
ibm.com/redbooks

IBM® Information Management Software

IBM solidDB
Delivering Data
with Extreme Speed

Marko Milek
Michael Roche

John Seery
Katriina Vakkila

Jamie Watters
Antoni Wolski

Provides low latency, high throughput,
and extreme availability

Offers fully featured relational
in-memory database software

Has universal cache with
shared memory access

Front cover

Chuck Ballard
Dan Behman

Asko Huumonen
Kyosti Laiho

Jan Lindstrom

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM solidDB: Delivering Data with Extreme Speed

May 2011

International Technical Support Organization

SG24-7887-00

© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2011)

This edition applies to Version 6.5 of IBM solidDB (product number 5724V17) and IBM solidDB
Universal Cache (product number 5724W91).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xii
Now you can become a published author, too! . xv
Comments welcome. xvi
Stay connected to IBM Redbooks . xvi

Chapter 1. Introduction . 1
1.1 The opportunity of the in-memory database . 2

1.1.1 Disk databases cannot expand to memory . 2
1.1.2 IBM solidDB IMDB is memory-friendly . 3
1.1.3 Misconceptions . 5
1.1.4 Throughput and response times . 7

1.2 Database caching with in-memory databases. 9
1.2.1 Databases are growing . 9
1.2.2 Database caching off-loads the enterprise server. 10
1.2.3 IBM solidDB Universal Cache . 10

1.3 Applications, competition, and the marketplace . 11

Chapter 2. IBM solidDB details . 13
2.1 Introduction . 14
2.2 Server architecture . 15

2.2.1 Database access methods and network drivers 16
2.2.2 Server components . 18

2.3 Data storage in solidDB. 20
2.3.1 Main-memory engine . 21
2.3.2 Disk-based engine . 22

2.4 Table types . 24
2.4.1 In-memory versus disk-based tables . 24
2.4.2 Persistent versus non-persistent tables . 25
2.4.3 Choosing between different table types . 26

2.5 Transactionality . 27
2.5.1 Concurrency control and locking. 27
2.5.2 Isolation levels. 29
2.5.3 Durability levels . 30

2.6 solidDB SQL extensions . 31
2.6.1 solidDB SQL standard compliance . 32
© Copyright IBM Corp. 2011. All rights reserved. iii

2.6.2 Stored procedures. 32
2.6.3 Triggers . 33
2.6.4 Sequences . 33
2.6.5 Events . 34
2.6.6 Replication . 35

2.7 Database administration . 36
2.7.1 Configuration settings . 36
2.7.2 ADMIN COMMAND. 37
2.7.3 Data management tools . 37
2.7.4 Database object hierarchy . 38

Chapter 3. IBM solidDB Universal Cache details . 39
3.1 Architecture . 40

3.1.1 Architecture and key components. 40
3.1.2 Principles of operation. 41

3.2 Deployment models. 45
3.3 Configuration alternatives . 46

3.3.1 Typical configuration . 46
3.3.2 Multiple cache nodes . 47
3.3.3 SMA for collocation of data . 47
3.3.4 solidDB HSB servers for high availability . 49

3.4 Key aspects of cache setup . 50
3.4.1 Deciding on the replication model . 50
3.4.2 Defining what to replicate . 52
3.4.3 Starting replication . 56

3.5 Additional functionality for cache operations . 56
3.5.1 SQL pass-through . 56
3.5.2 Aging . 58
3.5.3 Improving performance with parallelism . 60

3.6 Increasing scale of applications . 63
3.6.1 Scaling strategies . 63
3.6.2 Examples of cache database applications . 64

3.7 Enterprise infrastructure effects of the solidDB Universal Cache 65
3.7.1 Network latency and traffic . 65
3.7.2 Back-end machine load. 65
3.7.3 Database operation execution . 66

Chapter 4. Deploying solidDB and Universal Cache 67
4.1 Change and consideration . 68
4.2 How to develop applications that use solidDB . 68

4.2.1 Application program structure . 68
4.2.2 ODBC . 70
4.2.3 JDBC. 74
iv IBM solidDB: Delivering Data with Extreme Speed

4.2.4 Stored procedures. 77
4.2.5 Special considerations . 79

4.3 New application development on solidDB UC. 84
4.3.1 Awareness of separate database connections 85
4.3.2 Combining data from separate databases in a transaction. 87
4.3.3 Combining data from different databases in a query 87
4.3.4 Transactionality with Universal Cache . 88
4.3.5 Stored procedures in Universal Cache architectures 88

4.4 Integrate an existing application to work with solidDB UC 89
4.4.1 Programming interfaces used by the application 89
4.4.2 Handling two database connections instead of one 90

4.5 Data model design . 91
4.5.1 Data model design principles . 91
4.5.2 Running in-memory and disk-based tables inside solidDB 92
4.5.3 Data model design for solidDB UC configurations 94

4.6 Data migration . 96
4.7 Administration . 99

4.7.1 Regular administration operations . 99
4.7.2 Information to collect . 99
4.7.3 Procedures to plan in advance . 100
4.7.4 Automation of administration by scripts . 106

Chapter 5. IBM solidDB high availability. 109
5.1 High availability (HA) in databases . 110
5.2 IBM solidDB HotStandby. 111

5.2.1 Architecture . 111
5.2.2 State behavior of solidDB HSB . 112
5.2.3 solidDB HSB replication and transaction logging 114
5.2.4 Uninterruptable system maintenance and rolling upgrades 121

5.3 HA management in solidDB HSB . 124
5.3.1 HA control with a third-party HA framework 124
5.3.2 HA control with the watchdog sample . 125
5.3.3 Using solidDB HA Controller (HAC) . 126
5.3.4 Preventing Dual Primaries and Split-Brain scenarios 128

5.4 Use of solidDB HSB in applications . 129
5.4.1 Location of applications in the system . 129
5.4.2 Failover transparency . 131
5.4.3 Load balancing . 133
5.4.4 Linked applications versus client/server applications 134

5.5 Usage guidelines, use cases. 134
5.5.1 Performance considerations . 134
5.5.2 Behavior of reads and writes in a HA setup 135
5.5.3 Using asynchronous configurations with HA. 136
 Contents v

5.5.4 Using default solidDB HA setup . 137
5.5.5 The solidDB HA setup for best data safeness 137
5.5.6 Failover time considerations . 138
5.5.7 Recovery time considerations . 138
5.5.8 Example situation . 139
5.5.9 Application failover . 140

5.6 HA in Universal Cache . 142
5.6.1 Universal Cache HA architecture . 142
5.6.2 UC failure types and remedies . 144

Chapter 6. Performance and troubleshooting . 147
6.1 Performance . 148

6.1.1 Tools available in the solidDB server . 148
6.1.2 Tools available in InfoSphere CDC . 180
6.1.3 Performance troubleshooting from the application perspective . . . 182

6.2 Troubleshooting. 214

Chapter 7. Putting solidDB and the Universal Cache to good use. 219
7.1 solidDB and Universal Cache sweet spots . 220

7.1.1 Workload characteristics . 222
7.1.2 System topology characteristics . 224
7.1.3 Sweet spot summary. 225

7.2 Return on investment (ROI) considerations . 225
7.2.1 solidDB Universal Cache stimulates business growth 226
7.2.2 solidDB server reduces cost of ownership 229
7.2.3 solidDB Universal Cache helps leverage enterprise DBMS 230
7.2.4 solidDB Universal Cache complements DB2 Connect 230

7.3 Application classes . 231
7.3.1 WebSphere Application Server . 232
7.3.2 WebLogic Application Server . 233
7.3.3 JBoss Application Server . 233
7.3.4 Hibernate. 234
7.3.5 WebSphere Message Broker . 235

7.4 Examining specific industries . 235
7.4.1 Telecom (TATP) . 235
7.4.2 Financial services . 242
7.4.3 Banking Payments Framework . 243
7.4.4 Securities Exchange Reference Architecture (SXRA) 246
7.4.5 Retail . 248
7.4.6 Online travel industry . 260
7.4.7 Media . 265

Chapter 8. Conclusion . 269
8.1 Where are you putting your data . 270
vi IBM solidDB: Delivering Data with Extreme Speed

8.2 Considerations . 272

Glossary . 273

Abbreviations and acronyms . 277

Index . 279
 Contents vii

viii IBM solidDB: Delivering Data with Extreme Speed

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2011. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
DataPower®
DB2 Connect™
DB2®
GPFS™
IBM®

Informix®
InfoSphere™
pSeries®
Redbooks®
Redbooks (logo) ®
solidDB®
Solid®

System i®
System z®
WebSphere®
XIV®
xSeries®
z/OS®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel Xeon, Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM solidDB: Delivering Data with Extreme Speed

http://www.ibm.com/legal/copytrade.shtml

Preface

The world seems to move more quickly these days; businesses want what they
want right now. As such, we are moving quickly towards a real-time environment,
which means instant access to information, immediate responses to queries, and
constant availability worldwide. You must keep pace or be surpassed.

The world is also rushing to an open environment. Having separate systems,
languages, and transactions to access data in multiple environments is
becoming less of an accepted option. At IBM®, the move to higher levels of
systems integration has been continuous, and is part of IBM solidDB®. For
example, the Universal Cache in solidDB can speed access to data in IBM DB2®
and IBM Informix®, and also to other relational databases such as Oracle,
Sybase, and Microsoft® SQL Server.

Worrying about reliability is unnecessary because with solidDB all the data is
always accessible from the in-memory cache. The reason is because solidDB
also writes updated data to disk to ensure recoverability of the data. To do that,
checkpoint and transaction logging functions exist. Therefore, even if the server
fails between checkpoints, a transaction log contains all the committed
transactions for recovery. In addition, to maintain a balance between
performance requirements and logging capabilities, there is strict logging and
relaxed logging functionality. Also, solidDB provides a hot-standby capability to
give you extreme availability.

To get all these capabilities you might expect an expensive solution, with high
maintenance costs. But solidDB helps avoid the costs associated with both
planned and unplanned outages. For example, the costs for maintenance can be
better controlled because most of it is performed by applications, which can run
virtually unattended, resulting in reduced costs for administration.

When a database system can produce more throughput per hardware cost unit,
with a constant software cost, the result is a higher return on investment (ROI).
Further, it can deliver shorter response times, which increases the value of the
service and which also increases your ROI. In-memory database systems can fill
these expectations.

There is an evolution towards a real-time environment, bringing the potential for
faster and more efficient access to data, analysis of that data, and the delivery of
information for making more informed business decisions. We think that as you
read further in this book and better understand the capabilities of solidDB, you
will agree that this product can enable you to more easily realize those benefits.
© Copyright IBM Corp. 2011. All rights reserved. xi

The team who wrote this book

This IBM Redbooks® publication was produced by a team of specialists from
around the world working with the International Technical Support Organization.
The team began their work on the project at the IBM solidDB Development Lab in
Helsinki, Finland and completed it working remotely at their home locations.

Chuck Ballard is a Project Manager at the International
Technical Support organization, in San Jose, California. He
has over 35 years of experience, holding positions in the
areas of product engineering, sales, marketing, technical
support, and management. His expertise is in the areas of
database, data management, data warehousing, business
intelligence, and process re-engineering. He has written
extensively on these subjects, taught classes, and
presented at conferences and seminars worldwide. Chuck

has both a Bachelors degree and a Masters degree in Industrial Engineering
from Purdue University.

Dan Behman is currently the solidDB Universal Cache
Performance and Benchmarking Team Lead at the IBM
Toronto Lab. He has worked for IBM for over 12 years in
various positions in the DB2 for Linux®, UNIX®, Windows®
area such as development, support, performance, and
management. Besides database technology, Dan has
extensive experience with using, troubleshooting, and
developing applications for the Linux operating system,
including co-authoring a book and writing several articles.

Dan has an HBSc Computer Science Degree from Lakehead University.

Asko Huumonen is a Technical Sales Manager and
worldwide Tiger team member for solidDB products. He
joined IBM when Solid® Information Technology was
acquired in 2008. Asko had worked for Solid since 1995 in
various technical and management positions running
professional services and technical support in Europe, in
the U.S. and worldwide. He developed a deep
understanding of the capabilities of the product and of
customer systems by using the product. Prior to joining

Solid, he worked 6 years in consulting, focusing on various software
technologies. Asko has an MSc degree in Technical Physics from Helsinki
University of Technology.
xii IBM solidDB: Delivering Data with Extreme Speed

Kyosti Laiho is Technical Sales Manager for IBM solidDB,
with 15 years of experience in working with customer
solidDB environments on worldwide basis. He joined IBM
with the acquisition of Solid Information Technology in 2008;
he joined Solid in 1996. Kyosti (or “Koppa”) had worked in
multiple technical roles at Solid, including technical sales,
managing support, consulting, training and worked both in
North America (Silicon Valley) and Europe. Before joining
Solid Information Technology Kyosti worked at Andersen

Consulting (Accenture) for six years. His expertise is mostly in high performance
database systems including high availability requirements, and the IBM solidDB
related technologies. Kyosti has MSc in Computer Science from the University of
Technology of Helsinki, Finland.

Jan Lindstrom is the development manager for solidDB
core development. He joined IBM with the acquisition of
Solid Information Technology in 2008. Before joining Solid in
2006, Jan spent almost 10 years working in the database
field as a researcher, developer, author, and educator. He
has developed experimental database systems, and has
authored, or co-authored, a number of research papers. His
research interests include real-time databases, in-memory
databases, transaction processing and concurrency control.

Jan has an MSc. and Ph.D. in Computer Science from the University of Helsinki,
Finland.

Marko Milek is a Senior Manager responsible for worldwide
development of the IBM solidDB product family. Prior to
joining the solidDB development team at the IBM Helsinki
Lab, he was a member of the DB2 LUW development team
at the IBM Toronto Lab. Marko has 10 years of experience in
software development, and release, project, and product
management. His areas of expertise include relational
database technologies, performance optimization and
benchmarking, and in-memory databases. Marko holds a

Bachelors degree in Physics from California Institute of Technology, a Masters
degree in Computer Science and a Doctorate in Physics from McGill University.
 Preface xiii

Michael Roche is an Architect and Team Lead for the
solidDB Universal Cache product. He joined IBM in 2009.
Prior to that, Michael spent over 10 years designing and
implementing enterprise middleware solutions, such as the
IONA Orbix and Artix Mainframe products. A previous
winner of the IBM-DCU U-18 All Ireland Programming
competition, Michael was selected to coach the Irish team
for the International Olympiad in Informatics (IOI). Michael
holds a B.Sc. degree in Computer Applications and is

currently pursuing an M.Sc. degree in Management of Information Systems at
Trinity College, in Dublin Ireland.

John Seery is Development Manager of solidDB Universal
Cache product development in IBM Ireland. He has 16 years
experience in software engineering, including 10 in
telecommunications. Prior to joining the solidDB team he
worked in financial services solutions in IBM. He holds a
B.Sc. and M.Sc. in Computer Science.

Katriina Vakkila is an Information Developer for the IBM
solidDB product family. She has been writing user
documentation for solidDB since 2008, prior to which she
worked as a Documentation Specialist in the
telecommunications field for more than five years. Katriina
has a Masters degree in Applied Linguistics from University
of Jyväskylä, Finland.

Jamie Watters is the Senior Product Manager of the IBM
solidDB product family, which includes the solidDB database
server and the solidDB Universal Cache. Prior to this role,
Jamie held product and solution management positions at
IBM for the InfoSphere™ Industry Data and Service Models
and InfoSphere Master Data Management Server. Jamie
has 13 years of experience working in the IT and software
industry at both large corporations and start-ups.
xiv IBM solidDB: Delivering Data with Extreme Speed

Antoni Wolski is Chief Researcher for solidDB. He joined
IBM with the acquisition of Solid Information Technology in
2008. Before joining Solid in 2001, Antoni spent almost 20
years working in the database field as a researcher,
consultant, developer, author and educator. He has
developed experimental database systems, and has
authored and co-authored a number of research papers,
books and software patents. His expertise is within special
purpose database systems, including in-memory

databases, active databases, heterogeneous databases and high-availability
databases. Antoni has an MSc. and Ph.D. in Computer Science from the
Technical University of Warsaw, Poland.

Other Contributors
We thank others who contributed to this book, in the form of advice, written
content, and project support.

Darragh Coy: solidDB Universal Cache Engineer, IBM Software Group,
solidDB Universal Cache Development, Mulhuddart, Ireland

Mary Comianos: Publications Management
Emma Jacobs: Graphics Support
Ann Lund: Residency Administration
Diane Sherman: Editor
International Technical Support Organization, San Jose, CA

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi IBM solidDB: Delivering Data with Extreme Speed

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction

In this chapter, we offer an insight into why a product such as IBM solidDB was
conceived and delivered to the market. We discuss differences between the new
in-memory database technology and traditional disk-based database technology.
We introduce the idea of database caching and show how solidDB Universal
Cache fills the need. We discuss the issues of throughput and response times in
solidDB. Also, we discuss the competing solutions and guide the reader through
the contents of this book.

1

© Copyright IBM Corp. 2011. All rights reserved. 1

1.1 The opportunity of the in-memory database

Consumers of IT products consistently work to increase application productivity
and return on investment (ROI) in their enterprises. That applies, to a great
degree, to database systems that are core to many solutions. If a database
system can produce more throughput per hardware cost unit, with a constant
software cost, that serves a higher ROI. If it can deliver shorter response times,
that increase the value of the offered service, and ROI is again increased.
In-memory database systems can fill both expectations.

To achieve that result, developers of in-memory databases strive to use the
power of new computer hardware to its best potential.

What could not escape attention is a tremendous progress in the computer
technology, bringing processors of increasingly growing processing power. The
trend has increased the gap between the raw computing power captured in the
processors and the capability of the I/O system to bring the data in and out fast
enough. In the same time, the cost of main memory (RAM) has dropped
significantly, enabling companies to have as much main memory capacity as is
typically found in a modest size disk drive. Systems are already on the market
that can accommodate up to a few terabytes of main memory.

The progress in processor technology and memory volumes has changed the
landscape of computer platforms forever. It created a new opportunity for
database management systems (DBMS) to minimize their dependency on
disk-based systems and instead realize huge performance gains by using fast
processors with large main memories.

In the following sections we describe why traditional database systems cannot
stand up to the challenge, and why solidDB can. We also confront the most
common misconceptions about in-memory databases.

1.1.1 Disk databases cannot expand to memory

From the beginning of the database era, disk drives were the only place to store
and access large amounts of data in a reasonable time. DBMS designers
concentrated on optimizing disk I/O and tried to align the data access patterns
with the block structure imposed by the disk drives. Design strategy frequently
centered on a shared buffer pool where data blocks were kept for reuse;
advances in access methods produced solutions such as block-optimized
indexes used to find the path to the data faster. Moving disk arms were a special
challenge because each arm movement increased the access time. The ways to
reduce arm movement were adjacent placing of data (data clustering), and
writing transaction logs sequentially.
2 IBM solidDB: Delivering Data with Extreme Speed

In the fierce battle for performance, disk I/O was often the deadliest enemy, and
processing efficiency was sacrificed to avoid disk access. For example, with
typical block page sizes of 8 KB or 16 KB, in-page processing is still inherently
sequential and less CPU-efficient than random data access. Nevertheless, the
page structures remained a popular way to reduce disk access. Meanwhile,
query optimization tactics focused on minimizing page fetches where possible.

When the era of abundant memory arrived, many database administrators
increased their buffer pools until the pools were large enough to contain an entire
database, creating the concept of a fully cached database. However, within the
large RAM buffer pools, the DBMSs were still hostage to all the structural
inefficiencies of the block-oriented I/O strategy that had been created to deal with
hard disk drives.

This way is all to be changed when developing an in-memory DBMS is to be
done without compromising any of the good characteristics of a database, such
as data persistency and transactional capabilities. The result is the IBM solidDB
in-memory database (IMDB).

1.1.2 IBM solidDB IMDB is memory-friendly

By “memory-friendly” software, we mean one that executes memory-efficient
code. Let us start with the block structures.

One of the most noticeable differences of an in-memory database system is the
absence of large data block structures. IBM solidDB eliminates them. Table rows
and index nodes are stored independently in memory, so that data can be added
without reorganizing big block structures. In-memory databases also forgo the
use of large-block indexes, sometimes called bushy trees, in favor of slim
structures (tall trees) where the number of index levels is increased and the index
node size is kept to a minimum to avoid costly in-node processing. IBM solidDB
uses an index called trie (or prefix tree), which was originally created for text
searching, but can be perfect for in-memory indexing.

A trie (the name comes from the word retrieval) is made up of a series of nodes
where the descendants of a given node have the same prefix of the string
associated with that node. For example, if the word cat is stored in a trie as a leaf
node, it would descend from the node containing ca, which would descend from
the node containing c. Trie indexes increase performance by reducing the need
for key value comparisons, and practically eliminate in-node processing.

Another area of being memory-friendly, is checkpoint execution. A checkpoint is
a persistent image of the whole database, allowing the database to be restarted
after a system crash or other case of down-time. IBM solidDB executes a
snapshot-consistent checkpoint that is alone sufficient to recover the database to
 Chapter 1. Introduction 3

a consistent state that existed at some point of time in the past. Other database
products do not normally allow that; the transaction log files must be used to
recalculate the consistent state. However, solidDB allows transaction logging to
be turned off, if desired. The solidDB solution is memory-friendly by the ability to
allocate row images and row shadow images (different versions of the same row)
without using inefficient block structures. Only those images that correspond to a
consistent snapshot are written to the checkpoint file, and the row shadows allow
the currently executing transactions to run unrestricted during checkpointing.

There are more examples of “rethinking” of the principles of operation of a
database system, resulting from the main-memory orientation. For example,
differences can be seen in the way the query optimizer works, in the way a
transaction log is implemented. and in the way applications connect to a
database server, to name a few. Those solutions are described in a more detail in
Chapter 2, “IBM solidDB details” on page 13.

To summarize, what makes a DBMS an in-memory DBMS? Look for the following
characteristics:

� Has memory-optimized access methods

� Has memory-optimized checkpointing and logging

� Has both transient and persistent data structures. The latter ones are fully
recoverable after a shutdown or a crash

� Does not have to wait for I/O on any read query execution.

Looking at it another way, taking a disk-based database system that was
developed on day one, with a focus on reducing disk I/O, and converting it easily
into an in-memory database system, focused on reducing CPU and memory, is
not possible. Design choices and code implemented in the disk-based database
remain, and continue to affect the performance and resources of the system.
Another misconception is that increasing the size of the buffer pool, so that
recently used data can be accessed quickly and without incurring the cost of I/O,
is the same as getting an in-memory database. The truth is that managing the
buffer pool requires substantial memory and CPU cycles, and the solution under
performs as compared to an in-memory database. Essentially all you get is
putting data blocks in RAM instead of disk, which, by itself, is not enough to
proclaim the product to be a true in-memory database.

Alternatively, the in-memory database is not necessarily the best cure for all
problems. The benefit gained from the memory-centered processing is sensitive
to work loads and usage scenarios. See more about this in Chapter 7, “Putting
solidDB and the Universal Cache to good use” on page 219.
4 IBM solidDB: Delivering Data with Extreme Speed

Fortunately, with solidDB you can have a disk-based database also, if it fits the
purpose. IBM solidDB is a dual-engine DBMS. Both engines, the main-memory
engine (MME) and disk-based engine (DBE) can be used to implement a
seamless hybrid database having both disk-based and in-memory tables.

To know more on how to deploy a database based on solidDB, see Chapter 4,
“Deploying solidDB and Universal Cache” on page 67. Ways to monitor and
optimize the database operation are described in Chapter 6, “Performance and
troubleshooting” on page 147.

1.1.3 Misconceptions

In this section, we respond to a number of misconceptions about in-memory
database. The term itself in-memory database can have various connotations,
and some of them can be misconceptions, as follows:

� Data is volatile and non-persistent

Not true. The fact that the main memory is volatile does not make the
database volatile. The methods of checkpointing and transaction logging
make sure the solidDB database is fully recoverable.

� Not a complete DBMS

Not true. In terms of external interfaces, power of expression and utilities,
solidDB is as complete as any other DBMS.

� SSD is just as fast

Not true. Solid-state disks (SSDs) are slightly faster disks, with shorter access
times. By replacing rotating disks with SSDs, you can improve the
performance of a DBMS but the change does not turn the system into a
in-memory database system. The load on the I/O system remains as huge as
before, and in-memory operation remains as inefficient as before.

� No structured query language (SQL)

Not true. IBM solidDB is a full-function SQL-based database system,
including standard complying ODBC and JDBC interfaces
 Chapter 1. Introduction 5

� Not reliable

Not true. With solidDB, the database stands up to the standard definition of “a
persistent data repository shared among concurrent applications.” That also
includes a concurrency control mechanism preventing data errors that can
result from concurrent data usage. IBM solidDB maintains the transactional
quality standard depicted as ACID (atomicity, consistency, isolation and
durability), making it as reliable as any traditional DBMS.

� Poor availability

Not true. Traditional high-availability solutions such as hot standby are
available to in-memory databases too. IBM solidDB high availability offers the
corresponding capabilities. For more, see Chapter 5, “IBM solidDB high
availability” on page 109.

Misconceptions also exist about traditional databases. One example is as
follows:

� High throughput means low response times

Not with a concurrent load. On the contrary, the measures taken to increase
the throughput degenerate response times. A good example is a common
technique called group commit whereby several consecutive transactions are
bundled for a single durable write in the disk storage. Consequently, the
number of synchronous I/O operations is reduced and thus the throughput is
improved. However, some of the transactions may wait for return from commit
longer than they would do without the group commit.
6 IBM solidDB: Delivering Data with Extreme Speed

1.1.4 Throughput and response times

In solidDB, the main focus is on short response times that naturally result from
the fact that the data is already there (that is, it is in memory). Additional
techniques are available to avoid any unnecessary latencies in the local
database usage, such as linking applications with the database server code by
way of special drivers. By using those approaches, one can shorten the query
response time to a fraction (one tenth or even less) of that available in a
traditional database system. The improved response times also fuels high
throughput. Nevertheless, techniques of improving the throughput of concurrent
operations are applied too. The outcome is a unique combination of short
response times and high throughput.

The advantages of solidDB in-memory database over a disk-based database are
illustrated in Figure 1-1 and Figure 1-2 on page 8. They unveil the results of an
experiment involving a database benchmark called Telecom Application
Transaction Processing (TATP)1 that was run on a middle-range system
platform2. For other configurations, both throughput (in transactions per second)
and response time (shown as the longest response time of the best 90% of the
transactions) are shown.

Figure 1-1 Throughput of the disk-base an in-memory database.

1 http://tatpbenchmark.sourceforge.net/
2 Two Intel® Xeon E5410 processors, total of 8 cores, 16 GB of memory, 2 SATA disks, under Linux

RHEL 5.2. IBM solidDB v. 6.5.0.2. was used. TATP was configured for a 1 million subscriber
database, and read/write mix of 80/20. The number of concurrent application clients was eight.

IBM Software Group | Information Management STATP
Throughput
tps

18631
10275

30800

66419

150836

0

20000

40000

60000

80000

100000

120000

140000

160000

M
Q

T
H

DBE TCP remote strict durability
DBE TCP local strict durability
MME TCP strict durability
MME TCP relaxed durability
MME SMA relaxed durability
 Chapter 1. Introduction 7

http://tatpbenchmark.sourceforge.net/

Figure 1-2 Response times in various configurations

The solidDB product was used for both the on-disk and in-memory databases.
The charts illustrate how single configuration change steps can affect the
throughput and response times. Between each two adjacent bars, only one
configuration variable is changed. We describe the changes in more detail here.
For each bar in Figure 1-1 on page 7, starting from the leftmost one, the
corresponding configuration is as follows:

� DBE TCP remote strict durability

In the chart, DBE means disk-based engine, Remote means accessing the
database over the network, and TCP means a driver using TCP/IP. Strict
durability means that the write operations are safely stored in a persistent
storage before a commit request can be acknowledged. The configuration is
typical for distributed client/server database applications.

� DBE TCP local strict durability

Here, the term remote is replaced with local. That means running the
application in the same node with the database server. The performance gain
results from avoiding inter-computer communications. This is one example of
bringing the data closer to the application. In all the remaining configurations
the application is run locally.

� MME TCP strict durability

DBE is replaced with MME (main-memory engine). The performance
increase is attributed to faster operation of the database engine that is

IBM Software Group | Information Management SoTATP
90-percentile
response times

131

237

507
461

131

368

128

134
70

29

0 100 200 300 400 500 600

Read trasaction

Write
transactionT

ra
n

sa
ct

io
n

 t
yp

e

Response time (microseconds)

DBE TCP remote strict durability
DBE TCP local strict durability
MME TCP strict durability
MME TCP relaxed durability
MME SMA relaxed durability
8 IBM solidDB: Delivering Data with Extreme Speed

optimized for in-memory data. The faster are the interactions between the
application and the server the bigger is the gain brought by MME. Running
the applications locally is key to uncover that gain.

� MME TCP relaxed durability

Here the term strict is replaced with relaxed. With relaxed durability, the
commit acknowledgment is returned before the commit record is persistently
written to the disk storage. The commit record is written to disk
asynchronously, with a delay of few seconds. With relaxed durability, MME
does not have to wait for I/O operations to complete, and that can be seen in
the response time of write transactions. Overall, more CPU time can be
utilized to process the in-memory data.

� MME SMA relaxed durability

By replacing the TCP/IP based driver with an SMA driver, you ultimately bring
the data as close to the application as possible, which is into the application’s
process space. Shared memory access (SMA) allows the user to link the
application with a library containing the whole query processing code. At this
point, all obstacles in the way of bringing the data to the application with a full
CPU speed are removed.

In the experiment, the disk-based database was reasonably buffered: the size of
the page buffer pool (called DBE cache, in solidDB) was 20% of the total
database size. You can see that, by taking all the steps, the throughout can be
increased almost 15 times, and the response time shortened to almost one tenth,
compared to the worst case. Of all the steps shown, you might use only a few, but
then, of course, there would also be fewer benefits. The subject of performance
is further discussed in Chapter 6, “Performance and troubleshooting” on
page 147, and Chapter 7, “Putting solidDB and the Universal Cache to good use”
on page 219, including the description of the TATP benchmark.

1.2 Database caching with in-memory databases

In this section, we propose that using solidDB as a cache database to a larger
enterprise database can alleviate the problems caused by the database growth.

1.2.1 Databases are growing

Enterprise databases can grow to very large sizes. The application load on the
database system can grow to high levels too. That can lead to a situation where
the database system becomes a bottleneck. In such an overloaded system, the
response times may become painfully long.
 Chapter 1. Introduction 9

One solution might be to scale the system up (to a more powerful computer) or
out (to a cluster of computers). Both alternatives are costly and may expose
scalability problems.

1.2.2 Database caching off-loads the enterprise server

You can off-load the enterprise database server by moving the data out of the
server and close to where the applications are running. The solution is called
database caching if the database interface in the applications can be preserved.

With database caching, all the data is still stored within the enterprise server.
However, it is also replicated to smaller cache databases, typically residing in
computer nodes where the applications are running. An in-memory database is
an ideal candidate for a cache database because of the performance and
response time advantages

1.2.3 IBM solidDB Universal Cache

IBM solidDB Universal Cache is a product enabling cache databases for popular
enterprise database products such as Oracle, DB2, IDS, Sybase ASE, and
Microsoft SQL Server. The solidDB in-memory database server maintains a
cache database that contains a subset of data stored in the back-end database
(being run by any of the systems previously mentioned). The applications
connect to the cache database. Additionally, the product includes an elaborate
replication mechanism known as InfoSphere Change Data Capture (InfoSphere
CDC) available also as a separate product from IBM. The InfoSphere CDC
components are responsible for carrying the data between the back-end
database and the cache database--both ways.

The replication can take the form of one-time refreshes of cached data or
continuous update propagation between the systems. The continuous replication
is done in an asynchronous fashion: the data is first committed on the local
system (the source) and then propagated to the other system (the target). The
delay is usually within a second.

Because of the asynchronous nature of the continuous replication, the replication
does not delay or block the transactions at the source side. However, there is one
exception: if the cache database produces more updates that can be applied to
the back-end database, the replication buffers fill-up, and a mechanism called
transaction throttling is enacted. With transaction throttling, the cache database
transactions are slowed down to keep up with the pace of data replication.

The advantage of an in-memory cache database is magnified with new access
methods available with solidDB. By using linked library access or shared memory
10 IBM solidDB: Delivering Data with Extreme Speed

access, you can link the application with the server code and avoid any
interprocess communications. With those approaches, the resulting response
times can be an order of magnitude (or more) shorter than those achieved with
the network-based access to the back-end enterprise server.

To know more about solidDB Universal Cache, see Chapter 3, “IBM solidDB
Universal Cache details” on page 39 and Chapter 4, “Deploying solidDB and
Universal Cache” on page 67.

1.3 Applications, competition, and the marketplace

Both solidDB and solidDB Universal Cache offer a new opportunity to certain
applications characterized by the possibility to store the hottest part of the
database in memory (or cache it from a back-end database) and a possibility to
trade the increased memory cost for increased performance. Such applications
exist in many sectors of the economy, such as telecommunications, real-time
trading, online retail and booking, and online gaming, for example. See
Chapter 7, “Putting solidDB and the Universal Cache to good use” on page 219
for more about applications.

When considering deployment of solidDB, the first competing solution can come
from an unexpected direction, which is in-house development. In fact, application
developers have been setting up application-specific in-memory stores and
caches for a long time. Such solutions can be attractive from the performance
perspective. However, in addition to increased performance, solidDB also has the
following advantages:

� Total application life cycle management

� Data independence

This is a core notion in databases, making the data and the application
isolated from each other, with the purpose of allowing for change and growth.

� Other essential database characteristics, such as:

– Date persistency
– Transactional behavior
– Recovery and high availability features.

These advantages are all productized in solidDB in a generalized way to also be
immediately usable in other different applications. The situation is similar to what
happened years ago when generalized disk-based data management systems
overtook custom storage solutions.
 Chapter 1. Introduction 11

Somewhere between an in-house data cache and the database are the concepts
of object store and object cache. They both represent an object-oriented view on
the data and are popular within Java™ community. Some of those solutions are
commercialized and the vendors claim ease of use and fast access. This
approach can be done, for example, if the vendors have removed the impedance
mismatch between an object language, such as Java, and the relational model.
They can also be fast after the data is cached. However, for any write-oriented
activity having the purpose of producing persistent and consistent data, a DBMS
is needed to take care of concurrency control, logging and recovery. Therefore, in
those cases, it might be better to consider a database in the first place.

When speaking about solidDB as a product, it is not the only one available in the
marketplace. That is, other vendors exist in the field of in-memory databases and
database caching. However, we believe solidDB stands out from the other
products in the following ways:

� As an in-memory database

– With solidDB, a fully persistent and durable in-memory database is
possible. Only a few other products are capable of doing that.

– solidDB is a hybrid (on-disk and in-memory) database system. That can
be achieved only in a few other products.

– solidDB is equipped with low-latency access methods (direct linking). Only
a few other products can provide that.

– solidDB has rich, high functionality SQL, including stored procedures,
triggers and events. Most in-memory products do not support those
capabilities.

– solidDB is equipped with a fully automatic high-availability (HA) solution
with sub-second failover times. We believe that this is a level of data
safeness and transparency that is unique to solidDB.

� As a cache database

– solidDB Universal Cache is universal in the sense that it can be used with
other models of back-end DBMSs. We believe this is a capability that is
unique to solidDB.

To summarize, we believe that solidDB is the only product available today that
has all of the capabilities and advantages we have just described.

Many of the topics in this chapter are described in more detail throughout the
book.
12 IBM solidDB: Delivering Data with Extreme Speed

Chapter 2. IBM solidDB details

This chapter describes the architecture, data storage, table types,
transactionality, structured query language (SQL) extensions, and database
administration.

2

© Copyright IBM Corp. 2011. All rights reserved. 13

2.1 Introduction

IBM solidDB is a relational database server that combines the high performance
of in-memory tables with the nearly unlimited capacity of disk-based tables. Pure
in-memory databases are fast, but strictly limited by the size of memory. Pure
disk-based databases allow nearly unlimited amounts of storage, but their
performance is dominated by disk access. Even if the computer has enough
memory to store the entire database in memory buffers, database servers
designed for disk-based tables can be slow because the data structures that are
optimal for disk-based tables are far from being optimal for in-memory tables.

The solidDB solution is to provide a single hybrid database server that contains
two optimized engines inside it:

� The disk-based engine (DBE) is optimized for disk-based access.
� The main-memory engine (MME) is optimized for in-memory access.

Both engines coexist inside the same server process, and a single SQL
statement may access data from both engines. The architecture for the solidDB
hybrid server is depicted in Figure 2-1.

Figure 2-1 IBM solidDB hybrid server architecture

SQL

In-Memory Tables Disk-Based Tables

Storage (Memory/Disk/SSD)

Application

Database

MME DBE
14 IBM solidDB: Delivering Data with Extreme Speed

2.2 Server architecture

The solidDB server architecture is based on a client/server model. Typically, a
solidDB configuration consists of cooperating server and client processes. The
server process manages the database files, accepts connections to the database
from client applications, and carries out actions on the database as requested by
the clients.

The client process is used to pass the required tasks (through the server
process) to the database. There can be several client types: a client could be a
command-line tool, a graphical application, or a database management tool.
Typically, separate applications act as clients to connect to solidDB.

The client and the server can be located on separate hosts (nodes), in which
case they communicate over a network. IBM solidDB provides simultaneous
support for multiple network protocols and connection types. Both the database
server and the client applications can be simultaneously connected to multiple
sites using multiple different network protocols.

IBM solidDB can also run within the application process. This capability is
provided by solidDB shared memory access (SMA) and linked library access
(LLA). In those cases, the application is linked to a function library that is
provided with the product. The linked application communicates with the server
by using direct function calls, thus skipping the overhead required when the client
and server communicate through network protocols such as the TCP/IP. By
replacing the network connection with local function calls, performance is
improved significantly.
 Chapter 2. IBM solidDB details 15

The high-level architecture of IBM solidDB is shown in the Figure 2-2.

Figure 2-2 IBM solidDB architecture

2.2.1 Database access methods and network drivers

Applications can connect to the solidDB server using network drivers or by
linking to the server directly. In network based access methods, the applications
and the solidDB server are separate programs, typically communicating using
the solidDB ODBC Driver or solidDB JDBC Driver.

Direct linking is provided through linked library access (LLA) and shared memory
access (SMA). SMA and LLA are implemented as library files that contain a
complete copy of the solidDB server in a library form.

The SMA and LLA servers can also handle requests from remote applications
which connect to the server through communications protocols such as TCP/IP.
The remote applications see the SMA or LLA server as similar to any other
solidDB server; the local SMA and LLA applications see a faster, more precisely
controllable version of the solidDB server.

The network drivers component contains support for both ODBC and JDBC API.

solidDB ODBC Driver
The solidDB ODBC Driver conforms to the Microsoft ODBC 3.5.1 API standard. It
is distributed in the form of a library.

MME
Engine

System Services

Network drivers (ODBC/JDBC)
Accelerator library

(Linked Library Access)

Tasking System

SQL
Interpreter

and Optimizer
solidDB API

(SA)

Estimator

Triggers and
Procedures

Logging
and

Check-
pointing

Recovery Replicator

Transaction
Manager

HSB

Server Services

Disk-Based Engine

SMA library
(Shared Memory Access)

Table Services SQL Passthrough
Mediator
16 IBM solidDB: Delivering Data with Extreme Speed

The solidDB ODBC Driver supported functions are accessed with solidDB ODBC
API, a Call Level Interface (CLI) for solidDB databases, which is compliant with
ANSI X3H2 SQL CLI. The solidDB implementation of the ODBC API supports a
rich set of database access operations sufficient for creating robust database
applications:

� Allocating and de-allocating handles
� Getting and setting attributes
� Opening and closing database connections
� Accessing descriptors
� Executing SQL statements
� Accessing schema metadata
� Controlling transactions
� Accessing diagnostic information

Depending on the application’s request, the solidDB ODBC Driver can
automatically commit each SQL statement or wait for an explicit commit or
rollback request. When the driver performs a commit or rollback operation, the
driver resets all statement requests associated with the connection

solidDB JDBC Driver
The solidDB JDBC Driver 2.0 is a JDBC type 4 driver. Type 4 means that it is a
100% Pure Java implementation of the Java Database Connectivity (JDBC) 2.0
standard. The JDBC API defines Java classes to represent database
connections, SQL statements, result sets, database metadata, and so on. It
allows a Java programmer to issue SQL statements and process the results.
JDBC is the primary API for database access in Java.

The solidDB JDBC Driver is written entirely in Java and it communicates directly
with the solidDB server using the TCP/IP network protocol. The solidDB JDBC
Driver does not require any additional database access libraries. The driver
requires that a Java runtime environment (JRE) or Java developer kit is available.

The solidDB server can also participate in distributed transactions using the Java
Transaction API (JTA) interface. solidDB supports the following interfaces, as
described in the Java Transaction API Specification 1.1:

� XAResource Interface (javax.transaction.xa.XAResource)
� Xid Interface (javax.transaction.xa.Xid)

solidDB SA
The solidDB SA is a low level C-language client library to access solidDB
database management products. the solidDB SA is a layer that resides internally
in solidDB products. Normally, the use of an industry standards-based interface,
such as ODBC or JDBC, is recommended. However, in environments with heavy
 Chapter 2. IBM solidDB details 17

write-load, such as batch inserts and updates, solidDB SA can provide a
significant performance advantage.

Linked library access (LLA)
With the LLA, an application links to a static library or a dynamic library that
contains the full database server functionality. This means solidDB runs in the
same executable with the application, eliminating the need to transfer data
through the network. The LLA library is sometimes called an accelerator library.

Shared memory access (SMA)
With SMA, multiple applications can be linked to a dynamic driver library that
contains the full database server functionality. This means that the applications
ODBC or JDBC requests are processed almost fully in the application process
space, without a need for a context switch among processes. To facilitate the
processing of a common database, the driver has access to a shared memory
segment initialized by the server.

2.2.2 Server components

In the remaining sections, we describe server components:

� Tasking system

The tasking system is a framework to abstract threads to a concept task.
Tasking system implements concurrent execution of the tasks also in single
threaded systems.

� Server services

The server services component contains services and utilities to use
components on the lower levels.

� SQL interpreter and optimizer

The SQL interpreter and optimizer is responsible of SQL-clause parsing and
optimization. solidDB uses SQL syntax based on the ANSI X3H2 and
IEC/ISO 9075 SQL standards. The SQL-89 Level 2 standard is fully
supported and SQL-92 Entry Level. Many features of full SQL-92, SQL-99,
and SQL-2003 standards are also supported.

solidDB contains a cost-based optimizer, which ensures that even complex
queries can be run efficiently. The optimizer automatically maintains
information about table sizes, the number of rows in tables, the available
indexes, and the statistical distribution of the index values.
18 IBM solidDB: Delivering Data with Extreme Speed

� Triggers and procedures

The triggers and procedures component contains a mechanism for parsing
and executing SQL-based stored triggers and procedures:

– A trigger activates stored procedure code, which a solidDB server
automatically executes when a user attempts to change the data in a table.

– Stored procedures are simple programs, or procedures, that are executed
in solidDB databases. You can create procedures that contain several SQL
statements or whole transactions, and execute them with a single call
statement. In addition to SQL statements, 3GL type control structures can
be used enabling procedural control. In this way complex, data-bound
transactions may be run on the server itself, thus reducing network traffic.

� Logging and checkpointing

The logging and checkpointing component is responsible for maintaining
persistency of transactions by write-ahead logging, consistency, and
recoverability of the database by checkpointing. Various durability options are
available.

Reading the transaction log file as it is being written by the server is possible
and is done with a special SQL-based interface called Logreader API.

� Recovery

The recovery component is responsible for recovery from transaction log and
database checkpoints.

� Replicator

The replicator component provides support for the solidDB advanced
replication feature. The advanced replication feature is used for
asynchronous, pull-based replication between a master database and replica
databases. A “master” database contains the master copy of the data. One or
more replica databases contain full or partial copies of the master's data. A
replica database, like any other database, may contain multiple tables. Some
of those tables may contain only replicated data (copied from the master),
some may contain local-only data (not copied from the master), and some
may contain a mix of replicated data and local-only data. Replicas may submit
updates to the master server, which then verifies the updates according to
rules set by the application programmers. The verified data is then “published”
and made available to all replicas.

� HotStandby

The HotStandby (HSB) component enables a secondary server (a hot
standby server) to run in parallel with the primary server and keep an
up-to-date copy of the data in the primary server.
 Chapter 2. IBM solidDB details 19

� Estimator

The estimator component provides cost-based estimates for single table
access based on projections and constraints. It executes a low-level execution
plan generation using index selection and index range calculations.

� Table services

The table services module contains interfaces for single-table access, data
type support, transaction management interface and, table and index caches.

� Disk-based engine

The disk-based engine component handles the storage of disk-based tables
(D-tables) and indexes.

� Main-memory engine

The main-memory engine component handles the storage of in-memory
tables (M-tables) and indexes.

� Transaction manager

The transaction manager component contains commit and rollback
implementation and concurrency conflict checking and resolution.

� System services

The system services component contains operating system abstraction layer,
memory management, thread management, mutexing and file I/O services.

2.3 Data storage in solidDB

The main-memory engine that handles the in-memory tables (M-tables) and the
disk-based engine that handles the storage of disk-based tables (D-tables) use
different data storage architectures.

In-memory engine is designed for maximum performance. Knowing that data is
always stored in main-memory allows for use of data structures and data access
methods that are designed to minimize the computational (CPU) cost of
retrieving or updating database records.

Disk-based engine, however, can reduce disk access. That is achieved by data
structures and access methods that trade disk access for additional
computational processing. Therefore, an in-memory engine has the potential to
outperform a disk-based engine even when the latter has all the data cached in
the memory buffer pools because it needs to consume fewer CPU cycles to
access database records.

We describe the data storage principles of both engines in more detail.
20 IBM solidDB: Delivering Data with Extreme Speed

2.3.1 Main-memory engine

In addition to the actual data, the indexes for M-tables are built in main memory
also. solidDB uses a main-memory-optimized index technology, called tries, to
implement the indexes.

The basic index structure in the in-memory engine is a VTrie (variable length trie)
that is optimized variation of the trie. A trie (from retrieval), is a multi-way tree
structure widely used for storing strings. The idea is that all strings sharing a
common prefix hang off a common node. For example, when the strings are
words over {a..z} alphabet, a node has at most 27 children: one for each letter
plus a terminator. VTrie uses bitwise tree where individual bits compose a key
allowing keys to be any supported data type. VTrie uses nodes of the capacity of
8 bits. Consequently, each node has at most 257 children, that is, the fan-out is
257 (256 for bits plus a terminator).

A simplified example of the VTrie structure with node capacity of 2 bits and
fan-out of four is shown in Figure 2-3.

Figure 2-3 Simplified example of a VTrie structure

The elements in a string can be recovered using a scan from the root to the leaf
nodes that ends a string. All strings in the trie can be recovered by a depth-first
browse of the tree.

A competitive solution to VTrie would be a kind of a binary search tree. In a
binary tree, the node fan-out is two. In each node you compare a full key value
against a node separation value and then choose one of the two children to
continue with.

-

11

00 01 11 11

1110

10

Path com pression
(a node is bypassed if no choice)

W idth com pression
(only needed pointers)

01

row

01

Fast term ination
(no other values having prefix ’0101’)
 Chapter 2. IBM solidDB details 21

The main advantages of VTries over binary search trees are as follows:

� Looking up keys is faster. Looking up a key of length m takes time that is
proportional to m. A binary search tree requires log2(n) comparisons of keys
where n is the number of elements in the tree. The total search time is
proportional to m log2(n). The advantage of VTrie is because no value
comparisons are needed. Each part of a key (a “letter”) is applied as an array
index to a pointer array of a child node. Contrary to a value comparison, array
lookup is a fast operation if the array is cached in processor caches.

� Tries can require less space when they contain a large number of short
strings, because the keys are not stored explicitly and nodes are shared
between keys with common prefix.

Several optimizations are used in Vtrie to speed up retrieval when the key value
space is not fully exhausted, as illustrated in Figure 2-3 on page 21. These are
path compression, width compression, and fast termination:

� In path compression all internal nodes with only one child are removed and a
common prefix is stored in the remaining node.

� In width compression, only the needed pointers are stored in the nodes and
every node contains a bitmap storing the information which pointers are
present in the node.

� In fast termination, a pointer to the data record is elevated to a node
representing a prefix that is not shared among the key values.

2.3.2 Disk-based engine

The main data structure used to store D-tables is a B+tree variation called
B+tree. The idea of a B+tree is illustrated in Figure 2-4, where two node levels of
a B+tree are shown.

Figure 2-4 Illustration of two levels of a B-tree

p | g |

Level 1 node

22 45 65 96…

Separation Value

Pointer

Level 2 nodes
22 IBM solidDB: Delivering Data with Extreme Speed

Each node has a large set of value-pointer pairs. They normally fill a database
page being a unit of data buffering. The page sizes vary from 4 to 32 kilobytes.
Compared to VTrie, that makes the nodes much larger, resulting in a wide, or
bushy tree. The key value is compared against the separation values in the node
and, if the key value falls between two separation values, the corresponding
pointer is followed to a similar node on the next level. Thanks to a large node
size, the number of disk accesses is minimized, and that make B-tree fit for
D-tables.

The server uses two incarnations of a B-tree: the main storage tree holds
permanent data, and a differential index tree called Bonsai Tree stores new data
temporarily until it is ready to be moved to the main storage tree.

In both B-tree structures, two space optimization methods are used. First, only
the information that differentiates the key value from the previous key value is
saved. The key values are said to be prefix-compressed. Second, in the higher
levels of the index tree, the key value borders are truncated from the end; that is,
they are suffix-compressed.

The main storage tree contains all the data in the server, including tables and
indexes. Internally, the server stores all data in indexes; there are no separate
table stores. Each index contains either complete primary keys (all the data in a
row) or secondary keys (what SQL refers to as indexes, which is just the column
values that are part of the SQL index). There is no separate storage method for
data rows, except for binary large objects (BLOB) and other long column values.

All the indexes are stored in a single tree, which is the main storage tree. Within
that tree, indexes are separated from each other by a system-defined index
identification that is inserted in front of every key value. This mechanism divides
the index tree into several logical index subtrees where the key values of one
index are clustered close to each other.

The Bonsai Tree is a small active index (data storage tree) that efficiently stores
new data (deletes, inserts, updates) in central memory, maintaining multiversion
information. Multiple versions of a row (old and new) can coexist in the Bonsai
Tree. Both the old and new data are used for concurrency control and for
ensuring consistent read levels for all transactions without any locking overhead.
With the Bonsai Tree, the effort needed for concurrency control is significantly
reduced.

When a transaction is started, it is given a sequential Transaction Start Number
(TSN). The TSN is used as the “read level” of the transaction; all key values
inserted later into the database from other connections are not visible to
searches within the current transaction. This approach offers consistent index
read levels that appear as though the read operation was performed at the time
the transaction was started. This way guarantees read operations are presented
 Chapter 2. IBM solidDB details 23

with a consistent view of the data without the need for locks, which have higher
overhead.

Old versions of rows (and the newer version or versions of those same rows) are
kept in the Bonsai Tree for as long as transactions need to see those old
versions. After the completion of all transactions that reference the old versions,
the “old” versions of the data are discarded from the Bonsai Tree, and new
committed data is moved from the Bonsai Tree to the main storage tree. The
presorted key values are merged as a background operation concurrently with
normal database operations. This way offers significant I/O optimization and load
balancing. During the merge, the deleted key values are physically removed.

2.4 Table types

This section describes the table types that solidDB offers, highlighting the key
differences you should consider when deciding what type of tables to use.

The table types are shown in Figure 2-5.

Figure 2-5 The solidDB table types

2.4.1 In-memory versus disk-based tables

If a table is designated as an in-memory table (M-table), the entire contents of
that table are stored in memory so that the data can be accessed as quickly as
possible. If a table is disk-based, (D-table), the data is stored primarily on disk,
and usually the server copies only small pieces of data at a time into memory.

Persistent Tables
M-tables D-tables

Non-Persistent Tables
transient tablestemporary tables

Log
records

Page cache
in/out

Checkpoint

Solid Disk-based Engine (DBE)

Log files Database files

Solid Main Memory Engine (MME)
24 IBM solidDB: Delivering Data with Extreme Speed

In many respects, in-memory tables are similar to disk-based tables:

� Both table types provide full persistence of data unless specified differently.

� You may perform the same types of queries on each of them.

� You can combine disk-based and in-memory tables in the same SQL query or
transaction.

� Both table types can be used with indexes, triggers, stored procedures, and
so on.

� Both table types allow constraints, including primary key and foreign key
constraints.

The main difference between M-tables and D-tables is performance. M-tables
provide better performance; they can provide the same durability and
recoverability as D-tables. For example, read operations do not wait for disk
access, even when the system is engaged in activities such as checkpointing
and transaction logging.

2.4.2 Persistent versus non-persistent tables

The two basic types of M-tables are persistent tables and non-persistent tables.
Persistent tables provide recoverability of data; non-persistent tables provide fast
access. D-tables are always persistent tables.

Persistent tables
Persistent tables ensure recoverability of data through checkpointing and
logging. Checkpointing means that committed transactions are copied from main
memory to database files on disk during checkpoints. If the server fails between
checkpoints, solidDB ensures that the disk has a consistent snapshot of the data.
In-between checkpoints, solidDB writes committed transactions to a transaction
log. After a system crash, solidDB uses the transaction log to recovers
transactions that were committed since the last checkpoint.

By default, both M-tables and D-tables are created as persistent tables.

Non-persistent tables
Only M-tables can be created as non-persistent tables. Non-persistent tables are
intended for use with temporary data that does not need to be recoverable. Data
in non-persistent tables is never written to disk; therefore, any time that the
server shuts down, whether normally or abnormally, the data is lost. Also, data in
non-persistent tables is not logged or checkpointed. As a result, they are
irrecoverable but remarkably faster than persistent tables.
 Chapter 2. IBM solidDB details 25

The two types of non-persistent in-memory tables are transient tables and
temporary tables1. Temporary tables are visible to a single connection; transient
tables are visible to all connections (users) until the database shuts down.
Because concurrent users cannot access data in temporary tables, temporary
tables do not use concurrency control. Temporary tables are thus faster than
transient tables.

Non-persistent tables cannot be used with solidDB HotStandby.

2.4.3 Choosing between different table types

The choice between the table types is typically a trade-off between performance
and the following aspects:

� Amount of main memory available: M-tables or D-tables

Ideally your system would have enough memory to store all of your tables in
memory and thus benefit from the best possible performance for database
transactions. If you cannot fit all tables in memory, try to put the most
frequently used data in memory. Also, small, frequently-used tables should go
into memory, and large, rarely-used tables can be left on disk.

� Recoverability of data: persistent or non-persistent tables

Persistent tables provide full recoverability over performance. Non-persistent
tables are faster as they require no logging or checkpointing.

� Access to temporary data: transient or temporary tables

Transient tables allow multiple concurrent users to access the data over
several connections, but require concurrency control (locking) to preserve
consistency of data. Temporary tables are faster than transient tables but data
is available only to a single user during one session.

1 The solidDB implementation of temporary tables complies with the ANSI SQL:1999 standard for
“Global Temporary Tables.” All solidDB temporary tables are global tables regardless of whether the
keyword GLOBAL is specified. solidDB does not support “Local Temporary Tables” as defined by
ANSI.
26 IBM solidDB: Delivering Data with Extreme Speed

2.5 Transactionality

IBM solidDB guarantees reliable transactional processing by implementing a
database server that satisfies all ACID (atomicity, consistency, isolation,
durability) requirements.

� Atomicity requires that database modifications must follow an “all or nothing”
rule. Each transaction is said to be atomic. If one part of the transaction fails,
the entire transaction fails and the database state is left unchanged.

� Consistency ensures that any transaction that the database performs can take
it from one consistent state to another.

� Isolation refers to the requirement that other operations cannot access data
that has been modified during a transaction that has not yet completed. The
question of isolation occurs in case of concurrent transactions (multiple
transactions occurring at the same time).

� Durability is the ability of the DBMS to recover the committed transaction
updates against any kind of system failure (hardware or software). Durability
is the DBMS guarantee that after the user has been notified of a transaction's
success, the transaction will not be lost.

2.5.1 Concurrency control and locking

The purpose of concurrency control is to prevent two users (or two connections
by the same user) from trying to update the same data at the same time.
Concurrency control can also prevent one user from seeing uncommitted (dirty)
data while another user is in the process of updating it.

More generally, concurrency control is used to preserve the overall correctness
of concurrent transaction executions. The ultimate form of that correctness is
called serializability. A serializable execution of concurrent transactions
produces a result that is identical to a case when all these transaction would be
executed serially: one after another. Preserving generalized serializability for all
possible cases is resource-consuming. Therefore, the actual correctness can be
set with a parameter called isolation level that can be adjusted as needed, even
dynamically.
 Chapter 2. IBM solidDB details 27

IBM solidDB offers two concurrency control mechanisms, pessimistic
concurrency control and optimistic concurrency control:

� Pessimistic concurrency control mechanism is based on locking. A lock is a
mechanism for limiting other users' access to a piece of data. When one user
has a lock on a record, the lock prevents other users from changing (and in
some cases reading) that record.

� Optimistic concurrency control mechanism does not place locks but prevents
the overwriting of data by using timestamps.

D-tables are by default optimistic; M-tables are always pessimistic. In D-tables,
you can override optimistic concurrency and specify pessimistic locking instead.
You can do this at the level of individual tables. One table might follow the rules of
optimistic concurrency while another table follows the rules of pessimistic
locking. Both tables can be used within the same transaction and even the same
statement; solidDB handles this internally.

Pessimistic concurrency control
Pessimistic concurrency control (or pessimistic locking) is called pessimistic
because the system assumes the worst; it assumes that two or more users will
want to update the same record at the same time, and then prevents that
possibility by locking the record, no matter how unlikely conflicts actually are.

The locks are placed as soon as any piece of the row is accessed, making it
impossible for two or more users to update the row at the same time. Depending
on the lock mode (shared, exclusive, or update), other users might be able to
read the data although a lock has been placed.

Optimistic concurrency control
Optimistic concurrency control assumes that although conflicts are possible, they
will be rare. Instead of locking every record every time that it is used, the system
merely looks for indications that two users actually did try to update the same
record at the same time. If that evidence is found, then one user’s updates are
discarded and the user is informed. The step of checking whether a transaction
can commit is called transaction validation. Typically, the validation is performed
at the commit time but solidDB uses, by default, a modified method called early
validation. With early validation, the data being read (the read-set) and written
(write-set) are checked against other transactions at each database operation,
without waiting for commit. If the data in the read-set and write-set has changed
since the beginning of the transaction, the transaction is considered to be
violating the data consistency and is aborted. The details of checking rules for
read-sets and write-sets depend on the isolation level that will be discussed
shortly.

Optimistic concurrency control is available for disk-based tables (D-tables) only.
28 IBM solidDB: Delivering Data with Extreme Speed

Locking and performance
Optimistic concurrency allows fast performance and high concurrency (access by
multiple users), at the cost of occasionally refusing to write data that was initially
accepted but was found at the last second to conflict with another user's
changes.

Pessimistic locking requires overhead for every operation, whether or not two or
more users are actually trying to access the same record. The overhead is small
but adds up because every row that is updated requires a lock. Furthermore,
every time that a user tries to access a row, the system must also check whether
the requested row or rows are already locked by another user or connection.

When using M-tables, best performance in reference to locking is achieved with
temporary tables; because concurrent users cannot access data in temporary
tables, temporary tables do not use concurrency control.

When using D-tables, optimistic concurrency control provides the best
performance, if the possibility for conflicts is low. For example, there are many
records but relatively few users, or few updates and mostly read-type operations.
However, in workloads that expose more updates, like in typical online
transaction processing (OLTP) applications, pessimistic locking is actually more
beneficial.

2.5.2 Isolation levels

solidDB supports the isolation levels defined in the SQL-92 standard, except for
the READ UNCOMMITTED level2. The isolation level can be set per session or
per statement.

The three supported isolation levels are explained in the following sections.

READ COMMITTED
This isolation level allows a transaction to read only committed data. However,
the view of the database may change in the middle of a transaction when other
transactions commit their changes.

In solidDB HotStandby configurations, the isolation level of the Secondary server
is always READ COMMITTED.

2 Uncommitted, or dirty, reads violate transactional paradigm as modified data becomes visible
before the transaction performing the update completes. Hence the READ UNCOMMITTED
isolation level is rarely, if ever, used in production database systems.
 Chapter 2. IBM solidDB details 29

REPEATABLE READ
This isolation level allows a transaction to read only committed data and
guarantees that read data will not change until the transaction terminates. With
optimistic D-tables, solidDB, in fact, maintains an isolation model called snapshot
isolation. It ensures that the transaction sees a consistent view of the database.
When using optimistic concurrency control, conflicts between transactions are
detected by using only the transaction write-set validation. For example, if a
transaction involves one read and one update, solidDB validates that no one has
updated the same row in between the read operation and the update operation.
In this way, lost updates are detected, but the read is not validated. With
transaction write-set validation only, transactions are not serializable in many
cases. Additionally, phantoms may occur. Phantoms are table rows that appear
(are seen) in the course of the transaction although were not seen in the
beginning. Such rows may result from insert and update activities by other
concurrent transactions.

In M-tables, the repeatable read level is implemented in a more traditional
level—by way of locks. Shared locks are kept on all the data items read until the
transaction commit. That preserves other transactions from changing the
read-set. The correctness of the write-set is assured with exclusive locks on all
the items written. Because both read-set a d write-set are protected, transactions
running on M-tables, in the repeatable read mode, are serializable with the
exceptions of phantoms.

SERIALIZABLE
This isolation level allows a transaction to read only committed data with a
consistent view of the database. Additionally, no other transaction may change
the values read by the transaction before it is committed because, otherwise, the
execution of transactions cannot be serialized in the general case.

With D-tables, solidDB can provide serializable transactions by detecting all
conflicts between transactions. It does this by using both write-set and read-set
validations. Because no locks are used, all concurrency control anomalies are
avoided, including the phantoms.

The SERIALIZABLE isolation level is not supported with M-tables.

2.5.3 Durability levels

The durability level controls how solidDB handles transaction logging. The
solidDB server supports three durability levels: strict, relaxed, and adaptive.
Relaxed durability yields best performance; strict durability minimizes loss of
transactions. The adaptive durability level is available only in HotStandby
configurations.
30 IBM solidDB: Delivering Data with Extreme Speed

The durability level can be set as a server default, per session, or per transaction.

Strict durability: synchronous logging
With strict durability, transaction logging is synchronous: the transaction is written
to the transaction logs as soon as the transaction is committed.

Relaxed durability: asynchronous logging
With relaxed durability, transaction logging is asynchronous: solidDB is permitted
to defer the transaction write until the server is less busy, or until it can write
multiple transactions together.

In a server that is not part of a HotStandby pair, using relaxed durability means
that you risk losing the most recent few transactions if the server terminates
abnormally. If the server is part of a HotStandby pair, a copy of the transaction is
on the other server (the Secondary); even if the Primary server fails before
logging the transaction, the transaction is not lost. Thus, when relaxed durability
is used with HSB, relaxed durability causes little reduction in safety. On the other
hand, relaxed durability can improve the performance of the system, especially in
situations where the server load consists of a large number of small write
transactions.

Adaptive durability
Adaptive durability applies only to HotStandby Primary servers. Adaptive
durability means that if the server is in Primary Active state (sending transactions
to the Secondary), it will use relaxed durability. In any other state it will use strict
durability. This gives you high performance (with little loss of safety) when HSB is
active, yet maintains high safety if only one server is operating. Adaptive
durability is effective only when the HotStandby has been set to use a 2-safe
replication: the Primary server does not tell the client that the transaction has
been successfully committed until the Primary receives acknowledgement that
the Secondary has the transaction.

2.6 solidDB SQL extensions

The SQL support in solidDB is comparable to any advanced SQL-based system;
solidDB offers the most commonly expected features and a set of useful
extensions employing solidDB-specific (nonstandard) SQL syntax. Additionally,
procedural SQL extensions such as stored procedures and triggers enable
moving parts of the application logic into the database. These extensions help
reduce network traffic, thus improving performance.
 Chapter 2. IBM solidDB details 31

2.6.1 solidDB SQL standard compliance

No commercial relational DBMS fully supports the SQL standard beyond the
SQL-92 Entry Level, and solidDB is no exception. The full standards known as
SQL-92, SQL-99, and SQL 2003 are too broad to be implemented in a
cost-efficient manner.

solidDB supports the SQL-92 Entry Level fully and has adapted selected features
from the broader standards. An example of advanced standard features is the
possibility to manage table constraints dynamically by using the ALTER TABLE
syntax.

In addition to standard features, solidDB also borrows suitable, nonstandard
solutions from other proprietary products. Examples are as follows:

� START WITH ... CONNECT BY syntax for calculating hierarchical queries
� LIMIT clause for limiting the size of the result set

2.6.2 Stored procedures

Stored procedures are simple programs, or procedures, that are compiled and
parsed after and then stored in the database for future execution. Because
stored procedures are stored and executed directly in the server, usage of stored
procedures reduces network traffic and can thus improve performance. For
example, complex, data-bound transactions may be run on the server itself.

You can create a procedure that contains several SQL statements or a whole
transaction and execute it with a single call statement. In addition to SQL
statements, 3GL type control structures can be used enabling procedural control.
You can also create nested stored procedures where one procedure is executed
from within another.

Stored procedures can also be used for controlling access rights and database
operations. Granting execute rights on a stored procedure automatically invokes
the necessary access rights to all database objects used in the procedure.
Therefore, administering database access rights may be greatly simplified by
allowing access to critical data through procedures.

Stored procedures are created and called using SQL statements.
32 IBM solidDB: Delivering Data with Extreme Speed

The three calling methods for the stored procedures are local, remote and
deferred stored procedures:

� Local procedures are executed on a local database server.

� Remote procedures are procedures that are stored on one server and called
by another. Remote stored procedures are applicable only to advanced
replication setups.

� Deferred procedures are procedures that are called after commit has been
processed.

2.6.3 Triggers

A trigger is a mechanism for executing a series of SQL statements when a
particular action (an INSERT, UPDATE, or DELETE) occurs. The trigger contains
SQL statement that need to be executed when the trigger is invoked. Triggers are
created using solidDB proprietary stored procedure syntax.

You can create one or more triggers on a table, with each trigger defined to
activate on a specific INSERT, UPDATE, or DELETE command. When a user
modifies data within the table, the trigger that corresponds to the command is
activated.

You can use only inline SQL or stored procedures with triggers. If you use a
stored procedure in the trigger, the procedure must be created with the CREATE
PROCEDURE command. A procedure invoked from a trigger body can invoke
other triggers.

Triggers enable you to perform the following tasks:

� Implement special integrity constraints, such as checking that certain
conditions are maintained, for example, to prevent users from making
incorrect or inconsistent data changes.

� Take action based on the value of a row before or after modification.

� Transfer much of the logic processing to the back end, reducing the amount of
work that your application needs to do and reducing network traffic.

2.6.4 Sequences

Sequences are objects that are used to get sequence numbers in an efficient
manner. Sequence objects can be used, for example, to generate primary key
numbers. The advantage of using a sequence object instead of a separate table
is that the sequence object is specifically fine-tuned for fast execution and
requires less overhead than normal update statements.
 Chapter 2. IBM solidDB details 33

By default, solidDB sequences are sparse. Being sparse means that there is no
guarantee that the generated sequence numbers are consecutive (they are,
however, unique). Another possibility is a dense sequence. In that case the
generated sequence numbers follow each other. The penalty of dense
sequences is that they are locked by the transactions incrementing them, so no
two transactions can increment the same sequence in the same time. One of the
transactions must wait until the other transaction commits or aborts. Sparse
sequences are more performant because they are not locked by the
incrementing transactions.

Sequence objects are created with the CREATE SEQUENCE or CREATE
DENSE SEQUENCE statement. Sequence values can be incremented and used
within SQL statements using the sequence_name.CURRVAL and
sequence_name.NEXTVAL constructs. Sequences can also be used inside
stored procedures.

2.6.5 Events

Event are database objects that are used to signal events in solidDB databases.
Together with stored procedures, events can be used for automating
administrative tasks. You can make your application use event alerts instead of
polling, which uses more resources.

The events mechanism is based on one connection waiting on an event until
another connection posts that event. More than one connection may wait on the
same event. If multiple connections wait on the same event, all waiting
connections are notified when the event is posted. A connection may also wait on
multiple events, in which case it will be notified when any of those events are
posted.

In addition to system events, solidDB supports also user-defined events.
However, user-defined events can only be used within stored procedures; system
events can also be used without stored procedures. The events are managed
using SQL statements.
34 IBM solidDB: Delivering Data with Extreme Speed

2.6.6 Replication

IBM solidDB is equipped with three data replication technologies:

� Advanced replication

This method to disseminates parts of a master database to remote locations
called replicas. With extended SQL syntax, a master user can define
publications (with CREATE PUBLICATION) being views of a database. Users
at replicas can subscribe to those publications and request data refreshes.
Propagation of updates from the replicas to the masters is also possible.
Because permanent connections between the masters and replicas are not
required, advanced replication is suitable for applications operating in loosely
connected networks, for example with mobile replica devices.

� HotStandby replication

The solidDB HA product called solidDB HotStandby applies continues
transactional replication between the active node and the standby node. A
user can make no choices about the replicated data: the whole database is
always replicated. However, controls (both configuration parameters and
ADMIN COMMANDs) exist so that the user can start and stop the replication,
and change the characteristics. Both synchronous and asynchronous
replication modes are possible. The solidDB HA solution is described in
Chapter 5, “IBM solidDB high availability” on page 109.

� Logreader API

If none of the these replication methods fit the user’s needs, one can develop
a custom replication solution using the logreader. Logreader is a component
in the server, externalizing the contents of the transaction log. With the log
reader, all changes made to the database can be read from the log and
transferred elsewhere. The interface is in the form of a SELECT statement
reading from a virtual (non-existing physically) table called SYS_LOG. The
log reading is done through a standard ODBC/JDBC interface and thus it can
be executed both locally and remotely. The replication solution used in
solidDB Universal Cache is based on the logreader.
 Chapter 2. IBM solidDB details 35

2.7 Database administration

This section describes the main principles of database administration with
solidDB.

2.7.1 Configuration settings

Most solidDB configuration settings are defined using configuration parameters
that are stored in a solid.ini configuration file. The solid.ini file is not
mandatory; if no configuration file exists, the factory values are used. Also, all
parameters do not need to be present in the solid.ini file; if a parameter is not
present in the solid.ini file or if the value for a particular parameter is not set,
the factory value is used.

Generally, the factory values offer good performance and operability but in some
cases modifying some parameter values can improve performance. You might
also need to set configuration parameters to enable or disable certain
functionality.

You can set the configuration parameter values by editing the solid.ini file
manually or, in most cases, using ADMIN COMMANDs, a set of solidDB
proprietary SQL statements.

Parameters are defined as parameter name value pairs. The parameters are
grouped according to section categories. In the solid.ini file, each section
category starts with a section name inside square brackets, for example:

[Logging]
LogEnabled=yes

Some parameter settings, such as durability level, can also be overridden per
session or per transaction by using the SQL commands SET or SET
TRANSACTION, or by defining the settings per connection with the ODBC
connection attributes or JDBC connection properties. The precedence hierarchy
is as follows (from high precedence to low):

� SET TRANSACTION: transaction-level settings
� SET: session-level settings
� ODBC connection attributes and JDBC connection properties
� Parameter settings specified by the value in the solid.ini configuration file
� Factory value for the parameter

Tip: In documentation, parameters are typically referred to in the format
section.parameter, for example, Logging.LogEnabled.
36 IBM solidDB: Delivering Data with Extreme Speed

Additionally, you can control some solidDB server operations with the following
options:

� solidDB command line options at solidDB startup
� environment variables
� ODBC client connect string arguments

2.7.2 ADMIN COMMAND

The ADMIN COMMAND is a SQL extension specific to solidDB and that
executes administrative commands.

The ADMIN COMMANDs are used for operations such as creating backups of
the database, invoking performance monitoring, or displaying information about
users connected to the database. The ADMIN COMMANDs can also be used for
changing certain configuration settings dynamically.

2.7.3 Data management tools

IBM solidDB provides a set of utilities for performing various database tasks.

solidDB SQL Editor (solsql)
solidDB SQL Editor (solsql) is a console tool used to issue SQL statements and
solidDB ADMIN COMMANDs at the command prompt, or by executing a script
file that contains the SQL statements.

solidDB Console (solcon)
solidDB Console (solcon) is a console tool used to issue solidDB ADMIN
COMMANDs at the command prompt, or by executing a script file that contains
the commands. Only users with administrator rights can access solcon; if only
solcon is deployed at a production site, the administrators cannot accidentally
execute SQL statements that could change the data.

Tip: When using solsql, ADMIN COMMANDs and SQL statements must be
terminated with a semicolon (;) character. Note that if you are not using
solsql, terminating SQL statements with a semicolon leads to a syntax error.
 Chapter 2. IBM solidDB details 37

Tools for exporting and loading data
solidDB provides the following tools for exporting and loading data:

� solidDB Speed Loader (solloado or solload) loads data from external files
into a solidDB database.

� solidDB Export (solexp) exports data from a solidDB database to files. It also
creates control files used by solidDB Speed Loader (solloado or solload) to
perform data load operations.

� solidDB Data Dictionary (soldd) exports the data dictionary of a database. It
produces an SQL script that contains data definition statements that describe
the structure of the database.

2.7.4 Database object hierarchy

solidDB uses catalogs and schemas to organize data. solidDB’s use of schemas
conforms to the SQL standard but solidDB's use of catalogs is an extension to
the SQL standard.

The solidDB syntax for database object hierarchy is as follows:

catalog_name.schema_name.database_object

Catalogs are the highest (broadest) level of the hierarchy. A catalog can be seen
as a logical database, and two or more catalogs can be used in the same time
with the help fully qualified table names. Schema names are the mid-level of the
hierarchy; specific database objects, such as tables, are the lowest (narrowest)
level. Thus, a single catalog may contain multiple schemas, and each of those
schemas may contain multiple tables.

Object names must be unique within a catalog, but they do not have to be unique
across catalogs.

The default catalog name is the system catalog name that was specified during
database creation. The default schema name is the user name. Objects can be
created without specifying the catalog and schema name; by default, the server
uses the system catalog and the user name of the object creator to determine
which object to use.
38 IBM solidDB: Delivering Data with Extreme Speed

Chapter 3. IBM solidDB Universal
Cache details

This chapter describes the inner workings of IBM solidDB Universal Cache.
Consequently, the chapter is intended for a more technical audience.

Specifically, the chapter details components that comprise the IBM solidDB
Universal Cache product and describe the architecture and operation of the
overall product.

The chapter also addresses common usage patterns for IBM solidDB Universal
Cache, enumerating key considerations for how to best use the solution to effect
performance gains.

3

© Copyright IBM Corp. 2011. All rights reserved. 39

3.1 Architecture

The architecture of solidDB Universal Cache is based on three main
components: the solidDB in-memory database (the cache database), the
relational database server (the back end), and the data synchronization software
that copies data to and from the cache and the back end. The replication method
is asynchronous, ensuring fast response times.

3.1.1 Architecture and key components

The architecture and key components of a typical configuration of the solidDB
Universal Cache is shown in Figure 3-1.

Figure 3-1 Sample IBM solidDB deployment

IBM solidDB: cache database
The solidDB server implements the cache database (or front end) in the IBM
solidDB Universal Cache solution. The cache database benefits from various
solidDB features, such as HotStandby that provides high availability and failover,
or shared memory access (SMA) that enables collocating of data with the
application.

Relational database server (RDBMS): back end
The RDBMS is a relational, disk-based data server that contain the data to be
cached.

RDBMS
Replication Engine

solidDB Replication
Engine

solidDB Server

RDBMS

Access Server
Daemon

solidDB Universal
Cache tooling

(Management Console)
40 IBM solidDB: Delivering Data with Extreme Speed

Replication engines
The InfoSphere Change Data Capture (CDC) replication software ensures that
as changes are made to the cache database, the back-end database is updated,
and vice versa. The replication engines run typically on the same hosts as the
data servers.

The replication engines are configured using a graphical user interface (GUI) or
command-line based Configuration Tool (dmconfigurets). A set of commands
(dm-commands) is available and can be used to control the replication engine
instances.

Access Server
InfoSphere CDC Access Server is a process that manages a solidDB Universal
Cache deployment. It is typically executed as a daemon.

Configuration tools such as Management Console communicate with the Access
Server to allow deployments to be configured.

Access Server controls access to the replication environment; only users who
have been granted the relevant rights can modify configurations. However, after
the replication environment has been configured, Access Server is not needed
for the replication to be operational: only the InfoSphere CDC replication engines
need to be running.

Configuration tools
InfoSphere CDC Management Console is a graphical application that allows
authorized users to access, configure and monitor their InfoSphere CDC
deployments. It does so by communicating with the Access Server.

Similar functionality is available for command-line users. This functionality is
realized through the dminstancemanager and dmsubscriptionmanager utilities,
which are included the InfoSphere CDC for solidDB package.

3.1.2 Principles of operation

To use solidDB Universal Cache, you must first identify the data you want to
cache and configure the environment accordingly. The data can then be loaded
from the back-end database to the cache, so that when applications run against
the cache database, they can take advantage of high performance and low
latency of solidDB. (With the SQL pass-through functionality, some statements
can also be passed to the back-end database.) As changes are made to the
data, the InfoSphere CDC replication technology synchronizes data between the
cache database and the back-end database.
 Chapter 3. IBM solidDB Universal Cache details 41

Log-scraping
InfoSphere CDC uses log-scraping technologies, triggers, or both to capture
databases changes. The front-end replication engine accesses the solidDB
transaction log to capture data changes and transmits these changes to the
back-end replication engine, which copies the changes to the back-end
database.

Similarly, the back-end replication engine accesses the log (or uses triggers) to
capture data changes in the back end and transmits these changes to the
front-end replication engine, which copies the changes to the back-end
database.

Asynchronous replication
The InfoSphere CDC replication method is asynchronous in nature. This means
that as applications write, for example, to the cache database, control is returned
to the application as soon as the write completes; the application does not block,
waiting for these updates to be successfully applied to the back end.

Updates to the back end are not performed until the following tasks are
completed:

1. The transaction has been committed.

2. The entries for the transaction are scraped from the log.

In a solidDB Universal Cache environment, asynchronous replication benefits
applications by reducing the round-trip time required to access data. Instead of
potentially incurring an expensive network hop and writing to the back-end
database, applications can write directly to the solidDB in-memory database.

Asynchronous replication means also that applications cannot assume that the
back-end database has been written to at the same time as the front-end, which
can have ramifications for error recovery.

Mirroring and refresh
The two manners in which data can be copied between the cache database and
the back end are mirroring and refresh.

Mirroring involves actively scanning a source database to see if any changes
have been made, then applying these changes to a target database. This step is
accomplished by using the asynchronous replication mechanism. The mirroring
process may be thought of as active caching.

Refresh involves taking a snapshot of the source database and writing it directly
to the target. Refresh can thus be utilized to initialize or rebuild a database.
42 IBM solidDB: Delivering Data with Extreme Speed

Communication between components
The InfoSphere CDC replication components communicate with each other
using TCP/IP. To collocate the data in the cache database with the application,
the solidDB server can be configured as a shared memory access (SMA) server,
so that both the application and the InfoSphere CDC for solidDB replication
engine connect to solidDB using SMA. TCP/IP protocol can be used with solidDB
too.

The inter-component communication in the solidDB Universal Cache
environment is shown in Figure 3-2.

Figure 3-2 solidDB Universal Cache inter-component communication

The Access Server is configured as a TCP/IP server and it listens on one or
more ports. On UNIX systems, it may be deployed as a daemon service (inetd).
All communication between the Access Server and tooling also uses TCP/IP.

Each replication engine instance must use a unique port number to connect to
the Access Server; the port number is defined when creating the InfoSphere
CDC instances. Figure 3-3 on page 44 shows the configuration dialog for the
InfoSphere CDC for solidDB replication engine.

RDBMS
Replication Engine

solidDB Replication
Engine

solidDB Server

RDBMS

Access Server
Daemon

solidDB Universal
Cache tooling

(Management Console)

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP or SMA
 Chapter 3. IBM solidDB Universal Cache details 43

Figure 3-3 InfoSphere CDC for solidDB configuration
44 IBM solidDB: Delivering Data with Extreme Speed

The following areas are highlighted in Figure 3-3 on page 44:

1. Instance area: Server Port defines the port number, which InfoSphere CDC
instance uses for communication with Access Server and other replication
engines.

2. Database area: Defines the user account to access the database that
contains the tables for replication, in this case, the solidDB database.

3. Server area: Defines the connection information to the database that contains
the tables for replication, in this case, a stand-alone solidDB server.

3.2 Deployment models

The solidDB Universal Cache architecture affords much flexibility. For example,
different cache instances can be configured to maintain identical copies of the
same data, to facilitate load balancing for read or read-write access.
Alternatively, large tables in the back-end database can be partitioned, where
each data partition can be hosted by a dedicated in-memory cache instance, with
read or read-write access.

Depending on the application needs, solidDB Universal Cache can be deployed
as a read-only cache or as a read-write cache.

Read-only cache
When configured as a read-only cache, the data is owned by the back-end
database. This “ownership” means that the data stored in the cache cannot be
modified by the application. In this configuration, applications can modify the data
directly in the back-end database and changes can be synchronized to the
in-memory cache, transaction by transaction, automatically or on-demand. This
configuration is ideal for applications that require fast access to data that
changes occasionally, such as price lists, or reference or lookup data.

Read-write cache
There are two deployment options for read-write cache, depending on the
ownership of data.

When configured as a read-write cache, where the data is owned by the cache,
applications can read, add, modify, or delete data in the cache, but not in the
back-end database. Changes are propagated from the in-memory cache to the
back-end database, transaction by transaction, automatically, or on-demand.
This configuration is useful for applications that have stringent service level
agreements that demand short response times, for a variety of data intensive
operations.
 Chapter 3. IBM solidDB Universal Cache details 45

When configured as a read-write cache where the data ownership is shared,
applications can update the same data in both the cache and in the back-end
database at the same time. In this case, changes to the data can be propagated
automatically in both directions. Conflicts are detected and resolved by using
predefined conflict resolution methods. This configuration is especially useful
when applications need to update the data in the back-end database while the
data is also cached for read-write access.

3.3 Configuration alternatives

This section describes the configuration alternatives for the deployment options.

3.3.1 Typical configuration

A simple solidDB Universal Cache deployment might involve caching a single
back-end database to a single cache database. The cache database related
components and the back-end related components are installed on separated
nodes, as are the Access Server and tooling. A typical node configuration is
shown in Figure 3-4.

Figure 3-4 A simple solidDB Universal Cache deployment with a single cache node

solidDB replication
engine

Access Server
daemon

solidDB Server

RDBMS replication
engine

RDBMS

solidDB Universal
Cache tooling

(e.g. Management
Console)

Configuration node 1

solidDB Universal
Cache tooling

(e.g. Management
Console)

Configuration node 2

Access Server Node

Cache Node

Database Node

F
ire

w
a

ll
46 IBM solidDB: Delivering Data with Extreme Speed

Note the following information:

� Single cache node

The solidDB server and InfoSphere CDC for solidDB products are typically
installed and configured on the same machine (“cache node”). This machine
is often “closer” to the applications that use the data.

Collocation of the two servers minimizes the overhead when scraping the
logs (solidDB as source) or applying updates (solidDB as target).

� Single database node

The InfoSphere CDC for back end is typically installed and configured on the
same machine on which the back-end RDBMS is running (“database node”).

This approach helps to minimize the overhead of communications between
the replication engine and the database.

� Single access node

The Access Server is typically deployed on a separate machine (“access
node”). The advantage to installing it on a separate machine from “cache” and
“database” nodes is to more easily configure the firewall, because solidDB
Universal Cache tooling communicates with the Access Server, not with the
InfoSphere CDC replication engines.

InfoSphere CDC Access Server is only required during the configuration of
solidDB Universal Cache, or during the starting or stopping of caching (that is,
subscriptions).

� Configuration nodes

Any node from which solidDB Universal Cache tooling (Management
Console, dmsubscriptionmanager, Access Server tools) is run can be
considered a configuration node.

3.3.2 Multiple cache nodes

Multiple solidDB servers (cache nodes) can be used, for example, for partitioning
back-end data so that each cache node has only the data that is relevant to it.
However, in such deployments, each solidDB server is autonomous and
processes the application requests without accessing data in any of the other
solidDB servers.

3.3.3 SMA for collocation of data

The shared memory access (SMA) feature of solidDB Universal Cache can boost
application performance when accessing solidDB data. In place of costly
network-based communication, such as TCP/IP, SMA uses direct function calls
 Chapter 3. IBM solidDB Universal Cache details 47

to the solidDB server code. In the same time, the in-memory database is located
in a shared memory segment available to all applications connected to the server
with SMA. Multiple concurrent applications running in separate processes can
utilize that access method to reduce significantly response times.

In a SMA setup, the application, the solidDB SMA server, and the InfoSphere
CDC replication engine are located on the same node. In the setup phase, the
following steps must be considered:

1. Configuring solidDB server to run as a SMA server

2. Configuring InfoSphere CDC for solidDB to use SMA for communication with
solidDB server

3. (Optional) Configuring user applications to use SMA for communication with
solidDB server

Configuring solidDB server to run as a SMA server
To use solidDB with SMA, the solidDB server is started with the solidsma
executable, instead of the solid executable.

Configuring InfoSphere CDC to support SMA
SMA must be enabled during the creation of an InfoSphere CDC for solidDB
instance. For example, in the GUI tool, the Enable SMA check box must be
selected; see Figure 3-5.

Figure 3-5 Enabling SMA on an InfoSphere CDC for solidDB instance
48 IBM solidDB: Delivering Data with Extreme Speed

Configuring user application to support SMA
The SMA feature does not require any code changes to the applications
themselves, except for ensuring that the solidDB connection is configured for
SMA. The SMA connection is defined within the ODBC connection string or
JDBC connection property. For example, when using ODBC, instead of
connecting to solidDB using the connection string ‘tcp 2315’, the SMA
connection is specified with the string ‘sma tcp 2315’ string. When using JDBC,
the following connection property is used:

solid_shared_memory=yes

3.3.4 solidDB HSB servers for high availability

The solidDB HotStandby (HSB) solution allows for redundancy to be
incorporated at each individual cache node, thus providing reliable access to
data stored in the cache database.

Reliability in the cache database requires that the data pathways to and from the
cache are capable of handling HSB failovers. The InfoSphere CDC for solidDB
can be made aware of HSB deployments transparently, so that replication to and
from the cache remains operational, after the primary solidDB server is down. If
the primary solidDB server does go down, InfoSphere CDC simply redirects
active subscriptions to use the new primary solidDB server and replication
continues as normal.

The HSB support must be enabled explicitly when configuring the InfoSphere
CDC for solidDB instance by defining the connection to the primary and
secondary servers, as shown in Figure 3-6.

Figure 3-6 Enabling HotStandby in InfoSphere CDC for solidDB
 Chapter 3. IBM solidDB Universal Cache details 49

3.4 Key aspects of cache setup

The usage of solidDB Universal Cache solution requires the implementation of
replication subscriptions between the cache and the back-end database.

A subscription defines the replication direction and various replication rules. The
subscriptions also maintain the state of replication, indicating whether or not
replication is in progress.

The application and deployment needs dictate the direction of the subscriptions
between a source and target data store. In the InfoSphere CDC replication
solution, a data store is the representation of a database and the related
InfoSphere CDC instance.

The cache and back end can act as both source and target data stores in
different subscriptions. There can also be several subscriptions between two
data stores; multiple subscriptions can be used to partition the data and
workload.

Data stores and subscriptions are created and managed with the Management
Console or the dmcreatedatastore and dmsubscriptionmanager command-line
tools.

3.4.1 Deciding on the replication model

Before creating subscriptions, consider the following information:

� Ownership of data

Does the master copy of the data reside in the back-end database, as is
typically the case, or does the master copy of the data reside in the cache?

� Read-only or read-write cache

Do you want changes made to the cache to be reflected in the back-end
database, or is the cache read-only?

Typically, the back-end database represent the master copy of the data and data
must be cached in read-only mode.

For such setups, only a single subscription is required. The back-end (RDBMS)
data store should be used as the subscription source and the cache data store
(solidDB) should be used as the subscription target. This configuration ensures
that any changes made to the back end can be replicated to the cache.
50 IBM solidDB: Delivering Data with Extreme Speed

A list of common subscription configurations is shown in Table 3-1. The
Procedure column also refers to the necessary recursion prevention method,
which is discussed in more detail.

Table 3-1 Creating subscriptions

Cache type Behavior Procedure

Back-end owned,
read-only cache

Typical scenario.
Changes made to
back-end database are
reflected in cache.

Create a single subscription
using the back-end data store as
source and the cache data store
as target.

Back-end owned,
read-write cache

Changes made to
back-end database are
reflected in cache;
changes made to cache
are reflected in back end.

Create a subscription using the
back-end data store as source
and the cache data store as
target. Enable prevent recursion.
Specify SOURCE wins as conflict
resolution option.

Create another subscription
using the cache data store as
source and the back-end data
store as target. Enable prevent
recursion. Specify TARGET wins
as conflict resolution option.

Cache owned,
archival

Changes made to cache
are archived to back end.

Create a single subscription
using the cache data store as
source and the back-end data
store as target.

Cache owned,
read-write cache

Changes made to
back-end database are
reflected in cache;
changes made to cache
are reflected in back end.

Create a subscription using the
cache data store as source and
the back-end data store as target.
Enable prevent recursion. Specify
SOURCE wins as conflict
resolution option.

Create another subscription
using the back-end data store as
source and the cache data store
as target. Enable prevent
recursion. Specify TARGET wins
as conflict resolution option.
 Chapter 3. IBM solidDB Universal Cache details 51

3.4.2 Defining what to replicate

Each subscription must contain table mappings that define the table subsets that
are to be replicated from the source data store to the target. Sample table
mappings are shown in Table 3-2.

The table mappings are created and managed with the Management Console or
the dmsubscriptionmanager command-line tool.

Table 3-2 Example of table subsets that can be used when defining subscriptions

Description Example Behavior

Complete table Sample.EMPLOYEES
DBA.EMPS

Specifies that table
Sample.Employees in the source
database should be replicated to
the target table DBA.EMPS.

Table with column
filters

Sample.EMPLOYEES
DBA.EMPS
Column Filter = COUNTRY

Specifies that the
Sample.Employees table should be
replicated, but that the COUNTRY
column should be excluded.

Table with row
filters

Sample.EMPLOYEES
DBA.EMPS
Row Filter =
“((COUNTRY=’IE’) OR
(COUNTRY=’FI’))”

Specifies that table
Sample.Employees in the source
database should be replicated to
the target table DBA.EMPS. Only
rows with a country value of ‘IE’ or
‘FI’ are replicated.

Tables with row
and column filters

Sample.EMPLOYEES
DBA.EMPS
Row Filter =
“((COUNTRY=’IE’) OR
(COUNTRY=’FI’))”
Column Filter = AGE

Specifies that table
Sample.Employees should be
replicated, but that the AGE column
should be omitted and only rows
where country is ‘IE’ or ‘FI’ should
be selected.
52 IBM solidDB: Delivering Data with Extreme Speed

Defining subset of data with row and column filters
A table mapping may define column filters, row filters, or both that restrict the
amount of data that is replicated to the target database. An example of a row
filter is depicted in Figure 3-7.

Figure 3-7 Specifying a row filter

An example of a column filter is depicted in Figure 3-8.

Figure 3-8 Specifying a column filter

Ensuring consistency of data
This section describes the capabilities for ensuring data consistency.

Referential integrity
Referential integrity is an important concept in databases that deals with table
relationships and how tables should refer to the same underlying data. These
relationships are described using primary keys and foreign keys and ensure that
data needs to be defined only once to the system.

When using solidDB Universal Cache, asynchronous replication is used to copy
data between cache database and back-end database, or vice versa. It is
important that data is copied in the correct order, such that referenced records
are copied before referencing records.
 Chapter 3. IBM solidDB Universal Cache details 53

In solidDB Universal Cache, referential integrity associations are to be confined
within subscription; foreign keys cannot point to tables outside the subscription.

Also, if you intend to use the Refresh operation to synchronize data between the
cache and back end, the subscriptions with referential integrity constraints must
define a refresh order; the refresh order specifies that referenced tables are
listed first and referencing tables listed last (as depicted in Figure 3-9). The
referential integrity must also be enforced on the solidDB data stores by setting
an InfoSphere CDC for solidDB system parameter
(refresh_with_referential_integrity) using the Management Console.

Figure 3-9 Specifying a refresh order

Encoding and replication of character data
The cache and the back-end database might use different character encoding for
data. InfoSphere CDC can replicate character data among a wide variety of
encodings and can automatically convert the data from the column encoding
detected on the source to the column encoding detected on the target.

In some cases, you might need to define the encoding conversions manually.
You can specify character encoding at the column level for subscriptions using
the Management Console (as shown in Figure 3-10).

Figure 3-10 Specifying encodings to use during caching
54 IBM solidDB: Delivering Data with Extreme Speed

In solidDB, the encoding of character data depends on the database mode; a
solidDB database is created either in Unicode mode or partial Unicode mode
(default).

When a new instance of InfoSphere CDC for solidDB is created, the partial
Unicode mode is assumed; default encoding for columns of CHAR type is set to
ISOLatin1 and for WCHAR type it is set to UTF-16BE.

Note the following information:

� If the encoding of character data in your partial Unicode database is not ISO
Latin1, you must select the correct encoding to reflect the nature of data
stored in character columns.

� If your solidDB database mode is Unicode, you must specify the encoding of
character columns as UTF-8.

Conflict resolution
In read-write cache setups, both the cache database and back-end database
could be modified at the same time, resulting in conflicting operations.
InfoSphere CDC has the capability of detecting conflicts and resolving them
according to user defined logic. Conflicts are detected and resolved on a table
basis at the target node of a subscription.

The most simple type of conflict resolution method that can be employed is a
Source Wins or Target Wins rule. However, no matter which conflict resolution
method is chosen, the basic premise is always the same: the rule makes a
decision about which version of the data to keep, thus resolving the conflict.

For Source Wins and Target Wins, the logic is as follows:

� Source Wins: The incoming change from the subscription’s source database
is to be maintained. Changes made to the subscription’s target database is
overridden.

� Target Wins: The current data in the subscription’s target database is to
remain unchanged. The incoming change from the subscription’s source
database is to be ignored.

By using these two rules, you can implement a simple precedence scheme,
whereby you decide to always keep either the cache or database version of the
data when conflicts occur.
 Chapter 3. IBM solidDB Universal Cache details 55

In addition to Source Wins and Target Wins rules, InfoSphere CDC also offers
comparative based rules such as Largest Value Wins. More complex (user
programmed) rules can also be specified through the User Exit mechanism,
enabling domain specific business logic to be applied to the resolution process.
For example, in addition to resolving the conflict, User Exit rules can be used to
also log details of the conflict for later auditing.

3.4.3 Starting replication

After a subscription has been configured, refresh or continuous mirroring
operation may be performed on it:

� Refresh operation takes a full snapshot of the source data store and copies it
to the target data store. It is a one-time off operation and runs to completion.
The refresh operation is used to initialize the target data store and may also
be used when and where a full rebuild of the target is required.

� Continuous mirroring operation listens for changes that are made to a source
data store and copies these to the target, so long as the data is not being
filtered through a row or column filter. Continuous mirroring is an active
process.

3.5 Additional functionality for cache operations

This section describes key operational aspects of solidDB Universal Cache.

3.5.1 SQL pass-through

The SQL pass-through feature of solidDB Universal Cache allows applications to
access the front-end database (the cache) and back-end RDBMS database with
a single connection. In other words, applications can access both cached and
non-cached data, negating the need to maintain an explicit connection to the
back-end database.

The implementation of pass-through relies on solidDB being configured to use an
ODBC driver to communicate with the back-end database. The solidDB server
then uses this driver to execute pass-through statements directly against the
back-end RDBMS database, as shown in Figure 3-11 on page 57.
56 IBM solidDB: Delivering Data with Extreme Speed

Figure 3-11 Pass-through architecture

A component of the solidDB server, called the SQL pass-through mediator, is
responsible for handling the pass-through of SQL statements to the back-end
database. It determines where a statement should be executed, based on
pass-through settings.

The SQL pass-through capability can be enabled at a session or a transaction
level and can be changed dynamically at run time, thus allowing the application a
wide degree of flexibility and control.

Application

Replication
Engine

solidDB Server

ODBC

F/E

RDBMS

SQL Passthrough Mediator

Login
Data
 Chapter 3. IBM solidDB Universal Cache details 57

The SQL pass-through feature can be configured against the following items:

� READ/WRITE

Pass-through settings may be configured independently for read and write
SQL statements.

� TRANSACTION/SESSION

Pass-through may be enabled at the transaction or session level.

� MODE

The pass-through mode defines whether statements are executed always in
front end, always in the back end, or conditionally in the front end or back end.
The conditional pass-through mode is based on, for example, the availability
of data (if a statement cannot be handled locally by the cached tables, it is
passed to the back end) or complexity of the query as defined by the user.

The pass-through feature of solidDB Universal Cache maintains the consistency
of data in the back-end database. This task is accomplished by adopting an
isolation level that is at least as strong as the level used for the back end.

To ensure consistency of write operations, if pass-through is enabled, the writes
are always forced to either the front end or the back end. Also, distributed queries
are not allowed; individual statements must execute fully on either the cache
database or the back-end database.

3.5.2 Aging

The data aging feature enables solidDB Universal Cache to optimize the amount
of memory allocated to cache, ensuring that the data closest to the application is
also the most relevant and active. With solidDB Universal Cache, the application
layer has full control over the aging of data. The purpose of data aging allows an
application to remove, or age, outdated or otherwise obsolete data from the
cache while still preserving it in the back end.

Data aging is useful in situations where data is considered to be owned by the
back end (where the master copy of data resides in the RDBMS and not in
solidDB).

Operation
The application can perform data aging through simple SQL statements
specifying which data is to remove from the cached tables. The application can
specify the aging to occur at a transaction level, or at a session level. Specifically,
the act of enabling data aging only affects the connection upon which it is
performed. The enablement of data aging does not affect other connections, nor
does it affect the operation of HotStandby or normal transaction logging.
58 IBM solidDB: Delivering Data with Extreme Speed

Alternatively, data aging can also run automatically with the help of stored
procedures. The solidDB Universal Cache can continue bidirectional replication
with a back-end database; necessary steps are taken to ensure that data
removed from the cache is not replicated back into the cache from the back-end
database.

When data aging is enabled on a cache database, a user can prune data from
the front end. When complete, aging is disabled. See Figure 3-12.

Figure 3-12 Aging in action

When data aging is enabled, SQL inserts and updates are not allowed against
the solidDB database, and result in an SQL error. This restriction also applies to
triggers and stored procedures and is imposed to preserve the integrity of data
across the front-end database and the back-end database.

When data aging is enabled, SQL deletes are allowed against the solidDB
database, but are not propagated to the back-end database.

When data aging is enabled, the InfoSphere CDC operations, such as refresh,
are disabled or must be executed with care. The reason is to prevent a situation

RDBMS

RDBMS

RDBMS

solidDB

solidDB

solidDB

InfoSphere CDC
Replication

Initial Stage

Aging Stage

Data Aged Stage

- deletes are not mirrored
- inserts and updates are not allowed to solidDB

- refreshed from frontend to backend disabled for aged tables
- refreshed from backend to frontend results in aging being disabled

InfoSphere CDC
Replication

InfoSphere CDC
Replication
 Chapter 3. IBM solidDB Universal Cache details 59

where data that is aged from the front-end database (cache) is also deleted from
the back-end database.

3.5.3 Improving performance with parallelism

The performance gains from the solidDB Universal Cache solution can be greatly
improved by spreading the cache’s workload over multiple nodes. With
InfoSphere CDC replication, you can closely control the flow of information
emanating from the back-end database and make this information available at
multiple solidDB nodes. By using multiple solidDB nodes, the workload of server
applications can be effectively spread across multiple databases, resulting in
increased data throughput and decreased query times.

The two main strategies for implementing parallelism are duplication and
partitioning. These two strategies are not necessarily mutually exclusive and
may be combined to varying extents within the context of a single solidDB
Universal Cache deployment.

Duplication
With duplication, data from the back-end database is copied across multiple
solidDB nodes on purpose. The rationale behind duplication is simple: it can
reduce the contention on database (and network) resources by providing a local
copy of data at multiple nodes.

Duplication works especially well to create a local cache for data that does not
change often, and whereby most queries involving that data are read-only.

To illustrate where duplication may be useful, consider the case of an online
global retailer. The retailer presents a basic web interface to its users where they
can view details of listed items before purchasing. The number of pages served
to customers world-wide can be enormous (for example, one page per item
view). Consequently the retailer might decide to split page requests along
territorial boundaries to keep response times acceptable. The actual data
describing each item would be mostly immutable, except for occasional updates
to pricing or item descriptions.

Using InfoSphere CDC replication, the retailer could transport the data to
multiple solidDB nodes in separate territories, thereby allowing page requests to
be processed locally in the country of origin. This approach reduces network
latency, and also enables request workload to be spread across multiple nodes.
60 IBM solidDB: Delivering Data with Extreme Speed

Data duplication is illustrated in Figure 3-13.

Figure 3-13 Data duplication

Because in this scenario the data is mostly immutable and will not be modified by
customers, it is sufficient to employ unidirectional replication. That is, changes
are replicated only to the tables in the master database; changes to the cache
database are not replicated to the master database.

If local changes at each cache are required, bidirectional (two-way) replication
would need to be employed, so that changes made at each cache can propagate
back to the master database. Additionally, conflict resolution rules on InfoSphere
CDC subscriptions would also be required to handle any conflicting updates that
can be performed independently at each cache. However, a better alternative for
handling potential conflicts in mutable data is to use a clearly defined partitioning
scheme so that conflicting modifications can be avoided entirely in the first place.

Partitioning
With partitioning, you do not need to keep all of the data at every single node.
Instead, you can distribute it across several nodes, perhaps evenly. This
approach enables the burden of queries to be shared across many nodes, and
also avoids unnecessary data duplication because only a unique subset of the
data is stored at each node. Most important, however, a partitioning scheme
allows for safe, non-conflicting modification of data at each node; the uniqueness
of the data at each node ensures that contradictory changes to the same data (at
separate nodes) does not occur.

To illustrate where partitioning might be useful, consider the case of a bank that
stores account details for its customers. The bank stores details of each
customer account in a table, Accounts, that uses the AccountID as the primary
key.
 Chapter 3. IBM solidDB Universal Cache details 61

Because the clientele of the bank has grown substantially (along with the number
of transactions), the bank decides to split account data across four separate
cache nodes, to ensure transactional workload is kept manageable. The
partitioning rules are based on the remainder of the integer primary key
AccountID when it is divided by 4. For example, if AccoundID divided by 4 is 0,
the record is stored in Cache Node 0; if AccoundID divided by 4 is 1, the record is
stored in Cache Node 1; and so on.

Figure 3-14 shows an example of a solidDB Universal Cache deployment that
has four cache nodes with eight subscriptions (two per cache, one in each way).
We also assume that the bank wants to be able to update the account details
also in the back-end database, for example, for administrative purposes.

Figure 3-14 Example of partitioning with solidDB Universal Cache

The arrows show the direction of replication for each subscription. There are row
filters on the subscriptions replicating from the back end to the cache database;
this way ensures that only the desired subset of data reaches each cache. If new
records are inserted at a cache node (rather than at the back-end database), the
inserting application needs to respect the partitioning rules and choose the
correct cache node to place the data within.

In this scenario, we always assume that the subset of data at each cache node
will match the expected subset, as defined by the partitioning rules. Because of
this assumption, subscriptions replicating from one of the caches to the database
do not require any row filter rules, because the data already conforms to the
partitioning rules.

CDC subscriptions and row filter rules for
the Accounts table in each subscription

solidDB
Cache 1

solidDB
Cache 2

solidDB
Cache 3

solidDB
Cache 4

AccountID % 4 = 0

AccountID % 4 = 1

AccountID % 4 = 2

AccountID % 4 = 3

Backend
DB
62 IBM solidDB: Delivering Data with Extreme Speed

This type of partitioning architecture enables concurrent modifications to records
in separate caches. In the bank example, the bank can process monetary
transactions on customer accounts concurrently, in each of the individual cache
nodes. Because of the partition rules, transactions do not conflict with
simultaneous transactions in separate cache nodes. A partitioned Universal
Cache architecture can therefore be desirable in cases where data is potentially
mutable or where duplication is too costly in terms of storage but where
concurrency is still required.

3.6 Increasing scale of applications

This section describes large-scale strategic mechanisms to scale applications,
their characteristics, and a comparison of them to the usage of a cache as a
scaling mechanism. It also describes generalized application classes that benefit
from the use of a cache.

3.6.1 Scaling strategies

Applications can be scaled to handle greater and greater loads using the
following common strategies:

� Adding servers
� Redesigning applications
� Adding database cache

Adding servers to increase capacity
Adding new hardware and virtual machines can be a simple way to increase
capacity of caching user web sessions, execute business logic, process
transactions, and so on. However, each additional hardware component carries
capital and operational costs. Also, if the number of application instances or
application servers is increased, the database will in most cases eventually
become the bottleneck. Databases can be redesigned to scale up or out, but it is
often costly to do so in terms of re implementation of the application.

Cloud computing is also an option; although cloud computing can deliver server
instances on demand, it cannot substitute for redesign of the application code
and data to take advantage of additional resources.

Redesigning applications to increase capacity
Applications can be redesigned to allow for greater capacity, for example, by
adding stateless paradigms, improving the layering and separation of
 Chapter 3. IBM solidDB Universal Cache details 63

responsibilities, introducing or adding asynchronicity, or introducing application or
object caches. Such strategies are typically lengthy, expensive, and risky.

Adding cache databases to increase capacity
Another way to increase capacity is to add a relational cache database such as
solidDB Universal Cache to the existing application/system architecture. In
relative terms, a cache database can be an inexpensive addition to the
application, requiring few if any application changes. The cache database can
alleviate database bottlenecks and provide easier scaling especially in read-only
scenarios. Moreover, availability of the solution is also not of serious concern
because most caches including solidDB Universal Cache have mature HA and
HSB mechanisms. Relational cache databases also fit easily into existing
architectures and systems and allow scaling at a lower cost than adding
hardware or redesigning the applications.

In 3.6.2, “Examples of cache database applications” on page 64, we discuss
application architectures that typically benefit from cache deployment.

3.6.2 Examples of cache database applications

This section has examples of application domains that are good candidates for
acceleration by cache databases.

Web session management
Web session management refers to the process of keeping track of user states
while interacting with an application over a number of sessions. It is typified in a
web application whose context is dependant on knowing the user’s current state
and previous session information. The application sessions typically need to
manage a large volume of sessions where each session is small in nature but
sensitive to the speed of retrieval and update of the state information. A cache
database can have a big impact by eliminating network and database operation
latency.

Reference and common lookups
Reference lookups are ideal for cache deployment. Whether they are terrorist list
lookups or product pricing, the nature of lookups is typically of the type read-only
or seldom-updated.

Time-sensitive transaction processing
Applications that are sensitive to latency can gain large benefits from solidDB
Universal Cache through the elimination of the network and the faster servicing
of database requests by solidDB as opposed to disk based databases.
64 IBM solidDB: Delivering Data with Extreme Speed

3.7 Enterprise infrastructure effects of the solidDB
Universal Cache

This section describes how the introduction of the cache into an existing
environment can lead to efficiencies in various infrastructure components within
the existing IT assets of an enterprise. The infrastructure pain points described in
this section can also be used as a guide to differentiate between new product
development using cache architecture and more traditional database patterns.

The general pattern for the discussion is the comparison between an existing
application where the database tier resides on a distinct hardware component
accessed through the enterprise network infrastructure and a solidDB Universal
Cache setup where a subset of the data required by the application is cached
and collocated with the application.

3.7.1 Network latency and traffic

The existence of a cache can lead to the reduction of the network traffic between
the application and the remote back-end database machine. This way has the
dual advantage of both reducing the load on the network (and thus the overall
load on the enterprise network assets) and reducing the overall latency of the
database operations through the elimination of the network hop required by a
more traditional architecture.

Two facets must be considered when you decide what type of data should reside
in the cache:

� Consider the volume of data to be transported over the network and if the
network has the capacity to efficiently transport this data. Most commonly, if
the application can make use of an operational (or hot) data set that is a
subset of the overall data, this case leads to a reduction on the throughput
load on the network.

� If the application is sensitive to database operation latency, it is appropriate to
cache the data that corresponds to the sensitive operations. In such a case,
the amount of individual operations going across the network is reduced
which leads to the reduction in the dependence of the application on the
consistent response of the network.

3.7.2 Back-end machine load

The cost of hardware used to host enterprise database systems can be high in
both capital and operation terms. If you remove the load from the back-end
machine through the use of solidDB Universal Cache by handling database
 Chapter 3. IBM solidDB Universal Cache details 65

queries in the application tier, you are both delaying the need for an enterprise to
upgrade or replace existing hardware infrastructure, and also reducing the
operation expense of such systems, thus reducing the overall cost to an
enterprise of an application.

By taking away CPU cycles from the back-end hardware, you can free hardware
resources for use by other applications, whether resident on the machine or
simply using the shared back-end database. Again, upgrades can be temporally
delayed to some time in the future. The trade-off is the possible reallocation of
hardware resources or funding to the front end or application tier; however, such
hardware is typically commodity-based and less expensive in nature. Primarily,
the hardware enhancements on the front end require increase of main memory,
which is becoming progressively less expensive over time, particularly on
commodity hardware.

3.7.3 Database operation execution

In this section, we consider two facets of the introduction of a cache database:

� The reduction of the latency of database operations

� The increased availability of enterprise database resources to other
applications within the enterprise.

The response time of a database operation is defined as the round-trip time
required to return a result to an application. The introduction of solidDB Universal
Cache to the application tier of the enterprise can have two advantages:

� The database response time itself can be improved

� The transport layer between the application tier hardware and the back-end
database hardware can be the eliminated.

The result of these advantages has the effect of accelerating the application
through the raw speedup in response times.

Through the elimination of a percentage of database operations and interactions
from the back-end database, the resources available to the back-end database
can be substantially increased, which in turn leads to improvements in the
availability and response time of the database to other applications using the
database resource.

However, consider that existing disk-based enterprise databases are better
suited to certain database operations than solidDB would be, such as queries
with large result sets. This consideration is important when trying to quantify the
benefit that solidDB Universal Cache can have on the increased availability of the
back-end database to the enterprise.
66 IBM solidDB: Delivering Data with Extreme Speed

Chapter 4. Deploying solidDB and
Universal Cache

In this chapter, we discuss application development for when you use IBM
solidDB products. We emphasize the effect that using a cache database has on
application design as compared to other database applications. IBM solidDB is a
standards-compliant relational database supporting SQL and the standard
ODBC and JDBC programming interfaces. Most application design,
programming, data model design and system administration paradigms used
with other database systems are directly applicable with IBM solidDB products
also. A multitude of literature is available about all these topics. Therefore, they
are only briefly described in this chapter, highlighting solidDB-specific details
when necessary. We assume that you known SQL and its basic concepts.

4

© Copyright IBM Corp. 2011. All rights reserved. 67

4.1 Change and consideration

Change from a single database system to a system of multiple databases is
always a major step in architecture design, significantly increasing the number of
considerations for deployment. A far more straightforward approach is to
consider the issues when designing a new application that will use a cached
database and back-end database as compared to extending an existing RDBMS
system to use a front-end database cache. We look at both of these scenarios for
deployment of a cached database system.

When moving a system to production, several things related to system
initialization and administration must be considered. As examples, in the system
initialization section, we focus on installation and initial data load. Then, in the
administration section, we focus on monitoring the system health, illustrating how
the system can be recovered from various disasters, and prepare for several
types of upgrade operations, such as hardware upgrades, IBM solidDB software
upgrades, and application software upgrades.

4.2 How to develop applications that use solidDB

The development of an application that will use solidDB as a stand-alone
database conceptually and architecturally resembles application development on
any other type of relational client/server database. Almost all concepts and
methods work should be applied similarly, with some relatively minor things to
consider when using direct linking models or the high availability architecture of
solidDB. We briefly review the basics of database application development in this
chapter. For more detailed information, see any available literature and
examples, most of which is applicable for solidDB.

4.2.1 Application program structure

Basically, application development on relational databases is about creating and
executing programming commands along with SQL statements inside the host
language, according to host language-specific programming paradigms.
Generally, this task is done by linking a database driver (which is a component
provided as part of IBM solidDB product package) to an application program.
This driver contains a set of functions (based in C-language ODBC drivers) or a
set of classes and methods (in a Java-based JDBC driver) to be called by the
application. ODBC and JDBC standards specify the names and parameters of
these functions in detail to enable changes to the database by simply changing
the ODBC or JDBC Driver. This task can be done either in a linker's file list or a
68 IBM solidDB: Delivering Data with Extreme Speed

call to Driver Manager, which is a system component that picks up an
appropriate driver, based on the database connection string or URL.

All relational database application programs are structured as shown in
Figure 4-1. The connection must first be initialized. Then, the application program
executes one or several statements within the connection, and ultimately either
explicitly or implicitly (application program termination) terminates the
connection.

In the interfaces provided by IBM solidDB, there is always an implicit current
transaction related to each connection. Hence, the Begin Transaction statement
is always implicit. The transaction statements are executed according to the
structure shown in Figure 4-1. For statements that are expected to be executed
multiple times, using prepared statements is the best approach to avoid having
the SQL Interpreter be activated for each execution. This way can improve
performance. Naturally, the statements that are expected to return data will have
to process the returned data in one way or another; statements only writing data
do not process results.

Figure 4-1 Application structure

Process
Statement

Continue
YES

NO

Initialize

Terminate

Repeat

Prepare

Execute

YES

NO

Is Select
YES

Process
Results

Check
Result

NO

Begin
Transaction

End
Transaction
 Chapter 4. Deploying solidDB and Universal Cache 69

4.2.2 ODBC

This section introduces and helps you get started with ODBC on solidDB.

Introduction
ODBC provides a standard for accessing relational databases. ODBC is defined
as a set of strictly defined C-language functions implemented by database
manufacturers. to develop a native ODBC-application. The programmer must
include the header file that contains ODBC definitions and link an appropriate
driver that is provided by the database manufacturer. The application can use a
separate database simply by linking to a separate driver.

A key benefit of ODBC is the capability of accessing several databases at the
same time. To avoid naming conflicts between similar functions in separate
drivers, the application links to the ODBC Driver Manager instead of individual
drivers. The driver manager then routes the call to the appropriate driver. For
applications that require access to only one type of database, the use of Driver
Manager is not required. From a linking perspective, the ODBC Driver Manager
is only another library to link. It provides exactly the same function interface as
the ODBC drivers.

ODBC is widely used, especially in Windows environments, as the database
access layer for applications that are not written in the C-language. In those
cases, the application middleware translates the application code that is not
based in C language to appropriate C-based calls to ODBC (or more commonly,
to the ODBC Driver Manager).
70 IBM solidDB: Delivering Data with Extreme Speed

The left side of Figure 4-2 shows the basic ODBC functions that are required to
prepare to connect to the database and establish the actual connection. The right
side of the figure shows the actual functions related to statement preparation,
execution and transaction handling.

Figure 4-2 ODBC functions for database connection

For insert, delete, and update operations, there is no need to process results in
any other way than to validate that SQLExecute does not return errors.

SQLAllocHandle(DBC)

SQLConnect()

Transaction Processing

SQLDisconnect

SQLFreeHandle(DBC)

SQLFreeHandle(ENV)

SQLAllocHandle(ENV)

SQLSetConnectOption()

Allocate statements

Execute SQL statements

SQLAllocHandle(STMT)SQLAllocHandle(STMT)

Retrieve results

Repeatable Execution?Repeatable Execution?

Type of statement?Type of statement?

SQLEndTranSQLEndTran

SELECT Other

Free statements

SQLFreeHandle(STMT)SQLFreeHandle(STMT)

SQLExecDirectSQLExecDirectSQLPrepareSQLPrepare

YES NO

SQLExecuteSQLExecute
 Chapter 4. Deploying solidDB and Universal Cache 71

Figure 4-3 lists the ODBC functions related to processing the result set in the
case of running a Select statement.

Figure 4-3 ODBC functions for processing a result set

Example 4-1 on page 73 shows an ODBC-application that performs all the steps
to allocate resources, connect the database, perform a query, and process the
retrieved results. Note that checking return code validity has been removed for
simplicity.

Retrieve results

Type of statement?Type of statement?

SQLNumResultCols
SQLDescribeCol

SQLBindCol

SQLNumResultCols
SQLDescribeCol

SQLBindCol

SQLRowCountSQLRowCount

SQLFetchSQLFetch

More rows?More rows?

SQLEndTranSQLEndTran

SELECT Other

SQLExecuteSQLExecute

Free statements

SQLFreeHandle(STMT)SQLFreeHandle(STMT)
72 IBM solidDB: Delivering Data with Extreme Speed

Example 4-1 A simple, but complete ODBC application

// section 1: Allocating Handles
rc = SQLAllocEnv(&henv);
rc = SQLAllocConnect(henv, &hdbc);

// section 2: Establish connection
rc = SQLConnect(hdbc, “tcp 1313”, SQL_NTS, “dba”, SQL_NTS, “dba”,
SQL_NTS);

// section 3: Prepare Statement for execution
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)"SELECT ID,NAME FROM NAMEID",
 SQL_NTS);
// section 4: Define Variables in C
rc = SQLBindCol(hstmt, 1, SQL_C_SLONG, &id, 0, NULL);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, name,
 (SDWORD)sizeof(name), &namelen);

// section 5: Run a loop until rows run out. After each SQLFetch
// call the contents of variables id and name change to match
// row contents
rc = SQLFetch(hstmt);
 (rc == SQL_SUCCESS)
{

printf("A row found (%d, %s).\n", id, name);
rc = SQLFetch(hstmt);

}

rc = SQLFreeStmt(hstmt, SQL_DROP);

// section 6: Release the statement handle, disconnect and release
// the environment handles
SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

Getting started with ODBC on solidDB
The solidDB product package contains a set of ODBC sample programs and an
operating system (OS)-specific build environment for the particular sample. The
samples can be located in the product package in the following directory:

./samples/odbc
 Chapter 4. Deploying solidDB and Universal Cache 73

The directory contains two simple C-language programs and the makefile that is
required to build and run the programs. A C-development environment (compiler
and make utility) are assumed to exist.

4.2.3 JDBC

This section introduces and helps you get started with JDBC on solidDB.

Introduction
JDBC is direct counterpart to ODBC in the Java language. Because Java is an
object-oriented language, the standard is specified as a set of classes and their
methods, instead of function calls. The underlying principles are exactly the
same as with ODBC. That is, every ODBC operation has a direct counterpart in
JDBC. In Java, instead of including header files as in C, the JDBC interface is
imported to Java application code by import clause. Instead of linking the driver,
in JDBC, the driver’s classes are loaded when a connection is requested from the
JDBC Driver Manager. As an application interface, JDBC is slightly simpler to
use than ODBC in the sense of generally having fewer parameters in function
calls and being (because it is Java-based) less vulnerable to typical C-language
development-time problems, such as loose pointers and uninitialized memory.

The JDBC Driver manager is the JDBC counterpart to the ODBC Driver
Manager. It is included in Java runtime environment, so circumventing the Driver
Manager in JDBC is not practical, as it is in ODBC.

Tip: Details of the ODBC Interface

ODBC Function Interface:

http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx

ODBC Header File name: sql.h (located in the ./include product package
directory)

The solidDB ODBC Driver names are as follows:

� Depends on platform: socw3265.dll on 32-bit Windows for dynamic linking
� Direct linking stub: solidimpodbcu.lib on 32-bit Windows
74 IBM solidDB: Delivering Data with Extreme Speed

The left side of Figure 4-4 shows the JDBC methods that register the driver with
JDBC Driver Manager and establish a connection using a registered driver. The
right side of Figure 4-4 shows the methods to execute the statement either by
using a Statement object for one-time execution or a PreparedStatement object
for multiple executions.

Figure 4-4 JDBC process to register the driver with the Driver Manager

Similar to ODBC, multiple ways exist of developing applications with a slightly
higher abstraction level than writing direct JDBC calls. Java Application Servers
such as WebSphere®, WebLogic, and JBoss, and Object-Relational mappers
such as Hibernate, are based on classes or templates for application classes that
call the appropriate JDBC methods without the application developer having to
see that part of code at all.

Initialize

Class.forName

DriverManager.getConnection

Statement.createStatement

Execute SQL statements

Receive results

Connection.close

Terminate

Statement.close

Execute SQL statements

Repeatable Execution?Repeatable Execution?

createStatement
execute

createStatement
execute

prepareStatement
executeQuery

prepareStatement
executeQuery

Retrieve results

Type of statement?Type of statement?

getMetaData
getColumnCount

getString

getMetaData
getColumnCount

getString

check return
value

check return
value

ResultSet.nextResultSet.next

More rows?More rows?

Statement.closeStatement.close

SELECT Other

YES NO
 Chapter 4. Deploying solidDB and Universal Cache 75

Example 4-2 shows a JDBC version of the application in Example 4-1 on
page 73. It contains counterparts for resource allocation, connection
establishment, query execution and result set processing.

Example 4-2 A simple JDBC-application

import java.sql.*;

public class jdbcsample
{
 public static void main (String args[]) throws Exception
 {
 // section 1: Register driver for JDBC Driver Manager
 Driver d = (java.sql.Driver)Class.forName
 ("solid.jdbc.SolidDriver").newInstance();

 // section 2: Establish a JDBC connection from JDBC Driver Manager
 Connection conn = java.sql.DriverManager.getConnection
 ("jdbc:solid://localhost:2315/dba/dba");

 // section 3: Define Statement for Execution and Execute
 Statement sta = conn.createStatement();
 ResultSet rs = sta.executeQuery("SELECT ID,NAME FROM NAMEID");

 // section 5: Run a loop and retrive rows until they run out.
 (rs.next())
 {
 System.out.println("A row found (" + rs.getString(1) + ", " +
 rs.getString(2) + ")");
 }

 // section 6: Close appropriate resources
 rs.close();
 sta.close();
 conn.close();

 }
}

76 IBM solidDB: Delivering Data with Extreme Speed

Getting started with JDBC on solidDB
As with ODBC, the solidDB product package for JDBC contains a set of JDBC
sample-programs and the environment used build and run them. The samples
are located in the product package in the .samples/jdbc directory. The directory
contains four simple Java programs illustrating the basic JDBC operations. A
Java developer kit is expected to be installed to run these programs.

4.2.4 Stored procedures

IBM solidDB provides a third way of executing SQL statements and processing
the results, and that is in the form of stored procedures.

The standard SQL does not contain definitions for a stored procedure language.
Therefore, stored procedure languages used in the various databases are
generally not compatible with each other, although conceptually they might
strongly resemble each other.

Architecturally, all stored procedure execution takes place inside the server
process. Therefore, no network communication is needed within procedure code.
Depending on a linking model, a network message might be needed when the
application process calls the procedure and receives results.

Tip: Details on JDBC Interface

JDBC interface classes and methods are described in the following location
(by looking at the java.sql package):

http://download.oracle.com/javase/6/docs/api/

JDBC Classes can be imported by the following statement:

import java.sql.*;

The solidDB JDBC Driver name is: SolidDriver2.0.jar
 Chapter 4. Deploying solidDB and Universal Cache 77

Example 4-3 shows how to create a stored procedure.

Example 4-3 Creating a stored procedure

"create procedure proc returns (str varchar)
begin

 -- section 1: Declare variables to store the retrieved data
 declare id integer;
 declare name varchar;

 -- section 2: Declare trivial error handler
 exec sql whenever sqlerror rollback, abort;

 -- section 3: Prepare and execute the piece of sql
 exec sql prepare sel select id, name from nameid;
 exec sql execute sel into (id, name);
 exec sql fetch sel;

 -- section 4: Run a loop and retrieve all the rows. Instead of
 -- printing, return the rows to the caller
 sqlsuccess loop

 str := convert_varchar(id) + ' ' + name;

 return row;

 exec sql fetch sel;
 end loop;

 -- section 5: close and drop the cursor
 exec sql close sel;
 exec sql drop sel;

end";
commit work;

To get started with solidDB stored procedures, the IBM solidDB product package
contains a set of samples of solidDB stored procedures, which are in the
following directories:

� ./samples/sql
� ./samples/sql/course_exercises
78 IBM solidDB: Delivering Data with Extreme Speed

4.2.5 Special considerations

Several special situations must be considered in application code when
developing a client application for IBM solidDB. We provide a brief description of
those situations in this section.

Linking models
The database part of application development is about creating a string of SQL
statements within the host language, calling the appropriate function or method
to send the string to database server, and the use of appropriate functions or
methods to process the results retrieved by the database.

In a traditional client/server linking model, the application and database servers
have been running in separate processes either in the same machine or in
separate machines. In this case, the database driver has been hiding the fact and
arranging the communication between separate processes by network
messages or interprocess communication inside same machine. This fact is true
with IBM solidDB and regular client/server connections also. Additionally
however, a mechanism to combine the application and database server
processes and to bypass all messaging is provided. In some cases, this way is
beneficial for response times and performance, and is depicted in Figure 4-5 on
page 80.

Tip: Details about the Stored Procedure Interface

No special component is needed to enable or run solidDB stored procedures,
because the procedure engine is included in the server process.

The solidDB procedure language syntax is proprietary to solidDB. That syntax
is described in IBM solidDB Manual: SQL Guide, SC23-9871, Chapter 3,
“Stored procedures, events, triggers and sequences.”
 Chapter 4. Deploying solidDB and Universal Cache 79

Figure 4-5 Linking models

Figure 4-5 illustrates the difference between client/server and linked lib access
methods. No other differences exist, from a programming perspective, than the
need to avoid application crashes, because the server is vulnerable to application
side crashes also.

Note the following information about models:

� Traditional client/server

With this default linking model, the application process and database server
are running as separate processes. They can run either in the same machine
or separate machines, with their process images and memory spaces being
separated either by machine boundary, operating system, or both. There are
no special considerations for application development when running this
default linking model.

� Linked Lib access

With this model, instead of linking to a database driver and sending network
or interprocess messages to a server process, the application links to a
database driver containing the full server functionality. All communication
between application and server take place in same process. The application
and database server share the memory space. All loose pointers in
application code can refer to the database server’s memory, overwrite it and
create a crash in server code. We strongly suggest using the Client/Server
linking model in development and functionality testing, and only moving to
Linked Lib drivers for performance testing and deployment. For deploying

Client
Application

ODBC JDBC SA

RPC

RPC

solidDB

Memory Space

Memory Space

– Remote connection
Linked Lib access
– Local connection

Embedded
Application

Memory Space

solidDB

ODBC SAJDBC SSC

Client / Server access
80 IBM solidDB: Delivering Data with Extreme Speed

immature applications (that are known, or expected, to crash), deployment
with Linked Lib drivers is not suggested. In some environments, deploying the
final application and database servers in same process is seen beneficial
because, from systems management perspective, the number of processes to
manage will be smaller.

� Shared memory access (SMA)

This model provides the benefits of both the Client/Server model (memory
protection, enabling several application process instances sharing the same
performance) and the Linked Lib model (added performance). The server
process is also protected against application process crashes.

Solid HotStandby
IBM solidDB HotStandby feature is basically transparent to application code. A
regular application works without modifications with solidDB high availability
feature. Both ODBC and JDBC Drivers contain a transparent failover functionality
that hides the two underlaying connections to primary and secondary databases
to appear as one JDBC or ODBC connection. Making the application aware of
two separate connections is possible, but it increases application complexity
substantially.

A failover or role change in HotStandby does not cause loss of committed data in
the database. However, when failover, or role change occurs, the current
transaction is terminated. That is, the ODBC call fails with appropriate error code
or JDBC call throws an appropriate SQLException. To handle the situation
properly, the application needs to call the rollback function or method to start a
new transaction. Transparent failover automatically directs the connection to the
new primary database. The application is responsible for capturing the ODBC
and JDBC error caused by roleswitch or failover, rolling back the current
transaction and rerunning the transaction. In practice, this technique means that
error codes caused by failover/rollback need to be handled differently in
applications as compared to fatal errors (syntax error, table missing, user rights
missing) or other errors having different recovery policies.

Running applications on multiple separate databases
SQL, ODBC, and JDBC are mature standards supported by multiple database
vendors. Conceptually, an application that has been implemented based on
these standards should be portable and run on any standard compliant database
with minimum effort.
 Chapter 4. Deploying solidDB and Universal Cache 81

In practice, it seldom works this way, for the following reasons:

� Databases typically have different extensions to the standards. However, if
applications carefully avoid using all extensions, this issue is less of a
problem.

� Standards are somewhat loose on minor details such as exact column length
(for example, decimals allowed for timestamps), and sorting and unique
behavior with null data, allowing cursors to outlive transactions.

� Certain crucial elements in database architecture have not been included in
the standardization effort. As examples, these elements include stored
procedures, triggers, and sequencers.

� The standards specify an error code, SQLState, that is supposed to be
returned in all error cases. For proper error handling, however, the
applications generally need to access the native error code. These native
error codes are not standardized at all and vary from database to database.

� Occasionally, a substantial part of application is implemented in database
scripts that are executed by particular database utilities. However, the
scripting languages and utilities are not standardized.

These problems can be most easily addressed separately in the design phase of
software, for example, by the following methods:

� Implementing wrapper layers to hide the difference between databases,
thereby making the application database agnostic. This means mapping the
native database error codes to error codes meaningful for the particular
application. As examples, fatal error, recoverable by retry, and recoverable by
reconnect.

� Avoiding the use of non-standardized elements of databases, such as SQL
extensions for nonstandard data types.

� Preparing to write several versions of code for elements that differ but cannot
be avoided. For example, having a version of a stored procedure for each
supported database.

� Using interfaces that are available on all considered databases.

Having the capability to run the same application code on separate database
brands is essential when deploying solidDB Universal Cache (UC). The same
code must process data, error codes, and transactions from both the solidDB
front-end database and back-end database, whether it is DB2, IDS, Oracle,
Sybase or other supported back-end database brands. The application must be
built to run seamlessly on multiple database brands.
82 IBM solidDB: Delivering Data with Extreme Speed

Most high level programming techniques, such as those using application
servers or object-relational mappers, that hide the database-level coding usually
make the applications more portable.

Other programming environments
IBM solidDB’s supported interfaces of ODBC and JDBC enable application
developers to write applications with C or Java languages calling ODBC
functions or JDBC methods and writing or generating the SQL string at the
application level. This common way of developing application logic is not the only
one.

Multiple ways exist to raise the abstraction level from the ODBC/JDBC level. It
can be done either by enabling database access from various (usually higher
level programming or scripting languages, such as Visual Basic, Perl, and PHP)
or enabling database access directly through application level objects that are
able to load or save themselves without the application programmer having to be
aware of database connections, transactions, or even SQL Strings.

Database access from higher level programming is usually based on some
middleware component translating the higher level language calls to regular
ODBC or JDBC calls. In these conditions, the middleware component is seen as
an application from the database perspective. Usually the middleware
components do a good job in hiding the difference between database brands.

IBM solidDB is a relatively new product, and as such not all middleware vendors
explicitly list it among the supported database products. In those cases, there is
usually an option to have a generic ODBC database or generic JDBC database
that works with IBM solidDB drivers.

Certain programming environments do not have a direct counterpart in IBM
solidDB applications, such as Embedded SQL or Java-based stored procedures.
Applications designed to run on these programming environments must be
redesigned to fit IBM solidDB.
 Chapter 4. Deploying solidDB and Universal Cache 83

4.3 New application development on solidDB UC

Database application architecture built on cache database or back-end database
instead of a single database becomes more complicated. In a high-level
conceptual diagram, the legacy back-end database is simply replaced with a
cache database that sits between the back-end database and application making
the database appear faster from an application perspective. There are no
changes in the database interface layer. This concept is illustrated in Figure 4-6.

Figure 4-6 Database interface layer

In reality, the conversion from single database system to a cache database
system is not quite so straightforward. Consider the following issues, among
others, in the application codes:

� The application must be aware of the properties of two database connections,
one to the cache database and the another to the back-end database. SQL
pass-through can mask the two connections to one ODBC or JDBC
connection but will require cache awareness in error processing.

� Transactions combining data from the cache database and a back-end
database are not supported.

� Queries combining data from front-end and back-end database are not
supported.

� A combination of back-end and front-end database is not fully transactional
although both individual components are transactional databases.

� Support is limited for stored procedures.

Knowing these limitations or conditions of a cached database system enables
taking them into account and avoiding them in the design phase.

Application

Database

Application

Backend
Database

Cache
Database

Database Interface layer
84 IBM solidDB: Delivering Data with Extreme Speed

Based on the conditions, the architectural diagram becomes more complicated,
as we have illustrated in Figure 4-7

Figure 4-7 Database interface layer with a cached database

Certain changes are required in the interface between application and cached
database as compared to an application with similar logic accessing only a single
database.

4.3.1 Awareness of separate database connections

A regular single-database application sees only one database and can handle
everything with one database connection. All transactions that have been
successfully committed to the single database automatically have the ACID
(atomicity, consistency, isolation, durability) properties.

A cached database system has two physical databases, a front end and a back
end. Certain performance-critical data has been moved to front-end database;
volume data remains in the back-end database. These databases are
synchronized by Universal Cache’s Changed Data Capture (CDC) replication but
they still act as individual databases.

Application

Database

Application

Database Interface layer

1

2 & 3

4

5

Backend
Database

Cache
Database

SPL

SPL
 Chapter 4. Deploying solidDB and Universal Cache 85

The application can access these two databases by two strategies:

� Opening and controlling separate connections to the two databases

� Using SQL pass-through to route all queries to the back-end database using
the front end

Opening separate connections
The application can open two database connections to the two databases and
retain and monitor these connections constantly. This strategy provides the
application full control on which queries to route to the front end and which to the
back end. This is rather laborious but provides flexibility for distribution strategies.

SQL pass-through functionality
SQL pass-through functionality provided by the solidDB Universal Cache product
can be used. SQL pass-through assumes that all statements are first run at the
front-end database. If any error takes place, the statement is run at the back end.
Errors are assumed to be caused by tables not being in place at the front end.
The application sees only one connection but the front-end and back-end
databases are still separate and individual databases. The key challenges with
SQL pass-through are as follows:

� The set of two databases is not transactional. For example, writing something
that is routed to the front end is not synchronously written to the back end. If a
transaction writes something to a front-end table and in the next statement
executes a join that combines data from the same table and another table that
only resides in back end, the statement will be routed to back end. The
recently written data will not be visible until the asynchronous replication is
completed.

� Cross-database queries are not supported, so joining data from a front-end
table and back-end table is not possible. These queries are always
automatically fully executed at the back-end database.

� For large result sets, SQL pass-through can present a performance
bottleneck. All rows must be first transferred from the back-end database to
the front-end database, and then from front end to the application. The
front-end database ends up processing all the rows and potentially
performing type conversions for all columns. The impact of this challenge is
directly proportional to size of result set. For smallish result sets it is not
measurable.

� SQL pass-through is built to route queries between the front-end and
back-end databases on assumption that the routing can be done based on
table name. SQL pass-through does not provide a mechanism for situations
where a fraction of a table is stored on the front end and the whole table at
back end.
86 IBM solidDB: Delivering Data with Extreme Speed

4.3.2 Combining data from separate databases in a transaction

Although both front-end and back-end databases are individually transactional
databases, the two transactions taking place in two different databases do not
constitute a transaction that would meet the ACID requirements.

Using the default asynchronous replication mechanism does not enable building
a transactional combined database, because some compromises are always
implicitly included in this architecture.

Creating a transactional combination of two or more databases, using Distributed
Transactions, is possible. A Distributed Transaction is a set of database
operations where two or more database servers are involved. The database
servers provide transactional resources. Additionally, a Transaction Manager is
required to create and manage the global transaction that runs on all databases.

4.3.3 Combining data from different databases in a query

Joining data from two or more tables by one query is one of the benefits of
relational database and SQL. This is easily possible in the Universal Cache
architecture as long as all tables participating the join reside in the same (either
front-end or back-end) database. If this is not the case, several ways are
available to work around the limitation:

� Generally, the easiest way is to run all the joins of this kind in the back end.
Typically, all tables would be stored at the back end, but the most recent
changes to the tables that reside at the front end also might not have been
replicated to the back end yet. If there is no timeliness requirement and if
there is no performance benefit visible based on running the query at the front
end, this approach is a good one.

� Because there is no statement-level joins available between two separate
databases, the only way to execute the join between two databases is to
define a stored procedure that runs in the front end and executes an
application-level join by running queries in the front-end and back-end
databases as needed. All join logic will be controlled by the procedure. From
the application perspective, the procedure is still called by executing a single
SQL statement.

� Application-level joins can also be executed outside the database by the
application, but they cannot be made to appear as the execution of single
statement in any way.
 Chapter 4. Deploying solidDB and Universal Cache 87

4.3.4 Transactionality with Universal Cache

Transactionality is a typical requirement for a database. In Universal Cache
architecture, both individual databases, the front end and the back end, are
transactional as individual databases. The combination of the two databases,
however, does not behave as a transactional database. Consider, the following
example with two tables. The table FRONT is stored in front end and replicated
asynchronously to table BACK on the back end. BACK stays only at BACKEND.

1. The application writes something to FRONT and commits. The data is visible
for queries such as SELECT * FROM FRONT, which are fully executed at the front
end. Asynchronous replication to the back end is free to move the data to
BACK, but it does not complete the replication instantly.

2. The application runs a join SELECT * from FRONT, BACK query. Because the
data written at step 1 is still being synchronously moved from the front end,
the data is not yet there in the back end, and recently written rows are not
visible. Therefore, the consistency requirement for transactionality is violated.

Other scenarios are either variants of these or also violate the transactionality
requirements in other ways.

4.3.5 Stored procedures in Universal Cache architectures

For some applications, implementing part of application logic in database stored
procedures is practical design decision. However, procedure languages in
different databases are not compatible. Using stored procedures at all in
Universal Cache architectures is not suggested unless it cannot be avoided.

If data can be split to the back-end and front-end segment, having two totally
separate sets of procedures for the front-end and back-end databases might be
possible. In these cases, having two procedure languages might be acceptable.
The procedure at the front end would only be accessing data in front-end tables
and the procedure at the back end would only be accessing data in back-end
database tables.

If the back-end database is solidDB also, the procedures in the front-end and
back-end database are code-compatible.

Stored procedures running in the front-end database can use SQL pass-through
to access data in back-end database, similar to applications running SQL
statements when Pass-through is turned on. This is one additional way for
making the front-end/back-end database architecture invisible to the application.
88 IBM solidDB: Delivering Data with Extreme Speed

4.4 Integrate an existing application to work with
solidDB UC

The solidDB Universal Cache is seen as a way for speeding up existing systems
that are running on top of disk-based enterprise systems. This way is true if the
workload is favorable. See Chapter 6, “Performance and troubleshooting” on
page 147 for further details.

Feasibility of retrofitting a cache database between back-end database and
existing application depends on how well the issues we listed are handled in the
existing application and whether the existing application can live with the implicit
compromises. Feasibility and effort required for retrofitting might not always be
obvious. A thorough analysis might be required. In this section, we outline the
process for the analysis and present several workarounds to typical problems.

IBM solidDB supports the standard Java Transaction API (JTA), through
providing a set of XA (see entry XA in “Abbreviations and acronyms” on
page 277) classes. JTA methods enable the Transaction manager to control
solidDB as one of the transactional resources in a global transaction.

4.4.1 Programming interfaces used by the application

Converting an application using a legacy database to using a Universal Cache
database between legacy database and the cache database can be a relatively
simple effort or a major project, depending on how the application has been
designed and implemented.

Generally, the applications that have been implemented directly using JDBC or
ODBC APIs, or a middleware running on top of those APIs, might require no
conversion at all. If no extensions to the SQL Standard are used, the applications
are expected to work with minor modifications.

Because stored procedure languages are not compatible with each other, a
rewrite for stored procedures will be required if they are used in the application.
This can be automated to some level but a separate project is necessary for
stored procedure conversion.

If APIs, access methods or programming paradigms that are not supported by
IBM solidDB (such as embedded SQL) are used, and there is no ODBC or
JDBC-based middleware available to act as a gateway, this part of the application
must be rewritten altogether.
 Chapter 4. Deploying solidDB and Universal Cache 89

4.4.2 Handling two database connections instead of one

Existing applications have most likely been written to handle connections to only
one database, which would have all the required tables and data. Implementing
the logic to an existing application that is capable for routing the queries to an
appropriate database will not be a project without risks.

SQL pass-through provides a mechanism to combine the two database
connections to one connection that routes every query to the front-end server at
first. The front-end server might end up routing the query to the back-end based
on table existence.

The change of transactional model included in moving from one physical
database to a combination of front-end and back-end databases might prove to
be a challenge to several applications. The combination of two databases is no
longer strictly transactional, which might prevent migration the two database
architecture altogether.

The strictness of the transactionality requirement should be estimated among
the first things in technical feasibility assessment of moving to a
front-end/back-end-based architecture. If the requirement is strict, the effort for
implementing a transaction manager as part of a migration process (4.3.2,
“Combining data from separate databases in a transaction” on page 87) must be
included in the estimates.

Various applications rely heavily on a database’s capability of running
complicated queries that combine data from several tables in one query. IBM
solidDB does not have a capability of joining data residing in a front-end
database and back-end database. The standard fallback mechanism is to direct
all these kinds of queries to the back-end database. Although this approach
works, it does not enable the application to take advantage of the performance
benefits of main memory-based data management.

Based on analyzing the questions in this section, creating an estimate of the
retrofitting effort for Universal Cache database is possible. It should be estimated
in parallel to estimating expected performance and potential for other benefits of
the product. The bigger the retrofitting effort is, the more substantial the benefits
would need to be.
90 IBM solidDB: Delivering Data with Extreme Speed

4.5 Data model design

All IBM solidDB architectures described in this section are based on IBM solidDB
being a relational database product. To successfully design, implement, and
deploy a relational database system to be able to handle even moderate data
volumes and query loads, a number of basic relational database principles must
be mastered. In this section, we briefly review the basic principles related to data
model design with IBM solidDB products and emphasize the extra nuances
implied by IBM solidDB internal implementation and Universal Cache
architecture. We also review the aspects of running IBM solidDB in hybrid mode
where some data is stored into in-memory tables and some to IBM solidDB’s own
disk-based tables. Finally, we look at aspects related to running IBM solidDB in a
Universal Cache configuration where the performance-critical part of the data is
defined to reside in front-end database and the rest will remain in the back-end
database.

4.5.1 Data model design principles

Most database design methodology used in data model design is directly
applicable with IBM solidDB products. These principles are as follows:

� Having unique primary keys for rows. As in most databases this approach is
not enforced. If the schema does not contain primary key definition, a
generated rowid is used instead. In IBM solidDB disk-based tables, the
primary key defines the physical order of the rows in B-tree structure. With
in-memory tables, the primary key is implemented only as an additional index.
As a result, in using disk-based tables, the capability of writing and reading
data in primary key order can have a substantial positive impact on
performance.

� In IBM solidDB’s main memory tables, images for indexes inside memory are
created dynamically only at start-up and when running the database. Indexes
do not consume disk space but do increase memory footprint and startup
time. With disk-based tables, the indexes are stored on disk to a B-tree
structure similar to other databases.

� Indexes will be required to speed up queries in both main-memory and
disk-based databases. For bigger tables, full table scans are costly operations
and also with in-memory databases. Maintaining several indexes can slow the
speed of write operations in both in-memory and disk-based tables.

� Query optimization with IBM solidDB (with in-memory and on-disk tables) is a
similar problem as query optimization is with any other relational database.
IBM solidDB has a cost-based optimizer, diagnostic feature EXPLAIN PLAN
FOR, and optimizer hints that are conceptually similar to other databases.
 Chapter 4. Deploying solidDB and Universal Cache 91

� FOREIGN KEY and UNIQUE definitions implicitly cause an index to be
defined.

� IBM solidDB can use only one index per query per table. For example, if the
query needs to find the rows according to index 1 and provide them in proper
order according to index 2, only one index is used. The decision on which
index will be used is determined by the optimizer.

� Large objects (both binary large objects and character large objects) are
handled with separate algorithms and must be designed accordingly.

� Unlike most other databases, IBM solidDB is optimized for dynamic data
sizes. Hence, there is capacity or performance benefit for pre-defining column
sizes. For example, VARCHAR(20) has no other benefits on performance or
capacity size than preventing too long strings to be inserted.

Implementation of IBM solidDB disk-based tables are relatively similar to other
disk-based relational databases. In-memory tables inside solidDB have a similar
performance edge over solidDB’s disk-based tables as they have over other
disk-based database product tables. The functional difference with IBM solidDB
in-memory tables is not that substantial either. They key differences are as
follows:

� Indexes do not increase disk file size.
� Different implementation exists for primary key.

The IBM solidDB product family does not contain a specific data modeling tool.
The table, index, procedure and trigger creation is done by Data Definition
Language (DDL) SQL Statements such as CREATE TABLE, DROP TABLE, and
CREATE INDEX. Most modeling tools that support generic SQL Database through
ODBC or JDBC Interface can work with IBM solidDB also.

4.5.2 Running in-memory and disk-based tables inside solidDB

The IBM solidDB database executable contains two database server engines.
One engine is storing the data in memory using main memory-based algorithm;
the other one is a disk-based algorithm to store the data on the disk. Like most
other databases, IBM solidDB has an optimized buffer pooling mechanism to
avoid unnecessary disk head movement.

IBM solidDB’s hybrid nature is a powerful feature because it provides all the
performance benefits of main memory database technology inside the same
server with volume scalability benefits of disk-based database.
92 IBM solidDB: Delivering Data with Extreme Speed

The hybrid server works based on the following principles:

� The address of the table is defined in CREATE TABLE statement, for
example, with either STORE DISK or STORE MEMORY, combined with
CREATE TABLE.

� The address of the table is fully transparent. All IBM solidDB SQL is fully
supported in both engines and all data types are similarly supported.

� The addresses of the tables are fully transparent in transactions also.
Transactions can combine write operations at disk-based and in-memory
databases retaining full ACID properties. Also, individual statements can join
data from both disk-based and in-memory tables.

� Although checkpoint algorithms between in-memory and disk-based tables
differ, the database file (or files) and transaction log files are fully shared
between the database engines. Therefore, checkpointing, database backup
and restore procedures, HotStandby replication, and IBM solidDB Universal
Cache functionality all work similarly regardless of whether tables inside
solidDB engine are configured to be main-memory tables or disk-based
tables.

Data model design for hybrid database with IBM solidDB creates an additional
element to a regular data model design process. For each table, there is a
decision whether to define the table to be an in-memory table or a disk-based
table. Usually the amount of available RAM will set a hard limit to the overall
amount of data that can be stored into all main-memory tables. The remaining
tables will have to be disk-based tables. In most practical cases, picking up the
right set of tables to reside in main-memory tables is not a trivial task.

When picking up the tables to be stored in the main-memory engine, consider the
following aspects:

� The queries that will benefit from main-memory algorithm are the ones
processing small amounts (one to five, ten, or more) of data inside one query.
For larger result sets (hundreds, thousands or more rows), the performance
benefit will be lost and a main-memory database will be close to a
well-optimized fully buffer-pooled disk-based database.

� Finding the queries that are frequent enough and that benefit from
main-memory technology performance might be sizable reverse engineering
effort requiring specialized knowledge about the application. If possible,
practical measurement is often the fastest way for reliable results.

� Because of application transparency, finding the optimal configuration
between disk-based and in-memory tables can be iteratively experimental
through a relatively simple process. Because of full transparency at the
application level, the performance and capacity measurements can be done
 Chapter 4. Deploying solidDB and Universal Cache 93

with moderate effort by running and measuring the test application with
different configurations.

In addition to simply choosing the right tables to be stored in the in-memory
database engine, some logical changes in the data model can be beneficial (in
certain instances). Design patterns include the following possibilities:

� Splitting the table vertically. For a table with large number of columns, it is
possible to create a version of a table with key values and few performance
critical columns in main-memory and a version with all columns on disk. This
works well if there is a substantial performance-critical set of queries that only
needs some columns. If possible, the application can combine the data from
two tables (views work here also) and perform write operations to two tables
(triggers can be used to automate this).

� In some cases, logically splitting the table horizontally (that is, performance is
required to be faster for some particular rows inside a table regular
disk-based performance is good for others) is required. This task can be done
by creating a copy of the table with performance critical rows in a
main-memory table and leaving the rest to disk-based tables. Changes on the
application side are required to handle two tables. Similar to vertical splitting,
these changes can be made easier by views.

4.5.3 Data model design for solidDB UC configurations

From a data model perspective, designing the data model to a Universal Cache
installation is a problem that has some similarity to defining a data model to be
used in solidDB hybrid installation. Similarities are based on the following items:

� In both cases, similar queries benefit from being executed by faster
algorithms. These can be either inside main-memory tables, inside hybrid
solidDB installation, or by main memory algorithms in the front-end database
in solid UC installation.

� In both cases, the queries that benefit are similar in nature.

� In both cases, there is a hard upper limit, which is the memory capacity for the
data that can be stored to main-memory tables.

Generally, picking some tables to be cached, as would be picked for
main-memory tables from IBM solidDB disk-based stand-alone installation, can
be a good first approximation.

Although picking the right tables for the front-end application is based on the
same fundaments, the process is substantially more tedious to execute because
the front-end and back-end databases are two separate databases.
94 IBM solidDB: Delivering Data with Extreme Speed

As a result, note the following information:

� Creating applications that would automatically run on both databases might
not be a trivial effort, based on the premise that potentially incompatible SQL
must process two connections, transactional challenges, and other issues
related to creating an application based on Universal Cache.

� In running the iterative tests for finding the right tables, the effort and time
required for each iteration might be considerably bigger.

� The application behavior is expected to change based on changes in table
location policies.

� Queries that are supposed to join data between the front-end and back-end
databases will not work.

� A number of table selections that would be practical and available for
in-memory tables in a IBM solidDB stand-alone installation are not feasible as
cached tables in a solidDB Universal Cache installation.

The problems are considerably bigger when doing the effort for a system that
was originally not designed to host a UC database because of potential
unexpected compromises on transactionality and visibility of two database
connections.

Splitting individual tables vertically or horizontally to front-end and back-end
sections is conceptually possible with Universal Cache installations also.
Masking the split in a database view, however, is not possible. Therefore, the
easiest approach is to route all the queries that need to access the back-end
segment of the data to the back-end database only, either by the SQL
pass-through feature or directly.
 Chapter 4. Deploying solidDB and Universal Cache 95

4.6 Data migration

Real production database systems are seldom isolated systems without
interfaces to other database systems. Interfaces for both reading the data from
outside world or writing the data to other systems might be required either in the
initial setup of a system, on regular basis with sparse intervals or on an almost
continuous basis.

A set of typical data migration options are illustrated in Figure 4-8.

Figure 4-8 Typical data migration options with external database systems

For data transfer between separate databases, IBM solidDB provides the
following capabilities:

� CDC replication provided as part of the Universal Cache product provides a
subscription-based mechanism to enable initial data synchronization of any
table configured to be part of a subscription and provide a mechanism for
continuous near real-time synchronization of table data. This mechanism is
available with all databases supported by CDC, such as DB2, IDS, Oracle,
Sybase, and SQL Server.

� IBM solidDB has a set of simple ASCII-based export and import utilities to
create ascii files on data content of individual tables and load them to a
solidDB database. The ASCII files can be used in interfacing with other
database servers.

A

B

Log

Triggers

A

B

C
CDC

Log or trigger-based
continuous replication

CDC Initial Load

Export/Import

Tailored App
96 IBM solidDB: Delivering Data with Extreme Speed

� In certain cases with specific requirements for timeliness and transactionality
of the data interface, the most practical approach is to design an interface
application for reading the data from one database and writing it to the other.
The interface application can be based on several mechanisms, such as the
following mechanisms:

– Running regular selects on the source database and write operations on
the target database

– Waiting for triggers to fire on the source database upon write operations,
receive notifications and write the operations on the target database.

– Using an API to access database transaction log and write the log entries
to another database. In IBM solidDB this mechanism is possible through
read operations in virtual table SYS_LOG.

Additional mechanisms exist for data transfers between IBM solidDB instances,
such as copying the entire database file either by backup or a HotStandby
netcopy operation or by using IBM solidDB Advanced replication for
subscription-based data transfer between databases. However, discussion of
these mechanisms are outside the scope of the chapter.

Choosing the right migration mechanism depends on several criteria:

� One-time operation versus a regular or continuous basis operation

For one-time operations, the simplicity of implementation is crucial for
avoiding costs. Performance and recoverability have usually limited
importance in those cases. Some clients have decided to use CDC only for
initial data load, without the need for continuous synchronization. Transferring
individual tables through ASCII-based import and export tools is simple, but
the complexity and vulnerability to manual errors increases when the number
of tables increases. Implementing a specialized application is usually too
costly for one-time operations.

For continuous operations, that need to migrate data on a near real-time
basis, the only practical options are CDC-based replication or specialized
interface application based on triggers or Log API.

� Data volumes and performance criteria

For high data volumes or situations where the data must be quickly
transferred between databases, CDC-based solutions are too slow because
configuring them to work on parallel threads is not possible. It is possible to
run parallel ASCII-based import and export tasks. Also, implementing a
specialized application can enable optimization for exact requirements.
 Chapter 4. Deploying solidDB and Universal Cache 97

� Need for recoverability during data transfer

Often having relaxed requirements for the data durability during data transfer
is possible. This is particularly true in the case of initial data loads, when the
entire task can be re-executed from the beginning. The relaxed requirements,
such as running the target system without transactional logging, can help in
speeding up all import mechanisms.

� Need for transactionality

In some cases, transactionality for migrated data is a must requirement.
Usually, this means that the data arriving at the target system is expected to
follow the transaction boundaries as they were when the data was originally
written to the source system. Generally, this requirement is impossible to
follow with table-based mechanism such as import or export. CDC-based
replication and tailored interface applications running on triggers or Log API
can enable transactional data migration.

� Simplicity of implementation and deployment

The simplest mechanisms are ASCII-based export and import tools and
CDC-based replication, assuming CDC is already installed.

� Need to process data migration

In cases where table structures in source and target databases are not
completely similar, some data processing is required for converting the data
to fit the table structure of the target database. This task often requires
implementing a specialized application to some level of the architecture or the
clever use of views in the target database. The following list describes typical
ways for doing the conversion:

– Define a set of views in the source database to match the table structure
of the target database. Export the data in views and run a regular import.

– Write a specialized application that runs selects in the source database
and populates the target database accordingly.

– Create a set of working tables in the target database that follow the table
definitions in source database and transfer the data in the most applicable
method. Implement a specialized application that reads the working tables
to populate the target tables. This option is logically similar to the previous
option, but the application can be implemented in procedure language and
can be made fully transactional.
98 IBM solidDB: Delivering Data with Extreme Speed

4.7 Administration

When deploying a production system, plan for several policies regarding system
administration. Requirements for administration policies might vary depending on
system size, value, mission criticality, recoverability and other factors. Generally,
the administration plans should cover at least the following system aspects:

� Regular health monitoring
� Recovery plan for expected failures and disasters
� Upgrade plan for expected hardware and software upgrades

This section describes the capabilities that are provided by IBM solidDB for all
three aspects and describe practical solutions that have been used with solidDB
in real production systems.

4.7.1 Regular administration operations

For production database systems, there are almost always some planned regular
administrative operations that must be completed on a regular basis. Because of
solidDB’s history in the original equipment manufacturer (OEM) market where
database administration must be automated, most of these operations take place
automatically without configuration or administration intervention. Optimizer
statistics collection and rebuilding of indexes belong to this group.

For persistent database systems, backups are an operation that must be
configured to take place at appropriate times. Also, successful completion of
backup needs to be validated.

4.7.2 Information to collect

For validating the health of a database system, be sure to regularly collect a
number of measurement values of system behavior. Failures and disasters can
be prevented by reacting to abnormal or alarming values before the disaster
actually occurs.

Table 4-1 on page 100 lists the typical measurable values to systematically
monitor to detect the system health. For capacity type values, a hard limit usually
exists, which cannot be exceeded, such as running out of disk space or memory.
If this hard limit is exceeded, the server is expected to crash. Be sure to have a
mechanism to detect the capacity growth and react either automatically,
semi-automatically, or manually.

Sporadic or continuous increases or decreases in load intensity values might be
expected or unexpected, and caused by undetected problems elsewhere in
 Chapter 4. Deploying solidDB and Universal Cache 99

system. Abnormal peaks or growth trends must be detected and reacted to.
Because there is no obvious limit for acceptable or healthy values, similar to disk
space limits, the typical approach is to collect and monitor the values, and detect
anomalies either automatically or by visual monitoring.

Table 4-1 Measurable values for monitoring

In addition to collecting numerical values of system behavior, systematic
collection of other information, such as successful completion of backups,
unexpected error messages, HotStandby role changes, abnormal amount of
failed login attempts, and regular validation of database file consistency, are
often considered necessary. The solmsg.out and solerror.out plain language
files contain information about the phenomena. Collecting the files (possibly with
proper filtering) can enable detection of the phenomena. Validating the file
consistency is possible with the -x testindex and -x testblocks command file
options.

4.7.3 Procedures to plan in advance

For a system expected to run in production for longer periods of time, many types
of upgrades are expected to take place during the life cycle of the system. To be
able to execute these upgrades smoothly and successfully and without excessive
interference with production use, the operations need to be planned in advance.

Category What to monitor Monitoring technique

Capacity

Disk Usage Database file size
Database log file size
Free disk space

pmon ‘DB size’
pmon ‘DB free size’
OS level commands

Memory footprint SolidDB memory footprint pmon ‘Mem size’

Load Intensity

Database intensity SQL Operations
Table level operations

pmon ‘SQL execute’
pmon ‘DBE insert’
pmon ‘DBE delete’
pmon ‘DBE update’

Disk usage intensity I/O load caused by
database server

OS level commands

CPU usage intensity CPU load caused by
database server

OS level commands
100 IBM solidDB: Delivering Data with Extreme Speed

In addition to preparing for various types of upgrades during the life cycle of a
system, you must prepare for types of failures in the system to avoid down time
or an excessive amount of down time in the system.

Upgrades (especially in-service upgrades) and fault tolerance are both fields of
science by their own rights. This section describes the basic techniques, required
and enabled by the IBM solidDB product, to manage several regular upgrade and
failure scenarios:

The upgrade scenarios that we describe are as follows:

� SolidDB version upgrade
� Hardware upgrade
� Application upgrades including schema upgrade
� CDC upgrades
� Architecture upgrades, moving from non-HotStandby to HotStandby

The failure scenarios that we describe are as follows:

� Hardware failures causing database failures
� Software failures causing database failures
� Other failures

SolidDB version upgrade
As a minimum, upgrading from one IBM solidDB version to another involves
shutting down the server, replacing the server executable in the appropriate
directory, and restarting. The server versions are certified to be able to
automatically open database files created by older versions of the product,
occasionally needing a specific -x convert startup option. This way is certified to
work between two major version levels. After a database has been converted to a
newer version, opening with an older version is no longer possible. The solidDB
HotStandby feature can facilitate solidDB version upgrades without system
downtime through the following process:

1. Switch the role of the server to be upgraded to Secondary.

2. Shut down the secondary server process. The application continues to run on
primary server.

3. Upgrade solidDB executable version to the new one at the server that was
just shut down.

4. Restart the upgraded server.

Note: only an upgrade through one major version is certified to work.
 Chapter 4. Deploying solidDB and Universal Cache 101

5. Connect the server with the primary either with HSB CONNECT command or
with HSB NETCOPY sequence if the servers were disconnected for a long
period of time.

6. Repeat the process with the other server.

Hardware upgrade
Upgrading the hardware solidDB process involves getting the server executable,
database file (or files), configuration file, and license file to appropriate
directories in the new hardware, and restarting the system. In environments not
having HotStandby in place, this process usually consists of shutting down the
server and either copying the files to a new location or simply moving the disk.
For HotStandby environments, hardware upgrade is possible without system
downtime with a process that closely resembles solidDB version upgrade. The
process is as follows:

1. Switch the role of the server to be upgraded to Secondary.

2. Shut solidDB process at the secondary server machine. The application
continues to run on primary server.

3. Move the database file (or files) of the server down to the new hardware. The
server executable, and configuration and license file must be in place also but
they might have been moved before.

4. Restart the upgraded server machine and start solidDB process at the
upgraded server.

5. Connect the server with the primary either with HSB CONNECT command or
with HSB NETCOPY sequence if the servers were disconnected for a long
period of time.

6. Repeat the process with the other server.

Application upgrades including schema upgrade
Most real production applications are built assuming that application can be
upgraded during the life of the database. From the database server’s
perspective, this way usually involves changing the application software version.
In a simple case, without schema change, the old version of the application is
simply shut down and a new one is started. To avoid the time needed for
application shutdown and restart, the database sets no limitation for new and old
versions of the application to be concurrently connected to the database.
Application changes without a database schema upgrade can be considered
trivial from a database perspective.
102 IBM solidDB: Delivering Data with Extreme Speed

Online application upgrades requiring changes in database schema are more
complicated. To do this process successfully, the operation must already be
considered in the design phase of the application. Similar to most other
databases, IBM solidDB offers the following features:

� Discourages against using SELECT * command in the application. When the
column structure changes, so does the result set.

� Enables adding and removing columns by the ALTER TABLE statement.
Adding a column is potentially a complex operation if a default value needs to
be populated to a large number of rows.

� Provides views and stored procedures that can be used as tools to hide the
database structure from the application. By using these tools it might be
possible to make some schema upgrades totally invisible to the application.

For a hybrid database installation (a schema upgrade that involves a disk-based
table becoming a main-memory table or vice versa) doing the operation with
ALTER TABLE is only possible for tables without data. For tables with data, the
operation must be done in several steps, as follows (which moves a disk-based
table called MY_TABLE, to main-memory):

1. Create a copy of the disk-based table with similar columns:

CREATE MY_TABLE_COPY ... STORE MEMORY

2. Copy the data from original table:

INSERT INTO COPY MY_TABLE_COPY VALUES (SELECT * FROM MY_TABLE)

3. Drop old table:

DROP TABLE MY_TABLE

4. Rename new table:

ALTER TABLE MY_TABLE_COPY TABLE_NAME MY_TABLE;

Observe that foreign key constraints referring to MY_TABLE in other tables might
have to be dropped before the process and re-created after the process. For
larger tables, consider the time required. The time needed is directly proportional
to the number of rows. The speed of mass insertion to the same table on the
same hardware and database server configuration provides a rough estimate of
the table upgrade speed.

SolidDB Universal Cache does not directly support schema change replication.
If DDL changes are required, then any associated subscriptions must be
stopped, and both the source and target tables updated (for example, by running
ALTER TABLE at both databases). Then, the table mappings in Management
Console must be updated for both the source and target tables (by right-clicking
the table in the Table Mappings view). The subscription must then be remapped
(again by right-clicking in the Table Mappings view in Management Console).
 Chapter 4. Deploying solidDB and Universal Cache 103

Finally, the subscription can be restarted. The best approach is to explicitly start
by doing a REFRESH operation to ensure that the contents of Source and Target
tables are up-to-date. Mirroring can then be started (if needed).

CDC upgrades
If Change Data Capture (CDC) has already been installed and the replication is
running, an upgrade of CDC can be installed on top of an existing one CDC.
Uninstallation is not necessary because the upgrade can occur on an installed
system. That said, a good approach is to stop the CDC components before
upgrading. When the upgrade is executed, you are asked whether to upgrade the
existing installation. If you choose to upgrade the existing installation, all
configuration settings are preserved.

Architecture upgrades
Architecture upgrades with solidDB stand-alone products are similar to hardware
upgrade operations in every respect with the exception of requiring a separate
solidDB executable to run on new architecture in place. The solidDB database
files and transaction log files are binary files with binary compatibility on all
platforms supported by the product. An ASCII-based configuration file might
require some environment-specific changes, such as exact directory paths in the
new environment.

Solid HotStandby technology can be used to enable an architecture upgrade
similar to what “Hardware upgrade” on page 102 describes.

Upgrade from a non-HotStandby solidDB installation to a HotStandby-based
installation is a relatively simple operation, which includes the following steps:

1. Installation of second machine, with a server executable, and license file in
place.

2. Configuration of the two servers to be HotStandby-enabled and aware of each
other.

3. Running the HSB SET PRIMARY alone and HSB NETCOPY commands.

4. Waiting for the old database to be copied to the new server.

5. Running the HSB CONNECT command.

solidDB HotStandby is transparent to the application, so no application changes
are required.

Hardware failures causing database failures
The solidDB HotStandby feature provides a mechanism to prevent committed
data from being lost in the case of a single hardware failure. If the machine (or a
crucial component in the machine, such as hard drive or network card) that is
104 IBM solidDB: Delivering Data with Extreme Speed

running the primary database fails, a secondary database has all the data
already running and available for queries. All this is automatic and addressed in
Chapter 5, “IBM solidDB high availability” on page 109.

When designing and configuring a HotStandby environment, consider the
following information:

� What kind of high availability mechanism is used (High Availability Controller,
Watchdog, other, none)?

� Are the applications expected to fail at the same time with the database? Can
the applications fail over seamlessly?

� How will the hardware failure be automatically detected?

� Is the application allowed to continue without changes when running in
failover mode?

For environments without HotStandby, IBM solidDB can survive some hardware
failures without loss of data by restoring a database backup. If there are three
separate physical hard drives, configuring separate drives for database files,
transaction log files, and backup files, loss of any single disk drive can be
tolerated without loss of committed transactions. Restoration of the database
might involve manual work in moving the files to the replacement environment
and starting the process, but no loss of data is implied. A separate plan for the
recovery process is suggested for production systems.

Disk failures can cause the database file or transaction log file to be physically
corrupted. With in-memory tables, the corruption usually prevents the server
from starting; corruption in the disk-based tables is detected only when the
corrupted disk block is read from the disk.

Software failures causing database failures
It is possible for the server process to go down without a hardware failure. Typical
reasons might be that the operating system is out of resources (memory, file
handles, other), an unhandled signal or deliberate process kill, or other problem.

The potential recovery processes can be as follows:

1. Restart the database process. If a problem exists with OS resources, they
might not have been released when the database stopped, and so a restart
might fail.

2. Boot the server and restart the database process. If another process was
using all the OS resources, these resources might have been released when
OS was booted.

Although restarting the database or booting the server machine might enable
restarting the database process, the reason for the unexpected database failure
 Chapter 4. Deploying solidDB and Universal Cache 105

must always be investigated. Collecting diagnostic information about operating
system and database level before the failure can be immensely helpful in this
process.

Other failures
Preparing for all types of failures outside of full database failure, is part of good
systems design. Although full discussion of the topic is beyond the scope of this
book, we briefly list failure types that you must be prepared for:

� Database-related application errors

Errors in application code or failures in administration tasks (such as schema
upgrades having failed) can lead to database error codes visible at the
application level. All unexpected errors must be captured and logged for
further analysis.

� Replication failures

When replication fails, the databases are fully responsive and appear healthy
on all database-level diagnostics. However, the data between front-end and
back-end databases are out of sync and can lead to severe application
problems. Replication must be monitored.

� Database overload or long response times

In certain systems, long response times or decreased throughput are as
serious as database failures. To manage the problems, monitor both
throughput and response times. IBM solidDB’s diagnostic features (described
in 4.7.2, “Information to collect” on page 99) provide good tools for throughput
monitoring. Monitoring response time is most practical to implement on an
application level.

4.7.4 Automation of administration by scripts

In IBM solidDB, all administrative commands can be performed by solidDB SQL
Extensions through the ADMIN COMMAND API. These SQL Extensions can be
executed in several ways:

� Manually from solsql or another SQL Editor

� Part of a script run by solsql or solcon

The solcon tool is a subset of solsql in the sense of being able to execute
only ADMIN COMMANDs. If only solcon is deployed at production site, the
administrators are unable to accidentally access the data.

� As SQL statements executed by a specific administration application through
ODBC or JDBC
106 IBM solidDB: Delivering Data with Extreme Speed

Typically, ADMIN COMMAND returns a regular SQL result set that can be viewed
or processed by the application, just as regular data. Some admin commands,
however, create a result file in the working directory of the server. For regular
monitoring purposes, these files must be collected. The common monitoring
commands that create the output to file are SQL Tracing (ADMIN COMMAND
mon on), systematic collection of pmon counters (ADMIN COMMAND pmon diff)
and detailed server variable dump (ADMIN COMMAND report).
 Chapter 4. Deploying solidDB and Universal Cache 107

108 IBM solidDB: Delivering Data with Extreme Speed

Chapter 5. IBM solidDB high availability

IBM solidDB high availability (HA) database is presented in this chapter. We
describe the principles of HA, illustrate how the solidDB HA solution works, and
how it can be used to its full potential.

Although the requirements for high level of HA are typical, for example in
carrier-grade telecommunication networks and systems, IBM solidDB and its
HotStandby technology (solidDB HSB) is used also in many other areas, such as
railway systems, airplanes, defense applications, TV broadcasting, banking and
trading applications, and so on, all the way to web applications and Point-of-Sale
systems.

Any system preferring to guarantee its uptime in case of failures should consider
making the system more redundant, and more tolerant against hardware and
software problems, and also against human errors. In short, highly available.

When thinking HA, it is important to recognize that HA is more than a replication
solution. HA thinking must include, among many other things, how to handle HA
management and how to execute automated recovery after failure situations.

5

© Copyright IBM Corp. 2011. All rights reserved. 109

5.1 High availability (HA) in databases

The goal of HA systems is to make system failures tolerable. The extent failures
are tolerable is specified with the availability measure A that is equal to the ratio
of the time a service is operational to the total time the service is supposed to be
operational. Availability may be derived from the maximum duration of an outage
(equal to mean time to repair, MTTR) and the frequency of outages (represented
with mean time between failures, MTBF), by using the following formula:

The value of A in the formula can be measured over a longer time or be
calculated based on some estimates. The higher the value of A, the better is the
availability of a system. When the required value of A is close to 1, the value of
MTTR becomes small. For example, for A being 0.99999 (referred to as the five 9’s
availability), the total yearly MTTR is approximately 5 minutes. In a six 9’s system,
it is close to 30 seconds. Given the fact that there can be more than one failure
per year (that depending on the reliability of the system) the time left to a single
repair is a fraction of the yearly MTTR. It is not difficult to guess that the action of
repair cannot be left to humans in systems aspiring to more 9’s than four. It has to
be performed by an automated system. An HA system is synonymous with a
system having components designated to detect failures and deal with them
automatically.

To deal with failures, an HA system embodies redundancy both in hardware and
software. Redundant system parts are used to mask the failures. Various
redundancy models can be applied. In the simplest redundancy model, called 2N,
or hot standby, the two units, active and standby, make up a mated pair. If a
failure occurs, the failed active unit (hardware or software) is quickly replaced
with a corresponding standby unit. That operation is called a failover. The
purpose of failover is to maintain the required availability level, in the presence of
failures. Other possible redundancy models are, for example, N+1 (several active
and one standby unit) and N*Active whereby all units are active, and the failure is
masked by redistributing the load over the surviving units.

The availability of the database services is maintained by using similar
approaches. In this chapter, the focus is on the principles and usage of solidDB
hot-standby DBMS.

A
MTBF

MTBF + MTTR
=

110 IBM solidDB: Delivering Data with Extreme Speed

5.2 IBM solidDB HotStandby

IBM solidDB HotStandby (HSB) is an HA solution offered with solidDB. The
normal solidDB product package image contains all the necessary components
needed to enact the HA configuration. For example, the same server binary is
used for both stand-alone and HotStandby operation modes. The latter one is
enabled with configuration parameters. There are also other HA components that
are described in this section.

5.2.1 Architecture

In solidDB HSB, a stream of transactions is continuously sent from the Primary
(active) server to the Secondary (standby) server, by way of a replication
protocol, as depicted in Figure 5-1. The connection between the servers is called
an HSB link.

Figure 5-1 Hot-standby database

Figure 5-1 represents a shared-nothing HA DBMS. In a shared-nothing system,
all the components of a HA DBMS are redundant, including the persistent data
storage. Note that, even in the case of an in-memory database, there is
persistent storage, allowing for recovery of the database. In a shared-nothing
system, you are also protected against media failures. On the contrary, in a
shared-disk (or shared-storage) system, the assumption is that the common
storage does not ever fail.

What differentiates an HA DBMS from one that is non-HA is the existence of an
HA state machine, in the database server. The HA state machine makes the
server aware of the HA state. The importance of the HA state machine is in
preserving the database consistency. For example, when the server is in the

IBM Software Group | Information Management Software | solidDB

Transactional
Replication

solidDB HSB server

HA State Machine

Primary Secondary

Persi

Persistency Persistency

solidDB HSB serversolidDB HSB server

HA State Machine

In-Memory

Engine

Disk-Based

Engine
 Chapter 5. IBM solidDB high availability 111

Secondary state, receiving the transaction stream from the Primary, updates to
the Secondary database will be disabled.

If any failure on the Primary site occurs, the failover takes place as depicted in
Figure 5-2.

Figure 5-2 Failover

In a failover, two events happen:

1. The Secondary server takes over as a new Primary.
2. The applications are reconnected to the new Primary.

The way this happens is described in the subsequent sections.

5.2.2 State behavior of solidDB HSB

IBM solidDB implements an internal HA state machine to allow consistent
approach to well defined HA Management. Thanks to clearly defined states and
transitions from one state to another, HA Management can be built reliably, for
the purposes of health monitoring, failure handing and recovery actions.

The HA state machine of solidDB HSB is illustrated with a simplified state
diagram, as shown in Figure 5-3 on page 113. The operational hot-standby
states are shown on the right side of the diagram: PRIMARY ACTIVE (active)

IBM Software Group | Information Management Software | solidDB

Node 2

solidDB HSB Server

Application

Server Failover

Application Connection
Failover

solidDB serversolidDB server

In-Memory

Engine

Disk-Based

Engine

Data
Persistency

Node 1
112 IBM solidDB: Delivering Data with Extreme Speed

and SECONDARY ACTIVE (standby). Other states come into the picture when
taking care of various failure, startup, and in reconfiguration scenarios.

Figure 5-3 State transition diagram of solidDB HSB

The state behavior is externalized in the form of commands for invoking state
transition and querying the state. The commands are available to applications (or
a dedicated HA controller) as extensions of the SQL language (for a full
description of the states and transitions, see the IBM solidDB: High Availability
User Guide, SC23-9873). The transitions shown in bold are executed
autonomously by the database server process. They have to do with falling back
to a disconnected state (that is, PRIMARY ALONE or SECONDARY ALONE),
both on the Primary and Secondary side, if a communication failure occurs
between Primary and Secondary. This behavior is possible thanks to a built-in
heartbeat function. All other transitions are invoked with administration
commands.

Thus, the crucial failover transition is invoked by an external entity, such as a
dedicated HA controller or a general-purpose HA framework. It is performed with
a single solidDB admin command, hsb set primary alone, that may be issued
in both the SECONDARY ACTIVE and SECONDARY ALONE state (because
the Secondary server might have fallen back to the ALONE state already). The
resulting state is PRIMARY ALONE, that is HA-aware in the sense that it
involves collecting committed transactions to be delivered later to the Secondary,
upon reconnect and the resulting catchup (that is, resynchronizing the database
state).

If a failure occurs, the situation we are dealing with is such that no reconnection
is likely to happen in the near future; there is a possibility to move to a pure

IBM Software Group | Information Management Software | solidDB

PRIMARY
ACTIVE

SECONDARY
ACTIVE

PRIMARY
ALONE

SECONDARY
ALONE

STANDALONE PRIMARY
UNCERTAIN

OFFLINE
Start

(no database)

Start
(database

exists)
Failover

Switchover

Autonomous
Transition

Externally Stimulated
Transition

Connect

Connect
 Chapter 5. IBM solidDB high availability 113

STANDALONE state that has no HA-awareness. In that case, future actions may
include restarting a Secondary database server without a database, and sending
a database over the network (referred to as netcopy). For this purpose, a startup
state OFFLINE exists. Its only purpose is to receive the database with a netcopy.
After the successful netcopy, the state SECONDARY ALONE is reached, and the
admin command connect brings both servers back into the operational
hot-standby state. However, if a secondary database already exists, the startup
state is SECONDARY ALONE.

The auxiliary state PRIMARY UNCERTAIN is meant for reliably dealing with
Secondary failures. If the internal heartbeat alerts the Primary server that the
communication with the Secondary has failed, and there are transaction commits
that have been sent but not acknowledged by the Secondary, the resulting state
is PRIMARY UNCERTAIN. In this state, the outstanding commits are blocked
until resolved. The resolution may happen automatically when the Secondary
becomes reconnected. Alternatively, if the Secondary is assumed to become
defunct for a longer period of time, command-invoked transitions are possible,
that is, to PRIMARY ALONE whereby the outstanding commits are accepted.

In addition to the transitions dealing with failures, a role switch may be performed
for maintenance purposes. It is invoked with dedicated admin commands hsb
switch [to] primary and hsb switch [to] secondary. That operation is called a
switchover.

5.2.3 solidDB HSB replication and transaction logging

The purpose of the HSB replication protocol is to carry the transaction results
safely from the Primary and Secondary, over the HSB link. When delivered, the
data serves the purposes of allowing for the following events:

� Failover, preserving the database state
� Read-only load, to be applied to the Secondary

The replication protocol “lives” in a certain symbiosis with the local transaction
logging.

Transaction Logging
Both the replication and transaction logging move the committed transactions out
of the volatile memory, as depicted in Figure 5-4 on page 115.

Note: The PRIMARY UNCERTAIN state is not mandatory, it may be
by-passed with a configuration parameter setting.
114 IBM solidDB: Delivering Data with Extreme Speed

The Primary DB and Secondary DB represent persistent storage of the data.
The Primary DB is a live database updated by the transactions running on the
Active server. The Secondary DB is kept up-to-date by way of a replication
protocol. The Secondary DB may be subjected to read-only load, if necessary.
Logger is a thread that writes the transaction log (Log), which is one or more
persistent files to store the effects of transactions as they are executed in the
server. The Log is instrumental in making it possible to perform a startup
database recovery. Startup recovery happens when any server is started as a
process. It is assumed that a checkpointed database file and log files exist. A
checkpointed database file is a materialization of a consistent snapshot of a
database state stored in a file. The state typically represent some point in the
past. In solidDB, the database file always contains a valid checkpoint.

Figure 5-4 Replication and logging in solidDB HSB

In the recovery process, the Log is used to bring the database to the latest
consistent state, by performing the following actions:

1. Removing the effects of uncommitted transactions

2. Re-executing committed transactions that have not been checkpointed to the
database.

If we deal with a stand-alone database system (not hot standby), the recovery
process preserves the atomicity and durability characteristics of the database
over system failures and shut downs:

� Atomicity means that no partial transaction results are persistently stored in
the database (nor visible to other transactions)

� Durability means that a transaction, when committed, will never be lost, even
if a failure immediately follows the commit.

In enterprise databases, the standard level of durability support is called
strict durability. It requires that the commit record of a transaction is written
synchronously to the persistent medium (disk) before the commit call is
returned to the application. The technique is often referred to as write-ahead

IBM Software Group | Information Management Software | solidDB

Commit

OK

Log LogPrimary
DB

Secondary
DB

Primary Server Secondary Server

Replication
Protocol

Transaction
Logger

Transaction
Logger
 Chapter 5. IBM solidDB high availability 115

logging (WAL). WAL processing is resource-consuming and it often becomes a
bottleneck in the system. Therefore, when the durability requirement can be
relaxed, it is done. Especially, in the telecommunication environment, in some
applications such as call setup and session initiation, a service request is
occasionally allowed to fail (and be lost) if the probability is not high. In such a
case, relaxed durability may be applied whereby the log is written
asynchronously, which means that the commit call can be returned without the
need to wait for the disk write. The result is significant improvement in both the
system throughput and response time.

Replication
In an HSB database, transactions are also sent to the Secondary server by way
of a replication protocol. To preserve the database consistency in the presence of
failovers, the replication protocol is built much on the same principles as physical
log writing. That is, the transaction order is preserved, and commit records
demarcate committed transactions. If a failover happens, the Standby server
performs a similar database recovery as though a transaction log was used. The
uncommitted transactions are removed and the committed ones are queued for
execution.

Similar to log writing, the replication protocol may be asynchronous or
synchronous. To picture that, we use the concept of a safeness level where
1-safe denotes an asynchronous protocol and 2-safe denotes a synchronous
one. The two safeness levels are illustrated in Figure 5-5.

Figure 5-5 Illustration of the 1-safe and 2-safe replication protocol

IBM Software Group | Information Management Software | so

1-safe

Commit

OK

Committed transaction

OK

Commit
OK

Committed transaction

OK

Primary
DB

Secondary
DB

Active server Standby server

Active server Standby server

Secondary
DB

Primary
DB

2-safe
116 IBM solidDB: Delivering Data with Extreme Speed

You may see that the benefit of 1-safe replication is similar to that of relaxed
durability. That is, the transaction response time is improved, and the throughput
may be expected to be higher, too. On the other hand, with 2-safe replication, no
committed transactions are lost upon failover. You might call this transaction
characteristic standby-based strict durability, as opposed to log-based strict
durability of a traditional DBMS. One immediate observation is that the log-based
durability level has no effect on actual durability of transactions in the presence
of failover. It is the standby-based durability that counts. The traditional log
writing is relegated to the role of facilitating the database system recovery in the
case of a total system failure. All other (more typical) failures are supposed to be
taken care of by failovers. If a total system failure is unlikely (as builders of HA
systems want to believe), a natural choice is to replace strict log-based durability
with strict standby-based durability, which is the 2-safe protocol. Here, the gain is
a faster log processing without really loosing strict durability (if only single failures
are considered).

Adaptive durability
To take the full advantage of the possibility to use the standby-based durability,
the solidDB HA DBMS has an automated feature called adaptive durability
(depicted in Figure 5-6). With adaptive durability, the Active server's log writing is
automatically switched to strict if a node starts to operate without a standby.
Otherwise, the Active server operates with relaxed durability.

Figure 5-6 Adaptive durability

IBM Software Group | Information Management Software | sol

Normal HSB Operation (2-safe Received)

After Failure, with PRIMARY ALONE

Commit

OK

log
log

Asynchronous
Logging

Commit

OK

log

Synchronous
Logging

DB

DB

DB
 Chapter 5. IBM solidDB high availability 117

The possibility to transfer the log writing responsibility from the disk to the
network is tempting because, by a common perception, a message round-trip
travel over a high-speed network might be almost an order of magnitude faster
than writing synchronously to the disk.

That perception was verified with a performance test. In the tests, both Primary
and Secondary were dual CPU (Intel Xeon® E5410 2.33 GHz) systems each
having a total of eight cores, two SATA disks and 16 GB of memory. The
operating system was Linux RHEL 5.2. The load generator (TATP) was
connected to the solidDB in-memory database by way of the shared memory
access (SMA) driver library. The test used eight concurrent load generation
threads.

With solidDB HSB running 2-safe protocol, the log-based durability was switched
between strict and relaxed. The results are shown in Figure 5-7, for two
read/write mix ratios being 80/20 and 20/80. The results were obtained with the
Telecom Application Transaction Processing (TATP) Benchmark1.

Figure 5-7 Impact of logging synchrony on performance

Levels of 2-safe replication
In addition to the choice between 1-safe and 2-safe replication, 2-safe protocols
can be implemented with various levels of involvement of the Secondary server
in the processing of the commit message.

1 http://tatpbenchmark.sourceforge.net

9035

36459

18379

72274

0

10000

20000

30000

40000

50000

60000

70000

80000

R20/W80 R80/W20

T
ra

n
s

ac
ti

o
n

s
 p

e
r

s
ec

o
n

d

Strict, 2-Safe Received Relaxed, 2-Safe Received
118 IBM solidDB: Delivering Data with Extreme Speed

http://tatpbenchmark.sourceforge.net

The following 2-safe policy levels are defined:

� 2-safe received: the Standby server sends the response immediately upon
receipt.

� 2-safe visible: the Standby server processes the transaction to the point that
the results are externally visible (in-memory commit).

� 2-safe durable: the Standby process processes the transaction to the point
that it is written to a persistent log (strictly durable commit).

The three policy levels are illustrated in Figure 5-8.

Figure 5-8 2-safe replication: policy levels

Of the three 2-safe policy levels, 2-safe received, is intuitively the fastest and
2-safe durable the most reliable. In a system with 2-safe durable replication, the
database can survive a total system crash and, additionally, a media failure on
one of the nodes. This comes, however, at a cost of multiple synchrony in the
system.

The 2-safe visible level is meant to increase the system utility by maintaining the
same externally visible state at both the Active and Standby servers. Thus, if the
transactions are run at both the Active and Standby servers (read-only
transactions at Standby), they see the database states in the Primary DB and

© 2008 IBM Corporati1 2/1/2011

IBM Software Group | Information Management Software | solidDB

2-Safe Received

Commit

OK

Commit
OK

asynchronous logging

asynchronous logging

Active Server Standby Server

Log Log

2-Safe Visible

2-Safe Durable

DB

DB

DB

DBLog Log

Commit

OK

synchronous logging

DB DBLog Log

Responding
only

Committing
transaction
in-memory

Committing
transaction
durably

Committed Transaction

Committed Transaction

Committed Transaction
 Chapter 5. IBM solidDB high availability 119

Secondary DB as mutually snapshot-consistent. The cost of maintaining this
consistency level involves waiting for the transaction execution in the Standby
server, before acknowledging the commit message.

To summarize, the intuitive rules for choosing the best trade-off between
performance and reliability are as follows:

� To protect against single failures, while allowing for some transactions to be
lost on failover, use 1-safe replication with relaxed log-based durability.

� To protect against single failures, with no transactions lost on failover, use
2-safe received replication with relaxed log-based durability.

� To protect against single failures, with no transactions lost on failover and a
possibility to use the Primary and Secondary databases concurrently, use
2-safe visible replication with relaxed log-based durability.

� To protect against total system failure (in addition to single-point failures), use
any 2-safe protocol and strict log-based durability in the Active server.

� To protect against total system failure and a media failure, use 2-safe durable
replication with strict log-based durability in both the Active and Standby
servers.

Another worthwhile item to note is that a third dimension in assessing various
replication protocols is the failover time. The further transactions are processed
in the Standby server at the time of a failover, the faster the failover. The
protocols may be ordered by the failover time, from the shortest to the longest, in
the following way: 2-safe durable, 2-safe visible, 2-safe received, and 1-safe.

In the performance testing experiments, we study the effect of all the parameters
(we listed) on the system performance. We take advantage of the fact the
solidDB HSB has all the necessary controls, both in the form of configuration
parameters and dynamic administrative commands.
120 IBM solidDB: Delivering Data with Extreme Speed

The performance results displaying the impact of the protocol synchrony on
performance are shown in Figure 5-9.

Figure 5-9 Impact of protocol synchrony on performance

You can see that the more asynchronous is the protocol, the more performance
that can be delivered.

You may tune the system to reflect the needed trade-off. In most cases, the
default replication and logging settings reflected with Adaptive Durability using
the 2-safe received protocol is the best match.

5.2.4 Uninterruptable system maintenance and rolling upgrades

To be able to run a database system for a longer period of time, there must be
means to do necessary configuration changes, satisfy ad-hoc monitoring needs,
and perform software updates without ever needing to shut down the system.
These possibilities are available in solidDB.

Dynamic reconfiguration
A number of configuration parameters are defined in the configuration file,
typically named solid.ini.

A need to change some of those parameters might appear because of changes
in the application load or run environment. Many of solidDB configuration
parameters can be changed online and immediately take effect. They are
indicated with the access mode being RW, in the documentation. In particular, all
crucial HSB configuration parameter are of that type.

7234

29631

15627

55467

18379

72274

33259

138677

0

20000

40000

60000

80000

100000

120000

140000

160000

R20/W80 R80/W20

Read/Write Ratio

T
ra

n
sa

c
ti

o
n

s
p

e
r

se
c

o
n

d

Strict, 2-Safe Durable Relaxed, 2-Safe Visible Relaxed, 2-Safe Received Relaxed, 1-Safe
 Chapter 5. IBM solidDB high availability 121

Included is also a parameter telling what is the HSB connect string pointing to the
mate node. By using the possibility to change that value, and the switchover
capability, you can move the HSB processes, for example, to more powerful
hardware, if needed. Assume that the current configuration includes the systems
P1 and S1 serving as the Primary and Secondary nodes, respectively. Say, we
have two other more powerful computers, P2 and S2 that we want to move the
HSB operation to, in an uninterruptable way. The way to do that is as follows:

1. Disconnect the servers (P1 runs as Primary Alone).

2. Install solidDB on S2.

3. Move the Secondary working directories from S1 to S2 and update the
configuration file.

4. Start solidDB at S2 (it starts as Secondary Alone).

5. Update the HSB connect string in P1 to point to S2.

6. Connect the servers (after the catchup is completed, P1 runs as Primary
Active).

7. Switch the servers (S2 runs as Primary Active).

8. Disconnect the servers (S2 runs as Primary Alone).

9. Install solidDB on P2.

10.Move the solidDB working directories from P1 to P2.

11.Start solidDB at P2 (it starts as Secondary Alone).

12.Update the HSB connect string in S2 to point to P2.

13.Connect the servers (after the catchup is completed, S2 runs as Primary
Active).

14.To arrive at a preferred configuration, switch the servers (P2 runs as Primary
Active and S2 as Secondary Active).

These interactions with the solidDB servers are performed with admin
commands. The sequence can also be automated with a scripts, or a program.

On-line monitoring
When a system is running for a longer time, non-anticipated monitoring needs
may appear, having to do with performance tuning or problem tracking. In
solidDB, various traces can be enabled and disabled dynamically, and one-time
performance reports can be produced. For more information about performance,
see Chapter 6, “Performance and troubleshooting” on page 147.
122 IBM solidDB: Delivering Data with Extreme Speed

Uninterruptable software updates (rolling upgrades)
In a continuously running system, an obvious need to upgrade the software to a
new version might appear. In solidDB, that is possible with the capability of
rolling upgrades. Similar to the case of online hardware reconfiguration,
advantage is taken of the fact that the Secondary server can be shut down
temporarily. Additionally, an important feature used here is the possibility of the
Secondary server to run a newer solidDB version than that of the Primary server.

Briefly, a rolling upgrade of an HSB system to a newer software version is
performed with the following sequence of steps. Assume there are two nodes, A
and B, running originally the Primary and Secondary database servers,
respectively, at a version level V1:

1. Node A runs a Primary Active database, node B runs Secondary Active.

2. Disconnect the servers (A runs now as Primary Alone), shutdown solidDB on
node B.

3. Upgrade solidDB to a new version V2 on B.

4. Start solidDB at B (it starts as Secondary Alone).

5. Reconnect the servers (after catchup, A runs as Primary Active).

6. Force a failover to B (by killing A, or with an admin command -- now B runs as
Primary Alone).

7. Upgrade solidDB to version V2 on A.

8. Start solidDB at A (it starts as Secondary Alone).

9. Reconnect the servers (B runs as Primary Active).

10.To arrive at the original configuration, switch the servers (A runs as Primary
Active and B as Secondary Active).

Upgrading the ODBC and JDBC drivers can be done at any point in time by
deploying the new library / JDBC jar file and restarting the application instance. If
the database server and the client side are upgraded at different times, the
database server should be upgraded first.

Database schema changes can be done online also. These are (DDL) SQL
statements, and should be executed against the Primary database. IBM solidDB
replicates these SQL statements to the Secondary database, keeping the
databases in sync also for these changes. Use proper planning for online
schema changes to avoid any problems to applications using the database at the
same time. Also, mass data migrations need to be planned, for example to avoid
the effects of adding a column and populating a new value to a large-sized table
in one transaction, because it can cause unexpected load peaks.
 Chapter 5. IBM solidDB high availability 123

5.3 HA management in solidDB HSB

The primary role of any HA architecture is to maintain system availability in the
presence of failures. In a hot-standby system such as solidDB HSB, a failure of
the Primary process or Primary node is followed by a failover to the Secondary
server. In executing a failover, a governing principle is that no single solidDB
server can make that decision on its own because a single server does not have
sufficient information for doing that. If the failover was the responsibility of a
server, then, in the case of network partitioning (HSB link failure), the two servers
might decide that each becomes a Primary Alone (a split-brain scenario). Dual
Primaries are not allowed because there are no consistency-preserving methods
to merge two databases having different histories into one Primary database. For
this reason, the responsibility to decide about a failover, and execute it, is
deployed within a component (or components) outside of the HSB servers. The
functionality in question is called HA control. In this section, we introduce three
ways to implement HA control in solidDB HSB.

5.3.1 HA control with a third-party HA framework

If solidDB becomes a part of a broader HA system, capacity to execute HA
control might already be in that system. The necessary functionality can be a
part of a cluster management software or other generalized HA management
software that can be abstracted as an HA framework. In that case, solidDB is
integrated with the rest of the HA system, such as depicted in Figure 5-10.

Figure 5-10 Using and external HA framework

Node A

solidDB
HSB

solidDB HSB
Replication

Primary Secondary

TM1 load
generator
Applications

Node B

Distributed HA framework

solidDB adapter solidDB adapter

solidDB admin commands

Distributed HA framework
124 IBM solidDB: Delivering Data with Extreme Speed

An HA framework is typically a distributed software having an instance running
on each node of the system. First, it is responsible for failure detection. Detecting
hardware and operating system failures is unrelated to solidDB. Detecting
solidDB process failures is implement by a heart beat method, possibly based on
polling. If there is a failover, the HA framework commands all relevant
components with state change primitives. If there is an operator interface, the
operator commands are passed to system components also. The reporting of the
component state travels the other way around. The tasks of integrating solidDB
into such a system involves developing a solidDB adaptation (of scripts or
interface calls) that translates the primitives of the HA framework to solidDB
commands.

5.3.2 HA control with the watchdog sample

The solidDB product package has a sample program called Watchdog (in the
HSB sample set) that implements a rudimentary HA control. Watchdog is used in
a configuration such as the one shown in Figure 5-11.

Figure 5-11 Using the Watchdog sample program

Watchdog includes both the failure detection and failover logic. The former is
based on time-outs of active heart beat requests. If the Primary does not
respond, it is considered to have failed. This method is prone to false failures or
of having too long a failure detection time, depending on the timeout settings.
Another deficiency is that the Watchdog instance is not backed up in any way.
Thus, the sample is not meant for production use as such. However, it can be
used as an area for experimenting with solidDB HA commands.

IBM Software Group | Information Management Software | solidDB

Node A

solidDB
HSB

soliDBd HSB
Replication

Primary Secondary

TM1 load
generator
Applications

Node B

solidDB admin commands

solidDB
watchdog

sample
 Chapter 5. IBM solidDB high availability 125

5.3.3 Using solidDB HA Controller (HAC)

A production-ready solution to solidDB-only HA control is called HA Controller
(HAC). HAC binaries are distributed with the product. HAC is used in the form of
two instances running on both the Primary and Secondary nodes, as shown in
Figure 5-12.

Figure 5-12 Using solidDB HA Controller

Failure detection in HAC is based on solidDB events. A surviving server will notify
HAC of the failure of the mate node or server. The event-based method is fast
and allows for sub-second failovers. The failover logic guarantees an
unambiguous failover decision in all failure cases other than HSB link failures.
For a remedy to deal with those, see the information about External Reference
Entity, in 5.3.4, “Preventing Dual Primaries and Split-Brain scenarios” on
page 128.

HAC can also be configured to start and restart solidDB servers automatically.

IBM Software Group | Information Management Software | solidDB

Node A

HA Admin
Node

GUI-based HA Manager

JDBC

HA Manager GUI

solidDB
HSB

Solid HSB
Replication

solidDB HA Controller solidDB HA Controller

Primary Secondary

TM1 load
generator
Applications

Node B
126 IBM solidDB: Delivering Data with Extreme Speed

In connection with HAC, a basic GUI-based administrator tool is available, called
HA Manager (HAM), as shown in Figure 5-13.

Figure 5-13 HA Manager GUI

HAM is a Java-based, cross-platform tool where any number of instances can be
active in a system. The GUI of HAM displays the HA state of the servers, the
direction of replication, the state of the HSB link, and the state of HAC.

The Automatic mode of HAC means that both failure detection and failover
execution is enabled. The mode can be changed to Administrative whereby the
failover execution is disabled. Additionally, the execution of HAC can suspended
and resumed. The GUI controls included allow the administrator to perform
server switchovers and change the HAC states.

The HAC binary is available in the HAC sample directory, in the product package.

IBM Software Group | Information Management Software |

File HAC1 HAC2

IBM solidDB HotStandby

Node: Server 1 Node: Server 2

solidDB solidDB

Primary Active Secondary Active

Connected HA Controller
Mode: Automatic

HA Controller
Mode: Automatic
 Chapter 5. IBM solidDB high availability 127

5.3.4 Preventing Dual Primaries and Split-Brain scenarios

A HAC configuration shown in Figure 5-12 on page 126 can be used only if the
HSB link is assumed to be failure-free. That might well be the case in blade
systems having backplane network wiring and redundant network interface
controllers.

In all other cases, HAC should be configured to use a HSB link failure detection
method called External Reference Entity (ERE). A configuration using ERE is
shown in Figure 5-14.

Figure 5-14 HA Controller used with the External Reference Entity

ERE represents a system component having a network address. It is assumed
that a device suitable for ERE function already exists in the system. Such a
device can be, for example, a network switch that is capable of responding to
ping requests (most are). Another possibility is to use any other computer node
available in the system, for that purpose. ERE does not require any additional
software instance to be installed in the device. A capability to respond to
standard ping requests is sufficient.

Using an ERE configuration with HAC prevents both nodes to become a Primary
(Alone) database at the same time, preventing from a split-brain scenario.

The ERE method works as follows:

� The HSB link consists of two sublinks: a and b.

� When a failure occurs in any component included in the HSB link, at most one
of the HACs can access ERE. In that case the solidDB server of that node will
become the Primary server. For example, if the sublink a, in Figure 5-14, fails,
the Node B becomes the Primary node, and HAC will switch the database to
Secondary Alone mode on the node that cannot ping the ERE.

� To enable the ERE method, it is enough to enter the network address of ERE
into the HAC configuration file, hac.ini.

IBM Software Group | Information Management Software | solidDB

Node B

solidDB HA Controller solidDB HA Controller

Primary Secondary

Node A

ERE

Hub

a b
128 IBM solidDB: Delivering Data with Extreme Speed

5.4 Use of solidDB HSB in applications

In this section, we discuss how the applications use the underlying database pair.
As examples, which database connect to, how the failures and failovers are seen
by the application, and how to handle the failovers are typically in the error
handling part of the application code.

The way the application should connect to the IBM solidDB HotStandby
database pair might vary depending on where the application resides (compared
to the database it is using), and depending on the preferred level of automation in
failover situations.

In the classic sense, when an application uses a database, it connects to one
database, and uses that database for all the queries, reads, and writes. If that
database becomes unavailable, the connection is broken and the application has
to wait until it can reconnect again to the same database.

Now, with IBM solidDB HotStandby pair, there are two databases, both live and
running, mirroring each other and having the same content. Therefore, the
application has more options available, and more responsibilities of making sure
that the service the application provides to its users is able to continue even if
one of the database nodes fails.

5.4.1 Location of applications in the system

In terms of where the applications run, in relation to the nodes where the
database (or databases) run, two basic topologies exist.

In the first one, the application runs on a node separate from the database (or
databases), as illustrated in Figure 5-15.

Figure 5-15 Application runs in a separate node from the databases

Node A Node B

Application
 Chapter 5. IBM solidDB high availability 129

With this topology, the application normally continues to run regardless if one of
the database nodes fail, and regardless of the reason for that failure (for
example, the database, the underlying hardware or operating environment, or the
network between the application node and the database node). The application
may get an error message, and is unable to continue using the failed database.
However, the application continues to run, and it can decide how to handle the
error and what to do next. In the following sections, we describe in more detail
how this failover handling can be resolved.

In the second topology, the application runs in the same node as the database,
as illustrated in Figure 5-16.

Figure 5-16 Application runs on the same node as the database

In this case, a node failure may, and most likely will, result in both a database and
application failure, especially if the failure is because of a severe hardware
problem. Therefore, the application must also be made redundant to ensure
continuous application/service availability. Typically, with this topology, the entire
node and all the related components and services are failed over to the
standby/secondary node. If this is the case, the application may not need to be
aware of the second database. It will always be using only one database, the
local one.

More granular approaches can be used also, where each system component can
have its own redundancy policies and individual components can be failed over
separately, but they typically require more sophisticated high availability
management and component monitoring.

Node A Node B

Application Application
130 IBM solidDB: Delivering Data with Extreme Speed

As an example, illustrated in Figure 5-17, both applications can be active and
using either database, or both at the same time, making full use of the available
hardware and database resources. In the case of a component failure, such as a
database software failure, both applications can still continue and use the
remaining database.

Figure 5-17 Two-node service cluster

5.4.2 Failover transparency

With topologies where the application should survive a database failure, the
application can use the optional transparent failover functionality built into the
solidDB JDBC and ODBC drivers.

When the built-in transparent failover mechanism is used, the application takes
one logical connection to the database, but gives two (or more) connection
strings (or URLs) to the solidDB driver. The solidDB JDBC/ODBC driver then
chooses automatically the then-current HotStandby Primary database, and uses
a physical connection to that database for query execution. The logic for the
database selection is built into the driver.

If the then-current Primary database (or database node) fails, the physical
connection is broken, and all pending query and transaction data of the last,
ongoing transaction, is lost. To ease the recovery from the situation, and to
enable the application to continue after the failure, the solidDB JDBC/ODBC
drivers contain the following functionality:

1. The driver returns a 25216 native error code to the last SQL execution, to
which the application should respond with a rollback request, as part of its
error handling sequence.

2. As part of the rollback execution, the solidDB driver then finds, automatically,
the new HotStandby Primary database.

Application Application
 Chapter 5. IBM solidDB high availability 131

3. After the rollback call returns, the application can continue to use the same
logical connection handle (without a need to re-connect to the database); and
internally the driver now uses a new physical connection to the new Primary
database.

4. The application can ask the driver to additionally preserve several connection
level attributes, such as the used database catalog, schema, and timeout
settings, and also all the prepared statements. This way the application can
continue (after the rollback) directly with a re-execute of the last transaction,
without having to re-prepare all SQL statements and without having to set any
specific connection attributes.

5. To speed up the failover handling, the solidDB JDBC/ODBC driver is also
(internally) listening to HotStandby system events from the then-current
Secondary database. The built-in event listening mechanism notifies the
driver right away about a database failure, making the reaction time shorter.

To activate the IBM solidDB transparent failover functionality, the application must
set the TF_LEVEL connection attribute (with ODBC) at the time, taking the
database connection, or set a database connection property (with JDBC) called
SOLID_TF_LEVEL.

The value NONE means no transparent failure handling by the JDBC/ODBC
driver (default). The value CONNECTION automates the reconnection to the new
Primary database, and the value SESSION automates the session (on top of the
reconnect) and preserves the connection level attributes and the prepared
statements.

If the transparent failover functionality is not used, the application’s error handling
code must implement many parts of the reconnection to the database, verifying
its hotstandby state and re-preparing the SQL statements.

Each application connecting to the database can choose to use any of the
available options.

The IBM solidDB High Availability User Guide, SC23-9873, contains more details
about the supported functionality, and also samples of the connection strings and
URLs to use. The solidDB installation package contains sample C and Java
program code for both ODBC and JDBC applications using the transparent
failover handling.
132 IBM solidDB: Delivering Data with Extreme Speed

5.4.3 Load balancing

In addition to the transparent failover built-in functionality, the solidDB
JDBC/ODBC drivers also contain support for load balancing of the query
execution.

The basis for the load balancing is the fact that there are two (HotStandby)
databases running at the same time, and the two databases are in sync
regarding the content. Therefore, any read query will provide the same result
regardless of whether it is executed in the Primary or the Secondary database.

When the load balancing is activated, the JDBC/ODBC driver uses two physical
connections, one to each database, and allocates the query load to the workload
connection. The workload connection is selected based on query type (such as
read or write), and the then-current load in the database servers.

Several main principles in the solidDB HotStandby load balancing
implementation are as follows:

� Read-only queries (at the read committed isolation level) can be executed in
either database.

� Read queries needing higher isolation level (repeatable read, select for
update) are executed in the Primary database.

� Write queries are executed in the Primary database.

� Read queries after any write operation within same transaction are executed
in the Primary database (to ensure that updated rows are visible for
subsequent reads).

� Internal read/write level consistency of the databases is ensured so that after
a write transaction is committed, the secondary database is not used for
reading from the same connection until the secondary database is up-to-date
for that write. This way eliminates the possibility that if the 1-safe or 2-safe
received HotStandby replication protocol is used, the next read transaction
would not see committed data from the previous write transaction.

The selection of the workload connection is automated by IBM solidDB, and the
load balancing is automatic and transparent to the application.

As a result, especially read-centric applications can easily balance out the load
between the two database servers, and use the full CPU capacity of both
servers.

The load balancing is activated with ODBC driver by setting the
PREFERRED_ACCESS connection attribute to value READ_MOSTLY; or with
 Chapter 5. IBM solidDB high availability 133

JDBC driver by setting the property called solid_preferred_access to value
READ_MOSTLY.

Each application connecting to the database can choose to use the load
balancing functionality, or choose to use the Primary database for all queries
(default).

The IBM solidDB: High Availability User Guide, SC23-9873 and the IBM solidDB:
Programmer Guide, SC23-9870 contain more details about the supported
functionality, and also samples of the connection strings/URLs to use. The
solidDB installation package contains sample C and Java program code for both
ODBC and JDBC applications using the load balancing functionality.

5.4.4 Linked applications versus client/server applications

Most of the discussion regarding transparent failover and load balancing are
related to client/server use of solidDB, that is, where the client applications
connect to solidDB database server with a TCP/IP connection or similar socket
based communication mechanism.

With the linked library mode, and with the shared memory mode, the application
is more tightly and directly linked to one solidDB database instance. Although
this may be enhanced in future solidDB releases, in the current release, the
transparent failover and load balancing functionality is not yet supported for these
applications.

5.5 Usage guidelines, use cases

IBM solidDB HotStandby comes with configuration parameters preset to offer the
best trade-off of performance, availability and data safeness, in most common
cases. In this section, we describe those trade-offs and show how other choices
can be made if needed.

5.5.1 Performance considerations

Several aspects of performance must be considered when looking at the best
performance for a HA system.

In addition to the topics discussed in the following text, the main performance
optimization effort should be, as always with relational databases, targeted to
optimize the SQL query and schema design. Poor performance is always best
134 IBM solidDB: Delivering Data with Extreme Speed

corrected by looking at and enhancing the SQL queries, indexes, other basic
RDBMS performance elements.

With a HA (redundant) system, the effect of mirroring/replicating the changed
data, reliably and consistently, to another node plays a role also. Consider the
following performance elements:

� Latency or response times: How quickly a single read or a write operation is
completed?

� Throughput: How much total query or transaction volume the two-node
system can handle?

� Data safeness: Does the system guarantee that every transaction is safely
persisted, on the same node (to disk) or to the next node (over the network)?

� Failover times: How quickly a loaded system can continue to provide its
service after a single-node failure, including the error detection time?

� Recovery times: How quickly (and how automatically) a system recovers to an
HA state after the failure has been resolved?

Optimizing one of the areas might be easy with the configuration parameters
available, but the need is often to find the best balance of all factors.

5.5.2 Behavior of reads and writes in a HA setup

Read queries execute only in one database node (databases are identical,
having the same content for HA reasons), so there is no need to involve both
databases for executing a single read query. Therefore, the response times are
expected to be the same in a single db mode and in a HA setup.

Write operations are applied to both databases (insert, update, and delete, and
schema changes). Therefore, effects on the latency exist that also depend
heavily on the safeness level used. With safeness, we mean whether the write
operation is safely persisted at the time of commitment, either to the persistent
media (disk) or to the second database node over the network. This approach is
to guarantee that a committed transaction is not lost in case of a failure.

The safeness level can be set with two controls, independently configured. The
configuration can further be done at a system level (global), a connection level
and a transaction level. Given this flexibility, there are plenty of options to
optimize the trade-off of latency versus data safeness for each part of the
application using the database.
 Chapter 5. IBM solidDB high availability 135

The two controls are as follows:

� Durability level, which can be strict or relaxed, that determines whether the
log writing is synchronous or asynchronous, respectively.

� Hot standby replication protocol safeness level, that can be 1-safe or 2-safe.
When using 1-safe, the replication is asynchronous, and with 2-safe it is
synchronous. The 2-safe level has also more granular options (received,
visible, durable).

The response time, throughput, and data safeness of write operations are
interrelated in terms of how the used configuration effects performance, and
hence they are discussed in a combined fashion in the following sections.

5.5.3 Using asynchronous configurations with HA

As might be obvious, asynchrony leads to better performance overall, with the
risk of losing data (a few of the latest transactions) in case of failures.

The most asynchronous approach is by using relaxed log writing in each
database node (or no transaction logging at all) and 1-safe hot standby
replication protocol, which also leads to shortest response times because the
Primary database does not have to wait for local disk I/O or the Secondary
database before it can complete the transaction commit. It also leads to best
throughput, because transactions can be sent to the Secondary in groups,
making the overall throughput higher.

Applications needing the fastest possible performance and tolerating the risk of
losing some of the latest transactions with a failure situation should consider this
configuration.

The risk of losing transactions can be reduced (but not totally eliminated) by
shortening the maximum delays of the log writes or hot standby replication. The
configuration parameters are called Logging.RelaxedMaxDelay and
HotStandby.1SafeMaxDelay, respectively. Setting these parameters to a lower
value than the default forces solidDB to persist or replicate the transactions
earlier.

We must also mention one special feature here. Because the solidDB
HotStandby technology is targeted for HA purposes, solidDB must guarantee,
even with the asynchronous replication mode, that the Secondary database is
not too far behind in executing transactions received from the source of the
replication. This way can ensure a reasonable and up-to-date database state for
the Secondary database at all times. Therefore, there is an internal mechanism
in the Primary database to start throttling the write operations if the defined limits
136 IBM solidDB: Delivering Data with Extreme Speed

of staying behind are reached. As a result, the throughput in the Primary can be
limited by the throughput in the Secondary.

5.5.4 Using default solidDB HA setup

The default solidDB HotStandby configuration is using Adaptive Durability (see
“Adaptive durability” on page 117). In a normal state, that translates to relaxed
(asynchronous) log writing and synchronous (2-safe received) replication. This
way ensures that all committed transactions are always replicated synchronously
to the Secondary database at the time of the commit, and thus located at least in
the memory of both database nodes. Compared to the fully asynchronous mode,
the latency is longer for each write commit, because the Primary database has to
wait for the Secondary database to at least acknowledge receiving the changes.

With this configuration, no data is lost in case of a single-node failure. In case of
two-node failure, the risk is still there. This configuration is considered the best of
both worlds because it eliminates the typical biggest performance problem,
which is the (synchronous) disk I/O, but provides data safeness against any
single node failures. Given normal maturity of proper server operating
environments, a single node failure is rare, and the probability of a two-node
failure at the same time, while always there, is even less likely to happen.

In answer to the always-asked question (How much performance overhead does
this synchronous replication cause?), several sample answers are available.
Compared to a single database persisting all transactions properly and using
synchronous log writing, this HA setup is, surprisingly enough, a faster mode.
The explanation, however, is simple. The network I/O is faster than disk I/O.
Sending the write operations to Secondary database is faster than flushing the
data onto hard disk.

5.5.5 The solidDB HA setup for best data safeness

Finally, the most safe and also the slowest configuration, is using 2-safe durable
hot standby configuration, which means using synchronous replication and
synchronous log writing in both database nodes. In this case, no data is lost even
if both nodes fail at the same time, because every transaction is committed all the
way to the disk in both nodes. The performance is approximately at the same
level as with a single (stand-alone) server using synchronous (strict) logging.

Applications needing maximum safety for the write transactions should consider
using the 2-safe durable solidDB HotStandby protocol configuration.
 Chapter 5. IBM solidDB high availability 137

5.5.6 Failover time considerations

In terms of the differences regarding the failover time, in all configurations the
error detection time is typically the same (a health check timeout, or similar).
After the error has been detected and concluded to be an error (with possible
retry operations), the remaining task is to switch the other database server to be
the (new) Primary database. If the original Primary failed, the Secondary can be
switched to Primary role after it has executed all received transactions. With
2-safe visible and 2-safe durable, the transactions have been executed already
and the failover is practically immediate. With 1-safe and 2-safe received, there is
a queue of transactions waiting to be applied to the Secondary database, and
there is a small delay because of this. Because the queue on the secondary side
is not very large, this delay is in most cases short.

During the downtime of one database server, the system continues to operate
with the remaining database. The performance (of write transactions) is based on
the configuration for that server, mostly importantly dependent of the log writing
mode. If the Logging.DurabilityLevel is adaptive, the transaction log writes
change from asynchronous to synchronous, ensuring the data safeness for
committed transactions but most likely effects the speed also. If the requirement
is rather to maintain the speed, even with the risk of loosing few transactions,
then keeping the logging as relaxed also in the single node state (PRIMARY
ALONE) should be considered.

5.5.7 Recovery time considerations

The recovery time depends on how many changes occurred during the downtime
(the delta) and how much time is spent restarting the database. Also, the
database checkpoint interval has an effect on how far back in time the restarted
database has to go to find a proper sync point, from which the delta needs to be
applied between the databases (the catchup phase).

Normally, making relatively frequent checkpoints is a good approach for
minimizing the recovery time. This approach makes the database startup time
faster, and also makes the catchup phase faster.

Several exceptions exist however, for example, when the database is of a small
size, and the entire content changes quickly because of high speed writes. In this
case, it may be actually be faster to copy the entire database over (using hsb
netcopy) than recovering all transactions that took place during the downtime.

Given normal operating environment expectations, the usual recovery means a
database restart and a catchup (apply the delta). In addition, the HA
management solution should always be prepared to also execute the full sync,
that is, copying the whole database from Primary database to Secondary
138 IBM solidDB: Delivering Data with Extreme Speed

database, to re-initialize it. In certain situations, catchup can fail or is not
possible; you must consider these situations in the automated recovery
implementations.

5.5.8 Example situation

In this section, we illustrate a sample setup for solidDB HotStandby configuration
and manual SQL admin commands to set the database in the mode where hot
standby replication is automatic and continuous.

We assume two computers, nodeA and nodeB, and any operating system. The
configurations and commands are similar on all of them:

� Node A solid.ini configuration:

[Com]
Listen = tcp 1315

[HotStandby]
HSBEnabled = yes
Connect = tcp nodeB 1315

� Node B solid.ini configuration:

[Com]
Listen = tcp 1315

[HotStandby]
HSBEnabled = yes
Connect = tcp nodeA 1315

� Start solidDB on nodeA

>solid -Udba -Pdba -Cdba

� Start solidDB on nodeB

>solid -Udba -Pdba -Cdba

Manual SQL commands to connect databases
The following SQL statements are given with the solsql utility (in the solidDB bin
directory). Because these are part of solidDB SQL syntax, they can also be given
from any tool or application.

The following lines or commands are given in solsql in nodeA. That is, connect
first to nodeA database, with operating system terminal or command prompt:

>solsql “tcp nodeA 1315” dba dba
 Chapter 5. IBM solidDB high availability 139

The lines starting with two hyphens (--) are comments that explain what is done:

-- switch node A to primary mode
admin command ‘hsb set primary alone’;
-- initialize the secondary db based on primary db content
admin command ‘hsb netcopy’;
-- wait until netcopy is finished, repeat until ‘success’
admin command ‘hsb status copy’;
-- connect, i.e. start active replication
admin command ‘hsb connect’;
-- check that this succeeded
-- you should now have ‘primary active’ state
admin command ‘hsb state’;
-- complete hsb actions
commit work;
-- exit from solsql
exit;

Summary
You now have an active solidDB HotStandby setup. Any writes (that are
committed) to the Primary database will be replicated automatically to the
Secondary, including schema changes. You can now try creating a table,
inserting rows (remember to commit), and then connect to Secondary database
and read the data from there.

Note that in the initial situation (before executing hsb set primary alone) both
databases have a secondary role, and any write attempts to either database will
fail. This result is from having the following solid.ini configuration parameter:

[Hotstandby]
HSBEnabled=yes

When this parameter is set, the database has to be made a Primary database
before any write operations.

5.5.9 Application failover

Application failover is the act of moving the service offered by an application from
a failed application instance to another one. It is a hot standby scheme applied to
applications. The need for it depends on the overall configuration. If an
application runs in a configuration such as the one shown in Figure 5-15 on
page 129, a failure of the database server does not imply the application failover.
Thanks to the transparent failover (TF) capability in solidDB drivers, the
application can continue over the server failover. However, that application itself
140 IBM solidDB: Delivering Data with Extreme Speed

may fail, and that might require a failover to the standby instance of the
application.

If the application is collocated with the server as shown in Figure 5-16 on
page 130, the application can fail at the same time as the database server, say,
in the case of a computer node crash. In that case, we might have to perform
both the server failover and the application failover. In general, the application
failover is required in the following cases:

� A failure of an application instance on a remote node (if a restart, on the same
node or another one, is not sufficient).

� A failure of a collocated application instance, together with the database
server (if restart of the application on the new primary node is not sufficient).

Application state preserving
When the service is moved from one application instance to another, the service
state must be preserved to the extent required by the service continuity. With
non-database applications, that requires complex application checkpointing
protocols or other solutions to move the state between the instances. A
database, and especially an HA database, offers a perfect opportunity to transfer
the service state through the database. What is needed is only that the
application is designed to be stateless, because all the relevant state is stored in
the database. Especially, when using an HA database as solidDB HSB, no
application state will be lost in any single failure in the system. The applications,
whether restarted or failed-over, can recover the service state from the database
at any time.

Controlling application failover
Application failover requires the same type of HA control that an HA database
requires. For that purpose, the applications can be integrated with an external
high availability framework, or they can use the HA control that is already
available with the database. In the case of a collocated application, the standby
instance of the application can be connected to the Secondary server and it can
monitor the HA state of the Secondary server. That can be done either by polling
(checking periodically the HA state) or by subscribing to a system event that
would indicate the state change. When the server role changes from secondary
to primary, the application reacts by changing its state from standby to active,
effectively performing the application failover. Switchover, for example, the
intentional role switching between the solidDB servers can be taken care of in the
same way.
 Chapter 5. IBM solidDB high availability 141

5.6 HA in Universal Cache

A system for database caching, like IBM solidDB Universal Cache might be
required of some HA characteristics also. In this section, we describe the
possibilities and ramifications of Universal Cache HA configurations.

5.6.1 Universal Cache HA architecture

When Universal Cache (UC) is configured for high availability, hardware and
software redundancy can be seen both in the front-end and back-end tiers, or in
either one. The choice of where to apply the redundancy depends on the
required availability level of the total system and expectations of the availability of
stand-alone components. For example, if operation breaks (measured as MTTR)
in the cache database are not allowed to be longer than it takes to restart a
database server (and that might be long, for an in-memory database), the
solidDB HSB configuration is needed.

If the UC application load is totally confined within the cache database (the
pass-through is not used), the operation breaks of the back end are tolerable as
long as the front-end transactions can be buffered in the cache database for later
transfer to the back end (catchup). In that case, a stand-alone back-end server
might be sufficient. If pass-through is used, an HA solution in the back end can
be required.
142 IBM solidDB: Delivering Data with Extreme Speed

The full HA configuration of Universal Cache is shown in Figure 5-18.

Figure 5-18 HA setup for Universal Cache

The front-end tier is configured in the same way as the solidDB-only HSB setup,
involving HA controllers and, possibly, an ERE.

Regarding the InfoSphere CDC components, the InfoSphere CDC replication
engine for solidDB (InfoSphere CDC for solidDB) is deployed on the back-end
system instead of the front-end system, as was the case with the basic Universal
Cache configuration. The reason is because the replication engine must survive
solidDB server failovers. In some cases, the engine seamlessly continues the
operation over the failover.

IBM Software Group | Information Man

Data server

Front-end
Active

CDC for backend

Backend (active)

CDC for solidDB

JDBC driver

solidDB JDBC driver

solidDB
Primary

Front-end
Standby

solidDB
Secondary

HA Controller HA Controller

Restart script

Backend (standby)
 Chapter 5. IBM solidDB high availability 143

5.6.2 UC failure types and remedies

In a system such as the one shown in Figure 5-18 on page 143, various
components can fail. In this section, failure types and recovery methods are
described.

solidDB failures
Failures of solidDB servers in the front-end tier are dealt with in the normal ways
that are available in the solidDB HSB solution. If the Primary server fails, a server
failover is executed. If the Secondary server fails, the Primary continues to
operate.

The InfoSphere CDC engine for solidDB has some resiliency to front-end
failovers. All the subscriptions that use solidDB as a source continue mirroring
normally, over a failover. However the subscriptions that use solidDB as a target
stop the mirroring. They must be restarted using the InfoSphere CDC
command-line interface. What we describe in the following text, must be
implemented on an individual deployment basis. In practice, a shell script restarts
the subscription. Also, a failover detection method must be implemented to
initiate the script. It might be done with a component similar to the Watchdog that
monitors the HSB server states, and act upon a detected failover.

InfoSphere CDC failures, InfoSphere CDC resilience
InfoSphere CDC replication engines can fail, causing the mirroring to stop.
InfoSphere CDC does not have any built-in redundancy or failover methods. That
means the InfoSphere CDC components must be explicitly restarted. That too
can be achieved with shell scripts and a method to detect InfoSphere CDC
component failures.

Temporary dysfunction of InfoSphere CDC components does not stop the cache
database to serve the applications. Pay attention to restarting the InfoSphere
CDC components fast enough for them to be able to catch up with the application
load in the cache database. The actual time span allowed for the InfoSphere
CDC replication engines to be non-functioning depends on the volume of
updates in the cache database and the buffer size settings. The time can vary
from minutes to hours.
144 IBM solidDB: Delivering Data with Extreme Speed

Back-end failures
The back-end failures are dealt with in the ways typical for a given DBMS product
and configuration. The solidDB Universal Cache product does not include any
components to deal with those failures.

If the back-end database runs as a stand-alone system, normal restart and
recovery is needed (to be initiated manually or automatically). Additionally, upon
restart, the InfoSphere CDC subscriptions (or engines) must also be restarted.

If the back-end database is run in an HA configuration, the corresponding
product-specific methods for failovers are used. Additionally, the InfoSphere CDC
components have to be migrated, reconfigured, and restarted on a new active
site. The process can be done with the InfoSphere CDC command-line interface
and shell scripts.

During the unavailability of the back-end database, the cache database serves
the applications. For the back-end database to be able to catch up with the load
in the cache database, the back-end database and the InfoSphere CDC
replication have to be reinstated in due time. If the back-end downtime is too long
for catching up to be possible, the refreshing of the subscriptions must be done.
 Chapter 5. IBM solidDB high availability 145

146 IBM solidDB: Delivering Data with Extreme Speed

Chapter 6. Performance and
troubleshooting

Performance and troubleshooting is a vast and widespread topic that is also one
of the most important to ensure the system runs as smoothly and as optimally as
possible. In this chapter, we describe several valuable tools that can help with
analyzing the performance of the solidDB server, InfoSphere Change Data
Capture (CDC), and a user’s application. The chapter also covers several tools
and methods that can be used to troubleshoot situations such as an abnormal
termination or a hang.

Application developers, database administrators, and system administrators can
obtain practical and valuable information from this chapter and that can help
ease their jobs.

6

© Copyright IBM Corp. 2011. All rights reserved. 147

6.1 Performance

This section provides an overview of the various tools available in the solidDB
server and InfoSphere CDC to aid in performance analysis and monitoring. It
then describes several common performance issues as observed from the
application’s perspective, and what can be done to address them. We provide
pointers about which tools are best suited to help resolve issues.

6.1.1 Tools available in the solidDB server

At the heart of a database application is the solidDB server. The server is a
highly complex piece of software that provides the functionality an application
needs to retrieve and store data in a plethora of ways. When the speed at which
an application performs does not meet expectations, one of the first places to
look for performance monitoring data is the solidDB server.

In this section we cover the most valuable performance monitoring tools available
in the solidDB server. We discuss these tools in a practical manner that can be
used to directly relate to observations that may be seen in the applications and in
the server.

Performance Monitoring (pmon) counters
Many pmon counters are available in the server. The counters provide a view into
what the various components inside the server are doing, which can be directly
correlated to observed application performance.

Methods of gathering pmons
The solidDB documentation describes the methods of gathering pmon data. The
documentation is available at the following location:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.admin.doc/doc/monitoring.soliddb.html

In general, the most useful method is the continuous performance monitoring
report ('pmon diff'), which produces a set of data for the time that the
monitoring was enabled. This data can be considered to be similar to a flight
recorder that contains critical information about the internal operations of the
server during that time period.

If, for example, your application or the server exhibits slow or unexpected
behavior during certain operations, gathering pmon diff data during this time is
an excellent way to help determine the problem.
148 IBM solidDB: Delivering Data with Extreme Speed

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg.im.soliddb.admin.doc/doc/monitoring.soliddb.html

Example 6-1 shows commands to use within solidDB SQL Editor (solsql) to start
and stop the utility.

Example 6-1 Starting and stopping the continuous monitoring report

Starting the continuous monitoring report:
admin command ‘pmon diff start /home/solid/pmondiff.txt 1000’

Stopping the continuous monitoring report:
admin command ‘pmon diff stop’

The interval specified is 1000 milliseconds, which is sufficient for most cases.
Gathering data for too small an interval can add too much overhead and extra
load on the disk subsystem, so use care.

Performance Monitoring counter details
Many counters are available; describing each of them in detail is impractical in
this book. Furthermore, some counters only have meaning to solidDB support
analysts and developers; others have been added to troubleshoot specific issues
that rarely surface in general usage. A more valuable approach is to describe the
more meaningful and useful pmon counters to help more quickly and easily
troubleshoot performance problems. Therefore, the pmons are divided into the
following categories:

� Low-level internal counters
� Internal structure counters
� SQL level counters
� Stored procedure/trigger counters
� Transaction level counters
� Logging and checkpointing counters
� HotStandby counters
� Lock-related counters
� Memory-table-specific counters
� SQL pass-through counters
� solidDB Universal Cache-specific counters

For each counter described in the tables, a Quick diagnosis column is provided
to help you quickly understand under what externally visible conditions the
counter is likely to be involved. A Detailed description column lists more
background about what the counter means, what the values, or lack of values, in
it means, and what interactions it might have with other pmon counters.
 Chapter 6. Performance and troubleshooting 149

Low-level internal counters
These counters measure interactions typically at the level between the operating
system and the solidDB server. Table 6-1 describes these counters.

Table 6-1 Low-level internal counters

Counter name Quick diagnosis Detailed description

File read /
File write

High numbers can
indicate excessive
disk reads or
writes.

Internally in the solidDB server, wrapper functions are around the
read() and write() system calls. Each time these wrapper
functions are called to read or write from a file, the respective
pmon counter is incremented. Therefore if you see large
numbers in these counters and you expect all of your tables to be
in memory, you might have a problem that must be investigated.
Note that other database operations, such as checkpointing,
logging, and diagnostics (tracing and message logs) require file
reads and writes. Make consideration for such events when
analyzing these counters.

File open High numbers can
indicate excessive
disk I/O.

Internally in the solidDB server, a wrapper function is around the
fopen() system call. Each time a file is opened, this counter is
incremented. Opening a file is an expensive operation in itself but
also indicates that a read or a write to a file is required. This
counter should be low when using only in-memory tables. Note,
however, that other database operations such as checkpointing,
logging, diagnostics (tracing and log messages) require file
opens so this counter will likely not always be zero.

Mem size This counter is
primarily for
informational
purposes.

This is the current amount of memory that the server has
allocated from the operating system, in kilobytes (KB). Every
time the server requests memory from the operating system
through malloc, and so forth, this counter is increased. This
counter should correlate to the virtual memory size reported by
operating system level tools such as TOP (which is a command
in UNIX and Linux environments).

Thread count Growing values
can indicate
connections are
not being properly
closed.

This counter is the total number of threads running internally in
the server. It can be useful in tracking the number of connections
to the database over time as there is one thread created per
connection. Watch this counter for excessive values or for
growing numbers. Growing numbers can indicate that
connections are not properly disconnecting upon completion.
150 IBM solidDB: Delivering Data with Extreme Speed

Internal structure counters
The pmon counters in this section provide information about internal server
structures and tasks such as the database cache, the Bonsai Tree, merging,
sorting, and table cursors. Table 6-2 describes these counters.

Table 6-2 Internal structure counters

Counter name Quick diagnosis Detailed description

Cache find Low numbers can
indicate ineffective
database cache.

Each time something is found in the database cache, this
counter is incremented. This counter applies only to disk-based
tables, not to in-memory tables. If you use disk-based tables, you
want to see large numbers in this counter. Compare this number
to Cache read counter to determine the effectiveness of the
database cache.

Cache read High numbers can
indicate excessive
disk I/O.

Number of blocks (of database block size) that must be read
from disk because of a database cache miss. It applies only to
disk-based tables. You want this number to be as low as possible
after the database cache is warmed up, meaning that the cache
is full, or as full as it can be from normal database operation. Any
time a cache miss occurs and data must be read from disk,
performance is affected. If the total size of the database is larger
than the amount of memory that can be assigned to database
cache, numbers in this counter are likely to be seen depending
on the workload and data access patterns.

Cache prefetch High numbers can
indicate table
scans are being
done.

Number of database blocks being prefetched into the database
cache. This counter applies only to disk-based tables. High
values in this counter indicate that the internal prefetching
algorithm is detecting that large sequential reads are being
performed. At the SQL level, this number can mean that table
scans are being performed, which can affect performance and
can be a result of a bad query plan or a missing index.

Cache prefetch
wait

High numbers can
indicate
insufficient
prefetching.

Number of waits that occurred because of prefetching while
attempting a read. When a read is attempted, if prefetching is in
the process of bringing the data into the database cache, the
read must wait for the prefetch to complete. High numbers can
indicate that prefetching is not performing appropriately for the
type of reading that is being done. Consider increasing the
IndexFile.ReadAhead configuration parameter.
 Chapter 6. Performance and troubleshooting 151

Cache preflush Excessive values
can indicate
insufficient
database cache.

Number of preflush operations done by the preflush thread. A
preflush is the asynchronous writing of dirty page data from the
database cache to disk. This counter applies only to disk-based
tables. Values in this counter indicate normal database operation
when writes are occurring (meaning data is changing). If the
number seems excessive, it might be an indication that the
database cache is configured too small. It could also be an
indication that the database cache is being used for other
database operations and cache, which might or might not be
expected.

Cache LRU
write

High numbers can
indicate
insufficient
database cache or
insufficient
preflushing.

Incremented when a dirty page in the database cache must be
written to disk before a page being requested can be used.
Values in this counter indicate that the database cache size is
insufficient or that preflushing is not performing adequately. If
preflush performance is suspected, considering modifying the
IndexFile.PreFlushPercent configuration parameter.

Cache write
bonsai leaf

High numbers can
indicate cache is
too small or
applications not
properly closing
transactions.

Number of times that a Bonsai Tree leaf has been written to disk
from the database cache. This applies only to disk-based tables.
For best performance, the Bonsai Tree should remain in the
cache. If cache does not have enough space, parts of the Bonsai
Tree may be written out to disk to make room. This way affects
performance negatively, which means either the cache is too
small or the Bonsai Tree is too large. A large Bonsai Tree can be
caused by applications not properly closing transactions.

Cache write
bonsai index

High numbers
could indicate
unnecessary
indexes exist.

Similar to Cache write bonsai leaf except that this counter
indicates that a high volume of writes to a table, or tables, that
have many associated indexes is occurring. If you see high
numbers for this counter, examine your index design to
determine whether any unnecessary indexes exist.

RPC messages High numbers can
indicate large
result sets being
returned over the
network.

Number of RPC messages sent between client and server. Note
that for SMA and Accelerator connections no RPC messages
are sent. An SQLPrepare and an SQLExecute each send at
least one RPC message. You can compare this number to the
SQL Prepare and SQL Execute counters. If the value of this
counter minus SQL Prepare is significantly larger than the
number of SQL Execute, this can indicate that large result sets
are being returned in the SQL queries. Note that HSB packet
count may also be counted in this counter.

DBE inserts This counter is
mostly informative
only.

This counter is for DataBase Engine (DBE) inserts and applies
to both disk-based and in-memory tables. It is incremented when
an insert to a table occurs.

Counter name Quick diagnosis Detailed description
152 IBM solidDB: Delivering Data with Extreme Speed

DBE delete This counter is
primarily
informative.

This counter is for DataBase Engine deletes and applies to both
disk-based and in-memory tables. It is incremented when a
delete to a table occurs.

DBE update This counter is
primarily
informative.

This counter is for DataBase Engine updates and applies to both
disk-based and in-memory tables. It is incremented when an
update to a table occurs.

DBE fetch High numbers
relative to SQL
fetch can indicate
unnecessary table
scans.

(This counter is not the same as SQL fetch.) Counts the number
of rows that are fetched internally, which might or might not be
returned back to the application. Compare this counter to SQL
fetch to see how many rows are being read internally for each
row returned to the application (rows read/rows returned ratio).
If that ratio is high, you might have unnecessary table scans
occurring and should investigate index usage.

DBE dd
operation

This counter is
mostly informative
only.

Number of data dictionary operations that the server has
executed. The data dictionary (or system catalog) stores all the
definitions for tables, indexes, and so forth. This number should
correlate to the expected number of data dictionary changes.

Ind write Higher than
expected values
can indicate
unnecessary
indexes.

When a write operation is made to a table, this counter is
incremented for each index that needs to be updated. Higher
than expected values for this counter could indicate redundant
indexes exist.

Ind nomrg write High or growing
values means the
Bonsai Tree is too
large.

Number of non-merged rows in the Bonsai Tree. This counter
applies only to disk-based tables. This counter is essentially the
size of the Bonsai Tree. If this counter is large or is constantly
growing performance is affected because the Bonsai Tree
consumes more database cache, which leaves less room for
data caching and might ultimately cause disk paging.

Search active High values result
in more memory
being used.
Growing values
can indicate a
potential handle
leak in the
application.

Number of cursors currently open within the server. This
important counter is used to determine memory growth in the
server. Many applications are written to do their prepares up
front, which is good for performance but can negatively affect
memory use. If this number is high, consider reducing the
number of concurrent connections or the number of prepares
done up front. If this number is constantly growing it could
indicate a handle leak in the application.

Merge nomrg
write

Values higher than
Ind nomrg write
can indicate
merging is not
keeping up.

Number of index entries currently waiting for merge. In normal
operation, this number is similar to Ind nomrg write. If the value
of this counter is larger, it is an indication that merging is not
keeping up and further investigation is required.

Counter name Quick diagnosis Detailed description
 Chapter 6. Performance and troubleshooting 153

Merge level Values not keeping
up with Trans read
level indicate
merge is not
keeping up.

Current merge level. Correlate this value with the Trans read
level value. If the value of this counter is not keeping up, that is
another indication that merge is not keeping up with cleaning the
Bonsai Tree.

Sorter start sort High values
indicate excessive
use of the external
sorter.

Number of external sorts started. The external sorter is invoked
when space required for the sort exceeds the memory available
for the internal sorter. Because the external sorter spills to disk,
excessive use of it negatively affects performance. Consider
increasing the sort array size configuration parameter to avoid
the external sorter.

Sorter add row See Sorter fetch
row for more
information.

Number of rows being added to the external sorter. See Sorter
fetch row for more information.

Sorter fetch row If Sorter add row is
incrementing
faster than this, the
external sorter is
congested.

Number of rows per second that are fetched out of the external
sorter. After a row is fetched, the memory is released. The Sorter
add row counter incrementing faster than this one is a symptom
of external sorter congestion, which can lead to unsatisfactory
query performance. Consider increasing the memory used by
the internal sorter with the SQL.SortArraySize parameter. Also
consider reducing the number of sorts performed in the
application. If external sorting is still required, try to speed up the
external sorter by ensuring the underlying disk is as fast as
possible. For example, use Solid State Disk or a RAMDRIVE.

Tabcur create Significantly and
constantly lower
values than Search
active could
indicate too many
unused statement
prepares.

A table cursor is an active instance of a Search active cursor that
is counted when a statement is actually executed. This way can
be loosely correlated to SQL Execute times the number of
cursors per statement. Use this counter with Search active to
see what percentage of internal cursors that are created during
statement preparation actually are used during statement
execution.

Counter name Quick diagnosis Detailed description
154 IBM solidDB: Delivering Data with Extreme Speed

SQL level counters
The pmon counters in this category keep statistics that are useful and meaningful
to the application developer, as they are at the SQL level. Table 6-3 describes
these counters.

Table 6-3 SQL level counters

Counter name Quick diagnosis Detailed description

SQL prepare High numbers can
indicate excessive
SQLPrepare
operations or
insufficient
statement cache.

Incremented every time a statement is prepared. Note that
prepare operations done in stored procedures are counted in the
Proc SQL prepare counter. Prepare operations are expensive;
avoid them as much as possible. Also, a statement cache stores
prepared statements. If a prepare is done for a statement that is
saved in the statement cache, this counter is no incremented. If
you see high numbers for this counter, consider doing fewer
SQLPrepares or increasing the statement cache. Note also that
a prepare operation is done implicitly when SQLExecDirect is
used.

SQL execute High numbers
could indicate a
hidden application
problem.

Incremented every time a statement is executed. Note that
execute operations done in a stored procedure are counted
separately under the Proc SQL execute counter. If you see
values for this counter that do not match your expectations, your
application might have a problem.

SQL fetch Numbers lower
than SQL execute
can indicate few
rows being
returned.

Number of rows returned to applications. An important note is
that this counter is also incremented for things such as admin
commands, LIST commands, and EXPLAIN PLAN FOR
commands, as rows are returned to the user in all cases. This
would explain cases where the value of this counter is less than
the value of the SQL execute counter. Another explanation could
be that return result sets often have zero rows.
 Chapter 6. Performance and troubleshooting 155

Stored procedure/trigger counters
In solidDB, stored procedures and triggers are similar, so they are grouped
together in this pmon category. Table 6-4 describes these counters.

Table 6-4 Stored procedure/trigger counters

Transaction level counters
This pmon category describes counters specific to transaction levels. Table 6-5
describes these counters.

Table 6-5 Transaction level counters

Counter name Quick diagnosis Detailed description

Proc/Trig
compile

This counter is
primarily informative.

Incremented when a stored procedure or trigger is
compiled. It occurs during the CREATE PROCEDURE or
CREATE TRIGGER statement.

Proc/Trig exec This counter is
primarily informative.

Incremented when a CALL PROCEDURE statement is
executed or when a trigger is fired, and can include nested
stored procedure calls also. If you see growing values or
higher than expected values, a stored procedure or trigger
might be getting called (nested or not) more than expected.

Proc/Trig SQL
prepare

This counter is
primarily informative.

Incremented when an EXEC SQL PREPARE is done within
a stored procedure or trigger. This counter is also
incremented when an SQL EXECDIRECT is done, because
a prepare operation is implicitly done.

Proc/Trig SQL
execute

This counter is
primarily informative.

Incremented when an EXEC SQL EXECUTE or EXEC SQL
EXECDIRECT is done within a stored procedure or trigger.

Proc/Trig SQL
fetch

This counter is
primarily informative.

Incremented when an EXEC SQL FETCH is done within a
stored procedure or trigger.

Counter name Quick diagnosis Detailed description

Trans commit Higher numbers than
expected can mean
autocommit is on
unknowingly.

Number of transaction commits that have occurred,
including commits done in application code, stored
procedures, and in solsql (explicitly or with autocommit on).

Trans abort Non-zero numbers can
indicate a connectivity
issue.

Number of transactions that have been aborted because of
timeout or other issue. Values in this counter can indicate a
possible connectivity issue where a client is able to connect
and start a transaction, but then times out. The timeout
period is configurable through the Srv.AbortTimeOut
parameter and set at 120 minutes by default.
156 IBM solidDB: Delivering Data with Extreme Speed

Trans rollback This counter is
primarily informative.

Number of explicit transaction rollbacks that have occurred.

Trans readonly This counter is
primarily informative.

Number of transactions that have been committed, rolled
back, or aborted that contain read only operations.

Trans buf High numbers indicate
transactions are
consuming a lot of
memory. Growing
numbers can indicate a
long running query
creating many rows
and consuming
significant resources.

Current number of rows that are in the transaction buffer.
This number is essentially the working memory for a
transaction and it gives you an idea of how much memory
your transactions are consuming inside the server. If this
number increases over several pmon intervals, this could
indicate that one or more long running transactions are
creating a large number of rows. Such a transaction can
consume a significant amount of resources and might
require further investigation.

Trans buf
cleanup

Quickly growing values
can indicate
transactions are
creating large numbers
of rows and consuming
significant resources.

Total number of transaction buffer cleanup tasks that have
executed in the server because of startup. This task is
responsible for removing stale rows from transactions that
have committed, rolled back, or aborted to make room for
new transactions. An internal threshold value determines
when this task executes. If you see this value increasing
rapidly, it should also be in conjunction with Trans buf having
large values.

Trans buf
removed

Quickly growing
numbers indicate
transactions are
consuming significant
resources.

Incremented every time a row is removed from the
transaction buffer by the cleanup task. This counter is a
supplement to the Trans buf and Trans buf cleanup
counters.

Trans active High values can
indicate infrequent
commits or roll backs.
Growing values can
indicate transactions
are running slower over
time.

Current number of active transactions in the system. Higher
than expected values can indicate that transactions are not
committing or rolling back frequently enough. Growing
values can indicate either that workload is increasing or that
transactions are running slower over time because of more
resources being consuming for some other task for
example.

Trans read level Non-growing values
can indicate one or
more long running
transactions blocking
other transactions.

Current transaction read level. Write transactions cause this
value to be incremented. If concurrent write operations are
running but this value is not increasing, there might be one
or more long running transactions in the system that should
be investigated. Note that this is a 32-bit integer and can
wrap to appear as a negative value.

Counter name Quick diagnosis Detailed description
 Chapter 6. Performance and troubleshooting 157

Logging and checkpointing counters
This pmon category describes the counters that are specific to the logging and
checkpointing tasks of the solidDB server. Table 6-6 describes these counters.

Table 6-6 Logging and checkpointing counters

Counter name Quick diagnosis Detailed description

Log write Correlate with Log file
write to see
effectiveness of log
writing.

Number of records being submitted to the internal logging
component of the server per second. Correlate this counter
with the Log file write counter to determine whether writing
the log records to disk is keeping up with the number of
records in this counter.

Log file write Decreasing values can
indicate logging is disk
bound.

Actual number of blocks written to disk per second by the
logger. When blocks are written is dependant on the
Logging.DurabilityLevel setting. If the values in this counter
are constant, it is likely a sign of healthy logging that is not
disk-bound. A decrease in the values might indicate that
logging is becoming disk bound.

Log nocp write Can indicate the impact
of the next checkpoint
operation.

Number of pending log records because of the last
checkpoint. This is an indication of how big and involved the
next checkpoint operation will be. If these values are
consistently large, increasing the frequency of
checkpointing might be needed.

Checkpoint file
write

Lower than expected
values can indicate a
disk bottleneck.

Number of file writes per second done by the checkpoint
task. Use this counter to monitor the performance of
checkpointing and the disk subsystem. Low values can
indicate a disk bottleneck.
158 IBM solidDB: Delivering Data with Extreme Speed

HotStandby counters
This pmon category describes several of the most important counters for
HotStandby. Table 6-7 describes these counters.

Table 6-7 HotStandby counters

Lock-related counters
This category of pmons describes the counters available to troubleshoot
application locking issues. Table 6-8 describes these counters.

Table 6-8 Lock related counters

Counter name Quick diagnosis Detailed description

HSB cached
bytes

Constantly growing
values could indicate
an internal problem.

Current size of the in-memory log reader, in bytes. The value
of this counter should be relatively constant. An increasing
value could indicate an internal problem.

HSB catchup
reqcnt

Non-zero values
indicate catchup is still
in progress.

Indicates when the HSB catchup operation has completed.
Non-zero values indicate that catchup is still in progress.
This is given in requests per second.

HSB catchup
freespc

Zero means that
catchup cannot
continue.

Number of log operations for which there is room during
catchup. If this number becomes zero, catchup cannot
continue.

Counter name Quick diagnosis Detailed description

Lock ok This counter is
primarily informative.

Applies to both disk and in-memory engines (or
main-memory engines, MME). It is the number of times an
internal check for a lock indicated that no lock already
existed, so execution could proceed.

Lock timeout Increasing values can
indicate an application
locking issue.

Applies to both disk and in-memory engines. It is a count of
the number of lock timeouts per second. This occurs when
execution was blocked while waiting for another lock. Values
that are constantly growing indicate that more and more
operations are being blocked on locks, and a locking issue
might exist.

Lock deadlock Increasing values can
indicate an application
locking issue.

Applies to both disk and in-memory engines. A count of the
number of deadlocks per second that have occurred.

Lock deadlock
check

This counter is
primarily informative.

Applies to both disk and in-memory engines. A count of the
number of deadlock checks done by the lock manager.

Lock wait Increasing values can
indicate an application
locking issue.

Applies to both disk and in-memory engines. A count of the
number of times per second that a lock-wait occurred.
 Chapter 6. Performance and troubleshooting 159

Memory-table-specific counters
This pmons in this category are specific to the main memory engine (MME) of
solidDB. Table 6-9 describes these counters.

Table 6-9 Memory-table-specific counters

Lock count Increasing values can
indicate an application
locking issue.

Applies to both disk and in-memory engines. A count of the
total number of locks that exist in the system at a given time.
A continuously increasing value can be an indication of a
lock issue. Monitor this counter in conjunction with Lock
timeout, Lock wait, and Lock deadlocks to watch for locking
issues with your applications.

MME cur num of
locks

Increasing values can
indicate an application
locking issue.

Locking for the in-memory engine is handled separately to
locking in the disk-based engine. This is the current number
of locks for in-memory tables.

MME max num
of locks

Increasing values can
indicate an application
locking issue.

High-water mark for in-memory engine locks. Use this in
conjunction with MME cur num of locks to watch for
excessive number of locks.

MME cur num of
lock chains

A large number of
additional hash entries
will degrade
performance.

A lock chain is when the lock hash table has a conflict and
additional locks are added to the hash entry as additional
entries. This addition can slow down lock lookup because it
has to first find the chain entry in the hash table, then parse
the subsequent entries. Subtracting the value of this counter
from MME cur num of locks gives the number of additional
hash entries in the hash table. The larger that this number
is, the more expensive lock processing is. In that case,
consider increasing the MME.LockHashSize parameter.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

MME mem used
by tuples

This counter is
primarily informative.

Tuples are an internal version of MME rows. This counter is
the amount of memory in kilobytes (KB) needed to store all
the rows of the in-memory tables. This value can be
correlated to the total number of rows to determine the
average row size (including overhead).

MME mem used
by indexes

Higher than expected
values could indicate
unnecessary indexes.

Total memory in KB used by MME indexes.

MME mem used
by page structs

This counter is
primarily informative.

A page struct is the overhead needed for storing MME table
and index data.
160 IBM solidDB: Delivering Data with Extreme Speed

SQL pass-through counters
The counters in this category are specific to the SQL pass-through feature.
Table 6-10 describes these counters.

Table 6-10 SQL pass-through counters

MME index key
deletes

This counter is
primarily informative.

Total number of delete operations on in-memory tables.
Note that an UPDATE operation translates to delete then
insert in MME tables.

MME index key
inserts

This counter is
primarily informative.

Total number of insert operations on in-memory tables. Note
that an UPDATE operation translates to delete then insert in
MME tables.

MME vtrie
mutex collisions

Large values can
indicate hot sections of
data exist.

An increase in this counter means that several threads tried
to access the same section of the trie at the same time. If
you see values here, it means that the threads are trying to
update the same information and are getting blocked.

MME vtrie
version colls

High values could
indicate hot sections of
data.

For an update operation, a vtrie node gets a version update
structure added to it. When another application views the
same data that is currently being updated, the vtrie update
structure is read, which results in a “vtrie version collision.”
A high number here might mean that a “hot” section of data
is being updated and read often. Specifically, values in the
thousands or tens of thousands along with a significantly
smaller number of updates can indicate a problem that most
likely must be addressed in the application, perhaps with
more frequent commits.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

Passthrough
rollbacks

This counter is
primarily informative.

Incremented every time an explicit rollback is issued in the
front end, or if the client disconnects from the front end. Note
that the counter is incremented twice every time the client
disconnects from the front end.

Passthrough
result cnv

High values indicate
lots of data conversion
happening which can
be expensive.

Incremented every time a result set value (retrieved from the
back end) is being converted to a different internal data type
in the front end. This conversion can be expensive so care
should be take to avoid it if at all possible.
 Chapter 6. Performance and troubleshooting 161

solidDB Universal Cache-specific counters
The pmon counters in this category are specifically related to solidDB Universal
Cache implementations and do not apply to stand-alone solidDB. Table 6-11
describes these counters.

Table 6-11 solidDB Universal Cache-specific counters

Passthrough
param cnv

High values indicate
lots of data conversion
happening which can
be expensive.

Similar to Passthrough result cnv except that it applies to
SQL input parameters. For example, if the incoming
parameter is a different type than the back-end column type
it is addressing, conversion will occur.

Passthrough
failures

Values indicate a
problem that should be
investigated.

Incremented every time either SQLPrepare fails (in the
back-end) or a failure in type conversion between the
back-end parameter/result set column and the
corresponding types in the front end.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

Logreader spm
freespc

Consistent values of 0
indicate write throttling
is occurring in the
solidDB server
because of InfoSphere
CDC replication not
keeping up.

This counter, in conjunction with Logreader spm waitct, is
important in determining whether write throttling is
happening inside the solidDB server. Write throttling occurs
when no space is available in the logreader buffer because
of InfoSphere CDC replication not replicating the data to the
back-end database quickly enough. Depending on your
workload, occasional occurrences of this can be acceptable
if not many write operations are having to wait; see the
Logreader spm waitct counter. If this value is consistently 0,
consider increasing the Logreader.Maxspace configuration
parameter. If that does not help, investigate InfoSphere CDC
performance; see 6.1.2, “Tools available in InfoSphere CDC”
on page 180.

Logreader spm
waitct

Non-zero values
indicate write
operations in the
solidDB server are
waiting for logbuffer
space to be made
available.

When the logreader buffer is full (Logreader spm waitct
shows 0), write operations get throttled and must wait. Each
time a wait occurs, this counter is incremented. The higher
this value is, the more negative the write throttling effect is.
See the suggestions in the Logreader spm waitct section.

Passthrough
rollbacks

This counter is
primarily informative.

Incremented every time an explicit rollback is issued in the
front end, or if the client disconnects from the front end. Note
that the counter is incremented twice every time the client
disconnects from the front-end.
162 IBM solidDB: Delivering Data with Extreme Speed

Using the Monitor facility to monitor SQL statements
It is important to be able to analyze and tune performance at the individual SQL
statement level. The solidDB server provides two useful tools to help with that
effort:

� Monitor facility
� SQL Trace facility

The two are similar but provide slightly different data (see Table 6-12 on
page 168 for a comparison). In this section, we describe the Monitor facility.

To enable the Monitor facility, execute the command shown in Example 6-2, in
solsql.

Example 6-2 Enabling the Monitor facility in solsql

admin command 'monitor on';
 RC TEXT
 -- ----
 0 Monitor set to on
1 rows fetched.

Passthrough
result cnv

High values indicate
lots of data conversion
happening which can
be expensive.

Incremented every time a result set value (retrieved from the
back-end) is being converted to another internal data type in
the front end. This conversion can be expensive so use care
to avoid it if possible.

Passthrough
param cnv

High values indicate
lots of data conversion
happening which can
be expensive.

This counter is similar to Passthrough result cnv except that
it applies to SQL input parameters. For example, if the
incoming parameter is a different type than the back-end
column type it is addressing, conversion will occur.

Passthrough
failures

Values indicate a
problem that should be
investigated.

Incremented every time either SQLPrepare fails (in the
back-end) or a failure in type conversion between the
back-end parameter/result set column and the
corresponding types in the front end.

Counter name Quick diagnosis Detailed description
 Chapter 6. Performance and troubleshooting 163

After executing various SQL statements, soltrace.out file is created in the
solidDB working directory. The contents of it is similar to Example 6-3.

Example 6-3 Default sample Monitor facility output

--
2010-09-30 08:47:32
Version: 6.5.0.3 Build 2010-10-04
Operating system: Linux 2.6.18 AMD64 64bit MT
IBM solidDB Universal Cache 6.5
2010-09-30 08:47:33 50:15:exec rowcount 1
2010-09-30 08:47:33 7:13:execute Select D_NEXT_O_ID, D_TAX from
DISTRICT where D_W_ID = ? and D_ID = ? for update
2010-09-30 08:47:33 43:6:fetch next, 1 rows, total 1
2010-09-30 08:47:33 42:4:execute Insert into ORDERS values (?, ?,
?, ?, ?, ?, ?, ?)
2010-09-30 08:47:33 13:15:execute Update STOCK set S_QUANTITY =
?, S_YTD = ?, S_ORDER_CNT = ?, S_REMOTE_CNT = ? where S_W_ID = ?
and
S_I_ID = ?
2010-09-30 08:47:33 27:18:execute Update DISTRICT set D_NEXT_O_ID
= ? where D_W_ID = ? and D_ID = ?
2010-09-30 08:47:33 45:18:param 1:3721
2010-09-30 08:47:33 45:18:param 2:1
2010-09-30 08:47:33 48:18:execute Select S_QUANTITY, S_DIST_01,
S_DIST_02, S_DIST_03, S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07,
S_D
IST_08, S_DIST_09, S_DIST_10, S_YTD, S_ORDER_CNT, S_REMOTE_CNT,
S_DATA from STOCK where S_W_ID = ? and S_I_ID = ?
2010-09-30 08:47:33 48:18:param 1:4196
2010-09-30 08:47:33 48:18:param 2:471
2010-09-30 08:47:33 39:6:fetch next, 1 rows, total 1
2010-09-30 08:47:33 39:7:execute Select S_QUANTITY, S_DIST_01,
S_DIST_02, S_DIST_03, S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07,
S_DI
ST_08, S_DIST_09, S_DIST_10, S_YTD, S_ORDER_CNT, S_REMOTE_CNT,
S_DATA from STOCK where S_W_ID = ? and S_I_ID = ?
2010-09-30 08:47:33 39:7:param 1:282
2010-09-30 08:47:33 39:7:param 2:348

Note the time stamp at the beginning of each line and how all events appear to
happen at the same time. The reason is because the default tracing timer
resolution in solidDB is 1 second which is not practical for performance tuning
purposes. Therefore be sure you add the following line to the Srv section of your
solid.ini file and restart the server to enable millisecond trace timer resolution:

SRV.TraceSecDecimals=3
164 IBM solidDB: Delivering Data with Extreme Speed

Example 6-4 shows the contents of soltrace.out from a solidDB server running
a simplified transaction from an actual benchmark. The SQL statements that
were run in the transaction are one SET command, two SELECT statements,
and one UPDATE and one INSERT command.

Example 6-4 Sample Monitor facility output

--
2010-11-17 09:21:22
Version: 6.5.0.3 Build 2010-10-04
Operating system: Linux 2.6.18 AMD64 64bit MT
IBM solidDB Universal Cache 6.5
2010-11-17 09:21:23 User 'DBA' connected, user id 23, machine id
coralxib02.torolab.ibm.com (127.0.0.1).
2010-11-17 09:21:23.676 23:0:opencursor SQL_CUR1 'SET PASSTHROUGH READ NONE
WRITE NONE'
2010-11-17 09:21:23.676 23:0:execute SET PASSTHROUGH READ NONE WRITE NONE
2010-11-17 09:21:23.676 23:0:exec rowcount 0
2010-11-17 09:21:23.677 23:1:opencursor SQL_CUR2 'Select C_LAST, C_CREDIT,
C_DISCOUNT, W_TAX from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and
C_ID = ? and W_ID = ?'
2010-11-17 09:21:23.677 23:2:opencursor SQL_CUR3 'Select D_NEXT_O_ID, D_TAX
from DISTRICT where D_W_ID = ? and D_ID = ? for update'
2010-11-17 09:21:23.678 23:3:opencursor SQL_CUR4 'Update DISTRICT set
D_NEXT_O_ID = ? where D_W_ID = ? and D_ID = ?'
2010-11-17 09:21:23.678 23:4:opencursor SQL_CUR5 'Insert into ORDERS values (?,
?, ?, ?, ?, ?, ?, ?)'
2010-11-17 09:21:23.678 23:1:execute Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX
from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID
= ?
2010-11-17 09:21:23.678 23:1:param 1:3838
2010-11-17 09:21:23.678 23:1:param 2:2
2010-11-17 09:21:23.678 23:1:param 3:23
2010-11-17 09:21:23.678 23:1:param 4:3838
2010-11-17 09:21:23.679 23:1:fetch next, 1 rows, total 1
2010-11-17 09:21:23.679 23:2:execute Select D_NEXT_O_ID, D_TAX from DISTRICT
where D_W_ID = ? and D_ID = ? for update
2010-11-17 09:21:23.679 23:2:param 1:3838
2010-11-17 09:21:23.679 23:2:param 2:2
2010-11-17 09:21:23.679 23:2:fetch next, 1 rows, total 1
2010-11-17 09:21:23.679 23:3:execute Update DISTRICT set D_NEXT_O_ID = ? where
D_W_ID = ? and D_ID = ?
2010-11-17 09:21:23.679 23:3:param 1:32
2010-11-17 09:21:23.679 23:3:param 2:3838
2010-11-17 09:21:23.679 23:3:param 3:2
2010-11-17 09:21:23.679 23:3:exec rowcount 1
2010-11-17 09:21:23.679 23:4:execute Insert into ORDERS values (?, ?, ?, ?, ?,
?, ?, ?)
2010-11-17 09:21:23.680 23:4:param 1:31
 Chapter 6. Performance and troubleshooting 165

2010-11-17 09:21:23.680 23:4:param 2:23
2010-11-17 09:21:23.680 23:4:param 3:2
2010-11-17 09:21:23.680 23:4:param 4:3838
2010-11-17 09:21:23.680 23:4:param 5:2010-11-17 09:21:23
2010-11-17 09:21:23.680 23:4:param 6:NULL
2010-11-17 09:21:23.680 23:4:param 7:8
2010-11-17 09:21:23.680 23:4:param 8:1
2010-11-17 09:21:23.680 23:4:exec rowcount 1
2010-11-17 09:21:23.680 23:transopt commit (6)
2010-11-17 09:21:23.680 23:0:close
2010-11-17 09:21:23.680 23:1:close
2010-11-17 09:21:23.680 23:2:close
2010-11-17 09:21:23.681 23:3:close
2010-11-17 09:21:23.681 23:4:close
2010-11-17 09:21:23 User 'DBA' disconnected, user id 23, machine id
coralxib02.torolab.ibm.com (127.0.0.1).

To understand the output, you must first understand what each token in the
output means:

� The first token is the time stamp. As we previously stated, ensure that
millisecond resolution is enabled.

� The next token is the connection ID. This number uniquely identifies each
client connection to the solidDB server. Example 6-4 on page 165 shows only
one connection, which is represented by connection ID 23. The example also
shows when the user connected and disconnected.

� The third token is either a statement ID or a transaction operation. Because
Example 6-4 on page 165 represents output from five SQL statements that
were run within one transaction, we can see statement IDs from 0 to 4. When
a workload is running with more than one client that runs many SQL
statements, the combination of connection ID and statement ID can uniquely
identify each entry in the trace output. Using grep or search facilities in your
favorite file viewing utility, this combination can help you to quickly isolate and
view one sequence of operations. Note also that the Monitor facility can be
enabled for a specific user to have the server output less information, which
can be easier to analyze. This step can be done with the following admin
command:

monitor on user username

When the third token is not the statement ID, it is usually a transaction level
operation, such as commit or rollback.

� Finally, after the connection ID and statement ID, the output shows the actual
trace data for the operation. This information can be the actual SQL statement
being prepared or executed, the parameters being used, or another statement
level operation being performed.
166 IBM solidDB: Delivering Data with Extreme Speed

Analysis of Monitor facility output
Various determinations can be made from analyzing Monitor facility output. One
of the most important determinations relative to performance is seeing the length
of time for statement operations to complete.

Using the output in Example 6-4 on page 165, analyze several operations:

� Focusing on statement ID 2 (CUR2), which is a SELECT statement, you can
see that the start timestamp for the prepare, shown as opencursor followed
by the internally assigned cursor identifier is 2010-11-17 09:21:23.677. The
execute started at 2010-11-17 09:21:23.679 which means that prepare took
about 2 milliseconds to complete.

� Next we can see that the fetch completed at 2010-11-17 09:21:23.679,
therefore it appears to have taken 0 milliseconds. In actuality, this means that
the execution completed in sub-milliseconds or microseconds, but because
the timer resolution is not able to display microseconds we do not know
exactly how many microseconds. This is also why we say that the operations
take “approximately” a certain amount of time rather than exactly that amount
of time.

The fact that the prepare took about twice as long as the execute aligns with
the known fact that preparing SQL statements is more expensive than
executing them. For this reason, prepare statements as few times as possible.

� We can also see from the output that statement ID 2 fetched a total of 1 row.
This is important information to know, because, often the more rows that are
being fetched, the longer the statement execution takes and the less
advantage an in-memory database has over traditional disk-based database
management systems.

� Now we look at another example, statement ID 4, which is an INSERT
statement. The prepare started at 2010-11-17 09:21:23.678, the execute
started at 2010-11-17 09:21:23.679 and the exec completed at 2010-11-17
09:21:23.680. This means that the prepare took about 1 millisecond and the
execution appears to have taken less than 1 millisecond.

� Another useful item that can be gleaned from the output is the time duration
for a transaction to complete. We can see that the transaction executed by
connection ID 23 started at about 2010-11-17 09:21:23.676. We can find the
end of the transaction execution by the token transopt commit (6). Note that
the 6 in parentheses is the internal identifier, for a commit transaction
operation. The timestamp associated with this token is 2010-11-17
09:21:23.680, therefore it took about 4 milliseconds to complete the
transaction.
 Chapter 6. Performance and troubleshooting 167

Because the parameter values for the dynamic SQL statements are also
displayed in the Monitor facility output, it is also useful for being able to
reconstruct the actual SQL statements that were executed. You could then
execute the statements with the same parameters in solsql, for example, to
further analyze the statement. You can also examine the statement’s execution
plan with the same parameters to determine whether the statement is fully
optimized. More details about this information is in “Statement execution plans”
on page 170.

The Monitor facility also provides the user the ability to perform various ad-hoc
per-statement statistic calculations. The performance monitor counters, which
are described in “Performance Monitoring (pmon) counters” on page 148, are all
at a global level. With some searching (grep) and text parsing of the output file,
you can get statement level counters. For example, you can see how many rows
a specific SQL SELECT statement returns during a given period of time.

Using the SQL Trace Facility to trace SQL statements
The SQL Trace Facility is similar to the Monitor facility but does have key
differences. Certain investigations require the information that provided by the
Monitor facility, others require the SQL Trace Facility, and others might require a
combination of the two. Table 6-12 illustrates various differences between the two
facilities.

Table 6-12 Comparison of the Monitor facility and the SQL Trace facility

Description Monitor facility SQL Trace facility

Trace SQL statements executed in stored
procedures

No Yes

Dynamic SQL parameter values dumped Yes No

Statement row counts dumped Yes No

Actual commit return code dumped No Yes

Includes user connect and disconnect
messages

Yes No

“trans begin” dumped at the start of
transactions

No Yes

Correlate statement ID to userlist and
sqllist admin commands

Yes No
168 IBM solidDB: Delivering Data with Extreme Speed

Enabling the SQL Trace Facility is similar to enabling the Monitor facility, as
shown in Example 6-5.

Example 6-5 Enabling the SQL Trace Facility in solsql

admin command 'trace on sql';
 RC TEXT
 -- ----
 0 Trace sql set to on
1 rows fetched.

Example 6-6 provides output generated by the SQL Trace Facility for the same
transaction that was run to generate the Monitor facility output in Example 6-4 on
page 165.

Example 6-6 SQL Trace Facility output

2010-11-17 11:11:38.959 2:sql:161:prepare SET PASSTHROUGH READ NONE WRITE NONE
2010-11-17 11:11:38.959 2:sql:161:execute:SET PASSTHROUGH READ NONE WRITE NONE
2010-11-17 11:11:38.960 2:sql:163:prepare SELECT C_LAST, C_CREDIT, C_DISCOUNT,
W_TAX FROM CUSTOMER, WAREHOUSE WHERE C_W_ID = ? AND C_D_ID = ? AND C_ID = ? AND
W_ID = ?
2010-11-17 11:11:38.961 2:sql:164:prepare SELECT D_NEXT_O_ID, D_TAX FROM
DISTRICT WHERE D_W_ID = ? AND D_ID = ? FOR UPDATE
2010-11-17 11:11:38.961 2:sql:165:prepare UPDATE DISTRICT SET D_NEXT_O_ID = ?
WHERE D_W_ID = ? AND D_ID = ?
2010-11-17 11:11:38.961 2:sql:166:prepare INSERT INTO ORDERS VALUES (?, ?, ?,
?, ?, ?, ?, ?)
2010-11-17 11:11:38.961 2:sql:trans begin
2010-11-17 11:11:38.961 2:sql:163:execute:SELECT C_LAST, C_CREDIT, C_DISCOUNT,
W_TAX FROM CUSTOMER, WAREHOUSE WHERE C_W_ID = ? AND C_D_ID = ? AND C_ID = ? AND
W_ID = ?
2010-11-17 11:11:38.962 2:sql:163:fetch
2010-11-17 11:11:38.962 2:sql:164:execute:SELECT D_NEXT_O_ID, D_TAX FROM
DISTRICT WHERE D_W_ID = ? AND D_ID = ? FOR UPDATE
2010-11-17 11:11:38.962 2:sql:164:fetch
2010-11-17 11:11:38.962 2:sql:165:execute:UPDATE DISTRICT SET D_NEXT_O_ID = ?
WHERE D_W_ID = ? AND D_ID = ?
2010-11-17 11:11:38.962 2:sql:stmt commit (0)
2010-11-17 11:11:38.963 2:sql:166:execute:INSERT INTO ORDERS VALUES (?, ?, ?,
?, ?, ?, ?, ?)
2010-11-17 11:11:38.963 2:sql:stmt commit (0)
2010-11-17 11:11:38.963 2:sql:trans commit (0)
2010-11-17 11:11:38.963 2:sql:161:close
2010-11-17 11:11:38.963 2:sql:163:close
2010-11-17 11:11:38.963 2:sql:164:close
2010-11-17 11:11:38.963 2:sql:165:close
2010-11-17 11:11:38.963 2:sql:166:close
 Chapter 6. Performance and troubleshooting 169

The timestamp format and the connection IDs are the same as for the Monitor
facility. However, immediately after the connection ID token is an sql token. This
token is used because the soltrace.out output file can contain trace information
for other components also.

Following the sql token is either a transaction level token or the transaction ID.
Note that the transaction ID differs from the statement ID that is dumped in the
Monitor facility output. The transaction ID is an internal number assigned by the
server to each transaction. The statement ID in the Monitor facility is more useful
as it can be correlated to the output of the sqllist or userlist admin
commands.

A useful feature in the SQL Trace Facility is that it dumps out a trans begin token
when the transaction is started. Note that in solidDB, transactions are started
during the first SQL statement execution. Prepares and most SET statements
are not part of a transaction.

The SQL Trace Facility does not dump out dynamic SQL parameter values,
which can be considered an advantage if your goal is not to reconstruct exact
SQL execution and rather analyze the flow of execution.

Timing statements using the SQL Trace Facility output is not as easy as with the
Monitor facility as nothing is dumped when an INSERT, UPDATE, or DELETE
statement completes. Timing transactions, however, is easier with the SQL Trace
Facility. For example, the timestamp for the trans begin token is 2010-11-17
11:11:38.961 and the timestamp for the trans commit token is 2010-11-17
11:11:38.963. Therefore, this transaction took approximately 2 milliseconds to
complete. Also note that the value in parentheses after the trans commit token is
the actual return code of the commit, unlike the output from the Monitor facility.

Statement execution plans
When SQL statements are not running as fast as you expect them to, be sure to
examine the execution plan of the statement, which can be done using the
EXPLAIN PLAN FOR command. Basically, this means having solidDB display what
lower level operations it will perform to complete the statement. From this, you
can determine problems such as a table scan being performed where an index
should be used instead, a loop join being performed where a merge join should
be done instead, and so forth. After you determine problems such as these, you
can then proceed to attempting to resolve them.
170 IBM solidDB: Delivering Data with Extreme Speed

Getting an execution plan is simply a matter of prepending the following line to
the SQL statement and running that in solsql:

“explain plan for ”

Often times however, the SQL statement might not be known or the parameters
to dynamic SQL are not known. The best way to address this issue is to enable
the Monitor facility as described in “Using the Monitor facility to monitor SQL
statements” on page 163, and then view the resulting soltrace.out file.

Example 6-7 shows sample output from the Monitor facility, which we can cut and
paste from to obtain an execution plan.

Example 6-7 Obtaining SQL statement and its parameters from Monitor facility output

2010-11-16 19:17:07.389 3:1:execute Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX
from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID
= ?
2010-11-16 19:17:07.389 3:1:param 1:2318
2010-11-16 19:17:07.389 3:1:param 2:6
2010-11-16 19:17:07.389 3:1:param 3:5
2010-11-16 19:17:07.389 3:1:param 4:2318

In solsql, you have two options for entering the complete SQL statement:

� Manually substitute the parameter markers (?), with the parameter values
listed.

� Submit the SQL statement as is with the parameter markers and let solsql
prompt you for each parameter, as Example 6-8 shows.

Example 6-8 Obtaining an execution plan in solsql

explain plan for Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX from CUSTOMER,
WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID = ?;
Param 1:
2318;
Param 2:
6;
Param 3:
5;

Important: The execution plan that is displayed is the plan that would have
been executed at that point in time (the statement is not actually executed). It
is not a guarantee that this will always be the execution plan that will be
followed. The reason for that is because over time the data and associated
samples may change which could then change the optimizer decision for how
to execute the statement.
 Chapter 6. Performance and troubleshooting 171

Param 4:
2318;
 ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
 -- ------- ------ --------- --------- ----
 1 1 0 2 JOIN LOOP JOIN
 2 1 0 3
 3 2 1 0 TABLE CUSTOMER
 4 2 1 0 PRIMARY KEY
 5 2 1 0 C_ID = 5
 6 2 1 0 C_D_ID = 6
 7 2 1 0 C_W_ID = 2318
 8 3 1 0 TABLE WAREHOUSE
 9 3 1 0 PRIMARY KEY
 10 3 1 0 W_ID = 2318
10 rows fetched.

Note that end of line markers (;) must be used after each parameter value is
entered.

The actual execution plan is presented in a table form. This table form can be
used to construct an execution plan graph or flowchart which is easier to read
and understand.

You must first understand what the columns mean. The solidDB Information
Center documents the meanings at the following location:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.sql.doc/doc/the.explain.plan.for.statement.html

Fully understanding this information, however, can still be daunting. To help you
understand, we draw a picture of the execution plan shown in Example 6-8 on
page 171.

To draw the picture, first start with row 1 which is the row that has UNIT_ID = 1.
This row is part of the top most Unit or flowchart object, as shown in Figure 6-1.

Figure 6-1 Start of the execution plan graph

Next, we see that the second row of the execution plan also has a UNIT_ID of 1
which means that the rest of the information in this row is associated with the
same unit drawn in Figure 6-1. The only difference between this row and row 1,

Unit_ID: 1
Unit_Type: Join (Loop Join)
Join_Path: 2
172 IBM solidDB: Delivering Data with Extreme Speed

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg.im.soliddb.sql.doc/doc/the.explain.plan.for.statement.html

however, is the JOIN_PATH of 3 instead of 2. What these two JOIN_PATH values
mean is that UNIT_ID 2 and UNIT_ID 3 are joined to this unit. Therefore, what we
need to do next is add unit 2 and 3 to our graph, as shown in Figure 6-2.

Figure 6-2 Final execution plan graph

Figure 6-2 is a relatively simple example, but it illustrates how to read,
understand, and visualize the table form shown in Example 6-8 on page 171.
After you become accustomed to looking at the simpler execution plans, you
probably do not need to convert to or visualize it in a graph. However, some
queries can become fairly complex; for those, you might want to draw them to
help you visualize them in a graph form.

Using optimizer hints
The optimizer is a highly complex and accurate software component in the
solidDB engine. It times however, it might not make a correct decision and you
will have to suggest an alternative to it. This is where optimizer hints can be
valuable. A hint is not to be confused with a directive. The optimizer overrides the
hint if it has compelling evidence that the choice being made is correct. It is good
practice to run your SQL statements through EXPLAIN PLAN FOR with and
without the optimizer hint to see if the optimizer changed the plan.

The solidDB Information Center documents the optimizer hints:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.sql.doc/doc/using.optimizer.hints.html

However, we can walk through an actual example to see what effect a hint can
have on a query. Example 6-9 on page 174 shows the query being used and the
execution plan.

Unit_ID: 1
Unit_Type: Join (Loop Join)
Join_Path: 2

Unit_ID: 2
Unit_Type: Table (CUSTOMER)
Primary Key
C_ID = 5
C_D_ID = 6
C_W_ID = 2318

Unit_ID: 3
Unit_Type: Table (WAREHOUSE)
Primary Key
W_ID = 2318
 Chapter 6. Performance and troubleshooting 173

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg.im.soliddb.sql.doc/doc/using.optimizer.hints.html

Example 6-9 Query with which to try an optimizer hint

EXPLAIN PLAN FOR
SELECT
 COUNT(DISTINCT S_I_ID)
FROM
 STOCK, ORDER_LINE
WHERE
 (S_W_ID = 2885 AND
 S_QUANTITY < 18 AND
 S_I_ID = OL_I_ID AND
 S_W_ID = OL_W_ID AND
 OL_D_ID = 9 AND
 OL_O_ID BETWEEN 11 and 30);
 ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
 -- ------- ------ --------- --------- ----
 1 1 0 0 GROUP
 2 2 1 0 ORDER NO PARTIAL SORT
 3 3 2 4 JOIN LOOP JOIN
 4 3 2 5
 5 4 3 0 TABLE ORDER_LINE
 6 4 3 0 PRIMARY KEY
 7 4 3 0 OL_O_ID <= 30
 8 4 3 0 OL_O_ID >= 11
 9 4 3 0 OL_D_ID = 9
 10 4 3 0 OL_W_ID = 2885
 11 5 3 0 TABLE STOCK
 12 5 3 0 PRIMARY KEY
 13 5 3 0 S_W_ID = ...
 14 5 3 0 S_I_ID = ...
 15 5 3 0 S_QUANTITY < 18
 16 5 3 0 S_W_ID = 2885
16 rows fetched.

As Example 6-9 shows, a LOOP JOIN is being performed to join the two tables.
Without analyzing the size of the tables or any other statistic, assume for
demonstration purposes that we think this query might benefit from doing a
MERGE JOIN instead. To do a comparison however, we first must quantify the
execution time of this query as it is.

The solsql query editor has the ability to time statements executed within it. To do
this start solsql with the -t option. After every statement execution, the total time
required to execute the statement will be displayed. If you use the -tt option, this
functionality is enhanced further to show the timings needed for prepare,
execute, and fetch separately as they occur. Example 6-10 on page 175 shows
the execution of the sample query in solsql started with the -tt option.
174 IBM solidDB: Delivering Data with Extreme Speed

Example 6-10 Sample query timed in solsql

SELECT
 COUNT(DISTINCT S_I_ID)
FROM
 STOCK, ORDER_LINE
WHERE
 (S_W_ID = 2885 AND
 S_QUANTITY < 18 AND
 S_I_ID = OL_I_ID AND
 S_W_ID = OL_W_ID AND
 OL_D_ID = 9 AND
 OL_O_ID BETWEEN 11 and 30);
Prepare time 0.0004671 seconds.
Execute time 0.0044830 seconds.
COUNT(DISTINCT S_I_

 12
Fetch time 0.0001431 seconds.
1 rows fetched.

Time 0.0051959 seconds.

As shown, executing the query took 0.0044830 seconds or 4.5 milliseconds.

Now, we analyze the query with a hint to use MERGE JOIN instead of LOOP
JOIN. Example 6-11 shows the execution plan of the sample query with the
optimizer hint to use MERGE JOIN. As we can see, UNIT_ID 3 is now a MERGE
JOIN, so we know that the optimizer is using the hint.

Example 6-11 Execution plan of sample query with optimizer hint

EXPLAIN PLAN FOR
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
 COUNT(DISTINCT S_I_ID)
FROM
 STOCK, ORDER_LINE
WHERE
 (S_W_ID = 2885 AND
 S_QUANTITY < 18 AND
 S_I_ID = OL_I_ID AND
 S_W_ID = OL_W_ID AND
 OL_D_ID = 9 AND
 OL_O_ID BETWEEN 11 and 30);
 ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
 -- ------- ------ --------- --------- ----
 Chapter 6. Performance and troubleshooting 175

 1 1 0 0 GROUP
 2 2 1 0 ORDER NO PARTIAL SORT
 3 3 2 4 JOIN MERGE JOIN
 4 3 2 6
 5 4 3 0 ORDER NO ORDERING REQUIRED
 6 5 4 0 TABLE STOCK
 7 5 4 0 SCAN TABLE
 8 5 4 0 S_QUANTITY < 18
 9 5 4 0 S_W_ID = 2885
 10 6 3 0 CACHE
 11 7 6 0 ORDER NO PARTIAL SORT
 12 8 7 0 TABLE ORDER_LINE
 13 8 7 0 PRIMARY KEY
 14 8 7 0 OL_O_ID <= 30
 15 8 7 0 OL_O_ID >= 11
 16 8 7 0 OL_D_ID = 9
 17 8 7 0 OL_W_ID = 2885
17 rows fetched.

Next, we time the actual execution of the query when it uses the hint.
Example 6-12 shows the output.

Example 6-12 Timing the sample query which is now using MERGE JOIN

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
 COUNT(DISTINCT S_I_ID)
FROM
 STOCK, ORDER_LINE
WHERE
 (S_W_ID = 2885 AND
 S_QUANTITY < 18 AND
 S_I_ID = OL_I_ID AND
 S_W_ID = OL_W_ID AND
 OL_D_ID = 9 AND
 OL_O_ID BETWEEN 11 and 30);
Prepare time 0.0005541 seconds.
Execute time 2.5068240 seconds.
COUNT(DISTINCT S_I_

 12
Fetch time 0.0001600 seconds.
1 rows fetched.

Time 2.5075850 seconds.
176 IBM solidDB: Delivering Data with Extreme Speed

As we can see, execution of the query took 2.5 seconds to complete, which is
much longer than running without the hint to use MERGE JOIN. Therefore, in this
case, changing the optimizer default execution plan decisions is not a good plan.
This is normally the case, but as mentioned previously, in certain cases, using a
hint can help.

Other useful admin command commands
Many other useful admin commands can be used to view and analyze current
server performance. They are documented and can be searched for in the
solidDB Information Center:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/index.jsp

The most useful commands for performance analysis are as follows:

� admin command status

Use this command to see a quick snapshot of the overall database status.
Interesting items here are Cache hit rate to see the effectiveness of the
database cache, memory usage to correlate with OS memory status, and
total user counts.

� admin command userlist -l

Use this command to get detailed information about each user currently
connected to the database, and various associated transaction information.

� admin command sqllist

Use this command to see a list of currently running SQL statements. This
command is useful for watching any long running queries. You can correlate
the statement ID in this output to the statement ID output from the Monitor
facility.

Useful operating system utilities
In addition to using the various tools provided by solidDB to analyze server and
application performance, monitoring performance at the operating system level is
also important. If the solidDB server process is using too many system
resources, that will definitely slow down overall performance. In this section we
discuss some of the most important operating system tools and specifically what
to look for. These tools are documented in many places and many other books,
therefore, we describe only the most useful items. In our examples, we use the
Linux operating system.
 Chapter 6. Performance and troubleshooting 177

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/index.jsp
http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/index.jsp

vmstat
As with any other database management system, monitoring the memory, CPU,
and paging statistics of the operating system are important. The vmstat utility is
one of the most important utilities for achieving monitoring. Because many
problems occur without warning, run vmstat indefinitely with a 2 - 5 second
interval, and save the output with a timestamp. Unfortunately vmstat output does
not include a timestamp so Example 6-13 provides a sample script for achieving
this.

Example 6-13 vmstat with timestamps

#!/bin/ksh

 [1]; do
 date
 vmstat 2 30 | awk '{ if (skipnext == 1) { \
 skipnext=0 ; \
 print "<<summary line omitted>>"; } \
 else \
 print $0 ; \
 if (/swpd/) \
 skipnext=1 }'
done

Because the first statistic line dumped out by vmstat is a summary since the last
system restart, the awk utility is used to prune that line to ensure that there is no
confusion in later analysis of the output. Example 6-14 shows sample vmstat
data, using this script, collected during a solidDB benchmark run.

Example 6-14 Sample vmstat output

Tue Nov 23 13:04:00 EST 2010
procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
<<summary line omitted>>
 0 0 467192 91760 4072 7829664 0 0 2588 2200 12490 24809 18 3 79 0 0
 1 0 467192 93580 4232 7826420 0 0 4707 8830 12982 28081 19 4 77 0 0
 3 0 467192 89616 4408 7825216 0 0 5187 2221 13059 28605 19 4 77 0 0
 1 0 467192 88964 4572 7825052 0 0 7166 2200 13605 32149 20 4 76 0 0
 9 0 467192 86944 4768 7820800 0 0 8140 2234 13843 33824 20 5 75 0 0
 5 0 467192 89488 4928 7817524 1 0 8671 2182 13928 34627 21 5 74 0 0
 9 0 467192 92188 5116 7814252 0 0 10701 2208 14500 37650 21 5 74 0 0
 4 0 467192 92192 5308 7809952 0 0 15434 8825 15716 45398 21 6 73 0 0
 0 0 467192 91004 5468 7805680 0 0 14493 2190 15370 43643 20 6 74 0 0
178 IBM solidDB: Delivering Data with Extreme Speed

First, look at the si and so columns. If these values are anything other than 0 or
consistently larger than approximately 500 - 1000, then system swapping is
occurring. System swapping means that the operating system is running out of
physical memory and needs to use the disk as virtual memory. This way is bad
for performance and must be avoided. Example 6-14 on page 178, shows that no
swapping is occurring. If swapping is occurring, examine solidDB memory usage.
If the usage exceeds the total available physical RAM minus approximately
500 MB to 1 GB for operating system and other applications, consider reducing
the usage by analyzing and appropriately setting one or more of the following
configuration parameters:

� Srv.ProcessMemoryLimit
� MME.ImdbMemoryLimit
� SharedMemoryAccess.MaxSharedMemorySize
� IndexFile.CacheSize

Also in vmstat output, look at the CPU usage. The closer that values of us (user)
and sy (system) columns are to 100, the more saturated the CPU is and the
more bottlenecked the system is. If you see this situation and you think you
should be able to run more statements, it could be that one or more SQL
statements are running for a long time, consuming a lot of CPU usage. In this
case, consider using the Monitor facility in conjunction with the sqllist admin
command to identify the suspect query. After the suspect query is found, look at
its execution plan to determine whether it is unnecessarily doing a table scan,
using the external sorter, or doing some other non-optimal operation.

iostat
For in-memory tables, disk bottlenecks are not an issue as they are with
traditional disk-based databases. However, solidDB is capable of disk-based
tables also, so iostat is an important operating system monitoring utility. On
Linux, iostat must always be run with the -x parameter to ensure that the
extended disk statistics are gathered. Example 6-15 shows sample iostat -x
output taken from a relatively idle system.

Example 6-15 Sample iostat -x output

avg-cpu: %user %nice %system %iowait %steal %idle
 0.12 0.00 0.02 0.03 0.00 99.84

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0.00 43.00 0.00 5.50 0.00 396.00 72.00 0.04 7.27 3.64 2.00
sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sdc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sdd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sde 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 Chapter 6. Performance and troubleshooting 179

First, look at is the %util column to see what percentage of the disk is being
used. As the example shows, the usage is low, which is expected because the
machine is mostly idle. If values approach 100% here, that is a good indication of
a disk bottleneck.

Next, look at svctm column, which lists the average number of milliseconds of
time for the device to service an IO request. The lower the better, and anything
over 7 or 8 starts to be a concern.

Also consider the avgqu-sz column metric, which reports the average queue
length sent to the device. You typically want this to be in the single digits.
Anything too low in conjunction with high disk usage can mean that the
application is flushing to disk too often and not doing enough buffering, thus
putting an extra load on the disk.

6.1.2 Tools available in InfoSphere CDC

InfoSphere CDC is the component that handles the replication of data between
the solidDB front-end database and the back-end database. It is also a
stand-alone product with many features that are not necessary in a solidDB
Universal Cache configuration. Therefore, in this section we focus on the most
useful and easy-to-use performance monitoring tools.

Management Console statistics
The GUI Management Console is capable of capturing replication statistics and
presenting them in table and graph form. You must first enable statistics
collection on your subscriptions first, as follows:

1. In the Subscriptions tab of the Monitoring view, right-click a subscription and
select Show Statistics. A tab opens at the bottom half of the management
console showing Latency, Source, and Throughput statistics tables.

2. Click Collect Statistics at the top left corner of this tab to enable statistics
collection. The statistics tables and graphs are populated in real-time.

3. The graphs can be exported to Excel format by clicking Save Data at the top
right corner of the statistics tab.
180 IBM solidDB: Delivering Data with Extreme Speed

Figure 6-3 gives you an idea of the Management Console with a statistics view
and a graph of Throughput Operations per second. This figure is from an active
workload that was running in solidDB Universal Cache.

Figure 6-3 InfoSphere CDC Management Console Throughput Statistics

As Figure 6-3 shows, we were achieving 2,099 average operations per second.
Our workload was not an exhaustive one so this number is by no means
representative of the maximum operations per second that InfoSphere CDC is
capable of replicating.

2,099
 Chapter 6. Performance and troubleshooting 181

Figure 6-4 shows the same subscription and statistics view, except this time the
live graph is showing log operations per second.

A number of live graphs are available to view the statistics.

Figure 6-4 InfoSphere CDC Management Console Log Operations Statistics

6.1.3 Performance troubleshooting from the application perspective

In this section, we address typical performance problems that might be
encountered. It is structured to address typical perceived performance problems
from the application’s perspective, such as the following problems:

� Database response time (latency) is too high
� Database throughput is too low
� Database resource consumption is too high
� Database performance degrades over time
� Database response times are unpredictable
� Special operations take too long

2,112
182 IBM solidDB: Delivering Data with Extreme Speed

Database response time (latency) is too high
Particularly for online transaction processing (OLTP) applications, database
response time is a critical aspect of performance. The quicker SQL statements
and transactions can run the better the results.

Ideally, an application has timing capabilities built into it to ensure statements and
transactions are running fast enough to meet or exceed service level
agreements. This usually means that the operations that are performed during
that timing window are significantly more than simply reading the data from a
table for example. Therefore, many possible causes for slow response time exist,
and many possible cures are available. To fully realize where and how response
time can be negatively affected, you should understand the steps that occur
during the processing of a typical statement:

1. The function, for example SQLExecDirect(), is called by the application.
Execution moves into the solidDB driver, but is still within the client application
process. The driver builds a network message in a memory buffer consisting
essentially of the SQL string and some session information.

2. The network message created by the driver is passed through the network to
the solidDB server process. This is where network latencies can have a
negative effect. Network messages can also be used within the same host
machine also (local connections). solidDB supports a direct linking model
called Accelerator and a shared memory access model (SMA), where the
application contains all the server code also. Therefore, the following
conditions are true:

– No need to copy the host language variables to a buffer

– No need to send the buffer in a network message

– No need to process the buffer in the server

– No context switches, that is, the query is processed within server code
using the client application's thread context.

Using the Accelerator or SMA model essentially removes steps 1, 2, 5, 6
and 7 from the process.

3. The server process captures the network message and starts to process it.
The message goes through the SQL Interpreter (which can be bypassed by
using prepared statements) and the SQL Optimizer (which can be partly or
fully bypassed by Optimizer hints). The solidDB server process can be
configured to write an entry to tracing facilities with a millisecond-level
timestamp at this point.
 Chapter 6. Performance and troubleshooting 183

4. The query is directed to the appropriate storage engines (MME, disk-based
engine, or both) where the latencies can consist of multiple elements:

– In the disk-based engine, the data can be found in the database cache. If it
is, no disk head movements are required. If the data resides outside of
cache, disk operations are needed before data can be accessed.

– in The main-memory engine, the data is always found in memory.

– Storage algorithms for the main memory engine and disk-based engine
differ significantly and naturally have an impact on time spent in this stage.

– For complicated queries, the latency will be impacted by the optimizer
decisions made in step 3, such as the choice of index, join order, sorting
decisions, and so forth.

– For COMMIT operations (either executing COMMIT WORK or
SQLTransEnd() by ODBC), a disk operation for the transaction log file is
performed every time, unless transaction logging is turned off or relaxed
logging is configured.

5. After statement execution is completed, a return message is created within
the server process. For INSERT, DELETE, and UPDATE statements, the
return message is always a single message that essentially contains success
or failure information and a count of the number of rows affected. For SELECT
statements, a result set is created inside the server to be retrieved in
subsequent phases. Only the first two (configurable) rows are returned to the
application in the first message. At this stage, an entry with a timestamp
exists, written to the server-side soltrace.out file.

6. The network message created by the server is passed back to the driver
through the network.

7. The driver captures the message, parses it and fills the appropriate return
value variables before returning the function call back to driver application.
The real response time calculation should end here.

8. Under strict definition, logical follow-up operations (for example retrieval of
subsequent rows in result sets) should be considered as part of a separate
latency measurement. In this chapter, however, we accept the situation where
several ODBC function calls (for example SQLExecute() and loop of
SQLFetch() calls) can be considered as a single operation for measurement.

Figure 6-5 on page 185 shows the eight steps of the statement processing flow.
It suggests that latencies at the client depend on network response times and
disk response times for all queries where disk activity is needed. Both response
times are environment specific and cannot really be made much faster with any
solidDB configuration changes. There are, however, ways to set up the solidDB
architecture to prevent both network and disk access during regular usage.
184 IBM solidDB: Delivering Data with Extreme Speed

Reducing the database latency is essentially all about either reducing times
spent within individual steps by design, architectural or configuration changes or
possibly eliminating the steps altogether.

Figure 6-5 Statement processing flow

The importance of the steps depends fully on the type of load going through the
steps. Optimization effort is not practical before the load is well understood.
Consider the following two examples:

� Example 1: The application tries to insert 1 million rows to a single table
without indexes as fast as possible using prepared statements. Steps 1, 2, 3,
4, 5, 6, 7 are all small but they are executed a million times. An architectural
change to use the directly linked accelerator or SMA model will help to bypass
steps 1, 2, 5, 6, and 7, and will significantly speed up the operation.

� Example 2: The application runs a join across 3 tables of 1 million rows each.
The join returns 0 or few rows. Steps 1, 2, 5, 6, and 7 are executed only once
and are trivial and fast. Steps 3 and 4 are executed once but are significantly
more time consuming than they were in Example 1. Almost all the time will be
spent in step 4, and removing steps 1, 2, 5, 6, and 7 does not bring
meaningful benefits.

Optimization of simple write operation latencies
By simple write operations, we mean inserts, deletes, or updates to one table
(preferably having few indexes) that modify only a small number of rows at a time.
All the steps previously described are involved and none of the steps are
extensively heavy.

Application Driver Network

3

4

zero to
multiple

physical disk
operations 5

Accelerator

1. ODBC function call

2. Network message

3. SQL Interpreter and
Optimizer

4. Data storage access

5. Construction of return
message

6. Return network message

7. Driver receives message

8. Follow-up operations if
needed

1

2

6

Data Storage

7

Server
 Chapter 6. Performance and troubleshooting 185

The main performance issues are as follows:

� If there is no need for persistence on disk for all operations, one of the
following statements is true:

– There might not be a need to commit every time.

– Transaction logging could be turned off.

– Relaxed logging might be acceptable (perhaps in conjunction with
HotStandby).

� Simple write operations cause intensive messaging between client and server
that can be optimized if use of the Accelerator linking or SMA model is
possible.

� In database write operations, finding the location of the row is generally a
substantial part of the effort. solidDB's main memory technology enables
faster finding of individual rows. Hence, using main memory technology can
potentially improve performance with simple write operations. In most
practical cases, it will be fully effective only after the need for disk writes at
every commit has been removed one way or the other.

� For small statements, running through the SQL interpreter is expensive.
Hence, the use of prepared statements will improve performance.

� In all write operations, all indexes must be updated also. The more indexes
there are, the heavier the write operations will be. In complicated systems,
there is a tendency to have indexes that are never used. The effort involved in
validating whether or not all indexes are really necessary can pay off with
better performance for write operations.

� For simple write operation latencies, the effect of API selection (ODBC, JDBC,
SA) is quite marginal. SA is the fastest in theory but the difference is typically
less than 10%.

� In theory, avoiding data type conversions (such as using DATE, TIME,
TIMESTAMP, NUMERIC and DECIMAL) can improve performance. However,
because of small number of rows affected, this effect is also marginal.

Key diagnostics in simple insertion operations
Many pmon counters can monitor overall throughput: SQL Execute, DBE Insert
(or DBE Update, DBE Delete), Log file write, File write, Trans commit, and
several HotStandby counters if HotStandby is being used. See “Performance
Monitoring (pmon) counters” on page 148 for details about each counter.

For simple insertion latencies, Monitoring and SQL Tracing are the only available
diagnostic tools within the solidDB product. See “Using the Monitor facility to
monitor SQL statements” on page 163 for more details.
186 IBM solidDB: Delivering Data with Extreme Speed

Optimization of simple lookup latencies
In simple lookups, the database executes a query which is expected to return
one row, or no rows at all. Also, index selection is considered to be trivial. That is,
the where condition is expected to be directly resolvable by the primary key or
one of the indexes.

Main memory technology was designed for applications running predominantly
simple lookups. With these kinds of applications, performance improvements can
be up to ten times better than databases using disk-based algorithms. If available
RAM exists, using in-memory tables can be highly beneficial in these
circumstances.

Similar to simple inserts, using prepared statements to avoid the SQL Interpreter
being used for every statement execution and removing unnecessary network
messages and context switches by using directly linked accelerator or SMA
mode, can also improve performance.

Almost all discussions about database optimizers are related to bad optimizer
decisions. With reasonably simple and optimized lookups in tables with several
indexes, it is possible that the time used by the optimizer is substantial enough to
be measurable. This time can be removed by using optimizer hints to avoid the
optimization process altogether. See “Using optimizer hints” for more information.

Optimization of massive write operation latencies
Massive write operations differ from simple operations essentially by the number
or rows being involved in a single operation. Both single update or delete
statements affecting huge number of rows or a succession of insert statements
executed consecutively are considered massive write operations in this section.

Massive write operations can conceptually have more of a throughput problem
than a latency one however, we address them here mostly to aid in
understanding and comparing these types of operations to others.

In solidDB’s disk-based tables, the primary key defines the physical order of the
data in the disk blocks. In other words, the rows with consecutive primary key
values reside next to each other (most likely in the same block) on the disk also.
Therefore, by doing massive write operations in primary key order can
dramatically reduce disk operations. With disk-based tables this factor is usually
the strongest one affecting primary key design.

For example, consider a situation in which the disk block size is 16 KB and row
size is 100 bytes, which means that 160 rows can fit in same block. We consider
an insert operation where we add 1600 rows. If we can insert these 1600 rows in
primary key order, the result is 10 disk block writes in the next checkpoint. If we
are inserting the rows in random (with respect to the primary key) order, almost
 Chapter 6. Performance and troubleshooting 187

all 1600 rows will access separate disk blocks. Instead of 10 file-write operations,
the server could be doing 1600.

When running the massive write operations by executing a statement for every
row (that is, not running update or delete that affect millions of rows), using
prepared statements is important.

When running massive insertions with strict logging enabled, the size of the
commit block is an important factor. If every row is committed, the disk head must
be moved for every row. An optimal size for a transaction depends on many
factors, such as table and index structures, balances between CPU and disk
speed. We suggest some iteration with real hardware and data. Common starting
values with typical applications and hardware would be in the range of
2000 - 20000. Fortunately, the performance curve regarding medium level
transaction size is reasonably flat. The key is to avoid extremes.

For maximum performance of massive insertions in the client/server model, the
solidDB SA API using array insert can have an edge over ODBC or JDBC. This
way is mostly based on providing the programmer full control on inserting
multiple rows in the same network message. solidDB ODBC and JDBC drivers
provide support for bulk operations as defined by the corresponding standards.
The implementations, however, are built on calling individual statement
executions for every row in the bulk.

Excessive growth of the solidDB Bonsai Tree is the single most common
performance problem experienced with disk-based tables. The problem is
caused by the database preparing to respond to all queries with data as it was
when the transaction started. Because disk-based tables’ optimistic locking
allows other connections to continue modifying the data, duplicate versions of
modified rows are needed. If a transaction lasts infinitely long, the Bonsai Tree
grows infinitely large. With massive insertions, the problem can be caused by
having one idle transaction open for a long time. The problem is relatively easy to
detect and fix by closing the external connection.

Key diagnostics in massive insertions
The key diagnostics to follow are the pmon counters DBE Insert, DBE Delete,
DBE Update, Trans commit, SQL Execute, File Write, and Ind nomrg write.

Optimization of complicated query latencies
In certain applications, most queries are in the complicated query category.
Essentially this statement means that something else is required in addition to
simply retrieving the rows, such as the following examples:

� Sorting the data
� Grouping the data
� Joining the data across multiple tables
188 IBM solidDB: Delivering Data with Extreme Speed

The more complicated the query is, the more potential execution plans there are
available for the optimizer to choose from when running the query. For example,
there are many, many potential ways to execute a join of 10 tables.

Query optimization is a field of expertise all its own. solidDB, like all other major
RDBMS products, has an optimizer to decide on the execution plan, which is
essentially based on estimates of the data. Experience with query optimization
for any other product is almost directly applicable when analyzing solidDB query
optimization. For applications running complicated queries, preparation for bad
optimizer decisions is an important step in system design. Even with low failure
rates (say one in ten million), the impact of bad optimizer decisions might well
transform a sub-second query to a query that will run for several hours.

The problem with bad optimizer decisions is that they are data specific and
superficially random. For the decision, the optimizer selects a subset of randomly
selected data from the tables and creates an estimate on the number of rows
involved based on the random set. By definition, the random sets are not always
similar and it is possible that a random set is sufficiently unlike the real data so as
to mislead the optimizer.

With the randomness of the process, fully resolving the problem during the
development and testing process is practically impossible. The application needs
the capability of detecting the problems when they occur in the production
system. When doing so, consider the following examples:

� Detecting unexpectedly long response times can be done fully on the
application level or it can be done using solidDB diagnostics such as SQL
Trace files or the admin command sqllist.

� To validate how incorrect the optimizer decision is, the bad execution plan
must be captured also by running the EXPLAIN PLAN diagnostic of the query
when the performance is bad. Running the query when performance is good
does not prove anything. Building a mechanism into an application, which
automatically collects EXPLAIN PLAN diagnostics for long lasting queries is
suggested, but may not be trivial.

� Almost always, bad execution plans (and even more so, the disastrously bad
ones) are combined with an excessive number of full table scans. We show
an example in “Example: How to detect full table scans from pmon counters
with disk-based tables” on page 190. It describes how to look for patterns in
pmon counters to understand when a full table scan might be in progress
even without collecting EXPLAIN PLAN output for all queries.
 Chapter 6. Performance and troubleshooting 189

Key diagnostics related to complicated query latencies
Often, complicated and heavy queries are executed concurrently with massive
amounts of other (usually well-behaving) load. Then, in addition to executing
slowly, they interfere with the other load also. Identifying this situation is not
straightforward without application diagnostics. Finding one individual
long-lasting query among hundreds of thousands of fast queries usually requires
time and effort.

Before starting the task of finding potentially heavy queries executing full table
scans, assess whether the perceived problems are likely to be caused by
individual heavy queries. There is no exact method for that, but pmon counters
Cache Find, DBE Find, and File read can be used to detect exceptionally large
low-level operations indicating full table scans. Suggestions for doing this are in
“Example: How to detect full table scans from pmon counters with disk-based
tables” on page 190.

For finding long lasting queries among a huge mass of well-behaving queries, the
following methods are available:

� Use the admin command sqllist to list all queries currently in the server's
memory.

� SQL tracing with time stamps (either admin command monitor on or admin
command trace on sql produce a potentially very large file containing all
SQL executions. Finding the long-lasting ones from the big file might be time
consuming but it can be done. See the following sections for more
information:

– “Using the Monitor facility to monitor SQL statements” on page 163
– “Using the SQL Trace Facility to trace SQL statements” on page 168

After the problematic queries have been found, the execution plan can be
validated with the EXPLAIN PLAN utility. See “Statement execution plans” on
page 170 for more information.

Example: How to detect full table scans from pmon counters with
disk-based tables

In this example, we describe how to detect full table scans from pmon counters
with disk-based tables. The pb_demo table has an index on column J but not on
column K.
190 IBM solidDB: Delivering Data with Extreme Speed

As expected, the execution plans shown in Example 6-16 illustrates an index
based search and a full table scan.

Example 6-16 Sample explain plans showing an index scan and a table scan

explain plan for select * from pb_demo where j = 324562;
 ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
 -- ------- ------ --------- --------- ----
 1 1 0 2 JOIN
 2 2 1 0 TABLE PB_DEMO
 3 2 1 0 INDEX PB_DEMO_J
 4 2 1 0 J = 324562
4 rows fetched.

Time 0.03 seconds.
explain plan for select * from pb_demo where k = 324562;
 ID UNIT_ID PAR_ID JOIN_PATH UNIT_TYPE INFO
 -- ------- ------ --------- --------- ----
 1 1 0 2 JOIN
 2 2 1 0 TABLE PB_DEMO
 3 2 1 0 SCAN TABLE
 4 2 1 0 K = 324562
4 rows fetched.

Time 0.03 seconds.

Also, as expected, indexed searching is faster, as shown in Example 6-17.

Example 6-17 Comparing index based search versus table scan based search

select * from pb_demo where k = 324562;
 I J K TXTDATA1 TXTDATA2
 - - - -------- --------
 319995 321229 324562 sample data
1 rows fetched.

Time 1.30 seconds.
select * from pb_demo where j = 324562;
 I J K TXTDATA1 TXTDATA2
 - - - -------- --------
 323328 324562 327895 sample data
1 rows fetched.

Time 0.02 seconds.
 Chapter 6. Performance and troubleshooting 191

The pmon counters, also show a distinct pattern. In Example 6-18 the
un-indexed search (with admin command pmon accounting for the second SQL
Execute) was run during the first time slice (the left-most column of numbers),
while the indexed search was run during the second last time slice of 31 (third
column of numbers from the right). The execute during the last time slice of 13
seconds is the second execution of pmon admin command.

Example 6-18 pmon counters for indexed and un-indexed search

admin command 'pmon -c';
 RC TEXT
 -- ----
 0 Performance statistics:
 0 Time (sec) 35 35 30 35 31 13 Total
 0 File read : 643 0 0 0 1 0 17473
 0 Cache find : 2064 0 0 0 4 101 17428110
 0 Cache read : 643 0 0 0 1 0 17115
 0 SQL execute : 2 0 0 0 1 1 146
 0 DBE fetch : 1 0 0 0 1 0 3908
 0 Index search both : 0 0 0 0 0 0 1002100
 0 Index search storage : 1 0 0 0 2 0 213
 0 B-tree node search mismatch : 1957 0 0 0 6 1 29018247
 0 B-tree key read : 500000 0 0 0 2 0 8476993

To find full-table scans, search for the number of SQL Executes being
disproportionate to the numbers for File Read, Cache Find, B-Tree node search
mismatch and B-tree read operations. We can see in this example that we are
doing 643 Cache reads and 2064 Cache finds for 2 SQL Executes. Then a few
minutes later we are doing 0 Cache reads and 101 Cache finds for 1 SQL
Execute. This is good evidence of a table scan being done in the first execution.

Optimization of large result set latencies
Creating a large result or browsing through it within the server process set is not
necessarily an extensively heavy operation. Transferring the data from the server
process to the client application through the appropriate driver will, however,
consume a significant amount of CPU resources and potentially lead to an
exchange of large amount of network messages.

For large result sets, the easiest way to improve performance is to use the
directly linked accelerator or SMA options. It removes the need for network
messages, copying data from one buffer to another and context switches, almost
entirely. There are also key diagnostics that can be used to analyze the latencies
of large result sets. They are the pmon counters SQL fetch and SA fetch, as well
as fetch termination in the soltrace.out file.

When processing large result sets, applications are always consuming some
CPU to do something about the data just retrieved. To determine how much of
192 IBM solidDB: Delivering Data with Extreme Speed

the perceived performance problem is really caused by the database, we suggest
the following approach:

� In a client/server architecture, look at how much of the CPU is used by the
server process and how much by the application.

� In an accelerator or SMA model, it is occasionally suggested to re-link just to
assess database server performance. Also, rerunning the same queries
without any application data processing might be an option

The difference between a fully cached disk-based engine and in-memory tables
in large result set retrieval is quite minimal. Theoretically, disk-based engines are
actually slightly faster.

In large result sets the speed of data types becomes a factor, because the
conversion needs to be done for every column in every row to be retrieved. Some
data types (such as INTEGER, CHAR, and VARCHAR) require no conversion
between the host language and binary format in the database others do (such as
NUMERIC, DECIMAL, TIMESTAMP, and DATE).

Database throughput is too low
In some cases, all response times seem adequate but overall throughput is too
low. Throughput is defined as the count of statement executions or transactions
per time unit. In these types of situations, there is always a bottleneck on one or
more resource (typically CPU, disk, or network) or some type of lock situation
blocking the execution. Often, somewhat unexpected application behavior has
been misdiagnosed as a database throughput problem, although the application
is basically not pushing the database to its limits. This application behavior can
be either the application consuming all of the CPU for processing the data on the
application side, for example, or having only application-level locks (or lack of
user input) to limit the throughput of the database.

In this section, we focus on what can be done in the database to maximize
throughput.

Essentially, database throughput is usually limited by the performance of the
CPU, disk, or network throughput. If the limiting resource is already known, focus
only on the following principles.

� To optimize for CPU-use:

– Avoid full table scans with proper index design.

– With disk-based tables, optimize the IndexFile.BlockSize configuration
parameter. Smaller block size tends to lead to less CPU usage with a price
of slower checkpoints.

– Assess whether MME technology can be expected to have an advantage.
 Chapter 6. Performance and troubleshooting 193

– Use prepared statements when possible.

– Optimize commit block size.

� To optimize for minimal dependency on disk response times:

– Use main memory tables when possible.

– With disk-based tables, make sure your cache size is big enough (optimize
the IndexFile.CacheSize configuration parameter).

– Check whether some compromises on data durability would be
acceptable. Consider turning transaction logging off altogether or using
relaxed logging mode. These choices can be more acceptable if the
HotStandby feature is used or there are other data recovery mechanisms.

� To optimize for the least dependency on network messages:

– Optimize message filling with configuration parameters.

– Consider API selection (especially for mass insertion).

– Consider whether the volume of moved data can be reduced, for example
by not always moving all columns.

– Consider architectural changes (for example, move some functionality
either to the same machine to run with local messages or into the same
process through stored procedures or accelerator linking or shared
memory access model).

In addition to straightforward resource shortages, certain scalability anomalies
can limit database performance although the application does not have obvious
bottlenecks.

Current releases of solidDB fully support multiple CPUs, which can greatly
improve parallel processing within the engine.

solidDB can benefit from multiple physical disks to a certain level. It is beneficial
to have separate physical disks for the following files:

� Database file (or files)
� Transaction log file (or files)
� Temporary file (or files) for the external sorter
� Backup file (or files)

For large databases, it is possible to distribute the database to several files
residing in separate physical disks. However, solidDB does not have features that
enable the forcing of certain tables to certain files or for forcing certain key values
to certain files. In most cases, one of the files (commonly the first one) becomes
a hot file that is accessed far more often than the other ones.
194 IBM solidDB: Delivering Data with Extreme Speed

Analysis of existing systems
When encountering a system with clear database throughput problems it is
usually reasonably straightforward to identify the resource bottleneck. In most
cases, the limiting resource (CPU usage, disk I/O usage, or network throughput)
is heavily exploited, and the exploitation is obviously visible using OS tools. If
none of these resources are under heavy use, most likely no performance
problem can be resolved by any database-related optimization.

CPU Bottleneck
Identifying CPU as being a bottleneck for database operations is relatively easy.
Most operating systems that are supported by solidDB have good tools to
monitor the CPU usage of each process. If numbers of solidDB processes are
close to 100% utilization, CPU is obviously a bottleneck for database operations.

The CPU capacity used by the database process is always caused by some
identifiable operation, such as a direct external SQL call or background task. The
analysis process is basically as follows:

1. Identify the operation(s) that takes most of the CPU resources

2. Assess whether the operation is really necessary

3. Determine whether CPU usage of the operation can be reduced in one way or
another

Identifying the Operations
The admin command pmon counters give a good overview of what is happening
in the database at any given moment. Look for high counter values at the time of
high CPU usage. See “Performance Monitoring (pmon) counters” on page 148
for more details.

solidDB has an SQL Tracing feature that prints out all statements being executed
into a server level trace file. Two slightly different variants (admin command
monitor on and admin command trace on sql) have slightly different benefits.
The monitor on command provides compact output but does not show
server-end SQL (for example, statements being executed by stored procedures).
The trace on sql command shows server-end SQL but clutters the output by
printing each returned row separately. For more details, see the following
sections:

� “Using the Monitor facility to monitor SQL statements” on page 163
� “Using the SQL Trace Facility to trace SQL statements” on page 168

Note: In certain situations in multi-CPU environments it is possible to have
one CPU running at 100% while others are idle. CPU monitoring tools do not
always make this situation obvious.
 Chapter 6. Performance and troubleshooting 195

You may also map the user thread with high CPU usage from operating system
tools such as top to an actual user session in the database server with the admin
command tid, or, in recent solidDB versions, the admin command report.

Unnecessary CPU load can typically be caused by several patterns, for example:

� Applications that are continuously running the same statement through the
SQL Interpreter by not using prepared statements through ODBC’s
SQLPrepare() function or JDBC’s PreparedStatement class.

� Applications that are establishing a database connection for each operation
and logging out instantly, leading to potentially thousands of logins and
logouts every minute

Avoiding these patterns might require extra coding but can be beneficial for
performance.

Multiple potential methods are available for the reduction of CPU usage per
statement execution. Table 6-13 summarizes many of them and briefly outlines
the circumstances where real benefits might exist for implementing the method.
Seldom are all of them applicable and practical for one single statement.

Table 6-13 Methods of identifying and reducing CPU usage in statement execution

CPU capacity is used for How to optimize When applicable

Running the SQL
interpreter

Use SQLPrepare()
(ODBC) or
PreparedStatement
(JDBC)

Similar statement is
executed many times.
Memory growth acceptable
(no tens of thousands of
prepared statements
simultaneously in
memory).

Executing full table scans
either in main-memory
engine or disk-based
cache blocks

Proper index design.
Ensure correct optimizer
decision.

Queries do not require full
table scans by nature.

Converting data types from
one format to another

Use data types not
needing conversion. Limit
the number of rows or
columns transferred.

Large result sets are being
sorted.
196 IBM solidDB: Delivering Data with Extreme Speed

Disk I/O being bottleneck
Traditionally, most database performance tuning has really been about reduction
of disk I/O in one way or the other. Avoiding full table scans by successful index
designs or making sure that the database cache-hit rate is good has really been
about enabling the database to complete the current task without having to move
the disk head.

This point is still extremely valid, although with today’s technology it has lost
some of its importance. Today, in some operating systems, the read caching on
the file system level has become good. Although the database process executes
file system reads there are no real disk head movements because of advanced
file system level caching. However, this does not come without adverse side

Sorting, by internal sorter
and by external sorter

Both internal and external
sorter are CPU-intensive
operations using different
algorithms.
For bigger result sets
(hundreds of thousands or
more rows), the external
sorter is more effective
(uses less CPU and with
normal disk latencies
response times are faster).

Large result sets are being
sorted.

Aggregate calculation Consider using faster data
types for columns that are
used in aggregates. Avoid
grouping when internal
sorter is needed (i.e. add
an index for group
columns).

When aggregates over
large amounts of data are
involved. When sorting is
needed for grouping.

Finding individual rows
either within Main Memory
Table or disk-based table
by primary key or by index

Optimize
IndexFile.BlockSize with
disk-based tables.

Application is running
mostly simple lookups.

Creating execution plans
by the optimizer

Use optimizer hints. Beneficial when queries,
as such, are simple so that
optimization time is
comparable to query
execution time. Scenario
with single table query
where multiple indexes are
available.

CPU capacity is used for How to optimize When applicable
 Chapter 6. Performance and troubleshooting 197

effects. First, the cache flushes might cause overloaded situations in the physical
disk. Second, the disk I/O diagnostics built into the database server lose their
relevance because actual disk head movements are no longer visible to the
database server process.

The solidDB disk I/O consists of following elements:

� Writing the dirty data (modified areas of cache or MME table data structures)
back to appropriate locations in the solidDB database files (solid.db) during
checkpoint operations

� Reading all the data in main memory tables from the solidDB database file
(solid.db) to main memory during startup

� Reading data outside cache for queries related to disk-based tables

� Reading contents of disk-based tables not in the cache for creating a backup

� Writing log entries to the end of the transaction log file under regular usage

� Reading log entries from the transaction log file under roll-forward recovery,
HotStandby catchup or InfoSphere CDC replication catchup

� Writing the backup database file to the backup directory when performing a
backup

� Writing to several, mostly configurable, trace files (solmsg.out, solerror.out,
soltrace.out) in the working directory, by default

� Writing and reading the external sort files to the appropriate directory for large
sort operations

� Reading the contents of the solid.ini and license file during startup

All these elements can be reduced by some actions, none of which come without
a price. Which of the actions have real measurable value or which are practical to
implement is specific to the application and environment. See Table 6-14 on
page 199 for a summary.

To be able to exploit parallelism and not have server tasks block for disk I/O, be
sure you have multiple physical disks. See “Database throughput is too low” on
page 193 for more information.
198 IBM solidDB: Delivering Data with Extreme Speed

Table 6-14 Methods to reduce disk I/O

Type of file I/O Methods

Database file

Writing the dirty data (modified areas of
cache or MME table data structures) back
to appropriate locations in checkpoints.

Optimize block size with parameter
IndexFile.BlockSize.
Optimize checkpoint execution by
parameter General.CheckpointInterval.

Reading all the data in main memory
tables from solidDB database file
(solid.db) to main memory in startup.

Optimize MME.RestoreThreads.

Reading data outside cache for queries
related to disk-based tables.

Make sure IndexFile.CacheSize is
sufficiently large.

Reading contents of disk-based tables not
in the cache for creating a backup.

If pmon Db free size is substantial, run
reorganize. Check that all indexes are
really needed.

Swapping contents of Bonsai Tree
between main memory and disk when
Bonsai Tree has grown too large in size
and cleanup of Bonsai Tree by merge task
when it is finally released.

Control size of Bonsai Tree by making
sure transactions are closed
appropriately.

Transaction logs

Writing log entries to the end of
transaction log file under regular usage.

Consider different block size by parameter
Logging.BlockSize.
Consider relaxed logging or no logging at
all.

Reading log entries from transaction log
file under roll-forward recovery, hot
standby catchup or CDC replication
catchup.

Optimize General.CheckpointInterval and
General.MinCheckpointTime to reduce
size of roll-forward recovery.
Set Logging.FileNameTemplate to refer to
different physical disk (to db file and
temporary files) to avoid interference
with other file operations.
 Chapter 6. Performance and troubleshooting 199

Network bottlenecks
Two possible aspects to network bottlenecks are as follows:

� The overall throughput of the network as measured in bytes/second is simply
too low, perhaps even with messages set to have maximum buffer length.

� No real problems exist with the throughput, but the network latencies are
unacceptably long. The application’s network message pattern would be
based on short messages (for example, the application's database usage
consists of simple inserts and simple lookups) and nothing can be done to
pack the messages more. In this case, network would be the bottleneck only
in the sense of latency, but not in the sense of throughput.

Not much can be done to cope with the network being a bottleneck. The methods
are based on the strategies of either making sure that the network is exploited to
its maximum or reducing the load caused by the database server in the network.

Backup file

Writing backup database file to backup
directory when executing backup.

If pmon Db free size is substantial, run
reorganize. Check that all indexes are
really needed.
Make sure that actual database file and
backup file are on different physical disks.

Other files

Writing to several, mostly configurable,
trace files (solmsg.out, solerror.out,
soltrace.out) into the working directory.

Avoid SQL Tracing.

Writing and reading the external sort files
to appropriate directory for large sort
operations.

Disable external sorter by
Sorter.SortEnabled;
Configure bigger SQL.SortArraySize
parameter;
Optimize for temporary file disk latencies
by Sorter.BlockSize.

Reading contents of solid.ini and license
file in the startup.

Minimal impact, therefore optimization is
not necessary.

Type of file I/O Methods
200 IBM solidDB: Delivering Data with Extreme Speed

For maximum network exploitation, the following methods are available:

� Making sure network messages are of optimal size by adjusting the
Com.MaxPhysMsgLen parameter.

� Making sure network messages are packed full of data in the following ways:

– Adjust the Srv.RowsPerMessage and Srv.AdaptiveRowsPerMessage
parameters.

– Consider rewriting intensive write operations by using the SA API and
SaArrayInsertion. This way provides the programmer good control with
flushing the messages.

– For insertion, consider using INSERT INTO T VALUES(1,1),(2,2),(3,3)
syntax.

For reducing the amount of network traffic, several architectural changes are
required. Consider the following options:

� Move part or all of the application to the same machine as solidDB and use
local host connections, linked library access direct linking, or shared memory
access (SMA) as the connection mechanism.

� Rewrite part or all of the application logic as stored procedures to be executed
inside the database server.

As an example, consider the following situation:

� solidDB performance (both latency and throughput) with directly linked
accelerator or shared memory access model is more than adequate.

� solidDB performance in client/server model is not good enough. CPU usage
of the server is not a problem.

In this situation, server throughput is not a problem. If the problem is network
latency and not throughput, overall system throughput can be increased by
increasing the number of clients. Latencies for individual clients are not improved
but system throughput will scale up with an increased number of clients.

Database resource consumption is too high
In certain cases, performance measurements are extended outside of the typical
response time or throughput measurements. Resource consumption, such as
items in the following list, are occasionally considered as measurements of
performance:

� Size of memory footprint
� CPU load
� Size of disk file(s)
� Amount of disk I/O activity
 Chapter 6. Performance and troubleshooting 201

Occasionally an upper limit exists for the amount of memory available for the
database server process. Achieving a low memory footprint is almost always
contradictory to meeting goals for fast response times or high throughput.
Common ways to reduce memory footprint with solidDB are as follows:

� Using disk-based tables instead of main memory tables.

� Reducing the number of indexes with main memory tables.

� Reducing the size of the database cache for disk-based tables.

� Not using prepared statements excessively. Avoid creating large connection
pools that have hundreds of prepared statements per connection because the
memory required for the prepared statements alone can be very large.

IBM solidDB built-in diagnostics are good for monitoring the memory footprint
(pmon counter Mem size) and assessing what the memory growth is based on
(pmon counter Search active, several MME-specific pmon counters, and
statement-specific memory counters in admin command report). The admin
command indexusage allows assessment of whether the indexes defined in the
database are really used or not.

Although disk storage continues to be less expensive, in several situations
minimizing disk usage in a database installation is a requirement. solidDB is sold
and supported in some real-time environments with limited disk capacity. In
bigger systems, the size of files affects duration and management of backups.
The solidDB key monitoring features related to disk file size are pmon counters
Db size and Db free size. The server allocates disk blocks from the pool of free
blocks with the file (indicated by Db free size) until the pool runs empty. Only after
that will the actual file expand. To avoid file fragmentation, solidDB is not
regularly releasing disk blocks back to the operating system while online. This
can be done by starting solidDB with the startup option -reorganize.

The question of whether all the data in the database is really needed is mostly a
question for the application. In disk-based tables, the indexes are stored on the
disk also. The indexes that are never used will increase the file size, sometimes
substantially. The admin command indexusage can be used to analyze whether
or not the indexes have ever been used.

Occasionally, simple minimization of disk I/O activity is considered important
although there are no measurable performance effects. This case might be true
for example with unconventional mass memory devices such as flash. Regular
optimization efforts to improve performance are generally applicable to minimize
disk I/O. Pmon counters File write and File read are good tools for monitoring
file system calls from the server process.
202 IBM solidDB: Delivering Data with Extreme Speed

Database performance degrades over time
Occasionally, system performance is acceptable when the system is started but
either instantly, or after running for a certain period of time, it starts to degrade as
illustrated in Figure 6-6. Phenomenon of this type generally do not happen
without a reason and seldom fix themselves without some kind of intervention.

Figure 6-6 Data response time degrades over time

Typical reasons behind this kind of phenomenon are as follows:

� Missing index

Certain tables grow, either expectedly or unexpectedly, which results in full
table scans becoming progressively worse. The impact of managing a
progressively larger database starts to reach the application only after a
certain amount of time. In addition to thorough testing, it is possible to prepare
for the problem by monitoring the row counts in the tables and monitoring the
pmon counters (such as Cache find and File read) that are expected to show
high values when full table scans take place.

� Memory footprint growth

The memory footprint of the server process grows steadily for no apparent
reason. This growth can lead to OS-level swapping (if enabled by operating
system) and eventual emergency shutdown when the OS is no longer able to
allocate more memory. Typically, the performance is not really impacted by a
big footprint before swapping starts. The effect of swapping is, however,
almost always dramatic. Usually the problem can be temporarily resolved by
either killing and reopening all database connections or restarting the entire
system. Usually these kinds of cures are only short-term solutions. Typical
reasons for the problem are caused by unreleased resources in the

Response
Time

Time
 Chapter 6. Performance and troubleshooting 203

application code. For example, the application opens cursors or connections
but never closes them or never closes transactions.

� Disk fragmentation

The butterfly-write pattern to the solidDB database file (solid.db) can cause
disk fragmentation. For example, the disk blocks allocated for the solid.db
file are progressively more randomly spread across the physical disk. This
fragmentation means that response times from the disk become slower over
time. Running OS-related defragmenting tools has proven to help with this
problem.

Database response times are unpredictable
Relational database technology and related standards differ fundamentally from
real-time programming. The standards have few ways to define acceptable
response times for database operations. Mostly, the response times are not
really mentioned at all and it is possible for the same queries with the same data
within the same server to have huge variances in response times.

Varying response times can be explained partially by interference from other
concurrent loads in the system. These other loads can be solidDB special
operations such as backup, checkpointing, or replication. These are discussed
later in further detail.

The interference can, however, be caused by phenomena that are not obviously
controllable and might remain unknown even after careful analysis.

Database-specific reasons for sporadic long latencies are as follows:

� Optimizer statistics update

When data in tables change, the samples must be updated periodically to
ensure accurate estimates can be done.

� Merge operation

This occurs when a sizable Bonsai Tree is cleaned. It can be controlled partly
by the General.MergeInterval parameter.

� Massive release of resources

An example is closing tens of thousands of statements when a pool of
connections with many statements each, all complete at once.
204 IBM solidDB: Delivering Data with Extreme Speed

In practice, the sporadic latency disturbances are caused by congestion of some
system resource caused by other software sharing the same resource. Examples
are as follows:

� Physical disk congestion

Congestion is caused by extensive usage of the same disk by other software.
Some database operations (log writes, checkpoint) might be totally blocked
because of this kind of disturbance, bringing perceived database performance
to a standstill. Also, various virus scanners might interfere with file systems,
resulting in serious impact on database performance. solidDB does not
contain diagnostics to analyze file system latencies directly. Most operating
systems provide sufficient diagnostics to assess levels of disk I/O at the
system level and each process. See “iostat” on page 179 for more details.

� Network congestion or failures

Disturbances and uneven latencies in the network correlate directly with
perceived database response times in a client server architecture. The
solidDB diagnostic tools on network latencies are somewhat limited (that is,
there are no automated latency measurements in regular ODBC, JDBC, and
SA messaging). The solidDB ping facility provides a method of measuring
network latencies. Go to the following address for more information:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.
swg.im.soliddb.admin.doc/doc/the.ping.facility.html

It is possible to run the ping diagnostic in parallel to the actual application
clients and correlate unexpected bad latencies with collected ping results. In
addition to the ping diagnostic, be sure to use OS-level network diagnostics.

� CPU being used by other processes

This means that CPU capacity is not available for solidDB, which does not
have any diagnostics to collect absolute CPU usage statistics. Operating
systems have ways of collecting CPU usage levels but their level of
granularity does not always make a straightforward correlation with bad
response times from the database.

Interference from special operations
In some cases, database performance is acceptable under regular load and
circumstances. However, in special circumstances, interference of some special
task has an excessive negative impact on database response times, throughput,
or both. Disturbances of this kind can appear sporadic and unpredictable if the
nature of the special tasks is unknown and their occurrence cannot be
monitored.
 Chapter 6. Performance and troubleshooting 205

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg.im.soliddb.admin.doc/doc/the.ping.facility.html

Figure 6-7 illustrates response times in a pattern that shows interference from a
special operation.

Figure 6-7 Query performance degrades for a period and returns back to normal

The special tasks can be database internal operations:

� Checkpoint
� Backup
� Smartflow (Advanced Replication) replication operations
� HotStandby netcopy or HotStandby catchup
� CDC replication operations
� Heavy DDL operations

Various aspects exist to optimizing the impact of special operations:

� By timing the special operation to occur outside most critical periods.

� By optimizing the size of the special task in one way or the other.

� In some cases, only simultaneous execution of two or more special tasks
cause significantly worse interference than any of the special tasks alone.

The special tasks can also be application batch runs or other tasks that are not
present all the time. Logically, application special tasks can be treated similarly to
database-related special tasks.

Understand and apply the following aspects when optimizing a special task:

� How to control the special task’s execution
� How to optimize task execution
� How to monitor task execution times

Time

Response
Time

Acceptable
Level

Anomalies to be investigated
206 IBM solidDB: Delivering Data with Extreme Speed

We examine each special operation in more detail:

� Checkpoint

A checkpoint is a task that is executed automatically by the solidDB server
process. The checkpoint task takes care of writing all the changed (dirty)
blocks in memory back to the disk into the appropriate place in the solidDB
database file (or files). The checkpoint task uses CPU to find the dirty blocks
inside main memory and relatively heavy disk I/O to write the blocks to disk.
Application queries that result in intensive disk I/O are heavily impacted by
checkpoints.

By default, a checkpoint is triggered by the write operations counter.
Whenever the value of the General.CheckpointInterval parameter is
exceeded, the server performs a checkpoint automatically.

To avoid checkpoints entirely, set the General.CheckpointInterval parameter
to an extremely large value. Do this only if persistence of data is not a
concern.

In heavy write operations, CheckpointInterval can be exceeded before the
previous checkpoint completed. To avoid checkpoints being active constantly
use the General.MinCheckpointTime parameter.

Another possibility is to execute a checkpoint programmatically with the admin
command makecp. This can be advantageous because the application may
know about the workload pattern and can pick a more appropriate time to
perform a checkpoint operation.

Consider the following aspects:

– How to optimize task execution

By decreasing the General.CheckpointInterval parameter, the size of a
checkpoint becomes smaller. The checkpoints, however, become more
frequent. It might be that the impact of smaller checkpoints is tolerable;
bigger checkpoints disturb the system measurably. In practice,
modifications in checkpoint size seldom affect long-term throughput.
Theoretically, overall effort in checkpoints is slightly reduced when
checkpoints are bigger because of more rows that are possibly hitting the
same blocks.

– How to monitor the execution times

The solmsg.out log file contains information about the start and end of
each checkpoint. The last entries of solmsg.out can be displayed with the
admin command msgs.

The Checkpoint active pmon counter indicates whether a checkpoint is
active at that point in time.
 Chapter 6. Performance and troubleshooting 207

The admin command status contains information about write counter
values after last checkpoint and gives an indirect indication on whether the
following checkpoint is about to occur soon or not.

� Backup

In solidDB, backup is a task executed either automatically after setting the
Srv.At configuration parameter, or manually/programmatically by the admin
command backup. During backup, a full copy of the solidDB database file or
files (solid.db) are created in the backup directory. With disk-based tables
this essentially means extensive file reading of the source file and extensive
file writing at the target file.

Executing the task also requires CPU resources, but predominantly causes
congestion in the file system. Running backup has a measurable impact on
application performance and response times. It does not block the queries
and does not cause disastrously bad performance.

If possible, try to execute backup and application level batch operations
consecutively rather than concurrently. This approach is especially true with
batch operations that contain long lasting transactions.

Consider the following aspects:

– How to control

Backup process can be started either automatically by timed commands
or manually/programmatically by the admin command backup.

– How to optimize task execution

Backup speed depends on the file write speed of the target database. In
solidDB, the backup is intended to be stored on different physical devices
(to protect against physical failure of the device) than the source database
file. Hence, the operation of reading the file and writing the file is not
optimized for reading and writing from the same device concurrently.

The most common reason for long lasting backups is the database file size
being bigger than it should be, which can be caused by the following ways:

• The database file consisting mostly of free blocks. In solidDB, the disk
blocks are not automatically returned to the file system when they are
no longer needed. To shrink the database file in size, use the
reorganize startup parameter.

• Unnecessary indexes or unnecessary data in the file. In many
complicated systems, sizable indexes exist that are never used.
Occasionally long backup durations are caused by application level
data cleaning tasks having been inactive for long periods of time.
208 IBM solidDB: Delivering Data with Extreme Speed

– How to monitor the execution times

Backup start and completion messages are displayed in the solmsg.out
file. There is no direct way of assessing how far the backup task has
proceeded. The backup speed can be, however, indirectly calculated by
the Backup step pmon counter, based on each backup step passing one
disk block of information.

To determine whether a backup is currently active (to avoid starting
concurrent batch operations), use the admin command status backup or
examine the Backup active pmon counter.

� Advanced Replication operations

Advanced Replication, solidDB’s proprietary replication technology, is
primarily based on building replication messages inside solidDB's system
tables and passing the messages between different solidDB instances.
Building and processing the messages can cause database operations
related to these system tables.

Finding rows to be returned from the master database to a replica is a similar
operation to an indexed select on a potentially large table. If no rows have
been changed, a comparable operation is an indexed select returning no
rows. For environments with multiple replicas, the effort must be multiplied by
the number of replicas.

When moving data from replica databases to the master, the additional load
in the replica consists of the following actions:

– Double writing (in addition to actual writes, the data needs to be written in
a propagation queue)

– Reading the propagation queue and writing to system tables for message
processing

– Processing the message in system tables and sending to the master

The master database processes the message in its own system tables
(inserts, selects and deletes) and re-executes the statements in the master
(essentially the same operations as in the replica).

To fully understand Advanced Replication's impact on system performance,
you should understand its internal architecture. See the Advanced Replication
User Guide at the following location for more information:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/nav/9_1
 Chapter 6. Performance and troubleshooting 209

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/nav/9_1

Consider the following aspects:

– How to control

All replication operations (that is, replica databases subscribing to data
from master databases and replica databases propagating data to master
databases) are controlled by commanding replication to take place with
SQL extensions at the replica database. The application has full control of
initiation of replication. Heaviness of each operation is naturally caused by
the amount of changes in the data between replication operations.
Advanced Replication enables defining the data to be replicated by
publications. Publication is defined as a collection of one or several SQL
Result Sets.

– How to optimize task execution

The impact of replication depends on the number of rows to be replicated
by a single effort. It is possible to make the impact of refreshing an
individual publication smaller by breaking publications into smaller pieces
as follows:

• Creating several publications and defining different tables in different
publications

• Refreshing only part of a row (by key value) by individual subscribe
effort

These changes make the performance hits smaller but more frequent. The
numbers of rows that are replicated are not affected. Timeliness of
replicated data can suffer.

For systems with a high number of replicas (with high number of tables to
be replicated), the polling nature of Advanced Replication start to cause
load at the master database. For each replica and each table to be
replicated, an operation equivalent to selection can be executed in the
master database even if there are no changes in data. Overhead that is
caused by this phenomenon can be reduced by adjusting the replication
frequency, which results in an adverse affect on the timeliness of the data.

– How to monitor the execution times

The SQL commands that trigger the replication can be traced in the replica
database’s soltrace.out file like all the other SQL commands. The level of
replication activity in both replica and master databases can be measured
by a set of pmon counters. Pmon counters starting with the word Sync are
related to Advanced Replication.

� HotStandby netcopy or HotStandby catchup operations

In HotStandby, primary and secondary databases must run in Active state
where every transaction is synchronously executed at the secondary
210 IBM solidDB: Delivering Data with Extreme Speed

database also. Before reaching active state, the secondary database must
perform the following tasks:

– Receive the database file from the primary database

– Receive the transactions that have been executed since the databases
were connected and process them

While the secondary database is in the process of receiving netcopy or
processing catchup, it is not able to process requests at all. Also, sending the
entire file or just the last transactions will cause load at the primary database
and interfere with perceived performance of the primary database also.

HSB Netcopy is an operation quite analogous to a backup. It might lead to
heavy disk read I/O at the primary database and interfere heavily with other
intensive database file read I/Os.

HSB Catchup is essentially about rerunning the transaction log. If the
transactions that were written during the time that the primary and secondary
were disconnected exceed the buffer size, log file reads must be executed at
the primary database. In reality, this interference seldom causes measurable
problems.

Consider the following aspects:

– How to control

Both HSB netcopy and catchup are operations that are executed by SQL
at the primary database. This might be visible to the application or hidden
by the Watchdog application or HAC module.

– How to optimize task execution

The level of interference caused by these operations can be tuned by the
HotStandby.CatchupSpeedRate configuration parameter.

– How to monitor the execution times?

Both catchup and netcopy start and completion messages are logged in
the solmsg.out file.

The database states of primary active and secondary active indicate that
neither netcopy nor catchup are in progress. The states are visible in the HSB
state pmon counter.

� CDC Replication operations

CDC is a replication technology included as part of the solidDB Universal
Cache product to facilitate data transfer and synchronization between solidDB
and the back-end database.

The CDC replication process can cause some load on the databases and that
can potentially interfere with perceived application performance.
 Chapter 6. Performance and troubleshooting 211

Essentially, CDC is based on two parts, capture and apply:

– Capture reads log entries from a virtual log table (in solidDB's case,
SYS_LOG)

– Apply converts the log entries to SQL statements which get executed in
the target database.

The reading from the virtual table SYS_LOG is implemented as reading from
an in-memory buffer and, thus, can inflict a significant load. When the
connection is broken and log operations occur, a catch-up situation results
upon the next enablement of the solidDB InfoSphere CDC replication engine.
In that situation, some I/O overhead may be observed until catchup
completes.

CDC replication can lead to disastrous impact on performance when throttling
is activated. This means that the target database has been too slow to accept
applying the captured changes. To avoid the virtual log size growing too big,
the server will slow down new write operations. The read-only load is
unaffected by the throttling. Because the log reader operates in an
asynchronous mode with respect to transactions (that is, it reads only
committed transactions), no locking-related performance degradation is
possible.

Consider the following aspects:

– How to control

CDC configuration is performed with dedicated CDC tools. After the
replication process is set, it can be controlled (started or stopped) both
with GUI tools or with shell level commands, such as dmts64 or
dmshutdown. There are no solidDB controls to stop the replication. If there
is a need to stop the replication, use the CDC instance configuration tool
or the shutdown shell command. Any other way to stop the replication
(such as stopping users) may damage the replication setup.

The throttling is enacted when an in-memory buffer is filled up. The size of
the buffer can be controlled with the configuration parameter
LogReader.MaxSpace (in number of log records). The factory value is
100000.

– How to optimize

Relatively few things must be done to optimize replication in the capturing
database. In the database that receives the transactions being applied by
CDC, you can use regular write optimization options such as:

• Removal of unnecessary indexes. CDC does not force index structures
in source and target databases to be identical.

• Optimization in transaction logging mode.
212 IBM solidDB: Delivering Data with Extreme Speed

– How to monitor

The status of throttling may be monitored with the Logreader spm freespc
pmon counter. When it reaches zero, the throttling is enabled.

Other CDC-based activity can be monitored by several other pmon
counters. All of them are labeled Logreader.

Write operations executed by CDC when applying the captured data are
visible through regular pmon counters (such as SQL Execute and DBE
Insert).

� Heavy DDL operations

Data Definition Language (DDL) operations, such as ALTER TABLE and
CREATE INDEX can cause interference as follows:

– Potential heavy disk activity that interferes with concurrent operations that
are related to other tables, which are not directly involved in the DDL
operation

– Blocking the related table (or tables) for the duration of the operation

Consider the following aspects:

– How to control

Running DDL is entirely triggered by executing SQL components external
to the database.

– How to optimize task execution

DDL operations are potentially heavy. Only limited means are available for
optimization:

• DDL-operations are executed as write operations, which includes a
write to the transaction log file also. Disallowing new connections with
the admin command close command, turning logging off (possibly along
with other changes in configuration as suggested below), running the
DDL, re-enabling logging, and opening the server back up to new
connections with the admin command open can be faster than just
running the DDL.

• With disk-based tables, having a bigger cache (setting
IndexFile.CacheSize) size can speed up most DDL operations.

• With both main memory tables and disk-based tables, the disk block
size (the IndexFile.BlockSize configuration parameter) affects
checkpoint duration.

Note: The optimal block size for minimizing the duration of index
creation is not necessarily the optimal size for speed of index usage
or regular application usage
 Chapter 6. Performance and troubleshooting 213

The ALTER TABLE ADD COLUMN operation along with assigning a
default value with the DEFAULT option is heavy for large tables. The
operation will require a new value to be added to every row. If the new
column will be NULL, there is no need to touch the rows.

– How to monitor the execution times

SQL execution and transaction commits are usually done in scripting tools,
therefore monitoring can be done at that level. The executions are also
visible in SQL Trace files.

6.2 Troubleshooting

Two main categories of major problems can occur with any application, including
the solidDB server:

� Crashes
� Hangs

This section describes what tools are available to help you try to understand what
might have happened so that you can avoid it in the future, or so that you can
provide information to IBM support to get to a faster resolution more efficiently.

Crashes
A server crash is when a programming error has occurred within the solidDB
server resulting in the process abnormally ending. This can happen if an illegal
memory location is dereferenced (segmentation fault), a misaligned memory
access (bus error), or an illegal instruction is encountered during execution.
Abnormal termination can also occur when the solidDB server encounters a
condition that it does not expect and has no choice but to shut down the server to
avoid any data corruption from occurring. Sometimes, this type is referred to as a
panic or an abort. The following sections several available tools and facilities to
help you with problem determination.

Server Stack Traces
As of solidDB version 6.5 fix pack 3, files with the naming convention of
ssstacktrace-<process_id>-<thread_id>.out are created for each server
thread in the solidDB working directory. Example 6-19 on page 215 shows a
sample stack traceback file that was generated from sending the solidDB server
process a SIGUSR1 signal, which instructs the server to create stack trace files
for all currently running threads and then continue normal execution.
214 IBM solidDB: Delivering Data with Extreme Speed

Example 6-19 Sample stack traceback file

Version info: 6.5.0.3 Build 2010-10-04
Timestamp: Thu Nov 18 14:03:37 2010
Signal name: SIGUSR1
Signal number: 10
Platform: Linux 2.6.18 AMD64 64bit MT
solid[0x846e3d]
/lib64/libpthread.so.0[0x3ac9a0eb10]
/lib64/libpthread.so.0(__nanosleep+0x41)[0x3ac9a0e1c1]
solid(SsThrSleep+0x51)[0x849c01]
solid(sqlsrv_thread_serve+0x12c)[0x4d548c]
solid[0x487487]
solid(ss_svc_main+0x106)[0x8466d6]
solid(ss_main_UTF8+0x102b)[0x48975b]
solid(main+0x45)[0x48ad25]
/lib64/libc.so.6(__libc_start_main+0xf4)[0x3ac8e1d994]
solid[0x484e7a]
Signal details (contents of siginfo_t):
Size of siginfo structure: 128 bytes
0A000000 00000000 00000000 00000000
6D140000 466A0000 00000000 00000000
00000000 00000000 40010000 00000000
482A15C9 3A000000 A0D3FFFF FF7F0000
00000000 00000000 21010000 00000000
10010000 00000000 04000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
Signal #10 (SIGUSR1); si_code: 0 (SI_USER: Sent by kill, sigsend, raise.)

In most cases, the actual stack does not mean much to anyone who does not
have access to the solidDB source code. In certain cases, function names can
give a clue about what was being done at the time the signal was received but
usually its a job for IBM support and development personnel.

If a crash occurs and these stack trace files are created, be sure you save them
to a safe location so that they can later be sent to IBM for support. The
solerror.out file might also have important information about why the crash
occurred so be sure to save that file also.

Core Files
When the solidDB server receives a signal that causes abnormal termination,
UNIX and Linux operating systems have the ability to generate a core file, which
saves the contents of memory to a file for later debugging. By default on Linux,
the user limit (ulimit) for core files is set to 0, meaning that no core files will be
generated. If you have enough disk space to hold a file the size of solidDB’s
memory use, a good practice is to allow core files to be generated in case a
 Chapter 6. Performance and troubleshooting 215

crash occurs. That way you will not be asked to reproduce the problem again
after enabling core files.

To increase the core file limit, you may use the ulimit -c unlimited command in
your shell. Any processes started thereafter will be allowed to create core files of
any size, so be sure to start the solidDB server after your make this change.

If your server crashes and generates a core file, you will not really be able to get
any usable information from it without access to the solidDB source code. Be
sure you compress it and save it to a safe location so you can later send to IBM
support and development.

Hangs
A hang is often a misdiagnosed condition. Most people say a process hangs if it
becomes unresponsive. Understanding the difference between a true hang and
something running slowly is important.

A true hang is when one or more threads are waiting for a resource that will never
become available. Other threads in turn start waiting for resources that the first
set of threads are holding, and so on. Usually in these cases, determining what
the resource is that everything else is waiting for can be difficult. As a result, you
usually have no choice other than to force a restart.

When something is running slowly it may appear to users that it is hung. The
reason for running slowly in many cases can be because of some intermittent
cause such as a network slowdown, extremely busy disks, a thread or process
consuming all of the available CPU resources. If the user is patient enough, the
issue causing the slow performance can be alleviated, perhaps by itself, and
processing returns to normal. If the user it not patient enough, the server might
be terminated unnecessarily resulting in the need for crash recovery and more
lost time.

Using stack traces to determine a hang versus running slowly
In “Server Stack Traces” on page 214, we describe what server stack traces are
and how they are created. Example 6-19 on page 215 shows a sample stack
trace file that was generated when the user issued the following command:

kill -USR1 <server_pid>

The USR1 signal instructs solidDB to dump stack trace files for all currently
running threads. Because stacks show the current paths of execution for a given
thread, gathering multiple sets of stack trace files over a period of time can be
used to determine whether processing with the solidDB engine is truly hanging
as described in “Hangs” on page 216, or is actually running slowly.
216 IBM solidDB: Delivering Data with Extreme Speed

Therefore, a strategy to determine whether the server is truly hanging or not is to
generate two or three sets of stacks separated by approximately 10 seconds
each. Because additional information is appended to the end of existing stack
trace files, copying or moving the files between each stack trace file generation is
unnecessary.

After you generate a set of stack trace files, analyze the stacks to determine
whether they are changing between the three stack-generation operations. If they
are not changing, then a true hang situation likely has occurred and the system
must be forcefully restarted.

Using top to determine a Hang versus Running Slowly
Most UNIX and Linux operating systems include the top utility, which is useful for
monitoring system and process resource usage.

If you suspect a hang, run top to determine whether the solidDB server process
or application process if using the accelerator or shared memory access libraries
is actively or periodically consuming CPU usage. If it does not appear to be
consuming any CPU over about a 20-second period, then the server is likely
hung and requires a hard restart.
 Chapter 6. Performance and troubleshooting 217

218 IBM solidDB: Delivering Data with Extreme Speed

Chapter 7. Putting solidDB and the
Universal Cache to good use

IBM solidDB and IBM solidDB Universal Cache use in-memory database
technology, which can provide great throughput and response time advantages
over traditional disk-based databases. However, such improvements cannot be
achieved with all application types, and therefore not be taken for granted.

Performance of solidDB is sensitive to the overall system topology, application
workloads, and database structures. In this book, we describe the usage
characteristics, application paradigms, and workload profiles that are well-suited
for solidDB in-memory technology.

Key requirements for the effective use of solidDB in-memory database is having
enough physical main memory available in the system and willingness to trade
these memory resources for the improved speed of database operations.

7

© Copyright IBM Corp. 2011. All rights reserved. 219

7.1 solidDB and Universal Cache sweet spots

The solidDB in-memory database is optimized for efficient access to data that is
guaranteed to reside in the main memory. A number of access methods allow the
in-memory database to outperform a standard disk-based database in a range of
workloads, even if the disk-based database caches the relevant data set in main
memory buffer pools. However, the advantage of solidDB is not unconditional; it
depends on a number of preferred usage patterns: the sweet spots.

A key performance advantage of the solidDB products comes from their ability to
bring data closer to the application, all the way to the application memory space.
This way significantly reduces the complete access path that the system must
execute to serve the data to the application. Figure 7-1 and Figure 7-2 on
page 221 illustrate the differences in access paths and data locations between
the disk-based databases and the solidDB products.

Figure 7-1 Typical access path for disk-based databases

As shown in Figure 7-1, traditional disk-based databases are often accessed
from separate client computers through a network, and data must be read from
an external storage device (a hard disk drive or a solid state drive, for instance)
before it can be accessed by the application. Although advanced caching
algorithms exist to store frequently used data in the database main memory
(often referred to as a buffer pool), there is no guarantee that the requested data

Application

Bufferpool

HDD SSD

Engine

SQL

Network

Fast access through memory
Slow access through TCP/IP or disk I/O

Data requested by application
Database synchronous logging

ORACLE

Mic rosof t

SYBASE
220 IBM solidDB: Delivering Data with Extreme Speed

page will be available in the buffer pool at access time, therefore, a disk I/O
operation is needed. Moreover, database durability requirements often dictate
that log records are synchronously written to the storage device prior to any
database updates being committed, thus introducing additional performance
impact on the transaction response time seen by the application.

As shown in Figure 7-2, solidDB and solidDB Universal Cache can collocate the
data with the application. The combined cost of accessing data from the solidDB
in-memory engine collocated with the application is significantly lower than
accessing the data from the back-end database server. All expensive access
paths (network and synchronous disk access) can be removed.

Figure 7-2 Typical access path for solidDB and solidDB Universal Cache

Therefore, when we use the term sweet spot, we are referring to a collection of
usage patterns that can emphasize and maximize the advantages that solidDB
can bring to an application. The existence of such sweet spots can be explained
by the way solidDB performs certain operations more efficiently (and thus faster)
than a regular disk-based database management system (DBMS). However,
there are also operations that solidDB is not optimal for, either because of their
relative complexity, or because traditional disk-based databases already handle
them efficiently.

Application

Bufferpool

HDD SSD

Engine

SQL

Network

ORACLE

Mic rosof t

SYBASE

Fast access through memory
Slow access through TCP/IP or disk I/O
Backend database caching

Data requested by application
Database synchronous logging
Database asynchronous logging

Main-memory engine

SQL

HDD SSD
 Chapter 7. Putting solidDB and the Universal Cache to good use 221

The more sweet spots you can use, the more the probability that you gain an
advantage from using solidDB, such as improved throughput and response
times. The total advantage can be difficult to quantify because it depends on
many factors. The rest of this section discusses each of these sweet spot
aspects in more detail. Some basic guideline expectations are provided also.

7.1.1 Workload characteristics

The solidDB in-memory engine is optimized for workloads generally
characterized by the following properties:

� Read dominant
� Unique key lookups
� Simple queries
� Small to medium row sizes
� Relaxed durability is tolerable

Read dominant
IBM solidDB and solidDB Universal Cache provide the greatest performance
advantage for workloads where the number of read operations exceeds the
number of write operations. As a general guideline, a mix of 80% reads and 20%
writes has shown the best performance aspects with in-memory engine. With
high-write workloads, aspects that are outside of the core engine might start
dominating the throughput (such as transaction logging or synchronization with
the back-end database in the Universal Cache case). Hence, the performance
advantage over the traditional database systems is likely not significant.

Unique key lookups
Table lookups, especially on unique keys, can be extremely fast in solidDB for
two reasons:

� The more obvious reason: The server never has to go to the disk for the data.

� The less obvious reason: The actual storage and index structure are
optimized for an in-memory operation.

Access methods and data structures internal to the solidDB in-memory engine
can take advantage of memory-resident data, and differ fundamentally from page
and index structures that are used by traditional disk-based databases. The
in-memory engine can reduce the number of processor operations needed to
access the data. A disk-based engine, however, can reduce the number of
external storage I/O operations needed to access the data. For example, the
solidDB in-memory engine does not implement page-oriented indexes or data
structures that would introduce inherent overhead of in-the-page processing.
222 IBM solidDB: Delivering Data with Extreme Speed

Simple queries
Another area where solidDB offers an advantage is in improved interaction
performance between the application and the database server. Subsequently,
the less time a query spends in the server, the more an opportunity exists to
realize this “interaction advantage.” Simple queries are fast to execute and thus
they amplify the interaction speed advantage. On the contrary, complex queries
(involving multi-table joins, non-indexed access, full table scans, aggregates and
complex predicates) spend time in the server on scanning, moving, and
transforming the data in a way similar to a disk-based system. For example, a full
table scan is an operation that a disk-based database is ideally optimized for and
therefore, in this case, an in-memory database engine would not bring about
improvement.

Small to medium row sizes
Because a table row is a unit of query result processing, long rows induce more
data copying and processing than short rows. Short rows reduce the time a
query spends in the server and thus amplifies the advantage of fast interactions.
Similar to the simple query example, if a large portion of the overall time is spent
on an operation (such as memory copying or byte parsing), which is done equally
efficiently in solidDB and traditional databases, the expected performance
improvement of the in-memory engine becomes negligible compared to the
overall execution cost.

Relaxed durability is tolerable
Traditionally, database systems maintain strict durability, which means that after
a transaction is committed, it can always be recovered from the log files
regardless of what happens to the server. Such a durability level requires that the
transaction state is written synchronously to an external storage device before
the commit call returns. This kind of log operation consumes resources and
prolongs response times.

Another option is to run transaction processing in a relaxed durability mode. This
mode writes transactions to the log asynchronously, therefore providing a higher
level of overall transaction performance. This approach is enabled by solidDB, by
default. The compromise is that when the server crashes in a stand-alone
environment, some of the latest transactions can be lost. The actual delay of
writing the transactions to the log depends heavily on the overall system
characteristics.

In solidDB, the durability level can be set globally, per connection, or per
transaction. Additional strict durability levels can be obtained through a mixture
of relaxed logging and the solidDB HotStandby feature. With HotStandby, the
secondary server is accessed through the network, making the transactions
durable without the need for synchronous disk access.
 Chapter 7. Putting solidDB and the Universal Cache to good use 223

7.1.2 System topology characteristics

The essence of any data caching is improving access response times by bringing
the data closer to the consumer. In database caching, the solidDB product family
can do this by removing overhead insinuated by network access, inter-process
communication, and disk I/O.

Co-locate data with the application
In traditional databases using network based client access, there is a constant
overhead involved in sending the requests to the DBMS and receiving the
results. The cost and response time penalty is the highest with the remote
application that accesses the database through the network, most often using
the TCP/IP protocol. The reason is because network access involves multiple
context switches, additional processing overhead, and the network travel. You
can significantly reduce the response time by co-locating your application with
the database server, or by bringing the data to the application node (Figure 7-2
on page 221). This way reduces the network travel and the associated overhead.

Link the application with the server
Even with a TCP/IP-based driver and collocated data, inter-process
communication between the database server and the application will happen,
involving multiple context switches on each interaction between the application
and the server. The solidDB product family offers a possibility to avoid such
context switches. In addition to the TCP/IP drivers, solidDB provides two drivers
that allow the application to be directly linked with the server code and execute
the application level requests within the same address space:

� The linked library access (LLA) driver
� The shared memory access (SMA) driver

The LLA driver allows for one linked application per server; the SMA driver allows
many applications to access the database server at the same time. With both
drivers, the context switches at the application-server interactions are avoided.
To take the full advantage of solidDB shared memory data access protocol, use
the direct linking methodology, using either LLA or SMA when possible.
224 IBM solidDB: Delivering Data with Extreme Speed

7.1.3 Sweet spot summary

The solidDB product family can improve application performance in several ways:

� By removing the need for synchronous disk I/O for both data access and
logging

� By removing the need for network or local TCP/IP data access

� By bringing the data into application main memory space for efficient access,
using optimized algorithms and data structures

7.2 Return on investment (ROI) considerations

In many cases, the database performance can be directly tied with the revenue
generated; the ability to serve more business requests is commonly connected
with positive financial consequences of the volume growth. The profit can be
increased if the additional transactional volume is at a lower relative cost.

The solidDB product family is well suited for such business growth scenarios
because additional software and hardware costs associated with implementing
the solidDB accelerating solution are lower than the costs of scaling the
traditional database systems.

Moreover, shortening the response times can be easily tied with the
organization’s ability to meet various service level agreements, and to gain
competitive advantage and increase customer satisfaction. Examples could be
the need to validate a mobile phone subscriber and establish the connection in
under a few seconds, or the ability to quickly browse a travel company’s inventory
based on an online request coming from a search engine.

The following sections provide examples that illustrate how financial gains can be
achieved with solidDB product family solutions. The examples are based on a
number of assumptions; as much as several assumptions might need to be
modified to fit a particular real-life business case and thus individual results may
vary, the logic we use to qualify and quantify the ROI is generally applicable.
 Chapter 7. Putting solidDB and the Universal Cache to good use 225

The example calculations are based on the following common assumptions:

� The setup with the application running against the enterprise database server
is profitable. We estimate the revenue of such a solution at twice the cost of
the system. This estimate is conservative because most successful IT
companies derive revenue many times larger than the cost of production.
Larger revenue to IT cost ratio would increase the calculated solidDB ROI.

� Business revenue increases with overall application throughput but the
returns for each additional transaction are diminishing. This assumption
enforces the essential law of economics stating the marginal returns are
always diminishing. Thus, revenue earned per transaction is smaller for
solidDB and solidDB Universal Cache solutions because the number of
processed transactions increases significantly. Total overall revenue of the
solution still increases; a mathematical model is used to predict revenue
growth with increased transactional throughput.

� Individual transaction response times have no direct impact on revenue.

� The ROI is calculated as the ratio of revenue increase to the cost increase.

7.2.1 solidDB Universal Cache stimulates business growth

In this example, we detail the potential solidDB Universal Cache ROI with the
following scenario:

� solidDB Universal Cache is added to the system without modifying the
hardware setup, hence there is no change in any of the HW costs.

� A $150,000 (U.S. dollars, or USD) in application porting costs is added to
Universal Cache fixed cost to cover the development work needed to modify
the existing application so that it runs against the Universal Cache and the
necessary educational expenses; this equals roughly two person-years of
skilled labor.

� Software costs are based on the current processor value pricing for the
solidDB product family, the current processor value pricing of IBM enterprise
disk-based databases, and a standard 20% support renewal charge. A 50%
price discount is included.

� Overall costs and revenue are calculated for a three-year period, and all
amounts are in thousands of USD.

� A workload that simulates an online retails store order entry system is used
(see 7.4.5, “Retail” on page 248). Note that a different workload would result
in different Universal Cache relative throughput improvements and thus in a
different ROI of the overall solution.
226 IBM solidDB: Delivering Data with Extreme Speed

The evaluation is done for two setups, one using commodity hardware and the
other using enterprise hardware. The overall solution cost is heavily dependent
on the choice between these two.

Case 1: Commodity hardware
The commodity hardware system consists of two IBM xSeries® servers (Xeon
E5345 at 2.33 GHz on two chips, eight cores in total. One server is used for the
standard disk-based database; the other server is used for remote database
clients in the disk-based database stand-alone case, and for the solidDB cache
in the Universal Cache case.

Hardware costs are often difficult to estimate because they include fixed cost of
procurement amortized over a number of years, and ongoing cost of
maintenance, power, cooling, floor space, and so on. Therefore, we are making a
simple assumption that the cost of hardware equals the cost of software.

Table 7-1 lists the cost and revenue details for the ROI calculation of the
commodity hardware case. The results are summarized in Table 7-2. In the table,
K indicates thousand US dollars, and TPS indicates transactions per second.

Table 7-1 Estimated cost and revenue, commodity hardware case

Table 7-2 solidDB Universal Cache ROI summary, commodity hardware case

Item Data server solidDB Cache

Fixed cost (HW, SW) 128 K 310 K

Operational cost (HW, SW) 96 K 120 K

Throughput 100 TPS 350 TPS

Cost per transaction 2.24 K 1.23 K

Solution net earnings / ROI 43 K / 121%

Original revenue 448 K

New revenue 697 K

Added cost 206 K

Payback period 29.1 months

Revenue increased 1.6 times

Transaction cost decrease 45%
 Chapter 7. Putting solidDB and the Universal Cache to good use 227

Case 2: Enterprise hardware
The enterprise hardware system consists of one IBM pSeries® server (P 750
MaxCore mode, 4 chips, 32 cores in total) and four IBM xSeries servers (Xeon
E5345 at 2.33 GHz on two chips, eight cores in total. The pSeries server is used
for the standard disk-based database. The xSeries servers are used for remote
database clients in the disk-based database stand-alone case, and for the
solidDB cache in the Universal Cache case.

The hardware costs are much more substantial for enterprise-level servers
running in UNIX environments, therefore, we are making a simple assumption
that the cost of hardware equals two times the cost of software.

The performance improvement brought by the solidDB Universal Cache is
estimated to be about 100%, which is a conservative estimate given the results
measured on commodity hardware.

Table 7-3 lists the cost and revenue details for the ROI calculation of the
enterprise hardware case. The results are summarized in Table 7-4.

Table 7-3 Estimated cost and revenue, enterprise hardware case

Table 7-4 solidDB Universal Cache ROI summary, enterprise hardware case

Item Data server solidDB Cache

Fixed cost (HW, SW) 1536 K 1814 K

Operational cost (HW, SW) 1152 K 1248 K

Throughput 750 TPS 1490 TPS

Cost per transaction 3.58 K 2.06 K

Solution net earnings / ROI 1402 K / 475%

Original revenue 5376 K

New revenue 7152 K

Added cost 374 K

Payback period 6.0 months

Revenue increased 1.3 times

Transaction cost decrease 43%
228 IBM solidDB: Delivering Data with Extreme Speed

7.2.2 solidDB server reduces cost of ownership

In this example, we detail the potential solidDB server ROI in the following
scenario:

� The complete solution is implement using solidDB server instead of a
standard disk-based database server. A single machine running both the
solidDB server and the database is used instead of a standard client-server
setup.

� Because a new system is being built, no application porting is included in the
total cost. An application porting cost similar to what is described in 7.2.1,
“solidDB Universal Cache stimulates business growth” on page 226 could be
added to convert this scenario to a complete replacement of an existing
solution with the solidDB server. A $50,000 educational cost is included in the
calculation.

� Software costs are based on the current processor value pricing for the
solidDB product family, the current processor value pricing of IBM enterprise
disk-based databases, and a standard 20% support renewal charge. A 50%
price discount is included.

� The overall costs and revenue are calculated for a three year period, and all
amounts are in thousands of U.S. dollars.

� A workload that simulates a mobile carrier Home Location Register system is
used (see 7.4.1, “Telecom (TATP)” on page 235). Note that a different
workload would result in different Universal Cache relative throughput
improvements and thus in different return on investment of the overall
solution.

� The evaluation is done using commodity hardware, IBM xSeries servers
(Xeon E5410 at 2.33 GHz on two chips, eight cores in total). Again, cost of
hardware is estimated to be the same as the cost of software.

Table 7-5 shows the cost and revenue details for the ROI calculation. The results
are summarized in Table 7-6 on page 230.

Table 7-5 Estimated cost and revenue, commodity hardware case

Item Data server solidDB

Fixed cost (HW, SW) 128 K 114 K

Operational cost (HW, SW) 96 K 48 K

Throughput 100 TPS 300 TPS

Cost per transaction 2.24 K 0.54 K
 Chapter 7. Putting solidDB and the Universal Cache to good use 229

Table 7-6 solidDB ROI summary, commodity hardware case

7.2.3 solidDB Universal Cache helps leverage enterprise DBMS

In this example, we show that when an application starts using solidDB Universal
Cache to accelerate access to business critical data, part of the original workload
is naturally off-loaded from the enterprise database server. As a number of
database queries are then executed in the solidDB cache, additional processing
capacity becomes available in the back-end database. Valuable resources like
processor cycles, network bandwidth, and disk I/O bandwidth become available
to either increase overall throughput to facilitate business growth, or to be used
for other applications. The workload case study in 7.4.5, “Retail” on page 248
further illustrates such resource savings in a real system.

7.2.4 solidDB Universal Cache complements DB2 Connect

In this example, we demonstrate how IBM DB2 Connect™ makes your
company’s host data directly available to your personal computer and LAN-based
workstations. It connects desktop and palm-top applications to your company’s
mainframe. DB2 Connect provides application enablement and robust, highly
scalable communication infrastructure for connecting web applications, mobile
applications, and applications running on Windows, UNIX, Linux systems to data
on IBM z/OS® and IBM AS/400® systems.

IBM solidDB Universal Cache is a natural fit for an identical setup, where core
data servers reside on IBM System z® or IBM System i® mainframes but the
application accessing the databases is running in a distributed Linux, Unix,
Windows environment. Although solidDB server does not run in native z/OS and
AS/400 operating systems, caching of mainframe data is supported by the
solidDB Universal Cache.

In this scenario, applications always have to access the data remotely through
the network. Bringing a subset of the data to solidDB cache running on the Linux,
UNIX, or Windows application server machine has great potential to improve

Solution net earnings / ROI 286 K / 415%

Data server solution revenue 448 K

solidDB server solution revenue 672 K

Cost reduction 62 K

Revenue increased 1.5 times

Transaction cost decrease 76%
230 IBM solidDB: Delivering Data with Extreme Speed

overall performance and reduce critical data access response times. Moreover,
as a portion of the transactions are now executed in the solidDB cache running
off the mainframe, additional mainframe resources become available to either
increase overall throughput to facilitate business growth, or to be used for other
applications.

7.3 Application classes

IBM solidDB can be easily integrated in a number of application frameworks.
These frameworks facilitate application development in Java or C programming
languages by abstracting a number of database concepts from the application
layer and accessing the database as a generic JDBC or ODBC data source. This
simplifies the process of porting an application to use a different database server,
because changes are needed only in the database connectivity layer that is
managed by the framework, rather than in the application code itself.

An application server provides the infrastructure for executing applications that
run your business. It insulates the infrastructure from hardware, operating
system, and the network. An application server also serves as a platform to
develop and deploy your web services and Enterprise JavaBeans (EJBs), and as
a transaction and messaging engine while delivering business logic to users on a
variety of client devices. The application server acts as middleware between
back-end systems and clients. It provides a programming model, an
infrastructure framework, and a set of standards for a consistent designed link
between them.

Many applications written within these application development paradigms can
benefit from low database transactional latency and improved database
throughput resulting from the solidDB in-memory database technology and its
ability to bring data close to the application, as discussed in 7.1, “solidDB and
Universal Cache sweet spots” on page 220.

The solidDB SMA functionality can be used within these frameworks as long as
the solidDB server runs on the same computer as the application server. This
way provides optimal database access using shared memory only, as illustrated
in Figure 7-2 on page 221.

The following sections introduce a set of frameworks that have been tested with
IBM solidDB 6.5. More detailed setup instructions are available on the following
IBM solidDB Support portal, and samples are provided in the solidDB installation
package:

http://www.ibm.com/software/data/soliddb/support
 Chapter 7. Putting solidDB and the Universal Cache to good use 231

http://www.ibm.com/software/data/soliddb/support

7.3.1 WebSphere Application Server

IBM WebSphere Application Server is the IBM runtime environment for
Java-based applications. WebSphere Application Server provides the
environment to run your solutions and to integrate them with every platform and
system as business application services that conform to the service-oriented
architecture (SOA) reference architecture.

WebSphere Application Server is a key SOA building block. From the SOA
perspective, with WebSphere Application Server you can perform the following
functions:

� Build and deploy reusable application services quickly and easily
� Run services in a secure, scalable, highly available environment
� Connect software assets and extend their reach
� Manage applications effortlessly
� Grow as your needs evolve, reusing core skills and assets

WebSphere Application Server is available on a wide range of platforms and in
multiple packages to meet specific business needs. By providing the application
server that is required to run specific applications, it also serves as the base for
other WebSphere products, such as IBM WebSphere Enterprise Service Bus,
WebSphere Process Server, WebSphere Portal, and many other IBM software
products.

More information about using solidDB with the WebSphere Application Server is
provided in the “Configuring WebSphere Application Server with solidDB” article,
available on the IBM solidDB Support portal:

http://www.ibm.com/support/docview.wss?uid=swg21406956

The article describes how to setup IBM WebSphere Application Server V7.0 with
IBM solidDB V6.5 as a data store. A simple application provided with the solidDB
package is used as an example. The article assumes basic familiarity with
WebSphere Application Server, solidDB, and JDBC.

The task overview is as follows:

1. Start the solidDB server and the WebSphere Application Server.

2. Create solidDB JDBC providers and solidDB data sources.

3. Install the SolidTestEar application.

4. Run the SolidTestEar application.
232 IBM solidDB: Delivering Data with Extreme Speed

http://www-01.ibm.com/support/docview.wss?uid=swg21406956
http://www.ibm.com/support/docview.wss?uid=swg21406956

7.3.2 WebLogic Application Server

WebLogic Application Server is an application server product, owned by the
Oracle Corporation, is a part of the Oracle WebLogic Java EE platform product
family.

More information about using solidDB with the WebLogic Application Server is
provided in the “Configuring WebLogic Server for IBM solidDB” article, available
on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21439319

The article describes how to setup Oracle WebLogic Server with solidDB 6.5 as
a data store. A simple WebLogic application provided with the solidDB package
is used as an example. The article assumes basic familiarity with the WebLogic
Server, solidDB, and JDBC.

The task overview is as follows:

1. Start the WebLogic Server.

2. Start the solidDB server.

3. Create the solidDB JDBC data source.

4. Set up the environment.

5. Deploy and run the sample application.

7.3.3 JBoss Application Server

JBoss Application Server (or JBoss AS) is an open-source Java-based
application server product. It was originally developed by JBoss Inc, and is now
owned by Red Hat.

More information about using solidDB with the JBoss Application Server is
provided in the “Configuring JBoss Application Server for IBM solidDB” article,
available on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21452681

The article describes how to setup JBoss Application Server with solidDB 6.5 as
a data store. A simple JBoss application provided with the solidDB package is
used as an example. The article assumes basic familiarity with the JBoss
Application Server, solidDB, and JDBC.
 Chapter 7. Putting solidDB and the Universal Cache to good use 233

http://www.ibm.com/support/docview.wss?uid=swg21439319
http://www.ibm.com/support/docview.wss?uid=swg21452681

The task overview is as follows:

1. Set up the environment

2. Deploy the solidDB JDBC data source

3. Start the solidDB server

4. Start the WebLogic Server

5. Deploy and run the sample application

7.3.4 Hibernate

Hibernate is an open source persistence and query framework that provides
object-relational mapping of Plain Old Java Objects (POJOs) to relational
database tables, and data query and retrieval capabilities. Hibernate enables you
to write database applications without writing SQL statements.

The mapping between objects and the solidDB database is facilitated with a
solidDB dialect for Hibernate. The dialect enables the Hibernate library to
communicate with solidDB. It contains information about the mapping of Java
types to SQL types and the functions the solidDB database supports with
Hibernate. In general, a Java class maps to a database table and a Java type
maps to an SQL data type.

Hibernate eases migration between different databases: you can write an
application for a database that will in principle work with all databases supported
by Hibernate, that is, with any database that provides a dialect.

More information about using solidDB with Hibernate is provided in the
“Hibernate and solidDB” article, available on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21440246

The article describes how to get started using Hibernate with IBM solidDB. It also
includes the solidDB dialect for Hibernate (SolidSQLDialect.jar), and
instructions on how to build and run a sample application.

The task overview is as follows:

1. Configure your environment

2. Create mappings

3. Start the solidDB server

4. Run the sample application
234 IBM solidDB: Delivering Data with Extreme Speed

http://www.ibm.com/support/docview.wss?uid=swg21440246

7.3.5 WebSphere Message Broker

IBM WebSphere Message Broker provides universal connectivity, including web
services and any-to-any data transformation. In addition, you can use such
products as DataPower® and WebSphere Transformation Extender to extend the
capabilities of the core enterprise service bus (ESB) products.

WebSphere Message Broker is a powerful information broker that allows
business data, in the form of messages, to flow between disparate applications
and across multiple hardware and software platforms. Rules can be applied to
the data that is flowing through the message broker to route, store, retrieve, and
transform the information. WebSphere Message Broker offers the following
features:

� Universal connectivity
� Routing and transforming messages from anywhere, to anywhere
� Simple programming
� Operational management and performance
� Support for adapters and files

WebSphere Message Broker contains a choice of transports that enable secure
business to be conducted at any time by providing powerful integration,
message, and data transformations in a single place.

Official support for IBM solidDB was introduced in IBM WebSphere Message
Broker V7.0.0.1. An example of solidDB working with the WebSphere Message
Broker within an IBM financial services framework is presented in 7.4.3, “Banking
Payments Framework” on page 243.

7.4 Examining specific industries

In this section we provide detailed discussion of solidDB applicability to
workloads, frameworks, and use cases in several industries.

7.4.1 Telecom (TATP)

Telecom applications are prominent candidates for taking advantage of the
solidDB sweet spots, especially in the area of service control. Service control
applications are those that execute user services in a real-time environment.
They usually operate on simple data structures and small amounts of data in
each request. The key requirement is low latency, which is typically
sub-millisecond. An example is a voice call setup in a mobile network, or a Voice
over IP (VOIP) call setup.
 Chapter 7. Putting solidDB and the Universal Cache to good use 235

The Telecom Application Transaction Processing (TATP) benchmark was built to
represent a typical service control application. It originated from a network
division of Nokia Corporation in the 1990s, and was at that time called Network
Database Benchmark. Eventually, it made its way to the public use and is now
available as open source software, in the form of a TATP distribution package1.

TATP emulates the operations performed on the Home Location Register (HLR)
database in a mobile telephone network switch. An example of the network
architecture with HLR is shown in Figure 7-3.

Figure 7-3 Home Location Register database within a typical service architecture

HLR is a data repository holding essential subscriber information needed to set
up a mobile call: the handset ID and subscriber ID (telephone number), the
service profile including various access authorizations, service details including
the call forwarding information, the current location of the handset, and so on. In
TATP, only a subset of data structures and operations is used. The benchmark
employs four tables and seven transactions to emulate the HLR load. A standard
setup employs a transaction mix including 80% read transactions and 20% write
transactions, and generates a load that represents the maximum server
throughput.

1 http://tatpbenchmark.sourceforge.net/

IBM Software Group | Information Management Software | solidDB

Gateway GPRS
Service Node

Serving GPRS
Support Node

Base Transceiver
Station or Node B Base Station Controller/

Radio Network Controller

HLR

Mobile
Switching

Center

Subscriber identity,
preferences, purchased
services, current location,
billing details

Base Station Controller/
Radio Network Controller

HLR

PSTN

IP
Network
236 IBM solidDB: Delivering Data with Extreme Speed

http://tatpbenchmark.sourceforge.net/

Benchmark description
The four tables used in TATP are as follows:

� Subscriber: basic subscriber information
� Access_info: subscriber’s network access validation
� Special_facility: subscriber’s service profile
� Call_forwarding: subscriber’s call forwarding data

Detailed table descriptions and referential relationships between the four TATP
tables are shown in Figure 7-4.

Figure 7-4 TATP schema

The database of a given size (expressed as the number of subscribers) is
populated following predefined cardinality rules. For example, for each 10 rows
in the Subscriber table, there are 25 rows in the Access_info table. Today, typical
test database sizes start from one million subscribers and up. In solidDB, a
one-million subscriber database has the physical size of about 1.5 GB.

IBM Software Group | Information Managemen

Call_forwarding

s_id
sf_type
start_time
end_time
numberx

Subscriber

s_id
sub_nbr
bit_1
bit_2
…
bit_10
hex_1
hex_2
…
hex_10
byte2_1
byte2_2
…
byte2_10
msc_location
vlr_location

Access_info

s_id
ai_type
data1
data2
data3
data4

Special_facility

s_id
sf_type
is_active
error_cntrl
data_a
data_b

1
0-3

1-41

1-41
 Chapter 7. Putting solidDB and the Universal Cache to good use 237

The standard transaction mix consists of the following transactions (transaction
types), with the percentage numbers reflecting the transaction’s share in the total
load:

� Read transactions (80%)

– GET_SUBSCRIBER_DATA (35%)

Look up one row in the SUBSCRIBER table, using the primary key, using
one SELECT statement with a long select list.

– GET_NEW_DESTINATION (10%)

Retrieve the current call forwarding destination, using a SELECT
statement with a two-table join and single-column select list.

– GET_ACCESS_DATA (35%)

Retrieve the access validation data, with a single-row SELECT using the
primary key, with short select list.

� Write transactions (20%)

– UPDATE_SUBSCRIBER_DATA (2%)

Update the service profile data, using two UPDATE statements, with
equality conditions on the primary keys.

– UPDATE_LOCATION (14%)

Change the location, using one UPDATE based on the primary key.

– INSERT_CALL_FORWARDING (2%)

Add new call forwarding information, using two single-table SELECTS and
one INSERT.

– DELETE_CALL_FORWARDING (2%)

Remove the call forwarding information, using one primary-key based
SELECT lookup and one DELETE based on the multi-column primary key.

During the load execution, the transactions to be run are picked up randomly,
based on the specified distribution. The search keys are also generated
randomly, following one of the two distributions: the uniform distribution across
the key range, or a non-uniform one representing discrete hot spots. The
hot-spots emulate subscribers that are more active than the others.

Running TATP
With TATP Benchmark distribution package, you can run the workload in various
configurations and on separate products. TATP is implemented as a
DBMS-agnostic program that can be run against any ODBC-enabled DBMS,
over TCP/IP connections, by way of a driver manager and proprietary ODBC
238 IBM solidDB: Delivering Data with Extreme Speed

drivers. The software has been ported to all major platforms including Windows,
Linux, HP-UX, Solaris, and AIX®.

The basic load generator component is called a TATP client. A single client
represents a single thread of load execution and it establishes a connection to
the target database. Clients can be configured to be run as threads in a process
or as separate processes. Client processes can be configured to be distributed
across several client nodes. In such cases, clients are controlled by a single
node that also collects the result data. Additionally, separate clients can run
against separate DBMS instances, both collocated or distributed. Moreover,
separate clients can be set up to run on separate partitions of a database,
residing in separate DBMS instances.

In addition to using driver managers (both for local and remote access), TATP
can be built to be linked directly with solidDB drivers. The server code can also
be linked with the application using the linked library access (LLA) and shared
memory access (SMA) drivers. Also possible is to run the tests in multiple
computer nodes in a coordinated way.

When setting up TATP, the basic test configuration unit is a TATP test session. A
test session is a sequence of test runs, possible population steps, intermediate
operations, and so on. Each test session definition is captured in a single file
called TDF (test definition file). In the TDF, you can specify the following items for
each test run:

� Number of clients
� Client distributions
� Database partitioning
� Test timing
� Transaction mixes (can differ from the standard read/write 80/20 mix).

In a session, each test run is a continuous execution of the load with one set of
test parameters. A test run timing consists of the ramp-up (warm-up) time and
the sampling (test) time. The test result data is collected in the sampling (test)
time. Typically test runs are specified in a session to constitute a certain
scalability experiment. For example, in a user load scalability (ULS) session, the
number of clients is varied from a test run to another. In a read-intensity
scalability (RIS) session, the read/write ratio of the transaction mix is varied.

The TATP distribution package contains the source code and binaries and the
usage guidance information and sample files.

Collecting test results
TATP offers two ways of retrieving the result data. Summary-type test results are
output in the console and TATP log files. More detailed results can be collected
into the Test Input and Result Database (TIRDB). TIRDB is a pre-initialized
 Chapter 7. Putting solidDB and the Universal Cache to good use 239

database that is used as a total test respository. When TATP is running, it stores
all the relevant data pertaining to test sessions and runs:

� Target hardware and software characteristics and versions
� DBMS configuration information
� Test session description
� Test run description

It also stores the following test results:

� Final throughput values expressed as mean qualified throughput (MQTh) in
transactions per second

� Timeline throughput values with 1 second resolution (configurable)

� Response time histogram, for each transaction type

� Final response time values, per transaction type, expressed as 90-percentile
response times, in microseconds. The 90-percentile response time is the
shortest time that is bigger or equal to the response time of 90% of
transactions executed during the test run.

With the existence of TIRDB, no separate result collection step is needed. All the
results are stored persistently in an organized manner, and they are ready to use
after each session execution. Because of the multidimensional data stored in
TIRDB, various analyses across different dimensions (such as software versions,
database sizes, test parameter values) are possible at any time.

Hardware and software considerations
The TATP benchmark is often used to measure the evolution in solidDB
in-memory database performance between separate releases of the product,
and on new hardware platforms. One example of such an effort is the close
collaboration between Intel and IBM to showcase database performance
improvements of new processor generations. A summary of the analysis and the
results are published in support of Intel Xeon 5500 general availability
announcement2.

The following sections describe benchmarks results that compare the solidDB
performance against TATP using several hardware and software combinations.
The results demonstrate improved throughput between solidDB releases and
improved throughput with newer hardware.

For the benchmarking tests, IBM solidDB is running with default settings, such as
relaxed durability and read committed isolation level that are chosen for optimal
performance. A TATP database simulating one million subscribers is used, with
the default workload characteristics of 80% read transactions and 20% write

2 http://download.intel.com/business/software/testimonials/downloads/xeon5500/ibm.pdf
240 IBM solidDB: Delivering Data with Extreme Speed

http://download.intel.com/business/software/testimonials/downloads/xeon5500/ibm.pdf

transactions. To achieve maximum performance, the TATP workload application
is accessing the solidDB database using the LLA method. To demonstrate
database throughput scalability with the increased workload, the number of
application client threads is varied.

Benchmark 1 results
The first benchmark compares performance of two solidDB product releases on
two-socket Intel EP class hardware.

Both systems had 18 GB of RAM, two attached solid state disks, and were
running SLES 10 SP2 operating system.

� Nehalem-EP: 2 x CPU Intel Xeon 5570 @ 2.93 GHz, total 8 cores
� Westmere-EP: 2 x CPU Intel Xeon 5680 @ 3.33 GHz, total 12 cores

The results are shown in Figure 7-5. The throughput peaks at more than half a
million transactions per second.

Figure 7-5 TATP Benchmark 1, throughput as a function of client load

Benchmark 2 results
The second benchmark compares performance of two solidDB product releases
on four-socket Intel EX class hardware. Four solidDB database instances are
running in parallel to take full advantage of the available processing power.

IBM Software Group | Information Management Software | solidDB
 Chapter 7. Putting solidDB and the Universal Cache to good use 241

Both systems had 32 GB of RAM, four attached solid state disks, and were
running RHEL 5.4 operating system:

� Dunnington Server: 4 x CPU Intel Xeon 7450 @ 2.4 GHz, total 24 cores
� Nehalem-EX Server: 4 x CPU Intel Xeon 7560 @ 2.27 GHz, total 32 cores

The results are shown in Figure 7-6. The throughput peaks at more than a million
transactions per second.

Figure 7-6 TATP Benchmark 2, throughput as a function of client load

7.4.2 Financial services

Financial systems are tremendously data-intensive and rely on speed in trading
transactions that can result in huge profits and help exchanges compete and
meet client demands. As market volatility continues to increase so does the risk
of system failures that can lead to transaction delays, with a direct impact on the
global financial system and the businesses and individuals that rely on it.

The broad applicability of solidDB product family in financial services sector is
described in 7.4.3, “Banking Payments Framework” on page 243 and 7.4.4,
“Securities Exchange Reference Architecture (SXRA)” on page 246. In financial
markets, milliseconds can mean the difference between profit and loss.
Database performance is often a critical factor in rapidly making a decision to
trade, executing that trade, and reporting the trade. It is an even more critical
factor considering that trading volumes are growing, and effective trading
decisions require more complex analytics of more data.

IBM Software Group | Information Management Software | solidDB
242 IBM solidDB: Delivering Data with Extreme Speed

7.4.3 Banking Payments Framework

In this section, we use a payments processing environment to demonstrate
architectural and design patterns that can benefit from the use of both solidDB
server and solidDB Universal Cache.

Introduction
The enterprise payments systems are characterized by the fact that all payment
methods share a common set of data elements and processing steps. For
example, checks and credit cards can seem different on the surface, but they are
actually quite similar. Both have a source of funds, a security model, and a
clearing and settlement network. All payment methods also require certain
services, such as risk and fraud management. However, regardless of the
similarities, in most banks the payment systems exist in silos, closely tied to
particular retail and wholesale product lines.

The IBM Enterprise Payments Platform (EPP), also known as the Financial
Transaction Directory, is a solution that addresses the common problems of the
banking industry, simplifying payment systems by providing banks with a single
platform to integrate new and existing payments systems regardless of where
they reside.

The EPP is based on WebSphere Message Broker and WebSphere Process
Server and DB2 and Oracle database technologies and software. With a service
orientated architecture, the platform allows other banking applications to use
componentized payment services in support of multiple lines of business. For
example, with EPP, banks can purchase or develop one service to handle identity
verification requirements and reuse it elsewhere to respond faster to changing
regulatory requirements.

The solidDB Universal Cache can be integrated into the EPP. By using the
solidDB in-memory cache, critical data can be collocated with the application,
thus reducing latency by eliminating the network. The use of the in-memory
engine can also speed database operations.
 Chapter 7. Putting solidDB and the Universal Cache to good use 243

A schematic view of the EPP framework with solidDB Universal Cache is shown
in Figure 7-7. To collocate data with the application, solidDB server can be
implemented with SMA or LLA.

Figure 7-7 IBM Enterprise Payment Platform with solidDB Universal Cache

Benefits of solidDB Universal Cache in a payments system
Some of the key data in a payments system is by nature read-intensive, possibly
requiring periodic updates. By caching such data into the in-memory cache,
payment systems can benefit greatly from the solidDB Universal Cache.

The following sections describe the key payments system areas and the type of
data that is suitable for caching with the solidDB Universal Cache.

Payments life cycle
Payment systems are mostly event-driven and asynchronous in nature. The life
cycle of payments or batch of payments is thus typically specified through a state
machine paradigm. The state machine definitions are rarely updated but they
must be read frequently, returning single or small result sets. By caching the
state machine definitions into the in-memory cache, the applications can read
(and periodically update) the data with low latency.

DB2

IDS

DB2

Oracle

DB2/z

solidDB
UC

solidDB
UC

solidDB
UC

Payment &
Securities
Process

Execution

Existing
Enterprise
Databases

Direct
Database
Caches

solidDB
UC

DB2 Lifecycle
State

solidDB
UC

Payments
&

Securities
Operational

DB

EPP Application
DB2

solidDB
UC

solidDB
UC

E
S

B

244 IBM solidDB: Delivering Data with Extreme Speed

Bulking and debulking of payment information
Typically payments are received in bulk. The batch of payments must be
processed quickly so that a response on the validity of the batch can be returned
to the financial institution’s customer. The processing of the batch information
involves the parsing and persistence of multiple payment instructions and the
validation and construction of various object relationships in the database. This
process is read- and write-intensive; the bulking and debulking operation is
sensitive to latency. Again, the applications can benefit from caching the batch
information data into the solidDB in-memory cache.

Payment operational data
Various decision points in the payments life cycle rely on processing relational
transaction data, such as the value of the transaction, the destination of the
transaction, the currency of the transaction. This type of data affects the
processing path of the payment and hence needs to be accessed frequently with
a low latency requirement.

Reference lookups
The payment processing includes several enrichment, legal, and processing data
list lookups that are by definition read-intensive. For example, using the
in-memory cache can accelerate access to the following types of lookup data:

� Fee management
� Billing
� Security
� Anti money laundering
� Account lookup
� Routing
� Risk scoring
� Negative databases
� Liquidity
� Exchange rates

The solidDB Universal Cache features that are useful to
payments systems
In this section, we describe two solidDB Universal Cache features that can bring
additional benefit to the payments systems setups: data aging and SQL
pass-through.

Data aging
Data aging is the process by which data is removed from the cache but not from
the back-end database. Reciprocally, it also enables only specific data to be
moved into the cache initially. The main benefit of data aging is the reduction of
the amount of memory that the cache requires.
 Chapter 7. Putting solidDB and the Universal Cache to good use 245

To use the data aging, you must be able to define which data is operational and
which data has aged. Within EPP, operational data is typically the data that the
application requires to perform various tasks; it could be defined as all data that
is associated with payments that have not completed processing. Because EPP
is state-driven, the operational data set can be defined as all data that is not in
the completed state. Data in the completed state, however, can then be aged,
that is, removed from the cache.

SQL pass-through
SQL pass-through is the ability to have some database operations processed in
the cache and some routed to the back-end database. Applications that use the
cache typically cache a subset of the data required to accelerate the application.
However, this way can lead to a situation in which some of the data is unavailable
to the application in the cache. In such a case, the cache can determine that the
data is not available in the cache and automatically route the request to the
back-end database for servicing.

Within EPP, an example of data that does not need to be available in the cache
could be the large transmissions of the raw data which is received or sent to the
customer or the clearing system. Such data must be recorded but is seldom
accessed subsequently.

7.4.4 Securities Exchange Reference Architecture (SXRA)

The IBM Financial Markets Framework enables the creation of highly-available
and scalable infrastructures that help reduce costs and complexity, while
achieving breakthrough productivity gains. The latest advances from IBM in
engineering and software development have produced a Securities Exchange
Reference Architecture (SXRA) lab benchmark that features low latency
messaging. The solidDB in-memory database technology is used to store
business critical data for monitoring purposes.

In a setup with solidDB, SXRA has been shown to achieve over five million orders
per second and latency as low as 12 microseconds for the round trip from
gateway to matching engine and back using a combination of InfiniBand and
10GbE. The performance results show a 70% increase in orders per second and
40% reduction in latency in comparison to previous results3.

3 http://www.a-teamgroup.com/article/ibm-pitches-financial-markets-framework-pre-integra
tes-hardware-software-for-trading-risk-and-more/
246 IBM solidDB: Delivering Data with Extreme Speed

http://www.a-teamgroup.com/article/ibm-pitches-financial-markets-framework-pre-integrates-hardware-software-for-trading-risk-and-more/
http://www.a-teamgroup.com/article/ibm-pitches-financial-markets-framework-pre-integrates-hardware-software-for-trading-risk-and-more/

The exchange architecture is shown in Figure 7-8. The order generators (OMS)
access the system through a series of gateway machines, WebSphere MQ Low
Latency Messaging (LLM) pushes the orders to the parallel matching engines
(ME) and stores the trade data in solidDB and a file system (IBM XIV® Storage
System).

The matching engines process the orders and make the trades. Individual trade
records are received by the LLM and pre-processed before they are written to the
database. Simple data capture process is used to extract business critical
information (mostly aggregates) from the raw data and record it in solidDB.

Figure 7-8 IBM Securities Exchange Reference Architecture

The figure also shows solidDB in-memory database used for trade monitoring.

The solidDB database stores data that is used to identify information needed for
further business decision-making; raw trade data stream is also stored to a high
performance file system. For example, the following types of data can be stored
in solidDB:

� Aggregate position of each firm

� Per-symbol position of each firm

� Total number of trades processed in last X minutes

� Total volume of trades processed in last X minutes

OMS 1 Gateway 1

OMS 2 Gateway 2

OMS 3 Gateway 3

OMS 1 Gateway 1OMS 5 Gateway 5

OMS 6 Gateway 6

OMS 4 Gateway 4

ME1-1 ME1-2

ME2-1 ME2-2

ME3-1 ME3-2

ME4-1 ME4-2

ME5-1 ME5-2

W
M

Q
 Low

 Latency M
essaging

Monitor

W
M

Q
 Low

 Latency M
essaging

solidDB XIV

Load Balancer

WMQLLM
Message

Store

Data Logger

xSeries 10GbE <-> IB x/pSeries 10GbE <-> IB x/pSeries
 Chapter 7. Putting solidDB and the Universal Cache to good use 247

� Total value of trades processed in last X minutes

� Trades processed in the last X minutes with a value greater than Y

� Trades processed in the last X minutes with an amount greater than Y

� Trades processed in the last X minutes where the same firm is on opposite
sides of the trade, with differing prices

With solidDB, the data can be queried in real time by using the solidDB SQL
interface. An example report is shown in Figure 7-9.

Additional applications (such as automated order systems, real-time reporting
facilities, or fraud detection) can also read from solidDB, triggering further actions
based on the results.

Figure 7-9 Example of real-time trade analysis data retrieved from solidDB

The figure shows an overall position of an individual trading firm and five most
traded stocks.

7.4.5 Retail

In this section, we describe a case study in which a retail oriented workload,
called Hybrid Database Transaction Workload (HDTW), is run against IBM
solidDB Universal Cache. The HDTW workload and database is inspired by and
derived from the TPC-C Benchmark Standard, created by the Transaction
Processing Performance Council (TPC). However, the results presented in this
248 IBM solidDB: Delivering Data with Extreme Speed

section cannot be compared with any official results published by the TPC. The
reason is because the HDTW includes significant alterations to the TPC-C
Benchmark that have been made to more fully represent the wholesale supplier
environment being simulated in this study.

Introduction
Database management systems and hardware are continuously improving to
keep up with the ever increasing amounts of data and the need for faster access
to it. Certain situations demand even more performance than a traditional
disk-based database management system can provide, compelling a search for
other technologies that can help.

This case study demonstrates how a medium complexity online transaction
processing (OLTP) workload that gets good performance running on a
conventional disk-based DBMS can receive a boost in response time and
throughput when solidDB Universal Cache is integrated into the setup. We step
through the phases involved in the process of designing and applying the
in-memory cache into the system. This process includes identifying whether the
solidDB Universal Cache can provide a tangible benefit, followed by a workload
analysis and a planning phase, and finally an implementation and verification
phase. This case study also describes best practices we learned during the
implementation. This section assumes that you have basic understanding of the
differences between traditional disk-based DBMSs and in-memory databases.

In today’s fast-paced economy, milliseconds can mean the difference between
profit and loss. Database performance is often a critical factor in rapidly
responding to customer requests, orders, and inquiries.

Database management systems optimize performance through effective use of
disk storage and main memory. Because databases typically cannot fit entirely in
memory, and memory transfer rates are much faster than disk, disk-based
database management systems are designed to optimize I/O efficiency. In effect,
disk-based database management systems get better overall performance than
disk technology alone would suggest. This result is admirable and works well for
many applications. However, considering the high stakes in various industries
with respect to performance, IBM has continued to explore innovations that
improve performance even further.

As a stand-alone database solution, solidDB can dramatically improve response
time, throughput, or both, leading to significant competitive advantage. By
presuming that all data fits in main memory, solidDB renders disk transfers moot
(except for database recovery purposes). As a result, solidDB can use structures
and access methods that optimize memory performance without regard for I/Os,
resulting in better response time and higher throughput. Beyond a proven
 Chapter 7. Putting solidDB and the Universal Cache to good use 249

performance record, solidDB provides a comprehensive suite of features, and
high reliability.

In this case study, the solidDB in-memory database is used with the solidDB
Universal Cache solution. The solidDB database is referred to as the front end
and a DB2 database is referred to as the back end. The IBM InfoSphere Change
Data Capture (InfoSphere CDC) technology is responsible for replicating the data
between the back end and front end to ensure that each database is performing
transactions on the same data. Some data, but not all, is present in both the front
end and back end. In cases where a transaction cannot be processed in the front
end, the solidDB SQL pass-through feature is used to pass the transaction to the
back end for processing. Transactions that can be run completely in the front end
have the potential to benefit from faster processing in the solidDB database.

The back-end DB2 for Linux, UNIX, and, Windows also provides fast
performance and has a complex optimizer that helps to provide exceptional
performance even on the most complex queries. The choice between running
your workload on solidDB versus on the DB2 database should be based on a
number of factors, which this book describes. For example, although solidDB
database is also capable of running a large variety of queries, the greatest speed
benefit is observed with non-complex queries. Besides query complexity, the size
of the tables that the query accesses can matter. A detailed discussion of how we
determined which transactions should run in the front end is available in
“Preparation and planning” on page 252.

Workload description
The HTDW workload is an OLTP workload which can simulate the functions
performed by a wholesale supplier. However, the HDTW workload is not limited
to the activity of a particular business segment, rather, it represents any industry
that must manage, sell, or distribute a product or service. It is an order-entry
processing simulation that can be generalized to just about any business
segment.

The workload characteristics are as follows:

� The workload contains a database consisting of nine tables and a varied set
of six medium to high complexity transactions that are executed on that
database.

� The database schema contains information related to the retail business,
such as a number of warehouses in various districts, stock availability for
several sold items, customer, and orders.

� The transactions are modeled on the behavior of the retail firm managing
warehouse inventories, executing orders, and allowing customers to browse
the items.
250 IBM solidDB: Delivering Data with Extreme Speed

� A browsing feature allows customers to see availability of a particular item in
several stores when browsing, which simulates a standard feature of many
existing web stores.

� The database table describing the individual sales items contains a
moderately sized large object (LOB) column representing the product image
which would, for instance, be displayed on the distributor’s web page.

� The database workload is read-dominated, with 88% of operations not
modifying the data. The remaining 12% is a combination of updates and
inserts, with a small fraction of deletes.

Database schema
The database schema consists of nine tables with simple and complex data
types including INTEGER, VARCHAR, TIMESTAMP, and BLOB. Indexes are also
created on each table to eliminate table scans. The database tables can be
grouped into three categories:

� Warehouse tables contain information about retail warehouses, including the
items they carry, and the stock of each item.

� Order tables contain information about new, existing and completed orders
issued by customers.

� Customer tables contain information about the store’s customers, including
their personal information and payment history.

Transaction model
The workload is driven by six transactions that simulate various functions of a
retail supplier system. The workload is designed to be read-intensive with both
complex and simple look-up queries in addition to simple insert, update, and
delete queries. The transactions are as follows:

� The Browse-Item transaction simulates a customer browsing through the
store’s item catalogue which consists of several select queries.

� The Order-Entry transaction simulates an order being entered into the system
resulting in the warehouse’s stock being updated to reflect the number of
items that the customer ordered. This transaction consists of single and
multi-table lookup queries, and simple update and insert statements.

� The Order-Process transaction simulates the processing of an order entered
through the order-entry transaction. A random new order is chosen for
processing, and the customer who placed the order is charged an amount
based on the price of the items and quantity they requested. This transaction
consists of single-table select statements and simple updates.

� The Customer-Payment transaction simulates a customer making a payment
on an account balance for orders that the customer issued. The customer’s
balance is adjusted, and the payment is recorded in the system’s payment
 Chapter 7. Putting solidDB and the Universal Cache to good use 251

history. This transaction consists of single-table select statements, and simple
inserts and updates.

� The Order-Status transaction simulates the process of a customer checking
on the status of the order. This transaction consists of single-table select
statements.

� The Stock-Lookup transaction simulates a warehouse manager looking up
the items for which stock is low. This transaction consists of single and
multi-table select statements.

Each transaction is executed in a specific mix to create a standardized workload
that can be easily reproduced.

The workload driver is a multi-process application that runs the transactions in a
round-robin fashion to maintain the transaction mix. The application creates 32
processes that connect to the database server and communicate using ODBC
calls. The application records a count of the number of successful executions of
each transaction and the average response time for each transaction. The
transaction counts and the response times are used as the performance metric
for this workload. All transactions are sent to the front end; SQL pass-through is
used for those transactions that need to be processed on the back end.

Preparation and planning
After the workload was tuned when running on DB2, we started the planning and
preparation phase of integrating solidDB Universal Cache. Four key factors must
be considered when you are deciding which queries should be run in the front
end: table size, read versus write operations, query complexity, and workload
data interactions.

Table size
The first factor is that in order for a query to fully run in the front end, all required
tables must also be in the front end. If at least one table required by the query is
not in the front end, the SQL pass-through feature of solidDB Universal Cache
routes the query to the back-end database. When the total size of the database
exceeds the amount of RAM available on the solidDB front-end server, you need
to identify the tables with size in mind. To do this you can query the database’s
system catalog to determine each table’s size on disk, which can be used as a
rough guide as to how much memory will be required for the table to exist in
solidDB.

Read versus write operations
Another important factor in determining which queries should run in the front end
is the type of operation performed by the query. For any table that is cached in
the front end, data changes that are made to that table, either in the front end or
252 IBM solidDB: Delivering Data with Extreme Speed

the back end, must be replicated to the other copy of the table to ensure that all
queries are running against the same data regardless of where the query is run.
To minimize the amount of replication required, it is advantageous to try to get as
many read-only queries running in the front end as possible. To aid in this effort,
we analyzed all queries run in the workload and characterized each by what
operation was performed against what table or tables.

From this analysis, we could then easily see which tables had mostly reads,
suggesting which might be good candidates for placement in the front end. Of the
two tables we selected to be cached in the front end, one is purely read-only (the
ITEM table) and the other has mostly reads done on it along with a few updates
(the STOCK table). The updates to the stock tables are performed in the back
end which are then replicated to the front end through InfoSphere CDC.

Accelerating some write operations in the front-end cache also helps the overall
workload. Accelerating write operations in the front end requires that any
changes made are replicated to the back end. If the amount of data to be
replicated is high and continuous, a throttling effect could occur where the
solidDB database must wait for InfoSphere CDC to replicate the data. Selecting
which write queries run in the front end is an important exercise to do during the
planning and design phase. The selection of queries should also be fine-tuned
during implementation through trial-and-error experimentation. For this case
study, no write statements execute in the front end. For this reason, we were able
to disable logging and checkpointing in solidDB because the database could be
easily recreated from the back end if required. This provided us with a
performance boost of about 5%.

Query complexity
Another factor in choosing the queries to run in the front end is the complexity of
the query. The types of queries that experience the best performance
improvement in a solidDB database are non-complex, quick-running queries that
do not do many table joins and do not return a large result set. Queries that are
complex, have many table joins or return a large result set are better suited to run
in the back end.

Workload data interactions
The final factor in determining which tables and queries to have in the front end is
how the overall workload operates and how the various transactions interact.
Changes in the data in the front end or the back end must be replicated to the
other database. This replication takes a small amount of time, during which the
two databases may not have identical information. You must have a thorough
understanding of the transactions and which data they need to access and
update.
 Chapter 7. Putting solidDB and the Universal Cache to good use 253

For example, in this case study, the STOCK table is cached in the front end
where all reads to it are performed. However, because updates are made to the
STOCK table in the back end which then have to be replicated to the front end,
there is a small window where a read to the STOCK table in the front end could
get slightly old data. After this situation is identified, an assessment of how it
could affect the workload needed to be done. We know that the nature of the
updates to the STOCK table are increasing or decreasing the amount of an
item’s stock. Reads from the STOCK table in the front end are driven by the
simulation of a user browsing an item and getting a report of the stock level of
that item in different warehouses. Being liberal, if the replication of an update
took a maximum of 100 milliseconds (ms) to complete, the 100 ms is then the
maximum amount of time that the number of an item’s stock can be out of date to
the user. We deemed this to be acceptable.

Implementing and running the HDTW application
The implementation of HDTW on solidDB Universal Cache can be subdivided
into three main steps: creating and loading the back-end DB2 database, creating
the front-end solidDB cache, and configuring InfoSphere CDC to replicate data
between the solidDB database and the DB2 database.

Creating the back-end DB2 database
The back-end DB2 database holds all the data of the workload therefore it is
created and populated first. An in-house-developed kit is used to mostly
automate the process of creating the nine tables and their associated indexes,
generating all the random data, loading the data, and applying the various
configuration changes. The resulting database is 10 GB in size.

Creating the front-end solidDB cache
The workload application is built to execute transactions on the solidDB front end
through ODBC. Within each transaction, the SQL pass-through feature is used to
route specific queries to the back end if they are unable to run in the front end.
Before the solidDB server is started, SQL pass-through is enabled in the solid.ini
file and the remote server information is provided. After the solidDB front-end
server is running, a remote server definition is created with the login to the
back-end DB2 database. The tables to be cached in the front end are then
created in the solidDB front end along with the required indexes. The solidDB
Speed Loader (solload) utility is then used to load the two tables with the same
table that was loaded into the back-end database.
254 IBM solidDB: Delivering Data with Extreme Speed

Configuring InfoSphere CDC to synchronize the data
To replicate data between DB2 and solidDB, separate InfoSphere CDC instances
for both the solidDB database and the DB2 database must be created on each
machine. After the InfoSphere CDC instance for the solidDB database, the
instance for the DB2 database, and the InfoSphere CDC Access Server are
running, replication can be configured using the InfoSphere CDC Management
Console.

For this case study, because ITEM is a static table, no replication is necessary,
therefore, we only need to create one InfoSphere CDC subscription for the
STOCK table. The subscription is set to only replicate changes from the
back-end DB2 database to the front-end solidDB database. After the subscription
is put into a mirroring replication mode (changes are replicated continuously), the
workload is ready to be run.

Figure 7-10 illustrates the entire database system.

Figure 7-10 Old HDTW topology

In the figure, the application driver is accessing DB2 database directly (left). New
HDTW topology with the application driver accessing the data locally through the
solidDB shared memory access (right).

HDTW

Database Server

Application Server

HDTW

Database Server

Application Server

SMA

Back End
Database

Front End
Database

CDC One-way
replication

(1 Gb Ethernet)

10 GB

10 GB

1 G
b

E
thernet

1 G
b

E
thernet
 Chapter 7. Putting solidDB and the Universal Cache to good use 255

Running the HDTW application
The workload application is run through a command-line shell on the solidDB
machine. The application creates 32 processes that connect to the solidDB
server through SMA and performs database operations through ODBC calls.
Whenever a statement is issued for the back-end database, an SQL
pass-through connection for that process is used to pass the query to DB2.
Because each process runs all transactions, there are at least 32 SQL
pass-through connections to DB2.

Hardware and software considerations
Two separate systems are used in this workload to simulate a real environment
with the application tier, generally utilizing some application server, which is
separate from the database tier. One system contains the front-end solidDB
server, and the other contains the back-end DB2 server. The two servers are
connected by a private 1 Gb network. The systems had the following hardware
and software configurations:

� Front-end solidDB system

– solidDB Universal Cache 6.5 FP3
– SUSE Linux Enterprise Server 10 SP1
– IBM System x3650 (Intel Xeon E5345 – 2.33 GHz, 2-socket, 4-core)
– 16 GB RAM, 2 GB allocated to solidDB

� Back-end DB2 system

– DB2 9.7 FP2
– SUSE Linux Enterprise Server 10 SP1
– IBM System x3650 (Intel Xeon E5345 – 2.33 GHz, 2-socket, 4-core)
– Externally attached storage: total of 1.8 TB over 60 disks using GPFS™
– 16 GB RAM, 10 GB allocated to DB2

Results
The performance of the HDTW workload is measured using two metrics:

� Transaction throughput, measured in transactions per second
� Transaction latency, measured in milliseconds

The throughput is calculated by summing the total number of transactions
executed and dividing this sum by the duration of the workload run. The response
time is calculated by weighing each transaction response time based on the
transaction mix and summing the result. The response time for each transaction
is defined as the interval between the time the transaction is started by the
application and the time the transaction commit has been executed by the
application.
256 IBM solidDB: Delivering Data with Extreme Speed

The results presented in Figure 7-11 show a greater than six times increase in
throughput and almost five and half times reduction in latency with solidDB
Universal Cache with a DB2 back end when compared to a stand-alone DB2
database.

In addition, the introduction of the solidDB Universal Cache reduces the network
load by a factor of 10 because most of the read queries in a read dominated
workload are now running locally against the solidDB cache and thus do not
inflict any load on the network. Moreover, the solution reduces the disk I/O load
in the back-end DB2 system by a factor of almost 73 because LOB data
representing the product image is stored in the solidDB cache and does not have
to be retrieved from the disk at every access time.

Figure 7-11 Performance impact of solidDB Universal Cache on the HDTW workload
simulating an order entry processing system

In summary, this case study demonstrates how a demanding OLTP workload
simulating an order-entry system running on solidDB Universal Cache with a
DB2 back end favorably compares to the DB2 stand-alone. The Universal Cache
solution brings the following increase, average, and reductions:

� 6.2X increase in transaction throughput
� 5.4X average transaction response time improvement
� 73X reduction in DB2 disk I/O
� 10X reduction in network I/O

HDTW Results - Throughput and Response Time

77

474

0.491

0.091

0

50

100

150

200

250

300

350

400

450

500

DB2 9.7 solidDB Universal Cache 6.5

T
h

ro
u

g
h

p
u

t
(t

p
s)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Throughput

Average Response Time

5.4X Average Response Time
Reduction
6.2X Throughput Increase
 Chapter 7. Putting solidDB and the Universal Cache to good use 257

Scaling out the workload
In time, no more hardware resources are available on the front-end server that
can be used to process more transactions. A powerful available option to combat
that situation is to add more front-end servers with the application and solidDB to
process the workload in parallel. This procedure is commonly referred to as
scaling out.

As previously discussed, the solidDB Universal Cache solution reduced DB2 disk
usage by a factor of 73 and network usage by a factor of 10. This result, in turn,
allowed for more processing to be performed on the back-end database server,
which allows the addition of multiple solidDB front-end servers, and which results
in increased transactions per second being executed.

Moreover, because our solidDB Universal Cache implementation consists of
read-only operations in the front-end server, adding multiple front-end servers to
the workload becomes easier, because each are basically replicas with the same
data.

Figure 7-12 illustrates the architecture of the HDTW workload with five front-end
servers.

Figure 7-12 The HDTW workload scaled out by adding multiple solidDB front-end servers

Front End
Databases

Database Server

10 GB

Application

S
M

A

Application

S
M

A

Application
S

M
A

Application

S
M

A

Application

S
M

A
CDC One-way Replication

SQL Passthrough Bi-Directional 1 GB
Ethernet

Backend
Database

solidDB solidDB solidDB solidDB solidDB

DB2
258 IBM solidDB: Delivering Data with Extreme Speed

Results
Results show that the additional performance gained with the addition of
front-end server to the benchmark, scales performance linearly. Figure 7-13
shows that with five front-end servers, 2173 transactions per second were
achieved which is 28 times the performance of a stand-alone DB2 configuration.

These results show that for minimal effort, throughput can be greatly increased
by scaling out with multiple front-end servers.

Figure 7-13 Performance scales linearly for each additional front-end server added

In summary, by adding multiple front-end solidDB caches, throughput can be
scaled linearly. The throughput increases are as follows:

� 6.2X with 1 front-end cache
� 12.3X with 2 front-end caches
� 18.1X with 3 front-end caches
� 23.1X with 4 front-end caches
� 28.2X with 5 front-end caches

DB2
Standalone

1 2 3 4 5
Average Throughput

77

2173

1782

474

1394

945

0

500

1000

1500

2000

2500

T
ra

n
sa

ct
io

n
s

/
s

ec

Number of solidDB Front-ends

Up to

28X
Improvement!

DB2
Standalone

Average
Throughput
 Chapter 7. Putting solidDB and the Universal Cache to good use 259

7.4.6 Online travel industry

Essentially, the three major roles in the online travel-reservation industry are
travel suppliers, travel agents, and travel distributors:

� Travel suppliers are the hotels, airlines, and other companies that own the
inventory being sold online. Travel suppliers typically have their own database
on their own servers to store this inventory. They can sell that inventory
through their own website, through travel agents, or through travel
distributors. Several examples of travel suppliers include Hyatt, Choice Hotels
International, and Air Canada.

� Travel agents make up the main distribution channel through which travel
suppliers sell their inventory. Websites such as Expedia and Kayak are
considered online travel agents. Travel agents connect to the servers of travel
suppliers or travel distributors to retrieve inventory. Many online travel agents
also maintain a cache of inventory on their own servers, but this cache has to
be updated regularly from the source. Some examples of travel agents
include Expedia, Inc., Travelocity, and Flight Center.

� Travel distributors are companies that centralize the inventory of multiple
travel suppliers and supply that inventory to travel agents. Global Distributed
System (GDS) companies such as Travelport Inc., and Amadeus install
systems on travel supplier and travel agent servers, which then connect to a
GDS server to facilitate data exchange. Some examples of travel distributors
include Travelport Inc., Amadeus, and Sabre.

Clearly, the ability to effectively synchronize inventory data between the
suppliers, agents, and distributors, and present it quickly to the online customer
through a web interface is paramount to this industry. Again, bringing data closer
to the user reduces the transaction times and improves the customer experience.
Suppliers who are able to serve data faster can generally be listed higher in the
search results, and data not retrieved within a preset time interval is often
ignored.

Online Flight Reservation Workload
The Online Flight Reservation Workload is a custom-built workload that
simulates an application load similar to the airline Computer Reservation System
(CRS). Results are measured and presented using travel industry standard
Passenger Name Records (PNRs).

PNRs contain the itinerary for a passenger, or group of passengers travelling
together. The format and content of a PNR was defined by the International Air
Transport Association (IATA) to standardize reservation information that is
exchanged by airlines when passengers use more than one airline to get to their
destination. Typically, when a passenger books an itinerary, the travel agent or
260 IBM solidDB: Delivering Data with Extreme Speed

travel website user will create a PNR in the CRS it uses. If the booking is made
directly with an airline, the PNR can also be in the database of the airline’s CRS.
This use case simulates an airline CRS.

Although PNRs were originally introduced for air travel, they are now also being
used for bookings of hotels, car rental, railways, and so on.

Database schema and workload
The database in the workload consists of 25 tables that make up all the
information in a PNR. Those 25 tables can be grouped into three major types:

� Historical passenger tables contain historical PNR information about
passengers. These tables record personal information supplied by
passengers, special service requests (SSR) made (for example, special
meals), tickets issued to the passengers, travel documents supplied by the
passengers, and flight segments booked.

� New passenger tables contain PNR information about passengers for flights
that have not occurred yet. These tables record information about SSRs,
tickets, travel documents, and flight seats.

� Reference tables contain reference information that is not related to the
passenger. This includes fares, flight segment information, and group PNR
information.

Most of the tables accessed have indexes on the columns that are used in the
queries of the workload.

The workload driver is a multi-threaded Java application that randomly executes
a configurable number of use cases. There are two general types of use cases:
PNR Data Retrieval and PNR Data Update. The workload application randomly
executes the following database transactions using multiple database
connections, with all queries accessing each of the 25 database tables and
returning one or more rows in the result set:

� PNR Data Retrieval

– ‘PNR Primary key’ search: find and read one PNR is 35%
– ‘PNR Primary key’ search: PNR not found is 2%
– ‘Passport number’ search: find and read one PNR is 35%
– ‘Frequent flyer number’ search: find and read n PNR is 23%
– ‘Group name’ PNR Report/List: find 100 rows is 5%

� PNR Data Update

– Delete data from all 25 tables
– Insert new PNR data to all 25 tables
 Chapter 7. Putting solidDB and the Universal Cache to good use 261

Hardware and software considerations
The workload topology is shown on Figure 7-14. Four computers are used to
generate the workload, and one computer is used to run a pair of solidDB
HotStandby servers:

� Test workload system

– Two machines: 4x Dual Core Intel Xeon Processor 5110 (1.6 GHz, 16 GB
RAM)

– Two machines: 8x Quad Core Intel Xeon Processor E5504 (2.0 GHz,
40 GB RAM)

� solidDB HSB system

– solidDB 6.5.0.0
– 16x Quad Core AMD Opteron Processor 8346 (1.8 GHz, 128 GB RAM)

Figure 7-14 Online Flight Reservation Workload setup

Results
The results are presented in Figure 7-15 on page 263 and Figure 7-16 on
page 264, showing transactional response times and total workload throughputs
as a function of the increased number of database connections. Both are
measured for individual transactions, with each transaction executing SQL many
statements against all database tables.

The results show that the overall throughput increases as more clients connect to
the database, demonstrating excellent solidDB database scalability. Moreover,
transactional response times do not vary with the number of clients. The solidDB
in-memory engine is able to deliver near constant and predictable response
times even as the overall database workload is being increased to meet growing
business needs or to manage anticipated peak times.

solidDB HA PairTest Load Machines

JAVA Application
Executing

Data Retrievals
Data Updates
(multiple threads to
simulate concurrent
database access)
262 IBM solidDB: Delivering Data with Extreme Speed

Figure 7-15 PNR data retrieval throughputs and response times
 Chapter 7. Putting solidDB and the Universal Cache to good use 263

Figure 7-16 PNR data update throughputs and response times

Hotel Reservation Workload
The Hotel Reservation Workload demonstrates the benefit of solidDB Universal
Cache in a hotel reservation scenario. The workload driver is a simple C
application that executes hotel room availability queries against the in-memory
cache. Any bookings are recorded directly against the back-end database, and
changes to cached tables are propagated into the cache.

The workload use a read-only cache that is well suited for applications where
workload is read dominated; with hotel reservations, the “look-to-book” ratio is
often as high as several hundreds to one.

The workload uses a database schema in which the solidDB front-end cache
contains only two tables:

� Room information: availability, type, location
� Features: bed type, view, other amenities
264 IBM solidDB: Delivering Data with Extreme Speed

Figure 7-17 shows results of a case where the workload has been executed
against the following three setups:

� Back end using ODBC connection
� solidDB Universal Cache with solidDB V6.3 using ODBC connection
� solidDB Universal Cache with solidDB V6.5 using SMA connection

As Figure 7-17 shows, the transactional throughput grows significantly after the
solidDB Universal Cache is implemented in front of the disk based database. The
improvement is further increased when SMA is used to access solidDB data.

Figure 7-17 Results of the Hotel Reservation Workload executed against solidDB
Universal Cache

7.4.7 Media

This section describes how the media delivery industry can benefit from the
solidDB products.

Bookings

Room searches Cache room types
availability

ORACLE

Mic rosof t

SYBASE

Internet,
consumers,
travel agencies
 Chapter 7. Putting solidDB and the Universal Cache to good use 265

Media delivery and systems have undergone a vast number of changes over the
past decades, from early days of radio and television, to the modern era of
on-demand delivered content. Waiting for scheduled programming is no longer
satisfactory for most consumers; viewers are getting used to, and beginning to
expect, the ability to watch any show they want at any time. Any solution to this
problem eventually requires that the content can be recorded and replayed.

This idea is not a particularly novel one either; video cassette recorders (VCRs)
have existed since the 1980s. However, the advent of digital television allows
more modern devices to replace the analog recording onto a magnetic tape with
storing of digital data onto a hard-drive. Many digital video recorder (DVR)
solutions are available on the market, but in most cases the physical device
resides in the consumer’s home. This technological choice results in a number of
limiting factors. For instance, multiple devices or some type of digital network
connectivity are needed to serve the programming to multiple monitors in
different rooms or even different locations, like the vacation house. Also, all data
is stored on the recording device, so there is no possible recovery from device
failure, and expanding the storage requires changes to the physical recorder.

Remote DVRs are offering to solve all these problems for end customers,
bringing additional opportunities to the content providers. This approach involves
storing all recordings on a centralized system consisting of a large number of
high end storage units and a secure metadata repository. High performance
storage arrays take care of the data volumes needed to support thousands of
concurrent video recordings by shredding the videos across many disks; built-in
redundancy of the storage system offers protection from data loss.

A metadata repository contains all information necessary to reconstruct the
recording and serve it to the customer at a later time. There are clear options for
providers to optimize the business by facilitating the sharing of recorded bits
among multiple customers who have recorded a particular show, thus reducing
overall system cost, or by inserting targeted and personalized advertisements
into the programming at replay time, thus increasing marketing revenue.

Remote DVR systems can thus be said to require the following properties from
the metadata repository; and solidDB in-memory database is a perfect fit for such
technical requirements and business needs:

� No data loss

� Quick transaction response times

� Real-time database properties, such as quickly reacting to administrative
requests

� Ability to predictably handle large peak loads

� Ability to sustain high throughput
266 IBM solidDB: Delivering Data with Extreme Speed

Because metadata is needed to store, recover, and reconstruct the recordings,
any loss of metadata amounts to the loss of the customer recording.
Furthermore, during the time the system needs to detect and recover a database
failure none of the recordings are accessible, effectively taking the DVR solution
out of service. Using solidDB HotStandby (HSB) provides high-availability
options that guarantee no data loss in case of a single database failure, while
maintaining excellent performance characteristics, fast failure detection and
database failover, and fast recovery back to the fully active HSB system.

As demonstrated in the previous sections, solidDB in-memory technology
provides low and predictable transactional response times and sustains high
throughputs. This is particularly important because the remote DVR systems
need to manage extremely high peak loads - imagine millions of users wanting to
record the U.S. Superbowl football game within a few minutes before the game
starts. Because DVR metadata repositories are not likely to require complicated
database schemas or transactional workloads, they fit in the solidDB “sweet spot”
areas discussed in 7.1, “solidDB and Universal Cache sweet spots” on page 220.
 Chapter 7. Putting solidDB and the Universal Cache to good use 267

268 IBM solidDB: Delivering Data with Extreme Speed

Chapter 8. Conclusion

Over the last few years the world has experienced a true data volume explosion.
Studies indicate that the amount of data routinely being processed to yield
actionable information is growing faster than Moore’s law1. Additionally, there are
many new classes of structured and unstructured data which we may be able to
convert into knowledge and base decisions: for example, every single click on the
Internet, or every time a light switch is flipped, or every time a stock price falls
after a large volume trade, or every time a car enters a section of a highway, Also,
think about that growth in data volumes and new classes of information in terms
of a large and growing worldwide environment.

In this worldwide environment, we have to understand that the way information is
being extracted and derived must change to be able to keep up with the
overwhelmingly increasing demands. Simply following existing paradigms and
expecting hardware advances, such as those bound by Moore's law to double the
capacity roughly every two years, to provide the necessary bandwidth will not
suffice.

Adopting and using fast and efficient in-memory database technology is a part of
the answer. It provides the necessary paradigm shift toward answering a set of
questions more effectively. When used well, it does more with less, and this is the
unbeatable opportunity that should not be missed in the present-day competitive
business environment.

8

1 http://www.intel.com/technology/mooreslaw/
© Copyright IBM Corp. 2011. All rights reserved. 269

http://en.wikipedia.org/wiki/Moore's_law
http://www.intel.com/technology/mooreslaw/

8.1 Where are you putting your data

As the amount of collected data grows over the next decade2 (Figure 8-1), new
approaches to processing, analyzing and information management will become
a necessity.

Figure 8-1 Expected data growth over the next decade

Examples of highly demanding processing workloads can be found in any
number of industries such as financial services, communications, and web, to
name a few. Consider the following requirements:

� Brokerage application

– Receive market feeds
– Evaluate equity positions
– Check for fraud
– Evaluate tens of thousands of rules for thousands of trades per second

and millions of trades per day

� Telecommunications online charging

– Authenticate and authorize
– Initiate service

2 IDC, John Gantz and David Reinsel, The Digital Universe Decade – Are You Ready?, May 2010;
http://idcdocserv.com/925

IBM Software Group | Information Management Software | solidDB

44x as much

Data and Content

Over Coming Decade

Variety

Velocity

800,000 petabytes

2009 Volume
270 IBM solidDB: Delivering Data with Extreme Speed

http://idcdocserv.com/925

– Manage credit balance
– Manage volume discounts
– Hundreds of thousands of concurrent requests
– Needing microsecond database response times

� Web 2.0

– Authenticate users and manage personal profiles
– Generate page contents with targeted advertising
– Facebook has millions of concurrent sessions; billions of page views daily
– Wikipedia has thousands of page views per second
– Needing tens of thousands of database requests per second

One obvious approach to managing huge data sets is classifying them into
multiple layers of hotness, or importance. This concept is not novel, because all
respectable database systems already make such distinctions by pulling active
data into memory buffer pools, or by archiving historical or rarely used data on
tape or inexpensive disks.

However, the number of storage tiers is increasing, and forthcoming technical
advances add even more complexity to the picture. Data access time increases
for each consecutive tier, in some cases by multiple orders of magnitude.
However, the cost per byte stored and physical size limits are also reduced
significantly.

Starting from the fastest and most expensive, the following data storage
mechanisms are currently available:

� CPU cache
� Volatile DRAM (Dynamic Random Access Memory) main memory
� Non-volatile DRAM (likely battery-backed) main memory3

� Non-volatile PRAM (Phase-Change RAM) main memory3

� Non-volatile Flash based main memory3

� SSD (Solid State Disk) I/O devices
� HDD (Hard Disk Drive) I/O devices
� Magnetic tape I/O devices

The future of effective information management will require intelligent and
business-driven choices regarding what data is to be kept within each of the
storage tiers. An equally important question will be “What products yield optimal
performance characteristics for any given storage type?”

3 Not yet available in the market, however the amount of available research material indicates
strongly that such technologies will be in the market within this decade.
 Chapter 8. Conclusion 271

8.2 Considerations

Historically disk-based databases have been the easy answer because data had
to be persisted within one of the I/O device types, for which disk-based
databases are optimized. Main memory was effectively used only as a volatile
“staging and manipulation area” while transporting data between I/O based
storage and the CPU.

With anticipated advances in directly addressable main memory technologies
(including non-volatility, larger available sizes, lower costs) the importance of new
database systems optimized for main memory access will greatly increase.
Though adoption of these new technologies presently looks like a choice, gated
mostly by the cost of introducing a new software solution into the existing system,
it may not be long before doing so becomes a necessity.

Bringing data closer to the application allows us to use the fastest and most
efficient data access paradigms, yielding more results faster. This unique value
proposition is realized by the IBM solidDB product family.
272 IBM solidDB: Delivering Data with Extreme Speed

Glossary

1-safe algorithm. A method of transaction
processing in HotStandby setups. In 1-safe
systems, transactions are committed on the primary
server and then propagated to the secondary server
after If the primary server fails before it sends the
transactions to the secondary server, the
transactions will not be visible on the secondary
server. Also see 2-safe algorithm.

2-safe algorithm. A method of transaction
processing in HotStandby setups. In 2-safe
systems, transactions are not considered committed
on the primary server until the transaction is
confirmed committed on the secondary server. All
updates to the data are applied to both copies
synchronously. If the secondary server fails, the
primary server stops accepting transactions. Also
see 1-safe algorithm.

Access mode. The access mode of a solidDB
parameter defines whether the parameter can be
changed dynamically through an ADMIN
COMMAND, and when the change takes effect. The
possible access modes are RO, RW, RW/Startup,
RW/Create.

application programming interface (API). An
interface provided by a software product that
enables programs to request services.

binary large object (BLOB). A block of bytes of
data (for example, the body of a message) that has
no discernible meaning, but is treated as one entity
that cannot be interpreted.

Bonsai Tree. A small active index (data storage
tree) that stores new data (deletes, inserts, updates)
in central memory efficiently, while maintaining
multiversion information.

cache database. The solidDB database in a
Universal Cache setup. Also called cache or
front-end.
© Copyright IBM Corp. 2011. All rights reserved.
concurrency control. A method for preventing two
different users from trying to update the same data
in a database at the same time.

Data Definition Language (DDL). An SQL
statement that creates or modifies the structure of a
table or database, for example, CREATE TABLE,
DROP TABLE, ALTER TABLE, CREATE
DATABASE.

Data Manipulation Language (DML). An INSERT,
UPDATE, DELETE, or SELECT SQL statement.

data store (InfoSphere CDC). A management
entity that represents the InfoSphere CDC instance
in Management Console.

deploy. The process of making operational the
configuration and topology of the solidDB Universal
Cache.

disk-based table (D-table). A table that has its
contents stored primarily on disk so that the server
copies only small amounts of data at a time into
memory. Also see in-memory table.

distributed application A set of application
programs that collectively constitute a single
application.

durability level. A feature of transactionality that
controls how solidDB handles transaction logging.
solidDB supports three durability levels: strict,
relaxed, and adaptive.

Dynamic SQL. SQL that is interpreted during
execution of the statement.

Instance (InfoSphere CDC). A runtime instance of
the InfoSphere CDC replication engine for a given
DBMS.
 273

Java Database Connectivity (JDBC). An API that
has the same characteristics as ODBC but is
specifically designed for use by Java database
applications.

Java developer kit. A software package used to
write, compile, debug, and run Java applets and
applications.

Java Message Service. An application
programming interface that provides Java language
functions for handling messages.

Java runtime environment. A subset of the Java
developer kit that allows you to run Java applets and
applications.

In-memory table (M-table). A table whose contents
are entirely stored in memory so that the data can be
accessed as quickly as possible. Also see
disk-based table.

main-memory engine (MME). The solidDB
component that takes care of operations concerning
in-memory tables.

meta data. Typically called data (or information)
about data. It describes or defines data elements.

multi-threading. A capability that enables multiple
concurrent operations to use the same process.

Open Database Connectivity (ODBC). A standard
API for accessing data in both relational and
non-relational database management systems.
Using this API, database applications can access
data stored in database management systems on a
variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based
on the call level interface (CLI) specification of the
X/Open SQL Access Group.

optimization. The capability to enable a process to
execute and perform in such a way as to maximize
performance, minimize resource utilization, and
minimize the process execution response time
delivered to the user.

partition. Part of a database that consists of its own
data, indexes, configuration files, and transaction
logs.

Primary Key. A field in a table that is uniquely
different for each record in the table.

process. An instance of a program running in a
computer.

replication (InfoSphere CDC). InfoSphere CDC
replication is based on an asynchronous,
push-based model. Unidirectional subscriptions can
be created for real-time propagation of data changes
from the source side to the target side. Bidirectional
capability is achieved by setting up two subscriptions
with mirrored source and target definitions.

replication (HotStandby). In HotStandby (HSB)
setups, data changes in the primary are propagated
to the secondary using a push-based replication
protocol. The protocol can be set to synchronous
(2-safe) or asynchronous (1-safe).

replication (advanced replication). In advanced
replication setups, an asynchronous pull-based
replication method enables occasional distribution
and synchronization of data across multiple
database servers.

read-only (RO). Parameter access mode where the
value cannot be changed; the current value is
always identical to the startup value.

read-write (RW). Parameter access mode where
the value can be changed through an ADMIN
COMMAND and the change takes effect
immediately.

RW/Startup. Parameter access mode where the
value can be changed through an ADMIN
COMMAND and the change takes effect the next
time that the server starts.

RW/Create. Parameter access mode where the
value can be changed through an ADMIN
COMMAND and the change applies when a new
database is created.
274 IBM solidDB: Delivering Data with Extreme Speed

server. A computer program that provides services
to other computer programs (and their users) in the
same or other computers. However, the computer
that a server program runs in is also frequently
referred to as a server.

shared nothing. A data management architecture
where nothing is shared between processes. Each
process has its own processor, memory, and disk
space.

SQL pass-through. The act of passing SQL
statements to the back end, instead of executing
statements in the front-end.

static SQL. SQL that has been compiled prior to
execution. Typically provides best performance.

subscription (InfoSphere CDC). A connection that
is required to replicate data between a source data
store and a target data store.
 Glossary 275

276 IBM solidDB: Delivering Data with Extreme Speed

acronyms
ACID atomicity, consistency,
isolation, durability

ACS access control system

ADK Archive Development Kit

AIX Advanced Interactive
eXecutive from IBM

API application programming
interface

ASCII American Standard Code for
Information Interchange

BE back end data server

BLOB binary large object

CDC change data capture

CLI call level interface

CLOB character large object

CPU central processing unit

DBA database administrator

DBMS database management
system

DDL Data Definition Language

DES Data Encryption Standard

DLL dynamically linked library

DML Data Manipulation Language

DSN Data Source Name

D-table Disk-based Table

EJB Enterprise Java Beans

ERE External Reference Entity

FE front end data server

FP Fix Pack

FTP File Transfer Protocol

Gb gigabit

GB gigabyte

GUI graphical user interface

Abbreviations and
© Copyright IBM Corp. 2011. All rights reserved.
HAC solidDB High Availability
Controller

HADR High Availability Disaster
Recovery - DB2

HAM solidDB High Availability
Manager

HSB solidDB HotStandby

I/O input/output

IBM International Business
Machines Corporation

ID Identifier

IDS Informix Dynamic Server

ISV Independent Software Vendor

IT Information Technology

ITSO International Technical
Support Organization

J2EE Java 2 Platform Enterprise
Edition

JAR Java Archive

JDBC Java DataBase Connectivity

JDK Java developer kit

JE Java Edition

JMS Java Message Service

JRE Java runtime environment

JTA Java Transaction API

JVM Java virtual machine

KB kilobyte (1024 bytes)

LDAP Lightweight Directory Access
Protocol

LLA linked library access

Mb megabit

MB megabyte

MBCS multibyte character set

MME main-memory engine
 277

M-table in-memory table

ODBC Open DataBase Connectivity

OLE Object Linking and
Embedding

ORDBMS object relational database
management system

OS operating system

pmon performance counter

RDBMS relational database
management system

RR repeatable read

SA API solidDB application
programming interface

SBCS single byte character set

SDK software developers kit

SMA shared memory access

solcon solidDB remote control utility
program

soldd solidDB Data Dictionary utility
program

solexp solidDB Export utility program

solload(o) solidDB Speed Loader utility
program

solsql solidDB SQL Editor utility
program

SQL Structured Query Language

SSC API solidDB server control API

TATP Telecom Application
Transaction Processing

TC transparent connectivity

TF transparent failover

TSN transaction start number

URL Uniform Resource Locator

VLDB very large database

VTrie variable length trie

WAL write-ahead logging

XA X/Open XA

XML eXtensible Markup Language
278 IBM solidDB: Delivering Data with Extreme Speed

Index

Numerics
1-safe replication 117, 120
2-safe replication 31, 117–118

A
ACID (atomicity, consistency, isolation, durability)
27
active caching 42
adaptive durability 30–31, 117
ADMIN COMMAND 37
Advanced Replication 206, 209–210
ANSI X3H2 SQL CLI 17
ANSI X3H2 standard 18
application failover 140
application server 231
applications, scaling 63
array index, applying 22
asynchronous replication 35, 42, 53, 136
atomicity 6, 27, 115

B
back-end DB2 database 254
backup task 208
binary large objects (BLOB) 23
binary tree 21
Bonsai Tree 23, 188, 199, 204
B-tree

Bonsai Tree 23
main storage tree 23
variation 22

buffer pool 220
business intelligence xii

C
cache 9–10, 12, 40–42, 45–47, 49–51, 53, 55,
58–66, 142, 144–145, 151–153, 155, 177–178, 184,
194, 196–197, 199, 202, 213, 227–228, 230,
243–246, 249, 253–254, 257, 259, 264, 271

adding relational 64
object 12, 245

cache databases 10, 64
caching
© Copyright IBM Corp. 2011. All rights reserved.
active 42
catalogs 38
character data, encoding 55
checkpoint task 158, 207
checkpointing and logging 4, 19, 25
cloud computing 63
co-locating data 224
commodity hardware system 227
concurrency control xiii, 6, 12, 23, 26–28, 30
conflict resolution 46, 51, 55, 61
congestion

disk 154, 205
network 205

connect command 114
continuous mirroring 56
continuous monitoring 149
CPU usage levels 205
crash 214
CREATE DENSE SEQUENCE 34
CREATE SEQUENCE statement 34

D
data aging 58–59, 245
Data Definition Language (DDL) operations 213
data duplication 60–61
data partitioning 61
data warehousing xii
data, co-locating 224
database caching 1, 10, 12, 142, 224
deferred procedures 33
disk fragmentation 204
disk-based engine (DBE) 14

component 20
disk-based table (D-table) 20, 24
dmcreatedatastore command 50
dminstancemanager command 41
dmsubscriptionmanager command 41, 50, 52
D-tables 20, 23, 25, 28, 30

memory 26
optimistic concurrency control 28
performance 25, 29
persistent 25
storing 22
 279

durability 8, 19, 25, 30, 36, 115, 117–118, 120, 136,
194, 221, 223, 240
durability levels

adaptive durability 31
strict durability 30–31, 223

E
early validation 28
enterprise hardware system 228
Enterprise Payments Platform (EPP) 243
estimator component 20
EXPLAIN PLAN FOR command 170
External Reference Entity (ERE) 128

F
failover 12, 40, 49, 110, 112–114, 116, 120,
123–127, 129, 131–132, 134–135, 138, 140–141,
143–144, 267
failures 109–111, 114–115, 117, 120, 124–126,
129, 136–137, 144, 162–163, 205, 242
Financial Transaction Directory 243
front-end solidDB cache 254

H
HA Controller (HAC) 126
HA framework 113, 124–125
HA Manager (HAM) 127
hang 216
Home Location Register (HLR) 236
HotStandby (HSB) 19, 26, 29–30, 35, 40, 49, 58,
109–111, 129, 131–134, 136–137, 139–140, 159,
186, 194, 198, 206, 210–211, 223, 262, 267

primary servers, adaptive durability 31
replication 35

HSB link 111, 114, 124, 126–128
hsb netcopy 138, 140
hsb set primary alone command 113, 140
hsb switch 114

primary command 114
secondary command 114

Hybrid Database Transaction Workload (HDTW)
248

I
IEC/ISO 9075 SQL standard 18
impedance mismatch 12
indexes, M-tables 21

InfoSphere CDC 10, 41–42, 47–50, 54–56, 59–61,
143–145, 148, 162, 180–181, 198, 212, 250,
253–255

configuring 255
creating instances 43
instance area 45

in-memory tables (M-table) 20, 24
iostat utility 179
isolation levels

parameters 27
READ COMMITTED 29
REPEATABLE READ 30
SERIALIZABLE 30

J
Java Transaction API Specification 1.1 17
JBoss Application Server 233

K
key value

comparing 21
prefix-compressed 23
presorted 24

L
Largest Value Wins, conflict resolution 56
linked library access (LLA) 15–16, 18
local procedures 33
local strict durability 8
lock chain 160
locking, pessimistic 29
logging and checkpointing 19, 25, 158, 253
Logreader API 19
logreader replication 35
log-scraping 42

M
main storage tree 23–24
main-memory engine (MME) 5, 8, 14, 20, 184
mean time between failures (MTBF) 110
mean time to repair (MTTR) 110
mirroring data 42, 56, 135
missing index 151
MODE SQL statement 58
monitor facility 163, 165
M-tables 20, 25–26, 28, 30

indexes 21
280 IBM solidDB: Delivering Data with Extreme Speed

memory 26
non-persistent 25
performance 25, 29
persistent 25
pessimistic concurrency control 28

multiple cache node 47

N
netcopy 114
network bottlenecks 200
node

configuration 35, 46, 122, 137
multiple cache 47
single cache 46–47
single database 47

O
object cache 12
object store 12
ODBC command 36
on-persistent tables 25
operational data 246
optimistic concurrency control 28–29
optimizer hints 173, 187, 197

P
parallelism 60, 198
path compression 22
persistent tables 25–26
pessimistic concurrency control 28
pessimistic locking 28–29
pmon counters 148–149, 151, 155, 159–160, 162,
186, 189–190, 192, 195, 202–203, 210, 213

categories 149
gathering 148

POJOs (Plain Old Java Objects, mapping 234
PREFERRED_ACCESS connection 133
preflush 152
PRIMARY ACTIVE state 112
PRIMARY ALONE state 113
PRIMARY UNCERTAIN state 114
procedures 12, 19, 25, 31–32, 34, 59, 155–156,
168, 194–195, 201

Q
queries 18, 25, 32, 58, 60–61, 66, 129, 133, 135,
152, 173, 177, 184, 188–190, 193, 197, 199, 204,

207–208, 223, 230, 250–254, 257, 261, 264

R
READ COMMITTED 29
read dominant 222
READ/WRITE SQL statement 58
read-only cache 45, 264
read-write cache 45, 50
recovery component 19
Redbooks website

Contact us xvi
redundancy models 110
referential integrity 53
Refresh operation 54
relational cache databases 64
relaxed durability 9, 31, 116–117, 223
remote procedures 33
remote stored procedures 33
remote strict durability 8
REPEATABLE READ 30
replication

1-safe 117
2-safe 117–118
advanced 19
asynchronous 10, 19, 40, 42, 53, 136, 212
engines 41, 45, 47, 144
HotStandby 35
logreader 35, 162
protocol 111, 114, 116, 133, 136
subscriptions 50, 145, 180

replicator component 19
requirements xiii, 27, 109, 219, 221, 243, 266, 270
rolling upgrades 121, 123
round-trip 66
row sizes 223

S
scaling applications 63
scaling out 258
schemas 38, 267
SECONDARY ACTIVE state 113
SECONDARY ALONE state 113
Securities Exchange Reference Architecture
(SXRA) 246
separation values 23
sequence_name.CURRVAL 34
sequence_name.NEXTVAL 34
serializability 27
 Index 281

SERIALIZABLE 30
SET command 36, 165
SET TRANSACTION command 36
shared memory access (SMA) 15–16, 18
shared-nothing HA DBMS 111
simple queries 223
single cache node 47
single database node 47
small to medium row sizes 223
solid.ini configuration file 36, 121, 139
solidDB Console 37
solidDB Data Dictionary 38
solidDB Export 38
solidDB HotStandby 49, 111, 129, 136
solidDB JDBC Driver 16–17
solidDB ODBC Driver 16
solidDB SA 17, 188
solidDB Speed Loader 38, 254
solidDB Universal Cache xii, xiv–xv, 1, 10–12, 35,
39–43, 45–47, 50, 53, 56, 58, 60, 62, 64–66, 142,
145, 162, 164–165, 180, 211, 219, 221–222, 226,
228, 230, 243–245, 248, 250, 252, 254, 256–258,
264–265
solsql query editor 174
soltrace.out file 171, 184, 210
Source Wins, conflict resolution 55
SQL 2003 32
SQL commands

ADMIN 37
ODBC 36
SET 36
SET TRANSACTION 36

SQL level counters 155
SQL pass-through 41, 56–57, 246, 250, 252, 254,
256
SQL statements

MODE 58
READ/WRITE 58
SELECT 165
stored procedures 32, 34
TRANSACTION/SESSION 58

SQL tracing 190
SQL-89 Level 2 standard 18
SQL-92 18, 29, 32
SQL-99 18, 32
STANDALONE state 114
stored procedures 32–34, 156
strict durability 8, 31, 115, 117, 223

subscriptions
caching 47
character encoding 54
creating 50
redirecting 49
resolution rules 61
table subsets 52

sweet spot 221
switchover 114
system services component 20

T
table mappings 52
table services 20
table subsets 52
Target Wins, conflict resolution 55
TATP 236

client 239
test session 239

Telecom Application Transaction Processing
See TATP

temporary tables 26, 29
throughput 193
transaction logging 4–5, 25, 30, 58, 114, 136, 184,
186, 194, 212, 222
transaction manager 20
Transaction Start Number (TSN) 23
transaction throttling 10
transaction validation 28
TRANSACTION/SESSION SQL statement 58
transactional processing 27
transient tables 26
transparent failover 131–132, 134, 140
trie 3, 21, 161
triggers 12, 19, 25, 31, 33, 42, 59, 156
tuples 160

U
ulimit -c unlimited command 216
unique key lookups 222
Universal Cache xi–xii, xiv–xv, 1, 10–12, 35,
39–43, 45–47, 50, 53, 56, 58, 60, 62, 64–66,
142–143, 145, 162, 164–165, 180, 211, 219–222,
226–230, 243–245, 248, 250, 252, 254, 256–258,
264–265
282 IBM solidDB: Delivering Data with Extreme Speed

V
variable length trie

See VTrie
vmstat 178–179
VTrie 21

version collision 161

W
Watchdog 125, 144, 211
web session management 64
WebLogic Application Server 233
WebSphere Application Server 232
WebSphere Message Broker 235, 243
WebSphere MQ Low Latency Messaging (LLM)
247
width compression 22
workload connection 133
 Index 283

284 IBM solidDB: Delivering Data with Extreme Speed

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

IBM
 solidDB: Delivering Data w

ith Extrem
e Speed

®

SG24-7887-00 ISBN 0738435457

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM solidDB
Delivering Data
with Extreme Speed

Provides low latency,
high throughput, and
extreme availability

Offers fully featured
relational in-memory
database software

Has universal cache
with shared memory
access

The world seems to be getting smaller and business moving
much faster. To be successful in this type of environment you
need instantaneous access to any information, immediate
responses to queries, and constant availability, on a
worldwide basis, and in a world where the volume of data is
growing exponentially. You need the best resources you can
get, and ones that can satisfy those needs. IBM can help.

A primary component that can affect performance is access
to disk-based data. And, as data volumes grow, so does the
performance impact. To improve performance, it is time to
look for technology enhancements that can mitigate that
impact.

IBM solidDB is powerful relational, in-memory caching
software that can accelerate traditional disk-based relational
database servers by caching performance-critical data into
one or more solidDB in-memory database instances. This
capability can enable significant performance improvements.
It brings data closer to the application so you can use a faster
and more efficient data access paradigm. The result? Faster
delivery of information for your queries to enable faster
analysis and decision-making that can give you a significant
business advantage.

Have questions? Many of the answers you need are
contained in this IBM Redbooks publication.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 The opportunity of the in-memory database
	1.1.1 Disk databases cannot expand to memory
	1.1.2 IBM solidDB IMDB is memory-friendly
	1.1.3 Misconceptions
	1.1.4 Throughput and response times

	1.2 Database caching with in-memory databases
	1.2.1 Databases are growing
	1.2.2 Database caching off-loads the enterprise server
	1.2.3 IBM solidDB Universal Cache

	1.3 Applications, competition, and the marketplace

	Chapter 2. IBM solidDB details
	2.1 Introduction
	2.2 Server architecture
	2.2.1 Database access methods and network drivers
	2.2.2 Server components

	2.3 Data storage in solidDB
	2.3.1 Main-memory engine
	2.3.2 Disk-based engine

	2.4 Table types
	2.4.1 In-memory versus disk-based tables
	2.4.2 Persistent versus non-persistent tables
	2.4.3 Choosing between different table types

	2.5 Transactionality
	2.5.1 Concurrency control and locking
	2.5.2 Isolation levels
	2.5.3 Durability levels

	2.6 solidDB SQL extensions
	2.6.1 solidDB SQL standard compliance
	2.6.2 Stored procedures
	2.6.3 Triggers
	2.6.4 Sequences
	2.6.5 Events
	2.6.6 Replication

	2.7 Database administration
	2.7.1 Configuration settings
	2.7.2 ADMIN COMMAND
	2.7.3 Data management tools
	2.7.4 Database object hierarchy

	Chapter 3. IBM solidDB Universal Cache details
	3.1 Architecture
	3.1.1 Architecture and key components
	3.1.2 Principles of operation

	3.2 Deployment models
	3.3 Configuration alternatives
	3.3.1 Typical configuration
	3.3.2 Multiple cache nodes
	3.3.3 SMA for collocation of data
	3.3.4 solidDB HSB servers for high availability

	3.4 Key aspects of cache setup
	3.4.1 Deciding on the replication model
	3.4.2 Defining what to replicate
	3.4.3 Starting replication

	3.5 Additional functionality for cache operations
	3.5.1 SQL pass-through
	3.5.2 Aging
	3.5.3 Improving performance with parallelism

	3.6 Increasing scale of applications
	3.6.1 Scaling strategies
	3.6.2 Examples of cache database applications

	3.7 Enterprise infrastructure effects of the solidDB Universal Cache
	3.7.1 Network latency and traffic
	3.7.2 Back-end machine load
	3.7.3 Database operation execution

	Chapter 4. Deploying solidDB and Universal Cache
	4.1 Change and consideration
	4.2 How to develop applications that use solidDB
	4.2.1 Application program structure
	4.2.2 ODBC
	4.2.3 JDBC
	4.2.4 Stored procedures
	4.2.5 Special considerations

	4.3 New application development on solidDB UC
	4.3.1 Awareness of separate database connections
	4.3.2 Combining data from separate databases in a transaction
	4.3.3 Combining data from different databases in a query
	4.3.4 Transactionality with Universal Cache
	4.3.5 Stored procedures in Universal Cache architectures

	4.4 Integrate an existing application to work with solidDB UC
	4.4.1 Programming interfaces used by the application
	4.4.2 Handling two database connections instead of one

	4.5 Data model design
	4.5.1 Data model design principles
	4.5.2 Running in-memory and disk-based tables inside solidDB
	4.5.3 Data model design for solidDB UC configurations

	4.6 Data migration
	4.7 Administration
	4.7.1 Regular administration operations
	4.7.2 Information to collect
	4.7.3 Procedures to plan in advance
	4.7.4 Automation of administration by scripts

	Chapter 5. IBM solidDB high availability
	5.1 High availability (HA) in databases
	5.2 IBM solidDB HotStandby
	5.2.1 Architecture
	5.2.2 State behavior of solidDB HSB
	5.2.3 solidDB HSB replication and transaction logging
	5.2.4 Uninterruptable system maintenance and rolling upgrades

	5.3 HA management in solidDB HSB
	5.3.1 HA control with a third-party HA framework
	5.3.2 HA control with the watchdog sample
	5.3.3 Using solidDB HA Controller (HAC)
	5.3.4 Preventing Dual Primaries and Split-Brain scenarios

	5.4 Use of solidDB HSB in applications
	5.4.1 Location of applications in the system
	5.4.2 Failover transparency
	5.4.3 Load balancing
	5.4.4 Linked applications versus client/server applications

	5.5 Usage guidelines, use cases
	5.5.1 Performance considerations
	5.5.2 Behavior of reads and writes in a HA setup
	5.5.3 Using asynchronous configurations with HA
	5.5.4 Using default solidDB HA setup
	5.5.5 The solidDB HA setup for best data safeness
	5.5.6 Failover time considerations
	5.5.7 Recovery time considerations
	5.5.8 Example situation
	5.5.9 Application failover

	5.6 HA in Universal Cache
	5.6.1 Universal Cache HA architecture
	5.6.2 UC failure types and remedies

	Chapter 6. Performance and troubleshooting
	6.1 Performance
	6.1.1 Tools available in the solidDB server
	6.1.2 Tools available in InfoSphere CDC
	6.1.3 Performance troubleshooting from the application perspective

	6.2 Troubleshooting

	Chapter 7. Putting solidDB and the Universal Cache to good use
	7.1 solidDB and Universal Cache sweet spots
	7.1.1 Workload characteristics
	7.1.2 System topology characteristics
	7.1.3 Sweet spot summary

	7.2 Return on investment (ROI) considerations
	7.2.1 solidDB Universal Cache stimulates business growth
	7.2.2 solidDB server reduces cost of ownership
	7.2.3 solidDB Universal Cache helps leverage enterprise DBMS
	7.2.4 solidDB Universal Cache complements DB2 Connect

	7.3 Application classes
	7.3.1 WebSphere Application Server
	7.3.2 WebLogic Application Server
	7.3.3 JBoss Application Server
	7.3.4 Hibernate
	7.3.5 WebSphere Message Broker

	7.4 Examining specific industries
	7.4.1 Telecom (TATP)
	7.4.2 Financial services
	7.4.3 Banking Payments Framework
	7.4.4 Securities Exchange Reference Architecture (SXRA)
	7.4.5 Retail
	7.4.6 Online travel industry
	7.4.7 Media

	Chapter 8. Conclusion
	8.1 Where are you putting your data
	8.2 Considerations

	Glossary
	Abbreviations and acronyms
	Index
	Back cover

