can come from any part of the world. By implementing a real-time
infrastructure, the company is able to receive the most updated ordering
information, which enables them to make the most informed business decisions
in managing its inventory. This setup enables the following capabilities:

� Access to up-to-date inventory and product information for online purchasing

� Purchases made online are accurately reflected in the inventory system

Application integration: Proposed solution 3
The following solution is implemented with the following results:

� Implement InfoSphere CDC. InfoSphere CDC real-time data flows to the
e-commerce application for online customer purchasing, then back to the
inventory systems after purchases are made.

� Increase customer satisfaction with more accurate online gift registry
information, which is a significant portion of the company's online business.

� Improve inventory tracking results due to more effective
inventory management.

3.7 Integration with master data management

Leading organizations are working to gain control of their most important and
commonly shared enterprise information assets. They are looking for adaptive
solutions to help them make more informed business decisions. These initiatives
are based on master data management (MDM), a practice designed to achieve
and maintain a single version of data across the enterprise. Managing product
master data plays an important role in any company's measure of business
performance. Establishing a single view of product master data and associated
domains, such as suppliers, vendors, and locations, enables companies to
address key strategic business initiatives throughout their organization. An
implementation for product master data might require features such as a flexible
data model, granular data access and security, real-time access, workflow, rich
user interfaces, and business logic.

IBM InfoSphere Master Data Management Server is an enterprise customer
master data management application that provides a unified customer view and
updated environment to multiple channels. It aligns these front-end systems with
multiple back-end systems in real time, providing a single source of customer
data across the enterprise.
40 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The IBM InfoSphere MDM Server enterprise application uses a relational
database management system that contains the operational tables, history
tables, reference tables, metadata tables (business objects and attributes, and
MDM transactions and actions), management tables, and configuration tables.

InfoSphere CDC provides near real-time data to applications, such as ETL tools.
Those applications can then feed the data to an MDM server in near real time.

3.7.1 Integration with master data management: Sample
implementation

A high-level solution architecture design provides an enterprise-level system
implementation design for collecting, improving, retaining, and distributing
information that describes the customer's enterprise master data. It is important
to note that the architecture described is a high-level representation of the key
components for an MDM Server system based on information available now.

Integration with master data management: Proposed solution
This solution uses InfoSphere CDC to extract changes from the mainframe DB2
logs, and then the MDM services load the MDM database, not the Rapid
Deployment Package (RDP) asset. For example, an initial load might consist of
16.5 million customer records, while a delta load would be much lighter, for
example, only around 20 K rows per day.
 Chapter 3. Business use cases for InfoSphere CDC 41

The data volume for the delta load (20 K rows per day) is much lighter than for
one initial load (16.5 million customers). A record is added to a flat file whenever
a change occurs in a table. This process typically occurs during the day, and at a
predefined time the files are closed and the update to MDM is initiated in batch.
This situation is shown in Figure 3-15.

Figure 3-15 Integration with MDM

RDP has a limitation when processing Standard Interface Format (SIF) records
with multiple updates of the same type in the same run. For example, if an
address for a customer is changed more than once during the delta capture
period, only the last row is processed.

Initially, once a day was sufficient, but now it should be run more often. After
InfoSphere CDC hardens (marks as being complete) the landed files, the delta
ETL job can run. If multiple changes are in these files, only the last update is
processed. Although this situation should not be a problem because the most
up-to-date change is reflected in MDM, the prior change history is lost. The
process includes the following actions:

� InfoSphere CDC processes the delta changes from the database log and
sends them to an InfoSphere CDC process on the Information Server, which
saves them to a local directory in the Flat File format.

MDM Point in Time Load MDM
Consumption

Information Server

MDM Server

Reporting

CDB Modernization Environment
Delta Load

CDB Mainframe

Source Data Capture

Duplicate Suspect Processing

Load
Process

Parameter

Addre ss
Tabl e

History
MDM Database

Soundex

NYSIS Key
Generation

CDC

CDC CDB

DataStage SIF

SIF
Sequencer

DataStage QS

Load Process
DS Jobs

B
atc

h
 T

N
X

P

ro
ce

ss
or

S
IF

 P
a

rse
r

MDM
Business
Services

C
o

m
p

o
sites

Default Rule

New Candidate
List Rule

Deterministic
Probabilistic

Script –p street name
Addre ss lines 100 char

Configuration
Management

User Interface
and

Reporting
42 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� ETL transforms the CDC / CDB data into a Standard Interface Format (SIF)
file. The address lines must be calculated (based on codes), while in the initial
load this task has been completed by the client. Address data is captured by
the InfoSphere CDC functionality (user exit) so that you get the address
whether it has been changed.

The layout of the Standard Interface Format (SIF) is a Flat File format
delimited by the pipe symbol between columns and the new line character
between records.

� The SIF Sequencer runs. This process consists of ETL jobs designed to
convert the regular SIF input into multiple files that contain SIF records for
delta maintain transactions.

� The SIF Parser and Maintenance Business Transactions are used to load
data through the Batch Framework. A role-based Sample User Interface (UI)
is also included. This UI is an umbrella GUI that incorporates a Reporting UI,
a registry that serves and renders Business Intelligence and Reporting Tools
(BIRT) reports, a Customer Matching Critical Data Rule UI that allows
defining matching criteria, a Data Stewardship UI, and a Party Maintenance
UI to view and maintain data in the MDM data repository.

3.8 Integration with IBM Information Server

IBM Information Server is a leading solution in the market that integrates data,
performs cleansing and transformations, and delivers information to your critical
business initiatives.

InfoSphere CDC provides near real-time data for building business initiatives.
InfoSphere CDC scrapes the near real-time data from source systems and either
writes it into a flat file or uses direct connect by using CDC for DataStage on the
target system. The ETL application reads the data from the flat file and
processes it into the target.

3.8.1 Integration with IBM Information Server: Sample
implementation

In this example, a company creates a Bulk Cumulative Volume of their database
once a night for the ETL server. The ETL application uses that data for a
comparison between the Bulk Cumulative Volume copy and the existing copy.
The delta changes are loaded into the Data Warehouse by using the ETL
application. The entire process takes more than 22 hours.
 Chapter 3. Business use cases for InfoSphere CDC 43

The company has the following requirements.

� The company wants access to more near real-time data for various business
initiatives and requirements.

� The company wants to reduce the total processing time to feed the data to a
data warehouse.

Integration with IBM Information Server: Proposed solution
The proposed solution is shown in Figure 3-16. It shows that the billing
application generates database logs on the production server. To move the data,
a script is written on the source side that, using FTP, transfers the archive logs to
the InfoSphere CDC and DataStage server upon creation and every 15 minutes.
The InfoSphere CDC capture agent has a database connection to the production
database, and processes the new logs on the InfoSphere CDC and DataStage
server, scraping information from the archived logs. The InfoSphere CDC Apply
process also runs on that same server, and generates flat files. Those flat files
are then written to the data warehouse.

Figure 3-16 Integration with IBM Information Server

Production Server CDC and DataStage Server Data Warehouse Server

ETL

CDC Point
Base Metadata

Flat Files

CDC
Capture

CDC
Apply

Data
Warehouse

Production
Database

Log Shipping

SFTP Log Files

Every 15 minutes
44 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3.9 Operational business intelligence

Operational business intelligence, sometimes called real-time business
intelligence, can enable companies to achieve their business needs.

Companies have good reasons to develop BI systems to fulfill their operational
needs. As an example, BI has become a company’s tool that provides
comprehensive views of business directions. BI systems provide quantitative
data to manipulate data, which enables business analysis and supports decision
making. Most of the BI systems are supported by an information management
infrastructure that includes data warehouses, data marts, and other integrated
data resources, such as an operational data store (ODS). The ODS provides
access to data that can help to show the company’s current situation.

InfoSphere CDC also plays a vital role in building near real-time operational BI,
as a way for companies to fulfill their daily business needs.

3.9.1 Operational business intelligence: Sample implementation

A large company is building their data warehouse to see the daily trends of their
customers so they can make quick decisions when fulfilling their customer
needs. The company has the following challenges in building their operational BI:

� Effectively loading production data into the data warehouse for business
intelligence analytics

� High impact of batch extraction from production system, which places
operations at risk
 Chapter 3. Business use cases for InfoSphere CDC 45

Operational business intelligence: Proposed solution
The company implements InfoSphere CDC and installs and configures it on their
source and target systems (Figure 3-17). They use InfoSphere CDC time stamp
and soft delete functionality to achieve this business need, as follows:

1. InfoSphere CDC is used to extract and integrate data into the operational
data warehouse.

2. Time stamps are added to operations in the ODS and used by the ETL tool.

3. Delete operations are soft deletes in ODS. If the delete operation deletes the
record on the target side, InfoSphere CDC flags that record.

4. Granular data provides detailed information for complex analysis to identify
customer trends.

Figure 3-17 Operational BI

Source
Database

Target
Database

Order
System

CDC

Operational
Data Store
46 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 4. Solution topologies

This chapter describes the solution topologies and the flexible implementations
available when using IBM InfoSphere Change Data Capture (InfoSphere CDC).
To position these topologies, this chapter describes the potential benefits of each
one and provide examples of their use.

Timing and flexibility are everything in today's competitive business environment,
especially when it comes to business information. The increasing expectation
that services are available 24x7, combined with the growing demand for
real-time reporting and analytics, means that data must be constantly accessible.

However, critical business information is not always available to the people who
need it. The data might be out of sync or inaccessible due to overloaded system
resources, but the result is often the same: reduced productivity and profits, and
diminished customer service.

The ability to use existing underutilized systems to offload reporting or data
processing helps companies from needing to increase the size or number of
single use systems. InfoSphere CDC allows systems to be used in a true
master / master (bidirectional) mode for many years. This proven functionality
means that data can be selected for reporting from systems, and users can
change data that can be replicated back to the primary or other systems to
maintain data consistency. Being able to use the processing power of multiple
machines, which might be underutilized, as a single system reduces the need for
expensive upgrades or replacement of overloaded production systems.

4

© Copyright IBM Corp. 2012. All rights reserved. 47

CDC solutions can support any IT infrastructure or environment. They can
replicate or mirror data between heterogeneous database versions, and
synchronize data between disparate systems. Many replication products require
both source and target databases to be the same version and be on the same
platform. This limitation requires upgrades to the database be done
simultaneously, which in many cases requires a database outage during
that time.

CDC allows database upgrades to be done independently, which provides
maximum uptime of systems, thus reducing the impact of testing and migrating to
newer versions. Cross database version replication also allows applications
dependent on a particular database version to be kept in sync. CDC allows
similar capabilities for cross hardware platforms and operating system versions.

4.1 Unidirectional replication

Unidirectional replication is the movement of data in one direction from the
source tables to the target tables, and is used for data redundancy and
synchronization (Figure 4-1).

Figure 4-1 InfoSphere CDC unidirectional architecture - source to target

Your source and target tables can be of different types. You can transform the
data that you replicate between the source and the target. You can map tables
one at a time using standard replication.
48 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The InfoSphere CDC Management Console provides the following two
mechanisms for mapping using standard replication:

� One-to-one: Map tables using one-to-one replication when you want to map
multiple source tables to multiple target tables at a time. These tables share a
table structure and similar table names. The Map Tables wizard automatically
maps tables based on an example mapping you define and
set up.

� Custom: Map tables individually when you want to map only one source table
to one target table at a time. These tables are source tables that might not
share a table structure or similar table names as the target tables. This option
is the option to map each source table in a one at a time fashion.

4.2 Cascading replication

Cascading replication involves a source system transmitting data to a target
system which, in turn, serves as a source for the next system in the integration
chain (Figure 4-2).

Figure 4-2 Cascading integration
 Chapter 4. Solution topologies 49

Tools that support cascading integration enable the most efficient movement of
data throughout a large organization.

For example, suppose that a company has 12 branch offices and a head office. If
it takes an average of 15 minutes for each site to send its nightly data update to
head office, the total integration time is three hours. In a cascading integration
environment, this time can be cut. If three of the remote sites served as cascade
points for the three offices closest to them, the time required to complete the
integration process, and the accompanying communication costs incurred, could
be reduced dramatically.

Cascading integration streamlines the integration process by enabling
organizations to select regional cascade points.
50 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

You can use this type of replication to distribute changes across many servers
using a multiplier effect. In Figure 4-3, employee data (EMPLOYEES) is
replicated to two separate tables (DIVISION1 and DIVISION2), where each table
contains data about employees in a specific division. Data from each division
table is then replicated to other tables (HIRES1980 and HIRES1990), where the
separation is based on hiring dates. Row selection to filter the data into the
correct tables is not required if you want to replicate all data in the EMPLOYEE
table to all destinations.

Figure 4-3 Cascading replication
 Chapter 4. Solution topologies 51

4.3 Bidirectional replication

Bidirectional replication involves replication from the publication server to the
subscription server, and replication in the opposite direction (Figure 4-4). If both
systems are used to change the same tables, recursive updates occur. A change
on System A is replicated to System B. The change is then replicated back to
System A, and then to System B again. This process repeats itself many times.
Bidirectional replication requires recursion prevention to prevent
repetitive changes.

Figure 4-4 Bidirectional replication

Figure 4-5 provides another view of bidirectional replication from a systems and
processes point of view.

Figure 4-5 Bidirectional replication - a system view
52 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

With bidirectional replication, conflict detection and resolution are required, such
as in a situation where the same record is updated on both systems at the same
time. If there is a larger data latency with bidirectional replication, then there are
transaction conflicts. This situation is why it is important to have the fastest
replication possible for this type of replication. InfoSphere CDC provides
real-time and bidirectional data integration and transformation between diverse
relational databases and other data stores on different platforms. Through
bidirectional mirroring, workload distribution allows data to be on more than one
machine, with the users segmented between them. This setup can reduce the
cost of maintaining a fragmented IT environment by enabling incompatible
applications to coexist.

To implement bidirectional replication, you must install InfoSphere CDC on both
servers, and each server must be able to send and receive replicated data. One
of the benefits of the bidirectional capability of InfoSphere CDC is that it provides
a rollback strategy for a migration. This strategy can result in, for example, a zero
downtime migration capability. This strategy lets you resynchronize changes to
the original source system after cutover when, for example, a post migration
problem has occurred. Bidirectional replication can also provide e-commerce
application synchronization, workload balancing, and application integration.

Another excellent use for bidirectional topology is data synchronization for
upgrades, migrations, and workload balancing. This capability keeps data
synchronized between the current production server and a deployed server, for
example, to test a new application version upgrade or a hardware or OS
upgrade. The workload balancing capability (master to master support) allows
database instances to remain synchronized where dual or double data entry is
required (such as when data entry is occurring on both systems at the same
time) (Figure 4-6).

Figure 4-6 Data synchronization for upgrades, migrations, and workload balancing
 Chapter 4. Solution topologies 53

4.4 Consolidation replication

InfoSphere CDC also supports the implementation of consolidation replication. In
this implementation, data from multiple publication servers update a single
subscription table. You must define each publication server separately, and then
assign the publication tables to the subscription table that serve as the data
warehouse. Because multiple publication tables are updating a single
subscription table, the publication tables must have the same attributes.

For example, suppose that you need to create a data warehouse to consolidate
employee records created and used by two separate divisions. Each of these
divisions has a publication table that is maintained separately. A subscription
table is used to consolidate the data from these two tables. On each publication
server, you define the publication tables to be mirrored, and then transfer the
publication table definitions to the subscription. Then you must work in the
subscription environment to assign the publication table definitions to the actual
subscription table. When defining the subscription table, a new column is added
for the division data. After assigning the publication tables to the subscription
table, map the new column to a different constant value in each assignment.

Using the example in Figure 4-7, map the DIVISION column to '01' for the first
publication table, and map the DIVISION column to '02' for the second
publication table. When data is replicated from one of the publication tables, the
corresponding value is written in each row replicated to the subscription table. As
a result, rows in the subscription table are identifiable by division. A row identifier
defined for a table assignment is used to identify the rows in the table originating
from the publication table.

Figure 4-7 Consolidation replication
54 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

One reason to use the consolidation topology is to build a low latency operational
data store (ODS) for operational reporting and auditing (Figure 4-8).

Figure 4-8 Building a low latency operational data store

This ODS is used for companies:

� Looking to manage increasing data volumes and shrink batch windows for
ETL processing, and to mitigate risk associated with extracting data from
heavily used production environments.

� Needing to stream data to an operational data store, where an ETL product,
such as DataStage or IBM Cognos® Data Manager, extracts, transforms, and
loads data from an ODS into the data warehouse.

� Already employing ETL products, but looking to gain operational efficiencies
by reducing the impact of extracts or increasing the timeliness of data for
loading into data warehouse.

The business value of this setup includes such benefits as:

� Real-time operational reporting from the ODS

� More frequent ETL processing available by using the ODS as the source for
loading the data warehouse
 Chapter 4. Solution topologies 55

� Using your existing investment in ETL processes and tools

� Enabling more comprehensive Business Analytics by replicating update and
delete operations as inserts into the ODS

There would also be technical value, such as:

� Low impact on source environments
� No changes to existing infrastructure

Another reason to use the consolidation topology is for off loading production
query and reporting cycles. The Reporting server can also be used for
consolidation requirements, such as consolidating financial information from
multiple branches into a single corporate instance.

Replication frequency generally varies from continuous (near real time) to
periodic. Table level refresh or copy can be used in addition to log based change
data capture (Figure 4-9).

Figure 4-9 Off loading production query and reporting cycles
56 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

4.5 Data distribution replication

You can use InfoSphere CDC to implement data distribution, where a single
publication table is used to update multiple subscription tables. As part of data
distribution, you must transfer data that is relevant only to the subscription
environment. For example, if data is distributed to separate divisions, you must
apply row selection criteria so that only data relevant to a particular division is
mirrored to its environment.

Frequently, the publication table has a column, such as DEPARTMENT,
DIVISION, or COMPANY, that can be referenced in the row selection criteria to
define the destination of replicated data (Figure 4-10). However, you can use any
column or combination of columns for the selection criteria. Different row
selection criteria can be defined for each possible destination. When replication
occurs, each row in the publication table is evaluated for the values defined in the
row selection criteria. These values determine the destination of the
replicated row.

Figure 4-10 Data distribution implementation
 Chapter 4. Solution topologies 57

4.6 Hub-and-Spoke replication with propagation

Hub-and-Spoke replication requires a configuration consisting of
centrally-administered tables on a hub server that are simultaneously maintained
on multiple subscription (spoke) servers (Figure 4-11). Changes applied to the
tables on subscription servers (in this example, TORONTO and NEWYORK) are
replicated to the same tables on the hub server (HQ), and then routed to the
same tables on all other subscription servers in the
Hub-and-Spoke configuration.

Figure 4-11 Hub-and-Spoke replication

In a Hub-and-Spoke configuration, it is possible for changes originating on one
spoke to be replicated back to that spoke recursively. To prevent this situation
from happening, you must configure propagation control for each hub-to-spoke
subscription. Propagation control allows you to specify the corresponding
spoke-to-hub subscription when defining the hub-to-spoke subscription.
58 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 4-12 shows a change on the TORONTO spoke being replicated along the
spoke-to-hub subscription to the HQ hub.

Figure 4-12 Replicating along a spoke-to-hub subscription

After applying the change to the HQ hub, the hub server then needs to replicate
the change to its spokes. There are two subscriptions that replicate data from the
hub, HQ_TO and HQ_NY. When defining these subscriptions, you must declare
that you do not want HQ_TO to replicate changes that were originally applied to
the hub by the TO_HQ subscription. The same is true for the HQ_NY and
NY_HQ subscriptions.
 Chapter 4. Solution topologies 59

Figure 4-13 illustrates how changes should propagate from the hub.

Figure 4-13 Propagation control

Before you can configure propagation control for a hub-to-spoke subscription,
you must describe the corresponding spoke-to-hub subscription.

A good example to use for this topology is for e-commerce application
synchronization. Here the topology provides continuous bidirectional
synchronization between web-based applications and mission-critical business
applications. It also helps organizations improve customer online shopping
experience with improved visibility into inventory and customer shopping
activities.
60 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

This situation is shown in Figure 4-14.

Figure 4-14 Application synchronization
 Chapter 4. Solution topologies 61

4.7 Destination

This section describes the types of InfoSphere CDC destinations (targets) that
are available to support InfoSphere CDC Hub (Figure 4-15). Depending on your
business and environmental requirements, you use different destination options.
For example, you might use a JMS Message Queue for event detection, such as
a notification when inventory or balances reach a critically low level. For another
example, you might use destinations, such as flat files or DataStage, to eliminate
high impact nightly ETL batch processes. You can also use web services as a
destination for a part of an event-driven architecture and service-oriented
architecture (SOA).

Figure 4-15 InfoSphere CDC architecture - source to InfoSphere CDC Hub
62 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

4.7.1 JMS Message Queue

InfoSphere CDC retrieves database operations from the source database and
transforms data into XML messages.

Using the InfoSphere CDC Queue Targeting Mapping Designer, you can map
XML elements and attributes to columns in a target table. When you start
mirroring, InfoSphere CDC sends the XML message to a JMS message
destination. You must install and set up an InfoSphere CDC source product that
can scrape table-level operations (inserts, updates, and deletes) from a
source database.

This source database represents the production database where your source
tables are. When InfoSphere CDC detects a transaction, boundary, or commit
operation, it sends the XML message to the JMS message destination.

Here are some examples of the kinds of business events that you can define on
your production database:

� A new customer sale has been entered into the source database. You might
want InfoSphere CDC to send an XML message to a JMS application that
generates an event to different departments.

� A credit card balance changes significantly in a short period. You might want
to track this change and notify the fraud department with real-time information
about the credit card changes.

� Inventory levels are running low on a particular product. You might want to
detect the low inventory and notify production management.

Figure 4-16 shows the architecture to support these business events.

Figure 4-16 Event synchronization through an Enterprise Service Bus
 Chapter 4. Solution topologies 63

Using the JMS Message Queue as a destination may be beneficial in the
following situations:

� You are using a JMS compliant message-oriented middleware solution, such
as IBM WebSphere MQ Server, WebSphere ESB, Tibco, or BEA WebLogic.

� You have built dashboards, KPIs, or composite applications with missing or
stale data using messaging-oriented middleware, for example, Emergency
Center monitoring to quickly identify patient bottlenecks, perform short-term
trending, and identify process improvement and problem areas.

� You need real-time event data for business activity monitoring (BAM), for
example, detecting changes to inventory in a retail store inventory system
and triggering alarms for the store managers in an executive dashboard.

� You need event data to build a business process management (BPM)
solution, for example, detecting unusual ATM transactions and feeding it into
Fraud Prevention process built using Tibco.

4.7.2 Flat files

Flat files can be used by an existing ETL solution or can be used to feed a data
warehouse appliance or relational database management system (RDBMS).

When replicating to flat files, choose the directory that holds the flat files. Set the
number of rows or time threshold (seconds) when flat files are hardened (marked
complete) for processing by the ETL solution. The flat file is closed and the next
one is created and opened when either value is reached.

The flat file is only hardened on commit boundaries. If commit cycles are
potentially larger or longer than the thresholds, the commit cycles take
precedence. As a result, you might end up with more rows in the flat file
than expected.

When you are using flat files, consider the following items:

� Can be used by any ETL solution. Most ETL solutions support flat files as
a source.

� Suitable for high volumes of changes.

� A flat file has a row (or multiple rows) for every table operation, which contain
the following information:

– Timestamp

– Transaction sequence number

– Operation type (Insert/Update/Delete (I/U/D))

– User
64 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

– Before image of row

– After image of row

You can log the before and after images in a single row in the flat file or create
one row with the before image and another row with the after image. This
situation can be beneficial if the downstream process only needs the after image
of an updated row.

The option for single or multiple record format stored for flat files is shown in
Figure 4-17 (with the option to log the before and after image in a single row or
multiple rows).

Figure 4-17 Option for single or multiple record format stored for flat files

For a single record, there is one line for an update transaction (U) containing the
before update record image followed by the after update record image, as
follows:

"2012-01-03 23:20:46","82950","U","DB2INST1","700700700","Timothy
Blitz","4 Sugar Forest Dr","IRVING","TEXAS","22598", "2012-01-03",
 Chapter 4. Solution topologies 65

"77", "700700700","Timothy Blitz","80 Grandravine Dr","SAN JOSE",
"CALIFORNIA","95101"

For multiple records, there are two lines for an update transaction, with one line
containing the before update record image (B) followed by the after update
record image (A), as follows:

"2012-01-03 23:29:36","83161","B","DB2INST1","700700700","Timothy
Blitz","4 Sugar Forest Dr","IRVING","TEXAS","22598“

“2012-01-03 23:29:36","83161","A","DB2INST1","700700700","Timothy
Blitz","80 Grandravine Dr","SAN JOSE","CALIFORNIA","95101”

Choosing between single record and multiple records depends the design of the
DataStage job. For example, if your DataStage job can safely process an
UPDATE as a DELETE/INSERT pair, then using the multiple record format
allows you to create a DataStage job that does not need to contain special logic
to deal with updates. If your job does need to be aware of updates specifically,
then single record format is the most convenient.

Figure 4-18 shows a situation where you replicate to flat files.

Figure 4-18 Replicating to flat files
66 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 4-19 shows replication to a business intelligence (BI) appliance.

Figure 4-19 Replicating to a BI appliance

4.7.3 DataStage

This section describes the four methods of integrating InfoSphere CDC with
DataStage (Figure 4-20). The most closely integrated option is Direct Connect,
followed by the file-based method. There are other considerations, such as
reasonable latency (time it takes from when the transaction occurred to when it
was applied to the target), data volumes, and number of tables.

Figure 4-20 Integrating InfoSphere CDC with DataStage

database
Database

Database

Database

Database

Option 1: Database Staging Option 2: MQ based integration

Option 4: Direct ConnectOption 3: File Based

1 1

1
1

22

2

33

3

3

44

4

4

55

5

5

6

File
DS/QS

Job

Database

InfoSphere
CDC

Database

In foSphere
CDC

Staging
Area

DS/QS
Job

InfoSphere
CDC

MQ DS/QS
Job

2

CDC Transaction

InfoSphere
CDC DS/QS job

DS/QS
Job

Database

Database
 Chapter 4. Solution topologies 67

Database staging method
For the database staging method, instead of feeding the changes from
InfoSphere CDC directly to DataStage, they are written to a staging area where
they are picked up by DataStage and then applied to the target. Having these
changes in a staging area might be preferable for customers with multiple
applications that require the raw change-only data.

Here is the process for this method:

1. DataStage extracts data for initial load using standard ETL functions.

2. InfoSphere CDC continuously captures changes made to the
source database.

3. InfoSphere CDC continuously writes changes to a set of staging tables using
audit type mappings

4. DataStage reads the changes from the staging tables, and transforms and
cleans the data as needed.

5. Update the target database with changes.

6. Update internal tracking with the last InfoSphere CDC bookmark processed
(The InfoSphere CDC bookmark is involved only to ensure that every change
gets into the staging tables).

This method is ideal for the following situations:

� Low latency (minutes)
� Low / medium data volumes (a few thousand rows per second)
� Any number of tables

WebSphere MQ based integration method
The WebSphere MQ based integration is similar to the staging approach. Here,
the InfoSphere CDC changes are written to WebSphere MQ, which are then
picked up by DataStage and applied to the target warehouse. This approach
might be preferable for clients who have an existing messaging infrastructure in
their environment, or perhaps their message queue serves as the backbone for
other services that also want to use the InfoSphere CDC data directly.

Here is the process for this method:

1. DataStage extracts data for the initial load using standard ETL functions.

2. InfoSphere CDC continuously captures changes made to the
remote database.

3. InfoSphere CDC continuously writes change messages to WebSphere MQ
through the InfoSphere CDC event server target.
68 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

4. DataStage (through the WebSphere MQ connector) processes messages
and passes data off to downstream stages.

5. Updates are written to target database.

This method is ideal for the following situations:

� Near real-time integration (seconds)
� Low data volumes (hundreds of changes per second)
� When the infrastructure uses WebSphere MQ

File-based method
There is also the file-based method, where InfoSphere CDC changes are written
to flat files, which are then processed by DataStage. This approach has the
benefit that it provides recoverability in the sense that if the source or target
machine fails, the replication process can resume from the last processed file. It
does require more disk space because a landing area is required for the files.

Here is the process for this method:

1. DataStage extracts data for initial load using standard ETL functions or
InfoSphere CDC can be used for refresh.

2. InfoSphere CDC continuously captures changes made to the
source database.

3. InfoSphere CDC DataStage writes one file per table and periodically hardens
the files.

4. DataStage reads the changes from the completed files.

5. Update the target database with changes.

This method is ideal for the following situations:

� Medium latency (a few minutes or more between periodic batches)
� High data volumes requiring parallel loading
� Less than 100 tables

Direct connect method
Direct connect is the most integrated approach. To summarize this method at a
high level, the changes captured by InfoSphere CDC at the source database are
streamed directly into DataStage, where they are then applied by a DataStage
job.
 Chapter 4. Solution topologies 69

Here is the process for this method:

1. DataStage extracts data for initial load using standard ETL functions or
InfoSphere CDC can be used for the refresh.

2. InfoSphere CDC continuously captures changes made to source database
and flows over TCP/IP to InfoSphere CDC Transaction Stage.

3. InfoSphere CDC Transaction Stage passes data off to downstream stages.

4. Update the target database with changed data. The bookmark persists in the
target database along with the client data to maintain end-to-end
transactional integrity.

5. InfoSphere CDC continuously captures the changed data from the source
systems and passes it to a continuously active DataStage job.

6. The DataStage job receives transactions through the InfoSphere CDC
Transaction Stage operator.

7. In the job, the data can be transformed or passed on to other
downstream locations.

8. The InfoSphere CDC bookmark is maintained along with DataStage applying
the changes to the target database.

This method is ideal for the following situations:

� Near real-time integration (seconds)
� Medium data volumes (hundreds to low thousands of rows per second)
� Less than 150 tables
70 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 4-21 gives an overview of the process used by InfoSphere CDC to
consume data from DataStage.

Figure 4-21 DataStage consumption by InfoSphere CDC

4.7.4 Web services

This section describes how InfoSphere CDC can be an part of an event-driven
architecture and service-oriented architecture (SOA).

Event-driven companies, which acquire, deploy, and use real-time information,
are most successful at sensing and responding to the changes or events that
drive their businesses. This situation calls for a redefining of existing traditional IT
architecture towards an event-driven architecture (EDA). The term event-driven
architecture refers to any application that reacts intelligently to changes in
conditions. Those changes could be a customer registration, a termination of
services from a customer, a hardware device malfunction, or a power outage in
one region of the country that causes a temporary shutdown or a sudden change
in stock price. Depending on the size of the business, there are hundreds or
thousands of notable events that occur every minute, every hour, and every day.
By nature, some events might be positive, some negative, and some that might
provide a business opportunity while others might pose a threat.
 Chapter 4. Solution topologies 71

SOA is becoming the de facto standard for technical infrastructure in
organizations across all industries. It is an approach to building software
applications as collections of autonomous services that interact without regard to
each other's platform, data structures, or internal algorithms. SOA equips
organizations to enable improvements in their ability to react to changing
business dynamics and in using their technical assets, helping them gain
competitive advantage.

The term second-generation SOA, also referred to as Web 2.0, is the merger of
SOA with EDA. The outcome is the creation of new systems that exceed the sum
of their parts. EDA and SOA together enable companies to move more quickly
towards becoming what are known as real-time enterprises. These companies
compete by using the most current information to enable faster and more
informed business decisions. They gain a competitive advantage by using such
things as new composite applications, real-time dashboards, and key
performance indicators (KPIs), and focus on enabling more automated
business processes.

Event-driven architecture: An overview
Events are at the core of EDA. The way in which an event is recognized,
enriched, and flowed across a business provides strategic competitive
advantage. Companies must aggregate and integrate their data so they can
more quickly react to those critical events as they occur.

Discrete data events
Discrete data events are events that are generated from a single system and
represent granular activity in the business system. A shipping order, a change in
the inventory level, or a new customer added to a customer relationship
management system are discrete data events. They are analogous to a row in a
table, but might be the aggregate result of a few elements from multiple rows in
multiple tables. What categorizes a data event as being discrete is its linkage to a
single business entity, such as a customer or a product.

An overview
An example of how InfoSphere CDC supports SOA environments is by
packaging data transactions into XML documents and delivering them to
applications in real time. This capability can also be used as an event detection
solution, capturing mission-critical data transactions in real time and sending
them to downstream applications to generate or automate business processes
immediately.
72 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 4-22 shows the event detection process.

Figure 4-22 Event detection

Context-rich composite events have the following characteristics:

� Combines content associated with the event from other systems.

� Routes the data to different applications to initiate business processes based
on the content of a message.
 Chapter 4. Solution topologies 73

74 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 5. InfoSphere CDC features
and functionality

This chapter describes features and functionality for IBM InfoSphere Change
Data Capture (InfoSphere CDC). InfoSphere CDC administrators learn how the
different features and functions can be used to customize the replication flow to
meet the unique requirements of their environments. InfoSphere CDC operators
gain knowledge about how the different features and functions affect the
replication process and how that affects operations.

The topics in this chapter include the following:

� Transformational capabilities:

This section describes each of the group types of transformations, including
examples of usage. The intent is to make the reader aware of the diverse
transformational possibilities available. InfoSphere CDC provides the ability to
manipulate data during the replication flow. These transformations can be
made against any or all columns included in a single operation. They provide
functionality such as table joins, date and string manipulation, and IF / THEN /
ELSE logic.

5

© Copyright IBM Corp. 2012. All rights reserved. 75

� Replication modes:

This section describes each of the modes and provide details specific to each
one. The intent is to make the reader aware of the different replication modes
and when they would use each one. InfoSphere CDC provides three
replication modes: two mirrored modes and one refresh mode. The mirrored
modes capture data from the transactional logs of the database and then
replicate that data downstream to the target. One mirrored mode runs
continuously until stopped and the other mode allows scheduled stops. The
refresh mode is an ETL style mode pulling data directly from the tables. It can
be used to synchronize the data between the source and target tables.
Different types of refreshes, including subset and differential refreshes,
are covered.

� Filtering:

The intent of this section is to make you aware of the filtering capabilities of
InfoSphere CDC and how those capabilities can assist you in targeting
specific subsets of data for replication. InfoSphere CDC provides functionality
to filter data that is replicated at both the row and column level. The row level
filtering is similar to the WHERE clause in a SELECT statement in that it can
be used to include or exclude rows of information during replication. The
column level filtering can be used to select which columns to include or
exclude during replication. It can also be used to identify which columns are
considered critical and trigger replication of the row or operation.

� Apply methods:

This section describes the potential benefits provided by each apply method
and when to use them in a replication environment. InfoSphere CDC can
apply data to the target tables using six different modes, which are Standard,
IBM LiveAudit™, Adaptive Apply, Summarization, Consolidation One to One,
and Consolidation One to Many. Each apply method provides unique
functionality that allows the user to create not only the standard replication
environment but other specialized replication environments
as well.

� Conflict detection and resolution:

The last section describes when to use conflict detection and conflict
resolution, how to set them up, and the usages for each of the resolution
methods. The intent is to make the user aware of how InfoSphere CDC can
assist in resolving conflicts between source and target data without
compromising the replication flow.
76 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

InfoSphere CDC provides a Conflict Detection and Resolution functionality
that can be integrated directly into the replication flow. This functionality can
be used as part of a bidirectional replication or when the source and target
data might not be consistent. It allows the user to identify specific columns to
be analyzed for conflicts and five different methods to resolve the conflict.

5.1 Transformations

InfoSphere CDC allows businesses to share data between heterogeneous
sources and targets. This heterogeneity often involves sources and targets that
have different data structures, so it might require some of the following:

� Mapping between different column names
� Conversions between data types
� Changes in data sizing
� Default values
� Creating column values through derived expressions
� Accessing other tables for additional data
� Running user written code for processing outside of InfoSphere CDC

Mapping for differences in naming, type, size, or default values can typically be
handled in a straight forward manner in InfoSphere CDC by using the graphical
user interface provided by the Management Console (MC). Creating values
through derivations or table joins, or running user written code in the form of User
Exits, uses InfoSphere CDC transformational capabilities. Some of those
capabilities are described in the following examples of what InfoSphere CDC
provides:

� A diverse list of column functions that can be used along with standard
mathematical operators to build derived expressions. Within Management
Console, derived expressions can be manually scripted or built using the drag
editor. These derived expressions can be saved and reused when mapping
other columns.

� Access to additional data beyond that provided by the associated log entry.
Both 'before' source values and 'current' target values, and journal control
field values, are available to be mapped directly to target columns or used
within derived expressions.

� The ability to include additional data by joining to other tables. This ability can
be used to include master information from lookup tables, or it can be used to
combine rows from multiple source tables into a single target row.
 Chapter 5. InfoSphere CDC features and functionality 77

� Multiple points within the replication flow to perform user written user exits.
These user exits can be used to provide additional and specialized
functionality to meet the unique needs of the client. User exits are typically
used when a single derived expression is insufficient to generate the
wanted results.

Within InfoSphere CDC, transformations are performed as part of the replication
flow. The transformations can be performed at the source (derived column) or at
the target (derived expression). This flexibility allows the user to determine where
to expend the additional processing impact required for the transformation.

5.1.1 Column functions

InfoSphere CDC provides a number of column functions that can be used within
derived expressions when mapping target columns. These column functions help
perform low-level data transformations during the flow of replication.

The column functions can be categorized into the following six functional groups:

� String functions can manipulate strings of text. They include functionality such
as concatenation, substring, and left and right trimming. Here are examples
of concatenation:

– Denormalization of data by combining multiple columns of data into report
or query friendly formats:

%CONCAT(%RTRIM(FIRSTNAME), ' ', MI, ' ', %RTRIM(LASTNAME))

– Retrieving subsets of data from within long character string columns, such
as acquiring the person's first initial:

%SUBSTRING(FIRSTNAME, 1,1) -

– Minor cleaning of text data to remove trailing blanks or spaces from
fixed-length source columns to variable length target columns:

%RTRIM(FIRSTNAME)

� Date and time functions are used to manipulate date and time values. They
can add a two-digit century specification to a date, or retrieve the current date
and time. Here are some simple examples:

– Acquiring current date:

%CURDATE("*GMT")

– Creating a time stamp field by combining date and time fields together:

%TODATE(DATE, "*YMD", TIME)
78 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Conversion functions are used to manipulate data types. They can move
between character, numeric, and date values. Here is an example:

– DIVISION (VARCHAR 10) column contains 'US2003'. The data needs to
be manipulated to add 1000 to the number value in the last four
characters, resulting in 'US3003'. The transformation would be:

%CONCAT(%SUBSTRING(DIVISION,1,2),
%TOCHAR((%TONUMBER(%SUBSTRING(DIVISION,3,3)) + 1000),4))

� Conditional and variable functions provide flexible logic. Use the %IF column
function to evaluate an expression and return different results. Use the %VAR
function to declare a new variable, assign a value to it, or retrieve the value of
an existing variable. Here is an example:

– Load the SALARY_LEVEL column with the values 'LOW', 'MID', or 'HIGH'
based upon the value in the SALARY column. The transformation
would be:

%IF(SALARY < 30000, 'LOW', %IF(SALARY < 60000, 'MID', 'HIGH'))

� Data functions are used to provide additional data beyond that provided by
the actual log entry. They provide information such as before or current
values. They can join to other tables to acquire additional data values. Here is
an example:

– A client had problems with hackers changing grades on a school
database. They resolved the issue by replicating the before image of a
grade back into the grade column if the column was changed by a user
other than a special admin user ID. Effectively, as fast as the hackers
changed the grades, the grades were restored to their previous value. The
following transformation was used:

%BEFORE(GRADE)

� User exit functions are used to call user written code from within a derived
expression. Depending upon the InfoSphere CDC platform installed, these
functions could be stored procedures or user functions, such as Java code.
The following transformation could be used:

%STPROC('CUSTNAME', CUSTOMER_ID)

Two examples of its use could be:

– Passing information to a secondary table not targeted by InfoSphere CDC
but based upon an event encountered during InfoSphere CDC replication,
such as suspected erroneous data being sent to a holding table.
 Chapter 5. InfoSphere CDC features and functionality 79

– Triggering a database event based upon input received during a
InfoSphere CDC replication. In this example, a client wanted to perform a
backup of certain tables immediately following the complete replication of
data from a nightly batch job. The customer updated a record in a status
table as the last operation of the batch job. InfoSphere CDC replicated the
update for the status table, which resulted in the user exit being initiated.
The user exit performed the backup and various
other functions.

5.1.2 Journal control fields

Journal control fields provide information about the log entry on the source
system. When a change is made on the source system, the database records the
change in a log entry that contains the changed data and what type of change
was made, who made the change, and when the change was made. When a
relevant log entry triggers a replication event to the target system, InfoSphere
CDC replicates the changed data along with the extra log entry information
available through journal control fields.

InfoSphere CDC provides many journal control fields that contain log entries
from your source systems. The journal control fields can be:

� Mapped directly to columns on the target system. Here are examples:

– Map &TIMSTAMP and &USER to target columns to show when the original
transaction took place and who made it.

– Map &CCID (commit cycle ID) to target columns to identify transactions that
belong together in a single unit of work or commit group.

� Used in row level filtering to identify log entries to include or omit:

&JOB = 'PURGE001'

� Used in derived expressions:

%IF(%SYSTEM = 'USHDQR', 'Atlanta', 'Toronto')

5.1.3 Joining

InfoSphere CDC provides a column function (%GETCOL) that allows you to join
tables to retrieve the value of a column for a specific row. This function allows
you to retrieve and use information not found in the actual log entry.
80 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

You can use the %GETCOL function in expressions to perform the
following operations:

� Obtain columns from one or more keyed secondary tables and join them with
an existing primary table before sending the data to the target. The primary
table refers to the source table being replicated. The secondary tables refer to
tables referenced in the %GETCOL function.

� Specify how keys of the secondary tables are populated, to allow InfoSphere
CDC to perform the necessary secondary reads.

� Use columns from secondary tables that were retrieved previously to
populate keys for subsequent reads (the population of key column values is
not restricted to primary columns only).

� Specify the order that table reads are performed.

� Condition the table reads that are performed.

� Read tables external to InfoSphere CDC to perform dynamic translations on
the target.

There are two syntax formats for %GETCOL:

� The long syntax format is used to read a table and return the value of the
column specified, based on the key column values that are identified. If more
than one row satisfies the key requirements specified, then this function
returns the first row only. If the read is unsuccessful, then this function returns
the default value specified.

� The short syntax format is used to return the value of the specified column
from a row retrieved by a previous %GETCOL function invocation. The short
syntax lets you retrieve more than one column from a table (that was read
previously using the %GETCOL function), without reading the table again. The
previous %GETCOL function invocation must be for the same log entry during
continuous mirroring or the same row during refresh. Here are some
examples:

– A client wants to denormalize their target table by joining information from
various tables. They use their detail table as the main table to be
replicated. They then perform various joins to gather information not
included in the detail record, such as customer name, address, and
telephone number.

Joins: Joins performed at the source occur at the time InfoSphere CDC reads
the transaction log. The data retrieved by the join matches the current values
in the join table and might be the same values as when the original log
entry occurred.
 Chapter 5. InfoSphere CDC features and functionality 81

– A client wants to keep records on a target table synchronized with
changes made to master tables on a source database. In this case, the
main table is replicated by InfoSphere CDC using standard apply and joins
to gather the additional data from the master tables. Anytime a change to
the main table is replicated, the joins are performed to gather the
additional data from the master tables. The master tables are replicated to
the target table, but use the Consolidation One to Many apply method. As
changes to the master table are replicated, InfoSphere CDC updates as
many records as necessary in the target table to correspond to the new
master table values.

5.1.4 User exits for customizations

A user exit is a processing point where a user written program can be started.
The program itself is called a user exit, and can return a result. This mechanism
allows defining operations that need to be performed at the user exit point. The
logic defined in the user written program determines the actions that occur.

User exits can be used to:

� Define data transformations for a specific working environment

� Handle business requirements not handled by the predefined column
functions provided by InfoSphere CDC

� Perform operations or provide notification in response to specific product
conditions

A user exit lets you define a subroutine that InfoSphere CDC can start when a
predefined event occurs. The following two types of user exits are available:

� Table-level user exits run a set of actions before or after a database event
occurs on a specified table.

� Subscription-level user exits run a set of actions before or after a commit
event occurs on a specified subscription.

Subscription-level user exits can work in tandem with table-level user exits to
track which table-level user exits were started during a transaction. The
subscription-level user exit could then use that information to apply actions
based on the tables in the transaction.

User exit examples: User exit examples are further described in 9.7, “User
exits” on page 369.
82 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

5.1.5 Considerations for using transformational functionality

Some things to consider when using InfoSphere CDC transformational
functionality are:

� Depending on the InfoSphere CDC engine you have installed, some column
functions might not be available.

� Column function syntax may differ between platforms. For example, the
syntax for %GETCOL is different for the IBM i platform than the one used by DB2
on Linux, UNIX, or Windows.

� Names for column functions are not case-sensitive.

� For some column functions, large object (LOB) columns cannot be specified
as a function parameter.

� Character literals can be specified in their internal numeric representation, as
parameters for column functions. To accomplish this task, use the
double-angled bracket notation (<< >>). This notation allows both printable
and non-printable characters to be used. Specifying character values as
decimal integers can represent either American Standard Code for
Information Interchange (ASCII) or Extended Binary Coded Decimal
Interchange Code (EBCDIC) characters.

5.2 Replication modes

InfoSphere CDC provides three modes of replication:

� Refresh
� Continuous
� Scheduled End (Net Change)

These modes provide flexibility about how and when to replicate. Refresh
replication provides bulk copy functionality. Continuous and Scheduled End
replication provide log based and mirroring functionality.

5.2.1 Refresh

The InfoSphere CDC refresh operation is the replication mode used to capture a
complete copy of the data in the source table and transfer that data to the target
table. Each refresh applies all features of replication (such as row and column
filtering, column mappings, and so on) during the transfer.
 Chapter 5. InfoSphere CDC features and functionality 83

Because refresh is an operation applied to the source table, the manner in which
refreshed data is applied to the target table depends on the type of table apply
method (such as standard and audit). Before the source table data is transferred,
the target table may be cleared and indexes dropped before the refresh, and
rebuilt following the refresh. If the target table is cleared, the data in the source
and target tables is synchronized after completion of the refresh.

Typically, a refresh is performed only once to initialize target tables by
transferring all the data in the source table or if configuration changes are made
that require a refresh. Mirroring is then used to replicate changes as they occur.
A refresh can be used to provide snapshot images of tables for use in reporting
or for tables that are changed by batch loads only. Refreshes can be scheduled
to run at specific intervals or times.

Some factors that determine the amount of time required to complete a
refresh are:

� The size of the tables to be replicated and the number of columns and rows
selected for replication

� The width of the rows in number of columns

� The existence of Large Object (LOB) data types

� The amount of processing involved with replication (such as derived
expressions and translations)

� The speed and bandwidth of communications lines

� The number of indexes on the target table

Canceling a refresh can be done at any time, but should only be done to interrupt
a refresh. A controlled shutdown ends the process after the current table finishes
its refresh activities. A controlled shutdown is the suggested method to end a
refresh process. An immediate shutdown ends refresh processes without
completing the refresh. This action might require the refresh to be redone to
guarantee data consistency between the source and target tables.

Tables can become out of synchronization for various reasons, including the
following issues:

� Parked tables: If a table is parked from replication to make changes (such as
updating the definition of a source table), and the changes on the source
table are no longer being replicated, the target table may become
inconsistent with the source table.
84 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Configuration changes: A refresh might be necessary when a set of
subscriptions is promoted from a test environment to a production
environment. The promotion operation may add new transformations or other
table mapping changes that require the source and target tables to be
refreshed to prepare for mirroring.

� Maintenance operations: For large bulk SQL operations performed during
maintenance windows on the source table that affect a majority of the rows, it
might be faster to resynchronize using refresh. Refresh might be faster than
mirroring to replicate millions of changes due to the ability to bulk load rows
into the target database.

InfoSphere CDC refreshes all of the flagged tables within a single subscription as
one sequential operation that runs to completion. Each table is refreshed
individually one at a time until all flagged tables have finished refreshing. Refresh
is an operation that applies to a single subscription, so while one subscription is
refreshing, other subscriptions are not affected. They may continue mirroring
data for different tables or refreshing tables as required. To perform a parallel
refresh, multiple subscriptions can be used.

InfoSphere CDC offers two primary types of refresh operations: Standard
Refresh and Differential Refresh.

� A standard refresh results in a complete copy of the data in a source table
being sent to the target table. This type of refresh is typically performed to
bring the entire source and target tables into synchronization.

� A differential refresh updates the target table by applying only the differences
between it and the source table. This type of refresh is typically performed
when the target table is already synchronized with the source table. With a
differential refresh, you can choose to perform a refresh only, refresh and log
differences, or log differences only.

The order in which data is retrieved from the database during a refresh depends
on the type of refresh performed. During a standard refresh, no ORDER BY sort
is used; the database determines the order in which the data is returned. During
a differential refresh, InfoSphere CDC queries the database using an ORDER
BY sort on the table keys chosen in the table mapping to sort the source and
target tables and determine their differences.

When a refresh is performed with multiple tables, the order in which each
individual table is refreshed is based on the group order, as set in the Refresh
Order option. If no Refresh Order is set, then tables are refreshed in alphabetical
order. After a refresh has successfully completed, the subscription can be
restarted for mirroring. InfoSphere CDC then processes the backlog of changes.
 Chapter 5. InfoSphere CDC features and functionality 85

If Referential Integrity (RI) is in effect on the target tables being replicated to, it is
important to set the refresh order. If the tables are refreshed in the incorrect
order, database failures can result when InfoSphere CDC tries to rebuild the
foreign key constraints. It is also important to make sure all tables that make up
the RI are part of the same InfoSphere CDC subscription.

Here are examples of RI usage:

� Perform initial synchronization of the source and target tables.

� Restore synchronization following the loss of data integrity on the target table.

� Identify differences between the source and target table using
differential refresh.

Subset refresh
Both a standard refresh and a differential refresh can be further refined through
the use of a WHERE clause to only include rows within a specified range. This
situation is useful for tables where only the most recent data requires a refresh.
This feature requires one of the following conditions be met:

� The table capture point has been set, either explicitly or through the table
having been mirrored.

� The scraping point for the subscription has been set (using the SETLOGPOS
command or dmsetbookmark command where applicable).

Here are examples of when to use subset refreshes:

� When the source table's size precludes refreshing the entire table in
one process

� When only the most recent data needs to be refreshed

� When a particular subset of the data needs to be refreshed, such as a
particular customer or part

Differential refresh
A differential refresh updates the target table by applying only the differences
between it and the source table. Instead of the target table being cleared at the
start of the refresh and repopulated with data, the differential refresh compares
each row in the target table with each row in the source table to identify missing,
changed, or additional rows. The primary advantage of the differential refresh is
that the target table stays online during the refresh operation.
86 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

There are three possible methods for the differential refresh:

� Refresh Only: Performs a differential refresh by changing any target rows that
differ from the source rows.

� Refresh and Log Differences: Performs a differential refresh and also creates
a log table in the target replication engine metadata to track all changes
during the refresh. The log table is identical to the target table, with the
addition of a column to indicate the actions taken during the refresh, such as
inserting a row, deleting a row, or updating a row. For an update, both the
source and target row images are logged. This log table is created in the
same database and table space as the TS_CONFAUD table (or
DMMD_DMCONFAUD on z/OS), with the same owner as the metadata. The
name of the log table is created by combining the subscription name, the
target table name, and the refresh start date and time.

� Only Log Differences: Creates and populates a log table in the target
replication engine metadata to identify all differences between the source and
target tables. The target table is not updated. This method allows you to
evaluate what the differences are between the target and the source. If you
then decide to refresh the table, you can go back to the subscription and
select Refresh Only to update the target table or update the target table
manually based on the contents of the log table.

Performing a differential refresh has some requirements and restrictions:

� Differential refresh is only available for tables that use Standard replication.

� The collation sequence of the source and target tables must be identical.

� Derived columns on the source table are not supported.

� Any target columns that are mapped to derived expressions, constants, or
journal control fields are ignored.

� The key columns of the target table must be mapped directly to columns on
the source table.

Differential refresh sends all the data from the source to the target to perform the
compare. Clients might want to consider combining the differential refresh with
subset refresh to reduce the impact and timing of a full differential refresh. The
differential refresh can also be performed in its own subscription, minimizing the
impact to existing subscriptions.

5.2.2 Continuous mirroring

Continuous mirroring replicates changes to the target on a continuous basis. It is
used when business requirements dictate replication to be running continuously
without a clearly defined reason to end replication now.
 Chapter 5. InfoSphere CDC features and functionality 87

Continuous mirroring can be ended with the following options:

� Normal: Completes in-progress work and then ends replication. This option
might take some time if there are in-progress transactions. The subscription
ends in a confirmed and stable state.

� Immediate: Stops all in-progress work and then ends replication. Starting
replication after using the Immediate option can be slower than using the
Normal option.

� Abort: Stops all in-progress work and then ends replication rapidly. This
option is the fastest way to end replication. Starting replication after using the
Abort option can be much slower than using the Normal option.

� Scheduled End: Processes all committed changes to the indicated point in
the database log and then ends replication normally. You can use the current
date and time (Now), a specified date and time, or a specific log position.

5.2.3 Scheduled end (net change)

Scheduled end (net change) mirroring replicates changes to the target up to a
user specified point in the source database log and then ends replication. It is
used when business requirements require data replication periodically and a
clearly defined endpoint for the state of the target database.

Scheduled end (net change) mirroring allows replication to end based upon the
following points in your source database log:

� Current time (or now): This option can be used for subscriptions that are
latent. The subscriptions replicate from their bookmark position up to the log
position at the time the subscription is started. This option is useful when
working with subscriptions that you want to guarantee have finished
processing the logs before ending.

� User specified date and time: This option guarantees that the subscription
processes all transactions up to a certain time of the day. Typically this option
is used when the user wants to maintain a set amount of latency between the
source and target. An example is a reporting instance that is kept 24 hours
behind the production database.

� User specified log position: This option allows the user to replicate data from
one log position to another. An example would be where the user needs to
recover transactions up to a certain log position.

These user specified end points ensure that the target database is in a known
state when replication ends.

Ending replication allows preparation for transitional activities in business
environments and allows moving to the next step in the business process.
88 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

5.3 Filtering

InfoSphere CDC provides filtering at both the row and column level. Row level
filtering can be used to include or omit rows in the replication flow. Critical
columns can be used to filter rows based upon changes to specific columns.
Column level filtering can be used to limit which columns are replicated.

5.3.1 Row level

Row level filtering supports both standard InfoSphere CDC and SQL SELECT
WHERE expressions. Standard InfoSphere CDC expressions include column
functions, arithmetic and Boolean operators, column names, and journal control
fields. All row selection expressions must return a Boolean result.

The following are valid row selection expressions:

� 1 = 1

This expression always returns a true result, and so either all or no rows are
replicated. The Boolean constants TRUE and FALSE are not supported. An
example is NAME = 'Monica Flanagan'.

� (SALES < 10000) OR (SALES > 90000)

Use parentheses to group Boolean expressions. Short forms, such as SALES
< 10000 OR > 90000, are not allowed. In this case, you must specify
SALES twice.

� NOT((AIRPORT = 'ATL') OR (AIRPORT = 'CLT'))

Short forms, such as NOT(AIRPORT = 'ATL' OR 'CLT'), are not allowed.

� %RTRIM(DEPT) = 'IT'

Column manipulation functions can be used in row selection expressions, and
they can be applied to any operand in a Boolean expression.

� PRINCIPAL *(1 + INTRATE) > 20000

Basic numeric operators, such as multiplication (*) and addition (+), can be
included in row selection expressions.

� %IF(COUNTRY = 'US', PRICE, PRICE * 1.2) > 50

The %IF column function does not allow you to return a Boolean result, and so
the result that is returned by the function must be compared with another
value in the row selection expression.
 Chapter 5. InfoSphere CDC features and functionality 89

� STATE IN ('CA', 'AZ', 'AL', 'GA', 'CT')

The IN operator is valid in SQL SELECT WHERE clauses. This example can be
used when working with an InfoSphere CDC product that supports this type
of expression.

� &JOB = 'QTRPURGE'

Journal control fields can be used to identify transaction-specific information.
In this scenario, &JOB can be used to identify a specific job and then include or
omit records pertaining to the job.

InfoSphere CDC provides functionality to declare critical columns. You can use
critical columns to control the updates replicated and reduce the workload on the
network and target database. When you select a column as critical, InfoSphere
CDC only replicates update operations when any critical column value
has changed.

Here is an example row level filtering:

Replication is wanted only when the account balance is updated in the customer
account table. In this scenario, the CUST_ACCT_BAL column is selected as a
critical column. InfoSphere CDC only replicates this row when there are updates
made to the CUST_ACCT_BAL column.

Period end processing reads all of the records in a very large table and updates
a time stamp field. If the time stamp field is not turned off as a critical column,
InfoSphere CDC replicates the entire table, row by row. By making the time
stamp field non-critical, that situation is avoided.

5.3.2 Column level

By default, InfoSphere CDC replicates all mapped and unmapped source
columns to the target table, because unmapped source columns could be used
on the target in derived expressions or used by a user exit. If there is a source
column that should be excluded from replication, it can be cleared on the Filter
Tab in Management Console. If you configure column level filtering, be aware
that a change in a non-replicated column causes the change to be dismissed by
CDC, saving bandwidth.

Examples of when columns might be excluded are:

� The target table contains only 20 columns of the 150 columns in the source
table. By selecting only the 20 columns required, the amount of data
replicated to the target is reduced, saving network bandwidth and
processing impact.
90 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� The source table contains confidential information such as social security
numbers and salary. The target table should not have access to this
information, so these columns are excluded from replication.

� Changes might occur only to columns excluded by the column level filter. In
this case, InfoSphere CDC does not replicate the change, saving bandwidth.

5.4 Apply methods

InfoSphere CDC provides six apply methods that can determine how replicated
data is applied to the target table. These methods are Standard, LiveAudit,
Adaptive Apply, Summarization, Consolidation One to One, and Consolidation
One to Many.

5.4.1 Standard

Under Standard replication, InfoSphere CDC replicates the effect of the source
operation to the target table. A row insert operation on the source table would
result in an inserted row on the target table, and so on.

Management Console provides two mechanisms for mapping using Standard
replication.

� One-to-One Mappings: Map multiple source tables to multiple target tables
where the source and target tables share a table structure and similar
table names.

� One table mapping (Standard): Map one source table to one target table
using standard replication. These tables can have different table structures
and names.

Standard replication can be used for scenarios such as the following:

� Synchronize data between two databases to allow two different environments
to work on the same data. This scenario can be used during parallel testing
of applications.

� Provide a subset of source data to a reporting instance. This scenario allows
reports to be run against the reporting instance and frees up resources on the
source system.

� Stream data from source systems to a dynamic ODS. This scenario allows
nightly ETL jobs to be performed at the ODS system and frees up the source
systems to run 24x7.
 Chapter 5. InfoSphere CDC features and functionality 91

� Consolidate data from multiple source systems into a single target system.
This scenario provides a single view of the data and reduces the number of
systems required to be accessed for reporting.

� Distribute data from one source system to multiple target systems. This
scenario could allow subsets of data to be distributed to target systems based
upon filtering criteria.

5.4.2 LiveAudit

LiveAudit replication provides an audit trail of source table operations. When
data is replicated using LiveAudit, the target tables contain rows that track insert,
update, delete, and clear (truncate) operations applied to the mapped
source table.

LiveAudit maintains an audit table containing a row for each source operation.
Additional information is included in the target row, such as operation type
(insert / update / delete), time stamp for the transaction, and user that created the
transaction. Journal control fields can be mapped to additional target columns to
meet specific business needs.

With LiveAudit, target tables have the potential to grow to be large. Sufficient disk
space must be allocated or regular maintenance must be performed to
accommodate large subscription tables that ware being used for auditing.

Management Console provides two mechanisms for mapping using
LiveAudit replication.

� LiveAudit Mappings: Map multiple source tables to multiple target tables
using LiveAudit replication.

� One table mapping (LiveAudit): Map one source table to one target table
using LiveAudit replications. This mechanism allows greater granularity of the
options available for LiveAudit mappings.

Examples of where LiveAudit replication can be used are:

� Regulatory requirements to keep audit trails of all operations against the data.

� Change tracking of sensitive information.
92 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Providing operations processed against source data to downstream
applications. For example, an ETL application can use the time stamp values
to determine which operations to process to ensure that target data is
consistent with a specific point in time. The operation type is used to
determine what type of operation needs to be processed.

� Providing test data operations. An application can be used to process the
audit data and generate a “replay” of the operations against a
test environment.

5.4.3 Adaptive Apply

Adaptive Apply replication provides flexibility when replicating operations to
target tables that may not be synchronized with the source tables. With Standard
replication, the operations are database dependant upon the absence (inserts) or
existence (updates and deletes) of the target rows. An insert operation replicated
from the source results in a database error if a matching target row is found
(duplicate key error). With Standard replication, this action results in the
subscription ending.

Adaptive Apply replication provides upsert functionality. For a scenario where a
matching target row is found, the insert operation converts into an update
operation. Replication does not encounter an error and continues. When an
update operation cannot find a matching target row, the operation is converted to
an insert operation. When a delete operation cannot find a matching target row,
the operation is ignored.

Examples of where Adaptive Apply replication can be used are:

� When external applications modify target tables independent of the
source tables.

� When you are restoring the contents of a subscription table from recorded log
entries. By setting the log position to a specific entry or point in time, Adaptive
Apply can be used to populate an empty target table so that it contains the
latest data.

5.4.4 Summarization

Summarization replication allows you to maintain numerical totals in selected
target table columns. Under summarization, the target table is a repository of
numerical data that has been accumulated or deducted in response to source
row level operations transferred by refresh or mirroring activity.
 Chapter 5. InfoSphere CDC features and functionality 93

Accumulation ensures that numeric changes applied to the target column are
directly proportional to changes applied to the corresponding source columns.
Deduction ensures that numeric changes applied to the target columns are
inversely proportional to changes applied to mapped source columns.

Examples of where Summarization replication can be used are:

� Summarization replication could be used to simplify accounting, statistical,
and other business operations that require intensive addition and subtraction
of numeric data. Instead of applying resource-intensive programs to
determine totals from an accumulated stack of transactions, aggregates can
be maintained in a target table as source row level operations are replicated.
As a result, applications designed to generate more complex calculations for
reports and other purposes can work directly with the currently
maintained totals.

� Summarization replications can also be used to create a soft delete
environment. See 5.4.6, “Soft deletes” on page 95 for more information.

5.4.5 Row consolidation

InfoSphere CDC provides two types of row consolidation: Consolidation One to
One and Consolidation One to Many. Row consolidation allows flexibility with
row ownership of the target table.

Using Standard replication, data warehousing can be implemented by
configuring a target table to receive rows from multiple source tables. Each row
in the target table can only be inserted, updated, or deleted by one of the source
tables contributing data to the warehouse. Each row is effectively “owned” by a
source table.

Row ownership by a source table can be too restrictive in some environments.
When multiple source tables need to be merged to create a single target table
row, row ownership does not work. Consolidation One to One replication allows
this merger without the row ownership issues.

Consolidation One to One allows merging different information about a common
entity, such as a person, a customer, or a product part, into a single row on the
target table. It is intended for environments where information about the entity is
scattered across different tables, databases, or servers, but must be centralized
to facilitate report generation, data management, data security, and other
business objectives and activities.
94 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Consolidation One to Many allows data changes to a lookup table to be applied
to all target rows affected by the change. A single change on the source lookup
table might require hundreds, thousands, or more rows on the target table to be
changed. Consolidation One to Many replication gives you the ability to keep the
target rows current with changes not only against the primary source table, but
also changes made to secondary tables used to provide
supplemental information.

Consolidation One to Many reacts to operations in the following manner:

� Inserts: Inserts to the lookup table do not generate operations on the
target table.

� Updates: Updates to the lookup table generate updates to rows matching the
consolidation key value.

� Deletes: Deletes to the lookup table do not generate operations on the
target table.

5.4.6 Soft deletes

InfoSphere CDC provides support for soft deletes. A soft delete is an operation
where the target row is not deleted following a delete operation on the source
row. Instead, the target row is inserted if it does not exist, or updated if it does. A
flag field or entry type field is also updated to indicate that this row was deleted
from the source.

All Databases - Soft deletes can be configured for tables using the
Summarization apply type by completing the following steps:

1. Choose Summarization as the apply type.
2. Add a flag column on the target table (varchar(2)).
3. Do not select any columns for summarization.
4. Map the journal control field &ENTTYPE to the flag column.

Operations on the source row result in the following actions on the target row:

� Insert: InfoSphere CDC attempts to update the row. If the row does not exist,
InfoSphere CDC inserts it, and PT is placed in the flag column.

� Update: InfoSphere CDC attempts to update the row. If the row does not
exist, InfoSphere CDC inserts it, and UP is placed in the flag column.

� Delete: InfoSphere CDC attempts to update the row. If the row does not exist,
InfoSphere CDC inserts it, and DL is placed in the flag column.

� Insert using deleted row key values: The delete flagged target row is
overwritten with the values from the insert and PT is placed in the
flag column.
 Chapter 5. InfoSphere CDC features and functionality 95

5.4.7 Custom apply methods (user exits)

InfoSphere CDC can use user written and maintained user exits to control the
target apply process.

A few examples of where clients have chosen to use user exits to perform
applies are:

� Web Service: A user exit can be used to interface InfoSphere CDC directly
with a web service. The user exit performs the apply process to the web
service while InfoSphere CDC manages scraping the transactions from the
source transaction logs and performs low-level transformations to the data.

� Full Unit of Work to message queue: By default, InfoSphere CDC includes
one operation per message when targeting a JMS message queue. Some
customers want to see the entire Unit of Work within a single message queue.
This action can be facilitated through a user exit when using the InfoSphere
CDC Event Server engine.

� Soft Delete: To use a standard apply process with soft deletes, a user exit is
required. The user exit manages the processing required to not delete the row
and update a flag field. See Example 9-83 on page 383 for more details.

5.4.8 Flat files

InfoSphere CDC can use flat files through the InfoSphere CDC DataStage
engine. With this engine, two options for connecting to InfoSphere DataStage are
available: flat file and direct connect.

With the flat file method, InfoSphere CDC produces a file containing information
about one or more records and database operations. The flat file can be
configured with the Single Record option so that the before and after images are
included together in a single line followed by a delimiter, or with the Multiple
Record option, where each record may occupy two lines (before and after
images of an update).

InfoSphere CDC flat files can be used to quickly and efficiently capture
information from source table transactions and pass the information along to any
ETL engine that can read a flat file. This action allows InfoSphere CDC to
complement many of the ETL products available on the market by:

� Providing transactions capture throughout the day as opposed to at set times

� Providing low impact to the source by reading the transaction logs and not the
tables directly
96 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Removing the need for batch ETL processing on the source that requires
tables locked or users off the system

� Providing transactions for just the data that changed as opposed to having to
read through the entire table

Configurable options for flat files are:

� Location of flat files

� Threshold limits in number of operations or time, which ever comes first, for
hardening the flat file

InfoSphere CDC continues to write to a temporary data file until one of the
threshold limits are met, or in the case of refreshes, after the entire table is
contained in the flat file. After the threshold is met or the refresh is completed,
InfoSphere CDC hardens the temporary data file and make it available for
consumption. It adds a time stamp to the file name.

InfoSphere CDC creates a <Table_Name>.stopped status file when the refresh
operation or mirroring is ended. When InfoSphere CDC restarts, the bookmark is
used to determine where the scrape process should begin in the transaction log,
so no data is lost.

5.4.9 DataStage direct connect

InfoSphere CDC provides integration to connect directly with InfoSphere
DataStage. This action allows:

� Integrated control of both the InfoSphere CDC and InfoSphere DataStage
products

� Template jobs with metadata information to be created and passed from
InfoSphere CDC to InfoSphere DataStage

� Commit status on target through bookmarks

Important: If the refresh or mirroring operation is terminated using the
dmterminate command, the temporary data file may not be hardened and no
<Table_Name>.stopped status files may be generated for the tables in the
subscription. After the replication process is restarted, the subscription uses
the last-saved bookmark to reposition the log reader and start generating new
data files. The temporary file is not cleaned up. To ensure that the temporary
data files are hardened, and the <Table_Name>.stopped status files are
created, use a Normal or Scheduled End shutdown in Management Console,
or a dmshutdown command with the appropriate flags for the severity level.
 Chapter 5. InfoSphere CDC features and functionality 97

� The ability to synchronize the restart point for an InfoSphere CDC
subscription to guarantee no loss of data

� Ability to autostart and securely connect to InfoSphere DataStage jobs

The process for the Direct Connect connection method is similar to the Flat File
connection method. The size and time limits set in the InfoSphere DataStage
Properties dialog box determine when data is committed to the target database.

With the Direct Connect connection method, you can enable the autostart feature
to run in active mode, which allows InfoSphere DataStage to start a job when
appropriate and begin to stream data to InfoSphere DataStage. Running with
autostart enabled requires both InfoSphere CDC and InfoSphere DataStage to
be installed on the same server. If autostart is not enabled, you must start the
DataStage jobs using a different mechanism before the InfoSphere CDC process
can start replicating the changes. You can start the InfoSphere CDC subscription
before starting the DataStage job; the replication waits for the DataStage job to
become active.

Examples of when to use InfoSphere CDC with Direct Connect to InfoSphere
DataStage are:

� As part of the Change Data Delivery (CDD) configuration for using InfoSphere
CDC to replicate multiple sources to InfoSphere DataStage (typical with retail
customers with multiple stores)

� When complex transformations are required to the data through InfoSphere
DataStage

� To optimize the data capture process for InfoSphere DataStage and minimize
the impact to the source database

5.4.10 JMS message queues

InfoSphere CDC Event Server is the target engine used to create XML
documents that are placed into JMS message queues. Using Event Server with
an InfoSphere CDC source engine, transactions can be captured and delivered
to a JMS message queue. The messages are then available to be processed by
any application, such as WebSphere MQ, that can reading a JMS message
queue. The requirement for the ESB application is that it is able to read and
process a JMS message queue.

Options for InfoSphere CDC Event Server are:

� Map source columns to XML elements and attributes.
� Configure the header information for the XML document.
� Load to staging table then convert to XML.
� Perform low-level transformations to the data.
98 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Import and export mapping projects and XML schemas.
� Build XPath expressions.
� Query columns from other tables.
� Set runtime options.

There are two methods for mapping to a JMS message queue:

� Message Destination Mappings: Uses the Map Tables wizard to map a
source table to a JMS message destination. InfoSphere CDC Event Server
receives the row-level operation and transforms this row into XML. The XML
message is sent to a JMS application supported by InfoSphere CDC
Event Server.

� One table mapping of any type:

– Standard: Allows source tables to be mapped to a target table within a
staging database before being converted to an XML document. This type
allows transformations to be done to the data through a user exit on the
target and frees up resources on the source.

– Adaptive Apply: Similar to Standard, but allows for replication to an empty
target table. Adaptive apply functionality converts inserts to updates or
updates to inserts as needed.

5.5 Conflict detection and resolution

Conflict detection and resolution let you detect, log, and act on inconsistent data
on the target. This function ensures that the replication environment handles
data conflicts automatically and in accordance with business rules. Set conflict
detection so that InfoSphere CDC can detect and resolve conflicts as they occur.
As conflicts are detected and resolved, InfoSphere CDC logs them in a conflict
resolutions audit table.

During replication, InfoSphere CDC detects conflicts when you:

� Insert a row and the row's key exists in the target table. This action violates
the unique key constraint.

� Update a row and the row's key does not exist in the target table.

� Update a row and the contents of the rows in the source table and target
table, before the update, do not match.

� Delete a row and the row's key does not exist in the target table.

� Delete a row and the contents of the rows in the source table and target table,
before the delete, do not match.
 Chapter 5. InfoSphere CDC features and functionality 99

InfoSphere CDC does not detect conflicts in target columns that are:

� Populated with expressions using the %BEFORE, %CURR, %GETCOL, %STPROC, and
%USER column functions

� Populated with journal control fields

� Not populated by a value

� Contain a Large Object (LOB) data type

Conflict detection and resolution can be applied to individual columns for tables
configured for Standard replication. There are five possible conflicts and
detection resolutions:

� Source Wins: The source row overwrites the target row. If the target row does
not exist, the source row is inserted. This resolution helps maintain
consistency between the source and target tables.

� Target Wins: The target row remains intact and the source row information
is discarded.

� Largest Value Wins: The largest value for a column is used to determine
whether to use the source row information or the target row information. For
example, if the source row contains a time stamp that is newer than the target
row's value, the source row overwrites the target row. Null values are treated
as the smallest value possible. Therefore, if the target row does not exist, the
source row is inserted. If the source and target values are the same,
InfoSphere CDC resolves the conflict using the Target Wins method where
the target row remains as is.

� Smallest Value Wins: The smallest value for a column is used to determine
whether to use the source row information for the target row information. If the
target row does not exist, InfoSphere CDC uses Null as the smallest value
and the row is not inserted.

� User Exit: When InfoSphere CDC resolves conflicts with a user exit program,
it applies the image returned by the user exit program to the target table. A
user exit program can be configured to specify the row InfoSphere CDC uses
to resolve the conflict on the target table.

Here are examples of when to use conflict detection and resolution:

� Bidirectional replication: Changes can be made to the same data on both
sides of the replication. However, this action could result in conflicts.

� Expected inconsistencies in the data: The target data is not synchronized with
the source data, and business rules need to be applied to record and address
the differences.
100 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Refreshes performed outside of InfoSphere CDC: When an application other
than InfoSphere CDC is used to refresh data, it is common to start InfoSphere
CDC at a log position before the time of the refresh. This action allows
InfoSphere CDC to pick up incomplete transactions not reflected in the data
refreshed. Conflict detection and resolution can be turned on for the
subscription to handle the resulting duplicate transactions. Once past the
refresh point, Conflict Detection and Resolution can be turned off to optimize
throughput.
 Chapter 5. InfoSphere CDC features and functionality 101

102 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 6. Understanding the
architecture

This chapter provides an introduction to the general architecture of IBM
InfoSphere Change Data Capture (InfoSphere CDC). This chapter introduces
some key InfoSphere CDC terms, or specify the usage of terms within
InfoSphere CDC where they have a specific meaning within the context of
InfoSphere CDC.

An architecture is a set of defined terms and rules that are used as instructions to
build products. In computer science, architecture describes the organizational
structure of a system. An architecture can be recursively decomposed into parts
that interact through interfaces, relationships that connect parts, and constraints
for assembling parts. Parts that interact though interfaces include classes,
components, and subsystems.

The major components of InfoSphere CDC are described here to provide an
orientation to the main parts and pieces of the product and provide an
understanding of how they interact to form the whole of the InfoSphere CDC
replication system.

In addition to this high-level view, this chapter describes some more fundamental
architectural concepts within InfoSphere CDC and go into some detail regarding
the implementation of some of the key components, to provide you with a more
in-depth understanding.

6

© Copyright IBM Corp. 2012. All rights reserved. 103

However, this chapter does not describe specific features, functionality, and
usages of InfoSphere CDC in this chapter; those descriptions are the purview of
the other chapters in this book. And there is a great deal of information that is
also available in the product documentation. This chapter also does not describe
platform-specific topics to any great degree, other than to point out some of the
differences in their implementation of InfoSphere CDC.

By the end of this chapter, you should have a good understanding of the major
components of InfoSphere CDC and the nuances of how it operates. With this
understanding, you are able to envision how the product could be set up in your
environment to move your data efficiently and rapidly from one database system
to another one.

6.1 Component overview

InfoSphere CDC assumes that you have a supported database that has tables
that you want to replicate to a target. This replication could be accomplished two
ways:

� In snapshot form, where all current data in a table or tables at some point is
moved to a target.

� Capturing changes to the data as soon after they occur and moving only the
changed data to the target, either as it is or with specific changes made to the
data. This replication process could also include some metadata about
the changes.

To accomplish this replication, the InfoSphere CDC implementation includes an
InfoSphere CDC source engine and an InfoSphere CDC target engine to send,
receive, and apply data changes. Most InfoSphere CDC engines can serve as a
source engine, capturing database changes from the source database, and as a
target engine capable of receiving change data and applying it to the designated
target database or other destination, such as DataStage or a JMS queue.

An InfoSphere CDC engine is also commonly referred to as an InfoSphere CDC
instance because all the work associated with the engine is held in a process or
set of operating system processes that are combined. From the Management
Console and Access Manager perspective, an InfoSphere CDC engine is
a data store.
104 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Only source and target engines are required for replication to occur, but there are
additional configuration and control interfaces used primarily for configuration,
control, and monitoring (Figure 6-1).

Figure 6-1 Replication landscape

Here are brief descriptions of the InfoSphere CDC components:

� Source and target InfoSphere CDC engines: These engines send, receive,
and apply data changes. An InfoSphere CDC engine is also commonly
referred to as a InfoSphere CDC instance. All of the work associated with the
engine is held in a process or set of operating system processes that are
combined. From the Management Console and Access Manager perspective,
an InfoSphere CDC engine is seen as a data store.

� InfoSphere CDC metadata: Configuration information that is associated with
a specific InfoSphere CDC instance, such as database connection
information, subscriptions, and table mappings. The subscription and table
mapping definitions are distributed across the source and target InfoSphere
CDC engines.

CDC Server
Command Line Interface

Source DB Target DB

Source CDC
engine

Target CDC
engine

Management Console
GUI

Management Console
Command Line Interface

Replication

CDC
metadata

CDC
metadata

Java API

InfoSphere CDC
API

CDC
Access Server CDC Server

Command Line Interface
 Chapter 6. Understanding the architecture 105

� InfoSphere CDC Server command-line interface: Native commands that are
run on the server that runs the InfoSphere CDC engine. These commands
start and stop the entire InfoSphere CDC instance and subscriptions. This
command-line interface (CLI) can only control the engine that provides
the commands.

� InfoSphere CDC Access Server: This service controls all configuration,
control, and monitoring access to the InfoSphere CDC engines other than the
InfoSphere CDC Server CLI. The InfoSphere CDC Management Console
GUI, Management Console CLI, and Java API all pass through the
InfoSphere CDC Access Server to obtain access to the source and target
InfoSphere CDC engines. Access Server also has a CLI to control the access
of users to the various engines in the environment, but this section does not
describe this tool. For more information about the Access Server CLI, see the
InfoSphere Management Console Administration Guide at the following
address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cd
cdoc.mcadminguide.doc/concepts/overview_of_cdc.html

� InfoSphere CDC Management Console GUI: The most commonly used
interface to configure and control InfoSphere CDC. All configuration, control,
and monitoring activities are contained in this interface. The Management
Console GUI connects to the InfoSphere CDC engines through the
InfoSphere CDC Access Server.

� InfoSphere CDC Management Console Command Line Interface: A less
deployed but useful interface to control InfoSphere CDC operations. The
Management Console CLI connects to the InfoSphere CDC engines through
the InfoSphere CDC Access Server.

� InfoSphere CDC API: This interface is sometimes used in large and complex
environments. The InfoSphere CDC API provides full control over
configuration, control, and monitoring by using Java classes and methods.
This interface connects to the InfoSphere CDC engines through the
InfoSphere CDC Access Server.

The Management Console GUI, Management Console CLI, and InfoSphere
CDC API all must connect to the Access Server first before being able to do
anything with the InfoSphere CDC engines. When connecting to the Access
Server, a user name and password must be provided, which controls the access
level of the user.
106 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.mcadminguide.doc/concepts/overview_of_cdc.html

6.1.1 InfoSphere CDC instances

An InfoSphere CDC instance is a change data capture process that is associated
with a particular database instance of a specific type (for example, DB2 or
Oracle), with a message queue (InfoSphere CDC Event Server), or with IBM
DataStage. There are InfoSphere CDC engines available for a wide range of
database products and versions, on a wide variety of hardware platforms and
operating system environments. An instance can handle both the source and
target sides of replication, and can simultaneously be both a source and a target.
For example, in a three-tiered scenario, InfoSphere CDC instance A captures
change data from database X and sends it to InfoSphere CDC instance B acting
as a target and applying the changes to database Y. Instance B can also act, at
the same time, as a source that scrapes the logs for the same or a different set of
tables and sendd the change data to InfoSphere CDC instance C as a target,
which applies the change data to database Z.

An InfoSphere CDC instance has a CLI consisting of native commands that are
run on the server that runs the InfoSphere CDC engine. These commands start
and stop the entire InfoSphere CDC instance and subscriptions. The CLI can
only control the engine that provides the commands. Many of the commands that
can be run through this CLI can also be run through the Management Console
interface.

In addition, each InfoSphere CDC instance has a metadata store specific to the
instance. The configuration metadata that is associated to a specific InfoSphere
CDC instance includes such information as database connection information,
subscriptions, and table mappings. It is important to know that the subscription
and table mapping definitions are distributed across the source and target
InfoSphere CDC engines.
 Chapter 6. Understanding the architecture 107

After InfoSphere CDC has been installed, one or more instances can be created,
with each instance running as a separate process. Instances are created after an
installation of InfoSphere CDC, or by running (for Java-based engines) the
InfoSphere CDC configuration tool dmconfigurets and adding an instance
(Figure 6-2).

Figure 6-2 Creating a instance
108 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

An instance can be controlled (started and stopped) from the Configuration Tool
as well (Figure 6-3). There are separate InfoSphere CDC command tools that
can also be used for this purpose, but the Configuration Tool is a convenient
interface for this task.

Although the GUI interface to the configuration tool is shown here, there is also a
console version for cases where it is preferred or where a GUI cannot be used.

Figure 6-3 The InfoSphere CDC configuration tool

An InfoSphere CDC source instance and a target instance are all that is required
to run InfoSphere CDC to capture change data and move it to a target after the
system has been configured.

Because InfoSphere CDC incorporates a wide set of features and functionality,
configuration is an important aspect of the product. One of the key modules in
InfoSphere CDC is the Management Console, a GUI tool that runs on Microsoft
Windows and is used to define what data on the source side is replicated, and
how and to where it is replicated.

In addition to configuring InfoSphere CDC, there are also operational aspects of
the Management Console, such as starting and stopping of replication activity,
and monitoring activity while it is in process.
 Chapter 6. Understanding the architecture 109

As a graphical user interface, the Management Console makes many otherwise
complex tasks intuitive and straightforward. InfoSphere CDC also provides other
tools that can be used for these tasks as well, for example, when you want or
must automate some aspects of both configuration and control of a replication
environment. These additional interfaces to InfoSphere CDC are described
elsewhere in this chapter, and in the product documentation.

Although the basic tasks of developing and administering an InfoSphere CDC
replication environment is made straightforward by the Management Console,
the Management Console is a powerful tool that is likely to b used by multiple
personnel within an organization. You should plan and assign privileges and
roles appropriately. In a replication system, there might be multiple InfoSphere
CDC source engines and target instances, which might be configured and
controlled by one or more Management Console installations.

The last major component of InfoSphere CDC is the Access Server, which
serves as a relay point between InfoSphere CDC instances and Management
Console. Access Server knows about InfoSphere CDC data stores and
InfoSphere CDC users, both defined in the Management Console. An InfoSphere
CDC data store is essentially an InfoSphere CDC instance seen through the
Management Console GUI. It is a source of changed data or a target that
consumes that data. Users have specific types (which define the tasks they may
perform) and are attached to specific data stores. As such, Access Server serves
as the validation point for Management Console user logins.

Access Server can run on a separate machine than the InfoSphere CDC engine
(and usually does), and is supported on Linux, UNIX, and Windows platforms.

6.1.2 Interoperability between the InfoSphere CDC components

InfoSphere CDC is designed to allow different versions of the product to work
together. As a heterogeneous replication solution, a version of InfoSphere CDC
for DB2 on System i must, as an example, be able to replicate to and from
InfoSphere CDC for Microsoft SQL Server running on Windows Server 2008. In
addition, InfoSphere CDC Access Server must be able to communicate with both
components, and this is true for all InfoSphere CDC versions that can serve as a
replication source or target. As expected, there are limits to this cross-release
interoperability, and matrixes of compatibility are readily available in the
product documentation.
110 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

6.2 Management Console fundamentals

InfoSphere CDC Management Console is a Java-based and rich client interface
for an InfoSphere CDC replication system, and consists of four major functional
subdivisions:

� Access control
� Configuration
� Operation
� Monitoring

It is also available as a command-line interface (CLI). The Management Console
connects to the InfoSphere CDC engines through the InfoSphere CDC
Access Server.

Multiple Management Consoles may be concurrently active for the same system,
allowing a team approach to both developing and controlling a replication system
with InfoSphere CDC in daily operations. Only one Management Console may
be active on a particular machine, and team members should have Management
Console installed on their own workstations.

This section describes Management Console concepts to provide a high-level
overview of the functionality of InfoSphere CDC, and a framework for the
introduction of some key architectural concepts. This section does not describe
specific details about the use or operation of Management Console, or specifics
of configuration options. For more information, consult the online documentation
installed with the product, or visit the InfoSphere CDC Knowledge Center for
InfoSphere CDC 6.3 at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r3m3/index.jsp

There is also an InfoSphere CDC Knowledge Center for InfoSphere CDC V6.5 at
the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp
 Chapter 6. Understanding the architecture 111

http://publib.boulder.ibm.com/infocenter/cdc/v6r3m3/index.jsp
http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/index.jsp

6.2.1 Access Manager Interface

The Access Manager Interface in Management Console creates and configures
InfoSphere CDC data stores, and creates InfoSphere CDC users and associate
them with specific data stores (Figure 6-4).

Figure 6-4 Access Manager Interface
112 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Data stores
To design a replication configuration, InfoSphere CDC needs to have access to a
source database from which it captures change data, and know the target to
which the change data is delivered. An InfoSphere CDC data store is an
InfoSphere CDC component that describes a source or target system, the host
name on which InfoSphere CDC is running, and a database user ID and
password for the system. In operation, InfoSphere CDC replicates to or from a
data store. A data store is essentially a representation of an InfoSphere CDC
instance (Figure 6-5).

Figure 6-5 Data store component
 Chapter 6. Understanding the architecture 113

InfoSphere CDC users
The Access Manager component of InfoSphere CDC allows the creation and
control of InfoSphere CDC users.

There are distinct roles for users. One role is the System Administrator role,
which can optionally create and manage data stores and users. Two other roles
are the Operator and the Monitor roles, which can view replication state and
status, view statistics, and events and table mappings, but cannot start or stop
replication or perform any configuration.

Users are associated with data stores, and a user's privileges are active for the
data stores with which they have been associated.

6.2.2 Configuration Interface

The Management Console configuration interface is used to define what tables
from a source system are replicated, in what way (that is, what if any changes
should be applied to the data), and which tables on the target system are
recipients of the source data.

Types of replication
The two main types of replication in InfoSphere CDC are refresh and mirroring.

Refresh
A refresh operation, also known as a snapshot, generally involves a truncation of
a target table and the insertion of the rows in the source table to the target. Under
the heading of Refresh, there is a refresh operation called Differential Refresh,
where differences between the source and target tables are applied to the target,
bringing the two into the same state in a different manner from a full refresh. This
type of refresh also has the option of logging any changes that are found and
applying them, or logging the differences while not applying any of the changes
required to make the source and target identical. There is also a range refresh
where only rows from a specified range are brought over to the target. An
InfoSphere CDC Refresh operation does not involve capturing change data from
the source database log file, but rather reads from the source table and sends
rows across to the target as inserts.

Mirroring
Mirroring involves the capture of change data from the source database log files,
and moving the change data over to the target. Under the heading of mirroring,
there is the Mirror Continuous option, where an InfoSphere CDC source engine
runs continually, capturing change data on an ongoing basis and moving it to the
target engine that is also continuously running.
114 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

There is also Mirroring Scheduled End where mirroring is run periodically to
capture and move change data since the last time InfoSphere CDC was run.

Having a subscription in mirroring mode means that InfoSphere CDC tracks
change data for the subscription. When log entries are read for tables in the
subscription that have a Mirroring mode, they are processed and sent to the
target (when a commit is read for the transaction of which the change is part.) If a
table is not going to be mirrored, putting it into a state of Refresh Park ensures
that it has no impact on mirroring activity. When a table is set to Mirroring mode,
InfoSphere CDC enables additional logging on the table. When you set a table to
Refresh Park, additional logging is disabled, and the stored bookmark position
is discarded.

For the InfoSphere CDC engine on z/OS, additional logging (DATA CAPTURE
CHANGES) is enabled when the table is first selected for replication (if not
already configured on the table). Logging is turned off when the table is removed
from a subscription, provided it is not included in other subscriptions.

A common way to begin replicating a table is to set it to refresh before mirroring.
This action performs a refresh of the target table so that it is initially synchronized
with the source, and when this action completes, mirroring
automatically commences.

Subscriptions
A subscription is a logical container that describes a replication configuration
from tables in a source data store to a target data store. All tables in a
subscription are kept synchronized together. In addition to metadata about the
subscription as a whole, such as latency thresholds for notification, a
subscription consists of replication table mappings. A table mapping maps one
source table to one target table, and a source table may be mapped once in any
subscription. A table mapping also defines the type of replication (such as
mirroring or refresh). In the place of a source column, you can have an
expression or a Journal Control Field, which is a value derived from the source
log file related to the operation, such as the record modification time or record
modification user.

A subscription should group tables in such a way as to maintain referential
integrity. For example, if table T1 has a foreign key that references table T2 and
these tables are mapped to corresponding tables T1 and T2 on the target that
have the same RI constraints, then these mappings should be in the same
subscription. Within a subscription, operations are applied on the target in the
same order that they are run on the source. It is important to understand that
change data replicated as part of a subscription are all committed in the same
transaction, thus ensuring data consistency.
 Chapter 6. Understanding the architecture 115

There are many other powerful features that can be configured, such as row
filtering based on some criteria or data translations or wanted encoding changes.

A subscription is shown in Figure 6-6.

Figure 6-6 InfoSphere CDC subscription

For ease of administration, InfoSphere CDC subscriptions can be contained
within a Management Console project. A project is not a InfoSphere CDC
component, but a way to group subscriptions within the Management Console. A
Management Console project is transferable between Management Console
installations using import / export.

You might need to have more than one person modify an InfoSphere CDC
configuration at the same time, and for this reason, subscriptions can be locked
for editing to prevent collisions among multiple users operating with different
instances of Management Console.

CDC Configuration Metadata

CDC Instance1
Port 10201

Source
Database:
Table S1
Table S2
Table S3
Table S4

Host: ABC

Metadata Store

CDC Instance2
Port nnnnn

Target
Database:
Table T1
Table T2
Table T3
Table T4

Host: DEF

Metadata Store

CDC Instances CDC Subscriptions

Subscription A:
Source Table S1 Target Table T1
Source Table S2 Target Table T2

Subscription B:
Source Table S3 Target Table T3
Source Table S4 Target Table T4

Subscription Z:
Source Table Sn1 Target Table Tn1
Source Table Sn2 Target Table Tn2
116 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The Management Console Configuration interface is used to create and
configure subscriptions, which map source tables to target tables (Figure 6-7).

Figure 6-7 Management Console configuration interface

6.2.3 Monitoring Interface

One of the properties of a mapping within an InfoSphere CDC subscription is its
replication method, which can be set to either Mirror or Refresh (the replication
method can be changed using Management Console). After a subscription has
been fully set up, it is necessary to start the replication activity, and have
InfoSphere CDC begin replicating data.

There are several means of accomplishing this task, but the Monitoring interface
of Management Console is the most commonly used means. Other means
include the InfoSphere CDC engine command-line tools and the Management
Console API.
 Chapter 6. Understanding the architecture 117

A subscription may be started in Refresh or Mirroring mode. In Refresh mode,
table mappings that have a replication method of Refresh, and tables with a
replication method of Mirroring that have been flagged for refresh, are refreshed
one at a time until all the refreshes have completed. When starting in Mirroring
mode, any tables mappings that have been flagged for refresh are refreshed
before the start of mirroring replication.

While the subscription is replicating, there might be other subscriptions defined t
are in an idle or inactive state.

The Management Console Monitoring interface can be used to initiate Refresh
operations and start mirroring (Figure 6-8).

Figure 6-8 Refresh

When Refresh or Mirroring begins, the status of the subscription in the
Monitoring interface changes to reflect the replication state.

The Management Console Monitoring interface provides many monitoring views
of mirroring activity and InfoSphere CDC events, and is shown in the Monitoring
interface. If you click Collect Statistics, you can monitor replication activity in
terms of operations or bytes, latency alerts are shown, you can view a graph of
latency or operations, and view the InfoSphere CDC event log for
detailed messages.
118 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

InfoSphere CDC provides other mechanisms for starting and stopping mirroring
activity, but Management Console provides a simple intuitive tool that serves
most needs.

Figure 6-9 Monitoring interface

6.2.4 InfoSphere CDC API

Sometimes used in large and complex environments, the InfoSphere CDC API
provides full control over configuration, control, and monitoring with Java classes
and methods. This interface connects to the InfoSphere CDC engines through
the InfoSphere CDC Access Server, and can be used to enable automated
configuration and control. Further information about the use of the API is in 9.1,
“Options for managing InfoSphere CDC” on page 232.
 Chapter 6. Understanding the architecture 119

6.2.5 Access Server fundamentals

Access Server is a service that controls all configuration, control, and monitoring
access to the InfoSphere CDC engines other than the InfoSphere CDC Server
CLI. The InfoSphere CDC Management Console GUI, Management Console
CLI, and Java API all pass through the InfoSphere CDC Access Server to obtain
access to the source and target InfoSphere CDC engines. Access Server also
has a command-line interface to control access of users to the various engines in
the environment. It supports the running of multiple Management Consoles. For
more information about the Access Server CLI, see the InfoSphere Management
Console Administration Guide at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.mcadminguide.doc/concepts/overview_of_cdc.html

6.3 The InfoSphere CDC engine

Because InfoSphere CDC is a heterogeneous product (it can replicate between a
wide range of hardware platforms, operating systems, and database products),
there are a few different types of engines, all of which can act as a source or
target. Because the internal architectures vary to some degree, they are
described separately in this section after this section describes the InfoSphere
CDC bookmark concept that is common to all of the types.

6.3.1 Bookmarks

The source database system can have many independent connections making
concurrent changes to the data. At any time, one or more of these connections
may have an open transaction containing all the changes that have been made
on that connection since it last committed or rolled back. All these uncommitted
changes also have been written to the database log.
120 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.mcadminguide.doc/concepts/overview_of_cdc.html

InfoSphere CDC maintains these uncommitted changes in its Transaction
Queues. There is a separate queue for each open transaction where InfoSphere
CDC accumulates the changes for that transaction as they are read from the
database log. InfoSphere CDC stores the uncommitted changes it has read from
the log in to transaction queues until a commit is seen (Figure 6-10). Changes
are removed from these queues when rollbacks are done in the
source database.

Figure 6-10 Transaction queues

InfoSphere CDC only sends committed changes to the target to be applied. As
each transaction is committed, InfoSphere CDC sends the changes for that
transaction (taken from its transaction queue) to the target. The flow of change
data from the source to the target can be seen as a stream of complete
transactions being sent in the order in which they were committed in the source
database. This flow is called the Replication Stream.

InfoSphere CDC maintains a “bookmark” as part of this Replication Stream. This
bookmark is persisted into the target database along with the application data. It
contains all the information necessary for InfoSphere CDC to be able to continue
replication from that point. It is committed as part of the same transaction in
which the change data is written to the target database.
 Chapter 6. Understanding the architecture 121

The two primary pieces of information in this bookmark are:

� Restart Position: InfoSphere CDC needs to begin rereading the database
logs to recreate the transaction queues. This action generally corresponds to
the beginning of the oldest open database transaction at the time the
bookmark was constructed by InfoSphere CDC. Using this Restart Position,
InfoSphere CDC is able to recreate the Replication Stream.

� Stream Position: After InfoSphere CDC has recreated the Replication
Stream, the stream position indicates exactly where InfoSphere CDC was in
that stream when it last applied data to the target.

The InfoSphere CDC bookmark contains all the information necessary to
recreate the replication stream on the source side and position it to resume
replication at exactly the point of the last operation applied on the target.

Bookmark information is stored on the target side and is updated whenever data
is applied to the target. It is communicated to the source engine while running to
keep the source informed about log dependency. For restart, it is sent at the time
mirroring starts to recreate the replication stream on the source at exactly the
right point. It is this key mechanism that allows InfoSphere CDC to always know
where scraping must be resumed, to not resend change data already applied on
the target, and to not miss rescraping changes that were possibly previously read
but lost in-flight as a result of an abnormal termination.

6.3.2 The InfoSphere CDC Linux, UNIX, and Windows engine

The InfoSphere CDC for Linux, UNIX, and Windows engine is a version ported to
database products that run on these platforms.

InfoSphere CDC captures change data on a source from the source database
log files. This scenario involves two separate components:

� A log reader
� A log parser
122 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

In Figure 6-11, these components are grouped as one, as the granularity of
operations performed is not essential to an understanding of the activity at
this level.

Figure 6-11 Source operations component data flow for the Linux, UNIX, and Windows
engine

During mirroring, a source InfoSphere CDC engine only sends committed data to
a target. A source engine reads the log files, parses the log records and some
metadata, such as the transaction ID and the table name, and stores them
temporarily in the transaction queues before sending a number of committed
transactions to the target.

InfoSphere CDC optimizes the resource utilization on the source server by, in
most circumstances, using a single scrape component to only read the log
records once and retain the operations derived from them for a time in a staging
store. In certain circumstances, such as when the needed log records are not in
the staging store, InfoSphere CDC employs a private scrape to get the needed
log records. InfoSphere CDC dynamically determines if and when to employ a
private scrape and when to remove one by having the subscription rejoin the
single scrape.

LOBs do not participate in single scrapes, as they are retrieved directly from the
database by the Mirror Moderator.

Database
Log File

Single Scrape
Log

Reader/Parser

Transaction
Queues

Dedicated Log
Reader/Parser

Transaction
Queues

Database

Sub 1

Sub 2

Sub 3

Subscription which can do so, use the Single Scrape Staging
Store, and pull needed source operations data from it, allowing
single reader and parser threads to service multiple subscriptions.

If a subscription does not find the data it needs in the Single Scrape
Staging Store, the engine will start a dedicated log reader and log parser
to service it.

When it becomes possible, the subscription will begin to use the staging
store and the dedicated reader/parser threads will be terminated.

Sub 4

Staging
Store

CommsMirror
Moderator

To Target
 Chapter 6. Understanding the architecture 123

For refresh operations, the source engine retrieves rows using JDBC and puts
them through the normal source processing before sending them to the target as
insert operations.

Linux, UNIX, and Windows engine single scrape
To minimize resource consumption, InfoSphere CDC attempts to only read and
parse the source database log files once. Employing single scrape optimization
provides considerable overall efficiency improvements when replicating
multiple subscriptions.

If a source system has constrained resources that might be taxed by having
multiple log reader / log parser threads concurrently active, using single scrape in
this scenario can be beneficial.

Because much of the log data is not table-specific, it is better not to have multiple
threads processing and discarding the data. This situation is especially true
where subscriptions are replicating only a small portion of the data being
changed. For example, if two subscriptions have no tables in common but each
is replicating only 10% of the total changes, then single scrape provides a huge
benefit.

Single scrape is enabled by default in Version 6.5.1 for all InfoSphere CDC
source instances (except for the Oracle Trigger version, which does not read the
Oracle log to obtain source operations). This situation only applies to the Linux,
UNIX, and Windows engine versions.

If you do not keep a single scrape cache of sufficient size to allow the
subscription to use single scrape, the subscription will have its own parser. This
situation results in a more manageably sized cache.

These situations include where a subscription has fallen too far behind the single
scrape process and the content the subscription needs is no longer available.
This situation could occur if, for example, a subscription was not running or idle
for a period, and then later restarted.

If a subscription had been idle (that is, not mirroring) for a period and is then
started, the log entries the subscription needs might not be found in the staging
store. In this case, the subscription has its own log reader and log parser. If at
some point the subscription caught up so that needed content is available in the
staging store, the subscription joins single scrape and its dedicated reader, and
the parser would go away.
124 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

A subscription might be too far ahead and waiting for single scrape to advance to
its position is too inefficient compared to having the subscription run on its own.
This situation could occur when a subscription has refreshed all of its tables, and
so is scraping near the head of the log while Single Scrape is still scraping an
older portion of the log.

In either case, for a subscription running with its own reader and parser,
InfoSphere CDC can decide to have the subscription join (or rejoin) single scrape
when it becomes more efficient than maintaining the reading and parsing
activity separately.

InfoSphere CDC combines the best advantages of a single reader / parser
thread with the flexibility of per subscription reader parser threads, and can
automatically compute and run with the most advantageous arrangement.

However, there may be cases where you want to manually force a certain mode.
You can decide if InfoSphere CDC allows subscriptions to run independently or
to turn Single Scrape off, and thus force all subscriptions to run independently.

There are implications to turning Single Scrape off and forcing all subscriptions to
use it. Those implications, and the InfoSphere CDC system parameters required
to force all the subscriptions, are described later in this chapter.

Linux, UNIX, and Windows engine staging store
The source instance component diagram shown in Figure 6-11 on page 123
maintains a staging store of change data that can be used by active
subscriptions. To maintain maximum throughput, to the degree that memory
constraints allow it, InfoSphere CDC maintains this staging store in memory.

However, InfoSphere CDC might need to move some of this staged data to disk.
This situation could occur if, for example, some active subscription was unable to
move the data to the target as rapidly as it was accumulating, causing the
staging store size to grow. This situation could occur if the network between the
source and that target temporarily became busy, the target database became
busy, or because mirroring for that subscription was stopped temporarily.

If you allow a subscription to remain idle for a long period, it is possible that the
staging store size on disk might become considerable. For this reason,
InfoSphere CDC provides a configuration option to set the disk quota for this
storage, which defaults to 100 GB, but can be as small as 1 GB, or as large as
you want to set it. Subscriptions that are not actively mirroring are said to be idle.
InfoSphere CDC Single Scrape excludes tables that are in a table mapping that
has been marked for Refresh mode and parked. Tables in mappings that are
Mirror / Parked are still included for scraping.
 Chapter 6. Understanding the architecture 125

During a controlled shutdown of InfoSphere CDC, the portion of the staging store
in memory is persisted to disk, allowing for faster restart of mirroring. If there is
an abnormal termination of InfoSphere CDC due to a system crash, the logs are
read from the correct point so mirroring can resume with no loss of data. The
persistence of the staging store on disk is not essential for restarting replication,
as long as the database logs holding the required entries are still available. The
format of persisted staging store data is internal to InfoSphere CDC and cannot
be used by another application to read change data.

During mirroring of change data, each subscription retrieves the changes for its
set of tables from the staging store. Data is removed from the staging store after
it has been sent to all subscriptions that are using or could use the store, or when
the staging store size threshold has been reached.

It is a common practice among users to create a test subscription or
subscriptions. These subscriptions should be parked or deleted after work with
them is completed so that single scrape does not take them into account and
maintain data for them in the staging store.

Linux, UNIX, and Windows Engine Staging store size
considerations
The value used for staging_store_disk_quota_gb only guarantees that
InfoSphere CDC does not exceed that amount of storage for the staging store
and does not pre-assign disk space. You must ensure that the configured
amount of disk space is available to InfoSphere CDC. Should the staging store
be below the disk quota and you still run out of disk space, an error occurs and
mirroring halts.

In general, InfoSphere CDC only adds data to the staging store when at least
one subscription is mirroring. For situations where subscriptions are only run
periodically, but you want to have InfoSphere CDC capturing changes all the
time, you can use command-line commands to control the InfoSphere CDC
continuous capture feature. For more information about this feature, see
Chapter 8, “Performance analysis and design considerations” on page 211.
When enabled, InfoSphere CDC reads logs and adds change data to the staging
store all the time, even when no subscriptions are running. This setting affects
the amount of data that must be stored in the staging store, and almost certainly
causes the staging store to grow bigger than the available memory and thus be
partially persisted to disk.

If the InfoSphere CDC staging store disk quota is reached, subscriptions are
forced into using their own dedicated log reader and the advantages of having
multiple subscriptions use Single Scrape are lost until the situation is rectified.
126 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

It is important to avoid out-of-disk space situations, as these situations result in
abnormal termination of InfoSphere CDC and require rescraping of the database
logs. The staging store is only affected by subscriptions with tables configured for
mirroring. The store contains data for all tables being mirrored (used in a table
mapping with a replication method of mirror). Any subscriptions used solely for
refreshing tables (where all the table mappings have a replication method of
refresh) do not affect the behavior of single scrape or contribute to the size of the
staging store.

When all the source subscriptions are running and have little latency, the volume
of data kept in the staging store is relatively small, corresponding essentially to
the delay in apply speed between the fastest and the slowest subscriptions.

When all the source subscriptions are running but some are latent, then the
staging store needs to contain all the data for the latent subscriptions. For
example, if one of the subscriptions is one hour latent, then that hour's worth of
data for that subscription needs to be kept in the staging store along with that
hour's data for all subscriptions.

Persisting the staging store to disk during operation
The data in the staging store is organized into a sequence of data blocks. If the
staging store grows to a size that cannot be kept in memory, then some of these
data blocks are persisted to disk and removed from memory. InfoSphere CDC is
optimized to select blocks to write out based on the most likely best performance
outcome, and there are no available tuning parameters for this situation.

Persisting the staging store to disk at shutdown
When the InfoSphere CDC engine is shut down by running dmshutdown -c
(normal shutdown), InfoSphere CDC persists all the data in the staging store to
disk so that the data is available when the engine restarts.

Single scrape events and errors
Single scrape errors and events are visible in the event log. A list of these events
and errors are provided in Appendix A, “Single scrape events and errors” on
page 431.

Transaction queues
Uncommitted transactions accumulate on the source until they are committed. If
memory requirements dictate that some of the transaction queue data needs to
be moved to disk to free some memory, some of the transaction queue data may
be persisted in temporary files.
 Chapter 6. Understanding the architecture 127

Persisting transaction queues at shutdown
When a normal shutdown is called for a subscription that is mirroring with a
private parser, the uncommitted data that InfoSphere CDC maintains in memory
is written out to the InfoSphere CDC transaction queue storage. This storage is
maintained in a repository specific to each InfoSphere CDC instance, located in
the instance configuration directory, and is called txqueue.

If all subscriptions running with private parsers are shut down normally
(controlled) at the same time, then all uncommitted transaction data needs to be
stored in the transaction queue repository at the same time.

Shared scrape also has transaction queues. These queues are persisted
whenever the last subscription running with shared scrape stops.

If a subscription is using single scrape, it has no parser and no transaction queue
data. If it is stopped, no transaction queue data is persisted at that time. If a
subscription that is using a private scraper is stopped, its uncommitted
transaction data is persisted. When all subscriptions that are using shared
scrape have stopped, the single scrape parser persists its uncommitted
transaction data at that time.

Because all private parsers and shared scrape are using the same repository,
when all subscriptions are stopped, the size of the repository grows to the size
needed to store all of this data at the same time.

The txqueue repository grows to be as large as the total amount of uncommitted
transaction data for all subscriptions that existed when they were all shut down.

A long-running large uncommitted transaction, many subscriptions that are shut
down (controlled), and subscriptions that are added over time can cause the
txqueue database to grow to a large size at shutdown time.

This internal repository does not shrink files after they have grown. It might
appear that there is much content in the txqueue database, but that might not be
the case. If the files have grown large and disk space is a concern, the txqueue
database can be deleted.
128 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Failure to persist transaction queues
Abnormal termination of InfoSphere CDC prevents it from being able to persist
the in-memory transaction queue data to disk. Because the data is persisted to
disk when a subscription does a normal shutdown, if a subscription that is
mirroring is stopped using the shutdown immediate option, or if the machine
crashes or the InfoSphere CDC source process is terminated, there is no
transaction queue data available for the subscription at startup. InfoSphere CDC
must always be able to revert to the source database log files and start from the
first operation of the oldest open transaction that existed when the last source
transaction committed (that was most recently applied on the target). If there
were no open transactions at the time of the controlled shutdown, then
InfoSphere CDC starts from the commit of the transaction that was most recently
applied on the target.

Persisting the transaction queue data during a controlled shutdown is an
optimization that permits a faster startup of the mirroring continuous mode,
because the data can be read from the persisted data much faster than it can be
reread from the database log files.

This situation also means that the txqueue files can always be deleted from the
instance configuration directory. The only effect of this action is that when
mirroring is started for a subscription, it needs to begin reading the database log
further back than it otherwise would, and so might take longer to start replicating.

If the only subscriptions that are not running are subscriptions that were not
stopped using shutdown controlled the last time they were run, if these
subscriptions are refreshed before mirroring them again, or the user does not
care about these subscriptions (for example, if all their tables are currently
parked or the subscription is never used), then the persisted txqueue files have
no effect.

Linux, UNIX, and Windows engine metadata in brief
InfoSphere CDC for the Linux, UNIX, and Windows engine stores most of its
metadata in its own separate repository, independent of other repositories, with a
small portion of the metadata maintained in the host database. This operational
metadata includes the TS_AUTH table with some instance metadata, and the
TS_BOOKMARK table that is used to store the InfoSphere CDC bookmark for
the last applied transaction on the target. This setup enables InfoSphere CDC to
always be able to compute the correct restart position in the source log files.
 Chapter 6. Understanding the architecture 129

The InfoSphere CDC configuration metadata for the InfoSphere CDC Linux,
UNIX, and Windows engine is stored in a separate container from the database
system from which it is replicating or to which it is replicating. InfoSphere CDC
uses the IBM PointBase pure Java light-weight database, which is used for
several purposes by InfoSphere CDC. In addition to the configuration metadata
storage on the source and target sides, IBM PointBase is also used to store
InfoSphere CDC events, InfoSphere CDC statistics, and persisting transaction
queues at shutdown.

The InfoSphere CDC configuration metadata can be viewed by running
dmmdconsole -I <instancename>. However, the metadata is not directly editable
at the user level and the connection obtained by the command l is read-only. The
metadata is defined by configuring InfoSphere CDC through the use of
Management Console or the InfoSphere CDC tools. Changes to the metadata
must be made through these tools only.

Generally speaking, metadata is an internal implementation detail, which you do
not have to understand to understand the product. However, you might find it
helpful to understand the metadata structure, and so these details are provided.
A listing of the main InfoSphere CDC metadata tables is available as a PDF for
downloading and viewing from the IBM Redbooks website. For information about
how to access that PDF, see Appendix B, “Additional material” on page 435.

The configuration metadata should be backed up periodically by
running dmbackupmd.

As mentioned previously, the replication subscription and table mapping
definitions are distributed across the source and target engine metadata stores.
After your configuration changes, you should back up the metadata on both the
source and target sides, because recovering an InfoSphere CDC system to a
previous state requires restoring the metadata on both sides. It is best practice to
back up the InfoSphere CDC metadata along with and at the same time as the
user database.

Linux, UNIX, and Windows engine as a target engine
All source operations are moved to the target engine and become target
operations. A target operation contains both the before and after image for an
update, and maintains all state information about the object (derived expressions
and user exit calls). The target engine generates SQL statements and writes the
bookmark information to the TS_BOOKMARK table.
130 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The target flow is shown in Figure 6-12.

Figure 6-12 Target operations component data flow

6.3.3 The InfoSphere CDC for System i engine

InfoSphere CDC on System i uses the same concepts as used in other
InfoSphere CDC versions. On System i, the equivalent functionality is
implemented as different jobs for each component, such as the mirror driver,
scraper, source control, target control, and apply.

There is no single scrape mechanism. Instead, each subscription has its own log
reader process using the receive journal entry API to capture change data for the
tables that are in scope for that subscription. There is one log reader
(DMSSCRAPER) per subscription and per journal, because on System i you can
have one subscription with tables journaled to different journals. There is one
mirror process that merges the changes coming in from the different scraper jobs
into source operations to send to the target side.

As change data is read from the log, it is stored in a System i user space object
until a commit is read for the transaction. However, most applications on
System i do not use commit control and therefore the database performs
auto-commits when operations are applied to the DB2 tables. For most
applications, there is no staging at the source and operations read from the
journal are directly sent to the target. The entries in the user space are not kept
after the subscription ends mirroring. When mirroring resumes for the
subscription, InfoSphere CDC obtains the bookmark information for the last
applied operation from the target and begins reading the journals from
that position.

As a target, InfoSphere CDC on System i uses native apply to write to DB2. It
builds up the buffer of the operation image and then writes it natively. The
bookmarks for all subscriptions targeting a System i engine are kept in the user
space in the InfoSphere CDC product library; the user space is
called JRN_STATUS.

The target communicates with the source via the Comms component,
with data sent on the data channel, and each operation is reconstructed

into an operation to be applied to the target database.

Target Data
Channel Reader

Comms Image
Builder

Apply
Thread

Database
 Chapter 6. Understanding the architecture 131

For refresh, as a source, InfoSphere CDC writes user-defined entries into the
journal to mark the refresh start and end for the refresh while active logic. When
mirroring is restarted, change data between these markers is read and sent
across to the target to be applied there, as is done with other versions of
InfoSphere CDC.

For refresh as a target, refresh messages received from the source system are
processed as insert records, becoming a series of row by row inserts using
native apply.

When a user initiates a (normal) controlled shutdown of a subscription on System
i, a \S user-defined journal entry is written into the journal. When the log process
reads this entry, it initiates the shutdown procedure. Any processing of entries
before that point is completed, and InfoSphere CDC processes then end.

InfoSphere CDC on System i maintains its metadata files directly in DB2 tables
(physical files), which are kept in the InfoSphere CDC product library.

6.3.4 The InfoSphere CDC for z/OS engine

The InfoSphere CDC for DB2/z engine shares many of the same concepts with
the Linux, UNIX, and Windows engine previously described.

InfoSphere CDC parameters cannot be set from the Management Console as
with the other engines. Parameters must be set in the control data sets for
InfoSphere CDC. System parameters for this engine are not dynamic and are
only read when the instance is started (started task).

InfoSphere CDC metadata for both source and target descriptions is stored in the
DB2 database, and can be accessed through SQL. User access to it is available
through reporting utilities that allow documenting of the InfoSphere CDC
environment. Metadata can thus be saved and restored for product roll-out.

InfoSphere CDC for z/OS has a single scrape component that acts as a log
reader and log parser. The component checks and analyzes the source
database logs for all of the subscriptions on the selected data store, and uses
Hiperspaces for staging data that it has read until it reads a COMMIT DB2 Log
record. Single scrape on this engine is designed to reduce MIPS and should only
be enabled if there are two or more subscriptions.

Hiperspaces are stored in z/OS Central Storage that is above the bar (64-bit
addressable storage), and may be paged to z/OS Auxiliary Storage if the page
frames in Central Storage are taken by the operating system on behalf of another
address space.
132 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

This scraper component, the database synchronous log task (DSL), reads the
DB2 log blocks for in-scope tables and reconstructs before and after images for
operations on those tables. The images are sorted into ascending date and time
sequence and added to a memory file.

The Database Log Scraper (DLS) task reads the memory file written by the DSL
task and gathers the before and after row images into commit groups, which are
written to a memory file as logical transactions.

A Communication Initialization and Termination (CIT) task reads the logical
transactions from the memory file and sends them across to the InfoSphere CDC
target engine to be converted to target operations and applied to the
target database.

InfoSphere CDC supports concurrently running product address spaces under
the same image of IBM MVS™ / ESA. Each InfoSphere CDC address space (or
instance) is associated with only one DB2 subsystem. A DB2 subsystem can
have multiple associated InfoSphere CDC address spaces. For multiple
InfoSphere CDC address spaces, there is no communication between them
other than InfoSphere CDC source-target communication.

The source flow in a z/OS environment is shown in Figure 6-13.

Figure 6-13 z/OS source flow

As a target, InfoSphere CDC uses storage above the bar (64-bit addressable
storage) to cache changes that are applied to tables at the target. As the
changes are received from the source environment by the CIT, they are cached
and applied to the target tables by a database table change task. This task
issues a SQL request to write the table row changes to the DB2 target table, after
first applying any transformations specified in the metadata and starting any
user exits.

When the applied changes are committed, the changes are purged from
the cache.

DB2 Log
Database

Synchronous
Log (DSL)

Database
Log Scraper

(DLS)

Communications
Initialization and

Termination
(CIT)

Memory
File

Memory
File

ISCDC
Target

DB2
Database
 Chapter 6. Understanding the architecture 133

If DB2 backs out the logical unit of work before the changes can be committed
(for example, due to a deadlock or timeout condition), then InfoSphere CDC
rereads the changes from the cache and reapplies them.

For refresh, as a source, a Database Table Refresh (DTR) task uses an SQL
bulk read to retrieve rows from the source table. Checkpoint information is written
into the InfoSphere CDC metadata table, causing DB2 to write a corresponding
DB2 log record that marks the refresh operation begin point.

After a commit group is assembled on the source, a CIT task pushes the data to
the InfoSphere CDC target.

For refresh as a target, refresh rows are received from the InfoSphere CDC
source by the CIT task and passed to the Database Table Change (DTC) task.
This task applies any transformations as specified in the metadata, starts any
user exits, and then issues a SQL request to write the table rows into the
target table.

6.4 Communications between source and target

The InfoSphere CDC communications component (Comms) includes a monitor
component that coordinates and performs health-check monitoring of other
InfoSphere CDC components.

Each InfoSphere CDC instance has both a control channel using two TCP/IP
sockets and each subscription has a data channel using two TCP/IP sockets
(each being used unidirectionally).

The control channel allows for the sending of control messages between the
source and target independent of what might currently be on the data channel.
This situation allows such things as the target knowing that mirroring is shutting
down for the subscription while there is still data in the data channel for it
to process.

For example, when a command is received by a subscription to begin mirroring,
the Comms component requests the bookmark position for the subscription from
the target engine. The return value is used to compute the starting position in the
logs on the source engine side, taking into account data that might exist in the
single scrape staging store and in the persisted transaction queue data.
134 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

6.5 Summary

This chapter introduced the general architecture of InfoSphere CDC, defined and
described some key InfoSphere CDC terms, and provided an introduction to the
primary InfoSphere CDC components.

Now you should have a good understanding of the InfoSphere CDC approach to
replication. It should be sufficient to enable you to understand how InfoSphere
CDC could be (or is being) used in your environment. And it should enable you to
delve deeper into the workings on the platform you are operating with, and better
understand the details of the wide range of functionality provided by
InfoSphere CDC.
 Chapter 6. Understanding the architecture 135

136 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 7. Environmental
considerations

This chapter outlines some of the specific environmental considerations you
need to be aware of, including:

� Dealing with different time zones or encodings is described in 7.1,
“Globalization with InfoSphere CDC” on page 138.

� An IBM InfoSphere Change Data Capture (InfoSphere CDC) landscape can
consist of several servers that must interconnect to be able to perform
configuration and replication activities. It is common that firewalls have been
put into place to protect these servers from unauthorized access. As such,
firewalls contribute to almost all InfoSphere CDC connectivity issues. The
configuration of these firewalls must be considered when designing your
replication landscape with InfoSphere CDC, as described in 7.2, “Firewall
configurations” on page 149.

� If and how you can use InfoSphere CDC when access to the source or target
is restricted is described in 7.4, “Remote processing capabilities” on
page 162.

� When replicating from a resilient environment or when InfoSphere CDC must
be part of the resilient environment you have set up or been asked to design,
see 7.5, “Using InfoSphere CDC in resilient environments” on page 168.

7

© Copyright IBM Corp. 2012. All rights reserved. 137

� How to cooperate with changes in your database environment or replication
needs is outlined in 7.6, “Change management” on page 190.

� This chapter describes the initial load aspects when you start (or reinitiate)
InfoSphere CDC.

Whenever your environment has some requirements for settings, the information
in this chapter should help you with design considerations and
InfoSphere CDC suggestions.

This information can be beneficial in the design phase, but also has some
hands-on examples that can assist during the implementation of the
designed architecture.

7.1 Globalization with InfoSphere CDC

In this fast growing economic environment, globalization is an important factor to
consider when combining information from around the world. Two key aspects
that this section addresses are:

� How do you combine data from around the world into a centralized
time zone?

� How do you translate the different characters into a single character set?

The good news is that current IT environments have been provided with the
technical means to solve these questions:

� Time zones and Coordinated Universal Time (UTC)
� Unicode (an international character encoding standard)

When systems with different time zones or code pages interact with each other,
you need to take care of proper conversions. This section describes the means
and methods to deal with these issues while using InfoSphere CDC.

7.1.1 Time zone considerations

Time zone considerations can be made both from a business and a
technical viewpoint.

For certain business requirements, the time of the creation of the data or the time
of consolidating the data is important. For example, for a banking environment,
you might want to only create the planning and forecasting report when all data
from the different worldwide business units is consolidated from all business
units' at noon local time.
138 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

From a technical point of view, you could be investigating a data consistency
problem by comparing source logging with the target log. You must be sure to
compare the events that happened at the same time, independent of the time
zone where the event occurred.

Technical considerations when dealing with time zones
Within InfoSphere CDC, you have date and time information in the
following areas:

� Date and time fields within the data.

These fields are the date and time fields within the table. They can either be
generated by the source application or the database (for example, in current
time fields.). From an InfoSphere CDC perspective, when they are part of the
selected columns for replication, they are not modified. So the time that was
put in the column is reflected without any time-zone conversions into the
target database.

� Time stamp within the log.

This time stamp is provided by the database and is put in the database
logging mechanism.

� Time stamp from the events.

This time stamp is put in the event log by InfoSphere CDC.
 Chapter 7. Environmental considerations 139

Time zone considerations for replicating data
Consider timestamps within the log. This section uses the example shown in
Figure 7-1. Assume that the worldwide travel policy is that travel can only be
booked after approval has been received from the travel manager. The travel
policy is audited on regular basis by the worldwide expense auditor, who does
not approve any expenses when the travel policy has not
been followed.

Figure 7-1 Considerations without time zone

As outlined in Figure 7-1, both the Travel Requester and Travel Approver use the
Travel Approval System for the Approval process, which keeps its system time in
UTC. At 12:30 local time, the Travel Requester (who is in an area where the local
time is UTC+2) puts in a Travel request. This travel request is approved by the
Travel Approver (who is located in an UTC-2 time zone) at 10:15 local time.
Assume that the records do not keep a date and time and that the operation time
stamp in the database log is used by InfoSphere CDC to generate the time of
request and approval in the Consolidated Audit Information, which uses the
system time.

The Travel Requester did not wait for the Travel Approver to book his trip.
However, due to the time zone differences, the invalid sequence of events are
not reflected in the Consolidated Audit Information. When the auditor compares
the time of approval with the time of booking, and without having the location
information of each of the roles, no irregularities are found and the
booking passes.

Travel Requester
UTC +2

System Time UTC

System Time
UTC +2

12:00 Local

Local 12:30

Data Replicated without
time zone Considerations

Local Travel
Booking Sys tem

Travel Approval Sys tem

Consolidated Audit
Information

Travel Booked

Travel Request

10:00 Travel Request

12:15 Travel Approved

12:30 Travel Booked

Travel Approved
Local 10:15

T ravel Approver
UT C -2

System 12:30

System 10:00

System 12:15

Audit PASS
(false negative)
140 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

When the time zone of the Travel Requester is considered when the data is
replicated, the sequence of events becomes clear. In this case, assume that the
log entries are changed to the UTC time zone. This time, the Consolidated Audit
Information reflects that the Travel Requester did not wait for approval before
booking his trip (Figure 7-2).

Figure 7-2 Considerations with time zone

With the correct timing sequence, it is clear to the worldwide auditor that the
process for Travel Request has not been done in the correct sequence and
therefore fails the audit.

To illustrate the situation, consider the sample scenario outlined in the
following sections.

Booking system
The booking system is set to UTC+2, and has the following database table
definition:

CREATE TABLE "CDCDEMO"."STD_TRAVEL_BOOKED" ("TRAVELID" NUMBER(10)
NOT NULL, "TRAVEL_INFO" VARCHAR2(30),
CONSTRAINT "TRAVELID" PRIMARY KEY("TRAVELID"))
TABLESPACE "USERS"

In this sample, the STD_TRAVEL_BOOKED table represents the booking
application. It records TRAVEL_INFO but does not have a booking time in the
table itself. The booking time is taken from a journal control field.

Within InfoSphere CDC, the instance refers to the CDC_Oracle_Redo data store.

Travel Requester
UTC +2

System time UTC

System time UTC +2
Local 12:00

Local 12:30

Data Replicated wi th
time zone considerations

Audit
FAIL

Local Travel
Booking System

Travel Approval Sys tem

Consolidated Audit
Information

Travel Booked

Travel Request

10:00 Travel Request

10:30 Travel Booked

12:15 Travel Approved

Travel Approved
Local 10:15

Travel Approver
UTC -2

System 12:30

System 10:00

Sys tem 12:15

2

1

3

 Chapter 7. Environmental considerations 141

Approval system
This system is set to UTC-7, and has the following database table definitions:

CREATE TABLE "CDCDEMO"."STD_TRAVEL_AUDIT" ("TRAVELID" NUMBER(10)
NOT NULL, "REQUEST" DATE NOT NULL, "APPROVED" DATE,
"BOOKED" DATE,
CONSTRAINT "TRAVELID" PRIMARY KEY("TRAVELID"))
TABLESPACE "USERS";

CREATE TABLE "CDCDEMO"."STD_TRAVEL_APPROVE" ("TRAVELID"
NUMBER(10) NOT NULL, "REQUEST" DATE, "APPROVED" DATE, PRIMARY
KEY("TRAVELID"))
TABLESPACE "USERS"

In this sample, STD_TRAVEL_AUDIT represents the auditors audit application,
which contains the Request, Approved and Booked date. The
STD_TRAVEL_APPROVE table represents the managers approval system.

Two subscriptions need to be created:

� The TRAVEL_MANAGER (Figure 7-3) replicates the approval date and time
to the audit application.

Figure 7-3 TRAVEL_MANAGER
142 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� The TRAVEL _BOOKING (Figure 7-4) replicates the booking date and time to
the audit application.

Figure 7-4 TRAVEL_BOOKING

The tables are mapped with one-to-one consolidation and the TRAVELID is used
as the key.

Wrong mapping without time zone considerations
STD_TRAVEL_APPROVE is mapped to STD_TRAVEL_AUDIT (Figure 7-5).

Figure 7-5 Wrong mapping approval
 Chapter 7. Environmental considerations 143

STD_TRAVEL_BOOKED is mapped to STD_TRAVEL_AUDIT (Figure 7-6). As
there is not a booked date in the source table, the journal time stamp is used.

Figure 7-6 Wrong mapping booking

Besides using Consolidation One-to-One, we did not take anything else into
consideration and automapped the available fields.

To simulate the application, complete the following steps:

1. An employee files a booking request in the Application Approval system. The
application uses the local application time, which is put in the table shown in
Figure 7-7.

Figure 7-7 Approval table

2. The employee decides not to wait and uses the booking application to confirm
the booking (Figure 7-8). The local system has been added for information,
but is not replicated.

Figure 7-8 Booking table

3. The manager approves the travel (Figure 7-9).

Figure 7-9 Manager approval
144 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The resulting travel table opens (Figure 7-10).

Figure 7-10 Result table

Although in the simulation we made sure that we made the booking before the
approval data and time was entered in the approval system, the audit table
incorrectly reflects that all was booked in the correct sequence.

Date and time fields within the data
When replicating across time zones, it is important to understand how the
different time zone's are understood by InfoSphere CDC.

Complete the following steps:

1. On the source database, create a table by running the following command:

CREATE TABLE "CDCDEMO"."REP_TIME" ("NUMBER" NUMBER(10) NOT NULL,
 "SRCAPPTIME" DATE, "SRCLOCTIME" DATE, "SRCUTCTIME" DATE,
 "SRCLOGTIME" DATE, "TGTAPPTIME" DATE, "TGTLOCTIME" DATE,
 "TGTUTCTIME" DATE)
 TABLESPACE "USERS";

2. On the target database, create a table by running the following command:

CREATE TABLE "CDCDEMO"."TimeOverView" ("NUMBER" NUMBER(10),
 "SRCAPPTIME" DATE, "SRCLOCTIME" DATE, "SRCUTCTIME" DATE,
 "SRCLOGTIME" "TIMESTAMP(6)", "SRCTIMEOFF" NUMBER(10),
 "TGTAPPTIME" DATE, "TGTLOCTIME" DATE, "TGTUTCTIME" DATE,
 "TGTTIMEOFF" NUMBER(10))
 TABLESPACE "USERS";
 Chapter 7. Environmental considerations 145

3. Create a subscription and set up an audit replication with mappings
(Figure 7-11).

Figure 7-11 TimeOverViewMappings

The derived column, DERSRCLOC, contains the following expression:

%TODATETIME(%CURDATE('*LOC'),'*YYMD',%CURTIME('*LOC'))

The derived column, DERSRCUTC, contains the following expression:

%TODATETIME(%CURDATE('*UTC'),'*YYMD',%CURTIME('*UTC'))

The derived column, DERSRCTIMOFF, contains the following expression:

%TONUMBER(%SUBSTRING(%CURTIME('*LOC'),1,2))-%TONUMBER(%SUBSTRING(%CURTI
ME('*UTC'),1,2))

When you start the replication and add a record in the source table, you have a
target table record (Figure 7-12).

Figure 7-12 TimeOverViewTargetRecord

When the user, or user application, inputs a time stamp date or time, the time
defined by the application or user is used. This time is either the system time or
application time.
146 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

For InfoSphere CDC, replicate this time as is, and if you need to centralize this
time, you need to convert it. As only the system where the data is created is
aware of the time zone, any conversions needed should be done on that system.

If possible, you could modify the data model so the data and time field can hold
the time zone where the data is created. You could also pass the date and time
by using one of the following techniques:

� Delivering a centralized UTC time stamp
� Delivering local time overview table

Time zone considerations for monitoring
InfoSphere CDC uses local time for events, so when using the event viewer in
the Management Console, both source and target events are shown with their
local time.

7.1.2 Encoding conversions

In most circumstances, InfoSphere CDC handles code page conversions
automatically. When you want to override the automatic code page conversions
within InfoSphere CDC, you need to determine the code pages to transform from
and to.

How InfoSphere handles encoding
InfoSphere CDC dynamically determines the code page from the source and
target during the startup of the subscription. InfoSphere CDC detects the data
encoding based either on the column encoding or database encoding and
assigns the detected encoding to each column detected in the database. The
encoding is based on what the database knows about the encoding of the data
found in a specific column. Before assigning the encoding to a column,
InfoSphere CDC normalizes the encoding knowledge found to an Internet
Assigned Numbers Authority (IANA) encoding name. For more information about
the IANA, go to the following address:

http://www.iana.org/assignments/character-sets

Every database has its specific knowledge about data encoding. That knowledge
is represented by either a number (code page, Coded Character Set Identifier
(CCSID), or Oracle charset ID) or a string (Oracle charset name or Sybase
encoding name). Some databases can have a different encoding for each
column, and some of them might have a database encoding for non-Unicode
columns and then the Unicode national encoding for columns supporting that
encoding.
 Chapter 7. Environmental considerations 147

http://www.iana.org/assignments/character-sets

When a table is added to the catalog, the column code page is requested from
the database and stored in the internal metadata. InfoSphere CDC always keeps
the encoding at the column level and uses this encoding during the replication.

For mainframe, any necessary encoding is done using the Unicode Conversion
Services (UCS), which must be enabled on the system.

During startup of the subscription, the source and target negotiate which side
does the encoding conversion for each column and the encoding information is
put into memory.

Overriding code page conversions
When you have applications that write data into character columns with a
different encoding from what has been defined in the database, InfoSphere CDC
provides the flexibility to override the column encoding to specify the encoding of
the actual data. Besides specifying the encoding conversion for character data,
you can override the encoding to specify that no conversion should be done
(binary data) or specify the conversion for binary columns, making InfoSphere
CDC treat them as character data.

To override the automatic code page conversion, you need to go to the Encoding
window of the table mapping. All character type data is shown there. You can
map source column data to different column encodings. For example, in
Japanese environments with different types of the same encoding (such as
IBM-943 and IBM-943C), this capability can be useful. An example is shown in
Figure 7-13.

Figure 7-13 Overriding code page
148 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

You can also override the encoding to specify that it is a binary column or you
can specify encodings for binary columns, making them character columns.
InfoSphere CDC then treats the source column as through it were a binary or
character column from the perspective of what target columns it can be mapped
to, and this setting changes the functions in which InfoSphere CDC can be used.

7.2 Firewall configurations

An InfoSphere CDC landscape can consist of several servers that must
interconnect to be able to perform configuration and replication activities. If the
servers that host any of the InfoSphere components (Management Console,
Access Server, or Replication instance) are in different networks or network
segments, firewalls are usually in place to protect these servers from
unauthorized access.

Firewalls contribute to almost all InfoSphere CDC connectivity issues. The
configuration of these firewalls must be considered when designing your
replication landscape.

7.2.1 How InfoSphere CDC uses TCP/IP

Before elaborating about how firewalls affect your replication configuration, it is
important to understand how InfoSphere CDC uses the TCP/IP application
protocol. As with all TCP-based applications, InfoSphere CDC uses a
client-server model. A server is an application that offers a service to Internet
users. In addition, a client is a requester of a service and aa server is a program
that receives a request, performs the required service, and sends back the
results in a reply.

Each process (client or server) that wants to communicate with another process
identifies itself to the TCP/IP protocol suite by one or more ports. This port is
used by the operating system to determine to which application program
(process) it must deliver incoming messages. After it is identified to the TCP/IP
protocol, a socket is registered. The socket is uniquely identified by an address
that consists of the transport protocol (TCP), local network address, and the local
port number, for example TCP, 172.16.5.14:10901. The process of registering a
socket is also called binding.
 Chapter 7. Environmental considerations 149

When a client socket communicates with a server socket, the connection is
identified by an association that completely specifies the two processes that
make up the connection using the following attributes: transport protocol (TCP),
local network address:local port number, foreign / destination and network
address:foreign / destination port number. An example is tcp,
172.16.5.10:47112, 172.16.5.14:10901.

A server can usually deal with multiple requests and multiple requesting clients at
the same time. Most servers wait for requests at a well-known port so that clients
know which port (and in turn, which application) they must direct their requests
to. The client typically uses an arbitrary port called an ephemeral port for its
communication. A connection that is established between a client and a server is
full duplex, meaning that data streams can flow in both directions concurrently.
150 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

InfoSphere CDC typically requires multiple connections from a client to a server.
Each connection is identified by its own association where the destination port
number is well-known (fixed) and the source port number is variable. For
example, if a subscription is running to replicate data from an Oracle to a DB2
database, InfoSphere CDC establishes two connections, one to replicate the
change data and the other one to send / receive control information. If you
include the Management Console and Access Server in the picture, the
connections that are active at a given point in time could look as shown in
Figure 7-14.

Figure 7-14 InfoSphere CDC connections

You can see the connections and their associations and the fact that multiple
connections are activated. The InfoSphere CDC Management Console client
process connects to the Access Server server process on port 10101. It
establishes at least two connections for configuration and monitoring activities
and an additional connection for each connected data store. In this example, the
source port for each connection has been requested to and assigned by TCP/IP.
This port is dynamically assigned based on availability and does not follow a
specific sequence.

Access Server
Po rt 10101

CDC Engine
Port 55610

DB

DB
Port 1521

CDC Source

CDC Target

Management Console

9.145.33.69

9.26.112.99

9.26.112.108

9.26.103.10

Prot Source Destination St atus
TCP 9.145.33 .69:27 150 9 .26.112. 99:101 01 ESTABLISHED
TCP 9.145.33 .69:39 814 9 .26.112. 99:101 01 ESTABLISHED
TCP 9.145.33 .69:36 145 9 .26.112. 99:101 01 ESTABLISHED
TCP 9.145.33 .69:53 246 9 .26.112. 99:101 01 ESTABLISHED

Prot Source Destination Status
TCP 9.2 6.112.99 :9321 9.26 .103.10: 55610 ESTABL ISHED
TCP 9.2 6.112.99 :52107 9.26 .112.10 8:11001 ESTABL ISHED
TCP 9.2 6.112.99 :44961 9.26 .103.10: 55610 ESTABL ISHED
TCP 9.2 6.112.99 :33991 9.26 .103.10: 55610 ESTABL ISHED
TCP 9.2 6.112.99 :33992 9.26 .112.10 8:11001 ESTABL ISHED
TCP 9.2 6.112.99 :17397 9.26 .112.10 8:11001 ESTABL ISHED

Prot Source Destination Status
tcp 9. 26.112.1 08:107 76 9.2 6.103.10 :55610 ESTABLISHED
tcp 9. 26.112.1 08:129 04 9.2 6.103.10 :55610 ESTABLISHED
Tcp 9.26.11 2.108: 6194 9 .26.103. 10:5561 0 ESTAB LISHED
tcp 9. 26.112.1 08:487 11 9.2 6.103.10 :55610 ESTABLISHED
tcp 9. 26.112.1 08:359 01 9.2 6.103.10 :55610 ESTABLISHED
tcp 9. 26.112.1 08:249 46 9.2 6.103.10 :55610 ESTABLISHED

MC-AS
Connection

AS-Engine
Connection

AS-Engine
Connection

Engine-Engine
Connection

CDC Engine
Port 11001
 Chapter 7. Environmental considerations 151

The Access Server routes all Management Console requests to the respective
CDC engines. In the context of setting up firewall rules, it is important to know
that there are no direct connections between the Management Console and the
CDC engines.

7.2.2 Firewalls

Typically, firewalls protect a network from the outside (untrusted) environment
(Internet and intranet). Firewalls can consist of one or more functional
components, the most important CDC-supported component being the
packet-filtering router.

Packet-filtering routers that can forward or discard packets according to filtering
rules. When a packet (network data and a header which includes address and
routing information) arrives at the packet-filtering router, the router extracts
information from the packet header and decides, according to the filter rules,
whether the packet passes through or is discarded. The following information
can, and other information, be extracted from the packet header:

� Source IP address
� Destination IP address
� TCP/UDP source port
� TCP/UDP target port

Because most server applications run on a specific server and use well-known
TCP/UDP port numbers, it is possible to allow or deny services by using the
related destination IP address and target port in the filter. Most firewalls are
configured this way: They shield servers from unauthorized inbound connection
attempts coming from a client.

In a number of cases, firewalls are also configured to only forward packets
coming from a certain network, indicated by the source IP address.

Rarely, firewalls are configured to forward packets coming from a certain source
port or range of source ports. Configuring a firewall in this manner requires client
applications to always bind to a certain port or a port within a certain range.
152 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

7.2.3 InfoSphere CDC in a firewalled network environment

InfoSphere CDC can operate in most firewalled network environments, including
ones where you have packet filtering based on a source IP address and source
ports. However, when firewalls are configured with source port filtering, you must
carefully compare your intended InfoSphere CDC configuration against the
restrictions put in place by the firewall. Failure to do this comparison might cause
replication to not start successfully and it might be difficult to determine the
cause. Generally, ensure that when a firewall exists anywhere on the route
between a client and server that its configuration must be known and validated
against the InfoSphere CDC configuration.

Looking at the different components in Figure 7-15, the following connections
must be reviewed when being used by firewalls:

� Management Console connections to the Access Server

� Access Server connections to the source and target CDC instances

� Source CDC instances to target CDC instances (subscriptions)

� Replication instances to database instances (remote log reading and
remote apply)

Figure 7-15 InfoSphere CDC firewalled network

Access Server
Po rt 10101

CDC Engine
Port 55610 DB

DB
Port 1521

CDC Source

CDC Target

Management Console

9.145. 33.69

9.26.112 .99

9.26. 112.108

9.26. 103.10

MC-AS
Connection

AS-Engine
Connection

Database
Source

9.26. 112.12

Engine-Database
Connection

CDC Engine
Port 11001

AS-Engine
Connection

Engine-Engine
Connection
 Chapter 7. Environmental considerations 153

All connections between the InfoSphere CDC Management Console and the
Access Server are initiated from the workstation running Management Console.
For every connection, the target port is the port on which the Access Server
listens. Connections are established when the Management Console connects to
the Access Server (after the user and password are entered) and when data
stores are connected. Traffic on all connections is mostly bidirectional.

Similarly, all connections between the InfoSphere CDC Access Server and the
CDC instances are initiated from the server running the Access Server.
Connections are established when a user connects to a data store from the
Management Console and new connections are established if monitoring
functions are used from within the Management Console. For every connection,
the target port is the port that has been configured for the CDC instance. Traffic
on these connections is mostly bidirectional.

Connections between CDC source and target instances are initiated from the
server running the CDC source instance. These connections are established
when subscriptions are started.

Connections between CDC instances (source and target) and the database are
initiated from the server running the CDC instance in question. These
connections are established when the CDC instance is started and when
subscriptions are active.

7.2.4 Configuring source port restrictions

If your firewall also filters based on source port, you can and should configure a
starting source port for the InfoSphere CDC component in question, whether it is
Management Console, Access Server, or Subscription. When specifying a
source port, the component in question establishes the first connection using this
port. Any subsequent connection uses the previously issued port number + 1.
154 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Management Console to Access Server
The starting source port and number of ports Management Console can use is
configured in the Connection preferences of your Management Console client
(Figure 7-16). When connecting to the Access Server, which listens on port
10101, the first connection has the following association: tcp, source_ip:59001,
target_ip:10101. The next source port is 59002, and so on.

Figure 7-16 Connection preferences

When planning for the firewall configuration, the total number of connections that
will be established can be calculated by the following formula:

2 + (number of connected data stores * 2)

For example, with starting port 59001 and 20 ports, the source ports to be
opened in the firewall would range from 59001 through 59020. The Management
Console is able to connect to the Access Server and have a maximum of 19 data
stores connected simultaneously.
 Chapter 7. Environmental considerations 155

Access Server to CDC instances
The starting source port and number of ports Access Server can use is
configured in the dmaccessserver.vmargs file that is located in the Access Server
config directory. You can edit the text file and restart the Access Server, after
which the changes take effect. The format of the arguments is:

jar lib/server.jar local_port:<first_port>
local_port_count:<number_available_ports> <Access_Server_Listener_Port>

The number of source ports to open when defining Access Server source ports
depends on the number of Management Consoles that are routed through to the
different InfoSphere CDC instances. This number can be calculated using the
following formula:

2 * (number of management consoles + (number of management consoles *
number of connected data stores) + number of data stores)

CDC source to target instances (subscriptions)
The starting source port must be configured for each subscription in the
Advanced settings. Each subscription potentially establishes up to six
connections to the target CDC instance. This situation depends on the type of
CDC engine that is running on the source and target.

The number of source ports to open in your firewall configuration can be
calculated using the following formula:

6 * number of subscriptions

CDC instance to database
The source port for connections established from the CDC instance to the
database cannot be configured. As a best practice, keep the CDC engine close
to the database server and do not use firewall rules with source port restrictions.

7.2.5 Troubleshooting CDC connection issues

This section describes basic troubleshooting steps to determine whether a
firewall is blocking traffic between CDC components.

The first step in analyzing connectivity issues is determining whether the client
can find the server by its configured IP address or host name. Often, connectivity
issues are caused by a mismatch on the host tables of the server that runs
Access Server and the CDC source server.
156 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

For example, the host name for the CDC target server, tgtsvr, might be resolved
to it real address of 172.16.5.1 in your DNS. The server running the Access
Server might have a host table that causes the tgtsvr host name to resolve to the
address 10.1.1.5. This configuration causes the Access Server to be unable to
reach the target server.

Another example is when the tgtsvr host name is resolved to address 10.1.1.5.
The Access Server uses the DNS and resolves to address 171.16.5.1 for the
target CDC server. You can map source and target tables up to the point where
the subscription tables are described and the source CDC engine attempts to
establish a connection to the tgtsvr host name. The description fails because of
the invalid 10.1.1.5 address that is listed in the source server's host table.

If the environment allows this action and firewalls do not block ICMP requests,
you can run ping from each of the servers running a CDC component to ensure
that host names are resolved to the expected IP addresses. Alternatively, you
can configure the data stores in your Access Server by their IP addresses.

If there are still connectivity issues after having confirmed the IP addresses are
correct, a firewall might block traffic coming from a certain server. Each of the
CDC components, Access Server, and CDC engines, respond to basic
connection requests coming from a telnet client. Simple tests can be run to
determine if the route between any of the components blocked by a firewall or
different issue.

The command to test the activity of a server port is:

telnet <ip address of server> <target port>

If a CDC component is active on the specified IP address and listening on the
target port, the connection is established successfully and opens a telnet
session. You can return to the telnet command line by pressing ^] (Ctrl+]) and
then run quit to exit.

When testing connectivity, it is important to remember which CDC component
establishes the connection. If a connectivity issue occurs when tables are being
mapped, you need to determine whether the source CDC engine can connect to
the target CDC engine. This situation means that the telnet test must be done on
the CDC source server. Should you be able to connect to the Access Server but
not be able to connect to a certain data store, run the test on the server hosting
the Access Server.
 Chapter 7. Environmental considerations 157

7.3 Log retention

As described in Chapter 1, “Introduction and overview” on page 1, InfoSphere
CDC depends on the logging mechanism for its push capabilities. This section
describes some general guidelines for log retention in combination with
InfoSphere CDC. If you require some specific platform or database guidelines,
see 7.3.2, “Log retention platform-specific guidelines” on page 159.

7.3.1 Log retention general guidelines

Each database has an initial fast logging mechanism, typically referred to as an
online log. The DBA has tuned the online log by providing fast storage. Having
highly performed storage means having higher costs, so the storage space
reserved for the online log is limited. When the online log has used all predefined
settings, it is moved to what is referred to as archive logging. These predefined
settings are mostly dependent on available fast storage and the number of
transactions made by the database or different databases using the same
storage space.

By implementing InfoSphere CDC, you can read from the online log during
normal operations. If there are frequent cases where InfoSphere CDC has a
guaranteed latency (for example, with back-up procedures and in environments
where InfoSphere CDC is running periodically), it is necessary to provide storage
for the archive log that also has an adequate read speed. This action ensures
that performance of the InfoSphere CDC scraping process can stay within limits
to cope with the replication needs.

Long open transactions in the source database can cause InfoSphere CDC to
require a log much older than necessary. For example, a user who logged in to
the database and issued a command without having issued a subsequent
commit or rollback can cause this situation. If the user does not exit their session,
a transaction can be open for hours, days, or even weeks. InfoSphere CDC must
retain information about all open transactions in the database in the staging store
on Linux, UNIX, and Windows or the log cache on z/OS. As the transaction ages,
it can be removed from this storage as room is needed for current transactions.
Ending replication for a subscription while this situation exists causes InfoSphere
CDC to require the log where the long open transaction began when it is
restarted. A standard practice when running InfoSphere CDC is to ensure that
there is a procedure in place to end open transactions in the database after a
certain period of inactivity. At minimum, a policy should be in place requiring
users to log out at the end of the work day.

Make sure that all log data stays available until InfoSphere CDC has been able to
replicate the required data to the defined destinations.
158 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

7.3.2 Log retention platform-specific guidelines

As described in 7.3.1, “Log retention general guidelines” on page 158, usage of
the database log is key to replicating data using InfoSphere CDC in near
real-time mode. Some client environments require regular and frequent cleanup
or archiving of the logs to meet their business / disk space requirements. If
database logs are removed before InfoSphere CDC has completed processing
the transactions within them, mirroring fails. The following sections outline
considerations for log retention / management in a replication environment.

Log retention for DB2 on Linux, UNIX, and Windows
For this type of log retention, InfoSphere CDC requires the following items:

� Log retention must be enabled for any DB2 for Linux, UNIX, and Windows
database to be replicated.

� A database backup is required before an initial connection is established from
InfoSphere CDC.

� Physical access to the DB2 online logs and archive logs on disk is required.

� Retention of the DB2 online logs and archive logs for as long as InfoSphere
CDC is shut down or latent.

Log retention for DB2 for System i
For this type of log retention, InfoSphere CDC requires the following items:

� InfoSphere CDC replicates data from physical files. The files must be
journaled with journal images on both.

� When tables are not journaled when selected within InfoSphere CDC for
mirroring, InfoSphere CDC activates the journaling for this table in the default
journal. The standard default journal for InfoSphere CDC is
DMIRROR/DMCJRN, but this journal can be (and should) be modified to a
client-specific journal.

� Retention of the DB2 online logs and archive logs for as long as InfoSphere
CDC is shut down or latent.
 Chapter 7. Environmental considerations 159

Log retention for z/OS
For this type of log retention, InfoSphere CDC requires the following items:

� Retention of archive logs for as long as any of the subscriptions are inactive
or latent.

� Fast access to archive logs if they are stored on tape. However, the preferred
configuration is archive logs on disk.

� Where a log cache is configured, archive logs are required only when a
subscription is inactive or latent longer than the oldest data retained in
the cache.

Here are some guidelines about InfoSphere CDC on z/OS:

� Long open transactions (Units of Recovery (URs))

Messages are issued to the event log when a UR has been open in the
database for a long period (60 minutes by default, which can be change by
using the OPENCOMMITWARNAGE parameter). If the subscription is shut down
while the UR remains open, InfoSphere CDC needs to reread the logs from
the beginning of that UR. You should ensure that there are no long open
transactions before ending a subscription. These messages can optionally be
issued to the system console by using the CONSOLEMSGS parameter.

� Log cache

With a log cache configured, requirements to reread data from the DB2 logs
are reduced. The log cache is a circular buffer and retains information about
all URs and all data for tables with DATA CAPTURE CHANGES configured. The
cache reader keeps up with the head of the DB2 log and removes the oldest
data to make room for new URs as the DB2 log is extended.

Suppose a subscription is inactive and requires data older than the data
stored in the log cache, or a subscription experiences such extreme latency
that it is removed from the cache. In that case, it requests the data from the
DB2 instrumentation facility interface (IFI) directly and returns to reading from
the log cache when the data it needs is available there.

Log retention for Oracle platforms
InfoSphere CDC requires access to both the redo and the archive logs, which
need to be configured for supplemental logging.

Retention of the logging is required for both redo and archive logging for as long
as InfoSphere CDC is shut down or latent.
160 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Log retention for Microsoft SQL Server
For this type of log retention, InfoSphere CDC requires the following items:

� Physical access to the online transaction logs on disk. Multiple physical log
files are supported.

� Physical access to the transaction log backups on disk. Transaction log
backups may not be compressed or encrypted or otherwise transformed from
the format output by SQL Server.

– InfoSphere CDC can only read files in the original unaltered format
generated by the built-in SQL backup utility. Log files may not be moved
after they have been saved

– When using third-party back-up tools, you must make sure that they do not
compress or move the transaction logs from the original location.

� Retention of the logging is required for both redo and archive logging for as
long as InfoSphere CDC is shut down or latent.

Log retention for Sybase
For this type of log retention, InfoSphere CDC requires the following items:

� Physical access to the online logs on disk.

� Physical access to the archive logs on disk. All archive logs must be located
in one directory and InfoSphere CDC must have read permission for
this directory.

� Retention of the online logs and archive logs for as long as InfoSphere CDC
is shut down or latent.

Here are some guidelines:

� The online logs and archive logs can be on different disks.

� Ensure the truncate log option on checkpoint is disabled. If the truncate log
option is enabled, the database log is truncated automatically without backup
every time a database checkpoint is performed

� Never run truncate_only operations. Running a memory dump transaction
with the truncate_only option deletes inactive transactions from the log
without creating a backup.

� Use only data or log segments, not a combination. If a database has mixed
segments, log backup is not allowed and only full database backups can
be performed.
 Chapter 7. Environmental considerations 161

7.4 Remote processing capabilities

Although a general preferred practice is to install InfoSphere CDC on the server
where the source or target database server is located, in some environments
business reasons may dictate that it must be installed on a separate or remote
server. This requirement might exist because of a lack of resources on the
source / target database server sufficient to run InfoSphere CDC, corporate
security standards, or other vendor application environments.

This section outlines implementation methods that can be used to implement
InfoSphere CDC in a remote capture or apply configuration.

Some options for these configurations include:

� InfoSphere CDC is installed for both the source and target on the target
database server and configured to remotely scrape the logs of the source
database system (see 7.4.1, “Remote source” on page 163 for more details).

� InfoSphere CDC supports log shipping for Oracle databases. This
functionality has been designed to cater to environments where log retention
policies conflict with the use of replication solutions against those logs or
when access to the original database logs is not possible or is forbidden (see
7.4.1, “Remote source” on page 163 for more details).

� InfoSphere CDC is installed for both the source and target on the source
database server and configured to remotely apply database changes to the
target database (see 7.4.2, “Remote target” on page 164 for more details).

� InfoSphere CDC is installed on an intermediate server for either remote
source scrape or target apply (see 7.4.3, “Remote source and target” on
page 165 for more details).

� This section also describes InfoSphere CDC support for log shipping, which is
available only on the Oracle environments (see 7.4.4, “Log shipping” on
page 166 for more details.

When InfoSphere CDC is installed on a different server from the database server
it replicates changes from or to, there is always a requirement that a client for the
accessed database be installed on the CDC server.
162 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

7.4.1 Remote source

When referring to a remote source in the context of InfoSphere CDC, the CDC
engine is on a different server from the database that is generating the logs
(Figure 7-17).

Figure 7-17 InfoSphere CDC reading logs from a remote server

Remote log reading is supported for DB2 on Linux, UNIX, and Windows, DB2 on
System i, Sybase, and Oracle databases, and the mechanics for setting remote
log reading are different for all databases. The following sections provide
additional information regarding DB2 and Oracle as examples.

DB2 databases
When processing the DB2 logs from a different server, the DB2 client must be
installed on the server that hosts InfoSphere CDC.

Before creating the InfoSphere CDC instance, the DB2 source database from
which the log entries are read must be identified to the DB2 client. This task can
be accomplished by completing the following steps:

1. Catalog the remote database node on the DB2 client (CDC) server.
2. Catalog the remote database on the DB2 client (CDC) server.

Specific commands and more details can be found at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.cdcfordb2luw.doc/concepts/configuringremotelogreading.html

Oracle databases
When remotely reading Oracle logs, the server that InfoSphere CDC is running
on must be the same brand and chipset (for example, reading Oracle logs on
IBM System p® from an HP server is not supported). Also, the endian of the
database and CDC server must be the same (processing database logs
generated on a Linux server from a System p server is not supported).

MetaData
Target Tables

CDC Source
Instance

CDC Target
Instance

Target ServerSource Server

LogMetaData
Source Tables
 Chapter 7. Environmental considerations 163

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.cdcfordb2luw.doc/concepts/configuringremotelogreading.html

The following items must be considered:

� The archive and redo log files are stored in a shareable file system (SAN or
NFS mount). If available, a SAN is preferable over NFS for performance
impact and throughput reasons; when log volumes are high, NFS mounts are
not practical. It is not possible for redo / archive files stored on RAW devices.

� If the first set of online and archive logs cannot be shared, consider having
Oracle multiplex the archive logs (and, optionally, the online logs too).

� The directories that hold the archive and redo log files must be accessible
from the server on which InfoSphere CDC runs. The InfoSphere CDC user
must have read permissions on archive and redo logs.

Some specifics to consider when setting up the remote source configuration are:

� Create the dba group on the InfoSphere CDC server with the same GID as
the source database server and make the InfoSphere CDC UNIX account
part of this group. This configuration eliminates having to open too many
permissions for others.

� Create a mount point on the InfoSphere CDC server that resembles the
directory referenced in the v$archived_log and v$logfile views.

– For example, the archive logs are stored in /oradata/cdcdemo/archive,
and if possible, create the following mount point on the InfoSphere CDC
server:

/oradata/cdcdemo/archive

– When InfoSphere CDC determines the name of the log it must read, it can
go to the directory without having to replace the path component.

� If the mount point cannot be created, the following parameters can be set to
override the directories from which the log files are read:

– mirror_archive_log_directory (location of the archive logs).

– mirror_online_log_directory (location of the online logs).

If remote log reading must be performed in a RAC configuration and the
original directories cannot be mounted the same way, you must ensure that
archive logs of all RAC nodes are in the same directory.

7.4.2 Remote target

In a remote target environment, InfoSphere CDC must apply the transactions to
a database that is on a different server. On the InfoSphere CDC server, make
sure that you are able to connect to the remote target database as though it was
on the same server.
164 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Database logs are read locally on the source server and changes are sent to the
target CDC instance. This instance then applies them remotely to the target
server (using the database client) (Figure 7-18).

Figure 7-18 Remote target

Remote apply is supported for DB2 on Linux, UNIX, and WIndows, Sybase, SQL
Server, and Oracle, and requires that the database client for the applicable
database is installed on the server that hosts InfoSphere CDC. Additionally, the
database server that is targeted must be identified in the configuration of the
client so that it can be reached by CDC. For DB2, the database server and the
remote database must be cataloged; for Oracle, the remote database should
exist as a TNS entry in the SQL*Net configuration of the client.

7.4.3 Remote source and target

In this scenario, InfoSphere CDC is installed on a dedicated server that hosts the
source and target engine. Besides the CDC engines, the source and target
databases must have their database client installed on this server.

MetaData
Target Tables

CDC Source
Instance

CDC Target
Instance

Target Server
Source Server

LogMetaData
Source Tables
 Chapter 7. Environmental considerations 165

Database logs are read remotely from the source server and sent to the target
CDC instance. This instance then applies them remotely to the target server
(using the database client) (Figure 7-19).

Figure 7-19 Remote source and target

7.4.4 Log shipping

Log shipping is available for Oracle environments only.

In log shipping, InfoSphere CDC uses the database logs coming from another
system (Figure 7-20).

Figure 7-20 InfoSphere CDC log shipping

InfoSphere CDC does not take care of the shipping of the logs. It is the
responsibility of the DBA to make sure that the logs are sent to the defined
system. Log shipping is only possible by using archive logs. Therefore, for a near
real-time scenario, this option might not be the best solution.

Target ServerSource Server

LogMetaData
Source Tables

CDC Source
Instance

CDC Target
Instance

Source Server

MetaData
Target Tables

MetaData
Target Tables

CDC Source
Instance

CDC Target
Instance

Target ServerSource Server

LogMetaData
Source Tables

Log
Shipping

Log
166 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Here is what you need to use log shipping in an Oracle environment. The
InfoSphere CDC system parameters should be set as follows:

� Oracle_log_shipping=true
� Oracle_archive_logs_only=true

When changing these system parameters, the InfoSphere CDC instance must be
restarted for them to take effect.

The shipping of the archive logs can be performed by either the Oracle Data
Guard log shipping feature or by a client-created log shipping script.

When you use the Oracle Data Guard log shipping feature, InfoSphere CDC can
safely pick up the archive log files stored in the oracle_archive_dir directory
while Data Guard ensures the consistency of the files. The following
considerations must be met:

� Archive logs are shipped to a secondary destination by Oracle Data Guard.

� InfoSphere CDC must be configured to read the logs from the
secondary destination.

� The extra data store system parameters to be set are:

– oracle_using_log_transport_services=true
– oracle_archive_destination_id=<destination_id_from_oracle>
– oracle_archive_dir=<directory_holding_archive_logs>

When changing these system parameters, the InfoSphere CDC instance
must be restarted for them to take effect.

When creating your own script to perform the log shipping, you must include the
following steps:

1. Select new archive files from v$archived_log with status="A" (marked
available by Oracle). Ensure that you do not ship archive logs that do not
have the “A” status, as this situation exposes the risk of incomplete shipment
and losing transactions.

2. Run a checksum of each archive file before sending the file to the target.

3. Transfer the archive files to the InfoSphere CDC server.

4. Run a checksum of each archive file on the InfoSphere CDC server and
compare with the checksum of source server.

5. Notify InfoSphere CDC for each archive file using the
dmarchivelogavailable command.
 Chapter 7. Environmental considerations 167

The following system parameters must be set when using custom scripting for
archive log shipping:

� oracle_archive_dir= <directory_holding_archive_logs>

or

� oracle_log_path_userexit=<class_name>

Class name must be in the lib directory under the InfoSphere CDC home
and must implement ArchiveLogPathUserExit and hold method
ArchiveLogPath.

Here are some considerations for the log shipping scripts:

� If possible, run the entire log shipping from the source server.

� All steps, from picking up the archive log and to making the archive log
available for InfoSphere CDC, can then be handled by one single script. This
situation allows for full control over comparison of checksums and availability
of the archive logs.

� If sending the archive logs and processing on the target cannot be done in a
singe script, consider the following items:

– Send the archive log under a different name.

– Rename the archive log file when the transmission is complete (using the
SFTP subcommand).

– The script that makes the archive logs available for InfoSphere CDC only
picks up archive logs with the original name.

� When refreshing tables or marking table capture points, ensure that you
switch online log files to archive and ship the logs. Otherwise, the starting
point for replicating the table may not be reached until the online logs
are archived.

7.5 Using InfoSphere CDC in resilient environments

In many organizations, information is the most important business asset, which
makes the database that holds it an important IT asset. Also important is having
the data be highly available. There are two options to implement a highly
available (HA) architecture for databases:

� Hardware mirroring
� Software mirroring (replication)
168 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Hardware mirroring is implemented at the disk level, and is supplied by disk
arrays vendors. For software mirroring, there are dedicated solutions available
that ensure a backup server is kept synchronized (asynchronously) with
production. This section describes the implementation of InfoSphere CDC in
resilient environments, which includes typical configurations for the
various platforms.

Database clusters are typically implemented for high availability, disaster
recovery, load balancing, or a combination of those options. In a cluster scenario,
one of the nodes can stop due to a planned activity or due to a failure. The
process of stopping a node and turning over services to another node is called
failover. InfoSphere CDC works directly with the database and can be installed
on the node that might fail over at some point, which affects InfoSphere CDC
functionality. While designing an InfoSphere CDC implementation in a cluster
environment, two main points should be considered:

1. If InfoSphere CDC processing is moved from one node to another during
failover, how do the external clients, such as Management Console and
subscriptions, reach this instance?

2. How is replication processing by CDC started after a backup node takes over
control? This situation includes finding the binary files and configuration
(metadata). Both binary files and metadata of the instance should
be accessible.

7.5.1 InfoSphere CDC reachability: Virtual IP

In a high availability cluster, a common resource is the virtual IP address. A
virtual IP (VIP) is an IP address that is not connected to a specific computer or
network interface card on a computer. Incoming packets are sent to the VIP
address, but they are redirected to physical network interfaces.
 Chapter 7. Environmental considerations 169

InfoSphere CDC is typically implemented in an active / passive configuration
where the replication is only active on one node at a time. The virtual IP address
is directed to the InfoSphere CDC node and is used in other instances and in
Management Console. When InfoSphere CDC has a failover to another node,
nothing should be changed for external users, and all connections can be
restored to the same (virtual) IP and port (Figure 7-21).

Figure 7-21 CDC cluster reachability

In the left side of Figure 7-21, Management Console connects to the data store
using (virtual) IP address 192.168.21.68 which is directed to physical address
192.168.21.45 (node A). Also, data packets coming from subscriptions that are
targeting this data store are redirected to the physical IP address. When a
failover of node A is performed, the traffic targeting virtual IP address is
redirected to physical IP address 192.168.21.56, which is on node B
(Figure 7-21).

7.5.2 InfoSphere CDC binary files and metadata for the Linux, UNIX,
and Windows engine

The location of the InfoSphere CDC installation binary files and metadata for the
common (Java) engine has a significant impact on how the InfoSphere CDC
cluster is maintained. It is important to know that the configuration of InfoSphere
CDC consists of two components:

� Configuration metadata (subscriptions and mapped tables): These items are
kept in a directory on the file system under the cdc_home/instance directory.

� Operational information, such as instance signature and bookmarks. These
items are kept in tables in the database from or to which CDC is
replicating data.

Failover

Node B (CDC Passive)
Physical IP 192.168.21.56

Node A (CDC Active)
Physical IP 192.168.21.45

192.168.21.68

Incoming

Subscription

VIP

Node B (CDC Active)
Physical IP 192.168.21.56

Node A (CDC Inactive)
Physical IP 192.168.21.45

192.168.21.68

Incoming

Subscrip
tion

VIP

Management
Console

Management
Console
170 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The configuration metadata and operational information are related through the
signature and cannot be maintained independent from each other. The signature
is established when the instance is created. You cannot recreate an instance
with the same location of the operational information without invalidating the
old instance.

The next sections describe three possible topologies of an InfoSphere CDC
cluster implementation of the Linux, UNIX, and Windows engine and how it
should be maintained in each one of them. These topologies are:

� InfoSphere CDC on a shared volume
� InfoSphere CDC on separate nodes with a shared database
� InfoSphere CDC on separate servers with separate databases

7.5.3 InfoSphere CDC on a shared volume

To implement this topology for the Linux, UNIX, and Windows engine, you need
a volume that can be accessed by all nodes in the cluster. Usually the shared
volume is provided by a storage area network (SAN) or Network Attached
Storage (NAS). In some configurations, the disk volume is only mounted on and
accessible to the active node. Having a shared volume that keeps the installation
of CDC provides the simplest topology for implementation and maintenance.

InfoSphere CDC binary files and configuration metadata is stored on the shared
volume and any changes made to the configuration on the active node are
centrally stored and available at failover time. InfoSphere CDC operational
information is stored centrally in the database, for which clustering must have
been set up. All files in the CDC directory structure must be owned by the same
user ID on all nodes in the cluster and also the same group ID if it is installed on
UNIX / Linux. Because there is only one copy of the configuration metadata, all
nodes on which this InfoSphere CDC instance runs must have same database,
services, database connection parameters, and database log locations.
 Chapter 7. Environmental considerations 171

The topology for a shared mount point installation is shown in Figure 7-22.

Figure 7-22 InfoSphere CDC on SAN

Installation and configuration steps
Here are the installation and configuration steps:

1. Install InfoSphere CDC once on the active node. The product home directory
(referred to as $CDC_HOME) must be on a shared volume.

2. Create an InfoSphere CDC instance on the active node. Configuration
metadata is created in the file system under the product home directory and
operational metadata in the database.

3. Start InfoSphere CDC instance on the active node.

4. Configure subscriptions and table mappings.

Node B (CDC Passive) Node A (CDC Active)

Incoming

Subscription

VIP

Outgoing

Subscrip
tion

VIP

CDC
Not Active

CDC Metadata

CDC Operational
Information

Database

CDC

Shared Storage
172 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Failover steps
If failover is planned, complete the following steps:

1. Stop replication for all subscriptions (run dmendreplication). If this
InfoSphere CDC instance is a target, replication must be stopped from
the source.

2. Stop InfoSphere CDC instance (run dmshutdown).

After the shared volume is available on the failover node:

� Start the CDC instance (run dmts32 or dmts64).

� Clear the staging store for the instance (run dmclearstagingstore).

� Restart subscriptions (run dmstartmirror). If this InfoSphere CDC instance is
a target, replication must be started from the source.

7.5.4 InfoSphere CDC on separate nodes with a shared database

In this topology for the Linux, UNIX, and Windows engine (Figure 7-23),
InfoSphere CDC is installed on each node in the cluster and there is no shared
volume available to contain the CDC installation. The attached database is
clustered using a shared volume. Although it is straightforward to implement, it
requires additional maintenance and failover steps.

Figure 7-23 CDC resilient installation - separate nodes

Node B (CDC Passive) Node A (CDC Active)

Incoming

Subscription

VIP

Outgoing

Subscrip
tion

VIP

CDC
Not Active

CDC Metadata

CDC Operational
Information

Database

CDC Metadata

CDC
 Chapter 7. Environmental considerations 173

InfoSphere CDC binary files and configuration metadata are kept independent
from each other on both nodes, so you need to synchronize all the changes that
are made to the configuration from the primary to the backup node. Files that are
kept in the CDC home directory and its tree should have the same user ID and
group ID when installed on UNIX and Linux. This setup ensures that the user
running the instance on the backup node can actually read and update the
configuration when failed over.

Because operational information is stored in the database and there is a link
(through a signature) between this data and the configuration metadata, it is not
possible to create a CDC instance on the backup node and redo the changes.
Therefore, the configuration metadata on the primary node should periodically be
backed up and restored onto the backup node. The configuration metadata can
be synchronized as frequently as wanted. At a minimum, you should do this task
after making configuration changes (mapped tables, subscriptions, and system
parameters) and after the initial refresh of mapped tables has taken place and
the table status has gone to active.

Because configuration metadata is replicated and operational metadata is the
same, as in the previous topology, all nodes that this InfoSphere CDC instance
runs on must have the same database, services, database connection
parameters, and database log locations.

Installation and configuration steps
Here are the installation and configuration steps:

1. Install InfoSphere CDC on all nodes. Keep $CDC_HOME the same on
the servers.

2. Create an InfoSphere CDC instance on the active node. The product
metadata is created under the product home directory and in the database.

3. Copy the entire $CDC_HOME/instance directory to the backup server. Do not
create an instance on the passive node, because it invalidates the instance
created on the active node.

4. Start the InfoSphere CDC instance of the active node.

5. Configure subscriptions and map tables.

6. Periodically copy the file system metadata and event logs from the active to
the passive node. Metadata is kept in the
$CDC_HOME/instance/<instance_name>/conf/md* file. You can run the
dmbackupmd command to back up the files to the
$CDC_HOME/instance/<instance_name>/backup/bnn directory. To keep the log
history when the instance becomes active on the second node, the events
database should be also copied. Events are kept in the
$CDC_HOME/instance/<instance_name>/events/* file.
174 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Failover steps
If a failover is planned, complete the following steps:

1. Stop replication for all subscriptions (run dmendreplication). If this
InfoSphere CDC instance is a target, replication must be stopped from the
source.

2. Stop InfoSphere CDC instance (run dmshutdown).

After the InfoSphere CDC instance is stopped (or has failed) on the active node
and the Virtual IP becomes available on the passive node:

1. Restore the latest version of the file system metadata and events.

2. Start the instance (run dmts32 or dmts64).

3. Clear the staging store for the instance (run dmclearstagingstore).

4. Restart subscriptions (run dmstartmirror). If this InfoSphere CDC instance is
a target, replication must be started from the source.

7.5.5 InfoSphere CDC on separate servers with separate databases

In this topology for the Linux, UNIX, and Windows engine, there are two separate
instances of the database that use a technology, such as DB2 High Availability
Disaster Recovery (HADR) or Oracle Data Guard, to keep a backup (standby)
database synchronized with the primary database.

When the high availability solution is implemented on the CDC source, the log
entry sequence numbers (LSN for DB2 and SCN for Oracle) are the same on the
primary and the backup databases. The backup database is typically in standby
mode or only opened for read activity (reporting).

If the CDC target is a database for which such a high availability solution is
active, the synchronization of the log entry sequence numbers is not relevant.
However, in such a scenario, the reachability of the server is an important
consideration. Typically, a virtual IP address cannot be assigned because the
primary and backup databases are remote from each other and on different
network segments.

InfoSphere CDC configuration and operational metadata are different and kept in
pairs due to the signatures between them. This topology should only be
implemented if a virtual IP cannot be assigned.
 Chapter 7. Environmental considerations 175

This configuration is shown in Figure 7-24. The InfoSphere CDC binary files and
configuration metadata are kept independent from each other on both servers, so
you need to synchronize all changes that are made to the configuration from the
primary to the backup server. Files in the InfoSphere CDC home directory and its
tree should have the same user ID and group ID when installed on UNIX and
Linux. This setup ensures that the user running the instance on the backup node
can actually read and update the configuration when failed over.

Figure 7-24 CDC in a HADR / Data Guard environment

The configuration metadata on the primary node should periodically be backed
up and restored onto the backup node. The configuration metadata can be
synchronized frequently, but at a minimum you should do this task after making
configuration changes (mapped tables, subscriptions, and system parameters)
and after the initial refresh of mapped tables has taken place and the table status
has gone to active.

Because configuration metadata is replicated and operational metadata is the
same, as described in 7.5.4, “InfoSphere CDC on separate nodes with a shared
database” on page 173, all nodes that this InfoSphere CDC instance runs on
must have the same database, services, database connection parameters, and
database log locations.

Node B (CDC Passive) Node A (CDC Active)

Incoming

Subscription
Outgoing

Subscr ip
tion

CDC
Not Active

CDC Metadata

CDC Operational
Information

Database

CDC Metadata

CDC Operational
Information

Standby
Database

HA Solu tion

IP: 10.1.74.100 IP: 192.168.31.64

CDC
176 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Installation and configuration steps
Here are the installation and configuration steps:

1. Install InfoSphere CDC on all nodes. Keep $CDC_HOME the same on
the servers.

2. Create an InfoSphere CDC instance on the active server. The product
metadata is created under the product home directory and in the database.

3. Copy the entire $CDC_HOME/instance directory to the backup server.

4. Start the InfoSphere CDC instance on the active server.

5. Configure subscriptions and map tables.

6. Periodically, copy the file system metadata and event logs from the active to
the backup server. Metadata is kept in the
$CDC_HOME/instance/<instance_name>/conf/md* file. You can run the
dmbackupmd command to back up the files to the
$CDC_HOME/instance/<instance_name>/backup/bnn directory. To keep the log
history when the instance becomes active on the backup node, the events
database should be also copied. Events are kept in the
$CDC_HOME/instance/<instance_name>/events/* file.

Failover steps when the server is the source for InfoSphere
CDC
If the failover is planned, complete the following steps:

1. Stop replication for all subscriptions (run dmendreplication). If this
InfoSphere CDC instance is a target, replication must be stopped from
the source.

2. Stop the InfoSphere CDC instance (run dmshutdown).

After the InfoSphere CDC instance is stopped (or fails) on the primary server and
the database on the backup server is active, complete the following steps on the
backup server:

1. Restore the latest version of the file system metadata.
2. Start the instance (run dmts32 or dmts64).
3. Clear the staging store for the instance (run dmclearstagingstore).
4. Restart subscriptions (run dmstartmirror).

Failover steps when the server is the target for CDC
If the failover is planned, complete the following steps:

1. Stop replication for all subscriptions (run dmendreplication) on the
source server.

2. Stop the InfoSphere CDC instance (run dmshutdown).
 Chapter 7. Environmental considerations 177

After the InfoSphere CDC instance is stopped (or fails) on the primary server and
the database on the backup server is active, complete the following steps on the
backup server:

1. Restore the latest version of the file system metadata.

2. Start the instance (run dmts32 or dmts64).

Then, the subscriptions need to be redirected to the backup server. Complete the
following steps:

1. From the Access Manager perspective, change the IP address (or host
name) of the target data store.

2. Connect to the target data store from the Management Console
Configuration perspective.

3. Right-click the connected data store, click Properties, and click the
Aliases tab.

4. Add the IP address or host name of the backup server to the aliases.

5. Go to each subscriptions’ properties and click the Details button next to the
target data store. You should be able to select the backup server's IP address
or host name as the new destination for the subscription

7.5.6 System i resilient environments

There are different scenarios for InfoSphere CDC resiliency when an IBM
System i server (formerly known as AS/400 and IBM eServer™ iSeries®) is part
of the replication landscape. There are two methods for providing resilience in a
System i environment, one similar to the clustering solutions that are available for
other platforms and the other using software-based high availability solutions.

This section focuses on how the two methods pertain to the configuration failover
of InfoSphere CDC.

Resiliency using Independent Auxiliary Storage Pools
Independent Auxiliary Storage Pools (IASPs) are a System i supported means of
storing business data and applications separately from the internal storage that
comes with the server. IASPs lend themselves to using SANs and disk-based
replication solutions for resiliency of data and applications. IASPs can be
detached from one server and then attached to a backup server so that the
backup server can take over production work.
178 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

A simple scenario of an IASP that can be attached to local servers is shown in
Figure 7-25.

Figure 7-25 IASP attached to local servers

When using a disk-based mirroring solution, an IASP can have a physical
backup that is remote from the primary production site. If there is a failure of the
primary server or a site disaster, the server on the backup site can take over the
production work.

A mirrored IASP is shown in Figure 7-26.

Figure 7-26 IASP attached to local servers

An IASP can only be attached to one System i server at a time. Also, when disk
mirroring is used to synchronize to a backup site, the backup IASP cannot be
attached to the backup server until synchronization is stopped.

Primary Server

CDC W ork Library

Backup Server

IASP

CDC Full
Product Library

System ASP
System ASP

CDC Work Library

CDC
Work Library

Primary Server

System
ASP

System
ASP

CDC
Work Library

Backup Server

IASP

CDC Full
Product Library

IASP

CDC Full
Product Library

Disk Mirroring
 Chapter 7. Environmental considerations 179

Using InfoSphere CDC in an IASP environment
InfoSphere CDC supports installation in environments where IASPs are used.
The product has a number of objects that must be kept in internal storage
(*SYSBAS ASP), such as a user profile (D_MIRROR), the subsystem description,
and a job queue.

When installing InfoSphere CDC in a resilient environment, you must perform the
installation on the active server that is connected to the IASP. During the
installation, you are prompted to specify the name of the IASP and the product
library; this library is where the full product, including the configuration tables, is
installed, and which is kept on the IASP. The installation automatically creates
another library on *SYSBAS ASP (the name is automatically determined by the
installation program, being the first eight characters of the product library name,
appended with 01), which is the work library. The work library holds all the
objects that cannot be kept on the IASP.

After you have installed InfoSphere CDC on the active system, you must perform
a work library installation on the inactive system. The work library installation just
creates the library and objects that cannot be kept on the IASP and that are only
used when CDC must be activated on the backup server.

If you change the D_MIRROR user profile or the objects in the InfoSphere CDC
work library, these changes must also be made on the inactive server. The
system ASP holds the service table entries, which define the port that the
product listens on. The service table entry must be available on the backup
server, or the listener does not start successfully when the subsystem is started.
Configuration, such as mapped tables, subscriptions, and so on, are kept in the
full product library, which is on the IASP, and shared (or mirrored) between the
primary and backup server.

If there is a failover or switchover of InfoSphere CDC in an IASP environment,
you must stop the subscriptions replicating from or to the primary System i
server, and then start the subsystem in the CDC work library. This action
automatically starts the TCP/IP listener. Once active, the replication can be
resumed and should incur no loss or duplication of data.

Besides the InfoSphere CDC library, the IASP needs to hold the tables that are
being replicated from or to. Also, if you are replicating from tables that are on an
IASP, the journal and journal receivers of these tables must also be on the same
storage. This action should already be part of your implemented
recovery strategy.
180 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Using InfoSphere CDC with software-based high availability
solutions
Many clients with System i servers employ software-based high availability
solutions to provide for disaster recovery. An example of a software-based high
availability solution is IBM iCluster® for i.

Software-based HA solutions operate by reading journal entries generated by the
production application and applying these entries onto the target tables. These
target (backup) tables are also journaled and therefore generate journal entries
similar to the ones on the production side. Journaling on the backup server might
be different from the journaling on the primary server (but typically not). The
journal receivers containing the backup server's tables journal entries might (and
probably do) have a different name from the primary server's journal receivers. In
some cases, journaling on the backup server might even be disabled while the
server is not running any production processes.

This situation adds additional complexity to the journal management and
switchover process if InfoSphere CDC uses the System i production server as a
source. This section lists the considerations when implementing InfoSphere CDC
in such a landscape.

There are two main items that must be considered in a software-based
HA implementation:

� Switchover and failover of InfoSphere CDC
� Journal management (purging of obsolete journal receivers)

These considerations only apply when the System i server is used as a source
for InfoSphere CDC. When targeting this server platform, switchover is much
more straightforward and journal management considerations do not apply.

Switchover and failover
In high availability terminology, switchover is when switching control to a backup
server is a planned activity. You can stop applications on the primary server and
perform preparative actions on the backup server before resuming production
activity, for example, when migrating to a new server. A failover occurs when
there is an unplanned event that causes the primary server to be unavailable,
such as a power outage or a site disaster.

If there is a switchover, the preparative actions that must be taken on the primary
server are:

1. Stop business application activity so that journal entries are no
longer generated.

2. Stop the InfoSphere CDC subscriptions.
 Chapter 7. Environmental considerations 181

3. Restart the subscriptions with scheduled end of now (net change mirroring) to
ensure that all transactions have been replicated to the target server.

4. Optionally, stop the subsystem.

After these steps have been performed, you should complete preparative steps
on the backup system before resuming business application activity:

1. Start the InfoSphere CDC subsystem, but do not start any subscriptions yet.

2. Set the bookmark (SETJRNPOS) to any entry in the current journal receiver.

3. Mark table capture points for all tables in the subscriptions; this action marks
the point from which changes are being replicated again.

4. The business applications can be restarted.

5. At any time, the subscriptions can now be started; any transactions that were
generated after the marking of table capture points are replicated to the
target server.

When there is a failover, you might not exactly know up to which point the
transactions in the primary server's journals have been replicated to the target
server. The next few sections elaborate on the challenges that you are presented
with in the event of a failover and how to overcome them to be able to resume
replication without data loss.

Journals and journal receivers
On System i servers, the subscription bookmarks that are kept by InfoSphere
CDC are identified by the name of the journal (and its library), the journal receiver
(and its library), and a journal entry sequence number within the receiver.

Tables (physical files) on the primary (production) server are journaled and the
journal has one or more receivers associated with it, storing database
transactions in the current, attached receiver. If tables are also journaled on the
backup server (this setup is optional, but is a best practice to facilitate failover),
the attached journal should have the same name and be on the same library as
the one on the production server.

The production journal could have the following journal receivers associated
with it:

� RCV0578
� RCV0579
� RCV0580
182 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

On the backup server, the equivalent journal almost certainly has different
journal receivers associated with it, for example, RCV1593 and RCV1594.
Naming and switching of the journal receivers on the backup server is
independent of the journal receivers on the primary server. The likelihood of
journal receivers having the same name is small and cannot be enforced.

An example scenario for an InfoSphere CDC implementation coexisting with a
software-based HA solution is shown in Figure 7-27.

Figure 7-27 Software-based HA solution

Bookmark and failover
In Figure 7-27, a journal entry 110 in receiver RCV0580 might correspond to the
journal entry 81524 in receiver RCV1594 on the backup server. When
InfoSphere CDC applies the primary server's journal entry to the target database,
the bookmark that is written would be RCV0580-110.

Should production have to be switched over from the primary to the backup
server and the subscription restarted from the backup server, the bookmark
information would not be valid anymore. Most likely, the journal entry that is
identified by the bookmark does not exist in the backup server's journal and the
subscription fails to start.

CDC Target Database

Primary Server Backup Server

DB Table

DB Table

RCV0560

RCV0580

RCV0578

RCV1594

RCV1593
Software-based HA Solution

CDC Replication

CDC
 Chapter 7. Environmental considerations 183

Before starting the subscriptions on the backup server, the bookmark (journal
position) must be reset on the backup server. Because the source server might
no longer be available and the bookmark information kept in the database
targeted by the subscription cannot be associated exactly with a journal entry on
the backup server, you must use a strategy that replicates all entries. You cannot
prevent some table operations from being replicated more than once, and it is
likely that primary key violations occur when applying entries to the target tables.
If the replication is targeting tables without unique keys, such as audit tables, or
applications, such as DataStage or a JMS provider, there will be duplicates in the
entries that are sent, and these duplicates might have to be resolved afterward.

A common strategy to set the journal position after a failover is to keep a time
stamp for every subscription in the database / application that is targeted. A
technical table is created on the source System i server and this table holds a
(dummy) key and a time stamp column. The technical table is included in every
subscription and resolves in a target table that is populated with the last update
that was done on the source table. On the source server, a simple program is
scheduled to run that updates the row in the source table with the current
system's date and time.

By following this strategy, you have a table in the target database that holds the
date and time of the last applied entry. This date and time can then be used to
find the journal entry in the backup server's journal and set the bookmark using
the SETJRNPOS command.

In this scenario, assume that the mirroring by the high availability solution is up to
date and has transferred all changes from the primary server to the
backup server.

To determine if no changes are skipped for replication, you could set the
bookmark to a journal entry that is a few minutes before the recorded time stamp.
This setting covers situations where the system times of the primary and backup
server are not synchronized and entries on the backup server have an earlier
time stamp than the corresponding entries on the primary server.

If the target tables have primary keys, you can keep the subscription from
stopping with a duplicate key or missing record error by choosing one of the
following options:

� Activate conflict detection on the replicated tables and specify “source wins”.
If an insert cannot be applied to the target, it is turned into an update. An
update of a row that does not exist results in an insertion, and deletion of a
non-existing row is ignored. Additionally, the conflicts are logged in a conflict
auditing table so they can be reviewed afterward.
184 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� Remap the tables with the Adaptive Apply mapping type. This action
produces the same result as activating conflict detection, but it does not
log conflicts.

� Instruct the InfoSphere CDC target engine to continue on error during
mirroring. A system parameter can be set for this option. The name of the
system parameters is dependent on the engine type; for the Linux, UNIX, and
Windows engine, set mirror_end_on_error=false.

The configuration changes should only be used to allow the subscription to
continue beyond the point where the source and target are synchronized again.
All three options might have an adverse effect on the apply throughput and you
should consider changing the settings back to the original ones as soon
as possible.

Journal management
If there is a failover, the journal on the backup server must have all the entries
that were not replicated to the subscription's target server. The journal receivers
must only be removed from the backup server once they do not hold any data
that might have to be replicated in a switch.

As a simple strategy for ensuring that journal entries are available at failover
time, implement a clean-up strategy that keeps a number of journal receivers on
the backup server, for example, for one day.

If there is insufficient space on the backup server, you must correlate the journal
position (bookmark) of the subscriptions with a backup journal receiver.
RTVDMJENT returns the oldest journal receiver that is still needed by any of the
subscriptions; it must be run on the primary server. Through the journal receiver
that is returned, you can determine the time stamp of the first journal entry. The
time stamp can be used to find the oldest journal receiver that is still required on
the backup server. You should subtract a few minutes from the time stamp if this
procedure is also done when the bookmark is set after failover.

Mirroring scope for a high availability solution
In addition to managing the journal receivers and setting the bookmark, consider
the configuration of the high availability solution. On the backup server, a fully
functional copy of the InfoSphere CDC installation must be available to be used
when control is switched to it. At the same time, not all objects in the product
library may be available for mirroring (save / restore) due to object locks.
 Chapter 7. Environmental considerations 185

Objects listed in Table 7-1 must be included in the mirroring scope of the high
availability solution.

Table 7-1 Mirroring scope objects

Initially, all objects in the InfoSphere CDC product library should be saved on the
primary server and restored onto the backup server. There are objects such as
communications user spaces that must exist on the target. Stop all subscriptions
and the subsystem when doing the initial synchronization of the InfoSphere CDC
product library to the backup server.

7.5.7 z/OS / Sysplex and InfoSphere CDC in resilient environments

Resiliency consists of being able to recover and restart replication if any of the
main source or target components fail.

Library Object Object Type Include or
Exclude

Comments

InfoSphere
CDC
Product
Library

*ALL *ALL Include N/A.

InfoSphere
CDC
Product
Library

*ALL *USRQ Exclude These objects are
exclusively locked when
subscriptions are running.

QSYS D_MIRROR *USRPRF Include InfoSphere CDC User
Profile.
186 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The overall architecture is shown in Figure 7-28. The components in solid boxes
are the ones in active use; the components in dashed-line boxes become active
should the current components fail. In general, each component can be
physically on a different machine. Any active component could fail, requiring a
failover to a backup machine.

Figure 7-28 Failover architecture

A failover entails the following actions:

� Ensuring the configuration and operational metadata on the failed over
machine matches the metadata is required to continue replication. This action
includes ensuring that database log restart positions are properly set.

� Re-establishing communications.

� Ensuring the required software is running on the failover machine.

� Restarting replication within the new failover environment.

Resiliency with InfoSphere CDC z/OS can be achieved by working within a DB2
z/OS data sharing environment. The InfoSphere CDC z/OS address space must
run in a z/OS instance corresponding to one of the members of the data sharing
group. Should that instance of z/OS fail, or should that DB2 member not be
operational, InfoSphere CDC z/OS can be restarted on another z/OS instance
containing a member of the data sharing group. Because the data is shared, the
failover instance of InfoSphere CDC z/OS uses the same metadata (including
operational metadata) as the failed instance, so failover considerations are
primarily around connectivity.

DBMS
(source)

(source,
alternate
cluster

member)

(target)
CDC

(source)
CDC

(target)

MC

CDC
(source,
failover

instance)

CDC
(target,
failover

instance)

(target,
alternate
cluster

member)

DBMS

DBMSDBMS
 Chapter 7. Environmental considerations 187

To prepare InfoSphere CDC z/OS to restart on a different member, ensure that
the following tasks are accomplished:

� The DB2 subsystem parameter SSID in the CHCDBMxx configuration
member must refer to the group attachment name, not the subsystem ID of
an individual member.

� The Host Name data store, as configured in the Management Console, must
resolve to a virtual IP address before configuring any subscriptions.

� The InfoSphere CDC z/OS source machine's TCP/IP configuration must be
configured to use the same virtual IP address for the InfoSphere CDC target
configured in the Management Console.

� Upon failover, the virtual IP address used by the Management Console to
connect to the source or the target engine must refer to the new z/OS
instances on which the InfoSphere CDC z/OS address space is running. The
data store must be configured using virtual IP addresses in the Management
Console before creating subscriptions.

� Subscriptions are configured as persistent by right-clicking the subscription
and clicking Properties  Advanced Settings...  Mark subscription
as persistent.

The four main resiliency scenarios are

� Source database management system (DBMS) failure
� InfoSphere CDC source failure
� InfoSphere CDC target failure
� Target DBMS failure

The InfoSphere CDC source failure and InfoSphere CDC target failure scenarios
also cover the case of overall OS or hardware failures for the z/OS instance on
which they are running.

Should the source DBMS become unavailable, all subscriptions are
automatically ended by the product. With persistent subscriptions, the product
detects when the DBMS becomes available and automatically restarts the ended
subscriptions. If there is a hard DBMS failure and the DBMS member is
unusable, then the InfoSphere CDC source needs to be failed over to use
another member.

Failover of the InfoSphere CDC z/OS source entails ending the InfoSphere CDC
z/OS address space if it is still running and restarting it with the same user ID on
another member of the data sharing group. If the address space was ended
while the subscriptions were running, then the subscriptions that have been
marked persistent are restarted automatically when the address space is
restarted. Otherwise, the subscriptions need to be restarted manually.
188 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Because the target's IP address is unchanged and correctly configured in the
shared metadata, only the virtual IP address for the InfoSphere CDC source
needs to be redirected to the failover member for the Management Console to
access it.

Resiliency for an unavailable InfoSphere CDC z/OS target could entail surviving
network outages or, if the target becomes unusable, entail failing over the target
to another member. For network outages, the persistent subscription feature of
InfoSphere CDC z/OS provides a means of reconnecting automatically. Should
the InfoSphere CDC target become unreachable through communication
channels, the InfoSphere CDC z/OS source tries connecting to the target at
intervals set by the AUTORESTARTINTERVAL configuration parameter. After
the InfoSphere CDC target becomes available, the subscriptions marked as
persistent are automatically restarted.

If a failover of the target is required, the persistent subscription tries simplify
failover procedures. The InfoSphere CDC z/OS target address space needs to
be ended (if it is still running) and then restarted using the same user ID on
another member in the data sharing group. The virtual IP address used by the
source and Management Console to reach the target needs to be updated to
resolve to the failover member. With the target instance running and virtual IP
address for the target redirected, the persistent subscription automatically
reconnects to the new target. The InfoSphere CDC z/OS source can be left
running during a target failover. For InfoSphere CDC sources that do not support
the persistent subscription feature, the subscriptions need to be manually
restarted. Also, if the failover is run in a controlled manner, that is, by explicitly
ending subscriptions, then the subscriptions need to be restarted manually. The
automatic restart feature is designed to restart subscriptions that shut down due
to loss of connectivity, not subscriptions that were shut down normally or due to a
DBMS error on the target.

If the target DBMS becomes unavailable, the InfoSphere CDC z/OS target
remains up and suspends its operations. For reliable suspension behavior, the
retry cache must be configured through the RECOVERYRETRYLIMIT and
RETRYCACHESIZE configuration parameters. The suspension results in data
backing up and eventually leads to the product stalling. This situation is a normal
recovery situation until the target DBMS becomes operational once again. The
product detects that the DBMS is up, mirroring resumes automatically, and the
product processes its backlog.
 Chapter 7. Environmental considerations 189

7.6 Change management

It is essential to know what changes to your environment have an impact on your
InfoSphere CDC environment. You need to incorporate InfoSphere CDC into
your change management procedures. This section describes the change
management workflow for InfoSphere CDC, what are its important steps, the role
of bookmark information, and how certain activities can be automated.

Basically, there are two main topics that trigger change management in a
InfoSphere CDC environment:

1. Database table changes that occur in the environment InfoSphere CDC is
replicating from or to.

2. The configuration changes that are done within InfoSphere CDC. New
business requirements or applications can demand changes in your
replication environment.

Changes within just the InfoSphere CDC configuration typically do not require
special treatment. Subscriptions to be deployed can be stopped, changed, or
replaced (import) with a new definition, and restarted.

Alterations of tables, which are part of the InfoSphere CDC replication
environment, could have a significant effect on the behavior of InfoSphere CDC.
A possible cause for changed table structures is new application releases. Within
InfoSphere CDC, you map specific columns of a source table to specific columns
of a target table. When changes to either the source or target table structure take
place, it can affect replication. The following examples of DDL changes
affect replication:

� Adding new columns
� Dropping in-scope columns
� Dropping out of scope columns
� Modifying column formats, such as data type, length, and precision

When the structure of a table from which InfoSphere CDC is replicating is
changed, the format of the database log entries changes accordingly. If the log
reader is actively reading entries and is not aware of the structure change, it
does not correctly interpret the log entries and unexpected errors could occur.
The InfoSphere CDC engines can detect DDL changes from the database log
and take corrective actions in such cases. There are slight differences in how a
InfoSphere CDC engine behaves in case of source table changes.
190 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

If the structure of a target table changes, InfoSphere CDC behaves as follows:

� Add new column: The new column is not mapped by InfoSphere CDC, but is
populated with the database default value.

� Delete previously mapped column: InfoSphere CDC encounters an apply
error because InfoSphere CDC attempts to write to a non-existent column.

� Alter column definition: InfoSphere CDC might encounter mapping issues
because of a changed target column definition.

7.6.1 Understanding InfoSphere CDC bookmarks

When implementing changes to source tables, understanding the bookmarks
that InfoSphere CDC keeps is key to choosing the best method for a safe
deployment of subscription changes in your environment. Here are the following
two types of bookmarks that are maintained by InfoSphere CDC:

� Subscription bookmark: This bookmark is the bookmark that InfoSphere CDC
keeps per subscription and is updated on the target side as transactions are
applied. The bookmark provides for the resilience of the product. If there is
any disruption in the processing that causes the replication to stop,
InfoSphere CDC resumes reading the logs from the bookmark position from
that point onwards so that no transactions are lost or duplicated.

� Table capture point: This bookmark is the commit point in the database from
which operations for the table that has its capture point marked are
processed. All changes that are committed after the marked point are
replicated. The table capture point is set when you run the mark table
capture point routine for a table in a subscription. When the subscription is
restarted after marking the table capture point, it resumes from its
(subscription) bookmark position. However, changes to tables that have their
table capture point marked are ignored until the log scraper advances and
reaches the capture point. Each table can have its own table capture point;
they do not have to correspond.

If there is a service window available where database and application changes
can be applied, and you can ensure that there are no source database
transactions during that time frame, this window provides an ideal way of
deploying subscription changes. If you ensure that all transactions before the
service window are sent and applied to the target side, the InfoSphere CDC
configuration, including subscriptions, can be fully recreated and table capture
points marked before the first application activity after the service window starts.
 Chapter 7. Environmental considerations 191

Figure 7-29 shows the deployment within the service window.

Figure 7-29 Deployment within a service window

Suppose you have a situation where there is not a service window or if the
InfoSphere CDC configuration changes cannot wait to be applied during a time of
no activity. In that case, you want the subscriptions to continue processing
changes following the last successfully applied transaction after the subscription
changes have been deployed, without skipping any changes (Figure 7-30).

Figure 7-30 Deployment with no service window

The focus in this section is on deploying changes when a service window is in
place. This section also briefly touches on the considerations for the different
InfoSphere CDC engines when there is no service window.

Application Activity

Subscription running Subscription
Deployment

(Update)

Subscription resumed

Bookmark

Service WindowApplication Activity
Pre-change

Application Activity
Post-change

Subscription running Subscription
Deployment
(recreate)

Subscription resumed

Table Capture
Point

Bookmark
192 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

7.6.2 Change Management sample environment

For our change management samples, we use the client environment shown in
Figure 7-31. The architecture is split into a development (APPSRCDEV and
APP_TGT_DEV) and a production environment (APPSRCPRD and
APP_TGT_PRD), both replicating between the two locations in Toronto and
Sydney. CM_DEV and CM_PROD are the two subscriptions that are identical in
structure and are deployed in the client’s development and production
environment. Both subscriptions contain several source tables that are mapped
through standard replication in a 1:1 fashion to their corresponding target tables,
with no transformations.

Figure 7-31 Sample client environment

Changes are first made in the development environment and then deployed to
the production environment. In the development environment, there are no
constraints with regards to refreshes and so on, but in the production
environment, no refreshes can be done; the procedure must be such that no
operations are lost or duplicated.

7.6.3 DDL changes in a service window

For our change management scenario, we assume that at least one table within
the subscription needs to be changed in structure due to new business
requirements (such as column added and column data type modified). These
changes need to be run for the source and the target table.

APP_SRC_DEV

APP_SRC_PRD

APP_TGT_DEV

APP_TGT_PRD

Toronto Sydney

CM_DEV

CM_PRD
 Chapter 7. Environmental considerations 193

In our planned scenario, we perform these changes in the development
environment first. Complete the following steps:

1. Stop the CM_DEV subscription in the development environment.

2. To implement the changes in the development environment, run the DDL
statements on the table in question to make the table structure changes for
the source and target table.

3. Update the source and target table definitions for InfoSphere CDC through
the Management Console. This step is necessary to make InfoSphere CDC
aware of the structural changes and enable it to correctly interpret the
database log entries (Figure 7-32 Figure 7-33 on page 195) and the target
table (Figure 7-34 on page 195 and Figure 7-35 on page 196).

Figure 7-32 Update source table - 1
194 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 7-33 Update source table - 2

Figure 7-34 Update target table - 3
 Chapter 7. Environmental considerations 195

Figure 7-35 Update target table - 4

4. Adjust the mappings in the development subscription. After you update the
table definitions for the source and target tables, you must alter the table
mappings for newly added columns that have a different name or data type
on the source and target. The status of the changed tables has been set to
Parked (Figure 7-36).

Figure 7-36 Changed tables are parked

To keep the example simple, assume that the changed table is refreshed in
the development environment (Figure 7-37).

Figure 7-37 Refresh changed tables
196 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

5. To deploy the changed subscription in the production environment, export the
updated subscription CM_DEV out of the development environment to an
XML file for import in production (Figure 7-38).

Figure 7-38 Export development subscription
 Chapter 7. Environmental considerations 197

A prerequisite for the successful importation of a subscription that has table
mappings using an index is that a named index (not a system generated
name) must be specified and that index exists in the import environment.
Alternatively, the individual key columns can be specified. An unsupported
system generated index is shown in Figure 7-39.

Figure 7-39 System generated index

For the deployment in the production environment, you are not allowed to
refresh the changed tables after making the DDL changes. Instead, mirroring
should continue at the last confirmed bookmark without losing any
transactions. To accomplish this task, ensure that replication for the tables in
question is and remains active up to the point where the first DDL change is
made. Ensure that all transactions to the tables in question have been
successfully replicated to the target before making any DDL changes to them.

It is important, for the production environment, that the sequence of steps in
this procedure is followed. If DDL changes are done to a source table without
first having processed all entries in the database log, the only possible
recovery is to refresh the table in question. This procedure is focused on
keeping the downtime for the replication at a minimum. Therefore, the update
of the target table definition and the import of the new subscription are the last
steps. It also allows for automation of the change management process from
the production side.
198 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

6. Stop activity on the tables to be altered. Ensure that the application has
stopped so that no more transactions are generated on the tables for which
the structure changes.

7. Stop the subscription and restart it in net change mirroring mode to apply any
pending transactions. This action ensures that all the transactions up to the
DDL change have been applied to the target tables. When the subscription
automatically stops, the replication is up-to-date (Figure 7-40).

Figure 7-40 Restart replication in net change mode

8. Implement the DDL change at the source.
 Chapter 7. Environmental considerations 199

9. Update source table definitions to ensure that the source table definitions
have been updated for the data store. Repeat this step for all tables that had
DDL changes applied (Figure 7-41 through Figure 7-44 on page 201).

Figure 7-41 Update Source Table definition - 1

Figure 7-42 Update Source Table definition -2
200 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 7-43 Update Source Table definition - 3

Figure 7-44 Update Source Table definition - 4
 Chapter 7. Environmental considerations 201

10.The last step before resuming business application activity is to set the
changed tables to active again. Select the tables and click Mark Table
Capture Point for Mirroring (Figure 7-45 and Figure 7-46).

Figure 7-45 Mark Table Capture Point for Mirroring - 1

Figure 7-46 Mark Table Capture Point for Mirroring - 2

Now the business application can resume activity on the tables in question.
Log entries are written in the tables’ new format and also must be collected by
InfoSphere CDC in the correct format.
202 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

11.Implement the necessary DDL changes at the target system. Then, update
the target table definition through Management Console (Figure 7-47).

Figure 7-47 Update target table definition
 Chapter 7. Environmental considerations 203

12.Deploy the new version of the subscription with altered table mappings for the
new columns that were exported from the development environment into the
production environment. You can choose to replace the existing CM_PRD
subscription and override the different schema names between the
development and production environments, as shown in Figure 7-48 to
Figure 7-51 on page 207.

Figure 7-48 Import Altered Subscription from development environment
204 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 7-49 Import Altered Subscription from development environment
 Chapter 7. Environmental considerations 205

Figure 7-50 Import Altered Subscription from development environment
206 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 7-51 Import Altered Subscription from development environment

13.Resume replication by restarting the subscription in Continuous Mirroring
mode. This action replicates all pending and any new transactions from
source to target.

7.6.4 DDL changes without a service window

There are differences in how source table DDL changes are dealt with across the
different engines. This section elaborates on how InfoSphere CDC engines
behave when DDL operations on in-scope tables are encountered in the
database log.

To ensure that replication can continue without having to refresh the table, the
database must log full image data for all columns in a table, including newly
added columns. InfoSphere CDC relies on the full row images to be present in
the database logs to ensure this action.

Linux, UNIX, and Windows engine behavior and procedure
InfoSphere CDC common (Java) engines can detect DDL statements in the
database logs and, when encountered, they stop the replication. Then, the
definition of the table in question must be updated before replication can
be resumed.
 Chapter 7. Environmental considerations 207

If a discrepancy in the table structure is detected when the replication is started,
the subscription fails and requires the table definition to be updated before
continuing. When updating the table definition for a table whose structure has
changed, the table is parked and is no longer replicated if the subscription
is resumed.

To avoid losing transactions when applying DDL changes, complete the
following steps:

1. Ensure that the subscription is active with no latency.

2. Complete the DDL changes on the source tables; the subscription stops and
reports that a DDL change has taken place.

3. Update the source table definition; the tables are then parked.

4. Mark the table capture point for the tables in question to change the status to
active again.

5. Get the current bookmark from the target side of the subscription (by
running dmshowbookmark).

6. Set the subscription bookmark to the retrieved bookmark and ensure that the
-a option is used to apply the bookmark to all active tables.

7. Restart the subscription.

This procedure only works if DDL statements are not mixed with DML statements
for the replicated tables.

Table 7-2 shows some example statement sequences. In that example, Tables A,
B, and C are replicated, while Table D is not.

Table 7-2 Sample statement sequence

Statement sequence Comments DDL change
without refresh?

DML TABLE A
DML TABLE B
DML TABLE C
DML TABLE D
DDL TABLE A
DDL TABLE B
DML TABLE A
DML TABLE B
DML TABLE C
DML TABLE D

You can continue to replicate without
refreshing. Replication must be active
or current until the time the first DDL
change is made. If replication is
running, it then stops and InfoSphere
CDC definitions can be adjusted to
accommodate the new table structures.

OK
208 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Oracle considerations
One of the key elements in limiting the downtime for source table changes in an
Oracle environment is making sure that the Oracle log entries are dynamically
adapted to the table structure changes. As of Oracle 10, the database allows you
to specify supplemental logging for all columns at the table level. In environments
where the deployment of the changes in production is critical and downtime
dependency between production and InfoSphere CDC must be reduced, ensure
that table-level supplemental logging for all columns has been activated.

Here are SQL examples to activate table-level supplemental logging for
all columns:

SQL> ALTER TABLE APP_SRC_PRD.CLIENT ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;
SQL> ALTER TABLE APP_SRC_PRD.PRODUCT ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;
SQL> ALTER TABLE APP_SRC_PRD.SALESREP ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Table changes for DB2 on z/OS
The behavior of InfoSphere CDC for z/OS regarding DDL operations performed
on in-scope tables depends on several factors:

� DDL statement type
� DB2 DATA CAPTURE CHANGES setting

DML TABLE A
DML TABLE B
DML TABLE C
DDL TABLE A
DML TABLE D
DDL TABLE B
DML TABLE A
DML TABLE B
DML TABLE C
DML TABLE D

You can continue to replicate without
refreshing. Replication must be active
or current until the time the first DDL
change is made. If replication is
running, it then stops and InfoSphere
CDC definitions can be adjusted to
accommodate the new table structures.
The only DML statement between the
two DDL changes to the tables in scope
belongs to Table D, which is not
replicated.

OK

DML TABLE A
DDL TABLE A
DML TABLE B
DML TABLE C
DDL TABLE B
DML TABLE A
DML TABLE B
DML TABLE C

The subscription does not start until the
definitions of both table A and B have
been adjusted in the InfoSphere CDC
definitions. DML for table B before the
DDL for table B must be skipped to
avoid malformed data and unexpected
behavior of the replication. Refresh the
tables in this case.

NO

Statement sequence Comments DDL change
without refresh?
 Chapter 7. Environmental considerations 209

� Version of InfoSphere CDC
� Version of DB2

DDL statements only impact InfoSphere CDC for z/OS if the types of DDL
operations affect its ability to read the log. Here are examples of these types of
DDL statements:

� Adding columns
� Modifying column formats (such as data type, length, or precision)
� Changing column types (such as CHAR to VARCHAR)
� Dropping and recreating tables
� Turning off DATA CAPTURE CHANGES

These operations cause data to be written to the log that is not received by
InfoSphere CDC for z/OS or cause the log record format of the table (the layout
of the data in the database logs) to change. For operations where the log record
format changes, the log reader must be directed about how to proceed when a
change is encountered. InfoSphere CDC metadata must be modified to
accommodate the new log record format, or the log reader fails to properly
decode log records after the point of the DDL change. Changes that do not affect
the physical structure of the table in the log or the Data Capture Changes setting
for the table do not interrupt replication.

InfoSphere CDC for z/OS can detect most DDL changes on in-scope tables only
if DATA CAPTURE CHANGES is enabled on the SYSIBM.SYSTABLES system
catalog table in DB2. If it is not enabled, InfoSphere CDC for z/OS is aware of
DDL changes when a log record is encountered that does not match the
definition in the metadata, but its actions depend on the type of DDL operation
and the version of DB2.

Detailed information about how InfoSphere CDC for z/OS DB2 deals with DDL
changes can be found in the Schema Evolution section in the IBM Information
Center at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.cdcforzos.doc/concepts/schemaevolution.html
210 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.cdcforzos.doc/concepts/schemaevolution.html

Chapter 8. Performance analysis and
design considerations

This chapter describes the high-level concepts around performance tuning and
optimization in IBM InfoSphere Change Data Capture (InfoSphere CDC). This
chapter includes information about understanding the InfoSphere CDC
architecture, highlighting the potential bottlenecks, and documenting monitoring
methods and considerations for designing InfoSphere CDC systems in large
environments.

More information about CDC performance tuning can be found at the
following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.performancetuning.doc/concepts/overviewofinfospherecdc.html

8

© Copyright IBM Corp. 2012. All rights reserved. 211

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.performancetuning.doc/concepts/overviewofinfospherecdc.html
http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.performancetuning.doc/concepts/overviewofinfospherecdc.html

8.1 High volume between two systems

Throughput and latency are the two main considerations in large environments. It
is important to first understand the concept of throughput and latency in the
context of InfoSphere CDC.

8.1.1 Latency and throughput

Latency, sometimes referred to as replication lag, is the amount of time between
an update applied to the source system and the same update applied to the
target system. The shorter the duration, the lower the latency.

There are three types of latency:

� Data latency is the time delay in data transfer from source systems to target
systems

� Analysis latency is the time delay that includes data creation and processing
(ETL/ELT)

� Action latency is the time delay in getting information from data by using
BI tools.

Figure 8-1 shows the types of latency.

Figure 8-1 Types of latency

Throughput is the quantity of data processed within a given duration of time. High
volumes of data changes from the source system require higher throughput if
lower latency is wanted.

Latency is not throughput, but in high volume environments, latency is directly
affected by available throughput.

Data
Creation

Information
Availabi lity

Data
Processing

Committed
Transaction

Committed
Transaction

Data
Processing

Analysis Latency

Action Latency

Data Latency
212 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

8.1.2 InfoSphere CDC architecture

There are multiple components in the InfoSphere CDC architecture and there
could be bottlenecks in each of these components. The major components in
InfoSphere CDC include the following:

� Log reader: The log reader reads entries from the database logs (including
redo logs and transaction logs) and checks to make sure that the transaction
falls in-scope. When in-scope, the entries are placed in a transaction queue.
Uncommitted transactions may be read, as these transactions might happen
in parallel and are typically committed at different times. The transaction
queue acts as a staging area for these transactions.

� Log parser: The log parser reads committed transactions from the transaction
queue and extracts individual columns from the row level operations.

� Staging store: The staging store is an in-memory staging area for records
processed by the log parser. The data remains in the staging store until all
subscriptions have completed.

Figure 8-2 shows a high-level view of the architecture.

Figure 8-2 InfoSphere CDC architecture

Potential bottlenecks
InfoSphere CDC based data replication operates as a pipeline of components
that move data changes along their way from the source database to the target
system. As with any system, InfoSphere CDC is only as fast as the slowest
component in the architecture. The following components could be potential
bottlenecks in the replication pipeline:

� Log reader
� Source engine
� Network communication
� Target engine
� Target database

CDC Instance (source)CDC Instance (source) CDC (target)CDC (target)

Database
logs

Log Reader

Transaction
Queues

Subscr iption 1

Subscription 3

Target
Subscription 1

Target
Subscription 2

Target
Subscription 3

JDBCLog Parser
Change Log
(staging store) Subscription 2
 Chapter 8. Performance analysis and design considerations 213

Latency is usually the first indication of a performance issue in a data replication
environment. Here is a list of some factors that have a direct relationship to
increased latency and reduced throughput:

� Size of source database transactions

� Source database delay in writing record changes to the database logs

� Relative size and performance of the source database and target systems

� Hardware factors, such as available physical memory and processor, and
disk I/O performance

� Complexity of data transformations

� Available communication bandwidth

8.2 Identification of potential bottlenecks

There are three main areas that can have performance bottlenecks. They are the
source systems, communications, and the target systems.

The source side bottlenecks could be due to one of the following items:

� Log reader: Reading the logs involves I/O and, in scenarios where the
database logs are placed on an NFS mount, all this log data needs to be
transferred across the network. Bottlenecks in the log reader can be identified
by comparing the elapsed time of copying the log file to another volume to the
amount of time taken to scrape the logs. This time should be comparable.

� Log parser: If the source tables have many columns or wide records, parsing
can take a long time and might even reach the processor boundaries.

� Derived expressions: Usage of derived columns and expressions can result in
additional processor usage. Bottlenecks due to derived expressions can be
identified by replacing derived expressions with constant values.

There could also be bottlenecks in the communication layer, depending on the
available bandwidth for InfoSphere CDC. These types of bottlenecks can be
identified by testing an intra-system data replication. Another way of identifying a
communication bottleneck is by copying a large file from the source to the target
system using FTP, which should give an indication of the data replication speed.
If FTP cannot use all of the available bandwidth, the same constraint applies for
InfoSphere CDC.

A ping command should not be used to measure throughput, as the command is
used for small packets of data.
214 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

There is also a potential for bottlenecks in the target side. Target system-related
bottlenecks can be identified by disabling insert, update, and delete operations
for individual tables. This method does all the processing in the InfoSphere CDC
layer except for modifying the target system tables.

The InfoSphere CDC Management Console has a feature, the Performance
Monitor, which helps identify bottlenecks in the described areas. This feature can
be used if the InfoSphere CDC version of both the source and target engine is
Version 6.5 or higher.

8.3 Performance monitoring in InfoSphere CDC
environments

Diagnosing and resolving performance issues is an iterative process in
InfoSphere CDC. High latency and resulting performance issues can be
identified using one of the performance monitoring tools described in this section.

8.3.1 Performance monitoring using the Management Console

Management Console includes an event log and monitoring tools. The event log
can be used to examine InfoSphere CDC event messages. The monitoring tool
allows you to continuously monitor replication operations and latency. The
monitor in Management Console is meant for time-critical working environments
that require continuous analysis of data movement and all statistics are real-time
statistics. The monitoring data can be exported for historical analysis.

After configuring the replication environment and starting the data replication
process in InfoSphere CDC, you can monitor and analyze replication activities
using the Monitoring perspective.

8.3.2 System monitoring tools

Any system monitoring tool can be used to identify high-level performance issues
attributed to processor utilization, memory usage, and any I/O bottlenecks.
 Chapter 8. Performance analysis and design considerations 215

8.4 Using workflow for performance issues

There are three high-level steps to identifying and resolving performance issues
by analyzing the InfoSphere CDC workflow. These steps are:

1. Configure visual cues to highlight latency issues.

InfoSphere CDC shows a visual cue in the Monitoring perspective when
subscription latency exceeds a predetermined value based on business
requirements. The latency threshold can be configured in InfoSphere CDC
Management Console by completing the following steps:

a. Click Configurations  Subscriptions.

b. Right-click a subscription and select Latency Thresholds.

c. Select the Notify when latency crosses these thresholds check box.

d. Specify a value in Warning threshold (minutes).

e. Specify a value in Problem threshold (minutes).

f. Click Set Notification.

2. Overview of data replication problem identification.

Look at the high-level system overview to monitor the data replication process
for initial analysis of the data latency issues. To see a data replication system
overview, complete the following steps:

a. Click Monitoring  Subscriptions.

b. Select the subscription that needs to be monitored.

c. Click Mirroring or Refresh for the selected subscription.

d. Right-click the subscription and select Collect Statistics.

e. Double-click the titles at the upper right to show an overview of the
replication environment. This action also enables quick identification of
latency issues that might affect replication performance.

Figure 8-3 Problem identification
216 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

3. Analyze performance statistics.

Further analysis can be performed by collecting additional metrics at the
instance level. To collect additional metrics, complete the following steps:

a. Select a subscription that is already collecting real-time statistics.

b. Right-click the subscription and click Show in Performance View.

c. Select Statistics Checkboxes. Up to 10 metrics can be chosen.

d. Click Collect Data. Any bottleneck can be shown at the top of this view. A
bar next to the name of the InfoSphere CDC component identifies the
bottleneck. With InfoSphere CDC, only one component can have a
bottleneck at any given point in time.

Figure 8-4 Bottlenecks

8.5 Installation considerations

Large-scale distribution and consolidation implementations of InfoSphere CDC
have many source and target instances. Each of these source and target
systems need to have a InfoSphere CDC instance installed in them. It might not
always be feasible to manually deploy the solution for every server and database
in the entire landscape.

8.5.1 Silent installations and instance creation

The InfoSphere CDC engine supports automated deployment and instance
configuration using scripting. InfoSphere CDC uses a response file to create an
InfoSphere CDC instance for all databases it needs to use as source or target
systems. Before being able to remotely deploy InfoSphere CDC in an automated
way, the following preparatory steps need to be conducted:

1. Create template databases (for source and target systems) for the installation
of InfoSphere CDC. The InfoSphere CDC user that holds the metadata must
be created and the databases must have the correct settings for
(supplemental) logging and archiving the transaction logs. A script to do all
the database preparation steps enables this step to be automatically
performed at the remote site.
 Chapter 8. Performance analysis and design considerations 217

2. Install InfoSphere CDC on the server that holds the template database and
specify the -r responsefile option to create a response file to be used to
install the production servers. You need to do this step for both the source
and target template servers. An example response file for installation is
shown in Figure 8-5.

Figure 8-5 Response file installation

After the installation is finished, a response file is generated. An example is
shown in Figure 8-6.

Figure 8-6 Sample response file

3. Create the InfoSphere CDC instance for the template databases.
218 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

4. Configure the subscriptions and table mappings.

5. Export the instance configuration by running dmexportconfiguration.
Running this command prompts you for the password of the database user
that is the owner of the InfoSphere CDC metadata that will be used on the
production installation when the instance is imported. The password is
encrypted in the generated XML file. You need to do this step for both source
and target instances.

If needed, parameters such as <name>, <tcpPort>, <dbName>, and
<dbSchema> can be overridden in the XML file to accommodate the
production database settings. As the database user name and password are
encrypted in the XML file, these items should not be changed. Optionally,
remove the InfoSphere CDC instances and installation from the template
servers.

For unattended deployment at the remote site, complete the following steps:

1. Prepare the production databases (source and target) for the installation of
InfoSphere CDC. The InfoSphere CDC user that holds the metadata must be
created and the database must have the correct settings for (supplemental)
logging and archiving transaction logs. If a script has been created for this
task, run the script.
 Chapter 8. Performance analysis and design considerations 219

2. Install InfoSphere CDC on the production servers using the response files
that were created on the template servers (specify -i silent -f
responsefile). An example of the response file generation is shown in
Figure 8-7.

Figure 8-7 Response file generation

3. After the installation is finished, change the directory to the cdc_home/bin
directory and import the instance configuration by running
dmimportconfiguration. This step needs to be done for both source and
target instances. After the import of the instance configuration is finished, the
metadata tables are created in the database. An example of the instance
configuration is shown in Figure 8-8.

Figure 8-8 InfoSphere CDC instance configuration
220 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Upon finalizing the import, the InfoSphere CDC instance is automatically started
and is ready to be used. For manual and automated configuration options, see
Chapter 9, “Customization and automation” on page 231.

8.6 Design considerations

Sometimes a standard InfoSphere CDC configuration might not scale based on
the workload or the latency might be too high. In such instances, alternative
architectures need to be considered. Some of these alternative architectures
might include using:

� Multiple parallel subscriptions
� Multiple InfoSphere CDC instances
� An n-tiered architecture
� Cascading replication
� Continuous scraping

Each of these alternative architectures is applicable and is suitable under certain
circumstances. However, not all platforms support all of these alternative
architectures. The remainder of this section goes through each of the alternative
architectures and highlights any exceptions or challenges associated with them.

At the time of the publication of this book, the Performance Monitoring and
Tuning guide for InfoSphere CDC is available at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.performancetuning.doc/concepts/overviewofinfospherecdc.html

See this document for more advanced monitoring and tuning techniques.

8.6.1 Using multiple parallel subscriptions

Data replication from a single table can be optimized by using multiple
subscriptions. The available data can be partitioned by using row filtering so
multiple subscriptions can operate concurrently to replicate changes to the target
systems. This scenario is most suitable when there is a numeric column that
uniquely identifies every row in the table. This column can be used to partition
the data across multiple subscriptions.

This scenario does not work if the column used to partition the data is updated.
 Chapter 8. Performance analysis and design considerations 221

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.performancetuning.doc/concepts/overviewofinfospherecdc.html

A Java based user exit (see 9.7, “User exits” on page 369 for more information
about user exits) can be used to tag rows of data to be directed to corresponding
subscriptions. This task is achieved by implementing a MODULO function on the
numeric column that uniquely identifies every row of data in the table. As an
example, to partition the data, such as the data shown in Table 8-1, into three
subscriptions, the Java based user exit performs a MODULO 3 on the numeric
key column and uses the value as a predicate filter for the three subscriptions.
Subscription 1 has a predicate of MODULO_CUSTOMER_ID=1, Subscription 2
has a predicate of MODULO_CUSTOMER_ID=2, and Subscription 3 has a
predicate of MODULO_CUSTOMER_ID=0.

Table 8-1 Sample source table

The MODULO_CUSTOMER_ID column is derived by applying the MODULO 3
function on the Customer ID column from within a Java based user exit.

The three subscriptions for this source table have row-based filtering on the
MODULO_CUSTOMER_ID column. Subscription 1 handles rows with Customer
IDs (31,76), Subscription 2 handles rows with Customer ID (32,42), and
Subscription 3 handles the row with Customer ID 33. All three subscriptions
populate the same target system, so the throughput is much higher, which
reduces latency and increases performance. The architecture for this
configuration is shown in Figure 8-9.

Figure 8-9 Multiple parallel subscription architecture

Customer ID MODULO_CUSTOMER_ID Customer name

31 1 Customer 31

32 2 Customer 32

33 0 Customer 33

42 2 Customer 42

76 1 Customer 75

CDC Instance (Source)

Target
System

Database
logs

Log
reader

Log
parser Staging

store

Subscription 1
MODULO_3=1

Subscription 2
MODULO_3=2

Subscription 3
MODULO_3=0
222 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

At the time of the publishing of this book, InfoSphere CDC V6.5.2 was released,
which introduced fast apply techniques to improve the throughput when applying
transactions on the target database. More information can be found at the
following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m2/topic/com.ibm.cdcdo
c.performancetuning.doc/concepts/improvingtargetdatabaseperformancewith
fastapply.html

8.6.2 Using multiple InfoSphere CDC instances

Distributing the workload across multiple InfoSphere CDC instances can also be
used to reduce latency and increase throughput (Figure 8-10).

Figure 8-10 Multiple InfoSphere CDC instances architecture

Every InfoSphere CDC instance has its own log reader, which might have some
performance implications on the source side, but the overall benefit of higher
throughput in large data replication environments out-weighs the additional work
done in the source systems.

Each InfoSphere CDC instance in the architecture shown in Figure 8-10 could
either be set up to replicate different tables or they might be set up to replicate
the same table with different row-based filters. Depending on the data volumes in
the individual tables, one or a combination of both of the methodologies can be
used.

CDC Instance 1 (Source)

Database
logs

Log
reader

Log
parser

Target
systemCDC Instance 2 (Source)

Log
reader

Log
parser

Subscript ion

Subscript ion

Staging
store

Staging
store
 Chapter 8. Performance analysis and design considerations 223

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m2/topic/com.ibm.cdcdoc.performancetuning.doc/concepts/improvingtargetdatabaseperformancewithfastapply.html

8.6.3 Using an n-tiered architecture

N-tiered data replication in InfoSphere CDC means that the InfoSphere CDC
instance is on a different server than the database it sources or populates. An
n-tiered architecture can operate as follows:

� InfoSphere CDC reads logs coming from a different server (remote
log reading).

� InfoSphere CDC applies transactions to a database that is on a different
server (remote apply).

Typical applications of an n-tiered architecture
The three common scenarios for the n-tiered architecture are:

� Compliance, security, and ownership reasons, including:

– Database administrators not comfortable installing third-party applications
(InfoSphere CDC) on the database server.

– A database server is owned by the business and they want to mitigate any
risk in the disruption of the database servers.

� Software restrictions on the database server. The operating system patch
levels might not be at a required level for InfoSphere CDC.

� Source system is at capacity.

– No additional processing capability for InfoSphere CDC.

– The source system might be an existing system that does not have
sufficient cycles to process high volumes of database logs.

The InfoSphere CDC n-tiered architectures are differentiated by the location of
the source and target instances.
224 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

InfoSphere CDC instances on source database server
In this configuration, the InfoSphere CDC instance for both the source and target
systems are located in the source database server. This configuration is called
Option 1 (Figure 8-11).

Figure 8-11 N-tiered architecture - Option 1

InfoSphere CDC instances on the target database server
In the configuration shown in Figure 8-12, the InfoSphere CDC instance for both
the source and target systems are on the target database server. This option is
called Option 2.

Figure 8-12 N-tiered architecture - Option 2

Source DB server

Database logs

Source
InfoSphere

CDC Instance

Target
InfoSphere

CDC Instance

Target DB server

Target DB ServerSource DB Server

Database logs

Source
InfoSphere

CDC Instance

Target
InfoSphere

CDC Instance
 Chapter 8. Performance analysis and design considerations 225

InfoSphere CDC instances on separate database servers
In the configuration shown in Figure 8-13, the InfoSphere CDC instances for both
the source and target systems are on a centralized InfoSphere CDC server.

Figure 8-13 N-tiered architecture - Option 3

8.6.4 Using cascading replication to spread the workload

Using cascading replication, the performance and latency can be vastly
improved as a result of the multiplier effect. Similar to having multiple
subscriptions for a given table with row level filters, this method distributes the
workload across multiple subscriptions. This method can be used with the
multiple subscription method. Use the Java based user exit to perform a
MODULO on a numeric column in the source table and replicate the data based
on different predicate values to different target systems. These target systems
can then be used as a source to load and consolidate data rows in the final
destination table. Cascading replication is shown in Figure 8-14.

Figure 8-14 Cascading replication

InfoSphere CDC ServerSource DB server

Database logs

Source
InfoSphere

CDC Instance

Target
InfoSphere

CDC Instance

Target DB Server

Database logs

CDC
Instance
Target

CDC (Target + Source)

Staging_Table1

Staging_Table2

Staging_Table3

Subscription_21

Subscription_23

TargetSubscription_22

CDC (Source)

Subscription 2
MODULO_3=2

Subscription 1
MODULO_3=1

Subscription 3
MODULO_3=0
226 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

8.6.5 Continuous scraping

In large distribution environments, one of the biggest challenges is purging
source database logs. If all target systems are not simultaneously active or if
there are unstable network connections between source and target, there could
be some target systems that are not synchronized with the source.

InfoSphere CDC needs access to the database log entry that is represented by
the oldest bookmark of any of the subscriptions. When there is a network outage,
InfoSphere CDC stops reading the database transaction logs and the bookmark
of the subscription is no longer advanced. After it is restarted, the subscription
requests the bookmark from the target system and restarts from the position
corresponding to the bookmark in the log. If this log entry is no longer available
because log files have been purged, the replication does not start. The log files
must be restored for normal operation to continue. In some instances, the
database logs may no longer be recovered and a resynchronization (refresh) of
all tables must be done.

Besides the risk of losing changed data, a prolonged outage of the replication
could result in resource utilization spikes when subscriptions are restarted. When
replication is started in mirror mode, InfoSphere CDC always attempts to catch
up to the head of the database transaction log and thus use any resource it can
obtain from the operating system to achieve this goal. To optimize this operation
and reduce the impact of InfoSphere CDC in large distribution environments, you
should consider enabling the Continuous Capture feature, which is available in
all engines supporting single scrape.

Enabling continuous capture causes the log reader process to be separated from
the replication of the logical database operations. The InfoSphere CDC source
engine actively reads the database logs at all times and processes the in-scope
entries. Entries (operations) are sent to transaction queues and, once committed,
they are parsed and accumulated into the staging store. The staging store is kept
until all the subscriptions have completed processing. Even when there are no
subscriptions active, the engine continues to read and process the database log
entries and strives to stay at the head of the log.

When the inactive subscriptions are restarted, the parsed log entries are already
in the staging store and can be processed immediately by the subscriptions,
saving a fair amount of processing time. The staging store entries are cleaned up
as soon as subscriptions no longer need them.
 Chapter 8. Performance analysis and design considerations 227

As the staging store on the source server is accumulating the log changes, its
size increases. You must plan your source environment to have sufficient disk
space. More importantly, the maximum size of the staging store that was
specified when the instance was created must be equal to or lower than the
available disk space.

Continuous scraping of the database logs is incompatible with the independent
staging store capability of InfoSphere CDC. If you choose to enable continuous
scraping, all subscriptions sourcing the instance must share the single scrape
staging store. Should your environment need a more flexible setup where some
subscriptions must be able to have their own independent staging store, consider
creating an additional InfoSphere CDC instance to run those subscriptions.

The data store system parameter staging_store_can_run_independently
controls the use of a single scrape staging store. The default setting of this
parameter is true, which means that subscriptions can create their own log
reader process if a database log entry cannot be found in the staging store.
Changing the parameter to false causes all subscriptions to work off the same
staging store, in effect creating a single scrape staging store.

After the single scrape staging store has been activated, the
dmenablecontinuouscapture and dmdisablecontinuouscapture commands can
be used to start and stop continuous scrape. At all times, the staging store status
can be monitored using the dmgetstagingstorestatus command.

Enabling continuous capture and check status is shown in Figure 8-15.

Figure 8-15 Enable continuous capture and check status

Quota and disk capacities: Running out of quota for the staging store
pauses scrape activities. However, running out of physical disk space causes
the log scraper to end abnormally and render the staging store corrupted. In
such an event, the staging store must be cleared (by running
dmclearstagingstore) and the continuous capture process must start reading
the logs from the oldest bookmark.
228 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

One of the subscriptions that is sourcing this InfoSphere CDC instance has a
table mapped for Mirror and transactions are being generated, but the
subscription is inactive. Now, after transactions are generated and the staging
store status is monitored, it gradually starts filling up. In Figure 8-16, the staging
store is 9% full and the capture process is reading the head of the log, given the
fact that the capture latency is 0%.

Figure 8-16 Staging store status

Should the InfoSphere CDC instance be stopped at some point, the single
scrape staging store is persisted to disk. When restarting the instance, the
continuous capture is automatically restarted and continues from the last read
log entry.

Consider the log retention policy that can be adapted when using continuous
capture. The suggested approach for log retention is to always keep the
database logs until transactions have been applied onto the target to avoid
restoring them in the event the InfoSphere CDC instance terminates abnormally.
However, in large distribution environments where the target systems are not
always active, imposing the recommended log retention policy might incur
challenges in terms of disk space and manageability of the database server.

The dmshowlogdependency command can be used to list the database logs that
are still required by InfoSphere CDC. The -i -A option of this command lists all
database logs starting from the oldest bookmark.

Abnormal termination: Abnormal termination of the InfoSphere CDC
instance renders the staging store corrupted. Always shut down the
InfoSphere CDC instance by running dmshutdown to avoid the situation where
the staging store must be cleared and the log reader must restart from the
earliest bookmark position.
 Chapter 8. Performance analysis and design considerations 229

Figure 8-17 shows a list of database logs that are still required by
InfoSphere CDC.

Figure 8-17 Identifying database logs required by InfoSphere CDC

As an alternative to choosing a log retention policy that keeps all database logs
on the system that potentially must be read later, you could consider purging all
database logs before the log file that is currently read by the continuous capture
process. The dmshowlogdependency -l -A command shows the currently read log
file (Figure 8-18).

Figure 8-18 Identifying logs that can be purged

For more information about database log retention, see Chapter 7,
“Environmental considerations” on page 137.

Purging the database logs: If the database logs are purged up to the
currently processed log file (disregarding the bookmark), when there is a
system or product failure, the logs must be restored or all tables need to
be refreshed.
230 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Chapter 9. Customization and
automation

This chapter elaborates on the various methods to configure, operate, and
monitor IBM InfoSphere Change Data Capture (InfoSphere CDC).

This chapter first provides a brief introduction to the different components that
can be used to manage the solution and how they are related, including the
Management Console and Access Server. You should be aware of how
InfoSphere CDC can be controlled by each of the components and where these
components are located.

This chapter goes into a higher level of detail about the configuration and
monitoring tasks using the command line and Java API. Sample code is provided
to make it easier for you to create your own customized scripts or code to fit your
environment.

Finally, this chapter describes how to implement user exits as part of the
replication process for the various platforms supported by InfoSphere CDC.
Again, various examples are provided to help you develop your own
development and deployment activities.

9

© Copyright IBM Corp. 2012. All rights reserved. 231

9.1 Options for managing InfoSphere CDC

InfoSphere CDC offers various options to configure and monitor the replication
environment, each having their own use and applicability, depending on
your requirements.

The following sections describe the various interfaces that are delivered as part
of the InfoSphere CDC product, providing a high-level overview of the common
uses of each interface and a more comprehensive explanation of the automation
options that are provided.

9.2 Management Console GUI

The InfoSphere CDC Management Console GUI is the most commonly used
interface for configuration, operation, and monitoring of InfoSphere CDC. It
provides various powerful functions to create subscriptions, map tables, start and
stop subscriptions, and monitor replication throughput and latency.

All clients use the GUI in the InfoSphere CDC landscape, at least for
development of subscriptions and table mappings. For most clients, this interface
is the sole interface by which InfoSphere CDC is configured, operated,
and monitored.

This section does not elaborate on all the features of the Management Console
GUI in this chapter, but describe some of the common practices in larger
scale environments.

For monitoring throughput and replication latency, the Management Console is
the preferred interface in most environments. In larger scale environments with
many source and target servers, many subscriptions or substantial numbers of
mapped tables, other methods for monitoring subscriptions, such as the
InfoSphere CDC Server Command-Line Interface (CLI) or the API, might
be preferred.

In many environments, clients implement a predefined path for the deployment of
their business applications. The deployment starts with changes in a
development environment, promoting those changes through acceptance
testing, and moving those changes into production. The changes that are made
to the business application logic or underlying database might also affect the
InfoSphere CDC configuration. Promoting applications and database changes
through a succession of development stages must also be done for
InfoSphere CDC.
232 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Before doing any promotion to the successive environments, the subscription
definitions and table mappings are changed in a development environment until
they satisfy the requirements of the design. The InfoSphere CDC Management
Console GUI is the preferred method for performing any of the development
changes, using an interface that gives you both high-level and detailed insight
into the replication configuration. When business application changes are made
in the development environment, the InfoSphere CDC configuration in the
associated stage is typically reviewed and adjusted as necessary.

When the business application or database changes and changes to the
InfoSphere CDC configuration have been tested and approved, they are
promoted to the successive development environment by, for example, a
versioning solution. The Management Console offers the ability to promote
subscriptions and even individual table mappings to the next environment. A
wizard that leads you through a number of choices for the new source data store,
the new target data store, and even different schemas to be used in the source
and target tables. Another method for promoting subscriptions is to export the
definitions to an XML file from within the Management Console GUI and import
the XML file in the successive environment, again using the GUI.

In larger scale environments, the promotion wizard or export / import function
cannot be used to deploy changes into testing and production environments
because of restrictions in company policies or because of timing constraints
when implementing these changes. This situation is especially true if there is a
requirement for lights-out operations and deployments.

9.3 Management Console commands

The Management Console and Access Server provide a CLI for scripted control
of subscriptions and the InfoSphere CDC configuration without needing physical
or command-line access to the servers that have the source and target
InfoSphere CDC engines. The Management Console CLI is included in Access
Server installations, which are available on Linux, UNIX, and Windows platforms,
and also on Management Console installations, which are available only on
Windows platforms.
 Chapter 9. Customization and automation 233

This section describes the common uses for the Management Console
commands and provides an example of how a subscription can be started using
this interface. More information about the available commands and scripting
possibilities can be found in the API and Commands Reference at the following
address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.mcapiandcommands.doc/concepts/commandsreference.html

9.3.1 Common uses for the Management Console commands

Usually, the Management Console CLI is used is when the InfoSphere CDC
operators do not have access to the source (production) server, but are
responsible for starting and stopping InfoSphere CDC at given times and
monitoring its status. By using this interface, InfoSphere CDC can be operated
using scripts that are suitable for unattended execution without access to the
production servers.

The Management Console CLI offers limited abilities for configuring
subscriptions; it allows you to add tables to the catalog, select tables for
subscriptions, describe subscriptions, and assign source tables to target tables
as long as table structures are alike. It is difficult to create scripts with conditional
processing based on the outcome of individual Management Console
commands. Therefore, you should use the Java API to control the InfoSphere
CDC configuration in an automated manner.

9.3.2 Compiling Management Console command scripts

If you decide to use Management Console command scripts to control
InfoSphere CDC, consider first stepping through the consecutive commands
using the online.bat (or online for Linux and UNIX) interface. This procedure
validates the steps and provides feedback on every step.

For example, you might want to control the start of subscriptions from your client
environment by completing the following steps:

1. Connect to the Access Server (similar to starting the Management Console
and entering the user and password for the Access Server).

2. Connect to the Source data store.

3. Start the subscription.

4. Shows the subscription status.

5. Disconnect from the Source data store.

6. Disconnect from the Access Server.
234 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.mcapiandcommands.doc/concepts/commandsreference.html

The script that accomplishes these steps is shown in Example 9-1.

Example 9-1 Script for starting subscriptions

C:\IBM\InfoSphere CDC_MC> type \MCScripts\startREDSCRIPT.txt
// Connect to the Access Server
connectServer(admin,passw0rd,172.16.74.130,10101);
// Connect to the Source data store
connectAgent(CDC_Oracle_Redo);
// Start the subscription
startMirror(CDC_Oracle_Redo,REDSCRIPT,continuous);
// Get the subscription status
getSubscriptionStatus(CDC_Oracle_Redo,REDSCRIPT);
// Disconnect from the Source data store
disconnectAgent(CDC_Oracle_Redo);
// Disconnect from the Access Server
disconnectServer();
// Exit the script
exit();

To run the script, you can run the online command (online.bat for Windows)
from the Management Console or Access Server directory and redirect the input
to the command as follows:

C:\IBM\InfoSphere CDC_MC> online.bat < \MCScripts\startREDSCRIPT.txt
Copyright (c) 1999-2010 IBM Corporation
Welcome to the IBM InfoSphere Change Data Capture Console (Version
6.5.1505.0)
>
REDSCRIPT Starting

As you can see, the command script has user readable user names and
passwords, which is a security exposure. To avoid this exposure, a compilation
command is provided to translate the base command script to an executable
program, a batch file for Windows, or a shell file for Linux or UNIX. Only store the
compiled executable programs on the server that has Management Console or
Access Server, and keep the readable scripts in a secure place.

Perform the compilation by running the following command:

C:\InfoSphere CDC_MC>online.bat -c
\MCScripts\startREDSCRIPT.txt_\MCScripts\compiled\startREDSCRIPT.bat
 Chapter 9. Customization and automation 235

The startREDSCRIPT.bat script has the same commands as the source, but the
users and password are encrypted. The compiled executable program is shown
in Example 9-2.

Example 9-2 Compiled batch executable for starting subscriptions

C:\InfoSphere CDC_MC>online.bat -c \MCScripts\startREDSCRIPT.txt
\MCScripts\compiled\startREDSCRIPT.bat
The startREDSCRIPT.bat script has the same commands as the source, but
the users and password are xxxxx encrypted.
C:\InfoSphere CDC_MC>type \MCScripts\compiled\startREDSCRIPT.bat
// Connect to the Access Server
connectServer(admin,b2lxbhYQ9RgcFlwEElpKCw==,172.16.74.130,10101);
// Connect to the Source data store
connectAgent(CDC_Oracle_Redo);
// Start the subscription
startMirror(CDC_Oracle_Redo,REDSCRIPT,continuous);
// Get the subscription status
getSubscriptionStatus(CDC_Oracle_Redo,REDSCRIPT);
// Disconnect from the Source data store
disconnectAgent(CDC_Oracle_Redo);
// Disconnect from the Access Server
disconnectServer();
// Exit the script
exit();

Now that you have a compiled script, you can run it by running online -b
(online.bat for Windows) as follows:

C:\InfoSphere CDC_MC>online -b \MCScripts\compiled\startREDSCRIPT.bat
REDSCRIPT Starting

As you can see, in both cases the REDSCRIPT subscription has the status
Starting, meaning that it is still in its startup phase. The Management Console
commands cannot build in delays or looping. If you want to develop a more
sophisticated procedure, a controlling shell script is needed to call individual
Management Console scripts and analyze the standard output of these
Management Console scripts. Develop advanced operations of your InfoSphere
CDC environment using the engine commands or the Java API.
236 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.4 InfoSphere CDC engine commands (CLI)

In many situations, you want to integrate InfoSphere CDC with the business
applications and other processes that run on the servers that have InfoSphere
CDC installed. Typical system management operations that must be aligned with
InfoSphere CDC are the shutdown and restart of a server or the database on
which InfoSphere CDC operates. For example, if the database for which a
InfoSphere CDC instance has been started must be shut down, first stop all
subscriptions and then shut down the InfoSphere CDC instance to avoid
abnormal termination of active instances.

This section describes a few prerequisites for running InfoSphere CDC engine
commands and provides some examples about how InfoSphere CDC
commands can be scripted and integrated into existing
operational environments.

Commands for starting and stopping subscriptions must always be run against
the InfoSphere CDC source engine. Other commands, such as showing the
bookmark of a subscription, can only be run for the InfoSphere CDC target
engine, as this engine is where bookmarks are kept.

9.4.1 Running commands for the Linux, UNIX, and Windows engine

Any InfoSphere CDC Linux, UNIX, and Windows engine command that is run
from the command line must be run from the cdc_home/bin directory or preceded
by the cdc_home/bin/ prefix. Having the bin directory in the path is not sufficient
for running the command, and the commands do not run.

As an example, assume that you want to list the active subscriptions for a
InfoSphere CDC instance. Change to the cdc_home/bin directory and then run
dmgetsubscriptionstatus -I cdcdemo -A. See Example 9-2 on page 236 for an
example of running a command for the Linux, UNIX, and Windows engine.

Figure 9-1 dmgetsubscriptionstatus
 Chapter 9. Customization and automation 237

9.4.2 Running CL commands for System i

When running InfoSphere CDC commands for the InfoSphere CDC for DB2 on
System i engine, the job that runs the commands must have the InfoSphere CDC
product (instance) library as its current library. Not changing the job's current
library but putting the InfoSphere CDC product library into the library list causes
the command to fail.

If you intend to write CL programs to perform periodic activities, such as stopping
the replication before a system IPL and restarting it afterward, the current library
must be set in the CL program before any InfoSphere CDC command is run.

Figure 9-2 shows an example of running a command on System i to start the
subscription in continuous mirror mode.

Figure 9-2 CDC_command_System_i

9.4.3 Running console commands for IBM System z

InfoSphere CDC engine commands on z/OS are submitted from the operator
console and appropriate messages are returned by InfoSphere CDC. The
console commands that are provided as part of the InfoSphere CDC installation
can be run by running MODIFY (or F) for the InfoSphere CDC started task:

MODIFY CHCPROC,STRTSMIR,SUBSCR=ALL

The The IBM Time Sharing Option (TSO) user must have authority to issue
console commands. This authority is controlled by a product such as the IBM
Resource Access Control Facility (RACF®). There is a difference between TSO
commands and console commands. InfoSphere CDC for IBM System z®
accepts console commands only.
238 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.4.4 Sample scripts

When deploying InfoSphere CDC, a number of implementation topics need to be
addressed, such as starting and stopping of the replication, the management of
the database archive logs, and monitoring the activity of the
replication processes.

This section provides sample scripts to perform repeating tasks in InfoSphere
CDC and enables you to implement these tasks to align with other processes
running in your environment.

Starting and stopping the engines and subscriptions
Before a subscription can be started, InfoSphere CDC requires that both the
source and target InfoSphere CDC data store be active. Depending on the
platform and type of engine, starting and stopping InfoSphere CDC engines can
require different commands. This section focuses on platforms and operating
systems that require scripting to start processes. Windows is excluded here
because a InfoSphere CDC instance is started and stopped with Windows
services, and these services are controlled at the operating system
configuration level.

Linux, UNIX, and Windows engine examples for starting and
stopping

Example 9-3 shows a script to start a InfoSphere CDC Java instance. All Java
InfoSphere CDC engines have the same command interface and starting and
stopping techniques. Although the command is started as a daemon process (by
running the nohup command), it writes any messages to nohup.out in the current
directory. The script monitors for messages arriving in nohup.out and sends
them to stdout before returning to the command prompt.

The script only starts the first InfoSphere CDC instance that has been defined. If
you must start multiple or all InfoSphere CDC instances, the script must be
modified.

Example 9-3 Script to start a InfoSphere CDC Java instance

#!/bin/bash

set -x

CDC instance variables
CDC_AGENT=DB2
CDC_HOME=/opt/InfoSphere CDCdb2
CDC_USER=InfoSphere CDCdb2
CDC_INSTANCE=`ls ${CDC_HOME}/instance | head -1`
 Chapter 9. Customization and automation 239

Start CDC instance
echo "Starting CDC ${CDC_AGENT} instance ${CDC_INSTANCE} for user
${CDC_USER} ..."
rm ${CDC_HOME}/bin/nohup.out 2> /dev/null
su - ${CDC_USER} -c "cd ${CDC_HOME}/bin;nohup ./dmts64 -I
${CDC_INSTANCE} &" > ${CDC_HOME}/bin/nohup.out

Wait for CDC instance to be started or error to be issued (max 60
seconds)
for i in {1..60}
 do
 if [-e ${CDC_HOME}/bin/nohup.out];
 then
 nLines=$(wc -l ${CDC_HOME}/bin/nohup.out | awk '{print $1}')
 if ((${nLines} != 0))
 then
 break
 fi
 fi
 sleep 1
 done

Determine if instance was started correctly
nLines=$(grep -c "IBM InfoSphere Change Data Capture is running."
${CDC_HOME}/bin/nohup.out)

if ((${nLines} != 0))
 then
 # Do post-instance action such as deselecting the staging store or
setting system parameters
 echo post-start > /dev/null
fi

cat ${CDC_HOME}/bin/nohup.out

echo
echo "Press Enter to continue ..."
read -t 5

Using a similar method, the CDC engine can be stopped.

#!/bin/bash

CDC instance variables
240 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

CDC_AGENT=DB2
CDC_HOME=/opt/InfoSphere CDCdb2
CDC_USER=InfoSphere CDCdb2
CDC_INSTANCE=`ls ${CDC_HOME}/instance | head -1`

Stop CDC instance
echo "Stopping CDC ${CDC_AGENT} instance ${CDC_INSTANCE} ..."
su - ${CDC_USER} -c "${CDC_HOME}/bin/dmshutdown -I ${CDC_INSTANCE}"
echo
echo "Press Enter to continue ..."
read -t 5

System i examples for starting and stopping
On most System i servers, InfoSphere CDC is started in the system's startup
program, which is identified by the system value QSTRUPPGM.

Example 9-4 shows a sample CL program that could be called from the server's
startup program. The program starts the InfoSphere CDC instance (IBMCDC
subsystem), waits a few seconds to allow the InfoSphere CDC TCP/IP listener
job to start, and then starts all the subscriptions replicating from the
current system.

Example 9-4 CL program to start InfoSphere CDC

*************** Beginning of data *************************************
 PGM

 /* Start the InfoSphere CDC subsystem */
 STRSBS SBSD(IBMCDC/IBMCDC)
 MONMSG MSGID(CPF1010)

 /* Wait for the TCP listener to come up */
 DLYJOB DLY(20)

 /* Start subscriptions */
 CHGCURLIB CURLIB(IBMCDC)
 STRDTAMIR TARGET(*ALL)

 ENDPGM
 ****************** End of data **************************************
 Chapter 9. Customization and automation 241

If you choose to include the startup of InfoSphere CDC in the server startup
program, ensure that the system's TCP/IP service has been started before you
start the InfoSphere CDC subsystem. The listener fails to start if TCP/IP is not
yet active and you are not be able to connect to the InfoSphere CDC instance
using the Management Console or start any replication processes that target the
system. A common practice is to place the startup of InfoSphere CDC at the end
of the startup program or to build in a delay or check for TCP/IP activity using the
QtocRtvTCPA API.

Similarly, a CL program could shut down InfoSphere CDC before the system
must be powered down (Example 9-5).

Example 9-5 CL program to shut down InfoSphere CDC

*************** Beginning of data *************************************
 PGM

/* End all subscription target processes */
 CHGCURLIB CURLIB(IBMCDC)
 DMENDPROC PUBID(*ALL)

/* End all subscriptions (*CNTRLD at first) */
 CHGCURLIB CURLIB(IBMCDC)
 ENDDTAMIR TARGET(*ALL)
 DLYJOB DLY(120)

/* If still subscriptions active, end with *IMMED */
 ENDDTAMIR TARGET(*ALL) ENDTYP(*IMMED)
 DLYJOB DLY(10)

/* End the subsystem immediately */
 ENDSBS SBS(IBMCDC) OPTION(*IMMED)
 MONMSG MSGID(CPF1054)

 ENDPGM
****************** End of data ***************************************

The script first ends all subscription target processes by running DMENDPROC and
then issues a controlled end of the subscriptions. A controlled end allows
processing of the remaining journal entries by the subscription. If there is a large
backlog of transactions to be replicated, the controlled ending of the
subscriptions could take a long time and delay the shutdown of the system.
Therefore, the program waits for 2 minutes and then ends the
replication immediately.
242 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

You could make the program a bit more sophisticated by, for example, checking
the monitoring activity of the subscription to shorten the fixed delay.

System z example for starting
The JCL to start the InfoSphere CDC instance (the default name is CHCPROC)
is distributed with the product in the SHCCNTL library (see Example 9-6).

Example 9-6 JCL to start a InfoSphere CDC instance

//CHCPROC PROC CONFIG=<ConfigSuffix>,
// COMM=COMM,
// DBMS=DBMS
//*
//*
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* 5655-U96 *
//* COPYRIGHT IBM CORP 1998,2008 ALL RIGHTS RESERVED. *
//* *
//* US GOVERNMENT USERS RESTRICTED RIGHTS - *
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED *
//* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP. *
//* *
//* Sample JCL to run InfoSphere Change Data Capture for z/OS *
//* *
//* Instructions: *
//* *
//* 1. If the Language Environment product was not installed into *
//* data sets with the default name prefix, change the value of *
//* the _ICONV_UCS2_PREFIX keyword in the PARM field of the EXEC *
//* statement to specify the prefix chosen for the Language *
//* Environment data sets. InfoSphere Change Data Capture for *
//* z/OS will use this item when requesting code page conversion
*
//* using Language Environment provided services. *
//* *
//* 2. Change <ConfigSuffix> to the 2 character configuration suffix *
//* appended to the "CHCCFGxx" member of the CHCCNTRL data set. *
//* *
//* 3. Change <CHC.HCHC620> to the high-level data set name *
//* qualifier to be used for the InfoSphere Change Data Capture *
//* for z/OSexecution data sets. *
//* *
//* 4. Change 'DSNxxx.SDSNEXIT' to the name of the DB2 APF *
//* Authorized exit library. *
 Chapter 9. Customization and automation 243

//* *
//* 5. Change 'DSNxxx.SDSNLOAD' to the name of the DB2 APF *
//* Authorized execution library. *
//* *
//* 6. Change <MetaDatacluster> to the name of the InfoSphere Change *
//* Data Capture for z/OS Meta-Data VSAM Cluster. *
//* *
//* 7. Change <PALcluster> to the name of the InfoSphere Change Data *
//* Capture for z/OS Product Administration Log (PAL) VSAM *
//* Cluster. *
//* *
//* 8. Change <CACHE.QUALIFIER> to the high-level data set name *
//* qualifier to be used for the DB2 Log Cache data sets. *
//* Remove these lines if you do not want to use a DB2 Log Cache. *
//* *
//* 9. Change <UserExitLoadLib> to the name of the execution data set
*
//* for user exits. *
//* *
//* 10. Change 'TCPIP.SEZAINST(TCPDATA)' to the name of the z/OS *
//* TCP/IP Component's TCPIP.DATA data set. If the installation *
//* is using a TCP/IP Resolver address space, this DD statement *
//* can be removed. *
//* *
//* Note: *
//* The first step, named DELETE, removes the prior SYSMDUMP data *
//* set, if it exists. The SYSMDUMP data set is then allocated *
//* anew when InfoSphere Change Data Capture for z/OS starts *
//* execution. This newly allocated SYSMDUMP data set must have a *
//* disposition of MOD, so that, should multiple memory dumps occur,
they *
//* will be appended in sequence, and not successively overlay the *
//* prior memory dumps in the data set.
*
//* *
//* Note: *
//* The REGION parameter on the EXEC statement of the IEFPROC step *
//* is set to 0M. This value implies a default value for the *
//* MEMLIMIT parameter (which is not coded) of "NOLIMIT". This *
//* permits the use of storage "above the bar". If the REGION *
//* parameter is changed to a non zero value or removed, you must *
//* add a MEMLIMIT keyword to the EXEC statement specifying enough *
//* storage to serve InfoSphere Change Data Capture for z/OS's *
//* requirements. *
//* *
244 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

//*
//*
//DELETE EXEC PGM=IEFBR14
//SYSMDUMP DD DSNAME=<CHC.HCHC620>.SYSMDUMP,DISP=(MOD,DELETE),
// UNIT=SYSALLDA,
// SPACE=(CYL,(1))
//*
//IEFPROC EXEC PGM=CHCMIT,
// PARM=('/ENVAR(_ICONV_UCS2_PREFIX=CEE)',
// '/&COMM,&DBMS,CONFIG=&CONFIG'),
// REGION=0M <== SEE THE NOTE ABOVE
//STEPLIB DD DSNAME=<CHC.HCHC620>.LOAD,DISP=SHR
// DD DSNAME=DSNxxx.SDSNEXIT,DISP=SHR
// DD DSNAME=DSNxxx.SDSNLOAD,DISP=SHR
//CHCCNTRL DD DDNAME=IEFRDER
//IEFRDER DD DSNAME=<CHC.HCHC620>.DATA,DISP=SHR
//CHCPRINT DD SYSOUT=*
//CHCAUDIT DD SYSOUT=*
//CHCREPRT DD SYSOUT=*
//CHCMTDTA DD DSNAME=<MetaDatacluster>,DISP=SHR
//CHCPALOG DD DSNAME=<PALcluster>,DISP=SHR
//CHCCACHE DD DSNAME=<CACHE.QUALIFIER>.CHCCACHE,DISP=SHR,
// AMP=('BUFND=256,ACCBIAS=SW')
//CHCCHCTL DD DSNAME=<CACHE.QUALIFIER>.CHCCHCTL,DISP=SHR
//CHCUXLIB DD DSNAME=<UserExitLoadLib>,DISP=SHR
//SYSTCPD DD DSNAME=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//UTPRINT DD DUMMY
//* SEE THE NOTE ABOVE ABOUT THE DISPOSITION CODED FOR THIS DATA SET *
//SYSMDUMP DD DSNAME=<CHC.HCHC620>.SYSMDUMP,DISP=(MOD,CATLG), *NOTE*
// UNIT=SYSALLDA,
// SPACE=(CYL,(150,50))
//ABNLIGNR DD DUMMY
//*

The following is an example on how to issue InfoSphere CDC console
commands as part of a JCL.

//WCA008CM JOB (3WCA000),'BIN 376 - CXA XM1',MSGCLASS=H,
//REGION=2M,CLASS=A,NOTIFY=&SYSUID
//ISPFPROC EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//F CHCPROC,STRTSMIR,SUBSCR=TESTSUB1
//F CHCPROC,ENDRPLCT,SUBSCR=TESTSUB2,NORM
 Chapter 9. Customization and automation 245

9.4.5 Checking an InfoSphere CDC engine and subscriptions activity

When InfoSphere CDC has been deployed on a production system, it is typically
treated as a business critical application and it is therefore included in standard
checks for activity. This section lists the methods for determining the activity of
the InfoSphere CDC instance and its subscriptions, using operating
system commands.

If you are looking for a more centralized solution to monitor activity of InfoSphere
CDC instances, subscriptions, and more details, such as latency, the Java API
provides better abilities to retrieve operational information. See 9.5, “InfoSphere
CDC API” on page 262 for more information about customizing the configuration
and monitoring of InfoSphere CDC.

Linux, UNIX, and Windows engine activity checking
There is no CLI command for checking the activity of a InfoSphere CDC
instance. Most system administrators use standard operating system techniques
to verify if a process has been started, and the same can be used for activity of
the InfoSphere CDC engine.

There are at least three methods by which the activity of a InfoSphere CDC
instance can be checked:

1. The dmts64 (or dmts32) process is running for the named instance.

2. There is a listener active for the port that has been configured for
the instance.

3. An engine command, such as dmgetsubscriptionstatus, returns a result
when run and exits with code 0.

Most commonly, customers use the UNIX ps command to determine if
processes are running on the system. Example 9-7 shows a script that checks
whether there is a dmts process active for the first (and only) InfoSphere CDC
instance configured for an engine.

Example 9-7 Script to check if a dmts process is active

#!/bin/bash

set -x

CDC instance variables
CDC_AGENT=DB2
CDC_HOME=/opt/InfoSphere CDCdb2
CDC_USER=InfoSphere CDCdb2
CDC_INSTANCE=`ls ${CDC_HOME}/instance | head -1`
246 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Find the process in the system using the ps command
nLines=$(ps aux | grep dmts | grep $CDC_HOME | grep $CDC_INSTANCE | wc
-l)

if ((${nLines} != 0))
 then
 echo "$CDC_AGENT CDC instance $CDC_INSTANCE is running."
 exit 0
 else
 echo "$CDC_AGENT CDC instance $CDC_INSTANCE is not active."
 exit 1
fi

Even though it might be interesting to know whether a InfoSphere CDC instance
is active, most clients prefer to know if subscriptions are up and running (if
subscriptions are active, the instance is up too). For the Linux, UNIX, and
Windows engine, the full status can be retrieved by running
dmgetsubscriptionstatus from a script or the command line. Examples of those
commands are:

[InfoSphere CDCora@cdc-redscript bin]$ dmgetsubscriptionstatus -I
cdcdemo -A -p

Subscription : REDSCRIPT
Status : Idle

[InfoSphere CDCora@cdc-redscript bin]$

If the instance is running, the active (Active) and inactive (Idle) subscriptions are
shown. The command returns an error when trying to run it against an instance
that is not running.

[InfoSphere CDCdb2@cdc-redscript bin]$ dmgetsubscriptionstatus -A -p
IBM InfoSphere Change Data Capture instance "cdcdemo" is not
started.
Start the instance to resolve this error.
[InfoSphere CDCdb2@cdc-redscript bin]$ echo $?
253

A shell script could be written to analyze the output from the
dmgetsubscriptionstatus command and take relevant actions. Also, the status
check could be integrated with a monitoring solution such as
IBM Tivoli® Monitoriing.
 Chapter 9. Customization and automation 247

System i activity checking
On System i, a subscription’s status can be checked through the InfoSphere
CDC subsystem. If the InfoSphere CDC subsystem is active and there is a
TCPLISTEN job in the subsystem, the instance is running.

Every subscription that is active for continuous mirroring has at least three
source jobs in the InfoSphere CDC subsystem (more if multiple journals are
processed by a subscription). When targeting a System i server, there are two or
more jobs active per subscription (there is one DMTAPPLY job per journal
processed on the source). Figure 9-3 shows the REDSCRIPTI subscription,
which replicates intra-system, activating a total of five subscription jobs in
the subsystem.

Figure 9-3 Replicating intra-system

Most monitoring solutions can base actions on the activity of certain jobs in a
subsystem. It should be fairly simple to configure activity checking by monitoring
for subsystem jobs that have the same name as the subscription. You could also
consider writing a CL program that employs the QUSLJOB API to list the jobs in
the InfoSphere CDC subsystem. Providing a sample program to list subsystem
jobs goes beyond the scope of this book.

REDSCRIPTI

REDSCRIPTI
REDSCRIPTI

REDSCRIPTI

REDSCRIPTI
248 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

System z activity checking
The DSPACT console command can be used to show activity in the InfoSphere
CDC/z instance (Example 9-8).

Example 9-8 DSPACT console command

CHC9600I (CHCPROC) "MODIFY" command accepted, Diagnostic information
("DSPACT")
CHC9733I (CHCPROC) V5 Communications: Connections = 5
CHC9800I (CHCPROC) Target Data name = CUST10K, Sends = 6, Send Bytes =
310, Recvs = 2, Recv Bytes = 78, CPU Used = 0.011415
CHC9801I (CHCPROC) Source Data name = CUST10K, Sends = 2, Send Bytes =
78, Recvs = 6, Recv Bytes = 310, CPU Used = 0.010111
CHC9802I (CHCPROC) Monitor Agent name = DMCMVSA:37504, Sends = 18, Send
Bytes = 2,031, Recvs = 20, Recv Bytes = 1,625, CP ...
CHC9802I (CHCPROC) ... U Used = 0.012863
CHC9803I (CHCPROC) Source Control name = DMCMVSA.TOROLAB.IBM.COM, Sends
= 20, Send Bytes = 1,625, Recvs = 18, Recv Bytes ...
CHC9803I (CHCPROC) ... = 2,031, CPU Used = 0.011747
CHC9804I (CHCPROC) Target Control name = MNOEST2.TOROLAB.IBM.COM, Sends
= 18, Send Bytes = 1,384, Recvs = 14, Recv Bytes ...
CHC9804I (CHCPROC) ... = 1,410, CPU Used = 0.013526
CHC9778I (CHCPROC) Agent Communications: Connections = 1,
Admin(Act/Pnd) = 1/0, State = Processing, Shutdown = *N/A*
CHC9818I (CHCPROC) Medium = TCP/IP, State = Active, Shutdown = *N/A*
CHC9788I (CHCPROC) Datastore name = DMC0038, Medium = TCP/IP, Paths =
1, Sends = 21, Recvs = 38
CHC9832I (CHCPROC) DBMS: Repositories = 1, State = Processing, Shutdown
= *N/A*
CHC9742I (CHCPROC) DBMS: Repository Type = DB2 , ID = AD91:DMC0038,
Log(Monitor/Scraper) = 1/1,
 Replication(admin/source/ ...
CHC9742I (CHCPROC) ... apply) = 1/1/1, HoL RBA = X'00000A9FC229FB91'
CHC0290I (CHCPROC) The DB2 Log Cache is processing with a range of
X'0000000000000000' through
 X'0000000000000000'
CHC9751I (CHCPROC) Replication: Log(Monitor/Scraper) = 1/1,
Replication(source/apply) = 1/1
CHC9753I (CHCPROC) Replication: 1 active Target Subscription(s)
CHC9844I (CHCPROC) Subscription name = CUST10K, Repository type = DB2,
Activity = Start_Mirror, State = Processing, Shutd ...
CHC9844I (CHCPROC) ... own = *N/A*, Current RBA = X'00000A9FC229FB91',
Written at = 2011-04-13-13.29.22.179712, Scrape to ...
CHC9844I (CHCPROC) ... = *N/A*
CHC9753I (CHCPROC) Replication: 1 active Source Subscription(s)
 Chapter 9. Customization and automation 249

CHC9857I (CHCPROC) Source name = CUST10K, Activity = , State =
Processing, Shutdown = *N/A*

Example 9-8 on page 249 shows various bits of information under several major
headings, as follows:

� V5 Communications shows the number of communications connections
currently active. In this case, a loopback subscription called CUST10K and a
single Management Console user.

� Agent Communications shows the single Management Console user.

� DBMS shows that you are connected to a DB2 subsystem called AD91 with
user ID CMS0038.

� You are running one log monitor (it should always be one) and one log
scraper (it should be one per source subscription).

� You are also running one source / apply because you are running one
loopback subscription.

� HoL RBA shows the current DB2 head of log position (either RBA or LRSN).

� The log cache is not active and shows no position.

� Replication shows details about the source and target subscriptions currently
active. Of special interest here is the Current RBA, which shows where the
scraper for subscription CUST10K is currently reading the log.

Monitoring the event logs
Besides monitoring the activity of subscriptions, you typically want to automate
the monitoring of event logs. Most monitoring solutions offer the ability to run
system commands and analyze the output of those commands. The next section
describes CLI commands that can be used in scripts or started from a monitoring
solution to automate monitoring of InfoSphere CDC event logs.

Linux, UNIX, and Windows engine event log monitoring
If you plan to monitor the event logs from the InfoSphere CDC server using a
command line, the Linux, UNIX, and Windows engine provides a command to list
the contents of the event log. By using basic commands, you can filter out the
error messages from the information messages that the replication issues
(Figure 9-4 on page 251).
250 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 9-4 Event log

The output can also be directed to a file that is monitored by your external
monitoring solution so that replication errors are also captured. Some monitoring
solutions expect only new errors to be logged and do not filter out the ones that
have already been processed, or they track one file that holds the error
messages and only view it when it has been extended. To avoid having errors
reported more than once, you might need to build some scripting logic to process
the output of the dmshowevents command (Example 9-9).

Example 9-9 Output of the dmshowevents command

#!/bin/bash

Environment setup
CDC_HOME="/opt/InfoSphere CDCdb2" # CDC Home directory
CDCInstance="cdcdemo" # CDC Instance configured
LogFile="/monitor/cdc_reported_errors.log" # Log file that is monitored
TmpLogFile="/tmp/cdc_errors_$$.tmp" # Temporary file holding all dmshowevents
 # log entries

List the events to a temporary output file
$CDC_HOME/bin/dmshowevents -I $CDCInstance -a | grep -i error > $TmpLogFile

Find differences between temporary and permanent output file
touch $LogFile # Create log file if it does not exist
Output new lines to log file
diff $TmpLogFile $LogFile | tail -n+2 >> $LogFile

[iscdcora@cdc-redscript bin] & dmshowevents –I cdcdemo –a I grep –i error

2011-04-14 05:31:06.ISIREDSCRIPTI1465IEr rorII– Subscription REDSCRIPT is terminating abnormally.

2011-04-14 05:31:06.ISIREDSCRIPTI1713IEr rorIIIBM InfoSphere Change Data Capture to REDSCRIPT is ini tiating shutdown due to failure on the
local system. See the previous messages for additional information.

2011-04-14 05:30:39.ISIREDSCRIPTI647IErrorIIIBM InfoSphere Change Data Capture heartbeat timeout has occurred. Replication will end. The
timeout is currently 10 minutes. There may be a network problem or a problem on the remote system. Resolve the problem and then restart
replication.

[iscdcora@cdc-redscript bin] $
 Chapter 9. Customization and automation 251

In addition to the dmshowevents messages, the Linux, UNIX, and Windows
engine also logs more detailed messages in the
<cdc_home>/instance/<instance>/log directory (Figure 9-5).

Figure 9-5 InfoSphere CDC events trace

[iscdcora@cdc-redscript log]$ pwd

[iscdcora@cdc-redscript log]$

[iscdcora@cdc-redscript log]$ ls -ltr
/opt/iscdcora/instance/cdcdemo/log
252 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Also, if you have switched on debugging for the engines or if you are using the
com.datamirror.ts.util.Trace class from your Java user exit program, these
messages are also logged in the trace_dmts* files in this directory (Figure 9-6).

Figure 9-6 InfoSphere CDC events trace - details

System i event log monitoring
InfoSphere CDC for DB2 on System i logs its engine and subscription events in
message queue objects (*MSGQ) in the InfoSphere CDC product library. The
following message queue objects can be distinguished:

� COMMEVENT: InfoSphere CDC data store events (source and target).

� <subscription>: Subscription source events, for example, REDSCRIPTI for a
subscription that is called REDSCRIPTI.

� <publisher ID>_T: Subscription target events, for example, REDSCRIPTI_T
for a subscription that is called REDSCRIPTI and whose publisher ID
is REDSCRIPTI.
 Chapter 9. Customization and automation 253

Figure 9-7 shows the output of the DSPMSG MSGQ(REDSCRIPTI) command to
provide an example of source subscription messages.

Figure 9-7 InfoSphere CDC subscription source events

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI
254 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 9-8 shows the target output of the
DSPMSG MSGQ(REDSCRIPTI_T) command.

Figure 9-8 InfoSphere CDC subscription target events

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI

REDSCRIPTI
 Chapter 9. Customization and automation 255

You can find more detailed messages in the job logs of the InfoSphere CDC jobs.
For example, Figure 9-9 shows a target event for a subscription (CPF4128).

Figure 9-9 Subscription event

The error entry in the event log indicates the InfoSphere CDC job on the system
in which the error occurred. You can find the job log of the associated job by
running the WRKJOB JOB(394643/D_MIRROR/REDSCRIPTI) command. In this case,
the job had already ended, so it left a spooled file job log (QPJOBLOG) on the
system (Figure 9-10).

Figure 9-10 InfoSphere CDC event error

REDSCRIPTI

REDSCRIPTI
256 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

System z event log monitoring
As with most System z applications, job logs are accessed through the System
Display and Search Facility (SDSF). Standard data sets are JESMSGLG,
JESJCL, and JESYSMSG.

There are also a few InfoSphere CDC for System z specific data sets,
CHCPRINT, CHCAUDIT, and CHCREPRT:

� CHCPRINT contains a log of all event log messages issued since the
instance was started.

� CHCAUDIT contains information about z/OS, DB2, and InfoSphere CDC for
System z, including versions, maintenance levels, and configuration
parameters, and significant events, such as users connecting to the data
store from the Management Console, subscriptions starting and ending, and
tables being parked.

� CHCREPRT contains reports written by InfoSphere CDC for System z during
its processing, either by request or to report errors. An example of a report
produced by request is the Staging Space Report. A target subscription also
produces a report when a target error is encountered. For example, if an SQL
error is encountered during the application, this report contains details about
what was being applied and to which table.

9.4.6 Removing obsolete database logs

InfoSphere CDC depends on the availability of database transaction logs, and
these logs must not be removed from the system before all subscriptions have
finished processing them.

Most clients have an automated procedure for cleaning up archive transaction
logs from the system to avoid flooding the disk space. When implementing these
purging procedures, you must take the dependencies of InfoSphere CDC
into account.

Linux, UNIX, and Windows engine log maintenance
Example 9-10 shows a sample script to demonstrate how an Oracle archive log
cleanup procedure could be aligned with the log dependencies of InfoSphere
CDC. Although there are multiple methods that can be used, this method looks at
the archive logs registered in the Oracle catalog (v$archived_log view) and
compares them with the log dependencies reported by InfoSphere CDC.

Example 9-10 Archive log clean-up procedure for Oracle

#!/usr/bin/ksh
set -x # Uncomment to debug
 Chapter 9. Customization and automation 257

**
Description : Remove Oracle Archive Log Oracle already processed
and applied by InfoSphere CDC (Transformation
Server)
#
Designed for InfoSphere CDC 6.3 and higher
(metadata stored outside Oracle database)
#
Language : ksh
**

prg=${0##*(*/|-)} # Get script name

Initialization of variables (to be customized for implementation)
CDC_HOME="/opt/InfoSphere CDCora" # CDC Home directory
SrcOraSID="cdcdemo" # SID (TNS name) of source database
SrcOraUser="InfoSphere CDCora" # User to log on to Oracle
SrcOraPwd="passw0rd" # Password of user
SrcCDCInstance="cdcdemo" # CDC Instance configured

TmpDepLogFile="/tmp/CDCDepLog$$.tmp" # Temporary file holding the archive
 # files CDC is still dependent on
TmpArcLogFile="/tmp/CDCArcLog$$.tmp" # Temporary file holding archive files
 # to be deleted
LogFile="${HOME}/CDCDltArcLog.log" # Logging of all runs, change to
 # "/dev/null" if no logging desired

MaxLogDays=9999 # Archive list threshold in days (to avoid
 # unnecessary processing of archives)

Function to throw an error and exit with a return code
function throwError
{
 exitStatus=$?
 ((exitStatus == 0)) && exitStatus=1

 if (($# > 0)); then
 print "${prg}: $*" >&2
 fi

 exit ${exitStatus}
}

Function to write an entry in the log
function writeLog
258 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

{
 echo $1
 print $1 >> ${LogFile}
}

--
Main line
--

Define variables
typeset -i i=0
typeset -i nDlt=0
typeset -i nRtn=0
typeset -i nDltErr=0

Check if log file exists or can be created and accessed
cat /dev/null >> ${LogFile}
(($? == 0)) || throwError "Cannot create or access log file: ${LogFile}"
Check if temporary files can be created
cat /dev/null >> ${TmpDepLogFile}
(($? == 0)) ||
 throwError "Cannot create temporary log dependency file: ${TmpDepLogFile}"
cat /dev/null >> ${TmpArcLogFile}
(($? == 0)) ||
 throwError "Cannot create temporary archive log file: ${TmpArcLogFile}"

writeLog "## Archive log deletion for database ${SrcOraSID} started at `date`."

First, obtain which log files are still needed by CDC
$CDC_HOME/bin/dmshowlogdependency -I ${SrcCDCInstance} -i -A > ${TmpDepLogFile}

If there was an error retrieving the log dependencies, throw it
(($? == 0)) ||
 throwError "Error running dmshowlogdependency command for CDC instance
 ${SrcCDCInstance}"

Report back the archive logs still required by the product
writeLog "Archive logs still required by CDC instance ${SrcCDCInstance}:"
cat ${TmpDepLogFile} | while read DepLog
do
 writeLog "${DepLog}"
done
nRtn=$(wc -l ${TmpDepLogFile} | awk '{print $1}')

Now, list all the archive logs
 Chapter 9. Customization and automation 259

sqlplus -S ${SrcOraUser}/${SrcOraPwd}@${SrcOraSID} << EOF > /dev/null
set lines 1000
set termout off
set echo off
set term off
set pages 0
set verify off
set feedback off
set trimspool on
spool ${TmpArcLogFile}
select name from v\$archived_log
 where next_time > (sysdate-${MaxLogDays})
order by dest_id,thread#,sequence#;
spool off
exit;
EOF

If there was an error running the SQL script, throw it
(($? == 0)) ||
 throwError "Error running SQL script to list archive logs for database
 ${SrcOraSID}"

Process list of archives which may be deleted
grep -v -f ${TmpDepLogFile} ${TmpArcLogFile} | while read ArcLine
do
 # Skip archive file if it doesn't exist anymore
 if [[-e ${ArcLine}]]; then
 rm ${ArcLine} 2>> ${LogFile}
 if (($? != 0)); then
 writeLog "Error deleting archive file ${ArcLine}"
 ((nDltErr += 1))
 else
 writeLog "Archive log ${ArcLine} deleted"
 ((nDlt += 1))
 fi
 fi
done

Report how many archives deleted and retained
writeLog "Number of archives deleted: ${nDlt}"
if ((${nDltErr} != 0)) ; then
 writeLog "Number of errors when deleting archives: ${nDltErr}"
fi
writeLog "Number of archives retained: ${nRtn}"
260 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Remove temporary files
rm ${TmpDepLogFile}
rm ${TmpArcLogFile}

writeLog "## Archive log deletion for database ${SrcOraSID} finished at `date`."
writeLog " "

When running the script, it automatically removes all archive logs from the file
system that are no longer needed by any of the subscriptions. The output of the
script is shown in Example 9-11.

Example 9-11 Deleting the archive files

[InfoSphere CDCora@cdc-redscript bin]$./CDCDltArcLog.sh
Archive log deletion for database cdcdemo started at Fri Apr 8
15:17:45 CEST 2011.
Archive logs still required by CDC instance cdcdemo:
IBM InfoSphere Change Data Capture Show Log Dependency Utility
Archive log /oradata/cdcdemo/archive/1_19_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_20_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_21_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_22_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_23_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_24_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_25_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_26_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_27_698772245.dbf deleted
Archive log /oradata/cdcdemo/archive/1_28_698772245.dbf deleted
Number of archives deleted: 10
Number of archives retained: 1
Archive log deletion for database cdcdemo finished at Fri Apr 8
15:17:50 CEST 2011.

If the archive logs are kept in an Oracle ASM file system, they would not be
accessible using operating system commands. In most Oracle implementations,
clients probably already have a log management process in place using RMAN.
The script in Example 9-11 must be adjusted to retrieve the log sequence
number from the v$archived_log view and generate the RMAN commands
(RMAN> delete noprompt archivelog logseq=nn) to remove the archive logs.
 Chapter 9. Customization and automation 261

System i journal receiver maintenance
On System i, InfoSphere CDC subscription process journal receiver entries are
stored as journal receiver (*JRNRCV) objects. After all subscriptions reading a
certain journal have finished processing a journal receiver, this journal receiver
can be removed from the system from a InfoSphere CDC perspective.

InfoSphere CDC for System i provides the CHGJRNDM command to clean up
journal receivers from the system after the subscriptions no longer need them.

If there are other co-existing applications using the same journals that
InfoSphere CDC does, management of the journal receivers should be
coordinated between these applications. The oldest journal receiver that is still in
use by any of the applications, and the next receivers in the chain, must be
retained on the system.

For these situations, the RTVDMJENT command can be used to retrieve the oldest
journal receiver needed by InfoSphere CDC. If you already have a journal
management solution, see if it can check of the InfoSphere CDC journal
receiver dependencies.

System z database log maintenance
InfoSphere CDC for System z contains no log management features. Active DB2
log data sets are automatically archived as they grow. When the DB2 IFI must
read the log entries from the archived DB2 log data sets, this action might result
in slow processing of the logs.

9.5 InfoSphere CDC API

By providing an API for accessing InfoSphere CDC Management Console
functions within a Java application or program, you are able to create specialized
software to satisfy needs and requirements unique to your InfoSphere CDC
implementation. In particular, customized Java interfaces that include necessary
enhancements and the ability to access some or all of InfoSphere CDC
Management Console functions can be developed by your organization.

This section provides a background on how the API classes and methods are
organized and how that relates to the functionality of the Management Console.
You learn how to use the data stores, configure subscriptions and table
mappings, and operate and monitor the environment.
262 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.1 Development environment setup

Development using the InfoSphere CDC Java APIs requires that you have a
specific compilation and building environment configured. Although most Java
Development Kits at release 1.5 or higher can be used to compile classes that
use the APIs, use the IBM JDK for your development environment to be in line
with the required running environment.

Running any custom programs that use the InfoSphere CDC Java API classes
requires that you use IBM Java Runtime Engine V1.5 or later. If you attempt to
instantiate an object from the InfoSphere CDC API using a Java Runtime
Environment (JRE) from a different provider, exceptions are thrown.

The class path for compiling your self-developed classes must include the
api.jar file. This file can be found in the lib directory of the Access Server or
Management Console installation. Do not use the api.jar file that ships with the
Java CDC replication engines, as it is for engine-only use. To avoid errors when
Access Server or Management Console installations are done on your
development server, consider copying the api.jar file to your development
environment. The api.jar file works together with the version of Access Server
that is running in your environment. Should a new version of the Access Server
be installed, it might be necessary to replace the api.jar file with the latest
version and review your code.

9.5.2 Contents of the api.jar file

The API shipped with InfoSphere CDC Management Console and Access Server
contains the following three main packages:

� com.datamirror.ea.api
� com.datamirror.ea.api.publisher
� com.datamirror.ea.api.subscriber

The com.datamirror.common.util.* package is also useful, especially when
automatic management of the data store is required. This package contains the
methods for encryption and decryption of passwords.

Interfaces and classes that are contained in the API and expose InfoSphere CDC
functions are in the API Javadocs. The index for the API Javadocs is found in the
following directory:

<MC_install_directory>\api\index.html
 Chapter 9. Customization and automation 263

Furthermore, a high-level description of the API and the architecture can be
found in the IBM Information Center at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.mcapiandcommands.doc/concepts/aboutthisguide.html

Mapping the api.jar components to the Management Console
There are three main areas (packages) in the api.jar file, each encompassing a
different part of the entire InfoSphere CDC configuration:

� com.datamirror.ea.ap: Classes related to Access Server and its configured
users and data stores.

� com.datamirror.ea.api.publisher: Classes for controlling the source
metadata, including the catalog tables and subscriptions (source side).

� com.datamirror.ea.api.subscriber: Classes for controlling the target
metadata, mainly the publications (target component of subscriptions).

Figure 9-11 shows the Access Manager perspective of the InfoSphere CDC
Management Console with the most important API classes mapped to screen
items. All classes in this perspective are contained in the
com.datamirror.ea.api package.

Figure 9-11 MC configuration mapping of API classes
264 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.mcapiandcommands.doc/concepts/aboutthisguide.html

Table 9-1 provides a list of the most commonly used classes contained in the
com.datamirror.ea.api package.

Table 9-1 Commonly used classes in the com.datamirror.ea.api package

Class Description

DataSource Used to establish and keep the connection to
the Access Server. Equivalent to connecting
the Management Console to the Access
Server and specifying the user and
password.

AccessServerAgent Represents an Access Server data store.
After establishing a connection to the Access
Server, you can obtain a list of data stores
that have been registered.

AccessServerUser Represents a user that is registered for the
Access Server; the user can connect to the
Access Server.

AccessServerAgentAccessParameters Holds the link between an Access Server
user and a data store. After establishing a
connection to the Access Server, the user
can only connect to the data stores for which
a connection exists. Also, this object stores
the database user and password that are
used to connect to the database represented
by the data store.

ReplicationRole The interface that is implemented by the
Publisher and Subscriber classes. An
AccessServerAgent can be connected
through one of the classes that implement
the ReplicationRole interface.
 Chapter 9. Customization and automation 265

Figure 9-12 shows the Configuration perspective of the Management Console
and a map of the most commonly used API classes mapped to screen items. All
classes in this perspective are contained in the
com.datamirror.ea.api.publisher (source) and
com.datamirror.ea.api.subscriber (target) packages.

Figure 9-12 Management Console configuration of commonly used API classes
266 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Table 9-2 provides a list of the most commonly used classes for the configuration
of subscriptions, which are contained in the com.datamirror.ea.api.publisher
(source) and com.datamirror.ea.api.subscriber (target) packages.

Table 9-2 Commonly used subscription configuration packages

Class Location Description

Publisher Source The object representing a data store that has
been connected to be used as a source. When
connecting to a data store using the Publisher
class, the source metadata is revealed to the
Java API methods. Most InfoSphere CDC
engines have a dual role and can be connected
either as a source or as a target. If the engine
must be used in both roles, you must instantiate
a Publisher object and a Subscriber object.

Subscriber Target An object representing a data store that has been
connected to be used as a target. When
connecting to a data store using the Subscriber
class, the target metadata is revealed to the Java
API methods. Most InfoSphere CDC engines
have a dual role and can be connected either as
a source or as a target. If the engine must be
used in both roles, you must instantiate a
Publisher object and a Subscriber object.

Catalog Source A repository of tables that may be used to
replicate from. Every database table from which
you want to replicate data or changes must first
be registered in the catalog. The catalog keeps a
record of table names and table structure,
together with some technical information, such
as supplemental logging identification (journal
and log group).

PublishableTable Source This class describes the source database table,
including table level information, such as logging
and the columns that make up the table,
regardless whether they have been selected for
replication or not. Among others, InfoSphere
CDC keeps the table description to detect
discrepancies between the real database table
structure and the algorithm that InfoSphere CDC
uses to process the database transaction log
entries.
 Chapter 9. Customization and automation 267

Subscription Source The connection between the source and the
target data store that references the source side
of the table mappings. From the InfoSphere CDC
metadata point of view, a subscription is the
container of the source side of the table mapping
definitions. A subscription is identified by a
Subscription name, which is an uppercase string
made up of a maximum of 30 characters. A
subscription has a Publisher ID attribute (a string
that has a maximum of eight uppercase
characters) that is the unique identification of a
subscription on the target side (Publication).

Publication Target The target side of a Subscription object. A
Publication references the source tables that are
selected for replication (SubscribedTable) as
PublishedTable objects. A publication is
identified by a Publisher ID, which is an
uppercase string that has a maximum eight
characters that are registered for the
subscription.

SubscribedTable Source These tables are the Catalog tables
(PublishableTable) that have been selected for
replication by a subscription. When mapping
tables in a subscription, the catalog tables
definitions are copied to SubscribedTable objects
under a Subscription. A SubscribedTable object
can also hold derived columns (virtual columns)
as DerivedColumn objects.

PublishedTable Target The target side of a SubscribedTable object. It
holds the table and columns definitions of tables
that are replicated by a subscription. When
finding the PublishedTable object on the target
side, the schema name and table name are
converted to uppercase during the description. If
your source schema / table is in lowercase, they
show in uppercase in the PublishedTable object.
A PublishedTable object is owned by a
Publication (target side of a Subscription).

Class Location Description
268 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 9-13 shows the relationship between the source and target metadata and
how the various classes fit into this relationship. To keep the picture simple, we
only included the main objects that make up subscriptions and table mappings.
The relationship between source and target metadata is important to understand
the table mapping process, which is covered in 9.5.7, “Procedure for mapping
tables” on page 287.

Figure 9-13 InfoSphere CDC source to target relationship

TableAssignment Target Defines the link between PublishedTable (table
coming from the source) and destination
database table (or application object).
TableAssignment is referenced by
PublishedTable (one published table can be
assigned to one destination object). A
TableAssignment holds all information about how
the source table is mapped to the target table,
including operations and user exits.

ColumnAssignment Target Defines the mapping of source columns
(PublishedDBColumn) to target columns,
including derived expressions and journal control
columns.

Class Location Description

Source
DB

Publisher Subscriber

DB Table

Target
DB

Catalog Subscription

Subscribed
Table

Publishable
Table

Publication

Published
Table

Table
Assignment

Source Target

PublisherID

Identified by
Publisher ID

Identified by
Subscription Name

DB Table
 Chapter 9. Customization and automation 269

9.5.3 Connecting to and managing the Access Server

The first task in controlling InfoSphere CDC using the Java API is to connect to
the Access Server. This action is the equivalent of starting the InfoSphere CDC
Management Console and typing the user, password, host, and port of the
Access Server. When connecting to the Access Server using the API, the exact
same arguments must be passed to the method that connects to the DataSource
object. The DataSource object is the object representing the Access Server.

The code first prepares the context of connecting to the Access Server and then
tries to create the DataSource object and connect to it using the context. As with
all API methods, the method throws an ApiException if it encounters a failure.
When running the connectAccessServer() method, for example, that error
is received.

Example 9-12 shows the sample code.

Example 9-12 Sample code to connect to Access Server

/**
 * Connect to an Access Server
 *
 * @param hostName
 * - Access Server host name
 * @param port
 * - Access Server port
 * @param userName
 * - Access Server user
 * @param password
 * - Access Server password
 * @return The connected Access Server
 * @throws ApiException
 */
public DataSource connectAccessServer(String hostName, Integer port,
 String userName, String password) throws ApiException {
 DataSource accessServer = null;
 DefaultContext asCtx = new DefaultContext();
 asCtx.setString(DataSource.Hostname, hostName);
 asCtx.setInt(DataSource.Port, port);
 asCtx.setString(DataSource.User, userName);
 asCtx.setString(DataSource.Password, password);
 accessServer = Toolkit.getDefaultToolkit().createDataSource();
 accessServer.connect(asCtx);
 System.out.println("Connected to Access Server on host " + hostName
 + " and port " + port + ".");
270 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 return accessServer;
}

After you are finished with the custom processing, disconnect from the Access
Server to release the connections. You could build in the disconnection in the
general exception handling code of your custom program, as shown in
Example 9-13.

Example 9-13 Sample code to disconnect from Access Server

/**
 * Close the existing connection to the Access Server
 *
 * @param accessServer
 * - The Access Server from which you will be disconnected
 */
public void disconnectAccessServer(DataSource accessServer) {
 if (accessServer != null) {
 accessServer.close();
 }
 System.out.println("Disconnected from Access Server.");
}

Two attempts are made to connect to the Access Server. The first attempt fails
with an invalid password and the second one is successful. The sample code is
shown in Example 9-14.

Example 9-14 Example of connecting to Access Server

// Failed attempt
DataSource failedAccessServer = null;
System.out.println("Failed attempt to connect to Access Server:");
try {
 failedAccessServer = connectAccessServer("172.16.74.191", 10101,
 "admin", "invalid_passw0rd");
} catch (ApiException e) {
 System.err.println(e.getMessage());
}
// Successful attempt
DataSource accessServer = null;
System.out.println("Successful attempt to connect to Access Server:");
try {
 accessServer = connectAccessServer("172.16.74.191", 10101, "admin",
 "passw0rd");
} catch (ApiException e) {
 Chapter 9. Customization and automation 271

 System.err.println(e.getMessage());
}

The output of Example 9-14 on page 271 is shown in Example 9-15.

Example 9-15 Successful connection to Access Server

Failed attempt to connect to Access Server:
Invalid user name or password.
Successful attempt to connect to Access Server:
Connected to Access Server on host 172.16.74.191 and port 10101.

After you have connected to the Access Server, the API does not automatically
connect all data stores that the user is entitled to use. If you have kept the default
Management Console settings, the Access Server attempts to connect to all data
stores when started. The API allows you to selectively connect and disconnect to
data stores as needed.

However, now that the connection has been established, you can list all data
stores (agents) that have been defined in the Access Manager and attempt to
connect to them. Creating connections is described in 9.5.4, “Connecting to the
data stores” on page 277. Before elaborating on this subject, here are a few
examples for retrieving information from the data store definitions. The first
example is shown in Example 9-16.

Example 9-16 Retrieving information from data store definitions

/**
 * List the accessible data stores for the user connected to the Access
 * Server
 *
 * @param accessServer
 * - The Access Server to which you're connected
 * @throws ApiException
 */
public void listDataStores(DataSource accessServer) throws ApiException {

SortedMap<String, ReplicationRole> agentMap = new TreeMap<String,
ReplicationRole>();

ReplicationRole[] dataStores = accessServer.getAgents();
accessServer.getAgentList();
// First put all data stores in a map to remove duplicates. A data store
// that has a dual role is listed twice when using the getAgentList()
// method
for (ReplicationRole dataStore : dataStores) {

agentMap.put(dataStore.getName(), dataStore);
}

272 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

// Now iterate through the map entries to list
Iterator<String> dataStoreList = agentMap.keySet().iterator();
while (dataStoreList.hasNext()) {

ReplicationRole dataStore = agentMap.get(dataStoreList.next());
System.out.println("Datastore name : " + dataStore.getName());
System.out.println("Description : "

+ dataStore.getDescription());
System.out.print("Type : ");
if (accessServer.getAgentProperties(dataStore.getName())

.getSourceOrTarget() == AccessServerAgent.SOURCE_OR_TARGET_DUAL)
System.out.println("Dual");

else if (accessServer.getAgentProperties(dataStore.getName())
.getSourceOrTarget() == AccessServerAgent.SOURCE_OR_TARGET_TARGET)

System.out.println("Target");
else

System.out.println("Source");
System.out.println("Version : " + dataStore.getVersion());
System.out.println("Host : " + dataStore.getHostName());
System.out.println("Port : " + dataStore.getPort());
AccessServerAgentAccessParameters[] dataStoreParms = accessServer

.getUserAgentProperties(accessServer.getUserProfile()
.getUserID(), dataStore.getName());

System.out.println("Database user : "
+ dataStoreParms[0].getDbLogin());

System.out.println("Database password: "
+ dataStoreParms[0].getDbPassword());

System.out.println();
}

}

You are already connected to the Access Server. The code sample in
Example 9-16 on page 272 shows how to list all data stores to which the user
has access. Use this approach if you want to connect to the data stores,
subscription definitions, and table mappings. If the intention is to create
additional data stores, and you want to ensure that you are not using an existing
name, you could use the getAgentList() method. This method lists all data
stores, regardless whether the user has access to them.

If a data store has a dual role (it can serve both as a source and as a target), the
getAgents() method returns two entries of the data store, once for the source
role and once for the target role. The listDataStores() method avoids
displaying multiple entries of the same data store by first adding the entries to a
sorted map and then listing the map entries.
 Chapter 9. Customization and automation 273

For each data store, the name registered in the Access Server, the host name
and port number on which the engine is running, and the database user and
password that is used to connect to the target database / application is shown.
Normally, you would not show the users and passwords in clear text, but you do
so here to create a subscription later.

The output of the listing of accessible data stores looks similar to Example 9-17.

Example 9-17 List of accessible data stores

Data store name : CDC_DB2
Description : InfoSphere CDC DB2 6.5
Type : Dual
Version : V6R5M0T0BCDC_HOHDLPJU_164
Host : linux-iscdc
Port : 10901
Database user : db2inst1
Database password: passw0rd

eData store name : CDC_Oracle_Redo
Description : InfoSphere CDC Oracle Redo 6.5
Type : Dual
Version : V6R5M0T0BCDC_HOHDLPJU_165_38
Host : linux-InfoSphere CDC
Port : 11001
Database user : InfoSphere CDCora
Database password: passw0rd

Some of the methods defined for the data stores, such as retrieving the agent
database extended ID (engine type) and version information, can only be called
after the connection to the data store has been established. If you attempt to call
these methods before connecting to the data store, the methods throw
an ApiException.

In environments where many InfoSphere CDC engines are installed on various
servers, you might want to automate the creation of the Access Server
components, such as new data stores and users, and make the data stores
available by assigning them to the entitled users. For a fully automated
configuration of InfoSphere CDC in large environments, this step is the first step
in the definition process, as shown in Example 9-18.

Example 9-18 Creating Access Server components

/**
 * Create a new Access Server user, datastore and assign the user to the
 * newly created data store
274 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 *
 * @param accessServer
 * - The Access Server to which you are connected
 * @throws ApiException
 */
public void createDataStoreAndUser(DataSource accessServer)
 throws ApiException {
 // Create the data store
 String dataStoreHost = "linux-iscdc";
 int dataStorePort = 11001;
 String dataStoreDefaultDB = "";
 String dataStoreDefaultDBUser = "iscdcora";
 String dataStoreDefaultDBPassword = “Passw0rd”;
 byte dataStoreMultiUser = (byte) 0;
 // First ping the CDC engine to check existence and retrieve
 // type/version, then create the data store
 AccessServerAgent dataStore = accessServer.pingAgent(dataStoreHost,
 dataStorePort);
 Result createDatastoreResult = accessServer.createNewAgent(
 "New_Datastore", "New Datastore Description",
 dataStore.getAgentType(), TransformationServer.COMM_TCPIP,
 dataStoreHost, dataStorePort, dataStore.getDatabaseType(),
 dataStore.getDmVersion(), dataStore.getSourceOrTarget(),
 dataStoreDefaultDB, dataStoreDefaultDBUser,
 Encryptor.encryptAndEncode(dataStoreDefaultDBPassword),
 dataStoreMultiUser);
 // Now create the new user
 String userRole = "TS System Administrator";
 String userPassword = "password";
 byte isAccountDisabled = (byte) 0;
 byte isAccountLocked = (byte) 0;
 byte isPasswordChangeRequired = (byte) 0;
 byte isPasswordNeverExpires = (byte) 1;
 byte enableUserDataStoreAdmin = (byte) 1;
 byte isForceSavePassword = (byte) 1;
 Result createUserResult = accessServer.createNewUser("New_User",
 "New User Full Name", userRole, "New User Description",
 Encryptor.encryptAndEncode(userPassword), isAccountDisabled,
 isAccountLocked, isPasswordChangeRequired,
 isPasswordNeverExpires, enableUserDataStoreAdmin,
 isForceSavePassword);
 // Assign the data store to the user
 if (createDatastoreResult.isSucceed() && createUserResult.isSucceed()) {
 byte showConnectionDialog = (byte) 0;
 byte showParamsValues = (byte) 1;
 Chapter 9. Customization and automation 275

 byte writeProtectParams = (byte) 1;
 byte allowConnectionParamsSaving = (byte) 1;
 accessServer.addAgentAccessInUser("New_User", "New_Datastore",
 dataStoreDefaultDB, dataStoreDefaultDBUser,
 dataStoreDefaultDBPassword, showConnectionDialog,
 showParamsValues, writeProtectParams,
 allowConnectionParamsSaving);
 }
}

Before creating a data store for the Access Server, first run ping against the
InfoSphere CDC engine in question to validate its existence and retrieve
attributes such as the engine type, database type, and engine version. The
pingAgent method establishes a TCP/IP connection between the Access Server
and the InfoSphere CDC engine using the host and port you pass to it and
retrieves those engine attributes.

Although you could create a data store and specify all the attributes, you might
end up with a data store you cannot connect to. The Access Manager in the
Management Console interface uses the same technique to validate a data store
before allowing creation. When creating a data store, you can also store the
default database connection parameters (database, database user, and
password). If you choose to store the default connection parameters, assigning a
new user to the data store takes these parameters as the database connection
settings for that user. The password in the data store default database
connection must be encrypted when passed.

For the new Access Server user, you must also pass the user's password in an
encrypted manner. The password is validated to meet the password rules
configured for the Access Server. If you want to create the user even if the
password does pass the validation, you can force saving the password when
calling the method.

For the user's role, the following string values are allowed (not case-sensitive):

� "TS System Administrator"
� "TS Administrator"
� "TS Operator"
� "TS Monitor"

After the data store and user have been created, you can assign the data store to
the user to make it available when the user is connected. Again, the database,
database user, and password can be specified for the user connected to the data
store. The password must be passed in an unencrypted manner (however, the
information is stored as encrypted). The getUserAgentProperties command also
returns the decrypted password.
276 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.4 Connecting to the data stores

In accordance with the Management Console, you must connect to at least one
data store before you can do anything with the replication definitions
(subscriptions). Typically, you connect to a source and a target data store.

A data store can have a source, target, or dual (can serve both as source or
target) role. All source configurations are accessible by classes in the
com.datamirror.ea.publisher package, the main one being Publisher. The
target configuration is accessible by classes in the
com.datamirror.ea.subscriber package, the main one being Subscriber. Both
classes implement the ReplicationRole interface and a number of common
methods are inherited from this superclass.

Publisher is a replication role responsible for configuring the source side of the
replication definitions and table mappings. It publishes source table definitions
and database transactions that the source business applications generate to the
target side. A Publisher refers to a Catalog, which maintains a list of source
database tables that are available for subscriptions. Additionally, a Publisher
object holds the source side of subscriptions, which define what and how data is
being replicated.

Subscriber is a replication role and maintains a list of subscription targets (called
Publications) and mappings from source tables to target (destination) tables or
application objects. It subscribes to the information that the Publisher distributes
(table definitions and database transactions) and uses it to perform activities on
the target.

All data stores can be connected using the connect() method in the
ReplicationRole class. Before establishing a connection to a data store, you
need to determine the role of the data store. This role can either be Publisher or
Subscriber. Before trying to establish a connection to a data store, run ping
against the InfoSphere CDC engine to see if it is listening on the port and host
configured for the data store. Use the pingAgent() method if you need to check
InfoSphere CDC instance activity from an external monitoring solution.

In some environments, it might take some time before the connection to the data
stores is established. This delay could be because of poor network connections,
slow servers, or a combination of these and other factors. To avoid lengthy waits
when trying to ping or connect to the data stores, set the communications
timeout value. The maximum time the Access Server waits to establish a
connection to the data store can then be controlled.
 Chapter 9. Customization and automation 277

The connectPublisherDataStore() method connects to a data store and
establishes a Publisher object that provides access to the source engine
metadata. When connecting to the data store, the attempt times out if the
connection takes more than 10 seconds (10,000 milliseconds). The sample code
for the connection is shown in Example 9-19.

Example 9-19 Connect to a publisher (source) data store

/**
 * Connect to a publisher data store defined for an Access Server
 *
 * @param accessServer
 * - The Access Server to which you're connected
 * @param dataStoreName
 * - The name of the publisher data store
 * @return The Publisher, null if the data store is not found or could
 * not be connected
 * @throws ApiException
 */
public Publisher connectPublisherDataStore(DataSource accessServer,
 String dataStoreName) throws ApiException {
 int dataStoreTimeout = 10000;
 Publisher dataStore = null;
 dataStore = accessServer.getPublisher(dataStoreName);
 if (dataStore != null) {
 try {
 // First ping the data store to see if it can be reached
 accessServer.pingAgent(dataStore.getHostName(),
 dataStore.getPort());
 } catch (ApiException e) {
 System.out.println("No reponse from publisher datastore "
 + dataStoreName + " on " + dataStore.getHostName()
 + ":" + dataStore.getPort());
 return null;
 }
 // Now try to connect
 dataStore.setTimeOut(dataStoreTimeout);
 dataStore.connect();
 System.out.println("Connected to publisher datastore "
 + dataStoreName);
 }
 return dataStore;
}

278 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

In the connectSubscriberDataStore() method, connect to a data store and
establish a Subscriber object that allows you to access the target metadata. The
sample code for this connection is shown in Example 9-20.

Example 9-20 Connect to a subscriber (target) data store

/**
 * Connect to a subscriber data store defined for an Access Server
 *
 * @param accessServer
 * - The Access Server to which you're connected
 * @param dataStoreName
 * - The name of the subscriber data store
 * @return The Subscriber, null if the data store is not found or could
 * not be connected
 * @throws ApiException
 */
public Subscriber connectSubscriberDataStore(DataSource accessServer,
 String dataStoreName) throws ApiException {
 int dataStoreTimeout = 10000;
 Subscriber dataStore = null;
 dataStore = accessServer.getSubscriber(dataStoreName);
 if (dataStore != null) {
 try {
 // First ping the data store to see if it can be reached
 accessServer.pingAgent(dataStore.getHostName(),
 dataStore.getPort());
 } catch (ApiException e) {
 System.out.println("No reponse from subscriber datastore "
 + dataStoreName + " on " + dataStore.getHostName()
 + ":" + dataStore.getPort());
 return null;
 }
 // Now try to connect
 dataStore.setTimeOut(dataStoreTimeout);
 dataStore.connect();
 System.out.println("Connected to subscriber datastore "
 + dataStoreName);
 }
 return dataStore;
}

 Chapter 9. Customization and automation 279

After a data store is connected, you can retrieve additional properties, such as
engine type, and work with system parameters, subscriptions, and so on. The
listDataStoreDetail() method determines, among other details, the
InfoSphere CDC engine type, which an attribute that can only be retrieved after
the connection to the engine has been established. Also, the version returned by
the connected data store (getAgentVersion) is always accurate, but the version
that is returned by the getVersion() method reflects the last version that was
obtained when the Access Manager ping command was sent. The sample code
for this method is shown in Example 9-21.

Example 9-21 List data store details

/**
 * List the details of a data store defined for an Access Server once it is connected
*
 * @param accessServer
 * - The Access Server to which you're connected
 * @param dataStoreName
 * - The name of the data store
 * @throws ApiException
 */
public void listDataStoreDetail(ReplicationRole dataStore)
 throws ApiException {
 System.out.println("Datastore name : " + dataStore.getName());
 System.out.println("Description : " + dataStore.getDescription());
 System.out.println("Engine type : "
 + getDataStoreTypeString(dataStore.getExtendedDatabaseId()));
 System.out.println("Version : " + dataStore.getAgentVersion());
 System.out.println();
}

If an additional method is defined to list the InfoSphere CDC engine type as a
string, this definition could be useful if you want to build customized configuration
and monitoring solutions across many different types of InfoSphere CDC
engines. Suppose that you are writing custom code to import subscriptions from
an XML file. You want to validate that both the source and target data stores you
are importing to are of the same type as the data stores used when the XML file
was generated. You want to accomplish this task to avoid compatibility problems.
The sample code for this process is shown in Example 9-22.

Example 9-22 Retrieve engine type as a string

/**
 * Find and return the engine type of a data store
 *
 * @param dataStoreType
280 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * - Type of the data store
 * @return the type name of the data store
 */
private String getDataStoreTypeString(int dataStoreType) {
 switch (dataStoreType) {
 case DataTypeUtilities.PRODUCT_DATASTAGE:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_DATASTAGE2;
 case DataTypeUtilities.PRODUCT_INFORMIX:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_INFORMIX;
 case DataTypeUtilities.PRODUCT_MSSQL:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_MSSQL2;
 case DataTypeUtilities.PRODUCT_ORACLE_REDO:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_ORACLE_REDO2;
 case DataTypeUtilities.PRODUCT_ORACLE_TRIGGER:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_ORACLE_TRIGGER2;
 case DataTypeUtilities.PRODUCT_SOLIDDB:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_SOLIDDB;
 case DataTypeUtilities.PRODUCT_SYBASE:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_SYBASE2;
 case DataTypeUtilities.PRODUCT_TERADATA:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_TERADATA;
 case DataTypeUtilities.PRODUCT_TSES:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_TSES;
 case DataTypeUtilities.PRODUCT_UDB:
 return DataTypeUtilities.EXTENDED_PRODUCT_NAME_UDB2;
 case DataTypeUtilities.DB_DB2_400:
 return DataTypeUtilities.DB_DB2_400_NAME;
 case DataTypeUtilities.DB_DB2_MVS:
 return DataTypeUtilities.DB_DB2_MVS_NAME;

case DataTypeUtilities.DB_CLASSIC:
return DataTypeUtilities.DB_CLASSIC_NAME;

 default:
 return "Datastore type " + dataStoreType + " not found.";
 }
}

If you connect to two of the data stores and then run the listDataStoreDetail()
method, you can find additional information. The sample code to accomplish this
task is shown in Example 9-23.

Example 9-23 Connecting to source and target data stores

Publisher db2DataStore = connectPublisherDataStore(accessServer,
 "CDC_DB2");
if (db2DataStore != null) {
 Chapter 9. Customization and automation 281

 listDataStoreDetail(db2DataStore);
 db2DataStore.disconnect();
}
Subscriber dataStageDataStore = connectSubscriberDataStore(
 accessServer, "CDC_DataStage");
if (dataStageDataStore != null) {
 listDataStoreDetail(dataStageDataStore);
 dataStageDataStore.disconnect();
}

The output from Example 9-23 on page 281 is shown in Example 9-24.

Example 9-24 Output of data store details

Connected to publisher data store CDC_DB2
Data store name : CDC_DB2
Description : InfoSphere CDC DB2 6.5
Engine type : IBM DB2
Version : V6R5M0T0BCDC_HOHDLPJU_164

Connected to subscriber data store CDC_DataStage
Data store name : CDC_DataStage
Description : InfoSphere CDC DataStage 6.5
Engine type : IBM InfoSphere DataStage
Version : V6R5M0T0BCDC_HOHDLPJU_165_31

Now that you have seen how to connect to the Access Server and data stores,
you can continue with managing subscriptions and table mappings, and start
using the various classes related to Publisher and Subscriber.

There is one more technique that you can use: Locating the target data store for
a subscription. A subscription is always created on a Publisher data store, and
you do not find the name of the target data store in the subscription's properties.
Instead, you find the host name (or IP address) and the port number to which
connection must be established. Data store names can be flexibly assigned and
are only known to the Access Server, not to the InfoSphere CDC
replication engines.

Example 9-25 shows the getTargetDataStoreForSubscription() method, which
obtains the target data store for the passed subscription.

Example 9-25 Sample getTargetDataStoreForSubscription() method

/**
 * Obtains the target data store for a subscription. Uses the subscriber host
 * name (or IP address) and port number to locate the target data store of
282 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * the subscription.
 *
 * @param accessServer
 * - The Access Server to which you're connected
 * @param subscription
 * - Subscription for which the target data store must be found
 * @return The Subscriber, null if the data store was not found
 * @throws ApiException
 */
public Subscriber getTargetDataStoreForSubscription(
 DataSource accessServer, Subscription subscription)
 throws ApiException {
 // Get the Publication for the Subscription
 Context subCtx = subscription.getProperty();
 String targetHost = subCtx.getString(Subscription.SubscriberLocation);
 int targetPort = subCtx.getInt(Subscription.SubscriberPort);
 ReplicationRole[] dataStores = accessServer.getAgents();
 for (ReplicationRole dataStore : dataStores) {
 if (dataStore.getHostName().equalsIgnoreCase(targetHost)
 && dataStore.getPort() == targetPort) {
 System.out.println("Target datastore for subscription "
 + subscription.getName() + " is " + dataStore.getName()
 + ".");
 return accessServer.getSubscriber(dataStore.getName());
 }
 }
 return null;
}

9.5.5 Configuring InfoSphere CDC replication

The configuration of InfoSphere CDC is kept in a set of internal metadata tables
that are associated with a InfoSphere CDC instance. The operation of
subscriptions within the InfoSphere CDC instance entirely depends on the
metadata. In most common implementations, you do not need to be aware of the
metadata and where it is located because the Management Console GUI
provides a subscription-centric view of the configuration and conceals the
complexity of the underlying metadata database. When working with the
InfoSphere CDC Linux, UNIX, and Windows engine, the configuration metadata
tables are kept in a proprietary database. Only the InfoSphere CDC for DB2 on
System i and InfoSphere CDC for DB2 on System z engines keep the metadata
in database tables.
 Chapter 9. Customization and automation 283

The following sections describe the various steps that are needed to create a
subscription and map tables. Try to align the steps with the actions that the
InfoSphere CDC Management Console performs.

9.5.6 Creating a subscription

Creating a subscription is always done against the source InfoSphere CDC data
store (Publisher). To create a subscription using the API, you must provide a
number of obvious context variables, such as subscription name and
subscription description. Other context variables require additional explanation.
The example code for creating a subscription only provides basic attributes, such
as the source data store, target data store, subscription name, and subscription
description. The remaining parameters are derived from the data store definition
or kept at their defaults. The sample code for creating a subscription is shown in
Example 9-26.

Example 9-26 Creating a subscription

/**
 * Create a subscription for a specific source data store and target data store
*
 * @param accessServer
 * - The Access Server to which you are connected
 * @param sourceDataStore
 * - The source data store of the subscription
 * @param targetDataStore
 * - The target data store of the subscription
 * @param subscriptionName
 * - Name of the subscription
 * @param subscriptionDescription
 * - Description of the subscription
 * @return subscription
 * @throws ApiException

Important: When designing your automatic configuration process, follow the
steps InfoSphere CDC uses to create the individual items in the metadata.
When creating subscriptions, you must work from the source towards the
target or you will not be able to link the source and the target tables and start
the subscriptions. More importantly, when removing subscriptions from your
configuration, the steps must be done (almost) in the reverse order or you end
up with orphaned metadata in the target InfoSphere CDC instance. You will
not be able to remove this metadata unless you delete and recreate the
InfoSphere CDC instance.
284 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 */
public Subscription createSubscription(DataSource accessServer,
 Publisher sourceDataStore, Subscriber targetDataStore,
 String subscriptionName, String subscriptionDescription)
 throws ApiException {
 Subscription subscription = null;
 // Obtain the database login information of the target data store
 // using the currently logged in Access Server user
 AccessServerAgentAccessParameters[] targetAgentParms;
 targetAgentParms = accessServer.getUserAgentProperties(accessServer
 .getUserProfile().getUserID(), targetDataStore.getName());
 String databaseUser = targetAgentParms[0].getDbLogin();
 ;
 String databasePassword = targetAgentParms[0].getDbPassword();
 // Prepare context for creating subscription
 Context subCtx = new DefaultContext();
 subCtx.setString(Subscription.SubscriptionDescription,
 subscriptionDescription);
 subCtx.setString(
 Subscription.PublisherID,
 ((subscriptionName.length() > 8) ? subscriptionName.substring(
 0, 8).toUpperCase() : subscriptionName.toUpperCase()));
 subCtx.setString(
 Subscription.PublisherIDPending,
 ((subscriptionName.length() > 8) ? subscriptionName.substring(
 0, 8).toUpperCase() : subscriptionName.toUpperCase()));
 subCtx.setString(Subscription.PublisherDescription,
 subscriptionDescription);
 subCtx.setString(Subscription.PublisherDescriptionPending,
 subscriptionDescription);
 subCtx.setString(Subscription.CommunicationProtocol,
 TransformationServer
 .getProtocolByID(TransformationServer.COMM_TCPIP));
 subCtx.setString(Subscription.SubscriberOS,
 targetDataStore.getOSPlatform());
 subCtx.setString(Subscription.SubscriberDBPlatform,
 targetDataStore.getDBPlatform());
 subCtx.setString(Subscription.SubscriberVersion, targetDataStore
 .getAgentVersion().substring(0, 4));
 subCtx.setString(Subscription.SubscriberLocation,
 targetDataStore.getHostName());
 subCtx.setInt(Subscription.SubscriberPort, targetDataStore.getPort());
 subCtx.setString(Subscription.DatabaseUser, databaseUser);
 subCtx.setString(Subscription.DatabasePassword, databasePassword);
 // Source IP address or host name
 Chapter 9. Customization and automation 285

 subCtx.setString(Subscription.PublisherLocation, "");
 subCtx.setInt(Subscription.PublisherPort, 0);
 // Source firewall port
 // Define whether the source and target engines support MBCS
 // automapping (CDC 6.5+)
 if (sourceDataStore.isMBCSAutomappingSupported()
 && targetDataStore.isMBCSAutomappingSupported())
 subCtx.setByte(Subscription.SubscriptionMBCSState, (byte) 2);
 else
 subCtx.setByte(Subscription.SubscriptionMBCSState, (byte) 1);
 // Define whether the target engine can accept transferable work
 // from the source engine
 if (sourceDataStore.isSubscriptionTransferableWorkSupported())
 subCtx.setByte(Subscription.SubscriptionTransferableWork, (byte) 1);
 else
 subCtx.setByte(Subscription.SubscriptionTransferableWork, (byte) 0);
 // Now create subscription in source data store
 subscription = sourceDataStore
 .addSubscription(subscriptionName, subCtx);
 System.out.println("Subscription " + subscriptionName + " created.");
 return subscription;
}

The publisher ID is the identification of the subscription on the target data store
(Subscriber) and has a maximum length of eight. In most cases, using the
uppercase left eight characters of the subscription name establishes the
publisher ID. However, if you have multiple subscriptions with almost matching
names, such as NEW_SUBSCRIPTION_1 and NEW_SUBSCRIPTION_2, this
action leads to duplicate publisher IDs (NEW_SUBS) and the Subscriber does
not create the Publication when you describe the second subscription.

Ensure that you create unique names for the publisher ID for each target data
store. You can use the getPublicationNames() method against the target data
store to get a list of existing publisher IDs.

The PublisherIDPending argument must be populated with the publisher ID you
want to assign to the subscription (identification of a subscription in the target
metadata). After the subscription source metadata has been sent to the target
and the uniqueness of the publisher ID has been confirmed, PublisherIDPending
is blanked out and PublisherID is populated with the specified value. The same
situation applies to PublisherDescriptionPending.
286 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

To have the subscription successfully find the target InfoSphere CDC engine,
you must specify the host / IP address and port number to establish the
connection. Additionally, the source engine needs to understand the format of
the information that must be sent across to the target. For that reason, the
operating system platform and database platform parameters must be specified.

During subscription creation, you can determine whether the source and target
engines support multibyte character set (MBCS) automapping. MBCS is useful
when specifying the encoding conversions for the columns in 9.5.13, “Encoding
conversions (before and after Version 6.5)” on page 315.

After the subscription has connected to the target engine, it connects to the
target database using the database user and password specified in the
subscription parameters. For security reasons, the database credentials must be
specified in the subscription to confirm the source system is allowed to send data
to the target database.

9.5.7 Procedure for mapping tables

Figure 9-14 shows the successive steps that must be performed for table
mappings in InfoSphere CDC.

Figure 9-14 Table mapping process

1. Add Source
Tables

to Catalog

5. Set
Replication
Method

2. Map Source
Tables to

Subscription
(Select)

3. Describe
Subscription

4. Assign Source
Tables to

Destination
 Chapter 9. Customization and automation 287

The process includes the functions of add catalog, select, describe, assign, and
set method, as described in the following list:

1. Add Source Tables to Catalog.

Before mapping any source table in a subscription, the table must exist in the
InfoSphere CDC catalog. Among other things, this separate store is needed
to determine if the real table, as defined in the source database, matches with
what InfoSphere CDC expects to find when parsing entries in the database
log. When you add a table to the catalog, InfoSphere CDC retrieves the table
structure from the database and stores information about the table location
(path), internal database object ID, column names, data types, and length in
its Publisher metadata. A table that is located in the catalog does not
necessarily have to be used in any subscription, but can be used by one or
more subscriptions. Only tables that are used as a source for replication must
be added to the catalog; tables that are only used as a target do not have to
be present in the catalog.

2. Map Source Tables to Subscription (Select).

This process takes the tables from the catalog and selects them for
replication in the subscription. When selecting the tables for replication, you
can also configure the row and column filtering and code page conversions.
This step is the final step on the source side to configure tables to
be replicated.

3. Describe Subscription.

To inform the target InfoSphere CDC engine that tables will be published, the
subscription definition and the definitions for selected tables must be sent to
the target engine. In InfoSphere CDC, this activity is called describing the
subscription. The subscription definition (Subscription) is sent to the target
and creates a publication (Publication) object. Also, all definitions of tables
that have been selected for replication in the subscription are sent to the
target. The SubscribedTable objects on the source are turned into
PublishedTable objects on the target. When describing a subscription, the
source InfoSphere CDC engine makes a connection to the target InfoSphere
CDC engine through the same channel that is normally used for replicating
the data changes. If the path to the target server (host or port) or connection
to the database (database name, user and password) cannot be established,
the describe process fails, and the target metadata is not populated.

4. Assign Source Tables to Destination.

After the source tables are known on the target InfoSphere CDC engine, they
can be linked to their destination, for example, the target database tables.
Through this linkage, the target InfoSphere CDC engine knows how to direct
incoming database operations to the designated destination and which
column mapping to apply.
288 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

5. Set Replication Method.

The final step in the mapping process is to set the replication method (Mirror
or Refresh). Replication methods are kept with the source table, as they tell
the source engine whether to refresh the table contents (Refresh) or the
changes from the database log (Mirror). Even though the replication method
could be set in an earlier step, you should set it as the final step. Depending
on the engine, logging (that is, DATA CAPTURE CHANGES flag for DB2 for
Linux, UNIX, and Windows, table full supplemental logging for Oracle,
publication for SQL Server, and journaling for DB2/400) for the source table in
question must be activated if a table replication method is Mirror. Most
database management systems require a short exclusive lock on the table to
activate / deactivate the logging. By setting the replication method as the final
step, the table mapping has already been accomplished. Should the method
not be able to acquire an exclusive lock on the table in question, only this step
must be repeated instead of the entire mapping process.

9.5.8 Table mapping example

This example creates a simple table mapping from Oracle to DB2. The example
first addresses the individual steps and, at the end of this section, ties
them together.

The sample code for the method shown in Example 9-27 adds a table to the
Publisher catalog if it does not exist yet.

Example 9-27 Add a table to the catalog

/**
 * Add a table to the source data store catalog
 *
 * @param sourceDataStore
 * @param tablePath
 * @param tableName
 * @return publisableTable
 * @throws ApiException
 */
public PublishableTable addTableCatalog(Publisher sourceDataStore,
 String tablePath, String tableName) throws ApiException {
 PublishableTable publishableTable = null;
 // Build DBTable object to represent source table
 DBTable newTable = sourceDataStore.getTable(
 sourceDataStore.getDBPath(tablePath), tableName);
 Catalog sourceCatalog = sourceDataStore.getCatalog();
 // Only add table to the catalog if not already existing
 if (!sourceCatalog.isTablePublishable(newTable)) {
 Chapter 9. Customization and automation 289

 sourceCatalog.addTable(newTable);
 System.out.println("Table " + tablePath + "." + tableName
 + " added to catalog of datastore "
 + sourceDataStore.getName() + ".");
 } else {
 System.out.println("Table " + tablePath + "." + tableName
 + " already existed in catalog of datastore "
 + sourceDataStore.getName() + ".");
 }
 publishableTable = sourceCatalog.getPublishableTable(tablePath,
 tableName);
 return publishableTable;
}

A table can be replicated by multiple subscriptions, so the table could have
already been added to the catalog. To determine if the table has already been
added, you must create a DBTable object that is composed of a DBPath object
that represents the schema and a string representing the table name. In some
databases, such as DB2 on System z, the table is not qualified by a schema
name, but a hierarchy of qualifiers.

For historical reasons within the InfoSphere CDC describe processing, you need
to specify the pending publisher ID and pending publisher description when
creating a subscription. When doing a description for the first time, InfoSphere
CDC validates the publisher ID on the target side for uniqueness and, if
accepted, the pending publisher ID and pending publisher description are
blanked out. This action is not apparent to the user and probably is of no concern
for definitions using the Java APIs, but is mentioned for completeness if you
choose to analyze the subscription attributes.

After the subscription exists, you can select the tables to be replicated in the
subscription. However, only tables that have been previously added to the
catalog can be added to the subscription. The sample code to perform this action
is shown in Example 9-28.

Example 9-28 Select source table for replication

/**
 * Select a source table to the subscription and set its method-status
 * to Refresh-Idle
 *
 * @param sourceDataStore
 * - The source data store of the subscription
 * @param subscription
 * - Subscription
290 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * @param publishableTable
 * - Table from the catalog to be selected
 * @return SubscribedTable
 * @throws ApiException
 */
public SubscribedTable selectTable(Publisher sourceDataStore,
 Subscription subscription, PublishableTable publishableTable)
 throws ApiException {
 // Select the table to the subscription
 subscription.addTable(publishableTable);
 SubscribedTable subscribedTable = subscription.getSubscribedTable(
 publishableTable.getUpperPath(), publishableTable.getName());
 // Set method to Refresh and status to Parked
 try {
 subscribedTable.setReplicationMethod(
 SubscribedTable.METHOD_REFRESH, null, (byte) 0);
 subscribedTable.setReplicationStatus(SubscribedTable.STATUS_IDLE);
 } catch (ApiException e) {
 e.printStackTrace();
 }
 System.out.println("Table " + publishableTable.getUpperPath().getName()
 + "." + publishableTable.getName()
 + " selected to subscription " + subscription.getName() + ".");
 return subscribedTable;
}

Although you want to set the eventual replication method and status immediately
after having added the table to the subscription, set this setting in a separate
step. This separate step avoids the wait for table locks if supplemental logging
must be activated on the database table.

The source side of the subscription is now finished and you can describe the
Publisher side subscription metadata to the target (Subscriber) side. When
starting the description, the source InfoSphere CDC engine establishes a
connection to the target InfoSphere CDC engine using the host name and port
used when creating the subscription. If the target engine responds, it tries to
connect to the target database / application using the database user and
password specified when the subscription was created. The sample code for
describing the subscription is shown in Example 9-29.

Example 9-29 Describing the subscription

/**
 * Describe the subscription to the target data store
 *
 Chapter 9. Customization and automation 291

 * @param subscription
 * @param targetDataStore
 * @throws ApiException
 * @throws InterruptedException
 */
public void describeSubscription(Subscription subscription,
 Subscriber targetDataStore) throws ApiException,
 InterruptedException {
 System.out.println("Describing subscription " +
subscription.getName()
 + ".");
 subscription.describe();
 waitForDescribe(subscription, targetDataStore);
}

After the describe() method has been issued for the subscription, it could take a
few seconds or longer before the metadata has arrived on the Subscriber side.
Your custom code needs to wait long enough to allow the description to complete
and yet not wait too long if the description has failed. Unfortunately, there is no
built-in method available to verify whether the description has finished and
succeeded. The procedure that is most successful is a combination of a small
wait time after the description has been submitted and then checking the
existence of the target metadata. The sample code for this action is shown in
Example 9-30.

Example 9-30 Waiting for the description to complete

/**
 * Waiting for the subscription to be described
 *
 * @param subscription
 * - Subscription to be described
 * @param targetDataStore
 * - The target data store of the subscription
 * @throws UnsupportedFeatureException
 * @throws ApiException
 * @throws InterruptedException
 */
private void waitForDescribe(Subscription subscription,

Subscriber targetDataStore) throws ApiException,
InterruptedException {

int minWaitDescribeStart = 2000;
// Minimum time the describe will take int maxWaitDescribeStop = 1800000;
// Maximum wait time for describe to be finished
int maxWaitPublication = 30000;
292 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

// Maximum time to wait for publication created/deleted
int maxWaitTableDescribed = 10000;
// Maximum time to wait for tables describe (per table)
int waitInterval = 300; // Wait interval
// First give the describe some time to start
Thread.sleep(minWaitDescribeStart);
// Wait until the subscription is no longer active
int waitedTimeDescribe = 0;

byte[] status;
do {

System.out
.println("Waiting until describe activity of subscription "

+ subscription.getName() + " finished.");
Thread.sleep(waitInterval);
status = subscription.getLiveActivityStatus();
waitedTimeDescribe += waitInterval;
if (status[1] != Subscription.LIVE_STATUS_IDLE

&& waitedTimeDescribe > maxWaitDescribeStop) {
throw new ApiException(

"Timeout while waiting for describe for subscription "
+ subscription.getName() + " to finish.");

}
} while (status[1] != Subscription.LIVE_STATUS_IDLE);

// Retrieve all selected tables for the subscription
ArrayList<SubscribedTable> subscribedTables = new

ArrayList<SubscribedTable>();
for (DBPath dbPath : subscription.getSubscribedTableDBPaths()) {

for (SubscribedTable subscribedTable : subscription
.getSubscribedTables(dbPath)) {

subscribedTables.add(subscribedTable);
}

}
subscribedTables.trimToSize();
if (subscribedTables.size() != 0) {

// Wait for publication to be created
int waitedTimePublication = 0;
Publication publication = null;
do {

System.out
.println("Waiting for creation of the publication for subscription "

+ subscription.getName() + ".");
Thread.sleep(waitInterval);
waitedTimePublication += waitInterval;
publication = getSubscriptionPublication(subscription,

targetDataStore);
 Chapter 9. Customization and automation 293

if (publication == null
&& waitedTimePublication > maxWaitPublication) {

throw new ApiException(
"Timeout while waiting for publication to be created for "

+ subscription.getName() + ".");
}

} while (publication == null);
// Wait for all source tables to be described

int waitedTimeTablesDescribed = 0;
int numberSubscribedTables = subscribedTables.size();
int numberTablesDescribed = 0;
while (numberTablesDescribed < numberSubscribedTables) {

publication.refresh();
numberTablesDescribed = 0;
for (SubscribedTable subscribedTable : subscribedTables) {

PublishedTable publishedTable = getPublishedTableForSubscribedTable(
subscription, subscribedTable, targetDataStore);

if (publishedTable != null)
numberTablesDescribed += 1;

}
System.out.println("Waiting for describe of "

+ numberSubscribedTables
+ " tables. Remaining number of tables: "
+ (numberSubscribedTables - numberTablesDescribed)
+ ".");

Thread.sleep(waitInterval);
waitedTimeTablesDescribed += waitInterval;
if (subscribedTables.size() > 0

&& waitedTimeTablesDescribed > (numberSubscribedTables *
maxWaitTableDescribed))

throw new ApiException(
"Timeout while waiting for all tables to be described.");

}
} else {

// Wait until Publication no longer exists (maximum 30 seconds)
int waitedTime = 0;
Publication publication;
do {

System.out
.println("Waiting for deletion of publication for subscription "

+ subscription.getName() + ".");
targetDataStore.refresh();
publication = getSubscriptionPublication(subscription,

targetDataStore);
Thread.sleep(waitInterval);
294 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

if (publication == null && waitedTime > maxWaitPublication)
throw new ApiException(

"Timeout while waiting for publication to be removed for "
+ subscription.getName() + ".");

} while (publication != null);
// No more tables in the subscription

}

It is best to define a method to retrieve the Publication object for a subscription,
as the link between source and target metadata must be made when doing
automated mappings. The sample code for this action is shown in Example 9-31.

Example 9-31 Retrieving the Publication object for a subscription

/**
 * Get the Publication object for a subscription through the Publisher ID.
 * As long as the subscription has not yet been described successfully, the
 * Pending Publisher ID must be used to identify the Publication on the
 * target data store.
 *
 * @param subscription
 * - Subscription for which you want to obtain the Publication
 * @param targetDataStore
 * - The target data store of the subscription
 * @return The Publication that was found
 * @throws ApiException
 */
public Publication getSubscriptionPublication(Subscription subscription,
 Subscriber targetDataStore) throws ApiException {
 // Get the Publication for the Subscription
 Context subCtx = subscription.getProperty();
 String publisherID = (subCtx.getString(Subscription.PublisherID)
 .isEmpty() ? subCtx.getString(Subscription.PublisherIDPending)
 : subCtx.getString(Subscription.PublisherID));
 Publication publication = targetDataStore.getPublication(publisherID);
 return publication;
}

The first part of the sample code codes an initial wait of two seconds. This wait
time allows a subscription to be started. An alternative to using the wait is to poll
for subscription describe activity. However, on some fast servers, the description
process could last a short time and you run the chance of missing the description
process activity.
 Chapter 9. Customization and automation 295

The second part of the sample code builds the list of SubscribedTables (selected
tables) for the subscription. This action is primarily done to determine whether
you expect the Publication to be created and exist after the description has
completed or whether it should be removed. Removal of the publication is done
by the description process when all table mappings have been removed. More
details about this action can be found in 9.5.9, “Procedure for removing mapped
tables” on page 303.

In the next phase, you wait for the subscription to become inactive
(status[1]!=Subscription.LIVE_STATUS_IDLE). Typically, the description
process takes a few seconds, but in some environments with slow or unstable
networks, and if there are many tables to describe, it could take longer, so set the
timeout value to 1800 seconds.

After the description is complete, the Publication has been created in the target
metadata. If it has not yet been created, any action on the Publication could
result in a null pointer exception.

The code iterates through the list of subscribed (selected) tables for the
subscription and checks if the PublishedTable object has already been created
on the target side. The PublishedTable object identification (path and table
name) is not always an exact match with the SubscribedTable object
identification. Sometimes aliasing is applied to the source tables to reduce the
length of schema and table names, and any lowercase source table names are
translated to uppercase (for example, when the source is IBM Informix®). Use a
special method, getPublishedTableForSubscribedTable(), to retrieve the
PublishedTable object for a SubscribedTable. The code for
getPublishedTableForSubscribedTable can be found in Example 9-32.

Example 9-32 Retrieving the PublishedTable for a SubscribedTable

/**
 * Retrieves the PublishedTable (target) object for a SubscribedTable
 * (source) object. First, the alias of the SubscribedTable name and path is
 * retrieved through its PublishableTable object that is part of the
 * Catalog. Subsequently, the method tries to retrieve the PublishedTable
 * object through the alias. If not found, an attempt is made to retrieve
 * through the full table identification.
 *
 * @param subscription
 * The subscription that holds the SubscribedTable object.
 * @param subscribedTable
 * SubscribedTable object for which the PublishedTable object
 * must be retrieved.
 * @param targetDataStore
 * The target data store which holds the target metadata for the
296 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * passed subscription.
 * @return The PublishedTable object that was found, else null.
 * @throws ApiException
 */
private PublishedTable getPublishedTableForSubscribedTable(

Subscription subscription, SubscribedTable subscribedTable,
Subscriber targetDataStore) throws ApiException {

Publisher sourceDataStore = subscription.getPublisher();
Catalog catalog = sourceDataStore.getCatalog();
String sourceTablePath = subscribedTable.getUpperPath().getFullName();
String sourceTableName = subscribedTable.getName();
PublishableTable publishableTable = catalog.getPublishableTable(

sourceTablePath, sourceTableName);
String sourceTablePathAlias = publishableTable.getPathAlias();
String sourceTableNameAlias = publishableTable.getTableAlias();
Publication publication = getSubscriptionPublication(subscription,

targetDataStore);
// First check if the PublishedTable can be retrieved using the alias
PublishedTable publishedTable = publication.getPublishedTable(

targetDataStore.createDBPath(sourceTablePathAlias),
sourceTableNameAlias);

if (publishedTable == null) {
try {

publishedTable = publication.getPublishedTable(
targetDataStore.createDBPath(sourceTablePath),
sourceTableName);

} catch (Exception ignore) {
}

}
return publishedTable;

}

The maximum wait time depends on the number of tables to be described (10
seconds per table).

The final piece of code of the waitForDescribe() method is for the situation
where there are no tables selected for the subscription. If that is the case, the
description process removes the Publication from the target metadata. This
condition is the condition that the loop waits for.
 Chapter 9. Customization and automation 297

Now that the PublishedTable objects have been created on the target side, you
can link them to the target tables (assign activity), as shown in Example 9-33.

Example 9-33 Linking published table objects to target tables (assign)

/**
 * @param subscription
 * - Subscription for which the table must be assigned
 * @param targetDataStore
 * - Target data store of the subscription
 * @param subscribedTable
 * - Subscribed (selected) table
 * @param targetTablePath
 * - Schema (path) of the target table
 * @param targetTableName
 * - Name of the target table
 * @throws ApiException
 */
public void assignTable(Subscription subscription,
 Subscriber targetDataStore, SubscribedTable subscribedTable,
 String targetTablePath, String targetTableName) throws ApiException {
 // Get the Publication for the Subscription
 Context subCtx = subscription.getProperty();
 String publisherID = (subCtx.getString(Subscription.PublisherID)
 .isEmpty() ? subCtx.getString(Subscription.PublisherIDPending)
 : subCtx.getString(Subscription.PublisherID));
 Publication publication = targetDataStore.getPublication(publisherID);
 // Get the PublishedTable associated with the SubscribedTable object
 DBPath publishedTableDBPath = targetDataStore
 .createDBPath(subscribedTable.getUpperPath().getFullName()
 .toUpperCase());
 String publishedTableName = subscribedTable.getName().toUpperCase();
 PublishedTable publishedTable = publication.getPublishedTable(
 publishedTableDBPath, publishedTableName);
 // Map the table to the target table using standard mapping type
 String targetDatabase = "";
 String destinedMember = null;
 String indexLibrary = null;
 String indexName = null;
 publishedTable.assign(targetTableName, targetTablePath, targetDatabase,
 destinedMember, indexLibrary, indexName,
 PublishedTable.STANDARD);
 System.out.println("Table " + subscribedTable.getUpperPath().getName()
 + "." + subscribedTable.getName() + " assigned to "
 + targetTablePath + "." + targetTableName + ".");
298 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 TableAssignment tableAssignment = publishedTable.getTableAssignment();
 // Loop through all target columns and map values depending on name
 String[] destinedColumnNames = tableAssignment.getDestinedColumnNames();
 for (String targetColumnName : destinedColumnNames) {
 ColumnAssignment columnAssignment = tableAssignment
 .getColumnAssignment(targetColumnName);
 if (targetColumnName.equals("AUD_TIMESTAMP")) {
 columnAssignment.mapTo(ColumnAssignment.MAP_JOURNAL_CONTROL,
 "&TIMSTAMP");
 System.out
 .println("Journal control column &TIMSTAMP assigned to column "
 + targetColumnName + ".");
 } else if ((targetColumnName.equals("APPLY_TIMESTAMP"))) {
 columnAssignment.mapTo(ColumnAssignment.MAP_CURRENT_DATE);
 System.out
 .println("Default value CURRENT DATE assigned to column "
 + targetColumnName + ".");
 }
 }
}

The example has been kept straightforward to accommodate most of the
mapping scenarios you want to accomplish. PublishedTable.assign() has a
number of overloaded methods suited for different mapping types. For Standard,
Adaptive Apply, and LiveAudit mapping types, the simplest method to use is the
one used in the assignTable() example. When leaving the index name and
library blank, the InfoSphere CDC engine automatically chooses the most
appropriate unique key index when starting the apply process.

A number of parameters, such as targetDatabase, destinedMember,
indexLibrary, and indexName, are passed as null. The destinedMember
parameter is only applicable to DB2 on System i, and the indexLibrary and
indexName parameters are only applicable if you want to choose the index that
InfoSphere CDC should use to determine the unique keys of the target table. The
targetDatabase parameter is applicable if the target engine is InfoSphere CDC
for DB2 on z/OS. This engine is the only engine that requires the target database
and uses a composite table path (database.schema). The last argument
(PublishedTable.STANDARD) indicates the apply method to be used for this
mapped table.
 Chapter 9. Customization and automation 299

When the table is assigned, InfoSphere CDC automatically maps any source and
target columns that have the same names and compatible data types. This
behavior is the same that the Management Console exposes. In the example,
after the table has been successfully assigned, you also iterate through the
columns and map a journal control column and constant value to the
target column.

If the target InfoSphere CDC engine is associated with a database (as in this
example), use the target columns as a basis to configure the column mappings.
For a few engines, such as InfoSphere CDC for DataStage and InfoSphere CDC
Event Server, the PublishedTable object is the basis for all columns being
mapped to the target engine. Target columns are not available in these engines.

Now that the source table has been assigned to a target, the table mapping is
completed. However, during the table selection (selectTable) processing, set the
replication method to Refresh and status to Parked to avoid potential failure
when activating supplemental logging for the source tables.

Similar to what the Management Console does, set the replication method as the
final step. If the method is set to mirror and supplemental logging cannot be
started (for example, because of locks on the table), at least you have completed
the table mapping. You can then change the replication methods through the
Management Console or use the API without having to worry about incomplete
table mappings. The sample code to accomplish this task is shown in
Example 9-34.

Example 9-34 Setting the replication method

/**
 * @param subscribedTable
 * - Source table selected for the subscription
 * @throws ApiException
 */
public void setReplicationMethod(

SubscribedTable subscribedTable) throws ApiException {
DBTable journalTable = null;
subscribedTable.setReplicationMethod(

SubscribedTable.METHOD_MIRROR, journalTable,
SubscribedTable.MEMBER_SELECTION_SINGLE);

subscribedTable
.setReplicationStatus(SubscribedTable.STATUS_REFRESH);

System.out.println("Replication method and status set"
+ " to Mirror-Refresh for table "
+ subscribedTable.getUpperPath().getName() + "."
300 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

+ subscribedTable.getName() + ".");
}

If the replication method is set to mirror (METHOD_MIRROR), InfoSphere CDC
determines if supplemental logging (that is, journaling and data capture changes)
has already been enabled for the source table in question. If not, InfoSphere
CDC activates logging automatically depending on the source engine you are
running. The journalTable parameter is only applicable to InfoSphere CDC for
Oracle Trigger-based, and the member selection final parameter is applicable to
DB2 for System i source tables that have multiple members.

Now that you have all the individual methods to map tables, place them in
sequence to create a subscription and map two tables. The sample code for that
task is shown in Example 9-35.

Example 9-35 Create subscription and map two tables

Publisher oracleDataStore = connectPublisherDataStore(accessServer,
 "CDC_Oracle_Redo");
Subscriber db2DataStore = connectSubscriberDataStore(accessServer,
 "CDC_DB2");
if (oracleDataStore != null && db2DataStore != null) {
 Subscription subscription = null;
 // Create the subscription
 subscription = createSubscription(accessServer, oracleDataStore,
 db2DataStore, "REDSCRIPT", "Redscript example");
 // Add the tables to the catalog
 PublishableTable[] publishableTables = new PublishableTable[2];
 publishableTables[0] = addTableCatalog(oracleDataStore, "CDCDEMO",
 "DEMO_CUSTOMER");
 publishableTables[1] = addTableCatalog(oracleDataStore, "CDCDEMO",
 "PRODUCT");
 System.out.println("Schema alias: "
 + publishableTables[0].getPathAlias());
 System.out.println("Table alias: "
 + publishableTables[0].getTableAlias());
 // Select tables to subscription
 SubscribedTable[] subscribedTables = new SubscribedTable[2];
 subscribedTables[0] = selectTable(oracleDataStore, subscription,
 publishableTables[0]);
 subscribedTables[1] = selectTable(oracleDataStore, subscription,
 publishableTables[1]);
 // Describe the subscription
 describeSubscription(subscription, db2DataStore);
 // Assign the tables
 Chapter 9. Customization and automation 301

 assignTable(subscription, db2DataStore, subscribedTables[0],
 "CDCDEMO", "DEMO_CUSTOMER_TARGET");
 assignTable(subscription, db2DataStore, subscribedTables[1],
 "CDCDEMO", "PRODUCT_TARGET");
 // Set the replication method for the tables
 setReplicationMethod(subscribedTables[0]);
 setReplicationMethod(subscribedTables[1]);
}
// Disconnect from the data stores
if (oracleDataStore != null)
 oracleDataStore.disconnect();
if (db2DataStore != null)
 db2DataStore.disconnect();

After the snippet has finished running, you can open the subscription in the
Management Console and show the table mappings. If you select the source
data store and open the replication tables, you see the tables. Figure 9-15 shows
the table mapping after running the code. The CDCDEMO.DEMO_CUSTOMER
and CDCDEMO.PRODUCT source tables have been added to the catalog
(Replication Tables) and are also mapped in subscription REDSCRIPT. The
columns AUD_TIMESTAMP and APPLY_TIMESTAMP have been mapped to
journal control column &TIMSTAMP and initial value CURRENT DATE.

Figure 9-15 Management Console -Table Mapping

REDSCRIPT

Table Mappings - REDSCRIPT
302 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.9 Procedure for removing mapped tables

You must follow the procedure for removing mapped tables (unassign, deselect,
describe, and remove the catalog) exactly to avoid orphaned metadata in the
source or target agent's metadata. The Java API cannot remove orphaned
metadata; only the Management Console can do so. Figure 9-16 shows the
successive steps that must be performed to unmap tables in a subscription and
remove the table from the catalog.

Figure 9-16 InfoSphere CDC - table mapping delete process

The steps in Figure 9-16 are briefly described in the following list:

1. Deassign Target Tables.

This step removes the link between the source and target table and removes
any information about mapped columns, operations, and user exits that have
been configured for the table mapping. At this stage, it does not remove the
source table entry in the target engine's metadata, and the bookmark of the
subscription and marked table capture points are kept.

2. Remove Source Table from Subscription (deselect).

When removing the source table from the subscription, the subscription no
longer replicates the changes for this table. Also, any source side
configuration of the previously mapped table, such as column filtering, row
filtering, and code page conversions, is removed from the source metadata.
When deselecting tables at the source, the marked table capture point is lost.
When selecting the same table to the subscription again, it assumes a new
capture point.

3. Describe

Describing the subscription causes the InfoSphere CDC source engine to
communicate with the InfoSphere CDC target engine. The target InfoSphere
CDC engine is informed about the tables that are still replicated according to
the source engine. Any table that is no longer selected for replication in the
subscription (source side) and has been unassigned on the target side is
removed from the target metadata. Additionally, if there are no more tables
replicated, it removes the publication entry of the subscription.

1. Deassign
Target Tables

2. Remove Source
Tables from
Subscription

(Deselect)

3. Describe
Subscription

4. Remove Tables
from the Catalog

(optional)
 Chapter 9. Customization and automation 303

It is important to stress that any table that is still assigned on the target
InfoSphere CDC engine is not removed from the target metadata and is
orphaned. Additionally, you could delete the subscription from the source
metadata and even leave the publication orphaned on the target side. After a
publication has been orphaned, you can no longer remove it from the target
engine's metadata using the API. You either must remove it through the
Management Console or recreate the entire InfoSphere CDC instance.

4. Remove Tables from Catalog (optional).

Database tables that are no longer mapped by any subscription can be
removed from the source engine's catalog. InfoSphere CDC does not allow
you to remove catalog entries of any tables that are still referenced in a
subscription, and throws an exception if you try to remove it.

9.5.10 Table mapping removal example

This example removes the previously created subscription and its table
mappings. Also, the tables re removed from the source data store catalog. The
individual steps are being addressed and then they are tied together in
consecutive calls.

First, remove tables is to unlink the target tables from the source tables (the
deassign process). Remember that it is important to perform the deassignment
to allow the description process to remove the published table eventually. The
sample code for this task is shown in Example 9-36.

Example 9-36 Deassign a table

/**
 * @param sourceDataStore
 * - Source data store of the subscription
 * @param targetDataStore
 * - Target data store of the subscription
 * @param subscription
 * - Subscription for which the table must be deassigned
 * @param sourceTablePath
 * - Schema (path) of the source table
 * @param sourceTableName
 * - Name of the source table
 * @throws ApiException
 */
public void deassignTable(Publisher sourceDataStore,
 Subscriber targetDataStore, Subscription subscription,
 String sourceTablePath, String sourceTableName) throws ApiException {
 // Get the Publication for the Subscription
304 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
 // Get the PublishedTable object
 PublishedTable publishedTable = publication.getPublishedTable(
 sourceDataStore.getDBPath(sourceTablePath), sourceTableName);
 publishedTable.deassign();
 System.out.println("Table " + sourceTablePath + "." + sourceTableName
 + " deassigned from publication "
 + publication.getPublisherID() + ".");
}

We chose to only provide limited information for deassigning the tables, that is,
the source data store, target data store, subscription, source table path, and
source table name. Using these keys, the PublishedTable object can be
retrieved from the target data store (through the Publication).

It might seem counter-intuitive to provide the source table path and source table
name, but the table assignment is kept under the PublishedTable object, which is
effectively the equivalent of the SubscribedTable (selected table) on the source
side. The table's schema (table path) can be established by the source data
store getDBPath() method.

Now deselect the source table from the subscription. The sample code for this
action is shown in Example 9-37.

Example 9-37 Deselect the source table from the subscription

/**
 * Deselect a source table from the subscription
 *
 * @param sourceDataStore
 * - The source data store of the subscription
 * @param subscription
 * - Subscription
 * @param tablePath
 * @param tableName
 * @throws ApiException
 */
public void deselectTable(Publisher sourceDataStore,
 Subscription subscription, String tablePath, String tableName)
 throws ApiException {
 SubscribedTable subscribedTable = subscription.getSubscribedTable(
 sourceDataStore.getDBPath(tablePath), tableName);
 subscription.removeTable(subscribedTable);
 System.out.println("Table " + tablePath + "." + tableName
 Chapter 9. Customization and automation 305

 + " deselected from subscription " + subscription.getName()
 + ".");
}

After the table has been deselected from the subscription, the description
process must be run to remove the PublishedTable object from the target
Publication. The sample code for this action is shown in Example 9-38.

Example 9-38 Remove a table from source data store catalog

/**
 * Remove a table from the source data store catalog
 *
 * @param sourceDataStore
 * @param tablePath
 * @param tableName
 * @throws ApiException
 */
public void deleteTableCatalog(Publisher sourceDataStore, String
tablePath,
 String tableName) throws ApiException {
 Catalog sourceCatalog = sourceDataStore.getCatalog();
 PublishableTable publishableTable =
sourceCatalog.getPublishableTable(
 tablePath, tableName);
 if (publishableTable != null) {
 sourceCatalog.removeTable(publishableTable, true);
 System.out.println("Table " + tablePath + "." + tableName
 + " removed from catalog of datastore "
 + sourceDataStore.getName() + ".");
 } else {
 System.out.println("Table " + tablePath + "." + tableName
 + " does not exist in catalog of datastore "
 + sourceDataStore.getName() + ".");
 }
}

When setting the description, any PublishedTable object that is no longer
assigned and has no equivalent selected table (SubscribedTable) in the
subscription is removed from the target metadata. The description process is the
same as described in 9.5.8, “Table mapping example” on page 289, but if there
are no more selected tables for the subscription, the waitDescribe() method
waits for the removal of the Publication object from the target metadata.
306 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

If the source table is no longer used in any subscription, it can also be removed
from the source data store catalog.

Removal of the table from the catalog is optional. However, if the structure of the
source table changes over time, for example, when columns are added or
removed, the information stored in the InfoSphere CDC catalog would no longer
apply. Therefore, always remove tables from the catalog after they are no
longer needed.

The method shown in Example 9-39 removes the subscription from the source
data store.

Example 9-39 Removal of the subscription from the source data store

/**
 * Delete a subscription from the source data store. The method first checks
 * that the publication has already been removed from the target data store
 * before allowing to delete the subscription.
 *
 * @param sourceDataStore
 * - Source data store from which the subscription must be removed
 * @param subscriptionName
 * - The name of the subscription you want to delete
 * @param targetDataStore
 * - The target data store of the subscription
 * @throws ApiException
 */
public void deleteSubscription(Publisher sourceDataStore,
 Subscription subscription, Subscriber targetDataStore)
 throws ApiException {
 // Verify that the publication no longer exists
 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
 if (publication != null) {
 throw new ApiException("Publication with publisher ID "
 + publication.getPublisherID()
 + " still exists, cannot delete subscription.");
 } else {
 sourceDataStore.removeSubscription(subscription);
 }
}

In the method, check that the Publication in the target data store has been
removed, which prevents orphaned metadata.
 Chapter 9. Customization and automation 307

Now that you have the individual methods to remove table mappings and delete
a subscription, you can run them in sequence and remove the table mappings
and subscriptions that had been created. The sample code for this action is
shown in Example 9-40.

Example 9-40 Running the methods in sequence

Publisher oracleDataStore = connectPublisherDataStore(accessServer,
 "CDC_Oracle_Redo");
Subscriber db2DataStore = connectSubscriberDataStore(accessServer,
 "CDC_DB2");
if (oracleDataStore != null && db2DataStore != null) {
/*
* Delete the subscription and catalog tables
*/
Subscription subscription = oracleDataStore
 .getSubscription("REDSCRIPT");
// Deassign the tables from the subscription
 deassignTable(oracleDataStore, db2DataStore, subscription,
 "CDCDEMO", "DEMO_CUSTOMER");
 deassignTable(oracleDataStore, db2DataStore, subscription,
 "CDCDEMO", "PRODUCT");
// Deselect the tables from the subscription
 deselectTable(oracleDataStore, subscription, "CDCDEMO",
 "DEMO_CUSTOMER");
 deselectTable(oracleDataStore, subscription, "CDCDEMO", "PRODUCT");
// Describe the subscription
 describeSubscription(subscription, db2DataStore);
// Delete the tables from the catalog
 deleteTableCatalog(oracleDataStore, "CDCDEMO", "DEMO_CUSTOMER");
 deleteTableCatalog(oracleDataStore, "CDCDEMO", "PRODUCT");
// Delete the subscription
 deleteSubscription(oracleDataStore, subscription, db2DataStore);
}
// Disconnect from the data stores
if (oracleDataStore != null)
 oracleDataStore.disconnect();
if (db2DataStore != null)
 db2DataStore.disconnect();

Example 9-39a Result of deleting the subscription
Connected to publisher data store CDC_Oracle_Redo
Connected to subscriber data store CDC_DB2
Table CDCDEMO.DEMO_CUSTOMER deassigned from publication REDSCRIPT.
Table CDCDEMO.PRODUCT deassigned from publication REDSCRIPT.
308 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Table CDCDEMO.DEMO_CUSTOMER deselected from subscription REDSCRIPT.
Table CDCDEMO.PRODUCT deselected from subscription REDSCRIPT.
Describing subscription REDSCRIPT.
Waiting until describe activity of subscription REDSCRIPT finished.
Waiting for deletion of publication REDSCRIPT for subscription REDSCRIPT.
Table CDCDEMO.DEMO_CUSTOMER removed from catalog of data store CDC_Oracle_Redo.
Table CDCDEMO.PRODUCT removed from catalog of data store CDC_Oracle_Redo.
Disconnected from Access Server.

9.5.11 Row and column filtering

Many clients use InfoSphere CDC to exclude certain rows and columns from the
replication process, which is called row filtering and column filtering. By filtering
rows or columns, the volume of changes sent to the target can be dramatically
reduced. Filtering columns that you do not need on the target side has an
additional positive side effect: If an update only affects non-replicated columns,
the entire change is not sent to the target.

A good example is the CRM application that keeps a record of users accessing
customer opportunity information. Every table has a column that indicates when
a record was last retrieved and the user who retrieved it, and this column is
updated on every read operation (the reading of a record automatically becomes
an update). If the information about when a user retrieves the record is not
important for target processing, you can clear the last retrieve time stamp and
the user columns (column filtering) and reduce the number of operations that are
sent to the target.

Row and column filtering is configured at the source side, in the SubscribedTable
object. Configure the row and column selection (especially the column selection)
when the table is selected to the subscription. If columns are cleared later in the
process, this action affects the PublishedTable object on the target, which
requires that the subscription be described again. If you forget to redescribe the
subscription after having cleared columns from replication, the subscription is not
run until it has been described again.

Example 9-41 shows the setFilter() method that accepts a SubscribedTable
object as an argument. If the table has a STATUS column, this column is used to
set the row filtering for the table in question. If the table has a
TIMESTAMP_UPDATED column, it is cleared from the replicated columns.

Example 9-41 Setting the row and column filtering

/**
 * Sets the row filter to STATUS='A' if the table has a STATUS column.
 * Clears the TIMESTAMP_UPDATED column from replication
 Chapter 9. Customization and automation 309

 *
 * @param subscribedTable
 * - The table that is selected to the subscription
 * @throws ApiException
 */
public void setFilter(SubscribedTable subscribedTable) throws
ApiException {
 // Set the row filter if the replicated table has a STATUS column
 if (subscribedTable.getColumn("STATUS") != null) {
 subscribedTable.setRowSelection("STATUS='A'",
 SubscribedTable.ROW_SELECTION_SELECT);
 System.out.println("Row selection STATUS='A' set for table "
 + subscribedTable.getFullName() + ".");
 }
 // Clear the TIMESTAMP_UPDATED column from replication if it exists
 DBColumn timestampUpdatedColumn = subscribedTable
 .getColumn("TIMESTAMP_UPDATED");
 if (timestampUpdatedColumn != null) {

subscribedTable.setColumnSelected(timestampUpdatedColumn.getName(),
 false, false);
 System.out.println("Column " + timestampUpdatedColumn.getName()
 + " deselected from replication for table "
 + subscribedTable.getFullName() + ".");
 }
}

The setRowSelected() method sets the row filter. The sample code for this action
is shown in Example 9-42.

Example 9-42 Implementing row and column filtering

...
// Select tables to subscription
SubscribedTable[] subscribedTables = new SubscribedTable[2];
subscribedTables[0] = selectTable(oracleDataStore, subscription,
 publishableTables[0]);
subscribedTables[1] = selectTable(oracleDataStore, subscription,
 publishableTables[1]);
// Set the row and column filtering
setFilter(subscribedTables[0]);
setFilter(subscribedTables[1]);
// Describe the subscription
310 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

describeSubscription(subscription, db2DataStore);
...

Similar to the Management Console, you can specify whether the row selection
condition causes rows to be selected for or omitted from replication (they are
each other's counterparts). For the setColumnSelected() method, you must
specify the selected and the critical attributes. When setting the selected attribute
to false, the column is cleared from replication. When you select a column as
critical, InfoSphere CDC only replicates update operations when any critical
column has changed value. A critical column cannot be cleared from replication,
so there are three possible combinations of selected / critical.

This example includes the setFilter() method shown in Example 9-41 on
page 309 in the table mapping flow.

After recreating the subscription and mapping the tables, Figure 9-17 shows that
row filtering was applied to the CDCDEMO.PRODUCT table because it has a
STATUS column.

Figure 9-17 Row filtering
 Chapter 9. Customization and automation 311

For the CDCDEMO.DEMO_CUSTOMER table, column filtering has been applied
by running the setFilter() method (Figure 9-18).

Figure 9-18 InfoSphere CDC - API column filter

Figure 9-18 shows that the TIMESTAMP_UPDATED column has been cleared
from replication. At the same time, the automated column mapping was affected
because the TIMESTAMP_UPDATED column was no longer sent to the target
during the description process. Therefore, the assign() method could not map
the source column to the target column of the same name (Figure 9-19).

Figure 9-19 Column filter
312 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.12 Derived columns

InfoSphere CDC allows you to move the processing of a derived expression from
the target to the source. This action might be useful in situations where the
information needed to calculate a column cannot be found on the target, for
example, a %GETCOL retrieval of a column of a table that is only on the source).
This action also might be useful if you need to call a user function
(%USERFUNC) that is not available on the target engine (for example, when
replicating from Oracle to DB2 on z/OS and you need to start a Java method to
perform a calculation).

In Example 9-43, the addDerivedWeekNo() method adds the
CURRENT_WEEKNO derived column that calls a Java user function to a
subscribed table (selected table). You can find the source for the
UEWeekOfYear user exit program in “Java user exit programs” on page 371.

Example 9-43 Add a derived column

/**
 * Adds a derived column to the mapped table which will calculate the week
 * number of the current date
 *
 * @param subscribedTable
 * - The table that is selected to the subscription
 * @throws ApiException
 */
public void addDerivedWeekNo(SubscribedTable subscribedTable)
 throws ApiException {
 DefaultContext derivedColumnContext = new DefaultContext();
 derivedColumnContext.setString(DerivedColumn.Name, "CURRENT_WEEKNO");
 derivedColumnContext.setString(DerivedColumn.BasedOnColumn, "");
 derivedColumnContext.setInt(DerivedColumn.ColumnLength, 2);
 derivedColumnContext.setInt(DerivedColumn.ColumnPrecision, 2);
 derivedColumnContext.setInt(DerivedColumn.ColumnScale, 0);
 derivedColumnContext.setString(DerivedColumn.DataTypeName, "NUMBER");
 derivedColumnContext.setString(DerivedColumn.Description,
 "Week number of current date");
 derivedColumnContext.setString(DerivedColumn.EvaluationFrequency,
 DerivedColumn.EF_AFTER);
// *AFT
// Evalutation
// frequency
 derivedColumnContext.setByte(DerivedColumn.Nullable, (byte) 0);
// False
 derivedColumnContext.setString(DerivedColumn.Expression,
 Chapter 9. Customization and automation 313

 "%USERFUNC(\"JAVA\",\"UEWeekOfYear\")");
 subscribedTable.addDerivedColumn(derivedColumnContext);
 System.out.println("Derived column "
 + derivedColumnContext.getString(DerivedColumn.Name)
 + " added to table " + subscribedTable.getFullName() + ".");
}

As with other classes in the InfoSphere CDC API, DerivedColumn works with a
context object to specify the attributes of the derived column. All attributes are
mandatory; leaving out any one of them causes the addDerivedColumn to fail.

In Figure 9-20, the CURRENT_WEEKNO column has been added to the list of
columns at the source, as a derived column. This example does not map the
derived column to a target column; the column mapping for derived columns is
the same as regular database columns.

Figure 9-20 Derived column
314 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.13 Encoding conversions (before and after Version 6.5)

InfoSphere CDC replicates character data between a wide variety of encodings
and automatically converts the data from the column encoding detected on the
source to the column encoding detected on the target. For example, you can
replicate multibyte character data such as Japanese, Chinese, or Korean, or
single-byte character data, such as French, Turkish, Arabic, or Russian.

By default, InfoSphere CDC assumes that the data stored in a character capable
column is using the encoding associated with that column type. For example, if
your database is set to use Shift-JIS (Japanese), then data stored in the CHAR
and VARCHAR columns is assumed to be in Shift-JIS by default. However,
InfoSphere CDC is only concerned with the encoding of the data, not the
encoding of the column storage type. This flexibility allows the product to deal
with situations where the actual contents of the column do not match the
encoding specified for the column in the database, commonly seen in many
applications. Overriding the detected column encoding allows you to specify the
actual encoding of the data as known by you.

In all cases, if the database column encoding defined for source and target
matches the contents of the columns, InfoSphere CDC picks up this
configuration automatically and there is no need to override it in the InfoSphere
CDC configuration.

All InfoSphere CDC engines before InfoSphere CDC V6.5 perform encoding
conversions on the source side. Starting from Version 6.5, you can transfer the
work of encoding conversions to the target side to reduce processor resource
utilization on the source server.

The difference in execution of the encoding conversion is reflected in the
metadata and the Java API. Different methods are available to set encoding
conversion depending on the version of the InfoSphere CDC engine.

If either the source or target InfoSphere CDC engine is version 6.3 or earlier,
encoding settings are configured on the source, for the SubscribedTables
columns. Both source and target encoding is configured in the source metadata
using the setColumnUnicodeHandling() and setEncoding() methods, which are
part of the SubscribedTable class, and conversion takes place at the source. If
both source and target engines are at Version 6.5 or later, the source encoding is
configured at the source and the target encoding is configured at the target.
Source and target encodings must then be set using the
setMBCSColumnEncoding() method, for the SubscribedTable class (source) and
the ColumnAssignment class (target).
 Chapter 9. Customization and automation 315

Define a method that retrieves the capability of the subscription to do multi-byte
character set (MBCS) automapping and use this capability to determine the
encoding conversion type that must be configured. Whether the subscription can
automap is defined when the subscription is created; at that time, the source and
target data store properties are analyzed to set the SubscriptionMBCSState
property. The sample code for this action is shown in Example 9-44.

Example 9-44 Determine if a subscription has MBCS automapping enabled

/**
 * Determines if the source and target datastores both support MBCS
 * automatic mapping
 *
 * @param subscription
 * - The subscription for which MBCS automatic mapping must be
 * determined
 * @return
 */
private boolean isSubscriptionMbcsAutoMappingEnabled(
 Subscription subscription) {
 boolean enabled = false;
 try {
 Context properties = subscription.getProperty();
 byte state =
properties.getByte(Subscription.SubscriptionMBCSState);
 // 0 - unknown, 1 - 6.3 level (disabled), 2 - 6.5 level (enabled)
 if (state == 2)
 enabled = true;
 } catch (Exception e) {
// ignore the error, consider it disabled anyway
 }
 return enabled;
}

316 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

When using InfoSphere CDC V6.5 for both the source and target engines, MBCS
automapping is supported and you can configure encoding overrides on source
and target columns:

� MBCS Encoding type: You can specify whether encoding conversion should
be done. For some data types, such as numbers or dates, encoding
conversion is not applicable, so be aware of this limitation when specifying
the encoding types. When encoding is possible, the default encoding that was
picked up from the database during the table mapping can be overridden by
selecting either COLUMN_MBCS_ENCODING_USE_AS_IS (no conversion,
pass as binary) or COLUMN_MBCS_ENCODING_USE_SPECIFIED. In the
latter case, the data encoding must be specified for the column in question.

� Data encoding: The Internet Assigned Numbers Authority (IANA) encoding
name is the identification used by the InfoSphere CDC V6.5 or later engines.
For example, the IANA name for Western European character sets is
windows-1252. If you specify an IANA encoding name that matches the value
that was picked up by InfoSphere CDC from the source database, the data
encoding is not stored as an overridden encoding conversion.

The setSourceColumnEncoding65() method sets the encoding of a source
column to an IANA name, as shown in Example 9-45.

Example 9-45 Set column encoding for InfoSphere CDC V6.5

/**
 * Set the encoding for a source column in a SubscribedTable object, CDC
 * 6.5+
 *
 * @param subscription
 * - Subscription
 * @param subscribedTable
 * - The table that is selected to the subscription
 * @param columnName
 * - The column of the selected table for which the source * encoding must be

set
 * @param encodingName
 * - IANA encoding name of the encoding
 * @throws ApiException
 */
private void setSourceColumnEncoding65(Subscription subscription,
 SubscribedTable subscribedTable, String columnName,
 String encodingName) throws ApiException {
 subscribedTable.setMBCSColumnEncoding(columnName,
 (byte) MBCSColumnEncoding.COLUMN_MBCS_ENCODING_USE_SPECIFIED,
 encodingName);
 System.out.println("Encoding set to " + encodingName + " for column "
 Chapter 9. Customization and automation 317

 + columnName + " in table " + subscribedTable.getFullName()
 + ".");
}

The attributes of InfoSphere CDC V6.3 and earlier encoding conversions are:

� Unicode handling: Whether Unicode handling is done for the column in
question. InfoSphere CDC tries to convert the source columns as though they
contain Unicode data (UCS-2, UTF-8, UTF-16, or UTF-32).

� Encoding method: Specifies whether encoding conversion must be done, and
if so, whether the database default, overridden conversion, or Unicode
conversion must be done.

� CCSID for column: The Coded Character Set ID for the column. When
specified for the source column, InfoSphere CDC expects the data in the
source column to be encoded with this CCSID. When specified for the target
column, InfoSphere CDC converts the data to this CCSID.

� Encoding name: The ISO or IANA encoding name. For example, the IANA
name for Western European character sets is windows-1252. This encoding
name is used by the InfoSphere CDC V6.5 and later engines.

� Encoding length: Specifies whether the characters must be processed
(source) or generated (target) as single bytes (SBCS), double bytes (DBCS),
or multiple bytes (MBCS).
318 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The CCSID, encoding name, and encoding length depend on each other. You
must specify all three values to ensure that the InfoSphere CDC source engine
runs the correct encoding based on the target engine. For a map of IANA/CCSID
and encoding length, go to the Management Console preferences (click Edit)
and click the Encoding button. Figure 9-21 shows the IANA names together with
the CCSID and encoding length for your reference.

Figure 9-21 IANA information

The setSourceColumnEncoding63() method, in Example 9-46, shows how to set
the encoding for a column if either the source or target InfoSphere CDC engine
has a version earlier than Version 6.5. This situation means that the encoding
must be specified entirely at the source, that is, both the source and target
column encodings.

Example 9-46 Set column encoding for InfoSphere CDC V6.3

/**
 * Set the encoding for a source column in a SubscribedTable object, CDC 6.3
 * and earlier releases
 *
 * @param subscription
 * - Subscription
 * @param subscribedTable
 * - The table that is selected to the subscription
 * @param columnName
 Chapter 9. Customization and automation 319

 * - The column of the selected table for which the source encoding must be set
 * @param ccsid
 * - Coded Character Set ID of the encoding
 * @param encodingName
 * - IANA encoding name of the encoding
 * @param encodingLength
 * - Single, double or multiple byte
 * @throws ApiException
 */
private void setSourceColumnEncoding63(Subscription subscription,
 SubscribedTable subscribedTable, String columnName, String ccsid,
 String encodingName, int encodingLength) throws ApiException {
 int sourceEncodingMethod = subscribedTable
 .getSourceEncodingMethod(columnName);
 String sourceEncodingCcsid = subscribedTable
 .getSourceEncodingCcsid(columnName);
 String sourceEncodingName = subscribedTable
 .getSourceEncodingName(columnName);
 int sourceEncodingLength = subscribedTable
 .getSourceEncodingLength(columnName);
 int targetEncodingMethod = subscribedTable
 .getTargetEncodingMethod(columnName);
 String targetEncodingCcsid = subscribedTable
 .getTargetEncodingCcsid(columnName);
 String targetEncodingName = subscribedTable
 .getTargetEncodingName(columnName);
 int targetEncodingLength = subscribedTable
 .getTargetEncodingLength(columnName);
 subscribedTable.setEncoding(columnName,
 SubscribedTable.COLUMN_ENCODING_USE_SPECIFIED, ccsid,
 encodingName, encodingLength, targetEncodingMethod,
 targetEncodingCcsid, targetEncodingName, targetEncodingLength);
 System.out.println("Encoding set to CCSID " + ccsid + " and IANA name "
 + encodingName + " for column " + columnName + " in table "
 + subscribedTable.getFullName() + ".");
}

320 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The method shown in Example 9-47 retrieves the column encoding that has
been set during the mapping process and then overrides it with the CCSID, IANA
encoding name, and encoding length that were passed as a parameter. This
method is, as an example, how to set the source column encoding to GBK (a
Chinese national standard extension) for both InfoSphere CDC V6.5 and
InfoSphere CDC V6.3.

Example 9-47 Implementation of setting the source column encoding

// Set encoding for CUSTOMER_NAME column
if (isSubscriptionMbcsAutoMappingEnabled(subscription))
 setSourceColumnEncoding65(subscription, subscribedTables[0],
 "CUSTOMER_NAME", "GBK");
else
 setSourceColumnEncoding63(subscription, subscribedTables[0],
 "CUSTOMER_NAME", "1384", "GBK",
 SubscribedTable.COLUMN_ENCODING_DOUBLE_BYTE);

Running the example code results in the configuration shown in Figure 9-22. The
source encoding for CUSTOMER_NAME has been overridden to GBK while the
target encoding has been left unchanged.

Figure 9-22 Management Console table mapping encoding
 Chapter 9. Customization and automation 321

9.5.14 Operations and user exits

InfoSphere CDC allows you to suppress the standard operations and include
custom code in the processing of table-level and row-level operations. For
example, you might not want any table clear operations or row delete operations
to be applied onto the target side. Typically, this situation is the case when you
target a data warehouse or operational data store. Another example is that you
might want to process user-defined actions instead of a standard operation, such
as applying a soft delete instead of the row delete that InfoSphere CDC would
normally run with a user exit.

In addition to the row-level user exits, the InfoSphere CDC Linux, UNIX, and
Windows engine now supports subscription-level user exits, which let you define
a set of actions that InfoSphere CDC can run before or after a commit event
occurs on a specified subscription. Subscription-level user exits can work alone
or in tandem with row-level user exits, for example, to complete and send an
XML message that has been built using the row-level user exits.

The Management Console has split the standard operations and row-level user
exits across two tabs. In the API, these items are controlled through the same
class, UserExit.

As an example, you can configure a table mapping for soft delete. Basically, this
situation means that you map a table with an adaptive apply mapping type, and
then disable the delete operation and specify a pre-delete user exit that calls the
UESoftDelete Java class. There is a SoftDelete.class file in the target
InfoSphere CDC engine's lib directory, so it is available (this setting is validated
by InfoSphere CDC when trying to configure), as shown in Example 9-48.

Example 9-48 Table mapping for soft delete

/**
 * Assigns the source table to a target table, configuring it for soft
 * delete.
 *
 * @param subscription
 * - Subscription for which the table must be assigned
 * @param targetDataStore
 * - Target datastore of the subscription
 * @param subscribedTable
 * - Subscribed (selected) table
 * @param targetTablePath
 * - Schema (path) of the target table
 * @param targetTableName
 * - Name of the target table
 * @param mappingType
322 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * - The mapping type that must be used
 * @throws ApiException
 */
public void assignSoftDelete(Subscription subscription,
 Subscriber targetDataStore, SubscribedTable subscribedTable,
 String targetTablePath, String targetTableName) throws ApiException {
// Get the publication for the subscription
 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
// Get the PublishedTable associated with the SubscribedTable object
 DBPath publishedTableDBPath = targetDataStore
 .createDBPath(subscribedTable.getUpperPath().getFullName()
 .toUpperCase());
 String publishedTableName = subscribedTable.getName().toUpperCase();
 PublishedTable publishedTable = publication.getPublishedTable(
 publishedTableDBPath, publishedTableName);
// Map the table to the target table using specified mapping type
 String targetDatabase = "";
 String destinedMember = null;
 String indexLibrary = null;
 String indexName = null;
 publishedTable.assign(targetTableName, targetTablePath, targetDatabase,
 destinedMember, indexLibrary, indexName,
 PublishedTable.ADAPTIVE_APPLY);
 System.out.println("Table " + subscribedTable.getFullName()
 + " assigned to " + targetTablePath + "." + targetTableName
 + " using soft delete mapping type.");
 TableAssignment tableAssignment = publishedTable.getTableAssignment();
// Loop through all target columns and map values depending on name
 String[] destinedColumnNames = tableAssignment.getDestinedColumnNames();
 for (String targetColumnName : destinedColumnNames) {
 ColumnAssignment columnAssignment = tableAssignment
 .getColumnAssignment(targetColumnName);
 if (targetColumnName.equals("AUD_TIMESTAMP")) {
 columnAssignment.mapTo(ColumnAssignment.MAP_JOURNAL_CONTROL,
 "&TIMSTAMP");
 System.out
 .println("Journal control column &TIMSTAMP assigned to column "
 + targetColumnName + ".");
 } else if ((targetColumnName.equals("APPLY_TIMESTAMP"))) {
 columnAssignment.mapTo(ColumnAssignment.MAP_CURRENT_DATE);
 System.out
 .println("Default value CURRENT DATE assigned to column "
 + targetColumnName + ".");
 } else if ((targetColumnName.equals("LAST_OPERATION"))) {
 Chapter 9. Customization and automation 323

 columnAssignment.mapTo(ColumnAssignment.MAP_JOURNAL_CONTROL,
 "&ENTTYP");
 System.out
 .println("Journal control column &ENTTYP assigned to column "
 + targetColumnName + ".");
 }
 }
// Set table level operations and user exits
 UserExit tableUserExit = tableAssignment
 .createNewUserExit(UserExit.JAVA_CLASS);
 tableUserExit.setStdOperation(UserExit.STANDARD_INSERT,
 UserExit.INSERT_UPDATE);
 tableUserExit.setStdOperation(UserExit.STANDARD_UPDATE,
 UserExit.INSERT_UPDATE);
 tableUserExit.setStdOperation(UserExit.STANDARD_DELETE,
 UserExit.DISABLE);
 System.out
 .println("Standard delete operation has been disabled for operations on
table "
 + targetTablePath + "." + targetTableName);
 tableUserExit.setFunctionType(UserExit.JAVA_CLASS);
 tableUserExit.setJavaClass("UESoftDelete");
 tableUserExit.addOperation(UserExit.BEFORE_DELETE, "Y");
 System.out
 .println("Before delete operation has been set to UESoftDelete Java class
for table "
 + targetTablePath + "." + targetTableName);
 // Set subscription-level user exit
 tableAssignment.setUserExit(tableUserExit);
 System.out.println("Subscription-level user exit for subscription "
 + subscription.getName() + " has been set to UESoftDelete");
}

The initial part of the table assignment is the same as before, with just a small
difference in the mapping type (PublishedTable.ADAPTIVE_APPLY instead of
PublishedTable.STANDARD). Iterate through the columns to map the &ENTTYP
(operation type) to the LAST_OPERATION column. If the row has been
soft-deleted, this column contains "DL".
324 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

During the second part of the method, a new UserExit object is created and the
standard operations are assigned. The standard delete (STANDARD_DELETE)
operation is disabled. Then the user exit type is set to use Java class
UESoftDelete and it is marked to be run before the delete operation occurs.
InfoSphere CDC still runs the before and after user exits, even if the standard
operation is disabled.

The UESoftDelete class is described in “Java user exit for row-level user exits” on
page 383.

For subscription-level user exits, there is not much you must configure. After you
have created the subscription, and the Publication object exists in the target
metadata, you can get the subscription-level user exit configuration by running
the getSubscriptionUserExits() method from the Publication object. The
function type that is currently supported is UserExit.JAVA_CLASS, and you can
set the Java class and parameters by using the methods in the
SubscriptionUserExits class.

The subscription-level user exit must implement the SubscriptionUserExitIF
interface. The UESoftDelete class implements both UserExitIF and
SubscriptionUserExitIF, so one class can be used both at the table-level and
subscription-level.

9.5.15 Common procedures (updating table definitions)

After you change the structure of a mapped source or target table in your
database, you must update the definition of the table in the InfoSphere CDC
metadata so that subscriptions are aware of the new structure and can adjust the
log reader or apply process.

If you change the definition of a source table (add a column, or change column
length or data type) in your database, then you must update the definition of the
table in the source data store catalog. InfoSphere CDC requires you to update
the source table so that the new structure is available for configuration when
editing your table mapping details. For example, if you have added a column on
the source table, then you might want to map this new column to a target column.
In the Management Console, you can update the source table definition by
choosing the table and updating the source definition. When you need to update
the source table definition through the API, the Catalog class provides the
reAddTable() method. Both actions retrieve the table structure from the
database and update the PublishableTable object in the source data
store's catalog.
 Chapter 9. Customization and automation 325

When the definition of a target table is altered (add a column, or set column
constraints or different primary key constraint) in your database, you need to
update the definition of the target table’s metadata. This action ensures that the
column mappings can be updated according to the new target table structure.
For example, if you have added a column on the target table, then you might
want to map a source column to the new target column or populate it with a
constant value. The Management Console provides a table menu option to
update the target table definition. If you need to update the target table definition
through the API, run the reassign() method from the PublishedTable object that
links the source table to the destination (target) table.

Typically, you perform the updates of the InfoSphere CDC source and target
tables only if the structure has changed.

Example 9-49 shows whether the CDCDEMO.SALESREP catalog table has
changed; if it has, update the table definition in the catalog. Before running the
snippet, check the structure of the table registered in the source data store
catalog. The table structure before applying the DDL changes is shown in
Figure 9-23 on page 329.

Example 9-49 Checking if the table structure has changed

/**
 * Check if a table in the source datastore catalog has changed. Returns
 * true if there is a difference between: - Number of columns in database
 * table and catalog table - Data type of one of the columns in the database
 * table and catalog table - Length of one of the columns in the database
 * table and catalog table - Precision of one of the columns in the database
 * table and catalog table - Scale of one of the columns in the database
 * table and catalog table
 *
 * @param sourceDataStore
 * - The source datastore that has the catalog in which the table
 * must be checked
 * @param tablePath
 * - Schema of the table to be checked
 * @param tableName
 * - Name of the table to be checked
 * @return – true if the table has changed, false if there is no difference
 * between database table and catalog table
 * @throws ApiException
 */
public boolean isCatalogTableChanged(Publisher sourceDataStore,
 String tablePath, String tableName) throws ApiException {
 boolean isChanged = false;
 DBTable databaseTable = sourceDataStore.getTable(
326 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 sourceDataStore.getDBPath(tablePath), tableName);
 Catalog sourceCatalog = sourceDataStore.getCatalog();
 PublishableTable publishableTable = sourceCatalog.getPublishableTable(
 tablePath, tableName);
 int numberDatabaseColumns = databaseTable.getColumnNames().length;
 int numberCatalogColumns = publishableTable.getColumnNames().length;
 if (numberDatabaseColumns != numberCatalogColumns) {
 System.out
 .println("Number of columns in database does not correspond to number of
columns in catalog for table "
 + tablePath + "." + tableName + ".");
 isChanged = true;
 } else {
 for (String databaseColumnName : databaseTable.getColumnNames()) {
 DBColumn databaseColumn = databaseTable
 .getColumn(databaseColumnName);
 try {
 DBColumn catalogColumn = publishableTable
 .getColumn(databaseColumnName);
 if (!catalogColumn.getDataType().equalsIgnoreCase(
 databaseColumn.getDataType())) {
 System.out.println("Database column "
 + databaseColumnName + " of table " + tablePath
 + "." + tableName
 + " is of a different data type ("
 + databaseColumn.getDataType()
 + ") than catalog column ("
 + catalogColumn.getDataType() + ").");
 isChanged = true;
 }
 if (catalogColumn.getLength() != databaseColumn.getLength()) {
 System.out.println("Database column "
 + databaseColumnName + " of table " + tablePath
 + "." + tableName + " has a different length ("
 + databaseColumn.getLength()
 + ") than catalog column ("
 + catalogColumn.getLength() + ").");
 isChanged = true;
 }
 if (catalogColumn.getPrecision() != databaseColumn
 .getPrecision()) {
 System.out.println("Database column "
 + databaseColumnName + " of table " + tablePath
 + "." + tableName
 + " has a different precision ("
 Chapter 9. Customization and automation 327

 + databaseColumn.getPrecision()
 + ") than catalog column ("
 + catalogColumn.getPrecision() + ").");
 isChanged = true;
 }
 if (catalogColumn.getScale() != databaseColumn.getScale()) {
 System.out.println("Database column "
 + databaseColumnName + " of table " + tablePath
 + "." + tableName + " has a different scale ("
 + databaseColumn.getScale()
 + ") than catalog column ("
 + catalogColumn.getScale() + ").");
 isChanged = true;
 }
 } catch (ApiException e) {
 System.out.println("Database column " + databaseColumnName
 + " not found in catalog table " + tablePath + "."
 + tableName + ".");
 isChanged = true;
 }
 }
 }
 return isChanged;
}

328 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 9-23 Table structure before applying DDL
 Chapter 9. Customization and automation 329

The table is replicated by UPDTABLE and its status is active (Figure 9-24).

Figure 9-24 Replicated table

Now the table is altered. A new column (NEWCOL) is added to the table and the
length of an existing column (NAME1ST) is changed from 30 to 50.

The isCatalogTableChanged() method, shown in Example 9-49 on page 326,
retrieves the table structure from the database using the getTable() method that
is part of the Publisher class. It then checks whether the number of columns in
the database table corresponds with the number of columns in the catalog table
and iterates through the database table columns to compare the attributes of all
the database columns with the ones registered in the PublishableTable object.
The primary reason for comparing the number of columns is to detect when a
column has been dropped from the database table.
330 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The exact code as presented might not work for all InfoSphere CDC engine
types. InfoSphere CDC for DB2 on System i, for example, always reports
precision 0 for database table columns that are retrieved with the getTable()
method, while InfoSphere CDC stores the correct precision in its configuration.

If a difference is found between database and catalog table, the table is updated
in the catalog using the reAddTable() method (Example 9-50) that is part of the
Catalog class.

Example 9-50 Method to readd a catalog table

/**
 * Update the source table definition in the catalog
 *
 * @param sourceDataStore
 * - The source datastore that has the catalog in which the table
 * must be updated
 * @param tablePath
 * - Schema of the table to be updated
 * @param tableName
 * - Name of the table to be updated
 * @throws ApiException
 */
public void reAddCatalogTable(Publisher sourceDataStore, String tablePath,
 String tableName) throws ApiException {
 Catalog sourceCatalog = sourceDataStore.getCatalog();
 PublishableTable publishableTable = sourceCatalog.getPublishableTable(
 tablePath, tableName);
 sourceCatalog.reAddTable(publishableTable);
 System.out.println("Updated catalog table definition " + tablePath
 + "." + tableName + ".");
}

When these two methods are brought together, the code in Example 9-51 first
checks whether the structure of the CDCDEMO.SALESREP has changed; if so,
it updates the table definition in the catalog.

Example 9-51 Check to see whether to update the table definition in the catalog

if (isCatalogTableChanged(oracleDataStore, "CDCDEMO", "SALESREP")) {
 reAddCatalogTable(oracleDataStore, "CDCDEMO", "SALESREP");
 Chapter 9. Customization and automation 331

The output of the code when running it after the table's structure has changed is
shown in Example 9-52.

Example 9-52 Output from Example 9-51 on page 331

Number of columns in database does not correspond to number of columns
in catalog for table CDCDEMO.SALESREP.
Updating source table definition CDCDEMO.SALESREP affects subscription
UPDTABLE.
Updated catalog table definition CDCDEMO.SALESREP.

Look at the Management Console (Figure 9-25) and see that the table's structure
has been updated.

Figure 9-25 Table structure is updated
332 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The status of the replicated table has been set to parked (Figure 9-26).

Figure 9-26 Replicated table status set to parked

The work to make the subscription runnable is not yet complete. The source
table structure has changed and the target side is not aware yet that it will
receive data different from before. The PublishedTable must be updated with the
new source table structure by describing the subscription.

To discover which subscriptions are affected by the update of the source table
definition, that is, getting a list of subscriptions that replicate the table, you must
analyze the subscriptions individually (Example 9-53). There is no single method
that retrieves the subscriptions that depend on a table.

Example 9-53 Getting the list of subscriptions that replicate a certain source table

/**
 * Get the list of subscriptions which replicate a certain source table.
 *
 * @param sourceDataStore
 Chapter 9. Customization and automation 333

 * - The source datastore that has the table it its catalog
 * @param tablePath
 * - Schema of the table
 * @param tableName
 * - Name of the table
 * @throws ApiException
 */
public ArrayList<Subscription> getSourceTableSubscriptions(
 Publisher sourceDataStore, String tablePath, String tableName)
 throws ApiException {
 Catalog sourceCatalog = sourceDataStore.getCatalog();
 PublishableTable publishableTable = sourceCatalog.getPublishableTable(
 tablePath, tableName);
 ArrayList<Subscription> sourceTableSubscriptions = new ArrayList<Subscription>();
 for (String subscriptionName : sourceDataStore.getSubscriptionNames()) {
 Subscription subscription = sourceDataStore
 .getSubscription(subscriptionName);
 try {
 SubscribedTable subscribedTable = subscription
 .getSubscribedTable(publishableTable.getUpperPath(),
 publishableTable.getName());
 if (subscribedTable != null) {
 System.out.println("Subscription " + subscription.getName()
 + " replicates table "
 + subscribedTable.getFullName() + ".");
 sourceTableSubscriptions.add(subscription);
 }
 } catch (ApiException e) {
 // Do nothing, subscription does not map the table
 }
 }
 return sourceTableSubscriptions;
}

If you want to make the process complete, that is, making the subscription
runnable again and replicating the changes of the table that has been updated in
the catalog, the snippet would have to be extended (Example 9-54).

Example 9-54 Making the subscription runnable and replicating table changes

if (isCatalogTableChanged(oracleDataStore, "CDCDEMO", "SALESREP")) {
 // Get the subscriptions which replicate this table
 ArrayList<Subscription> sourceTableSubscriptions = getSourceTableSubscriptions(
 oracleDataStore, "CDCDEMO", "CDCDEMO");
 // Update the source table definition in the catalog
334 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 reAddCatalogTable(oracleDataStore, "CDCDEMO", "SALESREP");
 // Change replication status in all subscriptions to Active and
 // describe
 for (Subscription sourceTableSubscription : sourceTableSubscriptions) {
 // Change table replication status to Active (only if Mirror
 // method)
 SubscribedTable changedSubscribedTable = sourceTableSubscription
 .getSubscribedTable(
 oracleDataStore.getDBPath("CDCDEMO"),
 "SALESREP");
 if (changedSubscribedTable.getReplicationMethod() ==
SubscribedTable.METHOD_MIRROR) {
 System.out.println("Replication status of table "
 + changedSubscribedTable.getFullName()
 + " is changed to Active.");
 changedSubscribedTable
 .setReplicationStatus(SubscribedTable.STATUS_ACTIVE);
 }
 // Now describe the subscription
 describeSubscription(sourceTableSubscription, db2DataStore);
 }

}

When having to update the table definitions for target tables, the procedure is
different. The procedure for retrieval of the database table structure is equivalent
to the one done for the source, using the getTable() method. However, you
must now trace back to the published table starting from the destined table.
Again, there is no simple method in the InfoSphere CDC Java API that allows
direct access to the source table starting from the destination table
(Example 9-55).

Example 9-55 Updating the target table definition for a subscription

/**
 * Update the target table definition for a subscription
 *
 * @param subscription
 * - The subscription that targets the table to be
reassigned
 * @param targetDataStore
 * - The datastore that is targeted by the subscription
 * @param targetTablePath
 * - Schema of the target table to be updated
 * @param targetTableName
 Chapter 9. Customization and automation 335

 * - Name of the target table to be updated
 * @throws ApiException
 */
public void reAssignTable(Subscription subscription,
 Subscriber targetDataStore, String targetTablePath,
 String targetTableName) throws ApiException {
 // Get publication for subscription
 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
 // Process all database paths (schemas for publication)
 for (DBPath publicationDBPath : publication.getDBPaths()) {
 // Process all tables for database path
 for (PublishedTable publishedTable : publication
 .getPublishedTables(publicationDBPath)) {
 TableAssignment tableAssignment = publishedTable
 .getTableAssignment();
 DBTable destinedTable = tableAssignment.getDestinedTable();
 DBPath destinedTableUniqueIndex = tableAssignment
 .getDestinedTableUniqueIndex();
 // If destined table is table to reassign, do so
 if (destinedTable.getUpperPath().getFullName()
 .equalsIgnoreCase(targetTablePath)
 && destinedTable.getName().equalsIgnoreCase(
 targetTableName)) {
 publishedTable.reassign(destinedTableUniqueIndex);
 System.out.println("Updated target table definition "
 + targetTablePath + "." + targetTableName + ".");
 }
 }
 }
}

Check that the subscription is not active when reassigning tables, or the
underlying metadata changes while the running subscription might not be aware
of this change. Subscription statuses can only be obtained from the source data
store. You should trace even further back until you have found the subscription
that is connected to the Publication that holds the PublishedTable that is
assigned to the target table for which the table structure has changed.

In most cases, you are aware of the table changes that are being deployed and
which subscriptions they affect. Therefore, you could include the reassignment of
the target table in the deployment of the subscription. When using the
reAssignTable() method, assume that you are deploying a target table change
for a known subscription and that the subscription is inactive.
336 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Add a column to the CDCDEMO.SALESREP_TARGET table and run the code
snippet shown in Example 9-56 to update the definition of the target table.

Example 9-56 Snippet to update the target table definition

// Get the subscription object
Subscription subscription=oracleDataStore.getSubscription("UPDTABLE");
reAssignTable(subscription, db2DataStore, "CDCDEMO",
"SALESREP_TARGET");

When refreshing the view in the Management Console, the new column appears
with a default mapping (Figure 9-27). If there is a source column with the same
name and equivalent data type, the source column is automatically mapped to
the new target column.

Figure 9-27 New column with default mapping
 Chapter 9. Customization and automation 337

9.5.16 Deploying subscription changes and considerations

Using the API, you can deploy subscription changes to production environments
without manual intervention through the Management Console. You want to
make the deployment as smooth as possible and avoid having to do a refresh of
the replicated tables or run the risk of losing changes.

This section assumes that you do not want to perform a refresh of the replicated
tables when making subscription changes. This situation is the case for most
clients, and in environments where very large tables are replicated, refreshing
those tables may not be an option.

Before we continue describing how to read how table structure changes pertain
to the InfoSphere CDC API, you need to understand the bookmarks of
subscriptions and replicated tables. More information about this subject can be
found in 7.6.1, “Understanding InfoSphere CDC bookmarks” on page 191.

As long as you do not delete a subscription (or the Publication in the target
metadata), the subscription bookmark is kept in the target bookmark table. This
situation means that restarting the subscription after making changes to the
production subscription causes the bookmark to be retrieved from the bookmark
table and start reading the database logs from this bookmark forward. The risk of
inadvertently losing the subscription bookmark is not high because you must
deassign all target tables (PublishedTable), remove the selected tables
(SubscribedTable), and perform a description to remove the Publication object.
Only in that situation will InfoSphere CDC drop the bookmark on the target side.

A greater risk is inadvertently marking the table capture point after changing the
mapped tables. If you set the status of a selected table (SubscribedTable) to
Active, you are effectively marking the table capture point for that table. Any
transaction for that table since the last applied bookmark is skipped when the
subscription is restarted.

Starting with Version 6.5, the InfoSphere CDC engines offer a CLI command
option for dmsetbookmark to set the bookmark and mark the table capture points
of all tables according to the bookmark. This option is useful in situations where
subscriptions must be recreated and you want to restart from the last known
position without skipping any transactions for any of the tables.

Unfortunately, the Java API does not have an interface for getting or setting the
bookmarks for the engine, and you must start engine commands from the
custom Java class to perform this function. Starting engine commands from the
deployment Java programs might pose a challenge because the API is run
against the Access Server, which might be installed on a different server than the
source and target engines. You then must run remote CLI commands for the
InfoSphere CDC servers.
338 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

If you want to keep the deployment processing within the scope of the Java API
and not lose any subscription or table bookmarks, the selected tables
(SubscribedTable) must be kept in the subscription and the replication method
and status for these tables must not be changed. This situation means that if you
need to change the mapping attributes of the source tables, such as row filtering,
column filtering, or derived columns, you must modify the existing
SubscribedTable object instead of recreating it. For example, if the table
mapping change encompasses the removal of a derived column, but other
derived columns must be kept for the selected table, you could remove all the
derived columns from the SubscribedTable objects. Then, add them all (except
the removed one) again based on the definition of the subscription to
be deployed.

For table assignment processing, you do not have to take the same precautions.
It is safe to remove table assignments (deassign) and assign them again with
new attributes. Deassigning tables does not touch the subscription bookmark or
the marked table capture point for the tables. For example, if you want to change
the mapping of tables that have been mapped with a standard mapping type to
adaptive apply, you can start by deassigning the mapped tables and then
assigning them again using the adaptive apply mapping type.

There are situations in which the table capture point cannot be kept. One of the
common situations is when the format of the source table has changed and the
table must be readded to source data store catalog. When readding a table to the
catalog to replace the table's recorded structure, InfoSphere CDC automatically
changes the table's replication status in all subscriptions to idle (parked). To
resume replication for the table in question, you must change the replication
status to active. This action is the same action as marking the capture point for
the table (the operations between the last stopping of the subscription and the
marked table capture point are skipped).

9.5.17 Starting, stopping, and monitoring subscriptions

Subscriptions are always started and stopped from the source side. Also, if you
want to monitor for subscription activity, this action can only be done on the
source server. Some companies have strict policies regarding access to source
(production) servers and may not allow command-line access to these servers.
In those scenarios, the API might be a good alternative for starting, stopping, and
monitoring subscriptions.

If you do have access to the source server, you can start and stop subscriptions
using the engine command interface. The Linux, UNIX, and Windows engine
also allows you to check the activity of subscriptions using InfoSphere CDC
commands. If you want to provide more sophisticated functionality, the API
provides more control over specific features within the InfoSphere CDC engine.
 Chapter 9. Customization and automation 339

Continuous mirroring replicates changes to the target on a continuous basis. Use
this type of mirroring when business requirements dictate that you need
replication to be running continuously and you do not have a clearly defined
reason to end replication now.

Scheduled end (Net Change) mirroring replicates changes (to the target) up to a
user-specified point in the source database log and then ends replication. Use
this type of mirroring when business requirements dictate that you only replicate
your data periodically and you have a clearly defined endpoint for the state of
your target database when replication ends. Scheduled end mirroring allows you
to end replication at the following points in your source database log:

� Current time or “now”
� User-specified date and time
� User-specified log position

The startSubscription() method shown in Example 9-57 starts a subscription
in Continuous mirroring or Net Change with a “Now” ending specification
(replication stops when the current log position has been reached).

Example 9-57 Start subscriptions (Continuous mirroring or Net Change)

/**
 * Start a subscription in continuous mirror or net change mode
 *
 * @param subscription
 * - Subscription you want to start
 * @param continuousMirror
 * - Start the subscription in continuous mirror mode (true) or net change

(false)
 * @return
 * @throws ApiException
 */
public void startSubscription(Subscription subscription,
 boolean continuousMirror) throws ApiException {
// Check if the subscription is already active before attempting to
// start it
 byte[] liveActivityStatus = subscription.getLiveActivityStatus();
 if (liveActivityStatus[1] == Subscription.LIVE_STATUS_IDLE) {
 subscription.startMirror(continuousMirror);
 if (continuousMirror)
 System.out.println("Started subscription "
 + subscription.getName()
 + " in Continuous Mirror mode.");
 else
 System.out.println("Started subscription "
340 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 + subscription.getName() + " in Net change mode.");
 } else {
 System.out.println("Subscription " + subscription.getName()
 + " is already active.");
 }
}

In startSubscription(), use the Subscription.startMirror method to start the
replication using the two basic techniques that are available for all versions of
InfoSphere CDC. Starting with Version 6.5, InfoSphere CDC supports starting
mirroring with a user-specified end date and time or log position when the
replication should stop. If you want to use this functionality, use the
startReplicationSpecifiable method, which is part of the Subscription class.

In Example 9-58, a subscription is started to replicate yesterday's changes. After
the log position reaches the specified end time (23:59:59.999), it stops normally.

Example 9-58 Specifiable start of replication

/**
* Start a subscription and replicate the changes that were made yesterday
* (relative to today).
*
* @param subscription
* - Subscription you want to start
* @return
* @throws ApiException
*/
public void startReplicationYesterdaysChanges(Subscription subscription)

throws ApiException {
// Calculate the ending time (yesterday, 23:59:59.999)

SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMddHHmmssSSS");
Calendar subscriptionEndTime = Calendar.getInstance();
subscriptionEndTime.add(Calendar.DATE, -1);
subscriptionEndTime.set(Calendar.HOUR_OF_DAY, 23);
subscriptionEndTime.set(Calendar.MINUTE, 59);
subscriptionEndTime.set(Calendar.SECOND, 59);
subscriptionEndTime.set(Calendar.MILLISECOND, 999);

// Check if the subscription is already active before attempting to start it
byte[] liveActivityStatus = subscription.getLiveActivityStatus();
if (liveActivityStatus[1] == Subscription.LIVE_STATUS_IDLE) {

byte flag = 5; // Scheduled end
byte tag = 1; // Ignored for mirror
byte endValueType = 2; // Source local time (log time)
String endValue = sdf.format(subscriptionEndTime.getTime());
 Chapter 9. Customization and automation 341

subscription.startReplicationSpecifiable(flag, tag, endValueType,
endValue);

System.out.println("Started subscription " + subscription.getName()
+ " with an ending log time of " + endValue);

} else {
System.out.println("Subscription " + subscription.getName()

+ " is already active.");
}

}

To end a subscription, you can use the endSubscription() method. Similar to
the starting of the replication, ending replication can now also be made
“specifiable” by using the endReplicationSpecifiable() method
(Example 9-59).

Example 9-59 Stopping replication

/**
 * Stop a mirroring subscription controlled or immediately
 *
 * @param subscription
 * - Subscription you want to stop
 * @param continuousMirror
 * - Start the subscription in continuous mirror mode (true) or
 * net change (false)
 * @return
 * @throws ApiException
 */
public void stopSubscription(Subscription subscription,
 boolean immediateStop) throws ApiException {
// Check if the subscription is already active before attempting to
// start it
 byte[] liveActivityStatus = subscription.getLiveActivityStatus();
 if (liveActivityStatus[1] == Subscription.LIVE_STATUS_ACTIVE) {
 subscription.stopMirror(immediateStop);
 if (immediateStop)
 System.out.println("Stopping subscription "
 + subscription.getName() + " immediately.");
 else
 System.out
 .println("Stopping subscription "
 + subscription.getName()
 + " in a controlled manner. "
 + "Subscription will stop when current log position "
 + "has been reached.");
342 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 } else {
 System.out.println("Subscription " + subscription.getName()
 + " is not active.");
 }
}

Obtaining the state of a subscription is a bit more elaborate, as the state depends
on the activity (Refresh, Continuous Mirror, or Net Change) and status (Starting,
Active, or Inactive). The current version of the Java API has relatively limited
capabilities for retrieving the actual state of a subscription. The Management
Console has a greater variety of states it can retrieve from the InfoSphere CDC
engines, such as Refresh before mirror, and Ending. In the
getSubscriptionStateAsString() method (Example 9-60), attempt to copy the
Management Console states as accurately as possible, providing a return string
that resembles the activity (what is the subscription doing) and status (is it active
or not) of a subscription.

Example 9-60 Returns the activity of a subscription as a string

/**
 * Returns the activity of a subscription as a string for display. Trying to
 * copy the activity state from the Management Console as best as possible.
 *
 * @param subscription
 * - The subscription for which the state must be returned
 * @return State of the subscription
 * @throws ApiException
 * @throws UnsupportedFeatureException
 */
private String getSubscriptionStateAsString(Subscription subscription)
 throws UnsupportedFeatureException, ApiException {
 byte liveActivity = 0;
 byte liveStatus = 0;

 byte[] liveActivityStatus = subscription.getLiveActivityStatus();
 liveActivity = liveActivityStatus[0];
 liveStatus = liveActivityStatus[1];

 String stateString = "Unknown";
 if (liveStatus == Subscription.LIVE_STATUS_IDLE)
 stateString = "Inactive";
 else if (liveStatus == Subscription.LIVE_STATUS_START)
 stateString = "Starting";
 else if (liveStatus == Subscription.LIVE_STATUS_ACTIVE) {
 if (liveActivity == Subscription.LIVE_ACTIVITY_MIRROR)
 Chapter 9. Customization and automation 343

 stateString = "Mirror Continuous";
 else if (liveActivity == Subscription.LIVE_ACTIVITY_NET_CHANGE)
 stateString = "Mirror Scheduled End";
 if (liveActivity == Subscription.LIVE_ACTIVITY_DESCRIBE)
 stateString = "Describe";
 if (liveActivity == Subscription.LIVE_ACTIVITY_REFRESH)
 stateString = "Refresh";
 } else if (liveStatus == Subscription.LIVE_STATUS_DS_STARTING_JOB)
 stateString = "Starting DataStage Job";
 else if (liveStatus == Subscription.LIVE_STATUS_DS_WAITING_FOR_JOB_TO_START)
 stateString = "Waiting for DataStage Job to be Started";
 else if (liveStatus == Subscription.LIVE_STATUS_DS_CONNECTING_WITH_TARGET)
 stateString = "Waiting for DataStage Job to Connect";
 else if (liveStatus == Subscription.LIVE_STATUS_DS_JOB_ENDING)
 stateString = "Ending DataStage Job";
 return stateString;
}

The code shown in Example 9-61 demonstrates the asynchronous nature of
starting and stopping subscriptions. For a duration of 15 seconds, the
subscription is monitored, and every half second, the state of the subscription is
sent to the standard output. After one second of running, the subscription is
started in Continuous mirror mode, and after 10 seconds, the subscription is
stopped immediately. An immediate stop of the subscription does not mean
terminating the activity. The subscription still stops in a normal fashion, but does
not process all the log entries until the log time of the attempted stop is reached
(a controlled stop).

Example 9-61 Asynchronous starting and stopping a subscription

// Show the subscription state for 15 seconds, interval at 500 ms
// Start the subscription after 1 second, stop after 10 seconds
int maxTime = 15000;
int statusInterval = 500;
int subscriptionStart = 1000;
int subscriptionStop = 10000;
int timeConsumed = 0;
while (timeConsumed < maxTime) {
 System.out.println("Current state of subscription "
 + subscription.getName() + ": "
 + getSubscriptionStateAsString(subscription));
 Thread.sleep(statusInterval);
 timeConsumed += statusInterval;
 if (timeConsumed == subscriptionStart) {
// Start the subscription in continuous mirror mode
344 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 try {
 startSubscription(subscription, true);
 } catch (ApiException e) {
 e.printStackTrace();
 }
 } else if (timeConsumed == subscriptionStop) {
// Stop the subscription immediate
 try {
 stopSubscription(subscription, true);
 } catch (ApiException e) {
 e.printStackTrace();
 }
 }
}

Running the code produces the output shown in Example 9-62.

Example 9-62 Output from Example 9-61 on page 344

Current state of subscription REDSCRIPT: Inactive
Current state of subscription REDSCRIPT: Inactive
Started subscription REDSCRIPT in Continuous Mirror mode.
Current state of subscription REDSCRIPT: Starting
Current state of subscription REDSCRIPT: Starting
Current state of subscription REDSCRIPT: Refresh
Current state of subscription REDSCRIPT: Refresh
Current state of subscription REDSCRIPT: Refresh
Current state of subscription REDSCRIPT: Refresh
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Stopping subscription REDSCRIPT immediately.
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Mirror Continuous
 Chapter 9. Customization and automation 345

Current state of subscription REDSCRIPT: Mirror Continuous
Current state of subscription REDSCRIPT: Inactive
Current state of subscription REDSCRIPT: Inactive
Current state of subscription REDSCRIPT: Inactive
Current state of subscription REDSCRIPT: Inactive
Current state of subscription REDSCRIPT: Inactive

In Example 9-62 on page 345, you can see that the subscription is inactive
during the first second (two messages). After that period, the subscription starts
its processing and then commences refreshing the tables that have been marked
for refresh, which takes a total of approximately 2.5 seconds. Then the
subscription goes into Mirror Continuous mode until the loop reaches the 10
second limit you set and stops the subscription immediately (that is, it takes
about 2.5 seconds to make the subscription inactive).

The code could have been coded using threads, but for simplicity, we chose to
use a loop.

9.5.18 Monitoring latency

Management Console provides a convenient method for viewing performance
and statistics data generated by the InfoSphere CDC engines. But sometimes
you need to automate the retrieval of this information, for example, to build an
offline history of performance or perform automated application monitoring
through third-party solutions. The InfoSphere CDC Java API provides classes to
access this information.
346 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Figure 9-28 shows an overview of the process to access live performance and
statistics data on the data store.

Figure 9-28 Monitoring latency

Here is a brief description of the processes shown in Figure 9-28:

1. Connect to the Access Server (create a DataSource object).

2. Create the MonitorAgentListener, a monitor that listens to all incoming
messages from data stores and directs them to a
MonitorAgentMessageHandler object.

3. Send the performance statistics request to the data store.

4. The data store returns (asynchronously) the response to the
MonitorAgentListener object (through the Access Server).

5. MonitorAgentListener accepts the message and starts methods of the
MonitorAgentMessageHandler interface.

The dashed lines between MonitorAgentLister and the Access Server represent
communication between them, after the listener has been established.

Target datastore
(Subscriber)

Access Server
(DataSource)

Your Java Class

MonitorAgentListener

MonitorMessageAgentHandler

2

1

3

4

5

 Chapter 9. Customization and automation 347

After the connection to the Access Server (DataSource) is established, set up a
listener that accepts incoming messages from the data stores. The sample code
to perform this task is shown in Example 9-63.

Example 9-63 Sample code to set up a listener

/**
 * Configures and starts the monitor agent listener for incoming statistics
 * messages
 *
 * @param accessServerHost
 * - host name of the access server
 * @param accessServerPort
 * - port of the access server
 * @return No return value
 * @throws Exception
 */
private CDCMonitorHandler setMonitorAgentListener(DataSource accessServer,
 String accessServerHost, int accessServerPort) throws Exception {
 CDCMonitorHandler monitorHandler = null;
 MonitorAgentListener monitorAgentListener = null;

 monitorHandler = new CDCMonitorHandler();
 monitorAgentListener = new MonitorAgentListener(accessServerHost,
 accessServerPort, 0, 0, monitorHandler);
 monitorAgentListener.setDaemon(true);

 if (monitorAgentListener.init()) {
 monitorAgentListener.start();
 if (monitorAgentListener.isAlive()) {
 accessServer.setMonitorListeningPort(
 monitorAgentListener.getHostName(),
 monitorAgentListener.getPort());
 System.out.println("MonitorAgentListener listens on host "
 + monitorAgentListener.getHostName() + " and port "
 + monitorAgentListener.getPort() + ".");
 }
 }
 return monitorHandler;
}

348 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

In Example 9-63 on page 348, a MonitorAgentListener object is created, with
host name, port, and MyMonitorHandler object, and is initialized and started as a
daemon (background) thread. This action starts a listener process on a new port
that is assigned by the TCP/IP stack. Then check if the monitor is alive and let
the Access Server know that any monitor information must be passed to the
monitor agent listener.

After the listener has been started, you must request the data from the data
stores. Information about throughput and statistics is requested from the
subscribers (target data stores) in the context of a specific subscription. The
requestPerformanceData() method requests statistics from data stores.
Depending on the version of the InfoSphere CDC engines, you must determine
how to obtain the statistics from the data stores. Starting with InfoSphere CDC
V6.5, enhanced monitoring is supported and many statistics figures can be
retrieved from those data stores. To understand if the InfoSphere CDC engine
represented by the Subscribed object supports enhanced statistics, request the
FID_MONITORING_LEVEL feature from the engine. The sample code to
perform this action is shown in Example 9-64.

Example 9-64 Requesting performance statistics

/**
 * Issue statistics requests to target datastore for a subscription
 *
 * @param subscription
 * - The subscription for which the statistics are requested
 * @param targetDataStore
 * - Target datastore of the subscription
 * @param monitorHandler
 * - The object that will handle the statistics responses
 *
 * @return No return value
 */
private void requestPerformanceData(Subscription subscription,
 Subscriber targetDataStore, CDCMonitorHandler monitorHandler)
 throws ApiException, InterruptedException {
// Check if the subscription is active
 byte[] subscriptionStatus = subscription.getLiveActivityStatus();
 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
// If subscription is active, request statistics
 if (subscriptionStatus[1] == Subscription.LIVE_STATUS_ACTIVE) {
// Issue 10 requests
 for (int i = 1; i <= 10; i++) {
 System.out.println("Request " + i);
// Check if datastore supports enhanced statistics
 Chapter 9. Customization and automation 349

 if (targetDataStore.getFeature(TsFeatureSet.GID_GENERIC,
 TsFeatureSet.FID_MONITORING_LEVEL).equals("1")) {
// Issue InfoSphere CDC 6.5 request
 monitorHandler.requestTargetOperationalStatistics(
 targetDataStore, publication.getPublisherID());
 } else {
// Issue InfoSphere CDC 6.3 requests
 targetDataStore.sendGetPerformanceData(publication
 .getPublisherID());
 targetDataStore.sendGetStatisticsData(
 publication.getPublisherID(), "");
 }
 Thread.sleep(1000);
 }
 } else {
 System.err.println("Subscription " + subscription.getName()
 + " is not active, cannot retrieve statistics.");
 }
}

After checking that the subscription is active, the code issues 10 performance
requests to the target data store. Depending on whether the data store supports
enhanced statistics (which were introduced in InfoSphere CDC V6.5), statistics
requests are sent to the target data store. The method for obtaining operational
performance statistics has changed dramatically with the introduction of
InfoSphere CDC V6.5. If the InfoSphere CDC engine is Version 6.5 or later, you
can use the CDCMonitorHandler class requestTargetOperationalStatistics()
method. For Version 6.3 and earlier, enhanced statistics are not supported and
you use the sendGetPerformanceData() and sendGetStatisticsData() methods
from the Subscriber class. Requests are issued with a three second pause
between them.

Responses from data stores arrive asynchronously and they start methods in the
MonitorAgentMessageHandler interface, which is implemented by the
CDCMonitorHandler class. InfoSphere CDC V6.5 data stores start different
methods in this interface than previous versions when the statistics messages
arrive. InfoSphere CDC V6.5 data stores can be handled in the same way as
InfoSphere CDC V6.3 data stores, but only a limited set of data is available. All
the methods are implemented in the CDCMonitorHandler class, which was
supplied as an argument to MonitorAgentListener object.
350 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

To handle latency data that arrives from InfoSphere CDC V6.3 data stores, the
handleLatencyUpdate() method in the MonitorAgentMessageHandler interface
should be implemented. The sample code to perform this action is shown in
Example 9-65.

Example 9-65 Handling latency data for InfoSphere CDC V6.3

/**
 * Handle latency message that arrives from InfoSphere CDC 6.3 datastore
 *
 * @param inDataStream
 * - stream of data that arrives from datastore
 * @return No return value
 */
public void handleLatencyUpdate(DataInputStream inDataStream) throws IOException,
DataNotFoundException {

// Populate query object with the data arrived
 AbstractQuery query = new Query_5002(null);
 Result result = query.receiveResult(inDataStream);

// Get latency records from the stream
 Context[] latencyRecords = result.getContexts(Query.LatencyRecord);

// Iterate over the records and print, if there are more than one
 for (int i = 0; i < latencyRecords.length; i++) {
 long latencyValue = latencyRecords[i].getLong(Query.LatencyValue) / 1000;
 System.out.println("Latency: " + latencyValue + " seconds");
 }
}

Your main thread could be busy while the statistics messages arrive. So, the
code shown in Example 9-65 demonstrates the processing of an array of latency
records.

For every sendGetPerformanceData() invocation, a message from the data store
arrives and triggers invocation of this method. Subscription latency, expressed in
milliseconds, is extracted from the input data stream and printed.
 Chapter 9. Customization and automation 351

To handle statistics data (number of inserts, updates, and deletes), the
handleStatisticsUpdate() method, shown in Example 9-66, should
be implemented.

Example 9-66 Handling operational statistics for InfoSphere CDC 6.3

/**
 * Handle operation statistics message that arrives from InfoSphere CDC 6.3 datastore
 *
 * @param inDataStream
 * - stream of data that arrives from datastore
 * @return No return value
 */
public void handleStatisticsUpdate(DataInputStream inDataStream) throws IOException,
DataNotFoundException {

// Populate query object with the data arrived
 AbstractQuery query = new Query_5003(null);
 Result result = query.receiveResult(inDataStream);

 if (result.hasData(Query.StatisticsRecord)) {
 Context[] statisticsRecords = result.getContexts(Query.StatisticsRecord);

// Go over the messages received and based on the type of the message print the data
for (int i = 0; i < statisticsRecords.length; i++) {

 String name = statisticsRecords[i].getString(Query.FieldName);
 String value = statisticsRecords[i].getString(Query.FieldValue);

 if (name.compareToIgnoreCase("APPLY_UPDATE_COUNT") == 0) {
 System.out.println("Updates: " + value);
 } else if (name.compareToIgnoreCase("APPLY_DELETE_COUNT") == 0) {
 System.out.println("Deletes: " + value);
 } else if (name.compareToIgnoreCase("APPLY_INSERT_COUNT") == 0) {
 System.out.println("Inserts: " + value);
 }
 }
 }
}

This method is run for every sendGetStatisticsData() invocation in the
program. It is important to remember that data stores begin to collect data from
the first time it was requested. So for the first run of the program, all statistics
begin from 0 (even if thousands of operations were performed before) and every
other execution shows values updated since the first request.
352 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

InfoSphere CDC V6.5 data stores have enhanced monitoring capabilities, and
can provide a significant amount of statistical information that was not available
in prior versions of InfoSphere CDC. Therefore, accessing that data requires
different methods to be used. Because there is much more information that can
be requested, not all data arrives by default, and specific categories should be
defined in the request. Requests to the target data store is defined in the
requestTargetOperationalStatistics() method (Example 9-67).

Example 9-67 Requesting statistical information for InfoSphere CDC V6.5

/**
 * Request operational statistics from InfoSphere CDC 6.5 datastore
 *
 * @param subscriber
 * - subscriber that will send messages
 * @param subscriptionName
 * - subscription name
 * @return No return value
 */
public void requestTargetOperationalStatistics(Subscriber subscriber, String
subscriptionName)
 throws ApiException {

 targetStatisticData = new PerformanceStatisticData();

 StatisticDefinition definition;

// Get the supported statistics from the replication subscriber.
 StatisticCategory[] categories = subscriber.getStatisticDefinitions();
 for (StatisticCategory category : categories) {
 if (category.getId() == StatisticConstants.CATEGORY_SUBSCRIPTION_TARGET) {
 definition = category
 .getDefinition(StatisticConstants.TARGET_APPLY_INSERT_OPERATIONS);
 if (definition != null) {
 targetStatisticData.addDefinition(definition);
 }

 definition = category
 .getDefinition(StatisticConstants.TARGET_APPLY_UPDATE_OPERATIONS);
 if (definition != null) {
 targetStatisticData.addDefinition(definition);
 }

 definition = category
 .getDefinition(StatisticConstants.TARGET_APPLY_DELETE_OPERATIONS);
 Chapter 9. Customization and automation 353

 if (definition != null) {
 targetStatisticData.addDefinition(definition);
 }

 definition = category.getDefinition(StatisticConstants.TARGET_LATENCY);
 if (definition != null) {
 targetStatisticData.addDefinition(definition);
 }
 }
 }

// Perform the request
 requestStatistics(subscriber, targetStatisticData, false, subscriptionName);
}

The targetStatisticsData object of class PerformanceStatisticData is defined as a
data member in the CDCMonitorHandler class. From the subscriber, obtain all
statistic definitions you are interested in and add them to the
PerformanceStatisticData object, which is sent as part of the request to the data
store. The requestStatistics() method performs the request and is used
because it can send requests both to source and target data stores, because
only the part of building the statistics definitions is different (Example 9-68).

Example 9-68 Request statistics from both source and target

/**
 * Requests the statistics from an agent as identified by the statistic data
 * object. The object must only contain supported statistics and must not
 * mix source and target statistics in the same request.
 *
 * @param replicationRole
 * - the publisher or subscriber agent.
 * @param statisticData
 * - the statistic data object that identifies which statistics
 * to request.
 * @param isSource
 * - true if the request is made to the source agent, false if
 * made to the target agent.
 * @param subscriptionName
 * - the name of the subscription if the request is for the
 * source, or the published subscription ID if the request is for
 * the target.
 * @throws ApiException
 * - if any exception occurs.
 */
354 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

private void requestStatistics(ReplicationRole replicationRole, StatisticData
statisticData,
 boolean isSource, String subscriptionName) throws ApiException {
 Query query = replicationRole.getQuery(Query.MSG_GET_STATISTIC_VALUES);

 ArrayList<StatisticDefinition> statisticDefinitions =
statisticData.getDefinitions();

 query.setInt(Query.Correlator, statisticData.getCorrelatorId());

// Initialize agentType according to the type of the datastore byte agentType = 0;
 if (!isSource)
 agentType = 1;

// Build the request object
 query.setByte(Query.AgentType, agentType);
 query.setByte(Query.ContextObjectType,
 StatisticContextObjectType.SUBSCRIPTION.getMessageValue());
 query.setString(Query.SubscriptionName, subscriptionName);
 query.setString(Query.TableOwner, ""); //$NON-NLS-1$
 query.setString(Query.TableName, ""); //$NON-NLS-1$

// Add all statistics definitions
 for (StatisticDefinition definition : statisticDefinitions) {
 query.addInt(Query.StatIds, definition.getId());
 }

 query.setLong(Query.BeginTime, 0);
 query.setLong(Query.EndTime, 0);
 query.setInt(Query.SampleCount, 1);

// Send the request to the datastore
 query.request();
}

In this method, the Query object is built, based on all statistics definitions that are
added and the type of the data store, and it is sent to the data store. Unlike a
InfoSphere CDC V6.3 data store, all response messages arrive at the same
(handleStatisticValues()) method, regardless whether the latency or
operations was requested (Example 9-69).

Example 9-69 Handling statistics for InfoSphere CDC V6.5

/**
 * Handles the returned statistics from an agent as identified by the
 Chapter 9. Customization and automation 355

 * statistic data object. The object must only contain supported statistics
 * and must not mix source and target statistics in the same request.
 *
 * @param dataStoreHost
 * - host name of the datastore
 * @param dataStorePort
 * - port of the datastore
 * @param messageCorrelator
 * - correlation id of the response (to match request)
 * @param maMessageBodyLength
 * - length of the message body
 * @param maMessageBody
 * - message body
 * @return No return value
 * @throws ApiException
 * - if any exception occurs.
 */
public void handleStatisticValues(String dataStoreHost, int dataStorePort,
 int messageCorrelator, int maMessageBodyLength, byte[] maMessageBody)
 throws IOException, DataNotFoundException {

 PerformanceStatisticData statisticData = null;

// Obtain statistics received
 if (targetStatisticData != null
 && targetStatisticData.getCorrelatorId() == messageCorrelator) {
 statisticData = targetStatisticData;
 }

// If it's not null
 if (statisticData != null) {
 statisticData.loadData(maMessageBody);

 long value;

// Extract all the data that was sent and print it
 value = statisticData
 .getCurrentValueById(StatisticConstants.TARGET_APPLY_UPDATE_OPERATIONS);
 System.out.println("Updates: " + value);

 value = statisticData
 .getCurrentValueById(StatisticConstants.TARGET_APPLY_DELETE_OPERATIONS);
 System.out.println("Deletes: " + value);

 value = statisticData
356 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 .getCurrentValueById(StatisticConstants.TARGET_APPLY_INSERT_OPERATIONS);
 System.out.println("Inserts: " + value);

 value = statisticData
 .getCurrentValueById(StatisticConstants.TARGET_LATENCY);
 System.out.println("Latency: " + value + " seconds");
 }
}

When this method is called, upon message arrival, the data is extracted from the
message and printed out. In this example, only latency and operations are
requested and received, but in principle everything that appears in Management
Console could be extracted.

The code shown in Example 9-70 starts the requestPerformanceData() method,
which sends 10 requests to the target InfoSphere CDC data store.

Example 9-70 Request performance data

// Set up the monitor handler
CDCMonitorHandler monitorHandler = setMonitorAgentListener(
 accessServer, asHost, asPort);
// Send the requests to get subscription statistics
requestPerformanceData(subscription, db2DataStore, monitorHandler);

When the code is run, the output could look something like the output shown in
Example 9-71. We deliberately included some delays in the apply process to be
able to show some latency.

Example 9-71 Sample output from performance data request

MonitorAgentListener listens on host 127.0.1.1 and port 50738.
Request 1
Updates: 200
Deletes: 92
Inserts: 1262
Latency: 17 seconds
Request 2
Updates: 200
Deletes: 92
Inserts: 1309
Latency: 22 seconds
Request 3
Updates: 200
Deletes: 92
Inserts: 1309
 Chapter 9. Customization and automation 357

Latency: 22 seconds
Request 4
Updates: 200
Deletes: 92
Inserts: 1309
Latency: 22 seconds
Request 5
Updates: 200
Deletes: 92
Inserts: 1309
Latency: 22 seconds
Request 6
Updates: 200
Deletes: 92
Inserts: 1309
Latency: 22 seconds
Request 7
Updates: 200
Deletes: 92
Inserts: 1358
Latency: 27 seconds
Request 8
Updates: 200
Deletes: 92
Inserts: 1358
Latency: 27 seconds
Request 9
Updates: 200
Deletes: 92
Inserts: 1358
Latency: 27 seconds
Request 10
Updates: 200
Deletes: 92
Inserts: 1358
Latency: 27 seconds
358 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.5.19 Monitoring event logs using the API

Event logs are kept in every InfoSphere CDC engine's metadata repository or in
operating system objects (System i and System z). In InfoSphere CDC, every
event is represented by an object of type TsEvent. A TsEvent object contains all
the information about the event, such as date and time, ID, type (Information and
Error as examples), originator module of the event, and the text itself. If an event
is an object of type TsEvent, the sample content could be as shown in
Example 9-72.

Example 9-72 Event sample content

event.getTime() : 035247
event.getDate() : 20110330
event.getID() : 1463
event.getSubscription(): REDSCRIPT
event.getType() : 4 (means Information)
event.getOriginator() :
com.datamirror.ts.source.subscription.SubscriberProxy
event.getInformation() : +++ Subscription REDSCRIPT is starting in
Continuous
Mirroring mode.

The getType() method returns a byte that indicates the severity of the message.
The method that translates this code into a meaningful description is shown in
Example 9-73.

Example 9-73 Method to translate the message event type

/**
 * Return description of the event type code
 *
 * @param type
 * - byte, returned by event.getType() method
 * @return Description of the type
 */
private String translateEventType(byte type) {
 switch (type) {
 case TsEvent.TYPE_ALL:
 return "All";
 case TsEvent.TYPE_DIAGNOSTIC:
 return "Diagnostic";
 case TsEvent.TYPE_ERROR:
 return "Error";
 case TsEvent.TYPE_ESCAPE:
 return "Escape";
 Chapter 9. Customization and automation 359

 case TsEvent.TYPE_INFORMATION:
 return "Information";
 case TsEvent.TYPE_NOTICE:
 return "Notice";
 case TsEvent.TYPE_WARNING:
 return "Warning";
 }
 return "Unknown";
}

The event log is retrieved as Enumeration of TsEvent objects by the getEvents()
method, which is starts on Subscription or Publication (subscription level events)
objects, or Publisher or Subscriber (data store level events). We have created a
single method that shows the events (Example 9-74).

Example 9-74 Method to show log events

/**
 * Show events that were collected in the <TsEvent> enumeration
 *
 */
private void showEvents(Enumeration<TsEvent> events) {
 int numberEvents = 0;
 while (events != null && events.hasMoreElements()) {
 TsEvent event = events.nextElement();
 System.out.println(event.getTime() + "|" + event.getDate() + "|"
 + event.getID() + "|" + translateEventType(event.getType())
 + "|" + event.getOriginator() + "|"
 + event.getInformation());
 numberEvents++;
 }
 System.out.println(numberEvents + " events displayed.");
}

Subscription event log
As previously mentioned, information about subscription is contained in both
source and target engines, so events that are related to a specific subscription is
generated on them both, depending on where the event took place. To retrieve
all subscription events, you need the Subscription and Publication object. The
sample code to perform this task is shown in Example 9-75.

Example 9-75 Show subscription events

/**
 * Show subscription events stored on the source and target
360 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 *
 * @param Subscription
 * - The subscription for which to show source and target events
 * @param targetDataStore
 * - Target engine of the subscription
 * @param subscriptionName
 * - Name of the subscription
 * @return No return value
 */
private void showSubscriptionEventLog(Subscription subscription,
 Subscriber targetDataStore) throws ApiException {
// Object to hold event log
 Enumeration<TsEvent> events = null;
// Get events of the subscription from the source
 events = subscription.getEvents(true);
 System.out.println("SOURCE EVENTS FOR SUBSCRIPTION "
 + subscription.getName() + ":");
 showEvents(events);
// Get publication for the subscription
 Publication publication = getSubscriptionPublication(subscription,
 targetDataStore);
 if (publication != null) {
// Get events of the subscription from the target
 events = publication.getEvents(true, Publication.REPLICATION_LOG);
 System.out.println("TARGET EVENTS FOR SUBSCRIPTION "
 + subscription.getName() + ":");
 showEvents(events);
 }
}

For the passed Subscription object, getEvents() is starts and the events
populate variable events of type Enumeration<TsEvent>. The method has one
Boolean parameter, recentFirst. When set to true, the events are sorted from the
most recent to the oldest, and when set to false, the oldest events appear first
and the most recent last.

Then, the Publication object for the subscription is retrieved from the target data
store and the events are retrieved from that object as well. In both cases, the
showEvents() method is called to show the events.
 Chapter 9. Customization and automation 361

Data store event log
The event log of every data store can be retrieved by starts the getEvents()
method on the ReplicationRole object or any of its subclasses (Publisher or
Subscriber). Assuming you have the ReplicationRole object, Example 9-76
shows the sample code to retrieve the event log:

Example 9-76 Show data store events

/**
 * Show datastore events
 *
 * @param dataStore
 * - The source or target datastore to show the events for
 * @return No return value
 */
private void showDatastoreEventLog(ReplicationRole dataStore)
 throws ApiException {

// Object to hold event log
 Enumeration<TsEvent> events = null;
// Get events of the datastore
 events = dataStore.getEvents(true);
 System.out.println("EVENTS FOR DATASTORE " +

dataStore.getDescription() + ":");
 showEvents(events);
}

After the connection to the data store is established, events are retrieved and
printed similar to the way it was done from the subscription. The output of the
method is similar to the output of subscription events, but with the events that are
related to the data store and not a specific subscription.

Single scrape event log
Retrieving the events of a single scrape is different. The sample method that
retrieves and prints events is shown in Example 9-77.

Example 9-77 Retrieving single scrape events

/**
 * Show single scrape events
 *
 * @param sourceDataStore
 * - Publisher that holds the single scrape
 * @return No return value
 */
362 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

private void showSingleScrapeEventLog(Publisher sourceDataStore)
 throws ApiException {
// Object to hold event log
 Enumeration<TsEvent> events = null;
// Get events of the datastore
 events = new EventLog(sourceDataStore, (byte) 2,
null).getEvents(true);
 System.out.println("SINGLE SCRAPE EVENTS FOR DATASTORE "
 + sourceDataStore.getDescription() + ":");
 showEvents(events);
}

The difference from the previous sample is the way the EventLog object is
instantiated by passing the source data store and type of events as the
arguments. The single scrape event log is of type (byte)2. Then, on this object
starts the getEvents() method. As you can see in the method's parameters,
expect a Publisher object to be passed to it. Because single scrape only exists in
source data stores, prevent sending data stores of type target (such as
InfoSphere CDC DataStage) to the method and encounter errors in trying to
retrieve an event log that does not exist. The output is similar to other methods,
with different events.

Showing the event logs
We now combine the three methods in the code shown in Example 9-78.

Example 9-78 Event log display methods

showDatastoreEventLog(oracleDataStore);
showSingleScrapeEventLog(oracleDataStore);
showSubscriptionEventLog(subscription, db2DataStore);
showDatastoreEventLog(db2DataStore);

When you run this sample, the output shown in Example 9-79 is produced (not all
events are shown).

Example 9-79 Output from showing event logs

EVENTS FOR DATASTORE InfoSphere CDC Oracle Redo 6.5:
0 events displayed.

SINGLE SCRAPE EVENTS FOR DATASTORE InfoSphere CDC Oracle Redo 6.5:
143324|20110415|2917|Information|com.datamirror.ts.util.oracle.OracleRedoNativeApi|IB
M InfoSphere Change Data Capture daemon has reported an informational message. Redo
log scraping started at position '1855797.79260.332.16786944' timestamp 'FriApr 15
14:32:40 2011'.
 Chapter 9. Customization and automation 363

143324|20110415|2917|Information|com.datamirror.ts.util.oracle.OracleRedoNativeApi|IB
M InfoSphere Change Data Capture daemon has reported an informational message.
Started on-line redo log file '/oradata/cdcdemo/redo03.log'. Redo log processing has
been initiated on the on-line file '/oradata/cdcdemo/redo03.log'. The current
sequence is 37. The low scn is 1811661. The low timestamp is Thu Apr 14 22:19:35
2011. The next scn is -. The next timestamp is -.
143324|20110415|2917|Information|com.datamirror.ts.util.oracle.OracleRedoNativeApi|IB
M InfoSphere Change Data Capture daemon has reported an informational message. New
scrape point specified by redo log position '1855797.0.0.0'. The previously recorded
redo log position is '0.0.0.0'. The corresponding previous redo timestamp is 'Thu Jan
1 01:00:00 1970'. A user command has specified the new starting redo log position
'1855797.0.0.0'.
3 events displayed.

SOURCE EVENTS FOR SUBSCRIPTION REDSCRIPT:
143324|20110415|2922|Information|com.datamirror.ts.scrapers.singlescrape.SingleScrape
Thread|Subscription REDSCRIPT has started using the single scrape staging store.
143320|20110415|44|Information|com.datamirror.ts.source.replication.MirrorModerator|M
irroring has been initiated for table CDCDEMO.PRODUCT.
143320|20110415|44|Information|com.datamirror.ts.source.replication.MirrorModerator|M
irroring has been initiated for table CDCDEMO.DEMO_CUSTOMER.
143320|20110415|1437|Information|com.datamirror.ts.source.replication.MirrorModerator
|Table CDCDEMO.PRODUCT refresh to REDSCRIPT is complete. 231 rows were sent.
143320|20110415|225|Information|com.datamirror.ts.source.replication.MirrorModerator|
Table CDCDEMO.PRODUCT refresh to REDSCRIPT has been confirmed by the target system.
231 rows were received, 231 rows were successfully applied, 0 rows failed.
143318|20110415|9703|Information|com.datamirror.ts.source.tablereader.TableReader|Met
hod used for Refresh on source: JDBC
143318|20110415|223|Information|com.datamirror.ts.source.replication.MirrorModerator|
Table CDCDEMO.PRODUCT will be refreshed to REDSCRIPT .
…
26 events displayed.

TARGET EVENTS FOR SUBSCRIPTION REDSCRIPT:
143329|20110415|6673|Information|com.datamirror.ts.target.publication.TargetMirrorApp
lyJob|IBM InfoSphere Change Data Capture will commit on source transaction
boundaries.
143320|20110415|227|Information|com.datamirror.ts.target.publication.TargetRefreshApp
lyJob|Refresh was completed for table CDCDEMO.PRODUCT_TARGET. 231 rows were received,
231 rows were successfully applied, 0 rows failed.
143319|20110415|226|Information|com.datamirror.ts.target.publication.TargetRefreshHan
dler|Refresh was started for table CDCDEMO.PRODUCT_TARGET.
143319|20110415|322|Information|com.datamirror.ts.target.apply.udb.fastload.UDBFastlo
adApply|The table CDCDEMO.PRODUCT_TARGET was cleared.
364 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

143318|20110415|6693|Information|com.datamirror.ts.target.publication.TargetRefreshAp
plyJob|DB2 Fastload apply mode is used for refresh.
143318|20110415|227|Information|com.datamirror.ts.target.publication.TargetRefreshApp
lyJob|Refresh was completed for table CDCDEMO.DEMO_CUSTOMER_TARGET. 228,117 rows were
received, 228,117 rows were successfully applied, 0 rows failed.
143236|20110415|226|Information|com.datamirror.ts.target.publication.TargetRefreshHan
dler|Refresh was started for table CDCDEMO.DEMO_CUSTOMER_TARGET.
143235|20110415|322|Information|com.datamirror.ts.target.apply.udb.fastload.UDBFastlo
adApply|The table CDCDEMO.DEMO_CUSTOMER_TARGET was cleared.
143234|20110415|6693|Information|com.datamirror.ts.target.publication.TargetRefreshAp
plyJob|DB2 Fastload apply mode is used for refresh.
…
54 events displayed.

EVENTS FOR DATASTORE InfoSphere CDC DB2 6.5:
0 events displayed.

9.6 Monitoring and integration with external monitoring
solutions

The previous sections described configuring InfoSphere CDC so that it is optimal
for your environment. The sections demonstrated the usage of several special
implementation topologies, such as large distributions and consolidations, and
optimizing InfoSphere CDC for high volumes.

For many clients, InfoSphere CDC is a business critical application or a
component of another business process upon which users depend. After you
have set up your environment and deployed the configuration in your production
environment, ensure that the replication functions as expected, that transactions
are delivered to the intended destinations, and that the latency meets
your requirements.

The Management Console offers functionality to configure, operate, and monitor
your replication environment and can show an integral overview of your entire
replication landscape. The Management Console has a InfoSphere CDC focus
and is interactive, being a graphical user interface, and does not lend itself to
integration with systems or business monitoring solutions.
 Chapter 9. Customization and automation 365

For example, you could have chosen InfoSphere CDC to do the transportation of
orders from your website to your order processing application, and at the same
time provide feedback about current stock levels to your web customers. You
expect that orders entered on the web are instantly made available to the
back-end application to be processed for order picking and shipment and that
there is maximum latency for the delivery of the order data (for example, less
than 5 minutes). At the same time, you want to provide your customers with stock
information that is up to date in real time so that they know that certain goods are
readily available for shipment.

This section describes the various InfoSphere CDC components that can be
monitored and provides ideas about how this monitoring can be integrated with
your systems and business monitoring solution.

9.6.1 Components to monitor

The key InfoSphere CDC items you want to monitor are the replication latency of
any subscriptions going from the web server to the order processing application
(placed orders) and the subscriptions in the reverse direction (stock information).

There are several methods for monitoring the latency of the replication, which are
described in Chapter 8, “Performance analysis and design considerations” on
page 211. If the lag time between generation of transactions on the source and
arrival on the target is too long, there could be several reaons for this lag. Some
reasons include the subscription being slow due to congestion on the
intermediate network or even the target InfoSphere CDC instance being down,
rendering the subscriptions inactive as a result.

9.6.2 InfoSphere CDC instance activity

Subscription activity is directly dependent on the InfoSphere CDC source and
target instances running well. Should either instance not be active, subscriptions
cannot be kept active and stop. On the server itself, the activity of the InfoSphere
CDC instance can be monitored by interrogating the operating system
processes. If you want to consolidate the monitoring of InfoSphere CDC and
other processes to a single location, use the Java API to ping or connect to the
data store to determine its activity. If the data stores cannot be reached, you can
then notify the systems monitor of this condition.

Examples for checking the InfoSphere CDC instance activity from the server
have been provided in 9.4.5, “Checking an InfoSphere CDC engine and
subscriptions activity” on page 246. If you want to implement the instance activity
checking using the Java API, see 9.5.4, “Connecting to the data stores” on
page 277.
366 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.6.3 Subscription activity

Starting with InfoSphere CDC V6.5 (and earlier releases for InfoSphere CDC for
System z or DB2), subscriptions can be marked persistent, meaning that
replication initiates a normal shutdown under certain circumstances, such as
interruptions in the network communications. InfoSphere CDC attempts to
automatically restart continuous mirroring for persistent subscriptions at regular
intervals. This persistence keeps the replication environment active at almost all
times and the need for continuously checking the replication activity might no
longer be a strong requirement. There might still be reasons why subscriptions
stop, such as apply failures due to data inconsistency or even an operator error.

Subscription activity must be monitored on the source server of the subscription.
The source InfoSphere CDC engine provides the only valid entry point for
checking this activity. Even though it is possible on some operating systems to
check the activity of InfoSphere CDC target processes, do not use this
information as the only source for determining activity. You can assume that if
the subscription is reported active by the InfoSphere CDC source engine that the
end-to-end process is running fine. If there is a condition that causes the target
replication processes to terminate, the InfoSphere CDC heartbeat feature
ensures that the source process also stops, and vice versa.

In some environments, customers have a mix of subscriptions that should be
active at all times, and other subscriptions that are only started occasionally (for
example, for refreshing certain tables on a daily basis). When you design your
activity monitoring, implement a naming convention that allows the monitoring
process to distinguish between these classes of subscriptions. If you consider
using the Java API to monitor subscription activity, you could mark the
subscription activity service levels in the description of the subscription and
analyze it through the API.

Examples for checking subscription activity from the server have been provided
in 9.4.5, “Checking an InfoSphere CDC engine and subscriptions activity” on
page 246. If you want to implement the subscription activity checking using the
Java API, see 9.5.17, “Starting, stopping, and monitoring subscriptions” on
page 339.

9.6.4 Events

InfoSphere CDC distinguishes the areas where events can occur and are logged
in the data store event logs (source and target), subscription event logs (source
and target), or single scrape event log (at the source side; it is available for the
InfoSphere CDC V6.5 Linux, UNIX, and Windows engine only).
 Chapter 9. Customization and automation 367

If, for example, the replication stops because of a duplicate key in the target
table, this error is logged in the target subscription event log. As a result of
stopping the subscription in an abnormal fashion, a number of errors are also
logged in the source subscription event log.

InfoSphere CDC offers a number of possibilities to monitor the events that are
logged by the InfoSphere CDC engines:

� Show the individual event logs from the Management Console
Monitoring perspective.

� Use the Management Console to export the event logs in a text or
comma-separated values file (events in all areas can be brought together).

� Collect the events on the source and target servers running InfoSphere CDC,
using either the InfoSphere CDC engine or operating system commands.

� Configure notifications for the InfoSphere CDC engines or subscriptions to
conditional action events that occur and forward these events to email
(available for the Linux, UNIX, and Windows engine), message queues
(System i), SYSLOG (System z), CHCPRINT spooled member (System z), or
start a notification user exit program (all engines).

� Create a custom program employing the Java API to gather the event logs
from source and target engines / subscriptions.

If you want to integrate the InfoSphere CDC events with a systems monitoring
solution (such as IBM Tivoli Monitoring), the collection of event logs from the
Management Console is not suitable. When gathering events on the servers
running InfoSphere CDC, the source and target subscription events must be
collected on the source and target server. To determine the cause of a
replication failure, you typically need to explore both source and target events to
make a correct assessment of what exactly went wrong.

Event logs can be collected on source and target InfoSphere CDC servers using
the techniques described in “Monitoring the event logs” on page 250. Your
external monitoring solution should then be configured to collect the event log
output or monitor the objects on these servers (use the output of dmshowevents
for Linux, UNIX, and Windows engine, a message queue object for System i, and
SYSLOG for System z), and take act accordingly.
368 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

If your external monitoring solution does not support all the InfoSphere CDC
platforms or if you have specific requirements for feeding the monitoring solution,
the Java API and writing notification user exits provide the most flexible options.
Using the API, you can retrieve the event logs of all InfoSphere CDC engines
that have been registered using the techniques described in 9.5.19, “Monitoring
event logs using the API” on page 359. Alternatively, if you want the InfoSphere
CDC engine to send notifications to your external monitoring solution, you could
use the notifications user exits described in 9.7.7, “Notifications” on page 425.

9.6.5 Latency

If subscriptions have a backlog of transactions to process, the subscriptions are
latent. InfoSphere CDC provides functionality in the Management Console to
view the latency of a subscription and monitor it over time. Many customer
environments have critical business processes that depend on the timeliness of
the data that is transported and applied through InfoSphere CDC, so these items
can be an important one to monitor.

For example, because of production systems overloading, you might decide that
reporting is primarily done from a reporting server. Business users make their
decisions based on the information that they obtain through the reports, which
creates a dependency on the accuracy and timeliness of the data replicated to
this reporting server.

Management Console allows you to set latency notification thresholds (in
number of minutes) for subscriptions, specifying a threshold for warning and one
for error. When the latency of the subscription exceeds the configured latency,
the replication process starts sending events to the target subscription event log
(the target side is where latency is measured).

Monitoring the latency then becomes a matter of monitoring the event log, which
is described in “Monitoring the event logs” on page 250.

9.7 User exits

InfoSphere CDC lets you define subroutines that are starts when a predefined
event occurs. You can use these user exits to customize the replication and
related functionality to fit your business requirements.

Among other uses, user exits can be starts before or after database operations
are being applied to the target or to calculate a column value to be assigned to a
column on the target side.
 Chapter 9. Customization and automation 369

This section describes the most commonly used user exit points and provides
guidelines about how to implement them in the InfoSphere CDC environment.
Additionally, a number of examples are provided that help you design your own
user exit programs.

9.7.1 Common uses for user exits

The most common use case for InfoSphere CDC user exit programs is execution
of additional actions on the apply side of the replication process. Your
subscriptions replicate changes from a source to a target database and, based
on the type of operation, the user exit program is starts to perform
custom routines.

For example, in an application integration scenario, you could exchange the data
from your source application with your target application using database tables.
Then, as application transactions are applied to the target database, you might
want to notify the receiving application that there is a transaction to be processed
by using a message on a queue. The target application monitors the queue for
new incoming messages, and when a message arrives, picks up the transaction
details from the tables that have been populated by the subscription
application process.

As an alternative, the process could build an XML document based on the
incoming operations and then post this document on an Enterprise Service Bus
when the transaction is committed.

Another frequent use of custom code is for row filtering. Assume that you want to
filter rows based on a lookup in a master table that only has a few rows.
InfoSphere CDC can use a %GETCOL function in the row filtering to retrieve the
values of this master table for every operation that was read from the log. If the
filtering is then defined for a table that has high volumes, this situation could
potentially lead to an additional impact on the source. One of the solutions to
reduce the workload on the source is to write a user exit program that reads the
entries from the master table into a cache when it is called, and then use the
cached entries from that moment onwards.

Row filtering and user exits are also sometimes used for scaling the replication if
the target database can only handle a certain volume throughput of operations in
a single database session. By using a row filter on the key columns, you can then
share the work for this single table across multiple subscriptions, and then initiate
multiple database sessions on the target side and increase the throughput. Using
a derived expression, a user exit provides additional flexibility when designing
the row filter. For example, if the replicated table has a numeric key column, a
user exit could calculate the modulo value of this numeric key with a certain
divisor and allow you to use the remainder in your row selection.
370 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Coding and using the modulo function is described in 9.7.3, “Derived expression
user exits” on page 373.

9.7.2 User exit programs

Keep your code for the user exit as efficient as possible. When you start a
user-written program at a defined exit point, it is important to realize that a call is
issued each time a clear, insert, update, or delete operation is applied to a target
table. Therefore, when data replication activity is high, overall throughput and
performance impact is affected by the actions that are implemented through the
code in the user-written programs.

Java user exit programs
When developing Java user exit programs to interface with InfoSphere CDC, you
should be aware that a specific environment must be configured. Although most
Java Development Kits at Version 1.6 or later can be used to compile classes
that use the JAR files that come with the InfoSphere CDC engines, use the IBM
JDK for your development environment to be synchronized with the required
running environment. All user exit programs that are called from an InfoSphere
CDC V6.5 engine run using IBM Java Runtime Engine V1.6.

The class path for compiling your self-developed classes must include the
ts.jar file, which can be found in the lib directory of the InfoSphere CDC
engine product. Consider copying the ts.jar file to your development
environment if your development environment does not have direct access to the
directories that contain the InfoSphere CDC product.

To let the InfoSphere CDC engine discover the user exit classes, the classes
must be placed in the class path of the engine. A good practice is to store the
custom classes in the cdc_home/lib directory. If you change the user exit
programs, you must restart the InfoSphere CDC instance to ensure that the JVM
picks up the new version of the class.

System i user exit programs
System i user exit programs for InfoSphere CDC can be written in any original
program model (OPM) or integrated language environment (ILE) compliant
language, such as RPG, COBOL, C, or CL.

ts.jar file: Keep in mind that the ts.jar file integrates with the version of
InfoSphere CDC that is running in your environment. Should a new version of
InfoSphere CDC be installed, it might be necessary to replace the copy of the
ts.jar file with the latest version.
 Chapter 9. Customization and automation 371

In order for the InfoSphere CDC subscription jobs to find your user exit
programs, the programs must be in the library list of the jobs running the
InfoSphere CDC subscription. This library could be the product library or any
library that is in the library list of the DMCJOBD job description. To avoid
overwriting your custom programs when installing new releases of InfoSphere
CDC, place the programs in a separate library.

When you design your user exit programs, remember that loading a program into
memory for execution and opening tables (files) are expensive operations. If you
intend to use a row-level user exit program to apply changes to a different table,
ensure that the program does not open and close files on entry and exit.

Here are some considerations when coding and compiling your user
exit programs:

� In RPG, do not set the Last Record (LR) indicator when returning from your
program, as this setting causes any open files to be closed and the program
removed from memory.

� Compile ILE user exit programs with DFTACTGRP(*NO)
ACTGRP(*CALLER) so that your user exit program uses the same activation
group as InfoSphere CDC and does not have to reinitialize itself on every call.

More information about user exits for InfoSphere CDC on System i can be found
at the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r3m3/topic/com.ibm.cdcdo
c.cdcfori.doc/concepts/userexitsfortransformationserver.html

System z user exit programs
Programs can be written in any high-level language (including C, COBOL, and
Assembler) that supports reentrant coding techniques and standard OS linkage,
and uses the z/OS IBM Language Environment®. The user exit programs must
be compiled and link-edited to use AMODE 31 (31-bit addressing mode).

The link-edited load modules that represent the user exit must be made
accessible to InfoSphere CDC using a CHCUXLIB DD statement in the execution
JCL. This load library must not be APF authorized. User exit programs must be
successfully link-edited before proceeding to configure them in the
Management Console.

For more information about z/OS user exit programs, go to the following address:

http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdo
c.cdcforzos.doc/concepts/infospherechangedatacaptureuserexits.html
372 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

http://publib.boulder.ibm.com/infocenter/cdc/v6r3m3/topic/com.ibm.cdcdoc.cdcfori.doc/concepts/userexitsfortransformationserver.html
http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.cdcforzos.doc/concepts/infospherechangedatacaptureuserexits.html
http://publib.boulder.ibm.com/infocenter/cdc/v6r5m1/topic/com.ibm.cdcdoc.cdcforzos.doc/concepts/infospherechangedatacaptureuserexits.html

Stored procedure user exits
Besides running user exits using a programming language that is callable from
the InfoSphere CDC replication engine, you can also configure stored
procedures to be called based on predefined events. Stored procedures are
compiled programs that are physically stored in a database and, when called, are
run by the database engine. This action could provide a handle for delivering
additional scalability when you must run complex operations or calculations.

A typical use of a stored procedure user exit is when you want to replicate the
contents of a single table to two target tables. In a standard InfoSphere CDC
configuration, this action requires you to create two subscriptions, each mapping
the same table but having a different destination table. As subscriptions run
independently of each other, the transaction consistency between the target
tables can no longer be guaranteed. If you call a stored procedure to operate on
the second table (or both tables), information in the target tables is still
transaction consistent.

When used in a table-level or row-level exit point, the stored procedures are run
in line with the operations that InfoSphere CDC applies into the target tables.
Both share a database connection, which ensures that when a stored procedure
user exit is called from an after-operation exit point, the changes to the table that
were made by InfoSphere CDC are visible to the stored procedure user
exit program.

You can retrieve the columns that were replicated from the source table, journal
control columns, and system values by specifying parameters in your stored
procedure user exit program. InfoSphere CDC analyzes these parameters and
passes the values when it calls the stored procedure.

9.7.3 Derived expression user exits

This section describes derived expression user exits.

Java user exit for derived expression
The UEModuloFilter65 class is an implementation of the InfoSphere CDC
derived expression interface and can be called using the %USERFUNC("JAVA")
function from within InfoSphere CDC, either on the source or the target. In
Example 9-80, the user function is suitable for performing row filtering at
the source.

Example 9-80 Modulo function derived expression user exit

import java.math.BigDecimal;

import com.datamirror.ts.derivedexpressionmanager.DEUserExitIF;
 Chapter 9. Customization and automation 373

import com.datamirror.ts.derivedexpressionmanager.UserExitInvalidArgumentException;
import com.datamirror.ts.derivedexpressionmanager.UserExitInvokeException;
import com.datamirror.ts.util.Trace;

/*
 Overview:
 The user exit performs a modulo operation against a specified column and
 determine if it equals the specified remainder value. The parameters passed
 into the user exit are:
 a) Dividend -> Numeric value to perform the modulo function against
 b) Divisor -> Numeric value by which the Dividend will be divided
 c) Remainder -> Remainder value to be tested

 The comparison logic is as follows:

 <Dividend> % <Divisor> == <Remainder>

 Instructions:

 1) Copy the UEModuloFilter65.class file to the <cdc install>/lib directory
 2) Go to the mapping details for the table
 3) Under Filtering, specify the following

 %USERFUNC("JAVA","UEModuloFilter65",<Dividend column>, <Divisor value>,
 <Remainder>)

 Return value is boolean, true or false.
 */

public class UEModuloFilter65 implements DEUserExitIF {

 public Object starts(Object[] aobjList)
 throws UserExitInvalidArgumentException, UserExitInvokeException {
 try {
 long dividendColumn = ((BigDecimal) aobjList[0]).longValue();
 long divisorValue = ((BigDecimal) aobjList[1]).longValue();
 long remainderValue = ((BigDecimal) aobjList[2]).longValue();
 return new Boolean(
 (dividendColumn % divisorValue) == remainderValue);
 } catch (ClassCastException e) {
 // Piggyback on the CDC logging facility
 Trace.traceAlways(e);
 throw new UserExitInvalidArgumentException(
 "Invalid number parameter passed "
 + "to the user function, arguments passed: [0]="
374 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 + aobjList[0] + ", [1]=" + aobjList[1] + ", [2]="
 + aobjList[2] + ", Message: " + e.getMessage());
 }
 }
}

When specified in the row filter for a replicated table, InfoSphere CDC calls the
starts() method of the class for every log entry of that table. Should invalid
numerics be passed as parameters, the exception is caught and the InfoSphere
CDC tracing facility starts. The exception that is then thrown is logged under the
<cdc_home>/instance/<instance>/log directory in the current trace_dmts* file.

You can also use the logging facility if you are in the process of developing your
user exit and you want to debug it.

For example, suppose that you have a high volume table that has an integer
primary key column (KEYCOLUMN). You want to divide the workload of
replicating this table across three subscriptions to have multiple database
sessions apply the transactions on this table in parallel. You create three
subscriptions, with each subscription mapping the same table. However, in the
row filter condition, you specify different values, as shown in the following list:

� RF_SUB1: %USERFUNC("JAVA","UEModuloFilter65",KEYCOLUMN,3,0)
� RF_SUB2: %USERFUNC("JAVA","UEModuloFilter65",KEYCOLUMN,3,1)
� RF_SUB3: %USERFUNC("JAVA","UEModuloFilter65",KEYCOLUMN,3,2)

When processing the operations for this table, each subscription does the
calculation of KEYCOLUMN%3 and determines if the remainder value is the
same as the remainder value specified as the last parameter. The first
subscription replicates all rows where KEYCOLUMN%3 can be divided by 3. The
second subscription replicates the rows where there is a remainder value of 1.
The third second subscription replicates the rows where there is a remainder
value of 2. If the least significant digit of the KEYCOLUMN values is distributed
evenly, the three subscriptions complement each other and take one-third of
the workload.
 Chapter 9. Customization and automation 375

Figure 9-29 defines a row filter according to the outcome of the modulo function.

Figure 9-29 InfoSphere CDC user exit DE-ModuloFilter
376 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

After the subscription has finished refreshing the table, the target table appears
as shown in Figure 9-30. All the CUSTOMER_IDs shown in the output are
divisible by 3 (CUSTOMER_ID%3==0).

Figure 9-30 InfoSphere CDC user exit DE-ModuloFilter output

Another example is a derived expression user exit to calculate the week of the
year. For completeness, we provide the source for that class in Example 9-81.

Example 9-81 Week of the year calculation derived expression user exit

import com.datamirror.ts.derivedexpressionmanager.DEUserExitIF;
import
com.datamirror.ts.derivedexpressionmanager.UserExitInvalidArgumentException;
import com.datamirror.ts.derivedexpressionmanager.UserExitInvokeException;
import com.datamirror.ts.util.Trace;

import java.text.SimpleDateFormat;

/*
 Overview:
 The user exit returns the week of the year for a date. Week number is returned
 as an integer. The parameters passed into the user exit are:
 a) Date -> Date value for which the week number must be calculated

 Instructions:

 1) Copy the UEWeekOfYear.class to the <cdc install>/lib directory
 2) Go to the mapping details for the table
 3) For the column that must contain the week number, specify the following:

 %USERFUNC("JAVA", "UEWeekOfYear", <date_column>)
 */

redscript bin]
 Chapter 9. Customization and automation 377

public class UEWeekOfYear implements DEUserExitIF {

 public Object starts(Object[] aobjList)
 throws UserExitInvalidArgumentException, UserExitInvokeException {
 SimpleDateFormat outWeek = new SimpleDateFormat("ww");
 String strWeek = outWeek.format(aobjList[0]);
 int intWeek = Integer.parseInt(strWeek);

 try {
 return new Integer(intWeek);
 } catch (ClassCastException e) {
 Trace.traceAlways(e);
 throw new UserExitInvalidArgumentException(
 "Invalid date parameter passed to " + "the user exit: "
 + aobjList[0]);
 }
 }
}

You could use this function as a derived expression in the column mapping so
that it is run on the target side. In this case, the starts() method expects to be
passed a date or time stamp value and returns the number of the week as
defined by the SimpleDateFormat class. The example class does not cater to null
values in the passed date value. If you write a similar function for a column that
contains a null value, you would need to plan for this situation in your code.
378 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

When you configure a table mapping using this function, it appears as shown in
Figure 9-31.

Figure 9-31 InfoSphere CDC user exit for week of the year
 Chapter 9. Customization and automation 379

When you look at the target table, the function has generated the values shown
in Figure 9-32.

Figure 9-32 InfoSphere CDC user exit week of the year output

System i user exit for derived expressions
When defining a user exit program for System i, create an ILE program and have
it called in the same activation group of InfoSphere CDC. The sample program,
shown in Example 9-82, uses two input parameters. The first one is packed (5,0)
and the second is packed (7,0). It is important that the two parameters that are
passed are indeed packed values of the specified length and precision. If you try
to pass a zoned number or any other type, the exit program might fail with a
decimal data error.

Example 9-82 Sample user exit for derived expressions

* == *
 * Program name: TDRVFLD *
 * *
 * Synopsis : This InfoSphere CDC for System i user exit program splits *
 * out the input parameter(s) and returns the sum *
 * of the passed values. *
 * *
 * Parameters : The %USER function can have 1 output parameter *
 * and a variable number of input parameters. *
 * For each input parameter, a data structure *
 * must be created and referred to in the *
 * entry parameter list. *
 * *
 * Create remarks: CRTBNDRPG DFTACTGRP(*NO) ACTGRP(*CALLER) *
 * CHGPGM USEADPAUT(*NO) *

redscript bin]
380 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * *
 * -- *
 * Changes made to this source *
 * *
 * Date Who Description *
 * -------- --- --- *
 * 20051018 FK Initial delivery
 * == *
HDATFMT(*ISO)
 * -- *
 * File definitions *
 * -- *
 * -- *
 * Arrays and tables *
 * -- *
 * -- *
 * Data structures and field definitions *
 * -- *
 * Output parameter
DpOut DS 256
D OutType 4b 0 * Data type
D OutLen 4b 0 * Length
D OutDigits 4b 0 * Digits
D OutDec 4b 0 * Decimal positions
D OutNull 4b 0 * Null indicator
D OutDatFmt 4 * Date format
D OutValue 9p 0 * Parameter value
 * Input parameter 1 - Value 1
DpIn01 DS 256
D I01Type 4b 0 * Data type
D I01Len 4b 0 * Length
D I01Digits 4b 0 * Digits
D I01Dec 4b 0 * Decimal positions
D I01Null 4b 0 * Null indicator
D I01DatFmt 4 * Date format
D I01Value 5p 0 * Parameter value
 * Input parameter 2 - Value 2
DpIn02 DS 256
D I02Type 4b 0 * Data type
D I02Len 4b 0 * Length
D I02Digits 4b 0 * Digits
D I02Dec 4b 0 * Decimal positions
D I02Null 4b 0 * Null indicator
D I02DatFmt 4 * Date format
D I02Value 7p 0 * Parameter value
 * -- *
 * Constants *
 * -- *
 * Data type of value to be returned
 Chapter 9. Customization and automation 381

D#TypChar C CONST(1) * Character
D#TypDate C CONST(2) * Date
D#TypFloat C CONST(3) * Floating point
D#TypInt C CONST(4) * Integer
D#TypPacked C CONST(5) * Packed
D#TypTime C CONST(6) * Time
D#TypZoned C CONST(7) * Zoned decimal
 * -- *
 * Key lists *
 * -- *
 * -- *
 * Parameter lists *
 * -- *
C *Entry PList
C Parm pOut * Output parameter
C Parm pIn01 * Input parameter 01
C Parm pIn02 * Input parameter 02
 * * Input parameter 03
 * -- *
 * Main line *
 * -- *
 * Do user actions ...
 * Prepare output parameter
C Eval OutType = #TypPacked * Packed
C Eval OutLen = 5 * Packed length
C Eval OutDigits = 9 * Digits
C Eval OutDec = 0 * Decimal places
C Eval OutNull = 0 * Null indicator
C Eval OutDatFmt = *Blanks * Date format
C Eval OutValue = I01Value * I02Value * Calculate value
C Return
 * -- *
 * *INZSR - Initialisation subroutine *
 * -- *
C *INZSR BegSR
C EndSR

Derived expression user exits always return a value to InfoSphere CDC that is
then used for row filtering or to populate a target column. Which type of return
value is passed back to InfoSphere CDC is determined by completing the
OutType data structure field with the correct data type constant value listed
under the Constants section.
382 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.7.4 Table and row-level user exits

Java user exit for row-level user exits
The UESoftDelete user exit class implements the UserExitIF interface and must
be specified in the User Exits tab under the table mapping. Also, the
before-delete exit point check box must be checked so that the user exit is starts
(checking any of the check boxes also starts the user exit).

This section clarifies a couple of points that help you design your own user exits.
During the initialization (using the init() method), the user exit evaluates the
parameters that were passed, if any. An optimization has been built into the user
exit to force it to update only a few columns in the row. This action optimizes the
SQL statement and execution on the target.

Also, the user exit explicitly unsubscribes from all possible events and then
subscribes to BEFORE_DELETE_EVENT. By specifying this event in the code,
you prevent the situation occurring where the user exit is called on an exit point
that it cannot handle. The SoftDelete user exit must only be used in the event of
a delete operation, hence the registration for this event. The sample code for a
soft delete user exit is shown in Example 9-83.

Example 9-83 Sample soft delete user exit

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.util.ArrayList;

// InfoSphere CDC specific imports
import com.datamirror.ts.target.publication.userexit.DataTypeConversionException;
import com.datamirror.ts.target.publication.userexit.ReplicationEventIF;
import com.datamirror.ts.target.publication.userexit.DataRecordIF;
import com.datamirror.ts.target.publication.userexit.ReplicationEventPublisherIF;
import com.datamirror.ts.target.publication.userexit.ReplicationEventTypes;
import com.datamirror.ts.target.publication.userexit.UserExitException;
import com.datamirror.ts.target.publication.userexit.UserExitIF;

/*

Important: User exit programs and stored procedures must not use COMMIT
or ROLLBACK SQL statements; let InfoSphere CDC to manage the units of
work. If you commit or roll back transactions in the InfoSphere CDC database
session, you interfere with its bookmark processing, which could result in
duplicated or missed transactions when restarting after failure.
 Chapter 9. Customization and automation 383

 Overview:
 This soft delete user exit will mark a row as inactive instead of performing a
physical
 delete. If the target row does not exist, a row will be inserted into the target
table.

 Assumptions:
 - Delete operations have been disabled for this table.
 - The &ENTTYP journal control field has been used to determine the value of the
 "deleted" column
 - Table has been configured for Adaptive Apply or Conflict Detection/Resolution
 (Source wins)
 - Table does not possess LOB/LONG columns.

 Instructions
 1. Copy the class files to the <cdc install directory>/lib directory
 2. In Mapping Details->Operation, set the "On Delete" setting to "Do Not Delete".
 3. In Mapping Details->User Exits,
 Set "User Exit Type" to "Java Class"
 Set "Class Name" to "UESoftDelete" (omit quotes)
 In the "Events and Actions" section, tick the "Delete Before" checkbox

 NOTE:
 By default, when the user exit updates the target row, it will update all
 target columns. For an optimized update operation you can specify the columns
 you want updated in the "Parameter" field. Example: Set "Parameter" to
 "ENTRY_TYPE,AUD_TIME,SRC_AUD_TIME" (omit quotes)
 */
public class UESoftDelete implements UserExitIF {

 protected static final int[] eventsToSubscribe =
 { ReplicationEventTypes.BEFORE_DELETE_EVENT };

 protected Boolean firstTime = true;
 protected UETrace trace;
 protected Connection dbConnection; // Connection to the target database

 private String qualifiedTableName;
 private String updateStatementString;
 private String[] colNameList = null;

 private ArrayList<Integer> keyColIndexes;
 private ArrayList<Integer> updateColIndexes;

 private PreparedStatement updateStatement;
384 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 private PreparedStatement insertStatement;

/**
* Executes table level initialization
*
* @param publisher
* - Handle to engine environment information
*/

 public void init(ReplicationEventPublisherIF publisher)
 throws UserExitException {
// Tracing is always switched on, can be disabled or parameterized
 trace = new UETrace();
 trace.init(true);

// Process parameter (list of columns that will be updated on soft
// delete)
 if (publisher.getParameter() != null) {
 colNameList = publisher.getParameter().split(",");
 }
 if (colNameList[0].equalsIgnoreCase("") || colNameList[0] == null) {
 colNameList = null;
 trace.write(this.getClass().getName()
 + ": Parameter list for UESoftDelete is empty, all columns "
 + "will be updated.");
 } else {
 trace.write(this.getClass().getName()
 + ": Columns that will be updated: "
 + publisher.getParameter());
 }

// For the user exit program to subscribe only to the events which it
// can handle (before-delete).
// Even if the configuration in MC specifies that the user exit will be
// called on other
// exit points, the subscribeEvent overrides this.
 publisher.unsubscribeEvent(ReplicationEventTypes.ALL_EVENTS);
 for (int i = 0; i < eventsToSubscribe.length; i++) {
 publisher.subscribeEvent(eventsToSubscribe[i]);
 }
 }

/**
* Method: processReplicationEvent -> Table event processing Purpose:
* handles the change events at the table level
*
 Chapter 9. Customization and automation 385

* @param event
* - Handle to the change record
*/

 public boolean processReplicationEvent(ReplicationEventIF event)
 throws UserExitException {
 DataRecordIF image = event.getBeforeData();
 if (firstTime) {
 /*
 * This is the first time the user exit is being starts for this
 * table mapping. Initialize all the SQL statements that will be
 * executed
 */
 qualifiedTableName = event.getTablePath() + "."
 + event.getTableName();
 if (dbConnection == null) {
// Get the shared JDBC database connection with the target
// database (CDC 6.5)
 dbConnection = event.getSharedConnection();
 }
 getUpdateColumnIndexes(image);
 getKeyList(image);
 prepareUpdateStatement(image);
 firstTime = false;
 }

 /*
 * When the event is BEFORE-DELETE, update the row
 */
 switch (event.getEventType()) {
 case ReplicationEventTypes.BEFORE_DELETE_EVENT:
 performUpdate(image);
 default:
 }

 return true;
 }

/**
* Retrieves the indexes for the key columns of the target tables. This
* information is used to build the WHERE clause of UPDATE statements.
*
* @param image
* - The row image
*/

 private boolean getKeyList(DataRecordIF image) throws UserExitException {
386 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 keyColIndexes = new ArrayList<Integer>();

 for (int i = 1; i <= image.getColumnCount(); i++) {
 if (image.isKey(i)) {
 keyColIndexes.add(i);
 }
 }
 return true;
 }

/**
* Retrieves the indexes for columns that need to be updated
*
* @param image
* - The row image
*/

 private boolean getUpdateColumnIndexes(DataRecordIF image)
 throws UserExitException {
 updateColIndexes = new ArrayList<Integer>();

// Implements the functionality that you can specify the columns to be
// updated
 if (colNameList != null && colNameList.length != 0) {
 // User has specified specific columns they want updated
 for (int j = 0; j < colNameList.length; j++) {
 for (int i = 1; i <= image.getColumnCount(); i++) {
 if (image.getColumnName(i).equalsIgnoreCase(colNameList[j])) {
 updateColIndexes.add(i);
 break;
 }
 }
 }
 } else {
 // Add all columns for update if no parameters are specified
 for (int i = 1; i <= image.getColumnCount(); i++) {
 updateColIndexes.add(i);
 }
 }
 return true;
 }

/**
* Prepares the UPDATE statement that will be used to mark a row as
* "deleted". This method is the optimized one where none of the key fields
* are NULL. All key values can be bound to the key fields in the WHERE
 Chapter 9. Customization and automation 387

* statement and the user exit does not have to rebuild the UPDATE statement
* every time.
*
* @param image
* - The row image
*/

 private void prepareUpdateStatement(DataRecordIF image)
 throws UserExitException {
 updateStatementString = "UPDATE " + qualifiedTableName + " SET ";
// build the SET clause
 for (int i = 0; i < updateColIndexes.size(); i++) {
 if (i > 0) {
 updateStatementString += ", ";
 }
 updateStatementString += "\""
 + image.getColumnName(updateColIndexes.get(i)) + "\" = ? ";
 }
// Build the WHERE clause
 updateStatementString += " WHERE ";
 for (int i = 0; i < keyColIndexes.size(); i++) {
 if (i > 0) {
 updateStatementString += " AND ";
 }
 updateStatementString += "\""
 + image.getColumnName(keyColIndexes.get(i)) + "\""
 + " = ? ";
 }
 try {
 updateStatement = dbConnection
 .prepareStatement(updateStatementString);
 } catch (SQLException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 }

 trace.write(updateStatementString);
 return;
 }

/**
* Prepares the UPDATE statement if columns in the WHERE clause are NULL. In
* that case SQL requires that you specify "<column> IS NULL" instead of
* "<column>=?". As the user exit cannot know in advance which key values
* are null, the UPDATE statement is dynamically built for every update that
* has to occur.
388 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

*
* @param image
* - The row image
*/

 private void dynamicUpdate(DataRecordIF image) throws UserExitException {
 String dynamicUpdateStatementString = "UPDATE " + qualifiedTableName
 + " SET ";
 PreparedStatement dynamicStatement;
// Build the SET clause
 for (int i = 0; i < updateColIndexes.size(); i++) {
 if (i > 0) {
 dynamicUpdateStatementString += ", ";
 }
 dynamicUpdateStatementString += "\""
 + image.getColumnName(updateColIndexes.get(i)) + "\" = ? ";
 }
// Build the WHERE clause
 dynamicUpdateStatementString += " WHERE ";
 ArrayList<Integer> keyIndexes = new ArrayList<Integer>();
 int keyCount = 0;
 for (int i = 1; i <= image.getColumnCount(); i++) {
 if (image.isKey(i)) {
 if (keyCount > 0) {
 dynamicUpdateStatementString += " AND ";
 }
// Specify the column name <column>=? or <column> IS NULL
 if (!image.isNull(i)) {
 dynamicUpdateStatementString += "\""
 + image.getColumnName(i) + "\"" + " = ? ";
 keyIndexes.add(i);
 } else {
 dynamicUpdateStatementString += "\""
 + image.getColumnName(i) + "\"" + " IS NULL ";
 }
 }
 }
// Prepare the dynamic update statement
 try {
 dynamicStatement = dbConnection
 .prepareStatement(dynamicUpdateStatementString);
 } catch (SQLException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 }
 Chapter 9. Customization and automation 389

 int parameterCount = 1;
 for (int i = 0; i < updateColIndexes.size(); i++) {
 try {
 dynamicStatement.setObject(parameterCount, image
 .getObject(updateColIndexes.get(i)), dynamicStatement
 .getParameterMetaData()
 .getParameterType(parameterCount));
 parameterCount++;
 } catch (Exception e) {
 throw new UserExitException(e.getMessage());
 }
 }

 for (int i = 0; i < keyIndexes.size(); i++) {
 try {
 dynamicStatement.setObject(parameterCount,
 image.getObject(keyIndexes.get(i)));
 parameterCount++;
 } catch (Exception e) {
 throw new UserExitException(e.getMessage());
 }
 }
// Update the row
 try {
 dynamicStatement.executeUpdate();
 } catch (SQLException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 }
// Close the statement
 try {
 dynamicStatement.close();
 } catch (SQLException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 }
 return;
 }

/**
* Performs the actual soft delete of the row (update with the passed
* values).
*
* @param image
* - The row image
390 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

* @throws UserExitException
*/

 private void performUpdate(DataRecordIF image) throws UserExitException {
 trace.write(this.getClass().getName() + ": Soft deleting row");
 int parameterCount = 1;

 for (int i = 0; i < updateColIndexes.size(); i++) {
 try {
 updateStatement.setObject(parameterCount, image
 .getObject(updateColIndexes.get(i)), updateStatement
 .getParameterMetaData()
 .getParameterType(parameterCount));
 parameterCount++;
 } catch (Exception e) {
 throw new UserExitException(e.getMessage());
 }
 }
// Prepare the static update statement or starts the dynamic update
// statement
 for (int i = 0; i < keyColIndexes.size(); i++) {
 try {
 if (image.getObject(keyColIndexes.get(i)) != null) {
 updateStatement.setObject(parameterCount,
 image.getObject(keyColIndexes.get(i)));
 parameterCount++;
 } else {
 dynamicUpdate(image);
 return;
 }
 } catch (SQLException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 } catch (DataTypeConversionException e) {
 e.printStackTrace();
 throw new UserExitException(e.getMessage());
 }
 }
// Execute the prepared (static) statement
 try {
 trace.write("Executing Update");
 if (updateStatement.executeUpdate() == 0) {
 return;
 }
 } catch (SQLException e) {
 e.printStackTrace();
 Chapter 9. Customization and automation 391

 throw new UserExitException(e.getMessage());
 }
 return;
 }

/**
* Performs any required cleanup processing, starts on subscription
* shutdown. Also starts on table-level user exit
*/

 public void finish() {
 // perform any table specific cleanup
 if (updateStatement != null) {
 try {
 updateStatement.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 return;
 }
}

The processReplicationEvent() method is starts for every event to which the
user exit is subscribed. During first time processing, the method obtains a shared
connection to the target database from the InfoSphere CDC engine so that it can
use the same session InfoSphere CDC already uses to update the target tables.
Additionally, it obtains the list of columns that must be populated in the SET
clause of the UPDATE statement and the list of key columns for the
WHERE clause.

Eventually, when the before-delete event is detected and the
processReplicationEvent() method is called, the method does an update of the
existing row instead of an update. There are two versions of the update method,
one static, which uses a pre-built PreparedStatement object, and the other one
dynamic, which builds the UPDATE statement on every execution. Dynamic
building of the prepared statement is less efficient than using a pre-built
statement. However, if there are NULL values in the key columns, SQL requires
that the WHERE clause includes the IS NULL for the column. As it is impossible
to know in advance which key column is null, if at all, the UPDATE statement
must be built for every execution. If there are no NULLable key columns, the
pre-built PreparedStatement is always used.
392 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

In various methods in the UESoftDelete class, trace records are written to the
InfoSphere CDC trace files, which are kept in the
<cdc_home>/instance/<instance>/log directory. This class uses the
com.datamirror.ts.util.Trace class to combine the InfoSphere CDC tracing. The
sample code for this tracing utility is shown in Example 9-84.

Example 9-84 Sample tracing utility for user exits

import com.datamirror.ts.util.Trace;

/**
 * Tracing facility for user exit
 */
public class UETrace {
 boolean enabled = false;

/**
* Initializes the tracing facility
*/

 public void init(boolean enabled) {
 this.enabled = enabled;
 }

/**
* Writes a trace message
*
* @param message - Messag to write to the trace
*/

 public void write(String message) {
 if (enabled) {
 // Piggyback on the InfoSphere CDC logging facility
 Trace.traceAlways(message);
 }
 return;
 }

/**
* Cleanup for trace facility -> not used in this implementation
*/

 public void close() {
 }
}

 Chapter 9. Customization and automation 393

After refreshing the table and removing some of the rows on the source, the
target table would look something like Figure 9-33.

Figure 9-33 Sample soft delete output

Stored procedure user exit for row-level operations
Stored procedure row-level user exits, shown in Example 9-85, are starts just
before or after InfoSphere CDC applies the operation to the target table. If you
specify a stored procedure user exit and disable the operation that it is attached
to, the user exit is still starts and can therefore be run instead of the operation
being applied by InfoSphere CDC.

Example 9-85 Sample table for row-level user exit

CREATE TABLE CDCDEMO.RISKY_CUSTOMER (
 CUSTNO DECIMAL(6,0), CRLIMIT DECIMAL(7,0), UPD_TIMESTAMP TIMESTAMP)
 IN USERSPACE1

Example 9-83 on page 383 adds a row to the CDCDEMO.RISKY_CUSTOMER
table, but only if the credit limit of the customer has exceeded 10,000. The
inserted row logs the customer number, credit limit, and time stamp of update at
the source.

The stored procedure is defined as shown in Example 9-86.

Example 9-86 Sample stored procedure

CREATE OR REPLACE PROCEDURE CDCDEMO.LOG_RISKY_CUSTOMER (
OUT result INT, OUT returnMsg CHAR,
IN a$CUSTNO DECIMAL(6,0), IN a$CRLIMIT DECIMAL(7,0), IN j$TIMSTAMP
VARCHAR(26))
BEGIN
if a$CRLIMIT>=10000 then
394 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 insert into CDCDEMO.RISKY_CUSTOMER values(a$CUSTNO,
 a$CRLIMIT, TIMESTAMP(j$TIMSTAMP));
end if;
set result=0;
set returnMsg='Row inserted';
END@

Defining the stored procedure to be called means specifying the schema where it
is located and the name of the stored procedure at the exit points that you want it
to be (Figure 9-34).

Figure 9-34 User exit stored procedure configuration
 Chapter 9. Customization and automation 395

When running the subscription and changing a number of source rows that have
or attain a credit limit of 10,000 or higher, the stored procedure starts populating
the RISKY_CUSTOMER table (Figure 9-35).

Figure 9-35 Sample row stored procedure output

System i RPG user exit for row-level operations
Row-level and table-level user exits for InfoSphere CDC on System i are handled
using a single interface in which the apply process passes a fixed set of
arguments to the user exit program, such as the before and after data images,
the publisher ID, information about the operation type (entry type), and journal
control columns. The data images are sent to the program as fixed-length strings
in the format of the target table and the user exit program is responsible for
unraveling the individual columns. The easiest way to perform this task depends
on the language in which you have developed your user exit. RPG allows you to
create an external data structure that maps the flat input to individual fields.

The example user exit must be customized per source and target table for which
you want to soft delete rows. However, you can change the program so that a
single program accommodates all possible source and target tables. The before
image for the delete is mapped onto a source table structure using the BfrImg
data structure, and the journal control columns are also populated. By
interrogating the journal control column for the file name, you can determine
which mapping must take place.

The TGTCUST target table is opened when the program is called for the first
time, and because the Last Record indicator is not set on, the file remains
opened and the program active. If you want to use one program to handle soft
deletes on multiple target tables, dynamically open the files, as soft delete
operations must be applied to limit the amount of resources taken by the
InfoSphere CDC apply process.

redscript bin]
396 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The sample code for performing soft deletes in a table is shown in Example 9-87.

Example 9-87 Sample code for soft deletes in a table

* === *
 * Program name: TROWSFTDLT *
 * *
 * Synopsis : This user exit program is an example of how to handle soft deletes in a table. *
 * *
 * We assume that the subscription replicates the CUSTOMER table to the TGTCUST table on
 * the target system. Inserts and Updates are defined as normal operation. However, for the*
 * Delete operation "No Action" is specified and this program is specified as the Before
 * Delete user exit program. *
 * *
* In effect, the program checks the row operation it was starts for. If it was for *
 * a delete, the target table's fields TXTYP and TXDTS are updated with journal control *
 * columns &ENTTYP and &TIMSTAMP *
 * *
 * Create parms: CRTBNDRPG DFTACTGRP(*NO) ACTGRP(*CALLER) *
 * After create: CHGPGM USEADPAUT(*NO) *
 * *
 * -- *
 * *
 * -- *
 * Changes made to this source *
 * *
 * Date Who Description *
 * -------- --- --- *
 * 20061122 FK Initial delivery
 * == *
HDATFMT(*ISO) DFTACTGRP(*NO) ACTGRP(*CALLER)
 * -- *
 * File definitions *
 * -- *
 * Customer file on the target database, equipped with
 * Transaction type and Transaction timestamp
FTGTCUST UF E K DISK
 * -- *
 * Arrays and tables *
 * -- *
 * -- *
 * Data structures and field definitions *
 * -- *
 * Binary field definitions
DEntTypB DS 4
D EntTyp 1 4B 0
DBfrNbrNullB DS 4
D BfrNbrNull 1 4B 0
DAftNbrNullB DS 4
D AftNbrNull 1 4B 0
DTSBufLenB DS 4
D TSBufLen 1 4B 0
DTSNbrNullB DS 4
D TSNbrNull 1 4B 0
 Chapter 9. Customization and automation 397

 * Before Image for record (mapped to external structure for original table, CUSTOMER)
DBfrImg E DS ExtName(CUSTOMER) Prefix(Bfr)
 * After Image for record (mapped to external structure for
 * original table, CUSTOMER)
DAftImg E DS ExtName(CUSTOMER) Prefix(Aft)
 * Before Image for journal control fields
DBfrJrnCtl DS
D JBEntLen 5 * Entry length
D JBSeqNbr 10 * J/E Sequence #
D JBJrnNam 10 * Journal name
D JBJrnLib 10 * Journal library
D JBRcvNam 10 * Receiver name
D JBRcvLib 10 * Receiver library
D JBJrnCde 1 * Journal code
D JBEntTyp 2 * Entry type
D JBSysEnt 2 * System J/E
D JBTimStp 26 * Time stamp
D JBTimStpDt 10 OVERLAY(JBTimStp:1) * Time stamp date
D JBTimStpHr 2 OVERLAY(JBTimStp:12) $ Time stamp hour
D JBJobNam 10 * Job name
D JBJobUsr 10 * Job user
D JBJobNbr 6 * Job number
D JBPgmNam 10 * Program name
D JBFilNam 10 * File name
D JBFilLib 10 * File library
D JBFilMbr 10 * File member
D JBRRN 10 * Relative record
D JBFlg 1 * Flag 1 or 0
D JBCmtID 10 * Commit cycle
D JBUsrPrf 10 * User profile
D JBSysNam 8 * System name
 * After Image for journal control fields
DAftJrnCtl DS
D JAEntLen 5 * Entry length
D JASeqNbr 10 * J/E Sequence #
D JAJrnNam 10 * Journal name
D JAJrnLib 10 * Journal library
D JARcvNam 10 * Receiver name
D JARcvLib 10 * Receiver library
D JAJrnCde 1 * Journal code
D JAEntTyp 2 * Entry type
D JASysEnt 2 * System J/E
D JATimStp 26 * Time stamp
D JATimStpDt 10 OVERLAY(JATimStp:1) * Time stamp date
D JATimStpHr 2 OVERLAY(JATimStp:12) $ Time stamp hour
D JAJobNam 10 * Job name
D JAJobUsr 10 * Job user
D JAJobNbr 6 * Job number
D JAPgmNam 10 * Program name
D JAFilNam 10 * File name
D JAFilLib 10 * File library
D JAFilMbr 10 * File member
D JARRN 10 * Relative record
D JAFlg 1 * Flag 1 or 0
398 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

D JACmtID 10 * Commit cycle
D JAUsrPrf 10 * User profile
D JASysNam 8 * System name
 * -- *
 * Constants *
 * -- *
D#BfrClr C CONST(1)
D#AftClr C CONST(2)
D#BfrIns C CONST(3)
D#AftIns C CONST(4)
D#BfrUpd C CONST(5)
D#AftUpd C CONST(6)
D#BfrDlt C CONST(7)
D#AftDlt C CONST(8)
D#BfrRsh C CONST(9)
D#AftRsh C CONST(10)
D#None C CONST('*N')
 * -- *
 * Key lists *
 * -- *
 * Key list target customer table
C KeyCus KList
C KFld BfrCUSTNO * Customer number
 * -- *
 * Parameter lists *
 * -- *
C *ENTRY Plist
C Parm RtnCde 10 * Return code
C Parm PgmName 10 * Program name
C Parm EntTypB * Entry type
C Parm BfrImg * Before Image
C Parm AftImg * After Image
C Parm BfrNbrNullB * # of Null in Bfr
C Parm AftNbrNullB * # of Null in Aft
C Parm BfrNull 1 * Null in Bfr
C Parm AftNull 1 * Null in Aft
C Parm BfrJrnCtl * Bfr Journal Ctl
C Parm AftJrnCtl * Aft Journal Ctl
C Parm TSBufLenB * TS Buffer length
C Parm TSBuf 158 * TS Buffer
C Parm TSNbrNullB * # of Null TS Buf
C Parm TSNull 5 * Null in TS Buf
C Parm TSSrcID 8 * TS Source system
 * -- *
 * Main line *
 * -- *
 * Determine type of transaction
C Select
 * Clear
C EntTyp WhenEQ #BfrClr * Before clear
C EntTyp OrEQ #AftClr * After clear
 * Insert
C EntTyp WhenEQ #BfrIns * Before clear
C EntTyp OrEQ #AftIns * After clear
 Chapter 9. Customization and automation 399

 * Update
C EntTyp WhenEQ #BfrUpd * Before clear
C EntTyp OrEQ #AftUpd * After clear
 * Delete
C EntTyp WhenEQ #BfrDlt * Before clear
C EntTyp OrEQ #AftDlt * After clear
 * Find the record in the target table and update Transaction type/Timestamp
C KeyCus Chain TGTCUSTR 95
C *In95 IfEQ *Off
C Eval TXTYP=JBEntTyp * &ENTTYP
C Eval TXDTS=JBTimStp * &TIMSTAMP
C Update TGTCUSTR
C EndIf
C EndSL
C Return
 * -- *
 * *INZSR - Initialisation subroutine *
 * -- *
C *INZSR BegSR
C EndSR
400 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Configuration of this user exit program in the Management Console is shown in
Figure 9-36. The table has been mapped for Adaptive Apply, which ensures that
if a customer that has been soft deleted on the target is reinserted, the row on
the target is overwritten. In the column mapping, the &ENTTYP journal control
column is mapped to the TXTYP column. A soft deleted row on the target has DL
in this column. Finally, the standard delete operation is disabled (Do Not Delete)
and the Before Delete user exit is configured to call the TROWSFTDLT user exit
program. As stated before, the user exit program must be found in the library list
of the DMCJOBD job description or in the InfoSphere CDC installation library.

Figure 9-36 User exit configuration
 Chapter 9. Customization and automation 401

9.7.5 Subscription-level (unit of work)

In some cases, your implementation might require committed transactions that
are delivered to a non-database target, such as a message queue or web
service. Row-level user exits can enhance or replace InfoSphere CDC apply
processing and run custom code based on insert, update, delete, or even table
level events. The subscription-level user exits take your user exits a step further
by letting you to ignite a process based on the unit of work that was read from the
source database.

For example, your customers fill their shopping cart on your website. When the
first item is added to the shopping cart, an order header row is created in the
underlying database. As the customer adds items to the shopping cart, rows are
inserted into the order detail table and, after the checkout process is started, your
business application commits the transaction into the database and provides a
unit of work.

Assume that you want to place the completed transaction as a single message
on a message queue (or enterprise service bus). InfoSphere CDC row-level user
exits allow you to pick up the individual database operations and run them, but
you do not know when the last item has been placed in the shopping cart to
complete the transaction.

The InfoSphere CDC subscription-level user exit point provides a method that is
starts when the transaction is committed by the subscription. You can implement
this method to start an action based on a transaction that was prepared in the
row-level user exit points. Referring to the previous example, your row-level user
exit points start building the message to be sent (in XML or other format). When
the commit is started by InfoSphere CDC, the subscription-level user exit takes
the message that was built, appends any closing tags in the case of XML, and
places it onto a message queue.

In Example 9-88, the sample code builds an XML document (flat file) for each
transaction sent from the source side.

Example 9-88 Sample code to build an XML document for each transaction

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;

import com.datamirror.ts.target.publication.userexit.*;

public class CDCTransactionFileWriter implements UserExitIF,
 SubscriptionUserExitIF {
402 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 static final String FILE_TIMESTAMP_FORMAT = "yyyyMMdd_HHmmssSSS";
 private boolean calledAtSubscriptionLevel = false;
 protected SubscriptionContext subscriptionContext; // shared between all
 // instances
 private UETrace trace;
 private String publisherID;

 /**
 * Subscription-level initialization.
 *
 * This method is called once when the subscription is started and
 * initializes the subscription context. Also, it ensures that the
 * processSubscriptionEvent method is starts before every commit.
 *
 * @param publisher
 * - Handle to the event publisher; this parameter can only be
 * used during this method to subscribe to certain events.
 */
 public void init(SubscriptionEventPublisherIF publisher)
 throws UserExitException {
 // Initialize the subscription context
 subscriptionContext = (SubscriptionContext) publisher
 .getUserExitSubscriptionContext();
 if (subscriptionContext == null) {
 // this is only called once during initialization
 // an object that calls getUserExitSubscriptionContext will be
 // passed this context we are creating
 subscriptionContext = createContext(publisher.getSourceSystemID());
 publisher.setUserExitSubscriptionContext(subscriptionContext);
 }
 calledAtSubscriptionLevel = true;
 trace = subscriptionContext.trace;
 publisherID = subscriptionContext.publisherID;
 trace.write("Subscription-level init() start");
 publisher.unsubscribeEvent(SubscriptionEventTypes.ALL_EVENTS);
 publisher.subscribeEvent(SubscriptionEventTypes.BEFORE_COMMIT_EVENT);
 trace.write("Subscription-level init() end");
 }

 /**
 * Executed when a subscription-level event is detected (commit). This
 * method writes the ending tag to the XML message and closes the current
 * output file.
 *
 * @param subscriptionEvent
 Chapter 9. Customization and automation 403

 * - handle to subscription event
 */
 public boolean processSubscriptionEvent(
 SubscriptionEventIF subscriptionEvent) throws UserExitException {
 trace.write("processSubscriptionEvent() started");
 trace.write("Subscription event: "
 + getSubscriptionEventTypeAsString(subscriptionEvent
 .getEventType()));
 trace.write("Commit reason: "
 + getSubscriptionCommitReasonAsString(subscriptionEvent
 .getCommitReason()));
 closeOutputFile();
 return true;
 }

 /**
 * Table-level initialization.
 *
 * This method is called once for every mapped table at subscription
 * startup. It first retrieves the subscription context and then registers
 * the events it wants to listen to.
 *
 * @param eventPublisher
 * - Handle to engine environment information
 */
 public void init(ReplicationEventPublisherIF eventPublisher) {
 // Retrieve the subscription-level context
 subscriptionContext = (SubscriptionContext) eventPublisher
 .getUserExitSubscriptionContext();
 trace = subscriptionContext.trace;
 publisherID = subscriptionContext.publisherID;
 trace.write("Table-level init() start");

 // Subscribe to After-Insert/Update/Delete events
 eventPublisher.unsubscribeEvent(ReplicationEventTypes.ALL_EVENTS);
 eventPublisher.subscribeEvent(ReplicationEventTypes.AFTER_INSERT_EVENT);
 eventPublisher.subscribeEvent(ReplicationEventTypes.AFTER_UPDATE_EVENT);
 eventPublisher.subscribeEvent(ReplicationEventTypes.AFTER_DELETE_EVENT);

 trace.write("Table-level init() end");
 }

 /**
 * Executed when table-level event is detected (insert/update/delete). This
 * method writes an XML entry for the table-level operation to the currently
404 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 * open output file. If there is no open file, it creates a new output file
 * on the fly.
 *
 * @param replicationEvent
 * - Handle to replication event
 * @return true - This flag indicates whether the default operation should
 * be applied (true) or not (false). As the event is only called
 * after insert/update/delete, the returned value is of no
 * importance
 */
 public boolean processReplicationEvent(ReplicationEventIF replicationEvent)
 throws UserExitException {
 trace.write("processReplicationEvent() start");
 String tableName = replicationEvent.getTableName();
 String entryType = replicationEvent.getJournalHeader().getEntryType();
 DataRecordIF beforeImage = replicationEvent.getBeforeData();
 DataRecordIF afterImage = replicationEvent.getData();
 trace.write("Table: " + tableName);
 trace.write("Operation type: " + entryType);
 // If there is no open file, create one on the fly to write the XML
 // records to
 if (subscriptionContext.printStream == null) {
 createNewOutputFile();
 }
 // Write the table-level information
 subscriptionContext.printStream.println("\t<table" + tableName + ">");
 subscriptionContext.printStream.println("\t\t<tableOperation>"
 + entryType + "</tableOperation>");
 // Write column-level information for the before-image (update + delete)
 if (beforeImage != null) {
 for (int i = 1; i <= beforeImage.getColumnCount(); i++) {
 try {
 subscriptionContext.printStream.println("\t\t<before"
 + beforeImage.getColumnName(i)
 + ">"
 + formatXmlContent(beforeImage.getObject(i)
 .toString()) + "</before"
 + beforeImage.getColumnName(i) + ">");
 } catch (DataTypeConversionException e) {
 trace.write(e.getMessage());
 }
 }
 }
 // Write column-level information for the after-image (insert+update)
 if (afterImage != null) {
 Chapter 9. Customization and automation 405

 for (int i = 1; i <= afterImage.getColumnCount(); i++) {
 try {
 subscriptionContext.printStream.println("\t\t<after"
 + afterImage.getColumnName(i)
 + ">"
 + formatXmlContent(afterImage.getObject(i)
 .toString()) + "</after"
 + afterImage.getColumnName(i) + ">");
 } catch (DataTypeConversionException e) {
 trace.write(e.getMessage());
 }
 }
 }
 // Write the ending tag for the tabel-level information
 subscriptionContext.printStream.println("\t</table"
 + replicationEvent.getTableName() + ">");
 return true;
 }

 /**
 * This method is called for both subscription-level and table-level
 * clean-up. It will close the current output file.
 */
 public void finish() {
 if (calledAtSubscriptionLevel) {
 trace.write("finish() start");
 closeOutputFile();
 trace.write("finish() end");
 }
 return;
 }

 /**
 * Formats the content of an XML element and substitutes special characters
 * with mark-up replacements.
 *
 * @param content
 * - Input element content.
 * @return Contents with special characters marked up.
 */
 private String formatXmlContent(String content) {
 String markedUpString = null;
 markedUpString = content;
 markedUpString = markedUpString.replaceAll("\"", """);
 markedUpString = markedUpString.replaceAll("'", "'");
406 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 markedUpString = markedUpString.replaceAll("&", "&");
 markedUpString = markedUpString.replaceAll("<", "<");
 markedUpString = markedUpString.replaceAll(">", ">");
 return markedUpString;
 }

 /**
 * Translates the subscription event to a readable text string (mainly for
 * debugging).
 *
 * @param eventType
 * - Type of the subscription event
 * @return Event type description
 */
 private String getSubscriptionEventTypeAsString(int eventType) {
 if (eventType == SubscriptionEventTypes.BEFORE_COMMIT_EVENT)
 return "BEFORE_COMMIT_EVENT";
 else if (eventType == SubscriptionEventTypes.AFTER_COMMIT_EVENT)
 return "AFTER_COMMIT_EVENT";
 else if (eventType == SubscriptionEventTypes.AFTER_EVENT_SHIFT)
 return "AFTER_EVENT_SHIFT";
 else
 return "UNKNOWN_SUBSCRIPTION_EVENT_TYPE";
 }

 /**
 * Translates the commit reason to a readable text string (mainly for
 * debugging).
 *
 * @param commitReason
 * - Reason for committing the transaction
 * @return Commit reason description
 */
 private String getSubscriptionCommitReasonAsString(int commitReason) {
 if (commitReason == CommitReasonTypes.SOURCE_COMMIT)
 return "SOURCE_COMMIT";
 else if (commitReason ==
 CommitReasonTypes.OPERATION_WITHOUT_COMMITMENT_CONTROL)
 return "OPERATION_WITHOUT_COMMITMENT_CONTROL";
 else if (commitReason == CommitReasonTypes.REFRESH)
 return "REFRESH";
 else if (commitReason == CommitReasonTypes.REPORT_POSITION)
 return "REPORT_POSITION";
 else if (commitReason == CommitReasonTypes.INTERIM_COMMIT)
 return "INTERIM_COMMIT";
 Chapter 9. Customization and automation 407

 else if (commitReason == CommitReasonTypes.SHUTDOWN)
 return "SHUTDOWN";
 else
 return "UNKNOWN_COMMIT_REASON";
 }

 /**
 * Creates an output file to hold the XML representation of a database
 * transaction. The method creates a file with the name
 * <PublisherID>_yyyyMMdd_HHmmssSSS.xml and prepares the XML heading. Other
 * methods subsequently write the XML records to the output file.
 *
 * @throws UserExitException
 */
 private void createNewOutputFile() throws UserExitException {
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new SimpleDateFormat(FILE_TIMESTAMP_FORMAT);
 String timestampSuffix = sdf.format(cal.getTime());

 // Compose name of output file
 subscriptionContext.outputFileName = publisherID + "_"
 + timestampSuffix + ".xml";
 trace.write("Name of work file: " + subscriptionContext.outputFileName);

 try {
 subscriptionContext.printStream = new PrintStream(
 subscriptionContext.outputFileName);
 } catch (FileNotFoundException e) {
 trace.write(e.getMessage());
 throw new UserExitException("Error creating output file "
 + subscriptionContext.outputFileName);
 }
 trace.write("Output file " + subscriptionContext.outputFileName
 + " created");
 subscriptionContext.printStream
 .println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
 subscriptionContext.printStream.println("<transaction>");
 }

 /**
 * Writes the ending tag for the XML transaction and closes the current
 * output file.
 */
 private void closeOutputFile() {
 if (subscriptionContext.printStream != null) {
408 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 subscriptionContext.printStream.println("</transaction>");
 trace.write("Closing output file: "
 + subscriptionContext.outputFileName);
 subscriptionContext.printStream.close();
 }
 subscriptionContext.printStream = null;
 }

 /**
 * This subclass is used to maintain the overall subscription context as
 * this user exit is instantiated at the subscription (target) level and for
 * all tables. As the same class is used at the subscription and table level
 * we have chosen to create a subclass to create a subclass for the
 * subscription context.
 */
 protected class SubscriptionContext {
 protected UETrace trace; // trace object
 protected String publisherID; // Publisher ID for subscription
 protected String outputFileName; // Current output file name
 protected PrintStream printStream; // Current output print stream
 }

 /**
 * Initializes the context for the subscription. This method is only called
 * once at the subscription level. At the table level, the
 * SubscriptionContext object is retrieved only.
 *
 * @param publisherID
 * - The publisher ID of the subscription
 */
 protected SubscriptionContext createContext(String publisherID) {
 SubscriptionContext context = new SubscriptionContext();
 context.publisherID = new String(publisherID);
 context.trace = new UETrace();
 context.trace.init(true);
 context.trace.write("Context created for publisher ID " + publisherID);
 context.outputFileName = null;
 context.printStream = null;
 return context;
 }
}

 Chapter 9. Customization and automation 409

In the InfoSphere CDC configuration, the Java user exit class is specified both at
the subscription level and the table level. Both the subscription-level and
table-level interfaces are implemented by the user exit, SubscriptionUserExitIF
and UserExitIF. For the functionality intended by the user exit, it is imperative to
register it at both levels. If you do not configure the subscription-level user exit,
the table-level entry points do not have all information available to properly write
the XML records.

When the subscription is started, the target side instantiates a
CDCTransactionFileWriter object and immediately starts the
init(SubscriptionEventPublisherIF) method (subscription-level), which has
the primary task of creating a subscription context object to be shared with the
table-level objects. Then, for each mapped table that has the
CDCTransactionFileWrite specified as the user exit, a table-level object is
instantiated and the init(ReplicationEventPublisherIF) method is starts. This
method registers the after-insert, after-update, and after-delete exit points for the
table in question. Every insert, update, and delete operation on the table in
question causes the processReplicationEvent() method to be starts. This
method first checks whether there already is an open file for this subscription,
which is done by checking the subscriptionContext.printStream object. If there is
no open file, a new file is created dynamically and opened. Then, the insert,
update, or delete operation for the table in question is written as an XML format
structure. When a commit is received from the source side, the
processSubscriptionEvent() method is called, which closes the transaction tag
and then closes the file.
410 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

The configuration of the CDCTransactionFileWriter user exit is shown in
Figure 9-37.

Figure 9-37 InfoSphere CDC user exit subscription level

When doing two updates in a single unit of work, the resulting XML appears as
shown in Example 9-89.

Example 9-89 Two updates in a single unit of work

<?xml version="1.0" encoding="UTF-8"?>
<transaction>
<tableCUSTOMER>
<tableOperation>UP</tableOperation>
<beforeCUSTNO>987560</beforeCUSTNO>
<beforeBRANCH>11</beforeBRANCH>
<beforeNAME1>CALIFORNIA SPA & FITNESS</beforeNAME1>
<beforeNAME2>abc12345444</beforeNAME2>
<beforeADDRESS1>100 SANDYHOOK SQ.</beforeADDRESS1>
<beforeADDRESS2> </beforeADDRESS2>
<beforeCITY>UPLAND</beforeCITY>
<beforeSTATE>CA</beforeSTATE>
<beforeSTATUS>A</beforeSTATUS>
<beforeCRLIMIT>7506</beforeCRLIMIT>
<beforeBALANCE>6500</beforeBALANCE>
<beforeREPNO>251</beforeREPNO>
<afterCUSTNO>987560</afterCUSTNO>
<afterBRANCH>11</afterBRANCH>
<afterNAME1>CALIFORNIA SPA & FITNESS</afterNAME1>

REDSCRIPT
 Chapter 9. Customization and automation 411

<afterNAME2>abc12345444</afterNAME2>
<afterADDRESS1>100 SANDYHOOK SQ.</afterADDRESS1>
<afterADDRESS2> </afterADDRESS2>
<afterCITY>UPLAND</afterCITY>
<afterSTATE>CA</afterSTATE>
<afterSTATUS>A</afterSTATUS>
<afterCRLIMIT>7507</afterCRLIMIT>
<afterBALANCE>6500</afterBALANCE>
<afterREPNO>251</afterREPNO>
</tableCUSTOMER>
<tablePRODUCT>
<tableOperation>UP</tableOperation>
<beforePRODUCTID>100</beforePRODUCTID>
<beforeDESCRIPTN>White paper 8.5 by 11</beforeDESCRIPTN>
<beforeLOCATION>Aisle 5</beforeLOCATION>
<beforeSTATUS>O</beforeSTATUS>
<beforeUNITPRICE>7.00</beforeUNITPRICE>
<beforeUNITCOST>2200.00</beforeUNITCOST>
<beforeQTYONHAND>17850</beforeQTYONHAND>
<beforeQTYALLOC>50</beforeQTYALLOC>
<beforeQTYMINORD>5000</beforeQTYMINORD>
<afterPRODUCTID>100</afterPRODUCTID>
<afterDESCRIPTN>White paper 8.5 by 11</afterDESCRIPTN>
<afterLOCATION>Aisle 5</afterLOCATION>
<afterSTATUS>O</afterSTATUS>
<afterUNITPRICE>8.00</afterUNITPRICE>
<afterUNITCOST>2200.00</afterUNITCOST>
<afterQTYONHAND>17850</afterQTYONHAND>
<afterQTYALLOC>50</afterQTYALLOC>
<afterQTYMINORD>5000</afterQTYMINORD>
</tablePRODUCT>
</transaction>

9.7.6 Java user exit for flat file custom formatter

When using InfoSphere CDC to deliver flat files for consumption by external
applications, the target engine is often InfoSphere CDC for DataStage. This
engine can generate flat files and has additional functionality to automatically
close and make the flat files available based on time or number of rows.
412 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Flat files that are generated by InfoSphere CDC for DataStage have the
following characteristics:

� Journal control information written as the first few columns on every line
� Characters written in UTF-8 encoding
� Columns that are separated by a comma
� Columns that are delimited by a double quotation mark

This fixed output format might not be suitable for the targeted applications.
Example 9-90 tailors the standard InfoSphere CDC for DataStage Flat File output
to use a different column delimiter ("ª", feminine ordinal indicator, instead of the
double quotation mark) and column separator (|, vertical line, instead of the
comma). Also, the flat file is generated in ISO8859-1 (Western-European)
instead of the default unicode UTF-8 encoding.

Example 9-90 Sample code for tailored flat file output

import java.io.UnsupportedEncodingException;
import java.math.BigDecimal;
import java.nio.ByteBuffer;
import java.sql.Time;
import java.sql.Timestamp;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Map;

import com.datamirror.ts.target.publication.UserExitJournalHeader;
import com.datamirror.ts.target.publication.userexit.DataRecordIF;
import com.datamirror.ts.target.publication.userexit
 .DataTypeConversionException;
import com.datamirror.ts.target.publication.userexit.ReplicationEventIF;
import com.datamirror.ts.target.publication.userexit
 .datastage.DataStageDataFormatIF;

/**
 *
 * Format the data suitable for the target application's sequential file reader.
 *
 */
public class CDCDataStageFormat implements DataStageDataFormatIF {

// Specified encoding for output (formatted string)
 private static final String OUTPUT_STRING_ENCODING = "ISO-8859-1";

// Separator character (between columns) and delimiter (surrounding columns)
 private static String SEPARATOR = "|";
 Chapter 9. Customization and automation 413

 private static String DELIMITER = "ª";

// Types of record images that can be received by the formatter user exit
 public final char SUB_RLA_AUDIT = 'A';
 public final char SUB_RLA_AUDIT_BEFORE = 'B';
 public final char SUB_RLA_INS_UPD = 'I';
 public final char SUB_RLA_NON_UPD = 'U';
 public final char SUB_RLA_DEL_NONE = 'D';

// Formatting for date, time and timestamp columns
 private SimpleDateFormat outDateFormat = new SimpleDateFormat(
 "yyyy-MM-dd HH:mm:ss");
 private SimpleDateFormat outDateOnlyFormat = new SimpleDateFormat(
 "yyyy-MM-dd");
 private SimpleDateFormat outTimeOnlyFormat = new SimpleDateFormat(
 "HH:mm:ss");

 public static final int BYTE_BUFFER_AUTO_INCREMENT_SIZE = 10000;
 public static final int BYTE_BUFFER_AUTO_INCREMENT_BREATHING_SPACE = 1000;
 public static final int BYTE_BUFFER_SPACE_FOR_FIELD_SEPARATORS = 100;
 public static final int BYTE_BUFFER_SPACE_FOR_JOURNAL_CONTROL = 1000;
 ByteBuffer outBuffer = ByteBuffer.allocate(BYTE_BUFFER_AUTO_INCREMENT_SIZE);

 private int destinationType;
// Is this flat file or direct connect?
 private int clobTruncationPoint;
// Truncation for CLOB columns as specified
// in subscription
 private int blobTruncationPoint;
// Truncation for BLOB columns as specified
// in subscription

 private static String ZERO_STRING = "0";
// Used for boolean FALSE external
// representation
 private static String ONE_STRING = "1";
// Used for boolean TRUE external
// representation

// These are the byte arrays to be appended to the buffer. The content is
// already encoded
// in the specified encoding
 private static byte[] SEPARATOR_AS_BYTE_ARRAY =
 getAsEncodedByteArray(SEPARATOR);
 private static byte[] DELIMITER_AS_BYTE_ARRAY =
414 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 getAsEncodedByteArray(DELIMITER);
 private static byte[] SEP_DEL_SEP_AS_BYTE_ARRAY =
 getAsEncodedByteArray(SEPARATOR + DELIMITER);
 private static byte[] DEL_SEP_DEL_AS_BYTE_ARRAY =
 getAsEncodedByteArray(DELIMITER+SEPARATOR+DELIMITER);
 private static byte[] DEL_SEP_AS_BYTE_ARRAY =
 getAsEncodedByteArray(DELIMITER + SEPARATOR);
 private static byte[] ZERO_AS_BYTE_ARRAY =
 getAsEncodedByteArray(ZERO_STRING);
 private static byte[] ONE_AS_BYTE_ARRAY = getAsEncodedByteArray(ONE_STRING);

 private int numberDataColumns = 0; // Number of data columns in table
 ByteBuffer nullImage = null;
 boolean firstTimeData = true;
 boolean firstTimeJournal = true;
 UETrace trace;

 public CDCDataStageFormat() {
 trace = new UETrace();
 trace.init(true);
 }

/**
* This method is called when the subscription is started to indicate at
* which position to truncate CLOB and BLOB columns.
*/

 public void setLobTruncationPoint(int maxClobLengthInChars,
 int maxBlobLengthInBytes) {
 clobTruncationPoint = maxClobLengthInChars;
 blobTruncationPoint = maxBlobLengthInBytes;
 }

/**
* Create a string containing the data images for the row; this method is
* starts from the InfoSphere CDC for DataStage engine when a new row has to be
* formatted.
*
* @param image
* - The record image that must be processed
* @return A buffer of bytes with the formatted data image
*/

 public ByteBuffer formatDataImage(DataRecordIF image)
 throws DataTypeConversionException {
 boolean needToCloseQuote = false;
 outBuffer.position(0);
 Chapter 9. Customization and automation 415

 if (image != null) {
// When called for the first time, determine the number of data
// columns
 if (firstTimeData) {
 numberDataColumns = getNumberDataColumns(image);
 firstTimeData = false;
 }
// End debug
 for (int i = 1; i <= numberDataColumns; i++) {
 Object colObj = image.getObject(i);

// For NULL values, we just leave the field empty
 if (colObj != null) {
// For performance, we have this logic to only do one insert
// of separators and delimiters between columns;
// this reduces the amount of processing the user exit has
// to do
 if (needToCloseQuote) {
 outBuffer.put(DEL_SEP_DEL_AS_BYTE_ARRAY);
 } else {
 outBuffer.put(SEP_DEL_SEP_AS_BYTE_ARRAY);
 }
 needToCloseQuote = true;

// Time, timestamp and dates must be processed in this order
// because time and timestamp are also date objects
 if (colObj instanceof Time) {
 outBuffer = addEncodedStringToByteBuffer(outBuffer,
 outTimeOnlyFormat.format((Time) colObj));
 } else if (colObj instanceof Timestamp) {
 outBuffer = addEncodedStringToByteBuffer(outBuffer,
 outDateFormat.format((Timestamp) colObj));
 } else if (colObj instanceof Date) {
 outBuffer = addEncodedStringToByteBuffer(outBuffer,
 outDateOnlyFormat.format((Date) colObj));
 } else if (colObj instanceof byte[]) { // BLOB
 byte[] val = (byte[]) colObj;
 if (val.length > blobTruncationPoint) {
 byte[] truncVal = new byte[blobTruncationPoint];
 ByteBuffer truncBuffer = ByteBuffer.wrap(truncVal);
 truncBuffer.put(val, 0, blobTruncationPoint);
 val = truncVal;
 }
 outBuffer = addBytesToByteBuffer(outBuffer, val);
416 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 } else if (colObj instanceof Boolean) { // Boolean
 if (((Boolean) colObj).booleanValue()) {
 outBuffer = addBytesToByteBuffer(outBuffer,
 ONE_AS_BYTE_ARRAY);
 } else {
 outBuffer = addBytesToByteBuffer(outBuffer,
 ZERO_AS_BYTE_ARRAY);
 }
 } else if (colObj instanceof String) { // CLOB and strings
 String val = ((String) colObj);
 if (val.length() > clobTruncationPoint) {
 val = val.substring(0, clobTruncationPoint);
 }
 outBuffer = addEncodedStringToByteBuffer(outBuffer, val);
 } else if (colObj instanceof BigDecimal) { // All numerics
// Use toPlainString for Java 1.5
 outBuffer = addEncodedStringToByteBuffer(outBuffer,
 ((BigDecimal) colObj).toString());
 } else { // Any other type
 outBuffer = addEncodedStringToByteBuffer(outBuffer,
 colObj.toString());
 }
 } else {
 if (needToCloseQuote) {
 outBuffer.put(DEL_SEP_AS_BYTE_ARRAY);
 needToCloseQuote = false;
 } else {
 outBuffer.put(SEPARATOR_AS_BYTE_ARRAY);
 }
 }
 }
 if (needToCloseQuote) {
 outBuffer.put(DELIMITER_AS_BYTE_ARRAY);
 }
 }
 return outBuffer;
 }

/**
* Create a string containing the null images for the row. This is the
* before-image for an insert operation, or the after-image for a delete
* operation.
*
* @param image
* - The null record image that must be processed
 Chapter 9. Customization and automation 417

* @return A buffer of bytes with the formatted null image
*/

 public ByteBuffer formatNullImage(DataRecordIF image)
 throws DataTypeConversionException {
// There is a separate data formatter for each table, so a null image is
// the same for each row, so just need to create it once
 if (nullImage == null) {
// when called for the first time, determine the number of data
// columns
 if (firstTimeData) {
 numberDataColumns = getNumberDataColumns(image);
 firstTimeData = false;
 }
 String outString = "";
 if (image != null) {
 for (int i = 1; i <= numberDataColumns; i++) {
 outString = outString + SEPARATOR;
 }
 }
 nullImage = ByteBuffer.wrap(getAsEncodedByteArray(outString));
 nullImage.position(nullImage.capacity());
 }
 return nullImage;
 }

/**
* Create a string holding the journal control columns which must be output
* in the flat file
*
* @param event
* - Indication of when the event occurred
* @param operationType
* - The type of the operation for which the image must be
* generated
* @return A buffer of bytes with the formatted journal control image
*/

/**
* Return a ByteBuffer containing the journal control field values that are
* of interest.
*
*/

 public ByteBuffer formatJournalControlFields(ReplicationEventIF event,
 int operationType) throws DataTypeConversionException {
// when called for the first time, determine the number of data columns
 if (firstTimeJournal) {
418 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 trace.write("Table that will be formatted: "
 + event.getJournalHeader().getLibrary() + "."
 + event.getJournalHeader().getObjectName());
 firstTimeJournal = false;
 }
// Determine the character to use to indicate the operation type
 char opChar = ' ';
 switch (operationType) {
 case DataStageDataFormatIF.INSERT_RECORD:
 opChar = SUB_RLA_INS_UPD;
 break;
 case DataStageDataFormatIF.DELETE_RECORD:
 opChar = SUB_RLA_DEL_NONE;
 break;
 case DataStageDataFormatIF.FULL_UPDATE_RECORD:
 opChar = SUB_RLA_NON_UPD;
 break;
 case DataStageDataFormatIF.BEFORE_UPDATE_RECORD:
 opChar = SUB_RLA_AUDIT_BEFORE;
 break;
 case DataStageDataFormatIF.AFTER_UPDATE_RECORD:
 opChar = SUB_RLA_AUDIT;
 break;

 }

 UserExitJournalHeader header = (UserExitJournalHeader) event
 .getJournalHeader();
 String journalControlString = DELIMITER
 + header.getDSOutputTimestampStr() + DELIMITER + SEPARATOR
 + DELIMITER + header.getCommitID() + DELIMITER + SEPARATOR
 + DELIMITER + opChar + DELIMITER + SEPARATOR + DELIMITER
 + header.getUserName() + DELIMITER;

 ByteBuffer retVal = ByteBuffer
 .allocate(BYTE_BUFFER_SPACE_FOR_JOURNAL_CONTROL);
 retVal = addEncodedStringToByteBuffer(retVal, journalControlString);
 return retVal;
 }

/**
* Indicate whether this table is being delivered to DataStage using flat
* files or by direct connect.
*
* @param destination
 Chapter 9. Customization and automation 419

* indicates the destination type
*/

 public void setDestinationType(int destination) {
 destinationType = destination;
 }

/**
* Method used when mapping tables with Direct Connect (InfoSphere CDC 6.5+).
*
* @param journalHeader
* - Information about the journal control columns
* @param rowDataImage
* - Changed row data columns
* @param changeRecord
* - Changed row data columns in Map object
* @param opType
* - Operation type
*/

 public void formatChangedRowFields(UserExitJournalHeader journalHeader,
 DataRecordIF rowDataImage, Map<String, Object> changeRecord,
 int opType) throws DataTypeConversionException {

 }

/**
* Determines the number of data columns in the image, excluding the journal
* control columns as these are also passed when the data must be formatted
*
* @param image
* - The data image to be evaluated
* @return Number of table (data) columns in the table
*/

 private int getNumberDataColumns(DataRecordIF image) {
 int numberColumns = 0;
 trace.write("Columns in published image:");
 for (int i = 1; i <= image.getColumnCount(); i++) {
 if (!image.getColumnName(i).startsWith("&"))
 numberColumns++;
 trace.write(image.getColumnName(i));
 }
 trace.write("Number of data columns: " + numberColumns);
 return numberColumns;
 }

/**
420 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

* Returns the passed string as a byte array, encoded in the character set
* that is specified in the settings
*
* @param inString
* - Input string to encode and return as byte array
* @return
*/

 public static byte[] getAsEncodedByteArray(String inString) {
 byte[] retval;

 try {
 retval = inString.getBytes(OUTPUT_STRING_ENCODING);
 } catch (UnsupportedEncodingException e) {
// If the encoding is not supported, the default encoding is used
 retval = inString.getBytes();
 }
 return retval;
 }

/**
* Append the passed string to the ByteBuffer object, encoded in the
* character set that is specified in the settings. This method is used to
* format non-binary objects which all must be encoded (including timestamp
* and numerics).
*
* @param buf

* - Byte buffer to which the string will be appended
* @param inString
* - String to be appended to the byte buffer
* @return Changed byte buffer
* @throws DataTypeConversionException
*/

 public static ByteBuffer addEncodedStringToByteBuffer(ByteBuffer buf,
 String inString) throws DataTypeConversionException {
 ByteBuffer retVal;
 byte[] asBytes;

 asBytes = getAsEncodedByteArray(inString);

 if (buf.capacity() < buf.position() + asBytes.length
 + BYTE_BUFFER_SPACE_FOR_FIELD_SEPARATORS) {
 int increment = BYTE_BUFFER_AUTO_INCREMENT_SIZE;
 if (increment < asBytes.length) {
 increment = asBytes.length
 + BYTE_BUFFER_AUTO_INCREMENT_BREATHING_SPACE;
 Chapter 9. Customization and automation 421

 }
 retVal = ByteBuffer.allocate(buf.capacity() + increment);
 buf.flip();
 retVal.put(buf);
 } else {
 retVal = buf;
 }

 retVal.put(asBytes);

 return retVal;
 }

/**
* Append the passed byte to the ByteBuffer object, as-is. This method is
* used to format binary objects which must not be encoded.
*
* @param buf
* - Byte buffer to which the byte will be appended
* @param inByte
* - Byte to be appended to the byte buffer
* @return Changed byte buffer
*/

 public static ByteBuffer addByteToByteBuffer(ByteBuffer buf, byte inByte) {
 ByteBuffer retVal;

 if (buf.capacity() < buf.position() + 1
 + BYTE_BUFFER_SPACE_FOR_FIELD_SEPARATORS) {
 retVal = ByteBuffer.allocate(buf.capacity()
 + BYTE_BUFFER_AUTO_INCREMENT_SIZE);
 buf.flip();
 retVal.put(buf);
 } else {
 retVal = buf;
 }
 retVal.put(inByte);

 return retVal;
 }

/**
* Append the passed byte array to the ByteBuffer object, as-is. This method
* is used to format binary objects which must not be encoded.
*
* @param buf
422 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

* - Byte buffer to which the byte will be appended
* @param asBytes
* - Byte array to be appended to the byte buffer
* @return Changed byte buffer
*/

 public static ByteBuffer addBytesToByteBuffer(ByteBuffer buf,
 byte[] asBytes) {
 ByteBuffer retVal;

 if (buf.capacity() < buf.position() + asBytes.length
 + BYTE_BUFFER_SPACE_FOR_FIELD_SEPARATORS) {
 int increment = BYTE_BUFFER_AUTO_INCREMENT_SIZE;
 if (increment < asBytes.length) {
 increment = asBytes.length
 + BYTE_BUFFER_AUTO_INCREMENT_BREATHING_SPACE;
 }
 retVal = ByteBuffer.allocate(buf.capacity() + increment);
 buf.flip();
 retVal.put(buf);
 } else {
 retVal = buf;
 }
 retVal.put(asBytes);
 return retVal;
 }
}

The CDCDataStageFormat class provides an example of how the flat file output
can be customized to meet your needs. There are three main methods in the
interface that must be implemented to format the data: formatDataImage(),
formatNullImage() and formatJournalControlFields(). The other interface
methods must be implemented too, but you can choose whether you want to
provide any code for methods. When data is formatted, the
formatJournalControlFields() method is called first. This method provides the
means to do initialization processing at the table level and formats the journal
control columns. For formatting the data image, the formatDataImage() method
is passed the argument, which holds the data record object. When an update
operation is processed, this method is starts twice, once for the before image
and once for the after image. The formatNullImage() method is called for the
insert and delete operations if the before and after images are in a single record
and can return the number of column separators equivalent to the number
of columns.
 Chapter 9. Customization and automation 423

If a character sequence shows the column delimiter, which is common when
binary objects are replicated, the example could also fit in that scenario. Change
the DELIMITER to the sequence of characters that defines the column delimiter,
for example, "?~#".

To activate the custom data formatter, the class must be specified in the Flat File
properties of the table mappings. The class cannot accept any parameters.

An example configuration for DataStage is shown in Figure 9-38.

Figure 9-38 InfoSphere CDC user exit configuration for DataStage

When running the subscription and making a few changes, the flat file output
appears as shown in Figure 9-39.

Figure 9-39 InfoSphere CDC user exit DataStage output

redscript

redscript
REDSCRIPT
424 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

9.7.7 Notifications

As explained in 9.6.4, “Events” on page 367, some external monitoring solutions
expect that monitored log files be appended to determine if there are any new
messages to be acted upon.

The example Java notification user exit writes events that have been selected for
user exit handling to the <cdc_home>/log/cdc_notifications.log file. When a
notification has been configured for a certain category in the InfoSphere CDC
process and that category is detected, InfoSphere CDC starts the
handle() method.

Example 9-91 shows sample code for a notification user exit.

Example 9-91 Notification user exit

import java.io.*;
import java.util.*;
import java.text.SimpleDateFormat;
import com.datamirror.ts.api.*;

public class NotificationToFile implements AlertHandlerIF {

// Line separator is dependent on the platform (Linux/Unix/Windows)
 private final static String LINE_SEPARATOR = System
 .getProperty("line.separator");
// Directory separator is dependent on the platform (/ on Unix or Linux, \
// on Windows)
 private final static String FILE_SEPARATOR = System
 .getProperty("file.separator");

/**
* Constructor, will be called when the object is instantiated. You could
* include activity such as creating the log file.
*/

 public NotificationToFile() {
 }

/**
* This method is starts for every event that is defined to be handled by a
* USER HANDLER at the datastore or subscription level.
*
* When the method is called, it opens the cdc_notifications.log file in the
* <cdc_home>/log directory and writes the event in a format that is
* equivalent to the output of dmshowevents. The log file is continuously
* appended to and can be monitored by an external monitoring solution.
 Chapter 9. Customization and automation 425

*
* @param zone
* - Zone of the event (not used anymore with InfoSphere CDC 6.5)
* @param category
* - Category of the event (information, error, ...)
* @param sourceOrTarget
* - Did the event happen on the source or the target
* @param subscriptionName
* - Subscription that generated the event
* @param eventID
* - Numeric representation of the event
* @param eventText
* - Message issued by CDC engine
* @param otherInfo
* - Other properties information (not used)
*/

 public void handle(int zone, int category, String sourceOrTarget,
 String subscriptionName, int eventID, String eventText,
 Properties otherInfo) throws Exception {
 BufferedWriter notificationWriter = null;
 try {
// Locate or create the file and open it for output
 notificationWriter = new BufferedWriter(new FileWriter("log"
 + FILE_SEPARATOR + "cdc_notifications.log", true));
// Determine the current time and convert it to ISO representation
 Calendar calendar = new GregorianCalendar();
 calendar.setTime(new Date());
 SimpleDateFormat dateFormat = new SimpleDateFormat(
 "yyyy-MM-dd HH:mm:ss");

// Format the message string and write to the log file
 String message = dateFormat.format(calendar.getTime()) + "|"
 + sourceOrTarget + "|" + subscriptionName + "|" + eventID
 + "|" + getCategoryString(category) + "|"
 + getZoneString(zone) + "|" + eventText + LINE_SEPARATOR;
 notificationWriter.write(message);
 } finally {
// Always executed
 if (notificationWriter != null) {
 try {
 notificationWriter.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
426 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

 }
 return;
 }

/**
* Converts the event category to a readable string
*
* @param category
* - Category of the event
* @return Category string representation
*/

 private String getCategoryString(int category) {
 switch (category) {
 case 1:
 return "Fatal";
 case 2:
 return "Error";
 case 3:
 return "Information";
 case 4:
 return "Status";
 case 5:
 return "Operational";
 default:
 return "Unknown Zone";
 }
 }

/**
* Converts the event zone to a readable string
*
* @param zone
* - Zone of the event
* @return Zone string representation
*/

 private String getZoneString(int zone) {
 switch (zone) {
 case 1:
 return "Communication";
 case 2:
 return "Apply";
 case 3:
 return "Environment";
 default:
 return "";
 Chapter 9. Customization and automation 427

 }
 }
}

To implement the notification handling, go to the Notifications section of your
data store and select the notifications. If you only want to handle certain events
(for example, unrecoverable and error messages), select only the notifications
that generate entries in this file. Figure 9-40 shows an example of how the
notification user handler can be specified at the data store level.

Figure 9-40 User exit notification configuration
428 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

When you start a subscription and look at the events being generated, you see
the event log messages logged in the <cdc_home>/log/cdc_notifications.log
file (Figure 9-41).

Figure 9-41 Output of event log messages

REDSCRIPT

REDSCRIPT
REDSCRIPT
REDSCRIPT
REDSCRIPT
REDSCRIPT

REDSCRIPT
REDSCRIPT

REDSCRIPT

REDSCRIPT
REDSCRIPT
REDSCRIPT

REDSCRIPT
REDSCRIPT
REDSCRIPT REDSCRIPT

REDSCRIPT

REDSCRIPT
REDSCRIPT

REDSCRIPT

REDSCRIPT

REDSCRIPT
REDSCRIPT

REDSCRIPT

REDSCRIPT

redscript

REDSCRIPT
 Chapter 9. Customization and automation 429

430 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Appendix A. Single scrape events and
errors

The following events are explicitly generated by single scrape and are visible in
the IBM InfoSphere Change Data Capture (InfoSphere CDC) Event Log:

� I_SHAREDSCRAPE_COMPONENT_STARTED 2920
EventCategory.INFORMATION, EventSeverity.INFO

The single scrape component has started. The staging store is {0}% full.

� I_SHAREDSCRAPE_COMPONENT_STARTED_EMPTY 2921,
EventCategory.INFORMATION, EventSeverity.INFO

The single scrape component has started. The staging store is empty.

� I_SHAREDSCRAPE_SUBSCRIPTION_STARTED 2922,
EventCategory.INFORMATION, EventSeverity.INFO

Subscription {0} has started using the single scrape staging store.

� I_SHAREDSCRAPE_SUBSCRIPTION_REJECTED 2923
EventCategory.INFORMATION, EventSeverity.INFO

Subscription {0} ca not use the single scrape staging store. It runs with a
private log reader and log parser.

A

© Copyright IBM Corp. 2012. All rights reserved. 431

� I_SHAREDSCRAPE_SUBSCRIPTION_KICKED_OUT 2924
EventCategory.INFORMATION, EventSeverity.INFO

Subscription {0} has stopped using the single scrape staging store, and is
now using a private log reader and log parser.

� W_SINGLESCRAPE_STAGINGSTORE_INCORRECT_VERSION 2927
EventCategory.INFORMATION, EventSeverity.WARNING

Incorrect single scrape staging store version. This version: {0} Expected
version: {1}.

� W_SINGLESCRAPE_STAGINGSTORE_DISK_WRITE_ERROR 2928
EventCategory.INFORMATION, EventSeverity.WARNING

The single scrape staging store experienced an IOException when writing
data to disk. This error is most likely an out-of-disk-space error. No data has
been lost, as the data is still in memory. No further operations will be stored
until some of the data in the staging store is no longer needed. Consider
refreshing subscription tables with stale data, unconfiguring any unneeded
subscription tables, or deleting any unneeded subscriptions. Do not stop the
instance until this problem is rectified.

� W_SINGLESCRAPE_STAGINGSTORE_DISK_SPACE_QUOTA_EXCEEDED
2929 EventCategory.INFORMATION, EventSeverity.WARNING

The single scrape staging store disk space usage has exceeded the quota.
No further operations will be stored until the disk space usage is below the
quota again. This situation could affect source performance, and could be
because of poor target apply performance. Consider increasing the quota,
refreshing subscription tables with stale data, unconfiguring any unneeded
subscription tables, or deleting any unneeded subscriptions.

� W_SINGLESCRAPE_STAGINGSTORE_DISK_SPACE_QUOTA_EXCEEDED_
INDEPENDENT 2950, EventCategory.INFORMATION,
EventSeverity.WARNING

The single scrape staging store disk space usage has exceeded the quota.
Some of the oldest data will be deleted from the store. Some subscriptions
that were using the single scrape staging store might now need to run with a
private scraper.

� W_SINGLESCRAPE_STAGINGSTORE_DISK_WRITE_ERROR_INDEPENDE
NT 2951 EventCategory.INFORMATION, EventSeverity.WARNING

The single scrape staging store experienced an IOException when writing
data to disk. This situation is most likely an out-of-disk-space error. No data
has been lost, as the data is still in memory. Some of the oldest data will be
deleted from the store. Some subscriptions that were using the single scrape
staging store might now need to run with a private scraper.
432 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

� E_SINGLESCRAPE_STAGINGSTORE_CORRUPT 2930
EventCategory.FATAL, EventSeverity.ERROR

The single scrape staging store is corrupted. To resolve this issue, you must
clear the staging store using the dmclearstagingstore command-line utility.

� E_SINGLESCRAPE_STAGINGSTORE_CLEAR_WHILE_RUNNING 2931
EventCategory.FATAL, EventSeverity.ERROR

The single scrape staging store cannot be cleared while subscriptions
are mirroring.

� E_SINGLESCRAPE_ERROR 2933 EventCategory.FATAL,
EventSeverity.ERROR

Exception in single scrape.

Single scrape error events

The following events are explicitly generated by single scrape errors and are
visible in the InfoSphere CDC Event Log:

� SingleScrape_StagingStore_TamperedWith =The single scrape staging store
block file {0} is corrupted or has been tampered with.

� SingleScrape_StagingStore_FileNotDeleted =The deletion of the single
scrape staging store block file {0} failed.

� SingleScrape_StagingStore_PersistAborted=The {0} instance was shut down
with the abort option while the single scrape staging store was being written
to disk.

� SingleScrape_DisconnectedScrape_NotAllowedWithIndependentSubs=The
Single scrape staging store disconnected scrape feature cannot be enabled if
subscriptions can run independently. To enable disconnected scrape, you
must set the system property staging_store_can_run_independently to
false, and then restart the engine.

Entries within braces, such as {0}, are placeholders for input values supplied to
the event text at run time.
 Appendix A. Single scrape events and errors 433

434 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet.

Locating the web material

The web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks web server. Point your web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247941

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247941.

B

© Copyright IBM Corp. 2012. All rights reserved. 435

ftp://www.redbooks.ibm.com/redbooks/SG247941
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the web material

The additional web material that accompanies this book includes the
following file:

SG247941 CDC Metadata Tables.pdf This file contains a listing of the CDC
configuration metadata tables for the
Linux, UNIX, and Windows engine
versions with some information about
some of the key tables as of the time of
publication. There is no commitment to
keep this file up to date, and the metadata
is subject to change without notice.

The current structure of your version's
metadata is viewable using the CDC tool
dmmdconsole located in the CDC
installation bin directory if your system
can view Java Swing-based GUI
applications, or using dmmdcommander for
command-line viewing using standard
SQL commands. Both interfaces are read
only, and no direct editing of the CDC
metadata is possible, but you might find it
helpful for reporting and other purposes.

How to use the web material

Download the file to your workstation and open it to view the
metadata information.
436 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Glossary

access control list. The list of principals that have
explicit permission (to publish, to subscribe to, and
to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

Access Manager. A functional area of the
Management Console used by the administrator to
configure the security model of InfoSphere CDC
users and their permissions.

Access Server. A background process on a
Windows or UNIX workstation that implements the
InfoSphere CDC security model.

ACL. See access control list.

adaptive apply. A method of applying data to a
target table that allows the target table to have
incorrect data. As data changes are replicated from
the source table, the target table becomes more
accurate.

after image. The updated content of a
source-table column after the source operation has
completed.

aggregate. Pre-calculated and pre-stored
summaries, kept in the data warehouse to improve
query performance.

aggregation. An attribute-level transformation that
reduces the level of detail of available data, for
example, having a Total Quantity by Category of
Items rather than the individual quantity of each item
in the category.

application programming interface. An interface
provided by a software product that enables
programs to request services.
© Copyright IBM Corp. 2012. All rights reserved.
asynchronous messaging. A method of
communication between programs in which a
program places a message on a message queue,
and then proceeds with its own processing without
waiting for a reply to its message.

attribute. A field in a dimension table.

auditing. The process of tracking table and
row-level operations (insert, update, delete, and
clear operations) that have been applied to a source
table. The tracking occurs in a target table.

before image. The content of a replication
source-table column before the source operation.

bidirectional replication. Replication in which
changes that are made to one copy of a table are
replicated to a second copy of that table, and
changes that are made to the second copy are
replicated back to the first copy. You must choose
which copy of the table wins if a conflict occurs.

BLOB. Binary large object, a block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid
entity that cannot be interpreted.

bookmark. Information that InfoSphere CDC uses
to maintain transactional data consistency.

cascading replication. A replication topology
where changes are first replicated to a target table,
and then the changes made to that target table are
further replicated to one or more additional target
tables (often located in another database).

change data capture. Provides rapid and timely
capture and delivery of data changes across
enterprise systems in real time.
 437

column function. An expression within a derived
expression that performs enhanced data
manipulation. Typically, column functions calculate
statistical aggregations, such as COUNT, SUM,
AVG, or MAX, based on the values of existing
columns, and then place the results in new columns.

column mapping. The action of choosing which
source columns are replicated to which target
columns.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins.

composite key. A key in a fact table that is the
concatenation of the foreign keys in the dimension
tables.

computer. A device that accepts information (in
the form of digitalized data) and manipulates it for
some result based on a program or sequence of
instructions about how the data is to be processed.

conflict detection. The process of detecting
whether the same row was updated by users or
application programs in both the source and target
tables at essentially the same time.

configuration. The collection of brokers, their
execution groups, the message flows, and sets that
are assigned to them, and the topics and associated
access control specifications.

continuous data replication. See Enterprise
Replication.

continuous mirroring. A method of mirroring data
where a change applied to a source table is
immediately replicated to the target table. You
should use continuous mirroring when it is important
that source and target tables be synchronized at all
times.

critical column. A change to a critical column
indicates that the source operation is important and
should be replicated to the target environment. If a
source row is updated but no critical columns are
changed, then this change is not replicated to the
target table. The changes to the non-critical columns
are replicated to the target the next time an
important update is done.

data definition language. An SQL statement that
creates or modifies the structure of a table or
database, for example, CREATE TABLE, DROP
TABLE, ALTER TABLE, or CREATE DATABASE.

data manipulation language. An INSERT,
UPDATE, DELETE, or SELECT SQL statement.

data append. A data loading technique where new
data is added to the database, leaving the existing
data unaltered.

data cleansing. A process of data manipulation
and transformation to eliminate variations and
inconsistencies in data content. This process is
typically done to improve the quality, consistency,
and usability of the data.

data federation. The process of enabling data
from multiple heterogeneous data sources to appear
as though it is contained in a single relational
database. Can also be referred to as distributed
access.

data mart. An implementation of a data
warehouse, typically with a smaller and more tightly
restricted scope, such as for a department or
workgroup. It can be independent, or derived from
another data warehouse environment.

data mining. A mode of data analysis that has a
focus on the discovery of new information, such as
unknown facts, data relationships, or data patterns.

data partition. A segment of a database that can
be accessed and operated on independently, even
though it is part of a larger data structure.
438 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

data refresh. A data loading technique where all
the data in a database is replaced with a new set of
data.

data store. An instance of a InfoSphere CDC
engine. Instances are created using the
configuration tool provided for each engine.

data type. Defines the type of data stored in a
specific database column, such as date, numeric, or
character data. Significant differences in data types
exist between different platforms' databases.

data warehouse. A specialized data environment
developed, structured, and used specifically for
decision support and informational applications. It is
subject oriented rather than application oriented.
Data is integrated, non-volatile, and time variant.

database partition. Part of a database that
consists of its own data, indexes, configuration files,
and transaction logs.

DB Connect. Enables connection to several
relational database systems and the transfer of data
from these database systems into the SAP Business
Information Warehouse.

DDL. See data definition language.

debugger. A facility on the Message Flows view in
the Control Center that enables message flows to be
visually debugged.

deploy. Makes operational the configuration and
topology of the broker domain.

derived column. A column that is calculated from
other source column values using a derived
expression.

derived expressions. An expression that defines
the value placed in a column for each row inserted
or updated in a target table.

differential refresh. A process that synchronizes
the target table with the current contents of the
source table by applying only the differences
between the target and the source table.

dimension. Data that further qualifies or describes
a measure, or both, such as amounts or durations.

distributed application In message queuing, a
set of application programs that can each be
connected to a different queue manager, but that
collectively constitute a single application.

DML. See data manipulation language.

drill-down. Iterative analysis, exploring facts at
more detailed levels of the dimension hierarchies.

dynamic SQL. SQL that is interpreted during
execution of the statement.

embedded database. A database that works
exclusively with a single application or appliance.

engine. A program that performs a core or
essential function for other programs. A database
engine performs database functions on behalf of the
database user programs.

enrichment. The creation of derived data. An
attribute-level transformation performed by some
type of algorithm to create one or more new
(derived) attributes.

Enterprise Replication. An asynchronous,
log-based tool for replicating data between IBM
Informix database servers.

extenders. These itmes are program modules that
provide extended capabilities for DB2 and are tightly
integrated with DB2.

FACTS. A collection of measures, and the
information to interpret those measures in a given
context.

federation. Provides a unified interface to diverse
data.

filtering columns. The process of identifying
which source columns you want to include or
exclude for replication.
 Glossary 439

gateway. A means to access a heterogeneous
data source. It can use native access or ODBC
technology.

grain. The fundamental lowest level of data
represented in a dimensional fact table.

in-scope objects. Objects that are considered, or
included, for replication to the backup system.

instance. A particular realization of a computer
process. Relative to the database, the realization of
a complete database environment.

Java Database Connectivity. An application
programming interface that has the same
characteristics as ODBC, but is specifically
designed for use by Java database applications.

Java Development Kit. A software package used
to write, compile, debug, and run Java applets and
applications.

Java Message Service. An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment. A subset of the Java
Development Kit that enables you to run Java
applets and applications.

journal control fields. A set of fields that contains
different information about a journal entry
associated with a source table change. Journal
control fields can be assigned to target columns, as
journal entry information is replicated with source
table data. In Management Console, journal control
fields are denoted with an ampersand (&) before the
name of the field.

latency. The latency of the target table indicates
how closely synchronized it is with the source table.
For example, if 30 seconds ago on the source
system have been applied to the target table, but
some changes that were done in the last 30 seconds
have not yet been applied, then the table would be
30 seconds latent.

LiveAudit. A feature that maintains an audit trail of
table changes in the mapped target table.

Management Console. The administrator
applications that provide the necessary support to
configure, manage, and monitor an entire replication
configuration from a central location.

materialized query table. A table where the
results of a query are stored for later reuse.

measure. A data item that measures the
performance or behavior of business processes.

member identifiers. An expression identifying the
member in a multimember IBM i source table that is
the source of replicated data. You require member
identifiers to identify the member for each replicated
record so that data in the target table is not erased
during a refresh.

message domain. The value that determines how
the message is interpreted (parsed).

message flow. A directed graph that represents
the set of activities performed on a message or event
as it passes through a broker. A message flow
consists of a set of message processing nodes and
message processing connectors.

message parser. A program that interprets the bit
stream of an incoming message and creates an
internal representation of the message in a tree
structure. A parser is also responsible for generating
a bit stream for an outgoing message from the
internal representation.

metadata. The internal set of tables that maintains
the entities, attributes, and characteristics of your
replication configuration.

mirroring. The process of continuous replication
of changed data from the source system to the target
system

MOLAP. See Multidimensional OLAP.
440 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

multidimensional OLAP. Can be called
MD-OLAP. It is OLAP that uses a multidimensional
database as the underlying data structure.

multidimensional analysis. Analysis of data
along several dimensions, for example, analyzing
revenue by product, store, and date.

multidimensional clustering. A technique that
allows for rows of data with similar values across
multiple dimensions to be physically clustered
together on disk.

multitasking. Operating system capability that
allows multiple tasks to run concurrently, taking turns
using the resources of the computer.

multithreading. Operating system capability that
enables multiple concurrent users to use the same
program. This situation saves on the impact of
initiating the program multiple times.

nickname. An identifier that is used to reference
the object at the data source that you want to
access.

node group. Group of one or more database
partitions.

node. An instance of a database or database
partition.

notifications. A mechanism that generates a
notification in response to a generated product
message. A notification can be conveyed through
different methods (email notification, user exit
program notification, and so on). This mechanism
allows a user to monitor replication activity in their
network.

ODBC. See Open Database Connectivity.

OLAP. See online analytical processing.

online analytical processing. Multidimensional
data analysis, performed in real time. Not dependent
on an underlying data schema.

Open Database Connectivity. A standard
application programming interface for accessing
data in both relational and non-relational database
management systems. Using this API, database
applications can access data stored in database
management systems on various computers, even if
each database management system uses a different
data storage format and programming interface.
ODBC is based on the call-level interface (CLI)
specification of the X/Open SQL Access Group.

optimization. The capability to enable a process
to run and perform in such a way as to maximize
performance, minimize resource utilization, and
minimize the process execution response time
delivered to the user.

out of scope objects. Objects that are not
considered for, or excluded from, replication to the
target system.

partition. Part of a database that consists of its
own data, indexes, configuration files, and
transaction logs.

pass-through. The act of passing the SQL for an
operation directly to the data source without being
changed by the federation server.

persistent subscription. InfoSphere CDC
ensures that a persistent subscription is restarted
when the engine is restarted after shutdown or after
the subscription ends with a recoverable error.

pivoting. Analysis operation where a user takes a
different viewpoint of the results, for example, by
changing the way the dimensions are arranged.

primary key. Field in a table that is uniquely
different for each record in the table.

process. An instance of a program running in a
computer.

program. A specific set of ordered operations for a
computer to perform.
 Glossary 441

propagation control. The process of preventing
the replication of data from a particular source. This
process is useful if you are using a bidirectional
replication configuration, and prevents subscriptions
from unnecessarily repeating operations like
inserting data.

pushdown. The act of optimizing a data operation
by pushing the SQL down to the lowest point in the
federated architecture where that operation can be
run. More simply, a pushdown operation is one that
is run at a remote server.

recursion. The process by which a perpetual
series of repetitive changes applied to the same
record occurs between two or more tables in a
bidirectional replication scenario.

recursion prevention. When performing
bidirectional replication, the ability to avoid a change
to one table from being repetitively applied to both
tables without termination.

refresh. A process that synchronizes the target
table with the current contents of the source table.

refresh order. The order in which source tables
are refreshed.

replication. The process of maintaining an
on-going synchronization between the contents of
source tables and target tables. Also the process of
sending changes from source tables to the target
system. In InfoSphere CDC, this term encompasses
all methods of transferring data (refresh and
mirroring).

replication method. A property of table mapping
that indicates whether it performs mirroring or
refresh.

Relational Sequential Access Method. The disk
access method and storage manager for the
Informix DBMS.

Relational OLAP. Multidimensional analysis using
a multidimensional view of relational data. A
relational database is used as the underlying data
structure.

ROLAP. See relational OLAP.

roll-up. Iterative analysis, exploring facts at a
higher level of summarization.

row filtering. The process of determining which
rows in a source table to replicate. Typically, an
expression tests one or more column values in each
row and returns a Boolean result that replicates or
discards the row.

RSAM. See Relational Sequential Access Method.

server. A computer program that provides services
to other computer programs (and their users) in the
same or other computers. However, the computer
that a server program runs in is also frequently
referred to as a server.

Schedule End (Net Change)
mirroring. Replicates changes (to the target) up to
a point consistent with the state of the source
database at a given point in time and then ends
replication.

shared nothing. A data management architecture
where nothing is shared between processes. Each
process has its own processor, memory, and disk
space.

source database. A database from which
replication transfers captured changes.

static SQL. SQL that has been compiled before
execution. Typically provides best performance.

subject area. A logical grouping of data by
categories, such as customers or items.

subscription. A group of table mappings.

subscription promotion. The process of copying
replication definitions from one environment to
another environment without having to recreate the
definitions.
442 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

subscription state. An indicator of the activity
involving a subscription defined in Management
Console. The subscription state indicates whether
replication operations to a subscription are starting,
refresh, mirror continuous, mirror net-change,
ending, inactive, or unknown.

subscription status. The subscription status
indicates how replication is progressing. The
subscription status can be Normal, Error, or
Unknown.

summarization. A method of applying data to a
target table where numeric data in the table is
incremented or decremented based on the type of
row-level operation (insert, update, or delete)
applied to the table. Summarization allows you to
aggregate data without having to define expressions
that maintains the equivalent results.

synchronous messaging. A method of
communication between programs in which a
program places a message on a message queue
and then waits for a reply before resuming its own
processing.

system parameter. A setting that can be modified
to change a certain behavior of InfoSphere CDC.

table mapping. A component of a subscription
that connects a source replication object with a
target replication object and specifies
communication paths, such as queues or TCP/IP
connections.

target database. A database to which replication
software applies changes captured from a source
database.

task. The basic unit of programming that an
operating system controls. Also see Multitasking.

thread. The placeholder information associated
with a single use of a program that can handle
multiple concurrent users. Also see Multithreading.

throughput. A measure of the rate at which data
changes are retrieved, sent, and applied on the
target system.

transaction consistency. While mirroring data,
transaction consistency is the guarantee that if part
of a transaction has been committed to the target
database, then all other in-scope operations from
that source transaction have been committed as
well.

transformation. The process of manipulating
replicated data from a source to a target.

unit of work. A recoverable sequence of
operations performed by an application between two
points of consistency.

user mapping. An association made between the
federated server user ID and password and the data
source (to be accessed) user ID and password.

virtual database. A federation of multiple
heterogeneous relational databases.

warehouse catalog. A subsystem that stores and
manages all the system metadata.

xtree. A query-tree tool that enables you to monitor
the query plan execution of individual queries in a
graphical environment.
 Glossary 443

444 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

acronyms
ACS access control system

ADK Archive Development Kit

AIX Advanced Interactive
eXecutive from IBM

ALE application link enabling

AMI application messaging
interface

API application programming
interface

AQR automatic query rewrite

AR access register

ARM automatic restart manager

ART access register translation

ASCII American Standard Code for
Information Interchange

ASM Automatic Storage Manager

AST application summary table

ATM asynchronous transfer mode

B2B business to business

BAM business activity monitoring

BAPI business application
programming interface

BAS business application services

BI business intelligence

BIRA business integration
reference architecture

BIW Business Information
Warehouse (SAP)

BLOB binary large object

BSM business service
management

BW Business Information
Warehouse (SAP)

Abbreviations and
© Copyright IBM Corp. 2012. All rights reserved.
CCMS Computing Center
Management System

CDB customer database

CDC change data capture

CDD change data delivery

CL command line

CLI call level interface

CLOB character large object

CLP command-line processor

CPM corporate performance
management

CPU central processing unit

CRM customer relationship
management

CSA common storage area

CS-WS Conversation Support for
Web Services

DADx document access definition
extension

DB database

DBA database administrator

DB2 Database 2

DB2II DB2 Information Integrator

DB2 UDB IBM DB2 Universal
Database™

DB2 II DB2 Information Integrator

DBMS database management
system

DCE distributed computing
environment

DCM dynamic coserver
management

DCOM distributed component object
model
 445

DDL data definition language

DLL dynamically linked library

DIMID dimension identifier

DML data manipulation language

DNS domain name system

IBM DRDA® IBM Distributed Relational
Database Architecture™

DSN data source name

DSS decision support system

DTR database table refresh

EAI enterprise application
integration

EAR enterprise archive

EBCDIC Extended Binary Coded
Decimal Interchange Code

EDA enterprise data architecture

EDA event-driven architecture

EDU engine dispatchable unit

EDW enterprise data warehouse

EGM enterprise gateway manager

EII enterprise information
integration

EIS enterprise information system

EJB Enterprise JavaBeans

ER enterprise replication

ERP enterprise resource planning

ESB enterprise service bus

ESE Enterprise Server Edition

ETL extract transform and load

FDL flow definition language

FTP file transfer protocol

Gb gigabits

GB gigabytes

GUI graphical user interface

HDR high availability data
replication

HPL high performance loader

HTML hypertext markup language

HTTP hypertext transfer protocol

HTTPS hypertext transfer protocol
secure

I/O input/output

IANA Internet Assigned Numbers
Authority

IBM International Business
Machines Corporation

ID identifier

IDE Integrated Development
Environment

IDS Informix database server

II information integration

IIOP Internet Inter-ORB Protocol

IBM IMS™ IBM Information Management
System

ISAM Indexed Sequential Access
Method

InfoSphere CDC InfoSphere Change Data
Capture

ISV independent software vendor

IT information technology

ITR internal throughput rate

ITSO International Technical
Support Organization

IX index

J2C J2EE Connector

J2EE Java 2 Platform Enterprise
Edition

JAR Java archive

JDBC Java Database Connectivity

JDK Java Development Kit

JE Java Edition

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JRE Java Runtime Environment
446 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

JSP JavaServer Pages

JSR Java Specification Requests

JTA Java Transaction API

JVM Java Virtual Machine

KB kilobyte (1024 bytes)

LDAP lightweight directory access
protocol

LOB large object

LOB line of business

LPAR logical partition

LRSN logical record sequence
number

LV logical volume

Mb megabits

MB Megabytes (1,048,576 bytes)

MC Management Console

MD master data

MDC multidimensional clustering

MDI master data integration

MDM master data management

MIS management information
system

MVC model-view-controller

MQT materialized query table

MPP massively parallel processing

MRM message repository manager

NFS network file system

NPI non-partitioning index

ODA object discovery agent

ODBC open database connectivity

ODS operational data store

OLAP online analytical processing

OLE object linking and embedding

OLTP online transaction processing

ORDBMS object relational database
management system

OS operating system

PDS partitioned data set

PIB parallel index build

PSA persistent staging area

RAC real application clusters

RBA relative byte address

RDBMS relational database
management system

RDP rapid deployment package

RID record identifier

RMI remote method invocation

RR repeatable read

RS read stability

SAN storage area network

SAX Simple API for XML

SCD slowly changing dimensions

SDK software developers kit

SMIT Systems Management
Interface Tool

SMP symmetric multiprocessing

SOA service-oriented architecture

SOAP Simple Object Access
Protocol

SPL stored procedure language

SSH Secure Shell

SQL structured query

TNS transparent network substrate

TS transformation server

TS terminal server

TS table space

TSO IBM Time Sharing Option

UDDI Universal Description,
Discovery, and Integration of
Web Services

UDF user-defined function

UI user interface

UID user identifier

UDR user-defined routine
 Abbreviations and acronyms 447

URL uniform resource locator

UTC Coordinated Universal Time

VG volume group (RAID disk
terminology).

VLDB very large database

VPN virtual private network

VTI virtual table interface

W3C World Wide Web Consortium

WAR web archive

WLM workload management

WORF Web Services Object Runtime
Framework

WSDL Web Services Description
Language

WSFL Web Services Flow Language

WS-I Web Services Interoperability
Organization

WSIC Web Services Choreography
Interface

WSIF Web Services Invocation
Framework

WSIL Web Services Inspection
Language

WSMF Web Services Management
Framework

WWW World Wide Web

XBSA X-Open Backup and Restore
APIs

XML eXtensible Markup Language

XSD XML Schema Definition
448 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Related publications

The publications listed in this section are considered suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about
the topic in this document. Some publications referenced in this list might be
available in softcopy only.

� Implementing IBM InfoSphere Change Data Capture for DB2 z/OS V6.5,
REDP-4726

� TCP/IP Tutorial and Technical Overview, GG24-3376-06

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, and order hardcopy Redbooks
publications, at this website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� BM InfoSphere Data Replication change data capture

http://ibm.com/software/data/infosphere/change-data-capture/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2012. All rights reserved. 449

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://ibm.com/software/data/infosphere/change-data-capture/

450 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Index

A
Access Manager 104–105, 112, 114, 178, 264,
272, 276, 280
Access Server 14, 106, 110, 119, 149, 151,
153–157, 231, 233–236, 263, 265, 270–274,
276–277, 279–280, 282, 284, 309, 338, 347, 349
activate changed tables 202
Active data warehousing 24
Adaptive Apply 76, 91, 93, 99, 185, 299, 384, 401
Adaptive Apply replication 93
Admin API 14
Analyze performance statistics 217
API classes 264
API Javadocs 263
application consolidation 1
Application Integration 53
Application Synchronization 53
Apply agent 14, 16
apply method 76, 82, 84, 299
Apply methods 91

Adaptive Apply replication 93
Consolidation One to Many 94
Consolidation One to One 94
LiveAudit replication 92
Row consolidation 94
Summarization replication 93

archive transaction logs 257
ASCII 83

B
BAM 64

Also see business activity monitoring
Batch Framework 43
BEA WebLogic 64
Before Delete user exit 401
before-delete event 392
BI 3, 24, 45–46, 67, 212

Also see business intelligence
bi-directional mirroring 53
Bi-directional replication 52, 100
bi-directional replication 15, 19, 53, 77
bi-directional topology 53
BIRT
© Copyright IBM Corp. 2012. All rights reserved.
Business Intelligence and Reporting Tools 43
bookmark 17, 35, 68, 88, 115, 129–131, 134,
182–185, 190, 198, 208, 227–229, 237, 303,
338–339, 383
Bookmark information 122
bottlenecks 215
BPM 64

Also see business process management
Bulk Data Delivery 11
Bulk Load 12
business activity monitoring 64
business agility 10
business intelligence xii, 3, 25, 45, 67
Business Intelligence and Reporting Tools 43
business process management 4, 64
business use cases 19

C
cascading integration 50
Cascading replication 49, 226
cascading replication 221, 226
CDC

messages queues 37
CDD 98
Center of Excellence xiii
Change Data Capture 29
change data capture xi
Change Data Delivery 98
change management

Oracle environment 209
change management automation 198
change management environment 193
change management scenario

no service window 207
service window 193

change tables activation 202
change tracking interface xi
CLI 106–107, 111, 120, 237, 246, 250, 338
Coded Character Set Identifier 147
column filtering 15, 83, 288, 303, 309–310, 339
column functions 77–78, 82–83, 89, 100
column level filtering 90
column mapping 83, 288, 312, 314, 378, 401
 451

Command line interface 14
Communication Initialization and Termination 133
Communication Layer 15
compilation command 235
composite events 73
concatenation 78
Configuration changes 85
Configuration metadata 170
configuration metadata tables 283
Configuration Tool 109
conflict and detection resolutions

Largest Value Wins 100
Smallest Value Wins 100
Source Wins 100
Target Wins 100
User Exit 100

conflict detection 53, 76, 99, 184
Conflict detection and resolution 99
conflict detection and resolutions
conflict detections 15
conflict resolution 76
Consolidation 28–29, 76, 82, 91, 94
Consolidation One to Many 95
Consolidation One to One 94
Consolidation Replication 54
Consolidation Server 33
Context-rich 73
continuous analysis 15
continuous availability 3
continuous bi-directional synchronization 60
continuous business availability 12
continuous business monitoring 4
continuous capture 227–230
Continuous Capture feature 227
continuous capture process 228
Continuous Mirror 343
continuous mirror mode 238, 344
Continuous mirroring 87, 340

Abort 88
Immediate 88
Normal 88
Scheduled End 88

continuous mirroring 12, 81, 248, 367
Continuous mode 83
continuous scraping 221, 228
Creating a subscription 284
CRM 37, 309

process 37
system 37

CRM system 38
Cross database version replication 48
Custom apply methods 96
Customer Matching Critical Data Rule UI 43

D
data consolidation 30–31
data distribution 3, 57
data distribution replication 57
Data functions 79
data integration xii, 2–3, 7, 9, 39, 53

optimized 3
data manipulation language 29
data marts 45
data normalization 28
data redundancy 48
Data Replication xi, 1, 75, 103, 137, 211, 231, 431
data replication process 29, 215–216
Data Stewardship UI 43
data synchronization 48, 53
data transformations 78, 82, 214
data warehouse appliance 64
data warehousing xii, xiv, 1–2, 24, 94
database xii
database log 16, 88, 129, 159, 161, 171, 174, 176,
190, 194, 198, 207, 227–228, 230, 288–289, 340
Database Log Scraper 133
database logs 12–13, 15, 44, 126, 132, 159,
162–163, 166, 207, 210, 213–214, 224, 227–230,
338
Database migration 35
Database Staging 21, 68
Database Table Change 134
Database Table Refresh 134
database transaction logs 257
DataMirror xiii–xiv
DataStage 16, 25–26, 43–44, 55, 62, 67–69,
96–97, 104, 107, 184, 282, 300, 344, 412–413, 415,
419, 424
DataStage engine 96
DataStage jobs 16
Datastore 15, 228, 249, 273–275, 280–282, 347,
362
datastore role 277
date and time 78, 87–88, 184, 340–341, 359
DB2 for Linux, UNIX, and Windows xv, 27
DB2 IFI 262

Also see DB2 instrumentation facility interface
452 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

DB2 instrumentation facility interface 13, 160
DB2 stored procedure 28
DB2/400 xiii, xv, 289
DB2/z logs 13
DBPath object 290
DBTable object 290
DDL changes refresh 198
DDL operations

DB2 on z/OS 209
InfoSphere CDC for z/OS 210

DDL statements
Linux, UNIX, and Windows engine 207

Deassign Target Tables 303
default connection parameters 276
delete a subscription 308
Deliver Pillar 7, 9
delta changes 35, 42–43
Denormalization 78
denormalize 81
deploy subscription changes 338
deploying subscription changes 191
derived column 78, 146, 313–314
derived columns 214, 339
derived expression 78–79, 313, 370
derived expression user exit 377
Derived expression user exits 382
derived expression user exits 373
derived expressions 77–78, 80, 84, 87, 130, 214,
269
Differential Refresh 85–87

Only Log Differences 87
Refresh and Log Differences 87
Refresh Only 87
requirements 87

Differential refresh 86
differential refresh 85–87
Direct Connect 67, 69, 96, 98, 420
discrete data events 72
DML 29, 208–209

also see data manipulation language
Dynamic data 10
dynamic data 9–10, 12
Dynamic Warehousing xi

E
e-Commerce application 40
EDA 72
EDW 27–28

Enterprise Data Warehouse 27
electronic point of sale 32
encoding conversion 318
encoding conversions 15, 287, 315, 318
Encoding method 318
Enterprise Data Warehouse 27
Enterprise Service Bus 37
EPOS 32

electronic point of sale 32
ERP 30–31
ERP systems 30–31
ESB 37

Also see Enterprise Service Bus
ETL 9, 12, 20, 22–23, 25–26, 41–43, 46, 55, 62, 64,
68–70, 76, 91, 93, 96, 212
ETL engine 96
ETL staging tables 26
Event Log 127
event log 215
event monitoring 367
event server 37, 68
Event-Driven 71
event-driven xi, 71
Event-Driven Architecture 71–72
event-driven architecture 62
external monitoring solution 251
extracting data 55

F
fault tolerant architecture 16
Federation 12
File based integration 23
filtering 89

column level 89
row level 89

Firewalls 152
Flat File 23, 62, 96, 98, 413, 424

considerations 64
Flat Files 64
Flat files

Configurable options 97
Fraud Prevention 64

H
heterogeneous data 6, 9
heterogeneous data sources 7
Hub-and-Spoke 58
 Index 453

I
IBM Cognos 55

Data Manager 55
IBM DataMirror® xiii
IBM DB2/z 25
IBM InfoSphere DataStage 16, 282
IBM InfoSphere Information Server 4–5
IBM JDK 371
IBM Resource Access Control Facility (RACF®)
238
IBM WebSphere 64
IBM® InfoSphere® Data Replication xi
IFI 13, 160, 262

Also see instrumentation facility interface
import subscriptions from XML file 280
Incremental Data Delivery 11–12
Incremental data delivery 13
Information Server 4–5, 9, 31, 42–44, 72

architecture strategy 4
Metadata-driven integration 4
scalable 4

InfoSphere
Proof of Concepts xiii

InfoSphere CDC 14, 20, 119–120, 153, 170, 213,
264, 366

Access Server 119
alternative architectures 221
architecture 211
bi-directional functionality 37
binaries and configuration metadata 171
change management workflow 190
code page conversions 147
Command Line Interface 232
communications component 134
configuration metadata 130
daemon process 239
DB2 on System i engine 238
engine commands 237
engine commands on z/OS 238
event log 118
Event Server 300
firewalled network environment 153
high availability 168
high availability solutions 181
in an IASP environment 180
instance 241
large environments 211
log reader 15
Log shipping 166

major components 213
Management Console 15, 49, 106, 111, 120,
151, 154, 216, 262–263, 270, 284
Management Console GUI 232
metadata 325
N-tier architecture 224
N-tier data replication 224
on a shared volume 171
on separate instances 175
On separate nodes - database shared 173
on System i 178
operational information 171
Oracle system parameters 167
Oracle Trigger-based 301
potential bottlenecks 211
Remote processing capabilities 162
remote target environment 164
silent install 217
target engine 303
TCP/IP application protocol 149
unidirectional functionality 37
virtual IP 169
workflow 216

InfoSphere CDC 6.3 318, 321, 350
InfoSphere CDC 6.5 315, 317, 321, 341, 350, 367
InfoSphere CDC 6.5+ engines 317
InfoSphere CDC API 106, 119, 263, 314, 338
InfoSphere CDC bookmarks 191
InfoSphere CDC command tools 109
InfoSphere CDC engine on z/OS 115
InfoSphere CDC Event Server 96, 98, 107
InfoSphere CDC for z/OS

log parser 132
log reader 132
scraper component 133
Single scrape 132
source flow 133

InfoSphere CDC instance 15, 104–105, 107, 110,
163, 167, 171–173, 217–218, 221, 223, 237, 239
InfoSphere CDC Management Console GUI 106,
233
InfoSphere CDC metadata 105, 130, 132, 134,
210, 219, 268
InfoSphere CDC Mirror Moderator 123
InfoSphere CDC mirroring operation 123
InfoSphere CDC replication system

Access control 111
Command-Line Interface 111
Configuration 111
454 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Monitoring 111
Operation 111

InfoSphere CDC Server CLI 120
InfoSphere CDC Server command line interface
106
InfoSphere CDC source engine 98, 104, 114, 227,
237, 303, 319, 367
InfoSphere CDC subscriptions 116
InfoSphere CDC target engine 104, 133, 237
InfoSphere CDC types of replication 114

mirroring 114
refresh 114

InfoSphere CDC z/OS
address space 187
failover 188
Resiliency 187
resiliency scenarios 188
subscriptions 188
suspension 189
TCP/IP configuration 188

InfoSphere Change Data Capture xii–xiv, 7, 16, 29,
31–35, 37, 39–41, 43, 45, 53, 62, 71, 135, 235, 240,
243–244, 247, 261, 363–364
InfoSphere Change Data Delivery xii
InfoSphere Data Replication xi, 9

change data capture solution 1, 75, 103, 137,
211, 231, 431

InfoSphere DataStage 16, 96–97
InfoSphere DataStage Direct Connect 24
InfoSphere Foundation Tools xv, 6
InfoSphere Information Server 4–5
InfoSphere® Data Replication xi
instrumentation facility interface 13, 160
intra-system data replication 214
iReflect xiv
iSeries 32–33, 178

J
Java API 234
Java API methods 267
Java Development Kits 371
Java user exit 383
JDBC refresh operations 124
JMS Message Queue 62–64
JMS message queues 98
JMS Messages 16
JMS provider 184
JMS queue 104

journal control fields 27, 29, 80, 87, 89, 100, 398
journal receivers 182

L
Large Object 84, 100
large object 83
Latency 68, 212, 214, 216, 351, 357–358, 369
latency 3, 15, 27–28, 38, 53, 55, 67, 69, 88, 127,
158, 160, 208, 212, 214–216, 221–222, 226, 229,
232, 246, 346–347, 351, 355, 357, 365, 369
latency alerts 118
latency notifcation thresholds 369
latency thresholds for notification 115
Linux, UNIX, and Windows engine activity checking
246
Linux, UNIX, and Windows engine event log moni-
toring 250
Linux, UNIX, and Windows engine log maintenance
257
Live Audit 29
LiveAudit replication 92

One table mapping 92
LOB 83–84, 100, 384

Also see large object
locating the target datastore 282
log cache 250
log parser 15, 122, 124, 213, 431
log reader 15, 122, 124, 131, 190, 210, 213–214,
223, 227–229, 325, 431
log reader bottlenecks 214
Log retention

DB2 for Linux, UNIX, and Windows 159
Oracle platforms 160
SQL Server 161
Sybase 161
System I 159
z/OS 160

log retention policy 229
log scraper 12, 191, 228, 250
log scraper agent 16
Log shipping 166
log shipping 162

M
mainframe 5, 13, 25, 41, 148

DB2 logs 41
Maintenance operations 85
Management Console 14–15, 49, 77, 90–92, 97,
 Index 455

104–107, 109–111, 114, 116, 130, 132, 147, 149,
151, 153–155, 169–170, 178, 194, 203, 231–233,
242, 250, 257, 262–264, 266, 272, 276–277, 300,
302–303, 311, 319, 322, 325, 332, 337–338, 343,
346, 357, 365, 368–369, 372, 401

Monitoring Interface 117
monitoring tool 215
performance monitoring 215

Management Console Configuration interface 117
Management Console GUI 283
Management Console Monitoring interface 118
Map Tables wizard 49, 99
Mark Table Capture Point 35
Marketing xii
Master Data Management xi, 40
master data management 1, 40
master table 82, 370
MBCS 287

Also see multi-byte character set
MC commands interface 233
MC GUI 106
MDM 3, 9, 40–43

Also see Master Data Management
message queue 12, 22, 68, 96, 98, 107, 253, 368,
402
Metadata 15, 132, 174, 177
Metadata-driven integration 4
Mirror 15, 29, 125, 229, 300, 335, 340, 343–344
Mirror Continuous 114
Mirror Continuous mode 346
mirrored mode 76
mirroring 15, 48, 53, 63, 81, 83, 85, 87–88, 93, 97,
125, 128, 131, 134, 159, 169, 179, 182, 184–185,
189, 198–199, 248, 340–342, 433
mirroring continuous 129
mirroring replication 118
MQ 22, 68, 98

Also see message queue
MS Windows 33
multi-byte character set xii, 287
multiple InfoSphere CDC instances 221
multiple parallel subscriptions 221

N
Net change 343
Net Change mirroring 340
N-tier architecture 224
N-tier data replication 224

O
ODS 45–46, 55, 91

operational data store 45, 55
OLTP 24–25

Also see Online Transactional Processing
one-to-one replication 49
Online Gift Registry 40
Online Transactional Processing 24
operational BI 45
Operational business intelligence 45
operational data store 45, 55, 322
Operational information 170
optimization 211
optimized data integration 3
Oracle xv
Oracle change management 209
Oracle Data Guard log 167
Oracle log shipping considerations 168
Oracle logs 163
Oracle Trigger version 124

P
parallel refresh 85
Parked tables 84
Party Maintenance UI 43
performance bottlenecks 214
performance monitoring 215
performance tuning 211
persistent subscriptions 367
PointBase xiii, 130
propagation control 60
publication servers 54
publication table definitions 54
PublishedTable objects 288
Publisher class 267
publisher ID 286
Publisher replication role 277
purging procedures 257

Q
Query and Reporting 31
Queue Targeting Mapping Designer 63

R
R3load export 36
Rapid Deployment Package 41
RDBMS 64
456 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Also see relational database management sys-
tem

RDP 41
Also see Rapid Deployment Package

real-time xi–xii, 1, 4, 6, 9, 11–12, 27, 31–32, 37,
39–40, 43, 45, 47, 53, 56, 63, 69–72, 159, 166, 215,
217

analytics 9
dashboards 4
data 11
flow of data changes 9
operational BI 45

recursion prevention 52
Redbooks Web site 449

Contact us xvii
redo logs 213
Referential Integrity 86
Refresh 15, 35–36, 85, 87, 114, 125, 216, 290, 300,
343–344, 364
refresh 15, 35, 56, 69–70, 76, 81, 83–87, 93, 97,
101, 132, 134, 176, 198, 207–209, 227, 289, 294,
338, 364–365
Refresh mode 83
refresh mode 76
refresh operation 86, 97, 114, 134

Differential Refresh 114
mirroring 114
snapshot 114

refresh operations with JDBC 124
Refresh Order 85
registering a socket 149
relational database management system 64
Remote apply 165
Remote log reading 163
Remote source and target engine 165
remote source scrape 162
remove subscription 304
remove table mappings 308
remove tables 304
Remove Tables from Catalog 304
removing mapped tables 303
Replication Engine 15
replication method 289

Mirror 289
Refresh 289

replication source tables 290
ReplicationRole interface 277
Reporting server 56
Reporting UI 43

retrieve the Publication object 295
RFID tag xi
RI 86, 115
rollback strategy 53
row filtering 15, 116, 221, 288, 303, 309, 311, 339,
370, 373, 382
row identifier 54
Row level filtering 89
Row-level user exits 396, 402
row-level user exits 402

S
Sample User Interface 43
SAP

heterogeneous system copy 35
migration monitor 36
R3load 35

SAP R3load 35
SAP R3load Utility 36
scalability xi
SCD 26, 28

Also see Slowly Changing Dimensions
Type 2 28

Scheduled End 33
Net Change 83

scheduled end 182
Scheduled End mirroring 88, 340

Current time 88
User specified date and time 88
User specified log position 88

Scheduled End mode 83
Server 64
Service Oriented Architecture 72
service oriented architecture 1, 62, 71
service windows 191
shadow database 20
Shared scrape 128
short message service 37
SIF 42

Also see Standard Interface Format
SIF Parser 43
SIF Sequencer 43
Single Scrape 15, 124–125, 127, 431, 433
single scrape events 362
single scrape optimization 124
Single Scrape staging store 125
single scrape staging store 228
single use systems 47
 Index 457

Slowly Changing Dimensions 26
smarter planet xi
smarter solutions xi
SMS 37

Also see short message service
SOA 1, 72

Also see service oriented architecture
Soft Deletes 95
Source Capture Engine 15
source database log 114, 122, 124
Source database logs 15
Source datastore 234
Source transformation engine 15
source-only log reader 15
spoke-to-hub subscription 59
SQL Server xiii–xv, 32–33, 110, 165, 289
staging area table 21
staging store 213, 227
staging store disk quota 125
Standard Interface Format 42
Standard Refresh 85–86
standard refresh 85
standard replication 48, 76, 91, 93–94

row insert operation 91
start/stop Linux, UNIX, and Windows engine 239
start/stop System i engine 241
start/stop System z 243
state of a subscription 343
stored procedure user exit 394
Stored procedure user exits 373
stored procedures 79, 373, 383
Stream data 91
Streaming 10
SubscribedTable objects 288
Subscriber class 267
Subscriber replication role 277
Subscription 115
subscription changes

deployment 191
subscription configuration packages 267
subscription import named index 198
Subscriptionbookmark 191
Subscription-level user exits 82
subscription-level user exits 402
Summarization Apply replication 94
supplemental logging 301
synchronize changed data 26
System i 182

failover 184

journal receiver 182
Software-based HA solution 183

System i activity checking 248
TCPLISTEN job 248

System i event log monitoring 253
System i journal receiver maintenance 262
System i RPG user exit 396
System i user exit derived expressions 380
System i user exit programs 371
system monitoring tool 215
System z activity checking 249
System z database log maintenance 262
System z event log monitoring 257
System z user exit programs 372

T
table assignment processing 339
table capture point bookmark 191
table capture points 338
table mapping example

Oracle to DB2 289
table mapping process 287
Table-level user exits 82
table-level user exits 396
target apply engine 12
target datastore engine 15
Target Engine 15
target InfoSphere CDC engine 287
target table changes 191
Target transformation engine 15
TCP/IP network socket 12
Tibco 64
Time zone considerations 138
transaction conflicts 53
transaction log 20, 81, 97, 161, 227, 267
transaction logs 213
Transaction Stage 70
transactional integrity 70
transformation engine 15
transformational capabilities 77
transformations 12, 75, 78, 82, 85, 96, 98, 133,
193, 214
trigger xi

U
UEModuloFilter65 373
UESoftDelete class 393
UI 43
458 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

Customer Matching Critical Data Rule 43
Data Stewardship 43
Party Maintenance 43
Sample User Interface 43

unattended deployment 219
Uncommitted transactions 213
Unicode handling 318
Uni-directional replication 48
update table definitions 325
User exit 79, 371
user exit 28, 43, 80, 82, 96, 99–100, 130, 222, 226,
253, 313, 322, 324–325, 368, 370–372, 376–379,
383–386, 388, 392–394, 409–412, 414, 416,
424–425
User exit programs 372, 383
User Exits

Full Unit of Work 96
Soft Delete 96
Web Service 96

User exits 82
Subscription-level 82
Table-level 82

user exits 15, 27–28, 78, 96, 133, 222, 231, 244,
269, 303, 322, 324–325, 369–370, 372, 393
user functions 79

V
value translations 15
Virtual Data Delivery 11
virtual IP 169

W
WebSphere ESB 64
WebSphere MQ 22, 64, 69

connector 22, 69
Server 64

Workload Balancing 53
workload balancing 53
workload distribution 31–32, 53

X
XML messages 63

Z
zero downtime migration 53
 Index 459

460 Smarter Business: Dynamic Information with IBM InfoSphere Data Replication CDC

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Sm
arter Business: Dynam

ic Inform
ation

w
ith IBM

 InfoSphere Data Replication CDC

®

SG24-7941-00 ISBN 0738436372

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Smarter Business
Dynamic Information with IBM
InfoSphere Data Replication CDC

Log-based for
real-time high
volume replication
and scalability

High throughput
replication with
integrity and
consistency

Programming-free
data integration

To make better informed business decisions, better serve clients,
and increase operational efficiencies, you must be aware of
changes to key data as they occur. In addition, you must enable the
immediate delivery of this information to the people and processes
that need to act upon it. This ability to sense and respond to data
changes is fundamental to dynamic warehousing, master data
management, and many other key initiatives. A major challenge in
providing this type of environment is determining how to tie all the
independent systems together and process the immense data flow
requirements. IBM InfoSphere Change Data Capture (InfoSphere
CDC) can respond to that challenge, providing programming-free
data integration, and eliminating redundant data transfer, to
minimize the impact on production systems.

In this IBM Redbooks publication, we show you examples of how
InfoSphere CDC can be used to implement integrated systems, to
keep those systems updated immediately as changes occur, and to
use your existing infrastructure and scale up as your workload
grows. InfoSphere CDC can also enhance your investment in other
software, such as IBM DataStage and IBM QualityStage, IBM
InfoSphere Warehouse, and IBM InfoSphere Master Data
Management Server, enabling real-time and event-driven
processes. Enable the integration of your critical data and make it
immediately available as your business needs it.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction and overview
	1.1 Optimized data integration
	1.2 InfoSphere architecture

	Chapter 2. InfoSphere CDC: Empowering information management
	2.1 The need for dynamic data
	2.2 Data delivery methods
	2.3 Providing dynamic data with InfoSphere CDC
	2.3.1 InfoSphere CDC architectural overview
	2.3.2 Reliability and integrity

	Chapter 3. Business use cases for InfoSphere CDC
	3.1 InfoSphere CDC techniques for transporting changed data
	3.1.1 Option 1: Database staging
	3.1.2 Option 2: Message queue (MQ) based integration
	3.1.3 Option 3: File-based integration
	3.1.4 Option 4: InfoSphere DataStage Direct Connect

	3.2 Data warehousing and business intelligence
	3.2.1 Active data warehousing
	3.2.2 Slowly changing dimensions

	3.3 Consolidation
	3.3.1 Consolidation: Sample implementation 1
	3.3.2 Consolidation: Sample implementation 2

	3.4 Distribution
	3.4.1 Distribution: Sample implementation 1
	3.4.2 Distribution: Sample implementation 2

	3.5 Database migration
	3.5.1 Database migration: Sample implementation

	3.6 Application integration
	3.6.1 Application integration: Sample implementation 1
	3.6.2 Application integration: Sample implementation 2
	3.6.3 Application integration: Sample implementation 3

	3.7 Integration with master data management
	3.7.1 Integration with master data management: Sample implementation

	3.8 Integration with IBM Information Server
	3.8.1 Integration with IBM Information Server: Sample implementation

	3.9 Operational business intelligence
	3.9.1 Operational business intelligence: Sample implementation

	Chapter 4. Solution topologies
	4.1 Unidirectional replication
	4.2 Cascading replication
	4.3 Bidirectional replication
	4.4 Consolidation replication
	4.5 Data distribution replication
	4.6 Hub-and-Spoke replication with propagation
	4.7 Destination
	4.7.1 JMS Message Queue
	4.7.2 Flat files
	4.7.3 DataStage
	4.7.4 Web services

	Chapter 5. InfoSphere CDC features and functionality
	5.1 Transformations
	5.1.1 Column functions
	5.1.2 Journal control fields
	5.1.3 Joining
	5.1.4 User exits for customizations
	5.1.5 Considerations for using transformational functionality

	5.2 Replication modes
	5.2.1 Refresh
	5.2.2 Continuous mirroring
	5.2.3 Scheduled end (net change)

	5.3 Filtering
	5.3.1 Row level
	5.3.2 Column level

	5.4 Apply methods
	5.4.1 Standard
	5.4.2 LiveAudit
	5.4.3 Adaptive Apply
	5.4.4 Summarization
	5.4.5 Row consolidation
	5.4.6 Soft deletes
	5.4.7 Custom apply methods (user exits)
	5.4.8 Flat files
	5.4.9 DataStage direct connect
	5.4.10 JMS message queues

	5.5 Conflict detection and resolution

	Chapter 6. Understanding the architecture
	6.1 Component overview
	6.1.1 InfoSphere CDC instances
	6.1.2 Interoperability between the InfoSphere CDC components

	6.2 Management Console fundamentals
	6.2.1 Access Manager Interface
	6.2.2 Configuration Interface
	6.2.3 Monitoring Interface
	6.2.4 InfoSphere CDC API
	6.2.5 Access Server fundamentals

	6.3 The InfoSphere CDC engine
	6.3.1 Bookmarks
	6.3.2 The InfoSphere CDC Linux, UNIX, and Windows engine
	6.3.3 The InfoSphere CDC for System i engine
	6.3.4 The InfoSphere CDC for z/OS engine

	6.4 Communications between source and target
	6.5 Summary

	Chapter 7. Environmental considerations
	7.1 Globalization with InfoSphere CDC
	7.1.1 Time zone considerations
	7.1.2 Encoding conversions

	7.2 Firewall configurations
	7.2.1 How InfoSphere CDC uses TCP/IP
	7.2.2 Firewalls
	7.2.3 InfoSphere CDC in a firewalled network environment
	7.2.4 Configuring source port restrictions
	7.2.5 Troubleshooting CDC connection issues

	7.3 Log retention
	7.3.1 Log retention general guidelines
	7.3.2 Log retention platform-specific guidelines

	7.4 Remote processing capabilities
	7.4.1 Remote source
	7.4.2 Remote target
	7.4.3 Remote source and target
	7.4.4 Log shipping

	7.5 Using InfoSphere CDC in resilient environments
	7.5.1 InfoSphere CDC reachability: Virtual IP
	7.5.2 InfoSphere CDC binary files and metadata for the Linux, UNIX, and Windows engine
	7.5.3 InfoSphere CDC on a shared volume
	7.5.4 InfoSphere CDC on separate nodes with a shared database
	7.5.5 InfoSphere CDC on separate servers with separate databases
	7.5.6 System i resilient environments
	7.5.7 z/OS / Sysplex and InfoSphere CDC in resilient environments

	7.6 Change management
	7.6.1 Understanding InfoSphere CDC bookmarks
	7.6.2 Change Management sample environment
	7.6.3 DDL changes in a service window
	7.6.4 DDL changes without a service window

	Chapter 8. Performance analysis and design considerations
	8.1 High volume between two systems
	8.1.1 Latency and throughput
	8.1.2 InfoSphere CDC architecture

	8.2 Identification of potential bottlenecks
	8.3 Performance monitoring in InfoSphere CDC environments
	8.3.1 Performance monitoring using the Management Console
	8.3.2 System monitoring tools

	8.4 Using workflow for performance issues
	8.5 Installation considerations
	8.5.1 Silent installations and instance creation

	8.6 Design considerations
	8.6.1 Using multiple parallel subscriptions
	8.6.2 Using multiple InfoSphere CDC instances
	8.6.3 Using an n-tiered architecture
	8.6.4 Using cascading replication to spread the workload
	8.6.5 Continuous scraping

	Chapter 9. Customization and automation
	9.1 Options for managing InfoSphere CDC
	9.2 Management Console GUI
	9.3 Management Console commands
	9.3.1 Common uses for the Management Console commands
	9.3.2 Compiling Management Console command scripts

	9.4 InfoSphere CDC engine commands (CLI)
	9.4.1 Running commands for the Linux, UNIX, and Windows engine
	9.4.2 Running CL commands for System i
	9.4.3 Running console commands for IBM System z
	9.4.4 Sample scripts
	9.4.5 Checking an InfoSphere CDC engine and subscriptions activity
	9.4.6 Removing obsolete database logs

	9.5 InfoSphere CDC API
	9.5.1 Development environment setup
	9.5.2 Contents of the api.jar file
	9.5.3 Connecting to and managing the Access Server
	9.5.4 Connecting to the data stores
	9.5.5 Configuring InfoSphere CDC replication
	9.5.6 Creating a subscription
	9.5.7 Procedure for mapping tables
	9.5.8 Table mapping example
	9.5.9 Procedure for removing mapped tables
	9.5.10 Table mapping removal example
	9.5.11 Row and column filtering
	9.5.12 Derived columns
	9.5.13 Encoding conversions (before and after Version 6.5)
	9.5.14 Operations and user exits
	9.5.15 Common procedures (updating table definitions)
	9.5.16 Deploying subscription changes and considerations
	9.5.17 Starting, stopping, and monitoring subscriptions
	9.5.18 Monitoring latency
	9.5.19 Monitoring event logs using the API

	9.6 Monitoring and integration with external monitoring solutions
	9.6.1 Components to monitor
	9.6.2 InfoSphere CDC instance activity
	9.6.3 Subscription activity
	9.6.4 Events
	9.6.5 Latency

	9.7 User exits
	9.7.1 Common uses for user exits
	9.7.2 User exit programs
	9.7.3 Derived expression user exits
	9.7.4 Table and row-level user exits
	9.7.5 Subscription-level (unit of work)
	9.7.6 Java user exit for flat file custom formatter
	9.7.7 Notifications

	Appendix A. Single scrape events and errors
	Single scrape error events

	Appendix B. Additional material
	Locating the web material
	Using the web material
	How to use the web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Index
	Back cover

