
ibm.com/redbooks

IBM® Information Management Software 

IBM solidDB
Delivering Data
with Extreme Speed

Marko Milek
Michael Roche

John Seery
Katriina Vakkila

Jamie Watters
Antoni Wolski

Provides low latency, high throughput, 
and extreme availability

Offers fully featured relational 
in-memory database software

Has universal cache with 
shared memory access

Front cover

Chuck Ballard
Dan Behman

Asko Huumonen
Kyosti Laiho

Jan Lindstrom

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




IBM solidDB: Delivering Data with Extreme Speed

May 2011

International Technical Support Organization

SG24-7887-00



© Copyright International Business Machines Corporation 2011. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2011)

This edition applies to Version 6.5 of IBM solidDB (product number 5724V17) and IBM solidDB 
Universal Cache (product number 5724W91). 

Note: Before using this information and the product it supports, read the information in 
“Notices” on page ix.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
The team who wrote this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . xv
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Stay connected to IBM Redbooks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  The opportunity of the in-memory database . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1  Disk databases cannot expand to memory . . . . . . . . . . . . . . . . . . . . . 2
1.1.2  IBM solidDB IMDB is memory-friendly  . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3  Misconceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4  Throughput and response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2  Database caching with in-memory databases. . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1  Databases are growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2  Database caching off-loads the enterprise server. . . . . . . . . . . . . . . 10
1.2.3  IBM solidDB Universal Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3  Applications, competition, and the marketplace  . . . . . . . . . . . . . . . . . . . . 11

Chapter 2.  IBM solidDB details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2  Server architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1  Database access methods and network drivers . . . . . . . . . . . . . . . . 16
2.2.2  Server components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3  Data storage in solidDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1  Main-memory engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2  Disk-based engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4  Table types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1  In-memory versus disk-based tables  . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2  Persistent versus non-persistent tables  . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3  Choosing between different table types  . . . . . . . . . . . . . . . . . . . . . . 26

2.5  Transactionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1  Concurrency control and locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2  Isolation levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3  Durability levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6  solidDB SQL extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1  solidDB SQL standard compliance . . . . . . . . . . . . . . . . . . . . . . . . . . 32
© Copyright IBM Corp. 2011. All rights reserved. iii



2.6.2  Stored procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.3  Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.4  Sequences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.5  Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.6  Replication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7  Database administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.1  Configuration settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.2  ADMIN COMMAND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.3  Data management tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.4  Database object hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3.  IBM solidDB Universal Cache details . . . . . . . . . . . . . . . . . . . . 39
3.1  Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1  Architecture and key components. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2  Principles of operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2  Deployment models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3  Configuration alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1  Typical configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2  Multiple cache nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3  SMA for collocation of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4  solidDB HSB servers for high availability  . . . . . . . . . . . . . . . . . . . . . 49

3.4  Key aspects of cache setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1  Deciding on the replication model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2  Defining what to replicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3  Starting replication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5  Additional functionality for cache operations . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.1  SQL pass-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2  Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3  Improving performance with parallelism . . . . . . . . . . . . . . . . . . . . . . 60

3.6  Increasing scale of applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1  Scaling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.2  Examples of cache database applications  . . . . . . . . . . . . . . . . . . . . 64

3.7  Enterprise infrastructure effects of the solidDB Universal Cache . . . . . . . 65
3.7.1  Network latency and traffic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2  Back-end machine load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.3  Database operation execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4.  Deploying solidDB and Universal Cache . . . . . . . . . . . . . . . . . 67
4.1  Change and consideration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2  How to develop applications that use solidDB  . . . . . . . . . . . . . . . . . . . . . 68

4.2.1  Application program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2  ODBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3  JDBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
iv IBM solidDB: Delivering Data with Extreme Speed



4.2.4  Stored procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.5  Special considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3  New application development on solidDB UC. . . . . . . . . . . . . . . . . . . . . . 84
4.3.1  Awareness of separate database connections . . . . . . . . . . . . . . . . . 85
4.3.2  Combining data from separate databases in a transaction. . . . . . . . 87
4.3.3  Combining data from different databases in a query  . . . . . . . . . . . . 87
4.3.4  Transactionality with Universal Cache  . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.5  Stored procedures in Universal Cache architectures . . . . . . . . . . . . 88

4.4  Integrate an existing application to work with solidDB UC  . . . . . . . . . . . . 89
4.4.1  Programming interfaces used by the application  . . . . . . . . . . . . . . . 89
4.4.2  Handling two database connections instead of one . . . . . . . . . . . . . 90

4.5  Data model design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.1  Data model design principles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.2  Running in-memory and disk-based tables inside solidDB . . . . . . . . 92
4.5.3  Data model design for solidDB UC configurations  . . . . . . . . . . . . . . 94

4.6  Data migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7  Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7.1  Regular administration operations  . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7.2  Information to collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7.3  Procedures to plan in advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7.4  Automation of administration by scripts  . . . . . . . . . . . . . . . . . . . . . 106

Chapter 5.  IBM solidDB high availability. . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1  High availability (HA) in databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2  IBM solidDB HotStandby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1  Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2  State behavior of solidDB HSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.3  solidDB HSB replication and transaction logging . . . . . . . . . . . . . . 114
5.2.4  Uninterruptable system maintenance and rolling upgrades  . . . . . . 121

5.3  HA management in solidDB HSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1  HA control with a third-party HA framework  . . . . . . . . . . . . . . . . . . 124
5.3.2  HA control with the watchdog sample . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.3  Using solidDB HA Controller (HAC)  . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.4  Preventing Dual Primaries and Split-Brain scenarios . . . . . . . . . . . 128

5.4  Use of solidDB HSB in applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.1  Location of applications in the system  . . . . . . . . . . . . . . . . . . . . . . 129
5.4.2  Failover transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.3  Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.4  Linked applications versus client/server applications . . . . . . . . . . . 134

5.5  Usage guidelines, use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.1  Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5.2  Behavior of reads and writes in a HA setup  . . . . . . . . . . . . . . . . . . 135
5.5.3  Using asynchronous configurations with HA. . . . . . . . . . . . . . . . . . 136
 Contents v



5.5.4  Using default solidDB HA setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5.5  The solidDB HA setup for best data safeness  . . . . . . . . . . . . . . . . 137
5.5.6  Failover time considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.7  Recovery time considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.8  Example situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.9  Application failover  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6  HA in Universal Cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6.1  Universal Cache HA architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6.2  UC failure types and remedies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 6.  Performance and troubleshooting  . . . . . . . . . . . . . . . . . . . . . 147
6.1  Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.1  Tools available in the solidDB server  . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.2  Tools available in InfoSphere CDC . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.1.3  Performance troubleshooting from the application perspective  . . . 182

6.2  Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Chapter 7.  Putting solidDB and the Universal Cache to good use. . . . . 219
7.1  solidDB and Universal Cache sweet spots . . . . . . . . . . . . . . . . . . . . . . . 220

7.1.1  Workload characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.1.2  System topology characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.1.3  Sweet spot summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.2  Return on investment (ROI) considerations  . . . . . . . . . . . . . . . . . . . . . . 225
7.2.1  solidDB Universal Cache stimulates business growth  . . . . . . . . . . 226
7.2.2  solidDB server reduces cost of ownership  . . . . . . . . . . . . . . . . . . . 229
7.2.3  solidDB Universal Cache helps leverage enterprise DBMS . . . . . . 230
7.2.4  solidDB Universal Cache complements DB2 Connect . . . . . . . . . . 230

7.3  Application classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.3.1  WebSphere Application Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.3.2  WebLogic Application Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.3.3  JBoss Application Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.3.4  Hibernate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3.5  WebSphere Message Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.4  Examining specific industries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.4.1  Telecom (TATP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.4.2  Financial services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.4.3  Banking Payments Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.4.4  Securities Exchange Reference Architecture (SXRA)  . . . . . . . . . . 246
7.4.5  Retail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.4.6  Online travel industry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.7  Media  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Chapter 8.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.1  Where are you putting your data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
vi IBM solidDB: Delivering Data with Extreme Speed



8.2  Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
 Contents vii



viii IBM solidDB: Delivering Data with Extreme Speed



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. 
© Copyright IBM Corp. 2011. All rights reserved. ix



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked 
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), 
indicating US registered or common law trademarks owned by IBM at the time this information was 
published. Such trademarks may also be registered or common law trademarks in other countries. A current 
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX®
AS/400®
DataPower®
DB2 Connect™
DB2®
GPFS™
IBM®

Informix®
InfoSphere™
pSeries®
Redbooks®
Redbooks (logo) ®
solidDB®
Solid®

System i®
System z®
WebSphere®
XIV®
xSeries®
z/OS®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other 
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Intel Xeon, Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. 
x IBM solidDB: Delivering Data with Extreme Speed

http://www.ibm.com/legal/copytrade.shtml


Preface

The world seems to move more quickly these days; businesses want what they 
want right now. As such, we are moving quickly towards a real-time environment, 
which means instant access to information, immediate responses to queries, and 
constant availability worldwide. You must keep pace or be surpassed.

The world is also rushing to an open environment. Having separate systems, 
languages, and transactions to access data in multiple environments is 
becoming less of an accepted option. At IBM®, the move to higher levels of 
systems integration has been continuous, and is part of IBM solidDB®. For 
example, the Universal Cache in solidDB can speed access to data in IBM DB2® 
and IBM Informix®, and also to other relational databases such as Oracle, 
Sybase, and Microsoft® SQL Server.

Worrying about reliability is unnecessary because with solidDB all the data is 
always accessible from the in-memory cache. The reason is because solidDB 
also writes updated data to disk to ensure recoverability of the data. To do that, 
checkpoint and transaction logging functions exist. Therefore, even if the server 
fails between checkpoints, a transaction log contains all the committed 
transactions for recovery. In addition, to maintain a balance between 
performance requirements and logging capabilities, there is strict logging and 
relaxed logging functionality. Also, solidDB provides a hot-standby capability to 
give you extreme availability.

To get all these capabilities you might expect an expensive solution, with high 
maintenance costs. But solidDB helps avoid the costs associated with both 
planned and unplanned outages. For example, the costs for maintenance can be 
better controlled because most of it is performed by applications, which can run 
virtually unattended, resulting in reduced costs for administration. 

When a database system can produce more throughput per hardware cost unit, 
with a constant software cost, the result is a higher return on investment (ROI). 
Further, it can deliver shorter response times, which increases the value of the 
service and which also increases your ROI. In-memory database systems can fill 
these expectations.

There is an evolution towards a real-time environment, bringing the potential for 
faster and more efficient access to data, analysis of that data, and the delivery of 
information for making more informed business decisions. We think that as you 
read further in this book and better understand the capabilities of solidDB, you 
will agree that this product can enable you to more easily realize those benefits.
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Chapter 1. Introduction

In this chapter, we offer an insight into why a product such as IBM solidDB was 
conceived and delivered to the market. We discuss differences between the new 
in-memory database technology and traditional disk-based database technology. 
We introduce the idea of database caching and show how solidDB Universal 
Cache fills the need. We discuss the issues of throughput and response times in 
solidDB. Also, we discuss the competing solutions and guide the reader through 
the contents of this book.

1
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1.1  The opportunity of the in-memory database

Consumers of IT products consistently work to increase application productivity 
and return on investment (ROI) in their enterprises. That applies, to a great 
degree, to database systems that are core to many solutions. If a database 
system can produce more throughput per hardware cost unit, with a constant 
software cost, that serves a higher ROI. If it can deliver shorter response times, 
that increase the value of the offered service, and ROI is again increased. 
In-memory database systems can fill both expectations.

To achieve that result, developers of in-memory databases strive to use the 
power of new computer hardware to its best potential.

What could not escape attention is a tremendous progress in the computer 
technology, bringing processors of increasingly growing processing power. The 
trend has increased the gap between the raw computing power captured in the 
processors and the capability of the I/O system to bring the data in and out fast 
enough. In the same time, the cost of main memory (RAM) has dropped 
significantly, enabling companies to have as much main memory capacity as is 
typically found in a modest size disk drive. Systems are already on the market 
that can accommodate up to a few terabytes of main memory.

The progress in processor technology and memory volumes has changed the 
landscape of computer platforms forever. It created a new opportunity for 
database management systems (DBMS) to minimize their dependency on 
disk-based systems and instead realize huge performance gains by using fast 
processors with large main memories.

In the following sections we describe why traditional database systems cannot 
stand up to the challenge, and why solidDB can. We also confront the most 
common misconceptions about in-memory databases.

1.1.1  Disk databases cannot expand to memory

From the beginning of the database era, disk drives were the only place to store 
and access large amounts of data in a reasonable time. DBMS designers 
concentrated on optimizing disk I/O and tried to align the data access patterns 
with the block structure imposed by the disk drives. Design strategy frequently 
centered on a shared buffer pool where data blocks were kept for reuse; 
advances in access methods produced solutions such as block-optimized 
indexes used to find the path to the data faster. Moving disk arms were a special 
challenge because each arm movement increased the access time. The ways to 
reduce arm movement were adjacent placing of data (data clustering), and 
writing transaction logs sequentially.
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In the fierce battle for performance, disk I/O was often the deadliest enemy, and 
processing efficiency was sacrificed to avoid disk access. For example, with 
typical block page sizes of 8 KB or 16 KB, in-page processing is still inherently 
sequential and less CPU-efficient than random data access. Nevertheless, the 
page structures remained a popular way to reduce disk access. Meanwhile, 
query optimization tactics focused on minimizing page fetches where possible. 

When the era of abundant memory arrived, many database administrators 
increased their buffer pools until the pools were large enough to contain an entire 
database, creating the concept of a fully cached database. However, within the 
large RAM buffer pools, the DBMSs were still hostage to all the structural 
inefficiencies of the block-oriented I/O strategy that had been created to deal with 
hard disk drives. 

This way is all to be changed when developing an in-memory DBMS is to be 
done without compromising any of the good characteristics of a database, such 
as data persistency and transactional capabilities. The result is the IBM solidDB 
in-memory database (IMDB).

1.1.2  IBM solidDB IMDB is memory-friendly

By “memory-friendly” software, we mean one that executes memory-efficient 
code. Let us start with the block structures.

One of the most noticeable differences of an in-memory database system is the 
absence of large data block structures. IBM solidDB eliminates them. Table rows 
and index nodes are stored independently in memory, so that data can be added 
without reorganizing big block structures. In-memory databases also forgo the 
use of large-block indexes, sometimes called bushy trees, in favor of slim 
structures (tall trees) where the number of index levels is increased and the index 
node size is kept to a minimum to avoid costly in-node processing. IBM solidDB 
uses an index called trie (or prefix tree), which was originally created for text 
searching, but can be perfect for in-memory indexing. 

A trie (the name comes from the word retrieval) is made up of a series of nodes 
where the descendants of a given node have the same prefix of the string 
associated with that node. For example, if the word cat is stored in a trie as a leaf 
node, it would descend from the node containing ca, which would descend from 
the node containing c. Trie indexes increase performance by reducing the need 
for key value comparisons, and practically eliminate in-node processing. 

Another area of being memory-friendly, is checkpoint execution. A checkpoint is 
a persistent image of the whole database, allowing the database to be restarted 
after a system crash or other case of down-time. IBM solidDB executes a 
snapshot-consistent checkpoint that is alone sufficient to recover the database to 
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a consistent state that existed at some point of time in the past. Other database 
products do not normally allow that; the transaction log files must be used to 
recalculate the consistent state. However, solidDB allows transaction logging to 
be turned off, if desired. The solidDB solution is memory-friendly by the ability to 
allocate row images and row shadow images (different versions of the same row) 
without using inefficient block structures. Only those images that correspond to a 
consistent snapshot are written to the checkpoint file, and the row shadows allow 
the currently executing transactions to run unrestricted during checkpointing. 

There are more examples of “rethinking” of the principles of operation of a 
database system, resulting from the main-memory orientation. For example, 
differences can be seen in the way the query optimizer works, in the way a 
transaction log is implemented. and in the way applications connect to a 
database server, to name a few. Those solutions are described in a more detail in 
Chapter 2, “IBM solidDB details” on page 13.

To summarize, what makes a DBMS an in-memory DBMS? Look for the following 
characteristics:

� Has memory-optimized access methods

� Has memory-optimized checkpointing and logging

� Has both transient and persistent data structures. The latter ones are fully 
recoverable after a shutdown or a crash

� Does not have to wait for I/O on any read query execution.

Looking at it another way, taking a disk-based database system that was 
developed on day one, with a focus on reducing disk I/O, and converting it easily 
into an in-memory database system, focused on reducing CPU and memory, is 
not possible. Design choices and code implemented in the disk-based database 
remain, and continue to affect the performance and resources of the system. 
Another misconception is that increasing the size of the buffer pool, so that 
recently used data can be accessed quickly and without incurring the cost of I/O, 
is the same as getting an in-memory database. The truth is that managing the 
buffer pool requires substantial memory and CPU cycles, and the solution under 
performs as compared to an in-memory database. Essentially all you get is 
putting data blocks in RAM instead of disk, which, by itself, is not enough to 
proclaim the product to be a true in-memory database.

Alternatively, the in-memory database is not necessarily the best cure for all 
problems. The benefit gained from the memory-centered processing is sensitive 
to work loads and usage scenarios. See more about this in Chapter 7, “Putting 
solidDB and the Universal Cache to good use” on page 219. 
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Fortunately, with solidDB you can have a disk-based database also, if it fits the 
purpose. IBM solidDB is a dual-engine DBMS. Both engines, the main-memory 
engine (MME) and disk-based engine (DBE) can be used to implement a 
seamless hybrid database having both disk-based and in-memory tables.

To know more on how to deploy a database based on solidDB, see Chapter 4, 
“Deploying solidDB and Universal Cache” on page 67. Ways to monitor and 
optimize the database operation are described in Chapter 6, “Performance and 
troubleshooting” on page 147.

1.1.3  Misconceptions

In this section, we respond to a number of misconceptions about in-memory 
database. The term itself in-memory database can have various connotations, 
and some of them can be misconceptions, as follows:

� Data is volatile and non-persistent

Not true. The fact that the main memory is volatile does not make the 
database volatile. The methods of checkpointing and transaction logging 
make sure the solidDB database is fully recoverable.

� Not a complete DBMS

Not true. In terms of external interfaces, power of expression and utilities, 
solidDB is as complete as any other DBMS.

� SSD is just as fast

Not true. Solid-state disks (SSDs) are slightly faster disks, with shorter access 
times. By replacing rotating disks with SSDs, you can improve the 
performance of a DBMS but the change does not turn the system into a 
in-memory database system. The load on the I/O system remains as huge as 
before, and in-memory operation remains as inefficient as before.

� No structured query language (SQL)

Not true. IBM solidDB is a full-function SQL-based database system, 
including standard complying ODBC and JDBC interfaces
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� Not reliable

Not true. With solidDB, the database stands up to the standard definition of “a 
persistent data repository shared among concurrent applications.” That also 
includes a concurrency control mechanism preventing data errors that can 
result from concurrent data usage. IBM solidDB maintains the transactional 
quality standard depicted as ACID (atomicity, consistency, isolation and 
durability), making it as reliable as any traditional DBMS.

� Poor availability

Not true. Traditional high-availability solutions such as hot standby are 
available to in-memory databases too. IBM solidDB high availability offers the 
corresponding capabilities. For more, see Chapter 5, “IBM solidDB high 
availability” on page 109.

Misconceptions also exist about traditional databases. One example is as 
follows:

� High throughput means low response times

Not with a concurrent load. On the contrary, the measures taken to increase 
the throughput degenerate response times. A good example is a common 
technique called group commit whereby several consecutive transactions are 
bundled for a single durable write in the disk storage. Consequently, the 
number of synchronous I/O operations is reduced and thus the throughput is 
improved. However, some of the transactions may wait for return from commit 
longer than they would do without the group commit. 
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1.1.4  Throughput and response times

In solidDB, the main focus is on short response times that naturally result from 
the fact that the data is already there (that is, it is in memory). Additional 
techniques are available to avoid any unnecessary latencies in the local 
database usage, such as linking applications with the database server code by 
way of special drivers. By using those approaches, one can shorten the query 
response time to a fraction (one tenth or even less) of that available in a 
traditional database system. The improved response times also fuels high 
throughput. Nevertheless, techniques of improving the throughput of concurrent 
operations are applied too. The outcome is a unique combination of short 
response times and high throughput.

The advantages of solidDB in-memory database over a disk-based database are 
illustrated in Figure 1-1 and Figure 1-2 on page 8. They unveil the results of an 
experiment involving a database benchmark called Telecom Application 
Transaction Processing (TATP)1 that was run on a middle-range system 
platform2. For other configurations, both throughput (in transactions per second) 
and response time (shown as the longest response time of the best 90% of the 
transactions) are shown.

Figure 1-1   Throughput of the disk-base an in-memory database.

1  http://tatpbenchmark.sourceforge.net/
2  Two Intel® Xeon E5410 processors, total of 8 cores, 16 GB of memory, 2 SATA disks, under Linux 

RHEL 5.2. IBM solidDB v. 6.5.0.2. was used. TATP was configured for a 1 million subscriber 
database, and read/write mix of 80/20. The number of concurrent application clients was eight.
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Figure 1-2   Response times in various configurations

The solidDB product was used for both the on-disk and in-memory databases. 
The charts illustrate how single configuration change steps can affect the 
throughput and response times. Between each two adjacent bars, only one 
configuration variable is changed. We describe the changes in more detail here. 
For each bar in Figure 1-1 on page 7, starting from the leftmost one, the 
corresponding configuration is as follows:

� DBE TCP remote strict durability

In the chart, DBE means disk-based engine, Remote means accessing the 
database over the network, and TCP means a driver using TCP/IP. Strict 
durability means that the write operations are safely stored in a persistent 
storage before a commit request can be acknowledged. The configuration is 
typical for distributed client/server database applications.

� DBE TCP local strict durability

Here, the term remote is replaced with local. That means running the 
application in the same node with the database server. The performance gain 
results from avoiding inter-computer communications. This is one example of 
bringing the data closer to the application. In all the remaining configurations 
the application is run locally.

� MME TCP strict durability

DBE is replaced with MME (main-memory engine). The performance 
increase is attributed to faster operation of the database engine that is 
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optimized for in-memory data. The faster are the interactions between the 
application and the server the bigger is the gain brought by MME. Running 
the applications locally is key to uncover that gain.

� MME TCP relaxed durability

Here the term strict is replaced with relaxed. With relaxed durability, the 
commit acknowledgment is returned before the commit record is persistently 
written to the disk storage. The commit record is written to disk 
asynchronously, with a delay of few seconds. With relaxed durability, MME 
does not have to wait for I/O operations to complete, and that can be seen in 
the response time of write transactions. Overall, more CPU time can be 
utilized to process the in-memory data.

� MME SMA relaxed durability

By replacing the TCP/IP based driver with an SMA driver, you ultimately bring 
the data as close to the application as possible, which is into the application’s 
process space. Shared memory access (SMA) allows the user to link the 
application with a library containing the whole query processing code. At this 
point, all obstacles in the way of bringing the data to the application with a full 
CPU speed are removed.

In the experiment, the disk-based database was reasonably buffered: the size of 
the page buffer pool (called DBE cache, in solidDB) was 20% of the total 
database size. You can see that, by taking all the steps, the throughout can be 
increased almost 15 times, and the response time shortened to almost one tenth, 
compared to the worst case. Of all the steps shown, you might use only a few, but 
then, of course, there would also be fewer benefits. The subject of performance 
is further discussed in Chapter 6, “Performance and troubleshooting” on 
page 147, and Chapter 7, “Putting solidDB and the Universal Cache to good use” 
on page 219, including the description of the TATP benchmark.

1.2  Database caching with in-memory databases

In this section, we propose that using solidDB as a cache database to a larger 
enterprise database can alleviate the problems caused by the database growth.

1.2.1  Databases are growing

Enterprise databases can grow to very large sizes. The application load on the 
database system can grow to high levels too. That can lead to a situation where 
the database system becomes a bottleneck. In such an overloaded system, the 
response times may become painfully long. 
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One solution might be to scale the system up (to a more powerful computer) or 
out (to a cluster of computers). Both alternatives are costly and may expose 
scalability problems.

1.2.2  Database caching off-loads the enterprise server

You can off-load the enterprise database server by moving the data out of the 
server and close to where the applications are running. The solution is called 
database caching if the database interface in the applications can be preserved.

With database caching, all the data is still stored within the enterprise server. 
However, it is also replicated to smaller cache databases, typically residing in 
computer nodes where the applications are running. An in-memory database is 
an ideal candidate for a cache database because of the performance and 
response time advantages

1.2.3  IBM solidDB Universal Cache

IBM solidDB Universal Cache is a product enabling cache databases for popular 
enterprise database products such as Oracle, DB2, IDS, Sybase ASE, and 
Microsoft SQL Server. The solidDB in-memory database server maintains a 
cache database that contains a subset of data stored in the back-end database 
(being run by any of the systems previously mentioned). The applications 
connect to the cache database. Additionally, the product includes an elaborate 
replication mechanism known as InfoSphere Change Data Capture (InfoSphere 
CDC) available also as a separate product from IBM. The InfoSphere CDC 
components are responsible for carrying the data between the back-end 
database and the cache database--both ways. 

The replication can take the form of one-time refreshes of cached data or 
continuous update propagation between the systems. The continuous replication 
is done in an asynchronous fashion: the data is first committed on the local 
system (the source) and then propagated to the other system (the target). The 
delay is usually within a second.

Because of the asynchronous nature of the continuous replication, the replication 
does not delay or block the transactions at the source side. However, there is one 
exception: if the cache database produces more updates that can be applied to 
the back-end database, the replication buffers fill-up, and a mechanism called 
transaction throttling is enacted. With transaction throttling, the cache database 
transactions are slowed down to keep up with the pace of data replication. 

The advantage of an in-memory cache database is magnified with new access 
methods available with solidDB. By using linked library access or shared memory 
10 IBM solidDB: Delivering Data with Extreme Speed



access, you can link the application with the server code and avoid any 
interprocess communications. With those approaches, the resulting response 
times can be an order of magnitude (or more) shorter than those achieved with 
the network-based access to the back-end enterprise server.

To know more about solidDB Universal Cache, see Chapter 3, “IBM solidDB 
Universal Cache details” on page 39 and Chapter 4, “Deploying solidDB and 
Universal Cache” on page 67.

1.3  Applications, competition, and the marketplace

Both solidDB and solidDB Universal Cache offer a new opportunity to certain 
applications characterized by the possibility to store the hottest part of the 
database in memory (or cache it from a back-end database) and a possibility to 
trade the increased memory cost for increased performance. Such applications 
exist in many sectors of the economy, such as telecommunications, real-time 
trading, online retail and booking, and online gaming, for example. See 
Chapter 7, “Putting solidDB and the Universal Cache to good use” on page 219 
for more about applications.

When considering deployment of solidDB, the first competing solution can come 
from an unexpected direction, which is in-house development. In fact, application 
developers have been setting up application-specific in-memory stores and 
caches for a long time. Such solutions can be attractive from the performance 
perspective. However, in addition to increased performance, solidDB also has the 
following advantages:

� Total application life cycle management

� Data independence

This is a core notion in databases, making the data and the application 
isolated from each other, with the purpose of allowing for change and growth.

� Other essential database characteristics, such as:

– Date persistency
– Transactional behavior
– Recovery and high availability features. 

These advantages are all productized in solidDB in a generalized way to also be 
immediately usable in other different applications. The situation is similar to what 
happened years ago when generalized disk-based data management systems 
overtook custom storage solutions. 
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Somewhere between an in-house data cache and the database are the concepts 
of object store and object cache. They both represent an object-oriented view on 
the data and are popular within Java™ community. Some of those solutions are 
commercialized and the vendors claim ease of use and fast access. This 
approach can be done, for example, if the vendors have removed the impedance 
mismatch between an object language, such as Java, and the relational model. 
They can also be fast after the data is cached. However, for any write-oriented 
activity having the purpose of producing persistent and consistent data, a DBMS 
is needed to take care of concurrency control, logging and recovery. Therefore, in 
those cases, it might be better to consider a database in the first place.

When speaking about solidDB as a product, it is not the only one available in the 
marketplace. That is, other vendors exist in the field of in-memory databases and 
database caching. However, we believe solidDB stands out from the other 
products in the following ways:

� As an in-memory database

– With solidDB, a fully persistent and durable in-memory database is 
possible. Only a few other products are capable of doing that.

– solidDB is a hybrid (on-disk and in-memory) database system. That can 
be achieved only in a few other products.

– solidDB is equipped with low-latency access methods (direct linking). Only 
a few other products can provide that.

– solidDB has rich, high functionality SQL, including stored procedures, 
triggers and events. Most in-memory products do not support those 
capabilities.

– solidDB is equipped with a fully automatic high-availability (HA) solution 
with sub-second failover times. We believe that this is a level of data 
safeness and transparency that is unique to solidDB.

� As a cache database

– solidDB Universal Cache is universal in the sense that it can be used with 
other models of back-end DBMSs. We believe this is a capability that is 
unique to solidDB.

To summarize, we believe that solidDB is the only product available today that 
has all of the capabilities and advantages we have just described. 

Many of the topics in this chapter are described in more detail throughout the 
book.
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Chapter 2. IBM solidDB details

This chapter describes the architecture, data storage, table types, 
transactionality, structured query language (SQL) extensions, and database 
administration.

2
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2.1  Introduction

IBM solidDB is a relational database server that combines the high performance 
of in-memory tables with the nearly unlimited capacity of disk-based tables. Pure 
in-memory databases are fast, but strictly limited by the size of memory. Pure 
disk-based databases allow nearly unlimited amounts of storage, but their 
performance is dominated by disk access. Even if the computer has enough 
memory to store the entire database in memory buffers, database servers 
designed for disk-based tables can be slow because the data structures that are 
optimal for disk-based tables are far from being optimal for in-memory tables.

The solidDB solution is to provide a single hybrid database server that contains 
two optimized engines inside it: 

� The disk-based engine (DBE) is optimized for disk-based access. 
� The main-memory engine (MME) is optimized for in-memory access. 

Both engines coexist inside the same server process, and a single SQL 
statement may access data from both engines. The architecture for the solidDB 
hybrid server is depicted in Figure 2-1.

Figure 2-1   IBM solidDB hybrid server architecture
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2.2  Server architecture

The solidDB server architecture is based on a client/server model. Typically, a 
solidDB configuration consists of cooperating server and client processes. The 
server process manages the database files, accepts connections to the database 
from client applications, and carries out actions on the database as requested by 
the clients.

The client process is used to pass the required tasks (through the server 
process) to the database. There can be several client types: a client could be a 
command-line tool, a graphical application, or a database management tool. 
Typically, separate applications act as clients to connect to solidDB.

The client and the server can be located on separate hosts (nodes), in which 
case they communicate over a network. IBM solidDB provides simultaneous 
support for multiple network protocols and connection types. Both the database 
server and the client applications can be simultaneously connected to multiple 
sites using multiple different network protocols.

IBM solidDB can also run within the application process. This capability is 
provided by solidDB shared memory access (SMA) and linked library access 
(LLA). In those cases, the application is linked to a function library that is 
provided with the product. The linked application communicates with the server 
by using direct function calls, thus skipping the overhead required when the client 
and server communicate through network protocols such as the TCP/IP. By 
replacing the network connection with local function calls, performance is 
improved significantly. 
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The high-level architecture of IBM solidDB is shown in the Figure 2-2.

Figure 2-2   IBM solidDB architecture

2.2.1  Database access methods and network drivers

Applications can connect to the solidDB server using network drivers or by 
linking to the server directly. In network based access methods, the applications 
and the solidDB server are separate programs, typically communicating using 
the solidDB ODBC Driver or solidDB JDBC Driver.

Direct linking is provided through linked library access (LLA) and shared memory 
access (SMA). SMA and LLA are implemented as library files that contain a 
complete copy of the solidDB server in a library form.

The SMA and LLA servers can also handle requests from remote applications 
which connect to the server through communications protocols such as TCP/IP. 
The remote applications see the SMA or LLA server as similar to any other 
solidDB server; the local SMA and LLA applications see a faster, more precisely 
controllable version of the solidDB server.

The network drivers component contains support for both ODBC and JDBC API. 

solidDB ODBC Driver
The solidDB ODBC Driver conforms to the Microsoft ODBC 3.5.1 API standard. It 
is distributed in the form of a library.

MME 
Engine

System Services 

Network drivers (ODBC/JDBC)
Accelerator library

(Linked Library Access)

Tasking System

SQL
Interpreter

and Optimizer
solidDB API

(SA)

Estimator

Triggers and
Procedures

Logging
and

Check-
pointing

Recovery Replicator

Transaction 
Manager

HSB

Server Services

Disk-Based Engine

SMA library
(Shared Memory Access)

Table Services SQL Passthrough
Mediator
16 IBM solidDB: Delivering Data with Extreme Speed



The solidDB ODBC Driver supported functions are accessed with solidDB ODBC 
API, a Call Level Interface (CLI) for solidDB databases, which is compliant with 
ANSI X3H2 SQL CLI. The solidDB implementation of the ODBC API supports a 
rich set of database access operations sufficient for creating robust database 
applications:

� Allocating and de-allocating handles 
� Getting and setting attributes 
� Opening and closing database connections 
� Accessing descriptors 
� Executing SQL statements 
� Accessing schema metadata 
� Controlling transactions 
� Accessing diagnostic information 

Depending on the application’s request, the solidDB ODBC Driver can 
automatically commit each SQL statement or wait for an explicit commit or 
rollback request. When the driver performs a commit or rollback operation, the 
driver resets all statement requests associated with the connection

solidDB JDBC Driver
The solidDB JDBC Driver 2.0 is a JDBC type 4 driver. Type 4 means that it is a 
100% Pure Java implementation of the Java Database Connectivity (JDBC) 2.0 
standard. The JDBC API defines Java classes to represent database 
connections, SQL statements, result sets, database metadata, and so on. It 
allows a Java programmer to issue SQL statements and process the results. 
JDBC is the primary API for database access in Java.

The solidDB JDBC Driver is written entirely in Java and it communicates directly 
with the solidDB server using the TCP/IP network protocol. The solidDB JDBC 
Driver does not require any additional database access libraries. The driver 
requires that a Java runtime environment (JRE) or Java developer kit is available.

The solidDB server can also participate in distributed transactions using the Java 
Transaction API (JTA) interface. solidDB supports the following interfaces, as 
described in the Java Transaction API Specification 1.1:

� XAResource Interface (javax.transaction.xa.XAResource)
� Xid Interface (javax.transaction.xa.Xid)

solidDB SA
The solidDB SA is a low level C-language client library to access solidDB 
database management products. the solidDB SA is a layer that resides internally 
in solidDB products. Normally, the use of an industry standards-based interface, 
such as ODBC or JDBC, is recommended. However, in environments with heavy 
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write-load, such as batch inserts and updates, solidDB SA can provide a 
significant performance advantage.

Linked library access (LLA)
With the LLA, an application links to a static library or a dynamic library that 
contains the full database server functionality. This means solidDB runs in the 
same executable with the application, eliminating the need to transfer data 
through the network. The LLA library is sometimes called an accelerator library.

Shared memory access (SMA)
With SMA, multiple applications can be linked to a dynamic driver library that 
contains the full database server functionality. This means that the applications 
ODBC or JDBC requests are processed almost fully in the application process 
space, without a need for a context switch among processes. To facilitate the 
processing of a common database, the driver has access to a shared memory 
segment initialized by the server. 

2.2.2  Server components

In the remaining sections, we describe server components:

� Tasking system

The tasking system is a framework to abstract threads to a concept task. 
Tasking system implements concurrent execution of the tasks also in single 
threaded systems.

� Server services

The server services component contains services and utilities to use 
components on the lower levels.

� SQL interpreter and optimizer

The SQL interpreter and optimizer is responsible of SQL-clause parsing and 
optimization. solidDB uses SQL syntax based on the ANSI X3H2 and 
IEC/ISO 9075 SQL standards. The SQL-89 Level 2 standard is fully 
supported and SQL-92 Entry Level. Many features of full SQL-92, SQL-99, 
and SQL-2003 standards are also supported. 

solidDB contains a cost-based optimizer, which ensures that even complex 
queries can be run efficiently. The optimizer automatically maintains 
information about table sizes, the number of rows in tables, the available 
indexes, and the statistical distribution of the index values.
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� Triggers and procedures

The triggers and procedures component contains a mechanism for parsing 
and executing SQL-based stored triggers and procedures: 

– A trigger activates stored procedure code, which a solidDB server 
automatically executes when a user attempts to change the data in a table.

– Stored procedures are simple programs, or procedures, that are executed 
in solidDB databases. You can create procedures that contain several SQL 
statements or whole transactions, and execute them with a single call 
statement. In addition to SQL statements, 3GL type control structures can 
be used enabling procedural control. In this way complex, data-bound 
transactions may be run on the server itself, thus reducing network traffic.

� Logging and checkpointing

The logging and checkpointing component is responsible for maintaining 
persistency of transactions by write-ahead logging, consistency, and 
recoverability of the database by checkpointing. Various durability options are 
available. 

Reading the transaction log file as it is being written by the server is possible 
and is done with a special SQL-based interface called Logreader API.

� Recovery

The recovery component is responsible for recovery from transaction log and 
database checkpoints.

� Replicator

The replicator component provides support for the solidDB advanced 
replication feature. The advanced replication feature is used for 
asynchronous, pull-based replication between a master database and replica 
databases. A “master” database contains the master copy of the data. One or 
more replica databases contain full or partial copies of the master's data. A 
replica database, like any other database, may contain multiple tables. Some 
of those tables may contain only replicated data (copied from the master), 
some may contain local-only data (not copied from the master), and some 
may contain a mix of replicated data and local-only data. Replicas may submit 
updates to the master server, which then verifies the updates according to 
rules set by the application programmers. The verified data is then “published” 
and made available to all replicas.

� HotStandby

The HotStandby (HSB) component enables a secondary server (a hot 
standby server) to run in parallel with the primary server and keep an 
up-to-date copy of the data in the primary server.
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� Estimator

The estimator component provides cost-based estimates for single table 
access based on projections and constraints. It executes a low-level execution 
plan generation using index selection and index range calculations.

� Table services

The table services module contains interfaces for single-table access, data 
type support, transaction management interface and, table and index caches.

� Disk-based engine

The disk-based engine component handles the storage of disk-based tables 
(D-tables) and indexes.

� Main-memory engine

The main-memory engine component handles the storage of in-memory 
tables (M-tables) and indexes.

� Transaction manager

The transaction manager component contains commit and rollback 
implementation and concurrency conflict checking and resolution.

� System services

The system services component contains operating system abstraction layer, 
memory management, thread management, mutexing and file I/O services.

2.3  Data storage in solidDB

The main-memory engine that handles the in-memory tables (M-tables) and the 
disk-based engine that handles the storage of disk-based tables (D-tables) use 
different data storage architectures.

In-memory engine is designed for maximum performance. Knowing that data is 
always stored in main-memory allows for use of data structures and data access 
methods that are designed to minimize the computational (CPU) cost of 
retrieving or updating database records. 

Disk-based engine, however, can reduce disk access. That is achieved by data 
structures and access methods that trade disk access for additional 
computational processing. Therefore, an in-memory engine has the potential to 
outperform a disk-based engine even when the latter has all the data cached in 
the memory buffer pools because it needs to consume fewer CPU cycles to 
access database records.

We describe the data storage principles of both engines in more detail.
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2.3.1  Main-memory engine

In addition to the actual data, the indexes for M-tables are built in main memory 
also. solidDB uses a main-memory-optimized index technology, called tries, to 
implement the indexes. 

The basic index structure in the in-memory engine is a VTrie (variable length trie) 
that is optimized variation of the trie. A trie (from retrieval), is a multi-way tree 
structure widely used for storing strings. The idea is that all strings sharing a 
common prefix hang off a common node. For example, when the strings are 
words over {a..z} alphabet, a node has at most 27 children: one for each letter 
plus a terminator. VTrie uses bitwise tree where individual bits compose a key 
allowing keys to be any supported data type. VTrie uses nodes of the capacity of 
8 bits. Consequently, each node has at most 257 children, that is, the fan-out is 
257 (256 for bits plus a terminator).

A simplified example of the VTrie structure with node capacity of 2 bits and 
fan-out of four is shown in Figure 2-3.

Figure 2-3   Simplified example of a VTrie structure
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The main advantages of VTries over binary search trees are as follows:

� Looking up keys is faster. Looking up a key of length m takes time that is 
proportional to m. A binary search tree requires log2(n) comparisons of keys 
where n is the number of elements in the tree. The total search time is 
proportional to m log2(n). The advantage of VTrie is because no value 
comparisons are needed. Each part of a key (a “letter”) is applied as an array 
index to a pointer array of a child node. Contrary to a value comparison, array 
lookup is a fast operation if the array is cached in processor caches.

� Tries can require less space when they contain a large number of short 
strings, because the keys are not stored explicitly and nodes are shared 
between keys with common prefix.

Several optimizations are used in Vtrie to speed up retrieval when the key value 
space is not fully exhausted, as illustrated in Figure 2-3 on page 21. These are 
path compression, width compression, and fast termination:

� In path compression all internal nodes with only one child are removed and a 
common prefix is stored in the remaining node. 

� In width compression, only the needed pointers are stored in the nodes and 
every node contains a bitmap storing the information which pointers are 
present in the node. 

� In fast termination, a pointer to the data record is elevated to a node 
representing a prefix that is not shared among the key values.

2.3.2  Disk-based engine

The main data structure used to store D-tables is a B+tree variation called 
B+tree. The idea of a B+tree is illustrated in Figure 2-4, where two node levels of 
a B+tree are shown. 

Figure 2-4   Illustration of two levels of a B-tree
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Each node has a large set of value-pointer pairs. They normally fill a database 
page being a unit of data buffering. The page sizes vary from 4 to 32 kilobytes. 
Compared to VTrie, that makes the nodes much larger, resulting in a wide, or 
bushy tree. The key value is compared against the separation values in the node 
and, if the key value falls between two separation values, the corresponding 
pointer is followed to a similar node on the next level. Thanks to a large node 
size, the number of disk accesses is minimized, and that make B-tree fit for 
D-tables.

The server uses two incarnations of a B-tree: the main storage tree holds 
permanent data, and a differential index tree called Bonsai Tree stores new data 
temporarily until it is ready to be moved to the main storage tree.

In both B-tree structures, two space optimization methods are used. First, only 
the information that differentiates the key value from the previous key value is 
saved. The key values are said to be prefix-compressed. Second, in the higher 
levels of the index tree, the key value borders are truncated from the end; that is, 
they are suffix-compressed.

The main storage tree contains all the data in the server, including tables and 
indexes. Internally, the server stores all data in indexes; there are no separate 
table stores. Each index contains either complete primary keys (all the data in a 
row) or secondary keys (what SQL refers to as indexes, which is just the column 
values that are part of the SQL index). There is no separate storage method for 
data rows, except for binary large objects (BLOB) and other long column values.

All the indexes are stored in a single tree, which is the main storage tree. Within 
that tree, indexes are separated from each other by a system-defined index 
identification that is inserted in front of every key value. This mechanism divides 
the index tree into several logical index subtrees where the key values of one 
index are clustered close to each other.

The Bonsai Tree is a small active index (data storage tree) that efficiently stores 
new data (deletes, inserts, updates) in central memory, maintaining multiversion 
information. Multiple versions of a row (old and new) can coexist in the Bonsai 
Tree. Both the old and new data are used for concurrency control and for 
ensuring consistent read levels for all transactions without any locking overhead. 
With the Bonsai Tree, the effort needed for concurrency control is significantly 
reduced.

When a transaction is started, it is given a sequential Transaction Start Number 
(TSN). The TSN is used as the “read level” of the transaction; all key values 
inserted later into the database from other connections are not visible to 
searches within the current transaction. This approach offers consistent index 
read levels that appear as though the read operation was performed at the time 
the transaction was started. This way guarantees read operations are presented 
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with a consistent view of the data without the need for locks, which have higher 
overhead.

Old versions of rows (and the newer version or versions of those same rows) are 
kept in the Bonsai Tree for as long as transactions need to see those old 
versions. After the completion of all transactions that reference the old versions, 
the “old” versions of the data are discarded from the Bonsai Tree, and new 
committed data is moved from the Bonsai Tree to the main storage tree. The 
presorted key values are merged as a background operation concurrently with 
normal database operations. This way offers significant I/O optimization and load 
balancing. During the merge, the deleted key values are physically removed.

2.4  Table types

This section describes the table types that solidDB offers, highlighting the key 
differences you should consider when deciding what type of tables to use. 

The table types are shown in Figure 2-5.

Figure 2-5   The solidDB table types
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In many respects, in-memory tables are similar to disk-based tables: 

� Both table types provide full persistence of data unless specified differently. 

� You may perform the same types of queries on each of them. 

� You can combine disk-based and in-memory tables in the same SQL query or 
transaction. 

� Both table types can be used with indexes, triggers, stored procedures, and 
so on. 

� Both table types allow constraints, including primary key and foreign key 
constraints. 

The main difference between M-tables and D-tables is performance. M-tables 
provide better performance; they can provide the same durability and 
recoverability as D-tables. For example, read operations do not wait for disk 
access, even when the system is engaged in activities such as checkpointing 
and transaction logging.

2.4.2  Persistent versus non-persistent tables

The two basic types of M-tables are persistent tables and non-persistent tables. 
Persistent tables provide recoverability of data; non-persistent tables provide fast 
access. D-tables are always persistent tables.

Persistent tables
Persistent tables ensure recoverability of data through checkpointing and 
logging. Checkpointing means that committed transactions are copied from main 
memory to database files on disk during checkpoints. If the server fails between 
checkpoints, solidDB ensures that the disk has a consistent snapshot of the data. 
In-between checkpoints, solidDB writes committed transactions to a transaction 
log. After a system crash, solidDB uses the transaction log to recovers 
transactions that were committed since the last checkpoint.

By default, both M-tables and D-tables are created as persistent tables. 

Non-persistent tables
Only M-tables can be created as non-persistent tables. Non-persistent tables are 
intended for use with temporary data that does not need to be recoverable. Data 
in non-persistent tables is never written to disk; therefore, any time that the 
server shuts down, whether normally or abnormally, the data is lost. Also, data in 
non-persistent tables is not logged or checkpointed. As a result, they are 
irrecoverable but remarkably faster than persistent tables.
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The two types of non-persistent in-memory tables are transient tables and 
temporary tables1. Temporary tables are visible to a single connection; transient 
tables are visible to all connections (users) until the database shuts down. 
Because concurrent users cannot access data in temporary tables, temporary 
tables do not use concurrency control. Temporary tables are thus faster than 
transient tables.

Non-persistent tables cannot be used with solidDB HotStandby.

2.4.3  Choosing between different table types

The choice between the table types is typically a trade-off between performance 
and the following aspects:

� Amount of main memory available: M-tables or D-tables

Ideally your system would have enough memory to store all of your tables in 
memory and thus benefit from the best possible performance for database 
transactions. If you cannot fit all tables in memory, try to put the most 
frequently used data in memory. Also, small, frequently-used tables should go 
into memory, and large, rarely-used tables can be left on disk. 

� Recoverability of data: persistent or non-persistent tables

Persistent tables provide full recoverability over performance. Non-persistent 
tables are faster as they require no logging or checkpointing.

� Access to temporary data: transient or temporary tables

Transient tables allow multiple concurrent users to access the data over 
several connections, but require concurrency control (locking) to preserve 
consistency of data. Temporary tables are faster than transient tables but data 
is available only to a single user during one session.

1  The solidDB implementation of temporary tables complies with the ANSI SQL:1999 standard for 
“Global Temporary Tables.” All solidDB temporary tables are global tables regardless of whether the 
keyword GLOBAL is specified. solidDB does not support “Local Temporary Tables” as defined by 
ANSI.
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2.5  Transactionality

IBM solidDB guarantees reliable transactional processing by implementing a 
database server that satisfies all ACID (atomicity, consistency, isolation, 
durability) requirements.

� Atomicity requires that database modifications must follow an “all or nothing” 
rule. Each transaction is said to be atomic. If one part of the transaction fails, 
the entire transaction fails and the database state is left unchanged.

� Consistency ensures that any transaction that the database performs can take 
it from one consistent state to another.

� Isolation refers to the requirement that other operations cannot access data 
that has been modified during a transaction that has not yet completed. The 
question of isolation occurs in case of concurrent transactions (multiple 
transactions occurring at the same time).

� Durability is the ability of the DBMS to recover the committed transaction 
updates against any kind of system failure (hardware or software). Durability 
is the DBMS guarantee that after the user has been notified of a transaction's 
success, the transaction will not be lost.

2.5.1  Concurrency control and locking

The purpose of concurrency control is to prevent two users (or two connections 
by the same user) from trying to update the same data at the same time. 
Concurrency control can also prevent one user from seeing uncommitted (dirty) 
data while another user is in the process of updating it. 

More generally, concurrency control is used to preserve the overall correctness 
of concurrent transaction executions. The ultimate form of that correctness is 
called serializability. A serializable execution of concurrent transactions 
produces a result that is identical to a case when all these transaction would be 
executed serially: one after another. Preserving generalized serializability for all 
possible cases is resource-consuming. Therefore, the actual correctness can be 
set with a parameter called isolation level that can be adjusted as needed, even 
dynamically.
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IBM solidDB offers two concurrency control mechanisms, pessimistic 
concurrency control and optimistic concurrency control:

� Pessimistic concurrency control mechanism is based on locking. A lock is a 
mechanism for limiting other users' access to a piece of data. When one user 
has a lock on a record, the lock prevents other users from changing (and in 
some cases reading) that record. 

� Optimistic concurrency control mechanism does not place locks but prevents 
the overwriting of data by using timestamps.

D-tables are by default optimistic; M-tables are always pessimistic. In D-tables, 
you can override optimistic concurrency and specify pessimistic locking instead. 
You can do this at the level of individual tables. One table might follow the rules of 
optimistic concurrency while another table follows the rules of pessimistic 
locking. Both tables can be used within the same transaction and even the same 
statement; solidDB handles this internally.

Pessimistic concurrency control
Pessimistic concurrency control (or pessimistic locking) is called pessimistic 
because the system assumes the worst; it assumes that two or more users will 
want to update the same record at the same time, and then prevents that 
possibility by locking the record, no matter how unlikely conflicts actually are.

The locks are placed as soon as any piece of the row is accessed, making it 
impossible for two or more users to update the row at the same time. Depending 
on the lock mode (shared, exclusive, or update), other users might be able to 
read the data although a lock has been placed. 

Optimistic concurrency control
Optimistic concurrency control assumes that although conflicts are possible, they 
will be rare. Instead of locking every record every time that it is used, the system 
merely looks for indications that two users actually did try to update the same 
record at the same time. If that evidence is found, then one user’s updates are 
discarded and the user is informed. The step of checking whether a transaction 
can commit is called transaction validation. Typically, the validation is performed 
at the commit time but solidDB uses, by default, a modified method called early 
validation. With early validation, the data being read (the read-set) and written 
(write-set) are checked against other transactions at each database operation, 
without waiting for commit. If the data in the read-set and write-set has changed 
since the beginning of the transaction, the transaction is considered to be 
violating the data consistency and is aborted. The details of checking rules for 
read-sets and write-sets depend on the isolation level that will be discussed 
shortly.

Optimistic concurrency control is available for disk-based tables (D-tables) only.
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Locking and performance
Optimistic concurrency allows fast performance and high concurrency (access by 
multiple users), at the cost of occasionally refusing to write data that was initially 
accepted but was found at the last second to conflict with another user's 
changes.

Pessimistic locking requires overhead for every operation, whether or not two or 
more users are actually trying to access the same record. The overhead is small 
but adds up because every row that is updated requires a lock. Furthermore, 
every time that a user tries to access a row, the system must also check whether 
the requested row or rows are already locked by another user or connection.

When using M-tables, best performance in reference to locking is achieved with 
temporary tables; because concurrent users cannot access data in temporary 
tables, temporary tables do not use concurrency control.

When using D-tables, optimistic concurrency control provides the best 
performance, if the possibility for conflicts is low. For example, there are many 
records but relatively few users, or few updates and mostly read-type operations. 
However, in workloads that expose more updates, like in typical online 
transaction processing (OLTP) applications, pessimistic locking is actually more 
beneficial.

2.5.2  Isolation levels

solidDB supports the isolation levels defined in the SQL-92 standard, except for 
the READ UNCOMMITTED level2. The isolation level can be set per session or 
per statement.

The three supported isolation levels are explained in the following sections.

READ COMMITTED
This isolation level allows a transaction to read only committed data. However, 
the view of the database may change in the middle of a transaction when other 
transactions commit their changes.

In solidDB HotStandby configurations, the isolation level of the Secondary server 
is always READ COMMITTED.

2  Uncommitted, or dirty, reads violate transactional paradigm as modified data becomes visible 
before the transaction performing the update completes. Hence the READ UNCOMMITTED 
isolation level is rarely, if ever, used in production database systems.
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REPEATABLE READ
This isolation level allows a transaction to read only committed data and 
guarantees that read data will not change until the transaction terminates. With 
optimistic D-tables, solidDB, in fact, maintains an isolation model called snapshot 
isolation. It ensures that the transaction sees a consistent view of the database. 
When using optimistic concurrency control, conflicts between transactions are 
detected by using only the transaction write-set validation. For example, if a 
transaction involves one read and one update, solidDB validates that no one has 
updated the same row in between the read operation and the update operation. 
In this way, lost updates are detected, but the read is not validated. With 
transaction write-set validation only, transactions are not serializable in many 
cases. Additionally, phantoms may occur. Phantoms are table rows that appear 
(are seen) in the course of the transaction although were not seen in the 
beginning. Such rows may result from insert and update activities by other 
concurrent transactions.

In M-tables, the repeatable read level is implemented in a more traditional 
level—by way of locks. Shared locks are kept on all the data items read until the 
transaction commit. That preserves other transactions from changing the 
read-set. The correctness of the write-set is assured with exclusive locks on all 
the items written. Because both read-set a d write-set are protected, transactions 
running on M-tables, in the repeatable read mode, are serializable with the 
exceptions of phantoms. 

SERIALIZABLE
This isolation level allows a transaction to read only committed data with a 
consistent view of the database. Additionally, no other transaction may change 
the values read by the transaction before it is committed because, otherwise, the 
execution of transactions cannot be serialized in the general case.

With D-tables, solidDB can provide serializable transactions by detecting all 
conflicts between transactions. It does this by using both write-set and read-set 
validations. Because no locks are used, all concurrency control anomalies are 
avoided, including the phantoms.

The SERIALIZABLE isolation level is not supported with M-tables.

2.5.3  Durability levels

The durability level controls how solidDB handles transaction logging. The 
solidDB server supports three durability levels: strict, relaxed, and adaptive. 
Relaxed durability yields best performance; strict durability minimizes loss of 
transactions. The adaptive durability level is available only in HotStandby 
configurations.
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The durability level can be set as a server default, per session, or per transaction.

Strict durability: synchronous logging
With strict durability, transaction logging is synchronous: the transaction is written 
to the transaction logs as soon as the transaction is committed.

Relaxed durability: asynchronous logging
With relaxed durability, transaction logging is asynchronous: solidDB is permitted 
to defer the transaction write until the server is less busy, or until it can write 
multiple transactions together. 

In a server that is not part of a HotStandby pair, using relaxed durability means 
that you risk losing the most recent few transactions if the server terminates 
abnormally. If the server is part of a HotStandby pair, a copy of the transaction is 
on the other server (the Secondary); even if the Primary server fails before 
logging the transaction, the transaction is not lost. Thus, when relaxed durability 
is used with HSB, relaxed durability causes little reduction in safety. On the other 
hand, relaxed durability can improve the performance of the system, especially in 
situations where the server load consists of a large number of small write 
transactions.

Adaptive durability
Adaptive durability applies only to HotStandby Primary servers. Adaptive 
durability means that if the server is in Primary Active state (sending transactions 
to the Secondary), it will use relaxed durability. In any other state it will use strict 
durability. This gives you high performance (with little loss of safety) when HSB is 
active, yet maintains high safety if only one server is operating. Adaptive 
durability is effective only when the HotStandby has been set to use a 2-safe 
replication: the Primary server does not tell the client that the transaction has 
been successfully committed until the Primary receives acknowledgement that 
the Secondary has the transaction.

2.6  solidDB SQL extensions

The SQL support in solidDB is comparable to any advanced SQL-based system; 
solidDB offers the most commonly expected features and a set of useful 
extensions employing solidDB-specific (nonstandard) SQL syntax. Additionally, 
procedural SQL extensions such as stored procedures and triggers enable 
moving parts of the application logic into the database. These extensions help 
reduce network traffic, thus improving performance.
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2.6.1  solidDB SQL standard compliance

No commercial relational DBMS fully supports the SQL standard beyond the 
SQL-92 Entry Level, and solidDB is no exception. The full standards known as 
SQL-92, SQL-99, and SQL 2003 are too broad to be implemented in a 
cost-efficient manner. 

solidDB supports the SQL-92 Entry Level fully and has adapted selected features 
from the broader standards. An example of advanced standard features is the 
possibility to manage table constraints dynamically by using the ALTER TABLE 
syntax. 

In addition to standard features, solidDB also borrows suitable, nonstandard 
solutions from other proprietary products. Examples are as follows:

� START WITH ... CONNECT BY syntax for calculating hierarchical queries 
� LIMIT clause for limiting the size of the result set

2.6.2  Stored procedures

Stored procedures are simple programs, or procedures, that are compiled and 
parsed after and then stored in the database for future execution. Because 
stored procedures are stored and executed directly in the server, usage of stored 
procedures reduces network traffic and can thus improve performance. For 
example, complex, data-bound transactions may be run on the server itself.

You can create a procedure that contains several SQL statements or a whole 
transaction and execute it with a single call statement. In addition to SQL 
statements, 3GL type control structures can be used enabling procedural control. 
You can also create nested stored procedures where one procedure is executed 
from within another. 

Stored procedures can also be used for controlling access rights and database 
operations. Granting execute rights on a stored procedure automatically invokes 
the necessary access rights to all database objects used in the procedure. 
Therefore, administering database access rights may be greatly simplified by 
allowing access to critical data through procedures.

Stored procedures are created and called using SQL statements.
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The three calling methods for the stored procedures are local, remote and 
deferred stored procedures:

� Local procedures are executed on a local database server. 

� Remote procedures are procedures that are stored on one server and called 
by another. Remote stored procedures are applicable only to advanced 
replication setups. 

� Deferred procedures are procedures that are called after commit has been 
processed.

2.6.3  Triggers

A trigger is a mechanism for executing a series of SQL statements when a 
particular action (an INSERT, UPDATE, or DELETE) occurs. The trigger contains 
SQL statement that need to be executed when the trigger is invoked. Triggers are 
created using solidDB proprietary stored procedure syntax. 

You can create one or more triggers on a table, with each trigger defined to 
activate on a specific INSERT, UPDATE, or DELETE command. When a user 
modifies data within the table, the trigger that corresponds to the command is 
activated.

You can use only inline SQL or stored procedures with triggers. If you use a 
stored procedure in the trigger, the procedure must be created with the CREATE 
PROCEDURE command. A procedure invoked from a trigger body can invoke 
other triggers.

Triggers enable you to perform the following tasks:

� Implement special integrity constraints, such as checking that certain 
conditions are maintained, for example, to prevent users from making 
incorrect or inconsistent data changes.

� Take action based on the value of a row before or after modification.

� Transfer much of the logic processing to the back end, reducing the amount of 
work that your application needs to do and reducing network traffic.

2.6.4  Sequences

Sequences are objects that are used to get sequence numbers in an efficient 
manner. Sequence objects can be used, for example, to generate primary key 
numbers. The advantage of using a sequence object instead of a separate table 
is that the sequence object is specifically fine-tuned for fast execution and 
requires less overhead than normal update statements.
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By default, solidDB sequences are sparse. Being sparse means that there is no 
guarantee that the generated sequence numbers are consecutive (they are, 
however, unique). Another possibility is a dense sequence. In that case the 
generated sequence numbers follow each other. The penalty of dense 
sequences is that they are locked by the transactions incrementing them, so no 
two transactions can increment the same sequence in the same time. One of the 
transactions must wait until the other transaction commits or aborts. Sparse 
sequences are more performant because they are not locked by the 
incrementing transactions.

Sequence objects are created with the CREATE SEQUENCE or CREATE 
DENSE SEQUENCE statement. Sequence values can be incremented and used 
within SQL statements using the sequence_name.CURRVAL and 
sequence_name.NEXTVAL constructs. Sequences can also be used inside 
stored procedures.

2.6.5  Events

Event are database objects that are used to signal events in solidDB databases. 
Together with stored procedures, events can be used for automating 
administrative tasks. You can make your application use event alerts instead of 
polling, which uses more resources.

The events mechanism is based on one connection waiting on an event until 
another connection posts that event. More than one connection may wait on the 
same event. If multiple connections wait on the same event, all waiting 
connections are notified when the event is posted. A connection may also wait on 
multiple events, in which case it will be notified when any of those events are 
posted.

In addition to system events, solidDB supports also user-defined events. 
However, user-defined events can only be used within stored procedures; system 
events can also be used without stored procedures. The events are managed 
using SQL statements.
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2.6.6  Replication

IBM solidDB is equipped with three data replication technologies:

� Advanced replication

This method to disseminates parts of a master database to remote locations 
called replicas. With extended SQL syntax, a master user can define 
publications (with CREATE PUBLICATION) being views of a database. Users 
at replicas can subscribe to those publications and request data refreshes. 
Propagation of updates from the replicas to the masters is also possible. 
Because permanent connections between the masters and replicas are not 
required, advanced replication is suitable for applications operating in loosely 
connected networks, for example with mobile replica devices.

� HotStandby replication

The solidDB HA product called solidDB HotStandby applies continues 
transactional replication between the active node and the standby node. A 
user can make no choices about the replicated data: the whole database is 
always replicated. However, controls (both configuration parameters and 
ADMIN COMMANDs) exist so that the user can start and stop the replication, 
and change the characteristics. Both synchronous and asynchronous 
replication modes are possible. The solidDB HA solution is described in 
Chapter 5, “IBM solidDB high availability” on page 109.

� Logreader API

If none of the these replication methods fit the user’s needs, one can develop 
a custom replication solution using the logreader. Logreader is a component 
in the server, externalizing the contents of the transaction log. With the log 
reader, all changes made to the database can be read from the log and 
transferred elsewhere. The interface is in the form of a SELECT statement 
reading from a virtual (non-existing physically) table called SYS_LOG. The 
log reading is done through a standard ODBC/JDBC interface and thus it can 
be executed both locally and remotely. The replication solution used in 
solidDB Universal Cache is based on the logreader.
 Chapter 2. IBM solidDB details 35



2.7  Database administration

This section describes the main principles of database administration with 
solidDB.

2.7.1  Configuration settings

Most solidDB configuration settings are defined using configuration parameters 
that are stored in a solid.ini configuration file. The solid.ini file is not 
mandatory; if no configuration file exists, the factory values are used. Also, all 
parameters do not need to be present in the solid.ini file; if a parameter is not 
present in the solid.ini file or if the value for a particular parameter is not set, 
the factory value is used.

Generally, the factory values offer good performance and operability but in some 
cases modifying some parameter values can improve performance. You might 
also need to set configuration parameters to enable or disable certain 
functionality.

You can set the configuration parameter values by editing the solid.ini file 
manually or, in most cases, using ADMIN COMMANDs, a set of solidDB 
proprietary SQL statements.

Parameters are defined as parameter name value pairs. The parameters are 
grouped according to section categories. In the solid.ini file, each section 
category starts with a section name inside square brackets, for example:

[Logging]
LogEnabled=yes

Some parameter settings, such as durability level, can also be overridden per 
session or per transaction by using the SQL commands SET or SET 
TRANSACTION, or by defining the settings per connection with the ODBC 
connection attributes or JDBC connection properties. The precedence hierarchy 
is as follows (from high precedence to low):

� SET TRANSACTION: transaction-level settings
� SET: session-level settings
� ODBC connection attributes and JDBC connection properties
� Parameter settings specified by the value in the solid.ini configuration file
� Factory value for the parameter

Tip: In documentation, parameters are typically referred to in the format 
section.parameter, for example, Logging.LogEnabled.
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Additionally, you can control some solidDB server operations with the following 
options:

� solidDB command line options at solidDB startup
� environment variables
� ODBC client connect string arguments

2.7.2  ADMIN COMMAND

The ADMIN COMMAND is a SQL extension specific to solidDB and that 
executes administrative commands. 

The ADMIN COMMANDs are used for operations such as creating backups of 
the database, invoking performance monitoring, or displaying information about 
users connected to the database. The ADMIN COMMANDs can also be used for 
changing certain configuration settings dynamically.

2.7.3  Data management tools

IBM solidDB provides a set of utilities for performing various database tasks.

solidDB SQL Editor (solsql)
solidDB SQL Editor (solsql) is a console tool used to issue SQL statements and 
solidDB ADMIN COMMANDs at the command prompt, or by executing a script 
file that contains the SQL statements.

solidDB Console (solcon)
solidDB Console (solcon) is a console tool used to issue solidDB ADMIN 
COMMANDs at the command prompt, or by executing a script file that contains 
the commands. Only users with administrator rights can access solcon; if only 
solcon is deployed at a production site, the administrators cannot accidentally 
execute SQL statements that could change the data.

Tip: When using solsql, ADMIN COMMANDs and SQL statements must be 
terminated with a semicolon (;) character. Note that if you are not using 
solsql, terminating SQL statements with a semicolon leads to a syntax error.
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Tools for exporting and loading data
solidDB provides the following tools for exporting and loading data:

� solidDB Speed Loader (solloado or solload) loads data from external files 
into a solidDB database.

� solidDB Export (solexp) exports data from a solidDB database to files. It also 
creates control files used by solidDB Speed Loader (solloado or solload) to 
perform data load operations.

� solidDB Data Dictionary (soldd) exports the data dictionary of a database. It 
produces an SQL script that contains data definition statements that describe 
the structure of the database.

2.7.4  Database object hierarchy

solidDB uses catalogs and schemas to organize data. solidDB’s use of schemas 
conforms to the SQL standard but solidDB's use of catalogs is an extension to 
the SQL standard.

The solidDB syntax for database object hierarchy is as follows:

catalog_name.schema_name.database_object

Catalogs are the highest (broadest) level of the hierarchy. A catalog can be seen 
as a logical database, and two or more catalogs can be used in the same time 
with the help fully qualified table names. Schema names are the mid-level of the 
hierarchy; specific database objects, such as tables, are the lowest (narrowest) 
level. Thus, a single catalog may contain multiple schemas, and each of those 
schemas may contain multiple tables.

Object names must be unique within a catalog, but they do not have to be unique 
across catalogs. 

The default catalog name is the system catalog name that was specified during 
database creation. The default schema name is the user name. Objects can be 
created without specifying the catalog and schema name; by default, the server 
uses the system catalog and the user name of the object creator to determine 
which object to use.
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Chapter 3. IBM solidDB Universal 
Cache details

This chapter describes the inner workings of IBM solidDB Universal Cache. 
Consequently, the chapter is intended for a more technical audience.

Specifically, the chapter details components that comprise the IBM solidDB 
Universal Cache product and describe the architecture and operation of the 
overall product.

The chapter also addresses common usage patterns for IBM solidDB Universal 
Cache, enumerating key considerations for how to best use the solution to effect 
performance gains.

3
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3.1  Architecture

The architecture of solidDB Universal Cache is based on three main 
components: the solidDB in-memory database (the cache database), the 
relational database server (the back end), and the data synchronization software 
that copies data to and from the cache and the back end. The replication method 
is asynchronous, ensuring fast response times.

3.1.1  Architecture and key components

The architecture and key components of a typical configuration of the solidDB 
Universal Cache is shown in Figure 3-1. 

Figure 3-1   Sample IBM solidDB deployment

IBM solidDB: cache database
The solidDB server implements the cache database (or front end) in the IBM 
solidDB Universal Cache solution. The cache database benefits from various 
solidDB features, such as HotStandby that provides high availability and failover, 
or shared memory access (SMA) that enables collocating of data with the 
application.

Relational database server (RDBMS): back end
The RDBMS is a relational, disk-based data server that contain the data to be 
cached.
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Replication engines
The InfoSphere Change Data Capture (CDC) replication software ensures that 
as changes are made to the cache database, the back-end database is updated, 
and vice versa. The replication engines run typically on the same hosts as the 
data servers.

The replication engines are configured using a graphical user interface (GUI) or 
command-line based Configuration Tool (dmconfigurets). A set of commands 
(dm-commands) is available and can be used to control the replication engine 
instances.

Access Server
InfoSphere CDC Access Server is a process that manages a solidDB Universal 
Cache deployment. It is typically executed as a daemon.

Configuration tools such as Management Console communicate with the Access 
Server to allow deployments to be configured.

Access Server controls access to the replication environment; only users who 
have been granted the relevant rights can modify configurations. However, after 
the replication environment has been configured, Access Server is not needed 
for the replication to be operational: only the InfoSphere CDC replication engines 
need to be running.

Configuration tools
InfoSphere CDC Management Console is a graphical application that allows 
authorized users to access, configure and monitor their InfoSphere CDC 
deployments. It does so by communicating with the Access Server.

Similar functionality is available for command-line users. This functionality is 
realized through the dminstancemanager and dmsubscriptionmanager utilities, 
which are included the InfoSphere CDC for solidDB package. 

3.1.2  Principles of operation

To use solidDB Universal Cache, you must first identify the data you want to 
cache and configure the environment accordingly. The data can then be loaded 
from the back-end database to the cache, so that when applications run against 
the cache database, they can take advantage of high performance and low 
latency of solidDB. (With the SQL pass-through functionality, some statements 
can also be passed to the back-end database.) As changes are made to the 
data, the InfoSphere CDC replication technology synchronizes data between the 
cache database and the back-end database.
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Log-scraping 
InfoSphere CDC uses log-scraping technologies, triggers, or both to capture 
databases changes. The front-end replication engine accesses the solidDB 
transaction log to capture data changes and transmits these changes to the 
back-end replication engine, which copies the changes to the back-end 
database.

Similarly, the back-end replication engine accesses the log (or uses triggers) to 
capture data changes in the back end and transmits these changes to the 
front-end replication engine, which copies the changes to the back-end 
database.

Asynchronous replication
The InfoSphere CDC replication method is asynchronous in nature. This means 
that as applications write, for example, to the cache database, control is returned 
to the application as soon as the write completes; the application does not block, 
waiting for these updates to be successfully applied to the back end.

Updates to the back end are not performed until the following tasks are 
completed:

1. The transaction has been committed.

2. The entries for the transaction are scraped from the log.

In a solidDB Universal Cache environment, asynchronous replication benefits 
applications by reducing the round-trip time required to access data. Instead of 
potentially incurring an expensive network hop and writing to the back-end 
database, applications can write directly to the solidDB in-memory database.

Asynchronous replication means also that applications cannot assume that the 
back-end database has been written to at the same time as the front-end, which 
can have ramifications for error recovery.

Mirroring and refresh
The two manners in which data can be copied between the cache database and 
the back end are mirroring and refresh.

Mirroring involves actively scanning a source database to see if any changes 
have been made, then applying these changes to a target database. This step is 
accomplished by using the asynchronous replication mechanism. The mirroring 
process may be thought of as active caching.

Refresh involves taking a snapshot of the source database and writing it directly 
to the target. Refresh can thus be utilized to initialize or rebuild a database.
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Communication between components
The InfoSphere CDC replication components communicate with each other 
using TCP/IP. To collocate the data in the cache database with the application, 
the solidDB server can be configured as a shared memory access (SMA) server, 
so that both the application and the InfoSphere CDC for solidDB replication 
engine connect to solidDB using SMA. TCP/IP protocol can be used with solidDB 
too. 

The inter-component communication in the solidDB Universal Cache 
environment is shown in Figure 3-2.

Figure 3-2   solidDB Universal Cache inter-component communication

The Access Server is configured as a TCP/IP server and it listens on one or 
more ports. On UNIX systems, it may be deployed as a daemon service (inetd). 
All communication between the Access Server and tooling also uses TCP/IP. 

Each replication engine instance must use a unique port number to connect to 
the Access Server; the port number is defined when creating the InfoSphere 
CDC instances. Figure 3-3 on page 44 shows the configuration dialog for the 
InfoSphere CDC for solidDB replication engine.
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Figure 3-3   InfoSphere CDC for solidDB configuration
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The following areas are highlighted in Figure 3-3 on page 44:

1. Instance area: Server Port defines the port number, which InfoSphere CDC 
instance uses for communication with Access Server and other replication 
engines.

2. Database area: Defines the user account to access the database that 
contains the tables for replication, in this case, the solidDB database.

3. Server area: Defines the connection information to the database that contains 
the tables for replication, in this case, a stand-alone solidDB server.

3.2  Deployment models

The solidDB Universal Cache architecture affords much flexibility. For example, 
different cache instances can be configured to maintain identical copies of the 
same data, to facilitate load balancing for read or read-write access. 
Alternatively, large tables in the back-end database can be partitioned, where 
each data partition can be hosted by a dedicated in-memory cache instance, with 
read or read-write access.

Depending on the application needs, solidDB Universal Cache can be deployed 
as a read-only cache or as a read-write cache.

Read-only cache
When configured as a read-only cache, the data is owned by the back-end 
database. This “ownership” means that the data stored in the cache cannot be 
modified by the application. In this configuration, applications can modify the data 
directly in the back-end database and changes can be synchronized to the 
in-memory cache, transaction by transaction, automatically or on-demand. This 
configuration is ideal for applications that require fast access to data that 
changes occasionally, such as price lists, or reference or lookup data.

Read-write cache
There are two deployment options for read-write cache, depending on the 
ownership of data. 

When configured as a read-write cache, where the data is owned by the cache, 
applications can read, add, modify, or delete data in the cache, but not in the 
back-end database. Changes are propagated from the in-memory cache to the 
back-end database, transaction by transaction, automatically, or on-demand. 
This configuration is useful for applications that have stringent service level 
agreements that demand short response times, for a variety of data intensive 
operations.
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When configured as a read-write cache where the data ownership is shared, 
applications can update the same data in both the cache and in the back-end 
database at the same time. In this case, changes to the data can be propagated 
automatically in both directions. Conflicts are detected and resolved by using 
predefined conflict resolution methods. This configuration is especially useful 
when applications need to update the data in the back-end database while the 
data is also cached for read-write access.

3.3  Configuration alternatives

This section describes the configuration alternatives for the deployment options.

3.3.1  Typical configuration

A simple solidDB Universal Cache deployment might involve caching a single 
back-end database to a single cache database. The cache database related 
components and the back-end related components are installed on separated 
nodes, as are the Access Server and tooling. A typical node configuration is 
shown in Figure 3-4.

Figure 3-4   A simple solidDB Universal Cache deployment with a single cache node
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Note the following information:

� Single cache node

The solidDB server and InfoSphere CDC for solidDB products are typically 
installed and configured on the same machine (“cache node”). This machine 
is often “closer” to the applications that use the data.

Collocation of the two servers minimizes the overhead when scraping the 
logs (solidDB as source) or applying updates (solidDB as target).

� Single database node

The InfoSphere CDC for back end is typically installed and configured on the 
same machine on which the back-end RDBMS is running (“database node”).

This approach helps to minimize the overhead of communications between 
the replication engine and the database.

� Single access node

The Access Server is typically deployed on a separate machine (“access 
node”). The advantage to installing it on a separate machine from “cache” and 
“database” nodes is to more easily configure the firewall, because solidDB 
Universal Cache tooling communicates with the Access Server, not with the 
InfoSphere CDC replication engines.

InfoSphere CDC Access Server is only required during the configuration of 
solidDB Universal Cache, or during the starting or stopping of caching (that is, 
subscriptions). 

� Configuration nodes

Any node from which solidDB Universal Cache tooling (Management 
Console, dmsubscriptionmanager, Access Server tools) is run can be 
considered a configuration node. 

3.3.2  Multiple cache nodes

Multiple solidDB servers (cache nodes) can be used, for example, for partitioning 
back-end data so that each cache node has only the data that is relevant to it. 
However, in such deployments, each solidDB server is autonomous and 
processes the application requests without accessing data in any of the other 
solidDB servers. 

3.3.3  SMA for collocation of data

The shared memory access (SMA) feature of solidDB Universal Cache can boost 
application performance when accessing solidDB data. In place of costly 
network-based communication, such as TCP/IP, SMA uses direct function calls 
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to the solidDB server code. In the same time, the in-memory database is located 
in a shared memory segment available to all applications connected to the server 
with SMA. Multiple concurrent applications running in separate processes can 
utilize that access method to reduce significantly response times.

In a SMA setup, the application, the solidDB SMA server, and the InfoSphere 
CDC replication engine are located on the same node. In the setup phase, the 
following steps must be considered:

1. Configuring solidDB server to run as a SMA server

2. Configuring InfoSphere CDC for solidDB to use SMA for communication with 
solidDB server

3. (Optional) Configuring user applications to use SMA for communication with 
solidDB server

Configuring solidDB server to run as a SMA server
To use solidDB with SMA, the solidDB server is started with the solidsma 
executable, instead of the solid executable.

Configuring InfoSphere CDC to support SMA
SMA must be enabled during the creation of an InfoSphere CDC for solidDB 
instance. For example, in the GUI tool, the Enable SMA check box must be 
selected; see Figure 3-5.

Figure 3-5   Enabling SMA on an InfoSphere CDC for solidDB instance
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Configuring user application to support SMA
The SMA feature does not require any code changes to the applications 
themselves, except for ensuring that the solidDB connection is configured for 
SMA. The SMA connection is defined within the ODBC connection string or 
JDBC connection property. For example, when using ODBC, instead of 
connecting to solidDB using the connection string ‘tcp 2315’, the SMA 
connection is specified with the string ‘sma tcp 2315’ string. When using JDBC, 
the following connection property is used:

solid_shared_memory=yes

3.3.4  solidDB HSB servers for high availability

The solidDB HotStandby (HSB) solution allows for redundancy to be 
incorporated at each individual cache node, thus providing reliable access to 
data stored in the cache database.

Reliability in the cache database requires that the data pathways to and from the 
cache are capable of handling HSB failovers. The InfoSphere CDC for solidDB 
can be made aware of HSB deployments transparently, so that replication to and 
from the cache remains operational, after the primary solidDB server is down. If 
the primary solidDB server does go down, InfoSphere CDC simply redirects 
active subscriptions to use the new primary solidDB server and replication 
continues as normal.

The HSB support must be enabled explicitly when configuring the InfoSphere 
CDC for solidDB instance by defining the connection to the primary and 
secondary servers, as shown in Figure 3-6.

Figure 3-6   Enabling HotStandby in InfoSphere CDC for solidDB
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3.4  Key aspects of cache setup

The usage of solidDB Universal Cache solution requires the implementation of 
replication subscriptions between the cache and the back-end database. 

A subscription defines the replication direction and various replication rules. The 
subscriptions also maintain the state of replication, indicating whether or not 
replication is in progress.

The application and deployment needs dictate the direction of the subscriptions 
between a source and target data store. In the InfoSphere CDC replication 
solution, a data store is the representation of a database and the related 
InfoSphere CDC instance. 

The cache and back end can act as both source and target data stores in 
different subscriptions. There can also be several subscriptions between two 
data stores; multiple subscriptions can be used to partition the data and 
workload.

Data stores and subscriptions are created and managed with the Management 
Console or the dmcreatedatastore and dmsubscriptionmanager command-line 
tools.

3.4.1  Deciding on the replication model

Before creating subscriptions, consider the following information:

� Ownership of data

Does the master copy of the data reside in the back-end database, as is 
typically the case, or does the master copy of the data reside in the cache?

� Read-only or read-write cache

Do you want changes made to the cache to be reflected in the back-end 
database, or is the cache read-only?

Typically, the back-end database represent the master copy of the data and data 
must be cached in read-only mode.

For such setups, only a single subscription is required. The back-end (RDBMS) 
data store should be used as the subscription source and the cache data store 
(solidDB) should be used as the subscription target. This configuration ensures 
that any changes made to the back end can be replicated to the cache.
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A list of common subscription configurations is shown in Table 3-1. The 
Procedure column also refers to the necessary recursion prevention method, 
which is discussed in more detail.

Table 3-1   Creating subscriptions

Cache type Behavior Procedure

Back-end owned, 
read-only cache

Typical scenario.
Changes made to 
back-end database are 
reflected in cache.

Create a single subscription 
using the back-end data store as 
source and the cache data store 
as target.

Back-end owned, 
read-write cache

Changes made to 
back-end database are 
reflected in cache; 
changes made to cache 
are reflected in back end.

Create a subscription using the 
back-end data store as source 
and the cache data store as 
target. Enable prevent recursion. 
Specify SOURCE wins as conflict 
resolution option.

Create another subscription 
using the cache data store as 
source and the back-end data 
store as target. Enable prevent 
recursion. Specify TARGET wins 
as conflict resolution option.

Cache owned, 
archival

Changes made to cache 
are archived to back end.

Create a single subscription 
using the cache data store as 
source and the back-end data 
store as target.

Cache owned, 
read-write cache

Changes made to 
back-end database are 
reflected in cache; 
changes made to cache 
are reflected in back end.

Create a subscription using the 
cache data store as source and 
the back-end data store as target. 
Enable prevent recursion. Specify 
SOURCE wins as conflict 
resolution option.

Create another subscription 
using the back-end data store as 
source and the cache data store 
as target. Enable prevent 
recursion. Specify TARGET wins 
as conflict resolution option.
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3.4.2  Defining what to replicate

Each subscription must contain table mappings that define the table subsets that 
are to be replicated from the source data store to the target. Sample table 
mappings are shown in Table 3-2. 

The table mappings are created and managed with the Management Console or 
the dmsubscriptionmanager command-line tool.

Table 3-2   Example of table subsets that can be used when defining subscriptions

Description Example Behavior

Complete table Sample.EMPLOYEES  
DBA.EMPS

Specifies that table 
Sample.Employees in the source 
database should be replicated to 
the target table DBA.EMPS.

Table with column 
filters

Sample.EMPLOYEES  
DBA.EMPS
Column Filter = COUNTRY

Specifies that the 
Sample.Employees table should be 
replicated, but that the COUNTRY 
column should be excluded.

Table with row 
filters 

Sample.EMPLOYEES  
DBA.EMPS
Row Filter = 
“((COUNTRY=’IE’) OR 
(COUNTRY=’FI’))”

Specifies that table 
Sample.Employees in the source 
database should be replicated to 
the target table DBA.EMPS. Only 
rows with a country value of ‘IE’ or 
‘FI’ are replicated.

Tables with row 
and column filters

Sample.EMPLOYEES  
DBA.EMPS
Row Filter = 
“((COUNTRY=’IE’) OR 
(COUNTRY=’FI’))”
Column Filter = AGE

Specifies that table 
Sample.Employees should be 
replicated, but that the AGE column 
should be omitted and only rows 
where country is ‘IE’ or ‘FI’ should 
be selected.
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Defining subset of data with row and column filters
A table mapping may define column filters, row filters, or both that restrict the 
amount of data that is replicated to the target database. An example of a row 
filter is depicted in Figure 3-7.

Figure 3-7   Specifying a row filter

An example of a column filter is depicted in Figure 3-8.

Figure 3-8   Specifying a column filter

Ensuring consistency of data
This section describes the capabilities for ensuring data consistency.

Referential integrity
Referential integrity is an important concept in databases that deals with table 
relationships and how tables should refer to the same underlying data. These 
relationships are described using primary keys and foreign keys and ensure that 
data needs to be defined only once to the system.

When using solidDB Universal Cache, asynchronous replication is used to copy 
data between cache database and back-end database, or vice versa. It is 
important that data is copied in the correct order, such that referenced records 
are copied before referencing records.
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In solidDB Universal Cache, referential integrity associations are to be confined 
within subscription; foreign keys cannot point to tables outside the subscription. 

Also, if you intend to use the Refresh operation to synchronize data between the 
cache and back end, the subscriptions with referential integrity constraints must 
define a refresh order; the refresh order specifies that referenced tables are 
listed first and referencing tables listed last (as depicted in Figure 3-9). The 
referential integrity must also be enforced on the solidDB data stores by setting 
an InfoSphere CDC for solidDB system parameter 
(refresh_with_referential_integrity) using the Management Console.

Figure 3-9   Specifying a refresh order

Encoding and replication of character data
The cache and the back-end database might use different character encoding for 
data. InfoSphere CDC can replicate character data among a wide variety of 
encodings and can automatically convert the data from the column encoding 
detected on the source to the column encoding detected on the target. 

In some cases, you might need to define the encoding conversions manually. 
You can specify character encoding at the column level for subscriptions using 
the Management Console (as shown in Figure 3-10).

Figure 3-10   Specifying encodings to use during caching
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In solidDB, the encoding of character data depends on the database mode; a 
solidDB database is created either in Unicode mode or partial Unicode mode 
(default). 

When a new instance of InfoSphere CDC for solidDB is created, the partial 
Unicode mode is assumed; default encoding for columns of CHAR type is set to 
ISOLatin1 and for WCHAR type it is set to UTF-16BE. 

Note the following information:

� If the encoding of character data in your partial Unicode database is not ISO 
Latin1, you must select the correct encoding to reflect the nature of data 
stored in character columns.

� If your solidDB database mode is Unicode, you must specify the encoding of 
character columns as UTF-8. 

Conflict resolution
In read-write cache setups, both the cache database and back-end database 
could be modified at the same time, resulting in conflicting operations. 
InfoSphere CDC has the capability of detecting conflicts and resolving them 
according to user defined logic. Conflicts are detected and resolved on a table 
basis at the target node of a subscription.

The most simple type of conflict resolution method that can be employed is a 
Source Wins or Target Wins rule. However, no matter which conflict resolution 
method is chosen, the basic premise is always the same: the rule makes a 
decision about which version of the data to keep, thus resolving the conflict.

For Source Wins and Target Wins, the logic is as follows:

� Source Wins: The incoming change from the subscription’s source database 
is to be maintained. Changes made to the subscription’s target database is 
overridden.

� Target Wins: The current data in the subscription’s target database is to 
remain unchanged. The incoming change from the subscription’s source 
database is to be ignored.

By using these two rules, you can implement a simple precedence scheme, 
whereby you decide to always keep either the cache or database version of the 
data when conflicts occur.
 Chapter 3. IBM solidDB Universal Cache details 55



In addition to Source Wins and Target Wins rules, InfoSphere CDC also offers 
comparative based rules such as Largest Value Wins. More complex (user 
programmed) rules can also be specified through the User Exit mechanism, 
enabling domain specific business logic to be applied to the resolution process. 
For example, in addition to resolving the conflict, User Exit rules can be used to 
also log details of the conflict for later auditing.

3.4.3  Starting replication

After a subscription has been configured, refresh or continuous mirroring 
operation may be performed on it:

� Refresh operation takes a full snapshot of the source data store and copies it 
to the target data store. It is a one-time off operation and runs to completion. 
The refresh operation is used to initialize the target data store and may also 
be used when and where a full rebuild of the target is required.

� Continuous mirroring operation listens for changes that are made to a source 
data store and copies these to the target, so long as the data is not being 
filtered through a row or column filter. Continuous mirroring is an active 
process.

3.5  Additional functionality for cache operations

This section describes key operational aspects of solidDB Universal Cache.

3.5.1  SQL pass-through

The SQL pass-through feature of solidDB Universal Cache allows applications to 
access the front-end database (the cache) and back-end RDBMS database with 
a single connection. In other words, applications can access both cached and 
non-cached data, negating the need to maintain an explicit connection to the 
back-end database. 

The implementation of pass-through relies on solidDB being configured to use an 
ODBC driver to communicate with the back-end database. The solidDB server 
then uses this driver to execute pass-through statements directly against the 
back-end RDBMS database, as shown in Figure 3-11 on page 57.
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Figure 3-11   Pass-through architecture

A component of the solidDB server, called the SQL pass-through mediator, is 
responsible for handling the pass-through of SQL statements to the back-end 
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The SQL pass-through feature can be configured against the following items:

� READ/WRITE

Pass-through settings may be configured independently for read and write 
SQL statements.

� TRANSACTION/SESSION

Pass-through may be enabled at the transaction or session level.

� MODE

The pass-through mode defines whether statements are executed always in 
front end, always in the back end, or conditionally in the front end or back end. 
The conditional pass-through mode is based on, for example, the availability 
of data (if a statement cannot be handled locally by the cached tables, it is 
passed to the back end) or complexity of the query as defined by the user.

The pass-through feature of solidDB Universal Cache maintains the consistency 
of data in the back-end database. This task is accomplished by adopting an 
isolation level that is at least as strong as the level used for the back end.

To ensure consistency of write operations, if pass-through is enabled, the writes 
are always forced to either the front end or the back end. Also, distributed queries 
are not allowed; individual statements must execute fully on either the cache 
database or the back-end database.

3.5.2  Aging

The data aging feature enables solidDB Universal Cache to optimize the amount 
of memory allocated to cache, ensuring that the data closest to the application is 
also the most relevant and active. With solidDB Universal Cache, the application 
layer has full control over the aging of data. The purpose of data aging allows an 
application to remove, or age, outdated or otherwise obsolete data from the 
cache while still preserving it in the back end.

Data aging is useful in situations where data is considered to be owned by the 
back end (where the master copy of data resides in the RDBMS and not in 
solidDB). 

Operation
The application can perform data aging through simple SQL statements 
specifying which data is to remove from the cached tables. The application can 
specify the aging to occur at a transaction level, or at a session level. Specifically, 
the act of enabling data aging only affects the connection upon which it is 
performed. The enablement of data aging does not affect other connections, nor 
does it affect the operation of HotStandby or normal transaction logging.
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Alternatively, data aging can also run automatically with the help of stored 
procedures. The solidDB Universal Cache can continue bidirectional replication 
with a back-end database; necessary steps are taken to ensure that data 
removed from the cache is not replicated back into the cache from the back-end 
database.

When data aging is enabled on a cache database, a user can prune data from 
the front end. When complete, aging is disabled. See Figure 3-12.

Figure 3-12   Aging in action
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where data that is aged from the front-end database (cache) is also deleted from 
the back-end database.

3.5.3  Improving performance with parallelism

The performance gains from the solidDB Universal Cache solution can be greatly 
improved by spreading the cache’s workload over multiple nodes. With 
InfoSphere CDC replication, you can closely control the flow of information 
emanating from the back-end database and make this information available at 
multiple solidDB nodes. By using multiple solidDB nodes, the workload of server 
applications can be effectively spread across multiple databases, resulting in 
increased data throughput and decreased query times. 

The two main strategies for implementing parallelism are duplication and 
partitioning. These two strategies are not necessarily mutually exclusive and 
may be combined to varying extents within the context of a single solidDB 
Universal Cache deployment.

Duplication
With duplication, data from the back-end database is copied across multiple 
solidDB nodes on purpose. The rationale behind duplication is simple: it can 
reduce the contention on database (and network) resources by providing a local 
copy of data at multiple nodes. 

Duplication works especially well to create a local cache for data that does not 
change often, and whereby most queries involving that data are read-only.

To illustrate where duplication may be useful, consider the case of an online 
global retailer. The retailer presents a basic web interface to its users where they 
can view details of listed items before purchasing. The number of pages served 
to customers world-wide can be enormous (for example, one page per item 
view). Consequently the retailer might decide to split page requests along 
territorial boundaries to keep response times acceptable. The actual data 
describing each item would be mostly immutable, except for occasional updates 
to pricing or item descriptions. 

Using InfoSphere CDC replication, the retailer could transport the data to 
multiple solidDB nodes in separate territories, thereby allowing page requests to 
be processed locally in the country of origin. This approach reduces network 
latency, and also enables request workload to be spread across multiple nodes.
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Data duplication is illustrated in Figure 3-13.

Figure 3-13   Data duplication

Because in this scenario the data is mostly immutable and will not be modified by 
customers, it is sufficient to employ unidirectional replication. That is, changes 
are replicated only to the tables in the master database; changes to the cache 
database are not replicated to the master database.

If local changes at each cache are required, bidirectional (two-way) replication 
would need to be employed, so that changes made at each cache can propagate 
back to the master database. Additionally, conflict resolution rules on InfoSphere 
CDC subscriptions would also be required to handle any conflicting updates that 
can be performed independently at each cache. However, a better alternative for 
handling potential conflicts in mutable data is to use a clearly defined partitioning 
scheme so that conflicting modifications can be avoided entirely in the first place.

Partitioning
With partitioning, you do not need to keep all of the data at every single node. 
Instead, you can distribute it across several nodes, perhaps evenly. This 
approach enables the burden of queries to be shared across many nodes, and 
also avoids unnecessary data duplication because only a unique subset of the 
data is stored at each node. Most important, however, a partitioning scheme 
allows for safe, non-conflicting modification of data at each node; the uniqueness 
of the data at each node ensures that contradictory changes to the same data (at 
separate nodes) does not occur.

To illustrate where partitioning might be useful, consider the case of a bank that 
stores account details for its customers. The bank stores details of each 
customer account in a table, Accounts, that uses the AccountID as the primary 
key.
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Because the clientele of the bank has grown substantially (along with the number 
of transactions), the bank decides to split account data across four separate 
cache nodes, to ensure transactional workload is kept manageable. The 
partitioning rules are based on the remainder of the integer primary key 
AccountID when it is divided by 4. For example, if AccoundID divided by 4 is 0, 
the record is stored in Cache Node 0; if AccoundID divided by 4 is 1, the record is 
stored in Cache Node 1; and so on.

Figure 3-14 shows an example of a solidDB Universal Cache deployment that 
has four cache nodes with eight subscriptions (two per cache, one in each way). 
We also assume that the bank wants to be able to update the account details 
also in the back-end database, for example, for administrative purposes.

Figure 3-14   Example of partitioning with solidDB Universal Cache
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this way ensures that only the desired subset of data reaches each cache. If new 
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This type of partitioning architecture enables concurrent modifications to records 
in separate caches. In the bank example, the bank can process monetary 
transactions on customer accounts concurrently, in each of the individual cache 
nodes. Because of the partition rules, transactions do not conflict with 
simultaneous transactions in separate cache nodes. A partitioned Universal 
Cache architecture can therefore be desirable in cases where data is potentially 
mutable or where duplication is too costly in terms of storage but where 
concurrency is still required.

3.6  Increasing scale of applications

This section describes large-scale strategic mechanisms to scale applications, 
their characteristics, and a comparison of them to the usage of a cache as a 
scaling mechanism. It also describes generalized application classes that benefit 
from the use of a cache.

3.6.1  Scaling strategies

Applications can be scaled to handle greater and greater loads using the 
following common strategies: 

� Adding servers
� Redesigning applications
� Adding database cache

Adding servers to increase capacity
Adding new hardware and virtual machines can be a simple way to increase 
capacity of caching user web sessions, execute business logic, process 
transactions, and so on. However, each additional hardware component carries 
capital and operational costs. Also, if the number of application instances or 
application servers is increased, the database will in most cases eventually 
become the bottleneck. Databases can be redesigned to scale up or out, but it is 
often costly to do so in terms of re implementation of the application. 

Cloud computing is also an option; although cloud computing can deliver server 
instances on demand, it cannot substitute for redesign of the application code 
and data to take advantage of additional resources.

Redesigning applications to increase capacity
Applications can be redesigned to allow for greater capacity, for example, by 
adding stateless paradigms, improving the layering and separation of 
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responsibilities, introducing or adding asynchronicity, or introducing application or 
object caches. Such strategies are typically lengthy, expensive, and risky.

Adding cache databases to increase capacity
Another way to increase capacity is to add a relational cache database such as 
solidDB Universal Cache to the existing application/system architecture. In 
relative terms, a cache database can be an inexpensive addition to the 
application, requiring few if any application changes. The cache database can 
alleviate database bottlenecks and provide easier scaling especially in read-only 
scenarios. Moreover, availability of the solution is also not of serious concern 
because most caches including solidDB Universal Cache have mature HA and 
HSB mechanisms. Relational cache databases also fit easily into existing 
architectures and systems and allow scaling at a lower cost than adding 
hardware or redesigning the applications.

In 3.6.2, “Examples of cache database applications” on page 64, we discuss 
application architectures that typically benefit from cache deployment.

3.6.2  Examples of cache database applications

This section has examples of application domains that are good candidates for 
acceleration by cache databases.

Web session management
Web session management refers to the process of keeping track of user states 
while interacting with an application over a number of sessions. It is typified in a 
web application whose context is dependant on knowing the user’s current state 
and previous session information. The application sessions typically need to 
manage a large volume of sessions where each session is small in nature but 
sensitive to the speed of retrieval and update of the state information. A cache 
database can have a big impact by eliminating network and database operation 
latency.

Reference and common lookups
Reference lookups are ideal for cache deployment. Whether they are terrorist list 
lookups or product pricing, the nature of lookups is typically of the type read-only 
or seldom-updated.

Time-sensitive transaction processing
Applications that are sensitive to latency can gain large benefits from solidDB 
Universal Cache through the elimination of the network and the faster servicing 
of database requests by solidDB as opposed to disk based databases.
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3.7  Enterprise infrastructure effects of the solidDB 
Universal Cache

This section describes how the introduction of the cache into an existing 
environment can lead to efficiencies in various infrastructure components within 
the existing IT assets of an enterprise. The infrastructure pain points described in 
this section can also be used as a guide to differentiate between new product 
development using cache architecture and more traditional database patterns.

The general pattern for the discussion is the comparison between an existing 
application where the database tier resides on a distinct hardware component 
accessed through the enterprise network infrastructure and a solidDB Universal 
Cache setup where a subset of the data required by the application is cached 
and collocated with the application.

3.7.1  Network latency and traffic

The existence of a cache can lead to the reduction of the network traffic between 
the application and the remote back-end database machine. This way has the 
dual advantage of both reducing the load on the network (and thus the overall 
load on the enterprise network assets) and reducing the overall latency of the 
database operations through the elimination of the network hop required by a 
more traditional architecture.

Two facets must be considered when you decide what type of data should reside 
in the cache:

� Consider the volume of data to be transported over the network and if the 
network has the capacity to efficiently transport this data. Most commonly, if 
the application can make use of an operational (or hot) data set that is a 
subset of the overall data, this case leads to a reduction on the throughput 
load on the network. 

� If the application is sensitive to database operation latency, it is appropriate to 
cache the data that corresponds to the sensitive operations. In such a case, 
the amount of individual operations going across the network is reduced 
which leads to the reduction in the dependence of the application on the 
consistent response of the network.

3.7.2  Back-end machine load

The cost of hardware used to host enterprise database systems can be high in 
both capital and operation terms. If you remove the load from the back-end 
machine through the use of solidDB Universal Cache by handling database 
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queries in the application tier, you are both delaying the need for an enterprise to 
upgrade or replace existing hardware infrastructure, and also reducing the 
operation expense of such systems, thus reducing the overall cost to an 
enterprise of an application.

By taking away CPU cycles from the back-end hardware, you can free hardware 
resources for use by other applications, whether resident on the machine or 
simply using the shared back-end database. Again, upgrades can be temporally 
delayed to some time in the future. The trade-off is the possible reallocation of 
hardware resources or funding to the front end or application tier; however, such 
hardware is typically commodity-based and less expensive in nature. Primarily, 
the hardware enhancements on the front end require increase of main memory, 
which is becoming progressively less expensive over time, particularly on 
commodity hardware.

3.7.3  Database operation execution

In this section, we consider two facets of the introduction of a cache database:

� The reduction of the latency of database operations 

� The increased availability of enterprise database resources to other 
applications within the enterprise.

The response time of a database operation is defined as the round-trip time 
required to return a result to an application. The introduction of solidDB Universal 
Cache to the application tier of the enterprise can have two advantages:

� The database response time itself can be improved 

� The transport layer between the application tier hardware and the back-end 
database hardware can be the eliminated. 

The result of these advantages has the effect of accelerating the application 
through the raw speedup in response times.

Through the elimination of a percentage of database operations and interactions 
from the back-end database, the resources available to the back-end database 
can be substantially increased, which in turn leads to improvements in the 
availability and response time of the database to other applications using the 
database resource.

However, consider that existing disk-based enterprise databases are better 
suited to certain database operations than solidDB would be, such as queries 
with large result sets. This consideration is important when trying to quantify the 
benefit that solidDB Universal Cache can have on the increased availability of the 
back-end database to the enterprise.
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Chapter 4. Deploying solidDB and 
Universal Cache 

In this chapter, we discuss application development for when you use IBM 
solidDB products. We emphasize the effect that using a cache database has on 
application design as compared to other database applications. IBM solidDB is a 
standards-compliant relational database supporting SQL and the standard 
ODBC and JDBC programming interfaces. Most application design, 
programming, data model design and system administration paradigms used 
with other database systems are directly applicable with IBM solidDB products 
also. A multitude of literature is available about all these topics. Therefore, they 
are only briefly described in this chapter, highlighting solidDB-specific details 
when necessary. We assume that you known SQL and its basic concepts.

4
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4.1  Change and consideration

Change from a single database system to a system of multiple databases is 
always a major step in architecture design, significantly increasing the number of 
considerations for deployment. A far more straightforward approach is to 
consider the issues when designing a new application that will use a cached 
database and back-end database as compared to extending an existing RDBMS 
system to use a front-end database cache. We look at both of these scenarios for 
deployment of a cached database system.

When moving a system to production, several things related to system 
initialization and administration must be considered. As examples, in the system 
initialization section, we focus on installation and initial data load. Then, in the 
administration section, we focus on monitoring the system health, illustrating how 
the system can be recovered from various disasters, and prepare for several 
types of upgrade operations, such as hardware upgrades, IBM solidDB software 
upgrades, and application software upgrades.

4.2  How to develop applications that use solidDB

The development of an application that will use solidDB as a stand-alone 
database conceptually and architecturally resembles application development on 
any other type of relational client/server database. Almost all concepts and 
methods work should be applied similarly, with some relatively minor things to 
consider when using direct linking models or the high availability architecture of 
solidDB. We briefly review the basics of database application development in this 
chapter. For more detailed information, see any available literature and 
examples, most of which is applicable for solidDB.

4.2.1  Application program structure

Basically, application development on relational databases is about creating and 
executing programming commands along with SQL statements inside the host 
language, according to host language-specific programming paradigms. 
Generally, this task is done by linking a database driver (which is a component 
provided as part of IBM solidDB product package) to an application program. 
This driver contains a set of functions (based in C-language ODBC drivers) or a 
set of classes and methods (in a Java-based JDBC driver) to be called by the 
application. ODBC and JDBC standards specify the names and parameters of 
these functions in detail to enable changes to the database by simply changing 
the ODBC or JDBC Driver. This task can be done either in a linker's file list or a 
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call to Driver Manager, which is a system component that picks up an 
appropriate driver, based on the database connection string or URL.

All relational database application programs are structured as shown in 
Figure 4-1. The connection must first be initialized. Then, the application program 
executes one or several statements within the connection, and ultimately either 
explicitly or implicitly (application program termination) terminates the 
connection.

In the interfaces provided by IBM solidDB, there is always an implicit current 
transaction related to each connection. Hence, the Begin Transaction statement 
is always implicit. The transaction statements are executed according to the 
structure shown in Figure 4-1. For statements that are expected to be executed 
multiple times, using prepared statements is the best approach to avoid having 
the SQL Interpreter be activated for each execution. This way can improve 
performance. Naturally, the statements that are expected to return data will have 
to process the returned data in one way or another; statements only writing data 
do not process results. 

Figure 4-1   Application structure
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4.2.2  ODBC

This section introduces and helps you get started with ODBC on solidDB.

Introduction
ODBC provides a standard for accessing relational databases. ODBC is defined 
as a set of strictly defined C-language functions implemented by database 
manufacturers. to develop a native ODBC-application. The programmer must 
include the header file that contains ODBC definitions and link an appropriate 
driver that is provided by the database manufacturer. The application can use a 
separate database simply by linking to a separate driver.

A key benefit of ODBC is the capability of accessing several databases at the 
same time. To avoid naming conflicts between similar functions in separate 
drivers, the application links to the ODBC Driver Manager instead of individual 
drivers. The driver manager then routes the call to the appropriate driver. For 
applications that require access to only one type of database, the use of Driver 
Manager is not required. From a linking perspective, the ODBC Driver Manager 
is only another library to link. It provides exactly the same function interface as 
the ODBC drivers.

ODBC is widely used, especially in Windows environments, as the database 
access layer for applications that are not written in the C-language. In those 
cases, the application middleware translates the application code that is not 
based in C language to appropriate C-based calls to ODBC (or more commonly, 
to the ODBC Driver Manager).
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The left side of Figure 4-2 shows the basic ODBC functions that are required to 
prepare to connect to the database and establish the actual connection. The right 
side of the figure shows the actual functions related to statement preparation, 
execution and transaction handling.

Figure 4-2   ODBC functions for database connection
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Figure 4-3 lists the ODBC functions related to processing the result set in the 
case of running a Select statement.

Figure 4-3   ODBC functions for processing a result set
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Example 4-1   A simple, but complete ODBC application

// section 1: Allocating Handles
rc = SQLAllocEnv(&henv);
rc = SQLAllocConnect(henv, &hdbc);

// section 2: Establish connection
rc = SQLConnect(hdbc, “tcp 1313”, SQL_NTS, “dba”, SQL_NTS,  “dba”, 
SQL_NTS);

// section 3: Prepare Statement for execution
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)"SELECT ID,NAME FROM NAMEID",
                           SQL_NTS);
// section 4: Define Variables in C 
rc = SQLBindCol(hstmt, 1, SQL_C_SLONG, &id, 0, NULL);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, name,
                        (SDWORD)sizeof(name), &namelen);

// section 5: Run a loop until rows run out. After each SQLFetch
// call the contents of variables id and name change to match 
// row contents
rc = SQLFetch(hstmt);
 (rc == SQL_SUCCESS)
{

printf("A row found (%d, %s).\n", id, name);
rc = SQLFetch(hstmt);

}

rc = SQLFreeStmt(hstmt, SQL_DROP);

// section 6: Release the statement handle, disconnect and release
// the environment handles
SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

Getting started with ODBC on solidDB
The solidDB product package contains a set of ODBC sample programs and an 
operating system (OS)-specific build environment for the particular sample. The 
samples can be located in the product package in the following directory:

./samples/odbc
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The directory contains two simple C-language programs and the makefile that is 
required to build and run the programs. A C-development environment (compiler 
and make utility) are assumed to exist.

4.2.3  JDBC

This section introduces and helps you get started with JDBC on solidDB.

Introduction
JDBC is direct counterpart to ODBC in the Java language. Because Java is an 
object-oriented language, the standard is specified as a set of classes and their 
methods, instead of function calls. The underlying principles are exactly the 
same as with ODBC. That is, every ODBC operation has a direct counterpart in 
JDBC. In Java, instead of including header files as in C, the JDBC interface is 
imported to Java application code by import clause. Instead of linking the driver, 
in JDBC, the driver’s classes are loaded when a connection is requested from the 
JDBC Driver Manager. As an application interface, JDBC is slightly simpler to 
use than ODBC in the sense of generally having fewer parameters in function 
calls and being (because it is Java-based) less vulnerable to typical C-language 
development-time problems, such as loose pointers and uninitialized memory.

The JDBC Driver manager is the JDBC counterpart to the ODBC Driver 
Manager. It is included in Java runtime environment, so circumventing the Driver 
Manager in JDBC is not practical, as it is in ODBC.

Tip: Details of the ODBC Interface

ODBC Function Interface:

http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx

ODBC Header File name: sql.h (located in the ./include product package 
directory) 

The solidDB ODBC Driver names are as follows:

� Depends on platform: socw3265.dll on 32-bit Windows for dynamic linking
� Direct linking stub: solidimpodbcu.lib on 32-bit Windows 
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The left side of Figure 4-4 shows the JDBC methods that register the driver with 
JDBC Driver Manager and establish a connection using a registered driver. The 
right side of Figure 4-4 shows the methods to execute the statement either by 
using a Statement object for one-time execution or a PreparedStatement object 
for multiple executions. 

Figure 4-4   JDBC process to register the driver with the Driver Manager
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Example 4-2 shows a JDBC version of the application in Example 4-1 on 
page 73. It contains counterparts for resource allocation, connection 
establishment, query execution and result set processing.

Example 4-2   A simple JDBC-application

import java.sql.*;

public class jdbcsample 
{
  public static void main (String args[]) throws Exception
  {
    // section 1: Register driver for JDBC Driver Manager
    Driver d = (java.sql.Driver)Class.forName
               ("solid.jdbc.SolidDriver").newInstance(); 
    
    // section 2: Establish a JDBC connection from JDBC Driver Manager
    Connection conn = java.sql.DriverManager.getConnection
                      ("jdbc:solid://localhost:2315/dba/dba");   

    // section 3: Define Statement for Execution and Execute
    Statement sta = conn.createStatement();
    ResultSet rs = sta.executeQuery("SELECT ID,NAME FROM NAMEID");    

    // section 5: Run a loop and retrive rows until they run out.     
     (rs.next())
    {
      System.out.println("A row found (" + rs.getString(1) + ", " +
                         rs.getString(2) + ")");
    }
   
    // section 6: Close appropriate resources
    rs.close();
    sta.close();
    conn.close();

  }
}
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Getting started with JDBC on solidDB
As with ODBC, the solidDB product package for JDBC contains a set of JDBC 
sample-programs and the environment used build and run them. The samples 
are located in the product package in the .samples/jdbc directory. The directory 
contains four simple Java programs illustrating the basic JDBC operations. A 
Java developer kit is expected to be installed to run these programs.

4.2.4  Stored procedures

IBM solidDB provides a third way of executing SQL statements and processing 
the results, and that is in the form of stored procedures.

The standard SQL does not contain definitions for a stored procedure language. 
Therefore, stored procedure languages used in the various databases are 
generally not compatible with each other, although conceptually they might 
strongly resemble each other.

Architecturally, all stored procedure execution takes place inside the server 
process. Therefore, no network communication is needed within procedure code. 
Depending on a linking model, a network message might be needed when the 
application process calls the procedure and receives results.

Tip: Details on JDBC Interface

JDBC interface classes and methods are described in the following location 
(by looking at the java.sql package):

http://download.oracle.com/javase/6/docs/api/

JDBC Classes can be imported by the following statement:

import java.sql.*;

The solidDB JDBC Driver name is: SolidDriver2.0.jar
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Example 4-3 shows how to create a stored procedure.

Example 4-3   Creating a stored procedure

"create procedure proc returns (str varchar)
begin

  -- section 1: Declare variables to store the retrieved data
  declare id integer;
  declare name varchar;

  -- section 2: Declare trivial error handler
  exec sql whenever sqlerror rollback, abort;

  -- section 3: Prepare and execute the piece of sql
  exec sql prepare sel select id, name from nameid;
  exec sql execute sel into (id, name);
  exec sql fetch sel;
  
  -- section 4: Run a loop and retrieve all the rows. Instead of
  -- printing, return the rows to the caller
   sqlsuccess loop
    
    str := convert_varchar(id) + ' ' + name;

    return row;

    exec sql fetch sel;
  end loop;

  -- section 5: close and drop the cursor
  exec sql close sel;
  exec sql drop sel;

end";
commit work;

To get started with solidDB stored procedures, the IBM solidDB product package 
contains a set of samples of solidDB stored procedures, which are in the 
following directories:

� ./samples/sql 
� ./samples/sql/course_exercises
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4.2.5  Special considerations

Several special situations must be considered in application code when 
developing a client application for IBM solidDB. We provide a brief description of 
those situations in this section.

Linking models
The database part of application development is about creating a string of SQL 
statements within the host language, calling the appropriate function or method 
to send the string to database server, and the use of appropriate functions or 
methods to process the results retrieved by the database. 

In a traditional client/server linking model, the application and database servers 
have been running in separate processes either in the same machine or in 
separate machines. In this case, the database driver has been hiding the fact and 
arranging the communication between separate processes by network 
messages or interprocess communication inside same machine. This fact is true 
with IBM solidDB and regular client/server connections also. Additionally 
however, a mechanism to combine the application and database server 
processes and to bypass all messaging is provided. In some cases, this way is 
beneficial for response times and performance, and is depicted in Figure 4-5 on 
page 80.

Tip: Details about the Stored Procedure Interface

No special component is needed to enable or run solidDB stored procedures, 
because the procedure engine is included in the server process.

The solidDB procedure language syntax is proprietary to solidDB. That syntax 
is described in IBM solidDB Manual: SQL Guide, SC23-9871, Chapter 3, 
“Stored procedures, events, triggers and sequences.”
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Figure 4-5   Linking models
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immature applications (that are known, or expected, to crash), deployment 
with Linked Lib drivers is not suggested. In some environments, deploying the 
final application and database servers in same process is seen beneficial 
because, from systems management perspective, the number of processes to 
manage will be smaller.

� Shared memory access (SMA)

This model provides the benefits of both the Client/Server model (memory 
protection, enabling several application process instances sharing the same 
performance) and the Linked Lib model (added performance). The server 
process is also protected against application process crashes.

Solid HotStandby
IBM solidDB HotStandby feature is basically transparent to application code. A 
regular application works without modifications with solidDB high availability 
feature. Both ODBC and JDBC Drivers contain a transparent failover functionality 
that hides the two underlaying connections to primary and secondary databases 
to appear as one JDBC or ODBC connection. Making the application aware of 
two separate connections is possible, but it increases application complexity 
substantially.

A failover or role change in HotStandby does not cause loss of committed data in 
the database. However, when failover, or role change occurs, the current 
transaction is terminated. That is, the ODBC call fails with appropriate error code 
or JDBC call throws an appropriate SQLException. To handle the situation 
properly, the application needs to call the rollback function or method to start a 
new transaction. Transparent failover automatically directs the connection to the 
new primary database. The application is responsible for capturing the ODBC 
and JDBC error caused by roleswitch or failover, rolling back the current 
transaction and rerunning the transaction. In practice, this technique means that 
error codes caused by failover/rollback need to be handled differently in 
applications as compared to fatal errors (syntax error, table missing, user rights 
missing) or other errors having different recovery policies.

Running applications on multiple separate databases
SQL, ODBC, and JDBC are mature standards supported by multiple database 
vendors. Conceptually, an application that has been implemented based on 
these standards should be portable and run on any standard compliant database 
with minimum effort.
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In practice, it seldom works this way, for the following reasons:

� Databases typically have different extensions to the standards. However, if 
applications carefully avoid using all extensions, this issue is less of a 
problem.

� Standards are somewhat loose on minor details such as exact column length 
(for example, decimals allowed for timestamps), and sorting and unique 
behavior with null data, allowing cursors to outlive transactions.

� Certain crucial elements in database architecture have not been included in 
the standardization effort. As examples, these elements include stored 
procedures, triggers, and sequencers.

� The standards specify an error code, SQLState, that is supposed to be 
returned in all error cases. For proper error handling, however, the 
applications generally need to access the native error code. These native 
error codes are not standardized at all and vary from database to database.

� Occasionally, a substantial part of application is implemented in database 
scripts that are executed by particular database utilities. However, the 
scripting languages and utilities are not standardized.

These problems can be most easily addressed separately in the design phase of 
software, for example, by the following methods:

� Implementing wrapper layers to hide the difference between databases, 
thereby making the application database agnostic. This means mapping the 
native database error codes to error codes meaningful for the particular 
application. As examples, fatal error, recoverable by retry, and recoverable by 
reconnect.

� Avoiding the use of non-standardized elements of databases, such as SQL 
extensions for nonstandard data types.

� Preparing to write several versions of code for elements that differ but cannot 
be avoided. For example, having a version of a stored procedure for each 
supported database.

� Using interfaces that are available on all considered databases.

Having the capability to run the same application code on separate database 
brands is essential when deploying solidDB Universal Cache (UC). The same 
code must process data, error codes, and transactions from both the solidDB 
front-end database and back-end database, whether it is DB2, IDS, Oracle, 
Sybase or other supported back-end database brands. The application must be 
built to run seamlessly on multiple database brands.
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Most high level programming techniques, such as those using application 
servers or object-relational mappers, that hide the database-level coding usually 
make the applications more portable.

Other programming environments
IBM solidDB’s supported interfaces of ODBC and JDBC enable application 
developers to write applications with C or Java languages calling ODBC 
functions or JDBC methods and writing or generating the SQL string at the 
application level. This common way of developing application logic is not the only 
one.

Multiple ways exist to raise the abstraction level from the ODBC/JDBC level. It 
can be done either by enabling database access from various (usually higher 
level programming or scripting languages, such as Visual Basic, Perl, and PHP) 
or enabling database access directly through application level objects that are 
able to load or save themselves without the application programmer having to be 
aware of database connections, transactions, or even SQL Strings. 

Database access from higher level programming is usually based on some 
middleware component translating the higher level language calls to regular 
ODBC or JDBC calls. In these conditions, the middleware component is seen as 
an application from the database perspective. Usually the middleware 
components do a good job in hiding the difference between database brands.

IBM solidDB is a relatively new product, and as such not all middleware vendors 
explicitly list it among the supported database products. In those cases, there is 
usually an option to have a generic ODBC database or generic JDBC database 
that works with IBM solidDB drivers.

Certain programming environments do not have a direct counterpart in IBM 
solidDB applications, such as Embedded SQL or Java-based stored procedures. 
Applications designed to run on these programming environments must be 
redesigned to fit IBM solidDB.
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4.3  New application development on solidDB UC

Database application architecture built on cache database or back-end database 
instead of a single database becomes more complicated. In a high-level 
conceptual diagram, the legacy back-end database is simply replaced with a 
cache database that sits between the back-end database and application making 
the database appear faster from an application perspective. There are no 
changes in the database interface layer. This concept is illustrated in Figure 4-6.

Figure 4-6   Database interface layer
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Based on the conditions, the architectural diagram becomes more complicated, 
as we have illustrated in Figure 4-7

Figure 4-7   Database interface layer with a cached database
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A cached database system has two physical databases, a front end and a back 
end. Certain performance-critical data has been moved to front-end database; 
volume data remains in the back-end database. These databases are 
synchronized by Universal Cache’s Changed Data Capture (CDC) replication but 
they still act as individual databases.
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The application can access these two databases by two strategies:

� Opening and controlling separate connections to the two databases 

� Using SQL pass-through to route all queries to the back-end database using 
the front end

Opening separate connections
The application can open two database connections to the two databases and 
retain and monitor these connections constantly. This strategy provides the 
application full control on which queries to route to the front end and which to the 
back end. This is rather laborious but provides flexibility for distribution strategies.

SQL pass-through functionality
SQL pass-through functionality provided by the solidDB Universal Cache product 
can be used. SQL pass-through assumes that all statements are first run at the 
front-end database. If any error takes place, the statement is run at the back end. 
Errors are assumed to be caused by tables not being in place at the front end. 
The application sees only one connection but the front-end and back-end 
databases are still separate and individual databases. The key challenges with 
SQL pass-through are as follows:

� The set of two databases is not transactional. For example, writing something 
that is routed to the front end is not synchronously written to the back end. If a 
transaction writes something to a front-end table and in the next statement 
executes a join that combines data from the same table and another table that 
only resides in back end, the statement will be routed to back end. The 
recently written data will not be visible until the asynchronous replication is 
completed.

� Cross-database queries are not supported, so joining data from a front-end 
table and back-end table is not possible. These queries are always 
automatically fully executed at the back-end database.

� For large result sets, SQL pass-through can present a performance 
bottleneck. All rows must be first transferred from the back-end database to 
the front-end database, and then from front end to the application. The 
front-end database ends up processing all the rows and potentially 
performing type conversions for all columns. The impact of this challenge is 
directly proportional to size of result set. For smallish result sets it is not 
measurable.

� SQL pass-through is built to route queries between the front-end and 
back-end databases on assumption that the routing can be done based on 
table name. SQL pass-through does not provide a mechanism for situations 
where a fraction of a table is stored on the front end and the whole table at 
back end. 
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4.3.2  Combining data from separate databases in a transaction

Although both front-end and back-end databases are individually transactional 
databases, the two transactions taking place in two different databases do not 
constitute a transaction that would meet the ACID requirements.

Using the default asynchronous replication mechanism does not enable building 
a transactional combined database, because some compromises are always 
implicitly included in this architecture. 

Creating a transactional combination of two or more databases, using Distributed 
Transactions, is possible. A Distributed Transaction is a set of database 
operations where two or more database servers are involved. The database 
servers provide transactional resources. Additionally, a Transaction Manager is 
required to create and manage the global transaction that runs on all databases.

4.3.3  Combining data from different databases in a query

Joining data from two or more tables by one query is one of the benefits of 
relational database and SQL. This is easily possible in the Universal Cache 
architecture as long as all tables participating the join reside in the same (either 
front-end or back-end) database. If this is not the case, several ways are 
available to work around the limitation:

� Generally, the easiest way is to run all the joins of this kind in the back end. 
Typically, all tables would be stored at the back end, but the most recent 
changes to the tables that reside at the front end also might not have been 
replicated to the back end yet. If there is no timeliness requirement and if 
there is no performance benefit visible based on running the query at the front 
end, this approach is a good one.

� Because there is no statement-level joins available between two separate 
databases, the only way to execute the join between two databases is to 
define a stored procedure that runs in the front end and executes an 
application-level join by running queries in the front-end and back-end 
databases as needed. All join logic will be controlled by the procedure. From 
the application perspective, the procedure is still called by executing a single 
SQL statement.

� Application-level joins can also be executed outside the database by the 
application, but they cannot be made to appear as the execution of single 
statement in any way.
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4.3.4  Transactionality with Universal Cache

Transactionality is a typical requirement for a database. In Universal Cache 
architecture, both individual databases, the front end and the back end, are 
transactional as individual databases. The combination of the two databases, 
however, does not behave as a transactional database. Consider, the following 
example with two tables. The table FRONT is stored in front end and replicated 
asynchronously to table BACK on the back end. BACK stays only at BACKEND.

1. The application writes something to FRONT and commits. The data is visible 
for queries such as SELECT * FROM FRONT, which are fully executed at the front 
end. Asynchronous replication to the back end is free to move the data to 
BACK, but it does not complete the replication instantly.

2. The application runs a join SELECT * from FRONT, BACK query. Because the 
data written at step 1 is still being synchronously moved from the front end, 
the data is not yet there in the back end, and recently written rows are not 
visible. Therefore, the consistency requirement for transactionality is violated.

Other scenarios are either variants of these or also violate the transactionality 
requirements in other ways.

4.3.5  Stored procedures in Universal Cache architectures

For some applications, implementing part of application logic in database stored 
procedures is practical design decision. However, procedure languages in 
different databases are not compatible. Using stored procedures at all in 
Universal Cache architectures is not suggested unless it cannot be avoided.

If data can be split to the back-end and front-end segment, having two totally 
separate sets of procedures for the front-end and back-end databases might be 
possible. In these cases, having two procedure languages might be acceptable. 
The procedure at the front end would only be accessing data in front-end tables 
and the procedure at the back end would only be accessing data in back-end 
database tables.

If the back-end database is solidDB also, the procedures in the front-end and 
back-end database are code-compatible.

Stored procedures running in the front-end database can use SQL pass-through 
to access data in back-end database, similar to applications running SQL 
statements when Pass-through is turned on. This is one additional way for 
making the front-end/back-end database architecture invisible to the application.
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4.4  Integrate an existing application to work with 
solidDB UC

The solidDB Universal Cache is seen as a way for speeding up existing systems 
that are running on top of disk-based enterprise systems. This way is true if the 
workload is favorable. See Chapter 6, “Performance and troubleshooting” on 
page 147 for further details. 

Feasibility of retrofitting a cache database between back-end database and 
existing application depends on how well the issues we listed are handled in the 
existing application and whether the existing application can live with the implicit 
compromises. Feasibility and effort required for retrofitting might not always be 
obvious. A thorough analysis might be required. In this section, we outline the 
process for the analysis and present several workarounds to typical problems.

IBM solidDB supports the standard Java Transaction API (JTA), through 
providing a set of XA (see entry XA in “Abbreviations and acronyms” on 
page 277) classes. JTA methods enable the Transaction manager to control 
solidDB as one of the transactional resources in a global transaction.

4.4.1  Programming interfaces used by the application

Converting an application using a legacy database to using a Universal Cache 
database between legacy database and the cache database can be a relatively 
simple effort or a major project, depending on how the application has been 
designed and implemented. 

Generally, the applications that have been implemented directly using JDBC or 
ODBC APIs, or a middleware running on top of those APIs, might require no 
conversion at all. If no extensions to the SQL Standard are used, the applications 
are expected to work with minor modifications.

Because stored procedure languages are not compatible with each other, a 
rewrite for stored procedures will be required if they are used in the application. 
This can be automated to some level but a separate project is necessary for 
stored procedure conversion.

If APIs, access methods or programming paradigms that are not supported by 
IBM solidDB (such as embedded SQL) are used, and there is no ODBC or 
JDBC-based middleware available to act as a gateway, this part of the application 
must be rewritten altogether. 
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4.4.2  Handling two database connections instead of one

Existing applications have most likely been written to handle connections to only 
one database, which would have all the required tables and data. Implementing 
the logic to an existing application that is capable for routing the queries to an 
appropriate database will not be a project without risks. 

SQL pass-through provides a mechanism to combine the two database 
connections to one connection that routes every query to the front-end server at 
first. The front-end server might end up routing the query to the back-end based 
on table existence. 

The change of transactional model included in moving from one physical 
database to a combination of front-end and back-end databases might prove to 
be a challenge to several applications. The combination of two databases is no 
longer strictly transactional, which might prevent migration the two database 
architecture altogether. 

The strictness of the transactionality requirement should be estimated among 
the first things in technical feasibility assessment of moving to a 
front-end/back-end-based architecture. If the requirement is strict, the effort for 
implementing a transaction manager as part of a migration process (4.3.2, 
“Combining data from separate databases in a transaction” on page 87) must be 
included in the estimates.

Various applications rely heavily on a database’s capability of running 
complicated queries that combine data from several tables in one query. IBM 
solidDB does not have a capability of joining data residing in a front-end 
database and back-end database. The standard fallback mechanism is to direct 
all these kinds of queries to the back-end database. Although this approach 
works, it does not enable the application to take advantage of the performance 
benefits of main memory-based data management.

Based on analyzing the questions in this section, creating an estimate of the 
retrofitting effort for Universal Cache database is possible. It should be estimated 
in parallel to estimating expected performance and potential for other benefits of 
the product. The bigger the retrofitting effort is, the more substantial the benefits 
would need to be.
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4.5  Data model design

All IBM solidDB architectures described in this section are based on IBM solidDB 
being a relational database product. To successfully design, implement, and 
deploy a relational database system to be able to handle even moderate data 
volumes and query loads, a number of basic relational database principles must 
be mastered. In this section, we briefly review the basic principles related to data 
model design with IBM solidDB products and emphasize the extra nuances 
implied by IBM solidDB internal implementation and Universal Cache 
architecture. We also review the aspects of running IBM solidDB in hybrid mode 
where some data is stored into in-memory tables and some to IBM solidDB’s own 
disk-based tables. Finally, we look at aspects related to running IBM solidDB in a 
Universal Cache configuration where the performance-critical part of the data is 
defined to reside in front-end database and the rest will remain in the back-end 
database.

4.5.1  Data model design principles

Most database design methodology used in data model design is directly 
applicable with IBM solidDB products. These principles are as follows:

� Having unique primary keys for rows. As in most databases this approach is 
not enforced. If the schema does not contain primary key definition, a 
generated rowid is used instead. In IBM solidDB disk-based tables, the 
primary key defines the physical order of the rows in B-tree structure. With 
in-memory tables, the primary key is implemented only as an additional index. 
As a result, in using disk-based tables, the capability of writing and reading 
data in primary key order can have a substantial positive impact on 
performance.

� In IBM solidDB’s main memory tables, images for indexes inside memory are 
created dynamically only at start-up and when running the database. Indexes 
do not consume disk space but do increase memory footprint and startup 
time. With disk-based tables, the indexes are stored on disk to a B-tree 
structure similar to other databases.

� Indexes will be required to speed up queries in both main-memory and 
disk-based databases. For bigger tables, full table scans are costly operations 
and also with in-memory databases. Maintaining several indexes can slow the 
speed of write operations in both in-memory and disk-based tables.

� Query optimization with IBM solidDB (with in-memory and on-disk tables) is a 
similar problem as query optimization is with any other relational database. 
IBM solidDB has a cost-based optimizer, diagnostic feature EXPLAIN PLAN 
FOR, and optimizer hints that are conceptually similar to other databases. 
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� FOREIGN KEY and UNIQUE definitions implicitly cause an index to be 
defined.

� IBM solidDB can use only one index per query per table. For example, if the 
query needs to find the rows according to index 1 and provide them in proper 
order according to index 2, only one index is used. The decision on which 
index will be used is determined by the optimizer.

� Large objects (both binary large objects and character large objects) are 
handled with separate algorithms and must be designed accordingly.

� Unlike most other databases, IBM solidDB is optimized for dynamic data 
sizes. Hence, there is capacity or performance benefit for pre-defining column 
sizes. For example, VARCHAR(20) has no other benefits on performance or 
capacity size than preventing too long strings to be inserted.

Implementation of IBM solidDB disk-based tables are relatively similar to other 
disk-based relational databases. In-memory tables inside solidDB have a similar 
performance edge over solidDB’s disk-based tables as they have over other 
disk-based database product tables. The functional difference with IBM solidDB 
in-memory tables is not that substantial either. They key differences are as 
follows:

� Indexes do not increase disk file size.
� Different implementation exists for primary key.

The IBM solidDB product family does not contain a specific data modeling tool. 
The table, index, procedure and trigger creation is done by Data Definition 
Language (DDL) SQL Statements such as CREATE TABLE, DROP TABLE, and 
CREATE INDEX. Most modeling tools that support generic SQL Database through 
ODBC or JDBC Interface can work with IBM solidDB also.

4.5.2  Running in-memory and disk-based tables inside solidDB

The IBM solidDB database executable contains two database server engines. 
One engine is storing the data in memory using main memory-based algorithm; 
the other one is a disk-based algorithm to store the data on the disk. Like most 
other databases, IBM solidDB has an optimized buffer pooling mechanism to 
avoid unnecessary disk head movement. 

IBM solidDB’s hybrid nature is a powerful feature because it provides all the 
performance benefits of main memory database technology inside the same 
server with volume scalability benefits of disk-based database. 
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The hybrid server works based on the following principles:

� The address of the table is defined in CREATE TABLE statement, for 
example, with either STORE DISK or STORE MEMORY, combined with 
CREATE TABLE.

� The address of the table is fully transparent. All IBM solidDB SQL is fully 
supported in both engines and all data types are similarly supported. 

� The addresses of the tables are fully transparent in transactions also. 
Transactions can combine write operations at disk-based and in-memory 
databases retaining full ACID properties. Also, individual statements can join 
data from both disk-based and in-memory tables.

� Although checkpoint algorithms between in-memory and disk-based tables 
differ, the database file (or files) and transaction log files are fully shared 
between the database engines. Therefore, checkpointing, database backup 
and restore procedures, HotStandby replication, and IBM solidDB Universal 
Cache functionality all work similarly regardless of whether tables inside 
solidDB engine are configured to be main-memory tables or disk-based 
tables.

Data model design for hybrid database with IBM solidDB creates an additional 
element to a regular data model design process. For each table, there is a 
decision whether to define the table to be an in-memory table or a disk-based 
table. Usually the amount of available RAM will set a hard limit to the overall 
amount of data that can be stored into all main-memory tables. The remaining 
tables will have to be disk-based tables. In most practical cases, picking up the 
right set of tables to reside in main-memory tables is not a trivial task. 

When picking up the tables to be stored in the main-memory engine, consider the 
following aspects:

� The queries that will benefit from main-memory algorithm are the ones 
processing small amounts (one to five, ten, or more) of data inside one query. 
For larger result sets (hundreds, thousands or more rows), the performance 
benefit will be lost and a main-memory database will be close to a 
well-optimized fully buffer-pooled disk-based database.

� Finding the queries that are frequent enough and that benefit from 
main-memory technology performance might be sizable reverse engineering 
effort requiring specialized knowledge about the application. If possible, 
practical measurement is often the fastest way for reliable results.

� Because of application transparency, finding the optimal configuration 
between disk-based and in-memory tables can be iteratively experimental 
through a relatively simple process. Because of full transparency at the 
application level, the performance and capacity measurements can be done 
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with moderate effort by running and measuring the test application with 
different configurations.

In addition to simply choosing the right tables to be stored in the in-memory 
database engine, some logical changes in the data model can be beneficial (in 
certain instances). Design patterns include the following possibilities:

� Splitting the table vertically. For a table with large number of columns, it is 
possible to create a version of a table with key values and few performance 
critical columns in main-memory and a version with all columns on disk. This 
works well if there is a substantial performance-critical set of queries that only 
needs some columns. If possible, the application can combine the data from 
two tables (views work here also) and perform write operations to two tables 
(triggers can be used to automate this).

� In some cases, logically splitting the table horizontally (that is, performance is 
required to be faster for some particular rows inside a table regular 
disk-based performance is good for others) is required. This task can be done 
by creating a copy of the table with performance critical rows in a 
main-memory table and leaving the rest to disk-based tables. Changes on the 
application side are required to handle two tables. Similar to vertical splitting, 
these changes can be made easier by views.

4.5.3  Data model design for solidDB UC configurations

From a data model perspective, designing the data model to a Universal Cache 
installation is a problem that has some similarity to defining a data model to be 
used in solidDB hybrid installation. Similarities are based on the following items:

� In both cases, similar queries benefit from being executed by faster 
algorithms. These can be either inside main-memory tables, inside hybrid 
solidDB installation, or by main memory algorithms in the front-end database 
in solid UC installation.

� In both cases, the queries that benefit are similar in nature.

� In both cases, there is a hard upper limit, which is the memory capacity for the 
data that can be stored to main-memory tables.

Generally, picking some tables to be cached, as would be picked for 
main-memory tables from IBM solidDB disk-based stand-alone installation, can 
be a good first approximation. 

Although picking the right tables for the front-end application is based on the 
same fundaments, the process is substantially more tedious to execute because 
the front-end and back-end databases are two separate databases. 
94 IBM solidDB: Delivering Data with Extreme Speed



As a result, note the following information:

� Creating applications that would automatically run on both databases might 
not be a trivial effort, based on the premise that potentially incompatible SQL 
must process two connections, transactional challenges, and other issues 
related to creating an application based on Universal Cache.

� In running the iterative tests for finding the right tables, the effort and time 
required for each iteration might be considerably bigger.

� The application behavior is expected to change based on changes in table 
location policies.

� Queries that are supposed to join data between the front-end and back-end 
databases will not work.

� A number of table selections that would be practical and available for 
in-memory tables in a IBM solidDB stand-alone installation are not feasible as 
cached tables in a solidDB Universal Cache installation.

The problems are considerably bigger when doing the effort for a system that 
was originally not designed to host a UC database because of potential 
unexpected compromises on transactionality and visibility of two database 
connections.

Splitting individual tables vertically or horizontally to front-end and back-end 
sections is conceptually possible with Universal Cache installations also. 
Masking the split in a database view, however, is not possible. Therefore, the 
easiest approach is to route all the queries that need to access the back-end 
segment of the data to the back-end database only, either by the SQL 
pass-through feature or directly.
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4.6  Data migration

Real production database systems are seldom isolated systems without 
interfaces to other database systems. Interfaces for both reading the data from 
outside world or writing the data to other systems might be required either in the 
initial setup of a system, on regular basis with sparse intervals or on an almost 
continuous basis.

A set of typical data migration options are illustrated in Figure 4-8.

Figure 4-8   Typical data migration options with external database systems

For data transfer between separate databases, IBM solidDB provides the 
following capabilities: 

� CDC replication provided as part of the Universal Cache product provides a 
subscription-based mechanism to enable initial data synchronization of any 
table configured to be part of a subscription and provide a mechanism for 
continuous near real-time synchronization of table data. This mechanism is 
available with all databases supported by CDC, such as DB2, IDS, Oracle, 
Sybase, and SQL Server.

� IBM solidDB has a set of simple ASCII-based export and import utilities to 
create ascii files on data content of individual tables and load them to a 
solidDB database. The ASCII files can be used in interfacing with other 
database servers.

A

B

Log

Triggers

A

B

C
CDC

Log or trigger-based
continuous replication

CDC Initial Load

Export/Import

Tailored App
96 IBM solidDB: Delivering Data with Extreme Speed



� In certain cases with specific requirements for timeliness and transactionality 
of the data interface, the most practical approach is to design an interface 
application for reading the data from one database and writing it to the other. 
The interface application can be based on several mechanisms, such as the 
following mechanisms:

– Running regular selects on the source database and write operations on 
the target database

– Waiting for triggers to fire on the source database upon write operations, 
receive notifications and write the operations on the target database.

– Using an API to access database transaction log and write the log entries 
to another database. In IBM solidDB this mechanism is possible through 
read operations in virtual table SYS_LOG.

Additional mechanisms exist for data transfers between IBM solidDB instances, 
such as copying the entire database file either by backup or a HotStandby 
netcopy operation or by using IBM solidDB Advanced replication for 
subscription-based data transfer between databases. However, discussion of 
these mechanisms are outside the scope of the chapter.

Choosing the right migration mechanism depends on several criteria:

� One-time operation versus a regular or continuous basis operation

For one-time operations, the simplicity of implementation is crucial for 
avoiding costs. Performance and recoverability have usually limited 
importance in those cases. Some clients have decided to use CDC only for 
initial data load, without the need for continuous synchronization. Transferring 
individual tables through ASCII-based import and export tools is simple, but 
the complexity and vulnerability to manual errors increases when the number 
of tables increases. Implementing a specialized application is usually too 
costly for one-time operations.

For continuous operations, that need to migrate data on a near real-time 
basis, the only practical options are CDC-based replication or specialized 
interface application based on triggers or Log API.

� Data volumes and performance criteria

For high data volumes or situations where the data must be quickly 
transferred between databases, CDC-based solutions are too slow because 
configuring them to work on parallel threads is not possible. It is possible to 
run parallel ASCII-based import and export tasks. Also, implementing a 
specialized application can enable optimization for exact requirements.
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� Need for recoverability during data transfer

Often having relaxed requirements for the data durability during data transfer 
is possible. This is particularly true in the case of initial data loads, when the 
entire task can be re-executed from the beginning. The relaxed requirements, 
such as running the target system without transactional logging, can help in 
speeding up all import mechanisms.

� Need for transactionality

In some cases, transactionality for migrated data is a must requirement. 
Usually, this means that the data arriving at the target system is expected to 
follow the transaction boundaries as they were when the data was originally 
written to the source system. Generally, this requirement is impossible to 
follow with table-based mechanism such as import or export. CDC-based 
replication and tailored interface applications running on triggers or Log API 
can enable transactional data migration.

� Simplicity of implementation and deployment

The simplest mechanisms are ASCII-based export and import tools and 
CDC-based replication, assuming CDC is already installed.

� Need to process data migration

In cases where table structures in source and target databases are not 
completely similar, some data processing is required for converting the data 
to fit the table structure of the target database. This task often requires 
implementing a specialized application to some level of the architecture or the 
clever use of views in the target database. The following list describes typical 
ways for doing the conversion:

– Define a set of views in the source database to match the table structure 
of the target database. Export the data in views and run a regular import.

– Write a specialized application that runs selects in the source database 
and populates the target database accordingly.

– Create a set of working tables in the target database that follow the table 
definitions in source database and transfer the data in the most applicable 
method. Implement a specialized application that reads the working tables 
to populate the target tables. This option is logically similar to the previous 
option, but the application can be implemented in procedure language and 
can be made fully transactional.
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4.7  Administration

When deploying a production system, plan for several policies regarding system 
administration. Requirements for administration policies might vary depending on 
system size, value, mission criticality, recoverability and other factors. Generally, 
the administration plans should cover at least the following system aspects:

� Regular health monitoring
� Recovery plan for expected failures and disasters
� Upgrade plan for expected hardware and software upgrades

This section describes the capabilities that are provided by IBM solidDB for all 
three aspects and describe practical solutions that have been used with solidDB 
in real production systems.

4.7.1  Regular administration operations

For production database systems, there are almost always some planned regular 
administrative operations that must be completed on a regular basis. Because of 
solidDB’s history in the original equipment manufacturer (OEM) market where 
database administration must be automated, most of these operations take place 
automatically without configuration or administration intervention. Optimizer 
statistics collection and rebuilding of indexes belong to this group.

For persistent database systems, backups are an operation that must be 
configured to take place at appropriate times. Also, successful completion of 
backup needs to be validated.

4.7.2  Information to collect

For validating the health of a database system, be sure to regularly collect a 
number of measurement values of system behavior. Failures and disasters can 
be prevented by reacting to abnormal or alarming values before the disaster 
actually occurs. 

Table 4-1 on page 100 lists the typical measurable values to systematically 
monitor to detect the system health. For capacity type values, a hard limit usually 
exists, which cannot be exceeded, such as running out of disk space or memory. 
If this hard limit is exceeded, the server is expected to crash. Be sure to have a 
mechanism to detect the capacity growth and react either automatically, 
semi-automatically, or manually.

Sporadic or continuous increases or decreases in load intensity values might be 
expected or unexpected, and caused by undetected problems elsewhere in 
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system. Abnormal peaks or growth trends must be detected and reacted to. 
Because there is no obvious limit for acceptable or healthy values, similar to disk 
space limits, the typical approach is to collect and monitor the values, and detect 
anomalies either automatically or by visual monitoring.

Table 4-1   Measurable values for monitoring

In addition to collecting numerical values of system behavior, systematic 
collection of other information, such as successful completion of backups, 
unexpected error messages, HotStandby role changes, abnormal amount of 
failed login attempts, and regular validation of database file consistency, are 
often considered necessary. The solmsg.out and solerror.out plain language 
files contain information about the phenomena. Collecting the files (possibly with 
proper filtering) can enable detection of the phenomena. Validating the file 
consistency is possible with the -x testindex and -x testblocks command file 
options.

4.7.3  Procedures to plan in advance

For a system expected to run in production for longer periods of time, many types 
of upgrades are expected to take place during the life cycle of the system. To be 
able to execute these upgrades smoothly and successfully and without excessive 
interference with production use, the operations need to be planned in advance. 

Category What to monitor Monitoring technique

Capacity

Disk Usage Database file size
Database log file size
Free disk space

pmon ‘DB size’
pmon ‘DB free size’
OS level commands

Memory footprint SolidDB memory footprint pmon ‘Mem size’

Load Intensity

Database intensity SQL Operations
Table level operations

pmon ‘SQL execute’
pmon ‘DBE insert’
pmon ‘DBE delete’
pmon ‘DBE update’

Disk usage intensity I/O load caused by 
database server

OS level commands

CPU usage intensity CPU load caused by 
database server

OS level commands
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In addition to preparing for various types of upgrades during the life cycle of a 
system, you must prepare for types of failures in the system to avoid down time 
or an excessive amount of down time in the system. 

Upgrades (especially in-service upgrades) and fault tolerance are both fields of 
science by their own rights. This section describes the basic techniques, required 
and enabled by the IBM solidDB product, to manage several regular upgrade and 
failure scenarios: 

The upgrade scenarios that we describe are as follows:

� SolidDB version upgrade
� Hardware upgrade
� Application upgrades including schema upgrade
� CDC upgrades
� Architecture upgrades, moving from non-HotStandby to HotStandby 

The failure scenarios that we describe are as follows:

� Hardware failures causing database failures
� Software failures causing database failures
� Other failures

SolidDB version upgrade
As a minimum, upgrading from one IBM solidDB version to another involves 
shutting down the server, replacing the server executable in the appropriate 
directory, and restarting. The server versions are certified to be able to 
automatically open database files created by older versions of the product, 
occasionally needing a specific -x convert startup option. This way is certified to 
work between two major version levels. After a database has been converted to a 
newer version, opening with an older version is no longer possible. The solidDB 
HotStandby feature can facilitate solidDB version upgrades without system 
downtime through the following process:

1. Switch the role of the server to be upgraded to Secondary.

2. Shut down the secondary server process. The application continues to run on 
primary server.

3. Upgrade solidDB executable version to the new one at the server that was 
just shut down.

4. Restart the upgraded server.

Note: only an upgrade through one major version is certified to work.
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5. Connect the server with the primary either with HSB CONNECT command or 
with HSB NETCOPY sequence if the servers were disconnected for a long 
period of time.

6. Repeat the process with the other server.

Hardware upgrade
Upgrading the hardware solidDB process involves getting the server executable, 
database file (or files), configuration file, and license file to appropriate 
directories in the new hardware, and restarting the system. In environments not 
having HotStandby in place, this process usually consists of shutting down the 
server and either copying the files to a new location or simply moving the disk. 
For HotStandby environments, hardware upgrade is possible without system 
downtime with a process that closely resembles solidDB version upgrade. The 
process is as follows:

1. Switch the role of the server to be upgraded to Secondary.

2. Shut solidDB process at the secondary server machine. The application 
continues to run on primary server.

3. Move the database file (or files) of the server down to the new hardware. The 
server executable, and configuration and license file must be in place also but 
they might have been moved before.

4. Restart the upgraded server machine and start solidDB process at the 
upgraded server.

5. Connect the server with the primary either with HSB CONNECT command or 
with HSB NETCOPY sequence if the servers were disconnected for a long 
period of time.

6. Repeat the process with the other server.

Application upgrades including schema upgrade
Most real production applications are built assuming that application can be 
upgraded during the life of the database. From the database server’s 
perspective, this way usually involves changing the application software version. 
In a simple case, without schema change, the old version of the application is 
simply shut down and a new one is started. To avoid the time needed for 
application shutdown and restart, the database sets no limitation for new and old 
versions of the application to be concurrently connected to the database. 
Application changes without a database schema upgrade can be considered 
trivial from a database perspective. 
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Online application upgrades requiring changes in database schema are more 
complicated. To do this process successfully, the operation must already be 
considered in the design phase of the application. Similar to most other 
databases, IBM solidDB offers the following features: 

� Discourages against using SELECT * command in the application. When the 
column structure changes, so does the result set.

� Enables adding and removing columns by the ALTER TABLE statement. 
Adding a column is potentially a complex operation if a default value needs to 
be populated to a large number of rows.

� Provides views and stored procedures that can be used as tools to hide the 
database structure from the application. By using these tools it might be 
possible to make some schema upgrades totally invisible to the application.

For a hybrid database installation (a schema upgrade that involves a disk-based 
table becoming a main-memory table or vice versa) doing the operation with 
ALTER TABLE is only possible for tables without data. For tables with data, the 
operation must be done in several steps, as follows (which moves a disk-based 
table called MY_TABLE, to main-memory):

1. Create a copy of the disk-based table with similar columns:

CREATE MY_TABLE_COPY ... STORE MEMORY

2. Copy the data from original table:

INSERT INTO COPY MY_TABLE_COPY VALUES (SELECT * FROM MY_TABLE)

3. Drop old table:

DROP TABLE MY_TABLE

4. Rename new table:

ALTER TABLE MY_TABLE_COPY TABLE_NAME MY_TABLE;

Observe that foreign key constraints referring to MY_TABLE in other tables might 
have to be dropped before the process and re-created after the process. For 
larger tables, consider the time required. The time needed is directly proportional 
to the number of rows. The speed of mass insertion to the same table on the 
same hardware and database server configuration provides a rough estimate of 
the table upgrade speed.

SolidDB Universal Cache does not directly support schema change replication. 
If DDL changes are required, then any associated subscriptions must be 
stopped, and both the source and target tables updated (for example, by running 
ALTER TABLE at both databases). Then, the table mappings in Management 
Console must be updated for both the source and target tables (by right-clicking 
the table in the Table Mappings view). The subscription must then be remapped 
(again by right-clicking in the Table Mappings view in Management Console). 
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Finally, the subscription can be restarted. The best approach is to explicitly start 
by doing a REFRESH operation to ensure that the contents of Source and Target 
tables are up-to-date. Mirroring can then be started (if needed).

CDC upgrades
If Change Data Capture (CDC) has already been installed and the replication is 
running, an upgrade of CDC can be installed on top of an existing one CDC. 
Uninstallation is not necessary because the upgrade can occur on an installed 
system. That said, a good approach is to stop the CDC components before 
upgrading. When the upgrade is executed, you are asked whether to upgrade the 
existing installation. If you choose to upgrade the existing installation, all 
configuration settings are preserved.

Architecture upgrades 
Architecture upgrades with solidDB stand-alone products are similar to hardware 
upgrade operations in every respect with the exception of requiring a separate 
solidDB executable to run on new architecture in place. The solidDB database 
files and transaction log files are binary files with binary compatibility on all 
platforms supported by the product. An ASCII-based configuration file might 
require some environment-specific changes, such as exact directory paths in the 
new environment.

Solid HotStandby technology can be used to enable an architecture upgrade 
similar to what “Hardware upgrade” on page 102 describes.

Upgrade from a non-HotStandby solidDB installation to a HotStandby-based 
installation is a relatively simple operation, which includes the following steps:

1. Installation of second machine, with a server executable, and license file in 
place.

2. Configuration of the two servers to be HotStandby-enabled and aware of each 
other.

3. Running the HSB SET PRIMARY alone and HSB NETCOPY commands.

4. Waiting for the old database to be copied to the new server.

5. Running the HSB CONNECT command. 

solidDB HotStandby is transparent to the application, so no application changes 
are required.

Hardware failures causing database failures
The solidDB HotStandby feature provides a mechanism to prevent committed 
data from being lost in the case of a single hardware failure. If the machine (or a 
crucial component in the machine, such as hard drive or network card) that is 
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running the primary database fails, a secondary database has all the data 
already running and available for queries. All this is automatic and addressed in 
Chapter 5, “IBM solidDB high availability” on page 109. 

When designing and configuring a HotStandby environment, consider the 
following information:

� What kind of high availability mechanism is used (High Availability Controller, 
Watchdog, other, none)?

� Are the applications expected to fail at the same time with the database? Can 
the applications fail over seamlessly?

� How will the hardware failure be automatically detected?

� Is the application allowed to continue without changes when running in 
failover mode?

For environments without HotStandby, IBM solidDB can survive some hardware 
failures without loss of data by restoring a database backup. If there are three 
separate physical hard drives, configuring separate drives for database files, 
transaction log files, and backup files, loss of any single disk drive can be 
tolerated without loss of committed transactions. Restoration of the database 
might involve manual work in moving the files to the replacement environment 
and starting the process, but no loss of data is implied. A separate plan for the 
recovery process is suggested for production systems.

Disk failures can cause the database file or transaction log file to be physically 
corrupted. With in-memory tables, the corruption usually prevents the server 
from starting; corruption in the disk-based tables is detected only when the 
corrupted disk block is read from the disk. 

Software failures causing database failures
It is possible for the server process to go down without a hardware failure. Typical 
reasons might be that the operating system is out of resources (memory, file 
handles, other), an unhandled signal or deliberate process kill, or other problem.

The potential recovery processes can be as follows:

1. Restart the database process. If a problem exists with OS resources, they 
might not have been released when the database stopped, and so a restart 
might fail.

2. Boot the server and restart the database process. If another process was 
using all the OS resources, these resources might have been released when 
OS was booted.

Although restarting the database or booting the server machine might enable 
restarting the database process, the reason for the unexpected database failure 
 Chapter 4. Deploying solidDB and Universal Cache 105



must always be investigated. Collecting diagnostic information about operating 
system and database level before the failure can be immensely helpful in this 
process.

Other failures 
Preparing for all types of failures outside of full database failure, is part of good 
systems design. Although full discussion of the topic is beyond the scope of this 
book, we briefly list failure types that you must be prepared for:

� Database-related application errors

Errors in application code or failures in administration tasks (such as schema 
upgrades having failed) can lead to database error codes visible at the 
application level. All unexpected errors must be captured and logged for 
further analysis.

� Replication failures

When replication fails, the databases are fully responsive and appear healthy 
on all database-level diagnostics. However, the data between front-end and 
back-end databases are out of sync and can lead to severe application 
problems. Replication must be monitored. 

� Database overload or long response times 

In certain systems, long response times or decreased throughput are as 
serious as database failures. To manage the problems, monitor both 
throughput and response times. IBM solidDB’s diagnostic features (described 
in 4.7.2, “Information to collect” on page 99) provide good tools for throughput 
monitoring. Monitoring response time is most practical to implement on an 
application level.

4.7.4  Automation of administration by scripts

In IBM solidDB, all administrative commands can be performed by solidDB SQL 
Extensions through the ADMIN COMMAND API. These SQL Extensions can be 
executed in several ways:

� Manually from solsql or another SQL Editor

� Part of a script run by solsql or solcon

The solcon tool is a subset of solsql in the sense of being able to execute 
only ADMIN COMMANDs. If only solcon is deployed at production site, the 
administrators are unable to accidentally access the data.

� As SQL statements executed by a specific administration application through 
ODBC or JDBC
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Typically, ADMIN COMMAND returns a regular SQL result set that can be viewed 
or processed by the application, just as regular data. Some admin commands, 
however, create a result file in the working directory of the server. For regular 
monitoring purposes, these files must be collected. The common monitoring 
commands that create the output to file are SQL Tracing (ADMIN COMMAND 
mon on), systematic collection of pmon counters (ADMIN COMMAND pmon diff) 
and detailed server variable dump (ADMIN COMMAND report).
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Chapter 5. IBM solidDB high availability

IBM solidDB high availability (HA) database is presented in this chapter. We 
describe the principles of HA, illustrate how the solidDB HA solution works, and 
how it can be used to its full potential. 

Although the requirements for high level of HA are typical, for example in 
carrier-grade telecommunication networks and systems, IBM solidDB and its 
HotStandby technology (solidDB HSB) is used also in many other areas, such as 
railway systems, airplanes, defense applications, TV broadcasting, banking and 
trading applications, and so on, all the way to web applications and Point-of-Sale 
systems. 

Any system preferring to guarantee its uptime in case of failures should consider 
making the system more redundant, and more tolerant against hardware and 
software problems, and also against human errors. In short, highly available.

When thinking HA, it is important to recognize that HA is more than a replication 
solution. HA thinking must include, among many other things, how to handle HA 
management and how to execute automated recovery after failure situations. 

5
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5.1  High availability (HA) in databases

The goal of HA systems is to make system failures tolerable. The extent failures 
are tolerable is specified with the availability measure A that is equal to the ratio 
of the time a service is operational to the total time the service is supposed to be 
operational. Availability may be derived from the maximum duration of an outage 
(equal to mean time to repair, MTTR) and the frequency of outages (represented 
with mean time between failures, MTBF), by using the following formula:

The value of A in the formula can be measured over a longer time or be 
calculated based on some estimates. The higher the value of A, the better is the 
availability of a system. When the required value of A is close to 1, the value of 
MTTR becomes small. For example, for A being 0.99999 (referred to as the five 9’s 
availability), the total yearly MTTR is approximately 5 minutes. In a six 9’s system, 
it is close to 30 seconds. Given the fact that there can be more than one failure 
per year (that depending on the reliability of the system) the time left to a single 
repair is a fraction of the yearly MTTR. It is not difficult to guess that the action of 
repair cannot be left to humans in systems aspiring to more 9’s than four. It has to 
be performed by an automated system. An HA system is synonymous with a 
system having components designated to detect failures and deal with them 
automatically.

To deal with failures, an HA system embodies redundancy both in hardware and 
software. Redundant system parts are used to mask the failures. Various 
redundancy models can be applied. In the simplest redundancy model, called 2N, 
or hot standby, the two units, active and standby, make up a mated pair. If a 
failure occurs, the failed active unit (hardware or software) is quickly replaced 
with a corresponding standby unit. That operation is called a failover. The 
purpose of failover is to maintain the required availability level, in the presence of 
failures. Other possible redundancy models are, for example, N+1 (several active 
and one standby unit) and N*Active whereby all units are active, and the failure is 
masked by redistributing the load over the surviving units.

The availability of the database services is maintained by using similar 
approaches. In this chapter, the focus is on the principles and usage of solidDB 
hot-standby DBMS. 

A
MTBF

MTBF + MTTR
=
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5.2  IBM solidDB HotStandby

IBM solidDB HotStandby (HSB) is an HA solution offered with solidDB. The 
normal solidDB product package image contains all the necessary components 
needed to enact the HA configuration. For example, the same server binary is 
used for both stand-alone and HotStandby operation modes. The latter one is 
enabled with configuration parameters. There are also other HA components that 
are described in this section.

5.2.1  Architecture

In solidDB HSB, a stream of transactions is continuously sent from the Primary 
(active) server to the Secondary (standby) server, by way of a replication 
protocol, as depicted in Figure 5-1. The connection between the servers is called 
an HSB link.

Figure 5-1   Hot-standby database

Figure 5-1 represents a shared-nothing HA DBMS. In a shared-nothing system, 
all the components of a HA DBMS are redundant, including the persistent data 
storage. Note that, even in the case of an in-memory database, there is 
persistent storage, allowing for recovery of the database. In a shared-nothing 
system, you are also protected against media failures. On the contrary, in a 
shared-disk (or shared-storage) system, the assumption is that the common 
storage does not ever fail.

What differentiates an HA DBMS from one that is non-HA is the existence of an 
HA state machine, in the database server. The HA state machine makes the 
server aware of the HA state. The importance of the HA state machine is in 
preserving the database consistency. For example, when the server is in the 
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Secondary state, receiving the transaction stream from the Primary, updates to 
the Secondary database will be disabled.

If any failure on the Primary site occurs, the failover takes place as depicted in 
Figure 5-2.

Figure 5-2   Failover

In a failover, two events happen:

1. The Secondary server takes over as a new Primary.
2. The applications are reconnected to the new Primary.

The way this happens is described in the subsequent sections.

5.2.2  State behavior of solidDB HSB

IBM solidDB implements an internal HA state machine to allow consistent 
approach to well defined HA Management. Thanks to clearly defined states and 
transitions from one state to another, HA Management can be built reliably, for 
the purposes of health monitoring, failure handing and recovery actions. 

The HA state machine of solidDB HSB is illustrated with a simplified state 
diagram, as shown in Figure 5-3 on page 113. The operational hot-standby 
states are shown on the right side of the diagram: PRIMARY ACTIVE (active) 
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and SECONDARY ACTIVE (standby). Other states come into the picture when 
taking care of various failure, startup, and in reconfiguration scenarios. 

Figure 5-3   State transition diagram of solidDB HSB

The state behavior is externalized in the form of commands for invoking state 
transition and querying the state. The commands are available to applications (or 
a dedicated HA controller) as extensions of the SQL language (for a full 
description of the states and transitions, see the IBM solidDB: High Availability 
User Guide, SC23-9873). The transitions shown in bold are executed 
autonomously by the database server process. They have to do with falling back 
to a disconnected state (that is, PRIMARY ALONE or SECONDARY ALONE), 
both on the Primary and Secondary side, if a communication failure occurs 
between Primary and Secondary. This behavior is possible thanks to a built-in 
heartbeat function. All other transitions are invoked with administration 
commands.

Thus, the crucial failover transition is invoked by an external entity, such as a 
dedicated HA controller or a general-purpose HA framework. It is performed with 
a single solidDB admin command, hsb set primary alone, that may be issued 
in both the SECONDARY ACTIVE and SECONDARY ALONE state (because 
the Secondary server might have fallen back to the ALONE state already). The 
resulting state is PRIMARY ALONE, that is HA-aware in the sense that it 
involves collecting committed transactions to be delivered later to the Secondary, 
upon reconnect and the resulting catchup (that is, resynchronizing the database 
state). 

If a failure occurs, the situation we are dealing with is such that no reconnection 
is likely to happen in the near future; there is a possibility to move to a pure 
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STANDALONE state that has no HA-awareness. In that case, future actions may 
include restarting a Secondary database server without a database, and sending 
a database over the network (referred to as netcopy). For this purpose, a startup 
state OFFLINE exists. Its only purpose is to receive the database with a netcopy. 
After the successful netcopy, the state SECONDARY ALONE is reached, and the 
admin command connect brings both servers back into the operational 
hot-standby state. However, if a secondary database already exists, the startup 
state is SECONDARY ALONE.

The auxiliary state PRIMARY UNCERTAIN is meant for reliably dealing with 
Secondary failures. If the internal heartbeat alerts the Primary server that the 
communication with the Secondary has failed, and there are transaction commits 
that have been sent but not acknowledged by the Secondary, the resulting state 
is PRIMARY UNCERTAIN. In this state, the outstanding commits are blocked 
until resolved. The resolution may happen automatically when the Secondary 
becomes reconnected. Alternatively, if the Secondary is assumed to become 
defunct for a longer period of time, command-invoked transitions are possible, 
that is, to PRIMARY ALONE whereby the outstanding commits are accepted. 

In addition to the transitions dealing with failures, a role switch may be performed 
for maintenance purposes. It is invoked with dedicated admin commands hsb 
switch [to] primary and hsb switch [to] secondary. That operation is called a 
switchover.

5.2.3  solidDB HSB replication and transaction logging

The purpose of the HSB replication protocol is to carry the transaction results 
safely from the Primary and Secondary, over the HSB link. When delivered, the 
data serves the purposes of allowing for the following events:

� Failover, preserving the database state
� Read-only load, to be applied to the Secondary

The replication protocol “lives” in a certain symbiosis with the local transaction 
logging. 

Transaction Logging
Both the replication and transaction logging move the committed transactions out 
of the volatile memory, as depicted in Figure 5-4 on page 115. 

Note: The PRIMARY UNCERTAIN state is not mandatory, it may be 
by-passed with a configuration parameter setting.
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The Primary DB and Secondary DB represent persistent storage of the data. 
The Primary DB is a live database updated by the transactions running on the 
Active server. The Secondary DB is kept up-to-date by way of a replication 
protocol. The Secondary DB may be subjected to read-only load, if necessary. 
Logger is a thread that writes the transaction log (Log), which is one or more 
persistent files to store the effects of transactions as they are executed in the 
server. The Log is instrumental in making it possible to perform a startup 
database recovery. Startup recovery happens when any server is started as a 
process. It is assumed that a checkpointed database file and log files exist. A 
checkpointed database file is a materialization of a consistent snapshot of a 
database state stored in a file. The state typically represent some point in the 
past. In solidDB, the database file always contains a valid checkpoint. 

Figure 5-4   Replication and logging in solidDB HSB

In the recovery process, the Log is used to bring the database to the latest 
consistent state, by performing the following actions:

1. Removing the effects of uncommitted transactions

2. Re-executing committed transactions that have not been checkpointed to the 
database.

If we deal with a stand-alone database system (not hot standby), the recovery 
process preserves the atomicity and durability characteristics of the database 
over system failures and shut downs:

� Atomicity means that no partial transaction results are persistently stored in 
the database (nor visible to other transactions) 

� Durability means that a transaction, when committed, will never be lost, even 
if a failure immediately follows the commit.

In enterprise databases, the standard level of durability support is called 
strict durability. It requires that the commit record of a transaction is written 
synchronously to the persistent medium (disk) before the commit call is 
returned to the application. The technique is often referred to as write-ahead 
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logging (WAL). WAL processing is resource-consuming and it often becomes a 
bottleneck in the system. Therefore, when the durability requirement can be 
relaxed, it is done. Especially, in the telecommunication environment, in some 
applications such as call setup and session initiation, a service request is 
occasionally allowed to fail (and be lost) if the probability is not high. In such a 
case, relaxed durability may be applied whereby the log is written 
asynchronously, which means that the commit call can be returned without the 
need to wait for the disk write. The result is significant improvement in both the 
system throughput and response time. 

Replication
In an HSB database, transactions are also sent to the Secondary server by way 
of a replication protocol. To preserve the database consistency in the presence of 
failovers, the replication protocol is built much on the same principles as physical 
log writing. That is, the transaction order is preserved, and commit records 
demarcate committed transactions. If a failover happens, the Standby server 
performs a similar database recovery as though a transaction log was used. The 
uncommitted transactions are removed and the committed ones are queued for 
execution.

Similar to log writing, the replication protocol may be asynchronous or 
synchronous. To picture that, we use the concept of a safeness level where 
1-safe denotes an asynchronous protocol and 2-safe denotes a synchronous 
one. The two safeness levels are illustrated in Figure 5-5.

Figure 5-5   Illustration of the 1-safe and 2-safe replication protocol
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You may see that the benefit of 1-safe replication is similar to that of relaxed 
durability. That is, the transaction response time is improved, and the throughput 
may be expected to be higher, too. On the other hand, with 2-safe replication, no 
committed transactions are lost upon failover. You might call this transaction 
characteristic standby-based strict durability, as opposed to log-based strict 
durability of a traditional DBMS. One immediate observation is that the log-based 
durability level has no effect on actual durability of transactions in the presence 
of failover. It is the standby-based durability that counts. The traditional log 
writing is relegated to the role of facilitating the database system recovery in the 
case of a total system failure. All other (more typical) failures are supposed to be 
taken care of by failovers. If a total system failure is unlikely (as builders of HA 
systems want to believe), a natural choice is to replace strict log-based durability 
with strict standby-based durability, which is the 2-safe protocol. Here, the gain is 
a faster log processing without really loosing strict durability (if only single failures 
are considered). 

Adaptive durability
To take the full advantage of the possibility to use the standby-based durability, 
the solidDB HA DBMS has an automated feature called adaptive durability 
(depicted in Figure 5-6). With adaptive durability, the Active server's log writing is 
automatically switched to strict if a node starts to operate without a standby. 
Otherwise, the Active server operates with relaxed durability. 

Figure 5-6   Adaptive durability
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The possibility to transfer the log writing responsibility from the disk to the 
network is tempting because, by a common perception, a message round-trip 
travel over a high-speed network might be almost an order of magnitude faster 
than writing synchronously to the disk. 

That perception was verified with a performance test. In the tests, both Primary 
and Secondary were dual CPU (Intel Xeon® E5410 2.33 GHz) systems each 
having a total of eight cores, two SATA disks and 16 GB of memory. The 
operating system was Linux RHEL 5.2. The load generator (TATP) was 
connected to the solidDB in-memory database by way of the shared memory 
access (SMA) driver library. The test used eight concurrent load generation 
threads.

With solidDB HSB running 2-safe protocol, the log-based durability was switched 
between strict and relaxed. The results are shown in Figure 5-7, for two 
read/write mix ratios being 80/20 and 20/80. The results were obtained with the 
Telecom Application Transaction Processing (TATP) Benchmark1.

Figure 5-7   Impact of logging synchrony on performance

Levels of 2-safe replication
In addition to the choice between 1-safe and 2-safe replication, 2-safe protocols 
can be implemented with various levels of involvement of the Secondary server 
in the processing of the commit message. 

1  http://tatpbenchmark.sourceforge.net
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The following 2-safe policy levels are defined:

� 2-safe received: the Standby server sends the response immediately upon 
receipt.

� 2-safe visible: the Standby server processes the transaction to the point that 
the results are externally visible (in-memory commit).

� 2-safe durable: the Standby process processes the transaction to the point 
that it is written to a persistent log (strictly durable commit).

The three policy levels are illustrated in Figure 5-8.

Figure 5-8   2-safe replication: policy levels

Of the three 2-safe policy levels, 2-safe received, is intuitively the fastest and 
2-safe durable the most reliable. In a system with 2-safe durable replication, the 
database can survive a total system crash and, additionally, a media failure on 
one of the nodes. This comes, however, at a cost of multiple synchrony in the 
system.

The 2-safe visible level is meant to increase the system utility by maintaining the 
same externally visible state at both the Active and Standby servers. Thus, if the 
transactions are run at both the Active and Standby servers (read-only 
transactions at Standby), they see the database states in the Primary DB and 
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Secondary DB as mutually snapshot-consistent. The cost of maintaining this 
consistency level involves waiting for the transaction execution in the Standby 
server, before acknowledging the commit message.

To summarize, the intuitive rules for choosing the best trade-off between 
performance and reliability are as follows:

� To protect against single failures, while allowing for some transactions to be 
lost on failover, use 1-safe replication with relaxed log-based durability.

� To protect against single failures, with no transactions lost on failover, use 
2-safe received replication with relaxed log-based durability.

� To protect against single failures, with no transactions lost on failover and a 
possibility to use the Primary and Secondary databases concurrently, use 
2-safe visible replication with relaxed log-based durability.

� To protect against total system failure (in addition to single-point failures), use 
any 2-safe protocol and strict log-based durability in the Active server.

� To protect against total system failure and a media failure, use 2-safe durable 
replication with strict log-based durability in both the Active and Standby 
servers.

Another worthwhile item to note is that a third dimension in assessing various 
replication protocols is the failover time. The further transactions are processed 
in the Standby server at the time of a failover, the faster the failover. The 
protocols may be ordered by the failover time, from the shortest to the longest, in 
the following way: 2-safe durable, 2-safe visible, 2-safe received, and 1-safe.

In the performance testing experiments, we study the effect of all the parameters 
(we listed) on the system performance. We take advantage of the fact the 
solidDB HSB has all the necessary controls, both in the form of configuration 
parameters and dynamic administrative commands.
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The performance results displaying the impact of the protocol synchrony on 
performance are shown in Figure 5-9.

Figure 5-9   Impact of protocol synchrony on performance

You can see that the more asynchronous is the protocol, the more performance 
that can be delivered.

You may tune the system to reflect the needed trade-off. In most cases, the 
default replication and logging settings reflected with Adaptive Durability using 
the 2-safe received protocol is the best match.

5.2.4  Uninterruptable system maintenance and rolling upgrades

To be able to run a database system for a longer period of time, there must be 
means to do necessary configuration changes, satisfy ad-hoc monitoring needs, 
and perform software updates without ever needing to shut down the system. 
These possibilities are available in solidDB.

Dynamic reconfiguration
A number of configuration parameters are defined in the configuration file, 
typically named solid.ini.

A need to change some of those parameters might appear because of changes 
in the application load or run environment. Many of solidDB configuration 
parameters can be changed online and immediately take effect. They are 
indicated with the access mode being RW, in the documentation. In particular, all 
crucial HSB configuration parameter are of that type. 
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Included is also a parameter telling what is the HSB connect string pointing to the 
mate node. By using the possibility to change that value, and the switchover 
capability, you can move the HSB processes, for example, to more powerful 
hardware, if needed. Assume that the current configuration includes the systems 
P1 and S1 serving as the Primary and Secondary nodes, respectively. Say, we 
have two other more powerful computers, P2 and S2 that we want to move the 
HSB operation to, in an uninterruptable way. The way to do that is as follows:

1. Disconnect the servers (P1 runs as Primary Alone).

2. Install solidDB on S2.

3. Move the Secondary working directories from S1 to S2 and update the 
configuration file.

4. Start solidDB at S2 (it starts as Secondary Alone).

5. Update the HSB connect string in P1 to point to S2.

6. Connect the servers (after the catchup is completed, P1 runs as Primary 
Active).

7. Switch the servers (S2 runs as Primary Active).

8. Disconnect the servers (S2 runs as Primary Alone).

9. Install solidDB on P2.

10.Move the solidDB working directories from P1 to P2.

11.Start solidDB at P2 (it starts as Secondary Alone).

12.Update the HSB connect string in S2 to point to P2.

13.Connect the servers (after the catchup is completed, S2 runs as Primary 
Active).

14.To arrive at a preferred configuration, switch the servers (P2 runs as Primary 
Active and S2 as Secondary Active).

These interactions with the solidDB servers are performed with admin 
commands. The sequence can also be automated with a scripts, or a program.

On-line monitoring
When a system is running for a longer time, non-anticipated monitoring needs 
may appear, having to do with performance tuning or problem tracking. In 
solidDB, various traces can be enabled and disabled dynamically, and one-time 
performance reports can be produced. For more information about performance, 
see Chapter 6, “Performance and troubleshooting” on page 147.
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Uninterruptable software updates (rolling upgrades)
In a continuously running system, an obvious need to upgrade the software to a 
new version might appear. In solidDB, that is possible with the capability of 
rolling upgrades. Similar to the case of online hardware reconfiguration, 
advantage is taken of the fact that the Secondary server can be shut down 
temporarily. Additionally, an important feature used here is the possibility of the 
Secondary server to run a newer solidDB version than that of the Primary server.

Briefly, a rolling upgrade of an HSB system to a newer software version is 
performed with the following sequence of steps. Assume there are two nodes, A 
and B, running originally the Primary and Secondary database servers, 
respectively, at a version level V1:

1. Node A runs a Primary Active database, node B runs Secondary Active.

2. Disconnect the servers (A runs now as Primary Alone), shutdown solidDB on 
node B.

3. Upgrade solidDB to a new version V2 on B.

4. Start solidDB at B (it starts as Secondary Alone).

5. Reconnect the servers (after catchup, A runs as Primary Active).

6. Force a failover to B (by killing A, or with an admin command -- now B runs as 
Primary Alone).

7. Upgrade solidDB to version V2 on A.

8. Start solidDB at A (it starts as Secondary Alone).

9. Reconnect the servers (B runs as Primary Active).

10.To arrive at the original configuration, switch the servers (A runs as Primary 
Active and B as Secondary Active).

Upgrading the ODBC and JDBC drivers can be done at any point in time by 
deploying the new library / JDBC jar file and restarting the application instance. If 
the database server and the client side are upgraded at different times, the 
database server should be upgraded first. 

Database schema changes can be done online also. These are (DDL) SQL 
statements, and should be executed against the Primary database. IBM solidDB 
replicates these SQL statements to the Secondary database, keeping the 
databases in sync also for these changes. Use proper planning for online 
schema changes to avoid any problems to applications using the database at the 
same time. Also, mass data migrations need to be planned, for example to avoid 
the effects of adding a column and populating a new value to a large-sized table 
in one transaction, because it can cause unexpected load peaks. 
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5.3  HA management in solidDB HSB

The primary role of any HA architecture is to maintain system availability in the 
presence of failures. In a hot-standby system such as solidDB HSB, a failure of 
the Primary process or Primary node is followed by a failover to the Secondary 
server. In executing a failover, a governing principle is that no single solidDB 
server can make that decision on its own because a single server does not have 
sufficient information for doing that. If the failover was the responsibility of a 
server, then, in the case of network partitioning (HSB link failure), the two servers 
might decide that each becomes a Primary Alone (a split-brain scenario). Dual 
Primaries are not allowed because there are no consistency-preserving methods 
to merge two databases having different histories into one Primary database. For 
this reason, the responsibility to decide about a failover, and execute it, is 
deployed within a component (or components) outside of the HSB servers. The 
functionality in question is called HA control. In this section, we introduce three 
ways to implement HA control in solidDB HSB.

5.3.1  HA control with a third-party HA framework

If solidDB becomes a part of a broader HA system, capacity to execute HA 
control might already be in that system. The necessary functionality can be a 
part of a cluster management software or other generalized HA management 
software that can be abstracted as an HA framework. In that case, solidDB is 
integrated with the rest of the HA system, such as depicted in Figure 5-10. 

Figure 5-10   Using and external HA framework
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An HA framework is typically a distributed software having an instance running 
on each node of the system. First, it is responsible for failure detection. Detecting 
hardware and operating system failures is unrelated to solidDB. Detecting 
solidDB process failures is implement by a heart beat method, possibly based on 
polling. If there is a failover, the HA framework commands all relevant 
components with state change primitives. If there is an operator interface, the 
operator commands are passed to system components also. The reporting of the 
component state travels the other way around. The tasks of integrating solidDB 
into such a system involves developing a solidDB adaptation (of scripts or 
interface calls) that translates the primitives of the HA framework to solidDB 
commands.

5.3.2  HA control with the watchdog sample

The solidDB product package has a sample program called Watchdog (in the 
HSB sample set) that implements a rudimentary HA control. Watchdog is used in 
a configuration such as the one shown in Figure 5-11.

Figure 5-11   Using the Watchdog sample program

Watchdog includes both the failure detection and failover logic. The former is 
based on time-outs of active heart beat requests. If the Primary does not 
respond, it is considered to have failed. This method is prone to false failures or 
of having too long a failure detection time, depending on the timeout settings. 
Another deficiency is that the Watchdog instance is not backed up in any way. 
Thus, the sample is not meant for production use as such. However, it can be 
used as an area for experimenting with solidDB HA commands.
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5.3.3  Using solidDB HA Controller (HAC)

A production-ready solution to solidDB-only HA control is called HA Controller 
(HAC). HAC binaries are distributed with the product. HAC is used in the form of 
two instances running on both the Primary and Secondary nodes, as shown in 
Figure 5-12.

Figure 5-12   Using solidDB HA Controller

Failure detection in HAC is based on solidDB events. A surviving server will notify 
HAC of the failure of the mate node or server. The event-based method is fast 
and allows for sub-second failovers. The failover logic guarantees an 
unambiguous failover decision in all failure cases other than HSB link failures. 
For a remedy to deal with those, see the information about External Reference 
Entity, in 5.3.4, “Preventing Dual Primaries and Split-Brain scenarios” on 
page 128.

HAC can also be configured to start and restart solidDB servers automatically. 

IBM Software Group  | Information Management Software | solidDB

Node A 

HA Admin
Node

GUI-based HA Manager

JDBC

HA Manager GUI

solidDB
HSB

Solid HSB 
Replication

solidDB HA Controller solidDB HA Controller

Primary Secondary

TM1 load
generator
Applications

Node B 
126 IBM solidDB: Delivering Data with Extreme Speed



In connection with HAC, a basic GUI-based administrator tool is available, called 
HA Manager (HAM), as shown in Figure 5-13.

Figure 5-13   HA Manager GUI

HAM is a Java-based, cross-platform tool where any number of instances can be 
active in a system. The GUI of HAM displays the HA state of the servers, the 
direction of replication, the state of the HSB link, and the state of HAC. 

The Automatic mode of HAC means that both failure detection and failover 
execution is enabled. The mode can be changed to Administrative whereby the 
failover execution is disabled. Additionally, the execution of HAC can suspended 
and resumed. The GUI controls included allow the administrator to perform 
server switchovers and change the HAC states.

The HAC binary is available in the HAC sample directory, in the product package.
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5.3.4  Preventing Dual Primaries and Split-Brain scenarios

A HAC configuration shown in Figure 5-12 on page 126 can be used only if the 
HSB link is assumed to be failure-free. That might well be the case in blade 
systems having backplane network wiring and redundant network interface 
controllers.

In all other cases, HAC should be configured to use a HSB link failure detection 
method called External Reference Entity (ERE). A configuration using ERE is 
shown in Figure 5-14.

Figure 5-14   HA Controller used with the External Reference Entity

ERE represents a system component having a network address. It is assumed 
that a device suitable for ERE function already exists in the system. Such a 
device can be, for example, a network switch that is capable of responding to 
ping requests (most are). Another possibility is to use any other computer node 
available in the system, for that purpose. ERE does not require any additional 
software instance to be installed in the device. A capability to respond to 
standard ping requests is sufficient.

Using an ERE configuration with HAC prevents both nodes to become a Primary 
(Alone) database at the same time, preventing from a split-brain scenario.

The ERE method works as follows:

� The HSB link consists of two sublinks: a and b. 

� When a failure occurs in any component included in the HSB link, at most one 
of the HACs can access ERE. In that case the solidDB server of that node will 
become the Primary server. For example, if the sublink a, in Figure 5-14, fails, 
the Node B becomes the Primary node, and HAC will switch the database to 
Secondary Alone mode on the node that cannot ping the ERE. 

� To enable the ERE method, it is enough to enter the network address of ERE 
into the HAC configuration file, hac.ini.
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5.4  Use of solidDB HSB in applications

In this section, we discuss how the applications use the underlying database pair. 
As examples, which database connect to, how the failures and failovers are seen 
by the application, and how to handle the failovers are typically in the error 
handling part of the application code. 

The way the application should connect to the IBM solidDB HotStandby 
database pair might vary depending on where the application resides (compared 
to the database it is using), and depending on the preferred level of automation in 
failover situations. 

In the classic sense, when an application uses a database, it connects to one 
database, and uses that database for all the queries, reads, and writes. If that 
database becomes unavailable, the connection is broken and the application has 
to wait until it can reconnect again to the same database.

Now, with IBM solidDB HotStandby pair, there are two databases, both live and 
running, mirroring each other and having the same content. Therefore, the 
application has more options available, and more responsibilities of making sure 
that the service the application provides to its users is able to continue even if 
one of the database nodes fails. 

5.4.1  Location of applications in the system

In terms of where the applications run, in relation to the nodes where the 
database (or databases) run, two basic topologies exist.

In the first one, the application runs on a node separate from the database (or 
databases), as illustrated in Figure 5-15.

Figure 5-15   Application runs in a separate node from the databases
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With this topology, the application normally continues to run regardless if one of 
the database nodes fail, and regardless of the reason for that failure (for 
example, the database, the underlying hardware or operating environment, or the 
network between the application node and the database node). The application 
may get an error message, and is unable to continue using the failed database. 
However, the application continues to run, and it can decide how to handle the 
error and what to do next. In the following sections, we describe in more detail 
how this failover handling can be resolved. 

In the second topology, the application runs in the same node as the database, 
as illustrated in Figure 5-16.

Figure 5-16   Application runs on the same node as the database

In this case, a node failure may, and most likely will, result in both a database and 
application failure, especially if the failure is because of a severe hardware 
problem. Therefore, the application must also be made redundant to ensure 
continuous application/service availability. Typically, with this topology, the entire 
node and all the related components and services are failed over to the 
standby/secondary node. If this is the case, the application may not need to be 
aware of the second database. It will always be using only one database, the 
local one. 

More granular approaches can be used also, where each system component can 
have its own redundancy policies and individual components can be failed over 
separately, but they typically require more sophisticated high availability 
management and component monitoring. 
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As an example, illustrated in Figure 5-17, both applications can be active and 
using either database, or both at the same time, making full use of the available 
hardware and database resources. In the case of a component failure, such as a 
database software failure, both applications can still continue and use the 
remaining database. 

Figure 5-17   Two-node service cluster

5.4.2  Failover transparency

With topologies where the application should survive a database failure, the 
application can use the optional transparent failover functionality built into the 
solidDB JDBC and ODBC drivers. 

When the built-in transparent failover mechanism is used, the application takes 
one logical connection to the database, but gives two (or more) connection 
strings (or URLs) to the solidDB driver. The solidDB JDBC/ODBC driver then 
chooses automatically the then-current HotStandby Primary database, and uses 
a physical connection to that database for query execution. The logic for the 
database selection is built into the driver. 

If the then-current Primary database (or database node) fails, the physical 
connection is broken, and all pending query and transaction data of the last, 
ongoing transaction, is lost. To ease the recovery from the situation, and to 
enable the application to continue after the failure, the solidDB JDBC/ODBC 
drivers contain the following functionality:

1. The driver returns a 25216 native error code to the last SQL execution, to 
which the application should respond with a rollback request, as part of its 
error handling sequence.

2. As part of the rollback execution, the solidDB driver then finds, automatically, 
the new HotStandby Primary database.
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 Chapter 5. IBM solidDB high availability 131



3. After the rollback call returns, the application can continue to use the same 
logical connection handle (without a need to re-connect to the database); and 
internally the driver now uses a new physical connection to the new Primary 
database.

4. The application can ask the driver to additionally preserve several connection 
level attributes, such as the used database catalog, schema, and timeout 
settings, and also all the prepared statements. This way the application can 
continue (after the rollback) directly with a re-execute of the last transaction, 
without having to re-prepare all SQL statements and without having to set any 
specific connection attributes. 

5. To speed up the failover handling, the solidDB JDBC/ODBC driver is also 
(internally) listening to HotStandby system events from the then-current 
Secondary database. The built-in event listening mechanism notifies the 
driver right away about a database failure, making the reaction time shorter. 

To activate the IBM solidDB transparent failover functionality, the application must 
set the TF_LEVEL connection attribute (with ODBC) at the time, taking the 
database connection, or set a database connection property (with JDBC) called 
SOLID_TF_LEVEL.

The value NONE means no transparent failure handling by the JDBC/ODBC 
driver (default). The value CONNECTION automates the reconnection to the new 
Primary database, and the value SESSION automates the session (on top of the 
reconnect) and preserves the connection level attributes and the prepared 
statements. 

If the transparent failover functionality is not used, the application’s error handling 
code must implement many parts of the reconnection to the database, verifying 
its hotstandby state and re-preparing the SQL statements. 

Each application connecting to the database can choose to use any of the 
available options. 

The IBM solidDB High Availability User Guide, SC23-9873, contains more details 
about the supported functionality, and also samples of the connection strings and 
URLs to use. The solidDB installation package contains sample C and Java 
program code for both ODBC and JDBC applications using the transparent 
failover handling. 
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5.4.3  Load balancing

In addition to the transparent failover built-in functionality, the solidDB 
JDBC/ODBC drivers also contain support for load balancing of the query 
execution. 

The basis for the load balancing is the fact that there are two (HotStandby) 
databases running at the same time, and the two databases are in sync 
regarding the content. Therefore, any read query will provide the same result 
regardless of whether it is executed in the Primary or the Secondary database. 

When the load balancing is activated, the JDBC/ODBC driver uses two physical 
connections, one to each database, and allocates the query load to the workload 
connection. The workload connection is selected based on query type (such as 
read or write), and the then-current load in the database servers. 

Several main principles in the solidDB HotStandby load balancing 
implementation are as follows:

� Read-only queries (at the read committed isolation level) can be executed in 
either database.

� Read queries needing higher isolation level (repeatable read, select for 
update) are executed in the Primary database.

� Write queries are executed in the Primary database.

� Read queries after any write operation within same transaction are executed 
in the Primary database (to ensure that updated rows are visible for 
subsequent reads).

� Internal read/write level consistency of the databases is ensured so that after 
a write transaction is committed, the secondary database is not used for 
reading from the same connection until the secondary database is up-to-date 
for that write. This way eliminates the possibility that if the 1-safe or 2-safe 
received HotStandby replication protocol is used, the next read transaction 
would not see committed data from the previous write transaction.

The selection of the workload connection is automated by IBM solidDB, and the 
load balancing is automatic and transparent to the application. 

As a result, especially read-centric applications can easily balance out the load 
between the two database servers, and use the full CPU capacity of both 
servers. 

The load balancing is activated with ODBC driver by setting the 
PREFERRED_ACCESS connection attribute to value READ_MOSTLY; or with 
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JDBC driver by setting the property called solid_preferred_access to value 
READ_MOSTLY. 

Each application connecting to the database can choose to use the load 
balancing functionality, or choose to use the Primary database for all queries 
(default). 

The IBM solidDB: High Availability User Guide, SC23-9873 and the IBM solidDB: 
Programmer Guide, SC23-9870 contain more details about the supported 
functionality, and also samples of the connection strings/URLs to use. The 
solidDB installation package contains sample C and Java program code for both 
ODBC and JDBC applications using the load balancing functionality. 

5.4.4  Linked applications versus client/server applications 

Most of the discussion regarding transparent failover and load balancing are 
related to client/server use of solidDB, that is, where the client applications 
connect to solidDB database server with a TCP/IP connection or similar socket 
based communication mechanism. 

With the linked library mode, and with the shared memory mode, the application 
is more tightly and directly linked to one solidDB database instance. Although 
this may be enhanced in future solidDB releases, in the current release, the 
transparent failover and load balancing functionality is not yet supported for these 
applications. 

5.5  Usage guidelines, use cases

IBM solidDB HotStandby comes with configuration parameters preset to offer the 
best trade-off of performance, availability and data safeness, in most common 
cases. In this section, we describe those trade-offs and show how other choices 
can be made if needed. 

5.5.1  Performance considerations

Several aspects of performance must be considered when looking at the best 
performance for a HA system. 

In addition to the topics discussed in the following text, the main performance 
optimization effort should be, as always with relational databases, targeted to 
optimize the SQL query and schema design. Poor performance is always best 
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corrected by looking at and enhancing the SQL queries, indexes, other basic 
RDBMS performance elements. 

With a HA (redundant) system, the effect of mirroring/replicating the changed 
data, reliably and consistently, to another node plays a role also. Consider the 
following performance elements:

� Latency or response times: How quickly a single read or a write operation is 
completed?

� Throughput: How much total query or transaction volume the two-node 
system can handle?

� Data safeness: Does the system guarantee that every transaction is safely 
persisted, on the same node (to disk) or to the next node (over the network)?

� Failover times: How quickly a loaded system can continue to provide its 
service after a single-node failure, including the error detection time?

� Recovery times: How quickly (and how automatically) a system recovers to an 
HA state after the failure has been resolved?

Optimizing one of the areas might be easy with the configuration parameters 
available, but the need is often to find the best balance of all factors. 

5.5.2  Behavior of reads and writes in a HA setup

Read queries execute only in one database node (databases are identical, 
having the same content for HA reasons), so there is no need to involve both 
databases for executing a single read query. Therefore, the response times are 
expected to be the same in a single db mode and in a HA setup. 

Write operations are applied to both databases (insert, update, and delete, and 
schema changes). Therefore, effects on the latency exist that also depend 
heavily on the safeness level used. With safeness, we mean whether the write 
operation is safely persisted at the time of commitment, either to the persistent 
media (disk) or to the second database node over the network. This approach is 
to guarantee that a committed transaction is not lost in case of a failure.

The safeness level can be set with two controls, independently configured. The 
configuration can further be done at a system level (global), a connection level 
and a transaction level. Given this flexibility, there are plenty of options to 
optimize the trade-off of latency versus data safeness for each part of the 
application using the database. 
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The two controls are as follows:

� Durability level, which can be strict or relaxed, that determines whether the 
log writing is synchronous or asynchronous, respectively.

� Hot standby replication protocol safeness level, that can be 1-safe or 2-safe. 
When using 1-safe, the replication is asynchronous, and with 2-safe it is 
synchronous. The 2-safe level has also more granular options (received, 
visible, durable). 

The response time, throughput, and data safeness of write operations are 
interrelated in terms of how the used configuration effects performance, and 
hence they are discussed in a combined fashion in the following sections.

5.5.3  Using asynchronous configurations with HA

As might be obvious, asynchrony leads to better performance overall, with the 
risk of losing data (a few of the latest transactions) in case of failures. 

The most asynchronous approach is by using relaxed log writing in each 
database node (or no transaction logging at all) and 1-safe hot standby 
replication protocol, which also leads to shortest response times because the 
Primary database does not have to wait for local disk I/O or the Secondary 
database before it can complete the transaction commit. It also leads to best 
throughput, because transactions can be sent to the Secondary in groups, 
making the overall throughput higher. 

Applications needing the fastest possible performance and tolerating the risk of 
losing some of the latest transactions with a failure situation should consider this 
configuration. 

The risk of losing transactions can be reduced (but not totally eliminated) by 
shortening the maximum delays of the log writes or hot standby replication. The 
configuration parameters are called Logging.RelaxedMaxDelay and 
HotStandby.1SafeMaxDelay, respectively. Setting these parameters to a lower 
value than the default forces solidDB to persist or replicate the transactions 
earlier. 

We must also mention one special feature here. Because the solidDB 
HotStandby technology is targeted for HA purposes, solidDB must guarantee, 
even with the asynchronous replication mode, that the Secondary database is 
not too far behind in executing transactions received from the source of the 
replication. This way can ensure a reasonable and up-to-date database state for 
the Secondary database at all times. Therefore, there is an internal mechanism 
in the Primary database to start throttling the write operations if the defined limits 
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of staying behind are reached. As a result, the throughput in the Primary can be 
limited by the throughput in the Secondary. 

5.5.4  Using default solidDB HA setup

The default solidDB HotStandby configuration is using Adaptive Durability (see 
“Adaptive durability” on page 117). In a normal state, that translates to relaxed 
(asynchronous) log writing and synchronous (2-safe received) replication. This 
way ensures that all committed transactions are always replicated synchronously 
to the Secondary database at the time of the commit, and thus located at least in 
the memory of both database nodes. Compared to the fully asynchronous mode, 
the latency is longer for each write commit, because the Primary database has to 
wait for the Secondary database to at least acknowledge receiving the changes. 

With this configuration, no data is lost in case of a single-node failure. In case of 
two-node failure, the risk is still there. This configuration is considered the best of 
both worlds because it eliminates the typical biggest performance problem, 
which is the (synchronous) disk I/O, but provides data safeness against any 
single node failures. Given normal maturity of proper server operating 
environments, a single node failure is rare, and the probability of a two-node 
failure at the same time, while always there, is even less likely to happen. 

In answer to the always-asked question (How much performance overhead does 
this synchronous replication cause?), several sample answers are available. 
Compared to a single database persisting all transactions properly and using 
synchronous log writing, this HA setup is, surprisingly enough, a faster mode. 
The explanation, however, is simple. The network I/O is faster than disk I/O. 
Sending the write operations to Secondary database is faster than flushing the 
data onto hard disk. 

5.5.5  The solidDB HA setup for best data safeness

Finally, the most safe and also the slowest configuration, is using 2-safe durable 
hot standby configuration, which means using synchronous replication and 
synchronous log writing in both database nodes. In this case, no data is lost even 
if both nodes fail at the same time, because every transaction is committed all the 
way to the disk in both nodes. The performance is approximately at the same 
level as with a single (stand-alone) server using synchronous (strict) logging. 

Applications needing maximum safety for the write transactions should consider 
using the 2-safe durable solidDB HotStandby protocol configuration. 
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5.5.6  Failover time considerations

In terms of the differences regarding the failover time, in all configurations the 
error detection time is typically the same (a health check timeout, or similar). 
After the error has been detected and concluded to be an error (with possible 
retry operations), the remaining task is to switch the other database server to be 
the (new) Primary database. If the original Primary failed, the Secondary can be 
switched to Primary role after it has executed all received transactions. With 
2-safe visible and 2-safe durable, the transactions have been executed already 
and the failover is practically immediate. With 1-safe and 2-safe received, there is 
a queue of transactions waiting to be applied to the Secondary database, and 
there is a small delay because of this. Because the queue on the secondary side 
is not very large, this delay is in most cases short.

During the downtime of one database server, the system continues to operate 
with the remaining database. The performance (of write transactions) is based on 
the configuration for that server, mostly importantly dependent of the log writing 
mode. If the Logging.DurabilityLevel is adaptive, the transaction log writes 
change from asynchronous to synchronous, ensuring the data safeness for 
committed transactions but most likely effects the speed also. If the requirement 
is rather to maintain the speed, even with the risk of loosing few transactions, 
then keeping the logging as relaxed also in the single node state (PRIMARY 
ALONE) should be considered. 

5.5.7  Recovery time considerations

The recovery time depends on how many changes occurred during the downtime 
(the delta) and how much time is spent restarting the database. Also, the 
database checkpoint interval has an effect on how far back in time the restarted 
database has to go to find a proper sync point, from which the delta needs to be 
applied between the databases (the catchup phase). 

Normally, making relatively frequent checkpoints is a good approach for 
minimizing the recovery time. This approach makes the database startup time 
faster, and also makes the catchup phase faster. 

Several exceptions exist however, for example, when the database is of a small 
size, and the entire content changes quickly because of high speed writes. In this 
case, it may be actually be faster to copy the entire database over (using hsb 
netcopy) than recovering all transactions that took place during the downtime. 

Given normal operating environment expectations, the usual recovery means a 
database restart and a catchup (apply the delta). In addition, the HA 
management solution should always be prepared to also execute the full sync, 
that is, copying the whole database from Primary database to Secondary 
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database, to re-initialize it. In certain situations, catchup can fail or is not 
possible; you must consider these situations in the automated recovery 
implementations. 

5.5.8  Example situation

In this section, we illustrate a sample setup for solidDB HotStandby configuration 
and manual SQL admin commands to set the database in the mode where hot 
standby replication is automatic and continuous. 

We assume two computers, nodeA and nodeB, and any operating system. The 
configurations and commands are similar on all of them:

� Node A solid.ini configuration:

[Com]
Listen = tcp 1315

[HotStandby]
HSBEnabled = yes
Connect = tcp nodeB 1315

� Node B solid.ini configuration:

[Com]
Listen = tcp 1315

[HotStandby]
HSBEnabled = yes
Connect = tcp nodeA 1315

� Start solidDB on nodeA

>solid -Udba -Pdba -Cdba

� Start solidDB on nodeB

>solid -Udba -Pdba -Cdba

Manual SQL commands to connect databases 
The following SQL statements are given with the solsql utility (in the solidDB bin 
directory). Because these are part of solidDB SQL syntax, they can also be given 
from any tool or application. 

The following lines or commands are given in solsql in nodeA. That is, connect 
first to nodeA database, with operating system terminal or command prompt:

>solsql “tcp nodeA 1315” dba dba 
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The lines starting with two hyphens (--) are comments that explain what is done:

-- switch node A to primary mode
admin command ‘hsb set primary alone’;
-- initialize the secondary db based on primary db content
admin command ‘hsb netcopy’;
-- wait until netcopy is finished, repeat until ‘success’
admin command ‘hsb status copy’;
-- connect, i.e. start active replication
admin command ‘hsb connect’;
-- check that this succeeded 
-- you should now have ‘primary active’ state
admin command ‘hsb state’;
-- complete hsb actions
commit work;
-- exit from solsql
exit;

Summary
You now have an active solidDB HotStandby setup. Any writes (that are 
committed) to the Primary database will be replicated automatically to the 
Secondary, including schema changes. You can now try creating a table, 
inserting rows (remember to commit), and then connect to Secondary database 
and read the data from there. 

Note that in the initial situation (before executing hsb set primary alone) both 
databases have a secondary role, and any write attempts to either database will 
fail. This result is from having the following solid.ini configuration parameter:

[Hotstandby] 
HSBEnabled=yes 

When this parameter is set, the database has to be made a Primary database 
before any write operations. 

5.5.9  Application failover

Application failover is the act of moving the service offered by an application from 
a failed application instance to another one. It is a hot standby scheme applied to 
applications. The need for it depends on the overall configuration. If an 
application runs in a configuration such as the one shown in Figure 5-15 on 
page 129, a failure of the database server does not imply the application failover. 
Thanks to the transparent failover (TF) capability in solidDB drivers, the 
application can continue over the server failover. However, that application itself 
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may fail, and that might require a failover to the standby instance of the 
application.

If the application is collocated with the server as shown in Figure 5-16 on 
page 130, the application can fail at the same time as the database server, say, 
in the case of a computer node crash. In that case, we might have to perform 
both the server failover and the application failover. In general, the application 
failover is required in the following cases:

� A failure of an application instance on a remote node (if a restart, on the same 
node or another one, is not sufficient).

� A failure of a collocated application instance, together with the database 
server (if restart of the application on the new primary node is not sufficient).

Application state preserving
When the service is moved from one application instance to another, the service 
state must be preserved to the extent required by the service continuity. With 
non-database applications, that requires complex application checkpointing 
protocols or other solutions to move the state between the instances. A 
database, and especially an HA database, offers a perfect opportunity to transfer 
the service state through the database. What is needed is only that the 
application is designed to be stateless, because all the relevant state is stored in 
the database. Especially, when using an HA database as solidDB HSB, no 
application state will be lost in any single failure in the system. The applications, 
whether restarted or failed-over, can recover the service state from the database 
at any time.

Controlling application failover
Application failover requires the same type of HA control that an HA database 
requires. For that purpose, the applications can be integrated with an external 
high availability framework, or they can use the HA control that is already 
available with the database. In the case of a collocated application, the standby 
instance of the application can be connected to the Secondary server and it can 
monitor the HA state of the Secondary server. That can be done either by polling 
(checking periodically the HA state) or by subscribing to a system event that 
would indicate the state change. When the server role changes from secondary 
to primary, the application reacts by changing its state from standby to active, 
effectively performing the application failover. Switchover, for example, the 
intentional role switching between the solidDB servers can be taken care of in the 
same way.
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5.6  HA in Universal Cache

A system for database caching, like IBM solidDB Universal Cache might be 
required of some HA characteristics also. In this section, we describe the 
possibilities and ramifications of Universal Cache HA configurations.

5.6.1  Universal Cache HA architecture

When Universal Cache (UC) is configured for high availability, hardware and 
software redundancy can be seen both in the front-end and back-end tiers, or in 
either one. The choice of where to apply the redundancy depends on the 
required availability level of the total system and expectations of the availability of 
stand-alone components. For example, if operation breaks (measured as MTTR) 
in the cache database are not allowed to be longer than it takes to restart a 
database server (and that might be long, for an in-memory database), the 
solidDB HSB configuration is needed.

If the UC application load is totally confined within the cache database (the 
pass-through is not used), the operation breaks of the back end are tolerable as 
long as the front-end transactions can be buffered in the cache database for later 
transfer to the back end (catchup). In that case, a stand-alone back-end server 
might be sufficient. If pass-through is used, an HA solution in the back end can 
be required. 
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The full HA configuration of Universal Cache is shown in Figure 5-18.

Figure 5-18   HA setup for Universal Cache

The front-end tier is configured in the same way as the solidDB-only HSB setup, 
involving HA controllers and, possibly, an ERE.

Regarding the InfoSphere CDC components, the InfoSphere CDC replication 
engine for solidDB (InfoSphere CDC for solidDB) is deployed on the back-end 
system instead of the front-end system, as was the case with the basic Universal 
Cache configuration. The reason is because the replication engine must survive 
solidDB server failovers. In some cases, the engine seamlessly continues the 
operation over the failover.

IBM Software Group  | Information Man

Data server

Front-end
Active

CDC for backend

Backend (active)

CDC for solidDB

JDBC driver

solidDB JDBC driver

solidDB
Primary 

Front-end
Standby

solidDB
Secondary 

HA Controller HA Controller

Restart script

Backend (standby)
 Chapter 5. IBM solidDB high availability 143



5.6.2  UC failure types and remedies

In a system such as the one shown in Figure 5-18 on page 143, various 
components can fail. In this section, failure types and recovery methods are 
described.

solidDB failures
Failures of solidDB servers in the front-end tier are dealt with in the normal ways 
that are available in the solidDB HSB solution. If the Primary server fails, a server 
failover is executed. If the Secondary server fails, the Primary continues to 
operate.

The InfoSphere CDC engine for solidDB has some resiliency to front-end 
failovers. All the subscriptions that use solidDB as a source continue mirroring 
normally, over a failover. However the subscriptions that use solidDB as a target 
stop the mirroring. They must be restarted using the InfoSphere CDC 
command-line interface. What we describe in the following text, must be 
implemented on an individual deployment basis. In practice, a shell script restarts 
the subscription. Also, a failover detection method must be implemented to 
initiate the script. It might be done with a component similar to the Watchdog that 
monitors the HSB server states, and act upon a detected failover.

InfoSphere CDC failures, InfoSphere CDC resilience
InfoSphere CDC replication engines can fail, causing the mirroring to stop. 
InfoSphere CDC does not have any built-in redundancy or failover methods. That 
means the InfoSphere CDC components must be explicitly restarted. That too 
can be achieved with shell scripts and a method to detect InfoSphere CDC 
component failures.

Temporary dysfunction of InfoSphere CDC components does not stop the cache 
database to serve the applications. Pay attention to restarting the InfoSphere 
CDC components fast enough for them to be able to catch up with the application 
load in the cache database. The actual time span allowed for the InfoSphere 
CDC replication engines to be non-functioning depends on the volume of 
updates in the cache database and the buffer size settings. The time can vary 
from minutes to hours.
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Back-end failures
The back-end failures are dealt with in the ways typical for a given DBMS product 
and configuration. The solidDB Universal Cache product does not include any 
components to deal with those failures. 

If the back-end database runs as a stand-alone system, normal restart and 
recovery is needed (to be initiated manually or automatically). Additionally, upon 
restart, the InfoSphere CDC subscriptions (or engines) must also be restarted.

If the back-end database is run in an HA configuration, the corresponding 
product-specific methods for failovers are used. Additionally, the InfoSphere CDC 
components have to be migrated, reconfigured, and restarted on a new active 
site. The process can be done with the InfoSphere CDC command-line interface 
and shell scripts.

During the unavailability of the back-end database, the cache database serves 
the applications. For the back-end database to be able to catch up with the load 
in the cache database, the back-end database and the InfoSphere CDC 
replication have to be reinstated in due time. If the back-end downtime is too long 
for catching up to be possible, the refreshing of the subscriptions must be done.
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Chapter 6. Performance and 
troubleshooting

Performance and troubleshooting is a vast and widespread topic that is also one 
of the most important to ensure the system runs as smoothly and as optimally as 
possible. In this chapter, we describe several valuable tools that can help with 
analyzing the performance of the solidDB server, InfoSphere Change Data 
Capture (CDC), and a user’s application. The chapter also covers several tools 
and methods that can be used to troubleshoot situations such as an abnormal 
termination or a hang.

Application developers, database administrators, and system administrators can 
obtain practical and valuable information from this chapter and that can help 
ease their jobs.

6
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6.1  Performance

This section provides an overview of the various tools available in the solidDB 
server and InfoSphere CDC to aid in performance analysis and monitoring. It 
then describes several common performance issues as observed from the 
application’s perspective, and what can be done to address them. We provide 
pointers about which tools are best suited to help resolve issues.

6.1.1  Tools available in the solidDB server

At the heart of a database application is the solidDB server. The server is a 
highly complex piece of software that provides the functionality an application 
needs to retrieve and store data in a plethora of ways. When the speed at which 
an application performs does not meet expectations, one of the first places to 
look for performance monitoring data is the solidDB server.

In this section we cover the most valuable performance monitoring tools available 
in the solidDB server. We discuss these tools in a practical manner that can be 
used to directly relate to observations that may be seen in the applications and in 
the server.

Performance Monitoring (pmon) counters
Many pmon counters are available in the server. The counters provide a view into 
what the various components inside the server are doing, which can be directly 
correlated to observed application performance.

Methods of gathering pmons
The solidDB documentation describes the methods of gathering pmon data. The 
documentation is available at the following location:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.admin.doc/doc/monitoring.soliddb.html

In general, the most useful method is the continuous performance monitoring 
report ('pmon diff'), which produces a set of data for the time that the 
monitoring was enabled. This data can be considered to be similar to a flight 
recorder that contains critical information about the internal operations of the 
server during that time period.

If, for example, your application or the server exhibits slow or unexpected 
behavior during certain operations, gathering pmon diff data during this time is 
an excellent way to help determine the problem. 
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Example 6-1 shows commands to use within solidDB SQL Editor (solsql) to start 
and stop the utility.

Example 6-1   Starting and stopping the continuous monitoring report

Starting the continuous monitoring report:
admin command ‘pmon diff start /home/solid/pmondiff.txt 1000’

Stopping the continuous monitoring report:
admin command ‘pmon diff stop’

The interval specified is 1000 milliseconds, which is sufficient for most cases. 
Gathering data for too small an interval can add too much overhead and extra 
load on the disk subsystem, so use care.

Performance Monitoring counter details
Many counters are available; describing each of them in detail is impractical in 
this book. Furthermore, some counters only have meaning to solidDB support 
analysts and developers; others have been added to troubleshoot specific issues 
that rarely surface in general usage. A more valuable approach is to describe the 
more meaningful and useful pmon counters to help more quickly and easily 
troubleshoot performance problems. Therefore, the pmons are divided into the 
following categories:

� Low-level internal counters
� Internal structure counters
� SQL level counters
� Stored procedure/trigger counters
� Transaction level counters
� Logging and checkpointing counters
� HotStandby counters
� Lock-related counters
� Memory-table-specific counters
� SQL pass-through counters
� solidDB Universal Cache-specific counters

For each counter described in the tables, a Quick diagnosis column is provided 
to help you quickly understand under what externally visible conditions the 
counter is likely to be involved. A Detailed description column lists more 
background about what the counter means, what the values, or lack of values, in 
it means, and what interactions it might have with other pmon counters.
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Low-level internal counters
These counters measure interactions typically at the level between the operating 
system and the solidDB server. Table 6-1 describes these counters.

Table 6-1   Low-level internal counters

Counter name Quick diagnosis Detailed description

File read / 
File write

High numbers can 
indicate excessive 
disk reads or 
writes.

Internally in the solidDB server, wrapper functions are around the 
read() and write() system calls. Each time these wrapper 
functions are called to read or write from a file, the respective 
pmon counter is incremented. Therefore if you see large 
numbers in these counters and you expect all of your tables to be 
in memory, you might have a problem that must be investigated. 
Note that other database operations, such as checkpointing, 
logging, and diagnostics (tracing and message logs) require file 
reads and writes. Make consideration for such events when 
analyzing these counters.

File open High numbers can 
indicate excessive 
disk I/O.

Internally in the solidDB server, a wrapper function is around the 
fopen() system call. Each time a file is opened, this counter is 
incremented. Opening a file is an expensive operation in itself but 
also indicates that a read or a write to a file is required. This 
counter should be low when using only in-memory tables. Note, 
however, that other database operations such as checkpointing, 
logging, diagnostics (tracing and log messages) require file 
opens so this counter will likely not always be zero.

Mem size This counter is 
primarily for 
informational 
purposes.

This is the current amount of memory that the server has 
allocated from the operating system, in kilobytes (KB). Every 
time the server requests memory from the operating system 
through malloc, and so forth, this counter is increased. This 
counter should correlate to the virtual memory size reported by 
operating system level tools such as TOP (which is a command 
in UNIX and Linux environments).

Thread count Growing values 
can indicate 
connections are 
not being properly 
closed.

This counter is the total number of threads running internally in 
the server. It can be useful in tracking the number of connections 
to the database over time as there is one thread created per 
connection. Watch this counter for excessive values or for 
growing numbers. Growing numbers can indicate that 
connections are not properly disconnecting upon completion.
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Internal structure counters
The pmon counters in this section provide information about internal server 
structures and tasks such as the database cache, the Bonsai Tree, merging, 
sorting, and table cursors. Table 6-2 describes these counters.

Table 6-2   Internal structure counters

Counter name Quick diagnosis Detailed description

Cache find Low numbers can 
indicate ineffective 
database cache.

Each time something is found in the database cache, this 
counter is incremented. This counter applies only to disk-based 
tables, not to in-memory tables. If you use disk-based tables, you 
want to see large numbers in this counter. Compare this number 
to Cache read counter to determine the effectiveness of the 
database cache.

Cache read High numbers can 
indicate excessive 
disk I/O.

Number of blocks (of database block size) that must be read 
from disk because of a database cache miss. It applies only to 
disk-based tables. You want this number to be as low as possible 
after the database cache is warmed up, meaning that the cache 
is full, or as full as it can be from normal database operation. Any 
time a cache miss occurs and data must be read from disk, 
performance is affected. If the total size of the database is larger 
than the amount of memory that can be assigned to database 
cache, numbers in this counter are likely to be seen depending 
on the workload and data access patterns.

Cache prefetch High numbers can 
indicate table 
scans are being 
done.

Number of database blocks being prefetched into the database 
cache. This counter applies only to disk-based tables. High 
values in this counter indicate that the internal prefetching 
algorithm is detecting that large sequential reads are being 
performed. At the SQL level, this number can mean that table 
scans are being performed, which can affect performance and 
can be a result of a bad query plan or a missing index.

Cache prefetch 
wait

High numbers can 
indicate 
insufficient 
prefetching.

Number of waits that occurred because of prefetching while 
attempting a read. When a read is attempted, if prefetching is in 
the process of bringing the data into the database cache, the 
read must wait for the prefetch to complete. High numbers can 
indicate that prefetching is not performing appropriately for the 
type of reading that is being done. Consider increasing the 
IndexFile.ReadAhead configuration parameter.
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Cache preflush Excessive values 
can indicate 
insufficient 
database cache.

Number of preflush operations done by the preflush thread. A 
preflush is the asynchronous writing of dirty page data from the 
database cache to disk. This counter applies only to disk-based 
tables. Values in this counter indicate normal database operation 
when writes are occurring (meaning data is changing). If the 
number seems excessive, it might be an indication that the 
database cache is configured too small. It could also be an 
indication that the database cache is being used for other 
database operations and cache, which might or might not be 
expected.

Cache LRU 
write

High numbers can 
indicate 
insufficient 
database cache or 
insufficient 
preflushing.

Incremented when a dirty page in the database cache must be 
written to disk before a page being requested can be used. 
Values in this counter indicate that the database cache size is 
insufficient or that preflushing is not performing adequately. If 
preflush performance is suspected, considering modifying the 
IndexFile.PreFlushPercent configuration parameter.

Cache write 
bonsai leaf

High numbers can 
indicate cache is 
too small or 
applications not 
properly closing 
transactions.

Number of times that a Bonsai Tree leaf has been written to disk 
from the database cache. This applies only to disk-based tables. 
For best performance, the Bonsai Tree should remain in the 
cache. If cache does not have enough space, parts of the Bonsai 
Tree may be written out to disk to make room. This way affects 
performance negatively, which means either the cache is too 
small or the Bonsai Tree is too large. A large Bonsai Tree can be 
caused by applications not properly closing transactions.

Cache write 
bonsai index

High numbers 
could indicate 
unnecessary 
indexes exist.

Similar to Cache write bonsai leaf except that this counter 
indicates that a high volume of writes to a table, or tables, that 
have many associated indexes is occurring. If you see high 
numbers for this counter, examine your index design to 
determine whether any unnecessary indexes exist.

RPC messages High numbers can 
indicate large 
result sets being 
returned over the 
network.

Number of RPC messages sent between client and server. Note 
that for SMA and Accelerator connections no RPC messages 
are sent. An SQLPrepare and an SQLExecute each send at 
least one RPC message. You can compare this number to the 
SQL Prepare and SQL Execute counters. If the value of this 
counter minus SQL Prepare is significantly larger than the 
number of SQL Execute, this can indicate that large result sets 
are being returned in the SQL queries. Note that HSB packet 
count may also be counted in this counter.

DBE inserts This counter is 
mostly informative 
only.

This counter is for DataBase Engine (DBE) inserts and applies 
to both disk-based and in-memory tables. It is incremented when 
an insert to a table occurs.

Counter name Quick diagnosis Detailed description
152 IBM solidDB: Delivering Data with Extreme Speed



DBE delete This counter is 
primarily 
informative.

This counter is for DataBase Engine deletes and applies to both 
disk-based and in-memory tables. It is incremented when a 
delete to a table occurs.

DBE update This counter is 
primarily 
informative.

This counter is for DataBase Engine updates and applies to both 
disk-based and in-memory tables. It is incremented when an 
update to a table occurs.

DBE fetch High numbers 
relative to SQL 
fetch can indicate 
unnecessary table 
scans.

(This counter is not the same as SQL fetch.) Counts the number 
of rows that are fetched internally, which might or might not be 
returned back to the application. Compare this counter to SQL 
fetch to see how many rows are being read internally for each 
row returned to the application (rows read/rows returned ratio). 
If that ratio is high, you might have unnecessary table scans 
occurring and should investigate index usage.

DBE dd 
operation

This counter is 
mostly informative 
only.

Number of data dictionary operations that the server has 
executed. The data dictionary (or system catalog) stores all the 
definitions for tables, indexes, and so forth. This number should 
correlate to the expected number of data dictionary changes.

Ind write Higher than 
expected values 
can indicate 
unnecessary 
indexes.

When a write operation is made to a table, this counter is 
incremented for each index that needs to be updated. Higher 
than expected values for this counter could indicate redundant 
indexes exist.

Ind nomrg write High or growing 
values means the 
Bonsai Tree is too 
large.

Number of non-merged rows in the Bonsai Tree. This counter 
applies only to disk-based tables. This counter is essentially the 
size of the Bonsai Tree. If this counter is large or is constantly 
growing performance is affected because the Bonsai Tree 
consumes more database cache, which leaves less room for 
data caching and might ultimately cause disk paging.

Search active High values result 
in more memory 
being used. 
Growing values 
can indicate a 
potential handle 
leak in the 
application.

Number of cursors currently open within the server. This 
important counter is used to determine memory growth in the 
server. Many applications are written to do their prepares up 
front, which is good for performance but can negatively affect 
memory use. If this number is high, consider reducing the 
number of concurrent connections or the number of prepares 
done up front. If this number is constantly growing it could 
indicate a handle leak in the application.

Merge nomrg 
write

Values higher than 
Ind nomrg write 
can indicate 
merging is not 
keeping up.

Number of index entries currently waiting for merge. In normal 
operation, this number is similar to Ind nomrg write. If the value 
of this counter is larger, it is an indication that merging is not 
keeping up and further investigation is required.

Counter name Quick diagnosis Detailed description
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Merge level Values not keeping 
up with Trans read 
level indicate 
merge is not 
keeping up.

Current merge level. Correlate this value with the Trans read 
level value. If the value of this counter is not keeping up, that is 
another indication that merge is not keeping up with cleaning the 
Bonsai Tree.

Sorter start sort High values 
indicate excessive 
use of the external 
sorter.

Number of external sorts started. The external sorter is invoked 
when space required for the sort exceeds the memory available 
for the internal sorter. Because the external sorter spills to disk, 
excessive use of it negatively affects performance. Consider 
increasing the sort array size configuration parameter to avoid 
the external sorter.

Sorter add row See Sorter fetch 
row for more 
information.

Number of rows being added to the external sorter. See Sorter 
fetch row for more information.

Sorter fetch row If Sorter add row is 
incrementing 
faster than this, the 
external sorter is 
congested.

Number of rows per second that are fetched out of the external 
sorter. After a row is fetched, the memory is released. The Sorter 
add row counter incrementing faster than this one is a symptom 
of external sorter congestion, which can lead to unsatisfactory 
query performance. Consider increasing the memory used by 
the internal sorter with the SQL.SortArraySize parameter. Also 
consider reducing the number of sorts performed in the 
application. If external sorting is still required, try to speed up the 
external sorter by ensuring the underlying disk is as fast as 
possible. For example, use Solid State Disk or a RAMDRIVE.

Tabcur create Significantly and 
constantly lower 
values than Search 
active could 
indicate too many 
unused statement 
prepares.

A table cursor is an active instance of a Search active cursor that 
is counted when a statement is actually executed. This way can 
be loosely correlated to SQL Execute times the number of 
cursors per statement. Use this counter with Search active to 
see what percentage of internal cursors that are created during 
statement preparation actually are used during statement 
execution.

Counter name Quick diagnosis Detailed description
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SQL level counters
The pmon counters in this category keep statistics that are useful and meaningful 
to the application developer, as they are at the SQL level. Table 6-3 describes 
these counters.

Table 6-3   SQL level counters

Counter name Quick diagnosis Detailed description

SQL prepare High numbers can 
indicate excessive 
SQLPrepare 
operations or 
insufficient 
statement cache.

Incremented every time a statement is prepared. Note that 
prepare operations done in stored procedures are counted in the 
Proc SQL prepare counter. Prepare operations are expensive; 
avoid them as much as possible. Also, a statement cache stores 
prepared statements. If a prepare is done for a statement that is 
saved in the statement cache, this counter is no incremented. If 
you see high numbers for this counter, consider doing fewer 
SQLPrepares or increasing the statement cache. Note also that 
a prepare operation is done implicitly when SQLExecDirect is 
used.

SQL execute High numbers 
could indicate a 
hidden application 
problem.

Incremented every time a statement is executed. Note that 
execute operations done in a stored procedure are counted 
separately under the Proc SQL execute counter. If you see 
values for this counter that do not match your expectations, your 
application might have a problem.

SQL fetch Numbers lower 
than SQL execute 
can indicate few 
rows being 
returned.

Number of rows returned to applications. An important note is 
that this counter is also incremented for things such as admin 
commands, LIST commands, and EXPLAIN PLAN FOR 
commands, as rows are returned to the user in all cases. This 
would explain cases where the value of this counter is less than 
the value of the SQL execute counter. Another explanation could 
be that return result sets often have zero rows.
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Stored procedure/trigger counters
In solidDB, stored procedures and triggers are similar, so they are grouped 
together in this pmon category. Table 6-4 describes these counters.

Table 6-4   Stored procedure/trigger counters

Transaction level counters
This pmon category describes counters specific to transaction levels. Table 6-5 
describes these counters.

Table 6-5   Transaction level counters

Counter name Quick diagnosis Detailed description

Proc/Trig 
compile

This counter is 
primarily informative.

Incremented when a stored procedure or trigger is 
compiled. It occurs during the CREATE PROCEDURE or 
CREATE TRIGGER statement.

Proc/Trig exec This counter is 
primarily informative.

Incremented when a CALL PROCEDURE statement is 
executed or when a trigger is fired, and can include nested 
stored procedure calls also. If you see growing values or 
higher than expected values, a stored procedure or trigger 
might be getting called (nested or not) more than expected.

Proc/Trig SQL 
prepare

This counter is 
primarily informative.

Incremented when an EXEC SQL PREPARE is done within 
a stored procedure or trigger. This counter is also 
incremented when an SQL EXECDIRECT is done, because 
a prepare operation is implicitly done.

Proc/Trig SQL 
execute

This counter is 
primarily informative.

Incremented when an EXEC SQL EXECUTE or EXEC SQL 
EXECDIRECT is done within a stored procedure or trigger.

Proc/Trig SQL 
fetch

This counter is 
primarily informative.

Incremented when an EXEC SQL FETCH is done within a 
stored procedure or trigger.

Counter name Quick diagnosis Detailed description

Trans commit Higher numbers than 
expected can mean 
autocommit is on 
unknowingly.

Number of transaction commits that have occurred, 
including commits done in application code, stored 
procedures, and in solsql (explicitly or with autocommit on).

Trans abort Non-zero numbers can 
indicate a connectivity 
issue.

Number of transactions that have been aborted because of 
timeout or other issue. Values in this counter can indicate a 
possible connectivity issue where a client is able to connect 
and start a transaction, but then times out. The timeout 
period is configurable through the Srv.AbortTimeOut 
parameter and set at 120 minutes by default.
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Trans rollback This counter is 
primarily informative.

Number of explicit transaction rollbacks that have occurred.

Trans readonly This counter is 
primarily informative.

Number of transactions that have been committed, rolled 
back, or aborted that contain read only operations.

Trans buf High numbers indicate 
transactions are 
consuming a lot of 
memory. Growing 
numbers can indicate a 
long running query 
creating many rows 
and consuming 
significant resources.

Current number of rows that are in the transaction buffer. 
This number is essentially the working memory for a 
transaction and it gives you an idea of how much memory 
your transactions are consuming inside the server. If this 
number increases over several pmon intervals, this could 
indicate that one or more long running transactions are 
creating a large number of rows. Such a transaction can 
consume a significant amount of resources and might 
require further investigation.

Trans buf 
cleanup

Quickly growing values 
can indicate 
transactions are 
creating large numbers 
of rows and consuming 
significant resources.

Total number of transaction buffer cleanup tasks that have 
executed in the server because of startup. This task is 
responsible for removing stale rows from transactions that 
have committed, rolled back, or aborted to make room for 
new transactions. An internal threshold value determines 
when this task executes. If you see this value increasing 
rapidly, it should also be in conjunction with Trans buf having 
large values.

Trans buf 
removed

Quickly growing 
numbers indicate 
transactions are 
consuming significant 
resources.

Incremented every time a row is removed from the 
transaction buffer by the cleanup task. This counter is a 
supplement to the Trans buf and Trans buf cleanup 
counters.

Trans active High values can 
indicate infrequent 
commits or roll backs. 
Growing values can 
indicate transactions 
are running slower over 
time.

Current number of active transactions in the system. Higher 
than expected values can indicate that transactions are not 
committing or rolling back frequently enough. Growing 
values can indicate either that workload is increasing or that 
transactions are running slower over time because of more 
resources being consuming for some other task for 
example.

Trans read level Non-growing values 
can indicate one or 
more long running 
transactions blocking 
other transactions.

Current transaction read level. Write transactions cause this 
value to be incremented. If concurrent write operations are 
running but this value is not increasing, there might be one 
or more long running transactions in the system that should 
be investigated. Note that this is a 32-bit integer and can 
wrap to appear as a negative value.

Counter name Quick diagnosis Detailed description
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Logging and checkpointing counters
This pmon category describes the counters that are specific to the logging and 
checkpointing tasks of the solidDB server. Table 6-6 describes these counters.

Table 6-6   Logging and checkpointing counters

Counter name Quick diagnosis Detailed description

Log write Correlate with Log file 
write to see 
effectiveness of log 
writing.

Number of records being submitted to the internal logging 
component of the server per second. Correlate this counter 
with the Log file write counter to determine whether writing 
the log records to disk is keeping up with the number of 
records in this counter.

Log file write Decreasing values can 
indicate logging is disk 
bound.

Actual number of blocks written to disk per second by the 
logger. When blocks are written is dependant on the 
Logging.DurabilityLevel setting. If the values in this counter 
are constant, it is likely a sign of healthy logging that is not 
disk-bound. A decrease in the values might indicate that 
logging is becoming disk bound.

Log nocp write Can indicate the impact 
of the next checkpoint 
operation.

Number of pending log records because of the last 
checkpoint. This is an indication of how big and involved the 
next checkpoint operation will be. If these values are 
consistently large, increasing the frequency of 
checkpointing might be needed.

Checkpoint file 
write

Lower than expected 
values can indicate a 
disk bottleneck.

Number of file writes per second done by the checkpoint 
task. Use this counter to monitor the performance of 
checkpointing and the disk subsystem. Low values can 
indicate a disk bottleneck.
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HotStandby counters
This pmon category describes several of the most important counters for 
HotStandby. Table 6-7 describes these counters.

Table 6-7   HotStandby counters

Lock-related counters
This category of pmons describes the counters available to troubleshoot 
application locking issues. Table 6-8 describes these counters.

Table 6-8   Lock related counters

Counter name Quick diagnosis Detailed description

HSB cached 
bytes

Constantly growing 
values could indicate 
an internal problem.

Current size of the in-memory log reader, in bytes. The value 
of this counter should be relatively constant. An increasing 
value could indicate an internal problem.

HSB catchup 
reqcnt

Non-zero values 
indicate catchup is still 
in progress.

Indicates when the HSB catchup operation has completed. 
Non-zero values indicate that catchup is still in progress. 
This is given in requests per second.

HSB catchup 
freespc

Zero means that 
catchup cannot 
continue.

Number of log operations for which there is room during 
catchup. If this number becomes zero, catchup cannot 
continue.

Counter name Quick diagnosis Detailed description

Lock ok This counter is 
primarily informative.

Applies to both disk and in-memory engines (or 
main-memory engines, MME). It is the number of times an 
internal check for a lock indicated that no lock already 
existed, so execution could proceed.

Lock timeout Increasing values can 
indicate an application 
locking issue.

Applies to both disk and in-memory engines. It is a count of 
the number of lock timeouts per second. This occurs when 
execution was blocked while waiting for another lock. Values 
that are constantly growing indicate that more and more 
operations are being blocked on locks, and a locking issue 
might exist.

Lock deadlock Increasing values can 
indicate an application 
locking issue.

Applies to both disk and in-memory engines. A count of the 
number of deadlocks per second that have occurred.

Lock deadlock 
check

This counter is 
primarily informative.

Applies to both disk and in-memory engines. A count of the 
number of deadlock checks done by the lock manager.

Lock wait Increasing values can 
indicate an application 
locking issue.

Applies to both disk and in-memory engines. A count of the 
number of times per second that a lock-wait occurred.
 Chapter 6. Performance and troubleshooting 159



Memory-table-specific counters
This pmons in this category are specific to the main memory engine (MME) of 
solidDB. Table 6-9 describes these counters.

Table 6-9   Memory-table-specific counters

Lock count Increasing values can 
indicate an application 
locking issue.

Applies to both disk and in-memory engines. A count of the 
total number of locks that exist in the system at a given time. 
A continuously increasing value can be an indication of a 
lock issue. Monitor this counter in conjunction with Lock 
timeout, Lock wait, and Lock deadlocks to watch for locking 
issues with your applications.

MME cur num of 
locks

Increasing values can 
indicate an application 
locking issue.

Locking for the in-memory engine is handled separately to 
locking in the disk-based engine. This is the current number 
of locks for in-memory tables.

MME max num 
of locks

Increasing values can 
indicate an application 
locking issue.

High-water mark for in-memory engine locks. Use this in 
conjunction with MME cur num of locks to watch for 
excessive number of locks.

MME cur num of 
lock chains

A large number of 
additional hash entries 
will degrade 
performance.

A lock chain is when the lock hash table has a conflict and 
additional locks are added to the hash entry as additional 
entries. This addition can slow down lock lookup because it 
has to first find the chain entry in the hash table, then parse 
the subsequent entries. Subtracting the value of this counter 
from MME cur num of locks gives the number of additional 
hash entries in the hash table. The larger that this number 
is, the more expensive lock processing is. In that case, 
consider increasing the MME.LockHashSize parameter.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

MME mem used 
by tuples

This counter is 
primarily informative.

Tuples are an internal version of MME rows. This counter is 
the amount of memory in kilobytes (KB) needed to store all 
the rows of the in-memory tables. This value can be 
correlated to the total number of rows to determine the 
average row size (including overhead).

MME mem used 
by indexes

Higher than expected 
values could indicate 
unnecessary indexes.

Total memory in KB used by MME indexes.

MME mem used 
by page structs

This counter is 
primarily informative.

A page struct is the overhead needed for storing MME table 
and index data.
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SQL pass-through counters
The counters in this category are specific to the SQL pass-through feature. 
Table 6-10 describes these counters.

Table 6-10   SQL pass-through counters

MME index key 
deletes

This counter is 
primarily informative.

Total number of delete operations on in-memory tables. 
Note that an UPDATE operation translates to delete then 
insert in MME tables.

MME index key 
inserts

This counter is 
primarily informative.

Total number of insert operations on in-memory tables. Note 
that an UPDATE operation translates to delete then insert in 
MME tables.

MME vtrie 
mutex collisions

Large values can 
indicate hot sections of 
data exist.

An increase in this counter means that several threads tried 
to access the same section of the trie at the same time. If 
you see values here, it means that the threads are trying to 
update the same information and are getting blocked. 

MME vtrie 
version colls

High values could 
indicate hot sections of 
data.

For an update operation, a vtrie node gets a version update 
structure added to it. When another application views the 
same data that is currently being updated, the vtrie update 
structure is read, which results in a “vtrie version collision.” 
A high number here might mean that a “hot” section of data 
is being updated and read often. Specifically, values in the 
thousands or tens of thousands along with a significantly 
smaller number of updates can indicate a problem that most 
likely must be addressed in the application, perhaps with 
more frequent commits.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

Passthrough 
rollbacks

This counter is 
primarily informative.

Incremented every time an explicit rollback is issued in the 
front end, or if the client disconnects from the front end. Note 
that the counter is incremented twice every time the client 
disconnects from the front end.

Passthrough 
result cnv

High values indicate 
lots of data conversion 
happening which can 
be expensive.

Incremented every time a result set value (retrieved from the 
back end) is being converted to a different internal data type 
in the front end. This conversion can be expensive so care 
should be take to avoid it if at all possible.
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solidDB Universal Cache-specific counters
The pmon counters in this category are specifically related to solidDB Universal 
Cache implementations and do not apply to stand-alone solidDB. Table 6-11 
describes these counters.

Table 6-11   solidDB Universal Cache-specific counters

Passthrough 
param cnv

High values indicate 
lots of data conversion 
happening which can 
be expensive.

Similar to Passthrough result cnv except that it applies to 
SQL input parameters. For example, if the incoming 
parameter is a different type than the back-end column type 
it is addressing, conversion will occur.

Passthrough 
failures

Values indicate a 
problem that should be 
investigated.

Incremented every time either SQLPrepare fails (in the 
back-end) or a failure in type conversion between the 
back-end parameter/result set column and the 
corresponding types in the front end.

Counter name Quick diagnosis Detailed description

Counter name Quick diagnosis Detailed description

Logreader spm 
freespc

Consistent values of 0 
indicate write throttling 
is occurring in the 
solidDB server 
because of InfoSphere 
CDC replication not 
keeping up.

This counter, in conjunction with Logreader spm waitct, is 
important in determining whether write throttling is 
happening inside the solidDB server. Write throttling occurs 
when no space is available in the logreader buffer because 
of InfoSphere CDC replication not replicating the data to the 
back-end database quickly enough. Depending on your 
workload, occasional occurrences of this can be acceptable 
if not many write operations are having to wait; see the 
Logreader spm waitct counter. If this value is consistently 0, 
consider increasing the Logreader.Maxspace configuration 
parameter. If that does not help, investigate InfoSphere CDC 
performance; see 6.1.2, “Tools available in InfoSphere CDC” 
on page 180.

Logreader spm 
waitct

Non-zero values 
indicate write 
operations in the 
solidDB server are 
waiting for logbuffer 
space to be made 
available.

When the logreader buffer is full (Logreader spm waitct 
shows 0), write operations get throttled and must wait. Each 
time a wait occurs, this counter is incremented. The higher 
this value is, the more negative the write throttling effect is. 
See the suggestions in the Logreader spm waitct section.

Passthrough 
rollbacks

This counter is 
primarily informative.

Incremented every time an explicit rollback is issued in the 
front end, or if the client disconnects from the front end. Note 
that the counter is incremented twice every time the client 
disconnects from the front-end.
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Using the Monitor facility to monitor SQL statements
It is important to be able to analyze and tune performance at the individual SQL 
statement level. The solidDB server provides two useful tools to help with that 
effort: 

� Monitor facility
� SQL Trace facility

The two are similar but provide slightly different data (see Table 6-12 on 
page 168 for a comparison). In this section, we describe the Monitor facility.

To enable the Monitor facility, execute the command shown in Example 6-2, in 
solsql.

Example 6-2   Enabling the Monitor facility in solsql

admin command 'monitor on';
       RC TEXT
       -- ----
        0 Monitor set to on
1 rows fetched.

Passthrough 
result cnv

High values indicate 
lots of data conversion 
happening which can 
be expensive.

Incremented every time a result set value (retrieved from the 
back-end) is being converted to another internal data type in 
the front end. This conversion can be expensive so use care 
to avoid it if possible.

Passthrough 
param cnv

High values indicate 
lots of data conversion 
happening which can 
be expensive.

This counter is similar to Passthrough result cnv except that 
it applies to SQL input parameters. For example, if the 
incoming parameter is a different type than the back-end 
column type it is addressing, conversion will occur.

Passthrough 
failures

Values indicate a 
problem that should be 
investigated.

Incremented every time either SQLPrepare fails (in the 
back-end) or a failure in type conversion between the 
back-end parameter/result set column and the 
corresponding types in the front end.

Counter name Quick diagnosis Detailed description
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After executing various SQL statements, soltrace.out file is created in the 
solidDB working directory. The contents of it is similar to Example 6-3.

Example 6-3   Default sample Monitor facility output

------------------------------------------------------------
2010-09-30 08:47:32
Version: 6.5.0.3 Build 2010-10-04
Operating system: Linux 2.6.18 AMD64 64bit MT
IBM solidDB Universal Cache 6.5
2010-09-30 08:47:33 50:15:exec rowcount 1
2010-09-30 08:47:33 7:13:execute Select D_NEXT_O_ID, D_TAX from 
DISTRICT where D_W_ID = ? and D_ID = ? for update
2010-09-30 08:47:33 43:6:fetch next, 1 rows, total 1
2010-09-30 08:47:33 42:4:execute Insert into ORDERS values (?, ?, 
?, ?, ?, ?, ?, ?)
2010-09-30 08:47:33 13:15:execute Update STOCK set S_QUANTITY = 
?, S_YTD = ?, S_ORDER_CNT = ?, S_REMOTE_CNT = ? where S_W_ID = ? 
and
S_I_ID = ?
2010-09-30 08:47:33 27:18:execute Update DISTRICT set D_NEXT_O_ID 
= ? where D_W_ID = ? and D_ID = ?
2010-09-30 08:47:33 45:18:param 1:3721
2010-09-30 08:47:33 45:18:param 2:1
2010-09-30 08:47:33 48:18:execute Select S_QUANTITY, S_DIST_01, 
S_DIST_02, S_DIST_03, S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, 
S_D
IST_08, S_DIST_09, S_DIST_10, S_YTD, S_ORDER_CNT, S_REMOTE_CNT, 
S_DATA from STOCK where S_W_ID = ? and S_I_ID = ?
2010-09-30 08:47:33 48:18:param 1:4196
2010-09-30 08:47:33 48:18:param 2:471
2010-09-30 08:47:33 39:6:fetch next, 1 rows, total 1
2010-09-30 08:47:33 39:7:execute Select S_QUANTITY, S_DIST_01, 
S_DIST_02, S_DIST_03, S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, 
S_DI
ST_08, S_DIST_09, S_DIST_10, S_YTD, S_ORDER_CNT, S_REMOTE_CNT, 
S_DATA from STOCK where S_W_ID = ? and S_I_ID = ?
2010-09-30 08:47:33 39:7:param 1:282
2010-09-30 08:47:33 39:7:param 2:348

Note the time stamp at the beginning of each line and how all events appear to 
happen at the same time. The reason is because the default tracing timer 
resolution in solidDB is 1 second which is not practical for performance tuning 
purposes. Therefore be sure you add the following line to the Srv section of your 
solid.ini file and restart the server to enable millisecond trace timer resolution:

SRV.TraceSecDecimals=3
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Example 6-4 shows the contents of soltrace.out from a solidDB server running 
a simplified transaction from an actual benchmark. The SQL statements that 
were run in the transaction are one SET command, two SELECT statements, 
and one UPDATE and one INSERT command.

Example 6-4   Sample Monitor facility output

------------------------------------------------------------
2010-11-17 09:21:22
Version: 6.5.0.3 Build 2010-10-04
Operating system: Linux 2.6.18 AMD64 64bit MT
IBM solidDB Universal Cache 6.5
2010-11-17 09:21:23 User 'DBA' connected, user id 23, machine id 
coralxib02.torolab.ibm.com (127.0.0.1). 
2010-11-17 09:21:23.676 23:0:opencursor SQL_CUR1 'SET PASSTHROUGH READ NONE 
WRITE NONE'
2010-11-17 09:21:23.676 23:0:execute SET PASSTHROUGH READ NONE WRITE NONE
2010-11-17 09:21:23.676 23:0:exec rowcount 0
2010-11-17 09:21:23.677 23:1:opencursor SQL_CUR2 'Select C_LAST, C_CREDIT, 
C_DISCOUNT, W_TAX from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and 
C_ID = ? and W_ID = ?'
2010-11-17 09:21:23.677 23:2:opencursor SQL_CUR3 'Select D_NEXT_O_ID, D_TAX 
from DISTRICT where D_W_ID = ? and D_ID = ? for update'
2010-11-17 09:21:23.678 23:3:opencursor SQL_CUR4 'Update DISTRICT set 
D_NEXT_O_ID = ? where D_W_ID = ? and D_ID = ?'
2010-11-17 09:21:23.678 23:4:opencursor SQL_CUR5 'Insert into ORDERS values (?, 
?, ?, ?, ?, ?, ?, ?)'
2010-11-17 09:21:23.678 23:1:execute Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX 
from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID 
= ?
2010-11-17 09:21:23.678 23:1:param 1:3838
2010-11-17 09:21:23.678 23:1:param 2:2
2010-11-17 09:21:23.678 23:1:param 3:23
2010-11-17 09:21:23.678 23:1:param 4:3838
2010-11-17 09:21:23.679 23:1:fetch next, 1 rows, total 1
2010-11-17 09:21:23.679 23:2:execute Select D_NEXT_O_ID, D_TAX from DISTRICT 
where D_W_ID = ? and D_ID = ? for update
2010-11-17 09:21:23.679 23:2:param 1:3838
2010-11-17 09:21:23.679 23:2:param 2:2 
2010-11-17 09:21:23.679 23:2:fetch next, 1 rows, total 1
2010-11-17 09:21:23.679 23:3:execute Update DISTRICT set D_NEXT_O_ID = ? where 
D_W_ID = ? and D_ID = ?
2010-11-17 09:21:23.679 23:3:param 1:32
2010-11-17 09:21:23.679 23:3:param 2:3838
2010-11-17 09:21:23.679 23:3:param 3:2
2010-11-17 09:21:23.679 23:3:exec rowcount 1
2010-11-17 09:21:23.679 23:4:execute Insert into ORDERS values (?, ?, ?, ?, ?, 
?, ?, ?)
2010-11-17 09:21:23.680 23:4:param 1:31
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2010-11-17 09:21:23.680 23:4:param 2:23
2010-11-17 09:21:23.680 23:4:param 3:2
2010-11-17 09:21:23.680 23:4:param 4:3838
2010-11-17 09:21:23.680 23:4:param 5:2010-11-17 09:21:23
2010-11-17 09:21:23.680 23:4:param 6:NULL
2010-11-17 09:21:23.680 23:4:param 7:8
2010-11-17 09:21:23.680 23:4:param 8:1
2010-11-17 09:21:23.680 23:4:exec rowcount 1
2010-11-17 09:21:23.680 23:transopt commit (6)
2010-11-17 09:21:23.680 23:0:close
2010-11-17 09:21:23.680 23:1:close
2010-11-17 09:21:23.680 23:2:close
2010-11-17 09:21:23.681 23:3:close
2010-11-17 09:21:23.681 23:4:close
2010-11-17 09:21:23 User 'DBA' disconnected, user id 23, machine id 
coralxib02.torolab.ibm.com (127.0.0.1).

To understand the output, you must first understand what each token in the 
output means:

� The first token is the time stamp. As we previously stated, ensure that 
millisecond resolution is enabled.

� The next token is the connection ID. This number uniquely identifies each 
client connection to the solidDB server. Example 6-4 on page 165 shows only 
one connection, which is represented by connection ID 23. The example also 
shows when the user connected and disconnected.

� The third token is either a statement ID or a transaction operation. Because 
Example 6-4 on page 165 represents output from five SQL statements that 
were run within one transaction, we can see statement IDs from 0 to 4. When 
a workload is running with more than one client that runs many SQL 
statements, the combination of connection ID and statement ID can uniquely 
identify each entry in the trace output. Using grep or search facilities in your 
favorite file viewing utility, this combination can help you to quickly isolate and 
view one sequence of operations. Note also that the Monitor facility can be 
enabled for a specific user to have the server output less information, which 
can be easier to analyze. This step can be done with the following admin 
command:

monitor on user username

When the third token is not the statement ID, it is usually a transaction level 
operation, such as commit or rollback.

� Finally, after the connection ID and statement ID, the output shows the actual 
trace data for the operation. This information can be the actual SQL statement 
being prepared or executed, the parameters being used, or another statement 
level operation being performed.
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Analysis of Monitor facility output
Various determinations can be made from analyzing Monitor facility output. One 
of the most important determinations relative to performance is seeing the length 
of time for statement operations to complete.

Using the output in Example 6-4 on page 165, analyze several operations:

� Focusing on statement ID 2 (CUR2), which is a SELECT statement, you can 
see that the start timestamp for the prepare, shown as opencursor followed 
by the internally assigned cursor identifier is 2010-11-17 09:21:23.677. The 
execute started at 2010-11-17 09:21:23.679 which means that prepare took 
about 2 milliseconds to complete. 

� Next we can see that the fetch completed at 2010-11-17 09:21:23.679, 
therefore it appears to have taken 0 milliseconds. In actuality, this means that 
the execution completed in sub-milliseconds or microseconds, but because 
the timer resolution is not able to display microseconds we do not know 
exactly how many microseconds. This is also why we say that the operations 
take “approximately” a certain amount of time rather than exactly that amount 
of time.

The fact that the prepare took about twice as long as the execute aligns with 
the known fact that preparing SQL statements is more expensive than 
executing them. For this reason, prepare statements as few times as possible.

� We can also see from the output that statement ID 2 fetched a total of 1 row. 
This is important information to know, because, often the more rows that are 
being fetched, the longer the statement execution takes and the less 
advantage an in-memory database has over traditional disk-based database 
management systems.

� Now we look at another example, statement ID 4, which is an INSERT 
statement. The prepare started at 2010-11-17 09:21:23.678, the execute 
started at 2010-11-17 09:21:23.679 and the exec completed at 2010-11-17 
09:21:23.680. This means that the prepare took about 1 millisecond and the 
execution appears to have taken less than 1 millisecond.

� Another useful item that can be gleaned from the output is the time duration 
for a transaction to complete. We can see that the transaction executed by 
connection ID 23 started at about 2010-11-17 09:21:23.676. We can find the 
end of the transaction execution by the token transopt commit (6). Note that 
the 6 in parentheses is the internal identifier, for a commit transaction 
operation. The timestamp associated with this token is 2010-11-17 
09:21:23.680, therefore it took about 4 milliseconds to complete the 
transaction.
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Because the parameter values for the dynamic SQL statements are also 
displayed in the Monitor facility output, it is also useful for being able to 
reconstruct the actual SQL statements that were executed. You could then 
execute the statements with the same parameters in solsql, for example, to 
further analyze the statement. You can also examine the statement’s execution 
plan with the same parameters to determine whether the statement is fully 
optimized. More details about this information is in “Statement execution plans” 
on page 170.

The Monitor facility also provides the user the ability to perform various ad-hoc 
per-statement statistic calculations. The performance monitor counters, which 
are described in “Performance Monitoring (pmon) counters” on page 148, are all 
at a global level. With some searching (grep) and text parsing of the output file, 
you can get statement level counters. For example, you can see how many rows 
a specific SQL SELECT statement returns during a given period of time.

Using the SQL Trace Facility to trace SQL statements
The SQL Trace Facility is similar to the Monitor facility but does have key 
differences. Certain investigations require the information that provided by the 
Monitor facility, others require the SQL Trace Facility, and others might require a 
combination of the two. Table 6-12 illustrates various differences between the two 
facilities.

Table 6-12   Comparison of the Monitor facility and the SQL Trace facility

Description Monitor facility SQL Trace facility

Trace SQL statements executed in stored 
procedures

No Yes

Dynamic SQL parameter values dumped Yes No

Statement row counts dumped Yes No

Actual commit return code dumped No Yes

Includes user connect and disconnect 
messages

Yes No

“trans begin” dumped at the start of 
transactions

No Yes

Correlate statement ID to userlist and 
sqllist admin commands

Yes No
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Enabling the SQL Trace Facility is similar to enabling the Monitor facility, as 
shown in Example 6-5.

Example 6-5   Enabling the SQL Trace Facility in solsql

admin command 'trace on sql';
       RC TEXT               
       -- ----               
        0 Trace sql set to on 
1 rows fetched.

Example 6-6 provides output generated by the SQL Trace Facility for the same 
transaction that was run to generate the Monitor facility output in Example 6-4 on 
page 165.

Example 6-6   SQL Trace Facility output

2010-11-17 11:11:38.959 2:sql:161:prepare SET PASSTHROUGH READ NONE WRITE NONE 
2010-11-17 11:11:38.959 2:sql:161:execute:SET PASSTHROUGH READ NONE WRITE NONE
2010-11-17 11:11:38.960 2:sql:163:prepare SELECT C_LAST, C_CREDIT, C_DISCOUNT, 
W_TAX FROM CUSTOMER, WAREHOUSE WHERE C_W_ID = ? AND C_D_ID = ? AND C_ID = ? AND 
W_ID = ? 
2010-11-17 11:11:38.961 2:sql:164:prepare SELECT D_NEXT_O_ID, D_TAX FROM 
DISTRICT WHERE D_W_ID = ? AND D_ID = ? FOR UPDATE 
2010-11-17 11:11:38.961 2:sql:165:prepare UPDATE DISTRICT SET D_NEXT_O_ID = ? 
WHERE D_W_ID = ? AND D_ID = ? 
2010-11-17 11:11:38.961 2:sql:166:prepare INSERT INTO ORDERS VALUES (?, ?, ?, 
?, ?, ?, ?, ?) 
2010-11-17 11:11:38.961 2:sql:trans begin
2010-11-17 11:11:38.961 2:sql:163:execute:SELECT C_LAST, C_CREDIT, C_DISCOUNT, 
W_TAX FROM CUSTOMER, WAREHOUSE WHERE C_W_ID = ? AND C_D_ID = ? AND C_ID = ? AND 
W_ID = ?
2010-11-17 11:11:38.962 2:sql:163:fetch 
2010-11-17 11:11:38.962 2:sql:164:execute:SELECT D_NEXT_O_ID, D_TAX FROM 
DISTRICT WHERE D_W_ID = ? AND D_ID = ? FOR UPDATE
2010-11-17 11:11:38.962 2:sql:164:fetch 
2010-11-17 11:11:38.962 2:sql:165:execute:UPDATE DISTRICT SET D_NEXT_O_ID = ? 
WHERE D_W_ID = ? AND D_ID = ?
2010-11-17 11:11:38.962 2:sql:stmt commit (0) 
2010-11-17 11:11:38.963 2:sql:166:execute:INSERT INTO ORDERS VALUES (?, ?, ?, 
?, ?, ?, ?, ?)
2010-11-17 11:11:38.963 2:sql:stmt commit (0) 
2010-11-17 11:11:38.963 2:sql:trans commit (0) 
2010-11-17 11:11:38.963 2:sql:161:close
2010-11-17 11:11:38.963 2:sql:163:close
2010-11-17 11:11:38.963 2:sql:164:close
2010-11-17 11:11:38.963 2:sql:165:close
2010-11-17 11:11:38.963 2:sql:166:close
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The timestamp format and the connection IDs are the same as for the Monitor 
facility. However, immediately after the connection ID token is an sql token. This 
token is used because the soltrace.out output file can contain trace information 
for other components also.

Following the sql token is either a transaction level token or the transaction ID. 
Note that the transaction ID differs from the statement ID that is dumped in the 
Monitor facility output. The transaction ID is an internal number assigned by the 
server to each transaction. The statement ID in the Monitor facility is more useful 
as it can be correlated to the output of the sqllist or userlist admin 
commands.

A useful feature in the SQL Trace Facility is that it dumps out a trans begin token 
when the transaction is started. Note that in solidDB, transactions are started 
during the first SQL statement execution. Prepares and most SET statements 
are not part of a transaction.

The SQL Trace Facility does not dump out dynamic SQL parameter values, 
which can be considered an advantage if your goal is not to reconstruct exact 
SQL execution and rather analyze the flow of execution.

Timing statements using the SQL Trace Facility output is not as easy as with the 
Monitor facility as nothing is dumped when an INSERT, UPDATE, or DELETE 
statement completes. Timing transactions, however, is easier with the SQL Trace 
Facility. For example, the timestamp for the trans begin token is 2010-11-17 
11:11:38.961 and the timestamp for the trans commit token is 2010-11-17 
11:11:38.963. Therefore, this transaction took approximately 2 milliseconds to 
complete. Also note that the value in parentheses after the trans commit token is 
the actual return code of the commit, unlike the output from the Monitor facility.

Statement execution plans
When SQL statements are not running as fast as you expect them to, be sure to 
examine the execution plan of the statement, which can be done using the 
EXPLAIN PLAN FOR command. Basically, this means having solidDB display what 
lower level operations it will perform to complete the statement. From this, you 
can determine problems such as a table scan being performed where an index 
should be used instead, a loop join being performed where a merge join should 
be done instead, and so forth. After you determine problems such as these, you 
can then proceed to attempting to resolve them.
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Getting an execution plan is simply a matter of prepending the following line to 
the SQL statement and running that in solsql:

“explain plan for ” 

Often times however, the SQL statement might not be known or the parameters 
to dynamic SQL are not known. The best way to address this issue is to enable 
the Monitor facility as described in “Using the Monitor facility to monitor SQL 
statements” on page 163, and then view the resulting soltrace.out file.

Example 6-7 shows sample output from the Monitor facility, which we can cut and 
paste from to obtain an execution plan.

Example 6-7   Obtaining SQL statement and its parameters from Monitor facility output

2010-11-16 19:17:07.389 3:1:execute Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX 
from CUSTOMER, WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID 
= ?
2010-11-16 19:17:07.389 3:1:param 1:2318
2010-11-16 19:17:07.389 3:1:param 2:6
2010-11-16 19:17:07.389 3:1:param 3:5
2010-11-16 19:17:07.389 3:1:param 4:2318

In solsql, you have two options for entering the complete SQL statement:

� Manually substitute the parameter markers (?), with the parameter values 
listed. 

� Submit the SQL statement as is with the parameter markers and let solsql 
prompt you for each parameter, as Example 6-8 shows.

Example 6-8   Obtaining an execution plan in solsql

explain plan for Select C_LAST, C_CREDIT, C_DISCOUNT, W_TAX from CUSTOMER, 
WAREHOUSE where C_W_ID = ? and C_D_ID = ? and C_ID = ? and W_ID = ?;
Param 1:
2318;
Param 2:
6;
Param 3:
5;

Important: The execution plan that is displayed is the plan that would have 
been executed at that point in time (the statement is not actually executed). It 
is not a guarantee that this will always be the execution plan that will be 
followed. The reason for that is because over time the data and associated 
samples may change which could then change the optimizer decision for how 
to execute the statement.
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Param 4:
2318;
       ID   UNIT_ID    PAR_ID JOIN_PATH UNIT_TYPE          INFO               
       --   -------    ------ --------- ---------          ----               
        1         1         0         2 JOIN               LOOP JOIN          
        2         1         0         3                                       
        3         2         1         0 TABLE              CUSTOMER           
        4         2         1         0                    PRIMARY KEY        
        5         2         1         0                    C_ID = 5           
        6         2         1         0                    C_D_ID = 6         
        7         2         1         0                    C_W_ID = 2318      
        8         3         1         0 TABLE              WAREHOUSE          
        9         3         1         0                    PRIMARY KEY        
       10         3         1         0                    W_ID = 2318        
10 rows fetched.

Note that end of line markers (;) must be used after each parameter value is 
entered.

The actual execution plan is presented in a table form. This table form can be 
used to construct an execution plan graph or flowchart which is easier to read 
and understand.

You must first understand what the columns mean. The solidDB Information 
Center documents the meanings at the following location:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.sql.doc/doc/the.explain.plan.for.statement.html

Fully understanding this information, however, can still be daunting. To help you 
understand, we draw a picture of the execution plan shown in Example 6-8 on 
page 171.

To draw the picture, first start with row 1 which is the row that has UNIT_ID = 1. 
This row is part of the top most Unit or flowchart object, as shown in Figure 6-1.

Figure 6-1   Start of the execution plan graph

Next, we see that the second row of the execution plan also has a UNIT_ID of 1 
which means that the rest of the information in this row is associated with the 
same unit drawn in Figure 6-1. The only difference between this row and row 1, 

Unit_ID: 1
Unit_Type: Join (Loop Join)
Join_Path: 2
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however, is the JOIN_PATH of 3 instead of 2. What these two JOIN_PATH values 
mean is that UNIT_ID 2 and UNIT_ID 3 are joined to this unit. Therefore, what we 
need to do next is add unit 2 and 3 to our graph, as shown in Figure 6-2.

Figure 6-2   Final execution plan graph

Figure 6-2 is a relatively simple example, but it illustrates how to read, 
understand, and visualize the table form shown in Example 6-8 on page 171. 
After you become accustomed to looking at the simpler execution plans, you 
probably do not need to convert to or visualize it in a graph. However, some 
queries can become fairly complex; for those, you might want to draw them to 
help you visualize them in a graph form.

Using optimizer hints
The optimizer is a highly complex and accurate software component in the 
solidDB engine. It times however, it might not make a correct decision and you 
will have to suggest an alternative to it. This is where optimizer hints can be 
valuable. A hint is not to be confused with a directive. The optimizer overrides the 
hint if it has compelling evidence that the choice being made is correct. It is good 
practice to run your SQL statements through EXPLAIN PLAN FOR with and 
without the optimizer hint to see if the optimizer changed the plan.

The solidDB Information Center documents the optimizer hints:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.swg
.im.soliddb.sql.doc/doc/using.optimizer.hints.html

However, we can walk through an actual example to see what effect a hint can 
have on a query. Example 6-9 on page 174 shows the query being used and the 
execution plan.

Unit_ID: 1
Unit_Type: Join (Loop Join)
Join_Path: 2

Unit_ID: 2
Unit_Type: Table (CUSTOMER)
Primary Key
C_ID = 5
C_D_ID = 6
C_W_ID = 2318

Unit_ID: 3
Unit_Type: Table (WAREHOUSE)
Primary Key
W_ID = 2318
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Example 6-9   Query with which to try an optimizer hint

EXPLAIN PLAN FOR
SELECT
                COUNT(DISTINCT S_I_ID)
FROM
                STOCK, ORDER_LINE
WHERE
                (S_W_ID = 2885 AND
                 S_QUANTITY < 18 AND
                 S_I_ID = OL_I_ID AND
                 S_W_ID = OL_W_ID AND
                 OL_D_ID = 9 AND
                 OL_O_ID BETWEEN 11 and 30);
       ID   UNIT_ID    PAR_ID JOIN_PATH UNIT_TYPE          INFO               
       --   -------    ------ --------- ---------          ----               
        1         1         0         0 GROUP                                 
        2         2         1         0 ORDER              NO PARTIAL SORT    
        3         3         2         4 JOIN               LOOP JOIN          
        4         3         2         5                                       
        5         4         3         0 TABLE              ORDER_LINE         
        6         4         3         0                    PRIMARY KEY        
        7         4         3         0                    OL_O_ID <= 30      
        8         4         3         0                    OL_O_ID >= 11      
        9         4         3         0                    OL_D_ID = 9        
       10         4         3         0                    OL_W_ID = 2885     
       11         5         3         0 TABLE              STOCK              
       12         5         3         0                    PRIMARY KEY        
       13         5         3         0                    S_W_ID = ...       
       14         5         3         0                    S_I_ID = ...       
       15         5         3         0                    S_QUANTITY < 18    
       16         5         3         0                    S_W_ID = 2885      
16 rows fetched.

As Example 6-9 shows, a LOOP JOIN is being performed to join the two tables. 
Without analyzing the size of the tables or any other statistic, assume for 
demonstration purposes that we think this query might benefit from doing a 
MERGE JOIN instead. To do a comparison however, we first must quantify the 
execution time of this query as it is.

The solsql query editor has the ability to time statements executed within it. To do 
this start solsql with the -t option. After every statement execution, the total time 
required to execute the statement will be displayed. If you use the -tt option, this 
functionality is enhanced further to show the timings needed for prepare, 
execute, and fetch separately as they occur. Example 6-10 on page 175 shows 
the execution of the sample query in solsql started with the -tt option.
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Example 6-10   Sample query timed in solsql

SELECT
                COUNT(DISTINCT S_I_ID)
FROM
                STOCK, ORDER_LINE
WHERE
                (S_W_ID = 2885 AND
                 S_QUANTITY < 18 AND
                 S_I_ID = OL_I_ID AND
                 S_W_ID = OL_W_ID AND
                 OL_D_ID = 9 AND
                 OL_O_ID BETWEEN 11 and 30);
Prepare time 0.0004671 seconds.
Execute time 0.0044830 seconds.
COUNT(DISTINCT S_I_ 
------------------- 
       12 
Fetch time 0.0001431 seconds.
1 rows fetched.

Time 0.0051959 seconds.

As shown, executing the query took 0.0044830 seconds or 4.5 milliseconds.

Now, we analyze the query with a hint to use MERGE JOIN instead of LOOP 
JOIN. Example 6-11 shows the execution plan of the sample query with the 
optimizer hint to use MERGE JOIN. As we can see, UNIT_ID 3 is now a MERGE 
JOIN, so we know that the optimizer is using the hint.

Example 6-11   Execution plan of sample query with optimizer hint

EXPLAIN PLAN FOR
SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
                COUNT(DISTINCT S_I_ID)
FROM
                STOCK, ORDER_LINE
WHERE
                (S_W_ID = 2885 AND
                 S_QUANTITY < 18 AND
                 S_I_ID = OL_I_ID AND
                 S_W_ID = OL_W_ID AND
                 OL_D_ID = 9 AND
                 OL_O_ID BETWEEN 11 and 30);
       ID   UNIT_ID    PAR_ID JOIN_PATH UNIT_TYPE          INFO               
       --   -------    ------ --------- ---------          ----               
 Chapter 6. Performance and troubleshooting 175



        1         1         0         0 GROUP                                 
        2         2         1         0 ORDER              NO PARTIAL SORT    
        3         3         2         4 JOIN               MERGE JOIN         
        4         3         2         6                                       
        5         4         3         0 ORDER              NO ORDERING REQUIRED
        6         5         4         0 TABLE              STOCK              
        7         5         4         0                    SCAN TABLE         
        8         5         4         0                    S_QUANTITY < 18    
        9         5         4         0                    S_W_ID = 2885      
       10         6         3         0 CACHE                                 
       11         7         6         0 ORDER              NO PARTIAL SORT    
       12         8         7         0 TABLE              ORDER_LINE         
       13         8         7         0                    PRIMARY KEY        
       14         8         7         0                    OL_O_ID <= 30      
       15         8         7         0                    OL_O_ID >= 11      
       16         8         7         0                    OL_D_ID = 9        
       17         8         7         0                    OL_W_ID = 2885     
17 rows fetched.

Next, we time the actual execution of the query when it uses the hint. 
Example 6-12 shows the output.

Example 6-12   Timing the sample query which is now using MERGE JOIN

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
                COUNT(DISTINCT S_I_ID)
FROM
                STOCK, ORDER_LINE
WHERE
                (S_W_ID = 2885 AND
                 S_QUANTITY < 18 AND
                 S_I_ID = OL_I_ID AND
                 S_W_ID = OL_W_ID AND
                 OL_D_ID = 9 AND
                 OL_O_ID BETWEEN 11 and 30);
Prepare time 0.0005541 seconds.
Execute time 2.5068240 seconds.
COUNT(DISTINCT S_I_ 
------------------- 
       12 
Fetch time 0.0001600 seconds.
1 rows fetched.

Time 2.5075850 seconds.
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As we can see, execution of the query took 2.5 seconds to complete, which is 
much longer than running without the hint to use MERGE JOIN. Therefore, in this 
case, changing the optimizer default execution plan decisions is not a good plan. 
This is normally the case, but as mentioned previously, in certain cases, using a 
hint can help.

Other useful admin command commands
Many other useful admin commands can be used to view and analyze current 
server performance. They are documented and can be searched for in the 
solidDB Information Center:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/index.jsp

The most useful commands for performance analysis are as follows:

� admin command status

Use this command to see a quick snapshot of the overall database status. 
Interesting items here are Cache hit rate to see the effectiveness of the 
database cache, memory usage to correlate with OS memory status, and 
total user counts.

� admin command userlist -l

Use this command to get detailed information about each user currently 
connected to the database, and various associated transaction information.

� admin command sqllist

Use this command to see a list of currently running SQL statements. This 
command is useful for watching any long running queries. You can correlate 
the statement ID in this output to the statement ID output from the Monitor 
facility.

Useful operating system utilities 
In addition to using the various tools provided by solidDB to analyze server and 
application performance, monitoring performance at the operating system level is 
also important. If the solidDB server process is using too many system 
resources, that will definitely slow down overall performance. In this section we 
discuss some of the most important operating system tools and specifically what 
to look for. These tools are documented in many places and many other books, 
therefore, we describe only the most useful items. In our examples, we use the 
Linux operating system.
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vmstat
As with any other database management system, monitoring the memory, CPU, 
and paging statistics of the operating system are important. The vmstat utility is 
one of the most important utilities for achieving monitoring. Because many 
problems occur without warning, run vmstat indefinitely with a 2 - 5 second 
interval, and save the output with a timestamp. Unfortunately vmstat output does 
not include a timestamp so Example 6-13 provides a sample script for achieving 
this.

Example 6-13   vmstat with timestamps

#!/bin/ksh

 [ 1 ]; do
   date
   vmstat 2 30 | awk '{ if (skipnext == 1) { \
                           skipnext=0 ; \
                           print "<<summary line omitted>>"; } \
                        else \
                           print $0 ; \
                        if (/swpd/) \
                           skipnext=1 }'
done

Because the first statistic line dumped out by vmstat is a summary since the last 
system restart, the awk utility is used to prune that line to ensure that there is no 
confusion in later analysis of the output. Example 6-14 shows sample vmstat 
data, using this script, collected during a solidDB benchmark run.

Example 6-14   Sample vmstat output

Tue Nov 23 13:04:00 EST 2010
procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
<<summary line omitted>>
 0  0 467192  91760   4072 7829664    0    0  2588  2200 12490 24809 18  3 79  0  0
 1  0 467192  93580   4232 7826420    0    0  4707  8830 12982 28081 19  4 77  0  0
 3  0 467192  89616   4408 7825216    0    0  5187  2221 13059 28605 19  4 77  0  0
 1  0 467192  88964   4572 7825052    0    0  7166  2200 13605 32149 20  4 76  0  0
 9  0 467192  86944   4768 7820800    0    0  8140  2234 13843 33824 20  5 75  0  0
 5  0 467192  89488   4928 7817524    1    0  8671  2182 13928 34627 21  5 74  0  0
 9  0 467192  92188   5116 7814252    0    0 10701  2208 14500 37650 21  5 74  0  0
 4  0 467192  92192   5308 7809952    0    0 15434  8825 15716 45398 21  6 73  0  0
 0  0 467192  91004   5468 7805680    0    0 14493  2190 15370 43643 20  6 74  0  0
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First, look at the si and so columns. If these values are anything other than 0 or 
consistently larger than approximately 500 - 1000, then system swapping is 
occurring. System swapping means that the operating system is running out of 
physical memory and needs to use the disk as virtual memory. This way is bad 
for performance and must be avoided. Example 6-14 on page 178, shows that no 
swapping is occurring. If swapping is occurring, examine solidDB memory usage. 
If the usage exceeds the total available physical RAM minus approximately 
500 MB to 1 GB for operating system and other applications, consider reducing 
the usage by analyzing and appropriately setting one or more of the following 
configuration parameters:

� Srv.ProcessMemoryLimit
� MME.ImdbMemoryLimit
� SharedMemoryAccess.MaxSharedMemorySize
� IndexFile.CacheSize

Also in vmstat output, look at the CPU usage. The closer that values of us (user) 
and sy (system) columns are to 100, the more saturated the CPU is and the 
more bottlenecked the system is. If you see this situation and you think you 
should be able to run more statements, it could be that one or more SQL 
statements are running for a long time, consuming a lot of CPU usage. In this 
case, consider using the Monitor facility in conjunction with the sqllist admin 
command to identify the suspect query. After the suspect query is found, look at 
its execution plan to determine whether it is unnecessarily doing a table scan, 
using the external sorter, or doing some other non-optimal operation.

iostat
For in-memory tables, disk bottlenecks are not an issue as they are with 
traditional disk-based databases. However, solidDB is capable of disk-based 
tables also, so iostat is an important operating system monitoring utility. On 
Linux, iostat must always be run with the -x parameter to ensure that the 
extended disk statistics are gathered. Example 6-15 shows sample iostat -x 
output taken from a relatively idle system.

Example 6-15   Sample iostat -x output

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.12    0.00    0.02    0.03    0.00   99.84

Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
sda               0.00    43.00    0.00    5.50     0.00   396.00    72.00     0.04    7.27   3.64   2.00
sdb               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sdc               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sdd               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sde               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
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First, look at is the %util column to see what percentage of the disk is being 
used. As the example shows, the usage is low, which is expected because the 
machine is mostly idle. If values approach 100% here, that is a good indication of 
a disk bottleneck.

Next, look at svctm column, which lists the average number of milliseconds of 
time for the device to service an IO request. The lower the better, and anything 
over 7 or 8 starts to be a concern.

Also consider the avgqu-sz column metric, which reports the average queue 
length sent to the device. You typically want this to be in the single digits. 
Anything too low in conjunction with high disk usage can mean that the 
application is flushing to disk too often and not doing enough buffering, thus 
putting an extra load on the disk.

6.1.2  Tools available in InfoSphere CDC

InfoSphere CDC is the component that handles the replication of data between 
the solidDB front-end database and the back-end database. It is also a 
stand-alone product with many features that are not necessary in a solidDB 
Universal Cache configuration. Therefore, in this section we focus on the most 
useful and easy-to-use performance monitoring tools.

Management Console statistics
The GUI Management Console is capable of capturing replication statistics and 
presenting them in table and graph form. You must first enable statistics 
collection on your subscriptions first, as follows:

1. In the Subscriptions tab of the Monitoring view, right-click a subscription and 
select Show Statistics. A tab opens at the bottom half of the management 
console showing Latency, Source, and Throughput statistics tables.

2. Click Collect Statistics at the top left corner of this tab to enable statistics 
collection. The statistics tables and graphs are populated in real-time.

3. The graphs can be exported to Excel format by clicking Save Data at the top 
right corner of the statistics tab.
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Figure 6-3 gives you an idea of the Management Console with a statistics view 
and a graph of Throughput Operations per second. This figure is from an active 
workload that was running in solidDB Universal Cache.

Figure 6-3   InfoSphere CDC Management Console Throughput Statistics

As Figure 6-3 shows, we were achieving 2,099 average operations per second. 
Our workload was not an exhaustive one so this number is by no means 
representative of the maximum operations per second that InfoSphere CDC is 
capable of replicating.

2,099
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Figure 6-4 shows the same subscription and statistics view, except this time the 
live graph is showing log operations per second.

A number of live graphs are available to view the statistics.

Figure 6-4   InfoSphere CDC Management Console Log Operations Statistics

6.1.3  Performance troubleshooting from the application perspective

In this section, we address typical performance problems that might be 
encountered. It is structured to address typical perceived performance problems 
from the application’s perspective, such as the following problems:

� Database response time (latency) is too high
� Database throughput is too low
� Database resource consumption is too high
� Database performance degrades over time
� Database response times are unpredictable
� Special operations take too long

2,112
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Database response time (latency) is too high
Particularly for online transaction processing (OLTP) applications, database 
response time is a critical aspect of performance. The quicker SQL statements 
and transactions can run the better the results.

Ideally, an application has timing capabilities built into it to ensure statements and 
transactions are running fast enough to meet or exceed service level 
agreements. This usually means that the operations that are performed during 
that timing window are significantly more than simply reading the data from a 
table for example. Therefore, many possible causes for slow response time exist, 
and many possible cures are available. To fully realize where and how response 
time can be negatively affected, you should understand the steps that occur 
during the processing of a typical statement:

1. The function, for example SQLExecDirect(), is called by the application. 
Execution moves into the solidDB driver, but is still within the client application 
process. The driver builds a network message in a memory buffer consisting 
essentially of the SQL string and some session information.

2. The network message created by the driver is passed through the network to 
the solidDB server process. This is where network latencies can have a 
negative effect. Network messages can also be used within the same host 
machine also (local connections). solidDB supports a direct linking model 
called Accelerator and a shared memory access model (SMA), where the 
application contains all the server code also. Therefore, the following 
conditions are true:

– No need to copy the host language variables to a buffer

– No need to send the buffer in a network message

– No need to process the buffer in the server

– No context switches, that is, the query is processed within server code 
using the client application's thread context.

Using the Accelerator or SMA model essentially removes steps 1, 2, 5, 6 
and 7 from the process.

3. The server process captures the network message and starts to process it. 
The message goes through the SQL Interpreter (which can be bypassed by 
using prepared statements) and the SQL Optimizer (which can be partly or 
fully bypassed by Optimizer hints). The solidDB server process can be 
configured to write an entry to tracing facilities with a millisecond-level 
timestamp at this point.
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4. The query is directed to the appropriate storage engines (MME, disk-based 
engine, or both) where the latencies can consist of multiple elements:

– In the disk-based engine, the data can be found in the database cache. If it 
is, no disk head movements are required. If the data resides outside of 
cache, disk operations are needed before data can be accessed.

– in The main-memory engine, the data is always found in memory.

– Storage algorithms for the main memory engine and disk-based engine 
differ significantly and naturally have an impact on time spent in this stage.

– For complicated queries, the latency will be impacted by the optimizer 
decisions made in step 3, such as the choice of index, join order, sorting 
decisions, and so forth.

– For COMMIT operations (either executing COMMIT WORK or 
SQLTransEnd() by ODBC), a disk operation for the transaction log file is 
performed every time, unless transaction logging is turned off or relaxed 
logging is configured.

5. After statement execution is completed, a return message is created within 
the server process. For INSERT, DELETE, and UPDATE statements, the 
return message is always a single message that essentially contains success 
or failure information and a count of the number of rows affected. For SELECT 
statements, a result set is created inside the server to be retrieved in 
subsequent phases. Only the first two (configurable) rows are returned to the 
application in the first message. At this stage, an entry with a timestamp 
exists, written to the server-side soltrace.out file.

6. The network message created by the server is passed back to the driver 
through the network.

7. The driver captures the message, parses it and fills the appropriate return 
value variables before returning the function call back to driver application. 
The real response time calculation should end here.

8. Under strict definition, logical follow-up operations (for example retrieval of 
subsequent rows in result sets) should be considered as part of a separate 
latency measurement. In this chapter, however, we accept the situation where 
several ODBC function calls (for example SQLExecute() and loop of 
SQLFetch() calls) can be considered as a single operation for measurement.

Figure 6-5 on page 185 shows the eight steps of the statement processing flow. 
It suggests that latencies at the client depend on network response times and 
disk response times for all queries where disk activity is needed. Both response 
times are environment specific and cannot really be made much faster with any 
solidDB configuration changes. There are, however, ways to set up the solidDB 
architecture to prevent both network and disk access during regular usage.
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Reducing the database latency is essentially all about either reducing times 
spent within individual steps by design, architectural or configuration changes or 
possibly eliminating the steps altogether. 

Figure 6-5   Statement processing flow

The importance of the steps depends fully on the type of load going through the 
steps. Optimization effort is not practical before the load is well understood. 
Consider the following two examples:

� Example 1: The application tries to insert 1 million rows to a single table 
without indexes as fast as possible using prepared statements. Steps 1, 2, 3, 
4, 5, 6, 7 are all small but they are executed a million times. An architectural 
change to use the directly linked accelerator or SMA model will help to bypass 
steps 1, 2, 5, 6, and 7, and will significantly speed up the operation.

� Example 2: The application runs a join across 3 tables of 1 million rows each. 
The join returns 0 or few rows. Steps 1, 2, 5, 6, and 7 are executed only once 
and are trivial and fast. Steps 3 and 4 are executed once but are significantly 
more time consuming than they were in Example 1. Almost all the time will be 
spent in step 4, and removing steps 1, 2, 5, 6, and 7 does not bring 
meaningful benefits.

Optimization of simple write operation latencies
By simple write operations, we mean inserts, deletes, or updates to one table 
(preferably having few indexes) that modify only a small number of rows at a time. 
All the steps previously described are involved and none of the steps are 
extensively heavy.

Application Driver Network

3

4

zero to 
multiple 

physical disk 
operations 5

Accelerator

1. ODBC function call

2. Network message

3. SQL Interpreter and
Optimizer

4. Data storage access

5. Construction of return 
message

6. Return network message

7. Driver receives message

8. Follow-up operations if 
needed

1

2

6

Data Storage

7

Server
 Chapter 6. Performance and troubleshooting 185



The main performance issues are as follows:

� If there is no need for persistence on disk for all operations, one of the 
following statements is true:

– There might not be a need to commit every time.

– Transaction logging could be turned off.

– Relaxed logging might be acceptable (perhaps in conjunction with 
HotStandby).

� Simple write operations cause intensive messaging between client and server 
that can be optimized if use of the Accelerator linking or SMA model is 
possible.

� In database write operations, finding the location of the row is generally a 
substantial part of the effort. solidDB's main memory technology enables 
faster finding of individual rows. Hence, using main memory technology can 
potentially improve performance with simple write operations. In most 
practical cases, it will be fully effective only after the need for disk writes at 
every commit has been removed one way or the other.

� For small statements, running through the SQL interpreter is expensive. 
Hence, the use of prepared statements will improve performance.

� In all write operations, all indexes must be updated also. The more indexes 
there are, the heavier the write operations will be. In complicated systems, 
there is a tendency to have indexes that are never used. The effort involved in 
validating whether or not all indexes are really necessary can pay off with 
better performance for write operations.

� For simple write operation latencies, the effect of API selection (ODBC, JDBC, 
SA) is quite marginal. SA is the fastest in theory but the difference is typically 
less than 10%.

� In theory, avoiding data type conversions (such as using DATE, TIME, 
TIMESTAMP, NUMERIC and DECIMAL) can improve performance. However, 
because of small number of rows affected, this effect is also marginal.

Key diagnostics in simple insertion operations
Many pmon counters can monitor overall throughput: SQL Execute, DBE Insert 
(or DBE Update, DBE Delete), Log file write, File write, Trans commit, and 
several HotStandby counters if HotStandby is being used. See “Performance 
Monitoring (pmon) counters” on page 148 for details about each counter. 

For simple insertion latencies, Monitoring and SQL Tracing are the only available 
diagnostic tools within the solidDB product. See “Using the Monitor facility to 
monitor SQL statements” on page 163 for more details.
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Optimization of simple lookup latencies
In simple lookups, the database executes a query which is expected to return 
one row, or no rows at all. Also, index selection is considered to be trivial. That is, 
the where condition is expected to be directly resolvable by the primary key or 
one of the indexes.

Main memory technology was designed for applications running predominantly 
simple lookups. With these kinds of applications, performance improvements can 
be up to ten times better than databases using disk-based algorithms. If available 
RAM exists, using in-memory tables can be highly beneficial in these 
circumstances.

Similar to simple inserts, using prepared statements to avoid the SQL Interpreter 
being used for every statement execution and removing unnecessary network 
messages and context switches by using directly linked accelerator or SMA 
mode, can also improve performance.

Almost all discussions about database optimizers are related to bad optimizer 
decisions. With reasonably simple and optimized lookups in tables with several 
indexes, it is possible that the time used by the optimizer is substantial enough to 
be measurable. This time can be removed by using optimizer hints to avoid the 
optimization process altogether. See “Using optimizer hints” for more information.

Optimization of massive write operation latencies
Massive write operations differ from simple operations essentially by the number 
or rows being involved in a single operation. Both single update or delete 
statements affecting huge number of rows or a succession of insert statements 
executed consecutively are considered massive write operations in this section.

Massive write operations can conceptually have more of a throughput problem 
than a latency one however, we address them here mostly to aid in 
understanding and comparing these types of operations to others.

In solidDB’s disk-based tables, the primary key defines the physical order of the 
data in the disk blocks. In other words, the rows with consecutive primary key 
values reside next to each other (most likely in the same block) on the disk also. 
Therefore, by doing massive write operations in primary key order can 
dramatically reduce disk operations. With disk-based tables this factor is usually 
the strongest one affecting primary key design.

For example, consider a situation in which the disk block size is 16 KB and row 
size is 100 bytes, which means that 160 rows can fit in same block. We consider 
an insert operation where we add 1600 rows. If we can insert these 1600 rows in 
primary key order, the result is 10 disk block writes in the next checkpoint. If we 
are inserting the rows in random (with respect to the primary key) order, almost 
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all 1600 rows will access separate disk blocks. Instead of 10 file-write operations, 
the server could be doing 1600.

When running the massive write operations by executing a statement for every 
row (that is, not running update or delete that affect millions of rows), using 
prepared statements is important. 

When running massive insertions with strict logging enabled, the size of the 
commit block is an important factor. If every row is committed, the disk head must 
be moved for every row. An optimal size for a transaction depends on many 
factors, such as table and index structures, balances between CPU and disk 
speed. We suggest some iteration with real hardware and data. Common starting 
values with typical applications and hardware would be in the range of 
2000 - 20000. Fortunately, the performance curve regarding medium level 
transaction size is reasonably flat. The key is to avoid extremes. 

For maximum performance of massive insertions in the client/server model, the 
solidDB SA API using array insert can have an edge over ODBC or JDBC. This 
way is mostly based on providing the programmer full control on inserting 
multiple rows in the same network message. solidDB ODBC and JDBC drivers 
provide support for bulk operations as defined by the corresponding standards. 
The implementations, however, are built on calling individual statement 
executions for every row in the bulk.

Excessive growth of the solidDB Bonsai Tree is the single most common 
performance problem experienced with disk-based tables. The problem is 
caused by the database preparing to respond to all queries with data as it was 
when the transaction started. Because disk-based tables’ optimistic locking 
allows other connections to continue modifying the data, duplicate versions of 
modified rows are needed. If a transaction lasts infinitely long, the Bonsai Tree 
grows infinitely large. With massive insertions, the problem can be caused by 
having one idle transaction open for a long time. The problem is relatively easy to 
detect and fix by closing the external connection.

Key diagnostics in massive insertions 
The key diagnostics to follow are the pmon counters DBE Insert, DBE Delete, 
DBE Update, Trans commit, SQL Execute, File Write, and Ind nomrg write.

Optimization of complicated query latencies
In certain applications, most queries are in the complicated query category. 
Essentially this statement means that something else is required in addition to 
simply retrieving the rows, such as the following examples:

� Sorting the data
� Grouping the data
� Joining the data across multiple tables
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The more complicated the query is, the more potential execution plans there are 
available for the optimizer to choose from when running the query. For example, 
there are many, many potential ways to execute a join of 10 tables.

Query optimization is a field of expertise all its own. solidDB, like all other major 
RDBMS products, has an optimizer to decide on the execution plan, which is 
essentially based on estimates of the data. Experience with query optimization 
for any other product is almost directly applicable when analyzing solidDB query 
optimization. For applications running complicated queries, preparation for bad 
optimizer decisions is an important step in system design. Even with low failure 
rates (say one in ten million), the impact of bad optimizer decisions might well 
transform a sub-second query to a query that will run for several hours.

The problem with bad optimizer decisions is that they are data specific and 
superficially random. For the decision, the optimizer selects a subset of randomly 
selected data from the tables and creates an estimate on the number of rows 
involved based on the random set. By definition, the random sets are not always 
similar and it is possible that a random set is sufficiently unlike the real data so as 
to mislead the optimizer.

With the randomness of the process, fully resolving the problem during the 
development and testing process is practically impossible. The application needs 
the capability of detecting the problems when they occur in the production 
system. When doing so, consider the following examples:

� Detecting unexpectedly long response times can be done fully on the 
application level or it can be done using solidDB diagnostics such as SQL 
Trace files or the admin command sqllist.

� To validate how incorrect the optimizer decision is, the bad execution plan 
must be captured also by running the EXPLAIN PLAN diagnostic of the query 
when the performance is bad. Running the query when performance is good 
does not prove anything. Building a mechanism into an application, which 
automatically collects EXPLAIN PLAN diagnostics for long lasting queries is 
suggested, but may not be trivial.

� Almost always, bad execution plans (and even more so, the disastrously bad 
ones) are combined with an excessive number of full table scans. We show 
an example in “Example: How to detect full table scans from pmon counters 
with disk-based tables” on page 190. It describes how to look for patterns in 
pmon counters to understand when a full table scan might be in progress 
even without collecting EXPLAIN PLAN output for all queries.
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Key diagnostics related to complicated query latencies
Often, complicated and heavy queries are executed concurrently with massive 
amounts of other (usually well-behaving) load. Then, in addition to executing 
slowly, they interfere with the other load also. Identifying this situation is not 
straightforward without application diagnostics. Finding one individual 
long-lasting query among hundreds of thousands of fast queries usually requires 
time and effort.

Before starting the task of finding potentially heavy queries executing full table 
scans, assess whether the perceived problems are likely to be caused by 
individual heavy queries. There is no exact method for that, but pmon counters 
Cache Find, DBE Find, and File read can be used to detect exceptionally large 
low-level operations indicating full table scans. Suggestions for doing this are in 
“Example: How to detect full table scans from pmon counters with disk-based 
tables” on page 190.

For finding long lasting queries among a huge mass of well-behaving queries, the 
following methods are available:

� Use the admin command sqllist to list all queries currently in the server's 
memory. 

� SQL tracing with time stamps (either admin command monitor on or admin 
command trace on sql produce a potentially very large file containing all 
SQL executions. Finding the long-lasting ones from the big file might be time 
consuming but it can be done. See the following sections for more 
information:

– “Using the Monitor facility to monitor SQL statements” on page 163 
– “Using the SQL Trace Facility to trace SQL statements” on page 168 

After the problematic queries have been found, the execution plan can be 
validated with the EXPLAIN PLAN utility. See “Statement execution plans” on 
page 170 for more information.

Example: How to detect full table scans from pmon counters with 
disk-based tables

In this example, we describe how to detect full table scans from pmon counters 
with disk-based tables. The pb_demo table has an index on column J but not on 
column K.
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As expected, the execution plans shown in Example 6-16 illustrates an index 
based search and a full table scan.

Example 6-16   Sample explain plans showing an index scan and a table scan

explain plan for select * from pb_demo where j = 324562;
       ID   UNIT_ID    PAR_ID JOIN_PATH UNIT_TYPE          INFO
       --   -------    ------ --------- ---------          ----
        1         1         0         2 JOIN
        2         2         1         0 TABLE              PB_DEMO
        3         2         1         0                    INDEX PB_DEMO_J
        4         2         1         0                    J = 324562
4 rows fetched.

Time 0.03 seconds.
explain plan for select * from pb_demo where k = 324562;
       ID   UNIT_ID    PAR_ID JOIN_PATH UNIT_TYPE          INFO
       --   -------    ------ --------- ---------          ----
        1         1         0         2 JOIN
        2         2         1         0 TABLE              PB_DEMO
        3         2         1         0                    SCAN TABLE
        4         2         1         0                    K = 324562
4 rows fetched.

Time 0.03 seconds.

Also, as expected, indexed searching is faster, as shown in Example 6-17.

Example 6-17   Comparing index based search versus table scan based search

select * from pb_demo where k = 324562;
        I         J         K TXTDATA1           TXTDATA2
        -         -         - --------           --------
   319995    321229    324562 sample             data
1 rows fetched.

Time 1.30 seconds.
select * from pb_demo where j = 324562;
        I         J         K TXTDATA1           TXTDATA2
        -         -         - --------           --------
   323328    324562    327895 sample             data
1 rows fetched.

Time 0.02 seconds.
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The pmon counters, also show a distinct pattern. In Example 6-18 the 
un-indexed search (with admin command pmon accounting for the second SQL 
Execute) was run during the first time slice (the left-most column of numbers), 
while the indexed search was run during the second last time slice of 31 (third 
column of numbers from the right). The execute during the last time slice of 13 
seconds is the second execution of pmon admin command.

Example 6-18   pmon counters for indexed and un-indexed search

admin command 'pmon -c';
       RC TEXT
       -- ----
        0 Performance statistics:
        0 Time (sec)                        35     35     30     35     31     13    Total
        0 File read                   :    643      0      0      0      1      0    17473
        0 Cache find                  :   2064      0      0      0      4    101 17428110
        0 Cache read                  :    643      0      0      0      1      0    17115
        0 SQL execute                 :      2      0      0      0      1      1      146
        0 DBE fetch                   :      1      0      0      0      1      0     3908
        0 Index search both           :      0      0      0      0      0      0  1002100
        0 Index search storage        :      1      0      0      0      2      0      213
        0 B-tree node search mismatch :   1957      0      0      0      6      1 29018247
        0 B-tree key read             : 500000      0      0      0      2      0  8476993

To find full-table scans, search for the number of SQL Executes being 
disproportionate to the numbers for File Read, Cache Find, B-Tree node search 
mismatch and B-tree read operations. We can see in this example that we are 
doing 643 Cache reads and 2064 Cache finds for 2 SQL Executes. Then a few 
minutes later we are doing 0 Cache reads and 101 Cache finds for 1 SQL 
Execute. This is good evidence of a table scan being done in the first execution.

Optimization of large result set latencies
Creating a large result or browsing through it within the server process set is not 
necessarily an extensively heavy operation. Transferring the data from the server 
process to the client application through the appropriate driver will, however, 
consume a significant amount of CPU resources and potentially lead to an 
exchange of large amount of network messages.

For large result sets, the easiest way to improve performance is to use the 
directly linked accelerator or SMA options. It removes the need for network 
messages, copying data from one buffer to another and context switches, almost 
entirely. There are also key diagnostics that can be used to analyze the latencies 
of large result sets. They are the pmon counters SQL fetch and SA fetch, as well 
as fetch termination in the soltrace.out file.

When processing large result sets, applications are always consuming some 
CPU to do something about the data just retrieved. To determine how much of 
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the perceived performance problem is really caused by the database, we suggest 
the following approach:

� In a client/server architecture, look at how much of the CPU is used by the 
server process and how much by the application.

� In an accelerator or SMA model, it is occasionally suggested to re-link just to 
assess database server performance. Also, rerunning the same queries 
without any application data processing might be an option

The difference between a fully cached disk-based engine and in-memory tables 
in large result set retrieval is quite minimal. Theoretically, disk-based engines are 
actually slightly faster.

In large result sets the speed of data types becomes a factor, because the 
conversion needs to be done for every column in every row to be retrieved. Some 
data types (such as INTEGER, CHAR, and VARCHAR) require no conversion 
between the host language and binary format in the database others do (such as 
NUMERIC, DECIMAL, TIMESTAMP, and DATE). 

Database throughput is too low
In some cases, all response times seem adequate but overall throughput is too 
low. Throughput is defined as the count of statement executions or transactions 
per time unit. In these types of situations, there is always a bottleneck on one or 
more resource (typically CPU, disk, or network) or some type of lock situation 
blocking the execution. Often, somewhat unexpected application behavior has 
been misdiagnosed as a database throughput problem, although the application 
is basically not pushing the database to its limits. This application behavior can 
be either the application consuming all of the CPU for processing the data on the 
application side, for example, or having only application-level locks (or lack of 
user input) to limit the throughput of the database.

In this section, we focus on what can be done in the database to maximize 
throughput. 

Essentially, database throughput is usually limited by the performance of the 
CPU, disk, or network throughput. If the limiting resource is already known, focus 
only on the following principles.

� To optimize for CPU-use:

– Avoid full table scans with proper index design.

– With disk-based tables, optimize the IndexFile.BlockSize configuration 
parameter. Smaller block size tends to lead to less CPU usage with a price 
of slower checkpoints.

– Assess whether MME technology can be expected to have an advantage.
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– Use prepared statements when possible.

– Optimize commit block size.

� To optimize for minimal dependency on disk response times:

– Use main memory tables when possible.

– With disk-based tables, make sure your cache size is big enough (optimize 
the IndexFile.CacheSize configuration parameter).

– Check whether some compromises on data durability would be 
acceptable. Consider turning transaction logging off altogether or using 
relaxed logging mode. These choices can be more acceptable if the 
HotStandby feature is used or there are other data recovery mechanisms.

� To optimize for the least dependency on network messages:

– Optimize message filling with configuration parameters.

– Consider API selection (especially for mass insertion).

– Consider whether the volume of moved data can be reduced, for example 
by not always moving all columns.

– Consider architectural changes (for example, move some functionality 
either to the same machine to run with local messages or into the same 
process through stored procedures or accelerator linking or shared 
memory access model).

In addition to straightforward resource shortages, certain scalability anomalies 
can limit database performance although the application does not have obvious 
bottlenecks.

Current releases of solidDB fully support multiple CPUs, which can greatly 
improve parallel processing within the engine.

solidDB can benefit from multiple physical disks to a certain level. It is beneficial 
to have separate physical disks for the following files: 

� Database file (or files)
� Transaction log file (or files)
� Temporary file (or files) for the external sorter
� Backup file (or files)

For large databases, it is possible to distribute the database to several files 
residing in separate physical disks. However, solidDB does not have features that 
enable the forcing of certain tables to certain files or for forcing certain key values 
to certain files. In most cases, one of the files (commonly the first one) becomes 
a hot file that is accessed far more often than the other ones.
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Analysis of existing systems
When encountering a system with clear database throughput problems it is 
usually reasonably straightforward to identify the resource bottleneck. In most 
cases, the limiting resource (CPU usage, disk I/O usage, or network throughput) 
is heavily exploited, and the exploitation is obviously visible using OS tools. If 
none of these resources are under heavy use, most likely no performance 
problem can be resolved by any database-related optimization.

CPU Bottleneck
Identifying CPU as being a bottleneck for database operations is relatively easy. 
Most operating systems that are supported by solidDB have good tools to 
monitor the CPU usage of each process. If numbers of solidDB processes are 
close to 100% utilization, CPU is obviously a bottleneck for database operations. 

The CPU capacity used by the database process is always caused by some 
identifiable operation, such as a direct external SQL call or background task. The 
analysis process is basically as follows:

1. Identify the operation(s) that takes most of the CPU resources

2. Assess whether the operation is really necessary

3. Determine whether CPU usage of the operation can be reduced in one way or 
another

Identifying the Operations
The admin command pmon counters give a good overview of what is happening 
in the database at any given moment. Look for high counter values at the time of 
high CPU usage. See “Performance Monitoring (pmon) counters” on page 148 
for more details.

solidDB has an SQL Tracing feature that prints out all statements being executed 
into a server level trace file. Two slightly different variants (admin command 
monitor on and admin command trace on sql) have slightly different benefits. 
The monitor on command provides compact output but does not show 
server-end SQL (for example, statements being executed by stored procedures). 
The trace on sql command shows server-end SQL but clutters the output by 
printing each returned row separately. For more details, see the following 
sections:

� “Using the Monitor facility to monitor SQL statements” on page 163 
� “Using the SQL Trace Facility to trace SQL statements” on page 168

Note: In certain situations in multi-CPU environments it is possible to have 
one CPU running at 100% while others are idle. CPU monitoring tools do not 
always make this situation obvious.
 Chapter 6. Performance and troubleshooting 195



You may also map the user thread with high CPU usage from operating system 
tools such as top to an actual user session in the database server with the admin 
command tid, or, in recent solidDB versions, the admin command report.

Unnecessary CPU load can typically be caused by several patterns, for example: 

� Applications that are continuously running the same statement through the 
SQL Interpreter by not using prepared statements through ODBC’s 
SQLPrepare() function or JDBC’s PreparedStatement class.

� Applications that are establishing a database connection for each operation 
and logging out instantly, leading to potentially thousands of logins and 
logouts every minute

Avoiding these patterns might require extra coding but can be beneficial for 
performance.

Multiple potential methods are available for the reduction of CPU usage per 
statement execution. Table 6-13 summarizes many of them and briefly outlines 
the circumstances where real benefits might exist for implementing the method. 
Seldom are all of them applicable and practical for one single statement.

Table 6-13   Methods of identifying and reducing CPU usage in statement execution

CPU capacity is used for How to optimize When applicable

Running the SQL 
interpreter

Use SQLPrepare() 
(ODBC) or 
PreparedStatement 
(JDBC)

Similar statement is 
executed many times.
Memory growth acceptable 
(no tens of thousands of 
prepared statements 
simultaneously in 
memory).

Executing full table scans 
either in main-memory 
engine or disk-based 
cache blocks

Proper index design.
Ensure correct optimizer 
decision.

Queries do not require full 
table scans by nature. 

Converting data types from 
one format to another

Use data types not 
needing conversion. Limit 
the number of rows or 
columns transferred.

Large result sets are being 
sorted.
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Disk I/O being bottleneck
Traditionally, most database performance tuning has really been about reduction 
of disk I/O in one way or the other. Avoiding full table scans by successful index 
designs or making sure that the database cache-hit rate is good has really been 
about enabling the database to complete the current task without having to move 
the disk head.

This point is still extremely valid, although with today’s technology it has lost 
some of its importance. Today, in some operating systems, the read caching on 
the file system level has become good. Although the database process executes 
file system reads there are no real disk head movements because of advanced 
file system level caching. However, this does not come without adverse side 

Sorting, by internal sorter 
and by external sorter

Both internal and external 
sorter are CPU-intensive 
operations using different 
algorithms. 
For bigger result sets 
(hundreds of thousands or 
more rows), the external 
sorter is more effective 
(uses less CPU and with 
normal disk latencies 
response times are faster).

Large result sets are being 
sorted.

Aggregate calculation Consider using faster data 
types for columns that are 
used in aggregates. Avoid 
grouping when internal 
sorter is needed (i.e. add 
an index for group 
columns).

When aggregates over 
large amounts of data are 
involved. When sorting is 
needed for grouping.

Finding individual rows 
either within Main Memory 
Table or disk-based table 
by primary key or by index

Optimize 
IndexFile.BlockSize with 
disk-based tables.

Application is running 
mostly simple lookups.

Creating execution plans 
by the optimizer

Use optimizer hints. Beneficial when queries, 
as such, are simple so that 
optimization time is 
comparable to query 
execution time. Scenario 
with single table query 
where multiple indexes are 
available.

CPU capacity is used for How to optimize When applicable
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effects. First, the cache flushes might cause overloaded situations in the physical 
disk. Second, the disk I/O diagnostics built into the database server lose their 
relevance because actual disk head movements are no longer visible to the 
database server process. 

The solidDB disk I/O consists of following elements:

� Writing the dirty data (modified areas of cache or MME table data structures) 
back to appropriate locations in the solidDB database files (solid.db) during 
checkpoint operations

� Reading all the data in main memory tables from the solidDB database file 
(solid.db) to main memory during startup

� Reading data outside cache for queries related to disk-based tables

� Reading contents of disk-based tables not in the cache for creating a backup

� Writing log entries to the end of the transaction log file under regular usage

� Reading log entries from the transaction log file under roll-forward recovery, 
HotStandby catchup or InfoSphere CDC replication catchup

� Writing the backup database file to the backup directory when performing a 
backup

� Writing to several, mostly configurable, trace files (solmsg.out, solerror.out, 
soltrace.out) in the working directory, by default

� Writing and reading the external sort files to the appropriate directory for large 
sort operations

� Reading the contents of the solid.ini and license file during startup

All these elements can be reduced by some actions, none of which come without 
a price. Which of the actions have real measurable value or which are practical to 
implement is specific to the application and environment. See Table 6-14 on 
page 199 for a summary. 

To be able to exploit parallelism and not have server tasks block for disk I/O, be 
sure you have multiple physical disks. See “Database throughput is too low” on 
page 193 for more information.
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Table 6-14   Methods to reduce disk I/O

Type of file I/O Methods

Database file

Writing the dirty data (modified areas of 
cache or MME table data structures) back 
to appropriate locations in checkpoints.

Optimize block size with parameter 
IndexFile.BlockSize.
Optimize checkpoint execution by 
parameter General.CheckpointInterval.

Reading all the data in main memory 
tables from solidDB database file 
(solid.db) to main memory in startup.

Optimize MME.RestoreThreads.

Reading data outside cache for queries 
related to disk-based tables.

Make sure IndexFile.CacheSize is 
sufficiently large.

Reading contents of disk-based tables not 
in the cache for creating a backup.

If pmon Db free size is substantial, run 
reorganize. Check that all indexes are 
really needed.

Swapping contents of Bonsai Tree 
between main memory and disk when 
Bonsai Tree has grown too large in size 
and cleanup of Bonsai Tree by merge task 
when it is finally released.

Control size of Bonsai Tree by making 
sure transactions are closed 
appropriately. 

Transaction logs

Writing log entries to the end of 
transaction log file under regular usage.

Consider different block size by parameter 
Logging.BlockSize.
Consider relaxed logging or no logging at 
all.

Reading log entries from transaction log 
file under roll-forward recovery, hot 
standby catchup or CDC replication 
catchup.

Optimize General.CheckpointInterval and 
General.MinCheckpointTime to reduce 
size of roll-forward recovery.
Set Logging.FileNameTemplate to refer to 
different physical disk (to db file and 
temporary files) to avoid interference 
with other file operations.
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Network bottlenecks
Two possible aspects to network bottlenecks are as follows:

� The overall throughput of the network as measured in bytes/second is simply 
too low, perhaps even with messages set to have maximum buffer length.

� No real problems exist with the throughput, but the network latencies are 
unacceptably long. The application’s network message pattern would be 
based on short messages (for example, the application's database usage 
consists of simple inserts and simple lookups) and nothing can be done to 
pack the messages more. In this case, network would be the bottleneck only 
in the sense of latency, but not in the sense of throughput.

Not much can be done to cope with the network being a bottleneck. The methods 
are based on the strategies of either making sure that the network is exploited to 
its maximum or reducing the load caused by the database server in the network. 

Backup file

Writing backup database file to backup 
directory when executing backup.

If pmon Db free size is substantial, run 
reorganize. Check that all indexes are 
really needed.
Make sure that actual database file and 
backup file are on different physical disks.

Other files

Writing to several, mostly configurable, 
trace files (solmsg.out, solerror.out, 
soltrace.out) into the working directory.

Avoid SQL Tracing.

Writing and reading the external sort files 
to appropriate directory for large sort 
operations.

Disable external sorter by 
Sorter.SortEnabled;
Configure bigger SQL.SortArraySize 
parameter; 
Optimize for temporary file disk latencies 
by Sorter.BlockSize.

Reading contents of solid.ini and license 
file in the startup.

Minimal impact, therefore optimization is 
not necessary.

Type of file I/O Methods
200 IBM solidDB: Delivering Data with Extreme Speed



For maximum network exploitation, the following methods are available:

� Making sure network messages are of optimal size by adjusting the 
Com.MaxPhysMsgLen parameter.

� Making sure network messages are packed full of data in the following ways:

– Adjust the Srv.RowsPerMessage and Srv.AdaptiveRowsPerMessage 
parameters.

– Consider rewriting intensive write operations by using the SA API and 
SaArrayInsertion. This way provides the programmer good control with 
flushing the messages.

– For insertion, consider using INSERT INTO T VALUES(1,1),(2,2),(3,3) 
syntax.

For reducing the amount of network traffic, several architectural changes are 
required. Consider the following options:

� Move part or all of the application to the same machine as solidDB and use 
local host connections, linked library access direct linking, or shared memory 
access (SMA) as the connection mechanism.

� Rewrite part or all of the application logic as stored procedures to be executed 
inside the database server.

As an example, consider the following situation:

� solidDB performance (both latency and throughput) with directly linked 
accelerator or shared memory access model is more than adequate.

� solidDB performance in client/server model is not good enough. CPU usage 
of the server is not a problem.

In this situation, server throughput is not a problem. If the problem is network 
latency and not throughput, overall system throughput can be increased by 
increasing the number of clients. Latencies for individual clients are not improved 
but system throughput will scale up with an increased number of clients.

Database resource consumption is too high
In certain cases, performance measurements are extended outside of the typical 
response time or throughput measurements. Resource consumption, such as 
items in the following list, are occasionally considered as measurements of 
performance: 

� Size of memory footprint
� CPU load
� Size of disk file(s) 
� Amount of disk I/O activity
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Occasionally an upper limit exists for the amount of memory available for the 
database server process. Achieving a low memory footprint is almost always 
contradictory to meeting goals for fast response times or high throughput. 
Common ways to reduce memory footprint with solidDB are as follows:

� Using disk-based tables instead of main memory tables.

� Reducing the number of indexes with main memory tables.

� Reducing the size of the database cache for disk-based tables.

� Not using prepared statements excessively. Avoid creating large connection 
pools that have hundreds of prepared statements per connection because the 
memory required for the prepared statements alone can be very large.

IBM solidDB built-in diagnostics are good for monitoring the memory footprint 
(pmon counter Mem size) and assessing what the memory growth is based on 
(pmon counter Search active, several MME-specific pmon counters, and 
statement-specific memory counters in admin command report). The admin 
command indexusage allows assessment of whether the indexes defined in the 
database are really used or not.

Although disk storage continues to be less expensive, in several situations 
minimizing disk usage in a database installation is a requirement. solidDB is sold 
and supported in some real-time environments with limited disk capacity. In 
bigger systems, the size of files affects duration and management of backups. 
The solidDB key monitoring features related to disk file size are pmon counters 
Db size and Db free size. The server allocates disk blocks from the pool of free 
blocks with the file (indicated by Db free size) until the pool runs empty. Only after 
that will the actual file expand. To avoid file fragmentation, solidDB is not 
regularly releasing disk blocks back to the operating system while online. This 
can be done by starting solidDB with the startup option -reorganize.

The question of whether all the data in the database is really needed is mostly a 
question for the application. In disk-based tables, the indexes are stored on the 
disk also. The indexes that are never used will increase the file size, sometimes 
substantially. The admin command indexusage can be used to analyze whether 
or not the indexes have ever been used.

Occasionally, simple minimization of disk I/O activity is considered important 
although there are no measurable performance effects. This case might be true 
for example with unconventional mass memory devices such as flash. Regular 
optimization efforts to improve performance are generally applicable to minimize 
disk I/O. Pmon counters File write and File read are good tools for monitoring 
file system calls from the server process.
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Database performance degrades over time
Occasionally, system performance is acceptable when the system is started but 
either instantly, or after running for a certain period of time, it starts to degrade as 
illustrated in Figure 6-6. Phenomenon of this type generally do not happen 
without a reason and seldom fix themselves without some kind of intervention. 

Figure 6-6   Data response time degrades over time

Typical reasons behind this kind of phenomenon are as follows:

� Missing index

Certain tables grow, either expectedly or unexpectedly, which results in full 
table scans becoming progressively worse. The impact of managing a 
progressively larger database starts to reach the application only after a 
certain amount of time. In addition to thorough testing, it is possible to prepare 
for the problem by monitoring the row counts in the tables and monitoring the 
pmon counters (such as Cache find and File read) that are expected to show 
high values when full table scans take place.

� Memory footprint growth

The memory footprint of the server process grows steadily for no apparent 
reason. This growth can lead to OS-level swapping (if enabled by operating 
system) and eventual emergency shutdown when the OS is no longer able to 
allocate more memory. Typically, the performance is not really impacted by a 
big footprint before swapping starts. The effect of swapping is, however, 
almost always dramatic. Usually the problem can be temporarily resolved by 
either killing and reopening all database connections or restarting the entire 
system. Usually these kinds of cures are only short-term solutions. Typical 
reasons for the problem are caused by unreleased resources in the 
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application code. For example, the application opens cursors or connections 
but never closes them or never closes transactions.

� Disk fragmentation

The butterfly-write pattern to the solidDB database file (solid.db) can cause 
disk fragmentation. For example, the disk blocks allocated for the solid.db 
file are progressively more randomly spread across the physical disk. This 
fragmentation means that response times from the disk become slower over 
time. Running OS-related defragmenting tools has proven to help with this 
problem.

Database response times are unpredictable
Relational database technology and related standards differ fundamentally from 
real-time programming. The standards have few ways to define acceptable 
response times for database operations. Mostly, the response times are not 
really mentioned at all and it is possible for the same queries with the same data 
within the same server to have huge variances in response times.

Varying response times can be explained partially by interference from other 
concurrent loads in the system. These other loads can be solidDB special 
operations such as backup, checkpointing, or replication. These are discussed 
later in further detail.

The interference can, however, be caused by phenomena that are not obviously 
controllable and might remain unknown even after careful analysis.

Database-specific reasons for sporadic long latencies are as follows:

� Optimizer statistics update

When data in tables change, the samples must be updated periodically to 
ensure accurate estimates can be done.

� Merge operation

This occurs when a sizable Bonsai Tree is cleaned. It can be controlled partly 
by the General.MergeInterval parameter.

� Massive release of resources

An example is closing tens of thousands of statements when a pool of 
connections with many statements each, all complete at once.
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In practice, the sporadic latency disturbances are caused by congestion of some 
system resource caused by other software sharing the same resource. Examples 
are as follows:

� Physical disk congestion 

Congestion is caused by extensive usage of the same disk by other software. 
Some database operations (log writes, checkpoint) might be totally blocked 
because of this kind of disturbance, bringing perceived database performance 
to a standstill. Also, various virus scanners might interfere with file systems, 
resulting in serious impact on database performance. solidDB does not 
contain diagnostics to analyze file system latencies directly. Most operating 
systems provide sufficient diagnostics to assess levels of disk I/O at the 
system level and each process. See “iostat” on page 179 for more details.

� Network congestion or failures

Disturbances and uneven latencies in the network correlate directly with 
perceived database response times in a client server architecture. The 
solidDB diagnostic tools on network latencies are somewhat limited (that is, 
there are no automated latency measurements in regular ODBC, JDBC, and 
SA messaging). The solidDB ping facility provides a method of measuring 
network latencies. Go to the following address for more information:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/topic/com.ibm.
swg.im.soliddb.admin.doc/doc/the.ping.facility.html

It is possible to run the ping diagnostic in parallel to the actual application 
clients and correlate unexpected bad latencies with collected ping results. In 
addition to the ping diagnostic, be sure to use OS-level network diagnostics.

� CPU being used by other processes 

This means that CPU capacity is not available for solidDB, which does not 
have any diagnostics to collect absolute CPU usage statistics. Operating 
systems have ways of collecting CPU usage levels but their level of 
granularity does not always make a straightforward correlation with bad 
response times from the database.

Interference from special operations
In some cases, database performance is acceptable under regular load and 
circumstances. However, in special circumstances, interference of some special 
task has an excessive negative impact on database response times, throughput, 
or both. Disturbances of this kind can appear sporadic and unpredictable if the 
nature of the special tasks is unknown and their occurrence cannot be 
monitored.
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Figure 6-7 illustrates response times in a pattern that shows interference from a 
special operation.

Figure 6-7   Query performance degrades for a period and returns back to normal

The special tasks can be database internal operations:

� Checkpoint
� Backup
� Smartflow (Advanced Replication) replication operations
� HotStandby netcopy or HotStandby catchup
� CDC replication operations
� Heavy DDL operations

Various aspects exist to optimizing the impact of special operations:

� By timing the special operation to occur outside most critical periods.

� By optimizing the size of the special task in one way or the other.

� In some cases, only simultaneous execution of two or more special tasks 
cause significantly worse interference than any of the special tasks alone.

The special tasks can also be application batch runs or other tasks that are not 
present all the time. Logically, application special tasks can be treated similarly to 
database-related special tasks.

Understand and apply the following aspects when optimizing a special task:

� How to control the special task’s execution
� How to optimize task execution
� How to monitor task execution times
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We examine each special operation in more detail:

� Checkpoint

A checkpoint is a task that is executed automatically by the solidDB server 
process. The checkpoint task takes care of writing all the changed (dirty) 
blocks in memory back to the disk into the appropriate place in the solidDB 
database file (or files). The checkpoint task uses CPU to find the dirty blocks 
inside main memory and relatively heavy disk I/O to write the blocks to disk. 
Application queries that result in intensive disk I/O are heavily impacted by 
checkpoints.

By default, a checkpoint is triggered by the write operations counter. 
Whenever the value of the General.CheckpointInterval parameter is 
exceeded, the server performs a checkpoint automatically.

To avoid checkpoints entirely, set the General.CheckpointInterval parameter 
to an extremely large value. Do this only if persistence of data is not a 
concern.

In heavy write operations, CheckpointInterval can be exceeded before the 
previous checkpoint completed. To avoid checkpoints being active constantly 
use the General.MinCheckpointTime parameter.

Another possibility is to execute a checkpoint programmatically with the admin 
command makecp. This can be advantageous because the application may 
know about the workload pattern and can pick a more appropriate time to 
perform a checkpoint operation.

Consider the following aspects:

– How to optimize task execution

By decreasing the General.CheckpointInterval parameter, the size of a 
checkpoint becomes smaller. The checkpoints, however, become more 
frequent. It might be that the impact of smaller checkpoints is tolerable; 
bigger checkpoints disturb the system measurably. In practice, 
modifications in checkpoint size seldom affect long-term throughput. 
Theoretically, overall effort in checkpoints is slightly reduced when 
checkpoints are bigger because of more rows that are possibly hitting the 
same blocks.

– How to monitor the execution times

The solmsg.out log file contains information about the start and end of 
each checkpoint. The last entries of solmsg.out can be displayed with the 
admin command msgs.

The Checkpoint active pmon counter indicates whether a checkpoint is 
active at that point in time.
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The admin command status contains information about write counter 
values after last checkpoint and gives an indirect indication on whether the 
following checkpoint is about to occur soon or not.

� Backup

In solidDB, backup is a task executed either automatically after setting the 
Srv.At configuration parameter, or manually/programmatically by the admin 
command backup. During backup, a full copy of the solidDB database file or 
files (solid.db) are created in the backup directory. With disk-based tables 
this essentially means extensive file reading of the source file and extensive 
file writing at the target file.

Executing the task also requires CPU resources, but predominantly causes 
congestion in the file system. Running backup has a measurable impact on 
application performance and response times. It does not block the queries 
and does not cause disastrously bad performance.

If possible, try to execute backup and application level batch operations 
consecutively rather than concurrently. This approach is especially true with 
batch operations that contain long lasting transactions.

Consider the following aspects:

– How to control

Backup process can be started either automatically by timed commands 
or manually/programmatically by the admin command backup.

– How to optimize task execution

Backup speed depends on the file write speed of the target database. In 
solidDB, the backup is intended to be stored on different physical devices 
(to protect against physical failure of the device) than the source database 
file. Hence, the operation of reading the file and writing the file is not 
optimized for reading and writing from the same device concurrently.

The most common reason for long lasting backups is the database file size 
being bigger than it should be, which can be caused by the following ways:

• The database file consisting mostly of free blocks. In solidDB, the disk 
blocks are not automatically returned to the file system when they are 
no longer needed. To shrink the database file in size, use the 
reorganize startup parameter.

• Unnecessary indexes or unnecessary data in the file. In many 
complicated systems, sizable indexes exist that are never used. 
Occasionally long backup durations are caused by application level 
data cleaning tasks having been inactive for long periods of time.
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– How to monitor the execution times

Backup start and completion messages are displayed in the solmsg.out 
file. There is no direct way of assessing how far the backup task has 
proceeded. The backup speed can be, however, indirectly calculated by 
the Backup step pmon counter, based on each backup step passing one 
disk block of information.

To determine whether a backup is currently active (to avoid starting 
concurrent batch operations), use the admin command status backup or 
examine the Backup active pmon counter.

� Advanced Replication operations

Advanced Replication, solidDB’s proprietary replication technology, is 
primarily based on building replication messages inside solidDB's system 
tables and passing the messages between different solidDB instances. 
Building and processing the messages can cause database operations 
related to these system tables.

Finding rows to be returned from the master database to a replica is a similar 
operation to an indexed select on a potentially large table. If no rows have 
been changed, a comparable operation is an indexed select returning no 
rows. For environments with multiple replicas, the effort must be multiplied by 
the number of replicas.

When moving data from replica databases to the master, the additional load 
in the replica consists of the following actions:

– Double writing (in addition to actual writes, the data needs to be written in 
a propagation queue)

– Reading the propagation queue and writing to system tables for message 
processing 

– Processing the message in system tables and sending to the master

The master database processes the message in its own system tables 
(inserts, selects and deletes) and re-executes the statements in the master 
(essentially the same operations as in the replica).

To fully understand Advanced Replication's impact on system performance, 
you should understand its internal architecture. See the Advanced Replication 
User Guide at the following location for more information:

http://publib.boulder.ibm.com/infocenter/soliddb/v6r5/nav/9_1
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Consider the following aspects:

– How to control

All replication operations (that is, replica databases subscribing to data 
from master databases and replica databases propagating data to master 
databases) are controlled by commanding replication to take place with 
SQL extensions at the replica database. The application has full control of 
initiation of replication. Heaviness of each operation is naturally caused by 
the amount of changes in the data between replication operations. 
Advanced Replication enables defining the data to be replicated by 
publications. Publication is defined as a collection of one or several SQL 
Result Sets.

– How to optimize task execution

The impact of replication depends on the number of rows to be replicated 
by a single effort. It is possible to make the impact of refreshing an 
individual publication smaller by breaking publications into smaller pieces 
as follows:

• Creating several publications and defining different tables in different 
publications

• Refreshing only part of a row (by key value) by individual subscribe 
effort

These changes make the performance hits smaller but more frequent. The 
numbers of rows that are replicated are not affected. Timeliness of 
replicated data can suffer.

For systems with a high number of replicas (with high number of tables to 
be replicated), the polling nature of Advanced Replication start to cause 
load at the master database. For each replica and each table to be 
replicated, an operation equivalent to selection can be executed in the 
master database even if there are no changes in data. Overhead that is 
caused by this phenomenon can be reduced by adjusting the replication 
frequency, which results in an adverse affect on the timeliness of the data.

– How to monitor the execution times

The SQL commands that trigger the replication can be traced in the replica 
database’s soltrace.out file like all the other SQL commands. The level of 
replication activity in both replica and master databases can be measured 
by a set of pmon counters. Pmon counters starting with the word Sync are 
related to Advanced Replication.

� HotStandby netcopy or HotStandby catchup operations

In HotStandby, primary and secondary databases must run in Active state 
where every transaction is synchronously executed at the secondary 
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database also. Before reaching active state, the secondary database must 
perform the following tasks:

– Receive the database file from the primary database

– Receive the transactions that have been executed since the databases 
were connected and process them

While the secondary database is in the process of receiving netcopy or 
processing catchup, it is not able to process requests at all. Also, sending the 
entire file or just the last transactions will cause load at the primary database 
and interfere with perceived performance of the primary database also. 

HSB Netcopy is an operation quite analogous to a backup. It might lead to 
heavy disk read I/O at the primary database and interfere heavily with other 
intensive database file read I/Os.

HSB Catchup is essentially about rerunning the transaction log. If the 
transactions that were written during the time that the primary and secondary 
were disconnected exceed the buffer size, log file reads must be executed at 
the primary database. In reality, this interference seldom causes measurable 
problems.

Consider the following aspects:

– How to control

Both HSB netcopy and catchup are operations that are executed by SQL 
at the primary database. This might be visible to the application or hidden 
by the Watchdog application or HAC module. 

– How to optimize task execution

The level of interference caused by these operations can be tuned by the 
HotStandby.CatchupSpeedRate configuration parameter.

– How to monitor the execution times?

Both catchup and netcopy start and completion messages are logged in 
the solmsg.out file.

The database states of primary active and secondary active indicate that 
neither netcopy nor catchup are in progress. The states are visible in the HSB 
state pmon counter.

� CDC Replication operations

CDC is a replication technology included as part of the solidDB Universal 
Cache product to facilitate data transfer and synchronization between solidDB 
and the back-end database.

The CDC replication process can cause some load on the databases and that 
can potentially interfere with perceived application performance.
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Essentially, CDC is based on two parts, capture and apply: 

– Capture reads log entries from a virtual log table (in solidDB's case, 
SYS_LOG) 

– Apply converts the log entries to SQL statements which get executed in 
the target database.

The reading from the virtual table SYS_LOG is implemented as reading from 
an in-memory buffer and, thus, can inflict a significant load. When the 
connection is broken and log operations occur, a catch-up situation results 
upon the next enablement of the solidDB InfoSphere CDC replication engine. 
In that situation, some I/O overhead may be observed until catchup 
completes.

CDC replication can lead to disastrous impact on performance when throttling 
is activated. This means that the target database has been too slow to accept 
applying the captured changes. To avoid the virtual log size growing too big, 
the server will slow down new write operations. The read-only load is 
unaffected by the throttling. Because the log reader operates in an 
asynchronous mode with respect to transactions (that is, it reads only 
committed transactions), no locking-related performance degradation is 
possible.

Consider the following aspects:

– How to control

CDC configuration is performed with dedicated CDC tools. After the 
replication process is set, it can be controlled (started or stopped) both 
with GUI tools or with shell level commands, such as dmts64 or 
dmshutdown. There are no solidDB controls to stop the replication. If there 
is a need to stop the replication, use the CDC instance configuration tool 
or the shutdown shell command. Any other way to stop the replication 
(such as stopping users) may damage the replication setup.

The throttling is enacted when an in-memory buffer is filled up. The size of 
the buffer can be controlled with the configuration parameter 
LogReader.MaxSpace (in number of log records). The factory value is 
100000.

– How to optimize

Relatively few things must be done to optimize replication in the capturing 
database. In the database that receives the transactions being applied by 
CDC, you can use regular write optimization options such as:

• Removal of unnecessary indexes. CDC does not force index structures 
in source and target databases to be identical.

• Optimization in transaction logging mode.
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– How to monitor

The status of throttling may be monitored with the Logreader spm freespc 
pmon counter. When it reaches zero, the throttling is enabled.

Other CDC-based activity can be monitored by several other pmon 
counters. All of them are labeled Logreader.

Write operations executed by CDC when applying the captured data are 
visible through regular pmon counters (such as SQL Execute and DBE 
Insert).

� Heavy DDL operations 

Data Definition Language (DDL) operations, such as ALTER TABLE and 
CREATE INDEX can cause interference as follows:

– Potential heavy disk activity that interferes with concurrent operations that 
are related to other tables, which are not directly involved in the DDL 
operation

– Blocking the related table (or tables) for the duration of the operation

Consider the following aspects:

– How to control

Running DDL is entirely triggered by executing SQL components external 
to the database.

– How to optimize task execution

DDL operations are potentially heavy. Only limited means are available for 
optimization:

• DDL-operations are executed as write operations, which includes a 
write to the transaction log file also. Disallowing new connections with 
the admin command close command, turning logging off (possibly along 
with other changes in configuration as suggested below), running the 
DDL, re-enabling logging, and opening the server back up to new 
connections with the admin command open can be faster than just 
running the DDL.

• With disk-based tables, having a bigger cache (setting 
IndexFile.CacheSize) size can speed up most DDL operations.

• With both main memory tables and disk-based tables, the disk block 
size (the IndexFile.BlockSize configuration parameter) affects 
checkpoint duration.

Note: The optimal block size for minimizing the duration of index 
creation is not necessarily the optimal size for speed of index usage 
or regular application usage
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The ALTER TABLE ADD COLUMN operation along with assigning a 
default value with the DEFAULT option is heavy for large tables. The 
operation will require a new value to be added to every row. If the new 
column will be NULL, there is no need to touch the rows.

– How to monitor the execution times

SQL execution and transaction commits are usually done in scripting tools, 
therefore monitoring can be done at that level. The executions are also 
visible in SQL Trace files.

6.2  Troubleshooting

Two main categories of major problems can occur with any application, including 
the solidDB server:

� Crashes 
� Hangs

This section describes what tools are available to help you try to understand what 
might have happened so that you can avoid it in the future, or so that you can 
provide information to IBM support to get to a faster resolution more efficiently.

Crashes
A server crash is when a programming error has occurred within the solidDB 
server resulting in the process abnormally ending. This can happen if an illegal 
memory location is dereferenced (segmentation fault), a misaligned memory 
access (bus error), or an illegal instruction is encountered during execution. 
Abnormal termination can also occur when the solidDB server encounters a 
condition that it does not expect and has no choice but to shut down the server to 
avoid any data corruption from occurring. Sometimes, this type is referred to as a 
panic or an abort. The following sections several available tools and facilities to 
help you with problem determination.

Server Stack Traces
As of solidDB version 6.5 fix pack 3, files with the naming convention of 
ssstacktrace-<process_id>-<thread_id>.out are created for each server 
thread in the solidDB working directory. Example 6-19 on page 215 shows a 
sample stack traceback file that was generated from sending the solidDB server 
process a SIGUSR1 signal, which instructs the server to create stack trace files 
for all currently running threads and then continue normal execution.
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Example 6-19   Sample stack traceback file

Version info: 6.5.0.3 Build 2010-10-04
Timestamp: Thu Nov 18 14:03:37 2010
Signal name: SIGUSR1
Signal number: 10
Platform: Linux 2.6.18 AMD64 64bit MT
solid[0x846e3d]
/lib64/libpthread.so.0[0x3ac9a0eb10]
/lib64/libpthread.so.0(__nanosleep+0x41)[0x3ac9a0e1c1]
solid(SsThrSleep+0x51)[0x849c01]
solid(sqlsrv_thread_serve+0x12c)[0x4d548c]
solid[0x487487]
solid(ss_svc_main+0x106)[0x8466d6]
solid(ss_main_UTF8+0x102b)[0x48975b]
solid(main+0x45)[0x48ad25]
/lib64/libc.so.6(__libc_start_main+0xf4)[0x3ac8e1d994]
solid[0x484e7a]
Signal details (contents of siginfo_t):
Size of siginfo structure: 128 bytes
0A000000 00000000 00000000 00000000
6D140000 466A0000 00000000 00000000
00000000 00000000 40010000 00000000
482A15C9 3A000000 A0D3FFFF FF7F0000
00000000 00000000 21010000 00000000
10010000 00000000 04000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
Signal #10 (SIGUSR1); si_code: 0 (SI_USER: Sent by kill, sigsend, raise.)

In most cases, the actual stack does not mean much to anyone who does not 
have access to the solidDB source code. In certain cases, function names can 
give a clue about what was being done at the time the signal was received but 
usually its a job for IBM support and development personnel.

If a crash occurs and these stack trace files are created, be sure you save them 
to a safe location so that they can later be sent to IBM for support. The 
solerror.out file might also have important information about why the crash 
occurred so be sure to save that file also.

Core Files
When the solidDB server receives a signal that causes abnormal termination, 
UNIX and Linux operating systems have the ability to generate a core file, which 
saves the contents of memory to a file for later debugging. By default on Linux, 
the user limit (ulimit) for core files is set to 0, meaning that no core files will be 
generated. If you have enough disk space to hold a file the size of solidDB’s 
memory use, a good practice is to allow core files to be generated in case a 
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crash occurs. That way you will not be asked to reproduce the problem again 
after enabling core files.

To increase the core file limit, you may use the ulimit -c unlimited command in 
your shell. Any processes started thereafter will be allowed to create core files of 
any size, so be sure to start the solidDB server after your make this change.

If your server crashes and generates a core file, you will not really be able to get 
any usable information from it without access to the solidDB source code. Be 
sure you compress it and save it to a safe location so you can later send to IBM 
support and development.

Hangs
A hang is often a misdiagnosed condition. Most people say a process hangs if it 
becomes unresponsive. Understanding the difference between a true hang and 
something running slowly is important.

A true hang is when one or more threads are waiting for a resource that will never 
become available. Other threads in turn start waiting for resources that the first 
set of threads are holding, and so on. Usually in these cases, determining what 
the resource is that everything else is waiting for can be difficult. As a result, you 
usually have no choice other than to force a restart.

When something is running slowly it may appear to users that it is hung. The 
reason for running slowly in many cases can be because of some intermittent 
cause such as a network slowdown, extremely busy disks, a thread or process 
consuming all of the available CPU resources. If the user is patient enough, the 
issue causing the slow performance can be alleviated, perhaps by itself, and 
processing returns to normal. If the user it not patient enough, the server might 
be terminated unnecessarily resulting in the need for crash recovery and more 
lost time.

Using stack traces to determine a hang versus running slowly
In “Server Stack Traces” on page 214, we describe what server stack traces are 
and how they are created. Example 6-19 on page 215 shows a sample stack 
trace file that was generated when the user issued the following command:

kill -USR1 <server_pid>

The USR1 signal instructs solidDB to dump stack trace files for all currently 
running threads. Because stacks show the current paths of execution for a given 
thread, gathering multiple sets of stack trace files over a period of time can be 
used to determine whether processing with the solidDB engine is truly hanging 
as described in “Hangs” on page 216, or is actually running slowly.
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Therefore, a strategy to determine whether the server is truly hanging or not is to 
generate two or three sets of stacks separated by approximately 10 seconds 
each. Because additional information is appended to the end of existing stack 
trace files, copying or moving the files between each stack trace file generation is 
unnecessary.

After you generate a set of stack trace files, analyze the stacks to determine 
whether they are changing between the three stack-generation operations. If they 
are not changing, then a true hang situation likely has occurred and the system 
must be forcefully restarted.

Using top to determine a Hang versus Running Slowly
Most UNIX and Linux operating systems include the top utility, which is useful for 
monitoring system and process resource usage.

If you suspect a hang, run top to determine whether the solidDB server process 
or application process if using the accelerator or shared memory access libraries 
is actively or periodically consuming CPU usage. If it does not appear to be 
consuming any CPU over about a 20-second period, then the server is likely 
hung and requires a hard restart.
 Chapter 6. Performance and troubleshooting 217



218 IBM solidDB: Delivering Data with Extreme Speed



Chapter 7. Putting solidDB and the 
Universal Cache to good use

IBM solidDB and IBM solidDB Universal Cache use in-memory database 
technology, which can provide great throughput and response time advantages 
over traditional disk-based databases. However, such improvements cannot be 
achieved with all application types, and therefore not be taken for granted. 

Performance of solidDB is sensitive to the overall system topology, application 
workloads, and database structures. In this book, we describe the usage 
characteristics, application paradigms, and workload profiles that are well-suited 
for solidDB in-memory technology. 

Key requirements for the effective use of solidDB in-memory database is having 
enough physical main memory available in the system and willingness to trade 
these memory resources for the improved speed of database operations.

7
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7.1  solidDB and Universal Cache sweet spots

The solidDB in-memory database is optimized for efficient access to data that is 
guaranteed to reside in the main memory. A number of access methods allow the 
in-memory database to outperform a standard disk-based database in a range of 
workloads, even if the disk-based database caches the relevant data set in main 
memory buffer pools. However, the advantage of solidDB is not unconditional; it 
depends on a number of preferred usage patterns: the sweet spots.

A key performance advantage of the solidDB products comes from their ability to 
bring data closer to the application, all the way to the application memory space. 
This way significantly reduces the complete access path that the system must 
execute to serve the data to the application. Figure 7-1 and Figure 7-2 on 
page 221 illustrate the differences in access paths and data locations between 
the disk-based databases and the solidDB products.

Figure 7-1   Typical access path for disk-based databases

As shown in Figure 7-1, traditional disk-based databases are often accessed 
from separate client computers through a network, and data must be read from 
an external storage device (a hard disk drive or a solid state drive, for instance) 
before it can be accessed by the application. Although advanced caching 
algorithms exist to store frequently used data in the database main memory 
(often referred to as a buffer pool), there is no guarantee that the requested data 
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page will be available in the buffer pool at access time, therefore, a disk I/O 
operation is needed. Moreover, database durability requirements often dictate 
that log records are synchronously written to the storage device prior to any 
database updates being committed, thus introducing additional performance 
impact on the transaction response time seen by the application.

As shown in Figure 7-2, solidDB and solidDB Universal Cache can collocate the 
data with the application. The combined cost of accessing data from the solidDB 
in-memory engine collocated with the application is significantly lower than 
accessing the data from the back-end database server. All expensive access 
paths (network and synchronous disk access) can be removed.

Figure 7-2   Typical access path for solidDB and solidDB Universal Cache

Therefore, when we use the term sweet spot, we are referring to a collection of 
usage patterns that can emphasize and maximize the advantages that solidDB 
can bring to an application. The existence of such sweet spots can be explained 
by the way solidDB performs certain operations more efficiently (and thus faster) 
than a regular disk-based database management system (DBMS). However, 
there are also operations that solidDB is not optimal for, either because of their 
relative complexity, or because traditional disk-based databases already handle 
them efficiently.
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The more sweet spots you can use, the more the probability that you gain an 
advantage from using solidDB, such as improved throughput and response 
times. The total advantage can be difficult to quantify because it depends on 
many factors. The rest of this section discusses each of these sweet spot 
aspects in more detail. Some basic guideline expectations are provided also.

7.1.1  Workload characteristics

The solidDB in-memory engine is optimized for workloads generally 
characterized by the following properties:

� Read dominant
� Unique key lookups
� Simple queries
� Small to medium row sizes
� Relaxed durability is tolerable

Read dominant
IBM solidDB and solidDB Universal Cache provide the greatest performance 
advantage for workloads where the number of read operations exceeds the 
number of write operations. As a general guideline, a mix of 80% reads and 20% 
writes has shown the best performance aspects with in-memory engine. With 
high-write workloads, aspects that are outside of the core engine might start 
dominating the throughput (such as transaction logging or synchronization with 
the back-end database in the Universal Cache case). Hence, the performance 
advantage over the traditional database systems is likely not significant.

Unique key lookups
Table lookups, especially on unique keys, can be extremely fast in solidDB for 
two reasons: 

� The more obvious reason: The server never has to go to the disk for the data. 

� The less obvious reason: The actual storage and index structure are 
optimized for an in-memory operation. 

Access methods and data structures internal to the solidDB in-memory engine 
can take advantage of memory-resident data, and differ fundamentally from page 
and index structures that are used by traditional disk-based databases. The 
in-memory engine can reduce the number of processor operations needed to 
access the data. A disk-based engine, however, can reduce the number of 
external storage I/O operations needed to access the data. For example, the 
solidDB in-memory engine does not implement page-oriented indexes or data 
structures that would introduce inherent overhead of in-the-page processing.
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Simple queries
Another area where solidDB offers an advantage is in improved interaction 
performance between the application and the database server. Subsequently, 
the less time a query spends in the server, the more an opportunity exists to 
realize this “interaction advantage.” Simple queries are fast to execute and thus 
they amplify the interaction speed advantage. On the contrary, complex queries 
(involving multi-table joins, non-indexed access, full table scans, aggregates and 
complex predicates) spend time in the server on scanning, moving, and 
transforming the data in a way similar to a disk-based system. For example, a full 
table scan is an operation that a disk-based database is ideally optimized for and 
therefore, in this case, an in-memory database engine would not bring about 
improvement.

Small to medium row sizes
Because a table row is a unit of query result processing, long rows induce more 
data copying and processing than short rows. Short rows reduce the time a 
query spends in the server and thus amplifies the advantage of fast interactions. 
Similar to the simple query example, if a large portion of the overall time is spent 
on an operation (such as memory copying or byte parsing), which is done equally 
efficiently in solidDB and traditional databases, the expected performance 
improvement of the in-memory engine becomes negligible compared to the 
overall execution cost.

Relaxed durability is tolerable
Traditionally, database systems maintain strict durability, which means that after 
a transaction is committed, it can always be recovered from the log files 
regardless of what happens to the server. Such a durability level requires that the 
transaction state is written synchronously to an external storage device before 
the commit call returns. This kind of log operation consumes resources and 
prolongs response times. 

Another option is to run transaction processing in a relaxed durability mode. This 
mode writes transactions to the log asynchronously, therefore providing a higher 
level of overall transaction performance. This approach is enabled by solidDB, by 
default. The compromise is that when the server crashes in a stand-alone 
environment, some of the latest transactions can be lost. The actual delay of 
writing the transactions to the log depends heavily on the overall system 
characteristics.

In solidDB, the durability level can be set globally, per connection, or per 
transaction. Additional strict durability levels can be obtained through a mixture 
of relaxed logging and the solidDB HotStandby feature. With HotStandby, the 
secondary server is accessed through the network, making the transactions 
durable without the need for synchronous disk access.
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7.1.2  System topology characteristics

The essence of any data caching is improving access response times by bringing 
the data closer to the consumer. In database caching, the solidDB product family 
can do this by removing overhead insinuated by network access, inter-process 
communication, and disk I/O.

Co-locate data with the application
In traditional databases using network based client access, there is a constant 
overhead involved in sending the requests to the DBMS and receiving the 
results. The cost and response time penalty is the highest with the remote 
application that accesses the database through the network, most often using 
the TCP/IP protocol. The reason is because network access involves multiple 
context switches, additional processing overhead, and the network travel. You 
can significantly reduce the response time by co-locating your application with 
the database server, or by bringing the data to the application node (Figure 7-2 
on page 221). This way reduces the network travel and the associated overhead. 

Link the application with the server
Even with a TCP/IP-based driver and collocated data, inter-process 
communication between the database server and the application will happen, 
involving multiple context switches on each interaction between the application 
and the server. The solidDB product family offers a possibility to avoid such 
context switches. In addition to the TCP/IP drivers, solidDB provides two drivers 
that allow the application to be directly linked with the server code and execute 
the application level requests within the same address space:

� The linked library access (LLA) driver
� The shared memory access (SMA) driver 

The LLA driver allows for one linked application per server; the SMA driver allows 
many applications to access the database server at the same time. With both 
drivers, the context switches at the application-server interactions are avoided. 
To take the full advantage of solidDB shared memory data access protocol, use 
the direct linking methodology, using either LLA or SMA when possible.
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7.1.3  Sweet spot summary

The solidDB product family can improve application performance in several ways:

� By removing the need for synchronous disk I/O for both data access and 
logging

� By removing the need for network or local TCP/IP data access

� By bringing the data into application main memory space for efficient access, 
using optimized algorithms and data structures

7.2  Return on investment (ROI) considerations

In many cases, the database performance can be directly tied with the revenue 
generated; the ability to serve more business requests is commonly connected 
with positive financial consequences of the volume growth. The profit can be 
increased if the additional transactional volume is at a lower relative cost.

The solidDB product family is well suited for such business growth scenarios 
because additional software and hardware costs associated with implementing 
the solidDB accelerating solution are lower than the costs of scaling the 
traditional database systems. 

Moreover, shortening the response times can be easily tied with the 
organization’s ability to meet various service level agreements, and to gain 
competitive advantage and increase customer satisfaction. Examples could be 
the need to validate a mobile phone subscriber and establish the connection in 
under a few seconds, or the ability to quickly browse a travel company’s inventory 
based on an online request coming from a search engine.

The following sections provide examples that illustrate how financial gains can be 
achieved with solidDB product family solutions. The examples are based on a 
number of assumptions; as much as several assumptions might need to be 
modified to fit a particular real-life business case and thus individual results may 
vary, the logic we use to qualify and quantify the ROI is generally applicable.
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The example calculations are based on the following common assumptions:

� The setup with the application running against the enterprise database server 
is profitable. We estimate the revenue of such a solution at twice the cost of 
the system. This estimate is conservative because most successful IT 
companies derive revenue many times larger than the cost of production. 
Larger revenue to IT cost ratio would increase the calculated solidDB ROI.

� Business revenue increases with overall application throughput but the 
returns for each additional transaction are diminishing. This assumption 
enforces the essential law of economics stating the marginal returns are 
always diminishing. Thus, revenue earned per transaction is smaller for 
solidDB and solidDB Universal Cache solutions because the number of 
processed transactions increases significantly. Total overall revenue of the 
solution still increases; a mathematical model is used to predict revenue 
growth with increased transactional throughput.

� Individual transaction response times have no direct impact on revenue.

� The ROI is calculated as the ratio of revenue increase to the cost increase.

7.2.1  solidDB Universal Cache stimulates business growth

In this example, we detail the potential solidDB Universal Cache ROI with the 
following scenario:

� solidDB Universal Cache is added to the system without modifying the 
hardware setup, hence there is no change in any of the HW costs.

� A $150,000 (U.S. dollars, or USD) in application porting costs is added to 
Universal Cache fixed cost to cover the development work needed to modify 
the existing application so that it runs against the Universal Cache and the 
necessary educational expenses; this equals roughly two person-years of 
skilled labor.

� Software costs are based on the current processor value pricing for the 
solidDB product family, the current processor value pricing of IBM enterprise 
disk-based databases, and a standard 20% support renewal charge. A 50% 
price discount is included.

� Overall costs and revenue are calculated for a three-year period, and all 
amounts are in thousands of USD.

� A workload that simulates an online retails store order entry system is used 
(see 7.4.5, “Retail” on page 248). Note that a different workload would result 
in different Universal Cache relative throughput improvements and thus in a 
different ROI of the overall solution.
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The evaluation is done for two setups, one using commodity hardware and the 
other using enterprise hardware. The overall solution cost is heavily dependent 
on the choice between these two.

Case 1: Commodity hardware
The commodity hardware system consists of two IBM xSeries® servers (Xeon 
E5345 at 2.33 GHz on two chips, eight cores in total. One server is used for the 
standard disk-based database; the other server is used for remote database 
clients in the disk-based database stand-alone case, and for the solidDB cache 
in the Universal Cache case. 

Hardware costs are often difficult to estimate because they include fixed cost of 
procurement amortized over a number of years, and ongoing cost of 
maintenance, power, cooling, floor space, and so on. Therefore, we are making a 
simple assumption that the cost of hardware equals the cost of software. 

Table 7-1 lists the cost and revenue details for the ROI calculation of the 
commodity hardware case. The results are summarized in Table 7-2. In the table, 
K indicates thousand US dollars, and TPS indicates transactions per second.

Table 7-1   Estimated cost and revenue, commodity hardware case

Table 7-2   solidDB Universal Cache ROI summary, commodity hardware case

Item Data server solidDB Cache

Fixed cost (HW, SW) 128 K 310 K

Operational cost (HW, SW) 96 K 120 K

Throughput 100 TPS 350 TPS

Cost per transaction 2.24 K 1.23 K

Solution net earnings / ROI 43 K / 121%

Original revenue 448 K

New revenue 697 K

Added cost 206 K

Payback period 29.1 months

Revenue increased 1.6 times

Transaction cost decrease 45%
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Case 2: Enterprise hardware
The enterprise hardware system consists of one IBM pSeries® server (P 750 
MaxCore mode, 4 chips, 32 cores in total) and four IBM xSeries servers (Xeon 
E5345 at 2.33 GHz on two chips, eight cores in total. The pSeries server is used 
for the standard disk-based database. The xSeries servers are used for remote 
database clients in the disk-based database stand-alone case, and for the 
solidDB cache in the Universal Cache case. 

The hardware costs are much more substantial for enterprise-level servers 
running in UNIX environments, therefore, we are making a simple assumption 
that the cost of hardware equals two times the cost of software. 

The performance improvement brought by the solidDB Universal Cache is 
estimated to be about 100%, which is a conservative estimate given the results 
measured on commodity hardware.

Table 7-3 lists the cost and revenue details for the ROI calculation of the 
enterprise hardware case. The results are summarized in Table 7-4.

Table 7-3   Estimated cost and revenue, enterprise hardware case

Table 7-4   solidDB Universal Cache ROI summary, enterprise hardware case

Item Data server solidDB Cache

Fixed cost (HW, SW) 1536 K 1814 K

Operational cost (HW, SW) 1152 K 1248 K

Throughput 750 TPS 1490 TPS

Cost per transaction 3.58 K 2.06 K

Solution net earnings / ROI 1402 K / 475%

Original revenue 5376 K

New revenue 7152 K

Added cost 374 K

Payback period 6.0 months

Revenue increased 1.3 times

Transaction cost decrease 43%
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7.2.2  solidDB server reduces cost of ownership

In this example, we detail the potential solidDB server ROI in the following 
scenario:

� The complete solution is implement using solidDB server instead of a 
standard disk-based database server. A single machine running both the 
solidDB server and the database is used instead of a standard client-server 
setup.

� Because a new system is being built, no application porting is included in the 
total cost. An application porting cost similar to what is described in 7.2.1, 
“solidDB Universal Cache stimulates business growth” on page 226 could be 
added to convert this scenario to a complete replacement of an existing 
solution with the solidDB server. A $50,000 educational cost is included in the 
calculation.

� Software costs are based on the current processor value pricing for the 
solidDB product family, the current processor value pricing of IBM enterprise 
disk-based databases, and a standard 20% support renewal charge. A 50% 
price discount is included.

� The overall costs and revenue are calculated for a three year period, and all 
amounts are in thousands of U.S. dollars.

� A workload that simulates a mobile carrier Home Location Register system is 
used (see 7.4.1, “Telecom (TATP)” on page 235). Note that a different 
workload would result in different Universal Cache relative throughput 
improvements and thus in different return on investment of the overall 
solution.

� The evaluation is done using commodity hardware, IBM xSeries servers 
(Xeon E5410 at 2.33 GHz on two chips, eight cores in total). Again, cost of 
hardware is estimated to be the same as the cost of software.

Table 7-5 shows the cost and revenue details for the ROI calculation. The results 
are summarized in Table 7-6 on page 230.

Table 7-5   Estimated cost and revenue, commodity hardware case

Item Data server solidDB

Fixed cost (HW, SW) 128 K 114 K

Operational cost (HW, SW) 96 K 48 K

Throughput 100 TPS 300 TPS

Cost per transaction 2.24 K 0.54 K
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Table 7-6   solidDB ROI summary, commodity hardware case

7.2.3  solidDB Universal Cache helps leverage enterprise DBMS 

In this example, we show that when an application starts using solidDB Universal 
Cache to accelerate access to business critical data, part of the original workload 
is naturally off-loaded from the enterprise database server. As a number of 
database queries are then executed in the solidDB cache, additional processing 
capacity becomes available in the back-end database. Valuable resources like 
processor cycles, network bandwidth, and disk I/O bandwidth become available 
to either increase overall throughput to facilitate business growth, or to be used 
for other applications. The workload case study in 7.4.5, “Retail” on page 248 
further illustrates such resource savings in a real system.

7.2.4  solidDB Universal Cache complements DB2 Connect

In this example, we demonstrate how IBM DB2 Connect™ makes your 
company’s host data directly available to your personal computer and LAN-based 
workstations. It connects desktop and palm-top applications to your company’s 
mainframe. DB2 Connect provides application enablement and robust, highly 
scalable communication infrastructure for connecting web applications, mobile 
applications, and applications running on Windows, UNIX, Linux systems to data 
on IBM z/OS® and IBM AS/400® systems. 

IBM solidDB Universal Cache is a natural fit for an identical setup, where core 
data servers reside on IBM System z® or IBM System i® mainframes but the 
application accessing the databases is running in a distributed Linux, Unix, 
Windows environment. Although solidDB server does not run in native z/OS and 
AS/400 operating systems, caching of mainframe data is supported by the 
solidDB Universal Cache.

In this scenario, applications always have to access the data remotely through 
the network. Bringing a subset of the data to solidDB cache running on the Linux, 
UNIX, or Windows application server machine has great potential to improve 

Solution net earnings / ROI 286 K / 415%

Data server solution revenue 448 K

solidDB server solution revenue 672 K

Cost reduction 62 K

Revenue increased 1.5 times

Transaction cost decrease 76%
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overall performance and reduce critical data access response times. Moreover, 
as a portion of the transactions are now executed in the solidDB cache running 
off the mainframe, additional mainframe resources become available to either 
increase overall throughput to facilitate business growth, or to be used for other 
applications.

7.3  Application classes

IBM solidDB can be easily integrated in a number of application frameworks. 
These frameworks facilitate application development in Java or C programming 
languages by abstracting a number of database concepts from the application 
layer and accessing the database as a generic JDBC or ODBC data source. This 
simplifies the process of porting an application to use a different database server, 
because changes are needed only in the database connectivity layer that is 
managed by the framework, rather than in the application code itself. 

An application server provides the infrastructure for executing applications that 
run your business. It insulates the infrastructure from hardware, operating 
system, and the network. An application server also serves as a platform to 
develop and deploy your web services and Enterprise JavaBeans (EJBs), and as 
a transaction and messaging engine while delivering business logic to users on a 
variety of client devices. The application server acts as middleware between 
back-end systems and clients. It provides a programming model, an 
infrastructure framework, and a set of standards for a consistent designed link 
between them.

Many applications written within these application development paradigms can 
benefit from low database transactional latency and improved database 
throughput resulting from the solidDB in-memory database technology and its 
ability to bring data close to the application, as discussed in 7.1, “solidDB and 
Universal Cache sweet spots” on page 220.

The solidDB SMA functionality can be used within these frameworks as long as 
the solidDB server runs on the same computer as the application server. This 
way provides optimal database access using shared memory only, as illustrated 
in Figure 7-2 on page 221.

The following sections introduce a set of frameworks that have been tested with 
IBM solidDB 6.5. More detailed setup instructions are available on the following 
IBM solidDB Support portal, and samples are provided in the solidDB installation 
package:

http://www.ibm.com/software/data/soliddb/support
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7.3.1  WebSphere Application Server

IBM WebSphere Application Server is the IBM runtime environment for 
Java-based applications. WebSphere Application Server provides the 
environment to run your solutions and to integrate them with every platform and 
system as business application services that conform to the service-oriented 
architecture (SOA) reference architecture.

WebSphere Application Server is a key SOA building block. From the SOA 
perspective, with WebSphere Application Server you can perform the following 
functions:

� Build and deploy reusable application services quickly and easily
� Run services in a secure, scalable, highly available environment
� Connect software assets and extend their reach
� Manage applications effortlessly 
� Grow as your needs evolve, reusing core skills and assets

WebSphere Application Server is available on a wide range of platforms and in 
multiple packages to meet specific business needs. By providing the application 
server that is required to run specific applications, it also serves as the base for 
other WebSphere products, such as IBM WebSphere Enterprise Service Bus, 
WebSphere Process Server, WebSphere Portal, and many other IBM software 
products.

More information about using solidDB with the WebSphere Application Server is 
provided in the “Configuring WebSphere Application Server with solidDB” article, 
available on the IBM solidDB Support portal:

http://www.ibm.com/support/docview.wss?uid=swg21406956 

The article describes how to setup IBM WebSphere Application Server V7.0 with 
IBM solidDB V6.5 as a data store. A simple application provided with the solidDB 
package is used as an example. The article assumes basic familiarity with 
WebSphere Application Server, solidDB, and JDBC.

The task overview is as follows:

1. Start the solidDB server and the WebSphere Application Server.

2. Create solidDB JDBC providers and solidDB data sources.

3. Install the SolidTestEar application.

4. Run the SolidTestEar application.
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7.3.2  WebLogic Application Server

WebLogic Application Server is an application server product, owned by the 
Oracle Corporation, is a part of the Oracle WebLogic Java EE platform product 
family. 

More information about using solidDB with the WebLogic Application Server is 
provided in the “Configuring WebLogic Server for IBM solidDB” article, available 
on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21439319

The article describes how to setup Oracle WebLogic Server with solidDB 6.5 as 
a data store. A simple WebLogic application provided with the solidDB package 
is used as an example. The article assumes basic familiarity with the WebLogic 
Server, solidDB, and JDBC.

The task overview is as follows:

1. Start the WebLogic Server.

2. Start the solidDB server.

3. Create the solidDB JDBC data source.

4. Set up the environment.

5. Deploy and run the sample application.

7.3.3  JBoss Application Server

JBoss Application Server (or JBoss AS) is an open-source Java-based 
application server product. It was originally developed by JBoss Inc, and is now 
owned by Red Hat.

More information about using solidDB with the JBoss Application Server is 
provided in the “Configuring JBoss Application Server for IBM solidDB” article, 
available on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21452681

The article describes how to setup JBoss Application Server with solidDB 6.5 as 
a data store. A simple JBoss application provided with the solidDB package is 
used as an example. The article assumes basic familiarity with the JBoss 
Application Server, solidDB, and JDBC.
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The task overview is as follows:

1. Set up the environment

2. Deploy the solidDB JDBC data source

3. Start the solidDB server

4. Start the WebLogic Server

5. Deploy and run the sample application

7.3.4  Hibernate

Hibernate is an open source persistence and query framework that provides 
object-relational mapping of Plain Old Java Objects (POJOs) to relational 
database tables, and data query and retrieval capabilities. Hibernate enables you 
to write database applications without writing SQL statements. 

The mapping between objects and the solidDB database is facilitated with a 
solidDB dialect for Hibernate. The dialect enables the Hibernate library to 
communicate with solidDB. It contains information about the mapping of Java 
types to SQL types and the functions the solidDB database supports with 
Hibernate. In general, a Java class maps to a database table and a Java type 
maps to an SQL data type.

Hibernate eases migration between different databases: you can write an 
application for a database that will in principle work with all databases supported 
by Hibernate, that is, with any database that provides a dialect.

More information about using solidDB with Hibernate is provided in the 
“Hibernate and solidDB” article, available on the IBM solidDB Support portal at:

http://www.ibm.com/support/docview.wss?uid=swg21440246

The article describes how to get started using Hibernate with IBM solidDB. It also 
includes the solidDB dialect for Hibernate (SolidSQLDialect.jar), and 
instructions on how to build and run a sample application.

The task overview is as follows:

1. Configure your environment

2. Create mappings

3. Start the solidDB server

4. Run the sample application
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7.3.5  WebSphere Message Broker

IBM WebSphere Message Broker provides universal connectivity, including web 
services and any-to-any data transformation. In addition, you can use such 
products as DataPower® and WebSphere Transformation Extender to extend the 
capabilities of the core enterprise service bus (ESB) products. 

WebSphere Message Broker is a powerful information broker that allows 
business data, in the form of messages, to flow between disparate applications 
and across multiple hardware and software platforms. Rules can be applied to 
the data that is flowing through the message broker to route, store, retrieve, and 
transform the information. WebSphere Message Broker offers the following 
features:

� Universal connectivity
� Routing and transforming messages from anywhere, to anywhere
� Simple programming
� Operational management and performance
� Support for adapters and files

WebSphere Message Broker contains a choice of transports that enable secure 
business to be conducted at any time by providing powerful integration, 
message, and data transformations in a single place.

Official support for IBM solidDB was introduced in IBM WebSphere Message 
Broker V7.0.0.1. An example of solidDB working with the WebSphere Message 
Broker within an IBM financial services framework is presented in 7.4.3, “Banking 
Payments Framework” on page 243.

7.4  Examining specific industries

In this section we provide detailed discussion of solidDB applicability to 
workloads, frameworks, and use cases in several industries.

7.4.1  Telecom (TATP)

Telecom applications are prominent candidates for taking advantage of the 
solidDB sweet spots, especially in the area of service control. Service control 
applications are those that execute user services in a real-time environment. 
They usually operate on simple data structures and small amounts of data in 
each request. The key requirement is low latency, which is typically 
sub-millisecond. An example is a voice call setup in a mobile network, or a Voice 
over IP (VOIP) call setup.
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The Telecom Application Transaction Processing (TATP) benchmark was built to 
represent a typical service control application. It originated from a network 
division of Nokia Corporation in the 1990s, and was at that time called Network 
Database Benchmark. Eventually, it made its way to the public use and is now 
available as open source software, in the form of a TATP distribution package1.

TATP emulates the operations performed on the Home Location Register (HLR) 
database in a mobile telephone network switch. An example of the network 
architecture with HLR is shown in Figure 7-3.

Figure 7-3   Home Location Register database within a typical service architecture

HLR is a data repository holding essential subscriber information needed to set 
up a mobile call: the handset ID and subscriber ID (telephone number), the 
service profile including various access authorizations, service details including 
the call forwarding information, the current location of the handset, and so on. In 
TATP, only a subset of data structures and operations is used. The benchmark 
employs four tables and seven transactions to emulate the HLR load. A standard 
setup employs a transaction mix including 80% read transactions and 20% write 
transactions, and generates a load that represents the maximum server 
throughput.

1  http://tatpbenchmark.sourceforge.net/
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Benchmark description
The four tables used in TATP are as follows:

� Subscriber: basic subscriber information
� Access_info: subscriber’s network access validation
� Special_facility: subscriber’s service profile
� Call_forwarding: subscriber’s call forwarding data

Detailed table descriptions and referential relationships between the four TATP 
tables are shown in Figure 7-4.

Figure 7-4   TATP schema

The database of a given size (expressed as the number of subscribers) is 
populated following predefined cardinality rules. For example, for each 10 rows 
in the Subscriber table, there are 25 rows in the Access_info table. Today, typical 
test database sizes start from one million subscribers and up. In solidDB, a 
one-million subscriber database has the physical size of about 1.5 GB.
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The standard transaction mix consists of the following transactions (transaction 
types), with the percentage numbers reflecting the transaction’s share in the total 
load:

� Read transactions (80%)

– GET_SUBSCRIBER_DATA (35%)

Look up one row in the SUBSCRIBER table, using the primary key, using 
one SELECT statement with a long select list.

– GET_NEW_DESTINATION (10%)

Retrieve the current call forwarding destination, using a SELECT 
statement with a two-table join and single-column select list.

– GET_ACCESS_DATA (35%)

Retrieve the access validation data, with a single-row SELECT using the 
primary key, with short select list.

� Write transactions (20%)

– UPDATE_SUBSCRIBER_DATA (2%)

Update the service profile data, using two UPDATE statements, with 
equality conditions on the primary keys.

– UPDATE_LOCATION (14%)

Change the location, using one UPDATE based on the primary key.

– INSERT_CALL_FORWARDING (2%)

Add new call forwarding information, using two single-table SELECTS and 
one INSERT.

– DELETE_CALL_FORWARDING (2%)

Remove the call forwarding information, using one primary-key based 
SELECT lookup and one DELETE based on the multi-column primary key.

During the load execution, the transactions to be run are picked up randomly, 
based on the specified distribution. The search keys are also generated 
randomly, following one of the two distributions: the uniform distribution across 
the key range, or a non-uniform one representing discrete hot spots. The 
hot-spots emulate subscribers that are more active than the others.

Running TATP
With TATP Benchmark distribution package, you can run the workload in various 
configurations and on separate products. TATP is implemented as a 
DBMS-agnostic program that can be run against any ODBC-enabled DBMS, 
over TCP/IP connections, by way of a driver manager and proprietary ODBC 
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drivers. The software has been ported to all major platforms including Windows, 
Linux, HP-UX, Solaris, and AIX®. 

The basic load generator component is called a TATP client. A single client 
represents a single thread of load execution and it establishes a connection to 
the target database. Clients can be configured to be run as threads in a process 
or as separate processes. Client processes can be configured to be distributed 
across several client nodes. In such cases, clients are controlled by a single 
node that also collects the result data. Additionally, separate clients can run 
against separate DBMS instances, both collocated or distributed. Moreover, 
separate clients can be set up to run on separate partitions of a database, 
residing in separate DBMS instances.

In addition to using driver managers (both for local and remote access), TATP 
can be built to be linked directly with solidDB drivers. The server code can also 
be linked with the application using the linked library access (LLA) and shared 
memory access (SMA) drivers. Also possible is to run the tests in multiple 
computer nodes in a coordinated way.

When setting up TATP, the basic test configuration unit is a TATP test session. A 
test session is a sequence of test runs, possible population steps, intermediate 
operations, and so on. Each test session definition is captured in a single file 
called TDF (test definition file). In the TDF, you can specify the following items for 
each test run: 

� Number of clients
� Client distributions
� Database partitioning
� Test timing
� Transaction mixes (can differ from the standard read/write 80/20 mix). 

In a session, each test run is a continuous execution of the load with one set of 
test parameters. A test run timing consists of the ramp-up (warm-up) time and 
the sampling (test) time. The test result data is collected in the sampling (test) 
time. Typically test runs are specified in a session to constitute a certain 
scalability experiment. For example, in a user load scalability (ULS) session, the 
number of clients is varied from a test run to another. In a read-intensity 
scalability (RIS) session, the read/write ratio of the transaction mix is varied.

The TATP distribution package contains the source code and binaries and the 
usage guidance information and sample files.

Collecting test results
TATP offers two ways of retrieving the result data. Summary-type test results are 
output in the console and TATP log files. More detailed results can be collected 
into the Test Input and Result Database (TIRDB). TIRDB is a pre-initialized 
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database that is used as a total test respository. When TATP is running, it stores 
all the relevant data pertaining to test sessions and runs: 

� Target hardware and software characteristics and versions
� DBMS configuration information
� Test session description
� Test run description

It also stores the following test results: 

� Final throughput values expressed as mean qualified throughput (MQTh) in 
transactions per second

� Timeline throughput values with 1 second resolution (configurable)

� Response time histogram, for each transaction type

� Final response time values, per transaction type, expressed as 90-percentile 
response times, in microseconds. The 90-percentile response time is the 
shortest time that is bigger or equal to the response time of 90% of 
transactions executed during the test run.

With the existence of TIRDB, no separate result collection step is needed. All the 
results are stored persistently in an organized manner, and they are ready to use 
after each session execution. Because of the multidimensional data stored in 
TIRDB, various analyses across different dimensions (such as software versions, 
database sizes, test parameter values) are possible at any time.

Hardware and software considerations
The TATP benchmark is often used to measure the evolution in solidDB 
in-memory database performance between separate releases of the product, 
and on new hardware platforms. One example of such an effort is the close 
collaboration between Intel and IBM to showcase database performance 
improvements of new processor generations. A summary of the analysis and the 
results are published in support of Intel Xeon 5500 general availability 
announcement2.

The following sections describe benchmarks results that compare the solidDB 
performance against TATP using several hardware and software combinations. 
The results demonstrate improved throughput between solidDB releases and 
improved throughput with newer hardware.

For the benchmarking tests, IBM solidDB is running with default settings, such as 
relaxed durability and read committed isolation level that are chosen for optimal 
performance. A TATP database simulating one million subscribers is used, with 
the default workload characteristics of 80% read transactions and 20% write 

2  http://download.intel.com/business/software/testimonials/downloads/xeon5500/ibm.pdf
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transactions. To achieve maximum performance, the TATP workload application 
is accessing the solidDB database using the LLA method. To demonstrate 
database throughput scalability with the increased workload, the number of 
application client threads is varied.

Benchmark 1 results
The first benchmark compares performance of two solidDB product releases on 
two-socket Intel EP class hardware. 

Both systems had 18 GB of RAM, two attached solid state disks, and were 
running SLES 10 SP2 operating system.

� Nehalem-EP: 2 x CPU Intel Xeon 5570 @ 2.93 GHz, total 8 cores
� Westmere-EP: 2 x CPU Intel Xeon 5680 @ 3.33 GHz, total 12 cores

The results are shown in Figure 7-5. The throughput peaks at more than half a 
million transactions per second.

Figure 7-5   TATP Benchmark 1, throughput as a function of client load

Benchmark 2 results
The second benchmark compares performance of two solidDB product releases 
on four-socket Intel EX class hardware. Four solidDB database instances are 
running in parallel to take full advantage of the available processing power. 

IBM Software Group  | Information Management Software | solidDB
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Both systems had 32 GB of RAM, four attached solid state disks, and were 
running RHEL 5.4 operating system:

� Dunnington Server: 4 x CPU Intel Xeon 7450 @ 2.4 GHz, total 24 cores
� Nehalem-EX Server: 4 x CPU Intel Xeon 7560 @ 2.27 GHz, total 32 cores

The results are shown in Figure 7-6. The throughput peaks at more than a million 
transactions per second.

Figure 7-6   TATP Benchmark 2, throughput as a function of client load

7.4.2  Financial services

Financial systems are tremendously data-intensive and rely on speed in trading 
transactions that can result in huge profits and help exchanges compete and 
meet client demands. As market volatility continues to increase so does the risk 
of system failures that can lead to transaction delays, with a direct impact on the 
global financial system and the businesses and individuals that rely on it. 

The broad applicability of solidDB product family in financial services sector is 
described in 7.4.3, “Banking Payments Framework” on page 243 and 7.4.4, 
“Securities Exchange Reference Architecture (SXRA)” on page 246. In financial 
markets, milliseconds can mean the difference between profit and loss. 
Database performance is often a critical factor in rapidly making a decision to 
trade, executing that trade, and reporting the trade. It is an even more critical 
factor considering that trading volumes are growing, and effective trading 
decisions require more complex analytics of more data. 

IBM Software Group  | Information Management Software | solidDB
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7.4.3  Banking Payments Framework

In this section, we use a payments processing environment to demonstrate 
architectural and design patterns that can benefit from the use of both solidDB 
server and solidDB Universal Cache.

Introduction
The enterprise payments systems are characterized by the fact that all payment 
methods share a common set of data elements and processing steps. For 
example, checks and credit cards can seem different on the surface, but they are 
actually quite similar. Both have a source of funds, a security model, and a 
clearing and settlement network. All payment methods also require certain 
services, such as risk and fraud management. However, regardless of the 
similarities, in most banks the payment systems exist in silos, closely tied to 
particular retail and wholesale product lines. 

The IBM Enterprise Payments Platform (EPP), also known as the Financial 
Transaction Directory, is a solution that addresses the common problems of the 
banking industry, simplifying payment systems by providing banks with a single 
platform to integrate new and existing payments systems regardless of where 
they reside. 

The EPP is based on WebSphere Message Broker and WebSphere Process 
Server and DB2 and Oracle database technologies and software. With a service 
orientated architecture, the platform allows other banking applications to use 
componentized payment services in support of multiple lines of business. For 
example, with EPP, banks can purchase or develop one service to handle identity 
verification requirements and reuse it elsewhere to respond faster to changing 
regulatory requirements. 

The solidDB Universal Cache can be integrated into the EPP. By using the 
solidDB in-memory cache, critical data can be collocated with the application, 
thus reducing latency by eliminating the network. The use of the in-memory 
engine can also speed database operations.
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A schematic view of the EPP framework with solidDB Universal Cache is shown 
in Figure 7-7. To collocate data with the application, solidDB server can be 
implemented with SMA or LLA.

Figure 7-7   IBM Enterprise Payment Platform with solidDB Universal Cache

Benefits of solidDB Universal Cache in a payments system
Some of the key data in a payments system is by nature read-intensive, possibly 
requiring periodic updates. By caching such data into the in-memory cache, 
payment systems can benefit greatly from the solidDB Universal Cache. 

The following sections describe the key payments system areas and the type of 
data that is suitable for caching with the solidDB Universal Cache.

Payments life cycle
Payment systems are mostly event-driven and asynchronous in nature. The life 
cycle of payments or batch of payments is thus typically specified through a state 
machine paradigm. The state machine definitions are rarely updated but they 
must be read frequently, returning single or small result sets. By caching the 
state machine definitions into the in-memory cache, the applications can read 
(and periodically update) the data with low latency. 
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Bulking and debulking of payment information
Typically payments are received in bulk. The batch of payments must be 
processed quickly so that a response on the validity of the batch can be returned 
to the financial institution’s customer. The processing of the batch information 
involves the parsing and persistence of multiple payment instructions and the 
validation and construction of various object relationships in the database. This 
process is read- and write-intensive; the bulking and debulking operation is 
sensitive to latency. Again, the applications can benefit from caching the batch 
information data into the solidDB in-memory cache. 

Payment operational data
Various decision points in the payments life cycle rely on processing relational 
transaction data, such as the value of the transaction, the destination of the 
transaction, the currency of the transaction. This type of data affects the 
processing path of the payment and hence needs to be accessed frequently with 
a low latency requirement.

Reference lookups
The payment processing includes several enrichment, legal, and processing data 
list lookups that are by definition read-intensive. For example, using the 
in-memory cache can accelerate access to the following types of lookup data:

� Fee management
� Billing
� Security
� Anti money laundering
� Account lookup
� Routing
� Risk scoring
� Negative databases
� Liquidity
� Exchange rates

The solidDB Universal Cache features that are useful to 
payments systems
In this section, we describe two solidDB Universal Cache features that can bring 
additional benefit to the payments systems setups: data aging and SQL 
pass-through.

Data aging
Data aging is the process by which data is removed from the cache but not from 
the back-end database. Reciprocally, it also enables only specific data to be 
moved into the cache initially. The main benefit of data aging is the reduction of 
the amount of memory that the cache requires.
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To use the data aging, you must be able to define which data is operational and 
which data has aged. Within EPP, operational data is typically the data that the 
application requires to perform various tasks; it could be defined as all data that 
is associated with payments that have not completed processing. Because EPP 
is state-driven, the operational data set can be defined as all data that is not in 
the completed state. Data in the completed state, however, can then be aged, 
that is, removed from the cache.

SQL pass-through
SQL pass-through is the ability to have some database operations processed in 
the cache and some routed to the back-end database. Applications that use the 
cache typically cache a subset of the data required to accelerate the application. 
However, this way can lead to a situation in which some of the data is unavailable 
to the application in the cache. In such a case, the cache can determine that the 
data is not available in the cache and automatically route the request to the 
back-end database for servicing.

Within EPP, an example of data that does not need to be available in the cache 
could be the large transmissions of the raw data which is received or sent to the 
customer or the clearing system. Such data must be recorded but is seldom 
accessed subsequently.

7.4.4  Securities Exchange Reference Architecture (SXRA)

The IBM Financial Markets Framework enables the creation of highly-available 
and scalable infrastructures that help reduce costs and complexity, while 
achieving breakthrough productivity gains. The latest advances from IBM in 
engineering and software development have produced a Securities Exchange 
Reference Architecture (SXRA) lab benchmark that features low latency 
messaging. The solidDB in-memory database technology is used to store 
business critical data for monitoring purposes.

In a setup with solidDB, SXRA has been shown to achieve over five million orders 
per second and latency as low as 12 microseconds for the round trip from 
gateway to matching engine and back using a combination of InfiniBand and 
10GbE. The performance results show a 70% increase in orders per second and 
40% reduction in latency in comparison to previous results3. 

3  http://www.a-teamgroup.com/article/ibm-pitches-financial-markets-framework-pre-integra
tes-hardware-software-for-trading-risk-and-more/
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The exchange architecture is shown in Figure 7-8. The order generators (OMS) 
access the system through a series of gateway machines, WebSphere MQ Low 
Latency Messaging (LLM) pushes the orders to the parallel matching engines 
(ME) and stores the trade data in solidDB and a file system (IBM XIV® Storage 
System).

The matching engines process the orders and make the trades. Individual trade 
records are received by the LLM and pre-processed before they are written to the 
database. Simple data capture process is used to extract business critical 
information (mostly aggregates) from the raw data and record it in solidDB.

Figure 7-8   IBM Securities Exchange Reference Architecture

The figure also shows solidDB in-memory database used for trade monitoring.

The solidDB database stores data that is used to identify information needed for 
further business decision-making; raw trade data stream is also stored to a high 
performance file system. For example, the following types of data can be stored 
in solidDB:
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� Per-symbol position of each firm
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� Total value of trades processed in last X minutes

� Trades processed in the last X minutes with a value greater than Y

� Trades processed in the last X minutes with an amount greater than Y

� Trades processed in the last X minutes where the same firm is on opposite 
sides of the trade, with differing prices

With solidDB, the data can be queried in real time by using the solidDB SQL 
interface. An example report is shown in Figure 7-9.

Additional applications (such as automated order systems, real-time reporting 
facilities, or fraud detection) can also read from solidDB, triggering further actions 
based on the results.

Figure 7-9   Example of real-time trade analysis data retrieved from solidDB

The figure shows an overall position of an individual trading firm and five most 
traded stocks.

7.4.5  Retail

In this section, we describe a case study in which a retail oriented workload, 
called Hybrid Database Transaction Workload (HDTW), is run against IBM 
solidDB Universal Cache. The HDTW workload and database is inspired by and 
derived from the TPC-C Benchmark Standard, created by the Transaction 
Processing Performance Council (TPC). However, the results presented in this 
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section cannot be compared with any official results published by the TPC. The 
reason is because the HDTW includes significant alterations to the TPC-C 
Benchmark that have been made to more fully represent the wholesale supplier 
environment being simulated in this study.

Introduction
Database management systems and hardware are continuously improving to 
keep up with the ever increasing amounts of data and the need for faster access 
to it. Certain situations demand even more performance than a traditional 
disk-based database management system can provide, compelling a search for 
other technologies that can help.

This case study demonstrates how a medium complexity online transaction 
processing (OLTP) workload that gets good performance running on a 
conventional disk-based DBMS can receive a boost in response time and 
throughput when solidDB Universal Cache is integrated into the setup. We step 
through the phases involved in the process of designing and applying the 
in-memory cache into the system. This process includes identifying whether the 
solidDB Universal Cache can provide a tangible benefit, followed by a workload 
analysis and a planning phase, and finally an implementation and verification 
phase. This case study also describes best practices we learned during the 
implementation. This section assumes that you have basic understanding of the 
differences between traditional disk-based DBMSs and in-memory databases. 

In today’s fast-paced economy, milliseconds can mean the difference between 
profit and loss. Database performance is often a critical factor in rapidly 
responding to customer requests, orders, and inquiries.

Database management systems optimize performance through effective use of 
disk storage and main memory. Because databases typically cannot fit entirely in 
memory, and memory transfer rates are much faster than disk, disk-based 
database management systems are designed to optimize I/O efficiency. In effect, 
disk-based database management systems get better overall performance than 
disk technology alone would suggest. This result is admirable and works well for 
many applications. However, considering the high stakes in various industries 
with respect to performance, IBM has continued to explore innovations that 
improve performance even further. 

As a stand-alone database solution, solidDB can dramatically improve response 
time, throughput, or both, leading to significant competitive advantage. By 
presuming that all data fits in main memory, solidDB renders disk transfers moot 
(except for database recovery purposes). As a result, solidDB can use structures 
and access methods that optimize memory performance without regard for I/Os, 
resulting in better response time and higher throughput. Beyond a proven 
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performance record, solidDB provides a comprehensive suite of features, and 
high reliability.

In this case study, the solidDB in-memory database is used with the solidDB 
Universal Cache solution. The solidDB database is referred to as the front end 
and a DB2 database is referred to as the back end. The IBM InfoSphere Change 
Data Capture (InfoSphere CDC) technology is responsible for replicating the data 
between the back end and front end to ensure that each database is performing 
transactions on the same data. Some data, but not all, is present in both the front 
end and back end. In cases where a transaction cannot be processed in the front 
end, the solidDB SQL pass-through feature is used to pass the transaction to the 
back end for processing. Transactions that can be run completely in the front end 
have the potential to benefit from faster processing in the solidDB database.

The back-end DB2 for Linux, UNIX, and, Windows also provides fast 
performance and has a complex optimizer that helps to provide exceptional 
performance even on the most complex queries. The choice between running 
your workload on solidDB versus on the DB2 database should be based on a 
number of factors, which this book describes. For example, although solidDB 
database is also capable of running a large variety of queries, the greatest speed 
benefit is observed with non-complex queries. Besides query complexity, the size 
of the tables that the query accesses can matter. A detailed discussion of how we 
determined which transactions should run in the front end is available in 
“Preparation and planning” on page 252.

Workload description
The HTDW workload is an OLTP workload which can simulate the functions 
performed by a wholesale supplier. However, the HDTW workload is not limited 
to the activity of a particular business segment, rather, it represents any industry 
that must manage, sell, or distribute a product or service. It is an order-entry 
processing simulation that can be generalized to just about any business 
segment.

The workload characteristics are as follows: 

� The workload contains a database consisting of nine tables and a varied set 
of six medium to high complexity transactions that are executed on that 
database. 

� The database schema contains information related to the retail business, 
such as a number of warehouses in various districts, stock availability for 
several sold items, customer, and orders. 

� The transactions are modeled on the behavior of the retail firm managing 
warehouse inventories, executing orders, and allowing customers to browse 
the items. 
250 IBM solidDB: Delivering Data with Extreme Speed



� A browsing feature allows customers to see availability of a particular item in 
several stores when browsing, which simulates a standard feature of many 
existing web stores. 

� The database table describing the individual sales items contains a 
moderately sized large object (LOB) column representing the product image 
which would, for instance, be displayed on the distributor’s web page.

� The database workload is read-dominated, with 88% of operations not 
modifying the data. The remaining 12% is a combination of updates and 
inserts, with a small fraction of deletes.

Database schema
The database schema consists of nine tables with simple and complex data 
types including INTEGER, VARCHAR, TIMESTAMP, and BLOB. Indexes are also 
created on each table to eliminate table scans. The database tables can be 
grouped into three categories:

� Warehouse tables contain information about retail warehouses, including the 
items they carry, and the stock of each item. 

� Order tables contain information about new, existing and completed orders 
issued by customers. 

� Customer tables contain information about the store’s customers, including 
their personal information and payment history.

Transaction model
The workload is driven by six transactions that simulate various functions of a 
retail supplier system. The workload is designed to be read-intensive with both 
complex and simple look-up queries in addition to simple insert, update, and 
delete queries. The transactions are as follows:

� The Browse-Item transaction simulates a customer browsing through the 
store’s item catalogue which consists of several select queries.

� The Order-Entry transaction simulates an order being entered into the system 
resulting in the warehouse’s stock being updated to reflect the number of 
items that the customer ordered. This transaction consists of single and 
multi-table lookup queries, and simple update and insert statements. 

� The Order-Process transaction simulates the processing of an order entered 
through the order-entry transaction. A random new order is chosen for 
processing, and the customer who placed the order is charged an amount 
based on the price of the items and quantity they requested. This transaction 
consists of single-table select statements and simple updates. 

� The Customer-Payment transaction simulates a customer making a payment 
on an account balance for orders that the customer issued. The customer’s 
balance is adjusted, and the payment is recorded in the system’s payment 
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history. This transaction consists of single-table select statements, and simple 
inserts and updates. 

� The Order-Status transaction simulates the process of a customer checking 
on the status of the order. This transaction consists of single-table select 
statements.

� The Stock-Lookup transaction simulates a warehouse manager looking up 
the items for which stock is low. This transaction consists of single and 
multi-table select statements. 

Each transaction is executed in a specific mix to create a standardized workload 
that can be easily reproduced.

The workload driver is a multi-process application that runs the transactions in a 
round-robin fashion to maintain the transaction mix. The application creates 32 
processes that connect to the database server and communicate using ODBC 
calls. The application records a count of the number of successful executions of 
each transaction and the average response time for each transaction. The 
transaction counts and the response times are used as the performance metric 
for this workload. All transactions are sent to the front end; SQL pass-through is 
used for those transactions that need to be processed on the back end.

Preparation and planning
After the workload was tuned when running on DB2, we started the planning and 
preparation phase of integrating solidDB Universal Cache. Four key factors must 
be considered when you are deciding which queries should be run in the front 
end: table size, read versus write operations, query complexity, and workload 
data interactions. 

Table size
The first factor is that in order for a query to fully run in the front end, all required 
tables must also be in the front end. If at least one table required by the query is 
not in the front end, the SQL pass-through feature of solidDB Universal Cache 
routes the query to the back-end database. When the total size of the database 
exceeds the amount of RAM available on the solidDB front-end server, you need 
to identify the tables with size in mind. To do this you can query the database’s 
system catalog to determine each table’s size on disk, which can be used as a 
rough guide as to how much memory will be required for the table to exist in 
solidDB.

Read versus write operations
Another important factor in determining which queries should run in the front end 
is the type of operation performed by the query. For any table that is cached in 
the front end, data changes that are made to that table, either in the front end or 
252 IBM solidDB: Delivering Data with Extreme Speed



the back end, must be replicated to the other copy of the table to ensure that all 
queries are running against the same data regardless of where the query is run. 
To minimize the amount of replication required, it is advantageous to try to get as 
many read-only queries running in the front end as possible. To aid in this effort, 
we analyzed all queries run in the workload and characterized each by what 
operation was performed against what table or tables. 

From this analysis, we could then easily see which tables had mostly reads, 
suggesting which might be good candidates for placement in the front end. Of the 
two tables we selected to be cached in the front end, one is purely read-only (the 
ITEM table) and the other has mostly reads done on it along with a few updates 
(the STOCK table). The updates to the stock tables are performed in the back 
end which are then replicated to the front end through InfoSphere CDC.

Accelerating some write operations in the front-end cache also helps the overall 
workload. Accelerating write operations in the front end requires that any 
changes made are replicated to the back end. If the amount of data to be 
replicated is high and continuous, a throttling effect could occur where the 
solidDB database must wait for InfoSphere CDC to replicate the data. Selecting 
which write queries run in the front end is an important exercise to do during the 
planning and design phase. The selection of queries should also be fine-tuned 
during implementation through trial-and-error experimentation. For this case 
study, no write statements execute in the front end. For this reason, we were able 
to disable logging and checkpointing in solidDB because the database could be 
easily recreated from the back end if required. This provided us with a 
performance boost of about 5%.

Query complexity
Another factor in choosing the queries to run in the front end is the complexity of 
the query. The types of queries that experience the best performance 
improvement in a solidDB database are non-complex, quick-running queries that 
do not do many table joins and do not return a large result set. Queries that are 
complex, have many table joins or return a large result set are better suited to run 
in the back end. 

Workload data interactions
The final factor in determining which tables and queries to have in the front end is 
how the overall workload operates and how the various transactions interact. 
Changes in the data in the front end or the back end must be replicated to the 
other database. This replication takes a small amount of time, during which the 
two databases may not have identical information. You must have a thorough 
understanding of the transactions and which data they need to access and 
update. 
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For example, in this case study, the STOCK table is cached in the front end 
where all reads to it are performed. However, because updates are made to the 
STOCK table in the back end which then have to be replicated to the front end, 
there is a small window where a read to the STOCK table in the front end could 
get slightly old data. After this situation is identified, an assessment of how it 
could affect the workload needed to be done. We know that the nature of the 
updates to the STOCK table are increasing or decreasing the amount of an 
item’s stock. Reads from the STOCK table in the front end are driven by the 
simulation of a user browsing an item and getting a report of the stock level of 
that item in different warehouses. Being liberal, if the replication of an update 
took a maximum of 100 milliseconds (ms) to complete, the 100 ms is then the 
maximum amount of time that the number of an item’s stock can be out of date to 
the user. We deemed this to be acceptable.

Implementing and running the HDTW application
The implementation of HDTW on solidDB Universal Cache can be subdivided 
into three main steps: creating and loading the back-end DB2 database, creating 
the front-end solidDB cache, and configuring InfoSphere CDC to replicate data 
between the solidDB database and the DB2 database. 

Creating the back-end DB2 database
The back-end DB2 database holds all the data of the workload therefore it is 
created and populated first. An in-house-developed kit is used to mostly 
automate the process of creating the nine tables and their associated indexes, 
generating all the random data, loading the data, and applying the various 
configuration changes. The resulting database is 10 GB in size. 

Creating the front-end solidDB cache
The workload application is built to execute transactions on the solidDB front end 
through ODBC. Within each transaction, the SQL pass-through feature is used to 
route specific queries to the back end if they are unable to run in the front end. 
Before the solidDB server is started, SQL pass-through is enabled in the solid.ini 
file and the remote server information is provided. After the solidDB front-end 
server is running, a remote server definition is created with the login to the 
back-end DB2 database. The tables to be cached in the front end are then 
created in the solidDB front end along with the required indexes. The solidDB 
Speed Loader (solload) utility is then used to load the two tables with the same 
table that was loaded into the back-end database. 
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Configuring InfoSphere CDC to synchronize the data
To replicate data between DB2 and solidDB, separate InfoSphere CDC instances 
for both the solidDB database and the DB2 database must be created on each 
machine. After the InfoSphere CDC instance for the solidDB database, the 
instance for the DB2 database, and the InfoSphere CDC Access Server are 
running, replication can be configured using the InfoSphere CDC Management 
Console.

For this case study, because ITEM is a static table, no replication is necessary, 
therefore, we only need to create one InfoSphere CDC subscription for the 
STOCK table. The subscription is set to only replicate changes from the 
back-end DB2 database to the front-end solidDB database. After the subscription 
is put into a mirroring replication mode (changes are replicated continuously), the 
workload is ready to be run.

Figure 7-10 illustrates the entire database system.

Figure 7-10   Old HDTW topology 

In the figure, the application driver is accessing DB2 database directly (left). New 
HDTW topology with the application driver accessing the data locally through the 
solidDB shared memory access (right).
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Running the HDTW application
The workload application is run through a command-line shell on the solidDB 
machine. The application creates 32 processes that connect to the solidDB 
server through SMA and performs database operations through ODBC calls. 
Whenever a statement is issued for the back-end database, an SQL 
pass-through connection for that process is used to pass the query to DB2. 
Because each process runs all transactions, there are at least 32 SQL 
pass-through connections to DB2. 

Hardware and software considerations
Two separate systems are used in this workload to simulate a real environment 
with the application tier, generally utilizing some application server, which is 
separate from the database tier. One system contains the front-end solidDB 
server, and the other contains the back-end DB2 server. The two servers are 
connected by a private 1 Gb network. The systems had the following hardware 
and software configurations:

� Front-end solidDB system

– solidDB Universal Cache 6.5 FP3
– SUSE Linux Enterprise Server 10 SP1
– IBM System x3650 (Intel Xeon E5345 – 2.33 GHz, 2-socket, 4-core)
– 16 GB RAM, 2 GB allocated to solidDB

� Back-end DB2 system

– DB2 9.7 FP2
– SUSE Linux Enterprise Server 10 SP1
– IBM System x3650 (Intel Xeon E5345 – 2.33 GHz, 2-socket, 4-core)
– Externally attached storage: total of 1.8 TB over 60 disks using GPFS™
– 16 GB RAM, 10 GB allocated to DB2

Results
The performance of the HDTW workload is measured using two metrics:

� Transaction throughput, measured in transactions per second
� Transaction latency, measured in milliseconds

The throughput is calculated by summing the total number of transactions 
executed and dividing this sum by the duration of the workload run. The response 
time is calculated by weighing each transaction response time based on the 
transaction mix and summing the result. The response time for each transaction 
is defined as the interval between the time the transaction is started by the 
application and the time the transaction commit has been executed by the 
application.
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The results presented in Figure 7-11 show a greater than six times increase in 
throughput and almost five and half times reduction in latency with solidDB 
Universal Cache with a DB2 back end when compared to a stand-alone DB2 
database. 

In addition, the introduction of the solidDB Universal Cache reduces the network 
load by a factor of 10 because most of the read queries in a read dominated 
workload are now running locally against the solidDB cache and thus do not 
inflict any load on the network. Moreover, the solution reduces the disk I/O load 
in the back-end DB2 system by a factor of almost 73 because LOB data 
representing the product image is stored in the solidDB cache and does not have 
to be retrieved from the disk at every access time.

Figure 7-11   Performance impact of solidDB Universal Cache on the HDTW workload 
simulating an order entry processing system

In summary, this case study demonstrates how a demanding OLTP workload 
simulating an order-entry system running on solidDB Universal Cache with a 
DB2 back end favorably compares to the DB2 stand-alone. The Universal Cache 
solution brings the following increase, average, and reductions:

� 6.2X increase in transaction throughput
� 5.4X average transaction response time improvement
� 73X reduction in DB2 disk I/O
� 10X reduction in network I/O
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Scaling out the workload
In time, no more hardware resources are available on the front-end server that 
can be used to process more transactions. A powerful available option to combat 
that situation is to add more front-end servers with the application and solidDB to 
process the workload in parallel. This procedure is commonly referred to as 
scaling out. 

As previously discussed, the solidDB Universal Cache solution reduced DB2 disk 
usage by a factor of 73 and network usage by a factor of 10. This result, in turn, 
allowed for more processing to be performed on the back-end database server, 
which allows the addition of multiple solidDB front-end servers, and which results 
in increased transactions per second being executed.

Moreover, because our solidDB Universal Cache implementation consists of 
read-only operations in the front-end server, adding multiple front-end servers to 
the workload becomes easier, because each are basically replicas with the same 
data.

Figure 7-12 illustrates the architecture of the HDTW workload with five front-end 
servers.

Figure 7-12   The HDTW workload scaled out by adding multiple solidDB front-end servers
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Results
Results show that the additional performance gained with the addition of 
front-end server to the benchmark, scales performance linearly. Figure 7-13 
shows that with five front-end servers, 2173 transactions per second were 
achieved which is 28 times the performance of a stand-alone DB2 configuration.

These results show that for minimal effort, throughput can be greatly increased 
by scaling out with multiple front-end servers.

Figure 7-13   Performance scales linearly for each additional front-end server added
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� 28.2X with 5 front-end caches

DB2
Standalone

1 2 3 4 5
Average Throughput

77

2173

1782

474

1394

945

0

500

1000

1500

2000

2500

T
ra

n
sa

ct
io

n
s 

/ 
s

ec

Number of solidDB Front-ends 

Up to

28X
Improvement!

DB2 
Standalone

Average 
Throughput
 Chapter 7. Putting solidDB and the Universal Cache to good use 259



7.4.6  Online travel industry

Essentially, the three major roles in the online travel-reservation industry are 
travel suppliers, travel agents, and travel distributors:

� Travel suppliers are the hotels, airlines, and other companies that own the 
inventory being sold online. Travel suppliers typically have their own database 
on their own servers to store this inventory. They can sell that inventory 
through their own website, through travel agents, or through travel 
distributors. Several examples of travel suppliers include Hyatt, Choice Hotels 
International, and Air Canada. 

� Travel agents make up the main distribution channel through which travel 
suppliers sell their inventory. Websites such as Expedia and Kayak are 
considered online travel agents. Travel agents connect to the servers of travel 
suppliers or travel distributors to retrieve inventory. Many online travel agents 
also maintain a cache of inventory on their own servers, but this cache has to 
be updated regularly from the source. Some examples of travel agents 
include Expedia, Inc., Travelocity, and Flight Center. 

� Travel distributors are companies that centralize the inventory of multiple 
travel suppliers and supply that inventory to travel agents. Global Distributed 
System (GDS) companies such as Travelport Inc., and Amadeus install 
systems on travel supplier and travel agent servers, which then connect to a 
GDS server to facilitate data exchange. Some examples of travel distributors 
include Travelport Inc., Amadeus, and Sabre. 

Clearly, the ability to effectively synchronize inventory data between the 
suppliers, agents, and distributors, and present it quickly to the online customer 
through a web interface is paramount to this industry. Again, bringing data closer 
to the user reduces the transaction times and improves the customer experience. 
Suppliers who are able to serve data faster can generally be listed higher in the 
search results, and data not retrieved within a preset time interval is often 
ignored. 

Online Flight Reservation Workload
The Online Flight Reservation Workload is a custom-built workload that 
simulates an application load similar to the airline Computer Reservation System 
(CRS). Results are measured and presented using travel industry standard 
Passenger Name Records (PNRs). 

PNRs contain the itinerary for a passenger, or group of passengers travelling 
together. The format and content of a PNR was defined by the International Air 
Transport Association (IATA) to standardize reservation information that is 
exchanged by airlines when passengers use more than one airline to get to their 
destination. Typically, when a passenger books an itinerary, the travel agent or 
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travel website user will create a PNR in the CRS it uses. If the booking is made 
directly with an airline, the PNR can also be in the database of the airline’s CRS. 
This use case simulates an airline CRS.

Although PNRs were originally introduced for air travel, they are now also being 
used for bookings of hotels, car rental, railways, and so on.

Database schema and workload
The database in the workload consists of 25 tables that make up all the 
information in a PNR. Those 25 tables can be grouped into three major types: 

� Historical passenger tables contain historical PNR information about 
passengers. These tables record personal information supplied by 
passengers, special service requests (SSR) made (for example, special 
meals), tickets issued to the passengers, travel documents supplied by the 
passengers, and flight segments booked. 

� New passenger tables contain PNR information about passengers for flights 
that have not occurred yet. These tables record information about SSRs, 
tickets, travel documents, and flight seats. 

� Reference tables contain reference information that is not related to the 
passenger. This includes fares, flight segment information, and group PNR 
information. 

Most of the tables accessed have indexes on the columns that are used in the 
queries of the workload.

The workload driver is a multi-threaded Java application that randomly executes 
a configurable number of use cases. There are two general types of use cases: 
PNR Data Retrieval and PNR Data Update. The workload application randomly 
executes the following database transactions using multiple database 
connections, with all queries accessing each of the 25 database tables and 
returning one or more rows in the result set:

� PNR Data Retrieval

– ‘PNR Primary key’ search: find and read one PNR is 35%
– ‘PNR Primary key’ search: PNR not found is 2%
– ‘Passport number’ search: find and read one PNR is 35%
– ‘Frequent flyer number’ search: find and read n PNR is 23%
– ‘Group name’ PNR Report/List: find 100 rows is 5%

� PNR Data Update

– Delete data from all 25 tables
– Insert new PNR data to all 25 tables
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Hardware and software considerations
The workload topology is shown on Figure 7-14. Four computers are used to 
generate the workload, and one computer is used to run a pair of solidDB 
HotStandby servers:

� Test workload system

– Two machines: 4x Dual Core Intel Xeon Processor 5110 (1.6 GHz, 16 GB 
RAM)

– Two machines: 8x Quad Core Intel Xeon Processor E5504 (2.0 GHz, 
40 GB RAM)

� solidDB HSB system

– solidDB 6.5.0.0
– 16x Quad Core AMD Opteron Processor 8346 (1.8 GHz, 128 GB RAM)

Figure 7-14   Online Flight Reservation Workload setup

Results
The results are presented in Figure 7-15 on page 263 and Figure 7-16 on 
page 264, showing transactional response times and total workload throughputs 
as a function of the increased number of database connections. Both are 
measured for individual transactions, with each transaction executing SQL many 
statements against all database tables.

The results show that the overall throughput increases as more clients connect to 
the database, demonstrating excellent solidDB database scalability. Moreover, 
transactional response times do not vary with the number of clients. The solidDB 
in-memory engine is able to deliver near constant and predictable response 
times even as the overall database workload is being increased to meet growing 
business needs or to manage anticipated peak times.

solidDB HA PairTest Load Machines

JAVA Application 
Executing

Data Retrievals
Data Updates
(multiple threads to
simulate concurrent 
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Figure 7-15   PNR data retrieval throughputs and response times
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Figure 7-16   PNR data update throughputs and response times

Hotel Reservation Workload
The Hotel Reservation Workload demonstrates the benefit of solidDB Universal 
Cache in a hotel reservation scenario. The workload driver is a simple C 
application that executes hotel room availability queries against the in-memory 
cache. Any bookings are recorded directly against the back-end database, and 
changes to cached tables are propagated into the cache. 

The workload use a read-only cache that is well suited for applications where 
workload is read dominated; with hotel reservations, the “look-to-book” ratio is 
often as high as several hundreds to one.

The workload uses a database schema in which the solidDB front-end cache 
contains only two tables:

� Room information: availability, type, location
� Features: bed type, view, other amenities
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Figure 7-17 shows results of a case where the workload has been executed 
against the following three setups:

� Back end using ODBC connection
� solidDB Universal Cache with solidDB V6.3 using ODBC connection
� solidDB Universal Cache with solidDB V6.5 using SMA connection

As Figure 7-17 shows, the transactional throughput grows significantly after the 
solidDB Universal Cache is implemented in front of the disk based database. The 
improvement is further increased when SMA is used to access solidDB data.

Figure 7-17   Results of the Hotel Reservation Workload executed against solidDB 
Universal Cache

7.4.7  Media

This section describes how the media delivery industry can benefit from the 
solidDB products.

Bookings

Room searches Cache room types
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Media delivery and systems have undergone a vast number of changes over the 
past decades, from early days of radio and television, to the modern era of 
on-demand delivered content. Waiting for scheduled programming is no longer 
satisfactory for most consumers; viewers are getting used to, and beginning to 
expect, the ability to watch any show they want at any time. Any solution to this 
problem eventually requires that the content can be recorded and replayed.

This idea is not a particularly novel one either; video cassette recorders (VCRs) 
have existed since the 1980s. However, the advent of digital television allows 
more modern devices to replace the analog recording onto a magnetic tape with 
storing of digital data onto a hard-drive. Many digital video recorder (DVR) 
solutions are available on the market, but in most cases the physical device 
resides in the consumer’s home. This technological choice results in a number of 
limiting factors. For instance, multiple devices or some type of digital network 
connectivity are needed to serve the programming to multiple monitors in 
different rooms or even different locations, like the vacation house. Also, all data 
is stored on the recording device, so there is no possible recovery from device 
failure, and expanding the storage requires changes to the physical recorder.

Remote DVRs are offering to solve all these problems for end customers, 
bringing additional opportunities to the content providers. This approach involves 
storing all recordings on a centralized system consisting of a large number of 
high end storage units and a secure metadata repository. High performance 
storage arrays take care of the data volumes needed to support thousands of 
concurrent video recordings by shredding the videos across many disks; built-in 
redundancy of the storage system offers protection from data loss. 

A metadata repository contains all information necessary to reconstruct the 
recording and serve it to the customer at a later time. There are clear options for 
providers to optimize the business by facilitating the sharing of recorded bits 
among multiple customers who have recorded a particular show, thus reducing 
overall system cost, or by inserting targeted and personalized advertisements 
into the programming at replay time, thus increasing marketing revenue.

Remote DVR systems can thus be said to require the following properties from 
the metadata repository; and solidDB in-memory database is a perfect fit for such 
technical requirements and business needs:

� No data loss

� Quick transaction response times

� Real-time database properties, such as quickly reacting to administrative 
requests

� Ability to predictably handle large peak loads

� Ability to sustain high throughput
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Because metadata is needed to store, recover, and reconstruct the recordings, 
any loss of metadata amounts to the loss of the customer recording. 
Furthermore, during the time the system needs to detect and recover a database 
failure none of the recordings are accessible, effectively taking the DVR solution 
out of service. Using solidDB HotStandby (HSB) provides high-availability 
options that guarantee no data loss in case of a single database failure, while 
maintaining excellent performance characteristics, fast failure detection and 
database failover, and fast recovery back to the fully active HSB system.

As demonstrated in the previous sections, solidDB in-memory technology 
provides low and predictable transactional response times and sustains high 
throughputs. This is particularly important because the remote DVR systems 
need to manage extremely high peak loads - imagine millions of users wanting to 
record the U.S. Superbowl football game within a few minutes before the game 
starts. Because DVR metadata repositories are not likely to require complicated 
database schemas or transactional workloads, they fit in the solidDB “sweet spot” 
areas discussed in 7.1, “solidDB and Universal Cache sweet spots” on page 220.
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Chapter 8. Conclusion

Over the last few years the world has experienced a true data volume explosion. 
Studies indicate that the amount of data routinely being processed to yield 
actionable information is growing faster than Moore’s law1. Additionally, there are 
many new classes of structured and unstructured data which we may be able to 
convert into knowledge and base decisions: for example, every single click on the 
Internet, or every time a light switch is flipped, or every time a stock price falls 
after a large volume trade, or every time a car enters a section of a highway, Also, 
think about that growth in data volumes and new classes of information in terms 
of a large and growing worldwide environment.

In this worldwide environment, we have to understand that the way information is 
being extracted and derived must change to be able to keep up with the 
overwhelmingly increasing demands. Simply following existing paradigms and 
expecting hardware advances, such as those bound by Moore's law to double the 
capacity roughly every two years, to provide the necessary bandwidth will not 
suffice.

Adopting and using fast and efficient in-memory database technology is a part of 
the answer. It provides the necessary paradigm shift toward answering a set of 
questions more effectively. When used well, it does more with less, and this is the 
unbeatable opportunity that should not be missed in the present-day competitive 
business environment.

8

1  http://www.intel.com/technology/mooreslaw/
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8.1  Where are you putting your data

As the amount of collected data grows over the next decade2 (Figure 8-1), new 
approaches to processing, analyzing and information management will become 
a necessity.

Figure 8-1   Expected data growth over the next decade

Examples of highly demanding processing workloads can be found in any 
number of industries such as financial services, communications, and web, to 
name a few. Consider the following requirements:

� Brokerage application

– Receive market feeds
– Evaluate equity positions
– Check for fraud
– Evaluate tens of thousands of rules for thousands of trades per second 

and millions of trades per day

� Telecommunications online charging

– Authenticate and authorize
– Initiate service

2  IDC, John Gantz and David Reinsel, The Digital Universe Decade – Are You Ready?, May 2010; 
http://idcdocserv.com/925
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– Manage credit balance
– Manage volume discounts
– Hundreds of thousands of concurrent requests
– Needing microsecond database response times

� Web 2.0

– Authenticate users and manage personal profiles
– Generate page contents with targeted advertising
– Facebook has millions of concurrent sessions; billions of page views daily
– Wikipedia has thousands of page views per second
– Needing tens of thousands of database requests per second

One obvious approach to managing huge data sets is classifying them into 
multiple layers of hotness, or importance. This concept is not novel, because all 
respectable database systems already make such distinctions by pulling active 
data into memory buffer pools, or by archiving historical or rarely used data on 
tape or inexpensive disks. 

However, the number of storage tiers is increasing, and forthcoming technical 
advances add even more complexity to the picture. Data access time increases 
for each consecutive tier, in some cases by multiple orders of magnitude. 
However, the cost per byte stored and physical size limits are also reduced 
significantly. 

Starting from the fastest and most expensive, the following data storage 
mechanisms are currently available:

� CPU cache
� Volatile DRAM (Dynamic Random Access Memory) main memory
� Non-volatile DRAM (likely battery-backed) main memory3

� Non-volatile PRAM (Phase-Change RAM) main memory3

� Non-volatile Flash based main memory3

� SSD (Solid State Disk) I/O devices
� HDD (Hard Disk Drive) I/O devices
� Magnetic tape I/O devices

The future of effective information management will require intelligent and 
business-driven choices regarding what data is to be kept within each of the 
storage tiers. An equally important question will be “What products yield optimal 
performance characteristics for any given storage type?”

3  Not yet available in the market, however the amount of available research material indicates 
strongly that such technologies will be in the market within this decade.
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8.2  Considerations

Historically disk-based databases have been the easy answer because data had 
to be persisted within one of the I/O device types, for which disk-based 
databases are optimized. Main memory was effectively used only as a volatile 
“staging and manipulation area” while transporting data between I/O based 
storage and the CPU.

With anticipated advances in directly addressable main memory technologies 
(including non-volatility, larger available sizes, lower costs) the importance of new 
database systems optimized for main memory access will greatly increase. 
Though adoption of these new technologies presently looks like a choice, gated 
mostly by the cost of introducing a new software solution into the existing system, 
it may not be long before doing so becomes a necessity.

Bringing data closer to the application allows us to use the fastest and most 
efficient data access paradigms, yielding more results faster. This unique value 
proposition is realized by the IBM solidDB product family.
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Glossary

1-safe algorithm. A method of transaction 
processing in HotStandby setups. In 1-safe 
systems, transactions are committed on the primary 
server and then propagated to the secondary server 
after If the primary server fails before it sends the 
transactions to the secondary server, the 
transactions will not be visible on the secondary 
server. Also see 2-safe algorithm.

2-safe algorithm. A method of transaction 
processing in HotStandby setups. In 2-safe 
systems, transactions are not considered committed 
on the primary server until the transaction is 
confirmed committed on the secondary server. All 
updates to the data are applied to both copies 
synchronously. If the secondary server fails, the 
primary server stops accepting transactions. Also 
see 1-safe algorithm.

Access mode. The access mode of a solidDB 
parameter defines whether the parameter can be 
changed dynamically through an ADMIN 
COMMAND, and when the change takes effect. The 
possible access modes are RO, RW, RW/Startup, 
RW/Create.

application programming interface (API). An 
interface provided by a software product that 
enables programs to request services.

binary large object (BLOB). A block of bytes of 
data (for example, the body of a message) that has 
no discernible meaning, but is treated as one entity 
that cannot be interpreted.

Bonsai Tree. A small active index (data storage 
tree) that stores new data (deletes, inserts, updates) 
in central memory efficiently, while maintaining 
multiversion information.

cache database. The solidDB database in a 
Universal Cache setup. Also called cache or 
front-end.
© Copyright IBM Corp. 2011. All rights reserved.
concurrency control. A method for preventing two 
different users from trying to update the same data 
in a database at the same time.

Data Definition Language (DDL). An SQL 
statement that creates or modifies the structure of a 
table or database, for example, CREATE TABLE, 
DROP TABLE, ALTER TABLE, CREATE 
DATABASE.

Data Manipulation Language (DML). An INSERT, 
UPDATE, DELETE, or SELECT SQL statement.

data store (InfoSphere CDC). A management 
entity that represents the InfoSphere CDC instance 
in Management Console.

deploy. The process of making operational the 
configuration and topology of the solidDB Universal 
Cache.

disk-based table (D-table). A table that has its 
contents stored primarily on disk so that the server 
copies only small amounts of data at a time into 
memory. Also see in-memory table.

distributed application  A set of application 
programs that collectively constitute a single 
application. 

durability level. A feature of transactionality that 
controls how solidDB handles transaction logging. 
solidDB supports three durability levels: strict, 
relaxed, and adaptive.

Dynamic SQL. SQL that is interpreted during 
execution of the statement. 

Instance (InfoSphere CDC). A runtime instance of 
the InfoSphere CDC replication engine for a given 
DBMS. 
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Java Database Connectivity (JDBC). An API that 
has the same characteristics as ODBC but is 
specifically designed for use by Java database 
applications.

Java developer kit. A software package used to 
write, compile, debug, and run Java applets and 
applications.

Java Message Service. An application 
programming interface that provides Java language 
functions for handling messages.

Java runtime environment. A subset of the Java 
developer kit that allows you to run Java applets and 
applications.

In-memory table (M-table). A table whose contents 
are entirely stored in memory so that the data can be 
accessed as quickly as possible. Also see 
disk-based table.

main-memory engine (MME). The solidDB 
component that takes care of operations concerning 
in-memory tables.

meta data. Typically called data (or information) 
about data. It describes or defines data elements.

multi-threading. A capability that enables multiple 
concurrent operations to use the same process.

Open Database Connectivity (ODBC). A standard 
API for accessing data in both relational and 
non-relational database management systems. 
Using this API, database applications can access 
data stored in database management systems on a 
variety of computers even if each database 
management system uses a different data storage 
format and programming interface. ODBC is based 
on the call level interface (CLI) specification of the 
X/Open SQL Access Group.

optimization. The capability to enable a process to 
execute and perform in such a way as to maximize 
performance, minimize resource utilization, and 
minimize the process execution response time 
delivered to the user.

partition. Part of a database that consists of its own 
data, indexes, configuration files, and transaction 
logs.

Primary Key. A field in a table that is uniquely 
different for each record in the table.

process. An instance of a program running in a 
computer.

replication (InfoSphere CDC). InfoSphere CDC 
replication is based on an asynchronous, 
push-based model. Unidirectional subscriptions can 
be created for real-time propagation of data changes 
from the source side to the target side. Bidirectional 
capability is achieved by setting up two subscriptions 
with mirrored source and target definitions. 

replication (HotStandby). In HotStandby (HSB) 
setups, data changes in the primary are propagated 
to the secondary using a push-based replication 
protocol. The protocol can be set to synchronous 
(2-safe) or asynchronous (1-safe).

replication (advanced replication). In advanced 
replication setups, an asynchronous pull-based 
replication method enables occasional distribution 
and synchronization of data across multiple 
database servers.

read-only (RO). Parameter access mode where the 
value cannot be changed; the current value is 
always identical to the startup value.

read-write (RW). Parameter access mode where 
the value can be changed through an ADMIN 
COMMAND and the change takes effect 
immediately.

RW/Startup. Parameter access mode where the 
value can be changed through an ADMIN 
COMMAND and the change takes effect the next 
time that the server starts.

RW/Create. Parameter access mode where the 
value can be changed through an ADMIN 
COMMAND and the change applies when a new 
database is created.
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server. A computer program that provides services 
to other computer programs (and their users) in the 
same or other computers. However, the computer 
that a server program runs in is also frequently 
referred to as a server. 

shared nothing. A data management architecture 
where nothing is shared between processes. Each 
process has its own processor, memory, and disk 
space. 

SQL pass-through. The act of passing SQL 
statements to the back end, instead of executing 
statements in the front-end.

static SQL. SQL that has been compiled prior to 
execution. Typically provides best performance. 

subscription (InfoSphere CDC). A connection that 
is required to replicate data between a source data 
store and a target data store.
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acronyms
ACID atomicity, consistency, 
isolation, durability

ACS access control system

ADK Archive Development Kit

AIX Advanced Interactive 
eXecutive from IBM

API application programming 
interface

ASCII American Standard Code for 
Information Interchange

BE back end data server

BLOB binary large object

CDC change data capture

CLI call level interface

CLOB character large object

CPU central processing unit

DBA database administrator

DBMS database management 
system

DDL Data Definition Language

DES Data Encryption Standard

DLL dynamically linked library

DML Data Manipulation Language

DSN Data Source Name

D-table Disk-based Table

EJB Enterprise Java Beans

ERE External Reference Entity

FE front end data server

FP Fix Pack

FTP File Transfer Protocol

Gb gigabit

GB gigabyte

GUI graphical user interface

Abbreviations and 
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HAC solidDB High Availability 
Controller

HADR High Availability Disaster 
Recovery - DB2

HAM solidDB High Availability 
Manager

HSB solidDB HotStandby

I/O input/output

IBM International Business 
Machines Corporation

ID Identifier

IDS Informix Dynamic Server

ISV Independent Software Vendor

IT Information Technology

ITSO International Technical 
Support Organization

J2EE Java 2 Platform Enterprise 
Edition

JAR Java Archive

JDBC Java DataBase Connectivity

JDK Java developer kit

JE Java Edition

JMS Java Message Service

JRE Java runtime environment

JTA Java Transaction API

JVM Java virtual machine

KB kilobyte (1024 bytes)

LDAP Lightweight Directory Access 
Protocol

LLA linked library access

Mb megabit

MB megabyte

MBCS multibyte character set

MME main-memory engine
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M-table in-memory table

ODBC Open DataBase Connectivity

OLE Object Linking and 
Embedding

ORDBMS object relational database 
management system

OS operating system

pmon performance counter

RDBMS relational database 
management system

RR repeatable read

SA API solidDB application 
programming interface

SBCS single byte character set

SDK software developers kit

SMA shared memory access

solcon solidDB remote control utility 
program

soldd solidDB Data Dictionary utility 
program

solexp solidDB Export utility program

solload(o) solidDB Speed Loader utility 
program

solsql solidDB SQL Editor utility 
program

SQL Structured Query Language

SSC API solidDB server control API

TATP Telecom Application 
Transaction Processing

TC transparent connectivity

TF transparent failover

TSN transaction start number

URL Uniform Resource Locator

VLDB very large database

VTrie variable length trie

WAL write-ahead logging

XA X/Open XA

XML eXtensible Markup Language 
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