z/VM and Linux on IBM System z
The Virtualization Cookbook for Red Hat Enterprise Linux 6.0

Hands-on instructions for installing z/VM and Linux on the mainframe

Updated information for z/VM V6.1 and Red Hat Enterprise Linux 6.0

New, more versatile file system layout

Brad Hinson
Michael MacIsaac

ibm.com/redbooks
Note: Before using this information and the product it supports, read the information in “Notices” on page ix.
Contents

<table>
<thead>
<tr>
<th>Notices</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trademarks</td>
<td>x</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Chapters and appendices</td>
<td>xi</td>
</tr>
<tr>
<td>History</td>
<td>xii</td>
</tr>
<tr>
<td>Conventions</td>
<td>xiii</td>
</tr>
<tr>
<td>The team who wrote this book</td>
<td>xiii</td>
</tr>
<tr>
<td>Special thanks</td>
<td>xiii</td>
</tr>
<tr>
<td>Now you can become a published author, too!</td>
<td>xiv</td>
</tr>
<tr>
<td>Comments welcome</td>
<td>xiv</td>
</tr>
<tr>
<td>Stay connected to IBM Redbooks</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Summary of changes

Summary of changes	xvii
Summary of changes in the February 2011 version	xvii

Chapter 1. Introduction to z/VM and Linux

1.1 What is virtualization	1
1.2 The philosophy adopted in this book	3
1.3 Choices and decisions made in this book	3
1.4 Infrastructure design	4
1.5 Usability tests performed for this book	5

Chapter 2. Planning

2.1 Bill of materials	7
2.1.1 Hardware resources	8
2.1.2 Software resources	8
2.1.3 Networking resources	9
2.2 z/VM conventions	9
2.2.1 Volume labeling convention	9
2.2.2 Backup file naming convention	10
2.2.3 The command retrieve convention	10
2.3 Disk planning	11
2.4 Memory planning	12
2.5 Password planning	12
2.6 Planning worksheets	13
2.6.1 z/VM resources used in this book	13
2.6.2 z/VM DASD used in this book	14
2.6.3 Linux resources used in this book	15
2.6.4 Linux user IDs used in this book	15
2.7 Blank worksheets	16
2.7.1 z/VM resources worksheet	16
2.7.2 z/VM DASD worksheet	17
2.7.3 Linux resources worksheet	18
2.7.4 Linux user ID worksheet	18

Chapter 3. Configuring a desktop machine

| 3.1 PuTTY: A no cost SSH client for Windows | 20 |
| 3.2 Setting up a VNC client | 24 |
3.2.1 Downloading and running RealVNC .. 24
3.3 3270 emulators ... 25

Chapter 4. Installing and configuring z/VM .. 27
4.1 Installing z/VM from DVD or FTP server .. 28
 4.1.1 Obtaining z/VM through electronic download 28
 4.1.2 Starting the z/VM installation .. 30
 4.1.3 Copying a vanilla z/VM system to DASD 35
 4.1.4 Performing an IPL of the vanilla z/VM from DASD 38
 4.1.5 Completing the z/VM installation .. 39
4.2 Configuring TCP/IP ... 41
 4.2.1 Using the IPWIZARD tool .. 41
4.3 Configuring the XEDIT profile .. 43
4.4 Customizing the SYSTEM CONFIG file 44
4.5 Configuring TCP/IP to start at IPL time 46
 4.5.1 Renaming the TCP/IP configuration file 48
 4.5.2 Copying the PROFILE XEDIT file ... 48
 4.5.3 Configuring the FTP server .. 49
 4.5.4 Shutting down and performing an IPL of the system 49
4.6 Adding paging volumes ... 50
 4.6.1 Formatting the paging volumes .. 51
 4.6.2 Formatting DASD for minidisks ... 53
 4.6.3 Updating the SYSTEM CONFIG file 54
 4.6.4 Testing the changes ... 56
4.7 Creating a user ID for common files .. 56
 4.7.1 Defining the user in the USER DIRECT file 56
 4.7.2 Logging and customizing the new user ID 59
 4.7.3 Copying a PROFILE XEDIT .. 60
 4.7.4 Creating a PROFILE EXEC .. 60
 4.7.5 Copying the files associated with this book to LNXMAINT 61
4.8 Customizing system startup and shutdown 62
 4.8.1 Configuring the AUTOLOG1 PROFILE EXEC 62
 4.8.2 Testing the changes ... 63
4.9 Addressing z/VM security issues ... 64
 4.9.1 VM security products ... 64
 4.9.2 High-level z/VM security ... 64
 4.9.3 Linux user ID privilege classes ... 64
 4.9.4 z/VM user ID and minidisk passwords 64
 4.9.5 Changing passwords in USER DIRECT 65
4.10 Backing up your z/VM system to tape ... 66
4.11 Relabeling system volumes ... 66
 4.11.1 Modifying labels in the SYSTEM CONFIG file 67
 4.11.2 Modifying labels in the USER DIRECT file 69
 4.11.3 Changing the labels on the five volumes 69
 4.11.4 Shutting down your system and restarting it 70
4.12 Restoring your z/VM system from tape 72

Chapter 5. Servicing z/VM ... 73
5.1 Applying a Recommended Service Upgrade 74
 5.1.1 Getting service from the Internet .. 74
 5.1.2 Downloading the service files ... 75
 5.1.3 Creating a new MAINT minidisk .. 76
 5.1.4 Receiving, applying, and building the service 78
14.2.6 Using the z/VM Performance Toolkit .. 250
14.3 Monitoring Linux ... 254
 14.3.1 Monitoring Linux performance data from the kernel 254
14.4 Viewing Linux data in the Performance Toolkit 255

Appendix A. References .. 257
Cheat sheets ... 258
 XEDIT cheat sheet ... 258
 A vi cheat sheet ... 259

Appendix B. Additional material ... 261
Locating the web material ... 261
Using the web material ... 261
 System requirements for downloading the web material 262
 Downloading and extracting the web material 262

Related publications ... 263
IBM Redbooks ... 263
Other publications ... 263
Online resources ... 264
Help from IBM ... 265

Index ... 267
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

- AIX®
- DirMaint™
- DS8000®
- ECKD™
- FICON®
- IBM®
- OMEGAMON®
- RACF®
- Redbooks®
- Redbooks (logo)®
- S/390®
- System Storage®
- System z10®
- System z9®
- z/OS®
- z/VM®
- z10™
- z9®
- zSeries®
- Tivoli®

The following terms are trademarks of other companies:

NOW, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and other countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Red Hat, the Shadowman logo, Red Hat Enterprise Linux, RHEL, Red Hat Network and RHN are trademarks of Red Hat, Inc., registered in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Preface

This IBM® Redbooks® publication describes how to create Linux® virtual servers in IBM z/VM® on IBM System z® hardware. This book adopts a cookbook format that provides a concise, repeatable set of procedures for installing and configuring z/VM in a logical partition (LPAR) and then installing and customizing Linux. You need an IBM System z LPAR with the associated resources, z/VM V6.1 media, and a Linux distribution.

This book assumes that you have a general familiarity with System z technology and terminology. It does not assume an in-depth understanding of z/VM and Linux. It is written for those clients who want to get a quick start with z/VM and Linux on the mainframe.

Chapters and appendixes

The chapters and appendixes in this book are summarized in the following list:

- Chapter 1, “Introduction to z/VM and Linux” on page 1 gives a brief introduction of the book.
- Chapter 2, “Planning” on page 7 describes how to plan hardware, software, and networking resources. It discusses the DASD labeling conventions used in the book and password planning. Sample worksheets are provided for the examples used in the book, as are blank copies for your use.
- Chapter 3, “Configuring a desktop machine” on page 19 describes how to set up Microsoft® Windows® desktops. Specifically, the following tools are discussed:
 - How to get and set up PuTTY, which is a commonly used SSH client.
 - How to get and set up a VNC client, which is a tool for running graphical applications.
 - 3270 emulator applications.
- Chapter 4, “Installing and configuring z/VM” on page 27 shows how to install and configure z/VM.
- Chapter 5, “Servicing z/VM” on page 73 describes how to apply services to z/VM both in the form of Programming Temporary Fixes (PTFs) and Recommended Service Upgrades (RSUs).
- Chapter 6, “Configuring an NFS/FTP server” on page 97 explains how to set up a temporary NFS server under Linux to install the first two Linux images. After the cloner is installed, you can copy the Linux installation tree to it and retire the Linux server.
- Chapter 7, “Installing RHEL 6 on the cloner” on page 105 describes how to install and configure a Linux image under the first Linux user ID, that is, the cloner, which does the cloning and other tasks.
- Chapter 8, “Installing and configuring the golden image” on page 137 describes how to install and configure a Linux image under the first Linux user ID, that is, the golden image, which is the image from which the clones are made.
- Chapter 9, “Configuring RHEL 6 for cloning” on page 155 explains how to prepare z/VM user IDs and clone your first virtual server.
Chapter 10, “Installing Linux with kickstart” on page 175 describes how to use the Red Hat kickstart tool to create Linux systems. This process is fundamentally different from cloning, as this tool is a script that is used for an automated installation. You may try kickstart and you may also try cloning. Understand that they try to accomplish the same goal of being able to quickly get Linux systems up and running, and that you do not need to use both.

Chapter 11, “Cloning open source virtual servers” on page 181 shows how to configure cloned Linux images on the following appliances:

- Web server virtual server
- LDAP virtual server
- File and print virtual server
- Application development system

Chapter 12, “Servicing Linux with Red Hat Network” on page 199 describes how the Red Hat Network works. The Red Hat Network provides centralized management and provisioning for multiple RHEL 6 systems.

Chapter 13, “Miscellaneous tasks” on page 203 describes how to add and extend logical volumes to Linux, and many other miscellaneous tasks.

Chapter 14, “Monitoring and tuning z/VM and Linux” on page 239 describes the basic steps that you perform to begin monitoring z/VM and your new Linux virtual servers.

Appendix A, “References” on page 257 provides references to websites, books, and other pertinent information.

History

There have been many versions of the Virtualization Cookbook:

2011
In February 2011, this book was published, targeting Red Hat’s RHEL 6 distribution, with the changes listed just above.

2008
In August 2008, z/VM and Linux on IBM System z, SG24-7492 was published targeting Red Hat’s RHEL 5.2 distribution.

2007
In March 2007, two books were published on http://linuxvm.org/present, each book targeting a different distribution:

- z/VM and Linux on IBM System z: The Virtualization Cookbook for SLES 10
- z/VM and Linux on IBM System z: The Virtualization Cookbook for RHEL 5

2006
In September 2006, IBM z/VM and Linux on IBM System z: Virtualization Cookbook for Red Hat Enterprise Linux 4, SG24-7272 was published, and addressed both 31-bit and 64-bit RHEL 4.

Conventions

Except where noted in the individual chapters, the following font conventions are used in this book:
Monospace and bold

Commands entered by the user on the command line when inline. This only applies to lower-case commands.

<value>

Values inside angle brackets are examples and are replaced with the values that are correct for your enterprise.

monospace

File, directories, statements, and commands set off in their own paragraph.

The following command conventions are used in this book:

- z/VM commands are prefixed with `==>`.
- z/VM XEDIT subcommands are prefixed with `====>`.
- Linux commands running as root are prefixed with `#`.
- Linux commands running as non-root are usually prefixed with `$`.

The team who wrote this book

This book was updated for z/VM V6.1 and RHEL 6 by Brad Hinson of Red Hat and Michael MacIsaac of IBM in late 2010.

Brad Hinson is the global lead for System z at Red Hat in Raleigh, NC.

Michael MacIsaac has been with IBM for 24 years and now works in Poughkeepsie. He enjoys working on Linux and z/VM and writing IBM Redbooks publications. He currently manages a systems management development team in the z/VM organization.

Special thanks

Sincere thanks goes out to the following people who contributed to this project in many different ways:

Roy Costa and Lydia Parziale
IBM International Technical Support Organization, Poughkeepsie

Eileen Digan
IBM Poughkeepsie

Sue Baloga, Bill Bitner, Carol Everitt, George Madl, Tami Zebrowski-Darrow
IBM Endicott

Steffen Maier, Hans-Joachim Picht, Dr. Manfred Gnirss
IBM Boeblingen

Marian Gasparovic
IBM Slovakia

David Boyes
Sine Nomine

Jeremy Agee and Justin Payne
Red Hat, Raleigh, NC

Thanks to many others in IBM Poughkeepsie and to the many others who answered questions on the linux-390 and IBMVM list servers.
Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published author - all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online at: ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

➤ Use the online Contact us review Redbooks form found at:
 ibm.com/redbooks

➤ Send your comments in an email to:
 redbooks@us.ibm.com

➤ Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. HYTD Mail Station P099
 2455 South Road
 Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

➤ Find us on Facebook:
 http://www.facebook.com/IBMRedbooks

➤ Follow us on Twitter:
 http://twitter.com/ibmredbooks

➤ Look for us on LinkedIn:
 http://www.linkedin.com/groups?home=&gid=2130806
Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
Summary of changes

This section describes the technical changes made in this edition of the book and in previous editions. This edition might also include minor corrections and editorial changes that are not identified.

Summary of Changes
for SG24-7932-00
for z/VM and Linux on IBM System z: The Virtualization Cookbook for Red Hat Enterprise Linux 6.0
as created or updated on February 18, 2011.

Summary of changes in the February 2011 version

This revision reflects the addition, deletion, or modification of new and changed information described below.

There are significant changes in this book:

► The z/VM sections are updated for V6.1.
► The Linux sections are updated for RHEL 6.
► There are new sections about how to order z/VM electronically, and how to make the z/VM product files available for installation from an FTP server. See 4.1.1, “Obtaining z/VM through electronic download” on page 28 and 6.5, “Configuring an FTP server for z/VM installation” on page 102 for more details.
► Chapter 5, “Servicing z/VM” on page 73 has been updated to include information about service for the new IBM zEnterprise 196. See 5.2, “PTFs for the zEnterprise 196” on page 82 for more details.
► Section 13.4, “Adding SCSI/FCP disks” on page 213 is new.
► Section 13.6, “Setting up Linux Memory Hotplugging” on page 222 is new.
► Section 13.7, “Using the cpuplugd service” on page 224 is new.
► Section 13.8, “Hardware cryptographic support for OpenSSH” on page 227 is new.
► New document number, SG24-7932-00.

See “Preface” on page xi for information about past editions.
Introduction to z/VM and Linux

Virtualization is an important topic in the IT industry. The IBM z/VM mainframe and its predecessors have been performing virtualization for four decades. Today, it is the most functionally rich virtualization platform available. When Linux was ported to IBM mainframes in 2000, it was a natural fit to run under z/VM. You can run many tens of Linux images on the same IBM System z logical partition (LPAR). Some customers are running hundreds in production mode.

With a z/VM and Linux infrastructure, you can reduce the time between deciding on the acquisition of new servers and then implementing them because new servers can be deployed in a matter of minutes. This powerful build and clone capability can enable you to launch new products and services without the exhaustive planning, purchasing, installing, and configuring of new hardware and software that can be associated with conventional and discrete hardware servers. Development groups who need test environments built and rebuilt rapidly to enable them to efficiently deliver their projects and handle change management in the process can also benefit from this unique advantage.

Some of the mainframe’s and z/VM’s best strengths are:

- Their virtualization capabilities are more mature and robust than any other hardware and hypervisor combination.
- z/VM provides a rich, functional, and sophisticated level of systems management that can greatly help run large numbers of Linux servers.
- The z/VM virtual switch (VSWITCH) makes the networking of Linux much simpler.
- Full volume backup of systems allows for complete disaster recovery when another data center is available.
- z/VM is one of the easiest operating systems to customize at the base installation level. There is only a relatively small number of configuration files. Properly set up, z/VM can run for months with little maintenance or administration required.
Many functions have been added to z/VM since Version 5.2. The following sections give a brief summary of the functions added in the last three releases.

z/VM V6.1

z/VM V6.1, available since October 2009, is intended to be the base for all future z/VM enhancements. This release implements a new Architecture Level Set (ALS) available only on the IBM System z10® Enterprise Class server and System z10 Business Class server and future generations of System z servers. Requiring z10 technology or later allows z/VM to take advantage of newer hardware technology for future exploitation.

Enhancements in z/VM V6.1 provide:

- Enhanced performance of virtual networking environments running heavy guest-to-guest streaming workloads
- Faster access to data when utilizing FICON® Express8
- Closer integration with IBM Systems Director to eliminate the need to download agents and help simplify the installation of those agents
- Significantly better and more highly secure guest transactions when using Crypto Express3 as compared to Crypto Express2
- Guest support for IBM System Storage® DS8000® Extended Address Volumes (EAVs) to help simplify storage management and relieve address constraints

Read more about System z virtualization capabilities on the web at:

http://www.vm.ibm.com

z/VM V5.4

z/VM V5.4, available since August 2008, provides major improvements when operating on System z servers with large memory configurations. It improves scalability and can help support increased workloads on IBM System z servers. This release uses new capabilities of the System z10, including:

- Greater flexibility, with support for the new z/VM-mode logical partitions, allowing all System z processor-types (CPs, IFLs, zIIPs, zAAPs, and ICFs) to be defined in the same z/VM LPAR for use by various guest operating systems
- Capability to install Linux on System z from the HMC, which eliminates network setup or a connection between an LPAR and the HMC
- Enhanced physical connectivity by exploiting all OSA-Express3 ports, helping service the network and reducing the number of required resources

z/VM V5.4 dynamic memory upgrade support allows real memory to be added to a running z/VM system, avoiding the need to shut down z/VM and its guests, deactivate the LPAR, change its memory allocation, reactivate the LPAR, perform an IPL of z/VM, and restart its guests. Memory can be added nondisruptively to individual guests that support the dynamic memory reconfiguration architecture.

Read more about System z virtualization capabilities on the web at:

http://www.vm.ibm.com

z/VM V5.3

z/VM V5.3 became generally available in June 2007. Scalability was extended to allow 256 GB of real memory, a total of 8 TB of virtual storage, and 32 real processors. z/VM V5.3 also added support for the Collaborative Memory Management Assist (CMMA) on the z9® EC and
Chapter 1. Introduction to z/VM and Linux

the z9 BC processors or later. Virtual Machine Resource Manager (VMRM) detects when memory is constrained and notifies the Linux guests, which can then adjust their memory consumption to help relieve the memory constraint. In the previous major release, z/VM V5.2, many memory contention issues were removed with the Control Program (CP) now using memory above 2 GB for a much broader set of operations. Previously, guest pages had to be moved below 2 GB for many reasons, for example, in both standard I/O and Queued Direct I/O (QDIO). Now I/O can be done using buffers anywhere in real memory, and QDIO structures can reside above 2 GB, as can most CP control blocks. These improvements offer constraint relief for large-real-memory virtual server environments that are memory intensive.

1.1 What is virtualization

Virtualization is the ability for a computer system to share resources so that one physical server can act as many virtual servers. z/VM allows the sharing of the mainframe’s physical resources, such as disk (DASD), memory (sometimes called storage), network adapters (OSA cards), and CPU (CPs or IFLs). These resources are managed by a hypervisor. The z/VM hypervisor is called Control Program (CP). When the user logs onto z/VM, the hypervisor creates a virtual machine that can run one of many different operating systems. The two operating systems that are discussed in this book are the z/VM native one, that is, the Conversational Monitoring System (CMS), which can be thought of as a z/VM shell, and Linux. Virtual machines running Linux as guests of a z/VM host become the virtual servers.

1.2 The philosophy adopted in this book

An important philosophy adopted in this book is to keep all the solutions simple. Albert Einstein once said, “Everything should be made as simple as possible, but not simpler”, which sums up this philosophy. This book aims to use the same clear and insightful presentation.

Many books and papers discuss virtualization, but do not tell you how to accomplish virtualization. The remainder of this book discusses how to perform this virtualization.

1.3 Choices and decisions made in this book

When deciding about installing, maintaining, and provisioning (cloning) Linux virtual servers under z/VM, there are many basic choices to make. Here are some of the choices and assumptions made in this book:

▸ Use of a cloning product versus using your own cloning process: Cloning products, such as Aduva Onstage, Mainstar Provisioning Expert, IBM Tivoli® Provisioning Manager, and IBM Systems Director, are outside the scope of this book. While these are all viable solutions, the cloning described in this book allows you to create your own Linux images without using such products. However, these products are more sophisticated than the simple clone script and z/VM configuration described in this book.

▸ Directory Maintenance product versus the USER DIRECT file: The USER DIRECT file is chosen over a directory maintenance product such as IBM DirMaint™ or CA VM:Direct. If you feel that DirMaint as a directory maintenance product is better suited to your enterprise, refer to Getting Started With Linux, SC24-6096 to configure z/VM; you can still use this book to configure Linux.
Provisioning versus predefined user IDs: z/VM user IDs must be predefined to clone them. There is no attempt to provision them (define and bring Linux user IDs online automatically) as part of the cloning process. The target Linux user ID must exist with the appropriate minidisks defined.

Shared read-only Linux /usr/ file system versus read-write: Some cloning solutions use an environment which shares the /usr/ file system. This choice often makes the solution more complex, especially when adding software to the virtual servers. A read-write /usr/ file system on the virtual servers is chosen to keep things as simple as possible.

Conventional 3390 ECKD™ DASD versus FBA disks accessed with SCSI over FCP: The System z server has traditionally only supported 3390 DASD. Support has been extended to include SCSI/FBA disks in storage area networks (SANs). The support of FBA disks is slightly more complicated than conventional DASD. In keeping things as simple as possible, only conventional DASD is described in this book.

Cloning script or EXEC versus manual installation: Two methods of cloning are described: a manual process and a process that uses a Linux bash script. The manual method is described so that we can better teach these concepts. The Linux script is provided so you can save time.

1.4 Infrastructure design

To install and configure z/VM, install, configure, and clone Linux, or provision virtual servers, there must be a certain infrastructure design in place. A System z server with its associated resources and the z/VM operating system define much of this infrastructure.
Figure 1-1 shows a block diagram of a System z10 with multiple LPARs. z/VM V5.4 is installed in one of these LPARs. z/VM comes with many user IDs predefined. The most important six IDs are shown in the z/VM LPAR above the dashed line. Below the dashed line, you see the user IDs described in this book.

- **/SM590000 LNXMAINT**: A user ID on which to store files that will be used by both CMS and Linux.
- **/SM590000 RH6CLONE**: The cloner that does the cloning. It also serves as the Linux install server, and has other functions.
- **/SM590000 LINUX01-04**: The user IDs to which you clone. Each virtual server is configured with two 3390-3 minidisks to allow for slightly more than 4 GB of space.
- **/SM590000 RH6GOLD**: The "golden image".

1.5 Usability tests performed for this book

During the writing of this book, many usability tests were conducted. The participants had a variety of skills, but none had both Linux and z/VM system administration skills. By the end of the first day of all of the formal tests, most participants had all completed up to and including Chapter 5, “Servicing z/VM” on page 73, so z/VM was installed, serviced, and customized for TCP/IP communications with a highly available VSXITCH. By the end of the second day, most participants had cloned their first Linux virtual server. You should be able to complete most steps in the book in four solid days of work, if all goes well.
Planning

This chapter covers the planning that should be done before installing z/VM. It begins by discussing a bill of materials, that is, all the resources that you need. Then it describes conventions adopted for labeling 3390 volumes. Finally, resource worksheets are presented for:

- z/VM resources other than direct access storage device (DASD)
- DASD resources
- Linux resources
- Linux user IDs
2.1 Bill of materials

The resources needed for a Linux on IBM System z project can be divided into the following areas:

- Hardware
- Software
- Networking

2.1.1 Hardware resources

The following hardware is needed:

- A System z logical partition (LPAR) and a System z10 or System z196
 - Processors or CPUs: One IFL (or CP) minimum, two or more are recommended.
 - Memory: 3 GB central memory and 1 GB of expanded minimum, 6 GB and 2 GB or more recommended. This 3:1 ratio of central to expanded storage is a good starting point for relatively small systems. See the following website for a discussion about how to apportion memory:
 - DASD: 27 3390-3s or nine 3390-9s at a minimum
 - Open Systems Adapter (OSA) network cards: One card minimum with eight device numbers (technically six, but OSA “triplets” usually start on an even address). Two OSA Express cards with eight device numbers on one and four on the other is recommended for high availability.

- A network-attached computer that will act as an NFS server and possibly an FTP server with at least 6 GB of disk space Setting up a Linux or UNIX® server is described. If you only have access to a Windows machine, AllegroNFS has been suggested as an NFS server. Refer to http://nfsforwindows.com/home for more information.

- A workstation or desktop that has network access to the mainframe.

2.1.2 Software resources

The following software resources are needed:

- z/VM V6.1 installation media with documentation. The physical media of DVDs is described. In addition, there are now sections describing how to use electronic delivery of z/VM using an FTP server so that physical media is not needed.

- RHEL 6 Linux install media. If you do not have it, you can request a no-cost 180-day evaluation copy at the following website:
 - http://www.redhat.com/z

 See 6.3, “Setting up a RHEL 6 installation tree” on page 98 for details.

- An operating system for the NFS server.

- The code associated with this book, which can be found at the following website:

- Tools on the workstation and desktop:
 - A 3270 Emulator, such as Attachmate Extra, Hummingbird Host Explorer, or IBM Personal Communications for Windows desktops
– A Linux SSH client, such as PuTTY (recommended) or TeraTerm
– A VNC viewer

These resources are described in more detail in the chapters that follow.

2.1.3 Networking resources

The following network resources are needed:

- A TCP/IP address for z/VM
- One TCP/IP address for each Linux virtual server
- Associated TCP/IP information:
 - DNS host name
 - DNS domain
 - DNS server TCP/IP address
 - TCP/IP gateway
 - TCP/IP subnet mask
 - TCP/IP broadcast address (usually calculated from address and subnet mask)
 - TCP/IP MTU size

The TCP/IP addresses must be routed to the OSA card(s).

2.2 z/VM conventions

It is a best practice to use naming conventions so that you and others can recognize z/VM resources by their names. This section discusses conventions for DASD volume names and backup file names.

2.2.1 Volume labeling convention

You should have a convention for labeling DASDs. You might already have a labeling convention that will largely determine the labels to be given to the DASD used by your z/VM and Linux LPAR.

Each System z DASD is addressed with a device number consisting of four hexadecimal digits. Each System z DASD has a six character label. It is convenient to include the four-digit address in the label so that you can easily tell the address of each DASD from its label. When followed, this convention guarantees that no two DASDs will have the same label. This can be an important issue especially when z/OS® has access to the DASD.

Sometimes a DASD is shared among LPARs, in which case your z/VM LPAR can see a DASD owned by other LPARs. In this situation, it is convenient to identify the LPAR that owns the DASD. Therefore the volume labeling convention used in this book identifies the LPAR with the first character. That leaves the second character in the label to identify the basic function of the DASD.
The LPAR used in this book is identified by the character M. The following characters are used for the types of DASD in the second character of the label:

- **M**: Minidisk space (PERM)
- **P**: Paging space (PAGE)
- **S**: Spool space (SPOL)
- **T**: Temporary disk space (TDISK)
- **V**: z/VM operating system volumes

For example, Figure 2-1 shows the labeling convention for the DASD in LPAR M, of type minidisk at real address $A700$.

The letter M is hardcoded into REXX EXECs that adopt this convention. If you want a different LPAR identifier character, they can easily be changed (search for the `firstChar` variable).

2.2.2 Backup file naming convention

Keep copies of important z/VM and Linux configuration files. You should always keep copies of original configuration files in case you need to restore from them. Because z/VM file names are limited to 16 characters (eight for the file name and eight for the file type), only the last four characters of the file type are used. This situation often requires some characters to be overwritten. For the original file, the suffix `ORIG` is used, and for the most recent working copy, the suffix `WRKS` (for “it WoRKS!”) is used. For example, the original `USER DIRECT` file is copied to the file `USER DIREORIG` before it is modified the first time.

2.2.3 The command retrieve convention

The ability to retrieve past commands is a common tool. The default Linux shell, bash, allows you to scroll through past commands by using the up arrow and down arrow keys.

There is a convention in z/VM to use the F12 function key (labeled PF12 on physical 3270 devices) to retrieve the last command, although it is not defined to all user IDs. There is no convention retrieve commands in the other direction, but it is possible to set another key to that function. Therefore, F11 is used to retrieve forward, because it is right next to F12. Also, the same function is useful in the editor, XEDIT. The ? subcommand retrieves past commands, so you should assign it to F12.
2.3 Disk planning

There are different aspects to consider when planning how to choose and allocate disk storage. Some aspects include the following items:

- Conventional ECKD DASD versus FBA disks over SCSI/FCP
- 3390-3s versus 3390-9s or large disk support
- Amount of disk storage per Linux image and how to allocate file systems

DASD versus SCSI/FCP

This book describes how to use conventional ECKD DASDs and does not discuss FBA disks accessed over SCSI/FCP, not because either technology is superior, but simply because DASDs seems to be much more common than SCSI/FCP disks. If you were to use SCSI/FCP disks, cloning with the clone.sh script would have to be modified to account for World Wide Port Names and Numbers. Sometimes a combination of these two types of disk storage is used; when that is the case, the ECKD emulated DASD is often used for the root file system and SCSI/FCP disks are used for large data storage areas.

3390-3s versus 3390-9s

Emulated 3390-3s format to about 2.3 GB, while 3390-9s are three times the size of emulated 3390-3s, or about 6.8 GB. Either size will work, although 3390-3s have been recommended over 3390-9s by some performance analysts. This book describes mainly using 3390-3s, however, and comments are added where using 3390-9s differs, especially with installing z/VM.

Disk storage per Linux image

Disk storage has the following characteristics:

- You should use two 3390-3 DASD to create minidisks at virtual addresses 100 and 101, instead of a single minidisk at virtual address 100.
- The root file system is on /dev/dasda1 with a recommended size of 384 MB. It is not a logical volume, so if there are any problems with LVM, the system will still be able to boot.
- Other file systems are on logical volumes that are part of single volume group have the characteristics shown in Table 2-1.

Table 2-1 Recommended logical volume file systems and sizes

<table>
<thead>
<tr>
<th>Mount point</th>
<th>Logical volume name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/</td>
<td>usr-lv</td>
<td>2 GB</td>
</tr>
<tr>
<td>/var/</td>
<td>var-lv</td>
<td>512 MB</td>
</tr>
<tr>
<td>/opt/</td>
<td>opt-lv</td>
<td>384 MB</td>
</tr>
<tr>
<td>/tmp/</td>
<td>tmp-lv</td>
<td>384 MB</td>
</tr>
</tbody>
</table>

This layout uses about 3.5 GB of 4.5 GB of disk space. You could choose to use other disk sizes than 3338 cylinders (3390-3 minus cylinder 0). For example, if you chose to use 3390-9s, you could give addresses 100 and 101 each half of the volume, giving each Linux about 6.8 GB of disk space.
2.4 Memory planning

Planning memory may be the most difficult issue for z/VM and Linux on System z, yet the most important to ensure adequate performance. The simplest solution may appear to involve having enough central memory (storage) in the LPAR so that z/VM never pages and Linux never swaps. However, such resources are often not realistically available. A best practice is to allocate memory on a just enough basis for each Linux server. A good starting point is to set a virtual machine size by changing the memory allocation value at just over the value at which the guest starts to swap at the Linux system level when under normal loading. If some level of sustained swapping is inevitable due to the nature of the workloads, then ensure virtual disks are used for the swap media.

To better understand of memory planning, refer to the following resources:

- *Linux on IBM System z: Performance Measurement and Tuning*, SG24-69266
- The IBM z/VM Performance Resource pages in general, which can be found on the web at:
- The IBM z/VM page specifically discussing memory allocation, which can be found on the web at:

One rule is to have as few virtual machines logged on (or disconnected) as possible to handle the workload being presented. Every virtual machine that is not required should be logged off where appropriate, as this will mean more memory for the other virtual servers that are still running.

Important
However you choose to layout the minidisks, it is important that the golden image and all target Linux user IDs have two minidisks of the same size at virtual addresses 100 and 101. These assumptions are coded into the clone.sh script.

2.5 Password planning

Good passwords are critical to good security. However, requiring many different passwords generally leads to people writing them down, which clearly detracts from good security. Sometimes it is difficult to balance these two extremes.

This book considers different system administration roles:

- The z/VM system administrator
- The Linux system administrator
- The Linux virtual server end users

The z/VM and Linux system administrator may be the same person.

The method of backing up z/VM data onto the Linux cloner means that the Linux administrator will have access to all z/VM passwords. Therefore, the examples in this book set all z/VM and Linux system administration passwords to the same value, lnx4vm. If the z/VM and Linux system administrator roles must be kept separate and the Linux administrator is not to have access to the z/VM passwords, then a different method of backing up z/VM data must be chosen.
You may want to define a finer granularity for passwords based on the following system administration roles:

- The main z/VM system administrator (MAINT)
- The z/VM network administrator (TCPMAINT)
- The z/VM Linux administrator (LNXMAINT, Linux cloner, and Linux virtual server user IDs)
- The Linux virtual server users (with or without access to 3270 sessions, with or without the root passwords)

The sets of passwords that you define will depend on the roles that your organization will adopt.

2.6 Planning worksheets

Four worksheets are included in this section. They are populated with the resources used in writing this book. There are also four corresponding blank worksheets in 2.7, “Blank worksheets” on page 16.

2.6.1 z/VM resources used in this book

Table 2-2 lists the z/VM resource values used in the examples in this book. You can use these values as a reference for completing the blank worksheets that follow.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR name</td>
<td>LVM2</td>
<td>16 GB main storage/2 GB expanded, 10 shared IFLs</td>
</tr>
<tr>
<td>CPC name</td>
<td>H15C</td>
<td>Name of CPC on which the LPAR is located</td>
</tr>
<tr>
<td>z/VM system name</td>
<td>POKSND61</td>
<td>Name to be assigned to z/VM system</td>
</tr>
<tr>
<td>TCP/IP host name</td>
<td>gpok249</td>
<td>Assigned by a network administrator; helpful to set in DNS beforehand, but not necessary</td>
</tr>
<tr>
<td>TCP/IP domain name</td>
<td>endicott.ibm.com</td>
<td>Helpful to set in DNS beforehand</td>
</tr>
<tr>
<td>TCP/IP gateway</td>
<td>9.60.18.129</td>
<td>The router to and from the local subnet</td>
</tr>
<tr>
<td>DNS server 1</td>
<td>9.0.2.11</td>
<td>Assigned by the network administrator</td>
</tr>
<tr>
<td>DNS server 2/3 (optional)</td>
<td>9.0.3.1</td>
<td>Not used</td>
</tr>
<tr>
<td>OSA device name</td>
<td>eth0</td>
<td>Name of the interface to be assigned by IPWIZARD</td>
</tr>
<tr>
<td>OSA starting device number</td>
<td>B420</td>
<td>Start of OSA triplet for the z/VM TCP/IP stack</td>
</tr>
<tr>
<td>TCP/IP address</td>
<td>9.60.18.249</td>
<td>The TCP/IP address of the z/VM system</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.128</td>
<td>Assigned by network administrator</td>
</tr>
<tr>
<td>OSA device type</td>
<td>QDIO</td>
<td>Often “QDIO” for OSA/Express cards</td>
</tr>
<tr>
<td>Network type</td>
<td>Ethernet</td>
<td>Usually “Ethernet”</td>
</tr>
</tbody>
</table>
Table 2-3 z/VM DASD used in this book

<table>
<thead>
<tr>
<th>Device number</th>
<th>Label</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6280</td>
<td>610RES</td>
<td>CP owned</td>
<td>z/VM system residence volume</td>
</tr>
<tr>
<td>6281</td>
<td>UV6281</td>
<td>CP owned</td>
<td>z/VM spool volume 1</td>
</tr>
<tr>
<td>6282</td>
<td>UV6282</td>
<td>CP owned</td>
<td>z/VM paging volume 1</td>
</tr>
<tr>
<td>6283</td>
<td>UV6283</td>
<td>CP owned</td>
<td>z/VM first work volume</td>
</tr>
<tr>
<td>6284</td>
<td>UV6284</td>
<td>CP owned</td>
<td>z/VM second work volume</td>
</tr>
<tr>
<td>6285</td>
<td>UP6285</td>
<td>CP owned</td>
<td>Paging volume 2</td>
</tr>
<tr>
<td>6286</td>
<td>UP6286</td>
<td>CP Owned</td>
<td>Paging volume 3</td>
</tr>
<tr>
<td>6287</td>
<td>UM6287</td>
<td>CP Owned</td>
<td>Paging volume 4</td>
</tr>
<tr>
<td>6289</td>
<td>UM6289</td>
<td>System (3390-3)</td>
<td>LNXMAINT 191, LNXMAINT 192, RH6CLONE 100</td>
</tr>
<tr>
<td>6290</td>
<td>UM6290</td>
<td>System (3390-3)</td>
<td>RH6CLONE 100</td>
</tr>
<tr>
<td>6293</td>
<td>UM6293</td>
<td>System (3390-3)</td>
<td>RH6CLONE 101</td>
</tr>
<tr>
<td>6294</td>
<td>UM6294</td>
<td>System (3390-3)</td>
<td>RH6CLONE 102</td>
</tr>
<tr>
<td>63A2</td>
<td>UM63A2</td>
<td>System (3390-9)</td>
<td>RH6GOLD 100</td>
</tr>
<tr>
<td>63A9</td>
<td>UM63A9</td>
<td>System (3390-9)</td>
<td>RH6GOLD 101, LINUX01 100 and 101</td>
</tr>
<tr>
<td>63AA</td>
<td>UM63AA</td>
<td>System (3390-9)</td>
<td>LINUX02 100 and 101, LINUX03 100</td>
</tr>
<tr>
<td>6339</td>
<td>UM6339</td>
<td>System (3390-3)</td>
<td>For adding logical volumes</td>
</tr>
<tr>
<td>6360</td>
<td>UM6360</td>
<td>System (3390-3)</td>
<td>For extending logical volumes</td>
</tr>
</tbody>
</table>

2.6.2 z/VM DASD used in this book

Table 2-3 lists the z/VM DASD resource values used in the examples in this book.
2.6.3 Linux resources used in this book

Table 2-4 lists the Linux NFS server resources used for the first System z Linux installation.

Table 2-4 Linux NFS server resources used in this book

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP address</td>
<td>9.60.18.240</td>
<td></td>
</tr>
<tr>
<td>User/password</td>
<td>root/lnx4vm</td>
<td></td>
</tr>
<tr>
<td>NFS-exported install directory</td>
<td>/nfs/rhel6/</td>
<td>Directory with DVD 1</td>
</tr>
</tbody>
</table>

Table 2-5 lists the Linux resources used in the examples in this book.

Table 2-5 Linux resources used in this book

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux root password</td>
<td>lnx4vm</td>
<td></td>
</tr>
<tr>
<td>TCP/IP gateway</td>
<td>9.60.18.129</td>
<td>Obtain from network administrator</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.128</td>
<td>Obtain from network administrator</td>
</tr>
<tr>
<td>DNS server</td>
<td>9.0.2.11, 9.0.3.1</td>
<td>Obtain from network administrator</td>
</tr>
<tr>
<td>VNC installation password</td>
<td>12345678</td>
<td>Must be 8 characters</td>
</tr>
</tbody>
</table>

2.6.4 Linux user IDs used in this book

Table 2-6 lists the z/VM user IDs for Linux used in the examples in this book.

Table 2-6 Linux user ID used in this book

<table>
<thead>
<tr>
<th>User ID</th>
<th>IP address</th>
<th>DNS name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH6GOLD</td>
<td>9.60.18.222</td>
<td>g pok222.endicott.ibm.com</td>
<td>RHEL 6 golden image</td>
</tr>
<tr>
<td>RH6CLONE</td>
<td>9.60.18.223</td>
<td>g pok223.endicott.ibm.com</td>
<td>The cloner</td>
</tr>
<tr>
<td>LINUX01</td>
<td>9.60.18.224</td>
<td>g pok224.endicott.ibm.com</td>
<td>A web virtual server</td>
</tr>
<tr>
<td>LINUX02</td>
<td>9.60.18.225</td>
<td>g pok246.endicott.ibm.com</td>
<td>An LDAP virtual server</td>
</tr>
<tr>
<td>LINUX03</td>
<td>9.60.18.226</td>
<td>g pok247.endicott.ibm.com</td>
<td>A file and print virtual server</td>
</tr>
<tr>
<td>LINUX04</td>
<td>9.60.18.227</td>
<td>g pok248.endicott.ibm.com</td>
<td>An application development server</td>
</tr>
</tbody>
</table>
2.7 Blank worksheets

Blank copies of the same four worksheets are provided for your use.

2.7.1 z/VM resources worksheet

Use the worksheet in Table 2-7 to document the z/VM resources that you will use.

Table 2-7 z/VM resources blank worksheet

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP domain name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS server 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS server 2/3 (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSA device name</td>
<td>Often “eth0”</td>
<td></td>
</tr>
<tr>
<td>OSA starting device number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSA device type</td>
<td>Often “QDIO”</td>
<td></td>
</tr>
<tr>
<td>Network Type</td>
<td>Often “Ethernet”</td>
<td></td>
</tr>
<tr>
<td>Port name (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router Type</td>
<td>Often “None”</td>
<td></td>
</tr>
<tr>
<td>Primary OSA device number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for VSWITCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary OSA device number</td>
<td>Should be on a different CHPID/OSA card than primary</td>
<td></td>
</tr>
</tbody>
</table>
2.7.2 z/VM DASD worksheet

Use the worksheet in Table 2-8 to document the z/VM DASD that you will use.

<table>
<thead>
<tr>
<th>Device number</th>
<th>Label</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7.3 Linux resources worksheet

Use the worksheet in Table 2-10 to document the resources associated with the NFS server that will be used as the installation source of the first System z Linux.

Table 2-9 Linux NFS server resources blank worksheet

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User/password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFS-exported install directory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the worksheet in Table 2-11 to document your System z Linux resources.

Table 2-10 Linux resources blank worksheet

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux install password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux root password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apache user ID and password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux TCP/IP gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux TCP/IP broadcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux DNS server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNC Installation password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.7.4 Linux user ID worksheet

Use the worksheet in Table 2-11 to document the Linux user IDs that you will create.

Table 2-11 Linux user ID blank worksheet

<table>
<thead>
<tr>
<th>Linux user ID</th>
<th>IP address</th>
<th>DNS name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Many people use Microsoft Windows as a desktop operating system. This chapter addresses the following tools that are recommended for accessing z/VM and Linux from a Windows desktop:

- An SSH client: PuTTY is recommended
- A VNC client: RealVNC is recommended
- A 3270 emulator: Many choices are available
3.1 PuTTY: A no cost SSH client for Windows

Throughout this book, SSH is used to log into Linux systems. It is easy to use and cryptographically secure. If you are using a Linux desktop system, an SSH client is built in. But if you are using a Windows desktop, you will need a good SSH client.

PuTTY is probably the most commonly used. You can download PuTTY from the web at:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

To download from this page, click the putty.exe link for your architecture. Save the file in a directory path such as C:\WINNT. PuTTY is a stand-alone executable (no installation needed other than copying the file). You may also want to create a shortcut on your desktop or task bar.

Open PuTTY and the configuration window shown in Figure 3-4 on page 22 should open. If you spend a few minutes to configure PuTTY it may pay off in time savings. The examples shown are using PuTTY Release 0.60.

1. In the PuTTY Configuration window, in the left Category window, click Session.
2. Under the Connection Type heading on the top right, click SSH as shown in Figure 3-1. This specifies to use the SSH protocol.
3. Click **Logging** in the left pane as shown in Figure 3-2.
 - Select **Printable output** in the Session logging radio group. This allows you to go back and check the output of certain commands.
 - Set the Log file name to &H&M&D&T.log so that a time stamp will be in the file name.

![Figure 3-2 Setting logging](image)

4. In the left pane, click **SSH** near the bottom as shown in Figure 3-3.
5. On the right side, under the Preferred SSH protocol version, select **2 only**.

![Figure 3-3 Setting SSH Protocol 2](image)
6. In the left Category pane, click **Terminal** as shown in Figure 3-4.

7. Select the **Use background colour to erase screen** check box, which results in a better job of painting the window for applications that use curses (block graphics).

8. Click **Window** in the left pane as shown in Figure 3-5.

9. You may choose a larger window size and more lines of scrollback. In this example, 50 rows, 100 columns and 1000 lines of scrollback are set.
10. Click **Session** in the left pane as shown in Figure 3-6.

11. Click **Default Settings** in the Saved Sessions pane, then click **Save**. This makes all future sessions that you define inherit the preferences you just set.

![PuTTY Configuration](image1)

Figure 3-6 Saving new default settings (Part 3 of 4)

Saving sessions

To save sessions, perform the following steps. In this example, a session for LINUX00, or the cloner, is saved.

![PuTTY Configuration](image2)

Figure 3-7 Customizing PuTTY window settings (Part 4 of 4)
Now to save a session for each virtual server, perform the following steps:

1. In the Host Name (or IP address) field, enter the TCP/IP address (or DNS name).
2. In the Saved Sessions text area, choose a name that you will remember. In this example, the name LINUX00 (cloner) is used.
3. Again click Save and you should see the name added to the Saved Session list.

Now, whenever you start PuTTY, you can simply double-click any saved session name, and an SSH session to the desired Linux system will be invoked.

3.2 Setting up a VNC client

A VNC client allows access to a graphical windowing environment with System z Linux.

If you are using a Linux desktop you probably have, or at least have access to, a VNC client named vncviewer. It is part of the tightvnc package.

3.2.1 Downloading and running RealVNC

If you have a Windows desktop, the VNC client from RealVNC is a popular choice. You can purchase a full function RealVNC client, or there is a no cost version. The RealVNC home page is at:

http://www.realvnc.com

The download page is at:

http://www.realvnc.com/download.html

Click Download and Use. Fill out the web form and download the executable. When you have downloaded it, run it and an install program will start. At the time of writing of this book, RealVNC 4.1.2 was the current version.

Accept all defaults, however, you probably do not need a VNC server on your desktop. So you can deselect VNC Server from the Select Components window, as shown in Figure 3-8.

![Figure 3-8 RealVNC Select Components window](image)

Complete the windows and the installation process should go quickly.
3.3 3270 emulators

To access a logon session with z/VM, it is common to use a 3270 emulator that runs on Windows. Many commercial products are available. Some of the more common ones are:

- Attachmate Extra!
- Hummingbird Host Explorer
- IBM Personal Communications
- Quick3270

It is beyond the scope of this book to explain the details of configuring all the various emulators. However, it is recommended that you investigate the following settings for your emulator:

- Set the Enter and Clear function keys to be where you would expect them. On some emulators, the default Enter key action is set to the right Ctrl key of modern keyboards. Likewise the Clear key action is sometimes set to the Esc key in the upper left corner of modern keyboards or the Pause key in the upper right.
- Set a larger window. Often the default number of lines in an emulator session is 24. You will probably be more productive with a 32, 43 or more lines if they can easily fit in a window given your desktop display size and resolution.
- Have the session automatically reconnect after logoff. Having a new logon window come back immediately after you log off can also save you time in the long run. This is often not the default behavior.
- Save your connection sessions. Rather than continually typing in the IP address or DNS name of the z/VM system to which you want to connect, spend a few minutes to define and save a session for each system to which you may connect, as was described for PuTTY. Then you can usually double-click the saved connection to quickly access a new 3270 session.
Chapter 4. Installing and configuring z/VM

z/VM can be installed first level from tape, from DVD, or from an FTP server. Installing from tape is not described in this book. However, installing from the physical media of DVDs, or without physical media, from an FTP server, are.

To complete this chapter, you must complete the majority of Chapter 6, “Configuring an NFS/FTP server” on page 97. If you are installing z/VM from an FTP server, you should complete 4.1, “Installing z/VM from DVD or FTP server” on page 28, then complete Chapter 6, “Configuring an NFS/FTP server” on page 97.

We recommend that you start here, because there is a step when installing z/VM (instdvd) that can take two or more hours to complete. While that process is running, you can complete Chapter 6, “Configuring an NFS/FTP server” on page 97. Alternatively, if you have other personnel who can work on the project, you can start both chapters at the same time on the different systems.

This chapter consists of the following sections that should be completed:

- “Installing z/VM from DVD or FTP server” on page 28
- “Configuring TCP/IP” on page 41
- “Configuring the XEDIT profile” on page 43
- “Customizing the SYSTEM CONFIG file” on page 44
- “Configuring TCP/IP to start at IPL time” on page 46
- “Adding paging volumes” on page 50
- “Creating a user ID for common files” on page 56

In addition, there are optional sections:

- “Addressing z/VM security issues” on page 64
- “Backing up your z/VM system to tape” on page 66
- “Relabeling system volumes” on page 66
- “Restoring your z/VM system from tape” on page 72
4.1 Installing z/VM from DVD or FTP server

This section assumes a first level installation of z/VM from DVD onto 3390 DASD. If you have not already done so, complete the worksheet in 2.7.1, “z/VM resources worksheet” on page 16.

For IBM System z9® hardware and older, you will need access to the Hardware Management Console (HMC) with a user ID that has authority to go into single object operations mode, though this is not pertinent for z/VM V6.1 because it installs onto System z10 or later. The requirement to be in single object operations mode for z10 or later has been removed.

z/VM V6.1 is shipped on tape, on DVD, and is available from the Internet through electronic download. z/VM should install faster from tape due to better I/O speeds; however, installing from tape is becoming less common.

If you are not familiar with the HMC and z/VM, you may want to use the complete installation manual z/VM Guide for Automated Installation and Service, Version 6 Release 1.0, GC24-6097. If you are installing z/VM at the second level (z/VM under z/VM) or onto FCP/SCSI disk, you will want to use this z/VM manual because the sections that follow do not address these options.

4.1.1 Obtaining z/VM through electronic download

z/VM can be ordered and delivered electronically through IBM ShopzSeries. A detailed discussion is outside the scope of this book; however, short steps are documented. Note that the steps and links may change over time, but the basic process should remain the same.

You may download the z/VM product install files to a staging machine, such as a Windows desktop, as was done in this example, and later upload them to an FTP server. However, you may also download them directly to the machine that will be the FTP server, such as a Linux PC if it has access to the Internet and a browser.

To order z/VM, perform the following steps:
1. Go to the z/VM service page at:
 http://www.vm.ibm.com/service/
2. Click IBM ShopzSeries in the section IBM Support Portals.
3. Sign in by clicking Sign in for registered users in the upper right.
4. Click create new software orders.
5. On Step 1, select z/VM Products and choose VM SDO version 6 in the drop-down menu to the right. Click Continue.
6. On Step 2, select a hardware system on which you plan to run z/VM from the list of Hardware systems for your customer number, and click Continue.
7. On Step 3, for the Filter, select VM - VM Base Product, select your language and for the Filter, select Show all products, then click Show catalog. A submenu appears.
 Select z/VM V6 3390 System DDR and click Continue.
8. On Step 4, verify the order and click Continue.
9. On Step 5, verify the entitlements and click Continue.
10. On Step 6, for the Preferred media, select Internet and click Continue.
11. On Step 7, review and click Submit.
12. It may take some time for the order to be prepared. In this example, the email stating that the order was ready for download was received after about four hours. When you receive the email, it will contain the URL for downloading your order. Use a browser to go to that URL.

13. From that address, there will be links to investigate as shown in Figure 4-1. It has the following five sections:
 - Order Packing List: The list of available products and manuals
 - Installation Instructions: Clicking View now will take you to a web page:
 This PDF describes in general terms how to go from the product install files to physical DVDs or to an FTP server. If you want to go from the product install files to physical DVDs, you should complete this section, but will not need to use the later section on how to set up an FTP server. If you want to use an FTP server to avoid physical media altogether, you can read the PDF for a general approach, and then complete this section and 6.4, “Enabling the NFS server” on page 100 for specific details.
 - Product Publications: Allows you to access z/VM publications related to installation.
 - Additional Publications: Allows you to download a z/VM SDO document (4 pages).
 - VM product material: This is the most important section because it is where you go to download z/VM product installation files. In the example used in this book, the link Download to your workstation using IBM Download Director was clicked as shown in Figure 4-1.

![Figure 4-1 Web page for downloading z/VM electronically](image-url)
14. Clicking this link brought up the window shown in Figure 4-2. The first and third check boxes were selected as z/VM is being installed onto 3390 DASD. The 1.3 GB of data was downloaded relatively quickly due to multiple connections being opened through the use of IBM Download Director.

![Figure 4-2 Choosing two files to be downloaded](image)

15. The z/VM install code should now be staged or ready for the FTP server to be set up. In this example where the files are staged on a Windows workstation, the two files are shown from a DOS prompt:

```
C:\zvm61> dir
...
11/11/2010 08:54 AM 1,277,435,798 cd813250.zip
11/11/2010 08:54 AM 45,088,210 CD813270.ZIP
```

16. To configure an FTP server, complete all of Chapter 6, “Configuring an NFS/FTP server” on page 97 and especially 6.4, “Enabling the NFS server” on page 100.

When these steps are completed, you should be able to point the z/VM installation to the FTP server that was just set up.

4.1.2 Starting the z/VM installation

This section explains how to install z/VM V6.1 from an HMC onto 3390-3 equivalent DASD. Some words are included for installing onto the larger 3390-9 DASD. For alternative configurations, such as installing from tape or onto SCSI disks, refer to the z/VM documentation.

Perform the following steps:

1. Log on to the Hardware Management Console. You should see the HMC Workplace window.
2. Select the LPAR on which you want to install z/VM, often by clicking the CPC images icon. Be sure you have the correct LPAR selected. If you are not completely sure, check with someone who is.
3. If necessary, click the buttons with circular arrows on the bottom right corner of the CPC Recovery menu (this is sometimes referred to as “going around the racetrack”).
4. On the Recovery or CPC Recovery menu, double-click the **Integrated 3270 Console** as shown at the bottom of Figure 4-3. A window entitled “Integrated 3270 Console for <your CPC>” will open (on older HMC levels, the window may be entitled Personal Communications).

Hint: It is convenient to use the Alt-Tab key sequence to move between the HMC window and 3270 console.

![Recovery menu](image)

Figure 4-3 Recovery menu

5. Place the z/VM Product Package Version 6 Release 1.0 DVD in the HMC DVD drive.
Important: On z10 HMCs and later, it is no longer required to be in Single Object Operations mode to install z/VM.

On a z9 HMC and older, get into Single Object Operations mode by performing the following steps:

- a. Double-click the Groups icon in the Views Area.
- b. Double-click Defined CPCs in the Groups Work Area.
- c. Select your CPC.
- d. If necessary, go around the racetrack (the buttons with circular arrows on the bottom right corner) to the CPC Recovery menu.
- e. Double-click the Single Object Operations icon. Click Yes to confirm. Now a new window, Primary Support Element Workplace, should appear (on older HMC levels it will be a "window within a window"). A window about a certificate not being valid may appear. If so, click OK.
- f. Double-click Groups near the top of this window.
- g. Double-click Images in the Groups Work Area.

If you are unable to get into Single Object Operations mode, it may be because you do not have sufficient permission. Check with the system administrator.

6. The LPAR that z/VM will be installed into should still be selected. On the right you should still see the (CPC) Recovery menu. Double-click the Load from Removable Media or Server icon.

 If you received the z/VM product electronically, you will need to create your own DVDs. This step is not covered in this book. See the z/VM manual Installation Instructions for Electronically Delivered IBM z/VM Operating System Deliverable, GI11-2900, on the web at:

 If the DVD is not burned correctly, you may see the error message:

 ACT36201 "An error has occurred while trying to obtain a list of the software that can be loaded. ...".

 Further, this error may have the side effect of locking the DVD drive. The HMC may need to be rebooted. To prevent this from happening, be sure you create the DVDs correctly. Use newer copies of DVD-burning software that has an option for the ISO9660 format, which is recommended.
7. On the Load from Removable Media or Server window shown in Figure 4-4, the Hardware Management Console CD-ROM/DVD radio button should be selected.

![Figure 4-4 Load from Removable Media or Server window](image)

8. In the same Load from Removable Media or Server window, fill in File Location with /cpdvd. This is the directory on the DVD with the z/VM V6.1 installation code. Click OK.

If you do not have physical DVDs, but there is an FTP server set up with the z/VM installation code, then you can use FTP as an install method. If such an FTP server is set up, you can click FTP Source and fill in the fields Host Computer, User ID, Password and File location, as shown in Figure 4-5.

![Figure 4-5 Load from Removable Media or Server window with FTP source](image)
Setting up an FTP server so as to provide the z/VM product files for installation is described in 6.4, “Enabling the NFS server” on page 100.

9. Load the RAMDISK

a. From the Load from Removable Media or Server window, the 610vm.ins file should be selected as shown in Figure 4-6. Click OK. If you are at the HMC installing from DVD, you should see the green light on the DVD drive light up.

![Figure 4-6 Selecting z/VM V6.1 RAMdisk system](image)

b. On the “Confirm the action” window, click Yes.

c. You should see the Disruptive Task Confirmation: Load from CD-ROM, DVD or Server Progress window. You will be prompted for the password, as shown in Figure 4-7.

![Figure 4-7 Supplying password for disruptive task](image)

d. When you see the message Completed successfully, click OK to close. This should normally take about two minutes or less.

You should now have an in-memory z/VM V6.1 system running.
4.1.3 Copying a vanilla z/VM system to DASD

This section describes the steps to copy z/VM to DASD.

Perform the following steps:

1. You can now get out of Single Object Operations mode (if you are in it). To do so, log off the primary SE window by closing that window.

2. Move to the Integrated 3270 Console window (you can use the Alt-Tab sequence). The RAMdisk should IPL and you should see z/VM boot as shown in Figure 4-8. If the Integrated 3270 Console window is still blank, be patient, it may take a minute or two to initialize.

Note: The Esc key in the upper left clears the Integrated 3270 console on the HMC.

Figure 4-8 z/VM first boot on the Integrated console
3. Invoke the `instplan` command. This will allow you to choose associated z/VM products to install, the language to use, and the type of DASD on which to install (Figure 4-9):

```bash
=> instplan
```

![Installation planning panel](image)

Figure 4-9 Installation planning panel

4. You may need to clear the window with the Esc key. You should then see the display as shown in Figure 4-9. It is recommended that you leave the Ms in the top section alone.

5. Type the letter `x` next to `AMENG` (or select your language) and `3390 Mod 3` (or the type of DASD you will use), as shown in Figure 4-9. You can use the Tab key to move to the next input field.

6. Press F5. You should see the message `HCPINP8392I INSTPLAN EXEC ENDED SUCCESSFULLY` after a list of what will be installed.

7. Attach the DASD devices onto which z/VM will be installed defined in your planning worksheet in 2.7.2, “z/VM DASD worksheet” on page 17. In this example, the devices are 6280-6284.

```bash
=> att 6280-6284 *
6280-6284 ATTACHED TO MAINT
```

Important: The devices 6280-6284 are in bold italics to signify that you should replace the example value with the correct value for your site. For example, if you are installing z/VM onto DASD 1200-1204, you would type the following:

```bash
=> att 1200-1204 *
```

This convention is used throughout the book.
Running INSTDVD

The INSTDVD EXEC copies the z/VM system from DVD to disk.

Perform the following steps:

1. Execute INSTDVD:

   ```
   ==> instdvd
   ```

2. If you are using 3390-3s, you see a panel asking for the five volumes, as shown in Figure 4-10 (if you are using 3390-9s, you will only see three lines).

 ![INSTDVD DASD address panel](image)

 Figure 4-10 INSTDVD DASD address panel

 a. Enter the addresses of the five volumes (or three for 3390-9s) that z/VM will be installed on. The labels for the last four volumes are changed because the LPAR in this example had access to other z/VM systems. Changing the labels prevents the problem described in 4.11, “Relabeling system volumes” on page 66 from occurring.

 b. Press F5 to start the installation.

3. Verify that the five DASD addresses to be installed onto are correct. When you see the question **DO YOU WANT TO CONTINUE?**, type **y**. You should see the message **NOW FORMATTING DASD 6280**.

4. You are asked to place the system RSU in the drive. Insert the z/VM Stacked Recommended Service Upgrade 6101 DVD into the HMC DVD-ROM drive.

5. At the Integrated 3270 Console, type **go**. You should see a message of the form **DVDLOAD: LOADING FILE CKD5000x IMAGE *.** This step should take two to four minutes.

6. Finally, you should see the message **HCPIDV8329I INSTDVD EXEC ENDED SUCCESSFULLY.**

Important: INSTDVD can take from 45 minutes to two hours. Now may be a good time to go to Chapter 6, “Configuring an NFS/FTP server” on page 97 to set up an NFS server.

Also, read errors have been observed resulting in INSTDVD failing. If this is the case, you can try the command `instdvd (restart) and the install process should pick up where the read error occurred. This can be caused by dirt or fingerprints on the DVD.`
4.1.4 Performing an IPL of the vanilla z/VM from DASD

Perform an IPL of your initial z/VM system now on DASD. Your 3270 Integrated Console session should still be running by performing the following steps:

1. In the HMC Workplace window, your LPAR should still be selected. If not, select your LPAR by clicking it. You may have to first double-click Groups.

2. You should see the Recovery menu. Double-click the Load icon in the menu at the right side.

3. The Load window opens, as shown in Figure 4-11. Follow these steps:
 a. Set the load address to the new system residence (610RES) volume, which is \texttt{6280} in this example.
 b. Set the load parameter to SYSG. This specifies to use the Integrated 3270 console.
 c. Click \textbf{OK} to perform the IPL.

4. When you see the Load Task Confirmation window, click \textbf{Yes}.

5. After 1-3 minutes you should see a status of Success in the Load Progress window. Click \textbf{OK}.

![Load window](image)
6. Move back to the Integrated 3270 Console window. You should see the Standalone Program Loader panel as shown in Figure 4-12.

![Figure 4-12 Stand Alone Program Loader](image)

a. Press the Tab key to get to the IPL Parameters section and enter the value `cons=sysg`. This specifies to use the Integrated 3270 console.

b. Press the F10 key to continue the IPL of your z/VM system. This should take around 1 - 3 minutes.

7. At the `Start (Warm|Force|COLD|CLEAN)` prompt, enter:
   ```
   ==> cold drain noautolog
   ```

8. At the Change TOD clock prompt, enter:
   ```
   ==> no
   ```

9. The last message should be `HCPCRC8082I EREP records are accumulating for userID EREP`. Disconnect from the OPERATOR user ID using the `disconnect` command:
   ```
   ==> disc
   ```
 Press Enter to get a new logon window.

4.1.5 Completing the z/VM installation

Perform the following steps to complete the z/VM installation:

1. On the HMC z/VM login window, log on as MAINT. The password is MAINT. You may receive messages HCPLNM102E or HCPLNM101E about disks not linked or attached. This is not a problem. Press Enter when you see the `VM Read` prompt in the lower right corner.

 Important: When logging onto a z/VM user ID that runs CMS, you should usually press Enter at the `VM READ` prompt. Doing so will run the `PROFILE EXEC` and result in a prompt of the form:
   ```
   Ready; T=0.01/0.01 11:14:20
   ```
2. Run **IPL CMS**, then press Enter at the VM READ prompt in the lower right corner. You should see the Ready; prompt.

```plaintext
=> ipl cms
=> Press Enter at the VM READ prompt
```

3. Run the **instvm dvd** command:

```plaintext
=> instvm dvd
... 
HCPPLD8329I POSTLOAD EXEC ENDED SUCCESSFULLY
... 
HCPIVM8392I INSTVM ENDED SUCCESSFULLY
```

This exec continues the installation process. This step should take about 4 - 8 minutes. The last message should be HCPIVM8392I INSTVM ENDED SUCCESSFULLY.

4. Load the recommended service. First run **ipl cms**, then press Enter at the VM READ prompt:

```plaintext
=> ipl cms
=> Press Enter at the VM READ prompt
Ready;
```

5. For z/VM V6.1, the service name is 6101RSU1. Verify that this file exists on the MAINT 500 disk:

```plaintext
=> acc 500 c
DMSACC724I 500 replaces C (2CC)
=> listfile * * c
6101RSU1 SERVLINK C1
```

6. Run the **service all** command to apply the service:

```plaintext
=> service all 6101rsu1
... 
This step should take about 3 - 6 minutes. The last message should be:
VMFSRV2760I SERVICE processing completed successfully.
```

7. Run **ipl cms** and run the **put2prod** command. This puts the service into production:

```plaintext
=> ipl cms
=> Press Enter
Ready;
=> put2prod
This step should take about 2 - 4 minutes. The last message should be:
VMFP2P2760I PUT2PROD processing completed successfully.
```

A return code of 0 is ideal. You may get a return code of 4 and the message:
VMFP2P2760I PUT2PROD process completed with warnings.

In general on z/VM, a return code of 4 is acceptable. That means that only warnings were issued. A return code of 8 or greater generally means that errors were encountered.

8. Enter the following command to shut down and perform an IPL your system:

```plaintext
=> shutdown reipl
SYSTEM SHUTDOWN STARTED
```

9. You will lose the current session on the Integrated 3270 Console, but the system should come back in about 2 - 4 minutes.

10. After it comes back, the last message should be Press enter or clear key to continue. Press Enter and you should see a z/VM logon window.
Congratulations! You should now have a vanilla z/VM system installed.

4.2 Configuring TCP/IP

It is recommended that you initially configure TCP/IP using the IPWIZARD command, which is generally used just once. After IPWIZARD creates the initial configuration files, they are typically maintained manually.

From the HMC z/VM logon panel, logon to MAINT. The default password for all z/VM user IDs is the same as the user ID. So enter a password of maint, which will not be echoed on the window.

```
USERID   ==> maint
PASSWORD ==>
```

After entering the user ID and password, press Enter when the status area in the lower right reads VM READ.

4.2.1 Using the IPWIZARD tool

The IPWIZARD command is on the MAINT 193 disk. You need to access it with file mode G using the ACCESS command so you will pick up IPWIZARD from that minidisk.

Perform the following steps:

1. Access the MAINT 193 disk:
   ```
   ==> acc 193 g
   ```
2. Invoke IPWIZARD:
   ```
   ==> ipwizard
   ```
3. The z/VM TCP/IP Configuration Wizard opens, as shown in Figure 4-13. The first field, User ID, should always be TCPIP. Obtain the remaining values from 2.7.1, “z/VM resources worksheet” on page 16 and press F8.

![Figure 4-13 IPWIZARD panel 1](image)
4. An Interface Name of eth0 (Figure 4-14) is arbitrary but recommended. The Device Number will be the starting address of the OSA triplet that the z/VM stack will use. The IP Address which must be routed to the OSA card will become the TCP/IP address of the z/VM system. The Interface Type will typically be QDIO (layer 3) with modern OSA devices. When completed, press F8.

![Figure 4-14 IPWIZARD panel 2](image)

Note: To utilize QDIO (layer 2), certain prerequisites must be met. Consult with the system administrator.

5. In general, a value for the Port Name (Figure 4-15) is no longer necessary. Press F5 to complete the wizard:

DTCIPW2508I DTCIPWIZ EXEC is attempting to create the necessary DTCIPW2508I configuration files

![Figure 4-15 IPWIZARD panel 3](image)
6. Enter 1 to restart the TCP/IP stack (you may see other warnings):

 The TCP/IP stack (TCPIP) must be restarted as part of this procedure
 Would you like to restart and continue?
 Enter 0 (No), 1 (Yes) 1

 USER DSC LOGOFF AS TCPIP USERS = 2 FORCED BY MAINT

 Successfully PINGed Interface (9.12.5.22)
 Successfully PINGed Gateway (9.12.4.1)
 Successfully PINGed DNS (9.12.6.7)
 DTCIPW2519I Configuration complete; connectivity has been verified
 DTCIPW2520I File PROFILE TCPIP created on TCPIP 198
 DTCIPW2520I File TCPIP DATA created on TCPIP 592
 DTCIPW2520I File SYSTEM DTCPARMS created on TCPIP 198
 HCPINP8392I IPWIZARD EXEC ENDED SUCCESSFULLY
 DMSVML2061I TCPIP 592 released

7. At this point your z/VM TCP/IP stack should be up. You should now be able to ping it from another system.

 If the IPWIZARD exec fails you must continue debugging it until it succeeds.
 Double-check all values. Verify that the TCP/IP network and OSA information you were given are properly associated.

HMC Integrated 3270 Console or 3270 emulator? At this point z/VM should be accessible over the network. You can continue working at the HMC, or you can access your new system using a 3270 emulator. See 3.3, “3270 emulators” on page 25 for some brief words on that subject.

If you want to switch to the 3270 emulator, first LOGOFF of MAINT or DISConnect on the Integrated 3270 Console.

If you log off, the session is ended—it is analogous to shutting and powering down a PC. If you disconnect, your session remains where it is and is resumed when you log back on. It is analogous to turning a PC’s monitor off. In general, you should LOGOFF of system administration user IDs such as MAINT. However, you should always DISConnect from z/VM service machines such as TCPIP and user IDs running Linux. Logging off of these will terminate the service or crash Linux.

4.3 Configuring the XEDIT profile

Log on to MAINT if you are not already logged on.

The XEDIT command looks for the XEDIT PROFILE configuration file when it is invoked. Many z/VM user IDs do not have such a personal or shared system file, so all XEDIT default values are in effect. The MAINT 191 (A) disk has a PROFILE XEDIT so when you are editing files on MAINT, the values in this profile are usually in effect.

If you have never used XEDIT before, there is a cheat sheet in “Cheat sheets” on page 258. The z/VM V6.1 PDF library is on the web at:

http://www-03.ibm.com/systems/z/os/zos/bkserv/zvmpdf/#zvm61
Search for the *XEDIT User’s Guide and Command Reference*. Also, there is an old manual available at:

http://ukcc.uky.edu/ukccinfo/391/xeditref.html

One default setting that can be dangerous, especially if you use F12 to retrieve commands, is that PF12 is set to the FILE subcommand. Sometimes you may not want to save your changes with the stroke of one key. It is recommended that you set PF12 to the ? subcommand, which has the effect of a retrieve key:

``` ==> copy profile xedit a profile xediorig a (oldd
===> x profile xedit a
```

Before:

SET PF12 FILE

After:

SET PF12 ?

Save your changes with the FILE subcommand.

4.4 Customizing the SYSTEM CONFIG file

The first configuration file read when z/VM performs an IPL is the SYSTEM CONFIG file. The following changes are recommended:

- Change the system name.
- Increase retrieve key capacity.
- Allow virtual disks (VDISKs) to be created.
- Turn off the Disconnect_Timeout (this will prevent idle disconnected users from being forced off the system).
- Define a virtual switch (VSWITCH) that will be used for Linux networking.

To make these changes, perform the following steps:

1. To edit the SYSTEM CONFIG file, the MAINT CF1 minidisk must be released as a CP disk using the CPRELEASE command. The CP disks are queried using the QUERY CPDISK command. Note that the MAINT CF1 disk is accessed as CP disk A before it is released, but not after.

``` ==> q cpdisk
Label    Userid   Vdev Mode Stat Vol-ID Rdev Type   StartLoc     EndLoc
MNTCF1 MAINT    0CF1  A   R/O  610RES 6280 CKD          39        158
MNTCF2 MAINT    0CF2  B   R/O  610RES 6280 CKD         159        278
MNTCF3 MAINT    0CF3  C   R/O  610RES 6280 CKD         279        398
===> cprel a
CPRELEASE request for disk A scheduled.
HCPZAC6730I CPRELEASE request for disk A completed.
===> q cpdisk
Label    Userid   Vdev Mode Stat Vol-ID Rdev Type   StartLoc     EndLoc
MNTCF2 MAINT    0CF2  B   R/O  610RES 6280 CKD         159        278
MNTCF3 MAINT    0CF3  C   R/O  610RES 6280 CKD         279        398
```
2. After it is released, you can access the MAINT CF1 disk read-write. Use the LINK command with the multi-read (MR) parameter and ACCESS command to get read-write access as your F disk.

```plaintext
==> link * cf1 cf1 mr
==> acc cf1 f
```

3. Make a backup copy of the vanilla SYSTEM CONFIG file using the COPYFILE command with the OLDDATE parameter so that the time stamp of the file is not modified. Note that because the target file name (system) and mode (f) are the same, the equal sign (=) can be used as a wildcard.

```plaintext
==> copy system config f = conforig = (oldd
```

4. Edit the original file:

```plaintext
==> x system config f
```

5. The system name is set to ZMV6R10 by default in the System_Identifier_Default statement. You can search for it using the / subcommand:

```plaintext
====> /System_Identifier_Default
```

Modify this to the new name of your system. In this example, **POKSND61** is used.

```plaintext
System_Identifier_Default POKSN61
```

6. Next look for the Features statement. You can search for it again or you can use F8 to page down. The following changes and additions are recommended:

- Increase the number of commands that can be retrieved from 20 to 99.
- Set the Disconnect_Timeout to off so disconnected users do not get forced off.
- Allow unlimited VDISKs to be created by users by changing Userlim to infinite and by adding the Syslim infinite clause:

```plaintext
Features,
    Disable,                       /* Disable the following features */
    Set_Privclass,                 /* Disallow SET PRIVCLASS command */
    Auto_Warm_IPL,                 /* Prompt at IPL always */
    Clear_TDisk,                   /* Don't clear TDisks at IPL time */
    Retrieve,                      /* Retrieve options */
    Default 99,                    /* Default.... default is 20 */
    Maximum 255,                   /* Maximum.... default is 255 */
    MaxUsers noLimit,              /* No limit on number of users */
    Passwords_on_Cmds,             /* What commands allow passwords? */
    Autolog yes,                   /* ... AUTOLOG does */
    Link yes,                      /* ... LINK does */
    Logon yes,                     /* ... and LOGON does, too */
    Disconnect_Timeout off,        /* Don't force disconnected users */
    Vdisk,                         /* Allow VDISKS for Linux swaps */
    Syslim infinite,               /* Allow unlimited VDISKs */
    Userlim infinite
```

7. Define a VSWITCH.

Use the BOTTOM subcommand to go to the bottom of the file. Add some lines (you can use the XEDIT add subcommand a3). Define a VSWITCH and set the MAC address prefix. This sets the first three bytes of the MAC address created for each virtual NIC. If you have multiple z/VM systems, increment this value to avoid having identical MAC addresses created. The last three bytes of the MAC address are automatically incremented by z/VM as they are assigned, so they will be unique on each z/VM system.
Modify the two starting addresses of the OSA triplets (B440 and B424 in this example) to those you specified in 2.7.1, “z/VM resources worksheet” on page 16.

```c
====> bot
====> a3
/* define vswitch named vsw1 and set MAC address prefixes to 02-00-01 */
define vswitch vsw1 rdev B440 B424
vmlan macprefix 020001
```

8. Save your changes with the XEDIT FILE subcommand:

```c
====> file
```

9. Test your changes with the CPSYNTAX command, which is on the MAINT 193 disk:

```c
===> acc 193 g
===> cpsyntax system config f
CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.
```

Pay attention to the output. If you get any syntax errors, fix them before proceeding.

10. Release and detach the MAINT CF1 disk with the RELEASE command. Then put it back online with the CPACCESS command:

```c
===> rel f (det
DASD OCF1 DETACHED
===> cpacc * cf1 a
CPACCESS request for mode A scheduled.
HCMPAC673I CPACCESS request for MAINT's OCF1 in mode A completed.
```

11. Verify that the CP disk A has been accessed using the QUERY CPDISK command:

```c
===> q cpdisk
Label  Userid   Vdev Mode Stat Vol-ID Rdev Type   StartLoc     EndLoc
MNTCF1 MAINT    0CF1  A   R/O  610RES 6280 CKD          39        158
MNTCF2 MAINT    0CF2  B   R/O  610RES 6280 CKD         159        278
MNTCF3 MAINT    0CF3  C   R/O  610RES 6280 CKD         279        398
```

Note that all three CP disks are now accessed.

4.5 Configuring TCP/IP to start at IPL time

Configure the TCPIP service machine to be started when you perform an IPL of z/VM. This is commonly accomplished from AUTOLOG1’s PROFILE EXEC. If the noautolog parameter is not specified when you perform an IPL of z/VM, the AUTOLOG1 virtual machine is started. Because this virtual machine performs an IPL of CMS, the PROFILE EXEC that is found on its A disk is run. This is analogous to the `/etc/profile` file on Linux and the `autoexec.bat` on DOS systems.

Perform the following steps:

1. Log off of MAINT:
   ```c
   ==> log
   ```

2. You should see a new logon panel. Log on to AUTOLOG1. Again the password is the same as the user ID.

3. At the VM READ prompt, enter the command ACCESS (NOPROF so that the PROFILE EXEC is not run.

   ```c
   z/VM Version 6 Release 1.0, Service Level 0901 (64-bit),
built on IBM Virtualization Technology
   ```
4. Copy the PROFILE XEDIT from the MAINT 191 disk so that XEDIT sessions will have a common interface among user IDs.
 a. Use the VMLINK command to both link to the disk read-only and to access it as the highest available file mode. The default read password is read:
      ```
      ==> vmlink maint 191
      ENTER READ PASSWORD:
      ==> read
      DMSVML2060I MAINT 191 linked as 0120 file mode Z
      ```
 b. Copy the PROFILE XEDIT to your A disk:
      ```
      ==> copy profile xedit z = = a
      ```

5. Make a backup copy of the PROFILE EXEC and edit it:
   ```
   ==> copy profile exec a = execorig =
   ==> x profile exec
   ```

6. You should see the text in the top half of the following example. Modify it as follows:
 a. You can safely delete the Address Command line.
 b. Add a line to start the TCPIP user ID using the XAUTOLOG command and keep two statements that start the VSWITCH cloners.
 c. Add a line to log off of AUTOLOG1 when the EXEC is complete. There is no need to keep that virtual machine running because its sole purpose is to run the PROFILE EXEC.

Before:
```
/***************************/
/*  Autolog1 Profile Exec  */
/***************************/

Address Command
'CP XAUTOLOG VMSERV1'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG VMSERVR'
'CP XAUTOLOG DTCVSW1'
'CP XAUTOLOG DTCVSW2'
```

After:
```
/***************************/
/*  Autolog1 Profile Exec  */
/***************************/

'cp xautolog tcpip'   /* start up TCPIP */
'CP XAUTOLOG VMSERV1'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG VMSERVR'
'CP XAUTOLOG DTCVSW1'
'CP XAUTOLOG DTCVSW2'
'cp logoff'           /* logoff when done */
7. Save your changes with the FILE subcommand:
   ===> file
8. Log off of AUTOLOG1:
   ===> log

When you perform an IPL of your z/VM system, the TCP/IP stack should now come up automatically (as long as you do not specify the notautolog parameter at IPL time).

### 4.5.1 Renaming the TCPIP configuration file

We recommend that you change the name of the main TCPIP configuration file from PROFILE TCPIP to `<system_ID> TCPIP`, where `<system_ID>` is the name of your new z/VM system. This is to avoid the possibility that the PROFILE TCPIP file will be overwritten when applying maintenance.

Perform the following steps:

1. Log on to TCPMAINT. The PROFILE TCPIP file is on the TCPMAINT 198 disk, which is accessed as the D disk.
2. Make a backup copy of the original PROFILE TCPIP file, then rename it to `<SYSTEM_ID> TCPIP` (where `<SYSTEM_ID>` is POKSN61 in this example). When the TCPIP service machine starts, it will search for this file before the PROFILE TCPIP file.
   
   ```
 ===> copy profile tcpip d = tcpiorig = (oldd
 ===> rename profile tcpip d poksnd61 = =
   ```
3. You have now backed up and renamed your TCP/IP profile. You can verify this using the LISTFILE command:
   
   ```
 ===> listfile * * d
 POKSN61 TCPIP D1
 PROFILE $TCPBAK D1
 SYSTEM $DTCBAK D1
 SYSTEM DTCPARMS D1
 TCPIORIG PROFILE D1
   ```

### 4.5.2 Copying the PROFILE XEDIT file

Again, copy the PROFILE XEDIT file from the MAINT 191 disk so that XEDIT sessions will have a common interface among user IDs.

Perform the following steps:

1. Use the VMLINK command to both link to the disk read-only and to access it as the highest available file mode. The default read password is read:
   
   ```
 ===> vmlink maint 191
 ENTER READ PASSWORD:
 read
 DMSVML2060I MAINT 191 linked as 0120 file mode Z
   ```
2. Copy the PROFILE XEDIT file to your A disk:
   
   ```
 ===> copy profile xedit z = = a
   ```

Now, XEDIT sessions on TCPMAINT will have the same configuration as on MAINT.
4.5.3 Configuring the FTP server

Turn on the FTP server by editing the renamed configuration file:

1. Edit the file
   
   ```
 => x poksnd61 tcpip d
   ```

   2. Add an `AUTOLOG` statement near the top of the file with `FTPSERVE` as the only entry.

   3. In the `PORT` statement, remove the semicolons to uncomment the lines with `FTPSERVE` on them (ports 20 and 21). These changes will cause the FTP server to start when TCPIP is started. The important lines before the file is edited and after are shown:

   ```
 => x poksnd61 tcpip d
   ```

   Before:

   ```
 ; ---
 OBEY
 OPERATOR TCPMAINT MAINT MPROUTE DHCPD REXECD SNMPD SNMPQE LDAPSRV
 ENDOBEY
 ; ---
 AUTOLOG
 FTPSERVE 0
 ENDAUTOLOG
 PORT
 ; 20 TCP FTPSERVE NOAUTOLOG ; FTP Server
 ; 21 TCP FTPSERVE ; FTP Server
 ; 23 TCP INTCLIE ; TELNET Server
 ; 25 TCP SMTP ; SMTP Server
 ...
   ```

   After:

   ```
 ; ---
 OBEY
 OPERATOR TCPMAINT MAINT MPROUTE ROUTED DHCPD REXECD SNMPD SNMPQE
 ENDOBEY
 ; ---
 AUTOLOG
 FTPSERVE 0
 ENDAUTOLOG
 PORT
 ; 20 TCP FTPSERVE NOAUTOLOG ; FTP Server
 ; 21 TCP FTPSERVE ; FTP Server
 ; 23 TCP INTCLIE ; TELNET Server
 ; 25 TCP SMTP ; SMTP Server
 ...
   ```

4. Save your changes with the `FILE` subcommand:

   ```
 ===> file
   ```

You could continue to configure the system, but at this time it is recommended that you test your changes by shutting down and performing an IPL of the system.

4.5.4 Shutting down and performing an IPL of the system

You may want to be able to shut down and perform an IPL of z/VM without having to access the HMC. Often, the HMC will be logged off and thus the Integrated 3270 console (SYSG) will not be available. Because of these factors it is useful to use the System Console (SYSC - which has a title of Operating System Messages on the HMC) to shut down z/VM and perform an IPL of it without needing to use the console.
This console is always accessible whether you are logged on to the HMC or not. z/VM messages during both the shutdown and IPL process will be written to the system console, but often you will be able to ignore them—you just want your system back in a few minutes over the network.

To shut down and perform an IPL of the system, perform the following steps:

1. Pass the parameter IPLPARMS CONS=SYSC to the SHUTDOWN REIPL command:

   ```bash
 ==> shutdown reipl iplparms cons=sysc
   ```

   You will lose your session, but it should come back in a few minutes as described above.

2. When your system is back, start a 3270 session and log on as MAINT. This shows that there is TCP/IP access to z/VM.

   **Important:** If you cannot start another 3270 session, do not despair, and consider this a good learning experience. You must go back to an Integrated 3270 session from the HMC. Verify that TCPIP is logged on. If it is logged on and you still cannot get to your system, log TCPIP off (or just re-IPL CMS), log back on, press Enter and watch the messages for errors.

3. Query the new VSWITCH:

   ```bash
 ==> q vswitch
 VSWITCH SYSTEM VSW1 Type: VSWITCH Connected: 0 Maxconn: INFINITE
 PERSISTENT RESTRICTED NONROUTER Accounting: OFF
 VLAN Unaware
 MAC address: 02-00-01-00-00-01
 State: Ready
 IPTimeout: 5 QueueStorage: 8
 Isolation Status: OFF
 RDEV: B440.P00 VDEV: B440 Controller: DTCVSW2
 RDEV: B424.P00 VDEV: B424 Controller: DTCVSW1 BACKUP
   ```

   You should see that the VSWITCH VSW1 exists, that the OSA devices you specified are being used and that there are two built-in VSWITCH controllers, DTCVSW1 and DTCVSW2.

4. Use the QUERY RETRIEVE and QUERY VDISK commands to see the changes made to the Features statement in the SYSTEM CONFIG file:

   ```bash
 ==> q retrieve
 99 buffers available. Maximum of 255 buffers may be selected.
 ==> q vdisk userlim
 VDISK USER LIMIT IS INFINITE
 ==> q vdisk syslim
 VDISK SYSTEM LIMIT IS INFINITE, 0 BLK IN USE
   ```

   This shows that the changes to the SYSTEM CONFIG file have taken effect.

### 4.6 Adding paging volumes

The z/VM operating system resides on the first three CP volumes (or one volume if installing onto 3390-9s). z/VM V6.1 is installed with one full paging volume and one full spool volume. A single spool volume is probably adequate for Linux needs; however, a single paging volume is probably not.
It is recommended that you add at least three paging volumes, giving you a total of four (or one more 3390-9). Having adequate paging space will give you plenty of headroom to add more Linux virtual machines. A rule of thumb for the amount of paging space is to have twice as much as the total of all memory for all running Linux user IDs combined.

### 4.6.1 Formatting the paging volumes

Before adding paging volumes to the system, the DASD volumes to be used for minidisk space (PERM) and paging space (PAGE) must be formatted. Normally this is done one volume at a time using the CPFMTXA command. If you have just a few volumes, that is fine, but when you have many volumes to format, the process of running CPFMTXA can become time consuming and tedious, which can lead to errors.

Therefore, a REXX EXEC named CPFORMAT has been provided to allow you to format many volumes with a single command. The source code for “The CPFORMAT EXEC can be downloaded at:


It is a wrapper around CPFMTXA. To use this EXEC, each DASD to be formatted must first be attached with the virtual device address—the same real device address (using ATTACH realDev").

This EXEC will label the volumes according to the convention described in 2.2.1, “Volume labeling convention” on page 9. If you want different volume labels, you can use the CPFMTXA command and manually specify each volume label, or you can modify the REXX EXEC.

### Getting the CPFORMAT EXEC to z/VM

Perform the following steps:

1. Log off of MAINT so you will be able to get the MAINT 191 disk in read-write mode using FTP.

   Important: At this point, you need access to the NFS server described in Chapter 6, “Configuring an NFS/FTP server” on page 97 to get the files CPFORMAT EXEC. If you did not complete that chapter, it is necessary to do so to proceed.

2. Start an SSH (putty) session to the NFS server and change to the vm/ directory, which was created when you extracted the files associated with this book. Verify that the file CPFORMAT.EXEC exists:

   # cd /nfs/virt-cookbook-RH6/vm
   # ls cpformat*  
   cpformat.exec

3. Start an FTP session to z/VM. If you get a reply from the FTP server, it shows that you correctly configured it on the z/VM TCPMAINT user ID. Issue the PUT subcommand to copy the file.

   # ftp 9.60.18.249
   Name (9.12.5.22:root): maint
   331-Password: maint
   230-MAINT logged in; working directory = MAINT 191
   ...
   ftp> put cpformat.exec
ftp> quit

You should now have the CPFORMAT EXEC on the MAINT 191 disk.

Using the CPFORMAT EXEC

To use the CPFORMAT EXEC, perform the following steps:

1. Log back into MAINT. You should now have access to the CPFORMAT EXEC. You can get brief help for CPFORMAT by using the parameter ?:
   ```
 ==> cpformat ?
   ```

   Synopsis:

   Format one or a range of DASD as page, perm, spool or temp disk space
   The label written to each DASD is U<t><xxxx> where:
   <t> is type - P (page), M (perm), S (spool) or T (Temp disk)
   <xxxx> is the 4 digit address

   Syntax is:
   ```
 .PAGE-
 >>--CPFORMAT--.--rdev--------------.--AS---+-PERM-+---------><
 | <---------------< | '-SPOL-'
 '-rdev1-rdev2-------'
   ```

   The following example shows how to attach three 3390-3 volumes and use CPFORMAT to format them as paging space. Refer to the planning work sheets that you filled out in 2.7.2, “z/VM DASD worksheet” on page 17.

   For 3390-9 volumes: If you are installing onto 3390-9s, only one more paging volume may be adequate to start. This will give you two full volumes, or the equivalent of six 3390-3s.

2. The DASD that will be used for paging volumes in this example are at real addresses 6285, 6286, and 6287. Query the DASD devices to see their status:
   ```
 ==> q 6285 6286 6287
 DASD 6285 UM6285 , DASD 6286 UM6286 , DASD 6287 UM6287
   ```

3. Attach the devices to MAINT (the last parameter of * means the current user ID) using the ATTACH command:
   ```
 ==> att 6285-6287 *
 6285-6287 ATTACHED TO MAINT
   ```

4. Use the CPFORMAT command with the AS PAGE parameter:
   ```
 ==> cpformat 6285-6287 as page
   ```

   Format the following DASD:
   ```
 TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
 MAINT 6285 MAINT 6285 3390 FR6285 6285 0 3339
 TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
 MAINT 6286 MAINT 6286 3390 FR6286 6286 0 3339
 TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
 MAINT 6287 MAINT 6287 3390 FR6287 6287 0 3339
   ```

   WARNING - this will destroy data!
ARE YOU SURE you want to format the DASD as PAGE space (y/n)?
y...

DASD status after:
<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>6285</td>
<td>MAINT</td>
<td>6285</td>
<td>3390</td>
<td>UP6285</td>
<td>6285</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6286</td>
<td>MAINT</td>
<td>6286</td>
<td>3390</td>
<td>UP6286</td>
<td>6286</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6287</td>
<td>MAINT</td>
<td>6287</td>
<td>3390</td>
<td>UP6287</td>
<td>6287</td>
<td>0</td>
<td>3339</td>
</tr>
</tbody>
</table>

This formatting job should run for about 10-30 minutes, depending on many factors.

### 4.6.2 Formatting DASD for minidisks

In addition to CP disks such as page space, system disks are needed to create minidisks for the virtual machines. In this section the DASD that will be used for the minidisks of LNXMAINT, RH6CLONE, and RH6GOLD will be formatted.

Perform the followings steps:

1. Query the DASD that will be used for minidisks. In this example, they are **6289, 6290, 6293, 6294** (3390-3s), **63A2**, and **63A9** (3390-9s):

   ```
 ==> q 6289 6290 6293 6294 63A2 63A9
 DASD 6289 FR6289 , DASD 6290 FR6290 , DASD 6293 FR6293 , DASD 6294 FR6294
 DASD 63A2 FR63A2 , DASD 63A9 FR63A9
   ```

2. Attach the six volumes that will be used for the cloner, the common CMS disk and the golden image. Note that in this example the DASD are four 3390-3s and two 3390-9s. If you are using all 3390-3s, you will need eight devices:

   ```
 ==> att 6289 6290 6293 6294 63a2 63a9 *
 6289 6290 6293 6294 63A2 63A9 ATTACHED TO MAINT
   ```

3. Invoke the CPFORMAT command against these volumes using the parameter as perm:

   ```
 ==> cpformat 6289 6290 6293 6294 63a2 63a9 as perm
   ```

Format the following DASD:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>6289</td>
<td>MAINT</td>
<td>6289</td>
<td>3390</td>
<td>FR6289</td>
<td>6289</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6290</td>
<td>MAINT</td>
<td>6290</td>
<td>3390</td>
<td>FR6290</td>
<td>6290</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6293</td>
<td>MAINT</td>
<td>6293</td>
<td>3390</td>
<td>FR6293</td>
<td>6293</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6294</td>
<td>MAINT</td>
<td>6294</td>
<td>3390</td>
<td>FR6294</td>
<td>6294</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>63A2</td>
<td>MAINT</td>
<td>63A2</td>
<td>3390</td>
<td>FR63A2</td>
<td>63A2</td>
<td>0</td>
<td>10017</td>
</tr>
<tr>
<td>MAINT</td>
<td>63A9</td>
<td>MAINT</td>
<td>63A9</td>
<td>3390</td>
<td>FR63A9</td>
<td>63A9</td>
<td>0</td>
<td>10017</td>
</tr>
</tbody>
</table>

WARNING - this will destroy data!

ARE YOU SURE you want to format the DASD as PERM space (y/n)?
y...

DASD successfully formatted: UM6289 UM6290 UM6293 UM6294 UM63A2 UM63A9
6289 6290 6293 6294 63A2 63A9 DETACHED
6289 6290 6293 6294 63A2 63A9 ATTACHED TO MAINT
DASD status after:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>6289</td>
<td>MAINT</td>
<td>6289</td>
<td>3390</td>
<td>UM6289</td>
<td>6289</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6290</td>
<td>MAINT</td>
<td>6290</td>
<td>3390</td>
<td>UM6290</td>
<td>6290</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6293</td>
<td>MAINT</td>
<td>6293</td>
<td>3390</td>
<td>UM6293</td>
<td>6293</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>6294</td>
<td>MAINT</td>
<td>6294</td>
<td>3390</td>
<td>UM6294</td>
<td>6294</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>63A2</td>
<td>MAINT</td>
<td>63A2</td>
<td>3390</td>
<td>UM63A2</td>
<td>63A2</td>
<td>0</td>
<td>10017</td>
</tr>
<tr>
<td>MAINT</td>
<td>63A9</td>
<td>MAINT</td>
<td>63A9</td>
<td>3390</td>
<td>UM63A9</td>
<td>63A9</td>
<td>0</td>
<td>10017</td>
</tr>
</tbody>
</table>

You should now have newly formatted volumes that can be used for minidisks.

### 4.6.3 Updating the SYSTEM CONFIG file

Now that the PAGE and PERM volumes are ready for use, they must be added to the SYSTEM CONFIG file so that z/VM can use them. Follow these steps to update the SYSTEM CONFIG file:

1. Log on to MAINT.
2. The following example uses the same steps to access the MAINT CF1 disk read-write that you used earlier:

```
=> q cpdisk
Label Userid Vdev Mode Stat Vol-ID Rdev Type StartLoc EndLoc
MNTCF1 MAINT 0CF1 A R/O 610RES 61A2 CKD 39 158
MNTCF2 MAINT 0CF2 B R/O 610RES 61A2 CKD 159 278
MNTCF3 MAINT 0CF3 C R/O 610RES 61A2 CKD 279 398
=> cprel a
CPRELEASE request for disk A scheduled.
HCPZAC6730I CPRELEASE request for disk A completed.
=> link * cf1 cf1 mr
=> acc cf1 f
```

It is good to remember this sequence of steps.

3. Make a copy of the working SYSTEM CONFIG file using the “WRKS” (it works!) suffix convention:

```
=> copy system config f = confwrks =
```

4. Edit the SYSTEM CONFIG file and specify each of the new page volumes (PAGE) by name as CP_Owned. When your system performs an IPL, it will pick these up as paging volumes.

```
=> x system config f
====> /cp_owned

CP_Owned Slot 1 610RES
CP_Owned Slot 2 UV6281
CP_Owned Slot 3 UV6282
CP_Owned Slot 4 UV6283
CP_Owned Slot 5 UV6284
CP_Owned Slot 6 UP6285
CP_Owned Slot 7 UP6286
CP_Owned Slot 8 UP6287
CP_Owned Slot 9 RESERVED
```

---

54  z/VM and Linux on IBM System z: The Virtualization Cookbook for Red Hat Enterprise Linux 6.0
5. Move down to the User_Volume_List section. User volumes (PERM) can be specified individually with the User_Volume_List statement, or with wild cards using the User_Volume_Include statement. If you are using the labelling convention enforced by the CPFORMAT EXEC and no other LPAR will be using the same volumes with the same prefix, then add the following single line to include all PERM space as volume labels all beginning with UM6:

```plaintext
====> /user_v
/* ***/
/* User_Volume_List */
/* These statements are not active at the present time. They are */
/* examples, and can be activated by removing the comment delimeters */
/* ***/
User_Volume_Include UM6*
/* User_Volume_List USRP01 */
/* User_Volume_List USRP02 */
...
====> file
```

**Important:** If other z/VM LPARs might be attaching volumes with the UM prefix, you should specifically list each volume to be attached to SYSTEM using the User_Volume_List statement. This will prevent the possibility of multiple z/VM systems writing to the same volume. In this example, the list would be:

```
User_Volume_List UM6289
User_Volume_List UM6290
User_Volume_List UM6293
User_Volume_List UM6294
User_Volume_List UM63A2
```

6. Save your changes with the FILE subcommand. Verify the integrity of the changes with the CPSYNTAX command:

```plaintext
===> acc 193 g
===> cpsyntax system config f
CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.
```

7. When you have confirmed that there are no syntax errors, put the MAINT CF1 disk back online. The following example shows how you did this previously:

```plaintext
===> rel f (det
DASD OCF1 DETACHED
===> cpacc * cf1 a
CPACCESS request for mode A scheduled.
HCPZAC6732I CPACCESS request for MAINT's OCF1 in mode A completed.
===> q cpdisk
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Userid</th>
<th>Vdev</th>
<th>Mode</th>
<th>Stat</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>Type</th>
<th>StartLoc</th>
<th>EndLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNTCF1</td>
<td>MAINT</td>
<td>CF1</td>
<td>A</td>
<td>R/O</td>
<td>610RES 0200</td>
<td>CKD</td>
<td></td>
<td>39</td>
<td>83</td>
</tr>
<tr>
<td>MNTCF2</td>
<td>MAINT</td>
<td>CF2</td>
<td>B</td>
<td>R/O</td>
<td>610RES 0200</td>
<td>CKD</td>
<td></td>
<td>84</td>
<td>128</td>
</tr>
<tr>
<td>MNTCF3</td>
<td>MAINT</td>
<td>CF3</td>
<td>C</td>
<td>R/O</td>
<td>610RES 0200</td>
<td>CKD</td>
<td></td>
<td>129</td>
<td>188</td>
</tr>
</tbody>
</table>
4.6.4 Testing the changes

It is recommended that you again shut down and perform an IPL to test the changes. Before you shut down, note that you have only one page volume (UV6282 in this example) using the QUERY ALLOC PAGE command. Your output should look similar to the following:

```plaintext
===> q alloc page
EXTENT EXTENT TOTAL PAGES HIGH %
 VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
 UV6282 6282 1 3338 600840 1 4 1%
 ------- ------- ----
 SUMMARY 600840 1 1%
 USABLE 600840 1 1%
```

Now shut the system down again with the command SHUTDOWN REIPL IPLPARMS CONS=SYSC. This is analogous to the Linux reboot command in that the system attempts to come back up after it shuts down. If you are connected using a 3270 emulator, you will lose your session, but if all goes well, your system will be available again in a couple of minutes.

```plaintext
===> shutdown reipl iplparms cons=sysc
```

After the system comes back, log on as MAINT and look at the page space again. You should now see that you have six paging volumes:

```plaintext
===> q alloc page
EXTENT EXTENT TOTAL PAGES HIGH %
 VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
 UV6282 6282 1 3338 600840 1 5 1%
 UP6285 6285 0 3338 601020 0 0 0%
 UP6286 6286 0 3338 601020 0 0 0%
 UP6287 6287 0 3338 601020 0 0 0%
 ------- ------- ----
 SUMMARY 2348K 1 1%
 USABLE 2348K 1 1%
```

The output shows that there are four paging volumes constituting 2348 K pages, or about 9 GB of page space (a page is 4 KB).

4.7 Creating a user ID for common files

Now it is time to define your first z/VM user ID, LNXMAINT. It will be used to store files that will be shared by Linux user IDs. Before starting, make a copy of the original USER DIRECT file:

```plaintext
===> copy user direct c = direorig = (oldd
```

4.7.1 Defining the user in the USER DIRECT file

A small 20-cylinder minidisk is allocated at virtual address 191 and a larger 300-cylinder minidisk (approximately 225 MB), to be shared by many guests, is defined at virtual address 192. Use the next free DASD designated as PERM space on your worksheet (2.7.2, “z/VM DASD worksheet” on page 17). Cylinder 0 should always be reserved for the label. Therefore, you should start minidisks at cylinder 1.
Perform the following steps:

1. Edit the USER DIRECT file and add the following user ID definition to the bottom of the file. A comment is added signifying the split between z/VM system user IDs and locally added user IDs (this can be helpful when moving to a new version of z/VM):

```plaintext
===> x user direct c
=====> bottom
=====> a 9
```

```plaintext
*--
* z/VM system user IDs are above, local user IDs are below
*--
USER LNXMAINT LNXMAINT 64M 128M BEG 1
 INCLUDE TCPCMSU 2
 LINK TCPMAINT 592 592 RR 3
 MDISK 0191 3390 0001 0020 UM6289 MR READ WRITE MULTIPLE 4
 MDISK 0192 3390 0021 0300 UM6289 MR ALL WRITE MULTIPLE 5
*
```

```plaintext
=====> file
```

Note the following points for the numbers in black:

1. User ID LNXMAINT, same password, default size of 64 MB, with class B, E, and G privileges.
2. Include the profile named TCPCMSU (defined earlier in the USER DIRECT file).
3. Link to the TCPMAINT 592 disk read-only for access to FTP and other TCP/IP commands.
4. Define a 191 minidisk of size 20 cylinders from volume UM6289.
5. Define a 192 minidisk of size 300 cylinders (approximately 225 MB) from volume UM6289 with the special read password of ALL, which allows read access from any user ID without a disk password.
6. An empty comment line for better readability.

2. Whenever an MDISK statement is added or modified in the USER DIRECT file, always check for overlapping cylinders and gaps (gaps will only leave empty disk space; however, overlaps can occur because z/VM will allow you to shoot yourself in the foot by defining multiple minidisks over the same disk space). This is done with the DISKMAP command:

```plaintext
===> diskmap user
```

The minidisks with the END option specified in this directory will not be included in the following DISKMAP file.

File USER DISKMAP A has been created.

3. The file created, USER DISKMAP, contains a mapping of all minidisk volumes defined in the USER DIRECT file. It will list any overlaps or gaps found on the volumes. Edit the file and turn off the prefix area with the XEDIT PREFIX OFF subcommand to view 80 columns:

```plaintext
===> x user diskmap
=====> prefix off
```

4. Search for the text overlap with the / subcommand:

```plaintext
=====> /overlap
```

You should see the error message DMSXDC546E Target not found. This means that no minidisks are overlapping each other.
Now search for all the gaps using the ALL subcommand. You should see some gaps:

```
====> all /gap
 0 500 501 GAP
------------------------ 6 line(s) not displayed ------------------------
 0 0 1 GAP
------------------------ 216 line(s) not displayed ------------------------
 0 0 1 GAP
------------------------ 86 line(s) not displayed ------------------------
```

Type all with no argument again to get out of this mode:

```
====> all
```

Three gaps should be listed on the right side:

- 501 cylinders on the $$$$$$ volume
- 1 cylinder on the $$$$LNX volume
- 1 cylinder on volume used for LNXMAINT 191 and 192 disks (UM6289 in this example)

You do not have to worry about the first two gaps because they are expected, given the layout of the default USER DIRECT file. To avoid a 1-cylinder gap being reported on each user volume, we recommend to use the user ID $ALLOC$. This user is set to NOLOG, which means it can never be logged onto. Thus it is not a conventional user ID. Rather, it is a convenient place to put dummy minidisk definitions for cylinder 0 of all PERM volumes.

5. Get out of the file USER DISKMAP with the QUIT command or by pressing F3.

6. Edit the USER DIRECT file again and add a new minidisk definition at virtual address A04 for the first cylinder of the DASD you added (the label is UM6289 in this example):

```
===> x user direct
====> /user $alloc
USER $ALLOC$ NOLOG
MDISK A01 3390 000 001 610RES R
MDISK A02 3390 000 001 UV6283 R
MDISK A03 3390 000 001 UV6284 R
MDISK A04 3390 000 001 UM6289 R
```

7. Save your changes with the FILE subcommand and run DISKMAP again. Edit the USER DISKMAP file. This time you should see just two gaps for volumes with labels $$$$$$ and $$$$LNX. If you search for the $ALLOC$ user ID, you should see the disk map of the volume you added for LNXMAINT:

```
===> diskmap user
The minidisks with the END option specified in this directory will not be included in the following DISKMAP file.

File USER DISKMAP A has been created.
```

8. When you are done you can quit by pressing F3.

```
====> F3
```
9. Now that you are sure the minidisk layout is correct, the changes to the USER DIRECT file can be brought online using the DIRECTXA command:

```verbatim
===> directxa user
```

z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
EOJ DIRECTORY UPDATED AND ON LINE
HCPDIR494I User directory occupies 43 disk pages

If the DIRECTXA command fails, correct the problem before proceeding.

You have now defined your first z/VM user ID named LNXMAINT.

## 4.7.2 Logging and customizing the new user ID

Now you should be able to log on to the new user ID and format its two minidisks.

Perform the following steps:

1. Log off of MAINT and log on to LNXMAINT:

```verbatim
LOGON LNXMAINT
```

z/VM Version 6 Release 1.0, Service Level 0901 (64-bit),
built on IBM Virtualization Technology
There is no logmsg data
FILES: NO RDR, NO PRT, NO PUN
LOGON AT 13:14:38 EST FRIDAY 11/20/09
z/VM V6.1.0 2009-11-19 13:47

DMSACP112S A(191) device error

You should see an error message ending in “device error.” When CMS is started, it tries to access the user’s 191 minidisk as file mode A. The 191 minidisk has been defined to this user ID. However, it has never been formatted as a CMS file system.

2. To format this disk for CMS use the FORMAT command. It requires a parameter specifying the file mode to access the disk as mode A in the following example:

```verbatim
===> format 191 a
```

DMSFOR603R FORMAT will erase all files on disk A(191). Do you wish to continue?
Enter 1 (YES) or 0 (NO).
1
DMSFOR605R Enter disk label:
1xm191
DMSFOR733I Formatting disk A
DMSFOR732I 20 cylinders formatted on A(191)

3. Format the larger 192 disk as the D minidisk, which should take a minute or two:

```verbatim
===> format 192 d
```

DMSFOR603R FORMAT will erase all files on disk D(192). Do you wish to continue?
Enter 1 (YES) or 0 (NO).
1
DMSFOR605R Enter disk label:
1xm192
DMSFOR733I Formatting disk D
DMSFOR732I 300 cylinders formatted on D(192)
4. You have now formatted the two minidisks and accessed them as file modes A and D. You can confirm this with the QUERY DISK command:

```plaintext
===> q disk
LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
LNX191 191 A R/W 20 3390 4096 0 7-00 3593 3600
LXM192 192 D R/W 300 3390 4096 0 11-00 53989 54000
MNT190 190 S R/O 100 3390 4096 694 15028-83 2972 18000
MNT19E 19E Y/S R/O 250 3390 4096 1021 28254-63 16746 45000
```

4.7.3 Copying a PROFILE XEDIT

Copy the PROFILE XEDIT file from the MAINT 191 disk so that XEDIT sessions will have a common interface among user IDs.

Perform the following steps:

1. Use the VMLINK command to both link to the disk read-only and to access it as the highest available file mode. The default read password is `read`:

```plaintext
===> vmlink maint 191
ENTER READ PASSWORD:
===> read
DMSVML2060I MAINT 191 linked as 0120 file mode Z
```

2. Copy the PROFILE XEDIT file to the A disk:

```plaintext
===> copy profile xedit z = = a
```

3. Also copy the same file to the D disk (which will become the Linux user ID's read-only A disk). Then release and detach the MAINT 191 disk:

```plaintext
===> copy profile xedit z = = d
===> rel z (det
DASD 0120 DETACHED
```

4.7.4 Creating a PROFILE EXEC

Create a simple PROFILE EXEC that will be run each time this user ID is logged on.

Perform the following steps:

1. Create the new file using XEDIT and add the following lines (be sure to type the A file mode so you do not pick up a PROFILE EXEC on another disk). REXX EXECs must always begin with a C language-style comment.

```plaintext
===> x profile exec a
=====> a 5
/* PROFILE EXEC */
'acc 592 e'
'cp set run on'
'cp set pf11 retrieve forward'
'cp set pf12 retrieve'
=====> file
```

This PROFILE EXEC accesses the TCPMAINT 592 disk as file mode E, sets CP run on, and sets the retrieve keys per convention.
2. You could test your changes by logging off and logging back on. However, typing the command PROFILE will do the same:

```bash
==> profile
DMSACP723I E (592) R/O
```

3. By default CMS tries to access the 191 disk as A and the 192 disk as D. Also, you should have the TCPMAINT 592 disk accessed as E. Verify that these three disks are accessed with the QUERY DISK command:

```bash
==> q disk
```

<table>
<thead>
<tr>
<th>LABEL</th>
<th>VDEV M</th>
<th>STAT</th>
<th>CYL</th>
<th>TYPE</th>
<th>BLKSZ</th>
<th>FILES</th>
<th>BLKS USED-(%)</th>
<th>BLKS LEFT</th>
<th>BLK TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXM191</td>
<td>191</td>
<td>R/W</td>
<td>20</td>
<td>3390</td>
<td>4096</td>
<td>2</td>
<td>9-01</td>
<td>3591</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>3390</td>
<td>4096</td>
<td>0</td>
<td>11-00</td>
<td>53989</td>
<td>54000</td>
</tr>
<tr>
<td>TC592</td>
<td>592</td>
<td>R/O</td>
<td>70</td>
<td>3390</td>
<td>4096</td>
<td>903</td>
<td>10183-81</td>
<td>2417</td>
<td>12600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>3390</td>
<td>4096</td>
<td>694</td>
<td>15028-83</td>
<td>2972</td>
<td>18000</td>
</tr>
<tr>
<td>MNT19E</td>
<td>19E</td>
<td>Y/S</td>
<td>250</td>
<td>3390</td>
<td>4096</td>
<td>1021</td>
<td>28254-63</td>
<td>16746</td>
<td>45000</td>
</tr>
</tbody>
</table>

4. Verify that your F11 and F12 keys are set to the RETRIEVE command using the QUERY PFKEYS command:

```bash
==> q pf
...
PF10 UNDEFINED
PF11 RETRIEVE FORWARD
PF12 RETRIEVE BACKWARD
...
```

### 4.7.5 Copying the files associated with this book to LNXMAINT

The z/VM files associated with this book are in the `vm/` subdirectory of the NFS server you set up earlier. These files should be stored on the larger 192 disk, which is accessed as your D disk. Perform the following steps:

1. Log off of LNXMAINT so that the 192 disk is available as a read-write disk.
2. Start an SSH session on the NFS server and change the directory to the VM files associated with this book. The directory name will be:

   ```bash
 # cd /nfs/virt-cookbook-RH6/vm
   ```

3. FTP to z/VM. By default, FTP copies files to your 191 disk, so first change the directory to the LNXMAINT 192 disk. The files are all in ASCII and the default behavior is to convert to ASCII to EBCDIC. Use the `mput *` subcommand to copy the files from the `vm/` directory to LNXMAINT:

   ```bash
 # ftp 9.60.18.249
 Connected to 9.12.5.22.
 Name (9.12.5.22:root): lnxmaint
 331-Password:
 Password: lnxmaint
 230-LNXMAINT logged in; working directory = LNXMAINT 191
 Remote system type is z/VM.
 ftp> cd lnxmaint.192
   ```
4. Log on to LNXMAINT. You should see the following files on your D disk:

```bash
== filel * * d
LNXMAINT FILELIST A0 V 169 Trunc=169 Size=5 Line=1 Col=1 Alt=0

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Filename</th>
<th>Filetype</th>
<th>Fm</th>
<th>Format</th>
<th>Lrecl</th>
<th>Records</th>
<th>Blocks</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPW610</td>
<td>XEDIT</td>
<td>D1 V</td>
<td>72</td>
<td></td>
<td>190</td>
<td>3</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPFORMAT</td>
<td>EXEC</td>
<td>D1 V</td>
<td>79</td>
<td></td>
<td>252</td>
<td>3</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFILE</td>
<td>EXEC</td>
<td>D1 V</td>
<td>63</td>
<td></td>
<td>17</td>
<td>1</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHEL6</td>
<td>EXEC</td>
<td>D1 V</td>
<td>69</td>
<td></td>
<td>10</td>
<td>1</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>CONF-RH6</td>
<td>D1 V</td>
<td>38</td>
<td></td>
<td>11</td>
<td>1</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PARM-RH6</td>
<td>D1 V</td>
<td>80</td>
<td></td>
<td>3</td>
<td>1</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWAPGEN</td>
<td>EXEC</td>
<td>D1 V</td>
<td>72</td>
<td></td>
<td>467</td>
<td>6</td>
<td>11/04/10 13:57:39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFILE</td>
<td>XEDIT</td>
<td>D1 V</td>
<td>45</td>
<td></td>
<td>17</td>
<td>1</td>
<td>11/04/10 13:48:08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

4.8 Customizing system startup and shutdown

When your z/VM system performs an IPL, it is often desirable to have important Linux systems also start. Conversely, when you shut down z/VM, it is desirable to have all Linux systems shut down first.

4.8.1 Configuring the AUTOLOG1 PROFILE EXEC

We recommend that the following tasks be accomplished by using AUTOLOG1’s PROFILE EXEC.

- Configure Linux to shut down gracefully using the SET SIGNAL command.
- Overcommit memory using the SET SRM STORBUF command.
- Grant access to the VSWITCH for each Linux user.
- Start user IDs that should be started using the XAUTOLOG command.
- Limit minidisk cache in main storage and turn it off in expanded storage.

To accomplish this task, perform the following steps:

1. Log off of LNXMAINT and log on to AUTOLOG1. At the VM READ prompt you have usually been pressing Enter, which causes the PROFILE EXEC to be run. If you do not want this EXEC to run, enter the command ACCESS (Noprof):
2. Make a copy of the working PROFILE EXEC:

```bash
=> copy profile exec a = execwrks =
```

3. Edit the file and add the emboldened text. A LOGOFF command is added at the end of the EXEC so that the virtual machine will be logged off when it is complete. This will save a small amount of memory on the system, but does add the requirement that you type **acc** (noprof) at the VM READ prompt when you log on interactively.

```bash
=> x profile exec
/**************************/
/* Autolog1 Profile Exec */
/**************************/
'cp xautolog tcpip' /* start up TCPIP */
'CP XAUTOLOG VMSERVS'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG VMSERVR'
'CP XAUTOLOG DTCVSW1'
'CP XAUTOLOG DTCVSW2'
'cp set pf12 ret' /* set the retrieve key */
'cp set mdc stor 0m 128m' /* Limit minidisk cache in CSTOR */
'cp set mdc xstore 0m 0m' /* Disable minidisk cache in XSTOR */
'cp set srm storbuf 300% 250% 200%' /* Overcommit memory */
'cp set signal shutdown 300' /* Allow guests 5 min to shut down */
'cp logoff' /* logoff when done */
```

4. Save your changes with the FILE subcommand.

**Important:** The **set mdc** and **set srm** lines are z/VM tuning values. It is believed that these are good starts for Linux systems, but will not be optimal for all z/VM systems. For more reading on these values, see the following websites:


You may choose to modify or omit some of these settings. Your system should now be configured to start up and send a signal to shut down Linux user IDs.

### 4.8.2 Testing the changes

To test your changes, you must perform an IPL of z/VM again. Be sure you are in a position to do so!

Perform the following steps:

1. Shut down and perform an IPL of your system:

```bash
=> shutdown reipl iplparms cons=sysc
SYSTEM SHUTDOWN STARTED
```

2. When your system comes back, log on as MAINT.

3. Query the SRM values to see that the new STORBUF settings are in effect and the SIGNAL SHUTDOWN value is set to 300 seconds:

```bash
=> q $rm
IABIAS : INTENSITY=90%; DURATION=2
LDUBUF : Q1=100% Q2=75% Q3=60%
STORBUF: Q1=300% Q2=250% Q3=200%
DSPBUF : Q1=32767 Q2=32767 Q3=32767
```
4.9 Addressing z/VM security issues

This section briefly discusses the following security issues.

- z/VM security products
- High-level z/VM security
- Linux user ID privilege classes
- z/VM user ID and minidisk passwords

4.9.1 VM security products

You might want to use a z/VM security product such as IBM RACF® or CA VM:Secure. They allow you to address more security issues such as password aging and the auditing of users’ access attempts.

4.9.2 High-level z/VM security

The paper z/VM Security and Integrity discusses the isolation and integrity of virtual servers under z/VM. It is on the web at:


4.9.3 Linux user ID privilege classes

Another security issue is the privilege class that Linux user IDs are assigned. Running Linux Guests with less than CP Class G Privilege, REDP-3870 addresses this issue.

4.9.4 z/VM user ID and minidisk passwords

All passwords in a vanilla z/VM system are the same as the user ID. This is a large security hole. The minimum you should do is to address this issue.

There are two types of passwords in the USER DIRECT file:

- **User IDs** The password required to log on with
- **Minidisks** Separate passwords for read access, write access, and multi-write access

Both types of passwords should be modified. This can be done using the CHPW610 XEDIT macro described in the next section.
4.9.5 Changing passwords in USER DIRECT

Changing the passwords can be done manually in XEDIT. However, this is both tedious and error-prone. An XEDIT macro named CHPW610 XEDIT can be used. The source code for this can be found at:


This macro changes all z/VM passwords to the same value, which may still not be adequate security given the different function of the various user IDs. If you want different passwords, you have to modify the USER DIRECT file manually, either with or without using the CHPW52 XEDIT macro.

To modify all user ID and minidisk passwords to the same value, perform the following steps:

1. Log on to MAINT.
2. Link and access the LNXMAINT 192 disk to pick up the CHPW610 XEDIT macro:

   ```
 ==> vmlink lnxmaint 192
 DMSVML2060I LNXMAINT 192 linked as 0120 file mode Z
   ```

3. Make a backup copy of the USER DIRECT file and first be sure the password that you want to use is not a string in the file. For example, if you want to change all passwords to lnx4vm, then perform the following steps:

   ```
 ==> copy user direct c = direwrks = (oldd
 ==> x user direct c
 =====> /lnx4vm
 DMSXDC546E Target not found
 =====> quit
   ```

   The Target not found message shows that the string lnx4vm is not used in the USER DIRECT file, so it is a good candidate for a password.

4. Edit the USER DIRECT file with the parameter (profile chpw610) followed by the new password. Rather than invoking the default profile of PROFILE XEDIT, this command invokes the XEDIT macro named CHPW610 XEDIT and passes it the new password. For example, to change all passwords to lnx4vm, enter the following command:

   ```
 ==> x user direct c (profile chpw610) lnx4vm
   ```

   Changing all passwords to: LNX4VM

   DMSXCG517I 1 occurrence(s) changed on 1 line(s)
   DMSXCG517I 1 occurrence(s) changed on 1 line(s)
   ...

5. When the profile finishes you are left in the XEDIT session with all passwords modified. You may want to first examine the changes. Then save the changes with the FILE subcommand:

   ```
 =====> file
   ```

6. Bring the changes online with the DIRECTXA command:

   ```
 ==> directxa user
   ```

   z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
   EOJ DIRECTORY UPDATED AND ON LINE
   HCPDIR494I User directory occupies 43 disk pages

   Your new directory is online. Do not forget the new password!
Note that this XEDIT macro will only work on a vanilla USER DIRECT file because it searches for the original user IDs next to passwords. If you want to change your password again, it should be much easier because you can use the XEDIT CHANGE subcommand. For example, to change all passwords from lnx4vm to vm4lnx, invoke the following commands:

```plaintext
=> x user direct c
====> c/LNX4VM/VM4LNX/* *
DMSXCG517I 798 occurrence(s) changed on 345 line(s)
```

Congratulations, your z/VM system is now customized and ready for Linux.

### 4.10 Backing up your z/VM system to tape

Your system is now customized with a running TCP/IP stack, a highly available VSWITCH, a startup and shutdown process, and with a user ID for shared files. You have changed the passwords. This would be a good time to back up the system to tape.

There are five system volumes that should be backed up, 610RES, 610SPL, 610PAG, 610W01, and 610W02 (or just the first three if you are using 3390-9s). If you changed the labels of the last four at install time, then use those labels. You have also configured a sixth volume that is important to Linux: that is, the first 320 cylinders of the volume with LNXMAINT on it.

To back up these volumes to tape, refer to Chapter 8, “Load the System Image, Step 11. Store a Backup Copy of the z/VM System on Tape” in *The z/VM Guide for Automated Installation and Service*, GC204-6099.

### 4.11 Relabeling system volumes

In previous books, the z/VM installation was described using “standard labels” on the CP-owned volumes (for example, 610RES, 610SPL, 610PAG, 610W01, and 610W02). In this book, changing the last four labels to include the real device address in the last four characters of each label is recommended (the label of the “res pack”, for example 610RES, cannot be modified at install time). This alleviates the possibility that another vanilla z/VM system with the same labels is installed onto volumes accessible by your z/VM system. If that happens, it is likely that one of the systems will not IPL correctly.
To understand this possibility, refer to Figure 4-16. The z/VM system with the lower device addresses starting at E340 should perform an IPL fine (though you may see a warning at system startup time about duplicate volume labels). However, if the z/VM system starting at device address F000 performs an IPL, the 540RES volume will be used, but the remaining volumes in the system are searched for by volume label, not by device address. Because z/VM system 1’s addresses are lower than z/VM system 2’s, system 2 will be using system 1’s volumes. This is not good for either system!

In previous books a REXX EXEC and an XEDIT macro were provided to help in the process of relabeling system volumes. However, if you followed the previous steps, you will have only one standard label, 610RES. The EXEC and macro are no longer provided because they relied on standard labels. However, high-level steps are still included. If you modified all labels except for the first one at install time, it is usually not necessary to perform the steps in this section.

If you do need to relabel the system volumes, perform the following steps:

- “Modifying labels in the SYSTEM CONFIG file” on page 67
- “Modifying labels in the USER DIRECT file” on page 69
- “Changing the labels on the five volumes” on page 69
- “Shutting down your system and restarting it” on page 70

**Important:** This process must be done as documented. Making a mistake in one of the steps can easily result in an unusable system. Check your steps carefully and your system will come back with no problems. Try to do all steps in succession in a short amount of time.

### 4.11.1 Modifying labels in the SYSTEM CONFIG file

An HMC Integrated 3270 Console session will be needed in this section because z/VM will have to be restarted with a FORCE option.

Perform the following steps:

1. Start a 3270 session. It can be a 3270 emulator session for now, or all of the steps can be done from the HMC.

2. Note the first five CP-owned volumes using the QUERY CPOWNED command. In this example they are D850-D854:

   ```
 => q cpowned
 1 610RES D850 Own Online and attached
   ```
3. To modify the labels in the SYSTEM CONFIG file, begin by releasing the A CP-disk and access it read-write. Back up the SYSTEM CONFIG file:

```plaintext
===> cprel a
CPRELEASE request for disk A scheduled.
HCPZAC6730I CPRELEASE request for disk A completed.
===> link * cf1 cf1 mr
===> acc cf1 f
===> copy system config f = confwrks = (oldd rep
```

4. Edit the SYSTEM CONFIG file and modify the five labels (if you installed onto 3390-9s, there are only three labels, no W01 and W02 volumes are required):

```plaintext
===> x system config f
====> c/610RES/MVD850/*
DMSXC5G17I 3 occurrence(s) changed on 3 line(s)
====> top
====> c/610SPL/MVD851/*
DMSXC5G17I 1 occurrence(s) changed on 1 line(s)
====> top
====> c/610PAG/MVD852/*
DMSXC5G17I 1 occurrence(s) changed on 1 line(s)
====> top
====> c/610W01/MVD853/*
DMSXC5G17I 1 occurrence(s) changed on 1 line(s)
====> top
====> c/610W02/MVD854/*
DMSXC5G17I 1 occurrence(s) changed on 1 line(s)
```

5. Search for the string `cp_owned` and you should see the new labels. Be sure they are correct before saving the file with the FILE subcommand:

```plaintext
====> top
====> /cp_owned
/* CP_Owned Volume Statements */
***/
 CP_Owned Slot 1 MVD850
 CP_Owned Slot 2 MVD851
 CP_Owned Slot 3 MVD852
 CP_Owned Slot 4 MVD853
 CP_Owned Slot 5 MVD854
 CP_Owned Slot 6 MPD855
...
====> file
```

6. Verify that there are no syntax errors:

```plaintext
===> acc 193 g
===> cpsyntax system config f
CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.
```
7. Release and detach the F disk, CPACCESS the A disk, and verify with the QUERY CPDISK command:

```plaintext
==> rel f (det
DASD OCF1 DETACHED
==> cpacc * cfl a
CPACCESS request for mode A scheduled.
Ready; T=0.01/0.01 09:19:57
HCPZAC6732I CPACCESS request for MAINT's OCF1 in mode A completed.
==> q cpdisk
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Userid</th>
<th>Vdev</th>
<th>Mode</th>
<th>Stat</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>Type</th>
<th>StartLoc</th>
<th>EndLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNTCF1</td>
<td>MAINT</td>
<td>0CF1</td>
<td>A</td>
<td>R/O</td>
<td>610RES</td>
<td>D850</td>
<td>CKD</td>
<td>39</td>
<td>158</td>
</tr>
<tr>
<td>MNTCF2</td>
<td>MAINT</td>
<td>0CF2</td>
<td>B</td>
<td>R/O</td>
<td>610RES</td>
<td>D850</td>
<td>CKD</td>
<td>159</td>
<td>278</td>
</tr>
<tr>
<td>MNTCF3</td>
<td>MAINT</td>
<td>0CF3</td>
<td>C</td>
<td>R/O</td>
<td>610RES</td>
<td>D850</td>
<td>CKD</td>
<td>279</td>
<td>398</td>
</tr>
</tbody>
</table>

You have now changed the labels of the system volumes in the SYSTEM CONFIG file. It is critical that you proceed as your system is now in a state where it will not IPL cleanly.

### 4.11.2 Modifying labels in the USER DIRECT file

In this section, you will modify the system volume labels in the USER DIRECT file. Modify the labels in the USER DIRECT file. If you installed z/VM onto 3390-9s, you will need only the first three CHANGE subcommands:

```plaintext
==> copy user direct c = direwrks = (oldd rep
==> x user direct c
====> c/610RES/MVD850/*
DMSXCG517I 94 occurrence(s) changed on 94 line(s)
====> top
====> c/610SPL/MVD851/*
DMSXCG517I 78 occurrence(s) changed on 78 line(s)
====> top
====> c/610PAG/MVD852/*
DMSXCG517I 117 occurrence(s) changed on 117 line(s)
====> top
====> c/610W01/MVD853/*
DMSXCG517I 2 occurrence(s) changed on 2 line(s)
====> top
====> c/610W02/MVD854/*
DMSXCG517I 1 occurrence(s) changed on 1 line(s)
```

Traverse the file to view the changes before saving the changes with the FILE subcommand:

```plaintext
====> file
```

You have now changed the labels of the system volumes in the USER DIRECT and SYSTEM CONFIG files. Again, it is critical that you proceed with the remaining steps.

### 4.11.3 Changing the labels on the five volumes

In this section, you will change the labels on the five volumes using the CPFMTXA command. Four of the five system disks are defined as full-pack minidisks to MAINT as virtual devices 122-124 (610RES, 610SPL, 610W01, and 610W02). If you installed z/VM onto 3390-9s, you will not need to use 124 and 125. The fifth volume, 610PAG, is defined as the virtual device $PAGE$ A03. To modify the system volumes’ labels, you will use these virtual addresses.
For reference, here are the entries in the USER DIRECT file:

...  
**USER $PAGE$ NOLOG**  
**MDISK A03 3390 000 END 610PAG R**  
...  
**MDISK 122 3390 000 END 610SPL MR**  
**MDISK 123 3390 000 END 610RES MR**  
**MDISK 124 3390 000 END 610W01 MR**  
**MDISK 125 3390 000 END 610W02 MR**  
...

Perform the following steps:

1. Use the CPFMTXA command to relabel the five system volumes (you will only need the first three if you installed onto 3390-9s). Be sure to watch for a return code of 0 on each command:

   ```
 => cpfmtx a123 mvd850 label
 ...
 => cpfmtx a122 mvd851 label
 ...
 => link $page$ a03 a03 mr
 => cpfmtx a03 mvd852 label
 ...
 => cpfmtx a124 mvd853 label
 ...
 => cpfmtx a125 mvd854 label
 ...
   ```

2. Now that the five volumes have been relabeled (sometimes called clipping the volumes, derived from a contraction of the z/OS term change label program), you can run the DIRECTXA command to update the directory:

   ```
 => directxa user
 z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
 EOJ DIRECTORY UPDATED AND ON LINE
 HCPDIR494I User directory occupies 43 disk pages
 Ready(00005); T=0.01/0.01 15:45:51
   ```

   A return code of 5 is expected because the labels in the USER DIRECT file are different from the spool data in the currently running system.

Finally, you are ready to issue a SHUTDOWN command.

### 4.11.4 Shutting down your system and restarting it

You need an HMC console session for this step, if you are not already running from there. To test the changes you must shut your system down and then restart it. You cannot do a SHUTDOWN REIPL in this situation because you will have to do a FORCE start:

```
=> shutdown
SYSTEM SHUTDOWN STARTED
HCP609I System shutdown may be delayed for up to 210 seconds
```  

Perform the following steps to bring the system back up:

1. Open an HMC session.
2. Select your LPAR.
3. Use the circular arrow racetrack buttons to get to the CPC Recovery (or just Recovery) menu.


5. Double-click the **LOAD** menu item. The Load Address (D850 in this example) and Load Parameter (SYSG) fields should be correct from the previous IPL.

6. Select **Clear**. The Load Address and Load Parameter fields should be correct from the previous IPL. Click **OK**.

7. Click **Yes** on the Load Task Confirmation window.

8. Go back to the Integrated 3270 console. After a few minutes, the Standalone Program Loader panel should appear. Use the Tab key to traverse to the section IPL Parameters and enter the value **cons=sysg**.

9. Press the F10 key to continue the IPL of your z/VM system. This should take 1 - 3 minutes.

10. At the Start prompt you have to specify a FORCE start, again because the spool volume label has changed:

    ```
 ==> force drain
    ```

11. Do not change the time of day clock:

    ```
 ==> no
    ```

12. When the IPL completes, **DISCONNECT** from the OPERATOR user ID:

    ```
 ==> disc
    ```

13. Close the HMC windows.

14. Start a 3270 emulator session, as the TCPIP service machine should be up. Log on as MAINT.

15. Open a 3270 session as MAINT and verify that the volume labels have changed with the **QUERY CPOWNED** command:

    ```
 ==> q cpowned
 Slot Vol-ID Rdev Type Status
 1 MVD850 D850 Own Online and attached
 2 MVD851 D851 Own Online and attached
 3 MVD852 D852 Own Online and attached
 4 MVD853 D853 Own Online and attached
 5 MVD854 D854 Own Online and attached
 6 MPD855 D855 Own Online and attached
    ```

**Important:** In the event that you perform an IPL of a system with duplicate system volumes, it is possible that you may have destroyed your saved segments. You will know this is the case when you cannot run **ipl cms**. Rather, you will have to run **ipl 190**. To rebuild saved segments, try the following commands (**only do this if your saved segments are trashed!**):

```
==> vmfsetup zvm cms
==> sampnss cms
==> ipl 190 clear parm nosprof instseg no
==> acc (noprf
==> acc 5e6 b
==> acc 51d d
==> vmfbld ppf segbld esasegs segblist (all
```
4.12 Restoring your z/VM system from tape

It is good to practice to restore a system. You do not want to be doing your first restore when the pressure is on.

Restoring a z/VM system from tape that has the same set of volume labels as the system that is running is problematic. If there are two z/VM systems on the same LPAR with the same volume labels, both systems cannot be IPLed cleanly. If you have backed up your system in 4.10, “Backing up your z/VM system to tape” on page 66, you can restore this system to five other 3390-3s. Refer to the Appendix E, “Restore the z/VM System Backup Copy from Tape”, in The z/VM Guide for Automated Installation and Service, GC204-6099.
Servicing z/VM

This chapter describes how to apply the two main types of service:

- A Recommended Service Upgrade (RSU), which is analogous to a Service Pack.
- A Programming Temporary Fix (PTF), which is analogous to a bug fix.

The processes to install these types of service are basically the same.

Important: When applying service, there is always a chance that you may want to back it out. It is recommended that you have an up-to-date backup of your system before starting this section.

The application of corrective service to z/VM is covered in two manuals:


These manuals are much more complete than this chapter. You might consider using these first, rather than this chapter, or you should certainly use them as references.

VMSES/E is a component of z/VM that provides the SERVICE and PUT2PROD EXECs. The SERVICE EXEC:

- Installs an RSU or applies CORrective service for z/VM components, features, or products.
- Displays either the RSU level of the component specified or whether a particular PTF or APAR has been applied (when used with STATUS).
- Creates PTF bitmap files (when used with BITMAP).

When SERVICE is successfully completed, the PUT2PROD EXEC places the z/VM components, features, or products that are installed on the z/VM System deliverable, and were serviced, into production. A good website to start at is:

http://www.vm.ibm.com/service/
You may want to consider viewing some of the links from this page.

The following sections comprise this chapter:

- “Applying a Recommended Service Upgrade” on page 74
- “PTFs for the zEnterprise 196” on page 82
- “Determining the z/VM service level” on page 87
- “Applying a PTF” on page 88

### 5.1 Applying a Recommended Service Upgrade

Applying a Recommended Service Upgrade (RSU) is similar to applying a PTF described in the previous section. z/VM service can be preventive (RSU) or corrective (COR). Part 4, “Service Procedure”, in Guide for Automated Installation and Service gives a complete description of applying service to z/VM. You may prefer to use the official z/VM documentation.

Following is an example of upgrading to a z/VM V6.1 RSU with the medium being files downloaded from the Internet.

The section that follows is a summary of applying service and also describes how to obtain service over the Internet using IBM ShopzSeries.
First determine whether your system needs service. Use the QUERY CPELEVEL command:

```bash
q cplevel
```

z/VM Version 6 Release 1.0, service level 0901 (64-bit)
Generated at 09/11/09 16:51:48 EDT
IPL at 08/31/10 08:44:19 EDT

The service level (or RSU) is a 4-digit field composed of two segments, each consisting of two digits. The first two digits represent the last two digits of the year and the second two digits represent the sequential RSU level within that year. Some examples are 0903RSU and 1002RSU. With 0903, the first two digits in the level, 09, represent the last two digits of the year 2009 and the 03 represents the third RSU service level of that year. Therefore, the 0903 is the third RSU issued in 2009. RSU 1002 would be the second RSU issued in 2010.

The overall steps in applying an RSU are as follow:

1. Point a web browser to the z/VM Service page:
   ```url
 http://www.vm.ibm.com/service/
   ```
2. Click IBM ShopzSeries under the IBM Support Portals section.
3. Click the link Sign In for registered users. If you have a user ID and password, use that. If you do not, click the link New user registration and fill out the form to create an ID and password. You must have your IBM customer number.
4. Click the link Create new software orders at the top.
5. The My Orders page should show. Under the Package Category section, click z/VM - Service and also choose RSU recommended service in the drop-down menu. Click Continue.
6. There will be five windows of forms that are hopefully self-explanatory. On window 3 of 5, choose the radio button that is applicable to your version of z/VM. In this example it was z/VM Version 6.1.0 Stacked 6103RSU (PTF UM97610).
7. On window 4 of 5 choose Internet as the delivery mechanism.
8. On window 5 of 5, complete the form and click Submit.
9. In a few minutes, you should get two e-mails, one for the core RSU and one for the PSP bucket (additional fixes that may have come out after the RSU).

### 5.1.1 Getting service from the Internet

An RSU is obtained by its PTF number. The PTF for the most current RSU is of the form UM97xyz, where xyz is the z/VM version-release-modification level. So for z/VM V6.1, the RSU would be UM97610.

With ShopzSeries, knowing the PTF number is not necessary. If you know you want the latest RSU, you can get it directly, based on the version of z/VM you are running.

Perform the following steps (note that these same steps are documented with some window shots in 5.4, “Applying a PTF” on page 88):

1. Point a web browser to the z/VM Service page:
   ```url
 http://www.vm.ibm.com/service/
   ```
2. Click IBM ShopzSeries under the IBM Support Portals section.
3. Click the link Sign In for registered users. If you have a user ID and password, use that. If you do not, click the link New user registration and fill out the form to create an ID and password. You must have your IBM customer number.
4. Click the link Create new software orders at the top.
5. The My Orders page should show. Under the Package Category section, click z/VM - Service and also choose RSU recommended service in the drop-down menu. Click Continue.
6. There will be five windows of forms that are hopefully self-explanatory. On window 3 of 5, choose the radio button that is applicable to your version of z/VM. In this example it was z/VM Version 6.1.0 Stacked 6103RSU (PTF UM97610).
7. On window 4 of 5 choose Internet as the delivery mechanism.
8. On window 5 of 5, complete the form and click Submit.
9. In a few minutes, you should get two e-mails, one for the core RSU and one for the PSP bucket (additional fixes that may have come out after the RSU).
5.1.2 Downloading the service files

In this example, the service files are staged on a desktop machine, then copied to z/VM with FTP.

Perform the following steps:

1. Download the files to your desktop or another staging system. This example has two files: the SHIPTFSS file is for the PSP bucket and the SHIPRSU1 file is for the RSU.

2. FTP the file to the MAINT 500 disk. Here is an example of using FTP from a DOS session:

   C:\Downloads>ftp 9.60.18.249
   User (9.60.18.249:(none)): maintain
   Password:
   ftp> cd maintain.500
   ...
   ftp> bin
   ...
   ftp> quote site fix 1024
   ...
   ftp> put S9338801.shiptfss
   ...
   ftp> put S9338766.shiprsu1
   ...
   ftp> quit

3. Log on to MAINT. Access the MAINT 500 disk as file mode C. Query the disks:

   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ==> q disk
   LABEL  VDEV M  STAT   CYL TYPE BLKSZ FILES  BLKS USED-(%) BLKS LEFT  BLK
   TOTAL
   MNT191 191 A   R/W   175 3390 4096    41   214-01  31286 31500
   MNT5E5 5E5 B   R/W     9 3390 4096   131   1290-80   330 1620
   MNT500 500 C   R/W   600 3390 4096    3   38497-36  69503 108000
   MNT51D 51D D   R/W   26 3390 4096    305   1574-34   3106 4680
   MNT190 190 S   R/O   100 3390 4096   691  14921-83  3079 18000
   MNT19E 19E Y/S R/O   250 3390 4096  1021  28225-63  16775 45000

4. Extract the files:

   ==> deterse s9338801 shiptfss c = servlink =
   ==> deterse s9338766 shiprsu1 c = servlink =

   Usually this step should succeed. However, very large RSUs can fill up the MAINT 500 disk either on the FTP or the DETERSE steps. For example, you may get the error on the DETERSE step:

   DMSERD107S Disk C(500) is full
   No traceback - not enough CTL storage

   If this occurs, an extra step of creating a new disk is necessary.
5.1.3 Creating a new MAINT minidisk

**Important:** Normally, this step is not necessary. Some RSUs can be so large that they will not fit on the MAINT 500 minidisk. This is the case with the stacked RSU 5405 for z/VM V5.4.

If you have adequate space to extract the files on the MAINT 500 disk, you can skip this section. If you received the error DMSERD107S Disk C(500) is full on the previous step, creating a new minidisk for MAINT will be necessary. If so, perform the following steps:

1. Create a new MAINT 501 disk for temporary storage of the uncompressed RSU by using 400 cylinders of space taken from the end of the W02 disk (volser is UV6284 in this example). Verify that the disk layout is good, then bring the changes online with the DIRECTXA command:

   ```
 => acc 2cc c
 DMSACC724I 2CC replaces C (500)
 => x user direct c
 ...
 USER MAINT LNX4VM 128M 1000M ABCDEFG
 AUTOLOG AUTOLOG1 OP1 MAINT
 ACCOUNT 1 SYSPROG
 ...
 * add a new MAINT 501 disk for additional space for service files
 MDISK 501 3390 2371 400 UV6284 MR LNX4VM LNX4VM LNX4VM
 ...
 => diskmap user
 ...
 => x user diskmap
 ... // check the report file for gaps or overlaps
 => directxa
 z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
 EOJ DIRECTORY UPDATED AND ON LINE
 HCPDIR494I User directory occupies 45 disk pages
   ```

2. Log off MAINT and log back on to load the new directory entry. An attempt is made to access the MAINT 500 and 501 disks as file mode C and F, respectively. However, the new 501 disk has never been formatted. Format it and access it as file mode F:

   ```
 => log
 ... // log back on
 => acc 500 c
 DMSACC724I 500 replaces C (2CC)
 => acc 501 f
 DMSACP112S F(501) device error
 => format 501 f
 DMSFOR603R FORMAT will erase all files on disk F(501). Do you wish to continue?
 Enter 1 (YES) or 0 (NO).
 1
 DMSFOR605R Enter disk label:
 mnt501
 DMSFOR733I Formatting disk F
   ```

Now that a new MAINT 501 disk is available, it can be used to stage the RSU file.
3. Move the large RSU file from the MAINT 500 (C) to the 501 (F) disk and query the disks:

```bash
===> copy S8873950 shiprsu1 c = = f
===> erase S8873950 shiprsu1 c
===> q disk
```

<table>
<thead>
<tr>
<th>LABEL</th>
<th>VDEV</th>
<th>M</th>
<th>STAT</th>
<th>CYL</th>
<th>TYPE</th>
<th>BLKSZ</th>
<th>FILES</th>
<th>BLKS</th>
<th>USED-(%)</th>
<th>BLKS LEFT</th>
<th>BLK TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNT191</td>
<td>191</td>
<td>A</td>
<td>R/W</td>
<td>175</td>
<td>3390</td>
<td>4096</td>
<td>41</td>
<td>214-01</td>
<td>31286</td>
<td>31500</td>
<td></td>
</tr>
<tr>
<td>MNT5E5</td>
<td>5E5</td>
<td>B</td>
<td>R/W</td>
<td>9</td>
<td>3390</td>
<td>4096</td>
<td>131</td>
<td>1290-80</td>
<td>330</td>
<td>1620</td>
<td></td>
</tr>
<tr>
<td>MNT500</td>
<td>500</td>
<td>C</td>
<td>R/W</td>
<td>600</td>
<td>3390</td>
<td>4096</td>
<td>2</td>
<td>13054-12</td>
<td>94946</td>
<td>108000</td>
<td></td>
</tr>
<tr>
<td>MNT51D</td>
<td>51D</td>
<td>D</td>
<td>R/W</td>
<td>26</td>
<td>3390</td>
<td>4096</td>
<td>305</td>
<td>1574-34</td>
<td>3106</td>
<td>4680</td>
<td></td>
</tr>
<tr>
<td>MNT501</td>
<td>501</td>
<td>F</td>
<td>R/W</td>
<td>400</td>
<td>3390</td>
<td>4096</td>
<td>1</td>
<td>45207-63</td>
<td>26793</td>
<td>72000</td>
<td></td>
</tr>
</tbody>
</table>

4. Extract the RSU from the 501 disk (F) back to the 500 disk (C) and again query the disks:

```bash
===> deterse S8873950 shiprsu1 f = servlink c
===> q disk
```

<table>
<thead>
<tr>
<th>LABEL</th>
<th>VDEV</th>
<th>M</th>
<th>STAT</th>
<th>CYL</th>
<th>TYPE</th>
<th>BLKSZ</th>
<th>FILES</th>
<th>BLKS</th>
<th>USED-(%)</th>
<th>BLKS LEFT</th>
<th>BLK TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNT191</td>
<td>191</td>
<td>A</td>
<td>R/W</td>
<td>175</td>
<td>3390</td>
<td>4096</td>
<td>41</td>
<td>214-01</td>
<td>31286</td>
<td>31500</td>
<td></td>
</tr>
<tr>
<td>MNT5E5</td>
<td>5E5</td>
<td>B</td>
<td>R/W</td>
<td>9</td>
<td>3390</td>
<td>4096</td>
<td>131</td>
<td>1290-80</td>
<td>330</td>
<td>1620</td>
<td></td>
</tr>
<tr>
<td>MNT500</td>
<td>500</td>
<td>C</td>
<td>R/W</td>
<td>600</td>
<td>3390</td>
<td>4096</td>
<td>4</td>
<td>98341-91</td>
<td>9659</td>
<td>108000</td>
<td></td>
</tr>
<tr>
<td>MNT51D</td>
<td>51D</td>
<td>D</td>
<td>R/W</td>
<td>26</td>
<td>3390</td>
<td>4096</td>
<td>305</td>
<td>1574-34</td>
<td>3106</td>
<td>4680</td>
<td></td>
</tr>
<tr>
<td>MNT501</td>
<td>501</td>
<td>F</td>
<td>R/W</td>
<td>400</td>
<td>3390</td>
<td>4096</td>
<td>1</td>
<td>45207-63</td>
<td>26793</td>
<td>72000</td>
<td></td>
</tr>
</tbody>
</table>

This shows that the MAINT 500 disk is now 91% full. The detered file on the 501 disk is no longer necessary, but it is left there for reference.

5.1.4 Receiving, applying, and building the service

You must receive, apply, and build the service. Then it can be put into production.

In the past, this was a more lengthy and detailed procedure. For example, to receive, apply and build the CP component, the following steps were needed:

```bash
vmfmrdsk zvm cp apply (setup
vmfsetup zvm cp
vmfpsu zvm cp
vmfins install ppf zvm cp (nomemo env {filename} nolink override no
vmfapply ppf zvm cp (setup
vmfbld ppf zvm cp (status
vmfbld ppf zvm cp (serviced
```
Then the same steps were needed for many other components. The process is much easier now with the SERVICE ALL command. On the other hand, the previous method is more granular and better enables the system administrator to know which pieces of service have been applied.

Perform the following steps:

1. Apply the service with the SERVICE ALL command. The RSU must be applied first (S8873950 SERVLINK in this example). Then any PTFs that came after the RSU can be applied:

```bash
==> service all S9338766
...
VMFSRV2760I SERVICE processing completed successfully for GCS BUILD
VMFSUT27601 VMFSUFTB processing started
VMFSUT2760I VMFSUFTB processing completed successfully
VMFSRV2760I SERVICE processing completed successfully
Ready; T=129.22/138.98 10:14:11
```

A return code of 0 is ideal. If the last Ready line has a number in parenthesis, that is the return code. In general a return code of 4 is acceptable. That means that only warnings were issued. A return code of 8 or greater generally means that errors were encountered. View details with the VMFVIEW command:

```bash
==> vmfview service

You are viewing ¬ST: messages from the LAST run.
No messages meet the search criteria.

**
**** SERVICE USERID: MAINT ****
**
**** Date: 09/16/10 Time: 15:45:29 ****
**
* * * End of File * * *

You may also see warning messages. For example:

```bash
CK:VMFSUI2104I PTF UM32616 contains user information. Review the :UMEMO
CK: section in file UM32616 $PTFPART
CK:VMFSUI2104I PTF UM32616 contains user information. Review the :UMEMO
CK: section in file UM32616 $PTFPART
CK:VMFSUI2104I PTF UA46229 contains user information. Review the :UMEMO
CK: section in file UA46229 $PTFPART
CK:VMFSUI2104I PTF UA46229 contains user information. Review the :UMEMO
CK: section in file UA46229 $PTFPART
CK:VMFSUI2104I PTF UA46229 contains user information. Review the :UMEMO
CK: section in file UA46229 $PTFPART
WN:VMFBDC2250W The following OSA objects have been built on BUILD0 100
WN:            (L) and should be copied to your workstation:
WN:VMFBDC2250W IOAJAVA BIN
```
2. Press F3 to get out of XEDIT.
3. Run `ipl cms` and press Enter at the VM READ prompt.
   ```
   ==> ipl cms
   z/VM V5.4.0 2008-10-22 15:36
   Ready; T=0.01/0.01 10:46:46
   ```
4. Re-access the MAINT 500 disk as C:
   ```
   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ```
5. Apply the PSP bucket (`S9338801` in this example):
   ```
   ==> service all S9338801
   ... 
   VMFSUT2760I VMFSUFTB processing started
   VMFSUT2760I VMFSUFTB processing completed successfully
   VMFSRV2760I SERVICE processing completed with warnings
   Ready(00004); T=29.96/33.46 15:55:40
   ```
 In this example, the service was installed, but there were warnings.
6. Run the VMFVIEW SERVICE command:
   ```
   ==> vmfview service
   ===> VMFVIEW - Message Log Browse of $VMFSRV $MSGLOG A1 <===
   You are viewing ¬ST: messages from the LAST run.
   Number of messages shown = 1 <===> Number of messages not shown = 510
   ************************************************************************
   ****             SERVICE               USERID: MAINT                   ****
   ************************************************************************
   ****            Date: 09/16/10            Time: 15:53:09            ****
   ************************************************************************
   RO:VMFAPP2112W PTF UK59536 has a IFREQ requisite for PTF UM33113 in
   RO: product 6VMCMS10 (CMS component for z/VM 6.1.0)
   * * * End of File * * *
   ```
 This message is letting you know that there is a relationship between the two PTFs
 (UM33113 and UK59536). It is advisable to make sure you have both, or know about the
 requisite and decide it is not important in your environment.
7. Press F3 to get out of XEDIT.
5.1.5 Putting the service into production

This section describes how to use the PUT2PROD command to put the service into production.

Important: The PUT2PROD command will affect your production environment. We recommend that all users be logged off before running it. Placing service into production should be performed as part of a planned system outage because a SHUTDOWN REIPL is recommended after running it.

Perform the following steps:

1. Use the PUT2PROD command to put the service into production. Many windows will scroll by. This command can take quite a number of minutes to complete:

   ```
   => put2prod
   ... VMFP2P2760I PUT2PROD processing completed successfully for SAVECMS
   VMFP2P2760I PUT2PROD processing completed with warnings
   Ready(00004); T=13.93/15.21 16:03:13
   ```

2. The return code was 4 in this example. Review the warning messages with the VMFVIEW PUT2PROD command:

   ```
   => vmfview put2prod
   ===> VMFVIEW - Message Log Browse of $VMFP2P $MSGLOG A1 <===
   You are viewing ¬ST: messages from the LAST run.
   No messages meet the search criteria.
   *****************************************************
   ****              PUT2PROD              USERID: MAINT       ****
   *****************************************************
   ****      Date: 09/16/10          Time: 16:00:26          ****
   *****************************************************
   WN:DTCPRD3043W File PROFILE STCPIP I has been updated; Its content
   WN: should be reviewed for changes that may affect your use of
   WN: this file
   WN:DTCPRD3043W File SCEXIT SAMPASM I has been updated; Its content
   WN: should be reviewed for changes that may affect your use of
   WN: this file
   WN:DTCPRD3021W TCP2PROD processing completed with RC = 4
   ```

 With these warnings you should do as message DTCPRD3043W suggests and compare the files to see whether you need to pick up any of the new changes in your running copy of the sample file.

3. Press F3 to get out of XEDIT.

4. Even though the service has been “put into production”, the QUERY CPLEVEL command should still return the current service level, in this example 0901. This is because the new CP load module (nucleus) has not been loaded:

   ```
   => q cplevel
   z/VM Version 6 Release 1.0, service level 0901 (64-bit)
   Generated at 09/11/09 16:51:48 EDT
   IPL at 09/15/10 15:52:34 EDT
   ```
5. To load the new CP load module, use the SHUTDOWN REIPL command. When your system comes back up, it should be at the new CP service level, in this example 0903:

```bash
===> shutdown reipl iplparms cons=sysc
HCPSHU960I System shutdown may be delayed for up to 330 seconds
Ready; T=0.01/0.01 11:12:32
```

6. After the system comes back up in a few minutes, start a new 3270 session and log on as MAINT.

7. Run the QUERY CPLEVEL command again:

```bash
===> q cplevel
z/VM Version 6 Release 1.0, service level 1002 (64-bit)
Generated at 09/16/10 15:54:07 EDT
IPL at 09/16/10 16:07:01 EDT
```

This shows that the new CP load module is now being used, and that the service level is the second RSU in the year 2010.

5.2 PTFs for the zEnterprise 196

In September of 2010, a new mainframe became available: the zEnterprise 196. See the following website for a list of the PMRs that apply to it:

http://www.vm.ibm.com/service/vmreqze.html

This web page also includes a link to the Preventative Service Planning (PSP) bucket for z/VM on the zEnterprise 196. The PSP bucket should always contain all the latest service information for z/VM on the z196.

Table 5-1 shows a summary of the APARS for z/VM V6.1.

<table>
<thead>
<tr>
<th>APAR</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM64774</td>
<td>CP</td>
<td>Set/Query reorder command</td>
</tr>
<tr>
<td>VM64798</td>
<td>CP</td>
<td>zEnterprise 196 Processor Support</td>
</tr>
<tr>
<td>VM64879</td>
<td>CP</td>
<td>zEnterprise 196 Processor Support</td>
</tr>
<tr>
<td>VM64881</td>
<td>CP</td>
<td>VM Coupling Facility hang at IPL</td>
</tr>
<tr>
<td>VM64793</td>
<td>CP</td>
<td>Secure-Key Bulk Encryption Support</td>
</tr>
<tr>
<td>VM64820</td>
<td>PERFTK</td>
<td>New function in the Performance Toolkit</td>
</tr>
<tr>
<td>VM64814</td>
<td>CP</td>
<td>XRC Time-stamping Support</td>
</tr>
<tr>
<td>VM64807</td>
<td>EREP</td>
<td>EREP support for zEnterprise 196</td>
</tr>
<tr>
<td>VM64672</td>
<td>HCD</td>
<td>HCD support for zEnterprise 196</td>
</tr>
</tbody>
</table>

Important: This list was correct at the time of the writing of this book in late 2010. It could change, so refer to the previous web page to confirm. Also, it is likely that all of the PTFs associated with these APARS will be rolled into the first RSU of 2011. So if you are up to service level 1101 or later, you can verify that the PTFs are applied with the steps shown in 5.2.3, “Verifying that the zEnterprise 196 service is applied” on page 86.
Because support for HCD and HCM was not necessary for the system used in the examples in this book, only the PTFs for the following APARs were ordered from ShopzSeries: VM64774, VM64798, VM64879, VM64881, VM64793, VM64820, VM64814, VM64807, VM64799, VM64818, and VM64891.

5.2.1 Ordering service for the zEnterprise 196 PTFs

This section briefly describes how to order PTFs for the zEnterprise 196.

Perform the following steps:

1. Follow the steps in 5.1.1, “Getting service from the Internet” on page 75, up to the point where you click **z/VM - Service** on the My orders page.

2. Rather than clicking RSU Recommended Service Upgrade in the drop-down menu to the right, accept the default of **Individual PTFs**. Click **Continue**.

3. In Step 1 of 5, select **Individual PTFs by APAR number** as shown in Figure 5-2. Click **Continue**.

![Figure 5-2 Ordering PTFs by APAR number](image)

4. In Step 2 of 5, accept the default of **Do not use a report for this order** and click **Continue**.
5. In Step 3 of 5, enter the APAR numbers as shown in Figure 5-3.

6. In Step 4 of 5, specify your delivery options. In this example, Internet was chosen as the preferred media, and no alternate method was chosen. Click Continue.

7. In Step 5 of 5, review your order and click Submit when it is correct.

8. You can leave that web page up and click Refresh order status from time to time. It should move from Submitted to Received to Final Packaging to becoming a link named Download.

9. Click Download when it becomes available. You should see a window similar to what is shown in Figure 5-4.
10. Download the two documentation envelopes and the two PTF envelopes to your workstation or other staging system.

11. Complete the steps in a similar fashion to those starting at 5.1.2, “Downloading the service files” on page 76. This completes the process of applying the SES PTFs (with file types ending in S).

12. Refer to the following section to apply the non-SES PTF (with file types ending in N).

You may consider performing a SHUTDOWN REIPL command at this point, or wait until after you finish the next section.

5.2.2 Applying the non-SES PTF UV61111

At the time of the writing of this book, PTF UV61111 corresponded to APAR VM64807. This PTF is non-SES, which means it cannot be applied using the typical SERVICE ALL and PUT2PROD commands.

Perform the following steps:

1. After you get the PTF from ShopzSeries, copy it to the MAINT 500 disk in binary fixed 1024 byte record format. In the previous example, four files with a file name of $S9421068$ were uploaded to the MAINT 500 disk. The one with a file type of $SHIPTFSS$ was extracted to a new file type of $SERVLINK$ and applied with SERVICE ALL and PUT2PROD.

2. Access the MAINT 500 disk as C:

   ```
   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ```

3. List the files that you uploaded. In this example, the file name is $S9421068$:

   ```
   ==> file S9421068 * c
   MAINT   FILELIST A0   V 169   Trunc=169   Size=5   Line=1   Col=1   Alt=0
   Cmd   Filename   Filetype   Fm Format   Lrecl   Records   Blocks   Date     Time
   S9421068   SERVLINK   C1   V       4005      18865      14243 11/05/10 13:52:19
   S9421068   SHIPTFSS   C1   F       1024      17686       4422 11/05/10 13:04:43
   S9421068   SHIPTFSN   C1   F       1024      4466       1117 11/05/10 13:04:37
   S9421068   SHIPDOCS   C1   F       1024       83         21 11/05/10 13:04:28
   S9421068   SHIPDOCN   C1   F       1024          6          2 11/05/10 13:04:25
   ```

 The two files in bold are non-SES, identified by a trailing N.

4. Extract the object code file to a file with a type of $NOSESLNK$ and the documentation file to a file with a type of $NOSESDOC$. This can be done directly from FILELIST with the following DETERSE commands:

   ```
   deterse / = noseslnk =
   S9421068   SERVLINK   C1   V       4005      18865      14243 11/05/10 13:52:19
   S9421068   SHIPTFSS   C1   F       1024      17686       4422 11/05/10 13:04:43
   deterse / = nosesdoc =
   S9421068   SHIPDOCS   C1   F       1024       83         21 11/05/10 13:04:28
   S9421068   SHIPDOCN   C1   F       1024          6          2 11/05/10 13:04:25
   ```

5. Press F3 to get out of FILELIST.

6. Perform the following VMFPLCD command:

   ```
   ==> vmfplcd scan env= S9421068 noseslnk c (disk date eod
   ```
7. This should create the file DISK MAP on your A disk. Edit the file and view the lines by running the following commands:

```
=> x disk map
====> pre off
====> ALL /ERPTFLIB
   ERPTFLIB TLB61111 U1    F   80   22266  08/24/10 16:46:32
   ERPTFLIB TLB60820 U1    F   80   21911  09/29/03 20:02:53
   ERPTFLIB TLB60786 U1    F   80   21882  03/26/03 16:57:52
   ERPTFLIB TLB60432 U1    F   80   21791  06/01/99 09:18:46
   ERPTFLIB TLB60345 U1    F   80   19312  12/10/98 11:28:23
```

Note that the most recent file has a date of 2010 and the last five digits of the file type correspond to the last five digits of the PTF.

8. The EREP program directory states that just one file needs be copied. Perform the following VMPLCD commands to do this:

```
=> vmfplcd rst
=> vmfplcd load erptflib tlb61111 a (eod
Loading ... End-Of-Group OR End-Of-Disk
ERPTFLIB TLB61111 A1
```

9. Access the MAINT 201 disk as file mode Z, back up the old EREP TXTLIB and replace it with the new one on the A disk:

```
=> acc 201 z
=> rename erptflib txtlib z erptflib tlbold z
=> copy erptflib tlb61111 a erptflib txtlib z (replace
```

10. A SHUTDOWN REIPL is not necessary. However, if you did not do one in the previous section, one is recommended now. Otherwise, the EREP virtual machine can just be recycled with the FORCE and XAUTOLOG commands:

```
=> force erep
USER DSC LOGOFF AS EREP USERS = 11 FORCED BY MAINT
=> xautolog erep
Command accepted
AUTO LOGON *** EREP USERS = 12
HCPCLS6056I XAUTOLOG information for EREP: The IPL command is verified by the
IP
L command processor.
```

You should now have all the service needed for the zEnterprise 196.

5.2.3 Verifying that the zEnterprise 196 service is applied

A short REXX EXEC is written and run to verify that service for the zEnterprise 196 has been applied:

```
=> type check910 exec
/* EXEC to check for z196 PTFs */
'service cp status VM64774'
'service cp status VM64798'
'service cp status VM64879'
'service cp status VM64881'
'service cp status VM64793'
'service perfTk status VM64820'
```
'service cp status VM64814'
'service cms status VM64799'
'service cp status VM64818'

==> check910
VMFSRV2760I SERVICE processing started
VMFSRV1226I CP (6VMCPR10%CP) APAR VM64774 (PTF UM33169) status:
VMFSRV1226I RECEIVED 11/05/10 13:52:51
VMFSRV1226I APPLIED 11/05/10 13:52:52
VMFSRV1226I BUILT 11/05/10 13:53:57
VMFSRV1226I PUT2PROD 11/05/10 13:55:55
VMFSRV2760I SERVICE processing completed successfully

Verify that all of the APARs are reported as received, applied, built, and put into production.

5.3 Determining the z/VM service level

Often, you will want to be able to query more than just the service level. The following steps were taken from the links CP Maintenance Levels and Virtual Switch TCP/IP Maintenance Levels starting at the website:
http://www.vm.ibm.com/virtualnetwork/

Perform the following steps:

1. Log on to TCPMAINT. Use the QUERY VMLAN command to determine the latest APAR applied:

 ==> cp query vmlan
 VMLAN maintenance level:
 Latest Service: VM64604
 VMLAN MAC address assignment:
 MACADDR Prefix: 020003
 MACIDRANGE SYSTEM: 000001-FFFFFF
 USER: 000000-000000
 VMLAN default accounting status:
 SYSTEM Accounting: OFF USER Accounting: OFF
 VMLAN general activity:
 PERSISTENT Limit: INFINITE Current: 1
 TRANSIENT Limit: INFINITE Current: 0

 This shows that the latest APAR applied is VM64604.

2. The maintenance level of the TCP/IP stack is important to virtual networking. To determine this, first get the active VSWITCH controller:

 ==> q vswitch
 VSWITCH SYSTEM VSW1 Type: VSWITCH Connected: 0 Maxconn: INFINITE
 PERSISTENT RESTRICTED NONROUTER Accounting: OFF
 VLAN Unaware
 MAC address: 02-00-03-00-00-01
 State: Ready
 IPTimeout: 5 QueueStorage: 8
 Isolation Status: OFF
 RDEV: 1004.P00 VDEV: 1004 Controller: DTCVSW1
 RDEV: 1100.P00 VDEV: 1100 Controller: DTCVSW2 BACKUP
This shows the controller is named DTCVSW1.

3. Use the NETSTAT command with the controller name to determine the maintenance of the TCPIP MODULE:

```bash
==> netstat tcp dtcvsw1 level
VM TCP/IP Netstat Level 540       TCP/IP Server Name: DTCVSW1
```

IBM 2084; z/VM Version 5 Release 4.0, service level 0903 (64-bit), VM TCP/IP Level 540; RSU 0903 running TCPIP MODULE E2 dated 12/17/09 at 10:53
TCP/IP Module Load Address: 00C21000

4. This shows information about the TCPIP MODULE. Use the TCPSLVL command and the complete file specification (TCPIP MODULE E in this example) to get more information. Of particular interest is the latest APAR applied to TCTOOSD:

```bash
==> tcpslvl tcpip module e
DTCLVL3306I SLVL data obtained; file TCPIP SLVLDATA A created
==> x TCPIP SLVLDATA
SLVL TCPIP PK67610
...
SLVL TCTOOSD PK98608
...
```

5.4 Applying a PTF

You may determine that you need to apply a specific fix or PTF to your system. For example, an Authorized Program Analysis Report (APAR), VM64670, was opened when Linux guests were hanging intermittently. The summary of the APAR is as follows:

PROBLEM SUMMARY: LINUX USER HUNG BECAUSE SVPBK LOCK HELD

USERS AFFECTED: All users of z/VM running Linux guests.

PROBLEM DESCRIPTION: Linux guests may become hung due to a problem in managing a lock word. This problem is timing-related and may occur intermittently.

PROBLEM CONCLUSION: Lock word processing in HCPWED is updated to properly handle all possible states of the lock.

The APAR was assigned the following Programming Temporary Fix (PTF) numbers for each of the following z/VM releases:

- z/VM V5.3 UM32809
- z/VM V5.4 UM32810
- z/VM V6.1 UM32811

So for z/VM V6.1, you want to apply PTF UM32811. The next section shows how to perform that task.
5.4.1 Getting service using ShopzSeries

Service for z/VM is still available on the media of tape. However, getting service over the Internet is more convenient and becoming more common. Typically this is done with IBM ShopzSeries. Perform the following steps:

1. Click the link **IBM ShopzSeries** under the IBM Support Portals heading on the main Service page, as shown in Figure 5-1 on page 74. This should take you to the following address:

2. From there you can search for an APAR if you have the APAR number. In Figure 5-5, the first three steps to do this are shown:

 a. On the menu bar at the top, click **Support and Downloads**, then choose **Search** in the drop-down menu. This is shown at the top of the figure.

 b. In the Support type menu, choose **System z** and in the Search text area, type the APAR number, VM64670 in this example. This is shown in the middle of the figure.

 c. If the APAR is found, you should see a link as a result. Click that link, **VM64670: LINUX USER HUNG...**, in this example. This is shown at the bottom of the figure.

 ![Figure 5-5 Searching for a PTF on ShopzSeries](image)

 Clicking the link should bring you to the APAR. In this example, you should find the information about APAR VM64670 that was summarized previously. At the top of the page, look for the section “A fix is available.” In this example, there is a fix available.
Farther down the page, note the Fixed component name, which is important. In this example it is VM CP shown near the bottom of Figure 5-6.

Figure 5-6 Web page for APAR VM64670

At the bottom of the page the “Applicable component levels” section shows that PTF UM32811 is available for z/VM V6.1. Before getting that PTF, you may want to be sure that it has not already been applied.

5.4.2 Determining whether a PTF has been applied

Check to make sure that the PTF has not previously been applied. In this example it is known that the PTF is UM32811 and the component is VM CP.

Because the description of the PTF cites a component name of VM CP, the component CP is used in the following command. Use the SERVICE command to query whether the PTF has been applied:

```bash
===> service cp status um32811
VMFSRV2760I SERVICE processing started
VMFSRV1227I UM32811 is not received or applied to CP (6VMCPR10%CP)
VMFSRV2760I SERVICE processing completed successfully
```

This shows that PTF UM32811 has not been applied. The sections that follow describe how to obtain and apply it.
5.4.3 Downloading the service to z/VM

Perform the following steps:

1. From the previous APAR web page search, the link for UM32811 is clicked, which results in a web page that should be similar to the one shown in Figure 5-7.

![Figure 5-7 Getting fixes from ShopzSeries on IBMLink](image)

2. In this example, the link **ShopzSeries - Electronic or physical delivery** is selected. Sign into ShopzSeries with your IBM ID and follow the five self-explanatory steps to order your PTF. When you are finished, click **Submit** to place your order.

3. You should receive an email within a few minutes. It will have your order number and a link to start the download of service files. Following is an example of the important information in the email:

 From: Oms Client01/Boulder/IBM
 Subject: IBM Order <Bxxxxxxx> is ready for download.
 ...
 To access your order directly, go to:
 https://www14.software.ibm.com/webapp/ShopzSeries/ShopzSeries.jsp?action=download&orderId=<Uxxxxxxd>0
4. Point your browser to the link in the email. You should see a web page similar to the one shown in Figure 5-8.

![Web page created for downloading a PTF](image)

Figure 5-8 Web page created for downloading a PTF

5. Choose a method of downloading the VMSES PTF Envelope for your order to your desktop machine. You may also choose to download the VMSES Documentation Envelope.

6. There should be a SES envelope (the PTF or PTFs themselves) and a documentation envelope. Copy both to z/VM in binary with fixed 1024-byte records to the MAINT 500 disk. Usually, FTP is used. The PTF envelope files can be large, so this may take some time. As you are downloading the files, note the file sizes. Following is an example of FTPing from a DOS session:

```
C:\downloads> ftp 9.60.18.249
User (9.60.18.249:(none)): maint
Password:
...
ftp> cd maint.500
...
ftp> bin
...
ftp> quote site fix 1024
...
ftp> mput s8873674.*
mput S8873674.SHIPDOCS? y
...
ftp: 6144 bytes sent in 0.05Seconds 130.72Kbytes/sec.
mput S8873674.SHIPTFSS? y
...
ftp: 4096 bytes sent in 0.01Seconds 273.07Kbytes/sec.
ftp> quit
```

7. Log on to z/VM as MAINT.
8. Access the MAINT 500 disk as C:
   ```
   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ```

9. The envelope files arrive in a compressed format to speed downloads. In order to use
them they must first be renamed to have a file type of SERVLINK and uncompressed with
the DETERSE command. Therefore, we recommend to leave the file name of the SES
envelope unchanged, but to change the prefix letter of the documentation envelope to D.
First rename them, then use the DETERSE command with the (REPLACE parameter to
uncompress them in place and save disk space:
   ```
   ==> rename s8873674 shipftss c = servlink =
   ==> rename s8873674 shipdocs c d8873674 servlink =
   ==> deterse s8873674 servlink c = = = (replace
   ==> deterse d8873674 servlink c = = = (replace
   ```

Be sure all commands complete successfully.

5.4.4 Receiving, applying, and building service

You must receive, apply, and build the PTF. Then it can be put into production. This can be
done in a process that is much easier now with the SERVICE command.

To prepare to use the SERVICE command, you must have a minidisk with a lot of free space
(that is what the MAINT 500 minidisk is for).

Perform the following steps:

1. Access the MAINT 500 disk as file mode C:
   ```
   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ```

2. Use the SERVICE ALL command specifying the envelope files you downloaded. Many,
many windows of output will scroll by and will automatically be cleared. Important
messages will be saved to the 500 disk. This process may take many minutes. Following
is an example:
   ```
   ==> service all d8873674
   ...
   VMFSUT2760I VMFSUFTB processing completed successfully
   VMFSRV2760I SERVICE processing completed successfully
   ==> service all s8873674
   ...
   VMFSUT2760I VMFSUFTB processing completed successfully
   VMFSRV2760I SERVICE processing completed successfully
   ```

If you see no number in parenthesis after the Ready; prompt, then the return code is 0.
Any non-zero return code will be in parenthesis. A return code of 0 is ideal. In general a
return code of 4 is acceptable. It means that only warnings were issued. A return code of 8
or greater generally means that errors were encountered.

3. The output files are of the form $VMF* $MSGLOG. You may want to inspect these files:
   ```
   ==> filel $vmf* $msglog
   $VMFSRV $MSGLOG A1 V 80 728 14 12/15/09 13:43:34
   $VMFBLD $MSGLOG A1 V 80 787 11 12/15/09 13:41:47
   $VMFAPP $MSGLOG A1 V 80 252 4 12/15/09 13:41:37
   $VMFREC $MSGLOG A1 V 80 56 1 12/15/09 13:41:36
   $VMFMRD $MSGLOG A1 V 80 231 4 12/15/09 13:41:35
   ```
4. Invoke the VMFVIEW SERVICE command to review the results of the previous SERVICE command. Press the F3 key to quit. Here is an example:

```plaintext
==> vmfview service

***             SERVICE               USERID: MAINT                ****
***            Date: 12/15/09            Time: 13:43:34            ****

===> F3
```

Ideally there will be no output. If there are errors, they must be addressed. If there are warnings, they may be acceptable but should be investigated.

5.4.5 Putting the service into production

To put the service into production, perform the following steps:

1. Use the PUT2PROD command to put the service into production:

```plaintext
==> put2prod

VMFP2P2760I PUT2PROD processing completed successfully
```

Again, watch for a return code of 0.

2. Your PTF should now be put into production. You may or may not have to perform an IPL of the system, depending on the nature of the PTF applied. If you are in a position to perform an IPL of your system, it may be safest to perform the IPL using the SHUTDOWN REIPL command to completely test the changes:

```plaintext
==> shutdown reipl iplparms cons=sysc

SYSTEM SHUTDOWN STARTED
```

3. Your z/VM system should come back in a few minutes. When the system comes back, start a 3270 session to MAINT and again query the status of the PTF:

```plaintext
==> service cp status um32811

VMFSRV2760I SERVICE processing started
VMFSRV12261 CP (6VMCPR10%CP) PTF UM32811 status:
VMFSRV12261 RECEIVED 12/15/09 13:41:36
VMFSRV12261 APPLIED 12/15/09 13:41:37
VMFSRV12261 BUILT 12/15/09 13:42:14
VMFSRV12261 PUT2PROD 12/15/09 13:47:59
VMFSRV2760I SERVICE processing completed successfully
```

This shows that the PTF has been successfully applied.
5.4.6 Checking for APARMEMO files

After you have applied the PTFs, you should check for files with a file type of APARMEMO on the MAINT 500 disk. These files may have additional instructions on work to do after the PTFs have been applied. Perform the following steps:

1. Access the MAINT 500 disk as C and list the files with file type APARMEMO:
   ```
   ==> acc 500 c
   ==> listfile * aparmemo c
   6VMCMS10 APARMEMO C1
   
   In this example, there is one APARMEMO file.
   ```

2. Look at the contents of the file:
   ```
   ==> type 6vmcms10 aparmemo c
   
   APAR MEMOS 01/26/10.12:50:20
   ================================
   
   THE FOLLOWING MEMOS WERE INCLUDED WITH THE PTFS SHIPPED:
   
   NONE.
   
   In this example, the APARMEMO file was created, but no additional memorandums are present.

You will not see any new information in the APARMEMO file if you have not run SERVICE against the documentation SERVLINK file. This is because the <prodid> MEMO file is in the documentation SERVLINK file.
Chapter 6. Configuring an NFS/FTP server

A common method of installing Linux on z/VM on a server is over the network from another server using the Network File System (NFS). To accomplish this task, you should use a PC system that has Linux installed on it. This server supplies both the RHEL 6 distribution and the files associated with this book. The server must have at least 4 GB of free disk space. It can be a Linux PC, but it can also be a UNIX box (Sun Solaris, Hewlett Packard HP-UX, IBM AIX®, or other). You can also choose to use a Windows workstation with FTP or HTTP, if you absolutely must. Often, more problems are encountered when using a Windows workstation than a Linux or UNIX workstation to serve the RHEL 6 install tree, so this choice is not recommended.

The steps in this chapter explain how to configure a PC Linux box as the NFS server. The Red Hat Installation Guide for the IBM S/390 and IBM System z Architectures manual provides additional information about the installation options, and can be found at the following address:

http://www.redhat.com/docs/manuals/enterprise/

In addition to being an NFS server for Linux installation, this system can also be used as an FTP server for z/VM installation. If this is the case, the steps in 6.5, “Configuring an FTP server for z/VM installation” on page 102 must be completed before completing the steps in Chapter 4, “Installing and configuring z/VM” on page 27.

The following tasks will set up a Linux server:

- “Installing Linux on the PC” on page 98
- “Downloading the files associated with this book” on page 98
- “Setting up a RHEL 6 installation tree” on page 98
- “Enabling the NFS server” on page 100
- “Configuring an FTP server for z/VM installation” on page 102
6.1 Installing Linux on the PC

If you do not have a Linux PC, then you must get access to a PC in the network and install Linux onto it. Describing that installation is outside the scope of this book. However, installing the same distribution onto a PC server on which you plan to install IBM System z is recommended. Doing so will give you practice with the installation process and will give you a reference system that may be helpful in understanding the differences between the Intel® (i386, i686) and System z (s390x) architectures. In this chapter, a PC running RHEL 6 is used.

6.2 Downloading the files associated with this book

This book has files associated with it that make the task of customizing and cloning your virtual servers easier. The TAR file can be found at the following address:


Perform the following steps:

1. The `virt-cookbook-RH6.tgz` TAR file is only about 24 KB. Download the file and extract it. The following example shows the extracted files being placed into the newly created `/nfs/` directory:

   ```
 # mkdir /nfs
 # cd /nfs
 ... download or copy the file SG247932.tgz to /nfs/ ...
 # tar xzf SG247932.tgz
   ```

2. List the files in the new `virt-cookbook-RH6/` directory:

   ```
 # cd virt-cookbook-RH6
 # ls
 README.txt clone-1.0-10.s390x.rpm disclaimer.txt vm/
   ```

   The `README.txt` file briefly describes each of the files and the one directory. You may want to briefly view that file.

   You now have downloaded and uncompressed the files associated with this book.

6.3 Setting up a RHEL 6 installation tree

You must have a valid Red Hat entitlement for Linux on IBM System z to access the Red Hat Enterprise Linux 6 ISO images. If you do not have one, you can request a no cost 180-day evaluation copy at the following address:

http://www.redhat.com/z

Click the Free Evaluation link on the left and complete the online form. If you do not have a Red Hat login ID, you will need to create one by clicking the Register and Continue button. Otherwise, enter your Red Hat login and password, then click Log In to continue. After completing the form, you will automatically receive an email with instructions about how to access the Red Hat Network (RHN), where you can download the installation discs, at the following address:

https://rhn.redhat.com
You can also click the Contact Sales link at the left of the page or call 1-888-733-4281.

6.3.1 Copying from physical CDs or a DVD

RHEL 6 is distributed on physical CDs or files that are ISO images of CDs. RHEL 6 is also distributed on a single physical DVD disc as a single ISO image. It is easier to work with a single DVD ISO image than to work with multiple CD ISO images, so this approach is recommended.

In the event that you have a physical DVD, but not an ISO image, you should create an ISO image. You could skip creating the ISO image and copy the data directly from the DVD to the installation tree, but creating the ISO image is recommended so you have a reference file.

Be sure your PC has a DVD drive, not just a CD drive (if you have a PC that only has a CD drive, you can create ISO images of the CDs, but this task is not described in this book). Put the DVD in the tray and use the dd command to create the ISO image. The device file named /dev/cdrom is often associated with the CD/DVD drive, but your device file name may be different. If so, you must determine the correct name.

*Run these commands only* if you are starting with a physical DVD disc:

```
cd /nfs
dd if=/dev/cdrom of=rhel-6-server-s390x-dvd.iso
umount /mnt/cdrom
```

You should now have an ISO image of the DVD.

6.3.2 Verifying the ISO image

An important early step is to verify the integrity of DVD ISO image. This is done by comparing the checksum value that was calculated when the DVD was created against a checksum value calculated against your ISO image. If the two checksum values differ, then there was an error somewhere in the copying process.

The **md5sum** command allows you to compare checksum files. The checksum value for RHEL 6 for the s390x architecture is as follows:

```
cat MD5SUM
9d7aac4bb79db67b1add308be7019760
```

Run the **md5sum** command against the **MD5SUM** file:

```
md5sum -c MD5SUM
rhel-server-6.0-s390x-dvd.iso: OK
```

**Important:** Your **MD5SUM** file may have checksum values for the DVD and the CD ISO images. If this is true and you only have one DVD ISO image, **md5sum** will generate errors similar to the following form:

```
md5sum: rhel-server-6.0-s390x-dvd.iso: No such file or directory
rhel-server-6.0-s390x-dvd.iso: FAILED open or read
```

This is not a problem as long as the DVD ISO image is reported as **OK**.

If the ISO image does not report **OK**, it must be downloaded or copied again until it does.
6.3.3 Copying the DVD contents

Copy the contents of the ISO image to the file system. Temporarily mount it on a new tmp/ directory using a loopback device:

```
cd /nfs
mkdir tmp
mount -o loop rhel-server-6.0-s390x-dvd.iso tmp
```

List the contents of the mounted ISO image:

```
ls tmp
EULA README-pa.html RELEASE-NOTES-ml.html
eula.en_US README-pt_BR.html RELEASE-NOTES-mr.html
generic.ins README-ru.html RELEASE-NOTES-or.html
...```

Make a new directory, /nfs/rhel6/, and recursively copy the contents of the DVD to it with the cp -a command. This will take a number of minutes to complete. Then unmount tmp/:

```
# cp -a tmp/* rhel6/
# umount tmp
```

Important: With RHEL 5, building a new repository for yum was necessary. With RHEL 6, this step should not be necessary, as the repository on the ISO image is correct. However, this short section from the previous book is left here for reference, should you need to build a repository.

For the `yum` command to work, a common metadata repository must be built with the `createrepo` command. There is a sample repository in the Server/repodata/ directory. The group XML file named `comps-rhel5-server-core.xml` should be used to create group information:

```
# cd /nfs/rhel5/Server/
# mv repodata/ repodata.orig
# createrepo -g repodata.orig/comps-rhel5-server-core.xml .
2495/2495 - junit-javadoc-3.8.2-3jpp.1.s390x.rpm
Saving Primary metadata
Saving file lists metadata
Saving other metadata
```

The newly created repodata/ directory contains the correct common metadata.

6.4 Enabling the NFS server

The method of enabling an NFS server will differ depending upon the operating system. However, the steps are basically the same:

- Export the appropriate directories.
- Start the NFS server in the current run level.
The directories to export with NFS are in the /etc/exports configuration file. Export the /nfs/rhel6/ directory to make the installation tree available and /nfs/virt-cookbook-RH6/ to make the files associated with this book available. First, make a backup copy of the file. Then edit the original copy and add the two directories as follows:

```
# cd /etc
# cp exports exports.orig
# vi exports // add two lines
/nfs/rhel6 *(ro,sync)
/nfs/virt-cookbook-RH6 *(ro,sync)
```

The *(ro,sync) parameter specifies that any client with access to this server can get the NFS mount in read-only mode. You may want to be more restrictive than allowing any client (with the ".") for security reasons. Type `man exports` for more details.

Set the NFS server to start with the `chkconfig` command and start it on the current session with the `service nfs start` command:

```
# chkconfig nfs on
# chkconfig --list nfs
nfs             0:off   1:off   2:on    3:on    4:on    5:on    6:off
# service nfs start
Starting NFS services: [ OK ]
Starting NFS quotas: [ OK ]
Starting NFS daemon: [ OK ]
Starting NFS mountd: [ OK ]
```

Your NFS server should now be running with the directory exported. You should test this configuration by mounting the exported directory locally. The following example shows that the /mnt/ directory is empty. Then the newly exported /nfs/ directory is mounted and the files are listed.

```
# mkdir /mnt/tmp
# mount localhost:/nfs/rhel6/ /mnt/tmp
# ls -F /mnt/tmp
EULA            README-or.html         RELEASE-NOTES-ja.html
eula.en_US      README-pa.html         RELEASE-NOTES-ko.html
generic.ins     README-pt_BR.html      RELEASE-NOTES-ml.html
GPL             README-ru.html         RELEASE-NOTES-mr.html
images/         README-si.html         RELEASE-NOTES-or.html
...
```

The output shows that the RHEL 6 installation tree is accessible through NFS. Now unmount it and test the `virt-cookbook-RH6/` directory:

```
# umount /mnt/tmp
# mount localhost:/nfs/virt-cookbook-RH6 /mnt/tmp
# ls -F /mnt/tmp
clone-1.0-9.s390x.rpm  README.txt  vm/
# umount /mnt/tmp
```

You should now be able to use this server as the source of a RHEL 6 mainframe Linux installation. Later, you will be able to copy the installation tree to a System z Linux virtual server.
6.5 Configuring an FTP server for z/VM installation

This section assumes that you have access to the z/VM V6.1 installation code in electronic format. Ordering it through ShopZSeries is briefly described in 4.1.1, “Obtaining z/VM through electronic download” on page 28. If you have completed that section, you may have the two z/VM product install files staged on an intermediate workstation, or you may be ready to download them from the Internet.

6.5.1 Preparing the z/VM product installation files

The two compressed files correspond to the first (larger) z/VM product DVD and to the second (smaller) second DVD (the RSU). The contents of these files must be copied to the directory on the FTP server. To accomplish this task, perform the following steps:

1. Create a target directory. In this example, the /ftp/zvm61/ directory is used:

 # mkdir -p /ftp/zvm61

2. Set the group ownership of this directory, recursively, to ftp. This will allow the FTP daemon, which runs as the user ftp, to change to that directory:

 # chgrp -R ftp /nfs/zvm61

3. Either upload the two z/VM installation compressed files from the intermediate workstation, or download them directly from the Internet. The following example shows copying them from an intermediate workstation using a Windows DOS session to the FTP server at IP address 9.60.18.233 into the /ftp/zvm61/ directory. We use the `pscp` command (Putty scp):

 C:>pscp *.zip root@9.60.18.233:/ftp/zvm61

 ...

 cd813250.zip | 1247495 kB | 303.2 kB/s | ETA: 00:00:00 | 100%
 CD813270.ZIP | 44031 kB | 352.3 kB/s | ETA: 00:00:00 | 100%

4. List the newly copied files:

 # cd /ftp/zvm61
 # ls -l

 total 1291532
 -rw-r--r--. 1 root root 1277435798 Nov 11 14:08 cd813250.zip
 -rw-r--r--. 1 root root 45088210 Nov 11 14:06 CD813270.ZIP

5. Extract the files from DVD1, the larger file, using the `unzip` command. This action creates the cpdvd/ directory:

 # unzip cd813250.zip

 Archive: cd813250.zip
 creating: cpdvd/
 inflating: cpdvd/610GANUC
 inflating: cpdvd/610GARAM
 ...

6. Extract the files from the RSU DVD2. When prompted to replace files, respond with A for all:

 # unzip CD813270.ZIP

 Archive: CD813270.ZIP
 inflating: cpdvd/610rsu.dvdimage
 inflating: cpdvd/61ckdrsu.srl
 inflating: cpdvd/61fbarsu.srl
You should now have all the z/VM product installation files in place under the /ftp/zvm61/cpdvd/ directory.

6.5.2 Installing and configuring the FTP server

An FTP server must be installed and configured. The vsftpd FTP server is recommended. This section shows how to configure it as an anonymous FTP server. To accomplish these tasks, perform the following steps:

1. Use the `rpm -qa` command to see if the RPM is installed:
   ```bash
   # rpm -qa | grep ftpd
   ```
2. The output shows that it is not installed. Use the `yum -y` command to install the package:
   ```bash
   # yum -y install vsftpd
   Loaded plugins: rhnplugin
   This system is not registered with RHN.
   ...
   Installed:
   vsftpd.s390x 0:2.2.2-6.el6
   ```
3. Make a backup of the `/etc/vsftpd/vsftpd.conf` vsftpd configuration file:
   ```bash
   # cd /etc/vsftpd
   # cp vsftpd.conf vsftpd.conf.orig
   ```
4. Modify the configuration file to set the directory so that an anonymous user will be logged in to `/ftp/zvm61/` using the `anon_root` variable. Also, disable local (non-anonymous) logins by commenting out the `local_enable=YES` and `write_enable=YES` lines:
   ```bash
   # Example config file /etc/vsftpd/vsftpd.conf
   #
   # The default compiled in settings are fairly paranoid. This sample file
   # loosens things up a bit, to make the ftp daemon more usable.
   # Please see vsftpd.conf.5 for all compiled in defaults.
   #
   # READ THIS: This example file is NOT an exhaustive list of vsftpd options.
   # Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's
   # capabilities.
   #
   # Allow anonymous FTP? (Beware - allowed by default if you comment this out).
   anonymous_enable=YES
   # set the home directory of anonymous FTP to /ftp/zvm61
   anon_root=/ftp/zvm61
   #
   # Uncomment this to allow local users to log in.
   # local_enable=YES
   #
   # Uncomment this to enable any form of FTP write command.
   # write_enable=YES
   ```
5. Set the vsftpd service to start at boot time by using the `chkconfig` command and, for this session, with the `service` command:

```bash
# chkconfig vsftpd on
# service vsftpd start
Starting vsftpd for vsftpd: [ OK ]
```

An anonymous FTP server should now be running with the z/VM V6.1 directory in `/cpdvd` (relative to the anonymous FTP root directory).

6.5.3 Testing the anonymous FTP server

Test your setup by using FTP to log in as an anonymous user from another system. You should see the `cpdvd/` directory and the following output:

```bash
# ftp gpok223
Connected to gpok223.endicott.ibm.com.
220 (vsFTPd 2.2.2)
Name (gpok223:root): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> dir
229 Entering Extended Passive Mode (|||6252|).
150 Here comes the directory listing.
-rw-r--r-- 1 0 0 45088210 Nov 11 19:06 CD813270.ZIP
dr-xr-xr-x 2 0 0 24576 Nov 11 19:23 cpdvd
226 Directory send OK.
ftp> quit
```

This output shows that the anonymous FTP server is working. You should now be able to continue with a z/VM installation via FTP, starting in 4.1, “Installing z/VM from DVD or FTP server” on page 28.
Installing RHEL 6 on the cloner

By now, you must have created a new z/VM user ID named LNXMAINT. Now it is time to create the first Linux user ID, which is named RH6CLONE. This Linux ID is used for the cloner installation server, and serves as the administration point for future Linux IDs. This server is referred to as the cloner.

RH6CLONE serves in the following capacities:

- **Red Hat Enterprise Linux 6 installation server**: This server is a tree of Red Hat packages (RPMs) and other files required for installation.
- **Network File System (NFS) server**: This server exports the installation tree and possibly other useful files.
- **Clone server**: This server is used for cloning an existing installation to a new Linux ID. See Chapter 9, “Configuring RHEL 6 for cloning” on page 155 for more details.
- **Kickstart server**: This hosts files the product install files that are necessary for automated installations. See Chapter 10, “Installing Linux with kickstart” on page 175 for more information.

Chapter 4, “Installing and configuring z/VM” on page 27, Chapter 5, “Servicing z/VM” on page 73, and Chapter 6, “Configuring an NFS/FTP server” on page 97 must be completed before proceeding. In this chapter, you will perform following tasks:

- “Installing the cloner” on page 106
- “Configuring the cloner” on page 127
7.1 Installing the cloner

In this section, you install the RHEL 6 cloner under the RH6CLONE user. This cloner is the guest server that will serve as the installation and file server for future Linux guests.

7.1.1 Creating the RH6CLONE user ID

In this section, you define the RH6CLONE user ID in z/VM by performing the following steps:

1. Log on to MAINT and make a backup of and edit the USER DIRECT file:
   ```
   ==> copy user direct c = direwrks = (rep
   ==> x user direct c
   ```
 In the USER DIRECT file, you can group statements that will be common to many user definitions in a construct called a profile. This profile can then become part of the user definitions using the INCLUDE statement. You used the existing TCPCMSU profile when you defined the LNXMAINT user.

2. Create a new profile named LNXDFLT. This profile contains the user directory statements that will be common to all Linux user IDs. You can use the "" prefix commands to duplicate the IBMDFLT profile that should be on lines 37-50:
   ```
   ""037  *******************************************************
   00038 *
   00039 PROFILE IBMDFLT
   00040  SPOOL 000C 2540 READER *
   00041  SPOOL 000D 2540 PUNCH A
   00042  SPOOL 000E 1403 A
   00043  CONSOLE 009 3215 T
   00044  LINK MAINT 0190 0190 RR
   00045  LINK MAINT 019D 019D RR
   00046  LINK MAINT 019E 019E RR
   00047  LINK MAINT 0402 0402 RR
   00048  LINK MAINT 0401 0401 RR
   ""049  *******************************************************
   ```

3. Issue the CP command QUERY PROCESSEORS to see how many physical CPUs your LPAR has. In this example, it is 10:
   ```
   ==> q proc
   PROCESSOR 00 MASTER CP
   PROCESSOR 01 ALTERNATE CP
   PROCESSOR 02 ALTERNATE CP
   PROCESSOR 03 ALTERNATE CP
   PROCESSOR 04 ALTERNATE CP
   PROCESSOR 05 ALTERNATE CP
   PROCESSOR 06 ALTERNATE CP
   PROCESSOR 07 ALTERNATE CP
   PROCESSOR 08 ALTERNATE CP
   PROCESSOR 09 ALTERNATE CP
   ```
4. Edit the duplicated profile by deleting the three LINK MAINT 040x lines, and inserting the lines that are shown in bold text:

```
PROFILE LNXDFLT
  IPL CMS
  MACHINE ESA 10
  CPU 00 BASE
  CPU 01
  CPU 02
  CPU 03
  CPU 04
  CPU 05
  CPU 06
  CPU 07
  CPU 08
  CPU 09
  NICDEF 600 TYPE QDIO LAN SYSTEM VSW1
  SPOOL 000C 2540 READER *
  SPOOL 000D 2540 PUNCH A
  SPOOL 000E 1403 A
  CONSOLE 009 3215 T
  LINK MAINT 0190 0190 RR
  LINK MAINT 019D 019D RR
  LINK MAINT 019E 019E RR
  LINK LNXMAINT 192 191 RR
  LINK TCPMAINT 592 592 RR
```

Note that:

- The first line performs an IPL of CMS when the user ID is logged onto.
- You should update the MACHINE statement line to set the machine type to ESA with a maximum number of CPUs that can be defined. In this example, the LPAR has 10 processors, so the value of the last parameter is set to 10.
- The next ten lines define ten virtual CPUs. Be sure to set the number of virtual CPUs equal to (or less than) the number of physical CPUs.
- The NICDEF line defines a virtual NIC connected to the VSWITCH starting at virtual address 600.
- The last two lines provide read access to the LNXMAINT 192 disk, as the user's 191 disk, and the TCPMAINT 592 disk, so that the user has access to TCP/IP services, such as FTP.

5. Go to the bottom of the file and add the definition for a new user ID named RH6CLONE. This user ID is given class B, D, and E privilege classes, aside from the typical class G, to run the FLASHCOPY command (B), the QUERY ALLOC MAP (D) command, and the QUERY NSS (E) command. Be sure to replace the volume labels in bold and italics (for example, UM6290) with the labels of your DASD:

```
USER RH6CLONE LNX4VM 512M 1G BDEG
  INCLUDE LNXDFLT
```

Important: In the past, only two virtual CPUs were recommended for the next step. With the new cpuplugd service (see 13.7, “Using the cpuplugd service” on page 224), this recommendation has changed to be the same number as the physical CPUs. This setting could have the side effect of allowing a single Linux virtual machine to consume a large amount of CPU resource. You may consider leaving this setting at two for now.
OPTION LKNOPAS APPLMON
MDISK 100 3390 0001 3338 **UM6290** MR LNX4VM LNX4VM LNX4VM
MDISK 101 3390 0001 3338 **UM6293** MR LNX4VM LNX4VM LNX4VM
MDISK 102 3390 0001 3338 **UM6294** MR LNX4VM LNX4VM LNX4VM

This Linux user ID will have the minidisks and virtual disks (VDISKs) shown in Table 7-1.

<table>
<thead>
<tr>
<th>Minidisk or VDISK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>The root file system of the Linux cloner. This system serves as the administration point for all your Linux virtual servers.</td>
</tr>
<tr>
<td>101-102</td>
<td>These are the minidisks that are used to create a logical volume mounted over /nfs/. This file system is used to make the RHEL 6 installation tree and the files associated with this book available over NFS.</td>
</tr>
<tr>
<td>300-301</td>
<td>These are virtual disk (VDISK) swap spaces that are not defined in the USER DIRECT file, but defined by calls to the SWAPGEN EXEC in the user’s PROFILE EXEC so that when the user ID logs on the VDISKS are created.</td>
</tr>
</tbody>
</table>

6. Go back to the top of the file and search for the USER $ALLOC$ string. Add cylinder 0 of each of the new volumes to this dummy user ID so they do not show up as gaps in the USER DISKMAP report file:

```plaintext
====> top
====> /user $alloc$
USER $ALLOC$ NOLOG
MDISK A01 3390 000 001 610RES R
MDISK A02 3390 000 001 UV6283 R
MDISK A03 3390 000 001 UV6284 R
MDISK A04 3390 000 001 UM6289 R
MDISK A05 3390 000 001 **UM6290** R
MDISK A06 3390 000 001 **UM6293** R
MDISK A07 3390 000 001 **UM6294** R
...
====> file
```

7. Run DISKMAP to check for overlaps and gaps. You should only see only a 501 and a one cylinder gap:

```plaintext
====> diskmap user
====> x user diskmap
====> all /gap/|/overlap/
----------------------- 4 line(s) not displayed -----------------------
                      0 500 501 GAP
----------------------- 6 line(s) not displayed -----------------------
                      0 0 1 GAP
----------------------- 355 line(s) not displayed -----------------------
====> quit
```

▶ When the disk layout is correct, run DIRECTXA to bring the changes online:

```plaintext
====> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 3.0
EOJ DIRECTORY UPDATED AND ON LINE
```

You have now defined the user ID that will be both the master Linux image and the cloner.
7.1.2 Adding RH6CLONE to AUTOLOG1 PROFILE EXEC

The new Linux ID you defined needs access to the VSWITCH. A SET VSWITCH command with the GRANT parameter can be added to AUTOLOG1 PROFILE EXEC to accomplish this task. Also, an XAUTOLOG statement can be added if the user ID is automatically logged on at z/VM IPL time.

Other examples show how to log off of MAINT and log on to AUTOLOG1. You can also modify the file by linking to the AUTOLOG1 191 disk read/write.

Perform the following steps:

1. Use the LINK and ACCESS commands to link to and access the AUTOLOG1 191 disk in read/write mode:
   ```
   ===> link autolog1 191 1191 mr
   ===> acc 1191 f
   ```
2. Edit the PROFILE EXEC file. Add the RH6CLONE user ID to the sections that grant access to the VSWITCH and that use XAUTOLOG on the Linux user IDs:
   ```
   ===> x profile exec f // add two lines
   /***************************/
   /* Autolog1 Profile Exec */
   /***************************/
   'cp xautolog tcpip'     /* start up TCPIP */
   'CP XAUTOLOG DTCVSW1'   /* start VSWITCH controller 1 */
   'CP XAUTOLOG DTCVSW2'   /* start VSWITCH controller 2 */
   'cp set pf12 ret'       /* set the retrieve key */
   'cp set mdc stor Om 128m' /* Limit minidisk cache in CSTOR */
   'cp set mdc xstore 0m 0m' /* Disable minidisk cache in XSTOR */
   'cp set srm storbuf 300% 250% 200%' /* Overcommit memory */
   'cp set signal shutdown 300' /* Allow guests 5 min to shut down */
   /* Grant access to VSWITCH for each Linux user */
   'cp set vswitch vsw1 grant rh6clone'
   /* XAUTOLOG each Linux user that should be started */
   'cp xautolog rh6clone'
   'cp logoff' /* logoff when done */
   ===> file
   ```

 These changes will not take effect until the next IPL, so you must grant this user ID access to the VSWITCH for this z/VM session. This is done by running the following command:
   ```
   ==> set vswitch vsw1 grant rh6clone
   Command complete
   ```

7.1.3 Preparing RH6CLONE bootstrap files

To perform an IPL on a RHEL 6 installation system, four bootstrap files must be prepared. Three are punched to the z/VM reader and then an IPL is performed. These three files are a kernel, a parameter file, and an initial RAM disk. The fourth file is a configuration file stored on a CMS disk to which the parameter file points.

Think of these files as the files that are on as a PC Linux boot CD (or floppy disk). Also, a small REXX EXEC is commonly used to clean out the reader, punch the three files, and
perform an IPL of the reader. A sample RHEL 6 parameter file, configuration file, and installation EXEC are supplied and should be on the LNXMAINT 192 disk (this task is described in 4.7.5, “Copying the files associated with this book to LNXMAINT” on page 61). Therefore, only the kernel and RAM disk need to be copied.

Perform the following steps:

1. Start an SSH session as root on the NFS server.

2. Use the `ftp` command to copy the RHEL 6 kernel and initial RAM disk to the LNXMAINT D disk. These files must have a record format of fixed 80 byte records. This format can be set by running the `site fix 80` FTP subcommand (if this subcommand fails, try `quote site fix 80`). Here is an example:

   ```
   # cd /nfs/rhel6/dvd1/images
   # ftp 9.60.18.249
   Name (9.60.18.249:root): lnxmaint
   Password:
   230 LNXMAINT logged in; working directory = LNXMAINT 191
   Remote system type is z/VM.
   ftp> cd lnxmaint.192
   250 Working directory is LNXMAINT 192
   ftp> site fix 80
   200 Site command was accepted.
   ftp> bin
   200 Representation type is IMAGE.
   ftp> put initrd.img rhel6.initrd
   ... 23651842 bytes sent in 00:01 (11.34 MB/s)
   ftp> put kernel.img rhel6.kernel
   ... 8016384 bytes sent in 00:01 (6.01 MB/s)
   ftp> quit
   ```

3. Go back to your 3270 session. Log off of MAINT and log on to LNXMAINT.

4. The `SAMPLE PARM-RH6`, `SAMPLE CONF-RH6`, and `RHEL6 EXEC` files should be on the LNXMAINT 192 (D) disk, as they were copied in 4.7.5, “Copying the files associated with this book to LNXMAINT” on page 61. Use the FILELIST command to verify that the files were copied, and that the kernel and initial RAM disk were copied in fixed 80 byte record format. You should see the following files (the number of records and blocks may vary):

   ```
   ==> file1 * * d
   LNXMAINT FILELIST A0  V 169  Trunc=169 Size=10 Line=1 Col=1 Alt=0
   Cmd   Filename Filetype Fm Format Lrecl    Records     Blocks   Date     Time
   RHEL6    EXEC     D1 V         69         10          1  9/23/10 12:55:22
   RHEL6    KERNEL   D1 F         80     100205       1642  9/23/10 12:52:07
   RHEL6    INITRD   D1 F         80     295649       5775  9/23/10 12:51:29
   CHPW610  XEDIT    D1 V         72        190          3  9/23/10  9:13:31
   CPFORMAT EXEC     D1 V         79        252          3  9/23/10  9:13:31
   PROFILE  EXEC     D1 V         63        17          1  9/23/10  9:13:31
   SAMPLE   CONF-RH6 D1 V         38        13          1  9/23/10  9:13:31
   SAMPLE   PARM-RH6 D1 V         80          3          1  9/23/10  9:13:31
   SWAPGEN  EXEC     D1 V         72        467          6  9/23/10  9:13:31
   PROFILE  XEDIT    D1 V         45        17          1  9/23/10  8:41:19
   ```

5. Quit by pressing F3.
6. Verify that the RHEL6 EXEC file has the correct information. Note the kernel and RAM disk have hardcoded file names (RHEL6), but the file name of the parameter file will be the user ID (userid() function) of the user running the EXEC:

```shell
==> type rhel6 exec d

/* EXEC to punch a RHEL 6 install system to reader and IPL from it */
Address 'COMMAND'
'CP SPOOL PUN *
'CP CLOSE RDR'
'CP PURGE RDR ALL'
'PUNCH RHEL6 KERNEL * (NOHEADER)
'PUNCH' Userid() 'PARM-RH6 * (NOHEADER)
'PUNCH RHEL6 INITRD * (NOHEADER)'n
'CP CHANGE RDR ALL KEEP'
'CP IPL OOC CLEAR'
```

7. There are two text files that are needed to install RHEL 6: a parameter file and a configuration file. A sample parameter file is provided and is named SAMPLE PARM-RH6. It has some values, the most important value of which, the CMSCONFFILE variable, points to the configuration file that remains on a CMS minidisk. Copy the sample parameter file to a new file named RH6CLONE. Change the configuration file variable to point to a file with the same file name:

```shell
==> copy sample parm-rh6 d rh6clone = =
==> x rh6clone parm-rh6 d
root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=RH6CLONE.CONF-RH6
vnc vncpassword=lnx4vm
```

8. Copy the sample configuration file and modify the appropriate fields. Refer to the worksheet in 2.7.4, “Linux user ID worksheet” on page 18. Here are the values used for the example in this book.

```shell
==> copy sample conf-rh6 d rh6clone = =
==> x rh6clone conf-rh6
DASD=100-105,300-301
HOSTNAME=gpok223.endicott.ibm.com
NETTYPE=qeth
IPADDR=9.60.18.223
SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602
NETMASK=255.255.255.128
SEARCHDNS=endicott.ibm.com
GATEWAY=9.60.18.129
DNS=9.0.3.1
MTU=1500
PORTNAME=DONTCARE
PORTNO=0
LAYER2=0
```

Note: The RHEL 6 installer supports OSA/NIC in layer 2 (Ethernet) mode. In the example above, the Linux virtual machine is connecting to a layer 3 VSWITCH, so the parameter LAYER2=0 is set. When connecting in layer 2 mode, set LAYER2=1. Then, if this guest is connected to a VSWITCH, set VSWITCH=1, signifying that the VSWITCH will provide the MAC address. If this guest is not connected to a VSWITCH, set VSWITCH=0 and add the parameter MACADDR= followed by the MAC address for this guest.
9. Linux user IDs will obtain their PROFILE EXEC file from LNXMAINT 192. This file runs when you press Enter at the VM READ prompt. It creates two VDISKs with the SWAPGEN EXEC file, which will be used later to swap spaces. It also performs a few other functions, including performing an IPL of Linux automatically if the virtual machine is logged on disconnected. You can view the contents of the PROFILE EXEC file by running the CMS TYPE command:

```c
==> type profile exec d
/* PROFILE EXEC for Linux virtual servers */
'CP SET RUN ON'
'CP SET PF11 RETRIEVE FORWARD'
'CP SET PF12 RETRIEVE'
'ACC 592 C'
'SWAPGEN 300 524288' /* create a 256M VDISK disk swap space */
'SWAPGEN 301 1048576' /* create a 512M VDISK disk swap space */
'PIPE CP QUERY' userid() '| var user'
parse value user with id . dsc .
if (dsc = 'DSC') then /* user is disconnected */
  'CP IPL 100'
else /* user is interactive -> prompt */
do
  say 'Do you want to IPL Linux from minidisk 100? y/n'
  parse upper pull answer .
  if (answer = 'Y') then 'CP IPL 100'
end /* else */
```

7.1.4 Beginning the Linux installation

Perform the following steps to begin the Linux installation:

1. Log on to RH6CLONE. The PROFILE EXEC file from the LNXMAINT 192 disk should prompt you to perform an IPL of minidisk 100. Because 100 is not installed yet, answer no.

 LOGON RH6CLONE
 NIC 0600 is created; devices 0600-0602 defined
 z/VM Version 6 Release 1.0, Service Level 1002 (64-bit),
 built on IBM Virtualization Technology
 There is no logmsg data
 FILES: 0003 RDR, NO PRT, NO PUN
 LOGON AT 07:41:38 EDT WEDNESDAY 09/29/10
 z/VM V6.1.0 2010-09-23 11:31

 DMSACP723I A (191) R/O
 DMSACP723I C (992) R/O
 DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
 DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
 Do you want to IPL Linux from minidisk 100? y/n
 n

2. Set the memory size to 1 GB with the CP DEFINE STORAGE command:

 ==> def stor 1g
 00: STORAGE = 1G
 00: Storage cleared - system reset.

3. Perform an IPL of CMS, and again answer no:

 ==> ipl cms
 z/VM V6.1.0 2010-09-23 11:31
4. To begin the installation program, run the RHEL6 EXEC command. You should see many panels of questions and answers scrolling by. If you use the default parameter file shipped with RHEL 6, you would have had to answer all the networking questions manually. With the proper parameters set in RH6CLONE CONF-RH6, the installation process should proceed to the point where you have to use a browser to VNC client to access the installation program.

```bash
===> rhel6
RDR FILE 0004 SENT FROM RH6CLONE PUN WAS 0004 RECS 100K CPY 001 A NOHOLD NOKEEP
RDR FILE 0005 SENT FROM RH6CLONE PUN WAS 0005 RECS 0003 CPY 001 A NOHOLD NOKEEP
RDR FILE 0006 SENT FROM RH6CLONE PUN WAS 0006 RECS 296K CPY 001 A NOHOLD NOKEEP
0000003 FILES CHANGED
0000003 FILES CHANGED
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 2.6.32-71.el6.s390x (mockbuild@s390-004.build.bos.redhat.com) (gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC) ) #1 SMP Wed Sep 1 01:38:33 EDT 2010
setup: Linux is running as a z/VM guest operating system in 64-bit mode
Zone PFN ranges:
   DMA     0x00000000 -> 0x00080000
   Normal  0x00080000 -> 0x00080000
Movable zone start PFN for each node
   early_node_mapF1  active PFN ranges
   0: 0x00000000 -> 0x00020000
PERCPU: Embedded 12 pages/cpu @00000000266d0000 s16896 r8192 d24064 u65536
pcpu-alloc: s16896 r8192 d24064 u65536 alloc=16*4096
pcpu-alloc: Y0 00 Y0 01 Y0 02 Y0 03 Y0 04 Y0 05 Y0 06 Y0 07
pcpu-alloc: Y0 08 Y0 09 Y0 10 Y0 11 Y0 12 Y0 13 Y0 14 Y0 15
pcpu-alloc: Y0 16 Y0 17 Y0 18 Y0 19 Y0 20 Y0 21 Y0 22 Y0 23
pcpu-alloc: Y0 24 Y0 25 Y0 26 Y0 27 Y0 28 Y0 29 Y0 30 Y0 31
pcpu-alloc: Y0 32 Y0 33 Y0 34 Y0 35 Y0 36 Y0 37 Y0 38 Y0 39
pcpu-alloc: Y0 40 Y0 41 Y0 42 Y0 43 Y0 44 Y0 45 Y0 46 Y0 47
pcpu-alloc: Y0 48 Y0 49 Y0 50 Y0 51 Y0 52 Y0 53 Y0 54 Y0 55
pcpu-alloc: Y0 56 Y0 57 Y0 58 Y0 59 Y0 60 Y0 61 Y0 62 Y0 63
Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 129280
Kernel command line: root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=RH6CLONE.CONF-RH6
vnc vncpassword=lnx4vm
...
5. You might see warnings about systems that cannot be reached:

   Trying to reach gateway 9.60.18.129...
   Could not reach your default gateway 9.60.18.129
   0) redo this parameter, 1) continue, 2) restart dialog, 3) halt, 4) shell

   If so, be sure the IP address you are using is not already in use.

6. The kernel should continue to boot until you see the following messages:

   ... 
   Starting sshd to allow login over the network.

   Connect now to 9.60.18.223 and log in as user install to start the installation.

   E.g. using: ssh -x install@9.60.18.223
   You may log in as the root user to start an interactive shell.
7. From your workstation, use your SSH client (for example, PuTTY) to connect to the IP address and begin the installation. When prompted for a user name, enter install. A password will not be required. Figure 7-1 shows the initial panel of the installer. Use the Tab key to move between fields. Use the arrow keys to move among choices and Enter to select a choice.

![Figure 7-1 Initial panel of installer](image)

8. The Choose a Language panel should appear. Select your language, press Tab to select OK, and press Enter.


10. The NFS Setup panel should appear. Enter the IP address of the PC NFS server on the first line, then the path to the installation tree on the second line, and select OK. See the example in Figure 7-2, which uses the NFS server at IP address 9.60.18.240.

![Figure 7-2 NFS setup panel](image)

11. Now the curses windows should end and the installation program (anaconda) should start a VNC server. You should see messages similar to the following:

   Welcome to the anaconda install environment 1.2 for zSeries
   
   detecting hardware...
   waiting for hardware to initialize...
   detecting hardware...
waiting for hardware to initialize...
Running anaconda 13.21.82, the Red Hat Enterprise Linux system installer - please wait.
14:55:55 Starting VNC...
14:55:56 The VNC server is now running.
14:55:57

You chose to execute vnc with a password.

14:55:57 Please manually connect your vnc client to gpok223.endicott.ibm.com:1 (9.60.18.223) to begin the install.
14:55:57 Starting graphical installation.

12. Start a VNC client (for example, RealVNC) and connect to the server with your IP address with a :1 appended to the end, as shown in Figure 7-3. When prompted for a password, enter the password specified in the RH6CLONE PARM-RH6 file (lnx4vm in the sample file). In the following example, Linux is being installed with the IP address 9.60.18.223.

![Figure 7-3 Connecting with VNC client](image_url)
7.1.5 Stage 2 of the RHEL 6 installation

After you have connected using VNC, perform the following steps:

1. A splash window appears, as shown in the top half of Figure 7-4. Click Next.
2. You will be asked what type of devices to use, as shown in the bottom half of Figure 7-4. Choose Basic Storage Devices and click Next.

![Figure 7-4 Splash window and device type window](image)

---

Chapter 7. Installing RHEL 6 on the cloner 117
3. You might see the Unformatted DASD Devices Found window, as shown in Figure 7-5. If the disks you are installing onto have been previously formatted by `dasdfmt`, you will not see this window.

![Figure 7-5   An example of the Unformatted DASD Devices Found window](image)
7.1.6 Working around a known issue

**Important:** If the minidisks 100-102 (dasdb-dasdd) have not been formatted for Linux by dasdfmt before this installation, you should see the window shown in Figure 7-5 on page 118. However, there is a known issue in RHEL 6 where this window does not open and you do not have the ability to format the disks through the installer. If you proceed without formatting the disks with dasdfmt, the installation process will fail later.

If this is the case, perform the following steps:

1. Start a second SSH session, this time logging in as root:

   ```bash
 login as: root
 Welcome to the anaconda install environment 1.2 for zSeries
   ```

   ▶ Issue the lsdasd command. The three minidisks should be dasdb, dasdc, and dasdd:

   ```bash
 # lsdasd
 Bus-ID Status Name Device Type BlkSz Size Blocks
 ===
 ==
 0.0.0100 active dasdb 94:4 ECKD 4096 2347MB 600840
 0.0.0101 active dasdc 94:8 ECKD 4096 2347MB 600840
 0.0.0102 active dasdd 94:12 ECKD 4096 2347MB 600840
 0.0.0300 active dasde 94:16 FBA 512 256MB 524288
 0.0.0301 active dasdf 94:20 FBA 512 512MB 1048576
   ```

   ▶ Format the minidisks in parallel with the following for loop:

   ```bash
 # for i in b c d
 > do
 > dasdfmt -b 4096 -y -f /dev/dasd$i &
 > done
   ```

   ▶ You may need to press Enter to see the jobs in the background complete. After the for loop completes, return to the VNC session and complete the installation.
7.1.7 Continuing the installation

Continue your installation by performing the following steps:

1. Click the **Reinitialize All** button when prompted to initialize the VDISK as 300, as shown in Figure 7-6.

![Warning](image)

> Error processing drive:
> ccw-0.0.0300
> 256MB
> IBM S390 DASD drive

This device may need to be reinitialized.

REINITIALIZING WILL CAUSE ALL DATA TO BE LOST!

This action may also be applied to all other disks needing reinitialization.

 Device details:
 ccw-0.0.0300

2. In the next window, you set the host name. This should be read from the configuration file. Click **Next**.
3. Select your time zone and click **Next**.
4. Set the root password and click **Next**.
5. The installer now searches for a previous installation. *It is important* to select the **Create Custom Layout** radio button, as shown in Figure 7-7, as other choices will use VDISKs as physical volumes for a large volume group. VDISK data is not persistent across reboots. Click **Next**.

![Figure 7-7 Creating custom disk layout](image)
6. The next window that opens requires you to move disks from data storage devices to installation target devices, as shown in Figure 7-8. Move all disks to the right by selecting and clicking the right arrow, or by simply double-clicking each disk. When you are finished, click Next.

![Figure 7-8 Moving disks to become installation targets](image-url)
7. The Please Select A Device window allows you to set up minidisks and VDISKs. Click the **Create** button and the Create Storage window opens, as shown in the right side of Figure 7-9. Accept the default of **Standard Partition** and click **Create**.

![Image of Please Select A Device window](image)

*Figure 7-9 Disk setup before creating a volume group*

8. In the Add Partition window, create a swap space on /dev/dasdb with a size of 512 MB by choosing the selections shown in the left half of Figure 7-10 and click **OK**.

![Image of Add Partition window](image)

*Figure 7-10 Creating a swap partition and the root file system*

9. Back at the Please Select a Device window, click **Create** again, and use the remaining space on /dev/dasdb for the root file system, as shown on the right half of Figure 7-10.
10. Use the Create button to create a LVM physical volume from /dev/dasdc by performing the following steps:
   a. Select the LVM Physical Volume radio button on the Create Storage window and click Create.
   b. On the Add a Partition window, select the allowable drive (dasdc).
   c. On the Additional Size Options window, select the Fill to maximum allowable size radio button.
   d. Click OK.

11. Repeat the previous step and create an LVM physical volume from /dev/dasdd.

12. Finally, create two more swap spaces from the VDISKs, using the maximum allowable size, on the /dev/dasde and /dev/dasdf devices. After you have done these steps, your setup should look like what is shown in Figure 7-11.

---

![Figure 7-11 Disks and swap spaces before creating a volume group](image)
13. The next step is to set up LVM. Perform the following steps:
   a. Click **Create** and the Create Storage window opens.
   b. Select the **LVM Volume Group** radio button and click **Create**. The Make LVM Volume Group window opens, as shown on the left side of Figure 7-12.
   c. Set the Volume Group Name to nfs vg.
   d. Click **Add** under the Logical Volumes section. The Make Logical Volume window opens.
   e. Set the Mount Point to /nfs and the Logical Volume Name to nfs lv, as shown on the right side of Figure 7-12. Click **OK**.
   f. In the Make LVM Volume Group window, click **OK**.

![Figure 7-12 Creating a volume group and a logical volume](image)

14. You will be returned to the Please Select A Device window. Click **Next**.
15. On the Format Warnings window, click **Format**.
16. On the Writing storage confirmation to disk window, click **Write changes to disk**.
Important: If you see the window shown in Figure 7-13 on page 126, you have to start the installation over, this time using `dasdfmt` to format the minidisks. See 7.1.6, “Working around a known issue” on page 119.

![Figure 7-13 Symptom of a known issue](image)

17. You will be prompted for the type of software to be installed. Accept the default of **Basic Server** and click **Next**. The installation process will start. This will run for 5 to 10 minutes.

18. You will be prompted to reboot. Click **Reboot**.

### 7.1.8 Booting your new Linux system from disk

A minimal system should now be installed onto minidisk 100. Return to your z/VM 3270 session and perform an IPL of the newly installed system by running the `#CP IPL 100` command:

```
/mnt/sysimage/dev done
/mnt/sysimage done
you may safely reboot your system
===> #cp ipl 100
CP IPL 100
ziPL v1.3.2 interactive boot menu
 0. default (linux)
 1. linux
Note: VM users please use '#cp vi vmsg <input>'
Please choose (default will boot in 15 seconds):
...
```

Linux will boot after 15 seconds if you take no action. To boot immediately, issue the following command:

```
===> #cp vi vmsg 0
```
You system should continue to boot until a login prompt is presented. Start an SSH session to
the master image as root. At this point, you can disconnect from the 3270 session by running
the following command:

```bash
===> #cp disc
```

### 7.2 Configuring the cloner

Now that your cloner is installed, it must be configured. You must perform the following steps:

- “Copying files to the cloner” on page 127
- “Retiring the NFS server” on page 128
- “Configuring the yum command” on page 128
- “Turning off unneeded services” on page 129
- “Configuring the VNC server” on page 130
- “Setting a system to halt on SIGNAL SHUTDOWN” on page 131
- “Turning on the NFS server” on page 132
- “Configuring SSH keys” on page 133
- “Inserting the vmcp module” on page 133
- “Changing the order of the swap disks” on page 134
- “Setting the system to log off when Linux is shut down” on page 134
- “Rebooting the system” on page 135
- “Changing the order of the swap disks” on page 134

#### 7.2.1 Copying files to the cloner

Copy the RHEL 6 installation tree to the cloner, along with the other files associated with this
book, by performing the following steps:

1. Mount the `/nfs/rhel6/` directory on the NFS server over the `/mnt/` directory. In this
   example, the NFS server is at IP address 9.60.18.240:

   ```bash
 # mount 9.60.18.240:/nfs/rhel6/dvd1 /mnt
 # ls /mnt
 boot.cat RELEASE-NOTES-es-ES.html RELEASE-NOTES-pt-BR.html
 EULA RELEASE-NOTES-fr-FR.html RELEASE-NOTES-ru-RU.html
 ...
 ``

2. Create a local directory of the same name and recursively copy the tree with the `cp -a`
 command:

   ```bash
   # mkdir -p /nfs/rhel6
   # cd /mnt
   # rsync -av * /nfs/rhel6
   
   sending incremental file list
   EULA
   GPL
   ...
   sent 2758827676 bytes  received 56977 bytes  9180980.54 bytes/sec
   total size is 2758270745  speedup is 1.00
   
   This command will take some time, perhaps 5 to 10 minutes, depending on network
   speeds.
   ```
3. Unmount the RHEL 6 installation tree and repeat the process to copy the files associated with this book:

```
# cd /
# umount /mnt
# mount 9.60.18.240:/nfs/virt-cookbook-RH6 /mnt
# mkdir /nfs/virt-cookbook-RH6
# cd /mnt
# rsync -av * /nfs/virt-cookbook-RH6
```

Sending incremental file list

```
README.txt
clone.sh
vm/
vm/chpw610.xedit
vm/cpformat.exec
vm/profile.exec
vm/sample.conf-rh6
vm/sample.parm-rh6
vm/swapgen.exec
```

```
sent 65178 bytes received 168 bytes 130692.00 bytes/sec
total size is 64620 speedup is 0.99
```

- Now that the files are copied, unmount the `/mnt/` directory. View the files that you copied:

```
# cd ..
# umount /mnt/
# cd /nfs/virt-cookbook-RH6
# ls -F
README.txt  clone-1.0-10.s390x.rpm  vm/
```

The `clone-1.0-10.s390x.rpm` RPM contains files that you will use in Chapter 9, “Configuring RHEL 6 for cloning” on page 155.

7.2.2 Retiring the NFS server

You have now copied all the files related to this book to the cloner. You should be in a position to retire your NFS server, if you desire. The remainder of the book will use files located on the cloner instead of the files on the NFS server.

7.2.3 Configuring the yum command

You will now configure `yum` so it can install RPMs from the local installation tree.

Perform the following steps:

1. Create a file named `rhel6.repo` in the `/etc/yum.repos.d` directory:

```
# cd /etc/yum.repos.d
# vi rhel6.repo
[RHEL6]
name=Red Hat Enterprise Linux 6
baseurl=file:///nfs/rhel6/Server
```

2. Import the RPM key, which is included in the RHEL 6 DVD root directory:

```
# cd /nfs/rhel6
# rpm --import RPM-GPG-KEY-redhat-release
```
You are now ready to use yum to install or upgrade an RPM package. To install a package, run `yum install <packagename>`. The yum command will conveniently install the packages specified and automatically resolve dependencies for you. Note that you should not specify the package version on the command line, only the package name.

7.2.4 Turning off unneeded services

There are a number of services that are started in a RHEL 6 minimum system. To keep the cloner as efficient as possible, some of these services can be turned off by performing the following steps:

1. Turn off the following services with the `chkconfig` command:

   ```
   # chkconfig iptables off
   # chkconfig ip6tables off
   # chkconfig auditd off
   # chkconfig abrtd off
   # chkconfig atd off
   # chkconfig mdmonitor off
   ```

2. You may choose to leave these services on, or turn others off. You can review which services are now configured to start in run level 3 by running the following `chkconfig` command:

   ```
   # chkconfig --list | grep 3:on
   abrtd    0:off 1:off 2:off 3:on 4:off 5:on 6:off
   cpi      0:off 1:on 2:on 3:on 4:on 5:on 6:off
   cpuplugd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
   crond    0:off 1:off 2:off 3:on 4:on 5:on 6:off
   dumpconf 0:on 1:on 2:on 3:off 4:on 5:off 6:off
   lvm2-monitor 0:on 1:off 2:on 3:on 4:off 5:on 6:off
   messagebus 0:off 1:off 2:off 3:on 4:on 5:on 6:off
   mon_statd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
   netfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off
   network 0:off 1:off 2:off 3:off 4:off 5:off 6:off
   postfix 0:off 1:off 2:off 3:off 4:off 5:off 6:off
   rhnsd    0:off 1:off 2:off 3:off 4:off 5:off 6:off
   ```

 Note: You should only disable the iptables service if you are on a trusted network. Otherwise, you will need to configure iptables to allow network traffic for the VNC server and NFS, as well as any other services that require network access.

 For more information about configuring iptables for NFS traffic, see the article located at the following address:

 http://www.redhat.com/magazine/010aug05/departments/tips_tricks/

 Also, turning on and tuning a firewall is briefly discussed in 11.1.3, “Turning on a firewall” on page 183.
7.2.5 Configuring the VNC server

Often, applications require a graphical environment. The Virtual Network Computing (VNC) server allows for a graphical environment to be set up easily by starting the vncserver service.

Perform the following steps:

1. RHEL 6 configures the VNC server by using the `/etc/sysconfig/vncservers` configuration file. Add a line at the bottom of this file to specify the VNC user:
   ```bash
   # yum -y install tigervnc-server openmotif xterm xsetroot xorg-x11-xauth
   ...#
   # VNCSERVERS="2:myusername"
   # VNCSERVERARGS[2]="-geometry 800x600 -nolisten tcp -localhost"
   VNCSERVERS="1:root"
   ``

2. Edit the `vncservers` file and add one line at the bottom:
   ```bash
 # cd /etc/sysconfig
 # vi vncservers
 ...
 VNCSERVERS="2:myusername"
 VNCSERVERARGS[2]="-geometry 800x600 -nolisten tcp -localhost"
 VNCSERVERS="1:root"
   ```

3. Set a VNC password with the `vncpasswd` command. This password will be needed to connect to the VNC server:
   ```bash
 # vncpasswd
 Password: lnx4vm
 Verify: lnx4vm
   ```

4. Stop the firewall:
   ```bash
 # service iptables stop
 iptables: Flushing firewall rules: [OK]
 iptables: Setting chains to policy ACCEPT: filter [OK]
 iptables: Unloading modules: [OK]
   ```

5. Start the VNC server. This will create some initial configuration files under the `/root/.vnc/` directory:
   ```bash
 # service vncserver start
 Starting VNC server: 1:root xauth: creating new authority file
 /root/.Xauthority
 New 'gpok223.endicott.ibm.com:1 (root)' desktop is gpok223.endicott.ibm.com:1
 Creating default startup script /root/.vnc/xstartup
 Starting applications specified in /root/.vnc/xstartup
 Log file is /root/.vnc/gpok223.endicott.ibm.com:1.log
 [OK]
   ```

6. There is one more configuration to be done. Change from the Tiny window manager (twm), to the Motif window manager (mwm):
   ```bash
 # cd /root/.vnc
 # vi xstartup // change last line
   ```
7. Restart the VNC server with the `service` command:

```
service vncserver restart
Shutting down VNC server: 1:root [OK]
Starting VNC server: 1:root
New 'gpok223.endicott.ibm.com:1 (root)' desktop is gpok223.endicott.ibm.com:1
Starting applications specified in /root/.vnc/xstartup
Log file is /root/.vnc/gpok223.endicott.ibm.com:1.log
[OK]
```

8. You should now be able to use the VNC client to connect to the IP address of the cloner with a :1 appended. A sample session is shown in Figure 7-14.

![VNC client session to the VNC server](image)

Figure 7-14 VNC client session to the VNC server

Note that the VNC server will not be started automatically across reboots. When you need a graphical environment, you can either to start the vncserver process manually (recommended), or you can use chkconfig to enable automatic startup.

### 7.2.6 Setting a system to halt on SIGNAL SHUTDOWN

By default, RHEL 6 reboots when a Ctrl-Alt-Del key sequence is used. This key sequence is simulated by z/VM when it issues a SIGNAL SHUTDOWN command. Rather than rebooting, you want your system to halt. To set the system to halt, edit `/etc/init/control-alt-delete.conf` and change `shutdown -r` (reboot) to `shutdown -h` (halt):

```
cd /etc/init
vi control-alt-delete.conf
control-alt-delete - emergency keypress handling
#
This task is run whenever the Control-Alt-Delete key combination is
```
# pressed. Usually used to shut down the machine.

start on control-alt-delete

exec /sbin/shutdown -h now "Control-Alt-Delete pressed"

After that change, when the system receives a SIGNAL SHUTDOWN from z/VM, the following message will be displayed:

The system is going down for halt NOW!

### 7.2.7 Turning on the NFS server

The NFS server will be needed to export the RHEL 6 installation tree and the files associated with this book to the other virtual servers.

Enable NFS by performing the following steps:

1. Edit the empty `/etc/exports` file and add the following two lines:

   ```
 # cd /etc
 # vi exports
 /nfs/rhel6 *(ro,sync)
 /nfs/virt-cookbook-RH6 *(ro,sync)
   ```

   These two lines will cause NFS to export:
   - The `/nfs/rhel6/` directory, which contains the Red Hat Enterprise Linux 6 installation.
   - The `/nfs/virt-cookbook-RH6/` directory, which has the files associated with this book.

2. Set the NFS server to start at boot time and for this session:

   ```
 # service nfs start
 Starting NFS services: [OK]
 Starting NFS quotas: [OK]
 Starting NFS daemon: [OK]
 Starting NFS mountd: [OK]
 Starting RPC idmapd: [OK]
 # chkconfig nfs on
   ```

3. Test mount the directories locally:

   ```
 # mount localhost:/nfs/rhel6 /mnt
 # ls /mnt
 boot.cat RELEASE-NOTES-es-ES.html RELEASE-NOTES-pt-BR.html
 EULA RELEASE-NOTES-fr-FR.html RELEASE-NOTES-ru-RU.html
 ...
 # umount /mnt
 # mount localhost:/nfs/virt-cookbook-RH6 /mnt
 # ls /mnt
 clone.sh README.txt vm
 # umount /mnt
   ```

In this section, you have turned the NFS server on and exported the RHEL 6 installation directory and the files associated with this book.
7.2.8 Configuring SSH keys

SSH sessions are typically authenticated with passwords entered on the keyboard. With SSH key-based authentication, sessions can be authenticated with public and private keys so that no password is needed. SSH key-based authentication can be set up from the cloner (client) to the virtual servers. If the master image has a copy of cloner's public key in the /etc/ssh/authorized_keys file, then key-based authentication will work on the cloned virtual servers. Create a new DSA key in the /root/.ssh/ directory. If the /root/.ssh/ directory does not yet exist, create it by running the mkdir command:

```
cd /root/.ssh
ssh-keygen -t dsa -P "" -f id_dsa
```

Generating public/private dsa key pair.
Your identification has been saved in id_dsa.
Your public key has been saved in id_dsa.pub.
The key fingerprint is:
The key's randomart image is:
```
+--[DSA 1024]-----+
| . ==. |
| o. . . |
| += + = |
| oo. S |
| = . |
| oo |
| . |
+-----------------+
```

This command creates a key pair where the file with the .pub suffix is the public key and the other file is the private key. Note that the private key is only readable by root:

```
ls -l id_dsa*
-rw------- 1 root root 668 Oct 19 16:49 id_dsa
-rw-r--- 1 root root 619 Oct 19 16:49 id_dsa.pub
```

These files will be copied to the golden image Chapter 8, “Installing and configuring the golden image” on page 137.

7.2.9 Inserting the vmcp module

To issue CP commands, the vmcp module is needed. By default, it is not loaded at boot time. If you would like it to run at boot time, add the modprobe vmcp command, which will insert the module, to the /etc/rc.d/rc.local, file, which is run at boot time:

```
cd /etc/rc.d
vi rc.local // add one line
... touch /var/lock/subsys/local
modprobe vmcp
```

The vmcp command will now be available after the next reboot.
7.2.10 Changing the order of the swap disks

It is likely that the order of swap space priority is not optimal. Perform the following commands:

1. View the order of the swap space with the `swapon -s` command:

   ```bash
 # swapon -s
 Filename Type Size Used
 Priority
 /dev/dasda2 partition 524296 0 -1
 /dev/dasdb1 partition 262132 0 -2
 /dev/dasdc1 partition 524276 0 -3
   ```

   This shows that the minidisk swap space will be used before the VDISK. As VDISKs are in-memory, they should be first in the priority, from smallest to largest.

   ▶ Make a backup of the `/etc/fstab` file by running the following commands:

   ```bash
 # cd /etc
 # cp fstab fstab.orig
   ```

   ▶ Modify the swap order by moving the line in `/etc/fstab` by placing the minidisk swap space below the lines with VDISK swap spaces:

   ```bash
 # vi fstab
 ...
 /dev/disk/by-path/ccw-0.0.0300-part1 swap swap defaults
 0 0
 /dev/disk/by-path/ccw-0.0.0301-part1 swap swap defaults
 0 0
 /dev/disk/by-path/ccw-0.0.0100-part2 swap swap defaults
 0 0
 ...
   ```

   After a reboot, the minidisk swap space should come back with the lowest priority.

7.2.11 Setting the system to log off when Linux is shut down

When Linux is shut down, the default is for the virtual machine to remain logged on, even though it is not running an operating system. It is more convenient for the user ID to be logged off, both at z/VM SHUTDOWN time and for obtaining a refreshed 3270 emulator session. Edit the `/etc/rc.d/rc.local` file and add two lines at the end of the file:

```bash
#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don't
want to do the full Sys V style init stuff.

touch /var/lock/subsys/local
chshut halt vmcmd logoff
chshut poff vmcmd logoff
```

The z/VM user ID should now be logged off when you halt or power off Linux.
7.2.12 Rebooting the system

You should now reboot the system to test the changes:

```
reboot
Broadcast message from root@gpok223.endicott.ibm.com
(/dev/pts/0) at 7:27 ...
```

The system is going down for reboot NOW!

After your system comes back online in a couple of minutes, start a new SSH session to the cloner.

7.2.13 Verifying the changes

You are now done customizing the Linux cloner. SSH back into the cloner and check a few settings. Test the `vmcp` command with a CP command, such as `QUERY NAMES`:

```
vmcp q n
FTPSERVE - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC , VMSERV - DSC
VMSERVU - DSC , VMSERVS - DSC , TCPIP - DSC , OPERSYMP - DSC
DISKACNT - DSC , EREP - DSC , OPERATOR - DSC , RH55GOLD - DSC
RH6CLONE - DSC
VSM - TCPIP
```

Confirm that three swap spaces are operational and that the minidisk swap space is last in the priority:

```
swapon -s
Filename Type Size Used Priority
/dev/dasdb1 partition 262132 0 -1
/dev/dasdc1 partition 524276 0 -2
/dev/dasda2 partition 524296 0 -3
```

Verify that the NFS server is running:

```
service nfs status
rpc.mountd (pid 6776) is running...
nfsd (pid 6770 6769 6768 6767 6766 6765 6764 6763) is running...
rpc.rquotad (pid 6748) is running...
```
Installing and configuring the golden image

In this chapter, you install the copy of Linux that will be cloned. This copy of Linux is called the golden image. This copy should be as basic as possible so that it can be used as a generic virtual server and fit comfortably on two 3390-3 DASD.

In this chapter, you perform following tasks:

- “Installing the golden image” on page 138
- “Configuring the golden image” on page 148

Chapter 4, “Installing and configuring z/VM” on page 27, Chapter 5, “Servicing z/VM” on page 73, Chapter 6, “Configuring an NFS/FTP server” on page 97, and Chapter 7, “Installing RHEL 6 on the cloner” on page 105 must be completed before proceeding.
8.1 Installing the golden image

In this section, you will install the RHEL 6 golden image under the RH6GOLD user ID.

8.1.1 Creating the RH6GOLD user ID

In this section, you define the RH6GOLD user ID to z/VM.

Perform the following steps:

1. Log on to MAINT and edit the USER DIRECT file:

   ```
 ==> x user direct c
   ```

2. Go to the bottom of the file and add the definition for a new user ID named RH6GOLD. This user ID is given class G privileges only. Be sure to replace the volume labels (UM3F06 and UM63A9 in this example) with the labels of your DASD:

   ```
 USER RH6GOLD 256M 1G G
 INCLUDE LNXDFLT
 OPTION LNKNOPAS APPLMON
 MDISK 100 3390 0001 3338 UM63A2 MR LNX4VM LNX4VM LNX4VM
 MDISK 101 3390 0001 3338 UM63A9 MR LNX4VM LNX4VM LNX4VM
   ```

   This Linux user ID has the minidisks and virtual disks (VDISKS) shown in Table 8-1.

   **Table 8-1 Minidisks to be defined**

<table>
<thead>
<tr>
<th>Minidisk</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-101</td>
<td>Minidisks used to create the root file system, plus a logical volume containing the other file systems of the Linux golden image.</td>
</tr>
<tr>
<td>300-301</td>
<td>These are virtual disk (VDISK) swap spaces that are not defined in the USER DIRECT file, but defined by calls to the SWAPGEN EXEC file in the user's PROFILE EXEC file so that when the user ID logs on the VDISKS are created.</td>
</tr>
</tbody>
</table>

3. Go back to the top of the file and search for the USER $ALLOC$ string. Add cylinder 0 of the new volume (or volumes) to this dummy user ID so these volumes do not show up as gaps in the USER DISKMAP report file. In this example, one new volume is being used, that is, UM63A9:

   ```
 ===> top
 ===> /user $alloc$
 USER $ALLOC$ NOLOG
 MDISK A01 3390 000 001 61ORER R
 MDISK A02 3390 000 001 UV6283 R
 MDISK A03 3390 000 001 UV6284 R
 MDISK A04 3390 000 001 UV6289 R
 MDISK A05 3390 000 001 UV6290 R
 MDISK A06 3390 000 001 UV6293 R
 MDISK A07 3390 000 001 UV6294 R
 MDISK A08 3390 000 001 UV63A2 R
 MDISK A09 3390 000 001 UV63A9 R
   ```

   ```
 ===> file
   ```
Chapter 8. Installing and configuring the golden image

4. Run DISKMAP to check for overlaps and gaps. You should only see the single 501 cylinder gap:

```bash
==> diskmap user
==> x user diskmap
====> pre off
====> all /gap/|/overlap/
0 500 501 GAP
-------------------- 6 line(s) not displayed --------------------
0 0 1 GAP
-------------------- 391 line(s) not displayed --------------------
====> quit
```

5. When the disk layout is correct, run DIRECTXA to bring the changes online:

```bash
==> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 3.0
EOJ DIRECTORY UPDATED AND ON LINE
```

You have now defined the user ID that will contain the master Linux image.

8.1.2 Adding RH6GOLD to AUTOLOG1 PROFILE EXEC

The new Linux ID you defined needs access to the VSWITCH. Just as with the RH6CLONE user, a SET VSWITCH command with the GRANT parameter will now be added to AUTOLOG1 PROFILE EXEC. Also, an XAUTOLOG statement is added so that the RH6GOLD user ID is automatically logged on when you perform an IPL of z/VM.

Perform the following steps:

1. Link and access the AUTOLOG1 191 disk in read/write mode and edit the PROFILE EXEC field. Add the RH6GOLD user ID to the section that grants access to the VSWITCH. Note that you do not want to add RH6GOLD to the XAUTOLOG section, as this Linux user ID will not normally be logged on:

```bash
==> link autolog1 191 1191 mr
==> acc 1191 f
==> x profile exec f // add two lines
/*****************************/
/* Autolog1 Profile Exec */
/*****************************/
'cp xautolog tcpip' /* start up TCPIP */
'CP XAUTOLOG DTCVSW1' /* start VSWITCH controller 1 */
'CP XAUTOLOG DTCVSW2' /* start VSWITCH controller 2 */
'cp set pf12 ret' /* set the retrieve key */
'cp set mdc stor 0m 128m' /* Limit minidisk cache in CSTOR */
'cp set mdc xstore 0m 0m' /* Disable minidisk cache in XSTOR */
'cp set srm storbuf 300% 250% 200%' /* Overcommit memory */
'cp set signal shutdown 300' /* Allow guests 5 min to shut down */
/* Grant access to VSWITCH for each Linux user */
'cp set vswitch vsw1 grant rh6clone'
'cp set vswitch vsw1 grant rh6gold'
/* XAUTOLOG each Linux user that should be started */
'cp xautolog rh6clone'
'cp logoff' /* logoff when done */
====> file
```
2. These changes will not take effect until the next IPL, so you must grant this user ID access to the VSWITCH for this z/VM session:

```bash
==> set vswitch vsw1 grant rh6gold
Command complete
```

### 8.1.3 Preparing the RH6GOLD bootstrap files

Now that the RH6GOLD user is defined, you must create the PARM and CONF configuration files used by the RHEL 6 installer. To save time, you should copy the `RH6CLONE PARM-RH6` and `RH6CLONE CONF-RH6` files, then make the necessary changes.

Perform the following steps:

1. In your 3270 session, log off of MAINT and log on to LNXMAINT.
2. The `RH6CLONE PARM-RH6`, `RH6CLONE CONF-RH6`, and `RHEL6 EXEC` files should be on the LNXMAINT 192 (D) disk as they were copied in 4.7.5, “Copying the files associated with this book to LNXMAINT” on page 61. Copy these files to a new file named `RH6GOLD`:

```bash
==> copy rh6clone * d rh6gold ==
```

3. Change the `CMSCONFFILE` variable in the `PARM-RH6` file to point to the new `CONF` file:

```bash
==> x rh6gold parm-rh6
root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=RH6GOLD.CONF-RH6
vnc vncpassword=lnx4vm
```

4. Change the DASD, HOSTNAME, and IPADDR variables in the `RH6GOLD CONF-RH6` configuration file. For these values, you might want to refer to the worksheet in 2.7.4, “Linux user ID worksheet” on page 18. Also, add one line with the `METHOD=` parameter pointing to the NFS server directory you just set up on the cloner. This action will preclude you from having to enter the NFS server information in the install SSH session. Here is an example of the values used in this book:

```bash
==> x rh6gold conf-rh6
DASD=100-101,300-301
HOSTNAME=gpok222.endicott.ibm.com
NETTYPE=qeth
IPADDR=9.60.18.222
SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602
NETMASK=255.255.255.128
SEARCHDNS=endicott.ibm.com
METHOD=nfs:9.60.18.223:/nfs/rhel6
GATEWAY=9.60.18.129
DNS=9.0.3.1
MTU=1500
PORTNAME=DONTCARE
PORTNO=0
LAYER2=0
```

You are now ready to start the golden image installation.

### 8.1.4 Installing RHEL 6 on the golden image

In this section, you install Linux onto the RH6GOLD virtual machine. Because the cloner is running and NFS is configured, install RHEL 6 using the installation tree exported from the cloner.
Perform the following steps:

1. Log on to RH6GOLD. The PROFILE EXEC file from the LNXMAINT 192 disk should prompt you to perform an IPL of the 100 minidisk. Because there is nothing installed yet, answer no.

   LOGON RH6GOLD
   NIC 0600 is created; devices 0600-0602 defined
   z/VM Version 6 Release 1.0, Service Level 1002 (64-bit),
   built on IBM Virtualization Technology
   There is no logmsg data
   FILES: 0003 RDR, NO PRT, NO PUN
   LOGON AT 07:41:38 EDT WEDNESDAY 09/29/10
   z/VM V6.1.0 2010-09-23 11:31

   DMSACP723I A (191) R/O
   DMSACP723I C (592) R/O
   DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
   DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
   Do you want to IPL Linux from minidisk 100? y/n
   n

2. The default memory size of 256 MB is not enough to install RHEL 6. Set the memory size to 1 GB using the CP DEFINE STORAGE command:

   ==> def stor 1g
   00: STORAGE = 1G
   00: Storage cleared - system reset.

3. Perform an IPL of CMS and answer no:

   ==> ipl cms
   z/VM V6.1.0 2010-09-23 11:31

   DMSACP723I A (191) R/O
   DMSACP723I C (592) R/O
   DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
   DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
   Do you want to IPL Linux from minidisk 100? y/n
   n

4. To begin the installation program, run the RHEL6 EXEC:

   ==> rhel6
   RDR FILE 0001 SENT FROM RH6GOLD PUN WAS 0004 RECS 100K CPY 001 A NOHOLD NOKEEP
   RDR FILE 0002 SENT FROM RH6GOLD PUN WAS 0005 RECS 0003 CPY 001 A NOHOLD NOKEEP
   RDR FILE 0003 SENT FROM RH6GOLD PUN WAS 0006 RECS 296K CPY 001 A NOHOLD NOKEEP
   0000003 FILES CHANGED
   0000003 FILES CHANGED
   Initializing cgroup subsys cpuset
   Initializing cgroup subsys cpu
   Linux version 2.6.32-71.el6.s390x (mockbuild@s390-004.build.bos.redhat.com)
   (gcc
      version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC) ) #1 SMP Wed Sep 1 01:38:33
   EDT
   2010
   ...
5. There will be many, many panels of DASD I/O messages. Use the CP TERM MORE command to make the 3270 panel clear instantly:

```bash
>>> #cp term more 0 0
```

You should see the following message:

```
Initial configuration completed.
```

Starting sshd to allow login over the network.

Connect now to 9.60.18.222 and log in as user install to start the installation.

E.g. using: ssh -x install@9.60.18.222
You may log in as the root user to start an interactive shell.

6. Start an SSH session to the new in-memory Linux installer and log on as install:

```
login as: install
Welcome to the anaconda install environment 1.2 for zSeries ...
```

7. Set your language. In this example, the default of English is used.

8. When you installed the cloner, a panel prompting you for the network installation information opened. In this installation, it should not be shown, because you added the method= parameter to the RHEL 6 parameter file.

9. If all is well with the new NFS server on the cloner, you will see the following message. Start a VNC client session:

```
11:52:02 Please manually connect your vnc client to gpok222.endicott.ibm.com:1 (9.60.18.222) to begin the install.
11:52:02 Starting graphical installation.
```

10. At the window asking for the type of devices, select **Basic Storage Devices** and click **Next**.

```
Important: Again, as with the installation of the cloner, if the minidisks have not been formatted for Linux by `dasdfmt`, you should format them now, as described in 7.1.6, “Working around a known issue” on page 119. However, this time you only need to format dasdb and dasdc.
```
11. A warning window opens, as shown in Figure 8-1. Click **Re-initialize all**. The mindisks are formatted before Linux is copied to them.

![Warning window](image)

*Figure 8-1  Disk initialization window*

12. In the window that sets the host name, the value read from the configuration file should be correct. Click **Next**.

13. Set the time zone and click **Next**.

14. Set the root password and click **Next**.

15. In the type of installation window, select **Create Custom Layout** and click **Next**. It is important the you choose this option as described earlier.

16. In the Data Storage Devices and Install Target Devices window, move all disks to the Install Target Devices side by selecting each disk and clicking the right arrow. Click **Next**.

17. In the Please Select A Device window, click **Create**.

18. In the Create Storage window, choose **Standard Partition** and click **Create**.
19. In the Add Partition window, shown in Figure 8-2, set the Mount Point to the root file system (/), clear all drives except dasdb, and set the Size (MB) to 512. Click OK.

![Add Partition Window](attachment:image)

**Figure 8-2  Defining the root file system**

20. In the Create Storage window, choose **Standard Partition** and click **Create** again and create a 512 MB swap space, which is also on dasdb.

21. Again in the Create Storage window, click the partitions with a File System Type of physical volume (LVM) with the remainder of the space in dasdb (minidisk 100) and dasdc (minidisk 101).
22. Create partitions with a File System Type of swap with dasdd (virtual disk 300) and dasde (virtual disk 301). When you return to the Please Select A Device window, you should see the window shown in Figure 8-3.

![Please Select A Device](image)

Figure 8-3   Defining file systems for logical volumes and swap spaces

23. Click Create and in the resulting Create Storage window, choose the LVM Volume Group and click Create again.

24. In the Make LVM Volume Group window, set the Volume Group Name to system_vg and click Add. Create logical volumes for file systems mounted at /tmp, /opt, /var, /usr, and /.

See Table 8-2 for the recommended logical volume layout and sizes to be used for the golden image.

<table>
<thead>
<tr>
<th>Mount point</th>
<th>Logical Volume Name</th>
<th>Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>/tmp/</td>
<td>tmp_lv</td>
<td>384</td>
</tr>
<tr>
<td>/opt/</td>
<td>opt_lv</td>
<td>384</td>
</tr>
<tr>
<td>/var/</td>
<td>var_lv</td>
<td>384</td>
</tr>
<tr>
<td>/usr/</td>
<td>usr_lv</td>
<td>1536</td>
</tr>
</tbody>
</table>
This results in about 1 GB of free space remaining in the volume group, as shown in Figure 8-4.
25. In the Please Select A Device window, click **Next** (Figure 8-5). You see a Format Warnings window. Click **Format**.

![Please Select A Device](image)

**Figure 8-5** Summary of file systems and swap spaces

26. In the Writing storage configuration to disk window, click **Write changes to disk**.

27. In the Software options window, accept the default of **Basic Server** and click **Next**.

28. The installer will take about 5 to 10 minutes to install Linux. When complete, click **Reboot**. The system should be restarted from disk.

29. Start an SSH session to the golden image. You may see a warning from PuTTY about a “POTENTIAL SECURITY BREACH”. This is expected because a new set of SSH keys were generated for the same IP address. Click **Yes** to begin the session.

### 8.1.5 Verifying the installation

In this section, you verify some settings with the following commands. You should see an output similar to the following:

```
lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.0100 active dasda 94:0 ECKD 4096 2347MB 600840
0.0.0300 active dasdb 94:4 FBA 512 256MB 524288
0.0.0301 active dasdc 94:8 FBA 512 512MB 1048576
0.0.0101 active dasdd 94:12 ECKD 4096 2347MB 600840
```

```
swapon -s
Filename Type Size Used Priority
/dev/dasda2 partition 524296 0 -1
/dev/dasdb1 partition 262132 0 -2
```
This shows that the three swap spaces are active and all file systems are about half full or less.

8.2 Configuring the golden image

Now you want to customize the golden image as much as possible before cloning. The following high level steps are recommended, although you may add or omit some steps:

- “Configuring the automount of the installation tree” on page 148
- “Configuring the yum command for online updates” on page 149
- “Turning off unneeded services” on page 150
- “Configuring the VNC server” on page 151
- “Setting system to halt on SIGNAL SHUTDOWN” on page 151
- “Setting the system to log off when Linux is shut down” on page 151
- “Configuring SSH keys” on page 152
- “Changing the order of the swap disks” on page 152
- “Rebooting the system” on page 153
- “Verifying the changes” on page 153

8.2.1 Configuring the automount of the installation tree

You will now configure the Linux automount service to mount the installation tree on demand. The automounter automatically mounts a remote directory when it is accessed, and automatically unmounts it after a period of inactivity.
To configure automount, perform the following steps:

1. Make a backup copy of the /etc/auto.master file and add the following line at the bottom:

   ```
 # cd /etc
 # cp auto.master auto.master.orig
 # vi auto.master // add one line at the bottom
 ...

 #
 +auto.master
 nfs /etc/auto.cloner
   ```

   The new line specifies that the file system mounted under the /nfs/ directory will be configured in the /etc/auto.cloner file. Now create the /etc/auto.cloner file, and add one line that points to the RHEL 6 installation tree that is NFS-exported from the cloner:

   ```
 # vi auto.cloner
 rhel6 -ro,hard,intr 9.60.18.223:/nfs/rhel6
   ```

   This line specifies that under /nfs/ (in auto.master), when the rhel6/ directory (field 1) is accessed, the automounter will use the specified options (field 2) to mount the directory (field 3).

2. Create the /nfs/ directory. Restart the autofs service to pick up the new configuration. List the contents of the /nfs/rhel6/ directory. Even though this directory does not exist as a local file system, it is automatically mounted when referenced:

   ```
 # mkdir /nfs
 # service autofs reload
 Reloading maps
   ```

3. Show that the /nfs/rhel6/ directory is automatically mounted:

   ```
 # ls /nfs/rhel6
 boot.cat RELEASE-NOTES-es-ES.html RELEASE-NOTES-pt-BR.html
 EULA RELEASE-NOTES-fr-FR.html RELEASE-NOTES-ru-RU.html
 ...
   ```

8.2.2 Configuring the yum command for online updates

You now configure the yum command so it can install RPMs from the automounted installation tree. The configuration is identical to the cloner because in both instances the installation tree is in the /nfs/rhel6/ directory. However, on the cloner, this directory is local, while on the golden image (and later the clones), the directory is automounted.

To configure the yum command, perform the following steps:

1. You could create a file named rhel6.repo in the /etc/yum.repos.d directory again, or you could copy the same file from the cloner that you created previously. In this example, the scp command is used to copy the file:

   ```
 # cd /etc/yum.repos.d
 # scp gpok223:/etc/yum.repos.d/rhel6.repo .
 The authenticity of host 'gpok223 (9.60.18.223)' can't be established.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added 'gpok223,9.60.18.223' (RSA) to the list of known hosts.
 root@gpok223's password:
 rhel6.repo 100% 73 0.1KB/s 00:00
   ```
2. Enter the file to verify the contents:

```bash
cat rhel6.repo
[RHEL6]
name=Red Hat Enterprise Linux 6
baseurl=file:///nfs/rhel6/Server
```

3. Import the RPM GPG key so that the `yum` command knows you are installing official Red Hat packages. The Red Hat GPG key is located in the installation tree. Import the key by using the following command:

```bash
rpm --import /nfs/rhel6/RPM-GPG-KEY-redhat-release
```

The `yum` command should now be configured. It will be tested in the next section.

### 8.2.3 Turning off unneeded services

As with the golden image, perform the steps in 7.2.4, “Turning off unneeded services” on page 129.

Here is a summary:

```bash
chkconfig iptables off
chkconfig ip6tables off
chkconfig auditd off
chkconfig abrtd off
chkconfig atd off
chkconfig mdmonitor off
```

Verify that these service are turned off by using the `chkconfig --list` command:

```bash
chkconfig --list | grep 3:off
autofs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
cpi 0:off 1:on 2:on 3:on 4:on 5:on 6:off
cpuplugd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off
dumpconf 0:on 1:on 2:on 3:on 4:on 5:on 6:on
haldaemon 0:off 1:off 2:on 3:on 4:on 5:on 6:off
lvm2-monitor 0:off 1:on 2:on 3:on 4:on 5:on 6:off
messagebus 0:off 1:off 2:on 3:on 4:on 5:on 6:off
mon_statd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
netfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
network 0:off 1:off 2:off 3:on 4:on 5:on 6:off
nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off
postfix 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rhnsd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rpcbind 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rpcgssd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rpcidmapd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rsyslog 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sshd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sysstat 0:off 1:off 2:off 3:on 4:on 5:on 6:off
udev-post 0:off 1:off 2:off 3:on 4:on 5:on 6:off
8.2.4 Configuring the VNC server

Configure the VNC server the same way as you did on the cloner. Perform the same steps described in 7.2.5, “Configuring the VNC server” on page 130.

8.2.5 Setting system to halt on SIGNAL SHUTDOWN

Again, RHEL 6 reboots when a Ctrl-Alt-Del key sequence is pressed. This key sequence is simulated by z/VM when a SIGNAL SHUTDOWN command is issued. Rather than rebooting, you want your system to halt (shutdown).

Edit /etc/init/control-alt-delete.conf and change `shutdown -r` (reboot) to `shutdown -h` (halt):

```
#!/bin/sh

# This script will be executed *after* all the other init scripts.
# You can put your own initialization stuff in here if you don't
# want to do the full Sys V style init stuff.

touch /var/lock/subsys/local
chshut halt vmcmd logoff
chshut poff vmcmd logoff
```

This change will be processed when the system is rebooted.

8.2.6 Setting the system to log off when Linux is shut down

When Linux is shut down, the default is for the virtual machine to remain logged on even though it is not running an operating system. It is more convenient for the user ID to be logged off, both at z/VM SHUTDOWN time and to obtain a refreshed 3270 emulator session.

Edit the `/etc/rc.d/rc.local` file and add two lines at the end as follows:

```
# This script will be executed *after* all the other init scripts.
# You can put your own initialization stuff in here if you don't
# want to do the full Sys V style init stuff.

touch /var/lock/subsys/local
chshut halt vmcmd logoff
chshut poff vmcmd logoff
```

The z/VM user ID should now be logged off when you halt or power off Linux.
8.2.7 Configuring SSH keys

Recall that you generated SSH keys on the cloner in 7.2.8, “Configuring SSH keys” on page 133. Now it is time to copy these keys from the cloner to the golden image.

Perform the following steps:
1. Create a new directory (if one does not already exist) on the golden image where the public key will be copied:

   ```
   # cd /root
   # mkdir .ssh
   ```

2. Set the permissions to 700 so that it can only be accessed by root:

   ```
   # chmod 700 .ssh
   ```

3. Copy the public key to the authorized_keys name using the secure copy command (scp):

   ```
   # scp 9.60.18.223:/etc/ssh/ssh_host_dsa_key.pub /root/.ssh/authorized_keys
   The authenticity of host '9.60.18.223 (9.60.18.223)' can't be established.
   Are you sure you want to continue connecting (yes/no)? yes
   Warning: Permanently added '9.60.18.223' (RSA) to the list of known hosts.
   root@9.60.18.223's password:
   ssh_host_dsa_key.pub                          100%  590     0.6KB/s   00:00
   ```

 This action allows the cloner to initiate an encrypted SSH connection to the Linux server without needing to enter the root password.

8.2.8 Changing the order of the swap disks

It is likely that the order of swap space priority is not optimal. To change this configuration, perform the following commands:

1. View your order with the `swapon -s` command:

   ```
   # swapon -s
   Filename                                Type            Size    Used    Priority
   /dev/dasda2                             partition       524296  0       -1
   /dev/dasdb1                             partition       262132  0       -2
   /dev/dasdc1                             partition       524276  0       -3
   ```

 This output shows that the minidisk swap space will be used before the VDISK. As VDISKS are in-memory, they should be first in the priority, from smallest to largest.

2. Make a backup of the `/etc/fstab` file:

   ```
   # cd /etc
   # cp fstab fstab.orig
   ```

3. Modify the order by moving the line in `/etc/fstab` in the minidisk swap space below the lines with VDISK swap spaces:

   ```
   # vi fstab
   ...
   /dev/disk/by-path/ccw-0.0.0301-part1 swap    swap    defaults 0 0
   /dev/disk/by-path/ccw-0.0.0300-part1 swap    swap    defaults 0 0
   ```
After a reboot, the minidisk swap space should come back with the lowest priority.

8.2.9 Other configuration changes

You might consider other configuration changes. Of course, you can take an iterative approach: Start with this set of changes, clone some Linux images and test, then bring the golden image back up, make more changes, and re-clone.

Whether you are on the first pass of configuration or not, refer to the following sections to consider other changes for performance and availability related issues:

- 12.1, “Registering your system with RHN” on page 200
- 13.6, “Setting up Linux Memory Hotplugging” on page 222
- 13.8, “Hardware cryptographic support for OpenSSH” on page 227

8.2.10 Rebooting the system

Run the `reboot` command to test your changes:

```bash
# reboot
```

Broadcast message from root (pts/0) (Sun Nov 19 08:57:32 2006):

```
The system is going down for reboot NOW!
```

8.2.11 Verifying the changes

You are now done customizing the master Linux image. When the system comes back online, you should verify the changes that you made:

1. SSH back into the cloner and check a few settings.
2. Use the `df` command to display your file systems. Your output may differ:

```
# df -h
Filesystem            Size  Used Avail Use% Mounted on
/dev/dasda1           504M  147M  332M  31% /
tmpfs                 498M     0  498M   0% /dev/shm
/dev/mapper/system_vg-opt_lv 372M   17M  337M   5% /opt
/dev/mapper/system_vg-tmp_lv 372M   17M  337M   5% /tmp
/dev/mapper/system_vg-usr_lv 1.5G  817M  619M  57% /usr
/dev/mapper/system_vg-var_lv 372M   85M  269M  24% /var
```

3. Confirm that both of your swap spaces are operational:

```
# swapon -s
Filename                        Type    Size    Used
/dev/dasdb1                     partition 262132  0   -1
/dev/dasdc1                     partition 524276  0   -2
/dev/dasda2                     partition 524296  0   -3
```
4. Verify the shutdown settings with the `lsshut` command:

```bash
# lsshut
Trigger     Action
-----------  ----------
Halt         vmcmd ("logoff")
Panic        stop
Power off    vmcmd ("logoff")
Reboot       reipl
```

5. You might choose to confirm other settings.

Congratulations! You have now successfully installed the golden image. This image will normally be shut down or quiesced. You are now ready to clone the golden image to a new virtual server.
Chapter 9. Configuring RHEL 6 for cloning

At this point, you have completed the installation of RH6CLONE, the Linux cloner, and RH6GOLD, the golden image. The cloner must be up and running.

In this chapter, you perform the following steps:

- “Formatting DASD for minidisks” on page 156
- “Defining a new user ID for a virtual server” on page 157
- “Cloning a virtual server manually” on page 158
- “Cloning a new virtual server” on page 163
- “Defining three more virtual machines” on page 168
- “Reviewing system status” on page 173
9.1 Formatting DASD for minidisks

In 4.6.2, “Formatting DASD for minidisks” on page 53, DASD was formatted to become minidisks for the cloner and the golden image. The CPFMTXA command can be used to format one DASD at a time, but the CPFORMAT EXEC is a wrapper around CPFMTXA that allows the formatting of multiple DASD.

To have access to enough DASDs to define four more user IDs, LINUX01 - LINUX04, with two 3390-3 volumes each, eight 3390-3s will be needed. In the examples used in this book, 3390-9s are being used, and two thirds of the 63A9 volume is available. So only two more volumes are needed: 63AA and 63AB. Consult your worksheets in 2.7.2, “z/VM DASD worksheet” on page 17 to determine how many volumes you need for four new virtual machines.

To format DASD for minidisks, perform the following steps:

1. Logon to a 3270 session as MAINT.
2. Query the devices that will be used for the remaining Linux user IDs:
   ```
   => q 63aa-63ab
   DASD 63AA FR63AA , DASD 63AB FR63AB
   ```
3. Attach the volumes to MAINT using the * wildcard:
   ```
   => att 63aa-63ab *
   63AA-63AB ATTACHED TO MAINT
   ```
4. Invoke the CPFORMAT command against these volumes using the as perm parameter:
   ```
   => cpformat 63aa-63ab as perm
   ...
   ```
 DASD status after:
   ```
   TargetID Tdev OwnerID  Odev Dtype Vol-ID Rdev   StartLoc       Size
   MAINT  63AA MAINT    63AA 3390  UM63AA 63AA          0      10017
   MAINT  63AB MAINT    63AB 3390  UM63AB 63AB          0      10017
   ```
5. Detach the seven volumes from MAINT with the DETACH command:
   ```
   => det 63aa-63ab
   63AA-63AB DETACHED
   ```
6. Attach the newly formatted DASDs to SYSTEM so they can be used for minidisks:
   ```
   => att 63aa-63ab system
   DASD 63AA ATTACHED TO SYSTEM UM63AA
   DASD 63AB ATTACHED TO SYSTEM UM63AB
   ```
 The volumes will now be available to be used for minidisks in the USER DIRECT file. They will also be available after the next IPL because their new labels match the pattern specified by the User_Volume_Include UM* statement in the SYSTEM CONFIG file.
9.2 Defining a new user ID for a virtual server

In this section, you define a new user ID, LINUX01, in z/VM and clone the golden image to it. To do so, perform the following steps:

1. Logon to MAINT and edit the USER DIRECT file to add more Linux IDs:

   ```
   ==> x user direct c
   ```

2. Go to the bottom of the file and add the following five lines. In this example, the user ID is LINUX01 with a password of LNX4VM. It defaults to 256 MB of memory, but can be set up to 1 GB. It has only G (General user) privileges. It has two 3338 cylinder (about 2.2 GB each) minidisks. In this example, they are located at the 63A9 device address, which was formatted and given a label of UM63A9:

   ```
   USER LINUX01 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   OPTION APPLMON
   MDISK 100 3390 3339 3338 UM63A9 MR LNX4VM LNX4VM LNX4VM
   MDISK 101 3390 6677 3338 UM63A9 MR LNX4VM LNX4VM LNX4VM
   ```

3. You might need to add the new volumes to the $ALLOC$ user ID so cylinder 0 will not show up in the disk map as a gap.

4. Again, check for gaps and overlaps. You can use the ALL subcommand with the logical OR operator “|” to check for both strings. You should see only one 501 cylinder gap.

   ```
   ==> diskmap user
   ==> x user diskmap
   ===> all /gap/|/overlap/
   ---------------------  4 line(s) not displayed ---------------------
   0    500    501    GAP
   ---------------------  368 line(s) not displayed ---------------------
   ===> quit
   ```

5. Bring the changes online using the DIRECTXA command:

   ```
   ==> directxa user
   z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 3.0
   EOJ DIRECTORY UPDATED AND ON LINE
   ```

The new Linux user ID has now been defined.

9.2.1 Adding LINUX01 to AUTOLOG1’s PROFILE EXEC

The new Linux ID you defined needs access to the VSWITCH. A SET VSWITCH command with the GRANT parameter can be added to AUTOLOG1 PROFILE EXEC to accomplish this task. Also, an XAUTOLOG statement can be added if the user ID is automatically logged on at z/VM IPL time.

Link and access the AUTOLOG1 191 disk in read/write mode and edit the PROFILE EXEC file. Add LINUX01 to the sections that grant access to the VSWITCH and that use XAUTOLOG on the Linux user IDs:

```
==> link autolog1 191 1191 mr
==> acc 1191 f
==> x profile exec f  // add two lines
/****************************/
/* Autolog1 Profile Exec */
/****************************/
```
These changes will not take effect until the next IPL, so you must grant this user ID access to the VSWITCH for this z/VM session:

=> set vswitch vsw1 grant linux01
Command complete

9.3 Cloning a virtual server manually

Before using the clone script to clone a server, you should clone a server manually to better understand the process.

There are many ways to clone Linux under z/VM. The steps in this section are just one way to do it. The following assumptions are made based on what you have done so far:

► The source user ID, RH6GOLD in this example, has a root file system on LVM, located on minidisks 100-101.
► The target user ID, LINUX01 in this example, has identically sized minidisks 100-101.
► The vmcp command is available to issue z/VM CP commands
► The z/VM FLASHCOPY command can be used, but if you do not have that support, the Linux dd command will work.

Given these assumptions, one set of steps that can be used to clone a system is as follows:

1. Link the source disks as read-only.
2. Link the target disks as read/write.
3. Copy the source to the target disk with FLASHCOPY or the Linux dd command.
4. Detach the source disks.
5. Bring the newly copied LVM online.
6. Mount the newly copied root file system.
7. Modify the networking information on the target system.
8. Detach the target disks.
9. Perform an IPL of the target system.
10. Modify the SSH keys on the target system.

Linking the source and target disks

Start an SSH session to the cloner as root.

The source disks, RH6GOLD 100-101, are linked as read-only virtual devices 1100 and 1101 with the CP LINK command:

```
# vmcp link rh6gold 100 1100 rr
# vmcp link rh6gold 101 1101 rr
```

The target disks, LINUX01 100-101, are linked as multi-read (read/write if no other user ID has write access) as virtual devices 2100 and 2101:

```
# vmcp link linux01 100 2100 mr
# vmcp link linux01 101 2101 mr
```

Copying the source to the target disk with FLASHCOPY

The two disks are copied with the CP FLASHCOPY command:

```
# vmcp flashcopy 1100 0 end to 2100 0 end
Command complete: FLASHCOPY 1100 0 END TO 2100 0 END
# vmcp flashcopy 1101 0 end to 2101 0 end
Command complete: FLASHCOPY 1101 0 END TO 2101 0 END
```
Detaching the source disks

Now that you no longer need the source disks linked, detach them:

```
# vmcp det 1100-1101
1100-1101 DETACHED
```

Activating the target disk with the root file system

Activate the minidisk at real device address 2100, which has the root file system in the first partition:

```
# chccwdev -e 2100
Setting device 0.0.2100 online
Done
```
Mounting the newly copied root file system

To mount the newly copied root file system, perform the following steps:

1. Use the `lsdasd` command to show the minidisks that are accessible. The target root file system is on the disk accessed as virtual device address 2100.

   ```bash
   # lsdasd
   # Bus-ID  Status  Name  Device  Type  BlkSz  Size      Blocks
   0.0.0100 active  dasda  94:0  ECKD  4096  2347MB    600840
   0.0.0300 active  dasdb  94:4  FBA   512  256MB     524288
   0.0.0301 active  dasdc  94:8  FBA   512  512MB    1048576
   0.0.0101 active  dasdd  94:12 ECKD  4096  2347MB    600840
   0.0.2100 active  dasdf
   0.0.0102 active  dasde  94:16 ECKD  4096  2347MB    600840
   0.0.2101 active  dasdg  94:24 ECKD  4096  2347MB    600840
   ```

2. The device is `/dev/dasdf` and the first partition is `/dev/dasdf1`. Make a new mount point, `/mnt/linux01`, for the LINUX01 root file system and mount it there:

   ```bash
   # cd /mnt
   # mkdir linux01
   # mount /dev/dasdf1 linux01/
   ```

 Observe that this appears to be a root file system:

   ```bash
   # cd linux01
   # ls
   bin  cgroup  etc  lib  lost+found  misc  net  opt  root  selinux  sys  usr
   boot  dev  home  lib64  media  mnt  nfs  proc  sbin  srv  tmp  var
   ```

Modifying networking information about the target system

In this example, the only two pieces of networking information that are modified are the IP address and the host name. The two important files are `/etc/sysconfig/network` and `/etc/sysconfig/network-scripts/ifcfg-eth0`.

Perform the following steps:

1. Observe the contents of these files:

   ```bash
   # cat /etc/sysconfig/network
   NETWORKING=yes
   HOSTNAME=gpok223.endicott.ibm.com
   GATEWAY=9.60.18.129
   # cat /etc/sysconfig/network-scripts/ifcfg-eth0
   DEVICE="eth0"
   BOOTPROTO="static"
   DNS1="9.0.3.1"
   DOMAIN="endicott.ibm.com"
   GATEWAY="9.60.18.129"
   IPADDR="9.60.18.223"
   MTU="1500"
   NETMASK="255.255.255.128"
   NETTYPE="qeth"
   NM_CONTROLLED="yes"
   ONBOOT="yes"
   OPTIONS="layer2=0 portno=0"
   PORTNAME="DONTCARE"
   SUBCHANNELS="0.0.0600,0.0.0601,0.0.0602"
   ```
2. Change the host name in the /etc/hosts file:

 # cd /mnt/linux01/etc/sysconfig
 # vi network
 NETWORKING=yes
 HOSTNAME=g pok224.endicott.ibm.com
 GATEWAY=9.60.18.129

3. Change the IP address in the /etc/sysconfig/network-scripts/ifcfg-eth0 file:

 # cd network-scripts
 # vi ifcfg-eth0
 DEVICE="eth0"
 BOOTPROTO="static"
 DNS1="9.0.3.1"
 DOMAIN="endicott.ibm.com"
 GATEWAY="9.60.18.129"
 IPADDR="9.60.18.224"
 MTU="1500"
 NETMASK="255.255.255.128"
 NETTYPE="qeth"
 NM_CONTROLLED="yes"
 ONBOOT="yes"
 OPTIONS="layer2=0 portno=0"
 PORTNAME="DONTCARE"
 SUBCHANNELS="0.0.0600,0.0.0601,0.0.0602"

Unmounting and detaching the target disk

Now that the target disks have been copied and modified, they can be detached. Perform the following steps:

1. Change to the default directory with the cd command, use the sync command to flush the disks, and use the umount command to unmount the modified root file system:

 # cd
 # sync
 # umount /mnt/linux01

2. Set the LINUX01 1100-1101 disks offline with the chccwdev command and detach them using the CP DETACH command:

 # vmcp det 2100
 2100 DETACHED

You should now be ready to perform an IPL of the manually cloned system.

Performing an IPL of the target system

Log on to a 3270 session as LINUX01. CMS will undergo an IPL and the PROFILE EXEC file will ask you if you want to perform an IPL from minidisk 100. Type y for yes and Linux should boot. Look for the modified host name (gpok224 in this example):

LOGON LINUX01
NIC 0600 is created; devices 0600-0602 defined
z/VM Version 6 Release 1.0, Service Level 1002 (64-bit),
built on IBM Virtualization Technology
There is no logmsg data
FILES: NO RDR, NO PRT, NO PUN
LOGON AT 15:27:24 EDT MONDAY 10/04/10
z/VM V6.1.0 2010-09-23 11:31
Chapter 9. Configuring RHEL 6 for cloning

9.4 Cloning a new virtual server

Now that you have cloned a server manually and better understand the steps, you can use the clone script to clone automatically.

9.4.1 Using the /etc/sysconfig/clone configuration file

The /etc/sysconfig/clone configuration file can be used to change global settings. The following variables can be set:

AUTOLOG - If set to "y" the script will autolog the cloned image after the cloning is completed. If it is set to "n" the image will not autolog the cloned image.
AUTOLOG=y
PROMPT - This will set if the script should prompt the user for
confirmation before cloning. If set to "y" the user
will be prompted to continue. If set to "n" the script
will run without confirmation.
PROMPT=y

CLONE_MNT_PT - This specifies the location on the filesystem
that the cloned root filesystem should be mounted
to. If the directory does not exist it will be
created the first run.
CLONE_MNT_PT=/mnt/clone

CLONE_METHOD - This is used to determine what method you want to use
for cloning. It can have a value of AUTO, which will first
attempt FLASHCOPY then fall back to dd, or DD which will
only try to perform a Linux dd command.
CLONE_METHOD=auto

BLACKLIST - List of z/VM user IDs forbidden to be used as clone targets.
It's a good idea to add your master server here, so it doesn't
become a clone target by mistake.
Format: BLACKLIST="userA userB userC ..."
BLACKLIST=""

In the following example, this file is not modified, so all the defaults are present.

9.4.2 Creating a configuration file for LINUX01

For each Linux guest you want to clone, you must create a configuration file that you can use
to customize the image after cloning. Perform the following steps on the RH6CLONE
installation server:

1. Open an SSH session to RH6CLONE as root.
2. Install the clone script RPM:
 # rpm -ivh /nfs/virt-cookbook-RH6/clone-1.0-10.s390x.rpm
 Preparing... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! [100%]
 1:clone #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! [100%]
3. Copy and then edit the supplied sample configuration file to reflect the values of the new
 Linux system:
 # cd /etc/clone
 # cp rhel.conf.sample linux01.conf

4. Edit the new configuration file with the appropriate values for your system. If the new Linux
 image is going to be on the same network as the golden image, you are likely to only have
to change two variables: the Internet Protocol (IP) address (IPADDR) and the Domain
 Name System (DNS) name (HOSTNAME). In the following example, the IP address is set
to 9.60.18.224 and the DNS name to gpok224.endicott.ibm.com.
 # vi linux01.conf
 # Define the DASD that should be included as a part
 # of the clone.
 DASD=100,101
 DASD_ROOT=100
 VG_NAME=
 LV_ROOT=
Define networking information that will be used for the host.
IPADDR=9.60.18.224
SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602
HOSTNAME=gpok224.endicott.ibm.com
NETTYPE=qeth
NETMASK=255.255.255.128
NETWORK=9.60.18.128
SEARCHDNS=endicott.ibm.com
BROADCAST=9.60.18.255
GATEWAY=9.60.18.129
DNS=9.0.2.11
MTU=1500

Note the following points for the numbers in black above:

1. This is the range of minidisks that will be copied. You can enter dashes (-)
or commas (,) to specify address ranges or specific disks, respectively. Make
sure that the range following DASD= is one continuous block of text with no
spaces added.

2. This is the minidisk that contains the root file system.

3. If the root file system of the golden image is on a logical volume, specify the
volume group name here.

4. If you specified a value for 3 above (VG_NAME), specify the logical volume
name of the root file system.

5. Save the file and log off root.
6. Log in to LINUX01.
7. Answer n to the question Do you want to IPL Linux from minidisk 100? y/n. Verify that
the minidisks at addresses 100 and 101 and the VDISK at addresses 300 and 301 are set
to read/write with the QUERY DASD command:

 ==> q da
00: DASD 0100 3390 UM63A9 R/W 3338 CYL ON DASD 63A9 SUBCHANNEL = 0000
00: DASD 0101 3390 UM63A9 R/W 3338 CYL ON DASD 63A9 SUBCHANNEL = 0001
00: DASD 0190 3390 610RES R/O 107 CYL ON DASD 6280 SUBCHANNEL = 0009
00: DASD 0191 3390 UM6289 R/O 300 CYL ON DASD 6289 SUBCHANNEL = 000C
00: DASD 019D 3390 UV6283 R/O 146 CYL ON DASD 6283 SUBCHANNEL = 000A
00: DASD 019E 3390 UV6283 R/O 250 CYL ON DASD 6283 SUBCHANNEL = 000B
00: DASD 0300 9336 (VDSK) R/W 524288 BLK ON DASD VDSK SUBCHANNEL = 000E
00: DASD 0301 9336 (VDSK) R/W 1048576 BLK ON DASD VDSK SUBCHANNEL = 000F
00: DASD 0592 3390 UV6284 R/O 70 CYL ON DASD 6284 SUBCHANNEL = 000D

8. Log off LINUX01.

You are now be ready to clone Linux to this new user ID.

9.4.3 Using the clone script

To use the clone script, perform the following steps:

1. Go back to your SSH session to the controller.
2. Verify that the clone script is in your PATH using the which command:

 # which clone
 /usr/sbin/clone
The clone script can operate in two modes: where the DASD information is provided on the command line, and where the DASD information is included in the new user ID’s configuration file. Running `clone` with no arguments prints a usage message as follows:

```
# clone
Usage: clone [-v] sourceID targetID [rootMinidisk [minidisk1 minidisk2..]]
Switches
  -v Verbose output
Required
  sourceID the z/VM user id you want to clone from
  targetID the z/VM user id you want to clone to
Optional
  rootMinidisk the minidisk address that contains the root filesystem
  minidisk1..n additional minidisks that should be copied
```

The sourceID is the z/VM ID of the master Linux image and targetID is the z/VM ID of the target (LINUX01 in this example). These values are always required.

In the following examples, DASD is set to 100-101, which implies that minidisks located at virtual addresses 100 and 101 are copied. The 300 and 301 VDISKS are omitted because SWAPGEN automatically creates them each time the user logs on. The DASD_ROOT value specifies which one of these minidisks contains the Linux root file system (/).

The script exits if either the golden image or the clone image is logged in. The script first attempts to copy the disks with FLASHCOPY via the `vmcp module` command. If an error is returned, the script falls back to using Linux `dasdfmt` and `dd` commands. Finally, the script boots the new Linux image via the `xautolog` command.

It takes less than a minute to clone with FLASHCOPY support and 3 to 20 minutes with `dd`. Here is an example of cloning from RHEL52 to LINUX01 with FLASHCOPY support. The example uses the verbose switch (`-v`) to clarify its actions.

```
# clone -v rh6gold linux01
Invoking CP command: QUERY rh6gold
Invoking CP command: QUERY linux01
This will copy disks from rh6gold to linux01
Host name will be: gpok224.endicott.ibm.com
IP address will be: 9.60.18.224
Do you want to continue? (y/n): y
```

The script makes sure the golden image (source) user ID and the target user ID exist and are logged off. It then confirms the order of the cloning and displays information collected from the `/etc/clone/linux01.conf` file. It then asks if you are sure you want to overwrite the disks on the target user ID.

Next, the script links to the master clone minidisk and the target minidisk. The master minidisks are linked to RH6CLONE at virtual address FFFE, and the target minidisks are linked as FFFF. The FFFE links are read-only and the FFFF links are read-write. With the links in place, the script issues a FLASHCOPY command to copy the source 100 and 101 minidisks to the target 100 and 101 minidisks. The script then detaches the links. If FLASHCOPY fails, the script falls back to the Linux `dasdfmt` and `dd` commands.

```
Cloning rh6gold to linux01 ...
Copying minidisks...
Invoking CP command: QUERY VIRTUAL fffe
Invoking CP command: LINK rh6gold 100 fffe RR
Invoking CP command: QUERY VIRTUAL ffff
```
Invoking CP command: LINK linux01 100 ffff W
Invoking CP command: FLASHCOPY fffe 0 END ffff 0 END
100 disk copied ...
Invoking CP command: DETACH fffe
Invoking CP command: DETACH ffff
Invoking CP command: QUERY VIRTUAL fffe
Invoking CP command: LINK rh6gold 101 fffe RR
Invoking CP command: QUERY VIRTUAL fffe
Invoking CP command: LINK linux01 101 fffe W
Invoking CP command: FLASHCOPY fffe 0 END ffff 0 END
101 disk copied ...
Invoking CP command: DETACH fffe
Invoking CP command: DETACH ffff

The root file system is mounted to /mnt/clone and the networking information is modified in
/mnt/clone/etc/sysconfig/network/ifcfg-eth0, /mnt/clone/etc/sysconfig/network, and
/mnt/clone/etc/hosts:

Updating cloned image ...
Invoking CP command: QUERY VIRTUAL fffe
Invoking CP command: LINK linux01 100 fffe W
Modifying networking info under /mnt/clone...
Regenerating SSH keys in /mnt/clone/etc/ssh/ ...
Invoking CP command: DETACH fffe
Invoking CP command: XAUTOLOG linux01
Booting linux01
Successfully cloned rh6gold to linux01

Then the SSH keys are regenerated in such a way that they are unique for the new virtual
server. The new root file system is then unmounted, set offline, and detached. In the final
section, the LINUX01 user ID is logged on via XAUTOLOG. Because the shared PROFILE
EXEC file detects that the user ID is in a disconnected mode, it carries out an IPL of Linux from
minidisk 100.

You may want to SSH into the newly cloned Linux server.

Note: If the clone script fails, you can check that:

- The configuration contains all of the correct information in /etc/clone/.
- No other users have links to the clone's read-write disks.
A block diagram of this process is shown in Figure 9-1.

![Figure 9-1 Cloning block diagram](image)

The top of the figure shows the Linux cloner/installation server that is running on the RH6CLONE user ID. To use FLASHCOPY or `dd`, the RH6CLONE user ID requires a LINK to the source minidisks that RH6GOLD owns and the destination minidisks that LINUX01 owns. The figure shows that the LINK statement is issued as read-only (RR) for the source and read/write (W) for the target. The VDISK-based swap spaces at virtual addresses 300 and 301 are defined in-memory, so they do not need to be copied.

9.5 Defining three more virtual machines

So far, you have installed Linux manually twice onto RH6CLONE and RH6GOLD. You have created a new user ID named LINUX01 and cloned to it. Now it is time to prepare for more cloning of each of the virtual servers described in the remaining chapters.

The following steps are performed:
- “Defining three more user IDs” on page 168
- “Creating three new configuration files” on page 170
- “Adding new virtual machines to the startup process” on page 171
- “Testing logging on to a new user ID” on page 172

9.5.1 Defining three more user IDs

Define three more user IDs for Linux virtual servers. Perform the following steps:

1. Log on to MAINT.
2. Edit the USER DIRECT file and create three new sections, that is, LINUX02, LINUX03, and LINUX04. You need to use the DASD volumes you just formatted, with two for each virtual server. You can repeat the definition of LINUX01 three times with the block copy "*" prefix command. For example:

```plaintext
===> x user direct
====> /user linux01
... "*"
02142 USER LINUX01 LNX4VM 256M 1G G
02143 INCLUDE LNXDFLT
02144 OPTION APPLMON
02145 MDISK 100 3390 0001 3338 <UM63A9> MR LNX4VM LNX4VM LNX4VM
"*
    MDISK 101 3390 0001 3338 <UM3F09> MR LNX4VM LNX4VM LNX4VM
```

3. This will create three more copies of the LINUX01 user definition. Modify them to have a user ID of LINUX02, LINUX03, and LINUX04, and give each one the correct DASD labels:

```plaintext
USER LINUX02 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   OPTION APPLMON
   MDISK 100 3390 0001 3338 UM63AA MR LNX4VM LNX4VM LNX4VM
   "*
USER LINUX03 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   OPTION APPLMON
   MDISK 100 3390 6677 3338 UM63AA MR LNX4VM LNX4VM LNX4VM
   "*
USER LINUX04 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   OPTION APPLMON
   MDISK 100 3390 3339 3338 UM63AB MR LNX4VM LNX4VM LNX4VM
   "*
```

4. Go to the top of the file and find the definition for the $ALLOC$ user. Add dummy definitions for cylinder 0 of each of the new volumes and save the changes. In this example, two volumes are added, UM63AA and UM63AB:

```plaintext
====> top
====> /alloc
USER $ALLOC$ NOLOG
   MDISK A01 3390 000 001 610RES R
   MDISK A02 3390 000 001 UV6683 R
   MDISK A03 3390 000 001 UV6684 R
   MDISK A04 3390 000 001 UM6289 R
   MDISK A05 3390 000 001 UM6290 R
   MDISK A06 3390 000 001 UM6293 R
   MDISK A07 3390 000 001 UM6294 R
   MDISK A08 3390 000 001 UM63A2 R
   MDISK A09 3390 000 001 UM63A9 R
   MDISK A0A 3390 000 001 UM63AA R
   MDISK A0B 3390 000 001 UM63AB R
====> file
```
5. Check for overlaps and the single gap. Run quit to leave the USER DISKMAP file:

```plaintext
=> diskmap user
=> x user diskmap
=====> pre off
=====> all /gap/|/overlap/
0         500         501    GAP
--------------------  6  line(s) not displayed --------------------
0           0           1    GAP
--------------------  388  line(s) not displayed --------------------
=====> quit
```

6. Bring the changes online using the DIRECTXA USER command:

```plaintext
=> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
E0J DIRECTORY UPDATED AND ON LINE
HCPDIR494I User directory occupies 45 disk pages
```

You have now created three new user IDs that can be cloned to.

9.5.2 Creating three new configuration files

A new parameter must be created for each of the user IDs with the proper networking information. Perform the following steps:

1. Log off of MAINT and log on to LNXMAINT.

2. Copy the RH6GOLD parameter file three times:

```plaintext
=> copy rh6gold parm-rh6 d linux02 = =
=> copy rh6gold parm-rh6 d linux03 = =
=> copy rh6gold parm-rh6 d linux04 = =
```

3. Edit each of the three files and replace the name of the configuration file:

```plaintext
=> x linux02 parm-rh6 d
root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=LINUX02.CONF-RH6
vnc
```

4. Copy the RH6GOLD configuration file three times:

```plaintext
=> copy rh6gold conf-rh6 d linux02 = =
=> copy rh6gold conf-rh6 d linux03 = =
=> copy rh6gold conf-rh6 d linux04 = =
```

5. Edit each of the three files replacing the host name and IP address. In the following example, the LINUX02 CONF-RH6 file is modified:

```plaintext
=> x linux02 conf-rh6 d
DASD=100-101,300-301
HOSTNAME=gpok225.endicott.ibm.com
NETTYPE=qeth
IPADDR=9.60.18.225
SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602
NETMASK=255.255.255.128
SEARCHDNS=endicott.ibm.com
GATEWAY=9.60.18.129
DNS=9.0.3.1
MTU=1500
PORTNAME=DONTCARE
```
PORTNO=0
LAYER2=0

You should now have three new parameter files and three new configuration files.

9.5.3 Adding new virtual machines to the startup process

Modify the PROFILE EXEC file on AUTOLOG1 191 to grant access to the VSWITCH for the three new user IDs and add XAUTOLOG commands so they boot when you perform an IPL of z/VM system.

Perform the following steps:

1. Link and access the AUTOLOG1 191 disk so the file can be modified from MAINT:
   ```bash
   ==> link autolog1 191 1191 mr
   ==> acc 1191 f
   ```
 ▶ Edit the PROFILE EXEC file and add three new SET VSWITCH commands and three new XAUTOLOG commands:
   ```bash
   ==> x profile exec f
   ...
   /* Grant access to VSWITCH for each Linux user */
   'cp set vswitch vsw1 grant rh6clone'
   'cp set vswitch vsw1 grant rh6gold'
   'cp set vswitch vsw1 grant rh6gold2'
   'cp set vswitch vsw1 grant linux01'
   'cp set vswitch vsw1 grant linux02'
   'cp set vswitch vsw1 grant linux03'
   'cp set vswitch vsw1 grant linux04'
   /* XAUTOLOG each Linux user that should be started */
   'cp xautolog rh6clone'
   'cp xautolog linux01'
   'cp xautolog linux02'
   'cp xautolog linux03'
   'cp xautolog linux04'
   'cp logoff'                         /* logoff when done */
   * * * End of File * * *
   ===> file
   ```

2. Grant access to the new user IDs for the current z/VM session with the SET VSWITCH command:
   ```bash
   ==> set vswitch vsw1 grant linux02
   Command complete
   ==> set vswitch vsw1 grant linux03
   Command complete
   ==> set vswitch vsw1 grant linux04
   Command complete
   ```

3. Verify that the new user IDs have access with the QUERY VSWITCH ACCESSLIST command:
   ```bash
   ==> query vswitch vsw1 acc
   VSWITCH SYSTEM VSW1 Type: VSWITCH Connected: 4 Maxconn: INFINITE
   PERSISTENT RESTRICTED NONROUTER Accounting: OFF
   ```
VLAN Unaware
State: Ready
IPTimeout: 5 QueueStorage: 8
Portname: UNASSIGNED RDEV: 3004 Controller: DTCVSW1 VDEV: 3004
Portname: UNASSIGNED RDEV: 3008 Controller: DTCVSW2 VDEV: 3008 BACKUP
Authorized userids:
 LINUX01 LINUX02 LINUX03 LINUX04 RH6CLONE RH6GOLD
 SYSTEM
...

9.5.4 Testing logging on to a new user ID

You should now be able to log on to a new user ID and verify the integrity of the definitions.

Perform the following steps

1. Log on to LINUX02 and you should first notice that a NIC is created as well as two
 VDISks:

 LOGON LINUX02
 00: NIC 0600 is created; devices 0600-0602 defined
 z/VM Version 6 Release 1.0, Service Level 1002 (64-bit),
 built on IBM Virtualization Technology
 There is no logmsg data
 FILES: NO RDR, NO PRT, NO PUN
 LOGON AT 11:05:06 EDT TUESDAY 10/05/10
 z/VM V6.1.0 2010-09-23 11:31

 DMSACP723I A (191) R/O
 DMSACP723I C (592) R/O
 DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
 DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
 Do you want to IPL Linux from minidisk 100? y/n
 n
 If you forgot to grant access to the VSWITCH you will see an error message.

2. Verify that you have two read/write devices at addresses 100-101 with the QUERY DASD
 command:

 ==> q da
 DASD 0100 3390 UM63AA R/W 3338 CYL ON DASD 63AA SUBCHANNEL = 0000
 DASD 0101 3390 UM63AA R/W 3338 CYL ON DASD 63AA SUBCHANNEL = 0001
 ...

3. Log off of LINUX02.

Congratulations, you have cloned one Linux virtual server and defined three more user IDs
that should now be ready for cloning to. You will clone to these user IDs in Chapter 10,
“Installing Linux with kickstart” on page 175. In addition to cloning, the Red Hat kickstart tool
can also be used. That is discussed in Chapter 10, “Installing Linux with kickstart” on
page 175 as well.
9.6 Reviewing system status

You can step back now and view your system from a DASD point of view, as shown in Figure 9-2. If you have followed all the sections in this book so far, you should have used the equivalent of 23 3390-3 volumes: eight for the z/VM system, seven for the Linux cloner and golden image, and eight for the four virtual servers.

You can also view the system from an administrator's and user's point of view, as shown by the horizontal lines and the italicized text on the right side of the figure. The z/VM and Linux system administration roles may be performed by the same person, but these roles can also be done by different administrators. The Linux users may not care that their servers are virtual machines and may be oblivious to the fact that they might have been cloned in a matter of minutes.
Chapter 10. Installing Linux with kickstart

Kickstart is an automated way of installing RHEL 6. Using kickstart, you can create a single file that answers all of the questions usually asked during an interactive installation.

In Chapter 9, “Configuring RHEL 6 for cloning” on page 155, you cloned to LINUX01 and created three new user IDs for virtual servers. In this chapter, you kickstart a RHEL 6 system to LINUX02. In comparison, cloning a server is faster, assuming the FLASHCOPY command is available. However, kickstarting a server is more flexible, as it allows for different package configurations and pre-installation and post-installation scripting.

The cloner is now configured as an installation server using NFS to share the installation tree. You will now configure it as a kickstart server to perform automated installations over the network. The following steps are involved in installing Linux with kickstart:

- “Configuring the cloner for kickstart” on page 176
- “Configuring the LINUX02 user for kickstart” on page 178
- “Kickstarting the LINUX02 user” on page 178
10.1 Configuring the cloner for kickstart

The installer generates a kickstart file at the end of every installation. It is based on the answers provided during the interactive installation. This kickstart file is named anaconda-ks.cfg and is located in the /root/ directory. This file on RH6CLONE will be used as a template for LINUX02.

Perform the following steps:

1. Start an SSH session on the cloner (RH6CLONE) as root.
2. Start the golden image (RH6GOLD). You could log on to a 3270 session, but you can also start it from the cloner with the CP XAUTOLOG command:
   ```
   # vmcp xautolog rh6gold
   Command accepted
   ```
3. Create the /nfs/ks/ directory for the kickstart file:
   ```
   # cd /nfs
   # mkdir ks
   # cd ks
   ```
4. Copy the sample kickstart file from the golden image:
   ```
   # scp 9.60.18.222:/root/anaconda-ks.cfg linux02-ks.cfg
   anaconda-ks.cfg                               100% 1813     1.8KB/s   00:00
   # chmod +r linux02-ks.cfg
   ```
5. Edit the kickstart configuration file as follows. After the first four changes, which are in bold, remove the comments from the part, volgroup, and logvol lines. Edit the lines in bold to customize this kickstart for LINUX02:
   ```
   # vi linux02-ks.cfg
   # Kickstart file automatically generated by anaconda.
   #version=RHEL6
   install
   reboot
   nfs --server=9.60.18.223 --dir=/nfs/rhel6
   lang en_US.UTF-8
   rootpw --iscrypted
   $6$jiFGqyU1FwxWWQ6t$7qnsOSsUsNOyGnjt1Pr63z204RDjLq6M//1xfA.E5SbQ.M2gNKCGpahQ.m07JCm.56yH3Vkbxc5bVtvRERw0d0
   firewall --disabled
   authconfig --enableshadow --passalgo=sha512 --enablefingerprint
   selinux --enforcing
   timezone --utc America/New_York
   bootloader --location=mbr --driveorder=dasdb,dasdc,dasdd,dasde
   --append="crashkernel=auto"
   # The following is the partition information you requested
   # Note that any partitions you deleted are not expressed
   # here so unless you clear all partitions first, this is
   # not guaranteed to work
   clearpart --all --initlabel
   --drives=dasdb,dasdc,dasdd,dasde
   part / --fstype=ext4 --size=512
   part swap --size=512
   part pv.Al9FUC-feWq-uHGF-Jau1-RxZQ-Kq9t-pi5z1C --grow --size=200
   ```
part pv.uB82Dq-ajP3-QEln-dcsJ-XHds-tCxx-BRjx0c --grow --size=200
part swap --grow --size=200
part swap --grow --size=200
volgroup system_vg --pesize=4096 pv.uB82Dq-ajP3-QEln-dcsJ-XHds-tCxx-BRjx0c pv.uB82Dq-ajP3-QEln-dcsJ-XHds-tCxx-BRjx0c
logvol /opt --fstype=ext4 --name=opt_lv --vgname=system_vg --size=384
logvol /tmp --fstype=ext4 --name=tmp_lv --vgname=system_vg --size=384
logvol /usr --fstype=ext4 --name=usr_lv --vgname=system_vg --size=1536
logvol /var --fstype=ext4 --name=var_lv --vgname=system_vg --size=384
repo --name="Red Hat Enterprise Linux" --baseurl=file:///mnt/source/ --cost=100

%packages
@base
...
%end

Here are clarifications to some of the values:

- The line `reboot` is added to set the server to automatically shut down after kickstart.
- The line starting with `nfs --server=` sets the IP address of the installation server and path to the installation tree.
- The line starting with `firewall` disables the firewall. Do not make this change if the server is on an external network.
- The line starting with `bootloader` removes references to additional drives only available to the cloner.
- The line starting with `clearpart --all` removes all existing partitions.
- The line starting with `part /` defines the root partition to be 512 MB of type ext4.
- The line starting with `part swap` defines a swap partition of size 512 MB.
- The two lines starting with `part pv` specify making physical volumes.
- The next two lines starting with `part swap` define partitions. Because they have the --grow parameter, all of the VDISK will be used for swap, regardless of the size specified. Anaconda creates the swap devices based on the order in the kickstart file, so the first 512 MB swap space will be created on the first minidisk while the last two will be created on VDISKs 300 and 301.
- The line starting with `volgroup` creates a volume group.
- The next four lines starting with `logvol` defines logical volumes based on the information given in Table 2-1 on page 11.
- The line `@base` specifies a default set of packages for the installation. These can be customized later by adding or removing specific packages from the `%packages` section.

6. Add the path to the kickstart folder to `/etc/exports`:

```
# vi /etc/exports
/nfs/rhel6/    *(ro,sync)
/nfs/virt-cookbook-RH6  *(ro,sync)
/nfs/ks          *(ro,sync)
```

7. Restart the NFS service on the cloner. The `showmount -e` command should show the exported file systems:

```
# service nfs reload
# showmount -e
Export list for gpok223.endicott.ibm.com:
```
10.2 Configuring the LINUX02 user for kickstart

Earlier, you should have created the LINUX02 user ID. It is now time to configure it for kickstart. LINUX02 must have its own parameter and configuration files, which are again based on the RH6GOLD user ID.

Perform the following steps:

1. Log off of MAINT and log on to LNXMAINT. Copy the parameter and configuration files from RH6GOLD to LINUX02 as follows:

   ```bash
   ==> copy rh6gold * d linux02 = =
   ```

2. Edit the LINUX02 PARM-RH6 file. Because this is a non-interactive installation, the vnc options are no longer required. The ks= line directs the installer to get the kickstart file from the installation server. RUNKS=1 is required for kickstarts, and the cmdline option prevents the installer’s text-based user interface from opening on the 3270 console.

   ```bash
   ==> x linux02 parm-rh6 d
   ramdisk_size=40000 root=/dev/ram0 ro ip=off
   CMSDASD=191 CMSCONFFILE=linux02.conf-rh6
   ks=nfs:9.60.18.223:/nfs/ks/linux02-ks.cfg
   RUNKS=1 cmdline
   ====> file
   ```

3. Next, edit the LINUX02 CONF file, and change the DASD range and networking information:

   ```bash
   ==> x linux02 conf-rh6 d
   DASD=100-101,300-301
   HOSTNAME=gpok225.endicott.ibm.com
   NETTYPE=qeth
   IPADDR=9.60.18.225
   ...
   ====> file
   ```

4. Log off of LNXMAINT.

10.3 Kickstarting the LINUX02 user

Perform the following steps to kickstart the LINUX02 user:

1. Log on to LINUX02. When asked to perform an IPL from disk 100, answer n:

   ```bash
   LOGON LINUX02
   ...
   Do you want to IPL Linux from minidisk 100? y/n
   n
   ```

2. Add more memory for the installation process. Temporarily modify the storage up to 512 MB with the DEFINE STORAGE command. Then run ipl cms and again answer n to the question of performing an IPL of Linux:

   ```bash
   ==> def stor 1g
   00: STORAGE = 1G
   ```
00: Storage cleared - system reset.

```
===> ipl cms
```

...

Do you want to IPL Linux from minidisk 100? y/n

```
 n
```

Verify that you have a 512 MB virtual machine:

```
===> q v stor
00: STORAGE = 512M
```

This change is for the duration of the user ID session. When you log off and log back on this user ID, the storage will go back to 256 MB.

3. Run `rhel6 exec` to initiate the kickstart. You see some initial kernel messages, followed by the file system format and Red Hat Package Manager (RPM) package installation.

```
Note: Towards the end of the kickstart, it is normal to see some unrecognized characters on the panel. This is because the 3270 console cannot display the progress meter during the post installation phase. To automatically clear the 3270 console and avoid multiple panels of unreadable messages, issue the `#cp term more 0 0` command before running RHEL6 EXEC.
```

```
===> rhel6
```

```
... 
Kernel command line: ramdisk_size=40000 root=/dev/ram0 ro ip=off
CMSDASD=191 CMSCONFFILE=linux02.conf-rh6
ks=nfs:9.60.18.223:/nfs/ks/linux02-ks.cfg
RUNKS=1 cmdline
```

...

4. The first time kickstart is run, the installer must format the DASD for Linux use. It is normal to see error messages of the following format if the DASD you are using has never been formatted. In subsequent kickstart installs, you should not see these errors:

```
end_request: I/O error, dev dasda, sector 0
Buffer I/O error on device dasda, logical block 0
Please wait while formatting drive dasda...
```

5. At the end of the kickstart, perform an IPL of the 100 disk to make any changes to your RHEL 6 golden image:

```
/mnt/sysimage/dev done
/mnt/sysimage done
you may safely reboot your system
```

```
===> #cp ipl 100
00: ziPL v1.5.3 interactive boot menu
00: 0. default (linux)
00: 1. linux
```

Congratulations! You have now installed Linux onto the virtual server using kickstart. This process can be repeated in the future for other Linux guests. For the purpose of this book, we present a minimal installation with kickstart. However, you can completely customize the kickstart file to install different packages based on your requirements. For more information regarding kickstart options, see the documentation located at the following address:

```
http://www.redhat.com/docs/manuals/enterprise/
```

From there, click **Installation Guide**, then **28. Kickstart Installations**.

Cloning open source virtual servers

This chapter describes how to clone and customize the following Linux virtual servers:

- “Creating a virtual web server” on page 182
- “Creating a virtual LDAP server” on page 185
- “Creating a virtual file and print server” on page 191
- “Creating a virtual application development server” on page 195

The sections that follow do not go into the theory or detail of the four types of servers. Rather, they are just a reference to get the servers quickly installed and configured. There are many other resources that go into further depth about these types of servers.
11.1 Creating a virtual web server

The example in this section uses the LINUX01 user ID to create a virtual web server. You should have a virtual server cloned to the LINUX01 user ID, as described in Chapter 9, “Configuring RHEL 6 for cloning” on page 155.

11.1.1 Installing Apache RPMs

To accomplish this task, perform the following steps:

1. SSH into the IP address of the new LINUX01 server. Install the following Apache RPMs with the `yum -y install` command. The `-y` flag prevents the “Is this OK” question:

   ```
   # yum -y install httpd httpd-manual
   ... 
   Installed:
   httpd.s390x 0:2.2.15-5.el6         httpd-manual.noarch 0:2.2.15-5.el6
   Dependency Installed:
   apr.s390x 0:1.3.9-3.el6                 apr-util.s390x 0:1.3.9-3.el6
   apr-util-ldap.s390x 0:1.3.9-3.el6       httpd-tools.s390x 0:2.2.15-5.el6
   Complete!
   ```

2. Verify that the RPMs were installed:
   ```
   # rpm -qa | grep httpd
   httpd-tools-2.2.15-5.el6.s390x
   httpd-manual-2.2.15-5.el6.noarch
   ```

 Before starting the Apache web server, use the `chkconfig` command to set the service to start at boot time:
   ```
   # chkconfig --list httpd
   httpd           0:off   1:off   2:off   3:off   4:off   5:off   6:off
   # chkconfig httpd on
   # chkconfig --list httpd
   httpd           0:off   1:off   2:on    3:on    4:on    5:off   6:off
   ```

11.1.2 Testing Apache

Start the Apache web server to verify that it installed successfully:
   ```
   # service httpd start
   Starting httpd: [ OK ]
   ```

 To verify that Apache is installed correctly, after it has started, open a web browser and use it to access the server. For example, the virtual server running on LINUX01 can be reached by using the following URL:
   ```
   http://9.60.18.224/
   ```
You should see the test page shown in Figure 11-1, which verifies that the web server is working.

![Apache test page](image)

Figure 11-1 Apache test page

If you get an error when starting Apache, look in the /var/log/httpd/error-log log file for clues. If Apache started successfully, but you cannot reach the test page from a browser, try accessing it using the IP address rather than the DNS name.

11.1.3 Turning on a firewall

RHEL 6 comes with an IP tables firewall. In 8.2.3, “Turning off unneeded services” on page 150, it was recommended that you turn off the iptables service. If you did this on the golden image, the firewall is turned off on this clone. This section describes how to quickly enable an IP tables firewall and configure it to allow web traffic through.

Perform the following steps:

1. Verify that the firewall is off using the `chkconfig --list` command. The service name is `iptables`:

   ```
   # chkconfig --list iptables
   iptables        0:off   1:off   2:off   3:off   4:off   5:off   6:off
   ```

2. Turn on the firewall at boot time using the `chkconfig` command, and for this session with the `service` command:

   ```
   # chkconfig iptables on
   # service iptables start
   Applying iptables firewall rules: [ OK ]
   Loading additional iptables modules: ip_conntrack_netbios_ns [ OK ]
   ```
3. Go back to your browser and click **Refresh**. You should get an error that the server is not responding (or Unable to connect). This is because the packets for the http: and https: ports (80 and 443) are dropped by default.

4. To allow web traffic through, you can modify the `/etc/sysconfig/iptables` file. First, make a backup copy, add two rules (in bold) to allow these ports, and save your changes:

```bash
# cd /etc/sysconfig
# cp iptables iptables.orig
# vi iptables
# Firewall configuration written by system-config-firewall
# Manual customization of this file is not recommended.
*filter
 :INPUT ACCEPT [0:0]
 :FORWARD ACCEPT [0:0]
 :OUTPUT ACCEPT [0:0]
 -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 -A INPUT -p icmp -j ACCEPT
 -A INPUT -i lo -j ACCEPT
 -A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
 -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT
 -A INPUT -p tcp -m tcp --dport 443 -j ACCEPT
 -A INPUT -j REJECT --reject-with icmp-host-prohibited
 -A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT
```

5. Restart the firewall to enable the new rules:

```bash
# service iptables restart
iptables: Flushing firewall rules: [ OK ]
iptables: Setting chains to policy ACCEPT: filter [ OK ]
iptables: Unloading modules: [ OK ]
iptables: Applying firewall rules: [ OK ]
```

6. Go back to your browser and click **Refresh** again. You should not get an error this time. You should now have a firewall that allows web traffic.

11.1.4 Configuring SSL for Apache

Use the Secure Sockets Layer (SSL) to encrypt data between the client (browser) and the server. This is done by specifying an `https` prefix in the URL, which uses port 443 rather than using the conventional `http` prefix, which uses port 80.

Perform the following steps:

1. To use SSL, you must use the `mod_ssl` package. You can demonstrate that SSL communication do not work by changing `http` to `https` in the URL entered into your browser:

   ```bash
   https://9.60.18.224/
   ```

 You should see a communications error.

2. Install the `mod_ssl` RPM using the `yum -y install` command:

   ```bash
   # yum -y install mod_ssl
   ...
   Installed:
   mod_ssl.s390x 1:2.2.15-5.el6
   Complete!
   ```
3. Verify that the RPM was added:

```bash
# rpm -qa | grep mod_ssl
mod_ssl-2.2.15-5.el6.s390x
```

4. Restart the web server:

```bash
# service httpd restart
Stopping httpd: [ OK ]
Starting httpd: [ OK ]
```

5. Go back to your browser and click Restart again.

This time you should get a warning about a self-signed certificate, which is acceptable for a test system. For a production website, you will probably want to obtain a certificate signed by a certificate authority.

11.1.5 Populating your website

You can begin to put your web pages in the `/var/www/html/` directory, which is the default web root.

11.1.6 Apache resources

The following websites contain additional information about Apache:

- http://www.securityfocus.com/infocus/1786

11.2 Creating a virtual LDAP server

The Lightweight Directory Access Protocol (LDAP) is commonly implemented with the OpenLDAP package, which comes standard with most Linux distributions. Among other directory functions, OpenLDAP allows for centralized login authentication and user and group ID resolution.

In this section, you install Linux manually and set up login authentication to a new virtual LDAP server. Then you go back to the virtual web server you just created and point it to the new LDAP server.

The steps in this section are as follows:

- “Installing the OpenLDAP server” on page 185
- “Configuring the OpenLDAP server” on page 186
- “Configuring an LDAP client” on page 189

11.2.1 Installing the OpenLDAP server

You should have created a RHEL 6 server on LINUX02 using kickstart. This server will not have the `yum` command configured for online updates. Perform the following steps to create an OpenLDAP server

1. Update the Linux system running on LINUX02 to configure the `yum` command, as described in 8.2.2, “Configuring the yum command for online updates” on page 149. You could also use the clone script to clone the golden image over the kickstarted Linux.
2. Start an SSH session to the IP address of the new virtual server running on LINUX02. Use the `yum` command to install the OpenLDAP client and server RPMs:

```
# yum -y install openldap-clients openldap-servers
```

```
... Installed:
  openldap-clients.s390x 0:2.4.19-15.el6 openldap-servers.s390x 0:2.4.19-15.el6
```

```
Dependency Installed:
  libtool-ltd1.s390x 0:2.2.6-15.5.el6
```

Complete!

OpenLDAP should now be installed on LINUX02.

11.2.2 Configuring the OpenLDAP server

Any detailed description of LDAP is outside the scope of this book. Only short configuration recommendations are given in this section.

There are two important configuration values that must be chosen.

- The suffix or base distinguished name of the LDAP Domain Information Tree (DIT). The most common suffix is to use your company's DNS name.
- The LDAP administrator or root name and password.

Perform the following steps:

1. Choose an administrative password and run the `slappasswd` command, which displays an encrypted version of it. The output of this command will be used shortly in a configuration file, so you may want to make a copy of it.

```
# slappasswd
New password: lnx4vm
Re-enter new password: lnx4vm
{SSHA}6KT4R+YjZqDidFUNGUa4jrWFGaqEFfkV
```

2. The OpenLDAP server configuration file that contains the LDAP manager (root) password is `/etc/openldap/slapd.d/cn=config/olcDatabase={1}bdb.ldif`. Make a backup copy of that file:

```
# cd /etc/openldap/slapd.d/cn=config
# cp olcDatabase={1}bdb.ldif olcDatabase={1}bdb.ldif.orig
```

3. Edit the file and add one line to set the LDAP manager's password. Use the variable `olcRootPW` and set the password to the output of the previous `slappasswd` command:

```
# vi olcDatabase={1}bdb.ldif
dn: olcDatabase={1}bdb
objectClass: olcDatabaseConfig
objectClass: olcBdbConfig
olcDatabase: {1}bdb
olcSuffix: dc=my-domain,dc=com
olcAddContentAcl: FALSE
olcLastMod: TRUE
olcMaxDerefDepth: 15
olcReadOnly: FALSE
olcRootDN: cn=Manager,dc=my-domain,dc=com
olcRootPW: {SSHA}6KT4R+YjZqDidFUNGUa4jrWFGaqEFfkV
```
olcMonitoring: TRUE
olcDbDirectory: /var/lib/ldap
...

4. Save the file. Your LDAP server should now be minimally configured.

Start the LDAP service

To start the LDAP server, perform the following steps:

1. Start LDAP at boot time by running the `chkconfig` command and, for this session, using the `service` command:

   ```
   # chkconfig slapd on
   # service slapd start
   Starting slapd: [ OK ]
   ```

2. Query the LDAP database with the `ldapsearch` command. The `-x` flag specifies that simple authentication is used:

   ```
   # ldapsearch -x
   # extended LDIF
   #
   # LDAPv3
   # base <> with scope subtree
   # filter: (objectclass=*)
   # requesting: ALL
   #
   # search result
   search: 2
   result: 32 No such object
   ```

 The result shows that the LDAP directory can be searched, but that it is empty. This is expected, as no data has been added to it.

11.2.3 Adding an LDAP user

When the golden image was installed, it was recommended that a non-root user ID be added. In this example, it was named mikemac.

To add an LDAP user, perform the following steps:

1. Choose an LDAP user name. In this example, mikemac will be used. Verify that there is no such local user by running the `id` command:

   ```
   # id mikemac
   id: mikemac: No such user
   ```

2. An LDIF (LDAP Interchange Format) file is created to add an organizational unit named People and a user ID named mikemac. Create a similar file for your system's values.

   ```
   # cd /tmp
   # vi initial.ldif // create the input file ...
   dn: dc=my-domain,dc=com
   objectClass: dcObject
   objectClass: organization
   description: my-domain domain
   o: my-domain
   dc: my-domain
   ```
dn: cn=Manager,dc=my-domain,dc=com
objectClass: organizationalRole
 cn: Manager

dn: ou=People,dc=my-domain,dc=com
objectClass: top
 dn: ou=People,dc=my-domain,dc=com
 objectClass: organizationalUnit
 dn: uid=mikemac,ou=People,dc=my-domain,dc=com
 uid: mikemac
 cn: mikemac
 objectClass: account
 objectClass: posixAccount
 objectClass: top
 objectClass: shadowAccount
 loginShell: /bin/bash
 uidNumber: 10000
 gidNumber: 10000
 homeDirectory: /home/mikemac

dn: ou=Group,dc=my-domain,dc=com
objectClass: top
 dn: ou=Group,dc=my-domain,dc=com
 objectClass: organizationalUnit
 ou: Group
 dn: cn=mikemac,ou=Group,dc=my-domain,dc=com
 objectClass: posixGroup
 objectClass: top
 cn: mikemac
 userPassword: {crypt}x
 gidNumber: 10000

3. Add the contents of the LDIF file to the LDAP server by using the `ldapadd` command:

```
# ldapadd -x -h localhost -D "cn=Manager,dc=my-domain,dc=com" -f
/tmp/initial.ldif -W
Enter LDAP Password:
adding new entry "dc=my-domain,dc=com"
adding new entry "cn=Manager,dc=my-domain,dc=com"
adding new entry "ou=People,dc=my-domain,dc=com"
adding new entry "uid=mikemac,ou=People,dc=my-domain,dc=com"
adding new entry "ou=Group,dc=my-domain,dc=com"
adding new entry "cn=mikemac,ou=Group,dc=my-domain,dc=com"
```

4. Set the base distinguished name to `dc=my-domain,dc=com`. This is set in the `BASE` variable in the `/etc/openldap/ldap.conf` LDAP client configuration file:

```
# cd /etc/openldap
# cp ldap.conf ldap.conf.orig
# vi ldap.conf
#
# LDAP Defaults
```
Chapter 11. Cloning open source virtual servers

5. Search for the new user ID just added by using the **ldapsearch** command:

```bash
# ldapsearch -x uid=mikemac
```

```bash
# mikemac, People, my-domain.com
dn: uid=mikemac,ou=People,dc=my-domain,dc=com
uid: mikemac
cn:: bWlrZW1hYyA=
objectClass: account
objectClass: posixAccount
objectClass: top
objectClass: shadowAccount
loginShell: /bin/bash
uidNumber: 10000
gidNumber: 10000
homeDirectory: /home/mikemac
userPassword:: e1NTSEF9Q1hhSGMwU1NnQlklkzTEZ6Z1J5ZHv2aVhkQkhuaUxqNC8=
```

```bash
# search result
search: 2
result: 0 Success
```

6. The output shows that the user ID exists in the LDAP database. Now you may want to set the password with the **ldappasswd** command. You need to provide a new password for the new user and you also need to provide the LDAP administrator password.

```bash
# ldappasswd -x -D "cn=Manager,dc=my-domain,dc=com" -W -S "uid=mikemac,ou=People,dc=my-domain,dc=com"
New password:
Re-enter new password:
Enter LDAP Password:
Result: Success (0)
```

You have now deleted a local user, added a new LDAP user using an LDIF file, and have set the new LDAP user's password.

You should now have an OpenLDAP server installed, configured, and populated with users and groups.

11.2.4 Configuring an LDAP client

You are now ready to configure a system to authenticate users using the new LDAP server. You first go to a different virtual server, running under the LINUX01 user ID, and configure it to point to this LDAP server. Perform the following steps:

1. Start an SSH session to the Linux running under LINUX01.
2. Invoke the `authconfig-tui` command. Use the Tab key to move between fields, the space bar to change selections, and the Enter key to select. Set the Use LDAP under User Information, and Use LDAP Authentication under Authentication. Click Next.

```
# authconfig-tui
```

```
------------------ Authentication Configuration ------------------
| User Information        Authentication |
| [ ] Cache Information   [ ] Use MD5 Passwords |
| [ ] Use Hesiod          [*] Use Shadow Passwords |
| [*] Use LDAP            [*] Use LDAP Authentication |
| [ ] Use NIS             [ ] Use Kerberos |
| [ ] Use Winbind         [*] Use Fingerprint reader |
| [*] Local authorization is sufficient |

| Cancel | Next |

-----------
```

3. On the next panel, set the Server value to point to the LDAP server. In this example, it is `ldap://9.60.18.225/`. Set the Base DN to your suffix value. In this example, it is `dc=my-domain,dc=com`. Click OK.

```
------------ LDAP Settings ------------
| [ ] Use TLS |
| Server: ldap://9.60.18.225 |
| Base DN: dc=my-domain,dc=com |

| Back | Ok |

____________
```

Your LDAP client should now be pointing to the LDAP server. Test it by running the `id ldapuser1` command:

```
# id ldapuser1
uid=500(ldapuser1) gid=500(ldapuser1) groups=500(ldapuser1)
context=root:system_r:unconfined_t:s0-s0:c0.c1023
```

In RHEL 6, you can no longer authenticate over SSH without using TLS. This section has not described how to set up TLS. To perform that setup, you need a signed certificate that corresponds to your enterprise’s DNS domain name. Refer to the OpenLDAP website at the following address for more information:

`http://www.openldap.org/pub/ksoper/OpenLDAP_TLS.html`

More details about the `cn=config/` directory replacing the `/etc/openldap/slapd.conf` file can be found at the following Red Hat website (you need a subscription to get to it):

`https://access.redhat.com/kb/docs/DOC-3637`
11.3 Creating a virtual file and print server

Samba allows Windows clients to map Linux file systems as shared drives. Samba can also act as a middleman between Windows clients and a Linux print server. The recommended Linux print server is the Common UNIX Printing System (CUPS). This section does not describe the configuration of CUPS, but it does describe how the necessary RPMs are installed.

The steps in this section are as follows:

- “Cloning a Linux virtual server” on page 191
- “Installing the necessary RPMs” on page 191
- “Configuring the Samba configuration file” on page 192
- “Adding a Samba user” on page 192
- “Starting Samba at boot time” on page 193
- “Testing your changes” on page 193

11.3.1 Cloning a Linux virtual server

To clone a new Linux server, perform the following steps:

1. Start an SSH session as root to the cloner.
2. Copy a Linux cloning configuration file and modify the IP address and host name variables:

 # cd /etc/clone
 # cp linux01.conf linux03.conf
 # vi linux03.conf
 // ... modify IPADDR and HOSTNAME variables

3. Clone a basic virtual server. In this example, the LINUX03 user ID is used.

 # clone -v rh6gold linux03
 Invoking CP command: QUERY rh6gold
 Invoking CP command: QUERY linux03

 This will copy disks from rh6gold to linux03
 Host name will be: 6.endicott.ibm.com
 IP address will be: 9.60.18.224
 Do you want to continue? (y/n): y
 ...

4. When the new system comes up, start an SSH session to the new virtual server.

11.3.2 Installing the necessary RPMs

Perform the following steps:

1. Add the following RPMs by using the `yum -y` command:

 # yum -y install samba
 ...
 Installed:
 samba.s390x 0:3.5.4-68.el6
2. Confirm that the RPMs were added:

```
# rpm -qa | grep samba
samba-common-3.0.28-0.e15.8
samba-client-3.0.28-0.e15.8
samba-3.0.28-0.e15.8
samba-common-3.0.28-0.e15.8
```

11.3.3 Configuring the Samba configuration file

The one configuration file for Samba is `/etc/samba/smb.conf`. It is easy to add an SMB share that will be made available by the Samba server. A good test directory is `/usr/share/doc`, as it has good Linux documentation. The following example creates a file `share` named `sharedoc`:

```
# cd /etc/samba
# cp smb.conf smb.conf.orig
# vi smb.conf  // add three lines at the bottom of the file:
...  
[sharedoc]
  comment = RHEL 6 on System z documentation
  path = /usr/share/doc/
```

You can verify the syntax of your changes by using the `testparm` command:

```
# testparm smb.conf
Load smb config files from smb.conf
Processing section "[homes]"
Processing section "[printers]"
Processing section "[sharedoc]"
Loaded services file OK.
Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions
...
```

This change creates an SMB share named `sharedoc` that contains the contents of the `/usr/share/doc` directory and its subdirectories.

11.3.4 Adding a Samba user

The default method that Samba uses to determines users’ credentials is to look in the `/etc/samba/smbpasswd` file. That user must first exist in the Linux file system (`/etc/passwd`, `/etc/shadow`, and so on).

Perform the following steps:

1. To create a new Samba user, run the `smbpasswd -a` command. First, use the `useradd` and `passwd` commands to add a user locally. In this example, the user `sambauser1` is used:

```
# id sambauser1
id: sambauser1: No such user
# useradd sambauser1
# passwd sambauser1
Changing password for sambauser1.
New password: lnx4vm
BAD PASSWORD: it is based on a dictionary word
BAD PASSWORD: is too simple
Retype new password: lnx4vm
passwd: all authentication tokens updated successfully.
```
2. Add the sambauser1 user to the smbpasswd file by using the `smbpasswd -a` command:

```
# smbpasswd -a sambauser1
New SMB password: lnx4vm
Retype new SMB password: lnx4vm

startsmbfilepent_internal: file /etc/samba/smbpasswd did not exist. File successfully created.
account_policy_get: tdb_fetch_uint32 failed for field 1 (min passwd length), returning 0
... Added user sambauser1.
```

This method of maintaining Samba users, groups, and passwords is good for a small number of users. For a larger number of users, merging Samba and LDAP is recommended. It is not as simple as pointing the virtual file and print server at the virtual LDAP server, as described in 11.2, “Creating a virtual LDAP server” on page 185, because the Samba schema must first be added to LDAP. The details of this process are outside the scope of this book.

11.3.5 Starting Samba at boot time

Samba can be started for the current session by using the `service` command and at boot time by using the `chkconfig` command. Do this for both the smb and nmb services:

```
# service smb start
Starting SMB services: [  OK  ]
# service nmb start
Starting NMB services: [  OK  ]
# chkconfig smb on
# chkconfig nmb on
```

Samba should now be running and configured to start at boot time.

11.3.6 Testing your changes

You can verify that Samba is running by using the following `service` command:

```
# service smb status
smbd (pid 6987 6982) is running...
```

You can verify that the shares that are available by using the following `smbclient` command:

```
# smbclient -U sambauser1 -L localhost
Domain=[MYGROUP] OS=[Unix] Server=[Samba 3.5.4-68.e16]

<table>
<thead>
<tr>
<th>Sharename</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>sharedoc</td>
<td>Disk</td>
<td>RHEL 6 on System z documentation</td>
</tr>
<tr>
<td>IPC$</td>
<td>IPC</td>
<td>IPC Service (Samba Server Version 3.5.4-68.e16)</td>
</tr>
<tr>
<td>sambauser1</td>
<td>Disk</td>
<td>Home Directories</td>
</tr>
</tbody>
</table>

Domain=[MYGROUP] OS=[Unix] Server=[Samba 3.5.4-68.e16]

<table>
<thead>
<tr>
<th>Server</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPOK226</td>
<td>Samba Server Version 3.5.4-68.e16</td>
</tr>
<tr>
<td>Workgroup</td>
<td>Master</td>
</tr>
</tbody>
</table>
```
You can test getting a Samba share from a Windows desktop. Perform the following steps:

1. Go to any Windows Explorer window (such as My Computer) and select **Tools → Map Network Drive**.

2. Use the Universal Naming Convention (UNC) to specify the Samba server and share name, as shown in the upper left of Figure 11-2. In this example, the UNC is `\9.60.18.226\sharedoc`.

3. You may have to click **different user name** if the user or password on the new Samba server is different from the Windows system from which you are connecting.

4. Click **Finish**.

If all the steps were done correctly, you should see the files in a new Explorer window, as shown in the bottom right of Figure 11-2.

![Mapping a network drive to the Samba server](image)

Figure 11-2 Mapping a network drive to the Samba server

You should now have Samba configured and running with one new share available.

If you prefer a DOS command line, you can also link to the share by using the `net use` command:

```
c:\>net use y: \9.60.18.226\sharedoc
The command completed successfully.
```

You can detach the share by using the following `net use` command:

```
c:\>net use y: /delete
y: was deleted successfully.
```
11.3.7 Configuring printing

Configuring printing is beyond the scope of this book. For more details about printing, refer to *Printing with Linux on zSeries* and *REDP-3864*.

11.4 Creating a virtual application development server

Most Linux distributions come with a basic set of application development tools, making Linux one of the most versatile development systems. These basic tools are ideal for projects of any size.

The development languages used in implementation range from scripting languages, such as Python or Tcl, to compiled languages, such as C/C++ and Java™. There are software available on Linux to help form a development system for developers to create integrated applications. MySQL and Apache are among them. A popular open source web platform is LAMP, which stands for the open source software and programming languages used to make up the platform: Linux, Apache, MySQL, and Python or PHP.

To create a virtual application development server, perform the following steps:

1. Start an SSH session as root to the cloner.
2. Copy a Linux cloning configuration file and modify the IP address and host name variables:
   ```bash
   # cd /etc/clone
   # cp linux01.conf linux04.conf
   # vi linux04.conf
   // ... modify IPADDR and HOSTNAME variables
   ```
3. Clone a basic virtual server. In this example, the LINUX03 user ID is used.
   ```bash
   # clone -v rh6gold linux03
   Invoking CP command: QUERY rh6gold
   Invoking CP command: QUERY linux03
   ```
 This will copy disks from rh6gold to linux03
 Host name will be: 6.endicott.ibm.com
 IP address will be: 9.60.18.224
 Do you want to continue? (y/n): y
 ...
4. When the new system comes up, start an SSH session as root to it.
5. Before installing the development tools, note how full the root and /usr/ file systems are:
   ```bash
   # df -h
   Filesystem     Size  Used Avail Use% Mounted on
   /dev/dasda1     504M  147M  332M  31% /
   tmpfs          121M     0  121M   0% /dev/shm
   /dev/mapper/system_vg-opt_lv  372M  17M  337M   5% /opt
   /dev/mapper/system_vg-tmp_lv   372M  17M  337M   5% /tmp
   /dev/mapper/system_vg-usr_lv   1.5G  798M  638M  56% /usr
   /dev/mapper/system_vg-var_lv
   ```
In this example, they are 31% and 56% full.

6. You can use the `yum -y groupinstall` command to install the groups named `development-tools` and `development-libs`. This command adds about 45 packages, which requires a number of minutes to complete:

```
# yum -y groupinstall "Development tools" "Development libs"
```

```
Installed:
  autoconf.noarch 0:2.63-5.1.el6
  bison.s390x 0:2.4.1-5.el6
  cs cope.s390x 0:15.6-6.el6
  diffstat.s390x 0:1.51-2.el6
  flex.s390x 0:2.5.35-8.el6
  gcc-c++.s390x 0:4.4.4-13.el6
  git.s390x 0:1.7.1-2.el6
  intlttool.noarch 0:0.41.0-1.1.el6
  patchutils.s390x 0:0.3.1-3.1.el6
  redhat-rpm-config.noarch 0:9.0.3-25.el6
  subversion.s390x 0:1.6.11-2.el6
  systemtap.s390x 0:1.2-9.el6
```

```
Dependency Installed:
  apr.s390x 0:1.3.9-3.el6
  apr-util.s390x 0:1.3.9-3.el6
  cloog-ppl.s390x 0:0.15.7-1.2.el6
  cpp.s390x 0:4.4.4-13.el6
  gettext.devel.s390x 0:0.17-16.el6
  glibc-devel.s390x 0:2.12-1.7.el6
  kernel-devel.s390x 0:2.6.32-71.el6
  libXtst.s390x 0:1.0.99.2-3.el6
  libgcj.s390x 0:4.4.4-13.el6
  libproxy.s390x 0:0.3.0-2.el6
  libstdc++-devel.s390x 0:4.4.4-13.el6
  mpfr.s390x 0:2.4.1-6.el6
  neon.s390x 0:0.29.3-1.2.el6
  perl-Error.noarch 1:0.17015-4.4.el6
  perl-LWP.noarch 0:1.7.1-2.el6
```

Complete!

Your application development server is now ready to use. You may choose to add or remove different packages.

7. Run `df -h` command to show your file systems. In this example, the root file system was not changed, but `/usr/` is now 73% full:

```
# df -h
```

```
Filesystem        Size  Used  Avail Use% Mounted on
/dev/dasda1        504M  147M  332M   31% /
/dev/mapper/system_vg-opt_lv 372M 17M  337M   5% /opt
/dev/mapper/system_vg-tmp_lv 372M 17M  337M   5% /tmp
/dev/mapper/system_vg-usr_lv 372M 17M  337M   5% /usr
/dev/mapper/system_vg-var_lv 372M 94M  260M  27% /var
9.60.18.223:/nfs/rhel6 917G 5.2G  911G  0% /nfs/rhel6
```

196 z/VM and Linux on IBM System z: The Virtualization Cookbook for Red Hat Enterprise Linux 6.0
11.4.1 Additional resources

The following websites provide additional information about application development topics:

- **Scripting languages**
 - http://www.perl.com/
 - http://www.python.org/
 - http://www.freeos.com/guides/lsst/

- **C/C++**
 - http://gcc.gnu.org/onlinedocs/gcc/
 - http://vertigo.hsrl.rutgers.edu/ug/make_help.html

- **Java**
 - http://java.sun.com/
 - http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html

- **Linux kernel development**
 - http://www.kernel.org/pub/linux/docs/lkml/#blkd

- **Web development**
 - http://www.onlamp.com/
 - http://cgi.resourceindex.com/
 - http://www.perl.com/
Servicing Linux with Red Hat Network

This chapter describes Red Hat Network (RHN) and its ability to manage the virtual servers. Using the `yum` command, the virtual servers can be updated when new packages are released. You can also use `yum` to install new packages with automatic dependency resolution.

You can find RHN at the following address:

http://rhn.redhat.com/

The following sections describe how to configure a Linux guest to use the `yum` command and manage the guest through RHN:

- “Registering your system with RHN” on page 200
- “Installing and updating packages using yum” on page 200
- “Managing your Linux guest through RHN” on page 201
12.1 Registering your system with RHN

This section assumes you have already obtained a valid entitlement for RHEL 6 on IBM System z, or have completed the steps to obtain an evaluation copy. To receive a no cost 90-day evaluation, go to the following address:

http://www.redhat.com/z

Select the **Free Evaluation** link under the Try section on the left and create an account if you do not already have one. After completing the form, you receive an email in a short while with the activation instructions.

12.2 Installing and updating packages using yum

You may choose to perform these steps first on a clone, such as LINUX01, and then later on the golden image. In this fashion, you can test the process on an appliance that can be discarded, and later when all is tested and working, update the golden image so that all clones created thereafter are enabled for RHN.

Before using the **yum** command for the first time, you must import the Red Hat GPG key and register your Linux guest with RHN. Use the following commands, substituting your RHN user name, password, and host name of the Linux guest:

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
rhnreg_ks --username=myuser --password=mypw
 --profilename=linux01.endicott.ibm.com

Now that your system is registered with RHN, you can use the **yum** command to keep the system updated. You can download and install the latest version of a package by running **yum** with the RPM package name. You can also specify multiple packages on the command line separated by spaces. The **yum install** command installs the package if it is not present, and the **yum upgrade** command updates to the latest version if it is already installed. If a package has any dependencies, **yum** automatically downloads and installs them for you.

Update the **cpp** package to get the latest security fixes:

rpm -q cpp
cpp-4.1.1-30
yum upgrade cpp
Loading "rhnplugin" plugin
Loading "installonlyn" plugin
Setting up Upgrade Process
Setting up repositories
rhel-s390x-server-5-beta 100% |=========================| 950 B 00:00
...
===
Package Arch Version Repository Size
===
Updating: cpp s390x 4.1.1-43.el5 RHEL5 2.6 M
===
Transaction Summary
===
Install 0 Package(s)
Update 1 Package(s)
Remove 0 Package(s)

Total download size: 2.6 M
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Updating : cpp
 Cleanup : cpp

Updated: cpp.s390x 0:4.1.1-43.el5
Complete!

Now query the cpp package and you should see that it has been updated.

rpm -q cpp
cpp-4.1.1-43.el5

To update every installed package on the system, run:

yum upgrade

For more information about the yum command, see the yum(8) man page.

12.3 Managing your Linux guest through RHN

You can also manage the packages on this Linux guest through the web interface found at the following address:

http://rhn.redhat.com/

When you first log in to RHN, you see the system that you registered under the Systems tab, as shown in Figure 12-1. If there is a red exclamation point next to your system, there are errata waiting to be applied. The number of relevant errata and the corresponding number of packages are visible to the left of the system name. Click the number beneath Errata or Packages to get a detailed list. If there is a blue check-mark, then the system is fully updated.

Figure 12-1 RHN system overview
Next, click the link that is the system name. This opens a detailed overview, where you can see the system properties, as shown in Figure 12-2. Click the Packages tab to view all the packages installed on this system. From this tab, you can also update, remove, or install new packages onto the system.

Figure 12-2 RHN system details

For more information about managing your systems through RHN, including usage guides and frequently asked questions, go to the following address:

http://rhn.redhat.com/help
Miscellaneous tasks

This chapter describes the following miscellaneous tasks that you might want to perform:

- “Adding DASD” on page 204
- “Adding a logical volume” on page 206
- “Extending an existing logical volume” on page 211
- “Setting up Linux Memory Hotplugging” on page 222
- “Using the cpuplugd service” on page 224
- “Hardware cryptographic support for OpenSSH” on page 227
- “The X Window System” on page 231
- “Centralizing home directories for LDAP users” on page 236
13.1 Adding DASD

The process in this section describes how to add an additional DASD to a Linux guest. The overall steps are:

- "Adding minidisks to a virtual machine" on page 204
- "Making new minidisks available to RHEL 6" on page 204
- "Creating a logical volume and file system" on page 206
- "Updating the file system table" on page 209

13.1.1 Adding minidisks to a virtual machine

Here are the high level steps that you perform to add two new 3390-3-sized minidisks to LINUX02:

1. Determine the volume or volumes that will be added. In this example, a 3390-3 at real device address 6339 is added. Its space is split in half.
2. Add minidisk statements to define minidisks. In this example, two minidisks at virtual addresses 102 and 103 are defined at a size of 1669 cylinders to the LINUX02 user ID.
3. Create the USER DISKMAP file to verify the disk layout.
4. Bring the changes online by using the DIRECTXA command.
5. Shut down the Linux system.
6. Log off the user ID.
7. Log back on to it and perform an IPL of Linux.

Here is the updated directory entry:

```
USER LINUX02 LNX4VM 256M 1G G
INCLUDE LNXDFLT
OPTION APPLMON
MDISK 100 3390 0001 3338 UM63AA MR LNX4VM LNX4VM LNX4VM
MDISK 101 3390 3339 3338 UM63AA MR LNX4VM LNX4VM LNX4VM
MDISK 102 3390 0001 1669 UM6339 MR LNX4VM LNX4VM LNX4VM
MDISK 103 3390 1670 1669 UM6339 MR LNX4VM LNX4VM LNX4VM
```  

13.1.2 Making new minidisks available to RHEL 6

To make the new minidisks available, perform the following steps:

1. When your system comes back up, start an SSH session to it. Use the lsdasd command to verify that the new minidisks are not seen yet:

   ```
   # lsdasd
   ```

<table>
<thead>
<tr>
<th>Bus-ID</th>
<th>Status</th>
<th>Name</th>
<th>Device</th>
<th>Type</th>
<th>BlkSz</th>
<th>Size</th>
<th>Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.00100</td>
<td>active</td>
<td>dasda</td>
<td>94:0</td>
<td>ECKD</td>
<td>4096</td>
<td>2347MB</td>
<td>600840</td>
</tr>
<tr>
<td>0.0.00101</td>
<td>active</td>
<td>dasdb</td>
<td>94:4</td>
<td>ECKD</td>
<td>4096</td>
<td>2347MB</td>
<td>600840</td>
</tr>
<tr>
<td>0.0.00300</td>
<td>active</td>
<td>dasdc</td>
<td>94:8</td>
<td>FBA</td>
<td>512</td>
<td>256MB</td>
<td>524288</td>
</tr>
<tr>
<td>0.0.00301</td>
<td>active</td>
<td>dasdd</td>
<td>94:12</td>
<td>FBA</td>
<td>512</td>
<td>512MB</td>
<td>1048576</td>
</tr>
</tbody>
</table>

2. Enable the disks with the chccwdev -e command:

   ```
   # chccwdev -e 102 103
   Setting device 0.0.0102 online
   Done
   ```
Setting device 0.0.0103 online
Done

3. View the available disks again with the lsdasd command:

```
# lsdasd
Bus-ID     Status      Name      Device  Type  BlkSz  Size      Blocks
==============================================================================
0.0.0100   active      dasda     94:0    ECKD  4096   2347MB    600840
0.0.0101   active      dasdb     94:4    ECKD  4096   2347MB    600840
0.0.0300   active      dasdc     94:8    FBA   512    256MB     524288
0.0.0301   active      dasdd     94:12   FBA   512    512MB     1048576
0.0.0102   active      dasde     94:16   ECKD  4096   1173MB    300420
0.0.0103   active      dasdf     94:20   ECKD  4096   1173MB    300420
```

4. Format the disks with the dasdfmt command and create one partition on each with the fdasd -a command. The disks can be formatted in parallel by using a for loop and putting them in the background. However, before running fdasd, you have to wait until they are done formatting:

```
# for i in 0.0.0102 0.0.0103
>   do
>       dasdfmt -b 4096 -y -f /dev/disk/by-path/ccw-$i &
>   done

[1] 1637
[2] 1638
... wait for the two jobs to finish
...
Finished formatting the device.
Finished formatting the device.
Rereading the partition table... ok
Rereading the partition table... ok

[1]-  Done                dasdfmt -b 4096 -y -f /dev/disk/by-path/ccw-$i
[2]+  Done                dasdfmt -b 4096 -y -f /dev/disk/by-path/ccw-$i

# fdasd -a /dev/disk/by-path/ccw-0.0.0102
reading volume label ..: VOL1
reading vtoc ............: ok
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...

# fdasd -a /dev/disk/by-path/ccw-0.0.0103
reading volume label ..: VOL1
reading vtoc ............: ok
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

5. Make a backup of /etc/dasd.conf and add minidisks 102 and 103 to it:

```
# cd /etc
# cp dasd.conf dasd.conf.orig
# vi dasd.conf
0.0.0301 use_diag=0 readonly=0 erplog=0 failfast=0
0.0.0300 use_diag=0 readonly=0 erplog=0 failfast=0
```
6. Verify the new minidisks are activated by using the `lsdasd` command:

```bash
# lsdasd
Bus-ID     Status      Name      Device  Type  BlkSz  Size      Blocks
==============================================================================
0.0.0100   active      dasda     94:0    ECKD  4096   2347MB    600840
0.0.0101   active      dasdb     94:4    ECKD  4096   2347MB    600840
0.0.0300   active      dasdc     94:8    FBA   512    256MB     524288
0.0.0301   active      dasdd     94:12   FBA   512    512MB     1048576
0.0.0102   active      dasde     94:16   ECKD  4096   1173MB    300420
0.0.0103   active      dasdf     94:20   ECKD  4096   1173MB    300420
```

If you are creating a new logical volume, go to 13.2.1, “Creating a logical volume and file system” on page 206. If you are extending an existing logical volume, go to 13.3, “Extending an existing logical volume” on page 211.

13.2 Adding a logical volume

There are times when you require more disk space than a single direct access storage device (DASD) volume provides. For example, if you want to have a shared `~/home/` directory, you want it to be of sufficient size. When this is the case, you can use the Logical Volume Manager (LVM) to combine multiple DASD volumes into one logical volume.

The following process describes how to create a logical volume with additional DASD on a Linux guest. The overall steps in adding a logical volume are:

- “Adding DASD” on page 204
- “Creating a logical volume and file system” on page 206
- “Updating the file system table” on page 209

13.2.1 Creating a logical volume and file system

The overall steps involved in creating a logical volume are:

- Create physical volumes from the two partitions
- Create a single volume group
- Create a single logical volume
- Make a file system from the logical volume
Creating physical volumes from the two DASD

To create physical volumes, perform the following steps:

1. The `pvcreate` command initializes partitions for use by LVM. Initialize the two new DASD partitions:

   ```
   # pvcreate /dev/dasde1 /dev/dasdf1
   Physical volume "/dev/dasde1" successfully created
   Physical volume "/dev/dasdf1" successfully created
   ```

2. Verify that the physical volumes were created by using the `pvdisplay` command:

   ```
   # pvdisplay /dev/dasde1 /dev/dasdf1
   "/dev/dasde1" is a new physical volume of "1.15 GiB"
   --- NEW Physical volume ---
   PV Name       /dev/dasde1
   VG Name
   PV Size       1.15 GiB
   Allocatable   NO
   PE Size       0
   Total PE      0
   Free PE       0
   Allocated PE  0
   PV UUID       JY247T-Xmb6-iQT5-F1FC-KZgx-CIH0-bVKnbL
   
   
   
   "/dev/dasdf1" is a new physical volume of "1.15 GiB"
   --- NEW Physical volume ---
   PV Name       /dev/dasdf1
   VG Name
   ```
Creating a single volume group

The `vgcreate` command can be used to create a volume group named `homevg` from the two partitions. Use the `vgdisplay homevg` command to verify that the volume group was created:

```bash
# vgcreate homevg /dev/dasde1 /dev/dasdf1
Volume group "homevg" successfully created
# vgdisplay homevg
--- Volume group ---
  VG Name               homevg
  System ID            
  Format                lvm2
  Metadata Areas       2
  Metadata Sequence No 1
  VG Access             read/write
  VG Status             resizable
  MAX LV                0
  Cur LV                0
  Open LV               0
  Max PV                0
  Cur PV                2
  Act PV                2
  VG Size               2.29 GiB
  PE Size               4.00 MiB
  Total PE              586
  Alloc PE / Size       0 / 0
  Free  PE / Size       586 / 2.29 GiB
  VG UUID               9HPTso-Amw3-70HQ-3ofl-AszO-1aeo-dFvB7z
```

In this example, there are 586 free physical extents.

Creating a single logical volume

The `lvcreate` command is used to create a logical volume. The `-l` flag specifies using all the free extents, 586 in this example. The `-n homelv` flag specifies the name of the new logical volume. The last argument, `homevg`, specifies the name of the volume group from which the logical volume will be created.

```bash
# lvcreate -l 586 -n homelv homevg
Logical volume "homelv" created
```

Use the `lvdisplay` command to verify the creation. The parameter is the full path of the logical volume, not just the logical volume name.

```bash
# lvdisplay /dev/homevg/homelv
--- Logical volume ---
  LV Name                /dev/homevg/homelv
  VG Name                homevg
  LV UUID                BvXj0n-vA8D-yMYQ-Ydex-bF2y-Gfeg-lpyr40
  LV Write Access        read/write
```
LV Status available
open 0
LV Size 2.29 GiB
Current LE 586
Segments 2
Allocation inherit
Read ahead sectors auto
 - currently set to 1024
Block device 253:4

Making a file system from the logical volume
Now you have a logical volume. Create an ext4 file system out of it by using the `mkfs.ext4` command:

```
# mkfs.ext4 /dev/homevg/homelv
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=1 blocks, Stripe width=0 blocks
150176 inodes, 600064 blocks
30003 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=616562688
19 block groups
32768 blocks per group, 32768 fragments per group
7904 inodes per group
Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
```

This filesystem will be automatically checked every 25 mounts or
180 days, whichever comes first. Use `tune2fs -c` or `-i` to override.

The file system created from the logical volume is now ready to be mounted.

13.2.2 Updating the file system table

You could now mount the file system manually. However, if you add the mount to the file
system table file, `/etc/fstab`, you can effectively test the change by using the `mount`
command with only one argument. Make a backup copy and then add the following line to the
file:

```
# cd /etc
# cp fstab fstab.works
# vi fstab

# /etc/fstab
# Created by anaconda on Tue Oct 19 15:52:06 2010
#```
# Accessible filesystems, by reference, are maintained under '/dev/disk'  
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info  

/dev/disk/by-path/ccw-0.0.0100-part1 /  ext4  defaults  1 1
/dev/mapper/system_vg-opt_lv /opt  ext4  defaults  1 2
/dev/mapper/system_vg-tmp_lv /tmp  ext4  defaults  1 2
/dev/mapper/system_vg-usr_lv /usr  ext4  defaults  1 2
/dev/mapper/system_vg-var_lv /var  ext4  defaults  1 2
/dev/disk/by-path/ccw-0.0.0300-part1 swap  swap  defaults  0 0
/dev/disk/by-path/ccw-0.0.0301-part1 swap  swap  defaults  0 0
/dev/disk/by-path/ccw-0.0.0100-part2 swap  swap  defaults  0 0
/dev/homevg/homeLv  /home  ext4  defaults  0 0
tmpfs  /dev/shm  tmpfs  defaults  0 0
devpts  /dev/pts  devpts  gid=5,mode=620  0 0
sysfs  /sys  sysfs  defaults  0 0
proc  /proc  proc  defaults  0 0

Before mounting over /home/, you may want to check that it is empty. If a non-root user exists  
and a new file system is mounted over it, the contents of the directory will be covered. In this example there is no data in the file system.

```
 # ls -a /home
 ..
```

Mount the /home/ file system with one argument. By using just one argument, you are testing the change to /etc/fstab. Use the df -h command to verify that it is mounted:

```
 # mount /home
 # df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/dasda1 504M 148M 331M 31% /
 tmpfs 121M 0 121M 0% /dev/shm
 /dev/mapper/system_vg-opt_lv 372M 17M 337M 5% /opt
 /dev/mapper/system_vg-tmp_lv 372M 17M 337M 5% /tmp
 /dev/mapper/system_vg-usr_lv 1.5G 1.1G 366M 75% /usr
 /dev/mapper/system_vg-var_lv 372M 93M 261M 27% /var
 /dev/mapper/homevg-homeLv 2.3G 68M 2.1G 4% /home
```

You may want to test a reboot to verify the new logical volume is successfully mounted over /home/.

```
 # reboot

 Broadcast message from root (pts/0) (Thu Sep 2 15:08:07 2010):

 The system is going down for reboot NOW!
```
### 13.3 Extending an existing logical volume

This section describes the process of adding a new minidisk to an existing LVM. This is useful when your logical volume has run out of space.

First, repeat the steps described in 13.1, “Adding DASD” on page 204 to add a new minidisk. In this example, a minidisk at virtual address 104 is added with a size of 3338 cylinders. Do not forget to log off and log back on to LINUX02 so the new directory entry is read.

When your system comes back, enable the new 104 disk, run `dasdfmt` on it and create a single partition:

```bash
chccwdev -e 104
Setting device 0.0.0104 online
Done
lsdasd
Bus-ID Status Name Device Type BlkSz Size Blocks

0.0.0100 active dasda 94:0 ECKD 4096 2347MB 600840
0.0.0101 active dasdb 94:4 ECKD 4096 2347MB 600840
0.0.0300 active dasdc 94:8 FBA 512 256MB 524288
0.0.0301 active dasdd 94:12 FBA 512 512MB 1048576
0.0.0102 active dasde 94:16 ECKD 4096 1173MB 300420
0.0.0103 active dasdf 94:20 ECKD 4096 1173MB 300420
0.0.0104 active dasdg 94:24 ECKD 4096 2347MB 600840
dasdfmt -b 4096 -y -f /dev/dasdg
Finished formatting the device.
Rereading the partition table... ok
fdasd -a /dev/dasdg
reading volume label ..: VOL1
reading vtoc: ok

auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

#### 13.3.1 Creating a physical volume

Use the `pvcreate` command to create a physical volume from the minidisk:

```bash
pvcreate /dev/dasdg1
Physical volume "/dev/dasdg1" successfully created
```

#### 13.3.2 Extending the volume group

Use the `vgextend` command to extend the volume group into the new physical volume. Then, use `vgdisplay` to verify that the volume group has free space.

```bash
vgdisplay homevg
--- Volume group ---
VG Name homevg
System ID 1vm2
Format lvm2
Metadata Areas 2
```
Metadata Sequence No 2
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 1
Open LV 1
Max PV 0
Cur PV 2
Act PV 2
VG Size 2.29 GiB
PE Size 4.00 MiB
Total PE 586
Alloc PE / Size 586 / 2.29 GiB
Free PE / Size 0 / 0
VG UUID 9HPTso-Amw3-70HQ-3of1-AszO-1aeo-dFvB7z

# vgextend homevg /dev/dasdg1
Volume group "homevg" successfully extended

# vgdisplay homevg
--- Volume group ---
VG Name homevg
System ID
Format lvm2
Metadata Areas 3
Metadata Sequence No 3
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 1
Open LV 1
Max PV 0
Cur PV 3
Act PV 3
VG Size 4.58 GiB
PE Size 4.00 MiB
Total PE 1172
Alloc PE / Size 586 / 2.29 GiB
Free PE / Size 586 / 2.29 GiB
VG UUID 9HPTso-Amw3-70HQ-3of1-AszO-1aeo-dFvB7z

Note there are 586 new free physical extents (PEs).

### 13.3.3 Extending the logical volume and the file system

Now that you have free space in the volume group, you can increase the size of the existing logical volume with the `lvextend` command. The `-l` option specifies the number extents to add. Finally, use the `ext2online` command to increase the size of the file system while it is still mounted.

You can use the `df` command to show the file system size before and after you extend it, as the following example shows:

```
df -h /home
/dev/mapper/homevg-homelv
 2.3G 68M 2.1G 4% /home
lvextend -l +586 /dev/homevg/homelv
```

```
```

```
```
Extending logical volume homelv to 4.58 GB
Logical volume homelv successfully resized
# resize2fs /dev/homevg/homelv
resize2fs 1.41.12 (17-May-2010)
Filesystem at /dev/homevg/homelv is mounted on /home; on-line resizing required
old desc_blocks = 1, new desc_blocks = 1
Performing an on-line resize of /dev/homevg/homelv to 1200128 (4k) blocks.
The filesystem on /dev/homevg/homelv is now 1200128 blocks long.
Use the \texttt{df -h} command to show that the file system is now 2.3 GB larger:
# df -h /home
\begin{verbatim}
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/homevg-homelv 4.6G 69M 4.3G 2% /home
\end{verbatim}

13.4 Adding SCSI/FCP disks

This book has only described ECKD disks, also known as DASD. In addition, z/VM and Linux support SCSI/FCP disks.

The Fibre Channel (FC) standard was developed by the National Committee of Information Technology Standards (NCITS). The System z FCP I/O architecture conforms to these standards. IBM System z FCP support enables z/VM and Linux running on System z to access industry-standard SCSI devices. For disk applications, these FCP storage devices utilize Fixed Block (512 byte) sectors rather than Extended Count Key Data (ECKD) format. A new channel-path identifier (CHPID) type has been defined called FCP. The FCP CHPID type is supported on the FICON and FICON Express features of all System z processors.

This is only a brief introduction to SCSI/FCP disks and multipathing. For more complete documentation, see \textit{Fibre Channel Protocol for Linux and z/VM on IBM System z}, SG24-72666.

In addition, see \textit{Introducing N_Port Identifier Virtualization for IBM System z9}, REDP-41255.

13.4.1 Adding a single LUN

You can determine if your LPAR has these types of disks defined by using the z/VM \texttt{QUERY FCP} and \texttt{QUERY FCP FREE} commands. Here is an example from a MAINT 3270 session:

```zshell
===> q fcp
An active FCP was not found.
===> q fcp free
FCP 1F20 FREE , FCP 1F21 FREE , FCP 1F50 FREE , FCP 1F51 FREE
FCP 3B00 FREE , FCP 3B01 FREE , FCP 3B02 FREE , FCP 3B03 FREE
FCP 3B04 FREE , FCP 3B05 FREE , FCP 3B06 FREE , FCP 3B07 FREE
FCP 3B08 FREE , FCP 3B09 FREE , FCP 3B0A FREE , FCP 3B0B FREE
FCP 3B0C FREE , FCP 3B0D FREE , FCP 3B0E FREE , FCP 3B0F FREE
FCP 3B10 FREE , FCP 3B11 FREE , FCP 3B12 FREE , FCP 3B13 FREE
FCP 3B14 FREE , FCP 3B15 FREE , FCP 3B16 FREE , FCP 3B17 FREE
...```
The output shows that the LPAR has many FCP devices free, but none of them are in use. Associated with FCP devices are World Wide Port Numbers (WWPNs) and Logical Unit Numbers (LUNs). Often, this information may be available as part of the LPAR definition. However, you may not have this information handy. If you do not have this information, it can be queried on RHEL 6. In the following section, an FCP/SCSI disk is attached to LINUX02.

Perform the following steps:

1. Start an SSH session as root to LINUX02.
2. Verify that the zfcp module is loaded by using the following command:

   ```
   # lsmod | grep zfcp
   zfcp                  144433  0 [permanent]
   scsi_transport_fc      68240  1 zfcp
   scsi_mod              296490  3 zfcp,scsi_transport_fc,scsi_tgt
   qdio                   61977  3 zfcp,qeth_l3,qeth
   ```

3. Change the directory to `/sys/bus/ccw/drivers/` and list the contents:

   ```
   # cd /sys/bus/ccw/drivers
   # ls -F
   3215/ 3270/ dasd-eckd/ dasd-fba/ qeth/ vmur/
   ```

 Note that there is no directory named `zfcp/`.

4. Go back to the MAINT 3270 session and attach an FCP device to LINUX02 by using the ATTACH command:

   ```
   ==> att 3b16 linux02
   FCP 3B16 ATTACHED TO LINUX02 3B16
   ```

5. Return to the Linux SSH session and list the contents of the directory again. This time, you should see a new directory named `zfcp/`:

   ```
   # ls -F
   3215/ 3270/ dasd-eckd/ dasd-fba/ qeth/ vmur/ zfcp/
   ```

6. Change to that directory and list the contents:

   ```
   # cd zfcp
   # ls -F
   0.0.3b16@ bind module@ uevent unbind
   ```

7. Note that a symbolic link (identified by the trailing ampersand, @, after the file name in conjunction with the -F flag of `ls`) has been made to a new directory named `0.0.3b16`. Change to that directory and list the contents:

   ```
   # ls -F
   availability cutype driver@ online subsystem@
   cmb_enable devtype modalias power/ uevent
   ```

8. Enter the contents of the online file:

   ```
   # cat online
   ```

 A value of 0 shows that the device is offline.

9. Echo a 1 into the file and it will be put online (you could also use the `chccwd` command):

   ```
   # echo 1 > online
   ```

   ```
   # cat online
   ```

 1
10. List the contents of the directory again. You should see that many entries were added after the device was put online. The four entries in bold are the WWPNs available from this FCP device.

 # ls -F
 0x5005076306138411/ cmb_enable host0/ peer_wwnn subsystem@
 0x500507630613c411/ cutype in_recovery peer_wwpn uevent
 0x500507630a10016c/ devtype lic_version port_remove
 0x500507630a13016c/ driver@ modalias port_rescan
 availability failed online power/
 card_version hardware_version peer_d_id status

11. The \texttt{lsluns} command will show all of the available LUNs from a single WWPN. In the following example, the first WWPN is used:

 # lsluns -p 0x5005076306138411
 Scanning for LUNs on adapter 0.0.3b16
 at port 0x5005076306138411:
 0x4010400000000000
 0x4010400100000000
 0x4010400200000000
 ...

12. Bring a LUN online. In this example, the next free LUN is \texttt{4014402600000000}. Change the directory to the first WWPN and list the contents:

 # cd 0x5005076306138411
 # ls
 access_denied in_recovery status unit_add
 failed power uevent unit_remove

13. The output shows that there is no active LUN under this WWPN. Bring the LUN online by echoing the value into the \texttt{unit_add} file and list the contents of the directory:

 # echo 0x4014402600000000 > unit_add
 # ls -F
 0x4014402600000000/ failed power/ uevent unit_remove
 access_denied in_recovery status unit_add

14. Note that a new directory with the LUN value is created:

 # lszfcp -D
 0.0.010a/0x500507630503c73d/0x4020400800000000 0:0:0:1074282528

 # cat /proc/scsi/scsi
 Attached devices:
 Host: scsi0 Channel: 00 Id: 00 Lun: 1074282528
 Vendor: IBM Model: 2107900 Rev: .310
 Type: Direct-Access ANSI SCSI revision: 05

15. Now a \texttt{/dev/sda} directory exists. Check that there are no partitions:

 # fdisk -l /dev/sda

 Disk /dev/sda: 8589 MB, 8589934592 bytes
 64 heads, 32 sectors/track, 8192 cylinders
 Units = cylinders of 2048 * 512 = 1048576 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System

Chapter 13. Miscellaneous tasks 215
16. Create a partition with the `fdisk` command:

```bash
# fdisk /dev/sda

WARNING: DOS-compatible mode is deprecated. It's strongly recommended to switch off the mode (command 'c') and change display units to sectors (command 'u').

Command (m for help): n
Command action
  e  extended
  p  primary partition (1-4)

p
Partition number (1-4): 1
First cylinder (1-8192, default 1):
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-8192, default 8192):
Using default value 8192

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
```

17. Create an ext4 file system with the `mkfs.ext4` command:

```bash
# mkfs.ext4 /dev/sda1

mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux

...```

18. You should now be able to mount it and see the size:

```bash
mount /dev/sda1 /mnt
df -h /mnt

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 7.9G 146M 7.4G 2% /mnt
```

19. Create a test file:

```bash
echo "this is the file foo" > /mnt/foo
umount /mnt
```

### 13.4.2 Configuring multipathing

It is a best practice to set up multipathing for better availability. Perform the following steps:

1. Create a second WWPN:

   ```bash
 # cd /sys/bus/ccw/drivers/zfcp/0.0.0.10a
 # ls
 availability cutype driver online subsystem
cmb_enable devtype modalias power uevent
 # echo 1 > online
   ```

2. Note the second WWPN. In this example, it is 0x500507630503c73d:

   ```bash
 # ls
 0x500507630503c73d devtype in_recovery peer_wwnn status
   ```
3. Echo the same LUN into the unit_add file. This action enables the same LUN, but from a different WWPN.

   # cd /sys/bus/ccw/drivers/zfcp/0.0.010a
   # ls
   0x500507630503c73d  devtype           in_recovery  peer_wwnn    status
   availability        driver            lic_version  peer_wwpn    subsystem
   card_version        failed            modalias     port_remove  uevent
   cmb_enable          hardware_version  online       port_rescan
   cutype              host2             peer_d_id    power
   # cd 0x500507630503c73d/
   # ls
   access_denied  in_recovery  status  unit_add
   failed         power        uevent  unit_remove
   # echo 0x4020400800000000 > unit_add
   # cat /proc/scsi/scsi
   Attached devices:
   Host: scsi0 Channel: 00 Id: 00 Lun: 1074282528
      Vendor: IBM      Model: 2107900      Rev: .310
      Type: Direct-Access  ANSI SCSI revision: 05
   Host: scsi1 Channel: 00 Id: 00 Lun: 1074282528
      Vendor: IBM      Model: 2107900      Rev: .310
      Type: Direct-Access  ANSI SCSI revision: 05

4. At this point, the system thinks there are two LUNs, but actually there are two paths to the same LUN.

5. Install the device-mapper-multipath RPM:

   # yum -y install device-mapper-multipath
   ...

6. Create the /etc/multipath.conf file:

   # cd /etc
   # vi multipath.conf
   defaults {
      user_friendly_names yes
   }

7. Turn the multipath service on for this session and across reboots:

   # service multipathd start
   Starting multipathd daemon: [ OK ]
   # chkconfig multipathd on

   # multipath -ll
   mpatha (36005076305fffc73d00000000000002008) dm-4 IBM,2107900
   size=8.0G features='1 queue_if_no_path' hwhandler='0' wp=rw
     `-+- policy='round-robin 0' prio=1 status=active
     `- 0:0:0:1074282528 sda  8:0  active  ready  running
     `- 1:0:0:1074282528 sdb  8:16 active  ready  running
8. Add an entry to /etc/multipath.conf using the mpatha value (WWID):

```bash
defaults {
 user_friendly_names yes
}
create a friendly name - test_lun
multipaths {
 multipath {
 wwid 36005076305ffcc73d0000000002008
 alias test_lun
 no_path_retry 5
 }
}
```

9. Restart the multipath service and verify that the new `test_lun` friendly name has been added:

```bash
service multipathd restart
Stopping multipathd daemon: [OK]
Starting multipathd daemon: [OK]
[root@train4 etc]# ls /dev/mapper
control system_vg-tmp_lv system_vg-var_lv test_lunp1
system_vg-opt_lv system_vg-usr_lv test_lun
```

10. Mount the multipathed LUN with the new name and see that the test file exists:

```bash
mount /dev/mapper/test_lunp1 /mnt
ls /mnt
foo
lost+found
```

### 13.4.3 Making the changes persistent

To make the changes persistent, two steps must be performed:

1. Put the FCP device in the virtual machines user directory entry.
2. Put the WWPN and LUN into a Linux configuration file.

Perform the following steps:

1. Add a DEDICATE statement to virtualize A000 (which is the FCP device) as virtual device 200:

   ```bash
 USER LINUX02 LINUX02 256M 1G G
 INCLUDE LNXDFLT
 OPTION APPLMON
 DEDICATE 0200 A000
 MDISK 100 3390 0001 3338 MM3F06 MR LNX4VM LNX4VM LNX4VM
 MDISK 101 3390 0001 3338 MM3F07 MR LNX4VM LNX4VM LNX4VM
   ```

2. Run DIRECTXA to bring the change online.

3. Create the `/etc/zfcp.conf` file. As a shortcut, you can use the output of `lszfcp -D`:

   ```bash
 # cd /etc
 # lszfcp -D > zfcp.conf
 # vi zfcp.conf
 0.0.010a 0x500507630503c73d 0x4020400800000000
 0.0.010b 0x500507630503c73d 0x4020400800000000
   ```
13.5 Rescuing a Linux system

This section describes how to boot your Linux server into different modes for troubleshooting purposes. It covers booting Linux into single user mode, and also entering a rescue environment when you require more advanced troubleshooting.

13.5.1 Entering single user mode

Single user mode is helpful when you need to recover the root password, or if you are having problems booting Linux into the default run level. To enter single user mode, first perform an IPL of your Linux server from the 3270 console. You will see a message similar to the following one:

```
zIPL v1.8.2-28.el6 interactive boot menu
0. default (linux)
1. linux
```

Note: VM users please use `#cp vi vmsg <input>`.

Please choose (default will boot in 5 seconds):

You can use the `#cp vi vmsg` command to boot the desired menu option (zero in this example), followed by the number one for single user mode:

```
===> #cp vi vmsg 0 1
```

In single user mode, you are logged in as the root user. You can use the `passwd` command to set the root password. All of the file systems in `/etc/fstab` are mounted, but networking has not been started. To exit single user mode, you can type `reboot`, or enter `init 3` to continue booting normally.

13.5.2 Entering a rescue environment

If you encounter errors while mounting the root file system, or have other problems that prevent you from entering single user mode, you can enter a rescue environment. This environment loads a Linux image in memory, and does not attempt to mount the root file system.

To enter a rescue environment, initiate an interactive Linux installation. Perform the following steps to enter a rescue environment on the LINUX023 user ID:

1. Log on to LNXMAINT. Copy the RHEL6 EXEC file to a new file named RESCUE EXEC, and copy the user's PARM-RH6 file to a new file (LINUX02 RESCUE in this example):

```
===> copy rhel6 exec d rescue =
===> copy linux02 parm-rh6 d = rescue =
```

2. Edit RESCUE EXEC to point to the new RESCUE file:

```
===> x rescue exec
/* EXEC to punch a RHEL 6 install system to reader and IPL from it */
Address 'COMMAND'
'CP SPOOL PUN *
'CP CLOSE RDR'
'CP PURGE RDR ALL'
```
3. Edit the LINUX02 RESCUE file, replacing any kickstart or VNC lines with the rescue command line option:

```bash
===> x linux02 rescue d
root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=LINUX02.CONF-RH6
rescue
```

4. Log off of LNXMAINT.

5. Log on to LINUX02 and answer n to the IPL from 100 question.

6. Increase the memory to 1 GB:

```bash
===> def stor 1g
00: STORAGE = 1G
00: Storage cleared - system reset.
```

7. Run `ipl cms` and again answer n to the IPL from 100 question.

```bash
===> ipl cms
z/VM V6.1.0 2010-09-23 11:31
DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
Do you want to IPL Linux from minidisk 100? y/n
n
```

8. Run the RESCUE EXEC file:

```bash
===> rescue
NO FILES PURGED
RDR FILE 0001 SENT FROM LINUX02 PUN WAS 0001 RECS 100K CPY 001 A NOHOLD NOKEEP
RDR FILE 0002 SENT FROM LINUX02 PUN WAS 0002 RECS 0003 CPY 001 A NOHOLD NOKEEP
RDR FILE 0003 SENT FROM LINUX02 PUN WAS 0003 RECS 296K CPY 001 A NOHOLD NOKEEP
0000003 FILES CHANGED
0000003 FILES CHANGED
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Linux version 2.6.32-71.el6.s390x (mockbuild@s390-004.build.bos.redhat.com) (gcc
version 4.4.4 20100726 (Red Hat 4.4.4-13) (GCC)) #1 SMP Wed Sep 1 01:38:33 EDT
2010
... Kernel command line: root=/dev/ram0 ro ip=off ramdisk_size=40000
CMSDASD=191 CMSCONFFILE=LINUX02.CONF-RH6
rescue
... Starting sshd to allow login over the network.
```
Connect now to 9.60.18.225 and log in as user install to start the installation.

E.g. using: ssh -x install@9.60.18.225

The installation process directs you to telnet or SSH to the IP address of your Linux server to begin the first stage of the installation.

9. Use SSH to connect to the IP address and log in as install.

10. Choose your language.

11. The rescue environment will prompt you for the location of the rescue image, which is located in the installation tree on the cloner. Choose NFS directory, then enter the IP address of the cloner and the /nfs/rhel5 path:

```
+------------------------------¦ NFS Setup +------------------------------+
¦ ¦
¦ Please enter the server and NFSv3 path to your Red Hat Enterprise Linux ¦
¦ installation image and optionally additional NFS mount options. ¦
¦ ¦
¦ NFS server name: 9.60.18.223__________________________ ¦
¦ Red Hat Enterprise Linux directory: /nfs/rhel6_____________________ ¦
```

12. The Rescue window appears. Choose Continue. The rescue image will search for your Linux installation. Hopefully it will prompt you to mount the partitions it finds.

```
+--------------¦ Rescue +---------------+
¦ ¦
¦ Your system has been mounted under ¦
¦ /mnt/sysimage. ¦
¦ ¦
¦ Press <return> to get a shell. If you ¦
¦ would like to make your system the ¦
¦ root environment, run the command: ¦
¦ ¦
¦ chroot /mnt/sysimage ¦
¦ ¦
¦ The system will reboot automatically ¦
¦ when you exit from the shell. ¦
```

If the rescue image cannot find your partition, you can try to mount it yourself with the `mount` command. For example:

```
mount /dev/dasda1 /mnt/runtime/
ls /mnt/runtime/
bin home media root sys
boot lib mnt sbin tmp
dev lib64 opt selinux usr
etc lost+found proc srv var
```

13. Type `exit` to leave the shell and exit rescue mode.
13.6 Setting up Linux Memory Hotplugging

Linux Memory Hotplug allows the amount of memory in a Linux system to be increased or decreased without a reboot. You must first have standby memory defined to the virtual machine in which Linux is running. You can issue the CP DEFINE STORAGE command to configure standby memory (storage). RHEL 6 Linux can then exploit the standby memory using the Service Call (SERVC) instruction.

To set up standby storage for Linux memory hotplug, using LINUX01 as the virtual machine, perform the following steps.

1. Modify the LINUX01 directory entry by adding a COMMAND statement. This action gives the virtual machine an additional 768 MB of standby memory:

   USER LINUX01 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   COMMAND DEFINE STORAGE 256M STANDBY 768M
   OPTION APPLMON
   MDISK 100 3390 3339 3338 UM63A9 MR LNX4VM LNX4VM LNX4VM
   MDISK 101 3390 6677 3338 UM63A9 MR LNX4VM LNX4VM LNX4VM

2. You could run the DISKMAP USER command to review the minidisk allocation, but because you did not change anything to do with disks, it is probably not necessary. Run the DIRECTXA command to bring the change online:

   ==> directxa user
   z/VM USER DIRECTORY CREATION PROGRAM - VERSION 6 RELEASE 1.0
   EOJ DIRECTORY UPDATED AND ON LINE
   HCPDIR494I User directory occupies 45 disk pages

3. Shut down the Linux system running on LINUX01. This can be done a number of ways, but because you are logged onto MAINT, it can be accomplished with the SIGNAL SHUTDOWN command:

   ==> signal shutdown linux01

4. Within about 30 seconds, you should see notification that the system went down cleanly and the virtual machine was logged off:

   HCPSIG2113I User LINUX01 has reported successful termination
   USER DSC LOGOFF AS LINUX01 USERS = 16 AFTER SIGNAL

5. Log on to LINUX01. You should see the standby memory reported:

   LOGON LINUX01
   00: NIC 0600 is created; devices 0600-0602 defined
   00: z/VM Version 6 Release 1.0, Service Level 0901 (64-bit),
   00: built on IBM Virtualization Technology
   00: There is no logmsg data
   00: FILES: 0003 RDR, NO PRT, NO PUN
   00: LOGON AT 11:47:27 EDT MONDAY 09/13/10
   00: STORAGE = 256M MAX = 1G INC = 1M STANDBY = 768M RESERVED = 0
   00: Storage cleared - system reset.

6. Answer y to boot Linux:

   DMSACP723I A (191) R/O
   DMSACP723I C (592) R/O
   DIAG swap disk defined at virtual address 300 (64989 4K pages of swap space)
   DIAG swap disk defined at virtual address 301 (129981 4K pages of swap space)
   Do you want to IPL Linux from minidisk 100? y/n
7. Start an SSH session as root and view the memory in the /sys/ file system. Change the directory to /sys/devices/system/memory/ and list the files:

```
cd /sys/devices/system/memory
ls
block_size_bytes memory0 memory1 memory2 memory3
```

8. Enter the block_size_bytes file by using the cat command:

```
cat block_size_bytes
10000000
```

This number is the number of bytes in hexadecimal. 10000000 in hex is 256 MB in decimal. So the block size is 256 MB and there are four blocks, memory0 through memory3, which are represented as directories. Each of the memory blocks has a state, which is represented as a file.

9. Show the state of each memory block with the following command:

```
cat memory*/state
online
offline
offline
offline
```

The output shows that the first 256 MB is online and the next three blocks are offline.

10. You can also show information about memory by using the free -m command:

```
free -m
 total used free shared buffers cached
Mem: 241 165 75 0 18 54
-/+ buffers/cache: 92 148
Swap: 761 0 761
```

This shows 241 MB

11. You can turn on memory by sending the online string to the state file. Turn on an additional 512 MB of memory by using the following commands:

```
echo online > memory1/state
echo online > memory2/state
```

12. Show that the memory is now online:

```
cat memory*/state
online
online
online
offline
```

13. Again, confirm the memory by using the free -m command:

```
free -m
 total used free shared buffers cached
Men: 753 170 582 0 18 54
-/+ buffers/cache: 98 654
Swap: 761 0 761
```

14. You can also give the memory back by echoing offline to the state file:

```
echo offline > memory1/state
echo offline > memory2/state
```
15. Verify that the memory has returned:

```
cat memory*/state
online
offline
offline
offline
```

```
free -m

Mem: 241 165 75 0 18 54
-/+ buffers/cache: 92 148
Swap: 761 0 761
```

This section has shown how to configure virtual machines with standby memory and how to “hot-plug” the memory from Linux. Each of the four Linux virtual machines, LINUX01 through LINUX04, default to 256 MB of memory and can be moved up to 1 GB. However, LINUX02 through LINUX04 require Linux to be shut down, the CP DEFINE STORAGE command to be run, and Linux to be rebooted. LINUX01 can now have memory added while Linux is running. This function can increase your server farm's performance and availability.

13.7 Using the cpuplugd service

The cpuplugd service allows Linux to enable or disable CPUs and memory, based on a set of rules. It can improve performance by setting the correct number of processors and amount of memory for Linux systems depending on their current load. It can also prevent the Linux scheduler from queue balancing in partial load situations.

More information about cpuplugd can be found in Linux on System z Device Drivers, Features and Commands on Red Hat Enterprise Linux 6, which can be found on the web at the following address:


13.7.1 Determining the virtual CPUs being used

To determine the virtual CPUs that are being used, perform the following steps:

1. Start an SSH session to a Linux system and determine how many CPUs Linux has online. Use a short bash script, lscpus, to save typing:

   ```
 # cd /usr/local/sbin
 # vi lscpus
 #!/bin/bash
 # script to list the number and status of virtual CPUs
 for i in /sys/devices/system/cpu/cpu*
 do
 echo $i
 cat $i/online
 done

 # chmod +x lscpus

 # service cpuplugd status
 cpuplugd (pid 1574) is running...
   ```
The output shows that cpuplugd starts by default in the current run level.

4. Wait a few minutes and run the lscpus script again:

```
lscpus
/sys/devices/system/cpu/cpu0
 1
/sys/devices/system/cpu/cpu1
 0
/sys/devices/system/cpu/cpu2
 0
/sys/devices/system/cpu/cpu3
 0
/sys/devices/system/cpu/cpu4
 0
/sys/devices/system/cpu/cpu5
 0
/sys/devices/system/cpu/cpu6
 0
/sys/devices/system/cpu/cpu7
 0
/sys/devices/system/cpu/cpu8
 0
/sys/devices/system/cpu/cpu9
 0
```

The output shows that now only one of the ten virtual CPUs are active. The cpuplugd service turned off the other 9.

5. The cpuplugd configuration file is /etc/sysconfig/cpuplugd. Some middleware products recommend a minimum of two virtual processors. If the majority of your Linux servers will be running a workload, which recommends two processors, change the default for CPU_MIN to 2. An exception would be when only a single physical processor is available. View the non-comments and lines that are not blank in the configuration file with the following command:

```
cd /etc/sysconfig
egrep -v '^$|^#' cpuplugd
CPU_MIN="1"
CPU_MAX="0"
UPDATE="10"
CMM_MIN="0"
CMM_MAX="8192"
CMM_INC="256"
HOTPLUG="(loadavg > onumcpus +0.75) & (idle < 10.0)"
HOTUNPLUG="(loadavg < onumcpus -0.25) | (idle > 50)"
MEMPLUG="0"
MEMUNPLUG="0"
```

The default rules for the plugging and unplugging of CPUs in the configuration file is as follows:

- **HOTPLUG** = 
  
```
 "(loadavg > onumcpus +0.75) & (idle < 10.0)"
```

- **HOTUNPLUG** = 
  
```
 "(loadavg < onumcpus -0.25) | (idle > 50)"
```
Where the variables in the statements have the following meaning:

- **loadavg**: The current average CPU load
- **onumcpus**: The number of CPUs that are online
- **runable_proc**: The current number of processes that can be run
- **idle**: The current idle percentage

These CPU hot plugging and unplugging values will be used in the next section. In the default setup, cpuplugd will only make changes to the virtual processor configuration. The auto adaptive adjustment of the memory using the cmm feature (module) is deactivated by default and also not available when running in a native LPAR environment.

### 13.7.2 Generating a workload to see cpuplugd work

You can now generate a workload to show how cpuplugd will turn on CPUs.

**Important**: Running the following command will generate significant CPU use. Verify that there is not a mission-critical workload running on this z/VM LPAR, as this test may affect it. Also, be sure to kill the processes after seeing cpuplugd in action.

Perform the following steps:

1. Put ten looping jobs in the background with the following `for` loop:
   ```bash
 # for i in `seq 1 10`
 > do
 > bash -c "cat /dev/zero > /dev/null" &
 > done
 [1] 2441
 [2] 2442
 [3] 2443
 [4] 2444
 [5] 2445
 [6] 2446
 [7] 2447
 [8] 2448
 [9] 2449
 [10] 2453
 ``

2. See that the jobs are running (you can also use the `top` command):
   ```bash
   # pstree -G | grep cat
   +-sshd---sshd---bash---
   10*[bash---cat]
   ``

3. Now run `lscpus` every so often. The following example shows that, after a minute or so, cpuplugd has started five of the nine spare processors.
   ```bash
 # lscpus
 /sys/devices/system/cpu/cpu0
 1
 /sys/devices/system/cpu/cpu1
 1
 /sys/devices/system/cpu/cpu2
 1
 /sys/devices/system/cpu/cpu3
 1
 /sys/devices/system/cpu/cpu4
 1
   ```
Chapter 13. Miscellaneous tasks

After a few more minutes, all of the CPUs should be activated.

4. Kill the processes with the `killall` command, then verify that the loops have stopped:

```bash
killall cat
bash: line 1: 2450 Terminated cat /dev/zero > /dev/null
bash: line 1: 2452 Terminated cat /dev/zero > /dev/null
bash: line 1: 2451 Terminated cat /dev/zero > /dev/null
bash: line 1: 2457 Terminated cat /dev/zero > /dev/null
bash: line 1: 2456 Terminated cat /dev/zero > /dev/null
[1] Exit 143 bash -c "cat /dev/zero > /dev/null"
[2] Exit 143 bash -c "cat /dev/zero > /dev/null"
...
pstree -G | grep cat
No output shows that the processes to create a workload have been stopped.

13.7.3 Setting memory sizes with cpuplugd

Memory sizes can also be set by the cpuplugd service. However, unlike CPUs, there is no good generic default value. The following example is in the Device Drivers book:

```plaintext
MEMPLUG = "swaprate > freemem+10 & freemem+10 < apcr"
MEMUNPLUG = "swaprate > freemem + 10000"
```

However, this is just a starting point to explain the syntactical structure of a rule. Do not use this configuration in production. You should test any setting that you want to implement against a representative workload that your Linux systems will be running. The details of this topic are beyond the scope of this book.

13.8 Hardware cryptographic support for OpenSSH

This section shows how to copy a test file with OpenSSH, first without any crypto acceleration, and then crypto acceleration for OpenSSH is enabled and the same file is copied again. A much higher throughput rate should be observed. The prerequisite for using hardware cryptography is to have a firmware level of LIC 3863 installed on your System z CPC.

This section is based on the white paper First experiences with hardware cryptographic support for OpenSSH with Linux for System z, by Gnirss, et al. It can be found at the following address:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101690

This section only shows a single example of crypto acceleration. For a much more complete and detailed analysis, refer to the white paper.
To test copy a file with and without cryptographic acceleration, perform the following steps:

1. Start an SSH session to a Linux.

2. Create a 200 MB test file for copying in the /tmp/ directory:

   ```
   # cd /tmp
   # dd if=/dev/zero of=testdata.txt bs=1048576 count=200
   200+0 records in
   200+0 records out
   209715200 bytes (210 MB) copied, 17.87 s, 11.7 MB/s
   # ls -lh testdata.txt
   -rw-r--r-- 1 root root 200M Oct 9 14:51 testdata.txt
   ```

3. Copy the file locally with the scp command, two times with specific encryption algorithms and once without, prefixing them all with the time command:

   ```
   # time scp -c 3des-cbc /tmp/testdata.txt localhost:/dev/null
   The authenticity of host 'localhost (::1)' can't be established.
   Are you sure you want to continue connecting (yes/no)? yes
   Warning: Permanently added 'localhost' (RSA) to the list of known hosts.
   root@localhost's password:
   testdata.txt                                  100%  200MB  4.6MB/s  00:44
   real    0m51.295s
   user    0m17.797s
   sys     0m1.047s
   # time scp -c aes128-cbc /tmp/testdata.txt localhost:/dev/null
   root@localhost's password:
   testdata.txt                                  100%  200MB  28.6MB/s  00:07
   real    0m10.780s
   user    0m1.212s
   sys     0m0.698s
   [root@gpok225 ssl]# time scp /tmp/testdata.txt localhost:/dev/null
   root@localhost's password:
   testdata.txt                                  100%  200MB  16.7MB/s  00:12
   real    0m15.977s
   user    0m3.072s
   sys     0m0.753s
   ```

 The output shows throughputs of about 4.6, 28.6, and 16.7 MBps and a user times of about 17.7, 1.2, and 3.0 seconds.

4. Determine if the necessary cryptographic-related RPMs are installed:

   ```
   # rpm -qa | grep openssl-ibmca
   ```

 No output shows that they are not installed.

5. Install the RPM by using the yum install command:

   ```
   # yum -y install openssl-ibmca openssl-ibmca.s390
   ```

 Dependency Installed:

 glibc.s390 0:2.12-1.7.el6 keyutils-libs.s390 0:1.4-1.el6
 krb5-libs.s390 0:1.8.2-3.el6 libcom_err.s390 0:1.41.12-3.el6
Chapter 13. Miscellaneous tasks

6. Verify that the RPMs are now installed:

```bash
# rpm -qa | egrep "libica|ibmca"
libica-2.0.3-2.el6.s390x
openssl-ibmca-1.1-3.el6.s390x
openssl-ibmca-1.1-3.el6.s390
```

7. Verify that CP Assist for Cryptographic Function (CPACF) operations are supported:

```bash
# icainfo
The following CP Assist for Cryptographic Function (CPACF) operations are supported by libica on this system:
SHA-1:    yes
SHA-256:  yes
SHA-512:  yes
DES:      yes
TDES-128: yes
TDES-192: yes
AES-128:  yes
AES-192:  yes
AES-256:  yes
PRNG:     yes
```

8. Make a backup of the `/etc/ssl/openssl.cnf` SSL configuration file:

```bash
# cd /etc/pki/tls
# cp openssl.cnf openssl.cnf.orig
```

9. Append the sample SSL configuration file under `/usr/share/doc/openssl-ibmca-1.1/` to the actual SSL configuration file, that is, `/etc/openssl.cnf`:

```bash
# cat /usr/share/doc/openssl-ibmca-1.1/openssl.cnf.sample-s390x >> openssl.cnf
```

10. Edit the appended file and search for the line with the `openssl_conf` variable. Move that line from the bottom to the top and save the file, as shown in the following example:

```bash
# vi openssl.cnf
openssl_conf
```
```
# OpenSSL example configuration file.
# This is mostly being used for generation of certificate requests.
#
# This definition stops the following lines choking if HOME isn't defined.
HOME                    = .
RANDFILE                = $ENV::HOME/.rnd
openssl_conf = openssl_def
...
```

11. Without a symlink, we receive the following error:

```bash
# time scp -c 3des-cbc /tmp/testdata.txt localhost:/dev/null
Auto configuration failed
```
/usr/lib64/libibmca.so: cannot open shared object file: No such file or
directory
2199031767552: error:25070067: DSO support routines: DSO_load: could not load the
shared library: dso_lib.c: 244:
2199031767552: error:26086084: engine routines: DYNAMIC_LOAD: dso not
found: eng_dyn.c: 450:
2199031767552: error:2608C066: engine routines: INT_ENGINE_CONFIGURE: engine
configuration error: eng_cnf.c: 204: section=ibmca_section, name=dynamic_path,
value=/usr/lib64/libibmca.so
2199031767552: error:0E07606D: configuration file routines: MODULE_RUN: module
initialization error: conf_mod.c: 235: module=engines, value=engine_section,
retcode=-1
lost connection
12. Make a symbolic link to the /usr/lib64/openssl/engines/libibmca.so file:
 # cd /usr/lib64
 # ln -s openssl/engines/libibmca.so
 # ls -l libibmca.so
lrwxrwxrwx. 1 root root 27 Oct 20 16:47 libibmca.so ->
openssl/engines/libibmca.so
13. Rerun the same scp commands:
 # time scp -c 3des-cbc /tmp/testdata.txt localhost:/dev/null
Password:
testdata.txt 100% 200MB 66.7MB/s 00:03
real 0m5.890s
user 0m1.542s
sys 0m0.558s
 # time scp -c aes128-cbc /tmp/testdata.txt localhost:/dev/null
Password:
testdata.txt 100% 200MB 66.7MB/s 00:03
real 0m6.287s
user 0m0.993s
sys 0m0.541s
 # time scp /tmp/testdata.txt localhost:/dev/null
Password:
testdata.txt 100% 200MB 66.7MB/s 00:03
real 0m4.839s
user 0m0.996s
sys 0m0.548s
14. Delete the test file:
 # rm /tmp/testdata.txt
You should see an improved throughput.
13.9 The X Window System

For many years, UNIX-like operating systems have been using the X Window System. This system was designed to provide a client/server, hardware-independent, and network-enabled graphical environment. The current version is X Window System 11, which is widely used on UNIX and Linux platforms.

Confusion often arises among new X Window System users regarding the concept of client and server, because client and server are defined from an application point of view, where other protocols, such as SSH, Telnet, and FTP, are defined from an user point of view. In the X Window System, the server runs on a workstation or a desktop, while the client runs on the UNIX or Linux server. Many Linux desktop users do not recognize this difference because they often run both the server and client on their desktop.

It is a common practice to connect from a PC (SSH client) to a remote Linux system (SSH server) and then run an X Window System application. It runs on a remote Linux system (X Window System client) and displays on a local PC (X Window System server).

The X Window System communication protocol, by its nature, is not secure at all. For this reason, it is often used together with the SSH protocol, which tunnels X Window System 11 traffic using encrypted (and thus secure) communications.

X Window System 11 itself provides the ability to display graphics on raster display only. If the user wants to be able to move, resize, and otherwise manage windows, a window manager is required. There are many window managers available; some are lightweight, while some are more robust. So using a window manager is a good idea, because it provides the functionality that one expects from a GUI.

When you have Linux installed on your workstation, a window manager is probably not enough. Here you want a full desktop environment with menus, icons, task bars, and so on, such as Gnome and KDE. Installing GNOME or KDE on System z is discouraged, as they are resource-intensive. Installing the X Window System on System z is also not recommended.

13.9.1 VNC server

As mentioned earlier, the X Window System server is run on the workstation. In a nutshell, a VNC server provides a virtual workstation with all the peripherals (virtual). The VNC server starts an embedded X Window System server. Then any X Window System-based application can send its output to this X Window System server, regardless whether the applications are local or remote to the X Window System server.

To interact with the X Window System server, one uses a VNC client on a workstation, as described in 3.2, “Setting up a VNC client” on page 24. The VNC server customization is described in 8.2.4, “Configuring the VNC server” on page 151. In our experience, this is all you need if you want to run X Window System applications from time to time.

One big advantage of VNC is that it is session oriented. If communication to VNC server is lost, a new connection is reestablished to the session as it was. Also, applications in a disconnected VNC session still continue to run.
13.9.2 X Window System Server on workstation

If for some reason VNC is not acceptable, it is possible to use a standard X Window System server on a workstation. Because Linux users usually know the X Window System, an X Window System server running on Windows is described in this section.

There are many commercial and free X Window System servers available for Windows. In the following examples, XliveCD is used, which provides a free X Window System server based on Cygwin. It can be run directly from a CD without requiring installation. You can find the installation files at the following address:

http://xlivecd.indiana.edu/

Any X Window System application will send its output to an address defined with the -display parameter or, if the address is not provided, to an address specified in the DISPLAY environment variable. If neither is provided, the local computer is used for output.

Run the following command:

```
 gpok224:~ # xclock
 Error: Can't open display:
```

There is no display specified for the `xclock` command and it will terminate.

A display is specified by setting DISPLAY environment variable:

```
 gpok224:~ # export DISPLAY=9.145.177.158:0
 gpok224:~ # xclock
 No protocol specified
 Error: Can't open display: 9.145.177.158:0
```
This command failed, because XliveCD requires an explicit command to allow remote hosts to connect to it. When the command `xhost +` (plus means to add authorized hosts) is run, `xclock` can finally display on Windows, as shown in Figure 13-2. Remember the program itself runs on a remote Linux.

Run the following command again. You should get a positive output this time.

```
gpok224:~ # xclock &
[1] 21915
```

The `xhost +` command allows any host to access the X Window System server. From a security point of view, this may not be a good idea. Even allowing just specific hosts is not enough, because the X Window System 11 protocol itself is not secure. Using SSH tunneling removes this security exposure. SSH tunneling also prevents firewalls and NAT from breaking X Window System 11 communications.

It is possible to use an external SSH client that allows X Window System 11 forwarding, or SSH client embedded in XliveCD itself.
Using PuTTY
To use PuTTY for X Window System 11 forwarding, check Enable X11 forwarding, as shown in Figure 13-3.

![PuTTY Configuration](image)

Figure 13-3 Enable X Window System 11 forwarding in PuTTY
As you can see in Figure 13-4, the DISPLAY environment variable contains the special value of localhost:10.0, which tells PuTTY to forward the X Window System 11 protocol over SSH to an SSH client address. In this case, there is no need to enter the xhost command, because the connection appears as a local one to the X Window System server.
Using embedded SSH

It is also possible to achieve X Window System 11 forwarding with an embedded SSH client as shown in Figure 13-5. Again, no `xhost` command is needed.

There are many ways to achieve the same results. It is up to you to choose a solution that best suits your purposes.

13.10 Centralizing home directories for LDAP users

In related books about previous versions of RHEL, there was a section about how to create a travelling `/home/` directory using LDAP, NFS, and automount. To save space, this section has been removed. The recipe for SLES 10 SP2 should be useful on SLES 11 SP1, although it might not work exactly as it did for SLES 10. See Section 13.3, “Centralizing home directories for LDAP users”, in *z/VM and Linux on IBM System z The Virtualization Cookbook for Red Hat Linux Enterprise Server 5.2*, SG24-7492.
13.10.1 Recommendations for centralizing home directories

In December of 2009, the topic of how to set up a common home directory came up on the linux-390 list server. The following post by Patrick Spinler is copied, with permission, as it may be helpful to you:

"NFSv3 is not known for it's security. Consider the use of the NFS option root_squash, along with limiting the list of hosts who can connect to your home share. Only export home directories to hosts which you control, remember that anyone who has root on their box (e.g. a developer workstation) can impersonate any user to NFS. Here's the relevant /etc/exports line we use:

```
/export/unixdata/homedirs               \ 
@hgrp_autohome_admin(rw,no_root_squash,insecure,sync) \ 
@hgrp_autohome_hosts(rw,root_squash,insecure,sync)
```

I look forward to going to NFSv4 with kerberos authentication, but we're not there yet.

Regarding automount maps in LDAP, this works very well for us with one exception. The problem is that there's a significant number of automount map schemas out there, and different OS's (and different revisions of OS's) use different ones. As we are a fairly heterogeneous environment, I found it near impossible to keep a master map in LDAP. Right now we're just keeping a /etc/auto.master or /etc/auto_master on each host.

In order to make the individual map entries work heterogeneously, I had to add several object classes and a few redundant attributes to each entry. Here's what my home directory automount map entry looks like:

```
# ap00375, auto_home, unix.example.com
dn: automountKey=ap00375,automountMapName=auto_home,dc=unix,dc=example,dc=com
automountInformation: linux01.example.com:/vol/vol2/unixhomes-5gb/75/ap00375
cn: ap00375
automountKey: ap00375
objectClass: automount
objectClass: nisNetId
objectClass: top
```

Regarding heterogeneous clients, we found AIX in particular to be the hardest of our clients to configure, and Linux the easiest. Insure on AIX that you have the latest available LDAP client package from IBM. Also be aware that AIX wants to use it's extended LDAP schema rather than RFC2307, and wants full write access to the LDAP servers from every AIX client. Despite that, it will work with RFC2307 and read only access. Solaris, like Linux, has an option to not use an LDAP proxy account at all via anonymous binding, but I never got Solaris anonymous binding to work.

I recommend making LDAP use TLS or SSL on the wire, in order to keep clear-text passwords from flying about. Both AIX and Solaris require the server public SSL certificates to be loaded on every client to do LDAP over TLS or SSL. Linux can be configured to ignore authenticating the LDAP servers' certificates and proceed with TLS/SSL anyway - this is convenient, but does open the possibility of man in the middle attacks. In our environment this isn't a big deal, but it might be in yours.
We’ve found POSIX group membership management to be one of our more challenging issues overall. Some older systems (e.g. solaris <= 8 or 9) enforce the old POSIX limit of no more than 16 secondary groups. Further, the primary group concept is annoying - conceptually, in any organization with modest member mobility, which primary group do they get? If one assumes that the primary group is meaningful, e.g. reflective of someone’s function, role, or job, what about people who do two or more things (E.g. student *and* employee) or people who transfer, but will have a transitional period?

Our not so great compromise was to first use NIS-style netgroups via LDAP for anything we can. In particular, we use a mutation of netgroups to control individual’s authorization to log in via the use of service search descriptors, and also for sudo privileges. Second in our environment all meaningful POSIX groups are secondary groups. For primary groups we adopt the linux convention of creating a separate POSIX group for each individual: e.g. userA gets a group userA as her primary group. This has the problem of a huge proliferation of groups, though, and several LDAP clients, in particular AIX, have issues with that.1

1 Source: http://www2.marist.edu/htbin/wlvindex?linux-390
Monitoring and tuning z/VM and Linux

This chapter briefly describes how to monitor z/VM and Linux. For another source on z/VM performance and monitoring, see Chapter 11, “Monitoring performance and capacity,” in the manual Getting Started With Linux, SC24-6096, on the web at:

There are a number of z/VM monitoring tools such as CA’s VM:Monitor, the IBM z/VM Performance Toolkit, the IBM Tivoli OMEGAMON® XE for z/VM and Linux, and products from Velocity Software. The IBM z/VM Performance Toolkit is briefly described in this section.

There are also two sections on tuning z/VM and Linux using Cooperative Memory Management (CMM) and the processor plug daemon, cpuplugd.

This chapter contains the following sections:

- “Using INDICATE and other commands” on page 240
- “The z/VM Performance Toolkit” on page 244
- “Monitoring Linux” on page 254
- “Viewing Linux data in the Performance Toolkit” on page 255
14.1 Using INDICATE and other commands

z/VM has many commands to monitor the state of the system. CP INDICATE is the most commonly used, and there are other commands that are addressed. For more information, see the z/VM Performance Resources web page at

http://www.vm.ibm.com/perf/

14.1.1 Using the INDICATE command

z/VM has some basic commands such as INDICATE. There are many INDICATE parameters that can be included as command line options. Use the command HELP INDICATE for a basic understanding and then press F11 for help on each parameter.

INDICATE LOAD

If no parameter is specified, INDICATE LOAD is the default option. There are two flavors of this, depending on whether the issuing user ID has privilege class G or class E. Class G users can use INDICATE to display recent contention for system resources, environment characteristics, and measurements of resources used by their virtual machine.

The output from a user ID with class E privilege (for example, MAINT and OPERATOR) is shown here. The lines are numbered for clarity of the description that follows:

```bash
== ind load
1   AVGPROC-038% 03
2   XSTORE-000021/SEC MIGRATE-0001/SEC
3   MDC READS-000068/SEC WRITES-000001/SEC HIT RATIO-099%
4   PAGING-0031/SEC STEAL-000%
5   Q0-00006(00000) DORMANT-00357
6   Q1-00001(00000) E1-00000(00000)
7   Q2-00001(00000) EXPAN-002 E2-00000(00000)
8   Q3-00034(00000) EXPAN-002 E3-00000(00000)
9
10  PROC 0000-038% PROC 0001-038%
11  PROC 0002-038%
12
13  LIMITED-00000
```

The INDICATE LOAD command gives a snapshot of current system performance. Except for the counts of virtual machines in various queues and the limited list, the values you see here are a smoothed average over the past 4 minutes. Areas on which z/VM performance analysts tend to focus are the following:

- AVGPROC on line 1 gives the overall processor utilization, 38% in this example. The number following it is the number of online processors, 3 in this example. The individual processor utilization is shown on lines 10 and 11. Take a glance at these to see if they are somewhat balanced. There are cases where an imbalance is okay. This would include low utilization scenarios or cases where there are not enough users ready to run virtual processors to keep the physical processors busy. One of the processors will be a Master, all of the others Alternate, and some imbalance may result from performing these functions.

Line 2 describes paging to expanded storage. Most z/VM systems on z9 class machines can sustain several 1000s of this type of paging operations a second without any problems. z10 class machines will perform even better. The MIGRATE rate is the number of pages per second being moved from expanded storage out to paging space on DASD. A healthy system will have a MIGRATE rate significantly lower than the XSTORE rate, probably
being measured in 100s rather than 1000s. The higher values seen tend to build up over time, and are sustained over periods of intense system activity. However, there are times when the MIGRATE value may spike for brief periods of time.

- Minidisk cache (MDC) statistics are given on the third line. The effectiveness of MDC can be judged by the combination of the READS rate and the HIT RATIO. If both are high, then a large number of physical I/Os are avoided due to the MDC feature. For a system that has an appreciably high I/O rate, composed of reads plus writes, and a high proportion of reads, and a good hit ratio for those reads (tending to 90% or greater), the real, physical I/O avoidance can be high. This author has seen the avoidance as high as 50% in some cases. Conversely, however, a high HIT RATIO with a low value for the READS rate should not be taken as good (100% hit ratio, when doing only 1 I/O per second is effectively meaningless).

- Line 4 describes more storage (memory) management. The PAGING rate is important. Higher values will often impact performance. This can be at least partially offset by increasing the number of page volumes, but a more thorough examination of this problem is advisable whenever it arises. The STEAL percentage is often misleading. This is basically the percentage of pages taken from guests that z/VM believes are non-dormant. Because some guests have periodic timers going off, they appear to be active to z/VM even when relatively idle. Pages taken from these guests are still considered to be stolen. So there are scenarios where a system only has a user set comprising active guests, in which case all pages taken would be considered stolen. Bearing this in mind, if a high STEAL value is observed, the paging rate needs to be checked. If the paging rate is relatively low, then the STEAL value is not important.

- On lines 5 through 8 you also see a series of counters that represent the users in various queues. The z/VM scheduler classifies work into 3 different classes (1 through 3) and a special additional class labelled zero. So the Column of Qx values and Ex represent the virtual machines in the dispatch list and the eligible list. The most important value here to validate is that there are no virtual machines in the Eligible list: E1, E2, E3; this implies z/VM has stopped dispatching some virtual machines to avoid overcommitting resources. Such a system would require further investigation, possibly leading to some tuning work, or even hardware addition in extreme cases. Ignore the values in parenthesis.

INDICATE QUEUES EXP

Another useful command to understand the state of the system is the INDICATE QUEUES EXP command. Here is an example:

```shell
===> ind q exp
DATAMGT1  Q3  AP  00000537/00000537 ....  -2.025 A02
BITNER     Q1  R00 00000785/00000796 .I.. -1.782 A00
EDLLNX4    Q3  PS  00007635/00007635 ....  -1.121 A00
TCPIP      Q0  R01 00004016/00003336 .I.. -.9324 A01
APCTEST1   Q2  IO  00003556/00003512 .I.. -.7847 A01
EDLWK20    Q3  AP  00001495/00001462 ....  -.6996 A01
EDL        Q3  IO  00000918/00000902 ....  -.2409 A01
EDLWK11    Q3  AP  00002323/00002299 ....  -.0183 A00
EDLWK18    Q3  IO  00001052/00000388 ....  -.0047 A00
EDLWK4     Q3  AP  00004792/00002295 ....  .0055 A01
EDLWK8     Q3  AP  00004804/00004797 ....  .0089 A02
EDLWK16    Q3  AP  00002378/00002378 ....  .0170 A02
EDLWK2     Q3  AP  00005544/00002956 ....  .0360 A00
EDLWK12    Q3  AP  00004963/00002348 ....  .0677 A01
EDLWK6     Q3  IO  00000750/00000302 ....  .0969 A02
EDLWK3     Q3  AP  00005098/00005096 ....  .0999 A02
EDLWK17    Q3  AP  00004786/00004766 ....  .1061 A01
```
This is another class E command and displays the virtual processors associated with a given user ID (a single virtual machine may have multiple virtual processors), what queue (dispatch list, eligible list, or limit list) they are in, and what state they are in. This is a snapshot in time. Again you want to check this output to make sure there are no virtual machines in the eligible list. Normal virtual processors in the dispatch list will be Q_x ($x=1,2,3$). The eligible list would be marked as E_x.

The third column in the example also gives the state of the virtual processor. This can be helpful to get an idea of how the virtual processors might be constrained. Virtual processors that are actually running in the snapshot period are marked with RNN where NN is the processor number they are on. An R without a number means the virtual processor is ready to run but there is no available processor. (Note: the virtual machine that issues the INDICATE command will always be one of the running machines).

Other states are documented in the help for IND Q EXP. One does not have to be concerned about the other columns unless detailed analysis is required or when IBM support requests it. Also, always remember that it is just a snapshot in time, so repeating this command often over time can give a more accurate picture of your z/VM system. A single snapshot cannot be regarded as indicative.

14.1.2 Using other basic commands

Some other useful basic commands are briefly mentioned. All examples are shown from the MAINT user ID. The results will be different for users with fewer privileges.

Getting help

To get help on the system use the HELP command. Sometimes it is hard to find help for exactly the command you are looking for. Some useful HELP commands are as follow:

```
=> help // for basic help
=> help menus // for menu of all z/VM help menus
=> help cp menu // for a menu of all CP commands
=> help cpquery // for a menu of all CP QUERY command
=> help cpset // for a menu of all CP SET commands
```

Determining who is logged on

To see who is logged on to the system, use the QUERY NAMES command. For example:

```
=> q n
FTPSERVE - DSC , LINUXO4 - DSC , LINUXO3 - DSC , LINUXO2 - DSC
LINUX01 - DSC , S11S1CLN - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC
VMSERVER - DSC , VMSERVU - DSC , VMSERVERS - DSC , TCPIP - DSC
OPERSYMP - DSC , DISKACNT - DSC , EREP - DSC , OPERATOR - DSC
MAINT -LO003
VSM - TCPIP
```
Determining storage or memory
To see how much central and expanded storage (memory) is installed and allocated to a
system, use the QUERY STORAGE and QUERY XSTOR commands. For example:

```plaintext
==> q stor
STORAGE = 16G CONFIGURED = 16G INC = 256M STANDBY = 0 RESERVED = 0
==> q xstor
XSTORE= 2048M online= 2048M
XSTORE= 2048M userid= SYSTEM usage= 0% retained= OM pending= OM
XSTORE MDC min=0M, max=OM, usage=0%
XSTORE= 2048M userid= (none) max. attach= 2048M
```

Determining processors
To see how many processors (CPs, IFLs, and CPUs) you have allocated at the system level,
use the QUERY PROCESSORS command. For example:

```plaintext
==> q proc
PROCESSOR 00 MASTER CP
PROCESSOR 01 ALTERNATE CP
PROCESSOR 02 ALTERNATE CP
PROCESSOR 03 ALTERNATE CP
PROCESSOR 04 ALTERNATE CP
PROCESSOR 05 ALTERNATE CP
PROCESSOR 06 ALTERNATE CP
PROCESSOR 07 ALTERNATE CP
PROCESSOR 08 ALTERNATE CP
PROCESSOR 09 ALTERNATE CP
```

Determining the software level
To determine what level of CP your system is at, use the QUERY CPLEVEL command. For
example:

```plaintext
==> q cplevel
z/VM Version 6 Release 1.0, service level 0901 (64-bit)
Generated at 09/11/09 16:51:48 EDT
IPL at 08/31/10 08:44:19 EDT
```

Determining system cylinder allocation
The QUERY ALLOC MAP command shows you the system allocation of spool, paging, and
directory space. For example:

```plaintext
==> q alloc map
EXTENT EXTENT % ALLOCATION
VOLID RDEV START END TOTAL IN USE HIGH USED TYPE
-------- ---- ---------- ---------- ------ ------ ------ ---- -------------
610RES 6280 1 20 20 1 1 5% DRCT ACTIVE
UV6281 6281 1 3338 600840 75482 75533 12% SPOOL
UV6282 6282 1 3338 600840 0 0 0% PAGE
UP6285 6285 0 3338 601020 0 0 0% PAGE
UP6286 6286 0 3338 601020 16 59 1% PAGE
UP6287 6287 0 3338 601020 0 0 0% PAGE
```
Determining DASD, OSA, and virtual resources

The QUERY DASD and QUERY DASD FREE commands show you what DASD is assigned to the system and what DASD is free to be assigned. Similarly, the QUERY OSA and QUERY OSA FREE commands report on the OSA resources. Finally, the QUERY VIRTUAL ALL command can be useful. The following list gives the short form of these commands without any of the associated output shown:

```plaintext
==> q da
==> q da free
==> q osa
==> q osa free
==> q v all
```

14.2 The z/VM Performance Toolkit

To use the z/VM Performance Toolkit, the product must be ordered. You should only configure the product if you have ordered it.

Much more detail can be found in the following books:

- **z/VM Performance Toolkit Guide**, SC24-6156
- **z/VM Performance Toolkit Reference**, SC24-6157
- The Program Directory for Performance Toolkit for VM, GI10-0785
- *Linux on IBM zSeries® and S/390®: Performance Toolkit for VM*, SG24-6059

The sections that follow describe how to set up and use the IBM Performance Toolkit briefly:

- “Configuring the z/VM Performance Toolkit”
- “Using the z/VM Performance Toolkit”

14.2.1 Configuring the z/VM Performance Toolkit

The Performance Toolkit is installed with z/VM. Configuration is described in the Program Directory. Here is a summary of how to turn it on. Again, you should configure the product only if you have ordered it.

Perform the following steps:

1. Query which priced products are enabled with the QUERY PRODUCT command:

   ```plaintext
   ==> q product
   Product State Description
   6VMDIR10 Disabled 00/00/00:00:00:00:$BASEDDR DIRECTORY MAINTENANCE FL 610
   6VMPTK10 Disabled 00/00/00:00:00:00:$BASEDDR PERFORMANCE TOOLKIT FOR VM
   6VMRAC10 Disabled 00/00/00:00:00:00:$BASEDDR RACF for VM
   6VMRSC10 Disabled 00/00/00:00:00:00:$BASEDDR RSCS Networking Version 6 Release 1
   Modification 0
   
   2. To enable the z/VM Performance Toolkit, log on to MAINT and enter the following command:

      ```plaintext
 ==> service perftk enable
 VMFSRV2760I SERVICE processing started
 ...
 VMFSUT2760I VMFSUFTB processing started
      ```
You should see a few screens of messages scroll by and finally the success messages shown above. This will enable the Performance Toolkit for the current z/VM session.

At IPL time, the SYSTEM CONFIG file is modified by having a line appended to the end. Verify that this has been added by the SERVICE command with the following commands:

```bash
=> link * cf1 cf1 rr
=> acc cf1 f
DMSACP723I F (CF1) R/O
=> x system config f
====> bot
====> -2
====> pre off
...
PRODUCT PRODID 6VMPTK10 STATE ENABLED DESCRIPTION '12/17/09.15:35:41.MAINT PE
RFKIT Minidisk Install and Service'
```

The Performance Toolkit is now enabled. You can also verify this with the QUERY PRODUCT command again.

### 14.2.2 Configuring web browser support

After the product is enabled, the TCPIP profile must be modified to enable web access to the Performance Toolkit. The following example sets the port to 80, the default for a web browser:

1. Log on to TCPMAINT. Edit the TCPIP configuration file. In this example, it is the POKSND61 TCPIP D file (assuming you modified this file name earlier; the default name is PROFILE TCPIP) and search for the string reserve ports. This is where z/VM TCP/IP ports are reserved.

```bash
=> x poksnd61 tcpip d
====> /port
```

2. Add the following line under the PORT entries:

```bash
20 TCP FTPSERVE NOAUTOLOG ; FTP Server
21 TCP FTPSERVE ; FTP Server
23 TCP INTCLIEN ; TELNET Server
; 25 TCP SMTP ; SMTP Server
; 53 TCP NAMESRV ; Domain Name Server
; 53 UDP NAMESRV ; Domain Name Server
; 67 UDP DHCPD ; DHCP Server
; 69 UDP TFTP ; TFTP (Trivial FTP) Server
; 69 UDP TFTP ; TFTP (Trivial FTP) Server
80 TCP PERFSVM ; Performance Toolkit
; 111 TCP PORTMAP ; Portmap Server
```

Save your changes. The TCPIP user ID needs to be recycled in order for our changes to take effect. You can FORCE and XAUTOLOG TCPIP from a console. Alternatively, if you are in a position to perform an IPL of the system, you can do that (run `shutdown reipl ip parms cons=sysec`).
3. When the system comes back, log on to TCPMAINT and check whether everything was successful with the NETSTAT CLIENTS command. You want to see that the service PERFSVM is a client (listening). This should be shown after a few windows of output:

```bash
=> netstat clients
...
Client: PERFSVM Authorization: {none}
Notes Handled: none
Last Touched: 0:01:22
Vmcf error count: 0
```

The entry for PERFSVM should be at the end of the output.

### 14.2.3 Configuring PERFSVM

The PERFSVM user ID is the Performance Toolkit service machine. To configure it, perform the following steps:

1. Log on to PERFSVM. If you successfully enabled the product, you should be put in a Performance Toolkit session and see the following text at the top of the panel:

   ```
 FCX001 Performance Toolkit for VM Autoscroll 12
 FCXBAS500I Performance Toolkit for VM FL610
 Monitor event started -- recording is activated
 Monitor sample started -- recording is activated
 FCXPMN446E Incomplete monitor data: SAMPLE CONFIG size too small
   ```

2. Press F12 twice to get to a CMS prompt.

3. Copy the PROFILE XEDIT file from the MAINT 191 disk so that editor sessions will have a common interface among user IDs.
   a. Use the VMLINK command to both link the disk read-only and access it as the highest available file mode. The default read password is read. However, if you changed your passwords as described in 4.9.5, “Changing passwords in USER DIRECT” on page 65, it will be Inx4vm (or whatever you set it to).

   ```bash
 => vmlink maint 191
 ENTER READ PASSWORD: lnx4vm
 DMSVML2060I MAINT 191 linked as 0120 file mode Z
   ```
   b. Copy the PROFILE XEDIT file to the A disk:

   ```bash
 => copy profile xedit z = = a
   ```

4. Copy the default configuration files, which are on PERFSVM’s D disk, to your A disk:

   ```bash
 => copy * * d = = a
   ```

5. The main configuration file is FCONX $PROFILE. Edit this file and search for the string VMCF.

   ```bash
 => x fconx $profile
 ===> /vmcf
   ```

   This should take you to line 175 where the next four lines are comments starting with an *.

   Perform the following changes:
   - Uncomment the second and fourth lines by changing *C to FC.
   - Change port 81 to 80 on the fourth line. This will enable you to use a browser interface without having to specify port 81 on the URL (with a :81 suffix).
The modified lines should be as follows. Save your changes with the FILE subcommand:

* Following command activates VMCF data retrieval interface
  FC MONCOLL VMCF ON
* Following command activates Internet interface
  FC MONCOLL WEBSERV ON TCPIP TCPIP 80
* Following command activates Internet interface with SSL
  *C MONCOLL WEBSERV ON SSL TCPIP TCPIP 81 IDTEST RACF

6. Create a remote data retrieval authorization file with your z/VM system identifier (replace **POKSN61** with your system identifier):

```plaintext
==> x fconrmt authoriz
====> a 2
POKSN61 PERFSVM S&FSERV
POKSN61 MAINT DATA CMD EXCPMSG
```

7. Create a system identification file that links your z/VM system and PERFSVM to the special resource name **FCXRES00** (replace **POKSN61** with your system identifier):

```plaintext
==> x fconrmt systems
====> a
POKSN61 PERFSVM ESA N FCXRES00
```

8. Edit the PROFILE EXEC file, search for the word **once** and uncomment the five MONITOR SAMPLE and the two MONITOR EVENT statements:

```plaintext
==> x profile exec a
====> /once

Before:

```plaintext
...  
/*** Once you have PERFKIT enabled and running uncomment the ***/
/*** following comments                                    ***/
/* 'CP MONITOR SAMPLE ENABLE PROCESSOR'     */
/* 'CP MONITOR SAMPLE ENABLE STORAGE'      */
/* 'CP MONITOR SAMPLE ENABLE USER ALL'     */
/* 'CP MONITOR SAMPLE ENABLE I/O ALL'      */
/* 'CP MONITOR SAMPLE ENABLE APPLDATA ALL' */
/* 'CP MONITOR EVENT  ENABLE STORAGE'      */
/* 'CP MONITOR EVENT  ENABLE I/O ALL'      */

'PERFKIT'    /* Invoke the PERFKIT module @FC012BD*/
Exit
```

After:

```plaintext
...  
/*** Once you have PERFKIT enabled and running uncomment the ***/
/*** following comments                                    ***/
'CP MONITOR SAMPLE ENABLE PROCESSOR'
'CP MONITOR SAMPLE ENABLE STORAGE'
'CP MONITOR SAMPLE ENABLE USER ALL'
'CP MONITOR SAMPLE ENABLE I/O ALL'
'CP MONITOR SAMPLE ENABLE NETWORK'
'CP MONITOR SAMPLE ENABLE APPLDATA ALL'
'CP MONITOR EVENT  ENABLE STORAGE'
'CP MONITOR EVENT  ENABLE I/O ALL'
```
9. Set the PERFSVM virtual machine to be started at z/VM IPL time. Edit the PROFILE EXEC file on AUTOLOG1 so that PERFSVM is automatically started at IPL time. First, log on to AUTOLOG1.

10. Before pressing Enter at the VM READ prompt, type `acc (noprof)` so that the PROFILE EXEC file is not run:

```
LOGON AUTOLOG1
z/VM Version 6 Release 1.0, Service Level 1002 (64-bit),
built on IBM Virtualization Technology
There is no logmsg data
FILES: NO RDR, NO PRT, NO PUN
LOGON AT 14:51:02 EDT THURSDAY 10/07/10
DMSIND2015W Unable to access the Y-disk. Filemode Y (19E) not accessed
z/VM V6.1.0 2010-09-23 11:31
===> acc (noprof)
```

11. Add a line so the virtual machine PERFSVM is started at z/VM IPL time:

```
===> x profile exec
/**************************
/* Autolog1 Profile Exec */
/**************************
'cp xautolog tcpip'     /* start up TCPIP */
'CP XAUTOLOG VMSERVS'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG DTCVSW1'
'CP XAUTOLOG DTCVSW2'
'cp xautolog perfsvm'  /* start Performance Toolkit */
'cp set pf12 ret'      /* set the retrieve key */
...
```

12. Save the file and log off from AUTOLOG1.

14.2.4 Increasing the size of the MONDCSS DCSS

The Discontiguous Shared Segments (DCSS) named MONDCSS shipped with z/VM V6.1 is often not large enough, especially when your LPAR has access to many devices. To increase the size of the DCSS, first determine where the current MONDCSS is located by entering the following command:

```
==> q nss name mondcss map
```

```
FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
0011 MONDCSS CPDCSS N/A 09000 09FFF SC R 00001 N/A N/A
```

In this example, the DCSS starts at x9000 and ends at x9FFF. This is x1000 or 4096 pages. Because a page is 4096 bytes or 4 KB, the size of this DCSS is 16 MB (4 KB * 4 KB).
Before starting the Performance Toolkit, you may want to increase the size of the DCSS named MONDCSS. The following steps quadruples the size of MONDCSS to 64 MB:

1. Delete the old MONDCSS with the PURGE NSS command:

   ```
   ==> purge nss name mondcss
   NO FILES PURGED
   0001 FILE PENDING PURGE
   ```

2. Verify that the device addresses 4000-7FFF are free with the QUERY NSS MAP command:

   ```
   ==> q nss map
   ```

3. Redefine the DCSS to a larger size with the following DEFSEG and SAVESEG commands:

   ```
   ==> defseg mondcss 4000-7fff sc rstd
   HCPNSD440I Saved segment MONDCSS was successfully defined in fileid 0034.
   ==> saveseg mondcss
   HCPNSS440I Saved segment MONDCSS was successfully saved in fileid 0034.
   ```

4. Verify that the new DCSS was created:

   ```
   ==> q nss name mondcss map
   ```

You should now be ready to run the Performance Toolkit.
14.2.5 Starting the z/VM Performance Toolkit

To start the Performance Toolkit, perform the following steps:

1. Log on to the PERFSVM user ID.
2. Press Enter and the performance toolkit should start through the PROFILE EXEC file:

 FCX001 Performance Toolkit for VM Autoscroll 12
 FCXBAS500I Performance Toolkit for VM FL610
 FCXAPP530I Connected to *IDENT for resource FCXRES00
 FCXAPF530I Connected to *IDENT for resource FCXSYSTM
 FCXTCP571I Connected to TCP/IP server TCPIP on path 0003
 FCXAPP527I User PERFSVM connected on path 0006
 FCXAPC535I Connected to resource FCXRES00 on path 0005, for S&F-Coll
 FCXTCP575I WebServer host IP address is 9.60.18.249:00080
 FCXTCP590I WebServer interface activated
 Monitor event started -- recording is activated
 Monitor sample started -- recording is activated
3. Disconnect from PERFSVM now:
 Command ===> disc

The Performance Toolkit should now be configured and running.

14.2.6 Using the z/VM Performance Toolkit

The Performance Toolkit can be used with a web browser or 3270 interface.

Using a web browser interface
To use the web-enabled Performance Toolkit, perform the following steps:

1. Point a browser to your z/VM system. For example:

 http://9.60.18.249
You should see a splash window, then the Web Server Logon window, as shown in Figure 14-1.

![Figure 14-1 Performance Toolkit logon window](image)

2. Enter any valid user ID and password and click **Submit**. In this example, MAINT is used.

3. The Central Monitoring System Load Overview appears with your system identifier (Node-ID) on the left side.
4. Click your system identifier and the Initial Performance Data Selection Menu window appears, as shown in Figure 14-2. From this window, you can drill down into many different types of reports.

![Figure 14-2 Browser interface to the Performance Toolkit](image)

Using a 3270 interface

You can also use a 3270 interface or a browser interface. To do so, perform the following steps:

1. Log on to PERFSVM.
2. If you had disconnected, pressing Enter should get you back to the Performance Toolkit command line. If the virtual machine was logged off, the PROFILE EXEC should run and get you to the command line; see Figure 14-3. Enter the command MONITOR:

```
Command ==> monitor
```

![Figure 14-3 Performance Toolkit 3270 Interface Main Menu window](image)

Drilling down into report panels

You should now be able to use the active report panels. To drill down into these, move the cursor to any of the titles that are active (active titles display the number or letter in white, inactive titles in green). Some of the more useful report panels to drill down into are:

- 21. User resource usage
- 22. User paging load
- 23. User wait states
- 28. User configuration
- 29. Linux systems
- 33. Benchmark displays

For example, to drill down into the Benchmark submenu panel, enter the following command:

```
Command ==> 33
```

Then type 5 over the period on the left side of the submenu panel in the row corresponding to the report you want to see.
14.3 Monitoring Linux

Measurements can show resource consumption of the Linux guest as measured and dispatched by the VM host. It is also possible to measure performance data from within the Linux guest itself. To monitor Linux performance data at this level, a data gatherer process must be running within each Linux guest you want to monitor. There are different ways of gathering this data. The data should be gathered in the kernel. All modern Linux distributions have been enabled for the kernel to gather performance data.

14.3.1 Monitoring Linux performance data from the kernel

To monitor Linux performance data directly from the kernel, the following items must be true:

1. The APPLMON option must be set in the user directory.
2. Applmon data monitoring must be built into the kernel.

The first requirement should be true, as the OPTION APPLMON was set for the cloner, the golden image, and for Linux user IDs in earlier sections.

For the second requirement, refer to Chapter 13, “Writing kernel APPLDATA records”, in Linux on System z Device Drivers, Features and Commands on Red Hat Enterprise Linux 6, found at the following address:

A quick description about how to use this built-in monitoring function follows.

Perform the following steps:

1. Start an SSH session to a Linux system. In this example, LINUX01 is used.
2. There are three modules that are built into the kernel but are not loaded by default. They are named appldata_mem, appldata_os, and appldata_net_sum. You can verify that they are not loaded by using the `lsmod` and `grep` commands:

   ```
   # lsmod | grep appldata
   ```

 There is no output, so no modules with the `appldata` string are loaded. Load those modules by using the `modprobe` command and verify that they have been loaded:

   ```
   # modprobe appldata_mem
   # modprobe appldata_os
   # modprobe appldata_net_sum
   ```

 Now if you repeat the `lsmod` command, you should see the following output:

   ```
   # lsmod | grep appldata
   appldata_net_sum        1844  0
   appldata_os             2987  0
   appldata_mem            1966  0
   ```

3. There is no output, so no modules with the `appldata` string are loaded. Load those modules by using the `modprobe` command and verify that they have been loaded:

4. The directory in the virtual `/proc/` file system where the monitoring variables exist is `/proc/sys/appldata/`. In this directory, there are five files:

 - `timer`: Controls whether any data gathering is in effect.
 - `interval`: Sets the interval, in milliseconds, that samples will be taken.
 - `mem`: Controls the memory data gathering module.
 - `os`: Controls the CPU data gathering module.
 - `net_sum`: Controls the net data gathering module.
To turn on the built in kernel monitoring, use the `echo` command to send a non-zero value into four of the five monitoring variables in the `/proc/` virtual file system:

```
# echo 1 > /proc/sys/appldata/timer  
# echo 1 > /proc/sys/appldata/mem    
# echo 1 > /proc/sys/appldata/os     
# echo 1 > /proc/sys/appldata/net_sum
```

Built-in kernel monitoring should now be turned on. You may only want to leave the monitoring on for specific periods of time. As Linux monitoring data is captured, the Performance Toolkit's minidisk space can fill up relatively quickly.

14.4 Viewing Linux data in the Performance Toolkit

After the system has had some time to collect data, you should be able to use the Performance Toolkit to view Linux performance data. To view that data, drill down into menu 29, Linux systems. This can be done either from the browser interface or the 3270 interface, as shown in Figure 14-4.

![Linux Guest Systems submenu](image)

Then type `S` over the period on the left side of the submenu panel in the row corresponding to the report you want to see. You should see a new report panel with the Linux guest systems CPU overview.

You can also use a web interface to view the same data. You would drill down into menu 29 Linux systems and should see that the drill down links for LXCPU (Linux CPU), LXMEM (Linux memory), and LXNET (Linux Network) are hot.
References

z/VM differs from Linux in regards to the location and number of configuration files. In Linux, there are many configuration files and most of them are in or under the /etc/ directory. On z/VM, there are relatively few configuration files. However, they are on many different minidisks. Table 14-1 provides a summary and the location of important z/VM configuration files.

Table 14-1 Important z/VM configuration files

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM CONFIG</td>
<td>MAINT CF1</td>
<td>This is the operating system’s main configuration file. It defines the system name, the CP volumes, user volumes, and other settings.</td>
</tr>
<tr>
<td>USER DIRECT</td>
<td>MAINT 2CC</td>
<td>This file defines the user directory. All user IDs or virtual machines known to the system are defined here (assuming a directory maintenance product is not being used).</td>
</tr>
<tr>
<td><System_ID> TCPIP</td>
<td>TCPMAINT 198</td>
<td>This file defines the resources for the primary z/VM TCP/IP stack, including TCP/IP address, OSA resources, subnet mask, and gateway. It is initially created by the IPWIZARD tool as PROFILE TCPIP.</td>
</tr>
<tr>
<td>SYSTEM DTCPARMS</td>
<td>TCPMAINT 198</td>
<td>This file is created to define the TCP/IP stacks on the system. It is initially created by the IPWIZARD tool.</td>
</tr>
<tr>
<td>TCPIP DATA</td>
<td>TCPMAINT 592</td>
<td>This file defines the DNS server, the domain name, and some other settings. It is initially created by the IPWIZARD tool.</td>
</tr>
<tr>
<td>PROFILE EXEC</td>
<td>AUTOLOG1 191</td>
<td>This file is a REXX EXEC that is run when the system starts. It is analogous to the /etc/inittab file in Linux.</td>
</tr>
</tbody>
</table>
Cheat sheets

This section contains quick references or “cheat sheets” for the XEDIT and vi editors.

XEDIT cheat sheet

XEDIT has line commands that are entered on the command line (===>) and prefix commands that are typed over the line numbers on the left side of the panel.

Line commands

- **a**
 - Adds a line.
- **a<n>**
 - Adds ‘n’ lines.
- **c/<old>/<new>/ <n> <m>**
 - Searches for the ‘old’ string and replaces it with ‘new’ for ‘n’ lines below the current line and ‘m’ times on each line. ‘*’ can be used for ‘n’ and ‘m’
- **/<string>**
 - Searches for ‘string’ from the current line.
- **-/<string>**
 - Searches backwards for ‘string’.
- **all /<string>/**
 - Shows all occurrences of ‘string’ and hide the other lines.
- **bottom**
 - Moves to the bottom of the file.
- **top**
 - Moves to the top of the file.
- **down <n>**
 - Moves down ‘n’ lines.
- **up <n>**
 - Moves up ‘n’ lines.
- **file**
 - Saves the current file and exit XEDIT.
- **ffile**
 - Saves the current file and exit but do not warn of overwrite.
- **save**
 - Saves the current file but do not exit.
- **quit**
 - Exits XEDIT if no changes have been made.
- **qquit**
 - Exits XEDIT even if changes have not been saved.
- **left <n>**
 - Shifts ‘n’ characters to the left.
- **right <n>**
 - Shifts ‘n’ characters to the right.
- **get <file>**
 - Copies the file and insert past the current line.
- **:<n>**
 - Moves to line ‘n’.
- **?**
 - Displays the last command.
- **=**
 - Executes the last command.
- **x <file>**
 - Edits ‘file’ and put it into the XEDIT “ring”.
- **x**
 - Moves to the next file in the ring.

Prefix commands

- **a**
 - Adds one line.
- **a<n>**
 - Adds ‘n’ lines.
- **c**
 - Copies one line.
- **cc**
 - Copies a block of lines.
- **d**
 - Deletes one line.
- **dd**
 - Deletes a block of lines.
- **f**
 - The line after which a copy (c) or a move (m) is to be inserted.
A vi cheat sheet

Here is a small subset of vi commands (the ones most commonly used). The vi editor has three modes:

1. Input mode: The Insert key, i, o (add a line below), O (add a line above) and other commands put you in this mode. When you are in this mode, you will see the text --INSERT-- in the last line.

2. Command mode: Pressing Esc takes you out of input mode and into command mode. The relevant commands are:
 - i: Brings you back to input mode.
 - dd: Deletes a line and puts it into the buffer.
 - <n>dd: Deletes <n> lines.
 - x: Deletes a character.
 - dw: Deletes a word.
 - p: Adds the buffer past the current location.
 - P: Adds the buffer before the current location.
 - o: Adds a line and goes into insert mode.
 - /string: Searches for a string.
 - n: Performs the last command again.
 - jkl;: Performs a cursor movement.
 - A: Adds text at the end of the line.
 - <nn>G: Goes to line <nn>.
 - G: Goes to the last line in the file.
 - yy: Yanks a line (copies into buffer).
 - <n>yy: Yanks n lines.

3. Command line mode: Pressing the colon key puts you into this mode:
 - :wq: Saves (writes and quits).
 - :q!: Quits and discards changes.
 - :<nn>: Goes to line number <nn>.
 - :r <file>: Leads <file> into the current file.
 - :1,$s/old/new/g: Globally replaces <old> with <new>.
Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet as described in the following sections.

Locating the web material

The web material associated with this book is available in softcopy on the Internet from the IBM Redbooks web server. Point your web browser at:

Using the web material

The additional web material that accompanies this book includes the following files:

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>README.txt</td>
<td>The main README file</td>
</tr>
<tr>
<td>clone.sh</td>
<td>The script to clone the golden image to a target user ID</td>
</tr>
<tr>
<td>vm/</td>
<td>A directory containing files used on z/VM</td>
</tr>
<tr>
<td>vm/cpformat.exec</td>
<td>EXEC to format multiple DASD volumes</td>
</tr>
<tr>
<td>vm/chpw610.xedit</td>
<td>XEDIT macro to change passwords</td>
</tr>
<tr>
<td>vm/profile.exec</td>
<td>Sample PROFILE EXEC for Linux IDs</td>
</tr>
<tr>
<td>vm/swapgen.exec</td>
<td>EXEC to define VDISK swap spaces</td>
</tr>
<tr>
<td>vm/sample.parm-rh6</td>
<td>Sample RHEL 6 parameter file</td>
</tr>
<tr>
<td>vm/sample.conf-rh6</td>
<td>Sample RHEL 6 configuration file</td>
</tr>
<tr>
<td>vm/rhel6.exec</td>
<td>XEC to start RHEL 6 install</td>
</tr>
</tbody>
</table>
clone-1.0-10.s390x.rpm RPM with Linux cloning script and man page
README.txt Tar file description file

System requirements for downloading the web material

The web material requires the following system configuration:

Hard disk space: 25 KB minimum
Operating System: Linux

Downloading and extracting the web material

Download the tar file to your NFS server and use it as described in 7.2.1, “Copying files to the cloner” on page 127. After extracting the file, you have a directory named `virt-cookbook-RH6`, which contains the files listed in “Using the web material” on page 261.
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

- *Fibre Channel Protocol for Linux and z/VM on IBM System z*, SG24-7266
- *IBM Lotus Domino 6.5 for Linux on zSeries Implementation*, SG24-7021
- *Introducing N_Port Identifier Virtualization for IBM System z9*, REDP-4125
- *Linux on IBM eServer zSeries and S/390: Application Development*, SG24-6807
- *Linux on IBM eServer zSeries and S/390: Performance Toolkit for VM*, SG24-6059
- *Linux on IBM System z: Performance Measurement and Tuning*, SG24-6926
- *Lotus Workplace Messaging Administration Guide*, REDP-3860
- *Printing with Linux on zSeries Using CUPS and Samba*, REDP-3864
- *Running Linux Guest in less than CP Privilege Class G*, REDP-3870
- *z/VM and Linux on IBM System z*, SG24-7492

You can search for, view, or download IBM Redbooks, IBM Redpapers, Technotes, draft publications and Additional materials, as well as order hardcopy IBM Redbooks publications, at this website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

- *Documentation for System z Linux Development stream*, found at:
- *First experiences with hardware cryptographic support for OpenSSH with Linux for System z*, by Gnirss, et al., found at:
 http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WPI01690
- *Getting Started With Linux*, SC24-6096
- *Installation Instructions for Electronically Delivered IBM z/VM Operating System Deliverable*, GI11-2900
- *Linux on System z Device Drivers, Features and Commands on Red Hat Enterprise Linux 6*, found at:
Consult the following publications:

- **The Program Directory for Performance Toolkit for VM**, which can be found at the following address:

- **z/VM CP Commands and Utilities Reference**, SC24-6175

- **z/VM CP Messages and Codes**, GC24-6177

- **z/VM CP Planning and Administration**, SC24-6178

- **z/VM Getting Started with Linux on System z**, SC24-6194

- **The z/VM Guide for Automated Installation and Service**, GC204-6099

- **z/VM Guide for Automated Installation and Service, Version 6 Release 1.0**, GC24-6097

- **z/VM and Linux on IBM System z: The Virtualization Cookbook for RHEL 5 and z/VM and Linux on IBM System z: The Virtualization Cookbook for SLES 10**, found at:

 http://linuxvm.org/present

- **z/VM Performance Toolkit Guide**, SC24-6156

- **z/VM Performance Toolkit Reference**, SC24-6157

- **z/VM Security and Integrity**, found at:

- **z/VM Service Guide, Version 6, Release 1**, found at:

- **z/VM TCP/IP Messages and Codes**, GC24-6237

- **z/VM TCP/IP Planning and Customization**, SC24-6238

Online resources

These websites are also relevant as further information sources:

- **The linux-390 list server**:

 http://www2.marist.edu/htbin/wlvindex?linux-390
The Linux for IBM eServer zSeries and S/390 portal:
http://linuxvm.org/

Linux on IBM System z and S/390 developerWorks:

SUSE LINUX Enterprise Server 9 evaluation:
http://www.novell.com/products/linuxenterpriseserver/eval.html

z/VM performance tips:
http://www.vm.ibm.com/perf/tips/

z/VM publications:

Help from IBM

IBM Support and downloads
ibm.com/support

IBM Global Services
ibm.com/services
Index

Symbols
(REPLACE 93
$VMF* $MSGLOG 93

Numerics
3270 emulator
software 25
63a2 63a9 53

A
ACCESS (NOPROF 62
all /gap 58
Alloc PE 208
allow guests 5 min to shut down 63
APAR
ShopzSeries 83
VM64670 88
VM64672 82
VM64747 83
VM64774 82
VM64793 82
VM64798 82
VM64799 83
VM64807 82, 85
VM64814 82
VM64820 82
VM64879 82
VM64881 82
VM64891 83
APARMEMO 95
APARS for z/VM V6.1 82
apply a specific fix or PTF 88
Architecture Level Set (ALS) 2
Authorized Program Analysis Report (APAR) 88
AUTOLOG 49
AUTOLOG1 191
disc 157
disk read/write 139

B
B424 Controller 50
B424.P00 VDEV 50
B440 Controller 50
B440.P00 VDEV 50
back up the system to tape 66
backup copy 45, 101, 149, 209
BLK Total 60, 76

C
cd Inxmaint 61
check910 86
checksum value 99
chkconfig atd 150
chkconfig command 101
boot time 104
CHPW610 XEDIT 64
macro 65
CHPW610 XEDIT macro 65
CMSCONFFILE 140, 170, 178, 220
Collaborative Memory Management Assist (CMMA) 2
command
configuration file 225
memory block 223
configuration file 1, 43, 46, 101, 140, 163–164, 178, 218,
225, 257
relatively small number 1
configuring the FTP server 49
Control Program (CP) 3, 205, 240
Conversational Monitoring System (CMS) 3, 246
copy profile
tcpip d 48
xedit 44
xedit z 47, 246
copy rh6gold
cnf-rh6 d linux02 170
cnf-rh6 d linux03 170
cnf-rh6 d linux04 170
parm-rh6 d linux02 170
parm-rh6 d linux03 170
parm-rh6 d linux04 170
CP command 166
CP MONITOR Sample 247
CP Set 60, 139, 158, 242
CP Term 142, 179
cp vi vmsg
0 219
command 219
cpdisk 44
CPFMTXA command 51, 156
CPFORMAT command 52, 156
CPFORMAT EXEC 156
D1 V 62
cplevel 75, 243
CPSYNTAX 55
cpuplugd service 224

D
DASD

CPFORMAT 53
logical volume (LV) 206
DASD 63AA
FR63AA 156
DCSS 248–249
dd command 99, 158
golden image 160
def stor 1g 141, 178, 220
define a VSWITCH 45
define z/VM user ID 56
device error 59
DIAG swap disc 141, 163, 220
direct access storage device (DASD) 7, 204
DIRECTXA 59
DIRECTXA command 59, 77, 157, 204
directxa user 59, 77, 157, 222
disable minidisk cache in XSTOR 63
disk layout 139, 204
disk page 59, 65, 77
diskmap user 57–58, 77, 139, 157
DMSACC724I 500 76
DMSACP723I C 141, 163, 220
DMSERD107S 77
DMSFOR603R Format 59, 77
DSLMPG 204
DNS name 15, 24, 164
domain name and some (DNS) 257
drop-down menu 75
Service Upgrade 83
VM SDO version 6 28
DVD 27
DVD drive 99

E
EDT 75, 243
e-eligible list 241
e-mail 91
e-mail 98, 200
EOJ Directory 59, 77, 157, 222
EREPTFLIB 86
ERPTFLIB A1 86
Extended Count Key Data (ECKD) 11, 213

F
FCONRMT AUTHORIZ file 247
FCONRMT SYSTEMS file 247
FCONX SPROFILE file 246
FCP device 214
Fibre Channel (FC) 213
file mode
Z 47, 60
Z b 44, 253
file mode Z 48, 86, 246
file name 21, 85, 245
FILE subcommand 44, 247
file system 97, 138, 160, 206
logical volume (LV) 145
Filemode Y 47, 248
files to physical (FTP) 27, 76
FLASHCOPY command 158, 175
FLASHCOPY support 160
following command (FC) 40, 90, 244–245
FORMAT 59
FTP server 8, 27, 97, 245
FTPSERVE 49

G
GiB 207
golden image 12, 53, 137, 155, 176, 200, 254, 261
root file system 165
sample kickstart file 176

H
Hardware Management Console (HMC) 2
host name 24
HOSTNAME 140

I
IBM Redbook
z/VM 236
IBM ShopzSeries 28, 74
IBM System z xi, 1, 8, 97, 200, 213, 227, 236, 263–264, 276
architecture 264
CPC 227
DASD 9
Device Driver 224, 254, 263
FCP I/O architecture 213
FCP support 213
processor 213
processor-types 2
server 2, 4
technology xi, 276
virtualization capability 2
IBM System z10 2, 8
block diagram 5
new capabilities 2
IBM Virtualization Technology 46, 248
IBM z/VM
operating system 263
page 12
Performance Resource page 12
IBM zEnterprise 196 82
installation process (IP) 220
installation tree 140, 148, 175
installing z/VM
6101RSU1 40
configure TCP/IP 41
copy z/VM to DASD 35
delivered electronically 28
first level installation 28
from an HMC 30
from DVD 28
HMC 28
INSTDVD 37
instdvd 27
instplan 36
instvm 40
IPWIZARD 41
SET PF12 ? 44
shutdown reipl 40
SYSTEM CONFIG 44
XEDIT PROFILE 43
z/VM install code 30
ZVMV6R10 45
Integrated 3270 31
current session 40
IP address 9, 24, 42, 161, 177, 221
9.60.18.233 102
IPL 140, 156
IPL CMS 40, 80, 141, 178, 220
IPL Linux 141, 163, 178, 204
IPL time 45, 245
notautolog parameter 48
iplparms 63
ISO image 99

K
kickstart file 176, 179

L
limit minidisk cache in CSTOR 63
line 1 240
Linux xi, 1, 5, 7, 97, 204, 263, 276
Linux administrator 12
Linux desktop
system 20
Linux guest 3, 88, 164, 179, 199, 206, 254
host name 200
resource consumption 254
Linux image xi, 1, 11, 153, 164, 166, 219
Disk storage 11
Linux on IBM System z
resource 18
virtual server 101
Linux PC 28
Linux platform 231
Linux system xii, 5, 20, 62, 163–164, 204, 222, 253–254
good starts 63
Linux user 138–139, 156, 158, 232
ID 64, 157
ID privilege class 64
IDs online 4
Linux user ID 60
Linux user IDs
privilege class 64
Linux virtual server
user 12
user IDs 13
LNXMAINT 56
LNXMAINT 192
disc 61, 141
logical volume (LV) xii, 11, 138, 165, 177, 206, 208
file systems 145
full path 208
multiple DASD volumes 206
Logical Volume Manager (LVM) 206–207
logmsg data 47, 141, 162, 222, 248
logon to AUTOLOG1 62
LPAR xi, 1, 8, 30, 213, 248, 276
lsdasd command 160, 204
LUN 213

M
MAINT 500
disc 40, 76
minidisk 77, 93
MAINT CF1
disc 44
minidisk 44
Metadata Sequence 208
minidisk 100 141, 162, 178, 220
mkdir tmp 100
multi-read (MR) 45

N
National Committee of Information Technology Standards (NCITS) 213
NETSTAT CLIENTS command 246
networking information 158, 161, 178
NFS server 8, 37, 51, 97, 142, 262
operating system 8
SSH session 61

O
Open Systems Adapter (OSA) 8
OPTION APPLMON 157, 204, 254
ordering service 83
OSA card 3, 9, 42
OSA device
name 13
type 13
osa free 244
Overcommit memory 62–63
overcommit memory 139, 158
overlap 57

P
PAGE volume 54
paging volume 50, 56
paging volumes 51
CPFMTXA 51
CPFORMAT 51
formatting 51
PARM-RH6 file 140, 178, 219
passwords
changing in USER DIRECT 65
DIRECTXA 65
USER DIRECT 64
XEDIT CHANGE 66
z/VM 64
PC NFS server
retiring 128
perform the following steps (PTFS) 79
Performance Toolkit 82, 239, 264
command 151, 222
value 63
SMP 141, 163, 220
SSH 20
SSH client 19–20, 231, 233
SSH key 147, 159
new set 147
SSH session 24, 61, 140, 159, 176, 204, 254
startup process 171
STEAL percentage 241
STORAGE command 141, 178, 222
submenu panel 253
left side 253
subnet mask 9, 257
swap disc 152
swap space 138, 163, 220
SYSTEM CONFIG file 44, 50, 67, 156, 245
SYSTEM CONFIG file 44–45, 50
System Console 49
system disc 53, 69
system status 173
System z 89
Linux 24

T
Tab key 31
target Linux user ID 4
target system 158–159
TCP FTPSERVE 49, 245
TCP INTCLIENT 49, 245
TCP SMTP 49, 245
TCP/IP address 9, 24, 42, 257
TCP/IP gateway 9
TCPCMSU 57
TCPIP MODULE
E 88
E2 88
TCPSSLVL 88
testdata.txt bs 228
time scp 228
tools for accessing z/VM and Linux 19

U
URL 29, 246
user $alloc 58
user direct c 157
USER DIRECT file 3, 56–57, 138, 156–157
backup copy 65
Directory Maintenance product 3
system volume labels 69
USER DISKMAP 57, 139, 157
file 170, 204
report file 138
user diskmap 57, 77
user ID 28, 33, 59, 75, 240
user IDs 4, 15, 138, 157, 172, 178, 204, 261
common interface 246
different function 65
User Volume List statement 55

V
VDISK 138, 165, 177
disk 50
VERSION 6 RELEASE 1.0 28, 75
Version 6 Release 1.0 162, 222, 264
VG Access 208
virtual address
A04 58
FFFE 166
virtual machine 3, 12, 47, 53, 140, 156, 168, 204, 240–241, 257
virtual server xi, 3, 9, 12, 24, 64, 98, 154, 157, 175, 179, 199
new user IDs 157, 175
Virtualization Cookbook xii, 236
VM READ
prompt 40
predict Ready 29
VM Read 39, 80, 248
VM READ prompt 39
VM user 163, 219
vmcp link
linux01 101 2101 mr 159
vmcp module 166
VMFBDC2250W 80
VMFPLCD 85
VMFSRV2760I SERVICE processing 40, 79, 244
VMFVIEW 79, 94
VMFVIEW SERVICE 80
VMLINK 60
VMSES Documentation Envelope 92
VMSES PTF Envelope 92
VMSES/E 73
VNC
download 24
set up 24
VNC client xi, 19, 142, 231
VNC server 24, 151, 231
volume group 145, 177, 206, 208
free space 212
volume label 51, 138, 205
same set 72
VSWITCH 44, 50, 87, 139, 157
vswitch vsw1
grant linux01 158
grant linux02 171
grant linux03 171
grant linux04 171
grant rh6clone 139, 158
grant rh6gold 139, 158
grant rh6gold2 171
rdev B440 B424 46

W
web page 29, 74
website 185
WRKS 54

X
XAUTOLOG 62
XAUTOLOG command 47
XAUTOLOG statement 139, 157
XEDIT macro 64
XEDIT session 47

Y
yum
configuring 128

Z
z/VM xi, 1, 7, 27, 73, 157, 276
downloading service 76
eligible list 241
service via Internet 89
STEAL percentage 241
z/VM CP
Command 264
Message 264
Planning 264
z/VM DASD
resource value 14
worksheet 17
z/VM installation 39, 97
FTP server 97
z/VM Performance
Resources Web page 240
Toolkit 244
Toolkit Guide 244
z/VM performance
tip 265
z/VM Performance Toolkit
Guide 244
Reference 244
z/VM security 64
z/VM Security and Integrity 64
z/VM Service
Guide 74
z/VM service 73
z/VM system 12, 25, 35, 37, 66, 72–73, 94, 171, 240, 242
Backup Copy 66
DNS name 25
z/VM TCP/IP
Configuration Wizard 41
Message 264
Planning 264
port 245
z/VM user IDs
default password 41
z/VM V5.4.0 80
z/VM V6.1 xi, 2, 8, 28, 74–75, 102, 141, 162, 220, 248,
276
z/VM V6.1.0 47, 248
z/VM Version 6 Release 1.0 46, 81, 243

zEnterprise 196 82
EREP support 82
HCD support 82
HCM support 83
IOCP support 83
This IBM Redbooks publication describes how to create Linux virtual servers in z/VM on IBM System z hardware. This book adopts a cookbook format that provides a concise, repeatable set of procedures for installing and configuring z/VM in a logical partition (LPAR) and then installing and customizing Linux. You need an IBM System z LPAR with the associated resources, z/VM V6.1 media, and a Linux distribution.

This book assumes that you have a general familiarity with System z technology and terminology. It does not assume an in-depth understanding of z/VM and Linux. It is written for those clients who want to get a quick start with z/VM and Linux on the mainframe.