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Preface

The world seems to move more quickly these days; businesses want what they
want right now. As such, we are moving quickly towards a real-time environment,
which means instant access to information, immediate responses to queries, and
constant availability worldwide. You must keep pace or be surpassed.

The world is also rushing to an open environment. Having separate systems,
languages, and transactions to access data in multiple environments is
becoming less of an accepted option. At IBM®, the move to higher levels of
systems integration has been continuous, and is part of IBM solidDB®. For
example, the Universal Cache in solidDB can speed access to data in IBM DB2®
and IBM Informix®, and also to other relational databases such as Oracle,
Sybase, and Microsoft® SQL Server.

Worrying about reliability is unnecessary because with solidDB all the data is
always accessible from the in-memory cache. The reason is because solidDB
also writes updated data to disk to ensure recoverability of the data. To do that,
checkpoint and transaction logging functions exist. Therefore, even if the server
fails between checkpoints, a transaction log contains all the committed
transactions for recovery. In addition, to maintain a balance between
performance requirements and logging capabilities, there is strict logging and
relaxed logging functionality. Also, solidDB provides a hot-standby capability to
give you extreme availability.

To get all these capabilities you might expect an expensive solution, with high
maintenance costs. But solidDB helps avoid the costs associated with both
planned and unplanned outages. For example, the costs for maintenance can be
better controlled because most of it is performed by applications, which can run
virtually unattended, resulting in reduced costs for administration.

When a database system can produce more throughput per hardware cost unit,
with a constant software cost, the result is a higher return on investment (ROI).
Further, it can deliver shorter response times, which increases the value of the
service and which also increases your ROI. In-memory database systems can fill
these expectations.

There is an evolution towards a real-time environment, bringing the potential for
faster and more efficient access to data, analysis of that data, and the delivery of
information for making more informed business decisions. We think that as you
read further in this book and better understand the capabilities of solidDB, you
will agree that this product can enable you to more easily realize those benefits.
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Introduction

In this chapter, we offer an insight into why a product such as IBM solidDB was
conceived and delivered to the market. We discuss differences between the new
in-memory database technology and traditional disk-based database technology.
We introduce the idea of database caching and show how solidDB Universal
Cache fills the need. We discuss the issues of throughput and response times in
solidDB. Also, we discuss the competing solutions and guide the reader through
the contents of this book.
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1.1 The opportunity of the in-memory database

Consumers of IT products consistently work to increase application productivity
and return on investment (ROI) in their enterprises. That applies, to a great
degree, to database systems that are core to many solutions. If a database
system can produce more throughput per hardware cost unit, with a constant
software cost, that serves a higher ROL. If it can deliver shorter response times,
that increase the value of the offered service, and ROI is again increased.
In-memory database systems can fill both expectations.

To achieve that result, developers of in-memory databases strive to use the
power of new computer hardware to its best potential.

What could not escape attention is a tremendous progress in the computer
technology, bringing processors of increasingly growing processing power. The
trend has increased the gap between the raw computing power captured in the
processors and the capability of the 1/0 system to bring the data in and out fast
enough. In the same time, the cost of main memory (RAM) has dropped
significantly, enabling companies to have as much main memory capacity as is
typically found in a modest size disk drive. Systems are already on the market
that can accommodate up to a few terabytes of main memory.

The progress in processor technology and memory volumes has changed the
landscape of computer platforms forever. It created a new opportunity for
database management systems (DBMS) to minimize their dependency on
disk-based systems and instead realize huge performance gains by using fast
processors with large main memories.

In the following sections we describe why traditional database systems cannot
stand up to the challenge, and why solidDB can. We also confront the most
common misconceptions about in-memory databases.

1.1.1 Disk databases cannot expand to memory

2

From the beginning of the database era, disk drives were the only place to store
and access large amounts of data in a reasonable time. DBMS designers
concentrated on optimizing disk I/0O and tried to align the data access patterns
with the block structure imposed by the disk drives. Design strategy frequently
centered on a shared buffer pool where data blocks were kept for reuse;
advances in access methods produced solutions such as block-optimized
indexes used to find the path to the data faster. Moving disk arms were a special
challenge because each arm movement increased the access time. The ways to
reduce arm movement were adjacent placing of data (data clustering), and
writing transaction logs sequentially.

IBM solidDB: Delivering Data with Extreme Speed



In the fierce battle for performance, disk I/O was often the deadliest enemy, and
processing efficiency was sacrificed to avoid disk access. For example, with
typical block page sizes of 8 KB or 16 KB, in-page processing is still inherently
sequential and less CPU-efficient than random data access. Nevertheless, the
page structures remained a popular way to reduce disk access. Meanwhile,
query optimization tactics focused on minimizing page fetches where possible.

When the era of abundant memory arrived, many database administrators
increased their buffer pools until the pools were large enough to contain an entire
database, creating the concept of a fully cached database. However, within the
large RAM buffer pools, the DBMSs were still hostage to all the structural
inefficiencies of the block-oriented 1/O strategy that had been created to deal with
hard disk drives.

This way is all to be changed when developing an in-memory DBMS is to be
done without compromising any of the good characteristics of a database, such
as data persistency and transactional capabilities. The result is the IBM solidDB
in-memory database (IMDB).

1.1.2 IBM solidDB IMDB is memory-friendly

By “memory-friendly” software, we mean one that executes memory-efficient
code. Let us start with the block structures.

One of the most noticeable differences of an in-memory database system is the
absence of large data block structures. IBM solidDB eliminates them. Table rows
and index nodes are stored independently in memory, so that data can be added
without reorganizing big block structures. In-memory databases also forgo the
use of large-block indexes, sometimes called bushy trees, in favor of slim
structures (tall trees) where the number of index levels is increased and the index
node size is kept to a minimum to avoid costly in-node processing. IBM solidDB
uses an index called trie (or prefix tree), which was originally created for text
searching, but can be perfect for in-memory indexing.

A trie (the name comes from the word retrieval) is made up of a series of nodes
where the descendants of a given node have the same prefix of the string
associated with that node. For example, if the word cat is stored in a trie as a leaf
node, it would descend from the node containing ca, which would descend from
the node containing c. Trie indexes increase performance by reducing the need
for key value comparisons, and practically eliminate in-node processing.

Another area of being memory-friendly, is checkpoint execution. A checkpoint is
a persistent image of the whole database, allowing the database to be restarted
after a system crash or other case of down-time. IBM solidDB executes a

snapshot-consistent checkpoint that is alone sufficient to recover the database to
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a consistent state that existed at some point of time in the past. Other database
products do not normally allow that; the transaction log files must be used to
recalculate the consistent state. However, solidDB allows transaction logging to
be turned off, if desired. The solidDB solution is memory-friendly by the ability to
allocate row images and row shadow images (different versions of the same row)
without using inefficient block structures. Only those images that correspond to a
consistent snapshot are written to the checkpoint file, and the row shadows allow
the currently executing transactions to run unrestricted during checkpointing.

There are more examples of “rethinking” of the principles of operation of a
database system, resulting from the main-memory orientation. For example,
differences can be seen in the way the query optimizer works, in the way a
transaction log is implemented. and in the way applications connect to a
database server, to name a few. Those solutions are described in a more detail in
Chapter 2, “IBM solidDB details” on page 13.

To summarize, what makes a DBMS an in-memory DBMS? Look for the following
characteristics:

» Has memory-optimized access methods
» Has memory-optimized checkpointing and logging

» Has both transient and persistent data structures. The latter ones are fully
recoverable after a shutdown or a crash

» Does not have to wait for I/O on any read query execution.

Looking at it another way, taking a disk-based database system that was
developed on day one, with a focus on reducing disk 1/O, and converting it easily
into an in-memory database system, focused on reducing CPU and memory, is
not possible. Design choices and code implemented in the disk-based database
remain, and continue to affect the performance and resources of the system.
Another misconception is that increasing the size of the buffer pool, so that
recently used data can be accessed quickly and without incurring the cost of I/0O,
is the same as getting an in-memory database. The truth is that managing the
buffer pool requires substantial memory and CPU cycles, and the solution under
performs as compared to an in-memory database. Essentially all you get is
putting data blocks in RAM instead of disk, which, by itself, is not enough to
proclaim the product to be a true in-memory database.

Alternatively, the in-memory database is not necessarily the best cure for all
problems. The benefit gained from the memory-centered processing is sensitive
to work loads and usage scenarios. See more about this in Chapter 7, “Putting
solidDB and the Universal Cache to good use” on page 219.
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Fortunately, with solidDB you can have a disk-based database also, if it fits the
purpose. IBM solidDB is a dual-engine DBMS. Both engines, the main-memory
engine (MME) and disk-based engine (DBE) can be used to implement a
seamless hybrid database having both disk-based and in-memory tables.

To know more on how to deploy a database based on solidDB, see Chapter 4,
“Deploying solidDB and Universal Cache” on page 67. Ways to monitor and
optimize the database operation are described in Chapter 6, “Performance and
troubleshooting” on page 147.

1.1.3 Misconceptions

In this section, we respond to a number of misconceptions about in-memory
database. The term itself in-memory database can have various connotations,
and some of them can be misconceptions, as follows:

» Data is volatile and non-persistent

Not true. The fact that the main memory is volatile does not make the
database volatile. The methods of checkpointing and transaction logging
make sure the solidDB database is fully recoverable.

» Not a complete DBMS

Not true. In terms of external interfaces, power of expression and utilities,
solidDB is as complete as any other DBMS.

» SSD is just as fast

Not true. Solid-state disks (SSDs) are slightly faster disks, with shorter access
times. By replacing rotating disks with SSDs, you can improve the
performance of a DBMS but the change does not turn the system into a
in-memory database system. The load on the I/O system remains as huge as
before, and in-memory operation remains as inefficient as before.

» No structured query language (SQL)

Not true. IBM solidDB is a full-function SQL-based database system,
including standard complying ODBC and JDBC interfaces
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» Not reliable

Not true. With solidDB, the database stands up to the standard definition of “a
persistent data repository shared among concurrent applications.” That also
includes a concurrency control mechanism preventing data errors that can
result from concurrent data usage. IBM solidDB maintains the transactional
quality standard depicted as ACID (atomicity, consistency, isolation and
durability), making it as reliable as any traditional DBMS.

Poor availability

Not true. Traditional high-availability solutions such as hot standby are
available to in-memory databases too. IBM solidDB high availability offers the
corresponding capabilities. For more, see Chapter 5, “IBM solidDB high
availability” on page 109.

Misconceptions also exist about traditional databases. One example is as
follows:

» High throughput means low response times

Not with a concurrent load. On the contrary, the measures taken to increase
the throughput degenerate response times. A good example is a common
technique called group commit whereby several consecutive transactions are
bundled for a single durable write in the disk storage. Consequently, the
number of synchronous I/O operations is reduced and thus the throughput is
improved. However, some of the transactions may wait for return from commit
longer than they would do without the group commit.
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1.1.4 Throughput and response times

In solidDB, the main focus is on short response times that naturally result from
the fact that the data is already there (that is, it is in memory). Additional
techniques are available to avoid any unnecessary latencies in the local
database usage, such as linking applications with the database server code by
way of special drivers. By using those approaches, one can shorten the query
response time to a fraction (one tenth or even less) of that available in a
traditional database system. The improved response times also fuels high
throughput. Nevertheless, techniques of improving the throughput of concurrent
operations are applied too. The outcome is a unique combination of short
response times and high throughput.

The advantages of solidDB in-memory database over a disk-based database are
illustrated in Figure 1-1 and Figure 1-2 on page 8. They unveil the results of an
experiment involving a database benchmark called Telecom Application
Transaction Processing (TATP)' that was run on a middle-range system
platform?. For other configurations, both throughput (in transactions per second)
and response time (shown as the longest response time of the best 90% of the
transactions) are shown.

TATP W DBE TCP remote strict durability
DBE TCP local strict durability
Throughput MME TCP strict durability
tps MME TCP relaxed durability
B MME SMA relaxed durability
150836 160000
I 140000
I 120000
I 100000
=
I 80000
66419 g
I 60000
30800 - 40000
18631
10275 - 20000
L . Lo

Figure 1-1 Throughput of the disk-base an in-memory database.

1 http://tatpbenchmark.sourceforge.net/

2 Two Intel® Xeon E5410 processors, total of 8 cores, 16 GB of memory, 2 SATA disks, under Linux
RHEL 5.2. IBM solidDB v. 6.5.0.2. was used. TATP was configured for a 1 million subscriber
database, and read/write mix of 80/20. The number of concurrent application clients was eight.
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TATP M DBE TCP remote strict durability
90-percentile DBE TCP local strict durability
MME TCP strict durability
MME TCP relaxed durability
W MME SMA relaxed durability

response times

Read trasaction

Write
transaction

Transaction type

0 100 200 300 400 500 600

Response time (microseconds)

Figure 1-2 Response times in various configurations

The solidDB product was used for both the on-disk and in-memory databases.
The charts illustrate how single configuration change steps can affect the
throughput and response times. Between each two adjacent bars, only one
configuration variable is changed. We describe the changes in more detail here.
For each bar in Figure 1-1 on page 7, starting from the leftmost one, the
corresponding configuration is as follows:

» DBE TCP remote strict durability

In the chart, DBE means disk-based engine, Remote means accessing the
database over the network, and TCP means a driver using TCP/IP. Strict
durability means that the write operations are safely stored in a persistent
storage before a commit request can be acknowledged. The configuration is
typical for distributed client/server database applications.

» DBE TCP local strict durability

Here, the term remote is replaced with local. That means running the
application in the same node with the database server. The performance gain
results from avoiding inter-computer communications. This is one example of
bringing the data closer to the application. In all the remaining configurations
the application is run locally.

» MME TCP strict durability

DBE is replaced with MME (main-memory engine). The performance
increase is attributed to faster operation of the database engine that is
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optimized for in-memory data. The faster are the interactions between the
application and the server the bigger is the gain brought by MME. Running
the applications locally is key to uncover that gain.

» MME TCP relaxed durability

Here the term strict is replaced with relaxed. With relaxed durability, the
commit acknowledgment is returned before the commit record is persistently
written to the disk storage. The commit record is written to disk
asynchronously, with a delay of few seconds. With relaxed durability, MME
does not have to wait for I/O operations to complete, and that can be seen in
the response time of write transactions. Overall, more CPU time can be
utilized to process the in-memory data.

» MME SMA relaxed durability

By replacing the TCP/IP based driver with an SMA driver, you ultimately bring
the data as close to the application as possible, which is into the application’s
process space. Shared memory access (SMA) allows the user to link the
application with a library containing the whole query processing code. At this
point, all obstacles in the way of bringing the data to the application with a full
CPU speed are removed.

In the experiment, the disk-based database was reasonably buffered: the size of
the page buffer pool (called DBE cache, in solidDB) was 20% of the total
database size. You can see that, by taking all the steps, the throughout can be
increased almost 15 times, and the response time shortened to almost one tenth,
compared to the worst case. Of all the steps shown, you might use only a few, but
then, of course, there would also be fewer benefits. The subject of performance
is further discussed in Chapter 6, “Performance and troubleshooting” on

page 147, and Chapter 7, “Putting solidDB and the Universal Cache to good use”
on page 219, including the description of the TATP benchmark.

1.2 Database caching with in-memory databases

In this section, we propose that using solidDB as a cache database to a larger
enterprise database can alleviate the problems caused by the database growth.

1.2.1 Databases are growing

Enterprise databases can grow to very large sizes. The application load on the

database system can grow to high levels too. That can lead to a situation where
the database system becomes a bottleneck. In such an overloaded system, the
response times may become painfully long.
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One solution might be to scale the system up (to a more powerful computer) or
out (to a cluster of computers). Both alternatives are costly and may expose
scalability problems.

1.2.2 Database caching off-loads the enterprise server

You can off-load the enterprise database server by moving the data out of the
server and close to where the applications are running. The solution is called
database caching if the database interface in the applications can be preserved.

With database caching, all the data is still stored within the enterprise server.
However, it is also replicated to smaller cache databases, typically residing in
computer nodes where the applications are running. An in-memory database is
an ideal candidate for a cache database because of the performance and
response time advantages

1.2.3 IBM solidDB Universal Cache

10

IBM solidDB Universal Cache is a product enabling cache databases for popular
enterprise database products such as Oracle, DB2, IDS, Sybase ASE, and
Microsoft SQL Server. The solidDB in-memory database server maintains a
cache database that contains a subset of data stored in the back-end database
(being run by any of the systems previously mentioned). The applications
connect to the cache database. Additionally, the product includes an elaborate
replication mechanism known as InfoSphere Change Data Capture (InfoSphere
CDC) available also as a separate product from IBM. The InfoSphere CDC
components are responsible for carrying the data between the back-end
database and the cache database--both ways.

The replication can take the form of one-time refreshes of cached data or
continuous update propagation between the systems. The continuous replication
is done in an asynchronous fashion: the data is first committed on the local
system (the source) and then propagated to the other system (the target). The
delay is usually within a second.

Because of the asynchronous nature of the continuous replication, the replication
does not delay or block the transactions at the source side. However, there is one
exception: if the cache database produces more updates that can be applied to
the back-end database, the replication buffers fill-up, and a mechanism called
transaction throttling is enacted. With transaction throttling, the cache database
transactions are slowed down to keep up with the pace of data replication.

The advantage of an in-memory cache database is magnified with new access
methods available with solidDB. By using linked library access or shared memory
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access, you can link the application with the server code and avoid any
interprocess communications. With those approaches, the resulting response
times can be an order of magnitude (or more) shorter than those achieved with
the network-based access to the back-end enterprise server.

To know more about solidDB Universal Cache, see Chapter 3, “IBM solidDB
Universal Cache details” on page 39 and Chapter 4, “Deploying solidDB and
Universal Cache” on page 67.

1.3 Applications, competition, and the marketplace

Both solidDB and solidDB Universal Cache offer a new opportunity to certain
applications characterized by the possibility to store the hottest part of the
database in memory (or cache it from a back-end database) and a possibility to
trade the increased memory cost for increased performance. Such applications
exist in many sectors of the economy, such as telecommunications, real-time
trading, online retail and booking, and online gaming, for example. See
Chapter 7, “Putting solidDB and the Universal Cache to good use” on page 219
for more about applications.

When considering deployment of solidDB, the first competing solution can come
from an unexpected direction, which is in-house development. In fact, application
developers have been setting up application-specific in-memory stores and
caches for a long time. Such solutions can be attractive from the performance
perspective. However, in addition to increased performance, solidDB also has the
following advantages:

» Total application life cycle management
» Data independence

This is a core notion in databases, making the data and the application
isolated from each other, with the purpose of allowing for change and growth.

» Other essential database characteristics, such as:

— Date persistency
— Transactional behavior
— Recovery and high availability features.

These advantages are all productized in solidDB in a generalized way to also be
immediately usable in other different applications. The situation is similar to what
happened years ago when generalized disk-based data management systems
overtook custom storage solutions.
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Somewhere between an in-house data cache and the database are the concepts
of object store and object cache. They both represent an object-oriented view on
the data and are popular within Java™ community. Some of those solutions are
commercialized and the vendors claim ease of use and fast access. This
approach can be done, for example, if the vendors have removed the impedance
mismatch between an object language, such as Java, and the relational model.
They can also be fast after the data is cached. However, for any write-oriented
activity having the purpose of producing persistent and consistent data, a DBMS
is needed to take care of concurrency control, logging and recovery. Therefore, in
those cases, it might be better to consider a database in the first place.

When speaking about solidDB as a product, it is not the only one available in the
marketplace. That is, other vendors exist in the field of in-memory databases and
database caching. However, we believe solidDB stands out from the other
products in the following ways:

» As an in-memory database

— With solidDB, a fully persistent and durable in-memory database is
possible. Only a few other products are capable of doing that.

— solidDB is a hybrid (on-disk and in-memory) database system. That can
be achieved only in a few other products.

— solidDB is equipped with low-latency access methods (direct linking). Only
a few other products can provide that.

— solidDB has rich, high functionality SQL, including stored procedures,
triggers and events. Most in-memory products do not support those
capabilities.

— solidDB is equipped with a fully automatic high-availability (HA) solution
with sub-second failover times. We believe that this is a level of data
safeness and transparency that is unique to solidDB.

» As a cache database

— solidDB Universal Cache is universal in the sense that it can be used with
other models of back-end DBMSs. We believe this is a capability that is
unique to solidDB.

To summarize, we believe that solidDB is the only product available today that
has all of the capabilities and advantages we have just described.

Many of the topics in this chapter are described in more detail throughout the
book.
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IBM solidDB details

This chapter describes the architecture, data storage, table types,
transactionality, structured query language (SQL) extensions, and database
administration.
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2.1 Introduction
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IBM solidDB is a relational database server that combines the high performance
of in-memory tables with the nearly unlimited capacity of disk-based tables. Pure
in-memory databases are fast, but strictly limited by the size of memory. Pure
disk-based databases allow nearly unlimited amounts of storage, but their
performance is dominated by disk access. Even if the computer has enough
memory to store the entire database in memory buffers, database servers
designed for disk-based tables can be slow because the data structures that are
optimal for disk-based tables are far from being optimal for in-memory tables.

The solidDB solution is to provide a single hybrid database server that contains
two optimized engines inside it:

» The disk-based engine (DBE) is optimized for disk-based access.
» The main-memory engine (MME) is optimized for in-memory access.

Both engines coexist inside the same server process, and a single SQL
statement may access data from both engines. The architecture for the solidDB
hybrid server is depicted in Figure 2-1.

Application
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Figure 2-1 IBM solidDB hybrid server architecture
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2.2 Server architecture

The solidDB server architecture is based on a client/server model. Typically, a
solidDB configuration consists of cooperating server and client processes. The
server process manages the database files, accepts connections to the database
from client applications, and carries out actions on the database as requested by
the clients.

The client process is used to pass the required tasks (through the server
process) to the database. There can be several client types: a client could be a
command-line tool, a graphical application, or a database management tool.
Typically, separate applications act as clients to connect to solidDB.

The client and the server can be located on separate hosts (nodes), in which
case they communicate over a network. IBM solidDB provides simultaneous
support for multiple network protocols and connection types. Both the database
server and the client applications can be simultaneously connected to multiple
sites using multiple different network protocols.

IBM solidDB can also run within the application process. This capability is
provided by solidDB shared memory access (SMA) and linked library access
(LLA). In those cases, the application is linked to a function library that is
provided with the product. The linked application communicates with the server
by using direct function calls, thus skipping the overhead required when the client
and server communicate through network protocols such as the TCP/IP. By
replacing the network connection with local function calls, performance is
improved significantly.
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The high-level architecture of IBM solidDB is shown in the Figure 2-2.
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Figure 2-2 IBM solidDB architecture

2.2.1 Database access methods and network drivers
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Applications can connect to the solidDB server using network drivers or by
linking to the server directly. In network based access methods, the applications
and the solidDB server are separate programs, typically communicating using
the solidDB ODBC Driver or solidDB JDBC Driver.

Direct linking is provided through linked library access (LLA) and shared memory
access (SMA). SMA and LLA are implemented as library files that contain a
complete copy of the solidDB server in a library form.

The SMA and LLA servers can also handle requests from remote applications
which connect to the server through communications protocols such as TCP/IP.
The remote applications see the SMA or LLA server as similar to any other
solidDB server; the local SMA and LLA applications see a faster, more precisely
controllable version of the solidDB server.

The network drivers component contains support for both ODBC and JDBC API.

solidDB ODBC Driver

The solidDB ODBC Driver conforms to the Microsoft ODBC 3.5.1 API standard. It
is distributed in the form of a library.
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The solidDB ODBC Driver supported functions are accessed with solidDB ODBC
API, a Call Level Interface (CLI) for solidDB databases, which is compliant with
ANSI X3H2 SQL CLI. The solidDB implementation of the ODBC API supports a
rich set of database access operations sufficient for creating robust database
applications:

Allocating and de-allocating handles
Getting and setting attributes

Opening and closing database connections
Accessing descriptors

Executing SQL statements

Accessing schema metadata

Controlling transactions

Accessing diagnostic information

vVVyVYyVYVYYVYYVvYYyY

Depending on the application’s request, the solidDB ODBC Driver can
automatically commit each SQL statement or wait for an explicit commit or
rollback request. When the driver performs a commit or rollback operation, the
driver resets all statement requests associated with the connection

solidDB JDBC Driver

The solidDB JDBC Driver 2.0 is a JDBC type 4 driver. Type 4 means thatitis a
100% Pure Java implementation of the Java Database Connectivity (JDBC) 2.0
standard. The JDBC API defines Java classes to represent database
connections, SQL statements, result sets, database metadata, and so on. It
allows a Java programmer to issue SQL statements and process the results.
JDBC is the primary API for database access in Java.

The solidDB JDBC Driver is written entirely in Java and it communicates directly
with the solidDB server using the TCP/IP network protocol. The solidDB JDBC
Driver does not require any additional database access libraries. The driver
requires that a Java runtime environment (JRE) or Java developer kit is available.

The solidDB server can also participate in distributed transactions using the Java
Transaction API (JTA) interface. solidDB supports the following interfaces, as
described in the Java Transaction API Specification 1.1:

» XAResource Interface (javax.transaction.xa.XAResource)
» Xid Interface (javax.transaction.xa.Xid)

solidDB SA

The solidDB SA is a low level C-language client library to access solidDB
database management products. the solidDB SA is a layer that resides internally
in solidDB products. Normally, the use of an industry standards-based interface,
such as ODBC or JDBC, is recommended. However, in environments with heavy
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write-load, such as batch inserts and updates, solidDB SA can provide a
significant performance advantage.

Linked library access (LLA)

With the LLA, an application links to a static library or a dynamic library that
contains the full database server functionality. This means solidDB runs in the
same executable with the application, eliminating the need to transfer data
through the network. The LLA library is sometimes called an accelerator library.

Shared memory access (SMA)

With SMA, multiple applications can be linked to a dynamic driver library that
contains the full database server functionality. This means that the applications
ODBC or JDBC requests are processed almost fully in the application process
space, without a need for a context switch among processes. To facilitate the
processing of a common database, the driver has access to a shared memory
segment initialized by the server.

2.2.2 Server components

18

In the remaining sections, we describe server components:
» Tasking system

The tasking system is a framework to abstract threads to a concept task.
Tasking system implements concurrent execution of the tasks also in single
threaded systems.

» Server services

The server services component contains services and utilities to use
components on the lower levels.

» SAQL interpreter and optimizer

The SQL interpreter and optimizer is responsible of SQL-clause parsing and
optimization. solidDB uses SQL syntax based on the ANSI X3H2 and
IEC/ISO 9075 SQL standards. The SQL-89 Level 2 standard is fully
supported and SQL-92 Entry Level. Many features of full SQL-92, SQL-99,
and SQL-2003 standards are also supported.

solidDB contains a cost-based optimizer, which ensures that even complex
queries can be run efficiently. The optimizer automatically maintains
information about table sizes, the number of rows in tables, the available
indexes, and the statistical distribution of the index values.
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Triggers and procedures

The triggers and procedures component contains a mechanism for parsing
and executing SQL-based stored triggers and procedures:

— A trigger activates stored procedure code, which a solidDB server
automatically executes when a user attempts to change the data in a table.

— Stored procedures are simple programs, or procedures, that are executed
in solidDB databases. You can create procedures that contain several SQL
statements or whole transactions, and execute them with a single call
statement. In addition to SQL statements, 3GL type control structures can
be used enabling procedural control. In this way complex, data-bound
transactions may be run on the server itself, thus reducing network traffic.

Logging and checkpointing

The logging and checkpointing component is responsible for maintaining
persistency of transactions by write-ahead logging, consistency, and
recoverability of the database by checkpointing. Various durability options are
available.

Reading the transaction log file as it is being written by the server is possible
and is done with a special SQL-based interface called Logreader API.

Recovery

The recovery component is responsible for recovery from transaction log and
database checkpoints.

Replicator

The replicator component provides support for the solidDB advanced
replication feature. The advanced replication feature is used for
asynchronous, pull-based replication between a master database and replica
databases. A “master” database contains the master copy of the data. One or
more replica databases contain full or partial copies of the master's data. A
replica database, like any other database, may contain multiple tables. Some
of those tables may contain only replicated data (copied from the master),
some may contain local-only data (not copied from the master), and some
may contain a mix of replicated data and local-only data. Replicas may submit
updates to the master server, which then verifies the updates according to
rules set by the application programmers. The verified data is then “published”
and made available to all replicas.

HotStandby

The HotStandby (HSB) component enables a secondary server (a hot
standby server) to run in parallel with the primary server and keep an
up-to-date copy of the data in the primary server.

Chapter 2. IBM solidDB details 19



» Estimator

The estimator component provides cost-based estimates for single table
access based on projections and constraints. It executes a low-level execution
plan generation using index selection and index range calculations.

» Table services

The table services module contains interfaces for single-table access, data
type support, transaction management interface and, table and index caches.

» Disk-based engine

The disk-based engine component handles the storage of disk-based tables
(D-tables) and indexes.

» Main-memory engine
The main-memory engine component handles the storage of in-memory
tables (M-tables) and indexes.

» Transaction manager

The transaction manager component contains commit and rollback
implementation and concurrency conflict checking and resolution.

» System services

The system services component contains operating system abstraction layer,
memory management, thread management, mutexing and file I/O services.

2.3 Data storage in solidDB

The main-memory engine that handles the in-memory tables (M-tables) and the
disk-based engine that handles the storage of disk-based tables (D-tables) use
different data storage architectures.

In-memory engine is designed for maximum performance. Knowing that data is
always stored in main-memory allows for use of data structures and data access
methods that are designed to minimize the computational (CPU) cost of
retrieving or updating database records.

Disk-based engine, however, can reduce disk access. That is achieved by data
structures and access methods that trade disk access for additional
computational processing. Therefore, an in-memory engine has the potential to
outperform a disk-based engine even when the latter has all the data cached in
the memory buffer pools because it needs to consume fewer CPU cycles to
access database records.

We describe the data storage principles of both engines in more detail.
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2.3.1 Main-memory engine

In addition to the actual data, the indexes for M-tables are built in main memory
also. solidDB uses a main-memory-optimized index technology, called tries, to
implement the indexes.

The basic index structure in the in-memory engine is a VTrie (variable length trie)
that is optimized variation of the trie. A trie (from retrieval), is a multi-way tree
structure widely used for storing strings. The idea is that all strings sharing a
common prefix hang off a common node. For example, when the strings are
words over {a..z} alphabet, a node has at most 27 children: one for each letter
plus a terminator. VTrie uses bitwise tree where individual bits compose a key
allowing keys to be any supported data type. VTrie uses nodes of the capacity of
8 bits. Consequently, each node has at most 257 children, that is, the fan-out is
257 (256 for bits plus a terminator).

A simplified example of the VTrie structure with node capacity of 2 bits and
fan-out of four is shown in Figure 2-3.

| J ®
00/ 01 11 1\
01 11
<+ ——— Path compression
o) O (a node is bypassed if no choice)
01/ \ 10

row 1110 ,,Width compre_ssion
» (only needed pointers)
Fast termination

(no other values having prefix '0101°) / \

Figure 2-3 Simplified example of a V'Trie structure

The elements in a string can be recovered using a scan from the root to the leaf
nodes that ends a string. All strings in the trie can be recovered by a depth-first
browse of the tree.

A competitive solution to VTrie would be a kind of a binary search tree. In a
binary tree, the node fan-out is two. In each node you compare a full key value
against a node separation value and then choose one of the two children to
continue with.
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The main advantages of VTries over binary search trees are as follows:

»

Looking up keys is faster. Looking up a key of length m takes time that is
proportional to m. A binary search tree requires log2 (n) comparisons of keys
where n is the number of elements in the tree. The total search time is
proportional to m log2 (n). The advantage of VTrie is because no value
comparisons are needed. Each part of a key (a “letter”) is applied as an array
index to a pointer array of a child node. Contrary to a value comparison, array
lookup is a fast operation if the array is cached in processor caches.

Tries can require less space when they contain a large number of short
strings, because the keys are not stored explicitly and nodes are shared
between keys with common prefix.

Several optimizations are used in Vtrie to speed up retrieval when the key value
space is not fully exhausted, as illustrated in Figure 2-3 on page 21. These are
path compression, width compression, and fast termination:

>

In path compression all internal nodes with only one child are removed and a
common prefix is stored in the remaining node.

In width compression, only the needed pointers are stored in the nodes and
every node contains a bitmap storing the information which pointers are
present in the node.

In fast termination, a pointer to the data record is elevated to a node
representing a prefix that is not shared among the key values.

2.3.2 Disk-based engine
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The main data structure used to store D-tables is a B+tree variation called
B+tree. The idea of a B+tree is illustrated in Figure 2-4, where two node levels of
a B+tree are shown.

Pointer

Level 1 node /
/' , Separation Value
/ /

‘ /.
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Figure 2-4 lllustration of two levels of a B-tree
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Each node has a large set of value-pointer pairs. They normally fill a database
page being a unit of data buffering. The page sizes vary from 4 to 32 kilobytes.
Compared to VTrie, that makes the nodes much larger, resulting in a wide, or
bushy tree. The key value is compared against the separation values in the node
and, if the key value falls between two separation values, the corresponding
pointer is followed to a similar node on the next level. Thanks to a large node
size, the number of disk accesses is minimized, and that make B-tree fit for
D-tables.

The server uses two incarnations of a B-tree: the main storage tree holds
permanent data, and a differential index tree called Bonsai Tree stores new data
temporarily until it is ready to be moved to the main storage tree.

In both B-tree structures, two space optimization methods are used. First, only
the information that differentiates the key value from the previous key value is
saved. The key values are said to be prefix-compressed. Second, in the higher
levels of the index tree, the key value borders are truncated from the end; that is,
they are suffix-compressed.

The main storage tree contains all the data in the server, including tables and
indexes. Internally, the server stores all data in indexes; there are no separate
table stores. Each index contains either complete primary keys (all the data in a
row) or secondary keys (what SQL refers to as indexes, which is just the column
values that are part of the SQL index). There is no separate storage method for
data rows, except for binary large objects (BLOB) and other long column values.

All the indexes are stored in a single tree, which is the main storage tree. Within
that tree, indexes are separated from each other by a system-defined index
identification that is inserted in front of every key value. This mechanism divides
the index tree into several logical index subtrees where the key values of one
index are clustered close to each other.

The Bonsai Tree is a small active index (data storage tree) that efficiently stores
new data (deletes, inserts, updates) in central memory, maintaining multiversion
information. Multiple versions of a row (old and new) can coexist in the Bonsai
Tree. Both the old and new data are used for concurrency control and for
ensuring consistent read levels for all transactions without any locking overhead.
With the Bonsai Tree, the effort needed for concurrency control is significantly
reduced.

When a transaction is started, it is given a sequential Transaction Start Number
(TSN). The TSN is used as the “read level” of the transaction; all key values
inserted later into the database from other connections are not visible to
searches within the current transaction. This approach offers consistent index
read levels that appear as though the read operation was performed at the time
the transaction was started. This way guarantees read operations are presented
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with a consistent view of the data without the need for locks, which have higher
overhead.

Old versions of rows (and the newer version or versions of those same rows) are
kept in the Bonsai Tree for as long as transactions need to see those old
versions. After the completion of all transactions that reference the old versions,
the “old” versions of the data are discarded from the Bonsai Tree, and new
committed data is moved from the Bonsai Tree to the main storage tree. The
presorted key values are merged as a background operation concurrently with
normal database operations. This way offers significant I/O optimization and load
balancing. During the merge, the deleted key values are physically removed.

2.4 Table types

This section describes the table types that solidDB offers, highlighting the key
differences you should consider when deciding what type of tables to use.

The table types are shown in Figure 2-5.

Non-Persistent Tables Persistent Tables :
temporary tables  transient tables |  M-tables D-tables :

I W R

Solid Main Memory Engine (MME)I

s
Log | Page cache
records in/out

v

Database files

Solid Disk-based Engine (DBE)

Figure 2-5 The solidDB table types

2.4.1 In-memory versus disk-based tables
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If a table is designated as an in-memory table (M-table), the entire contents of
that table are stored in memory so that the data can be accessed as quickly as
possible. If a table is disk-based, (D-table), the data is stored primarily on disk,
and usually the server copies only small pieces of data at a time into memory.
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In many respects, in-memory tables are similar to disk-based tables:
» Both table types provide full persistence of data unless specified differently.
» You may perform the same types of queries on each of them.

» You can combine disk-based and in-memory tables in the same SQL query or
transaction.

» Both table types can be used with indexes, triggers, stored procedures, and
S0 on.

» Both table types allow constraints, including primary key and foreign key
constraints.

The main difference between M-tables and D-tables is performance. M-tables
provide better performance; they can provide the same durability and
recoverability as D-tables. For example, read operations do not wait for disk
access, even when the system is engaged in activities such as checkpointing
and transaction logging.

2.4.2 Persistent versus non-persistent tables

The two basic types of M-tables are persistent tables and non-persistent tables.
Persistent tables provide recoverability of data; non-persistent tables provide fast
access. D-tables are always persistent tables.

Persistent tables

Persistent tables ensure recoverability of data through checkpointing and
logging. Checkpointing means that committed transactions are copied from main
memory to database files on disk during checkpoints. If the server fails between
checkpoints, solidDB ensures that the disk has a consistent snapshot of the data.
In-between checkpoints, solidDB writes committed transactions to a transaction
log. After a system crash, solidDB uses the transaction log to recovers
transactions that were committed since the last checkpoint.

By default, both M-tables and D-tables are created as persistent tables.

Non-persistent tables

Only M-tables can be created as non-persistent tables. Non-persistent tables are
intended for use with temporary data that does not need to be recoverable. Data
in non-persistent tables is never written to disk; therefore, any time that the
server shuts down, whether normally or abnormally, the data is lost. Also, data in
non-persistent tables is not logged or checkpointed. As a result, they are
irrecoverable but remarkably faster than persistent tables.
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The two types of non-persistent in-memory tables are transient tables and
temporary tables’. Temporary tables are visible to a single connection; transient
tables are visible to all connections (users) until the database shuts down.
Because concurrent users cannot access data in temporary tables, temporary
tables do not use concurrency control. Temporary tables are thus faster than
transient tables.

Non-persistent tables cannot be used with solidDB HotStandby.

2.4.3 Choosing between different table types
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The choice between the table types is typically a trade-off between performance
and the following aspects:

» Amount of main memory available: M-tables or D-tables

Ideally your system would have enough memory to store all of your tables in
memory and thus benefit from the best possible performance for database
transactions. If you cannot fit all tables in memory, try to put the most
frequently used data in memory. Also, small, frequently-used tables should go
into memory, and large, rarely-used tables can be left on disk.

» Recoverability of data: persistent or non-persistent tables

Persistent tables provide full recoverability over performance. Non-persistent
tables are faster as they require no logging or checkpointing.

» Access to temporary data: transient or temporary tables

Transient tables allow multiple concurrent users to access the data over
several connections, but require concurrency control (locking) to preserve
consistency of data. Temporary tables are faster than transient tables but data
is available only to a single user during one session.

" The solidDB implementation of temporary tables complies with the ANSI SQL:1999 standard for
“Global Temporary Tables.” All solidDB temporary tables are global tables regardless of whether the
keyword GLOBAL is specified. solidDB does not support “Local Temporary Tables” as defined by
ANSI.
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2.5 Transactionality

IBM solidDB guarantees reliable transactional processing by implementing a
database server that satisfies all ACID (atomicity, consistency, isolation,
durability) requirements.

» Atomicity requires that database modifications must follow an “all or nothing”
rule. Each transaction is said to be atomic. If one part of the transaction fails,
the entire transaction fails and the database state is left unchanged.

» Consistency ensures that any transaction that the database performs can take
it from one consistent state to another.

» Isolation refers to the requirement that other operations cannot access data
that has been modified during a transaction that has not yet completed. The
question of isolation occurs in case of concurrent transactions (multiple
transactions occurring at the same time).

» Durability is the ability of the DBMS to recover the committed transaction
updates against any kind of system failure (hardware or software). Durability
is the DBMS guarantee that after the user has been notified of a transaction's
success, the transaction will not be lost.

2.5.1 Concurrency control and locking

The purpose of concurrency control is to prevent two users (or two connections
by the same user) from trying to update the same data at the same time.
Concurrency control can also prevent one user from seeing uncommitted (dirty)
data while another user is in the process of updating it.

More generally, concurrency control is used to preserve the overall correctness
of concurrent transaction executions. The ultimate form of that correctness is
called serializability. A serializable execution of concurrent transactions
produces a result that is identical to a case when all these transaction would be
executed serially: one after another. Preserving generalized serializability for all
possible cases is resource-consuming. Therefore, the actual correctness can be
set with a parameter called isolation level that can be adjusted as needed, even
dynamically.
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IBM solidDB offers two concurrency control mechanisms, pessimistic
concurrency control and optimistic concurrency control:

» Pessimistic concurrency control mechanism is based on locking. A lock is a
mechanism for limiting other users' access to a piece of data. When one user
has a lock on a record, the lock prevents other users from changing (and in
some cases reading) that record.

» Optimistic concurrency control mechanism does not place locks but prevents
the overwriting of data by using timestamps.

D-tables are by default optimistic; M-tables are always pessimistic. In D-tables,
you can override optimistic concurrency and specify pessimistic locking instead.
You can do this at the level of individual tables. One table might follow the rules of
optimistic concurrency while another table follows the rules of pessimistic
locking. Both tables can be used within the same transaction and even the same
statement; solidDB handles this internally.

Pessimistic concurrency control

Pessimistic concurrency control (or pessimistic locking) is called pessimistic
because the system assumes the worst; it assumes that two or more users will
want to update the same record at the same time, and then prevents that
possibility by locking the record, no matter how unlikely conflicts actually are.

The locks are placed as soon as any piece of the row is accessed, making it
impossible for two or more users to update the row at the same time. Depending
on the lock mode (shared, exclusive, or update), other users might be able to
read the data although a lock has been placed.

Optimistic concurrency control

Optimistic concurrency control assumes that although conflicts are possible, they
will be rare. Instead of locking every record every time that it is used, the system
merely looks for indications that two users actually did try to update the same
record at the same time. If that evidence is found, then one user’s updates are
discarded and the user is informed. The step of checking whether a transaction
can commit is called transaction validation. Typically, the validation is performed
at the commit time but solidDB uses, by default, a modified method called early
validation. With early validation, the data being read (the read-set) and written
(write-set) are checked against other transactions at each database operation,
without waiting for