
ibm.com/redbooks

Front cover

IBM System Blue Gene Solution:
Blue Gene/Q System Administration

Gary Lakner
Brant Knudson

Perform Blue Gene/Q
system administration

Configure and use
Blue Gene Navigator

Run diagnostics and perform
service actions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System Blue Gene Solution:
Blue Gene/Q System Administration

May 2013

SG24-7869-01

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (May 2013)

This edition applies to Version 1, Release 1, Modification 2 of IBM System Blue Gene/Q Solution (product
number 5733-BGQ).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
Authors. xiii
Now you can become a published author, too! . xiv
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Summary of changes .xv
May 2013, Second Edition .xv

Chapter 1. IBM Blue Gene/Q system overview. 1
1.1 Blue Gene/Q hardware overview . 2
1.2 Blue Gene/Q software overview . 3

1.2.1 Compute Node Kernel and services . 3
1.2.2 I/O node kernel and services . 4
1.2.3 Application development and debugging tools . 4
1.2.4 System administration and management . 5

Chapter 2. Navigator . 7
2.1 System setup . 8
2.2 Using the Navigator. 9

2.2.1 The Navigator window . 10
2.2.2 Security integration . 12
2.2.3 Result tables . 12
2.2.4 System summary . 13
2.2.5 Alerts . 14
2.2.6 Jobs and job history . 14
2.2.7 Blocks and I/O blocks . 16
2.2.8 RAS. 18
2.2.9 Environmentals . 18
2.2.10 Hardware . 19
2.2.11 Hardware replacements . 20
2.2.12 Diagnostics . 21
2.2.13 Service actions . 23
2.2.14 Performance monitoring . 24
2.2.15 Knowledge Center . 27
2.2.16 Creating blocks with the Block Builder . 27

Chapter 3. Compute and I/O blocks. 29
3.1 Compute blocks . 30

3.1.1 Large blocks . 30
3.1.2 Small blocks . 34

3.2 Creating compute blocks. 35
3.3 I/O blocks . 37
3.4 Creating I/O blocks . 37
3.5 I/O links and ratios . 38
3.6 Deleting blocks . 38
© Copyright IBM Corp. 2013. All rights reserved. iii

3.7 Block status transitions . 38

Chapter 4. Configuring I/O nodes . 41
4.1 I/O node kernel . 42

4.1.1 Building new Linux kernels . 42
4.1.2 Installing the Linux kernel from the Red Hat download website 42

4.2 I/O node run time . 43
4.2.1 Installing Red Hat Enterprise Linux. 43
4.2.2 Installing additional packages . 44
4.2.3 Creating Blue Gene/Q Linux distribution sandboxes . 44

4.3 I/O adapters . 45
4.3.1 Supported adapters . 45
4.3.2 Firmware updates . 45

4.4 I/O configuration . 46
4.4.1 Network Interface MTU . 46
4.4.2 Defining interfaces and IP addresses . 46
4.4.3 Interface bonding configuration. 48
4.4.4 Environment variables using /dev/bgpers . 48
4.4.5 Site customization. 50
4.4.6 Customizing ramdisk. 50
4.4.7 The bgras command . 51

4.5 Boot sequence . 53
4.5.1 Persistent file systems . 53

4.6 Maintenance . 54
4.6.1 Installing RHEL updates . 54
4.6.2 Installing a new RHEL dot release . 54
4.6.3 Installing efixes . 55
4.6.4 Installing GPFS updates . 55
4.6.5 Node Health Monitor . 56
4.6.6 Core files . 57

4.7 Common I/O services . 58
4.7.1 Configuration. 58
4.7.2 Jobs directory . 60

4.8 NFS configuration . 61
4.9 Troubleshooting . 63

4.9.1 NFS errors . 63

Chapter 5. Control System console . 67
5.1 Overview . 68

5.1.1 Accessing help . 69
5.1.2 Command history . 69

5.2 Commands . 69
5.3 Special commands . 72
5.4 Command parameters . 72
5.5 Scripting . 73

Chapter 6. Submitting jobs . 75
6.1 The runjob architecture . 76
6.2 The runjob command . 76

6.2.1 The runjob options . 77
6.2.2 Scheduler . 80

6.3 Sub-block jobs. 80
6.4 Signal handling . 82

6.4.1 Exit status . 82
iv IBM System Blue Gene Solution: Blue Gene/Q System Administration

6.4.2 Normal job termination . 82
6.4.3 Abnormal job termination . 82

6.5 Standard input, output and error . 83
6.6 Job authority . 83

6.6.1 The grant_job_authority command . 83
6.6.2 The revoke_job_authority command. 84
6.6.3 The list_job_authority command . 84

6.7 The kill_job command . 85
6.8 Job status . 86

6.8.1 The list_jobs command . 88
6.8.2 The job_status command . 89

6.9 Historical perspective of job submission on Blue Gene . 90

Chapter 7. Reliability, availability, and serviceability. 93
7.1 Elements of a RAS message . 94

7.1.1 Message ID and component . 94
7.1.2 Category . 95
7.1.3 Severity . 96
7.1.4 Message . 96
7.1.5 Description . 96
7.1.6 Service action . 96
7.1.7 Diagnostics suites . 97
7.1.8 Control Action . 97

7.2 Tailoring RAS messages. 98
7.3 Viewing Blue Gene/Q defined RAS events . 99
7.4 Viewing sent RAS events . 99

Chapter 8. Toolkit for Event Analysis and Logging . 101
8.1 TEAL framework . 102

8.1.1 Connector . 103
8.1.2 Event analyzers . 103
8.1.3 Plug-ins . 104

8.2 Location reporting . 104
8.3 Integration with BGmaster. 104
8.4 Alerts and service actions . 105
8.5 Installation . 106

Chapter 9. Service actions . 107
9.1 Service actions overview. 108
9.2 Service action commands . 108

9.2.1 InstallServiceAction. 109
9.2.2 VerifyCables . 109

9.3 Hardware maintenance . 110
9.3.1 ServiceNodeDCA . 111
9.3.2 ServiceNodeBoard . 111
9.3.3 ServiceIoDrawer . 111
9.3.4 ServiceMidplane . 111
9.3.5 ServiceBulkPowerModule . 112
9.3.6 ServiceRack . 112
9.3.7 ServiceClockCard . 113

9.4 Deciding which service action command to use . 113
9.5 Preparing a service action. 115
9.6 Ending a service action . 116
9.7 Service action logs . 117
 Contents v

9.8 Cycling power . 117

Chapter 10. Diagnostics . 119
10.1 System diagnostics . 120

10.1.1 Requirements . 120
10.2 Diagnostic test cases . 120
10.3 Using the Navigator diagnostics interface. 123
10.4 Running diagnostics . 123
10.5 Preventive maintenance . 125
10.6 Running diagnostics through a scheduler . 125

10.6.1 Running diagnostics from a LoadLeveler job . 125
10.7 Diagnostics performance considerations . 127

Chapter 11. BGmaster . 129
11.1 BGmaster . 130
11.2 Running bgmaster_server . 130

11.2.1 The master_start command . 131
11.2.2 The master_status command . 131
11.2.3 The binary_status command. 132
11.2.4 The bgmaster_server_refresh_config command . 133
11.2.5 The binary_wait command . 133
11.2.6 The fail_over command . 134
11.2.7 The alias_wait command . 134
11.2.8 The list_agents command. 135
11.2.9 The list_clients command . 136
11.2.10 The master_stop command . 136
11.2.11 The get_errors command . 137
11.2.12 The get_history command . 138
11.2.13 The monitor_master command . 138

11.3 The bgagent daemon system process watcher . 138
11.3.1 Starting bgagentd . 139
11.3.2 Stopping bgagentd . 140

11.4 Configuration. 140
11.4.1 Sample configuration . 141
11.4.2 BGmaster network configuration. 143

11.5 Troubleshooting . 144
11.5.1 Configuration issues . 144
11.5.2 RAS messages . 145

Chapter 12. The Midplane Management Control System server 147
12.1 MMCS components. 147

12.1.1 The MMCS server handles requests from clients . 148
12.1.2 Blocks are defined in the database. 148
12.1.3 MC server communicates with the Blue Gene/Q hardware 148

12.2 Starting and stopping the MMCS server . 148
12.3 Configuration. 149

12.3.1 Configuration file options . 149
12.3.2 Command-line options . 150

12.4 Mailbox output . 151
12.5 Environmental polling . 151

12.5.1 How the environmental monitor works . 151
12.5.2 Polling intervals . 151
12.5.3 Data collection and RAS . 152
12.5.4 Location-specific monitoring . 155
vi IBM System Blue Gene Solution: Blue Gene/Q System Administration

12.5.5 RAS events . 155

Chapter 13. The machine controller server . 159
13.1 Machine controller server overview. 160
13.2 Starting and stopping the MC server. 160
13.3 Configuration. 160

13.3.1 Configuration file options . 160
13.3.2 Command-line options . 161

13.4 The mc_server_log_level command . 161

Chapter 14. The runjob server and runjob mux . 163
14.1 The runjob architecture . 164
14.2 The runjob_server . 165

14.2.1 Configuration file options . 165
14.2.2 Command-line options . 166

14.3 The runjob_mux . 168
14.3.1 Configuration file options . 168
14.3.2 Command-line options . 170

14.4 Utilities. 171
14.4.1 Configuration options . 171
14.4.2 The runjob_server_status command. 171
14.4.3 The runjob_server_log_level command . 172
14.4.4 The runjob_mux_status command . 174
14.4.5 The runjob_mux_log_level command . 175

Chapter 15. The Blue Gene Web Services server . 177
15.1 Configuring and running the BGWS server . 178
15.2 Configuration. 179

15.2.1 Configuration file options . 179
15.2.2 Command-line options . 180

15.3 Utilities. 181
15.3.1 Configuration. 181
15.3.2 The bgws_server_status command . 181
15.3.3 The bgws_server_refresh_config command. 182
15.3.4 The bgws_server_log_level command . 183

Chapter 16. Real-time server . 185
16.1 Real-time server . 186
16.2 Configuration. 186

16.2.1 Configuration file options . 186
16.2.2 Command-line options . 187

16.3 Security . 187
16.4 Utilities. 187

16.4.1 Configuration. 188
16.4.2 The realtime_server_status command . 188
16.4.3 The realtime_server_log_level command . 189

16.5 Requirements . 189
16.5.1 Access to the database transaction logs . 189
16.5.2 Database configuration . 190

Chapter 17. Distributed Control System . 193
17.1 Overview of the Distributed Control System . 194
17.2 Distributed Control System software. 194
17.3 Hardware configurations . 195
 Contents vii

17.3.1 Multiple SubnetMc processes on a service node . 196
17.3.2 Multiple subnet service nodes. 197
17.3.3 Multiple subnet service nodes with failover. 198

17.4 SubnetMc configuration . 199
17.4.1 Troubleshooting configuration issues . 201

Chapter 18. Security . 203
18.1 Object based model . 204
18.2 Network communication security . 205

18.2.1 Certificates and keys. 205
18.2.2 Handshake . 206
18.2.3 Configuration. 207
18.2.4 Certificate file permissions . 208
18.2.5 Generating security keys and certificates . 209

18.3 Database security . 210

Chapter 19. Database . 211
19.1 Database overview . 212
19.2 Database configuration . 212
19.3 Database maintenance . 212

19.3.1 Purging old data from tables . 213
19.3.2 Optimizing with indexes . 214
19.3.3 Reorganizing tables . 216

Chapter 20. Logging . 219
20.1 Apache log4j and log4cxx . 220
20.2 Log file format . 220
20.3 Log merge utility . 221

20.3.1 Configuration. 221
20.3.2 Usage . 222
20.3.3 Time stamp format . 222

20.4 Configuration. 223
20.5 Log rotation . 223

20.5.1 Control System logs . 224
20.5.2 I/O node logs. 224
20.5.3 Subnet service node logs . 224
20.5.4 Log maintenance . 225

Chapter 21. The bg.properties file . 227
21.1 The bg.properties file overview . 228
21.2 Property file validation. 230

Chapter 22. The Coreprocessor tool . 231
22.1 Usage and dependencies . 232
22.2 Starting the Coreprocessor tool . 232
22.3 Debugging live compute node problems. 234
22.4 Saving your information . 237
22.5 Debugging live I/O node problems . 238
22.6 Debugging core files . 238

Appendix A. Hardware location naming conventions . 241
Letter designation reference . 241
Hardware location naming convention . 242

Appendix B. Control System simulator. 247
viii IBM System Blue Gene Solution: Blue Gene/Q System Administration

Setting up . 248
Starting and stopping servers . 249
Creating and booting I/O blocks and compute blocks . 250
Running jobs . 250

Limitations with runjob . 250
Simulator cleanup . 251

Related publications . 253
IBM Redbooks . 253
Other publications . 253
Online resources . 253
How to get Redbooks. 254
Help from IBM . 254

Abbreviations and acronyms . 255

Index . 257
 Contents ix

x IBM System Blue Gene Solution: Blue Gene/Q System Administration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

IBM DOES NOT WARRANT OR REPRESENT THAT THE CODE PROVIDED IS COMPLETE OR
UP-TO-DATE. IBM DOES NOT WARRANT, REPRESENT OR IMPLY RELIABILITY, SERVICEABILITY OR
FUNCTION OF THE CODE. IBM IS UNDER NO OBLIGATION TO UPDATE CONTENT NOR PROVIDE
FURTHER SUPPORT.

ALL CODE IS PROVIDED "AS IS," WITH NO WARRANTIES OR GUARANTEES WHATSOEVER. IBM
EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ALL EXPRESS, IMPLIED,
STATUTORY AND OTHER WARRANTIES, GUARANTEES, OR REPRESENTATIONS, INCLUDING,
© Copyright IBM Corp. 2013. All rights reserved. xi

WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY AND INTELLECTUAL PROPERTY RIGHTS.
YOU UNDERSTAND AND AGREE THAT YOU USE THESE MATERIALS, INFORMATION, PRODUCTS,
SOFTWARE, PROGRAMS, AND SERVICES, AT YOUR OWN DISCRETION AND RISK AND THAT YOU
WILL BE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY RESULT, INCLUDING LOSS OF DATA
OR DAMAGE TO YOUR COMPUTER SYSTEM.

IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY TYPE WHATSOEVER RELATED TO
OR ARISING FROM USE OF THE CODE FOUND HEREIN, WITHOUT LIMITATION, ANY LOST PROFITS,
BUSINESS INTERRUPTION, LOST SAVINGS, LOSS OF PROGRAMS OR OTHER DATA, EVEN IF IBM IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS EXCLUSION AND WAIVER OF
LIABILITY APPLIES TO ALL CAUSES OF ACTION, WHETHER BASED ON CONTRACT, WARRANTY,
TORT OR ANY OTHER LEGAL THEORIES.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Blue Gene/P®
Blue Gene/Q®
Blue Gene®
DB2®
eServer™

GPFS™
IBM®
LoadLeveler®
PowerPC®
Redbooks®

Redpapers™
Redbooks (logo) ®
System i®
Tivoli®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and other
countries.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xii IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is one in a series of books that are written specifically for
the IBM System Blue Gene® supercomputer, Blue Gene/Q®, which is the third generation of
massively parallel supercomputers from IBM in the Blue Gene series. This book provides an
overview of the system administration environment for Blue Gene/Q. It is intended to help
administrators understand the tools that are available to maintain this system.

This book details Blue Gene Navigator, which has grown to be a full featured web-based
system administration tool on Blue Gene/Q. The book also describes many of the day-to-day
administrative functions, such as running diagnostics, performing service actions, and
monitoring hardware. There are also sections that cover BGmaster and the Control System
processes that it monitors.

This book is intended for Blue Gene/Q system administrators. It helps them use the tools that
are available to maintain the Blue Gene/Q system.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization.

Gary Lakner is a Staff Software Engineer for IBM Rochester on assignment in the ITSO. He
is a member of the Blue Gene Support Team in the IBM Rochester Support Center, where he
specializes in both Blue Gene hardware and software and performs customer installations.
Prior to joining the Blue Gene team, he supported TCP/IP communications on the IBM
eServer™ System i® server. Gary has been with IBM since 1998.

Brant Knudson is a Staff Software Engineer in the Advanced Systems SW Development
group of IBM in Rochester, Minnesota, where he has been a Programmer on the Control
System team since 2003. Prior to working on Blue Gene, he worked on the IBM Tivoli®
Directory Server team. Brant has been with IBM since 1998.

Special thanks to the following people for their contributions to this project:

Tom Budnik
Sam Miller

Thanks to the following people for their contributions to this project:

Jay Bryant
Cory Lappi
Pat McCarthy
Mark Megerian
Charlie Miller
Mike Mundy
Andrew Tauferner
William Stockdell
Yasunobu Suginaka
Kiswanto Thayib
Blue Gene Development, IBM Rochester
© Copyright IBM Corp. 2013. All rights reserved. xiii

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

Summary of Changes
for SG24-7869-01
for IBM System Blue Gene Solution: Blue Gene/Q System Administration
as created or updated on May 10, 2013.

May 2013, Second Edition

This revision reflects the addition, deletion, or modification of new and changed information
described below.

New information
� Added 4.4.1, “Network Interface MTU” on page 46.

� Added information about downloading and installing the Linux kernel from the Red Hat
web site in 4.1.2, “Installing the Linux kernel from the Red Hat download website” on
page 42.

� Added information about handling efixes for the bgq-distrofs RPM in 4.6.3, “Installing
efixes” on page 55.

� Added new fail_over and status commands to the command table in Chapter 5,
“Control System console” on page 67.

� Added information about the BGmaster fail_over command in 11.2.6, “The fail_over
command” on page 134.

� Added new failover configuration information in Chapter 13, “The machine controller
server” on page 159.

� Added information about reorganizing database tables in 19.3.3, “Reorganizing tables” on
page 216.

Changed information
� Updated information for Mellanox PCIe adapter firmware in section 4.3.2, “Firmware

updates” on page 45 to describe how updates are provided directly from IBM.

� Updated multiple Node Health Monitor threshold defaults in 4.6.4, “Installing GPFS
updates” on page 55.

� Corrected and updated the runjob options table in Chapter 6, “Submitting jobs” on
page 75.

� Updated various sections in Chapter 11, “BGmaster” on page 129 to reflect changes
made in V1R1M2.

� Updated various sections in Chapter 12, “The Midplane Management Control System
server” on page 147 to reflect changes made in V1R1M2.

� Updated various sections in Chapter 17, “Distributed Control System” on page 193 to
reflect changes made in V1R1M2 for failover.
© Copyright IBM Corp. 2013. All rights reserved. xv

xvi IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 1. IBM Blue Gene/Q system
overview

The IBM Blue Gene/Q system, shown in Figure 1-1, is the third-generation computer
architecture in the IBM Blue Gene family of supercomputers.

Figure 1-1 Blue Gene/Q system architecture

1

Service
node

Users

File servers

10 Gbps

InfiniBand QDR
or 10 Gbps

10 Gbps typical

Private network
for service node
and Blue Gene/Q

Front end nodes

Functional
LAN

Control
subnets

1 Gbps

Site
LAN

I/O nodes
© Copyright IBM Corp. 2013. All rights reserved. 1

The Blue Gene/Q system comprises multiple components including one or more compute
racks and optionally I/O racks. The system contains densely packaged compute nodes, I/O
drawers, and service cards. Additional hardware is associated with the storage subsystem,
the primary service node (SN), the front end nodes (FENs), and the communications
subsystem. The I/O drawers containing I/O nodes connect to the functional local area
network (LAN) to communicate with file servers, FENs, and the SN. The service cards
connect to the control subnets and are used by the SN to control the Blue Gene/Q hardware.

A service node provides a single point of control and administration for the Blue Gene/Q
system. It is possible to operate a Blue Gene/Q system with a single service node. However,
the system environment can also be configured to include a backup service node for failover
capability and distributed subnet service nodes (SSN) for high scalability.

A front end node, also known as a login node, comprises the system resources that
application developers login to for access to the Blue Gene/Q system. Application developers
edit and compile applications, create job control files, launch jobs on the Blue Gene/Q
system, post-process output, and perform other interactive activities. Application development
is outside the scope of this book and is covered in the IBM System Blue Gene Solution: Blue
Gene/Q Application Development, SG24-7948 Redbooks publication.

1.1 Blue Gene/Q hardware overview

Figure 1-2 shows the primary hardware components of Blue Gene/Q.

Figure 1-2 Blue Gene/Q hardware overview

Per rack

Peak performance 209 TF

Sustained
(Linpack) ~170+ TF

Power efficiency* ~2.1 GF/W

*Without optical interconnect

4. Node board
32 compute cards,
optical modules,
link chips, torus

5a. Midplane
16 node boards

6. Rack
1 or 2 midplanes

0, 1, 2, or 4 I/O drawers
7. Multi-rack system

5b. I/O drawer
8 I/O cards with 16 GB

8 PCIe Gen2 slots

1. Chip
16 cores

2. Module
Single chip

3. Compute card
One single chip module,
16 GB DDR3 memory
2 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Compute cards contain 16 IBM Blue Gene/Q PowerPC® A2 core processors and 16 GB of
memory. Thirty-two such cards plug into a node board, and 16 node boards are contained in
a midplane. A Blue Gene/Q compute rack has either one (half rack configuration) or two fully
populated midplanes, and the system can be scaled to 512 compute racks.

Compute rack components are cooled either by water or air. Water is used for the processing
nodes. Air is used for the power supplies and the I/O drawers mounted in the Blue Gene/Q
rack.

I/O drawers are either in separate racks or in I/O enclosures on top of the compute racks,
which are sometimes referred to as “top hats.” Eight I/O nodes are housed in each I/O drawer.
In the compute rack, up to four I/O drawers, two per midplane, can be configured using the I/O
enclosure (top hat). The placement of I/O drawers in the I/O rack configuration is advisable in
a large system installation where the number of I/O nodes cannot be accommodated in the
compute racks.

For an introduction to the Blue Gene/Q hardware components, see the Blue Gene/Q
Hardware Overview and Installation Planning Guide, SG24-7822 Redbooks publication.

1.2 Blue Gene/Q software overview

The software for the Blue Gene/Q system includes the following integrated software
subsystems:

� Compute Node Kernel (CNK) and services
� I/O node kernel and services
� Application development and debugging tools
� System administration and management
� Block and job management

The software subsystems are required in three hardware subsystems:

� Compute node
� I/O node
� Host complex (including front end node and service node)

1.2.1 Compute Node Kernel and services

The Compute Node Kernel (CNK) software is an operating system that is similar to Linux and
provides an environment for running user processes on compute nodes. The CNK includes
the following services:

� Process creation and management
� Memory management
� Process debugging
� Reliability, availability, and serviceability (RAS) management
� File I/O
� Network

A comprehensive description of the CNK is provided in the IBM System Blue Gene Solution:
Blue Gene/Q Application Development, SG24-7948 Redbooks publication.
Chapter 1. IBM Blue Gene/Q system overview 3

1.2.2 I/O node kernel and services

The I/O node kernel is a patched Red Hat Enterprise Linux 6 kernel running on I/O nodes.
The patches provide support for the Blue Gene/Q platform and contain modifications to
improve performance.

The I/O node software is responsible for providing I/O services to compute nodes. For
example, applications running on compute nodes can access file servers and communicate
with processes in other machines. The I/O nodes also play an important role in starting and
stopping jobs and in coordinating activities with debug and monitoring tools.

Blue Gene/Q is a diskless system so file servers must be present. A high-performance
parallel file system is expected. Blue Gene/Q is flexible, accepting different file systems
supported by Linux. Typical parallel file systems are IBM General Parallel File System
(GPFS™) and Lustre.

The I/O node includes a complete internet protocol (IP) stack, with Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) services. A subset of these services is
available to user processes running on the compute nodes that are associated with an I/O
node. Application processes communicate with processes running on other systems using
client-side sockets. Support for server-side sockets is also provided.

The I/O node kernel is designed to be booted as infrequently as possible. The bootstrap
process involves loading a ramdisk image and booting the Linux kernel. The ramdisk image is
extracted to provide the initial file system. This system contains minimal commands to mount
the file system on the service node using the Network File System (NFS). The boot continues
by running startup scripts from NFS. It also runs customer-supplied startup scripts to perform
site-specific actions, such as logging configuration and mounting high-performance file
systems.

Toolchain shared libraries and all of the basic Linux text and shell utilities are local to the
ramdisk. Packages, such as GPFS and customer-provided scripts, are NFS mounted for
administrative convenience.

A complete description of the I/O node software is provided in Chapter 4., “Configuring I/O
nodes” on page 41.

1.2.3 Application development and debugging tools

Application developers access front end nodes to compile and debug applications, submit
Blue Gene/Q jobs, and perform other interactive activities.

The compilers in the Blue Gene/Q toolchain are based on the GNU compilers. The IBM XL
compilers for Blue Gene/Q can also be used to build applications that run on the Blue Gene/Q
compute nodes. The IBM XL compilers can provide higher levels of optimization than the Blue
Gene/Q toolchain compilers because they take full advantage of the features available with
the IBM Blue Gene/Q PowerPC A2 core processors.

The Blue Gene/Q system includes support for running GNU Project Debugger (GDB) with
applications that run on compute nodes. Other third-party debuggers are also available.

Blue Gene/Q applications can be run in several ways. The most common method is to use a
job scheduler that supports the Blue Gene/Q system, such as the IBM LoadLeveler®
scheduler. Another less common option is to use the runjob command directly. All Blue
Gene/Q job schedulers use the runjob interface for job submission, but schedulers can
4 IBM System Blue Gene Solution: Blue Gene/Q System Administration

wrapper it with another command or job submission interface. The runjob command is
described in 6.2, “The runjob command” on page 76.

See the IBM System Blue Gene Solution: Blue Gene/Q Application Development, SG24-7948
Redbooks publication for a complete description about how to develop applications for the
Blue Gene/Q system.

1.2.4 System administration and management

The responsibilities of a Blue Gene/Q system administrator can be wide-ranging, but typically
involves maintaining and monitoring the health of the Blue Gene/Q system. Most system
administrator tasks are performed from the service node. The Navigator web application
running on the service node plays an important role in helping an administrator perform their
job. The rest of this book provides a comprehensive description of administering a Blue
Gene/Q system including how to:

� Use the key features of Navigator
� Manage compute and I/O blocks
� Run diagnostics
� Perform service actions
� Use the console
� Handle alerts
� Manage various servers
� Submit and manage jobs
� Configure I/O nodes
Chapter 1. IBM Blue Gene/Q system overview 5

6 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 2. Navigator

This chapter describes the Blue Gene Navigator administrative web application. You can use
the Navigator to look at the state of your system, including the jobs, blocks, hardware, and
environmentals. You can also run diagnostics, view the results, and perform service actions.

2

© Copyright IBM Corp. 2013. All rights reserved. 7

2.1 System setup

The Blue Gene Navigator is a web application. The user interface that is displayed in the
browser is sent to the browser by a web server. The Navigator uses the Blue Gene Web
Services (BGWS) to get the data that is displayed and also to perform other operations, such
as user authentication, start service actions, and start diagnostics runs. The web server must
be configured to fetch the Navigator files from the driver and to forward BGWS requests to the
BGWS server. The web server that is typically used is the Apache HTTP Server. The
following instructions document how to configure Apache so that the Navigator can be used.

The Blue Gene software ships with a sample Apache configuration file for the Navigator in
/bgsys/drivers/ppcfloor/navigator/etc/navigator.conf. The configuration file provides the
following functions:

� Requests for files in /navigator are served from the
/bgsys/drivers/ppcfloor/navigator/WebContent directory.

� The default file in /navigator is navigator.html, the main Navigator page.

� A request for / is redirected to /navigator. The default page for the service node is the
Navigator.

� Non-secured http requests are converted to secured https requests.

Using this configuration, users can get to the Navigator by entering http://sn in the browser
location bar, where sn is the IP address of the service node.

The recommended method to configure Apache is to create a symlink in /etc/httpd/conf.d to
the navigator.conf file in the driver directory by using the following command:

ln -s /bgsys/drivers/ppcfloor/navigator/etc/navigator.conf /etc/httpd/conf.d/

Alternatively, you can copy the navigator.conf file into /etc/httpd/conf.d/ and modify it as
necessary. If you use this method, you might have to modify the navigator.conf file for the next
release or if a fix changes the file.

In addition to the Navigator configuration, the web server must be configured to forward
BGWS requests to the BGWS server. The Blue Gene software ships with a sample Apache
configuration file for BGWS in /bgsys/drivers/ppcfloor/bgws/etc/bgws.conf. The configuration
file causes requests in /bg to be forwarded to the BGWS server.

To configure Apache, the recommended way is to create a symlink in /etc/httpd/conf.d to the
bgws.conf file in the driver directory using the following command:

ln -s /bgsys/drivers/ppcfloor/bgws/etc/bgws.conf /etc/httpd/conf.d/

Alternatively, you can copy the bgws.conf file into /etc/httpd/conf.d/ and modify it as
necessary. If you use this method, you might have to modify the bgws.conf file for the next
release or if a fix changes the file.

Configure the Apache server to start automatically using the following command:

/sbin/chkconfig httpd on

If Apache is not running, start it with the command:

/sbin/service httpd start

The Navigator is now ready for use.
8 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2.2 Using the Navigator

To use the Navigator, point your web browser at http://sn, where sn is the name of the service
node. You might get a warning saying that the site security certificate is not trusted. You must
agree to accept the certificate to continue.

The Navigator is loaded into your browser, and you are prompted for a user name and
password. The user is the user on the service node.

The following browsers are supported:

� Firefox 3.6 - 12
� Safari 5 - 6
� Chrome 13 - 21
� Internet Explorer 8 and 9

Tip: Use the Refresh button in the lower right to refresh the data on the panel. Using the
browser refresh page button causes the entire Navigator application to be reloaded.

Note: Browser versions can change quickly, and certain browsers are released on a quick
schedule. If a newer version of a browser is not listed in the preceding list, it might still
work.
Chapter 2. Navigator 9

2.2.1 The Navigator window

The Navigator window is shown in Figure 2-1.

Figure 2-1 Blue Gene/Q Navigator

At the top of the Navigator page, the header provides the name of the system, the current
user’s name, and an End Session button. Hover the mouse pointer over your name in the
header to display your special authorities, for example, administrator or hardware read. The
End Session button can be used to end the current session and start a new one. An
alternative way to restart a session is to use the browser reload button.
10 IBM System Blue Gene Solution: Blue Gene/Q System Administration

On the left is a graphical representation of the system. The hardware represented in this
panel might be highlighted to display information depending on which tab is selected in the
main tab area on the right. In this view, each rack is represented as a rectangle containing two
midplanes, with M0 on the bottom and M1 on the top. In each midplane, the node boards are
represented as squares. The upper-left square represents N00. N03 is in the upper-right
corner, and N15 is in the lower-right corner.

The graphical view of the machine shows an “I/O” clickable link if it has I/O drawers in the
top-hats of the system. Clicking I/O changes the display so that the I/O drawers are shown
rather than the midplanes, as shown in Figure 2-2. When showing I/O drawers, click the
Compute link to switch back to displaying midplanes and node boards.

Figure 2-2 Machine display for I/O drawers in top-hats

The machine display can be hidden to provide more space for the main area by clicking the
Hide button at the bottom of the machine display. When hidden, click the Show button to
display the machine again.

If the machine configuration is such that there are long rows, the machine display can take up
a lot of space next to the main area. The Navigator provides an option to display the machine
above the main area rather than on the left for this type of configuration. To display the
machine above the main area, add machineRegion=top to the query parameters in the
browser’s URL. In the following example, bgqsn is the hostname of the Blue Gene/Q service
node:

https://bgqsn1?machineRegion=top

In the footer is the dashboard, which displays several charts showing several statistics over
the course of the last five days. The chart data is updated automatically every five minutes.
You can click the data points in the RAS Events chart to jump to the RAS tab showing events
for that day and severity. Click the Jobs chart to jump to the Job History tab.

At the lower right of the page is the Refresh button. Use the Refresh button to reload the
information displayed in any of the tabs.

The following sections describe general Navigator features and each of the tabs in the main
window.
Chapter 2. Navigator 11

2.2.2 Security integration

The Navigator is integrated with the overall Blue Gene/Q security model. For more
information, see Chapter 18, “Security” on page 203. Certain pages and functions that the
Navigator supports might not be available to all users depending on your authority. A user
with administrative authority can view and perform all possible operations in the Navigator. A
user with hardware read authority but not administrative authority can view most of the pages
but cannot perform operations, such as starting a service action or starting a diagnostics run.
Hover the mouse over your name in the upper-right corner of the Navigator to display what
special authorities the current user has.

The description of each of the pages in the following sections includes what authority you
must use on the page or for features on the page.

2.2.3 Result tables

Many of the pages in the Navigator display a table of data and also allow you to filter and sort
the results. Change the sort order in the results table by clicking the header of the field that
you want to sort by. Click again to sort in the opposite direction.

Tables that can be filtered have a Filter Options button that is used to set the filter for the
results. Click the Filter Options button to display a dialog box that is used to set the values
for the fields that you want to filter the results on. The filter dialog for the RAS table is shown
in Figure 2-3 on page 12.

Figure 2-3 Filter options form
12 IBM System Blue Gene Solution: Blue Gene/Q System Administration

If a value is entered for a field, that filter is applied. Only records where the value for the field
matches the value in the filter are shown in the results. The record must match all of the fields
that are set. In other words, it is an AND filter rather than an OR filter.

Certain tables allow you to filter by a time interval, for example, for the past two days (a
relative interval) or the records for a certain day (an absolute interval). To change the mode of
the time interval filter from relative to absolute or vice-versa, click the blue text. For example, if
the time interval option says Entries in past 1 days, click Entries in past. The input
changes to Entries between so you can select an absolute time (start date and time and end
date and time) rather than a relative interval. When entering an absolute time, all of the parts
must be set; otherwise, the field is ignored. The RAS filter options also allow you to filter by
record ID.

Certain text fields allow a special format for the input. These fields are highlighted with an [i]
icon after the input box. Hover the mouse cursor over the [i] icon, and help text describing the
format of the input is displayed. For example, the Message ID field in the RAS filter options
allows you to enter a pattern for message IDs. The message ID pattern allows:

� Using an * (asterisk) to match any string of characters in the value
� Entering multiple message ID patterns by separating each pattern with a space
� Filtering out message IDs by putting a minus (-) in front of the value

2.2.4 System summary

The system summary page shows a quick overview of the system. A sample screen capture
for the system summary page is in Figure 2-1 on page 10. The hardware in the machine pane
on the left is highlighted in several colors depending on the status of the midplane or node
board. The legend in the System Summary tab shows what each color indicates:

� The hardware is used by a block that is busy booting or freeing.
� The block is ready (Initialized), but no job is running on it.
� A job is running on the block.
� Diagnostics are currently running on the hardware.
� A service action is in progress on the hardware.
� The hardware is not available because it is marked in error.

The System Summary page also shows the utilization of the system based on:

� The number of jobs
� The number of CPUs that are being used for jobs
� The total number of CPUs on the system

Details about the current jobs can be found in the Jobs tab.

The number of active alerts on the system are identified by Toolkit for Event Analysis and
Logging (TEAL). Alerts can be analyzed by going to the Alerts tab.

Hardware that is not available because it was marked in error is identified in the Hardware
section of the System Summary page. You can browse your Blue Gene hardware in the
Hardware tab.

Any current diagnostics runs are listed in the Diagnostics section. Diagnostics details and
operations are in the Diagnostics tab.

Service action operations currently in progress are listed in the Service Actions section.
Details about service actions are in the Service Actions tab.
Chapter 2. Navigator 13

The system summary data can be refreshed automatically by selecting the Automatically
update option at the top of the page. The data is refreshed every five seconds.

2.2.5 Alerts

The Alerts page allows you to browse, close, and remove the alerts that the Toolkit for Event
Analysis and Logging (TEAL) generated, as shown in Figure 2-4.

Figure 2-4 Alerts page

The initial filter options for the alert results show only open alerts that are not duplicates. To
display closed alerts or duplicates, you must click the Filter options and enable the closed
state or change the Duplicates option to Show.

Administrators can close alerts that are not duplicates. Select the alert, and if its state is
Open, you can click the Close Alert button. Administrators can also remove alerts that are
closed.

You must have hardware read authority; otherwise, the Alerts tab is hidden. You must have
administrative authority to close an alert.

2.2.6 Jobs and job history

The Jobs page shows jobs that are currently running on the system. Select a specific job, and
details for the job are displayed in the details pane at the bottom of the page. To see RAS
events for the job, if there are any, switch to the RAS tab in the details pane. A screen capture
of the page is shown in Figure 2-5.
14 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 2-5 Jobs page
Chapter 2. Navigator 15

The Job History page is similar to the Jobs page, but it shows completed jobs that are no
longer running on the system. An image of the page is shown in Figure 2-6.

Figure 2-6 Job history page

Users must have read authority to the job or they cannot see it in the jobs or job history
pages.

2.2.7 Blocks and I/O blocks

The Blocks page shows the compute blocks that are defined on the system and allows users
to create and delete blocks. When a block is selected, the hardware that it uses is highlighted
in the machine view. If the midplane is included in the block, it is highlighted in blue. However,
if a midplane is passed through, it is highlighted in orange. To show details for a block, select
the block. You can see the jobs that are running or have run on the block by switching to the
Jobs tab in the details pane. A screen capture of the Blocks page is shown in Figure 2-7 on
page 17.

To define a new block, press the Create button to cause the Block Builder page to be
displayed. For information about the Block Builder, see Section 2.2.16, “Creating blocks with
the Block Builder” on page 27.

To delete a block, select the block and click Delete. The status of the block must be Free for it
to be deleted.
16 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 2-7 Blocks page

The I/O Blocks page, Figure 2-8, shows the I/O blocks. The hardware used by the I/O block is
highlighted in the machine view.

Figure 2-8 I/O blocks
Chapter 2. Navigator 17

You must have:

� Read authority to the block to display the block
� Create authority to create a block
� Write authority to the block to delete the block

2.2.8 RAS

The RAS page, shown in Figure 2-9 on page 18, allows you to query the RAS events that
occurred on the system. To view details for a RAS event, click the RAS event in the table.

The results table on the RAS page has an extra feature where you can choose which fields
you want displayed. Click the Display Fields button, and select only those fields that you
want displayed.

Figure 2-9 RAS

You must have hardware read authority; otherwise, the RAS tab is hidden.

2.2.9 Environmentals

The Blue Gene/Q system collects various environmental data while it is running. The
Environmentals page, shown in Figure 2-10 on page 19, allows you to query the
environmental data. Each tab on the Environmentals page shows a different aspect of the
environmental data that has been collected.
18 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 2-10 Environmentals

Some of the measurements displayed in the Navigator environmentals can be shown in their
US customary units or SI units. The default is configured in the BGWS, but the user can also
override the default setting by adding “measurements=SI” or “measurements=US” in the
query of the URL. For example, to display measurements in SI units, use a URL like
https://bgqsn?measurements=SI (where bgqsn is the hostname of the Blue Gene/Q service
node). This affects the display of the coolant monitor flow rate environmentals.

You must have hardware read authority or the Environmentals tab is hidden.

2.2.10 Hardware

The Hardware page provides a way to browse the Blue Gene/Q hardware. Hardware that is
not available is highlighted in red in the machine view when viewing this page.

A summary of the machine is initially displayed. Display details for a rack by clicking the rack
on the machine view. If rack details are being displayed, click a midplane in the rack to display
details for the midplane. If a midplane is displayed, click a node board in the midplane to
display details for a node board. The upper-left square is the N00 node board, the upper-right
square represents N03, and the lower-right square represents N15. If the details for a piece of
hardware contain a link to another piece of hardware, click the location highlighted in blue to
jump to that location.

The Parent button, shown in Figure 2-11 on page 20, displays the piece of hardware that the
currently selected hardware is in. For example, pressing the Parent button when a node board
is selected switches to the midplane that it is contained in.
Chapter 2. Navigator 19

Another way to display details for a piece of hardware is the Jump To input box. Enter a
hardware location to jump directly to details for the hardware at that location. For example,
jumping to R00-M0-N00 jumps directly to the node board at R00-M0-N00.

Figure 2-11 Hardware page

You must have hardware read authority or the Hardware tab is hidden.

2.2.11 Hardware replacements

The Hardware Replacements page shows the history of hardware that was replaced on the
system. You can filter the results by time, hardware type, location, serial number, or ECID. A
screen capture of the Hardware Replacements page is shown in Figure 2-12.

Figure 2-12 Hardware replacements

You must have hardware read authority or the Hardware Replacements tab is hidden.
20 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2.2.12 Diagnostics

The Diagnostics page, shown in Figure 2-13, allows you to view current and completed
diagnostics runs and also to start a new run.

Figure 2-13 Diagnostics page

The results of current and completed diagnostics runs can be queried from different
perspectives. The Summary tab provides a summary of running diagnostics and the results of
diagnostics runs on midplanes, I/O drawers, and user-defined blocks. Click a current run, a
midplane location, or an I/O drawer location to display the results of diagnostics on that
midplane or I/O drawer. The results are displayed in the Details tab.

The Locations tab shows the diagnostics results at all of the locations where diagnostic tests
provided a result. The location might be a node board, node card, I/O drawer, and so on. Click
a row in the results table to display detailed results for that location. The initial result filter
shows the latest result for each piece of hardware. Change the filter to a location and set the
time interval to display the results for the hardware at the location for various runs in the
specified interval.

The Completed Runs tab provides the capability to query the diagnostics runs performed on
the system. Click a row in the result column to display details for that run.

Administrators can configure and submit a new diagnostics run from the Navigator using
either the Configure Compute Run tab, Figure 2-14 on page 22, or the Configure I/O Run tab.
To configure a diagnostics run on a midplane, first select the midplane or midplanes that you
want to run diagnostics on from the machine view. Next, you can check or uncheck the
diagnostics buckets of test cases that you want to run. An estimate of the run time is
displayed next to the bucket. Changing which buckets are selected causes the test cases that
are in all the selected buckets to be checked or unchecked in the table of test cases.

You can optionally override the bucket selection and pick individual test cases by selecting
test cases from the table of test cases. The estimated run time is updated based on the
selected test cases. Select the run options that you want to apply to the test. The run options
are described in Chapter 10, “Diagnostics” on page 119.

When you are ready to start the diagnostics run, click the Start Diagnostics Run button and
the diagnostics script is started on the service node. After a run ID is generated by the script,
Chapter 2. Navigator 21

it is displayed in the Navigator. You can view the current status and progress of the run by
going to the Summary tab.

Figure 2-14 Configure diagnostics run

The Navigator can also be used to get the parameters to use when running diagnostics from
the command line. After selecting the midplanes and test cases a sample command line is
displayed at the bottom of the page.

You must have hardware read authority to view the Diagnostics page and administrative
authority to start a diagnostics run.
22 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2.2.13 Service actions

You can view the status of service actions, either in progress or completed, prepare hardware
for service, and end service actions in the Service Actions page, shown in Figure 2-15, of the
Navigator.

Figure 2-15 Service actions

The default filter for the service actions results shows all service actions that were started in
the past week. You can filter the service actions results by action, status, location, user, and
so on.

Note that when a service action requires a special action by the service personnel, an
attention icon is displayed in the Status column. Hover over the attention icon to display the
message.

You can end a service action from this page. Select a service action from the table that has an
Action of PREPARE and a Status of Prepared, and click the End Service Action button.

Administrators can prepare hardware for service by clicking the Prepare Hardware for
Service button on the Service Actions page. This action opens a new tab in the main tabs to
a wizard to help you pick the type of service action and the hardware. A screen capture of the
initial Prepare Service Action page is shown in Figure 2-16.

Figure 2-16 Prepare service action

Select the type of service action that you want to perform by clicking the link. The type of
service action to pick based on the service you need to perform can be found in Chapter 9,
“Service actions” on page 107.
Chapter 2. Navigator 23

After you select the type of service action, a page is displayed that allows you to pick the
hardware location. It also shows the jobs that are affected if the service action is started. A
screen capture of this page for a service action on a midplane is shown in Figure 2-17. Click
the Start Prepare for Service button when you are ready to start the service action. The
Navigator shows the service action ID after it is started, and you can check the progress on
the Service Actions page. To pick a different type of service action, click the Back button.
When you are done with this page you can close the tab using the X button on the tab header.

Figure 2-17 Prepare midplane for service

You must have hardware read authority to view the Service Actions page and must be an
administrator to prepare hardware for service or to end a service action.

2.2.14 Performance monitoring

Using the Performance Monitoring page, shown in Figure 2-18 on page 25, you can examine
the block boot performance data that is captured while the machine is running. Each time a
block is booted several durations are collected at each step of the boot to provide an overall
boot time. The boot performance might be affected by changes to the software and by
environmental changes, such as disk or network performance.
24 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 2-18 Performance monitoring

The boot block performance data uses the “detail” to discriminate among block boots that are
similar. Block boot performance is typically a function of the size of the block (the number of
compute nodes) and the amount of I/O available (I/O nodes). The detail in the boot block
performance measurements, as displayed in the Navigator, are a concatenation of the
number of compute nodes and number of I/O nodes, such as “c<compute nodes>i<i/o
nodes>”. For example, a boot of a rack-sized compute block connected to eight I/O nodes has
a detail of “c1024i8”.

Hover the mouse cursor over each section of the bars in the chart to get details for that
section, such as the name of the step and the average duration. Click a bar in the chart to
change the view to show the result for that detail using a pie chart.

The default filter shows the results grouped by detail for the past seven days. You can set the
filter option to display a specific detail or block ID, the time interval for the measurements, and
select how the results are grouped (daily, weekly, or monthly). The chart changes depending
on the filter options. If the filter has a detail or block ID set and the grouping is not set, a pie
chart is displayed, similar to Figure 2-19 on page 26.
Chapter 2. Navigator 25

Figure 2-19 Performance monitoring details

When the filter has a detail or block ID and the time interval grouping is set to something other
than “None”, a bar chart is displayed. The results are grouped by day, week, or month.
Figure 2-20 shows sample output for the detail “c256i8” grouped by day.

Figure 2-20 Performance monitoring grouped by day

You must have hardware read authority to view the Performance Monitoring tab.
26 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2.2.15 Knowledge Center

The Knowledge Center contains links to online sources of documentation on the Blue Gene/Q
system, as shown in Figure 2-21. Click the link to open the documentation in your browser.

Figure 2-21 Knowledge Center

Any user can view the Knowledge Center page.

2.2.16 Creating blocks with the Block Builder

When you click the Create Block button on the Blocks page, the Block Builder is displayed in
a new tab. General information about blocks, including knowing how the midplanes are
connected in a torus and using the command-line tools to create blocks, is described in
Chapter 3, “Compute and I/O blocks” on page 29. A screen capture of the Block Builder is
shown in Figure 2-22

Figure 2-22 Navigator block builder

You create a block by selecting midplanes or node boards from the machine view on the left.
To create a large block, click a midplane. The midplane changes color to blue to indicate that
it is included. The next midplane in each dimension according to the torus cabling is
annotated with the dimension. Clicking one of these annotated midplanes expands the block
in that dimension. You can continue in this manner until the block is defined. To set a
midplane to be passed through, click the midplane again to toggle it to pass through.
Pass-through midplanes are highlighted in orange. The block must have three or more
included midplanes in the dimension for a midplane to be toggled to pass through.
Chapter 2. Navigator 27

To create a small block, first click a midplane. Next, click the smaller squares representing
node boards in that midplane to select the node boards in the small block. The upper-left
corner is N00, the upper-right corner is N03, and the lower-right corner is N15. The Block
Builder does not allow you to create a small block that is not valid, so valid combinations of
node boards must be selected.

The Navigator displays a summary of the block that is under construction. The size is the
number of compute nodes in the block, 512 for each midplane or 32 for each node board. The
shape shows the shape in each dimension (A x B x C x D x E) for the block. The “Full Torus”
indicators show whether the block is a torus in each dimension. A large block is a torus in the
dimension if the number of midplanes in the dimension is either 1 or the size of the machine in
that dimension. For a small block, the connectivity in each dimension can be determined from
the size.

After a name is assigned and the hardware is selected, press the Create Block button to
create the block.

You must have block create authority to use the Block Builder.
28 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 3. Compute and I/O blocks

On Blue Gene/Q, there are two types of blocks: compute blocks and I/O blocks. Compute
blocks identify the hardware on Blue Gene/Q on which jobs run. I/O blocks allow the compute
blocks to communicate with resources outside of the compute nodes. I/O nodes are not tightly
coupled with the compute nodes they serve. Instead, compute nodes and I/O nodes are
separate entities, connected through I/O links.

3

© Copyright IBM Corp. 2013. All rights reserved. 29

3.1 Compute blocks

Compute blocks consist of a number of compute nodes. Before you can submit any job to
Blue Gene/Q compute nodes, you must create a block that defines the resources that are
used for the job. Each block definition is identified by a unique block ID. The Navigator Blocks
page (see section 2.2.7, “Blocks and I/O blocks” on page 16) shows the compute blocks that
are defined on the system. The hardware and cabling of the Blue Gene/Q system determines
which blocks you can create on your system.

The Blue Gene/Q system contains one or more midplanes. Midplanes are cabled together
using link chips and data cables to create larger blocks. The size of the blocks that you can
create and which midplanes you can use for the blocks are determined by the way your Blue
Gene/Q system is cabled. You can also subdivide midplanes into small blocks. These blocks
depend on the network fabric that is provided by the midplane. In addition, there are specific
rules about creating these blocks. You can create small blocks of different sizes, such as 32,
64, 128, or 256 compute nodes. The size of small blocks that you can create depends on the
number of I/O nodes that your system has. Each block needs at least one connected I/O
node. On a system with the maximum number of I/O nodes, you can subdivide a midplane
into 16 blocks, each with 32 compute nodes.

A subset of the compute nodes are connected to I/O links that connect to I/O nodes. The
I/O-linked compute nodes route I/O traffic to the I/O block. Compute blocks are booted and
attached to an already booted I/O block.

Compute blocks can be either dynamic or static. Dynamic blocks are created using a job
scheduler, such as LoadLeveler. The user that submits the job tells the job scheduler details
about the Blue Gene/Q resources, such as the number of processors, that are needed for the
job. The job scheduler then creates the block based on this information using the Scheduler
APIs after examining which Blue Gene/Q resources are available at the time to run the job.
The user cannot choose which resources are used. When the job completes the block is freed
and deleted. The system administrator creates static blocks, and they remain available to be
reused when needed. These static blocks allow the system administrator to assign a block for
a particular user to use specific compute resources. When users submit their jobs, they
specify only which static block they are going to use to execute the job.

3.1.1 Large blocks

Large blocks consist of all the compute nodes in one or more complete midplanes. They are
always a multiple of 512 compute nodes and can be a torus in five dimensions. Large blocks
can be created in several ways: on the Blocks page in Navigator, by job schedulers that use
Blue Gene/Q Scheduler APIs or using various MMCS block creation commands in
bg_console.

Figure 3-1 on page 31 is an abstract view of a 192 midplane system. Each box in the figure
represents a single midplane. A midplane, which consists of 512 compute nodes, is referred
to as a 4x4x4x4x2 torus. The Blue Gene/Q hardware provides a five-dimensional torus. The
dimensions are denoted by the letters A, B, C, D, and E. Figure 3-1 on page 31 shows
only four dimensions because the E dimension is always 2, and is contained entirely within a
midplane. Therefore, for the purposes of multi-midplane, large blocks, the midplanes are
combined in four dimensions. Every block on Blue Gene/Q, large or small, has an E
dimension of size 2. When multiple midplanes are cabled together, a torus direction that has
at least two midplanes existing in one rack is the D dimension. When cables go down a row of
racks, the direction is the C dimension. When cables go down a column of racks, the direction
is the B dimension. The remaining direction, which can go down a row or column (or both), is
30 IBM System Blue Gene Solution: Blue Gene/Q System Administration

the A dimension. When two sets of cables go down a row or column, the longest cables
define the A dimension.

Figure 3-1 Large block

The physical connection between midplanes is achieved by using a hardware component
called Blue Gene/Q link chips. Blue Gene/Q link chips might also be referred to as BQL chips.
These link chips reside on the node boards that make up a midplane. To make a torus
connection between two midplanes, there are 16 physical cables used, one for each node
board. The link chips have settings to control how the midplanes are connected. These
settings are made by the Control System software when a block is booted. There are four
possible configurations that link chips can have:

� Wrap midplane

� Include midplane with both input/output ports enabled

� Include midplane with output port enabled and input port disabled (set for blocks with
mesh dimensions)

� Include midplane with input port enabled and output port disabled (set for blocks with
mesh dimensions)

Figure 3-2 on page 32 shows a representation of those settings. If the link chip is set to wrap,
the midplane is not included in a multiple midplane block in that dimension. However, the link
chips might still be used by another block to pass through the midplane. When the link chips
are set to include, the midplane takes part in a multiple midplane block, in that dimension.
Chapter 3. Compute and I/O blocks 31

Figure 3-2 Link chip settings

The link chips are set independently for each dimension. A link chip set to wrap for the A
dimension ensures that the midplane is not connected to other midplanes in the A dimension.
However, it can still have the B, C, and D dimension link chips set to include, and therefore be
part of a multi-midplane block.

Figure 3-3 shows the link chip settings for several different blocks. The maximum number of
midplanes in any given direction is four.

Figure 3-3 Possible link settings

The figures that follow show a few of the possible large block configurations available in a
large system environment.

Wrap
midplane/

pass-through

Include
midplane

Include
midplane
Input port
disabled

Include
midplane

Output port
disabled

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD CD

A B

CD

A B

CD CD

A B

CD

A B

CD

A B

CD

A B

4 midplanes in a single block 3, 1 midplanes

2, 1, 1 midplanes 1, 1, 1, 1 midplane
32 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 3-4 shows three 4x4x4x1 blocks. Blue Gene/Q nomenclature uses A, B, C, D, and E to
denote the five dimensions of a block. The last dimension, E, is fixed at two and is not a factor
when creating blocks.

Figure 3-4 Block dimensions

Figure 3-5 shows four 4x4x1x1 blocks (on the left) and two 4x4x4x1 blocks.

Figure 3-5 Two 64 midplane blocks and four 16 midplane blocks

A

B

C

D

Chapter 3. Compute and I/O blocks 33

Figure 3-6 shows two blocks each with four midplanes and one 8-midplane block.

Figure 3-6 Two blocks each with four midplanes and one 8-midplane block

For any dimension, a torus can be formed by using all of the midplanes in that line or by
wrapping the links and using only one complete midplane in that line. Additionally, using more
than one midplane, but less than the entire line, means that the remaining midplanes will set
their link chips to wrap/pass through for that dimension, and can achieve only a torus of size
one. The top, front row of Figure 3-7 shows one 2x1x1x1 and two 1x1x1x1 blocks.

Figure 3-7 Two single midplane blocks and a single two midplane block

3.1.2 Small blocks

Small blocks are made up of one or more node boards within a single midplane. Small blocks
are always a multiple of 32 nodes and cannot be a torus in all five dimensions. Small blocks

4x1x1x1

4x2x1x1

4x1x1x1
34 IBM System Blue Gene Solution: Blue Gene/Q System Administration

can be created in several ways: on the Blocks page in Navigator, by job schedulers that use
the Blue Gene/Q Scheduler APIs, or with the gen_small_block command in bg_console.
Table 3-1 shows the dimensions and connectivity for each of the supported small block
configurations.

Table 3-1 Small block specifications

The block size of 512 is not shown in Table 3-1 because that is a complete midplane (and a
torus in all dimensions). Therefore, it is considered a large block.

3.2 Creating compute blocks

Compute blocks can be created in several ways: on the Blocks page in Navigator, by job
schedulers that use the Blue Gene/Q Scheduler APIs, or by using various MMCS block
creation commands in bg_console. This section describes creating compute blocks from
bg_console.

There are commands in bg_console to create all types of blocks. This section covers only the
commands that relate to creating compute blocks. Chapter 12, “The Midplane Management
Control System server” on page 147 goes into more detail about the remainder of the
supported commands. The supported set of commands for generating blocks are:

� gen_block
� gen_blocks
� gen_full_block
� gen_midplane_block
� gen_small_block

The gen_block command
The gen_block command generates a block that consists of one midplane. The command
uses the following syntax:

genblock <blockid> <midplane>

The parameter definitions are as follows:

<blockid> The name of the block to be created.

<midplane> The midplane to create the block on. For example, R00-M0.

Number of node
boards

Number of
nodes

Dimensions Torus directions
(ABCDE)

1 32 2x2x2x2x2 00001

2 (adjacent pairs) 64 2x2x4x2x2 00101

4 (quadrants) 128 2x2x4x4x2 00111

8 (halves) 256 4x2x4x4x2 10111

Attention: Block names (referred to as <blockid> in the following sections) can be up to 32
alphanumeric characters, dashes, and underscores.
Chapter 3. Compute and I/O blocks 35

The gen_blocks command
The gen_blocks command generates a block for each midplane on a machine. The command
uses the following syntax:

gen_blocks [<blockidprefix>]

The blockidprefix is optional. If omitted, each block name is the position of the midplane.

The gen_full_block command
The gen_full_block command creates a block for the entire machine. The syntax of the
command is:

gen_full_block <blockid>

The gen_midplane_block command
The gen_midplane_block command creates a block for a set of midplanes. The syntax of the
command is:

gen_midplane_block <blockid> <corner> <asize> <bsize> <csize> <dsize> [<aPT>
<bPT> <cPT> <dPT>]

The parameter definitions are:

<blockid> The name of the block to be created.

<corner> The location of the first midplane included in the block. The location
specified is the 0,0,0,0 position of the midplanes in the block.

<(a, b, c, d)size> The size of the block in terms of the number of midplanes in A, B, C, D
dimensions.

<(a, b, c, d)PT> aPT,bPT,cPT,dPT are optional arguments to specify the use of pass
through and are expected to be a string of 1s (include) and 0s (pass
through).

The following example creates a block named R00A4B2 that uses pass-through. This
example corresponds to the blue block in Figure 3-6 on page 34. The size is 4 x 2 x 1 x 1, and
the last two midplanes in the B dimension are passed through to complete the torus.

gen_midplane_block R00A4B2 R00-M0 4 2 1 1 1111 1100 1 1

The gen_small_block command
The gen_small_block command generates a submidplane block. The syntax of the command
is:

gen_small_block <blockid> <midplane> <cnodes> <nodeboard>

The parameter definitions are:

<blockid> The name of the block to be created.

<midplane> The location of the midplane that will contain the block.

<cnodes> The total number of compute nodes to include in the block. The
number must be 32, 64, 128, or 256.

<nodeboard> The location of the node board that the compute nodes reside on. For
a block size of greater than 32, this parameter is the starting node
board for the multiple node board block.
36 IBM System Blue Gene Solution: Blue Gene/Q System Administration

3.3 I/O blocks

I/O nodes are used by the compute nodes to communicate with devices on networks external
to the Blue Gene/Q racks. When compute blocks are booted, they must have a method to
communicate, which is achieved by attaching to I/O blocks. When a compute block is booted,
all of the linked compute nodes must be attached to a booted I/O node. Therefore, before
booting a compute block, all connected I/O nodes must already be booted. The converse is
also true. When freeing an I/O block, the attached compute blocks must be freed first.

For a complete description of I/O services see Chapter 4, “Configuring I/O nodes” on
page 41. For more information about I/O hardware, see the Blue Gene/Q Hardware Overview
and Installation Planning Guide, SG24-7822 Redbooks publication.

3.4 Creating I/O blocks

I/O blocks can be created on Blue Gene/Q using the gen_io_block command in bg_console.
This section describes using that command to create an I/O block.

The gen_io_block command
The gen_io_block command generates a block for a set of I/O nodes. The syntax of the
command is:

gen_io_block <blockid> <location> <ionodes>

The parameter definitions are:

<blockid> The name of the block to be created.

<location> Specify an I/O node, for example:
Qxx-Ix-Jxx
Rxx-Ix-Jxx
Or an I/O drawer:
Qxx-Ix
Rxx-Ix

<ionodes> The number of nodes to include in the block. The number must be a
multiple of 8 when specifying an I/O drawer. The number of nodes
must be 1, 2, or 4 when specifying an I/O node.

For two nodes, the node location must be J00, J02, J04, or J06. For four nodes, the node
location must be J00 or J04.

The following example creates an I/O block named IOBlock with 128 I/O nodes included in the
block. The 128 I/O nodes to include in the I/O block are determined by the starting I/O drawer
location (R00-ID in this example). The remaining I/O nodes in the block come from the other
I/O drawers in the machine, sorted alphabetically by their location string, until the block I/O
node size is reached. Each I/O drawer contains eight I/O nodes, so the block will include I/O
nodes from a total of 16 I/O drawers to meet the requested 128 I/O nodes:

gen_io_block IOBlock R00-ID 128

Attention: Block names (referred to as <blockid> in the following section) can be up to 32
alphanumeric characters, dashes, and underscores.
Chapter 3. Compute and I/O blocks 37

3.5 I/O links and ratios

Every compute node in a compute block is serviced by an I/O node. By default, the maximum
supported ratio is 256 compute nodes to one (256:1) I/O node. This maximum is controlled by
the max_connected_nodes key in the [cios] section of the bg.properties file. Any attempt to
boot compute blocks over this limit will fail, as shown in Example 3-1.

Example 3-1 Exceeding I/O ratio

mmcs$ allocate mytest
FAIL
failed to update I/O node usage for mytest, R00-IC-J00 using 64 over limit of 8
mmcs$

These ratios can be affected by I/O nodes or I/O links becoming unavailable due to RAS
events. See Chapter 7, “Reliability, availability, and serviceability” on page 93 for a description
of the Control Actions.

I/O links for a compute block can be queried from the console using the list_io_links
command, as shown in Example 3-2.

Example 3-2 list_io_links command

mmcs$ list_io_links R00-M0-N00
OK
COMPUTE NODE I/O NODE STATUS LINK STATUS
R00-M0-N00-J11 R00-ID-J00 A A
R00-M0-N00-J06 R00-ID-J01 A A
mmcs$

Both the I/O node status and I/O links status must be (A)vailable for the link to be trained
when the compute block is booted.

3.6 Deleting blocks

Blocks can be removed from the system when no longer needed. There are several ways to
remove blocks from the Blocks tab: in the Blue Gene Navigator administrative web
application, by using the Blue Gene/Q Scheduler APIs, and by using bg_console.

The following example uses the bg_console delete command to remove block R00A4B2:

delete bgqblock R00A4B2

3.7 Block status transitions

When booting or freeing I/O or compute blocks on Blue Gene/Q, the blocks transition to
several states. A description of each status follows:

Free Indicates that the block is available for use.

Allocated Indicates that the block resources have been reserved. Next, the block
transitions to Free status if the block is terminating or the block
transitions to booting if processing a block boot request.
38 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Booting Indicates that the block resources are in the process of booting up.
Next, the block transitions to Terminating if the block boot fails, or the
block transitions to Initialized if the block boot is successful.

Initialized Indicates that the block resources are initialized and ready for use. For
compute blocks, this means that jobs can be run on the compute
nodes of the block. For I/O blocks, this means that the I/O nodes can
process I/O requests from jobs running on compute nodes.

Terminating Indicates that the block resources are in the process of shutting down.

Figure 3-8 shows the possible block statuses and transition steps.

Figure 3-8 Block transition

Terminating

Actionable Status Internal Status

AllocatedFree Booting

Initialized
Chapter 3. Compute and I/O blocks 39

40 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 4. Configuring I/O nodes

This chapter contains information about:

� I/O node kernel:

– Building new Linux kernels and installing Linux kernels from the Red Hat download
web site

� I/O node run time:

– Installing Red Hat Enterprise Linux (YACI, YUM, and so on) and additional packages

� I/O adapters:

– Supported adapters
– Firmware updates

� I/O configuration:

– Defining interfaces and IP addresses
– Environment variables through /dev/bgpers
– Site customizations (mounting file systems)
– Customizing ramdisk

� Boot sequence:

– Persistent file systems

� Maintenance:

– Node Health Monitor

� I/O services

� NFS configuration

� Troubleshooting:

– I/O node log files, RAS, and so on

4

Note: Configuring GPFS in the Blue Gene/Q environment is beyond the scope of this
book. For step-by-step instructions, see General Parallel File System HOWTO for the IBM
System Blue Gene/Q Solution (SC23-6939-00) at:
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=S
RX&PBL=SC23-6939-00
© Copyright IBM Corp. 2013. All rights reserved. 41

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-6939-00

4.1 I/O node kernel

The I/O node kernel is a patched Red Hat Enterprise Linux 6 kernel. The patches provide
support for the Blue Gene/Q platform and contain a few modifications to improve
performance. The precise version of the Red Hat Enterprise Linux kernel supported on Blue
Gene/Q might change over time to keep current.

4.1.1 Building new Linux kernels

Although it is not necessary (or recommended) to rebuild the Linux kernel, it is possible to do
so to integrate a critical security fix or add functionality that is not made available by Red Hat
or IBM. In general, necessary kernel updates are provided by Red Hat or IBM. Unapproved
Linux kernel modifications might not be supported.

4.1.2 Installing the Linux kernel from the Red Hat download website

Blue Gene/Q Linux kernel updates might be available from the Red Hat website. To download
and install kernel updates:

1. From a browser, go to https://access.redhat.com/home.

2. Hover over Downloads, from the menu that appears select Channels.

3. Log in when prompted.

4. On the left-most text box under Filter by Product Channel, from the drop-down list select
Red Hat Enhanced Kernel for Blue Gene.

5. On the architecture drop-down list (third from the left), choose PPC.

6. Click the Filter.

7. On the Channel Name list, click the + symbol next to Red Hat Enterprise Linux Server 6.
Click the PPC Architecture link on the right side of the sub-channel Red Hat Enhanced
Kernel for Blue Gene Server 6.

8. Click the Packages tab.

9. In the Filter by Package: box, enter a unique part of the desired kernel version string and
then click Go.

10.Click Select All.

11.Click Download Packages.

12.Click Download Selected Packages Now!.

13.Save the rhn-packages.tar file to an appropriate location (for example,
/bgsys/downloads/rhn).

14.Untar rhn-packages.tar to obtain the actual kernel RPMs (for example, tar xvf
rhn-packages.tar).

15.Install the kernel RPMs into the I/O node distribution (for example,
/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh -i -r
/bgsys/downloads/rhn).

16.Recompile all kernel modules that were previously installed in the distribution.
42 IBM System Blue Gene Solution: Blue Gene/Q System Administration

https://access.redhat.com/home

4.2 I/O node run time

Blue Gene/Q I/O nodes run a Red Hat Enterprise Linux 6 (RHEL6) based Linux distribution
called the Blue Gene/Q Linux distribution. The Blue Gene/Q Linux distribution contains all of
the same packages that exist on a PowerPC RHEL6 front end node plus some additional
modules and programs to support running on Blue Gene hardware. The Blue Gene/Q Linux
distribution is installed like a stand-alone Linux box into a directory under /bgsys/linux. This
approach allows the Blue Gene/Q Linux distribution to track its installed software through
RPM. The Blue Gene/Q Linux distribution installed under /bgsys/linux is used by all I/O nodes
through NFS as a read-only root environment. The exact version of RHEL6 used for the Blue
Gene/Q Linux distribution might vary based on the most recent release of RHEL6 supported
on the Blue Gene/Q system.

It is possible to have multiple Blue Gene/Q Linux distribution images installed under
/bgsys/linux. Each Blue Gene/Q Linux distribution is associated with a Blue Gene/Q driver.
The latest Blue Gene/Q Linux distribution image is pointed to by /bgsys/linux/ionfloor.

4.2.1 Installing Red Hat Enterprise Linux

The Red Hat Enterprise Linux image that is used to create the Blue Gene/Q Linux distribution
is installed automatically when the Blue Gene/Q software stack is installed on the service
node. The following steps must first be executed to enable the automatic installation process.

YACI installation
The tool that actually installs the RHEL6 image onto the service node is called Yet Another
Cluster Installer (YACI). YACI takes a list of RPMs and an installation source and creates a
Linux distribution image. YACI does not come with RHEL6 by default, so users must install
YACI on the service node before Blue Gene/Q software stack installation.

Download the YACI software package from the following web site:

http://www.yaci.org

Download YACI version 12-7.4.ch4. After downloading YACI, you must install it using the
command rpm –ivh yaci-12-7.4ch4.noarch.rpm.

RHEL6 repository set up
YACI requires a RHEL6 RPM repository to pull RPMs for installation. The repository should
contain a copy of all the RPMs contained on the RHEL6 installation media. This repository is
at /install/redhat/RHEL6.4-ppc/Packages or the location listed in the installation README
instructions. Before installing any subsequent Blue Gene/Q software release, consult the
installation README instructions because the newer RHEL6 repository might be required to
be available under the /install/redhat directory. This repository location can either be local to
the service node or mounted from a remote file server.

Check free file space on the service node
There must be sufficient file space on the service node to support installation of RHEL6 and
subsequently the Blue Gene/Q Linux distribution. The root (/) file system on the service node
must have at least 6 GB of free space. The /bgsys mount must have at least 12 GB of free
space. If /bgsys is part of the root file system of the service node, a total of 18 GB of space
must be available on root. The available free space on the service node’s file systems can be
found by using the df –h command. A pre-check occurs before installing RHEL6 to verify that
Chapter 4. Configuring I/O nodes 43

http://www.yaci.org
http://www.yaci.org

enough space is available. The installation does not proceed if /bgsys does not have at least
12 GB of free space. This restriction prevents partial installations from occurring.

4.2.2 Installing additional packages

The Blue Gene/Q Linux distribution installation process automatically handles adding
packages to the Blue Gene/Q Linux distribution. This processing happens as part of the
execution of /bgsys/drivers/<driver>/ramdisk/tools/bgqDistrofsPostInstall.sh, which
is executed during bgq-distrofs RPM installation. To enable this process, create an “addpkgs”
directory under /bgsys/linux. The installation first attempts to install all the RPMs located in
this directory. Then it attempts to execute all non-RPM executables in /bgsys/linux/addpkgs.

The addpkgs processing verifies that the RPMs are not installed in the Blue Gene/Q Linux
distribution image for the current driver. Only RPMs that were not previously installed are
installed. It is also possible to update previously installed RPMs. When updating to a newer
RPM level, remove earlier RPMs from the /bgsys/linux/addpkgs directory to prevent the RPM
tool from displaying warning messages about a newer package already being installed. The
RPMs are installed using ‘–root’ to install them into the appropriate Blue Gene/Q Linux
distribution image. This results in the RPM files being seen in the shared NFS root space from
each I/O node and also being seen in the shared root space RPM repository.

The executables found in /bgsys/linux/addpkgs are executed in alphabetical order. During this
process, there are three environment variables that tell the executables which Blue Gene/Q
Linux distribution image is being prepared.

DRIVER_PATH Specifies the driver installed under /bgsys/drivers that uses the
Blue Gene/Q Linux distribution.

DRIVER_LINUX_OS_PATH Specifies the linux/OS link for the current driver (for example,
/bgsys/drivers/<driver>/ppc64/linux/OS).

DISTROFS_LOC Specifies the Blue Gene/Q Linux distribution that is to be
prepared (for example, /bgsys/linux/RHEL6.4_V1R2M1-0).

It can be useful to include scripts in the addpkgs directory. For example, the localMounts.sh
script creates the required mount points in the Blue Gene/Q Linux distribution for additional
user file systems that must be mounted to the I/O node. Scripting can also be included under
addpkgs to automatically compile and install additional modules for the I/O node as is
required for GPFS and other similar file systems.

It is possible to manually install RPMs into the Blue Gene/Q Linux distribution using rpm
–root. However, this method is not recommended. Manually installing RPMs into the image
changes only the selected Blue Gene/Q Linux distribution image. When subsequent images
are created, those packages are not automatically included.

To force the reprocessing of the addpkgs directory against an existing Blue Gene/Q Linux
distribution image, run the following command:
/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh –a.

Using this option reprocesses only the RPMs and executables in /bgsys/linux/addpkgs.

4.2.3 Creating Blue Gene/Q Linux distribution sandboxes

A private Blue Gene/Q Linux distribution can be created for test purposes. To create a private
sandbox, execute /bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh –d
/bgsys/linux/<Sandbox Directory>. This causes a new Blue Gene/Q Linux distribution
image to be created in the requested directory. The /bgsys/linux/addpkgs directory is
44 IBM System Blue Gene Solution: Blue Gene/Q System Administration

automatically processed as part of the installation process. To boot the new Blue Gene/Q
Linux distribution image, a new ramdisk must be built that points to the sandbox. A new
ramdisk can be built with the following command:
/bgsys/drivers/ppcfloor/ramdisk/bin/build-ramdisk –o <ramdisk name> --runos
/bgsys/linux/<Sandbox Directory>.

Booting the ramdisk that is output by this command boots into the sandbox Blue Gene/Q
Linux distribution image.

4.3 I/O adapters

InfiniBand and 10-gigabit Ethernet (10GbE) adapters are supported in Blue Gene/Q I/O
drawers. The I/O drawers provide a PCI Express 2.0 x8 slot for adapter attachment.

4.3.1 Supported adapters

Three ConnectX-2 adapters from Mellanox are supported:

� A single port quad data rate (QDR) InfiniBand adapter (known as Kestrel)
� A dual port 10GbE adapter (known as Hawk)
� A dual port combination 10GbE/InfiniBand adapter (known as Raptor).

The supported adapter part numbers are shown in Table 4-1.

Table 4-1 Supported adapter part numbers

Other PCIe adapters installed in an I/O drawer cause a RAS event to be generated with each
I/O node boot.

4.3.2 Firmware updates

Service actions against I/O drawers automatically ensure that the Mellanox PCIe adapters
connected to that drawer have the latest Mellanox firmware applied.

Blue Gene/Q releases or efixes provide the latest Mellanox firmware for the adapters
supported on Blue Gene/Q. Check the Install README instructions to determine if a service
action is required to apply new firmware after the installation of an efix or release upgrade.

You can view the latest available firmware levels at the following website:
http://www.mellanox.com/content/pages.php?pg=firmware_table_IBM

The firmware level on the installed adapters can be verified by checking the I/O node log files
for the information, which is printed at boot time. Example 4-1 shows example information.

Example 4-1 Example firmware information

{0}.10.0: Found supported PCIe adapter:
{0}.10.0: Product Name: KESTREL QDR -

Adapter Mellanox P/N IBM P/N

Kestrel – Single Port IB MHQH19B-XTR 74Y9057

Hawk – Dual Port 10GbE MNPH29D-XTR 74Y9059

Raptor – Combo 10GbE/IB MHZH29B-XTR 74Y9058
Chapter 4. Configuring I/O nodes 45

http://www.mellanox.com/content/pages.php?pg=firmware_table_IBM

{0}.10.0: [PN] Part number: MHQH19B-XTR - [EC] Engineering changes: A2 -
{0}.10.0: FW Version: 2.9.1200 - PSID = MT_0D90110009.

4.4 I/O configuration

I/O nodes must have at least one external network adapter configured to properly boot. I/O
nodes have one or more network interfaces configured depending on the system hardware
configuration. Example 4-2 shows a sample network configuration on an I/O node.

Example 4-2 I/O node default network configuration

-bash-4.1# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN
 link/ether 0e:5c:be:b3:ff:0a brd ff:ff:ff:ff:ff:ff
3: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000
 link/ether 00:02:c9:09:cb:4f brd ff:ff:ff:ff:ff:ff
4: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 64000 qdisc pfifo_fast state UP qlen 250000
 link/infiniband 80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:09:cb:4f brd
00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff
 inet 172.20.212.20/16 brd 172.20.255.255 scope global ib0
 inet6 fe80::202:c903:9:ca3f/64 scope link
 valid_lft forever preferred_lft forever

4.4.1 Network Interface MTU

To maximize performance, set the network interface MTU to the largest size that your network
can accommodate. For Ethernet networks, this size is typically 9000. For IB networks the ib0
interface is configured in connected mode to maximize performance. With connected mode,
the MTU can be set as high as 65520. However, better TCP performance can be achieved
when the MTU is 64000. If datagram mode is desired, create an IB_MODE variable with value
datagram in the BGQNetConfig table. The following example accomplishes that for the I/O
nodes in the Q01-I0 drawer:

/bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location Q01-I0 --interface ''
--itemname IB_MODE --itemvalue datagram

4.4.2 Defining interfaces and IP addresses

IP addresses are configured for I/O nodes by the IBM installation team. Normally no further
action is required except for one situation. The single exception is in the case where the
system is installed with dual port 10 GbE (Hawk) or combo 10 GbE/IB (Raptor) adapters. In
this case, it might be desirable to add a network interface to the I/O nodes after the IBM
installation team completes their work.

Note: The external network interface is ib0 or eth0 and is on the subnet appropriate for the
functional network on which the I/O nodes are connected.
46 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Blue Gene/Q provides a BGQNetConfig database table. This table contains the network
configuration details for the I/O nodes in the system. Entries from this table are made
available to nodes using the configuration service. The BGQNetConfig entries for a default I/O
node are shown in Example 4-3.

Example 4-3 BGQNetConfig entries

[bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --list --location
R00-IC-J03
Location Interface Name Value
-------- --------- ---- -----
R00-IC-J03 external1 ipv4address 172.20.212.20
R00-IC-J03 external1 ipv4broadcast 172.20.255.255
R00-IC-J03 external1 ipv4netmask 255.255.0.0
R00-IC-J03 external1 name ib0

In Example 4-3 on page 47, the I/O node has a Raptor combo adapter attached. To configure
the Ethernet port on the I/O node, execute the commands shown in Example 4-4.

Example 4-4 Commands to configure Ethernet on I/O node

bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location
R00-IC-J03 --interface external2 --itemname ipv4address --itemvalue ‘172.16.212.20’
Inserted 1 rows into the BGQNetConfig
[bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location
R00-IC-J03 --interface external2 --itemname ipv4broadcast --itemvalue ‘172.16.255.255’
Inserted 1 rows into the BGQNetConfig
[bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location
R00-IC-J03 --interface external2 --itemname ipv4netmask --itemvalue ‘255.255.0.0’
Inserted 1 rows into the BGQNetConfig
[bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location
R00-IC-J03 --interface external2 --itemname name --itemvalue ‘eth0’
Inserted 1 rows into the BGQNetConfig

After executing these commands, the dbNetConfig.pl script --list option for the same location
now shows the configuration data for the second network interface, as shown in Example 4-5.

Example 4-5 BGQNetConfig entries with second network interface

[bgqadmin@bgqts6sn ~]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --list --location
R00-IC-J03
Location Interface Name Value
-------- --------- ---- -----
R00-IC-J03 external1 ipv4address 172.20.212.20
R00-IC-J03 external1 ipv4broadcast 172.20.255.255
R00-IC-J03 external1 ipv4netmask 255.255.0.0
R00-IC-J03 external1 name ib0
R00-IC-J03 external2 ipv4address 172.16.212.20
R00-IC-J03 external2 ipv4broadcast 172.16.255.255
R00-IC-J03 external2 ipv4netmask 255.255.0.0
R00-IC-J03 external2 name eth0

After the node is rebooted, Example 4-6 shows that eth0 and ib0 network interfaces are now
configured.

Example 4-6 I/O node eth0 and ib0 network configuration

-bash -4.1# ip addr show
1: lo: <LOOPBACK, UP, LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
Chapter 4. Configuring I/O nodes 47

 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN
 link/ether 0e:5c:be:b3:ff:0a brd ff:ff:ff:ff:ff:ff
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
 link/ether 00:02:c9:10:f4:80 brd ff:ff:ff:ff:ff:ff
 inet 172.16.212.20/16 brd 172.16.255.255 scope global eth0
 inet6 fe80::2:c900:109:ca3f/64 scope link
 valid_lft forever preferred_lft forever
4: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 64000 qdisc pfifo_fast state UP qlen 250000
 link/infiniband 80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:09:cb:4f brd
00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff
 inet 172.20.212.20/16 brd 172.20.255.255 scope global ib0
 inet6 fe80::202:c903:9:ca3f/64 scope link
 valid_lft forever preferred_lft forever

For additional usage details for dbNetConfig.pl, see the dbNetConfig.pl man page, which can
be accessed by executing /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl –h.

4.4.3 Interface bonding configuration

Blue Gene/Q I/O nodes can be configured to use Ethernet interface bonding if the node has a
Hawk dual port 10 Gb Ethernet adapter (part number MNPH29D-XTR or 74Y9059). To
enable bonding, add kernel module options to the node configuration data. To add modules,
use the dbNetConfig.pl script to add the BONDINGOPTS item name. For example, to
configure bonding on the I/O node located at Q00-I2-J07 with the options ‘mode=4
miimon=1000 xmit_hash_policy=layer3+4’, execute dbNetConfig.pl as follows:

/bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl –location Q00-I2-J07 –interface
‘’ –itemname BONDINGOPTS –itemvalue ‘mode=4 miimon=1000 xmit_hash_policy=layer3+4’

This command causes the BONDINGOPTS variable to be added to the node’s personality.
The external1 IP addresses from the BGQNetConfig table are used for the bond0 interface.

4.4.4 Environment variables using /dev/bgpers

A Blue Gene/Q I/O node’s personality is available through /dev/bgpers. This char device is a
combination of the node’s personality and configuration information. The first part of the
output from /dev/bgpers for the node configured in section 4.4.2, “Defining interfaces and IP
addresses” on page 46 is shown in Example 4-7.

Example 4-7 Output from /dev/bgpers

-bash-4.1# cat /dev/bgpers
BG_UCI=7800c0c000000000
BG_LOCATION=R00-IC-J03
BG_BLOCKID=124l
BG_GATEWAY=172.20.2.41
BG_IPV4_SN=172.20.2.1
BG_IPV6_SN=0:0:0:0:0:0:0:0
BG_BGSYS_IPV4=172.20.2.1
BG_BGSYS_IPV6=0:0:0:0:0:0:0:0
BG_BGSYS_EXPORT_DIR="/bgsys"
BG_BGSYS_EXPORT_MOUNT_OPTS=""
BG_DISTRO_IPV4=0.0.0.0
48 IBM System Blue Gene Solution: Blue Gene/Q System Administration

BG_DISTRO_IPV6=0:0:0:0:0:0:0:0
BG_DISTRO_EXPORT_DIR=""
BG_DISTRO_MOUNT_OPTS=""
BG_INTF0_NAME=ib0
BG_INTF0_MAC=00:00:00:00:00:00
BG_INTF0_IPV4=172.20.212.20
BG_INTF0_IPV6=0:0:0:0:0:0:0:0
BG_INTF0_NETMASK=255.255.0.0
BG_INTF0_IPV6_PREFIX=
BG_INTF0_BROADCAST=172.20.255.255
BG_INTF0_MTU=64000
BG_INTF1_NAME=eth0
BG_INTF1_MAC=00:00:00:00:00:00
BG_INTF1_IPV4=172.16.212.20
BG_INTF1_IPV6=0:0:0:0:0:0:0:0
BG_INTF1_NETMASK=255.255.0.0
BG_INTF1_IPV6_PREFIX=
BG_INTF1_BROADCAST=172.16.255.255
BG_INTF1_MTU=9000
…

Output from the personality is in an environment variable format so that /dev/bgpers can be
sourced for use in bash scripts on the I/O node using the command . /dev/bgpers. The
personality data can also be added to a script along with variables for the I/O node’s RAS
events and a number of other functions by sourcing /etc/init.d/functions.

It is possible to add environmental variables to the I/O node’s personality. For example, to add
the environment variable SITE_FQDN to provide the last part of the fully qualified domain
name for use by site network configuration scripts on the I/O node. This additional
environment variable is set by using the bgNetConfig.pl script, as shown in Example 4-8.

Example 4-8 Adding environment variable to /dev/bgpers

[bgqadmin@bgqts6sn bin]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --location
R00-IC-J03 --interface "" --itemname SITE_FQDN --itemvalue ‘rchland.ibm.com’
Inserted 1 rows into the BGQNetConfig
[bgqadmin@bgqts6sn bin]$ /bgsys/drivers/ppcfloor/db/schema/dbNetConfig.pl --list --location
R00-IC-J03
Location Interface Name Value
-------- --------- ---- -----
R00-IC-J03 SITE_FQDN rchland.ibm.com
R00-IC-J03 external1 ipv4address 172.20.212.20
R00-IC-J03 external1 ipv4broadcast 172.20.255.255
R00-IC-J03 external1 ipv4netmask 255.255.0.0
R00-IC-J03 external1 name ib0
R00-IC-J03 external2 ipv4address 172.16.212.20
R00-IC-J03 external2 ipv4broadcast 172.16.255.255
R00-IC-J03 external2 ipv4netmask 255.255.0.0
R00-IC-J03 external2 name eth0

Enclose itemvalues that include spaces in single (') or double (") quotes. If an itemvalue has
spaces and no enclosing quotes, single quotes are automatically added to prevent errors
when sourcing the personality.

User environment variables must not be associated with an interface and the itemname is
limited to 16 characters. After the next boot of the I/O node, the new environment variable is
appended to the end of the bgpers output, as shown in Example 4-9.
Chapter 4. Configuring I/O nodes 49

Example 4-9 Output from /dev/bgpers with added environment variable

-bash-4.1# cat /dev/bgpers
…
BG_NODE_ENABLE_ENVMON=1
BG_NODE_ENABLE_PCIE=1
BG_NODE_ENABLE_DIAGNOSTICSMODE=0
BG_DDR_SIZE_MB=4096
BG_CLOCK_MHZ=1600
SITE_FQDN=rchland.ibm.com

The user environment variable can be deleted using dbNetConfig.pl and the -clear option
instead of the -itemvalue option.

4.4.5 Site customization

Site customization of I/O nodes happens through /bgsys/linux/bgfs. The files in this directory
are processed at boot time and are used to make per boot customizations of the I/O nodes.

A common use for /bgsys/linux/bgfs is to add a script that mounts any file systems that are
site unique. This can be accomplished by creating a sitefs script with the appropriate
commands to mount those file systems in /bgsys/linux/bgfs/etc/rc.d/init.d. Then link
/bgsys/linux/bgfs/etc/rc.d/rc3.d/S27sitefs to that script. You must add a script to
/bgsys/linux/addpkgs to create any custom mount points within the Blue Gene/Q Linux
distribution because the root of the Blue Gene/Q Linux distribution is mounted read-only at
the time the sitefs script is executed during boot.

4.4.6 Customizing ramdisk

Blue Gene/Q uses the build-ramdisk utility in /bgsys/drivers/ppcfloor/ramdisk/bin to build
custom ramdisks. A custom root source for the ramdisk can be specified with the –rootfs
option. If no rootfs is specified, the default tree at /bgsys/drivers/ppcfloor/ramdisk/initramfs is
used. The most common reason for building a custom ramdisk is to specify a different Blue
Gene/Q Linux distribution image using the –runos image or to add additional files to the
ramdisk using the –addtree option. The –addtree option allows you to add files/directories to
the root of the ramdisk and symbolic links within the ramdisk. When a file added using
addtree is the same as one being included from the rootfs, the addtree file is the one pulled
into the ramdisk. Example 4-10 shows how IBM uses the build-ramdisk utility with –addtree to
build the ramdisk in the driver to update firmware.

Example 4-10 Building customized ramdisk

[root@bgqts3sn bin]# ./build-ramdisk --addtree /tmp/firmwareUpdate/ -o
/tmp/mlxFirmwareUpdate --runos /bgsys/linux/RHEL6.4_sandbox --verbose
build-ramdisk: root file system:
/bgsys/drivers/DRV2012_1215_2330/ppc64/ramdisk/initramfs
build-ramdisk: runos: /bgsys/linux/RHEL6.4_sandbox
build-ramdisk: init:
build-ramdisk: new files/directories from /tmp/firmwareUpdate:

bin/
/sbin/
/usr/
 /usr/bin/
/lib64/
/etc/
/etc/rc.d/
50 IBM System Blue Gene Solution: Blue Gene/Q System Administration

/etc/rc.d/rc3.d/
/etc/rc.d/init.d/
/etc/rc.d/rc3.d/S02firmwareUpdate -> ../init.d/firmwareUpdate
/bin/fw-25408-2_9_1000-46M2203.bin
/sbin/bghalt
/usr/bin/mstflint
/lib64/libm.so.6
/lib64/libz.so.1
/etc/rc.d/init.d/firmwareUpdate

build-ramdisk: final dirs in ramdisk:
/bgusr
/bin
/dev
/dev/pts
/dev/shm
/etc
/etc/rc.d
/etc/rc.d/init.d
/etc/rc.d/rc3.d
/lib
/lib64
/proc
/sbin
/selinux
/sys
/tmp
/usr
/usr/bin
/usr/lib64
/var
/var/empty
/var/empty/sshd
/var/lib
/var/lib/nfs
/var/lib/nfs/rpc_pipefs

build-ramdisk: writing /tmp/ramdisk.gencpio.script.29388 for gen_init_cpio
build-ramdisk: compress /tmp/mlxFirmwareUpdate.cpio
build-ramdisk: build /tmp/mlxFirmwareUpdate from /tmp/mlxFirmwareUpdate.cpio.gz

Notice the list of files at the beginning of the output. It shows the files in the addtree, including
a symbolic link and indicating that a new runos of /bgsys/linux/RHEL6.4_sandbox is being
used. The output ramdisk, /tmp/mlxFirmwareUpdate contains those additional files and uses
the sandbox Blue Gene/Q Linux distribution as the NFS root image.

4.4.7 The bgras command

The bgras command generates RAS events from the I/O node and is located in the /bin
directory.

You can use the cat /dev/bgras command to display a list of valid RAS IDs for Linux on Blue
Gene/Q, as shown in Example 4-11.

Example 4-11 Displaying RAS IDs

-bash-4.1# cat /dev/bgras
BGRAS_ID_PCIE_UNSUPPORTED_ADAPTER=0xa0001
BGRAS_ID_PCIE_MISSING_ADAPTER_VPD=0xa0002
BGRAS_ID_BGSYS_MOUNT_FAILURE=0xa0003
Chapter 4. Configuring I/O nodes 51

BGRAS_ID_GPFS_START_FAILURE=0xa0004
BGRAS_ID_NO_NETWORK_INTERFACE_DEFINED=0xa0005
BGRAS_ID_SCRIPT_FAILURE=0xa0006
BGRAS_ID_BGQ_DISTRO_MISSING=0xa0007
BGRAS_ID_GPFS_INIT_FAILURE=0xa0008
BGRAS_ID_PCIE_LINK_DEGRADED=0xa0009
BGRAS_ID_NETWORK_CONFIG_FAILURE=0xa000a
BGRAS_ID_INT_VECTOR_FAILURE=0xa000b
BGRAS_ID_GPFS_HOSTNAME_FAILURE=0xa000c
BGRAS_ID_KERNEL_PANIC=0xa000d
BGRAS_ID_ETHERNET_LINK_TIMEOUT=0xa000e
BGRAS_ID_IB_LINK_TIMEOUT=0xa000f
BGRAS_ID_NODE_HEALTH_MONITOR_WARNING=0xa0010
BGRAS_ID_ETHERNET_LINK_LOST=0xa0011
BGRAS_ID_IB_LINK_LOST=0xa0012
BGRAS_ID_BGPERS_SYNTAX=0xa0014

Like the bgpers device, the output of /dev/bgras is in a bash environment variable format,
which makes it possible to source /dev/bgras or /etc/init.d/functions and use the environment
variable names to generate RAS events instead of the hex RAS IDs. The most common RAS
event for user scripts to use is the script failure RAS event. For example, a failure in the sitefs
script can generate a RAS event, as shown in Example 4-12.

Example 4-12 Generating a RAS event

-bash-4.1# . /etc/init.d/functions
-bash-4.1# bgras $BGRAS_ID_SCRIPT_FAILURE "Failure mounting sitefs file system /scratch"

The command in Example 4-12 causes a RAS event to be added to the database. The RAS
event looks similar to the following example:

ID: 8610407
Time: 2011-12-20 16:33:42.792916
Message ID: 000A0006
Category: Software_Error
Component: LINUX
Severity: WARN
Block ID: R00-IC-J02
Location: R00-IC-J02
ECID: 01852400601A070E080CC535372000A300000000016280000000000000000000
Serial Number: 74Y8125YL3BK031400A
CPU: 1
Message: [LINUX] An init script encountered an error or failed to properly execute: Failure
mounting sitefs file system /scratch
Description: The init process was not able to fully execute one of the init scripts.
Service Action: Consult the node logs for further information regarding this failure and correct the
indicated problem.
Raw Data: BG_MBOX_TYPE=ASCII; BG_MBX=7800c08000000000 000a0006 Failure mounting
sitefs file system /scratch;

As shown in Example 4-12, the bgras command takes one or two arguments. The first
argument is the message ID for the desired RAS event. If /dev/bgras was sourced, the ID
environment variable can be used as shown in Example 4-12. The second argument is the
text string to be displayed in the RAS message. If no text string is provided on the command
line, it is expected that the RAS message is provided through stdin. If /etc/init.d/functions was
sourced by a script, using the bgras command also causes the RAS message to be echoed
to the I/O node console and to the node log file.
52 IBM System Blue Gene Solution: Blue Gene/Q System Administration

4.5 Boot sequence

The boot process starts with a ramdisk that does the critical initial configuration of the node.
The ramdisk is only briefly used before execution transfers to a read-only, shared, NFS root
image. Most of the boot process executes from the NFS root image.

Site customization of I/O nodes is handled by the etc/init.d/popbgfs script, which is run twice
during the boot process. The first time it runs from within the ramdisk. The script pulls forward
files from /bgsys/linux/bgfs/etc to ensure that they are integrated early enough to be executed
as part of the boot after execution transfers to the read-only NFS root space. The second time
popbgfs executes is after the boot moves to the read-only NFS root. At this point, the script
must complete the integration of /bgsys/linux/bgfs into the running system.

The popbgfs script processes all of the files in /bgsys/linux/bgfs. If a var or root directory is
found in /bgsys/linux/bgfs, the script copies the files found there into the read/write tmpfs
spaces created on each node for those directories. For any other directories found under
/bgsys/linux/bgfs, their contents are copied in /bgfs on the I/O node. For example, if there is a
/bgsys/linux/bgfs/bin directory containing some binaries, that directory and binaries are
available on the I/O node at /bgfs/bin. In addition to copying the directories from
/bgsys/linux/bgfs to the I/O node, the popbgfs script also extracts any tar.gz files into /bgfs on
the I/O node. This makes it possible to add shared libraries, such as the Python shared
libraries, into the I/O node’s memory for quick access. A similar process is executed for the
Blue Gene/Q Toolchain libraries and the Comm libraries so that the shared libraries can be
quickly accessed in the I/O node’s memory.

While booting in the ramdisk, basic information about the I/O node being booted is printed.
The external1 and external2 (if defined) network interfaces are configured, bgsys is mounted,
and the first stage of popbgfs is executed. Any failures encountered in configuring the
external1 network device, mounting bgsys, or finding the Blue Gene/Q Linux distribution
cause a RAS event to be generated and appropriate debug data to be printed. To facilitate
further debug, a user can force the ramdisk to not transfer the boot to NFS root by setting
RAMDISK_DEBUG=1 in the BGQNetConfig table for the nodes in question. When the
“Starting udev:” message is displayed, the node successfully transferred to the shared NFS
root space.

Init continues to process the combined result of the init scripts from the Blue Gene/Q Linux
distribution and the additional start scripts pulled from /bgsys/linux/bgfs. Output from the init
scripts is printed to the console and to the node’s log file using the standard RHEL6 format. At
the end of the boot process, the Control System is signaled that the boot successfully
completed. The welcome message is printed, and the console is automatically logged in as
root, as shown in Example 4-13.

Example 4-13 Boot process messages

Sending Boot Completion Signal to the Control System: [OK]
Red Hat Enterprise Linux Server release 6.4 (Santiago)
Kernel 2.6.32-358.2.2.bgq.el6.ppc64 on an ppc64
bgqts6sn-R00-IC-J03 login: root (automatic login)

4.5.1 Persistent file systems

Blue Gene/Q provides a persistent file space for each I/O node. The persistent file systems
are created under /bgsys/linux/nodefs, if they do not exist, by the /etc/init.d/nodefs start script
in the Blue Gene/Q Linux distribution. The first time the node is booted the directories are
initially populated with the contents of the same directory in the Blue Gene/Q Linux
Chapter 4. Configuring I/O nodes 53

distribution. On subsequent boots, the persistent directory is bind mounted to its counterpart
in the Blue Gene/Q Linux distribution. The list of directories that are persistent can be
modified by changing the list of directories that are being acted upon in the nodefs start script.

Under /bgsys/linux/nodefs, there is a directory for each I/O node IP address. Under that
directory, exists the persistent directories for that node. When an I/O node has both an IPv4
and IPv6 address configured, the IPv4 address will be used for the I/O node's persistent file
space. The var/mmfs directory is persistent for systems using GPFS and the
var/lib/random-seed directory is persistent for each I/O node to help improve each node’s
entropy. The following files are also bind mounted to the persistent file space:
var/log/messages, var/log/btmp, secure, and wtmp. In addition, the var/spool/abrt directory is
bind mounted to the persistent file space to keep core files out of the I/O node memory.

4.6 Maintenance

The same procedures used to maintain the RHEL6 front end nodes and service nodes are
used to maintain the Blue Gene/Q Linux distribution images. Any subsequent release of the
Blue Gene/Q software follows the latest RHEL6 where possible.

4.6.1 Installing RHEL updates

To install a RHEL update, you must configure the /etc/yum.repos.d/RHEL_6.4.repo file under
the desired Blue Gene/Q Linux distribution to point to the RHEL repository. After the
repository is configured, the distribution can be updated by chrooting into the Blue Gene/Q
Linux distribution and running yum update. Some of the scripts run during the update process
might return warnings or errors because they are not executing in a running system. These
warnings and errors do not negatively affect the state of the system.

4.6.2 Installing a new RHEL dot release

Blue Gene/Q follows recent releases of RHEL when possible, which means that subsequent
releases of the Blue Gene/Q software stack are likely to require the availability of a new RHEL
package repository to properly install. It is important to review the Install README and Memo
To Users documents that ship with new releases of the Blue Gene/Q software stack. Ensure
that the following requirements are satisfied before installing a new release:

� Ensure that the /tftpboot directory that YACI uses is still located somewhere that has
sufficient space to create a full RHEL6.x distribution image (~6 GB).

� Verify that /bgsys has approximately 12 GB of space available. A pre-check is done before
installing RHEL6 to verify that enough space is available. The installation does not
proceed if /bgsys does not have at least 12 GB of free space. This restriction prevents
partial installations from occurring.

� Ensure that any additional packages in /bgsys/linux/addpkgs are compatible with
RHEL6.x. If not, update these packages before installing the RHEL6.x based driver.

� /install/redhat/RHEL6.x-ppc/Packages must have a copy of all the RHEL6.x RPMs.

� When a new driver is installed, be aware that the process takes a significant amount of
time to install the bgq_distrofs RPM. The bgqDistrofsInstall log file for RHEL6.x_base
under /bgsys/logs/BGQ tracks the progress of the installation.
54 IBM System Blue Gene Solution: Blue Gene/Q System Administration

4.6.3 Installing efixes

Any efix that includes the bgq-distrofs RPM causes a new Blue Gene/Q Linux distribution to
be built under /bgsys/linux. The new Blue Gene/Q Linux distribution is named based on the
efix that installs it. For example, if V1R2M0 eFix002 included bgq-distrofs, the RPM
installation process builds a new Blue Gene/Q Linux distribution in the
/bgsys/linux/RHEL6.4_V1R2M0-2 directory and applies the changes from the efix to that
image. The directory, /bgsys/drivers/ppcfloor/linux/OS, is also updated to point to the new
Linux image as part of the efix installation process.

The Control System must be stopped during the installation of any efix that includes the
bgq-distrofs RPM because the booting of I/O blocks during the process can cause
unpredictable installation results. To ensure that the changes are automatically applied as
part of the efix installation process, make all site customizations with scripts or packages in
/bgsys/linux/addpkgs.

When installing an efix using rpm -Uvh or yum localinstall, the final step of the process is to
uninstall the previous bgq-distrofs RPM. This means that the existing Blue Gene/Q Linux
distribution is removed at the end of the efix installation. For example, if the system currently
has the bgq-distrofs-1.2.1-0.ppc64.rpm installed and eFix002 comes with the
bgq-distrofs-1.2.1-2.ppc64.rpm, this causes /bgsys/linux/RHEL6.4_V1R2M1-2 to be installed
and /bgsys/linux/RHEL6.4_V1R2M1-0 to be removed. Before installing an efix, it is important
to ensure that /bgsys/linux/ionfloor is pointing to the same Blue Gene/Q Linux distribution
pointed to by /bgsys/drivers/ppcfloor/linux/OS. If an administrator unintentionally used
bgqDistrofsInstall.sh -f since the last release or efix was installed, or if a development
driver was loaded on the system, the ionfloor link might be incorrect. The ionfloor link is used
by the efix installation process to determine the previously installed Blue Gene/Q Linux
distribution. If the link is not properly set before efix installation, this can result in an older
distribution being incorrectly left on the system or can also result in the efix removing its own
Blue Gene/Q Linux distribution.

4.6.4 Installing GPFS updates

Updates to GPFS for I/O nodes follow Blue Gene/Q software releases when possible. It is
important to review the Install README and Memo To Users documents to determine if a
new level of GPFS gets installed with a Blue Gene/Q software update. Note that updating
GPFS on service nodes and front end nodes is outside the scope of this IBM Redbooks
publication. It is assumed that those updates are handled before completing this process. If
new GPFS RPMs are available, download and place them in /bgsys/linux/addpkgs, replacing
the previous GPFS RPMs, before installing new Blue Gene/Q RPMs. This process ensures
that the new GPFS RPMs can be installed as part of the Blue Gene/Q RPM installation.

If updated GPFS RPMs are released independently from a Blue Gene/Q software release,
place the new RPMs in /bgsys/linux/addpkgs. Replace the previous GPFS RPMs, and install
them with the following command:
/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh -a

If previously installed GPFS RPMs were removed from the Blue Gene/Q Linux image (using
the command rpm --root /bgsys/linux/RHEL6.4_V1R2M1-0 -e <GPFS RPMs>) the GPFS
RPMs must be reinstalled. This is done by placing the updated RPMs in /bgsys/linux/addpkgs
as a replacement to the previous RPMs and running the following command to install the new
RPMs:
/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh -i
Chapter 4. Configuring I/O nodes 55

For each scenario previously described, it might still be necessary to compile GPFS in the
Blue Gene/Q Linux distribution after installation completes.

If GPFS fails to start after an update, perform the following tasks:

1. Verify that the service node can mount GPFS file systems. If the service node also fails to
mount, solve the problem on the service node first.

2. Verify that the GPFS_STARTUP=1 flag is set in /bgsys/linux/bgfs/etc/sysconfig/gpfs.

3. Verify that the gpfs init script exists in the /bgsys/drivers/ppcfloor/linux/OS/etc/init.d/
directory. If the init script is not found then restore the script by executing the following
command:

/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh -i.

If the script exists, but is a link to /usr/lpp/mmfs/bin/gpfsrunlevel, this means that GPFS
was not compiled for the correct architecture. Correct this by removing the link and then
running the following command:

/bgsys/drivers/ppcfloor/ramdisk/tools/bgqDistrofsPostInstall.sh -i.

Ensure that GPFS is recompiled from /bgsys/drivers/ppcfloor/linux/OS/usr/lpp/mmfs/src
after bgqDistrofsPostInstall.sh completes the installation.

4. If the previous steps do not resolve the problem, consult the GPFS log files under the
/bgsys/linux/nodefs/<I/O node IP address>/var/adm/ras directory.

4.6.5 Node Health Monitor

The Blue Gene/Q system provides an active health monitor to the Linux nodes running on the
system. The role of the Node Health Monitor is to monitor the state of vital system resources
on the Linux nodes. If any of the resources are outside the configured thresholds, the Node
Health Monitor produces a RAS event describing the problem condition and dumps a
summary of the state of the node. The Node Health Monitor runs from a chrooted shell in the
node memory allowing it to continue to run even after the node becomes unresponsive due to
networking or NFS root problems. The thresholds and functionality of the Node Health
Monitor are fully configurable. To modify the thresholds, copy the bghealthmond configuration
file in /bgsys/drivers/ppcfloor/ramdisk/initramfs/etc/sysconfig to
/bgsys/linux/bgfs/etc/sysconfig and make the required updates. The following system
attributes are monitored:

� Free memory (MEMTHRESHOLD) – Default threshold: 256000 kb

� Transmit and receive errors on all network adapters (NETERRTHRESHOLD) – Default
threshold: 25 packets

� Dropped transmit and received packets on all network adapters (NETDRPTHRESHOLD)
– Default threshold: 2% of the total transmitted or received packets.

� Five-minute load average (LOADAVGTHRESHOLD) – Default threshold: 500

� Open file descriptors (OFTHRESHOLD) – Default threshold: 90% of the total possible
open files.

� NFS retransmissions (RETRANSTHRESHOLD) – Default threshold: 30 packets

� InfiniBand and Ethernet link status (LINKRETRIES and LINKRETRYSLEEP) – Default
threshold: Link down for two minutes (four retries with 30 second sleeps in between).

� Readability of the NFS root file system (ROOTFSCHECKSLEEP) – Default threshold: An
attempt to read from the file system taking more than 30 seconds to complete.

� A check for duplicate IP addresses is executed for the external adapters configured upon
the node.
56 IBM System Blue Gene Solution: Blue Gene/Q System Administration

In addition to the configurable thresholds previously mentioned, the following additional
configuration items might also be configured:

� ENABLED: This item is set to ‘1’ by default. If set to ‘0’, the Node Health Monitor is not
started on nodes.

� FREQUENCY: Configures the number of seconds to sleep between iterations of the Node
Health Monitor. This item is set to 300 by default.

� VERBOSE: This item is set to ‘0’ by default. If set to ‘1’ the Node Health Monitor prints its
execution progress with each iteration.

� LOGPATH: By default, the logpath is set to /dev/console causing any Node Health Monitor
events to be logged to the console and then to the node log file in /bgsys/logs/BGQ. This
path can be changed to another writeable space accessible by the node, which causes a
file named bghealthmond-event-<date>.log to be created under the requested directory
for each Node Health Monitor event. The logfile created is then indicated in the RAS event
for future reference.

When any of the configured thresholds are exceeded, a Node Health Monitor RAS event (ID
0xA0010) is generated. An event is logged to the console or selected log file. The event
includes:

� The output of /proc/meminfo
� The output of top
� The current network status for all the adapters
� The number of processes running
� The output of nfsstat
� If the problem encountered is not an NFS failure, the number of open file descriptors

4.6.6 Core files

Blue Gene/Q I/O nodes have core file generation enabled by default. Core files, as on service
nodes and front end nodes, are dumped to /var/spool/abrt using core files named
core.<executable>.<pid>. I/O nodes do not use abrtd. Instead, the abrt directory has the
sticky bit set to provide accessibility for all users while maintaining a level of security. The
/var/spool/abrt directory is part of the node’s persistent file space so that the core files can be
accessed through /bgsys/linux/nodefs/<node ip>/var/spool/abrt regardless of the state of the
node. This prevents the node’s memory from being exhausted by programs dumping many
core files on the I/O node. For I/O nodes, /proc/sys/fs/suid_dumpable is set to ‘1’ and ulimit –c
set is set to ‘unlimited’. These settings can be overridden by putting custom /etc/sysctl.conf
and /etc/security/limits.conf files in /bgsys/linux/bgfs.

Note: Network errors (dropped and errored packets) are only logged once to avoid
spamming the RAS database and log files with such events. In addition, to reduce the total
RAS output, the following processes from top are removed: ksoftirqd, migration, watchdog,
events, kintegrityd, kblockd, md, rpciod, aio, crypto, infiniband, ib_cm, kthrotld, md_misc,
and grep.
Chapter 4. Configuring I/O nodes 57

4.7 Common I/O services

Common I/O services (CIOS) provide the I/O subsystem for a Blue Gene/Q system. The
Compute Node Kernel (CNK) uses CIOS for job control, function shipped I/O operations
(including standard I/O), and running tools. CIOS includes the following services:

� I/O services daemon (IOSD) is the service that manages and monitors the other services.
It is started when the I/O node is booted. There is one IOSD per I/O node. IOSD is
configurable to start daemons for other services.

� Job control daemon (JOBCTLD) is the service used by both CNK and runjob_server for
job control. It is started when the I/O node is booted. There is one JOBCTLD per I/O node.
JOBCTLD is mostly a bridge between CNK and runjob_server for loading, starting,
signaling, and ending jobs.

� Standard I/O daemon (STDIOD) is the service used by both CNK and runjob_server for
standard I/O. It is started when the I/O node is booted. There is one STDIOD per I/O node.
STDIOD is mostly a bridge between CNK and runjob_server to receive standard input
data and send standard output and standard error data.

� System I/O daemon (SYSIOD) is the service used by CNK to provide default function
shipped I/O. It is started when the compute node is booted. There is one SYSIOD for each
physical compute node, and it is shared by all of the processes running on a compute
node. SYSIOD is a thin layer that simply invokes system calls on behalf of the compute
node process.

� Tool control daemon (TOOLCTLD) is the service used by CNK to coordinate access to
compute node processes among tools. It is started when the compute node is booted.
There is one TOOLCTLD for each physical compute node and it is shared by all of the
processes running on a compute node. Tools provide additional services to CNK. A
debugger is the primary example of a tool.

4.7.1 Configuration

The CIOS daemons can be configured by setting options in the Blue Gene configuration file
or by setting command-line options when the server starts. There are no configuration options
for the tool control daemon.

CIOS configuration file options
Configuration options used by all CIOS daemons are in the [cios] section of the Blue Gene
configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

large_region_size = 1048576
Size in bytes of large memory regions used for I/O operations. Valid
values are 65536 (64 KiB) to 16777216 (16 MiB). The value should be
a power of 2. If large_region_size is invalid or not specified, the default
value is used (1048576).

IOSD configuration file options
Configuration options used by the I/O services daemon are in the [cios.iosd] section of the
Blue Gene configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

listen_port = 7001
The port number used to listen for a Control System connection. If
listen_port is invalid or not specified, the default value is used (7001).

jobctl_daemon_path = /sbin/jobctld
Path to job control daemon executable. There is one job control
58 IBM System Blue Gene Solution: Blue Gene/Q System Administration

daemon per I/O node and it is started by IOSD when the I/O node is
booted. If jobctl_daemon_path is not specified, the default value is
used (/sbin/jobctld).

stdio_daemon_path = /sbin/stdiod
Path to standard I/O daemon executable. There is one standard I/O
daemon per I/O node and it is started by IOSD when the I/O node is
booted. If stdio_daemon_path is not specified, the default value is
used (/sbin/stdiod).

sysio_daemon_path = /sbin/sysiod
Path to system I/O daemon executable. There is one system I/O
daemon for each compute node being serviced by the I/O node.
System I/O daemons are started when a compute block is booted and
are ended when a compute block is freed. If sysio_daemon_path is not
specified, the default value is used (/sbin/sysiod).

toolctl_daemon_path = /sbin/toolctld
Path to tool control daemon executable. There is one tool control
daemon for each compute node being serviced by the I/O node. Tool
control daemons are started when a compute block is booted and are
ended when a compute block is freed. If toolctl_daemon_path is not
specified, the default value is used (/sbin/toolctld).

max_service_restarts = 5
Maximum number of times a service is restarted. IOSD monitors all of
the daemons it has started and if a daemon ends abnormally it is
automatically restarted. Valid values are 0 to 65535. If
max_service_restarts is invalid or not specified, the default value is
used (5).

JOBCTLD configuration file options
Configuration options used by the job control daemon are in the [cios.jobctld] section of the
Blue Gene configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

listen_port = 7002
The port number used to listen for a Control System connection. If
listen_port is invalid or not specified, the default port is used (7002).

job_prolog_program_path =
The path to prolog program to run before a job is started. The prolog
program must be accessible from I/O nodes. This property is optional
and if it is not specified, a prolog program is not run.

job_epilog_program_path =
The path to epilog program to run after a job has ended. The epilog
program must be accessible from I/O nodes. This property is optional
and if it is not specified an epilog program is not run.

job_prolog_program_timeout = -1
The number of seconds to wait for job prolog program to complete.
Valid values are a positive number or -1 to wait forever. If
job_prolog_program_timeout is invalid or not specified, the default
value is used (-1).

job_epilog_program_timeout = -1
The number of seconds to wait for job epilog program to complete.
Valid values are a positive number or -1 to wait forever. If
job_epilog_program_timeout is invalid or not specified, the default
value is used (-1).
Chapter 4. Configuring I/O nodes 59

STDIOD configuration file options
Configuration options used by the standard I/O daemon are in the [cios.stdiod] section of the
Blue Gene configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

listen_port = 7003
The port number used to listen for a Control System connection. If
listen_port is invalid or not specified, the default port is used (7003).

send_buffer_size = 262144
Size in bytes of send buffer for Control System connection. A larger
size allows more standard output and standard error data to be
buffered on the I/O node by TCP/IP. If send_buffer_size is invalid or not
specified, the default value is used (262144).

SYSIOD configuration file options
Configuration options used by the system I/O daemon are in the [cios.sysiod] section of the
Blue Gene configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

posix_mode = false
Run I/O operations using Posix rules. When true each I/O operation
initiated from a compute node completes atomically. When false, one
I/O operation initiated from a compute node might cause multiple I/O
operations on the I/O node. When posix_mode is invalid or not
specified, the default value is used (false).

log_job_statistics = false
Log system I/O statistics from a job when it ends. When true,
information about I/O operations is recorded in the I/O node log file. If
log_job_statistics is invalid or not specified, the default value is used
(false).

log_function_ship_errors = false
Log information about a function shipped operation when the
operation returns an error. When true, the I/O node log file might
become large if they are many errors from function shipped
operations. If log_function_ship_errors is invalid or not specified, the
default value is used (false).

4.7.2 Jobs directory

Information about a job is placed in the /jobs directory on the I/O node. When a job starts,
JOBCTLD creates a directory in /jobs using the job identifier. When a job ends, JOBCTLD
removes the directory. The job information directory contains the following objects:

exe A symbolic link to the executable. The value comes from the runjob
-exe parameter.

wdir A symbolic link to the initial working directory. The value comes from
the runjob -cwd parameter.

cmdline A file containing the argument strings. Each string is terminated by a
null byte. The end of the strings is denoted by two null bytes. The value
comes from the runjob -args parameters.

environ A file containing the environment variable strings. Each string is
terminated by a null byte. The end of the strings is denoted by two null
bytes. The value comes from the runjob -envs parameters.

loginuid A file containing the login user ID value as a string.
60 IBM System Blue Gene Solution: Blue Gene/Q System Administration

logingids A file containing the login group ID values as strings. Each string is
terminated by a null byte. The end of the strings is denoted by two null
bytes.

toolctl_rank Directory with symbolic links to the tool-control service data-channel
local sockets to enable attaching to a specific rank in the job.

toolctl_node Directory with symbolic links to the tool-control service data-channel
local sockets to enable attaching to all ranks in the job.

tools Directory with symbolic links to the tools that are running. When a tool
is started, a symbolic link is added that is named with the tool ID and
points to the tool executable path. When a tool ends, its symbolic link
is removed.

tools/protocol A file containing the CDTI version number associated with the Blue
Gene system software as a string.

tools/status Directory with status files for tools that are running. When a tool is
started, a zero-length file is added that is named with the tool ID. A tool
updates the modification time of its file to tell JOBCTLD that it is still
active. When a tool ends, its status file is removed.

4.8 NFS configuration

The Blue Gene/Q system supports Network File System (NFS) v3 and version v4 for all file
systems except the root. To set up NFS for Blue Gene/Q on the service node, follow these
steps:

1. Configure the number of threads that the NFS server will use in the /etc/sysconfig/nfs file.
The default for RPCNFSDCOUNT is 8. You can adjust the number of threads to suit your
environment.

2. Export the file system. Edit the /etc/exports file, and add the following line (assuming the
I/O nodes will be in the 172.16.x.x network):

/bgsys 172.16.0.0/255.255.0.0

Export using the following command:

exportfs -ar

3. Now you can mount /bgsys from a client using the following command:

mount -o soft 172.16.1.1:/bgsys /bgsys

Consider the following points when you perform the configuration of the NFS file server on the
service node:

� The number of NFS server daemons running can be a source of performance issues. If
you have too few daemons running, they can become overloaded, which can increase wait
times. You can check the use of the nfsd threads using the following command:

grep th /proc/net/rpc/nfsd

The results look similar to the following line:

th 8 594 3733.140 83.850 96.660 0.000 73.510 30.560 16.330 2.380 0.000 2.150

In this case, there are 8 nfsd threads running, followed by the number of times all of the
threads have been needed (594). The 10 numbers that follow show how long, in seconds,
a certain fraction of those threads have been busy, starting with less than 10% and ending
with over 90%. If the last numbers are high, you can increase the nfsd thread count.
Chapter 4. Configuring I/O nodes 61

Increase the number of NFS server daemons by changing the following line in the
/etc/sysconfig/nfs file:

RPCNFSDCOUNT= "xxx"

Try using 32, 64, or 128 in place of the xxx.

� If you use the noac (no attribute cache) option when mounting NFS directories to avoid
problems with multiple users writing to the same file, performance might decrease.
Consider mounting different file systems with different attributes to achieve the best
performance.

� On a Linux server, use the sysctl command to change the settings that pertain to TCP
and sockets:

– This setting turns off TCP time stamp support; the default is on.

net.ipv4.tcp_timestamps = 0

– This sets the TCP time-wait buckets pool size; the default is 180000.

net.ipv4.tcp_max_tw_buckets =2000000

– This sets the min/default/max TCP read buffer; the defaults are 4096, 87380, and
174760.

net.ipv4.tcp_rmem =10000000 10000000 10000000

– This sets the min/pressure/max TCP write buffer; the defaults are 4096, 16384, and
131072.

net.ipv4.tcp_wmem =10000000 10000000 10000000

– This sets the min/pressure/max TCP buffer space; the defaults are 31744, 32256, and
32768.

net.ipv4.tcp_mem =10000000 10000000 10000000

– This turns off SACK support; the default is on.

net.ipv4.tcp_sack =0

– This turns off TCP window scaling support; the default is on.

net.ipv4.tcp_window_scaling =0

– This is the maximum number of skb-heads to be cached; the default is 128.

net.core.hot_list_length =20000

– This is the maximum receive socket buffer size; the default is 131071.

net.core.rmem_max =10000000

– This is the maximum send socket buffer size; the default is 131071.

net.core.wmem_max =10000000

– This is the default receive socket buffer size; the default is 65535.

net.core.rmem_default =10000000

– This is the default send socket buffer size; the default is 65535.

net.core.wmem_default =10000000

– This is the maximum amount of option memory buffers; the default is 10240.

Note: The following example values might reflect extreme conditions. Select values
appropriate to your system and memory.
62 IBM System Blue Gene Solution: Blue Gene/Q System Administration

net.core.optmem_max =10000000
net.core.netdev_max_backlog =300000

� Specifying larger values on the NFS mount command for rsize and wsize might improve
performance. Other mount options to consider include:

– TCP versus UDP mount:

Mounting an NFS share with the UDP protocol on a saturated network can be
problematic because you might see a high level of lost packets. Generally, it is best for
performance to use TCP only for mounts on an active network.

– Asynch versus Sync mount:

If you export file systems in NFS with the sync option, general performance might be
adversely affected. You might be able to improve overall performance on the clients by
using the default asynchronous writes.

The async option allows the server to reply to the client as soon as it processes the
request, so that the client does not have to wait for the disk write to complete. The
client continues under the assumption that the write completed.

There is a slight risk in using the async option, but only in the situation of a disk failure.
The sync option guarantees that all writes are completed when the client thinks they
are, but it does so by forcing each client to wait for disk writes to complete.

4.9 Troubleshooting

Output written to the console is sent through the mailbox to the Control System and by default
is stored in a log file in the /bgsys/logs/BGQ directory. Note that the directory to store log files
can be changed by modifying the log_dir keyword in the [mmcs] section of bg.properties. The
log file name is the I/O node's location string with .log appended to the end (for example,
R00-I5-J06.log). Output from the kernel, startup and shutdown scripts, and daemons is put in
the log file and can be helpful for diagnosing problems or errors.

There is also a messages file for each node available under the /bgsys/linux/nodefs/<node
ip>/var/log directory that is useful when debugging I/O node problems.

4.9.1 NFS errors

This section contains a few of the more common NFS errors and how to debug them.

RPC: Connection Refused
The two main RPC programs that NFS uses are rpc.mountd and rpcbind. The RPC:
Connection Refused error (received from the I/O node) indicates that one of these programs
might not be running. You can verify that the programs are running with the following
commands on the system running the NFS server (typically the service node):

ps -ef | grep rpcbind

ps -ef | grep rpc.mountd, or rpcinfo -p

If you find that rpcbind is not running, you can start it using the following command:

/etc/init.d/rpcbind start

If both rpc.mountd and nfsd are not running, you can start both with the following command:
Chapter 4. Configuring I/O nodes 63

/etc/init.d/nfs start

Otherwise, start rpc.mountd with the following command:

/usr/sbin/rpc.mountd

Also, verify that both programs are configured to start on boot with the following commands:

chkconfig --list rpcbind

chkconfig --list nfs

If the programs are not configured correctly, set them to start automatically with the following
commands:

chkconfig --add nfs

chkconfig --add rpcbind

In some situations, rpc.mountd might crash as a result of excessive load. In earlier Linux
versions, rpc.mountd was a single-threaded, user-level process. You can now pass the -t flag
with rpc.mountd to specify the number of rpc.mountd threads to spawn. To increase
performance and to prevent rpc.mountd from crashing due to load, it is recommended that
you take advantage of this option. You must edit the /etc/init.d/nfs file. There are two lines in
the nfs file that can potentially start rpc.mountd. Adding the -t flag, as shown in Example 4-14,
starts rpc.mountd with 16 threads.

Example 4-14 Use of the -t flag in the /etc/init.d/nfs file

...
if [-n "$MOUNTD_PORT"] ; then
startproc /usr/sbin/rpc.mountd -t 16 -p $MOUNTD_PORT
else
startproc /usr/sbin/rpc.mountd -t 16
fi
...

RPC: Timeout
This error usually occurs on mount requests when rpc.mountd is overloaded. If rpc.mountd is
overwhelmed, these timeouts occur when running commands, such as showmount -e <SN IP
Address>, from another Linux system. To lessen the impact of these issues:

� Space out mount requests to rpc.mountd.

� Verify DNS host resolution of all involved servers. Add the host name and IP addresses for
the front end node, service node, and I/O node to the /etc/hosts file on the service node.
Resolving names and addresses by sending requests to the DNS servers occupies the
rpc.mountd threads for a longer period of time than if the resolution is done locally. Other
mount requests are dropped if they are waiting on a DNS reply. Also, the hosts line in the
/etc/nsswitch.conf file should be hosts: files dns to give preference to /etc/hosts over the
DNS servers.

� Increase the number of rpc.mountd threads as shown in Example 4-14.

Mount failure: Permission denied
This error is usually generated due to either a missing entry in /etc/exports, a syntax error in
that file, or due to a mismatch between /etc/exports and /var/lib/nfs/etab.
64 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Missing entry in /etc/exports
The format of an /etc/exports entry is as follows:

/filesystem hosts(options)

A typical entry for exporting /bgsys looks like the entry in Example 4-15.

Example 4-15 Export of /bgsys

/bgsys 172.16.0.0/255.255.0.0(rw,async,no_root_squash)
/tmp/gpfsvar
134.94.72.0/255.255.254.0(rw,no_root_squash,async,fsid=746)

After adding an entry to /etc/exports, run exportfs -ar to make the change known to the NFS
daemons. The exportfs command makes the change known by modifying /var/lib/nfs/etab.

Syntax error in /etc/exports
If there is an unknown option or if the line does not conform to the expected format, the
exportfs command does not add a line to /var/lib/nfs/etab for the file system. Check for any
malformed networks, host names, or file system names in the /etc/exports file. Also, it is not
possible to export both a directory and its child (for example both /usr and /usr/local). Export
the parent directory with the necessary permissions, and then mount all of its subdirectories
with those same permissions. After you make any changes, run the exportfs -ar command
again to make the changes known to the NFS daemons.

Mismatch between /etc/exports and /var/lib/nfs/etab
A Permission Denied error on a mount request might simply be the result of someone
forgetting to run the exportfs command after editing /etc/exports. The NFS daemons use the
files in /var/lib/nfs/ as they run. If the file system is in /etc/exports, but not in /var/lib/nfs/etab,
then you need to run the exportfs -ar command to make the changes known to the NFS
daemons.
Chapter 4. Configuring I/O nodes 65

66 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 5. Control System console

This chapter provides a description of the Blue Gene/Q text-based Control System console.

5

© Copyright IBM Corp. 2013. All rights reserved. 67

5.1 Overview

Text-based interaction with Blue Gene/Q is achieved through the bg_console command.
Communication with the following servers is provided from the console:

mmcs_server The Midplane Management Control System (MMCS) is used to
configure and allocate blocks of compute nodes and I/O nodes.

mc_server The mc_server is a wrapper around the machine controller (mc). The
machine controller is a library of functions that provide Low-Level
Control System (LLCS) access to the hardware.

runjob_server The runjob_server facilitates the job launch functions.

bgmaster_server BGmaster is the process manager for the Control System servers. Its
purpose is to act as a centralized failure and recovery process.

realtime_server The real-time server provides real-time notifications of system events
to client applications.

bgws_server Blue Gene Web Services (BGWS) provides a RESTful web service.

There are two types of commands used with bg_console. The first are referred to as base
commands, and their purpose is to interact with the MMCS server. There is a group of
external commands that are used to communicate with servers other than the MMCS server.
Figure 5-1 provides an overview of the bg_console structure.

Figure 5-1 bg_console overview

The bg_console binary is located in the /bgsys/drivers/ppcfloor/bin directory. Adding
/bgsys/drivers/ppcfloor/bin to the users’ default path allows access to the console from any

Console

MMCS Server

Auth
library

Protocol
library

External
command

Auth
library

Protocol
library

External
command

Auth
library

Protocol
library

External
command

Auth library

External
Server

Auth library

External
Server

Command
process

Auth
library

Console
I/O

MMCS
commands

fork()/exec()Command
processor
68 IBM System Blue Gene Solution: Blue Gene/Q System Administration

location. One method to add the directory to the default path is to create a script in
/etc/profile.d that contains the following line:

export PATH=$PATH:/bgsys/drivers/ppcfloor/bin

5.1.1 Accessing help

The help command provides access to the help system. Commands are organized into
functional groupings and associated with specific help categories. To get help on commands
specific to any group users can type:

mmcs$ help <category>

Table 5-1 provides a list of the help categories. The category maps to the Help Category
column in Table 5-2. The help command, by itself with no command or category, gives
summary help for commands in the default category and also lists the category names.

Table 5-1 Categories available for help command

To access more information about a specific command use the following syntax:

mmcs$ help <command>

More information about commands used for servers other than the MMCS server can also be
obtained through the command’s man page, for example:

man list_jobs

5.1.2 Command history

The bg_console command uses a readline compatible library to provide command-line editing
capabilities. Command history is stored in the $HOME/.bg_console_history file.

5.2 Commands

Table 5-2 contains the complete list of commands provided through the console by each
server. Supported objects and authorities are defined in the Blue Gene/Q security section
18.1, “Object based model” on page 204. The bgadmin authority is functionally equivalent to
having access to the administrative security certificate.

Table 5-2 bg_console commands

Category Description

default The default set of commands that are read-only, not in any other category, and
can be issued by any user.

user User commands that actually affect something (allocate, for example).

admin Administrative commands.

Command Server Object/authority Help category

alias_wait BGmaster none default

binary_status BGmaster none default
Chapter 5. Control System console 69

binary_wait BGmaster none default

fail_over BGmaster bgadmin admin

get_errors BGmaster none default

get_history BGmaster none default

monitor_master BGmaster none default

list_agents BGmaster none default

list_clients BGmaster none default

master_start BGmaster bgadmin admin

master_status BGmaster none default

master_stop BGmaster bgadmin admin

delete_block BGWS server Block:Delete user

list_jobs BGWS server Job:Read default

mcserver_clients MC server bgadmin admin

mcserver_status MC server Hardware:Read admin

add_boot_option MMCS server bgadmin admin

allocate MMCS server Block:Read/Execute user

allocate_block MMCS server Block:Read/Execute user

block_status MMCS server Block:Read default

boot_block MMCS server Block:Read/Execute user

connect MMCS server Hardware:Read/Execute admin

copy_block MMCS server Block:Create/Read admin

create_node_config MMCS server bgadmin admin

delete MMCS server bgadmin admin

deselect_block MMCS server Block:Read user

disconnect MMCS server Hardware:Read/Execute admin

dump_block MMCS server Block:Read admin

dump_machine MMCS server Hardware:Read admin

dump_personalities MMCS server Block:Read admin

free MMCS server Block:Execute user

free_all MMCS server Block:Execute user

free_block MMCS server Block:Execute user

gen_block MMCS server Block:Create admin

gen_blocks MMCS server Block:Create admin

gen_full_block MMCS server Block:Create admin

Command Server Object/authority Help category
70 IBM System Blue Gene Solution: Blue Gene/Q System Administration

gen_io_block MMCS server Block:Create admin

gen_midplane_block MMCS server Block:Create admin

gen_small_block MMCS server Block:Create admin

get_block_info MMCS server Block:Read default

get_block_size MMCS server Block:Read default

grant_block_authority MMCS server Block owner user

help MMCS server none default

list MMCS server bgadmin admin

list_blocks MMCS server Block:Read default

list_block_authority MMCS server Block:Read default

list_hw_polling MMCS server bgadmin admin

list_io MMCS server bgadmin admin

list_io_links MMCS server Block:Read admin

list_midplanes MMCS server bgadmin admin

list_selected_block MMCS server Block:Read default

list_users MMCS server bgadmin admin

locate MMCS server Block:Read default

log_level MMCS server bgadmin admin

mmcs_server_connect MMCS server none default

quit MMCS server none default

reboot_nodes MMCS server Block:Execute admin

redirect MMCS server Block:Execute user

redirect_block MMCS server Block:Read/Execute user

revoke_block_authority MMCS server Block owner user

select_block MMCS server Block:Execute default

set_block_info MMCS server Block:Update admin

set_boot_options MMCS server Block:Update admin

show_barrier MMCS server Block:Read admin

sleep MMCS server none default

sql MMCS server bgadmin admin

start_hw_polling MMCS server bgadmin admin

status MMCS server bgadmin admin

stop_hw_polling MMCS server bgadmin admin

sysrq MMCS server Block:Execute admin

Command Server Object/authority Help category
Chapter 5. Control System console 71

5.3 Special commands

In addition to the commands described in Table 5-2 on page 69, the console supports the
following special commands:

! [shell command] This command escapes to a subshell if no <command> is specified.
Use exit to return to the mmcs$ prompt. If the optional <command> is
specified, it runs that command in a subshell and returns you to the
mmcs$ prompt (can only be used from the console).

[<comment>] This command indicates a comment line.

< <filename> This command pipes command input from <filename> to MMCS server
(can only be used from the console).

5.4 Command parameters

For commands that run against multiple servers, indicated in Table 5-2 on page 69 with All
servers in the server column, any mandatory parameters are first, and an optional server
argument is the last parameter. If the server argument is not provided, the command is run

username MMCS server none default

version MMCS server none default

wait_boot MMCS server Block:Read user

write_con or wc MMCS server Block:Execute admin

dump_proctable runjob server Job:Read default

end_tool runjob server Job:Execute user

grant_job_authority runjob server Job owner user

job_status runjob server Job:Read default

kill_job runjob server Job:Execute user

list_job_authority runjob server Job owner default

locate_rank runjob server Job:Read default

revoke_job_authority runjob server Job owner user

start_tool runjob server Job:Execute user

tool_status runjob server Job:Read default

refresh_config All servers bgadmin admin

Command Server Object/authority Help category
72 IBM System Blue Gene Solution: Blue Gene/Q System Administration

against all operational servers. The server implementing the common command is named
server_command. The console sets the properties file environment variable to match its
properties file:

refresh_config Re-read bg.properties and apply new or changed options as
appropriate.

help List all commands and their arguments.

version Provide version information in the format:
Driver: [driver] Date: [build date] [optional]

The optional string can contain protocol versions or other version
identifiers.

5.5 Scripting

Console scripting is available by passing commands to the console's stdin and reading back
from stdout within scripts. Example 5-1 shows several examples on how to do this using Perl.

Example 5-1 Scripting console using Perl

#!/usr/bin/perl
This is a set of trivial scripting examples for the bg_console. There are three types:
1) Use Perl's expect module to simulate interactive use.
2) Execute a single command in the console and have it return.
3) Have the console batch-process several commands from a list in a file.

BEGIN {
This allows access to the Perl expect module necessary for some of these examples.
If Perl's Expect module is system-installed, then this isn't necessary.
 push @INC,"/perl/lib/perl5/site_perl/5.8.8";
 push @INC,"/perl/lib/perl5/site_perl/5.8.8/ppc-linux-thread-multi";

 }

Use expect Perl module to simulate interactive use:
use Expect;
use warnings;

print "\n****Running Expect script examples****\n";
my $e = Expect->new;

start bg_console
$e->spawn("./bg_console") or die "Cannot run bg_console\n";

look for mmcs$ prompt
$e->expect(5, "mmcs\$") or die "no prompt\n";

send the 'list_blocks' command
$e->send("list_blocks\n");

wait for an 'OK' to see if it worked
$e->expect(5, "OK") or die "Failed to list_blocks\n";
print "Success! list_blocks\n";

now send a 'list_users'
$e->send("list_users\n");

and wait for an 'OK' again
$e->expect(5, "OK") or die "Failed to list_users\n";
print "Success! list_users\n";

print "****Expect scripts done!****\n\n";
Chapter 5. Control System console 73

Run a single command and check the result
print "****Running a single command and checking the return****\n";
my $result;

Simple. Just echo the command to bg_console's stdin
$result = `echo \"list_users\" | ./bg_console`;

Now see if we got an 'OK'
if ($result =~ /OK/)
 {
 print "Success!\n****list_users single command completed****";
 }
else
 {
 print "Fail!\n****list_users did not succeed****";
 }

print "\n\n";

Run a "batch file" with a list of commands. In this case
the file is just the following commands in the file named 'commands':
help all
list_blocks
list_users
print "****Now run a batch command file****\n";
my $batch_result;

This pipes a list of commands into the console's stdin
The console then executes them serially
$batch_result = `cat commands | ./bg_console`;

$count = 0;
$pos = 0;
$done = 0;

This just finds all of the 'OK' responses in the result. This isn't really efficient for large batch
files. You only want to do this kind of thing for single multi-step test cases.
while ($done == 0) {
 $pos = index($batch_result, "OK", $pos);
 if ($pos == -1) {
 $done = 1;
 }
 else {
 $count++;
 }
 $pos++;
}

if ($count == 3) {
 print "****Success! Batch result OK count: ";
 print $count;
 print "****\n";
}

74 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 6. Submitting jobs

Submitting jobs on Blue Gene/Q is accomplished by using the runjob command. The runjob
architecture is made up of three components: the runjob server, the multiplexer, and the
runjob client. This chapter focuses primarily on the client functions, providing information
about:

� runjob architecture
� runjob command syntax
� sub-block jobs
� signal handling
� standard input, output and error
� job authority
� kill_job command
� job status
� Blue Gene job submission history

6

© Copyright IBM Corp. 2013. All rights reserved. 75

6.1 The runjob architecture

The runjob architecture consists of three components: server, multiplexer (mux), and client.
The three components are shown in Figure 6-1.

Figure 6-1 The runjob architecture

The purpose of the runjob server is to coordinate job submission. The server inserts,
updates, and removes job entries from the database. It communicates with the job control
daemon (JOBCTLD) on the I/O nodes to load, start, signal and stop jobs. The runjob server
also accepts requests from the runjob mux that were submitted by the clients.

The purpose of the multiplexer is to provide a communication channel between the runjob
clients and the runjob server. The multiplexer accepts commands, such as runjob, kill_job
or job_status, from one or more local clients and funnels them through a single connection to
the server. In a Distributed Control System environment, the multiplexer also facilitates
failover. Additionally, the multiplexer provides plug-in functionality to interact with job
schedulers.

The runjob client provides an interface for users to launch and control jobs. The client
commands are transmitted to the runjob server through the multiplexer.

Communication between each component is achieved through a request/response protocol.

6.2 The runjob command

The runjob command is the interface to launch jobs on Blue Gene/Q. It acts as a shadow
process for the job's lifetime. The syntax of the command is:

runjob [OPTIONS ...] : exe [arg1 arg2 ... argn]

The block that a job is intended to run on must be booted prior to the runjob command being
issued. If the block that is requested to run a job is not initialized, runjob immediately
terminates with a descriptive error message.

Note: More detailed information about the runjob server and multiplexer is located in
Chapter 14, “The runjob server and runjob mux” on page 163.

plugin

runjob

runjob mux

Scheduler startd

Scheduler APIs

Scheduler daemon

DB
runjob
server

Control system components Scheduler components
76 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The command-line behavior can be modified when using a job scheduler, for example, if the
--block option is omitted from the command, an external scheduler can decide which block to
use. More information about the Scheduler APIs is in the online documentation that is
shipped with Blue Gene/Q in the /bgsys/drivers/ppcfloor/hlcs/docs/bgsched/external
directory. You can also display the Scheduler API documentation from the Knowledge Center
in the Navigator.

6.2.1 The runjob options

Table 6-1 provides a list of supported arguments for the runjob command. All arguments can
also be specified by environment variables by prefixing RUNJOB_ to their name. For
example, the --exe argument can be specified with RUNJOB_EXE. Command-line arguments
always take precedence over their environmental equivalent.

Table 6-1 runjob options

Argument Description

Job options

--exe Path name for the executable to run. Your user ID must have permission to
read and execute this executable. The path can be an absolute path or a
relative path to --cwd. This value can also be specified as the first positional
parameter after the “:” token. Note that the total length of all --args and --exe
arguments must be less than 4097 characters. The executable must be less
than 513 characters.
The --exe parameter is required.

Example:
runjob --block R00-M0 : /home/user/exe
With the executable specified as the first positional argument, is equivalent to:
runjob --block R00-M0 --exe /home/user/exe

--args Arguments for the executable specified by --exe. Multiple tokens to --args are
split on spaces until another argument is encountered. To retain spaces in your
tokens, enclose them in quotation marks. Multiple --args parameters must be
used to differentiate between runjob arguments and application arguments.
Arguments can also be specified after the first positional executable parameter,
in which case differentiation between runjob arguments and application
arguments is not necessary.
Arguments are composing, their values are combined from both command-line
parameters and environment variables (RUNJOB_ARGS) to generate the final
set. All --exe and --args parameters must be less than 4097 characters.

Examples:
runjob --block R00-M0 : a.out hello world
is equivalent to:
runjob --block R00-M0 --args hello world --exe a.out

runjob --block R00-M0 --args --one --args --two --exe a.out
is equivalent to:
runjob --block R00-M0 : a.out --one --two
Chapter 6. Submitting jobs 77

--envs Environment variables to export. This value must contain an equals character
that is not the first character of the string. Multiple tokens are split on spaces
until another argument is encountered. The leading character of an
environment variable name cannot be a digit or a space. To retain spaces in
your environment variables, enclose them in double quotes. Environment
variables are composing: their values are combined from both arguments and
environment variables to generate the final set. The total length of all
environment variables must be less than 8192 characters, which includes the
environment variable name and the equals character.

--exp_env Exports an environment variable from the current environment to the job.
Multiple tokens are split on spaces. The variable must be present in the current
environment.

--env_all Exports all environment variables from the current environment to the job,
which can quickly increase the total size of environment variables past the
8192 character limit. Use this argument with caution.

--cwd The current working directory for the job. This value must be a fully qualified
path. The default value is the working directory when runjob is started. Must
be less than 512 characters.

--timeout After the job starts running, deliver a SIGKILL after the specified number of
seconds.

Resource options

--block The compute block ID to run the job on. The block must be initialized prior to
invoking runjob. If the system administrator configured a job scheduler, this
parameter can be changed before the job starts. This parameter must be less
than 33 characters.
Also see --corner and --shape for requesting that a job use sub-block
resources.

--corner Location string of a single node or single core within the block to represent the
corner of a sub-block job. If the system administrator configured a job
scheduler, this parameter can be changed before the job starts. For example:
� R00-M0-N00-J00 (node J00 on board N00 in midplane R00-M0)
� R00-M1-N12-J05-C00 (core 0 on node J05 on board N12 in midplane

R00-M1)
Core corner locations cannot use a shape or alternate ranks per node;
therefore, --shape and --ranks-per-node are both ignored when specified with
a core corner location. Node corner locations require a --shape argument.
Multiple sub-node jobs on a single node using core corner locations are limited
to a single user. The --corner argument requires that --block also is specified.

--shape Five dimensional AxBxCxDxE torus shape of a sub-block job starting from a
corner given by --corner. Must be equal to or less than a midplane (4x4x4x4x2)
in size and cannot span multiple midplanes. Shapes also cannot wrap around
torus dimensions. All dimensions must be a power of two: either 1, 2, or 4
compute nodes in size. If the system administrator configured a job scheduler,
this parameter can be changed before the job starts. The --shape argument
requires that --corner and --block are specified too.

--ranks-per-node Number of processes per compute node. Valid values are 1, 2, 4, 8, 16, 32, and
64.

--np Number of processes in the entire job. The default value is the entire size of
the block or sub-block shape. The --np value must be equal to or less than the
block (or sub-block shape) size multiplied by the ranks per node value.

Argument Description
78 IBM System Blue Gene Solution: Blue Gene/Q System Administration

--mapping Permutation of ABCDET or a path to a mapping file containing coordinates for
each process. If the path is relative, the combination of --cwd and --mapping
must be less than 513 characters. If the path is absolute, --mapping must be
less than 513 characters. The syntax of a mapping file is six columns
separated by white space. The columns indicate the A,B,C,D,E,T coordinates,
and the line number is the process. Comments can be used anywhere in the
line with the # character. Any text after the pound sign (#) is ignored.

Here is an example of mapping file contents:
 0 0 0 0 0 0 # rank 0
 0 0 0 0 1 0 # rank 1
 0 0 0 1 0 0 # rank 2
 0 0 0 1 1 0 # rank 3

Debug options

--label Enables or disables standard output and standard error prefix labels. Values
are none, short, or long. None omits all prefixes. Short includes only the rank.
Long includes the source in addition to the rank in square brackets. The default
value is none, and the implicit value is long.

Examples:
� --label short

1: hello world
� --label long

stdout[1]: hello world
� --label

stdout[1]: hello world
� --label none

hello world

--strace Enables or disables system call tracing. Values are none or a specific rank to
enable the tracing. The rank must be a valid rank in the job.

--start-tool Fully-qualified path to the tool daemon to launch before the job starts. The
combination of this value and --tool-args must be less than 4097 characters.
Tools cannot be started for sub-node jobs. When using a mapping file (see
--mapping), this file must be readable by the runjob_server (typically the
bgqadmin uid) to correctly calculate location to rank mappings.

--tool-args Single token containing arguments to be passed to the tool daemons. This
token is split on spaces. The --start-tool option must be given with this option.
The combination of this value and --start-tool must be less than 4097
characters.

--tool-subset A subset specification is a single token that consists of a space-separated list.
Each element in the list can have one of three formats:
� rank1 : single rank
� rank1-rank2 : all ranks between rank1 and rank2
� rank1-rank2:stride : every strideth rank between rank1 and rank2

A rank specification can either be a number or the special keywords $max or
max. Both of them represent the last rank participating in the job. The $
character is optional to prevent shell escaping. This subset specification
restricts the I/O nodes used for launching the tool. Each element in the
specification must be in increasing order and cannot have any overlapping
ranks. The subset must specify at least one rank that is participating in the job.
The --start-tool option must be given with this option. If not specified, the
default value is 0-$max.

Argument Description
Chapter 6. Submitting jobs 79

6.2.2 Scheduler

Blue Gene/Q job submission usually occurs through a scheduler that typically wraps the
runjob command. The Blue Gene/Q solution provides interfaces for external job schedulers
(resource managers) to access system hardware topology and to manage blocks and jobs.
Overall, these interfaces are known as the Scheduler APIs, which are documented in the
online documentation shipped with Blue Gene/Q in the
/bgsys/drivers/ppcfloor/hlcs/docs/bgsched/external directory. You can also display the
Scheduler API documentation from the Knowledge Center in the Navigator.

Job schedulers can prevent users from submitting jobs using the runjob command. Check
documentation of the scheduler system for usage information.

6.3 Sub-block jobs

Sub-block jobs on Blue Gene/Q are jobs that coexist with each other on a single compute
block. You can run single node (non-MPI) style jobs and multiple MPI jobs on the same block.
These jobs share the I/O nodes of the block but run on different compute node cores.

Sub-block jobs are intended to provide better utilization of compute resources so that you can
reduce the number of idle compute nodes and pack jobs more tightly onto the system. For
example, if sub-block jobs support is not used, and you have a job that only needs 10
compute nodes, you must allocate, at minimum, a 32 compute node block (assuming the best
I/O cabling) and waste 22 of the compute nodes. Using the sub-block job software feature you
can create that same 32 compute node block and run the 10 compute node job and other
sub-block jobs on the same block.

You can have a sub-block job running on a set of compute nodes that has no I/O connection.
This is one of the primary purposes of sub-block jobs, to enable more jobs than there are I/O
connections. So using sub-block jobs, you eliminate the restrictions on number of
simultaneous jobs that were imposed by the number of I/O nodes.

Miscellaneous options

--stdinrank The rank to deliver standard input to. Must be a valid rank in the job.

--raise If the job abnormally terminates with a signal, re-raise that signal when runjob
terminates.

-h [--help] Displays the help text for the runjob command.

-v [--version] Displays version information.

--properties Location of the bg.properties configuration file to be used if other than the
default. The default location is in the /bgsys/local/etc directory.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level: OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, use the following command:
runjob --verbose=DEBUG --verbose=ibm.utility=DEBUG

Argument Description
80 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The sub-block job capability is enabled by the dynamic job configuration performed by CNK
and the system class routes calculated at job launch time rather than block boot time. A
sub-block job differs from a job using the entire block by requesting a compute-node corner
location and a five-dimensional shape at job launch time. This corner and shape are
combined to logically create a sub-block, which is then used for resource arbitration to ensure
overlapping compute nodes are not in use by active jobs. It is also used to enforce that the job
is entirely contained within the corner compute node’s midplane. Using a shape effectively
enforces a collection of compute nodes without any holes, easing the challenges this
otherwise poses for the messaging communications software stack. The shape of a sub-block
job has a maximum size of 512 compute nodes. This limitation is solely imposed by software
and not due to a hardware limitation. The logic behind this restriction is a 512 node midplane,
which is the building block for creating larger blocks. Doing so also greatly simplifies the
resource arbitration. Any shape, between a single node (1x1x1x1x1) and the entire midplane
(4x4x4x4x2), with all dimensions being a power of 2, is a valid shape for a sub-block job. Most
importantly, job sizes are not limited by any artificial I/O ratio.

Figure 6-2 shows a two-dimensional layout of six sub-block jobs using a variety of corner and
shape combinations. It is important to note that the compute nodes in the empty space
between the logical layout of the jobs are available for use. They are not orphaned, reserved,
or idled by another job.

Figure 6-2 Blue Gene/Q sub-block jobs

There are several application considerations when using sub-block jobs. Foremost, the I/O
resources are shared with other jobs serviced by the same I/O node. Considering the six jobs
shown in Figure 6-2, one job can monopolize resources on the I/O node. If any of the five
remaining jobs need guaranteed I/O bandwidth, precautions might need to be taken by the
scheduler to ensure that adequate resources are available. Sub-block jobs do not have the
same electrical isolation guarantee that their full-block job counterparts do. On all Blue
Gene/Q systems, a block of compute nodes is electrically isolated from neighboring compute
nodes when it is booted. Because sub-block jobs are sharing the same compute node to I/O
node bridge, this guarantee cannot be enforced. This can be a security concern to certain
applications if they have a requirement to not share the torus links between compute nodes.

Job 3
8 nodes

Job 1
64 nodes

Job 2
256 nodes

Job 6
1 node

Job 5
128 nodes

Job 4
64 nodes
Chapter 6. Submitting jobs 81

6.4 Signal handling

SIGINT and SIGXCPU signals are handled by the runjob command. Delivering either one
causes runjob to deliver a SIGKILL to the job.

Signals other than SIGINT or SIGXCPU are not handled by runjob. They can be delivered to
the job using the kill_job command. The default action is taken for signals other than
SIGINT or SIGXCPU. Depending on the signal, this might be to terminate the process or
ignore the signal. Similarly, the kill timeout can be changed when using kill_job instead of
delivering a signal to runjob. Successive signals sent to runjob do not cause additional
SIGKILL signals to be delivered to the job. Only the first one causes the kill timer to start.

6.4.1 Exit status

If the job fails to start for whatever reason, the exit status is EXIT_FAILURE(1), and an
informative message is logged that indicates the failure. After a job starts, the exit status is the
first non-zero exit status reported by any process in the job. For non-zero exit status values, a
message is logged that indicates which process caused the termination. When a process
terminates with an unhandled signal, runjob can optionally re-raise this signal using the
--raise option. If --raise is not given, the exit status is 128 + the signal number. An informative
message is also logged indicating which process generated the signal.

If delivering a SIGKILL times out, the exit status is EXIT_FAILURE, and an informative
message is logged. Example 6-1 provides some sample messages.

Example 6-1 Exit status messages

2011-04-25 16:13:23.711 (WARN) [0xfff8b015750] R00-M0-N00:40:ibm.runjob.client.Job: normal termination with status 15 from rank 0

2011-04-25 16:15:08.415 (WARN) [0xfffafa75750] R00-M0-N00:41:ibm.runjob.client.Job: terminated by signal 15

2011-04-25 16:15:08.415 (WARN) [0xfffafa75750] R00-M0-N00:41:ibm.runjob.client.Job: abnormal termination by signal 15 from rank 0

2011-04-25 16:14:10.021 (ERROR) [0xfff7a6b5750] R00-M0-N00:5388:ibm.runjob.client.MuxConnection: could not connect: Connection refused

2011-04-25 16:14:29.084 (FATAL) [0xfffaacd5750] R00-M0-N00:5424:ibm.runjob.client.Job: could not start job: runjob_server is unavailable

6.4.2 Normal job termination

If any process in the job terminates normally with exit(1), the remaining processes are
delivered SIGTERM.

6.4.3 Abnormal job termination

If any process in the job abnormally terminates by a signal, the remaining processes are
delivered a SIGKILL.

The runjob command uses a local (AF_UNIX) socket to the runjob_mux process. If this
connection is prematurely closed due to the process abnormally terminating, the job is
delivered a SIGKILL signal.
82 IBM System Blue Gene Solution: Blue Gene/Q System Administration

6.5 Standard input, output and error

After a job starts, standard input, output, and error are transparently forwarded by the runjob
command on behalf of the application. Each line of output or error can be optionally prefixed
with the rank using the --label option. Note that input is only forwarded to the application when
requested. In other words

 read(STDIN_FILENO, buf, 1024);

by the rank specified using --stdinrank triggers a corresponding read system call by runjob.
For ranks other than --stdinrank, a read system call always returns 0. When the standard
input file descriptor for the runjob command is a tty, line buffering is enabled. Otherwise, block
buffering is used.

6.6 Job authority

A user must have authority to perform an action on a job (see Chapter 18, “Security” on
page 203 for a detailed discussion). The owner of the job has all authority to the job and can
grant authority to another user before that user can perform an action on the owner’s job.
There are three commands that relate to job authority: grant_job_authority,
revoke_job_authority and list_job_authority. These commands are located in the
/bgsys/drivers/ppcfloor/bin directory.

6.6.1 The grant_job_authority command

The grant_job_authority command grants another user permission to read or execute
privileges on a job. Granting authority to a job does not affect special authorities created in
the bg.properties file. The syntax of the command is:

grant_job_authority [OPTIONS ...]

Table 6-2 shows the options that are available for the grant_job_authority command.

Table 6-2 Job authority command options

Option Description

--id Numeric job ID. This can be specified as the first positional argument as well.

--user Specifies the user or group name to grant or revoke authority. This can be
specified as the second positional argument as well.

--action Specifies the action being granted or revoked (read or execute). This can be
specified as the third positional argument as well.

--version Displays the version information for the grant_job_authority or
revoke_job_authority command.

--properties Location of the bg.properties file to be used if other than the default. The
default location is in the /bgsys/local/etc directory.
Chapter 6. Submitting jobs 83

6.6.2 The revoke_job_authority command

The revoke_job_authority command removes the read or execute privileges from the user
and job specified in the command. Revoking authority to a job does not affect special
authorities created in the bg.properties file. The syntax of the command is:

revoke_job_authority [OPTIONS ...]

The options available for the revoke_job_authority command are the same as the
grant_job_authority command. Refer to Table 6-2 on page 83 for specific options.

6.6.3 The list_job_authority command

The list_job_authority command returns a list of users and groups that have authority to
perform various actions on the job specified in the command. The syntax of the command is:

list_job_authority [OPTIONS ...]

The options available for the list_job_authority command are provided in Table 6-3.

Table 6-3 list_job_authority options

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level; OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, the following command could be used:
grant_job_authority --verbose=DEBUG --verbose=ibm.utility=DEBUG

--host Server host and port to connect to. Enclose IPv6 addresses in square
brackets. For link-local addresses, append the interface to the address after a
“%” character. Specify the port after the interface using a colon.
The following values are examples values:
� 127.0.0.1
� 172.16.3.1:12345
� [::1]
� [fe80::214:5eff:fre9c:52ce%eth0]
� [::1]:24555

--wait-for-server Keep trying to connect to the server if it is unavailable.

--help Display help text for the grant_job_authority or revoke_job_authority
command.

Option Description

Option Description

--id Numeric job ID. This can be specified as the first positional argument as well.
84 IBM System Blue Gene Solution: Blue Gene/Q System Administration

6.7 The kill_job command

The kill_job command delivers a signal to a job asynchronously. Signals other than
SIGKILL can only be sent to a running job. The syntax of the kill_job command is:

kill_job id --signal [OPTIONS ...]

The options available for kill_job are shown in Table 6-4.

Table 6-4 kill_job options

--host Server host and port to connect to. Enclose IPv6 addresses in square
brackets. For link-local addresses, append the interface to the address after a
“%” character. Specify the port after the interface using a colon.
The following values are examples values:
� 127.0.0.1
� 172.16.3.1:12345
� [::1]
� [fe80::214:5eff:fre9c:52ce%eth0]
� [::1]:24555

--version Display the version information for the list_job_authority command.

--properties Location of the bg.properties file to be used if other than the default. The
default location is in the /bgsys/local/etc directory.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level; OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, the following command could be used:
list_job_authority --verbose=DEBUG --verbose=ibm.utility=DEBUG

--wait-for-server Keep trying to connect to the server if it is unavailable.

--help Display help text for the list_job_authority command.

Option Description

Option Description

--id Numeric job ID. This can be specified as the first positional argument as well.

--pid runjob process ID. Either this parameter or --id must be given.

--signal | -s Signal to send. This can be specified as an integer or the name of the signal.
The --signal and -s switch is optional; instead, the signal number or string can
be prefixed by a single - character similar to Linux’s kill command. When
specifying a string, it must be one of the well known signals, see --list for more
information. When specifying a number, it must be greater than zero.

If no signal is provided, SIGKILL is sent by default.

--timeout The number of seconds to start a timeout when delivering SIGKILL. If the job
has not finished on its own after this value, it is forcefully terminated and the
nodes in use are unavailable for future jobs until the block is rebooted. This
value is ignored for signals other than SIGKILL. The time remaining for this
timeout can be queried with the job_status command. It can also be reduced
by subsequent invocations of kill_job with a smaller --timeout parameter.
Chapter 6. Submitting jobs 85

Examples of using the kill_job command are:

To send a SIGKILL to the job numbered 456, use the following command:

kill_job 456

To send a SIGTERM to job number 123, use the following command:

kill_job -TERM 123

6.8 Job status

The status of a job changes as it transitions from one state to another. Figure 6-3 on page 87
shows the possible states of a job.

--list Display a list of signal names and numbers.

--version | -v Display the version information for the kill_job command.

--properties Location of the bg.properties file to be used if other than the default. The
default location is in the /bgsys/local/etc directory.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level; OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, the following command could be used:
kill_job --verbose=DEBUG --verbose=ibm.utility=DEBUG

--host Server host and port to connect to. Enclose IPv6 addresses in square
brackets. For link-local addresses, append the interface to the address after a
“%” character. Specify the port after the interface using a colon.
The following values are examples values:
� 127.0.0.1
� 172.16.3.1:12345
� [::1]
� [fe80::214:5eff:fre9c:52ce%eth0]
� [::1]:24555

--wait-for-server Keep trying to connect to the server if it is unavailable.

--help | -h Display help text for the kill_job command.

Option Description
86 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 6-3 Job status transitions

The following list provides more details about each of the possible states:

Setu(P) In this step, the collective and global interrupt class route settings are
calculated for each node in the job. This takes the --np and
--ranks-per-node settings into account to properly create a
circumscribing logical rectangle for all the nodes in use. A logical root
of the rectangle is selected to act as the job leader. This node is
responsible for coordinating abnormal and normal termination for each
rank in the job.

(L)oading In this step, the job description (executable, arguments, environment)
is communicated to the I/O nodes in use by the job. Permission to read
and execute the executable is validated and the compute nodes load
the executable from the file system through their I/O node.

(D)ebug This status occurs between the Loading and Starting statuses when
the command runjob --start_tool is used.

(S)tarting After all of the compute nodes have loaded the executable, they are all
told to release control to the application so it can start running.

(R)unning After all compute nodes have reported starting the application, the job
has Running status. It retains this status until it terminates normally or
abnormally.

Clea(N) Up For normal termination, a job has a Cleanup status while the
resources on the I/O nodes and compute nodes are cleaned up in
preparation for future jobs.

(T)ERMINATED

CLEA(N)UP

(R)UNNING(S)TARTING

(E)RROR

SETU(P)

(L)OADING

Job added to
database

(D)EBUG

bgqjob table bgqjob_history table
Chapter 6. Submitting jobs 87

(E)rror A job has this status in the history table when it terminates without
entering the Running stage or if delivering a SIGKILL timed out.

(T)erminated A job has this status in the history table when it completes. The exit
status and error text columns have more information about how the job
completed.

Job status can be viewed with Navigator, using the job_status command or queried directly
from the database.

6.8.1 The list_jobs command

The list_jobs command is issued in the bg_console environment. Running the list_jobs
command without options returns a list of all the active jobs currently on the system that the
user has access to. The syntax of the command is:

list_jobs [OPTIONS ...]

Table 6-5 provides the supported options for the list_jobs command.

Table 6-5 list_jobs options

Example 6-2 on page 89 shows the output of the list_jobs command with no options
specified.

Option Description

-l [--long] Print the summary using long format.

-a [--all] Fetch all jobs rather than limit.

-h [--help] Print help text.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level; OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, the following command could be used:
list_jobs --verbose=DEBUG --verbose=ibm.utility=DEBUG

Job summary filter and sort options

--status Supply the job status to use as filter(s). Possible values are D, E, L, N, P, R, S,
T or “all”. The default is current jobs (DLNPRS). See 6.8, “Job status” on
page 86 for a description of each of the job statuses.

--block The block ID

--executable The name of the executable file

--user The user name that submitted the job

--start-time Start time of the job using the format:
interval=yyyymmddThhmmss/yyyymmddThhmmss

--end-time End time of the job using the format:
interval=yyyymmddThhmmss/yyyymmddThhmmss

--exit-status Job exit status

--sort Sort field and direction
88 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Example 6-2 list_jobs output with no options

mmcs$ list_jobs
OK
2 jobs
 ID Status exe block user
 142734 R bgqmpi.elf R00-M1 bgquser1
 142776 R split R00-M0-N03 bgquser2

Example 6-3 shows the list_jobs output when the -l option is specified.

Example 6-3 list_jobs output with -l option

mmcs$ list_jobs -l
OK
ID: 142734
User: 'bgquser1'
Executable: 'bgqmpi.elf'
Status: Running
Block: R00-M1
Nodes: 512
Processes per node: 1
Start time: 2011-05-02 13:33:10.555433

ID: 142776
User: 'bgquser2'
Executable: 'split'
Status: Running
Block: R00-M0-N03
Nodes: 32
Processes per node: 16
Start time: 2011-05-02 13:44:02.387233

6.8.2 The job_status command

The job_status command can also be used from the command line to obtain information
about a specific job. The syntax of the command is:

job_status id [OPTIONS ...]

Table 6-6 provides a description of the available options for the job_status command.

Table 6-6 job_status command options

Option Description

--id Job ID

--pid runjob process ID. Either this parameter or --id must be given.

--details Display detailed information about each I/O node participating in the job.

--version | -v Display the version information for the job_status command.

--properties Location of the bg.properties file to be used if other than the default. The
default location is in the /bgsys/local/etc directory.
Chapter 6. Submitting jobs 89

Example 6-4 shows a sample of the output generated by the job_status command.

Example 6-4 job_status output

user@bgq ~> job_status 43
2 I/O connections
Location Compute Nodes Drained Dying Ended Error Exited Loaded Output Running
R00-ID-J02 16 x x x
R00-ID-J03 16 x x x
user@bgq ~>

6.9 Historical perspective of job submission on Blue Gene

The runjob command replaces numerous methods for job submission from the previous Blue
Gene models into a single interface. In Blue Gene/P, the following methods can all be used to
submit a job:

� mpirun for MPI jobs
� submit for single node HTC jobs
� submit_job from a mmcs_db_console

The runjob command is conceptually the same as the mpirun command from previous Blue
Gene software releases because it acts as a shadow process for the job's lifetime. It is
important to note that runjob has one significant difference compared to mpirun in that it is
not a scheduler. It also differs in the fact that it does not provide any queuing support nor any
support for creating or booting blocks.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to set
the logging level for the default logger or any additional loggers. The following
values are allowed for the level; OFF, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, or ALL. For example, if you want to set both the default logger and the
ibm.utility logger to the debug value, the following command could be used:
job_status --verbose=DEBUG --verbose=ibm.utility=DEBUG

--host Server host and port to connect to. Enclose IPv6 addresses in square
brackets. For link-local addresses, append the interface to the address after a
“%” character. Specify the port after the interface using a colon.
The following values are examples values:
� 127.0.0.1
� 172.16.3.1:12345
� [::1]
� [fe80::214:5eff:fre9c:52ce%eth0]
� [::1]:24555

--wait-for-server Keep trying to connect to the server if it is unavailable. This option takes one
argument which is the number of seconds to wait before retrying to connect.

--help | -h Display help text for the job_status command.

Option Description
90 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 6-4 shows the job submission architecture in Blue Gene/P using mpirun.

Figure 6-4 Blue Gene/P job submission architecture

The runjob architecture is noticeably different. Foremost, runjob uses a client/server
architecture rather than a front-end/back-end design like mpirun. From a high level, the
mapping of component roles can be loosely interpreted as follows:

� mpirun  client
� mpirun_be  mux
� mpirund  server
� mmcs  server

The challenge protocol used between mpirun and mpirund was replaced by a local socket
used between the runjob client and mux and an SSL connection between the mux and the
server. The runjob mux does not interact with the database like mpirun_be did, primarily
because it does not use the database as an interprocess communication (IPC) mechanism.

The most noticeable difference of runjob compared to mpirun is its inability to create and boot
blocks. The runjob command requires the block to be already initialized prior to its invocation.

Another important difference between mpirun and runjob is the command-line argument
processing. Experienced mpirun users can launch a job as follows:

mpirun -partition R00-M0 -exe /home/user/hello

Whereas the equivalent runjob invocation is:

runjob --block R00-M0 --exe /home/user/hello

Notice that runjob requires two dashes instead of one before each argument. The vast
majority of arguments used to describe a job are similar between mpirun, submit, and runjob,
consult the runjob command documentation in section 6.2, “The runjob command” on
page 76 for in-depth explanation of the arguments and their supported values.

ciod
pset n

ciod
pset 0

ciod
pset 1

mpirund

Front-end Node Service Node

sayMessage
control

data

mpirun

mpirun_be

Challenge protocol

pipe

Bridge API

stdin/stdout/stderr

MMCS

DB2
Chapter 6. Submitting jobs 91

Table 6-7 shows a comparison of commands in Blue Gene/P and the Blue Gene/Q
equivalent.

Table 6-7 Command comparison

Blue Gene/P
mpirun

Blue Gene/P
submit

Blue Gene/Q
runjob

Notes

-exe -exe --exe

-args -args --args Multiple tokens instead of a single token enclosed
with double quotation marks

-env -env --envs Multiple tokens allowed

-exp_env -exp_env --exp-env Multiple tokens allowed

-env_all -env_all --env-all

-partition -pool --block

-mapping or -mapfile --mapping

-np --np

-mode -mode --ranks-per-node Syntax has changed

-location --corner

-shape --shape Used for sub-block jobs instead of block creation

-strace -strace --strace

-start_gdbserver -start_gdbserver --start-tool --tool-args to pass arguments

-raise --raise

-label --label

-timeout -timeout --timeout

-psets_per_bp No longer supported.

-noallocate No longer supported.

-free No longer supported.

-nofree No longer supported.

-connect No longer supported.

-host --socket UNIX socket instead of TCP

-port -port --socket UNIX socket instead of TCP

-verbose --verbose Syntax differs noticeably, see 6.2.1, “The runjob
options” on page 77

-trace -trace --verbose Syntax differs noticeably, see 6.2.1, “The runjob
options” on page 77

-config -config --properties
92 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 7. Reliability, availability, and
serviceability

The reliability, availability, and serviceability (RAS) infrastructure provides the means to report
events that occur on the hardware and in the software on the Blue Gene/Q system. A
predefined set of messages are built in, but the design also allows users to define their own
RAS events and log them to the database. RAS events can be viewed and queried through
Blue Gene Navigator (See section 2.2.8, “RAS” on page 18).

7

© Copyright IBM Corp. 2013. All rights reserved. 93

7.1 Elements of a RAS message

Blue Gene/Q RAS messages contain basic information, such as a message ID, severity,
location, and text, related to the event. RAS elements that make up the messages are defined
in the /bgsys/drivers/ppcfloor/ras/include/ras.xml file. This section describes the following
elements of RAS messages:

� Message ID and component
� Category
� Severity
� Control Action
� Diagnostics

7.1.1 Message ID and component

The message ID is the unique identifier of a RAS event. The ID is made up of an
eight-character hexadecimal number. The component is the software unit detecting and
reporting the RAS event and can be up to 16 characters long. Each component is assigned a
specific range of message IDs to avoid conflict.

Table 7-1 shows the default components and their assigned range of message IDs as defined
in the RAS definition file.

Table 7-1 RAS components and message range

Component Start ID number End ID number

RESERVED1 00000000 0000FFFF

CNK 00010000 0001FFFF

DIAGS 00020000 0002FFFF

BGMASTER 00030000 0003FFFF

MC 00040000 0004FFFF

MCSERVER 00050000 0005FFFF

MMCS 00060000 0006FFFF

BAREMETAL 00070000 0007FFFF

FIRMWARE 00080000 0008FFFF

CTRLNET 00090000 0009FFFF

LINUX 000A0000 000AFFFF

CIOS 000B0000 000BFFFF

MUDM 000C0000 000CFFFF

SPI 000D0000 000DFFFF

BGPM 000E0000 000EFFFF

TEST FFFE0000 FFFEFFFF

RESERVED2 FFFF0000 FFFFFFFF
94 IBM System Blue Gene Solution: Blue Gene/Q System Administration

7.1.2 Category

The category portion of the RAS message is the entity that encountered an error. Category
names can be up to 16 characters long. Each category can be used by multiple components.
Table 7-2 provides a list of possible RAS categories.

Table 7-2 RAS categories

RAS category Description

BQC Blue Gene/Q compute card

BGL Blue Gene/Q link module

DDR Double Data Rate Memory

PCI PCI adapter card

Ethernet Ethernet adapter card

InfiniBand InfiniBand adapter card

AC_TO_DC_PWR Bulk Power Supply

DC_TO_DC_PWR Power Module

Cable Cable

Message_Unit Message unit

Card Generic Card/Board

Clocks Clocks

Clock_FPGA Clock FPGA

Service_Card Service Card

IO_Board I/O Board

Node_Board Node Board

Icon Icon FPGA

Palomino Palomino FPGA

DCA Direct Current Assembly Card

Fan Fan

Fan_Assembly Fan Assembly

Optical_Module Optical Module

Temp_Sensor Temperature sensor on a card or board

Job Job

Block Block

Process Process or daemon

Coolant_Monitor Coolant Monitor

Software_Error Software error condition

ELF_Image ELF Image error condition
Chapter 7. Reliability, availability, and serviceability 95

7.1.3 Severity

Each RAS message is assigned a severity. There are three possible severities of a RAS
event:

FATAL Designates a severe error event that presumably leads the application
to fail or abort.

WARN Designates potentially harmful situations, such as exceeding a soft
error threshold or failure of a redundant component.

INFO Designates informational messages that highlight the progress of
system software.

7.1.4 Message

The message portion of the RAS event contains a brief overview of the reason for the event.
Depending on the message, it might provide the location or type of error. The message can
include substitution variables, such as a return code, torus coordinates, error count, and so
forth. Therefore, the message text can vary for the same message ID.

7.1.5 Description

The description provides a more detailed message about the event. Typically in this area you
see events that lead to an additional message, such as environmentals that are being read or
that a specific diagnostic test is running. The description might also suggest the source of the
problem. The message in Example 7-1 came from the description area of message ID
00061006:

Example 7-1 Message description from 00061006

The Health Check analyzed the coolant monitor at the specified location, and received an
indication that one or more power faults occurred. This may be an indication that one of
the bulk power enclosures on the midplane is not functioning properly.

7.1.6 Service action

A RAS event might include a recommendation for service action. Some errors might always
result in the replacement of a compute node. If that is the case, the message indicates that it
will resolve the problem. In other cases, you might be instructed to run diagnostics or to verify
a reading on the Environmental Queries page to determine whether the event is a transient
issue. Many of the recommendations to run diagnostics include the relevant test suites that
you must select.

The action might specify a replacement policy based on the number of errors observed within
a given time period. If the RAS event includes a threshold count, the service action will
recommend that a part be replaced if the count of errors exceeds the threshold. The service
action, replacement recommendations, and relevant diagnostic test buckets are shown in
Example 7-2 on page 97.

UPC Universal Hardware Performance Counters

RAS category Description
96 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Example 7-2 Sample RAS event

ID: 21093938
Time: 2011-09-29 08:12:44.550729
Message ID: 00040003
Category: Optical_Module
Component: MC
Severity: WARN
Block ID: DefaultControlEventListener
Location: R00-IE-O09
Message: Optical module environmental data is unavailable: Avago=9, rc=0xFFFFFFFE/-2
Description: Unable to read the optical module's lower page. _avagos[xx]->read() failed.
Service Action: The part at this location has threshold count policy of 10 or more errors.
Run diagnostics. The relevant diagnostic bucket(s) to run are: nodeboard,ioboard.
Relevant Diagnostics nodeboard,ioboard
Threshold count: 10

7.1.7 Diagnostics suites

A list follows of relevant diagnostics suites to execute to better isolate the condition of a RAS
event:

checkup A series of tests designed to provide maximum coverage for a typical
30 minutes run time for a midplane-sized block.

small A quick diagnostics run providing less fault detection.

medium A medium length diagnostics run providing moderate fault detection.

large A long length diagnostics run providing high fault detection.

complete Run all diagnostics, taking the longest time and providing the highest
fault detection.

servicecard All service card specific tests.

nodeboard All node board specific tests.

ioboard All I/O board specific tests.

memory Tests that target the memory subsystem on the nodes.

processor Tests that target the BQC processors.

torus Tests that target the torus network.

power Tests that target the power subsystem.

pcie Tests that target the PCIe hardware.

7.1.8 Control Action

The Control Action identifies an action to be taken by the Control System when a RAS event
occurs. Multiple Control Actions can be specified.

Certain RAS events might specify Control Actions to end the job and free the block. Although
the event is fatal to the job, the condition might be transient or soft, which means that
hardware failures occur and cause an application to fail, but that the application can be
restarted on the same hardware without hardware repair. Soft errors are most likely radiation
induced and are a natural consequence of the impact of terrestrial and cosmic radiation
sources, as well as radioactive impurities in the semiconductor and packaging materials close
to the CMOS circuits. Soft errors can also occur because of defects in system software.
Chapter 7. Reliability, availability, and serviceability 97

Other failures are hard. Hard failures mean that the failed part permanently exhibits the failure
mode, and the hardware must be replaced to fix the failure.

A RAS event can include multiple Control Actions that indicate that the condition is likely hard
and warrants marking the hardware in error. Marking hardware in error helps job schedulers
avoid dispatching jobs to failing hardware. The possible Control Actions are:

COMPUTE_IN_ERROR This action marks a compute node or I/O node in Error state in the
database. Any compute block that uses the compute node is
prevented from booting. Any I/O block that uses the I/O node will boot,
but any I/O links from compute nodes to the failed I/O node are not
usable.

BOARD_IN_ERROR This action marks a node board or I/O drawer in Error state in the
database and prevents any blocks that use the node board or I/O
drawer from booting.

CABLE_IN_ERROR This action marks a cable in Error state in the database and prevents
any blocks that use the cable from booting.

END_JOB This action ends all jobs associated with the compute node, I/O node,
midplane, or node board.

FREE_COMPUTE_BLOCK This action frees a block associated with the compute node.

SOFTWARE_IN_ERROR This action marks a node in software error state in the database. The
state is reset back to the Available state upon freeing the block.

BQL_SPARE This action spares the bad wire on the link chip.

RACK_IN_ERROR This action marks all node boards and I/O drawers in the rack in Error
state in the database and prevents any blocks that use the node
boards and I/O drawers in the rack from booting.

DCA_IN_ERROR This action marks the DCA in Error state in the database.

7.2 Tailoring RAS messages

The Control System has a mechanism to alter RAS events. These alterations are typically
guided by IBM Support as needed to circumvent a problem while waiting for a bug fix. The
mechanism reads a set of change specifications from the ras_environment_filter.xml file in
the /bgsys/local/etc directory during server start. If the file is missing from that location, the
mechanism reads the file from its original installation location at
/bgsys/drivers/ppcfloor/ras/etc.

The change specifications indicate the message ID of interest and lists the RAS event item to
change based on its key name. Example 7-3 shows how to alter the outcome of a RAS event.

Example 7-3 Sample ras_environment_filter.xml file

<BgRasEnvironments>
 <BgRasEnvironment environment="PROD">
 <!-- Change the severity of an event -->
 <RasEventChangeSpec id="xxxxxxxx" key="BG_SEV" value="WARN"/>
 <!-- Change the control action - this action marks the compute node in Error -->
 <RasEventChangeSpec id="xxxxxxxx" key="BG_CTL_ACT" value="COMPUTE_IN_ERROR"/>
 <!-- Change the control action to not mark the node in Error -->
 <RasEventChangeSpec id="xxxxxxxx" key="BG_CTL_ACT" value="NONE"/>
 </BgRasEnvironment>
</BgRasEnvironments>
98 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The first occurrence of RasEventChangeSpec shows how to change a RAS event severity.
The second RasEventChangeSpec shows how to add a Control Action to mark the hardware
in error. Marking the hardware that is in error makes the hardware unavailable until a service
action is performed. The third RasEventChangeSpec shows how to prevent the hardware
from being marked in error. The Control Action is changed to NONE.

7.3 Viewing Blue Gene/Q defined RAS events

Blue Gene/Q defined RAS events can be viewed through Blue Gene Navigator by clicking the
RAS book link under the Knowledge Center tab (see Chapter 2.2.15, “Knowledge Center” on
page 27).

This information can also be found in the /bgsys/drivers/ppcfloor/ras/etc/RasEventBook.htm
file.

7.4 Viewing sent RAS events

RAS events sent by the system or users are stored in a database and can be viewed through
Blue Gene Navigator by clicking the RAS tab (see section2.2.8, “RAS” on page 18).
Chapter 7. Reliability, availability, and serviceability 99

100 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 8. Toolkit for Event Analysis and
Logging

The Toolkit for Event Analysis and Logging (TEAL) is an IBM high-performance computing
(HPC) event analysis framework that is based on IBM Blue Gene/P® Event Log Analysis
(ELA) and Federation ELA. It is designed as a pluggable processing pipeline that allows
different components to use connectors to log events, analyze the events, create and log
alerts, and deliver the alerts to interested parties.

TEAL is available as open source on sourceforge to allow the HPC community to enhance the
toolkit and expand it to more platforms. This chapter describes the Blue Gene/Q-specific
information. More information about base TEAL framework is at:

http://sourceforge.net/apps/mediawiki/pyteal/index.php

8

© Copyright IBM Corp. 2013. All rights reserved. 101

http://sourceforge.net/apps/mediawiki/pyteal/index.php

8.1 TEAL framework

TEAL provides a central location for logging and analyzing events. Its processing is designed
as a pipeline that allows analysis and delivery plug-ins to be used. TEAL supports the
processing of events as they occur (real-time) and events that occurred in the past (historic).

The TEAL processing pipeline consists of analyzers, filters, and listeners. The framework
does not provide any specific analyzers; instead, it provides the ability to plug in
component-specific and cross-component (system) analyzers. Analyzers are written to
TEAL's analyzer plug-in interface. More information can be found at:

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=HowTo_-_Event_Analyzer

TEAL supports both component-specific analysis and cross-component analysis. Each
component requires a connector to the TEAL framework, which takes events from a specific
component and translates them into a common event structure.

TEAL framework provides some configurable filters and listeners that provide a flexible alert
delivery system. Listeners are configured with a list of filters that an alert must pass before it
is given to them. Filters analyze an alert and determine if the alert is sent to its associated
listener. Figure 8-1 shows the TEAL structure and the communication flow in the pipeline.

Figure 8-1 TEAL structure

The components of TEAL are:

Connector Connectors are external to the TEAL process and are responsible for
taking events in the component, translating the event(s) and notifying
TEAL that new events were added.

Monitor A monitor is responsible for detecting new event insertions and
instantiating and putting in the processing pipeline for analysis.

Event Analyzer Analyzes events for a specific component.

Alert Analyzer Analyzes alerts from multiple components.

bgq.conf

Blue Gene/Q
Connector

Event
Analyzer

Alert
Listeners

Monitor

Alert

Semaphore

Event

Event
Log

Alert
Log

Alert
Analyzer

Alert
Filters
102 IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=HowTo_-_Event_Analyzer

Alert Filter The Alert Filter is part of the alert reporting pipeline that is responsible
for determining if a particular Alert Listener will receive notification of
the alert.

Alert Listener Alert Listeners are also part of the alert reporting pipeline, responsible
for taking an alert and reporting to an external medium.

Event Log Event Logs are a common repository for all events from all
components within the system.

Alert Log An Alert Log is a single repository for all alerts that occur within a
system. All alerts, whether reported or not, are contained in this log.

The TEAL configuration file, bgq.conf, is located in the /etc/teal directory. It is used to define
and enable any TEAL plug-ins. The configuration file is shipped with default settings that can
be modified as needed for a specific environment.

8.1.1 Connector

Blue Gene/Q provides a connector to the TEAL framework. The connector is responsible for
getting Blue Gene/Q RAS events, converting them into common TEAL event log information,
and notifying TEAL of new events.

The connector uses the Real-time API to register for RAS events so that it will be notified by
the Real-time server when a RAS event of interest is logged. In the case where the Real-time
server is not available, the connector switches to periodic mode automatically and retrieves
RAS events within a specified polling interval until the Real-time server is available again.

8.1.2 Event analyzers

Blue Gene/Q provides multiple implementations of event analyzers that analyze RAS events
and send alerts when necessary. Here are the types of event analyzers provided:

HardwareInError Analyzes events that cause hardware to be marked in error. This event
analyzer covers RAS events that have the following Control Actions:
COMPUTE_IN_ERROR, BOARD_IN_ERROR, CABLE_IN_ERROR,
RACK_IN_ERROR, DCA_IN_ERROR.

JobFatal Analyzes events that cause a job to end (RAS events with END_JOB
Control Action).

ThresholdExceeded Analyzes events if the threshold is reached or exceeded (RAS events
with non-NULL threshold count and threshold period).

BqlEventAnalyzer Analyzes BQL RAS events and determines whether the BQL threshold
of errors has been reached or exceeded.

CommonMode Analyzes events for a common hardware location. For example, if two
different compute nodes (R00-M0-N0-J00 and R00-M0-N0-J01) report
the same problem, the underlying cause might be with the node board
R00-M0-N0 (the hardware location they have in common).
Chapter 8. Toolkit for Event Analysis and Logging 103

8.1.3 Plug-ins

The following plug-ins are supported by Blue Gene/Q:

Monitors
The monitor plug-ins are:

Real-time TEAL framework is running and processing events as they occur.

Historic TEAL framework is started discretely and processing past events
based on the criteria supplied by the user.

Alert filters
The alert plug-ins are:

Duplicate Causes TEAL to stop reporting alerts to a listener that have the same
alert ID and location and equal or lower severity and priority.

Noise Stops reporting alerts to a listener that match various alert fields with
regular expression.

Alert listeners
The alert listerner plug-ins are:

Smtp Sends email to a set of users when an alert is generated.

File Writes alerts to a file or stdout / stderr in a specified format. Mainly
used for historical analysis.

Call Calls an external program to handle an alert.

8.2 Location reporting

Location, which points to a specific event location, can be physical or logical. It is a key
concept used within TEAL framework for scoping and pin-pointing errors. Location is defined
in a hierarchical structure, where there might be one or more types per level. It can be scoped
to the various levels to see the grouping of events.

The TEAL location syntax for Blue Gene/Q is structured as follows:

Application A:<node>##<application>##<pid>
Job J:<job-id>##<block-id>
Compute C:<compute-location>
IO I:<I/O-location>

8.3 Integration with BGmaster

The base TEAL framework and Blue Gene/Q connector can be configured to start and stop
through BGmaster in the bg.properties file (default is in /bgsys/local/etc/bg.properties) as
shown in Example 8-1. In the [master.binmap] section set the path and name of the TEAL
binary used to start the servers. The entries in the [master.binargs] section list the arguments
to be passed to the TEAL binary. The arguments can be modified as needed, for example, if
debug messages are needed, the -m debug option can be added to the arguments. The
[master.startup] section specifies the order the various binaries should be started in.
104 IBM System Blue Gene Solution: Blue Gene/Q System Administration

By default the TEAL log files are located in the /bgsys/logs/BGQ/teal directory.

Example 8-1 BGmaster sections of bg.properties

[master.binmap]
 # Maps an alias to a binary path.
teal_server = /opt/teal/ibm/teal/teal.py
teal_bg = /opt/teal/ibm/bgq/bgq.py

[master.logdirs]
 # Maps aliases to logging directories. By default, all binaries will log to
 # logdir in the [master.server] section.
teal_bg = /bgsys/logs/BGQ/teal/
teal_server = /bgsys/logs/BGQ/teal/

[master.binargs]
 # List of arguments for each alias specified in the [master.binmap] section.
teal_server = --realtime --logfile /dev/stdout
teal_bg = --logfile /dev/stdout

[master.startup]
start_order=realtime_server,mmcs_server,bgws_server,runjob_server,runjob_mux,mc_server,teal
_server,teal_bg

8.4 Alerts and service actions

Alerts created by TEAL are closed following a successful completion of a service action. For
information about service actions, see Chapter 9. “Service actions” on page 107.

There are two choices on how to close alerts:

False Set to false to close alerts only on those replaced devices on or in the
serviced hardware.

True Set to true to close alerts on all devices on or in the serviced hardware
even if they were not replaced.

For example, if ServiceNodeBoard was used to replace a compute card, and if
CloseAllAlertsOnServiceNodeBoard was set to false, only those alerts on the replaced
compute card are closed. If it was set to true, alerts on the node board and all the devices on
the board (for example, compute card, link chips, optical module, node DCA) are closed, even
if they were not replaced.

The configuration settings for how to close alerts is in the [baremetal] section of the
bg.properties file, as shown in Example 8-2.

Example 8-2 [baremetal] section of bg.properties

[baremetal]
CloseAllAlertsOnServiceBulkPowerModule = false
CloseAllAlertsOnServiceClockCard = false
CloseAllAlertsOnServiceIoDrawer = false
CloseAllAlertsOnServiceMidplane = false
CloseAllAlertsOnServiceNodeBoard = false
CloseAllAlertsOnServiceNodeDCA = false
CloseAllAlertsOnServiceRack = false
Chapter 8. Toolkit for Event Analysis and Logging 105

8.5 Installation

The following prerequisite software is required prior to installing TEAL:

� Python 2.6 is provided with RHEL 6.
� Pyodbc, which is available at:

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=Building_pyodbc

There are two RPMs required for TEAL installation:

� Base TEAL framework which is provided with the Blue Gene/Q driver
� Blue Gene/Q Connector which is provided with the Blue Gene/Q driver

Figure 8-2 shows the directory structure after TEAL is installed.

Figure 8-2 TEAL directory structure

bgq teal

ibm

data

bgq teal

ibm bin

/usr/lib64

Connector
Library

/etc/teal

bgq.conf

/opt/teal
106 IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=Building_pyodbc

Chapter 9. Service actions

Preparing the Blue Gene/Q hardware for service is a normal part of the System
Administrator’s duties. This chapter describes service actions and discusses how to prepare
the hardware for service and how to cycle power.

9

© Copyright IBM Corp. 2013. All rights reserved. 107

9.1 Service actions overview

Replacing hardware on the Blue Gene/Q system requires you to perform a service action.
Service actions prepare the hardware for removal by a trained IBM Systems Service
Representative (SSR). You can implement service actions using either the Blue Gene
Navigator (discussed in Chapter 2., “Navigator” on page 7) or the command line on the
service node.

The following hardware can be prepared for service with the service action commands:

� Node board, including any compute cards on a node board
� Node Direct Current Assembly (DCA) on a node board
� Service card
� I/O drawers, including any compute cards, PCI adapter cards and fans in an I/O drawer
� Bulk Power Module (BPM) in a Bulk Power Enclosure (BPE)
� Clock card
� Any hardware that requires tools to service (BPE, midplane, entire rack)

As a general rule, if you can remove the hardware with your fingers, you can generate a
service action for that location prior to removing the part. If, however, you need to use tools to
perform the service, you must turn off the power to the rack before removing it.

In most cases, at least one BPM must be powered on in each BPE at all times during a
service action so that the persistent power is maintained to the clock cards and the coolant
monitor in the rack. More details are discussed in section 9.3, “Hardware maintenance” on
page 110.

9.2 Service action commands

There are nine service action commands: two for the system installation or upgrade and
seven for hardware maintenance. Service action commands are located in the
/bgsys/drivers/ppcfloor/baremetal/bin directory. This section provides a description and
syntax for these commands.

In addition to the unique options, all commands have the options specified in the following list:

--user <userId>

The user name to be specified when connecting to MC server. If not specified the user
name defaults to the user ID invoking this command.

--msglevel <level>

Controls the additional output level. The possible values are:

– VERBOSE: Provides detailed output messages.
– DEBUG: Provides more extensive output messages useful for debugging.

--log <path>

The path to the directory that contains the log file generated from the command. The
default is /bgsys/logs/BGQ/ServiceAction.
108 IBM System Blue Gene Solution: Blue Gene/Q System Administration

--properties <filename>

The fully qualified file name to the Blue Gene/Q configuration file. The default file,
/bgsys/local/etc/bg.properties or the file name specified by BG_PROPERTIES_FILE
environment variable if defined is used if the option is not specified.

--help

Displays the help text for the command.

9.2.1 InstallServiceAction

The InstallServiceAction command is used to discover all hardware components in the
system and to populate the database with the current state of those hardware components
when the Control System is started. Use the InstallServiceAction command only when the
hardware is brought up for the first time or when the system is upgraded with additional racks
after the Control System is restarted. The syntax of the command is:

InstallServiceAction LocationString [OPTIONS ...]

The accepted arguments for the InstallServiceAction command are:

LocationString

The rack location string to update the database with information about the current state of
the hardware (active, missing, or in error). Supported location strings include:

ALL All compute and I/O racks in the machine. This is the default and
must be specified for the first time installation.

Rxx:Ryy All compute and I/O racks in the specified range of rows and
columns. For example, R50:R5V, for all compute and I/O racks in
row five.

Rxx or Qxx Specific compute or I/O rack.

--dbsummary

Display the database summary of all the hardware in the specified racks.

When the system is installed for the first time, ALL (the default) must be specified even if not
all of the racks are initially installed so that the accurate rack configuration is reflected in the
database. Whenever additional racks are installed as the system is upgraded, the Control
System must be restarted to allow InstallServiceAction to discover newly added hardware
components.

9.2.2 VerifyCables

The VerifyCables command is used to verify the data cable connections between a set of
node boards and I/O drawers including the connections between the link chips, optical
modules, and the data cable ports. The syntax of the command is:

VerifyCables LocationString [OPTIONS ...]

The supported arguments for the VerifyCables command are:

LocationString
Chapter 9. Service actions 109

The hardware location string to update the database with information about the current
state of the cables. Supported location strings include:

ALL All node boards and I/O drawers in the system. This option must be
specified for the first time installation.

Rxx:Ryy All node boards and I/O drawers in the specified range of racks (for
example, R50:R5V for all compute and I/O racks in row five).

Rxx or Qxx All node boards and I/O drawers in the specified rack.

Rxx-Mx-N All node boards in the same midplane.

Rxx-Mx-Nxx Specific node board.

Rxx-Ix or Qxx-Ix Specific I/O drawer.

--dbsummary

Displays the database summary of all the data cables at the specified location.

When the system is installed for the first time, ALL must be specified even if not all the racks
are initially installed so that the accurate cable configuration is reflected in the database.

9.3 Hardware maintenance

There are seven service action commands that can be used when hardware replacement is
necessary:

� ServiceNodeDCA
� ServiceNodeBoard
� ServiceIoDrawer
� ServiceMidplane
� ServiceBulkPowerModule
� ServiceRack
� ServiceClockCard

The syntax of these commands is:

ServiceXXXXX LocationString Action [OPTIONS ...]

ServiceXXXXX refers to a specific service action command. The supported arguments for the
service action command are:

LocationString

The location string for the hardware to service. Supported location strings include:

ServiceNodeDCA Rxx-Mx-Nxx-Dx - Node DCA

ServiceNodeBoard Rxx-Mx-Nxx - Node board
Rxx-Mx-N - All node boards in a midplane

ServiceIoDrawer Rxx-Ix - I/O drawer in a compute rack
Qxx-Ix - I/O drawer in an I/O rack

ServiceMidplane Rxx-Mx - Service card, all node boards, all BPMs, and all I/O
drawers associated with the midplane (see Table 9-1 on page 114
for a list of BPMs and I/O drawers associated with each midplane)

ServiceBulkPowerModule
Rxx-Bx-Px - BPM in a compute rack
Qxx-B-Px - BPM in an I/O rack
110 IBM System Blue Gene Solution: Blue Gene/Q System Administration

ServiceRack Rxx - Specific compute rack
Qxx - Specific I/O rack

ServiceClockCard Rxx-K - Clock card in a compute rack
Qxx-K - Clock card in an I/O rack

Action

Supported action strings are:

PREPARE Prepares the specified hardware for service.

END Ends the service action on the specified hardware.

CLOSE Forces an existing open or failed service action to the closed state
so that the service action can be restarted.

In general, if a service action fails, the status of the service action is marked in error, and
all affected hardware components are marked in either service or error in the database
depending on the reason for the failure. After the error is corrected, the service action
must be closed and prepared again.

9.3.1 ServiceNodeDCA

The ServiceNodeDCA command is used when only one node DCA on a node board needs to
be replaced. When a service action is prepared for a node DCA, the power regulators on the
node DCA are powered off so that the DCA can be removed safely from the node board.
When the service action is ended, the command powers the node DCA back on and verifies
that the replaced node DCA is fully functional.

9.3.2 ServiceNodeBoard

The ServiceNodeBoard command is used when any compute cards on a node board, both
DCAs on a node board, or an entire node board need to be replaced. When a service action
is prepared for a node board, the power regulators on the node board and DCAs are powered
off so that the power cables can be safely removed from the DCAs. When the service action is
ended, the command powers on the node board and DCAs, initializes the node board, and
verifies that the node board, all compute cards, both DCAs on the node board, and all data
cables connected to the node board, are fully functional.

9.3.3 ServiceIoDrawer

The ServiceIoDrawer command is used when any compute cards, PCIe adapters, or fan
modules in an I/O drawer, or an entire I/O drawer, need to be replaced. When a service action
is prepared for an I/O drawer, all power regulators in the I/O drawer are powered off so that
the power cable can be safely removed from the I/O drawer. When the service action is
ended, the command powers on and initializes the I/O drawer and verifies that the I/O drawer,
all compute cards on the I/O drawer, and all data cables connected to the I/O drawer are fully
functional.

9.3.4 ServiceMidplane

The ServiceMidplane command is used when the service card, any node boards in the
midplane, or any BPMs or I/O drawers associated with the midplane need to be replaced. For
example, midplane R00-M1 includes R00-M1-S, all the node boards in R00-M1, I/O drawers
Chapter 9. Service actions 111

R00-IC and R00-IF, and all BPMs in BPEs R00-B2 and R00-B3. Refer to Table 9-1 on
page 114 for a list of BPMs and I/O drawers associated with each midplane.

When a service action is prepared for a midplane, all power regulators on the service card, all
node boards in the midplane, and I/O drawers associated with the midplane are powered off
so that these devices can be safely removed. When the service action is ended, the
command initializes the service card, verifies that required number of BPMs controlled by the
service card are fully functional, then powers on and initializes the node boards and I/O
drawers associated with the midplane, and finally verifies that these devices are fully
functional.

Because the service card gets initialized by the ServiceMidplane command, there are some
factors that must be considered when using this command:

� If the service card controls the master clock card, initializing the service card also resets
the master clock card affecting all the active jobs in the system.

� The environmental data (for example, voltage, temperature) on all node boards, BPMs,
and the coolant monitor that are controlled by the service card will not be available while
the service card is being serviced.

In addition, at least one BPM in each BPE must be left powered on at all times during the
service action so that the persistent power is maintained to the clock cards and coolant
monitor.

Therefore, consider using other service action commands instead of the ServiceMidplane
command unless the service card needs to be replaced. Refer to Table 9-2 on page 114
when deciding which service action command to use. For example, if several node boards in
the same midplane must be replaced at the same time, use ServiceNodeBoard instead of
ServiceMidplane.

9.3.5 ServiceBulkPowerModule

The ServiceBulkPowerModule command is used to service a BPM in a compute or I/O rack.
Because of the N+1 redundancy supported by each BPE, one BPM per BPE can be replaced
without affecting the system operation. When a service action is prepared for a BPM, the
command verifies that there are no other BPMs in the same BPE that are being serviced and
that the remaining BPMs are operational unless all the node boards and I/O drawers
associated with the same midplane (or all I/O drawers in the I/O rack) are also being serviced.
When the service action is ended, the command verifies that the BPM is fully functional.

9.3.6 ServiceRack

The ServiceRack command is used when any combination of the following hardware
components in a compute rack or an I/O rack need to be replaced:

� Service card that does not control the master clock card.

� Any node boards, including any compute cards and node DCAs on a node board.

� Any I/O drawers, including any compute cards, PCIe adapters, and fan modules in an I/O
drawer.

� Any BPMs as long as at least one BPM can be left powered on to maintain the persistent
power to the clock cards. In a compute rack, leave at least one BPM in BPE B1 or B3
powered on.
112 IBM System Blue Gene Solution: Blue Gene/Q System Administration

When a service action is prepared for a rack, the power regulators on all node boards and I/O
drawers are powered off. In addition, you must turn off the power as follows:

1. Use the BPE kill switch to turn off the power to all node boards and I/O drawers in the rack.
For a compute rack, turn off the BPE kill switch on two BPEs on either the front or back
side of the rack because the kill switches on two BPEs for each midplane are linked
together.

2. For a compute rack only, turn off the AC circuit breaker for all BPMs in BPEs B0 to B2 to
disconnect the persistent power to the service cards.

When the service action is ended, the command brings back both midplanes into a fully
functional state in the same way described for the ServiceMidplane command.

9.3.7 ServiceClockCard

The ServiceClockCard command is used when any combination of the following hardware
components in a compute rack or an I/O rack need to be replaced:

� Any clock cards

� Any service cards

� Any node boards, including any compute cards and node DCAs on a node board

� Any I/O drawers, including any compute cards, PCIe adapters, and fan modules in an I/O
drawer

� Any BPMs

� Any hardware that require tools to service (for example, BPE, midplane, coolant monitor,
or entire rack)

When a service action is prepared, all node boards and I/O drawers in the rack are powered
off, and all the jobs running in the midplanes and I/O drawers that are connected to the clock
cards in the rack are terminated. In addition, if there are any downstream racks in the clock
topology, all node boards in I/O drawers in these racks are powered off and the jobs running
in these racks are terminated. The user must turn off the AC power to all BPEs in the rack
then terminate power to the rack at the building power circuit breakers. When the service
action is ended, the command returns both midplanes and then the rest of the downstream
racks into a fully functional state in the same way described for the ServiceMidplane
command.

9.4 Deciding which service action command to use

Deciding which service action command to use while minimizing the impact on the jobs that
are running in the system is affected by two factors: (1) how the power is distributed in the
rack, and (2) which service card controls the master clock card. A compute rack contains two
midplanes, and each midplane contains two BPEs with 9 BPMs each. A BPE provides the
power to 8 node boards and up to one I/O drawer. There is one service card in each
midplane, and a service card is powered by one BPE. The coolant monitor is powered by two
BPEs, and the clock card is powered by two other BPEs. There is one clock card in each
compute rack, and the master clock card is controlled by one service card that can be in
either midplane. An I/O rack contains one BPE with 6 BPMs, and a BPE provides the power to
up to 12 I/O drawers and up to two clock cards in the rack. The master I/O drawer at position
I5 (for example, Q01-I5) controls all BPMs in the rack. Table 9-1 on page 114 shows how the
power is distributed to various hardware components in a compute and I/O rack.
Chapter 9. Service actions 113

Table 9-1 Power distribution

Use Table 9-2 as a guide when deciding which service action commands to use. Note that the
master service card refers to the service card that controls the master clock card (can be
either Rxx-M0-S or Rxx-M1-S), and the master midplane refers to the midplane that contains
the master service card.

Table 9-2 Service action selection

Midplane BPE BPM Service
card

Node boards I/O drawers Coolant
monitor

Clock
card

Rxx-M0 Rxx-B0 Rxx-B0-P0 to P8 Rxx-M0-S Rxx-M0-N00 to N07 Rxx-IE Rxx-L n/a

Rxx-B1 Rxx-B1-P0 to P8 n/a Rxx-M0-N08 to N15 Rxx-IDa

a. = Standard location for the I/O drawer in a compute rack configured with one I/O drawer

n/a Rxx-K

Rxx-M1 Rxx-B2 Rxx-B2-P0 to P8 Rxx-M1-S Rxx-M1-N00 to N07 Rxx-IC Rxx-L n/a

Rxx-B3 Rxx-B3-P0 to P8 n/a Rxx-M0-N08 to N15 Rxx-IF n/a Rxx-K

n/a Qxx-B Qxx-B-P0 to P5 n/a n/a Qxx-I0 to IB n/a Qxx-Kx

Important: Unless the clock cards are being serviced, at least one functioning BPM in
each BPE must be left powered on at all times during a service action so that the persistent
power is maintained to the clock cards and the coolant monitor.

Hardware to service Service action command to use

One node DCA ServiceNodeDCA Rxx-Mx-Nxx-Dx

One node board, any compute cards or both
DCAs on the node board

ServiceNodeBoard Rxx-Mx-Nxx

Any or all node boards in a midplane ServiceNodeBoard Rxx-Mx-N

One I/O drawer, any compute cards, PCIe
adapters, or fan modules in the I/O drawer

ServiceIoDrawer Rxx-Ix or Qxx-Ix

Any or all I/O drawers in an I/O rack ServiceRack Qxx

Master service card ServiceClockCard Rxx-K

Non-master service card ServiceMidplane Rxx-Mx

One BPM per BPE in a compute or I/O rack ServiceBulkPowerModule Rxx-Bx-Px

All BPMs in BPE B0 or B2 (at the same time) in
the master midplane
NOTE: The BPE switch must be toggled to the off
position for all four BPEs then power off the rack
at the building power circuit breakers.

ServiceClockCard Rxx-K
114 IBM System Blue Gene Solution: Blue Gene/Q System Administration

9.5 Preparing a service action

In general, when you initiate a service action, the service action command performs the
following checks and internal procedures:

� A check is made to ensure that there are no conflicting service actions in progress. A
software imposed limitation of only one open service action is allowed per hardware
component. For example, if a node board is already being serviced, a request to service
the same node board or the midplane that contains the node board will result in an error.

� The status of all affected hardware components are changed to the service status in the
database. Job schedulers will not allocate hardware resources that have service status.
Refer to Table 9-3 on page 116 for a list of affected hardware components for each service
action command.

2 to 6 BPMs (at the same time) in the master
midplane

Use the following steps instead of using
ServiceMidplane because ServiceMidplane on
the master midplane results in resetting the
master clock card.
1. ServiceNodeBoard Rxx-Mx-N (resets all the

node boards in the midplane)
2. ServiceIoDrawer Rxx-Ix (for each I/O

drawer associated with the midplane)
3. ServiceBulkPowerModule Rxx-Mx-Bx-Px (for

each BPM to service)
Must leave at least three BPMs per BPE powered
on for the service card, clock card, and coolant
monitor.

2 to 6 BPMs (at the same time) in the non-master
midplanes

ServiceMidplane Rxx-Mx
Must leave at least three BPMs per BPE powered
on for the service card, clock card, and coolant
monitor.

2 to 5 BPMs (at the same time) in an I/O rack ServiceRack Qxx
Must leave at least one BPM powered on for the
clock cards.

All BPMs (at the same time) in an I/O rack ServiceClockCard Qxx-K

Any I/O drawers or BPMs in an I/O rack ServiceRack Qxx
Must leave at least one BPM powered on for the
clock cards.

Any BPMs, service cards, node boards, I/O
drawers in a compute rack that contains the
master clock card

ServiceClockCard Rxx-K

Any BPMs, service cards, node boards, I/O
drawers in a compute rack that does not contain
the master clock card

ServiceRack Rxx
Must leave at least one BPM in BPE B1 or B3
powered on for the clock card.

Clock card ServiceClockCard Rxx-K or Qxx-K

Hardware that requires tools to remove and
replace (for example, BPE, coolant monitor,
midplane, or rack)

ServiceClockCard Rxx-K or Qxx-K

Hardware to service Service action command to use
Chapter 9. Service actions 115

� Jobs that are using affected hardware are ended, and blocks are freed. For the
ServiceClockCard command, the jobs running in the downstream midplanes and I/O
drawers in the clock topology are also ended.

� A reliability, availability, and serviceability (RAS) event is written to the event logs stating
that a service action has started on a specific hardware along with the name of the person
who initiated the action.

� A request is made to MC server to open a target set for the affected hardware. If another
target set that includes the same hardware is already opened by another job, the request
fails; consequently, the command retries the request again for several minutes. For
example, the Health Check that periodically collects the environmental data from all
hardware components might cause a target set conflict for a few seconds forcing the
service action command to retry the request. If the request still fails after several retries,
the service action fails with an error leaving all affected hardware in the service status. The
service action must be prepared again after the conflict is resolved.

� The RAS analysis is performed on the hardware, and the Vital Product Data (VPD) is
updated in the database and on the hardware.

� The affected hardware components are powered off as necessary so that they can be
safely replaced.

� A RAS event is posted indicating that the hardware is ready for service.

Table 9-3 Service action commands and affected hardware components

9.6 Ending a service action

After the hardware is replaced, the hardware can be brought back to a fully functional state by
ending the service action with the appropriate service action command. In general, the
service action command performs the following internal procedures to end the service action:

1. A check is made to validate that the requested service action is still open.

2. The target set is opened for the affected hardware.

3. All affected hardware components are initialized.

Command Service
card

Node
board

Node
DCA

Node I/O
drawer

I/O
node

Data
cable

BPM Clock
card

ServiceNodeDCA X

ServiceNodeBoard X X X X

ServiceIoDrawer X X X

ServiceMidplane X X X X X X X X

ServiceBulkPowerModule X

ServiceRack (compute
rack)

X X X X X X X X

ServiceRack (I/O rack) X X X X

ServiceClockCard X X X X X X X X X

ServiceClockCard (I/O
rack)

X X X X X
116 IBM System Blue Gene Solution: Blue Gene/Q System Administration

4. The status of affected hardware is changed to the missing status in the database to
indicate that they are not being serviced any longer and are not discovered yet.

5. All the affected hardware components are rediscovered.

6. The replaced hardware components are verified to ensure that they are fully functional by
performing a set of diagnostic tests.

7. If node boards or I/O drawers with data cables are included in the service action, those
cables are verified. If the cable verification failed or could not be performed, and some
cables resulted in the non-active status, the service action will still complete but the cable
verification must be performed again with the VerifyCables command after the error
conditions are corrected.

8. The status of the hardware is changed to the active status in the database.

9. Job scheduling is allowed on the hardware.

10.The status of all affected hardware is verified in the database.

11.A RAS event is written to the event logs stating that a service action has ended on a
specific hardware.

9.7 Service action logs

The service action commands document the steps taken to prepare or end the requested
service action along with any informational, warning, or failure messages chronologically in
the service action log in the /bgsys/logs/BGQ/ServiceAction directory. The logs can be
viewed from the command line. In general, a warning message is identified with an at sign
(@) and a failure message with an asterisk (!). The log file name uses the following syntax:

<service action command>-<location><action>-<timestamp>.log.

For example, a service action started for node board R01-M0-N04 at 13:32:25 on 7/6/2011 is
named: ServiceNodeBoard-R01-M0-N04-prepare-2011-0706-13:32:25.log. When that
service action is ended, another log with a similar name is created but the action and time
stamp will be different. If the service action from the previous example completes after 11
minutes, the log file name is: ServiceNodeBoard-R01-M0-N04-end-2011-0706-13:43:25.log.

9.8 Cycling power

The process to cycle power on your system depends on the reason you are shutting down the
system and also on the number of Blue Gene/Q racks in your system. Any time you replace
parts within an individual rack, you must run a service action to prepare the hardware for
service. When the service action ends, the database is updated to reflect the new hardware
that was installed. If you are shutting down the system with no intention of replacing hardware
you can use an alternate process that is described in this section. Keep in mind that, in a
multiple rack system, turning off a rack with a controlling clock in it (master clock, secondary,)
affects all of the racks that are downstream in the clock network. Use the following steps to
cycle power on the system when no hardware will be replaced:

1. Stop BGmaster using the following command (under the bgqadmin profile):

$ master_stop bgmaster

2. Set the BPE switch to the off position on all four BPEs.
Chapter 9. Service actions 117

3. Power off the rack by terminating power at the building power circuit breakers. Use the
facility breakers because there is still persistent power present when the power switches
on the BPEs and BPMs are in the off position.

Use the following steps to power the system back on:

1. Turn the facility breakers back on.

2. Set all of the BPE switches to the on position.

3. Restart BGmaster with the following command:

$ master_start bgmaster
118 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 10. Diagnostics

This chapter describes the diagnostics suite that is provided with Blue Gene/Q and
demonstrates how to run the Blue Gene/Q diagnostic suite from the command line.

10
© Copyright IBM Corp. 2013. All rights reserved. 119

10.1 System diagnostics

The Blue Gene/Q diagnostic suite interacts with the MMCS server to run tests on the Blue
Gene/Q hardware. The diagnostic test suite provides a method of locating hardware failures.
These tests aid in categorizing and quantifying hardware failures and determining whether
the failures are either an anomaly or systemic.

Diagnostics must be executed from /bgsys/driver/ppcfloor/diags/bin on the service node or
from Blue Gene Navigator. The Navigator is an administrative Web application that you can
use to configure and execute diagnostic runs, view run status, and browse diagnostic run
history. For more information, see section 2.2.12, “Diagnostics” on page 21.

Diagnostics include tests for:

� Memory subsystem
� Compute logic
� Instruction units
� Floating point units
� Torus network
� Internal and external chip communication
� Electrical and optical links
� PCIe bus and interface

10.1.1 Requirements

To control the hardware, the MMCS server and the mc_server must be running.

Users who execute diagnostics must have read and execute authority to the
/bgsys/drivers/ppcfloor/diags directory and subdirectories. The output that the diagnostics
generate is written to the /bgsys/logs/BGQ/diags directory. Each time you run the diagnostics,
a new directory is created in the /bgsys/logs/BGQ/diags directory. These new directories use
the naming convention yymmdd_hhmmss_identifier. Inside the new directories, there is a file
named diags.log that contains output from the entire run. In addition, there is a subdirectory
for each test case that was included in the diagnostic run. The subdirectories use the naming
convention TestcaseName_BlockName_timestamp. Any time a test case runs, the output.log
and rasFile.log files are written to the test case subdirectory. The user that initiates the
diagnostic run must have all authority to each of these log directories. If the test case
completes successfully, the diagnostics logs are deleted to save disk space. Service nodes
are set up by default to automatically clean up any diagnostics log older than 30 days.

10.2 Diagnostic test cases

Diagnostics test cases are designed to test all aspects of the hardware. You might have
occasions when there is not enough time to run all of the tests. You might also have an issue
that requires that you run a specific type of test, only on certain hardware. To accommodate
these instances there are test buckets. These test buckets are groups of test cases based on
time or a specific type of hardware. When running the diagnostics suite from the Navigator,
you can base the run on the amount of time that you allowed.
120 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The following test buckets are available on the command line:

checkup A series of tests that are designed to provide maximum coverage for
approximately 30 minutes of runtime

small A quick diagnostics run that provides low fault detection

medium A medium length diagnostics run that provides fault detection

large A long length diagnostics run that provides high fault detection

complete Runs all diagnostics, takes the longest time and provides the highest
fault detection

servicecard All service card-specific tests

nodeboard All node board-specific tests

ioboard All I/O board-specific tests

memory Tests that target the memory subsystem on the computes

processor Tests that target the compute processors

torus Tests that target the torus network

power Tests that target the power subsystem in node boards and I/O drawers

pcie Tests that target the PCIe hardware in I/O drawers

Table 10-1 provides a list of the current test cases that are available, the average amount of
run time in minutes, a brief description, and the buckets in which they run.

Table 10-1 Test cases

Note: Run these tests with care. For example, the bqcbist, bqchssbist, bqlbist, and
bqlhssbist tests are intensive when it comes to service node resources and can prevent the
Control System from booting blocks in a timely manner. For best results, it is
recommended that you do not run these tests when attempting to boot other blocks.

Certain diagnostics, such as bqlbist and bqlhssbist, require exclusive access to the link
chips. If you are running them, be sure that other blocks are kept from using the affected
link chips. These tests are not included in any of the buckets to avoid causing problems for
link chips that are used for pass through.

Name Run
time

Description Bucket

initnodeboard 1 Test performs a basic node board initialization. nodeboard

initioboard 1 Test performs a basic I/O board initialization. ioboard

envs 1 Test checks voltages, currents, temperatures, clocks
and other environmental parameters on the node
boards, I/O boards, and service cards.

small, medium, large,
complete, servicecard,
nodeboard, ioboard

bqlbist 2 Test runs Built-In Self-Test (BIST) on the BQL ASICS.
Note: Do not run this test on link chips that are
performing pass-through.

complete, nodeboard,
ioboard

bqlhssbist 2 Test runs HSS BIST on the BQL ASICs.
Note: Do not run this test on link chips that are
performing pass-through.

complete, nodeboard,
ioboard
Chapter 10. Diagnostics 121

bqcbist 2 Test runs BIST on the BQC ASICs. small, medium, large,
complete, memory,
processor, torus

bqchssbist 2 Test runs HSS BIST on the BQC ASICs. small, medium, large,
complete, processor,
torus

powerclocks 1 Test performs a low-level, verbose POR sequence on
the BQCs to ensure proper base function of the power,
clocks and BQC.

ddr_bitfail 6 Tests the A2 by writing to and reading from all DDR
memory locations, flagging all failures (data, ECC, chip
select, address). The ddr_bitfail test does a simple
memory test and prints a log description that attempts
to identify the failing component. It identifies specific
failing bits by ASIC and DRAM pin when possible.

checkup, small, medium,
large, complete, memory

ms_gen_short 5 Tests the cache hierarchy within the nodes. This is a
more complete memory test that checks both BPC ASIC
function and the external DRAM. Error messages in the
log attempt to report what failed but are not always
successful.

checkup, small, medium,
large, complete, memory

ms_gen_short_l2slice 5 Tests the cache hierarchy within the nodes. This is a
more complete memory test that checks both BPC ASIC
function and the external DRAM. Error messages in the
log attempt to report what failed but are not always
successful.

ddr_error_stress 2 This test stresses the memory controller with different
error conditions.

complete

coherency 2 Cache coherency test. small, medium, large,
complete, memory,
processor

consistency 6 Cache consistency test. small, medium, large,
complete, memory,
processor

qcd_mono 5 Tests the BQC QPX hardware on the compute nodes.

dgemm 14 Tests the BPC ASIC, FPU, and memory subsystem on
the compute nodes.

checkup, medium, large,
complete, memory,
processor

dgemm_pulse 14 Tests the BPC ASIC, FPU and the memory subsystem
on the compute nodes using bursts of activity across the
nodes exercising the power regulators.

checkup, medium, large,
complete, nodeboard,
ioboard, memory, power

trash 6 BQC random instruction stream consistency test. large, complete,
processor

grub 6 BQC random instruction stream consistency test. large, complete,
processor

upc 3 Tests the BQC UPC hardware on the compute nodes. large, complete,
processor

Name Run
time

Description Bucket
122 IBM System Blue Gene Solution: Blue Gene/Q System Administration

10.3 Using the Navigator diagnostics interface

The Blue Gene Navigator administrative web application can be used to view the results of
diagnostics runs, start a diagnostics run, and view the progress of current diagnostics runs.
The Blue Gene Navigator is described in Chapter 2, “Navigator” on page 7.

10.4 Running diagnostics

There are two methods to initiate diagnostics. The most common method is from the
graphical user interface, Blue Gene Navigator. Starting a diagnostics run from the Blue Gene
Navigator is described in section 2.2.12, “Diagnostics” on page 21.

To run diagnostics, you must have the authorities listed in section 10.1.1, “Requirements” on
page 120.

You can also run diagnostics from the command line. The rundiags.py command is located in
the /bgsys/drivers/ppcfloor/diags/bin directory. It uses the following syntax:

rundiags.py --midplanes R00-M0,R01-M1

This example runs the complete diagnostic bucket on midplanes R00-M0 and R01-M1.

The command requires that you specify either midplanes, I/O drawers, or blocks on which to
run the diagnostic test cases. The command uses the following switches:

--midplanes x,y,z... List of midplanes on which to run diagnostics (for example, R00-M0,
R00-M1, and R01-M0)

--io x,y,z... List of I/O drawers on which to run diagnostics (for example, Q14-I5,
R00-IC)

--blocks x,y,z... List of blocks on which to run diagnostics

msg_ran_diag1 5 Tests the BQC network hardware in loopback mode. checkup, medium, large,
complete, nodeboard,
ioboard, torus

msg_diag_connectivity 5 Tests the BQC network hardware using torus functions. checkup, medium, large,
complete, nodeboard,
ioboard, torus

qcd 10 Tests the BQC QPX hardware on the compute nodes. large, complete,
processor

boot 4 Basic boot block test. complete, pcie

regulators 14 Stress test of the power regulators and their
communications paths.

regulators0 14 Stress test of the power regulators and their
communications paths.

regulators1 14 Stress test of the power regulators and their
communications paths.

Name Run
time

Description Bucket
Chapter 10. Diagnostics 123

The list of midplanes, I/O drawers or blocks is a comma-separated list and must not contain
any white spaces. You must specify the --blocks switch by itself. It is not compatible with the
--io or --midplanes switches. You can use midplanes and I/O drawers in the same
command, for example:

rundiags.py --midplanes midplane_list --io io_list [OPTIONS ...]

Table 10-2 shows the options that you can use with the rundiags.py command.

Table 10-2 rundiags.py options

Option Default Description

--buckets Complete Runs the specified bucket (see 10.2, “Diagnostic test
cases” on page 120)

--csport 32031 Control System port

--csuser current user Control System user

--dbname bgdb0 Name of the database (see the bg.properties file)

--dbpassword xxxxxx Database password (see bg.properties file)

--dbschema bgqsysdb Name of the database schema (see bg.properties file)

--dbuser bgqsysdb Name or the database user (see bg.properties file)

--deleteblock false Diagnostics will delete the blocks when done

--disruptmasterclock false Allows the card that controls the master clock card to be
re-initialized

--disruptiorack false Allows the I/O drawer that controls the I/O rack to be
re-initialized

--floor /bgsys/drivers/ppcfloor Specifies an alternate floor directory

--forceblockfree false Forces a free of the diagnostics block prior to use

--help Displays help text and exits

--insertras false Indicates whether diagnostics RAS should be inserted into
the database

--killjobs false Kills any jobs or free any blocks that might prevent the run
from proceeding

--mcserverport 1206 mcServer port

--midplanesperproc 2 The number of concurrent midplane runs allowed per
service node processor

--midplanesperrow 16 The number of concurrent midplane runs allowed per row

--nodeleteblock true Diagnostics will not delete the block when done

--nogenblock false Prevents diagnostics from creating blocks automatically

--nokilljobs true Does not kill any jobs or free any blocks that might prevent
the run from proceeding

--outputdir /bgsys/logs Overrides the default output directory

--properties /bgsys/local/etc/bg.properties bg.properties file

--savealloutput false Saves all the output generated by diagnostics
124 IBM System Blue Gene Solution: Blue Gene/Q System Administration

10.5 Preventive maintenance

It is recommended that you run the diagnostics checkup bucket on each midplane at least
once per month. This preventive maintenance provides coverage to determine any hardware
problems while maintaining a minimum diagnostics runtime.

The checkup bucket might fail for a particular hardware problem, but you can obtain more
in-depth analysis by running a more complete diagnostics bucket. Run the checkup bucket to
find any failing hardware, and if you need further diagnosis, run other diagnostics. The
diagnostics that you run depends highly on the specific failure.

10.6 Running diagnostics through a scheduler

To run diagnostics with a scheduler, you must create the diagnostics blocks ahead of time.
Create the diagnostics blocks on a per-midplane basis, and name them with the diagnostics
naming convention _DIAGS_Rxx-Mx. Using this naming convention, an example diagnostics
command line is as follows:

rundiags.py --midplanes R00-M0 --nogenblock --bucket checkup

You must run the command from /bgsys/drivers/ppcfloor/diags/bin by user ID bgqadmin
on the service node.

10.6.1 Running diagnostics from a LoadLeveler job

Example 10-1 is a sample LoadLeveler job command file for running diagnostics. The job
class diags is defined only on the service node to guarantee that the job can be started only
on the service node as required. The --forceblockfree option of the rundiags.py command
must be specified because LoadLeveler will always boot the block.

Example 10-1 Job command file

bgqadmin@bgqsn2:> cat rundiag_R01-M1.cmd
@ job_name = rundiags
@ error = $(job_name).$(jobid).out
@ output = $(job_name).$(jobid).out
@ environment = COPY_ALL;
@ wall_clock_limit = 00:30:00,00:25:00
@ notification = error

--sn localhost Name of the service node

--stoponerror false Causes the run to abort when the first error is encountered

--tests Run all tests Allows you to provide a list of tests to be included in the run.
Can be used in conjunction with --buckets to run additional
test cases

--testproperties test.properties Diagnostics tests file

--thresholds /bgsys/drivers/ppcfloor/diags/
etc/prod.properties

prod.properties file

--verbosity 0 Verbosity level of output generated by diagnostics

Option Default Description
Chapter 10. Diagnostics 125

@ notify_user = bgqadmin
@ job_type = bluegene
@ bg_block = _DIAGS_R01-M1
@ class = diags
@ queue
/bgsys/drivers/ppcfloor/diags/bin/rundiags.py --forceblockfree --midplanes R01-M1 --test
envs --nogenblock

After submitting the job command file (in Example 10-1) to LoadLeveler and after the job
runs, the output shown in Example 10-2 is generated.

Example 10-2 Output file

Blue Gene Diagnostics version 1.8.1 running on Linux 2.6.32-220.el6.ppc64 ppc64,
bgqsn2.rchland.ibm.com:9.5.45.102, built on 02-06-2012 01:21:44 by bgbuild, compile 0.
Blue Gene Diagnostics initializing...
Blue Gene Diagnostics starting...
Diagnostics run parameters:
 Run ID: 1202061701237140
 Command line arguments: --forceblockfree --midplanes R01-M1 --test envs
--nogenblock
 Host name: bgqsn2.rchland.ibm.com
 Environment: NORMAL
 Available processors: 16
 Maximum available memory: 3.906 GiB
 Process ID: 27140
 SN address: 127.0.0.1
 SN Control System port: 32031
 mcServer port: 1206
 Control System user: bgqadmin
 Database name: BGDB0
 Database schema: bgqsysdb
 Database user: bgqsysdb
 Test properties file: /bgsys/drivers/ppcfloor/diags/etc/tests.properties
 BG properties file: /bgsys/local/etc/bg.properties
 HUP override enabled: true
 Output directory: /bgsys/logs/BGQ/diags/120206_170123_27140
 User specified output dir: false
 Verbosity: 0
 Stop on first error: false
 Save all output: false
 Generate block: false
 Force block free: true
 Floor directory: /bgsys/drivers/ppcfloor
 Poll hardware: true
 Hardware polling interval: 10
 Hardware cooldown time: 60
 Perform CE thresholding: true
 Locations: R01-M1
 Tests to run: envs
Running envs, iteration 1, on block _DIAGS_R01-M1. Results stored in
/bgsys/logs/BGQ/diags/120206_170123_27140/envs__DIAGS_R01-M1_170139369/
envs summary:
 ===
 Run ID: 1202061701237140
 Block ID: _DIAGS_R01-M1
 Start time: Feb 06 17:01:39
 End time: Feb 06 17:02:03
 Testcase: envs
 Iteration: 1
126 IBM System Blue Gene Solution: Blue Gene/Q System Administration

 Passed: 19
 Marginal: 0
 Failed: 16
 R01-M1-N00 (SN 74Y7331YL30K1244032): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N01 (SN 74Y7331YL30K1231001): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N02 (SN 74Y7331YL30K1244002): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N03 (SN 74Y7331YL30K1244014): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N04 (SN 74Y7331YL30K124400D): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N05 (SN 74Y7331YL30K1216004): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N06 (SN 74Y7331YL30K124400A): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N07 (SN 74Y7331YL30K1216007): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N08 (SN 74Y7331YL30K124400C): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N09 (SN 74Y7331YL30K124401C): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N10 (SN 74Y7331YL30K1214001): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N11 (SN 74Y7331YL30K1244016): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N12 (SN 74Y7331YL30K1244029): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N13 (SN 74Y7331YL30K1244031): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N14 (SN 74Y7331YL30K1244009): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 R01-M1-N15 (SN 74Y7331YL30K124401A): Node board link group 0 has an asserted alert signal.
 1 x Node board link group 0 has an asserted alert signal.
 Unknown: 0
 Hardware status: failed
 Internal test failure: false
 Output directory:
/bgsys/logs/BGQ/diags/120206_170123_27140/envs__DIAGS_R01-M1_170139369/
 ===
Diagnostics log directory: /bgsys/logs/BGQ/diags/120206_170123_27140/
Blue Gene diagnostics finished.

10.7 Diagnostics performance considerations

The performance of the service node and the service network can directly affect the
diagnostics results. Running diagnostics on too many midplanes or performing too much work
on the service node during diagnostics runs can cause diagnostics time outs, usually
resulting in an UNKNOWN hardware status.

To cope with various hardware configurations and system usage scenarios, the diagnostics
harness includes a small scheduler to pace the number of midplanes that are running at any
given time. By default, the diagnostics harness only allows two midplanes per service node
processor and 16 midplanes per row to run concurrently. Using large service nodes or
reducing the amount of service node traffic during diagnostics from other midplanes (usually
associated with booting other midplanes) can allow you to test more midplanes concurrently.
Chapter 10. Diagnostics 127

The Navigator web page for starting a new diagnostics run includes two options that you can
use to customize the number of concurrent midplane runs:

� --midplanesperproc
� --midplanesperrow

These options are also the command-line arguments that you use to provide the same
function.

The --midplanesperproc value describes the maximum number of midplane runs that are
allowed to run in parallel per processor that is installed in the service node. This option helps
prevent the service node from being overtaxed by processing that is required for diagnostics,
which can cause time outs in the tests. Thus, if you specify --midplanesperproc 2 and the
service node has six processors installed, 12 midplane runs are allowed to run at a time if the
--midplanesperproc value is the limiting factor.

The --midplanesperrow value can also limit the number of midplanes that are allowed to run
at one time. This option describes the number of midplanes that are allowed to run within the
same row. The row can also be a limiting factor for diagnostics in that the service network
bandwidth is shared on a row-by-row basis. Spreading the diagnostics runs across the rows
helps to prevent service network bottlenecks.
128 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 11. BGmaster

The Blue Gene/Q distributed process manager, known as BGmaster, consists of multiple
components: bgmaster_server, bgagentd, and several client commands for interacting with
bgmaster_server. BGmaster is responsible for managing the distributed mc_server
components and all Control System components.

11
© Copyright IBM Corp. 2013. All rights reserved. 129

11.1 BGmaster

BGmaster is the process manager on Blue Gene/Q for the Control System servers. It acts as
a centralized failure and recovery process. It can control the starting and stopping of various
components including:

� Machine controller (MC) server
� SubnetMc
� Midplane Management Control System (MMCS) server
� Blue Gene Web Services (BGWS) server
� runjob server
� runjob mux
� Real-time server
� Toolkit for Event Analysis and Logging (TEAL)

There are multiple components that make up BGmaster: bgmaster_server, bgagentd, and a
set of client commands.

The bgmaster_server does not run binaries directly, leaving that task to the bgagentd
processes, which makes it possible for managed binaries to continue running even if the
bgmaster_server process stops. This lends robustness to the system. When
bgmaster_server is restarted, the bgagentd processes register themselves again and report
the binaries that are running to bgmaster_server. Because the intelligence in the system is in
bgmaster_server, failover and restart policies do not run, and client programs cannot do
anything until it starts back up. The BGmaster client commands serve as both a user interface
and as a scriptable interface to bgmaster_server.

Binaries managed by bgmaster_server are assigned a unique identifier consisting of the IP
address of the agent running them followed by a colon and the process identifier assigned to
the binary by the operating system (see Example 11-1 on page 132). Agents have similar
unique identifiers consisting of the IP address and port that they are known by to
bgmaster_server. These identifiers are used by several of the client commands to specify
agents and managed binaries.

11.2 Running bgmaster_server

The process control daemon for BGmaster is bgmaster_server. It manages failover and
restart policies and instructs the bgagentd processes to run managed servers under those
policies. This section contains a basic guide and describes the commands used to start,
manage, and stop the components of BGmaster and the binaries it manages.

Issuing the command master_start bgmaster starts bgmaster_server and all configured
binaries. When bgmaster_server starts, it waits for agents to connect and register
themselves. After it is registered, bgmaster_server instructs the agents to start running any
binaries they are assigned.

To ensure that only one instance of bgmaster_server is running on a service node at a time,
when bgmaster_server is started, it writes a lock file in /tmp called bgmaster_server-lock. If a
lock file already exists when bgmaster_server starts, it aborts immediately. The only contents
of the file is the process identifier of bgmaster_server. When bgmaster_server exits, it
removes the lock file. If bgmaster_server is abnormally aborted and cannot clean up the lock
file, it must be manually removed before another bgmaster_server can be started.
130 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Configuration for bgmaster_server comes from the bg.properties file. Client commands also
take a --properties argument. The properties file passed to client commands is used only to
provide parameters to the client command and is not forwarded to bgmaster_server.
Changing the bgmaster_server properties file is accomplished with the
bgmaster_server_refresh_config command.

Note that bgmaster_server can run under any user that has write access to the log directories
(see Chapter 20, “Logging” on page 219) and read access to the administrative private key
(see section 18.2.4, “Certificate file permissions” on page 208).

The following sections describe the commands available to manage and monitor BGmaster.

11.2.1 The master_start command

BGmaster, the binaries for any configured alias, or all configured binaries are started using
the master_start command, which is located in the /bgsys/drivers/ppcfloor/hlcs/sbin
directory.

The master_start command uses the following syntax:

master_start [alias | “bgmaster” | “binaries”] [OPTIONS ...]

The command accepts the following arguments:

alias A server alias, as defined in the bg.properties file. To use the alias
argument, the bgmaster_server must be running, and a bgagentd
must be running on the host associated with the alias.

bgmaster Start the bgmaster_server process.

binaries Start the managed binaries specified in the default bg.properties file or
the location specified by BG_PROPERTIES_FILE environment
variable if defined. The bgmaster_server and the associated bgagentd
processes must be running to accept binaries as an argument.

--host host:pair TCP/IP host and port pair to use to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

11.2.2 The master_status command

To determine the current status of bgmaster_server, the master_status command is used.
The master_status command returns the process identifier of bgmaster_server, a list of
aliases not currently running, a list of connected agents, and the binaries they are running.

The master_status command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

Example 11-1 on page 132 shows sample output from the command.

The master_status command uses the following syntax:

master_status [OPTIONS ...]
Chapter 11. BGmaster 131

The command accepts the following arguments:

--fancy The master_status command output is labeled and formatted, as
shown in Example 11-1. This option is used by default.

--host host:pair TCP/IP host and port pair to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

Example 11-1 Output from master_status command

$./master_status

Aliases not currently running

Agent host Binary id (IP:PID) Alias name Status User Start time
---------- ------------------ ---------- ------ ---- ----------
bgqfen6-ib 172.20.2.36:20342 runjob_mux_fen6 RUNNING 2012-Mar-16 07:05:19
bgqfen7-ib 172.20.2.37:973 runjob_mux_fen7 RUNNING 2012-Mar-16 07:05:21
bgqssn4-svc 192.169.3.14:4682 Subnet1 RUNNING 2012-Mar-16 07:05:21
bgqssn5-svc 192.169.3.15:3322 Subnet2 RUNNING 2012-Mar-16 07:05:22
bgqsn2-svc 192.169.3.2:3203 Subnet0 RUNNING 2012-Mar-16 07:05:07
bgqsn2-svc 192.169.3.2:3251 realtime_server RUNNING bgqsysdb 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3256 mmcs_server RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3259 bgws_server RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3261 runjob_server RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3265 runjob_mux RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3333 mc_server RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3335 teal_server RUNNING 2012-Mar-16 07:05:09
bgqsn2-svc 192.169.3.2:3337 teal_bg RUNNING 2012-Mar-16 07:05:09

Agent host Agent id (IP:Port)
---------- ------------------
bgqfen6-ib.rchland.ibm.com 172.20.2.36:50812
bgqfen7-ib.rchland.ibm.com 172.20.2.37:48920
bgqssn4-svc.rchland.ibm.com 192.169.3.14:52474
bgqssn5-svc.rchland.ibm.com 192.169.3.15:36874
bgqsn2-svc 192.169.3.2:49243

Blue Gene/Q bgmaster_server bgq (revision 53104) Mar 15 2012 20:29:39 running under pid 2504 since
2012-Mar-16 07:05:03

11.2.3 The binary_status command

The binary_status command returns the status of one or all binaries currently under the
control of bgmaster_server. By default it returns the status of all binaries and their associated
binary identifiers. If a specific binary identifier is used as an argument, it returns the status of
that binary.

The binary_status command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The binary_status command uses the following syntax:

binary_status [binary id] [OPTIONS ...]
132 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The command accepts the following arguments:

binary id The binary identifier is a combination of the IP address and process
identifier (PID), separated by a colon, of the system the binary is
running on.

--host host:pair TCP/IP host and port pair to use to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

Example 11-2 shows the status of the binary with the identifier of 172.20.2.38:27024.

Example 11-2 binary_status command output

$./binary_status 172.20.2.38:27024
172.20.2.38:27024|runjob_mux_fen8|RUNNING||2011-Oct-17 07:54:54

11.2.4 The bgmaster_server_refresh_config command

The bgmaster_server_refresh_config command updates bgmaster_server's configuration
with a new or changed properties file. If no properties file is given, it uses the default. Updates
to BGmaster policies are additive only. Existing policy parameters cannot be changed,
deleted, or replaced, but new ones can be added.

The bgmaster_server_refresh_config command is located in the
/bgsys/drivers/ppcfloor/hlcs/sbin directory.

The bgmaster_server_refresh_config command uses the following syntax:

bgmaster_server_refresh_config [filename] [OPTIONS ...]

The command accepts the following arguments:

filename This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties, or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--host host:pair TCP/IP host and port pair to use to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--help Prints help text.

11.2.5 The binary_wait command

The binary_wait command waits and does not return until the specified binary fails. One use
of the binary_wait command is to script a “watchdog” that can, for example, email a system
administrator if a problematic server goes down.

The binary_wait command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.
Chapter 11. BGmaster 133

The syntax of the command is:

binary_wait [binary id] [OPTIONS ...]

The command accepts the following arguments:

binary id The binary identifier is a combination of the IP address and process
identifier (PID), separated by a colon, of the system the binary is
running on.

--host host:pair TCP/IP host and port pair to use to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

11.2.6 The fail_over command

The fail_over command forces a specific binary identifier to be stopped and restarted on
another node. This behavior is controlled by the configured policy.

The fail_over command is located in the /bgsys/drivers/ppcfloor/hlcs/sbin directory.

The syntax of the command is:

fail_over [binary id] [OPTIONS ...]

The command accepts the following arguments:

binary id The binary identifier is a combination of the IP address and process
identifier (PID), separated by a colon, of the system the binary is
running on.

--trigger (b/k/[a]) Trigger (binary, killed, agent) that is used to find the associated policy
for failover.

--host host:pair TCP/IP host and port pair to use to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

11.2.7 The alias_wait command

The alias_wait command signals BGmaster to wait for a binary that is associated with the
specified alias to become active. This is a blocking wait with an optional timeout.

The alias_wait command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.
134 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The syntax of the command is:

alias_wait [alias] [OPTIONS ...]

The command accepts the following arguments:

alias Specifies the binary alias to wait on.

--timeout Specifies the number of seconds to wait for the specified binary to
become active.

--host host:pair TCP/IP host and port pair to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

11.2.8 The list_agents command

The list_agents command returns a list of identifiers for active agents and their associated
running binaries. The return format is agentid::binaryid. An agent identifier is made up of the
IP address from which the agent is running, a colon, and a port number that bgmaster_server
uses to communicate with it. A binary identifier is made up of the IP address on which the
binary is running, a colon, and its process identifier (PID).

The list_agents command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The syntax of the command is:

list_agents [OPTIONS ...]

The command accepts the following arguments:

--fancy The output from the list_agents command is labeled and formatted,
as shown in Example 11-3. This option is used by default.

--host host:pair The TCP/IP host and port pair to use to connect to bgmaster_server.
This overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

Example 11-3 Output from list_agents command

./list_agents

Agent host Agent id (IP:Port)
---------- ------------------
bgqfen6-ib.rchland.ibm.com 172.20.2.36:50812
bgqfen7-ib.rchland.ibm.com 172.20.2.37:48920
bgqssn4-svc.rchland.ibm.com 192.169.3.14:52474
bgqssn5-svc.rchland.ibm.com 192.169.3.15:36874
Chapter 11. BGmaster 135

bgqsn2-svc 192.169.3.2:49243

11.2.9 The list_clients command

The list_clients command returns a list of client identifiers for active clients. A client
identifier consists of the IP address on which the client is running, a colon, and the port that
bgmaster_server uses to communicate with it.

The list_clients command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The syntax of the command is:

list_clients [OPTIONS ...]

The command accepts the following arguments:

--host host:pair TCP/IP host and port pair to connect to bgmaster_server, which
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable if defined
is used if the option is not specified.

--help Prints help text.

11.2.10 The master_stop command

The master_stop command can stop any or all managed binaries and bgmaster_server. By
default, it stops bgmaster_server and all managed binaries. Processes are allowed an orderly
completion with a timeout before they are forced to end. The bgmaster_only option ends the
bgmaster_server but none of the agents or managed binaries. By default, the initial signal is
SIGTERM.

When master_stop is run in the form master_stop bgmaster, it stops bgmaster_server after
telling it to end all managed binaries. The bgagentd processes continue running. When
bgmaster_server is started again, the bgagentd processes reconnect, and bgmaster_server
instructs them to start the managed binaries. If you want to stop bgmaster_server only and
not the managed binaries, use the bgmaster_only option of master_stop. When
bgmaster_server is started again, the bgagentd processes contact bgmaster_server and
update it with the status of all of their managed binaries.

Stopping binaries under control of bgmaster_server can be accomplished by specifying them
by binary identifier or by alias name. Specifying them by alias name is the simplest method
and requires running the master_stop <alias> command. To use the binary identifier, use the
master_stop --binary <identifier> command.

The master_stop command is located in the /bgsys/drivers/ppcfloor/hlcs/sbin directory.

The syntax of the command is:

master_stop [alias | "bgmaster" | "binaries" | "bgmaster_only"] [OPTIONS ...]
136 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The command accepts the following arguments:

alias Stops the binaries associated in the properties file with the specified
alias.

bgmaster Stops the bgmaster_server process and all managed binaries. This
option is asynchronous and returns before bgmaster_server and all
managed binaries end.

binaries Stops all binaries managed by bgmaster.

bgmaster_only Stops the bgmaster_server process but leaves the agents and
managed binaries running. The bgmaster_server can then be
restarted with master_start, and all agents report their status and the
status of their managed binaries.

--binary Stops a specific binary identifier. An alias can, according to policy, be
associated with more than one instance of a binary, allowing the user
to specify a particular instance by binary identifier.

--signal Sends the specified process this signal number and waits before
forcing it to end. Note that bgmaster_server interprets the user
specifying the --signal option as an intentional action. Therefore, no
failover or restart policy is triggered. The expectation is that the user
sent the signal because they wanted the process ended.

--host host:pair TCP/IP host and port pair to connect to bgmaster_server to override
the host option in the [master.client] section of the bg.properties
configuration file.

--properties Provides the path to an alternate Blue Gene configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
the BG_PROPERTIES_FILE environment variable, if defined, is used
if the option is not specified.

--help Prints help text.

11.2.11 The get_errors command

The get_errors command returns the contents of bgmaster_server’s log ring buffer. The log
ring buffer contains up to the last fifty logged error messages. These errors also generate
RAS messages in the Blue Gene/Q database.

The get_errors command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The syntax of the command is:

get_errors [OPTIONS ...]

The command accepts the following arguments:

--host host:pair TCP/IP host and port pair to connect to bgmaster_server to override
the host option in the [master.client] section of the bg.properties
configuration file.

--properties Provides the path to an alternate Blue Gene configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable, if defined, is used if
the option is not specified.

--help Prints help text.
Chapter 11. BGmaster 137

11.2.12 The get_history command

The get_history command returns the contents of bgmaster_server’s history log ring buffer.
The history log contains up to the last fifty instances of process starts and stops since
bgmaster_server was started.

The get_history command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The syntax of the command is:

get_history [OPTIONS ...]

The command accepts the following arguments:

--host host:pair TCP/IP host and port pair to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties Provides the path to an alternate Blue Gene configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable, if defined, is used if
the option is not specified.

--help Prints help text.

11.2.13 The monitor_master command

The monitor_master command provides a rolling update of events and errors from
bgmaster_server. When monitor_master makes an initial connection to bgmaster_server, it
gathers the contents of the history and error buffers and prints them out. The monitor_master
command maintains the connection, and bgmaster_server sends each new event and error
back to monitor_master, which displays them on standard out. The command can be stopped
from the command line by the Ctrl-C keyboard sequence.

The monitor_master command is located in the /bgsys/drivers/ppcfloor/hlcs/bin directory.

The syntax of the command is:

monitor_master [OPTIONS ...]

The command accepts the following arguments:

--host host:pair TCP/IP host and port pair to connect to bgmaster_server. This
overrides the host option in the [master.client] section of the
bg.properties configuration file.

--properties This option provides the path to an alternate Blue Gene configuration
file. The default file, /bgsys/local/etc/bg.properties or the location
specified by BG_PROPERTIES_FILE environment variable, if defined,
is used if the option is not specified.

--help Prints help text.

11.3 The bgagent daemon system process watcher

The bgagent daemon (bgagentd) is the BGmaster system’s process watcher. The bgagent
daemon operates solely on instructions from bgmaster_server. When bgagentd is started, it
138 IBM System Blue Gene Solution: Blue Gene/Q System Administration

periodically attempts to connect to bgmaster_server. In a standard configuration, the
bgagentd daemon running on the service node connects to bgmaster_server on the host and
port (typically 127.0.0.1:32041) specified on the host parameter of the [master.agent] section
of the bg.properties file. Agents running outside the service node are configured to connect to
bgmaster_server using the IP address of the service node. To configure the IP address, use
the --host option in the bgagent init script as described in 11.3.1, “Starting bgagentd” on
page 139.

11.3.1 Starting bgagentd

When the Blue Gene/Q software is installed, there is an init script named bgagent placed in
/etc/init.d. This init script runs at boot time to automatically start bgagentd. After it is started
bgagentd runs continuously in the background. If you must stop, start, or restart bgagentd,
use the bgagent script like any other. The script accepts the arguments: start, stop, status,
restart, try-restart, and force-reload.

Additionally the bgagent init script can pass options to the bgagentd command, for example,
bgagentd is passed the option --users, to inform the program which users it can run as.

OPTIONS="--users bgqadmin,bgws,bgqsysdb --workingdir $workingdir --host
172.20.3.1:32041"

The accepted arguments for the bgagentd command are:

--properties Provides the path to an alternate Blue Gene configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable, if defined, is used if
the option is not specified.

--logdir Specifies a directory, other than the default /bgsys/logs/BGQ, to write
the bgagentd logs to.

--debug true | false Debug mode sends the log output to the console and runs bgagentd
as a foreground process.

--workingdir Provides the current working directory for bgagentd. This parameter is
usually set in the bgagent init script.

--host host:pair TCP/IP host and port pair to connect to bgmaster_server. This
overrides the host option in the [master.agent] section of the
bg.properties configuration file. For agents that do not run on the
service node this should be specified in the bgagent init script and
match the service node IP address that bgmaster_server is listening
on. For example, if bg.properties is configured where [master.server]
has agent_listen_ports = 127.0.0.1:32041,172.20.3.1:32041 then the
bgagent init script OPTIONS string should include --host
172.20.3.1:32041.

--users Provides a list of user identifiers to which bgagentd is permitted to
switch. Specify "root" to disallow user identifier switching. This
parameter is usually set in the bgagent init script. The requested user
identifier is set in bg.properties under the [master.agent] section as
agentuid=.

--help Prints help text.
Chapter 11. BGmaster 139

11.3.2 Stopping bgagentd

The bgagentd processes are intended to be started at system boot and not stopped until the
system is shut down. The /etc/init.d/bgagent init script can be used to stop the daemon. The
script accepts the arguments: start, stop, status, restart, try-restart, and force-reload.

When a bgagentd process ends, it attempts to end all of its managed binaries to make sure
they do not continue unmanaged. To guarantee that child processes get killed when the agent
gets killed, agentuid in the properties file must be set as root and bgagentd must be started
as root. This limitation might not be acceptable in your environment. If so, it is important that
you not send signals that cannot be handled (such as SIGKILL) to bgagentd. Ending
bgagentd must be done using the bgagent init script installed on the system.

11.4 Configuration

Configuration of the servers that BGmaster manages is centered around server instances
represented by configuration aliases. An alias is a short name that represents a specific
executable. Each alias has an associated policy, its pairs of triggers and behaviors, the
number of instances that it can run, the hosts on which it can run, and a list of the binary
identifiers associated with it. Figure 11-1 is a graphical representation of an alias and its
associated concepts, including the list of configured hosts to use, the list of actively running
binaries, and the policy with its associated trigger/behavior pairs.

Figure 11-1 Alias concept

Behavior

Retries Name

Host from Host toHost from Host toHost from Host to

Trigger
Behavior

Retries Name

Host from Host toHost from Host toHost from Host to

Trigger
Behavior

Retries Name

Host from Host toHost from Host toHost from Host to

Trigger

Running
BinaryHost Name

PolicyAlias

ArgumentsPathName
140 IBM System Blue Gene Solution: Blue Gene/Q System Administration

A policy is a set of triggers, their associated behaviors, and allowable number of instances.
Policy configuration is flexible. Policies are stored in the bg.properties file. A trigger is a limited
set of events that can cause a policy to enact a particular behavior. The list of acceptable
triggers are killed, binary or agent:

killed Binary received a kill signal.
binary Binary abnormally ended.
agent The agent managing the binary failed.

Killed and binary are distinguished by the signal with which they fail. SIGTERM and SIGKILL,
for example, are killed triggers. SIGSEGV and SIGABRT are considered binary triggers.

A behavior is an action, and instructions for that action to take when a trigger condition is
detected. The components of a behavior are an action, a retry count, and an optional set of
failover pairs. The supported actions are:

failover Analyze the failover pairs and if the triggered binary is running on the
first host in a pair, fail it over to the second.

restart Attempts to restart the binary on the same host up to the number of
times specified in the retry count parameter.

cleanup Cleans up internal data structures and logs the error. (This is the
default.)

11.4.1 Sample configuration

For this example, consider a Blue Gene/Q system with two front end nodes and two subnet
service nodes. The subnet service nodes are assigned to IP addresses 172.16.1.135 and
172.16.1.136. The front end nodes are assigned to IP addresses 172.16.1.133 and
172.16.1.134. The front end nodes each need to run a runjob mux, and the subnet service
nodes each need to run a SubnetMc. In this setup, each front end node and subnet service
node must have an agent running that can connect to the bgmaster_server process running
on a service node. Each agent manages the starting and stopping of the binaries (runjob mux
or SubnetMc) assigned to them through communications with the bgmaster_server process.

While multiple instances of a server binary (with the exact same configuration) can be run by
setting the instance count and using a single alias, this is not typically done. The conventional
method for running multiple instances of a server binary is to configure a unique alias name
for each instance (for example, Subnet1, Subnet2, and so on).

When adding a front end node to the system, bg.properties sections like [bgws] and
[bg_console] must be updated. Those bg.properties changes are outside the scope of this
chapter. The following list outlines the main BGmaster sections of the bg.properties file that
must be updated for this example system configuration:

� In the [master.binmap] section of the bg.properties file, define the aliases. The alias name
for each SubnetMc process must match the Name keyword in the
[machinecontroller.subnet.X] section. By default the first subnet name is "Subnet1", the
second subnet name is "Subnet2", and so on. A unique alias name is used for each
instance of a SubnetMc running on a subnet service node and each runjob mux running
on a front end node. This alias is used because the aliases must be associated with
different agents and this configuration determines the host system where the binary runs.

[master.binmap]
Maps an alias to a binary path
...
bgmaster_server=/bgsys/drivers/ppcfloor/hlcs/sbin/bgmaster_server
Subnet1=/bgsys/drivers/ppcfloor/control/sbin/SubnetMc_64
Chapter 11. BGmaster 141

Subnet2=/bgsys/drivers/ppcfloor/control/sbin/SubnetMc_64
runjob_mux1=/bgsys/drivers/ppcfloor/hlcs/sbin/runjob_mux
runjob_mux2=/bgsys/drivers/ppcfloor/hlcs/sbin/runjob_mux
...

If you have aliases (binaries) listed in the [master.binmap] section that you do not want
started when the associated bgagentd starts up you either need to remove them or
comment them out. If you comment out or delete an alias (binary) in the [master.binmap]
section, you must also comment out or delete the alias under the following bg.properties
sections or bgmaster_server fails with a configuration error when starting up:
[master.logdirs], [master.binargs], [master.user], [master.policy.host_list],
[master.policy.instances] and [master.policy.map].

� In the [master.binargs] section of the bg.properties file, set up command-line arguments.
In this case, different command-line arguments are needed for the two SubnetMc
processes.

[master.binargs]
List of arguments for each alias specified in [master.binmap] section
...
Subnet1=--ip 172.16.1.135,172.16.1.136 --inport 33456
Subnet2=--ip 172.16.1.136,172.16.1.135 --inport 33457
...

� Assign the aliases to hosts in the [master.policy.host_list] section. It is important to
correctly match the alias with the host IP addresses where the binary can run. In this case,
each SubnetMc has a preferred host where it can run and a backup (failover) host where it
can run. Each runjob mux instance is allowed to run on only one host and has a restart
policy configured but no failover policy.

[master.policy.host_list]
Comma separated list of hosts on which the binary associated with the alias may start
....
Subnet1=172.16.1.135,172.16.1.136
Subnet2=172.16.1.136,172.16.1.135
runjob_mux1=172.16.1.133
runjob_mux2=172.16.1.134
...

� In the [master.policy.failure] section, define the policy. In this case, define a restart policy
that is used by the runjob muxes and a failover policy for the SubnetMcs.

[master.policy.failure]
Format: policy_name=trigger,[failover|restart|cleanup],<retries>,<failover_from:failover_to>|etc
...
server_restart=binary,restart,3
Subnet1_failover=agent,failover,3,172.16.1.135:172.16.1.136|172.16.1.136:172.16.1.135
Subnet2_failover=agent,failover,3,172.16.1.136:172.16.1.135|172.16.1.135:172.16.1.136
...

� Assign the policies to the alias in the [master.policy.map] section.

[master.policy.map]
Map comma separated list of named policies to an alias
...
Subnet1=Subnet1_failover
Subnet2=Subnet2_failover
runjob_mux1=server_restart
runjob_mux2=server_restart
...

� When front end nodes or subnet service nodes are configured, bgmaster_server must be
set up to listen for bgagent connections on the network interfaces that the agents use
142 IBM System Blue Gene Solution: Blue Gene/Q System Administration

when connecting. This is configured by setting the agent_listen_ports option in the
[master.server] section of the bg.properties file. The agent_listen_ports keyword contains
a list of IP address:port pairs, separated by commas. Note that bgmaster_server accepts
connections only on the IP addresses in the list.

To correctly configure the agent listen ports in bgmaster_server, you must first find the IP
address associated with the network interface. The ip addr show command is used to
find the IP address for the eth0 interface because, in this example case, the agents
running on the front end nodes and subnet service nodes connect to the service node
over the 192.168 network:

bgqsn:~> ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

 link/ether 5c:f3:fc:05:46:20 brd ff:ff:ff:ff:ff:ff

 inet 192.168.3.103/16 brd 192.168.255.255 scope global eth0

 inet6 fe80::5ef3:fcff:fe05:4620/64 scope link

 valid_lft forever preferred_lft forever

Next, the agent_listen_ports keyword in the [master.server] section must be configured to
listen to the IP address on that network. In this case, there is an agent running on the
service node that connects over the IP address 127.0.0.1 (localhost) and also agents
running on front end nodes and subnet service nodes that connect using the
192.168.3.103 IP address.

[master.server]
 # bgmaster_server configuration options
...
agent_listen_ports = 127.0.0.1:32041,192.168.3.103:32041
...

11.4.2 BGmaster network configuration

BGmaster is highly configurable and consequently complex in some situations. It is important
to consider the networking environment carefully and which processes are to be managed on
which machines and how host names and IP addresses are to be apportioned. In a simple
environment, a number of runjob mux processes are located off the primary service node. In
more complex environments, several subnet service nodes and active backup service nodes
are also running managed binaries.

It is important to understand how BGmaster components initiate their connections and
identify themselves to understand how managed components get assigned to run in the
proper place. The following list describes the sequence of making connections:

� When the bgagent daemon starts (see 11.3.1, “Starting bgagentd” on page 139 for
information about startup) it repeatedly attempts to connect to the host and port specified
by the host parameter in the [master.agent] section of the bg.properties file or the host and
port indicated by the bgagentd ---host argument. The bgagent daemon continues
connection attempts until it successfully connects. Similarly, when the bgmaster_server
starts it attempts to listen on all ports configured in the [master.server] section of
bg.properties file as agent_listen_ports and client_listen_ports. As long as
bgmaster_server can successfully bind and listen on at least one port of each type it
starts.

� After bgagentd connects to bgmaster_server, bgagentd starts its own listener, and
bgmaster_server connects back to bgagentd. These two connections are used by
bgmaster_server and bgagentd for request/response protocols.
Chapter 11. BGmaster 143

� The BGmaster client programs attempt to connect to bgmaster_server in much the same
way as bgagentd. They use the host parameter in the [master.client] section of the
bg.properties file to open an initial connection.

� Finally the managed binaries are assigned to hosts associated with their aliases in the
[master.policy.host_list] section of the bg.properties file. Hosts are identified by one of their
IP addresses or the host name associated with one of their IP addresses. Whether that
host is available to start the binary depends upon whether a bgagentd has connected to
bgmaster_server using that IP address.

11.5 Troubleshooting

The bgmaster_server maintains a ring buffer of start/stop events and errors. These ring
buffers can be accessed with the get_history (see section 11.2.12, “The get_history
command” on page 138) and get_errors (see section 11.2.11, “The get_errors command” on
page 137) commands respectively. This data is also sent to the RAS database for permanent
storage.

11.5.1 Configuration issues

The following items are some possible configuration problems that can lead to confusing or
inconsistent behavior by bgmaster_server and bgagent:

� The host parameter in the [master.agent] section of the bg.properties file must point to at
least one agent_listen_port in the [master.server] section.

� Because the agent is identified by the IP address it uses to connect to bgmaster_server,
all binaries that it manages must be mapped to that IP address in the [master.policy.host]
section of the bg.properties file.

� If a bgagentd can connect to bgmaster_server on multiple networks, it is identified by the
first IP address that it can successfully use to connect. If the binaries that it needs to
manage are only mapped to one of the IP addresses, and it is not the address that the
agent uses to connect to bgmaster_server, those binaries cannot start.

Example 11-4 shows a properties file that can cause a subtle problem.

Example 11-4 bg.properties file options

[master.server]
agent_listen_port=10.10.10.2:32041,192.168.1.2:32041

[master.agent]
host=10.10.10.2:32041,192.168.1.2:32041

[master.policy.host]
my_alias=10.10.10.2

In Example 11-4, if an agent connects to bgmaster_server on 10.10.10.2, my_alias starts
successfully. If, however, the bgagentd connects on 192.168.1.2, my_alias does not start.

� If host names are used in bg.properties files, DNS and /etc/hosts files must map to the IP
addresses that bgagentd processes to connect to bgmaster_server. Keep in mind that a
single-service node might have a system-defined name and several other names mapped
to multiple IP adapters using multiple IP addresses.

� Administrators should verify that the host setting in the [master.agent] section is
configured correctly. Set the host option such that the agent running on the service node
only connects to bgmaster_server using the 127.0.0.1 interface. For agents running
remotely, the init script needs to be configured to use the host where bgmaster_server is
144 IBM System Blue Gene Solution: Blue Gene/Q System Administration

running. Modifying the agent init script is explained in section 11.3.1, “Starting bgagentd”
on page 139. If these settings are misconfigured, under certain conditions, this can result
in servers failing to start or failing to restart as expected.

Example 11-5 shows an incorrect setting for the host option.

Example 11-5 Incorrect setting for the host option in [master.agent] section

[master.agent]
 # bgagentd configuration options
host=127.0.0.1:32041,192.168.3.103:32041

Example 11-6 shows the correct setting for the host option.

Example 11-6 Correct setting for the host option in [master.agent] section

[master.agent]
 # bgagentd configuration options
host=127.0.0.1:32041

� All servers which run on the service node must be configured to start on IP address
127.0.0.1 in the [master.policy.host_list] section. Under certain conditions, using localhost
rather than 127.0.0.1 can result in servers failing to start or restart. Replace all instances
of localhost with 127.0.0.1. Example 11-7 shows the correct setting for the Blue Gene
Control System servers that run on the service node.

Example 11-7 Correct settings for the servers that run on the service node

[master.policy.host_list]
 # Comma separated list of hosts which the binary associated with the alias may start
...
bgmaster_server = 127.0.0.1
bgws_server = 127.0.0.1
realtime_server = 127.0.0.1
runjob_server = 127.0.0.1
runjob_mux = 127.0.0.1
mc_server = 127.0.0.1
mmcs_server = 127.0.0.1
teal_server = 127.0.0.1
...

11.5.2 RAS messages

BGmaster can generate many RAS messages. The complete list of BGmaster RAS
messages can be viewed through Blue Gene Navigator by clicking the RAS book link under
the Knowledge Center tab (see Chapter 2.2.15, “Knowledge Center” on page 27) and then
clicking the BGMASTER component link within the RAS book.

This information is also in the /bgsys/drivers/ppcfloor/ras/etc/RasEventBook.htm file.
Chapter 11. BGmaster 145

146 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 12. The Midplane Management
Control System server

The Midplane Management Control System (MMCS) configures and allocates blocks of
compute nodes and I/O nodes. As part of the High-Level Control System (HLCS), the MMCS
runs on the service node and provides an interface to the hardware level system components.
You can access the MMCS directly using the bg_console command or through the Scheduler
APIs.

The MMCS server is also referred to by its alternate name, mmcs_server, in this chapter.

In addition to the high-level control functions of the MMCS server, the following functions are
incorporated into the server:

� A relay that passes Reliability, Availability, and Serviceability (RAS) messages from the
MC Server to the database

� Environmental monitoring

12.1 MMCS components

This section describes the components of the MMCS and how it serves as an interface
between users and the Blue Gene/Q hardware. Users access the MMCS primarily through a
job scheduler, such as LoadLeveler. However, system administrators generally want to use
the system’s resources more directly through bg_console commands.

Figure 12-1 on page 148 shows the Blue Gene/Q Control System architecture and the role of
the MMCS server.

12
© Copyright IBM Corp. 2013. All rights reserved. 147

Figure 12-1 Control System architecture

12.1.1 The MMCS server handles requests from clients

The MMCS server, Figure 12-1, runs on the service node and listens for incoming
connections from the MMCS clients or script clients. The MMCS commands are issued from
bg_console. Scripting facilities are also provided through bg_console. The MMCS server can
handle multiple client connections. It performs other functions simultaneously, such as
monitoring for RAS events and environmental monitoring.

12.1.2 Blocks are defined in the database

The MMCS server allocates blocks configured in the central database. Blocks can be created
by system administrators based on the needs of the users or dynamically by job schedulers,
such as LoadLeveler. For more information, see Chapter 3, “Compute and I/O blocks” on
page 29. The MMCS server performs the actual block allocation, booting, link chip
configuration, and deallocation based on requests from its clients. It keeps track of allocated
blocks within the Blue Gene/Q system.

12.1.3 MC server communicates with the Blue Gene/Q hardware

The MMCS server clients are not aware of the existence of the MC server (mc server in
Figure 12-1) in the Control System, but the MC server plays a key role in the process.
Through the MC server, the MMCS server can monitor the availability of the hardware. The
MC server also controls access to the hardware to avoid conflicts. See section 13.1, “Machine
controller server overview” on page 160 for more details.

12.2 Starting and stopping the MMCS server

The MMCS server executable is /bgsys/drivers/ppcfloor/hlcs/sbin/mmcs_server. Starting and
stopping the MMCS server is controlled by BGmaster; however, it can be done interactively
with the master_stop or master_start commands described in 11.2, “Running
bgmaster_server” on page 130.

Service Node Login Node

Job Scheduler

runjob
server

Navigator

Scheduler APIs

mc server

PrimaryMc

DB

mmcs
server

SubnetMc

SubnetMc

SubnetMc

SubnetMc

User components External componentsAdmin components

runjob runjob

web browser

console

Job Scheduler

multiplexer BlueGene/Q
Hardware
148 IBM System Blue Gene Solution: Blue Gene/Q System Administration

12.3 Configuration

The MMCS server can be configured by setting options in the Blue Gene/Q configuration file
or by setting command-line options when the server starts.

12.3.1 Configuration file options

The configuration options used by the MMCS server are in the [mmcs] section and the
[mmcs.envs] and [mmcs.blockgovernor] subsections of the Blue Gene/Q configuration file
(/bgsys/local/etc/bg.properties). Configurable options for the MMCS server include (default
values are shown):

� listen_ports = [::1]:32031,127.0.0.1:32031

Defines the ports that the MMCS server listens for connections on. The format is a
comma-separated list of host:port pairs. The host parameter is a TCP/IP address or host
name. TCP/IP addresses containing colons must be enclosed in []. Link local ipv6
addresses must include the interface name appended after a percentage (%) character.
The port parameter is a port number or service name. The host and port are optional. If
the host is not specified, the MMCS server listens on localhost. If the port is not specified,
the default port is used (32031).

� shutdown_timeout = 90

Number of seconds to wait for the I/O nodes to shut down.

� wait_boot_free_time = 20

Sets the maximum wait time, in minutes, for a boot to complete.

� minimum_boot_wait = 360

Minimum number of seconds to wait for a boot to complete before freeing the block.

� reconnect_blocks = false

Defines the default behavior when reconnecting to blocks booted in a previous
instantiation of the MMCS server.

� log_dir = /bgsys/logs/BGQ

Sets the default I/O log directory.

� connection_pool_size = 30

Defines the maximum number of connections held in the database connection pool.

When all the connections in the pool are used, it takes longer to connect and disconnect to
the database. Proper tuning is important. Set this value to the average number of
concurrently booted I/O and compute blocks plus an additional ten connections to account
for other mmcs_server database activity. For example, if on average one I/O block and four
compute blocks are booted, set this value to 15.

� cn_boot_slope = .017

Linear boot timeout slope for compute blocks. Units for timeout slope are in seconds per
node.

� io_boot_slope = .017

Linear boot timeout slope for I/O blocks. Units for timeout slope are in seconds per node.

The [mmcs.envs] section sets the environmental polling intervals. Specifying 0 turns off
polling for that type of hardware. The values can be reset using the refresh_config
mmcs_server command from bg_console. Using the refresh_config command allows you to
Chapter 12. The Midplane Management Control System server 149

change the values without stopping the mmcs_server process. The default values for the
[mmcs.envs] section are shown in Example 12-1. More information about environmental
polling is in section 12.5, “Environmental polling” on page 151.

Example 12-1 Default [mmcs.envs] values

sc_interval_seconds = 1800
io_interval_seconds = 300
nc_interval_seconds = 900
bulk_interval_seconds = 300
coolant_interval_seconds = 300
optical_interval_seconds = 3600
perfdata_interval_seconds = 300

The block governor manages the rate at which the MMCS server can poll the database.
Configurable options for the [mmcs.blockgovernor] section include (defaults are shown):

� max_concurrent = 0

Number of block transactions that can be running at one time.

� interval = 10

Length of a measurement interval in seconds.

� max_tran_rate = 5

Number of block transactions that can be started in one interval.

� repeat_interval = 15

Minimum seconds between repeat of a transaction.

12.3.2 Command-line options

The MMCS server (mmcs_server executable) accepts the following options on the command
line:

--listen-ports <host:port,host:port>
Listens on the comma-separated list of host:port pairs.

--properties Provides the path to an alternate Blue Gene/Q configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable if defined is used if the
option is not specified.

--iolog Specifies the directory to log output from I/O nodes. The default
directory is /bgsys/logs/BGQ.

--mcserverip Connects to mc_server on the specified TCP/IP address.

--mcserverport Connects to mc_server on the specified port.

--shutdown-timeout Sets the number of seconds to wait for I/O nodes to shut down.

--boot-timeout-and-free
Default number of minutes to wait for a boot to complete before freeing
the block.

-h [--help] Displays help text for the command.

Important: Keep in mind that the MMCS server (mmcs_server) relies on the MC server
(mc_server) to maintain contact with the hardware. Therefore you must also start the
mc_server manually if you are going to bypass BGmaster.
150 IBM System Blue Gene Solution: Blue Gene/Q System Administration

12.4 Mailbox output

Each node on an allocated block has a mailbox associated with it, and the MMCS server
monitors the mailbox for output. Output from programs running on the compute nodes and I/O
nodes can be written to the mailbox and processed by the MMCS server.

Mailbox output is primarily debug and command output from the I/O node kernel and the
Compute Node Kernel. Application program output is handled separately.

The MMCS server has various options for directing this mailbox output:

� Default

If you do nothing, the mailbox output is directed to the MMCS server log.

� Redirection

The MMCS server has a redirect command that sends the mailbox output back to
bg_console. The mailbox data is sent as it is received from the mailbox.

12.5 Environmental polling

The MMCS server also performs environmental polling to monitor the status of the hardware.
Monitoring on Blue Gene/Q consists of collecting data from the running hardware, such as
temperatures, clock frequency, fan speeds, and voltages. Generally referred to as
environmentals, this information can be useful in indicating system health or in debugging
problems. By default, environmental data is collected at various intervals depending on the
hardware. Current and historical data can be viewed in Blue Gene/Q Navigator, which is
discussed in Chapter 2, “Navigator” on page 7. To assist in the efficient administration of the
system, environmental polling also generates RAS events when abnormal readings are
encountered.

12.5.1 How the environmental monitor works

Environmental polling starts when the MMCS server is started. The types of hardware
monitored are service cards, I/O boards, and node boards. Performance data, optical data,
bulk power data, Health Check data, and coolant monitoring data are also collected by the
MMCS server.

There are situations that might arise when you want to disable the monitoring functions
temporarily. As a general rule, before changing or disabling the monitor, check with IBM
Support.

12.5.2 Polling intervals

The current polling intervals are in the [mmcs.envs] section of the
/bgsys/local/etc/bg.properties file. They are:

Service cards sc_interval_seconds
I/O boards io_interval_seconds
Node boards nc_interval_seconds
Bulk Power Modules bulk_interval_seconds
Coolant monitors coolant_interval_seconds
Optical modules optical_interval_seconds
Performance data perfdata_interval_seconds
Chapter 12. The Midplane Management Control System server 151

The following list provides the default polling interval and the range of supported values that
can be used:

� Service cards: Defaults to 30 minute interval. The interval can be specified using the
property sc_interval_seconds in the bg.properties file. The interval can range from 60 to
3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� I/O boards: Defaults to five minute interval. The interval can be specified using the
property io_interval_seconds in the bg.properties file. The interval can range from 60 to
3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� Node boards: Defaults to 15 minute interval. The interval can be specified using the
property nc_interval_seconds in the bg.properties file. The interval can range from 60 to
3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� Bulk Power Modules: Defaults to five minute interval. The interval can be specified using
the property bulk_interval_seconds in the bg.properties file. The interval can range from
60 to 3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� Coolant monitors: Defaults to five minute interval. The interval can be specified using the
property coolant_interval_seconds in the bg.properties file. The interval can range from 60
to 3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� Optical modules: Defaults to 60 minute interval. The interval can be specified using the
property optical_interval_seconds in the bg.properties file. The interval can range from 60
to 3600 seconds (1 to 60 minutes) or set to 0 to turn off polling.

� Performance data: Defaults to five minute interval. The interval can be specified using the
property perfdata_interval_seconds in the bg.properties file. The interval can range from
60 to 1800 seconds (1 to 30 minutes) or set to 0 to turn off polling. The data being
collected by the MMCS server is Control System performance data.

� Health Check: Always runs on a five minute interval and cannot be changed or turned off.
MMCS server stores limited Health Check data. The primary role of Health Check is to
look for anomalies and generate RAS when abnormal readings are detected.

The polling intervals can be changed without affecting users.

The monitoring can be stopped by issuing the stop_hw_polling command from bg_console
without impacting users on the system.

12.5.3 Data collection and RAS

This section describes the data that is collected by the MMCS server during environmental
polling, the RAS messages that might be generated, and if applicable, the database table that
the collected data is stored in.

Service card monitor
The service card monitors the voltages of the following persistent power rails:

� Voltage on 1.2 V persistent power rail
� Voltage on 1.25 V persistent power rail
� Voltage on 1.5 V persistent power rail
� Voltage on 2.5 V persistent power rail
� Voltage on 3.3 V persistent power rail
� Voltage on 5.0 V persistent power rail

Collected data is stored in the BGQServiceCardEnvironment table.
152 IBM System Blue Gene Solution: Blue Gene/Q System Administration

If the service card monitor reports an error contacting a service card, a RAS message
00061002 is generated.

Node board monitor
Monitors the following readings on the node boards:

� Voltages:

– 0.8v rail
– 1.4v rail
– 2.5v rail
– 3.3v rail
– 12.0v rail (persistent)
– 1.5v rail
– 0.9v rail
– 1.0v rail
– 3.3v rail (persistent)
– V12A rail
– V12B rail
– 1.8v rail
– 2.5v rail (persistent)
– 1.2v rail (persistent)
– 1.8v rail (persistent)

Collected data is stored in the BGQNodeCardEnvironment table.

� Temperature sensors:

– On-board temperature sensor 0
– On-board temperature sensor 1

Collected data is stored in the BGQNodeEnvironment table.

� ASIC temperature

Collected data is stored in the BGQLinkChipEnvironment table.

If the node board monitor reports an error contacting a node board, a RAS message
00061001 is generated.

I/O board monitor
Monitors the following readings on the I/O node board:

� Voltages:

– Voltage on 0.8v power rail
– Voltage on 1.4v power rail
– Voltage on 2.5v power rail
– Voltage on 3.3v power rail
– Voltage on 12.0v power rail
– Voltage on 1.5v power rail
– Voltage on 0.9v power rail
– Voltage on 1.0v power rail
– Voltage on 12.0v power rail (persistent)
– Voltage on 3.3v power rail (persistent)
– Voltage on 1.2v power rail
– Voltage on 1.8v power rail
– Voltage on 1.2v power rail (persistent)
– Voltage on 1.5v power rail (persistent)
– Voltage on 1.8v power rail (persistent)
Chapter 12. The Midplane Management Control System server 153

– Voltage on 2.5v power rail (persistent)

Collected data is stored in the IOCardEnvironment table.

� Temperature sensors:

– On-board temperature sensor

Collected data is stored in the BGQNodeEnvironment table.

� Fan speed (in RPMs)

Collected data is stored in the BGQFanEnvironment table.

� ASIC temperature

Collected data is stored in the BGQLinkChipEnvironment table.

If the I/O board monitor reports an error contacting an I/O board, a RAS message 00061004
is generated.

Performance data monitor
Performance data is pulled from the Low-Level Control System (LLCS), which contains
primarily boot time performance counters.

Collected data is stored in the BGQComponentPerf table.

Coolant monitor
Monitors the following readings for coolant:

� Inlet coolant flow rate

� Outlet coolant flow rate

� Differential coolant pressure

� Coolant supply temperature

� Coolant return temperature

� Dew-point temperature

� Ambient-air temperature

� Ambient-air relative humidity (in percentage)

� System power being consumed by this rack (calculated by using flow rate and coolant
temperature difference)

Collected data is stored in the BGQCoolantEnvironment table.

If the coolant monitor cannot be contacted, a RAS message 00061005 is generated.

Bulk power module (BPM) monitor
Monitors the following voltage and current on the BPMs:

� Input voltage
� Input current
� Output voltage
� Output current

MMCS server: The MMCS server tracks how much time it takes to gather environmentals.
Turning off the gathering of performance data not only stops the MMCS server from
gathering performance data from LLCS but also stops the MMCS server from reporting
how long it took to collect any environmental data.
154 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Collected data is stored in the BGQBulkPowerEnvironment table.

If the BPM monitor reports an error contacting a BPM, a RAS message 00061003 is
generated.

Optical module monitor
Monitors the following optical components:

� Optical channel
� Optical power

Collected data is stored in the BGQOpticalEnvironment table.

If the optical module monitor reports an error contacting a node board, a RAS message
00061001 is generated.

If the optical module monitor reports an error contacting an I/O board, a RAS message
00061004 is generated.

Health Check
The Health Check monitors hardware and generates RAS for abnormal conditions. It also
monitors service card on-board temperature and stores collected data in the
BGQServiceCardTemp table.

12.5.4 Location-specific monitoring

There are commands in bg_console to turn on and off polling for a specific location of a
service card, I/O board, node board, or bulk power module. The commands are
start_hw_polling and stop_hw_polling. The start_hw_polling command does the same
processing as the monitor details listed previously, but allows a different polling interval for a
single location than the interval used for other locations of that type. The start_hw_polling
command augments the normal polling with an additional, location-specific polling interval.
This is useful when trying to diagnose problems on a certain piece of hardware, and it is
necessary to poll the hardware more often.

The command list_hw_polling shows any location-specific polling that is already in effect.

12.5.5 RAS events

The following RAS events are generated by the environmental monitor. They are written to the
BGQEventLog table.

Service cards:

� RAS 00061002 if service card cannot be contacted
� RAS 00061006 if service card returns leak detector fault

Note: The service card on-board temperature is the only reading stored by Health Check.
The reason for this is because service card temperatures need to be collected on a shorter
interval than the service card voltages. It was decided to process the service temperatures
at the same interval as the service card Health Check, which runs more frequently than the
service card monitor. The default interval for service cards is 30 minutes and the Health
Check runs on a 5 minute interval.
Chapter 12. The Midplane Management Control System server 155

� RAS 00061007 if service card clock frequency outside 1520 - 1680
� RAS 00061008 if service card overtemp

Node boards:

� RAS 00061001 if node board cannot be contacted
� RAS 00061010 if node board clock frequency outside 1520 - 1680
� RAS 00061011 if alert or pgood warning for blinks
� RAS 00061011 if alert or pgood warning for computes
� RAS 00061011 if alert for optical modules
� RAS 00061011 if non-zero status for DCA
� RAS 00061011 if non-zero status for VTM domains:

– DCAs on node boards:

• RAS 0006100C if non-zero status for DCA
• RAS 0006100C if error flag on for DCA
• RAS 0006100C if invalid domain value returned for DCA
• RAS 0006100C if DCA voltage outside of range (see Table 12-1)
• RAS 0006100C if DCA current outside of range (see Table 12-1)

Table 12-1 Voltage and current ranges for node boards

– Optical Modules on node boards:

• RAS 0006100E if error flag on for optical module

• RAS 0006100E if loss of signal flag on for optical module

• RAS 0006100E if module fault flag on for optical module

• RAS 0006100E if temperature flag on for optical module

• RAS 0006100E if voltage flag on for optical module

• RAS 0006100E if bias current flag on for optical module

• RAS 0006100E if power flag on for optical module

• RAS 0006100E if interrupt flag for module status is on, but none of the error flags
are on (should not happen)

I/O boards:

� RAS 00061004 if I/O board cannot be contacted
� RAS 00061009 if I/O board clock frequency outside 1520 - 1680

Domain Minimum voltage Maximum voltage Maximum current
readback mA

1 .7 1.1 57280

2 1.2 1.5 26080

3 2.25 2.75 2115

4 3.3 3.6 2203

5 n/a n/a n/a

6 1.45 1.55 4771

7 .7 1.2 4771

8 .9 1.1 1740

9 11.4 14.4 n/a
156 IBM System Blue Gene Solution: Blue Gene/Q System Administration

� RAS 0006100A if temp critical or temp warning for blinks
� RAS 0006100A if alert or pgood warning for blinks
� RAS 0006100A if alert or pgood warning for computes
� RAS 0006100A if alert for optical modules
� RAS 0006100A if non-zero status for DCA
� RAS 0006100A if non-zero status for VTM domains:

– DCAs on I/O boards:

• RAS 0006100B if non-zero status for DCA
• RAS 0006100B if error flag on for DCA
• RAS 0006100B if invalid domain value returned for DCA
• RAS 0006100B if DCA voltage outside of range (see Table 12-2)
• RAS 0006100B if DCA current outside of range (see Table 12-2)

Table 12-2 Voltage and current ranges for I/O boards

– Optical Modules on I/O boards:

• RAS 0006100D if error flag on for optical module

• RAS 0006100D if loss of signal flag on for optical module

• RAS 0006100D if module fault flag on for optical module

• RAS 0006100D if temperature flag on for optical module

• RAS 0006100D if voltage flag on for optical module

• RAS 0006100D if bias current flag on for optical module

• RAS 0006100D if power flag on for optical module

• RAS 0006100D if interrupt flag for module status is on, but none of the error flags
are on

Bulk power modules:

� RAS 00061003 if bulk power module has error flag set

� RAS 0006100F if bulk power module has non-zero general status word

� RAS 0006100F if bulk power module has non-zero output voltage status

� RAS 0006100F if bulk power module has non-zero output current status

� RAS 0006100F if bulk power module has non-zero input power status

Domain Minimum voltage Maximum voltage Maximum current
readback mA

1 .7 1.1 13480

2 1.2 1.5 6490

3 2.25 2.75 n/a

4 3.3 3.6 n/a

5 11.0 13.0 6370

6 1.45 1.55 n/a

7 .7 1.2 n/a

8 .9 1.1 n/a

9 11.0 13.0 n/a
Chapter 12. The Midplane Management Control System server 157

� RAS 0006100F if bulk power module has non-zero temperature status

� RAS 0006100F if bulk power module has non-zero CML status (comm., logic and
memory)

� RAS 0006100F if bulk power module has non-zero 5 volt output status

� RAS 0006100F if bulk power module has non-zero fan status

� RAS 0006100F if bulk power module has 5v output voltage not in 4.0-5.6 range

� RAS 0006100F if bulk power module has 5v output current not in 0.0-2.2 range

� RAS 0006100F if bulk power module has any temperature modules over 70

� RAS 0006100F if bulk power module has any fans outside 0-25000 rpm range

� RAS 00061012 for affected node boards under certain bulk power failure conditions:

– 8 per BPE in compute rack

� RAS 00061013 for affected I/O boards under certain bulk power failure conditions:

– 1 per BPE in compute rack or all I/O boards in I/O rack
158 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 13. The machine controller server

This chapter describes the machine controller (MC) server, which provides an interface to the
Low-Level Control System (LLCS).

The MC server is also referred to by its alternate name, mc_server, in this chapter.

13
© Copyright IBM Corp. 2013. All rights reserved. 159

13.1 Machine controller server overview

The MC server is a wrapper around the machine controller, which is a library of functions that
provides Low-Level Control System (LLCS) access to the Blue Gene/Q hardware. The MC
server wraps this library to provide a server and ports to which to connect. The MC server
handles arbitrations and controls access to the hardware to prevent simultaneous conflicting
operations. It also provides target sets, which give the client a way to refer to a collection of
hardware with a single name or handle. The MC server also provides some event handling.
Clients can register to receive RAS and console events for a particular location or for all
events.

Figure 13-1 illustrates how the MC server, shown in Figure 13-1, provides a layer of
arbitration between the hardware and higher level clients. Examples of clients are MMCS,
diagnostics, and service actions.

Figure 13-1 Control System architecture

13.2 Starting and stopping the MC server

The MC server executable is /bgsys/drivers/ppcfloor/control/sbin/mc_server_64. Starting and
stopping the MC server is controlled by BGmaster; however, it can be done interactively with
the master_stop or master_start commands described in section 11.2, “Running
bgmaster_server” on page 130.

13.3 Configuration

The MC server can be configured by setting options in the Blue Gene/Q configuration file or
by setting command-line options when the server starts.

13.3.1 Configuration file options

Configuration options used by the MC server are in the [machinecontroller] section of the Blue
Gene/Q configuration file (/bgsys/local/etc/bg.properties).

Service Node Login Node

Job Scheduler

runjob
server

Navigator

Scheduler APIs

mc server

PrimaryMc

DB

mmcs
server

SubnetMc

SubnetMc

SubnetMc

SubnetMc

User components External componentsAdmin components

runjob runjob

web browser

console

Job Scheduler

multiplexer BlueGene/Q
Hardware
160 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Configurable options for the MC server include (default values are shown):

� clientPort = 1206

The TCP/IP port that MC server will listen on.

� hostName = 127.0.0.1

The IP address or host name that external applications use to communicate with MC
server. IP addresses containing colons must be enclosed in []. Link local ipv6 addresses
must include the interface name appended after a percentage (%) character.

� bringup = true

Bringup the hardware when MC server starts. Valid values are true or false.

� spillFileDir =

Fully qualified path to the RAS spill file directory. If not specified, no spill file is used.

� alteraPath = /bgsys/drivers/ppcfloor/ctrlnet/bin/icon/fpgaImages

Fully qualified path to the images for the iCon/Palominos (FPGAs).

� CardThatTalksToMasterClockCard = R00-M0-S

The location of the card that communicates with/controls the master clock card.

� kernel_shutdown_timeout = 60

Number of seconds within which the compute and I/O kernels must complete shutdown.

� io_link_shutdown_timeout = 15

Number of seconds to complete I/O link shutdown.

13.3.2 Command-line options

The MC server (mc_server_64 executable) accepts the following options on the command
line:

--properties arg This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

-h [--help] Prints the help text.

13.4 The mc_server_log_level command

The mc_server_log_level command displays and changes the logging levels of the
mc_server. With no logger arguments, the logger names and their levels for the mc_server
are displayed. To set logger levels, specify their name and a level as positional arguments.
The valid logging levels are the same values that are supported by the --verbose argument.
The syntax of the command is:

mc_server_log_level [OPTIONS ...] logger=level [... logger=level]
Chapter 13. The machine controller server 161

The accepted arguments for the mc_server_log_level command are:

--host Defines the server host to connect to. Enclose IPv6 addresses in square
brackets. For link-local addresses, append the interface to the address after a
‘%’ character. The following values are examples values:

172.16.3.1

[::1]

--port Defines the server port to connect to.

--verbose Sets the logging configuration. Setting these values overrides the logging
configuration in the bg.properties file. The --verbose option can be used to
set the logging level for the default logger or any additional loggers. The
following values are allowed for the level: OFF, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE, or ALL. For example, if you want to set both the
default logger and the ibm.utility logger to the debug value, the following
command can be used:
mc_server_log_level --verbose=DEBUG --verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q configuration file.
The default file, /bgsys/local/etc/bg.properties or the location specified by the
BG_PROPERTIES_FILE environment variable, if defined, is used if the
option is not specified.

--version Displays version information

--help Prints the help text.
162 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 14. The runjob server and runjob
mux

The umbrella term for the Blue Gene/Q job submission architecture is runjob. This chapter
provides information about the runjob server, which facilitates remote job launch for the Blue
Gene/Q Control System and the runjob multiplexer (mux), which communicates with both the
runjob server and runjob client to relay requests and responses.

For information about submitting jobs, job states, and job-related commands, see Chapter 6.
“Submitting jobs” on page 75.

14
© Copyright IBM Corp. 2013. All rights reserved. 163

14.1 The runjob architecture

The runjob architecture, shown in Figure 14-1, consists of three primary components: the
runjob server, the multiplexer (runjob mux), and runjob clients:

� The role of the runjob server is to insert, update, and remove job entries from the
database. It also communicates with daemons on the I/O nodes to start and stop jobs. The
runjob server communicates with multiplexer to receive and respond to client requests.

� The runjob multiplexer (mux) communicates with both the runjob server and client to relay
requests and responses. The mux acts like a proxy to funnel multiple job requests into a
single connection to the server. The existence of multiple multiplexers facilitates failover.
There is plug-in functionality to interact with job schedulers.

� The runjob client acts as an interface for job schedulers. The client communicates with
multiplexer to send requests to the runjob server.

Figure 14-1 runjob components

plugin

runjob

runjob mux

Scheduler startd

Scheduler APIs

Scheduler daemon

DB

I/O Node I/O Node I/O Node I/O Node

Job 1
Block A

Job 2
Block A

Job 4
Block C

jobctld stdiod jobctld stdiod jobctld stdiod jobctld stdiod

runjob
server

Job 3
Block B

I/O link I/O link I/O link I/O link

CIOS components Scheduler components

Control system SN components

Control system FEN/LN components

BlueGene/Q hardware
164 IBM System Blue Gene Solution: Blue Gene/Q System Administration

14.2 The runjob_server

The runjob_server receives job requests from the runjob_mux, and then inserts, updates, and
removes job entries from the database. It also communicates with daemons on the I/O nodes
to start and stop jobs and tool daemons for jobs.

14.2.1 Configuration file options

Configuration options used by runjob_server are in the [runjob.server] section of the Blue
Gene/Q configuration file (/bgsys/local/etc/bg.properties). Configurable options include:

� thread_pool_size = auto

The number of threads to run in the server. The allowed values are integers greater than 0
or auto. Specifying auto, which is the default, allows the runjob_server to pick the number
of threads to start.

� mux_listen_ports = localhost:25510

command_listen_ports = localhost:24510

The ports that the runjob_server will listen for command and multiplexer connections on.
The format is a comma-separated list of host:port pairs. The host is an IP address or host
name. IP addresses containing colons must be enclosed in square brackets []. The port is
a port number or service name. The host and port are optional. If the host is not specified,
the server will listen on any interface. If the port is not specified, the default port is used
(25510 and 24510).

� io_connection_interval_increment = 5

The number of seconds to increment a progressive timeout when retrying connection
attempts to the common I/O services (CIOS) daemons. This value can be updated by the
runjob_server_refresh_config command.

� io_connection_interval_max = 120

Maximum number of seconds to wait between connection attempts to the CIOS daemons.
This value can be updated by the runjob_server_refresh_config command.

� performance_counter_interval = 30

Number of seconds to wait between inserting performance counter statistics into the
database for persistent storage. If this value is not specified the default value of 30
seconds is used. This value can be updated by the runjob_server_refresh_config
command.

� connection_pool_size = 20

The maximum number of connections held in the runjob_server database connection
pool. If not specified, the maximum is 20.

� extra_connection_parameters = Debug=True;

Extra parameters to pass on the connection. Format is NAME=VALUE pairs separated by
a semicolon (;). Optional, default is no extra parameters.

� control_action_heartbeat = 60

The number of seconds to wait between checking for progress of a job that was
terminated because of a RAS event with a Control Action. If not specified, this value is 60.
This value can be updated by the runjob_server_refresh_config command.
Chapter 14. The runjob server and runjob mux 165

The runjob_server_refresh_config command
Issuing the runjob_server_refresh_config command refreshes the runjob_server
configuration. The syntax of the runjob_server_refresh_config command is:

runjob_server_refresh_config [file] [OPTIONS ...]

The accepted arguments for the runjob_server_refresh_config command are:

--file The configuration file to reload. This parameter is optional. If not
specified, the current configuration file is reloaded. This parameter can
be specified as the first positional argument.

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values follow:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--wait-for-server Keeps trying to connect to the server if it is unavailable.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_server_refresh_config --verbose=DEBUG
--verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--version Displays version information

--help Prints the help text.

14.2.2 Command-line options

Starting and stopping the runjob_server is controlled by BGmaster; however, it can be done
interactively with the master_stop or master_start commands described in section 11.2
“Running bgmaster_server” on page 130. The active server’s behavior can be modified with
the runjob_server command by using the following syntax:

runjob_server [OPTIONS ...]

The accepted arguments for the runjob_server command are:

--sim= arg Enables or disables job simulation. The possible values are true or
false. This overrides the job_sim option in the [runjob.server] section of
the bg.properties configuration file.
166 IBM System Blue Gene Solution: Blue Gene/Q System Administration

--mux-listen-port arg Defines the address and port to bind to for multiplexer connections.
This overrides the mux_listen_ports option in the [runjob.server]
section of the bg.properties configuration file. Enclose IPv6 addresses
in square brackets. For link-local addresses append the interface to
the address after a ‘%’ character. Optionally, specify the port after the
address using a colon. Example values follow:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

The default port is 25510.

--command-listen-port arg

Defines the address and port to bind to for command connections.
This overrides the command_listen_ports option in the [runjob.server]
section of the bg.properties configuration file. Enclose IPv6 addresses
in square brackets. For link-local addresses append the interface to
the address after a ‘%’ character. Optionally, specify the port after the
address using a colon. Example values follow:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

The default port is 24510.

--properties arg This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable, if
defined, is used if the option is not specified.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_server --verbose=DEBUG --verbose=ibm.utility=DEBUG

-v [--version] Displays version information.

-h [--help] Command help text.

Note: The --sim argument must always be set to “false” in a production environment. A
Control System simulator environment is a special environment for testing without
actual Blue Gene/Q hardware. See Appendix B, “Control System simulator” on
page 247 for more details.
Chapter 14. The runjob server and runjob mux 167

14.3 The runjob_mux

The runjob_mux receives multiple client requests and communicates them using a single
connection to the runjob_server.

14.3.1 Configuration file options

The following options are configurable in the [runjob.mux] section of the
/bgsys/local/etc/bg.properties file:

� thread_pool_size = auto

Sets the number of threads to run in the runjob_mux process. The allowed values are
integers greater than 0 or auto. Setting the size to auto means the runjob_mux will pick the
number of threads to start. The default value for this option is auto.

� plugin =

The plugin value provides the fully qualified path to the plug-in used for communicating
with a job scheduler. This value can be updated by the runjob_mux_refresh_config
command on the front end node where a runjob_mux process runs. Information about the
Scheduler APIs can be accessed on the Knowledge Center tab in Blue Gene Navigator.

� plugin_flags =

Hexadecimal flags to pass as the second argument to dlopen. If not specified, the default
value is 0x0001 (RTLD_LAZY). See the dlopen(3) man page for more information.

� local_socket = runjob_mux

Name of the local AF_UNIX socket to use when listening for runjob connections. It is
placed in the abstract namespace, see man UNIX(7) for more information.

� host = localhost:25510

The host and port to connect to. The runjob_server should be listening on the port. The
format is a comma-separated list of host:port pairs. Host is an IP address or host name. IP
addresses containing colons must be enclosed in square brackets. Link local IPv6
addresses must include the interface name appended after a ‘%’ character. Port is a port
number or service name. The host and port are optional. If the host is not specified, the
client will connect to localhost. If the port is not specified the default port is used (25510).

� command_listen_ports = localhost:26510

The ports that the runjob_mux will listen for connections on. The format is a
comma-separated list of host:port pairs. Host is an IP address or host name. IP addresses
containing colons must be enclosed in square brackets. Link local IPv6 addresses must
include the interface name appended after a ‘%’ character. Port is a port number or
service name. The host and port are optional. If the host is not specified, the runjob_mux
process will listen on any interface. If the port is not specified, the default port is used
(26510).

� performance_counter_interval = 30

Number of seconds to wait between sending performance counter statistics to the
runjob_server for persistent storage in the database. Default is 15 seconds if this value is
not specified. This value can be updated by the runjob_mux_refresh_config command on
the front end node where a runjob_mux process runs.

� server_connection_interval = 10

Number of seconds to wait between connection attempts to the runjob_server when it is
unavailable. Default value is 10 seconds if not specified here. This value can be updated
168 IBM System Blue Gene Solution: Blue Gene/Q System Administration

by the runjob_mux_refresh_config command on the front end node where a runjob_mux
process runs.

� client_output_buffer_size = 512

Maximum number of kilobytes of stdout or stderr messages to queue up per client.
Messages received after this value is reached are dropped. Default value is 512 kilobytes
if not specified here. This value can be updated by the runjob_mux_refresh_config
command on the front end node where a runjob_mux process runs.

The runjob_mux_refresh_config command
Issuing the runjob_mux_refresh_config command refreshes the runjob_mux configuration.
The syntax of the runjob_mux_refresh_config command is:

runjob_mux_refresh_config [OPTIONS ...]

The accepted arguments for the runjob_mux_refresh_config command are:

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--wait-for-server Keep trying to connect to the server if it is unavailable.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_mux_refresh_config --verbose=DEBUG
--verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties, or the
location specified by the BG_PROPERTIES_FILE environment
variable, if defined, is used if the option is not specified.

--version Displays version information

--help Prints the help text.
Chapter 14. The runjob server and runjob mux 169

14.3.2 Command-line options

Typically, the runjob multiplexer is controlled by BGmaster; however, the multiplexer can be
started or stopped interactively using the master_start or master_stop command described
in section 11.2 “Running bgmaster_server” on page 130. Changing the running server’s
options can be done with the runjob_mux command located in the
/bgsys/drivers/ppcfloor/hlcs/sbin directory. The syntax of the runjob_mux command is:

runjob_mux [OPTIONS ...]

The accepted arguments for the runjob_mux command are:

--host Defines the runjob_server host and port to connect to. This overrides
the host option in the [runjob.mux] section of the bg.properties
configuration file. Enclose IPv6 addresses in square brackets. For
link-local addresses, append the interface to the address after a ‘%’
character. Specify the port after the interface using a colon. Example
values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--command-listen-port
Defines the address and port to bind to for command connections.
This overrides the command_listen_ports option in the [runjob.mux]
section of the bg.properties configuration file. Enclose IPv6 addresses
in square brackets. For link-local addresses, append the interface to
the address after a ‘%’ character. Optionally, specify the port after the
address using a colon. Example values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--socket Name of the runjob_mux listen socket, maximum length is 107
characters. This is stored in the abstract namespace rather than on
the file system. This overrides the local_socket option in the
[runjob.mux] section of the bg.properties configuration file.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_mux --verbose=DEBUG --verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties, or the
location specified by the BG_PROPERTIES_FILE environment
variable, if defined, is used if the option is not specified.
170 IBM System Blue Gene Solution: Blue Gene/Q System Administration

--version Displays version information.

--help Prints the help text.

14.4 Utilities

Utilities are provided to get the status of the runjob server and runjob mux and change the
logging configuration of both the server and the mux. The following utilities are provided:

� runjob_server_status
� runjob_server_log_level
� runjob_mux_status
� runjob_mux_log_level

14.4.1 Configuration options

The runjob_server and runjob_mux utilities use the [runjob.server.comands] and
[runjob.mux.commands] subsections of the bg.properties file to direct their queries.

In the [runjob.server.commands] subsection, the host key identifies the host name and port
that the runjob_server is listening on.

host = localhost:24510

Similarly, in the [runjob.mux.commands] subsection, the host key identifies the host name and
port that the runjob_mux is listening on.

host = localhost:26510

In both cases, the format of the host value is a comma-separated list of host:port pairs. Host
can be an IP address or host name. IP addresses containing colons must be enclosed in
square brackets. Link local IPv6 addresses must include the interface name appended after a
‘%’ character. The port specified is a port number or service name. The host and port are
optional. If the host is not specified, the client connects to localhost. If the port is not specified,
the default port is used. This port is 24510 for the runjob server and 26510 for the
runjob_mux.

14.4.2 The runjob_server_status command

The runjob_server_status command displays the status of the runjob_server. Example 14-1
shows the output of the command. Included in the output is information about CIOS,
performance counters, server and mux connections, jobs, blocks and I/O links.

Example 14-1 runjob_server_status output

[sbin]$ runjob_server_status
BG/Q runjob server
driver: bgq
revision: 53064
configured from: /bgsys/local/etc/bg.properties
load: 21 microseconds
realtime block notifications

CIOS protocol
8 job control
4 standard I/O
Chapter 14. The runjob server and runjob mux 171

Performance Counters
8 jobs
0 miscellaneous

3 mux connections
2 command connections

4 jobs

34 blocks

176 I/O links
88 jobctl links up 0 links down
88 stdio links up 0 links down

The accepted arguments for the runjob_server_status command are:

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--wait-for-server Keeps trying to connect to the server if it is unavailable.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_server_status --verbose=DEBUG
--verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--version Displays version information

--help Prints the help text.

14.4.3 The runjob_server_log_level command

The runjob_server_log_level command displays and changes the logging levels of the
runjob_server. With no logger arguments, the logger names and their levels of the
runjob_server are displayed. To set logger levels, specify their name and a level as positional
arguments. The valid logging levels are the same values that are supported by the --verbose
argument. The syntax of the runjob_server_log_level command is:
172 IBM System Blue Gene Solution: Blue Gene/Q System Administration

runjob_server_log_level [OPTIONS ...] logger=level [... logger=level]

The accepted arguments for the runjob_server_log_level command are:

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555

--wait-for-server Keeps trying to connect to the server if it is unavailable.

--verbose Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_server_log_level --verbose=DEBUG
--verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--version Displays version information

--help Prints the help text.

Example 14-2 shows the output from the runjob_server_log_level command using no
arguments, which displays all loggers and their levels.

Example 14-2 runjob_server_log_level command output

$ runjob_server_log_level
ibm INFO
ibm.agent INFO
ibm.bgqconfig INFO
ibm.bgsched INFO
ibm.bgws INFO
ibm.boot DEBUG
ibm.cios WARN
ibm.database INFO
ibm.icon DEBUG
ibm.master INFO
ibm.mc DEBUG
ibm.mc.MCServer DEBUG
ibm.mc.MCServerLockNode DEBUG
ibm.mc.MCServerThread DEBUG
ibm.mmcs INFO
ibm.ras WARN
ibm.realtime INFO
ibm.runjob WARN
Chapter 14. The runjob server and runjob mux 173

ibm.runjob.mux DEBUG
ibm.runjob.server DEBUG
ibm.security INFO
ibm.utility INFO
ibm.utility.cxxsockets WARN

To change the ibm.utility logger to TRACE level, use the following command:

runjob_server_log_level ibm.utility=TRACE

Multiple logger levels can be changed using a single command. The following command
updates the ibm.runjob logger to WARN level and the ibm.database logger to DEBUG level.

runjob_server_log_level ibm.runjob=WARN ibm.database=DEBUG

14.4.4 The runjob_mux_status command

The runjob_mux_status command displays the current status of the runjob_mux.
Example 14-3 shows the output of the runjob_mux_status command.

Example 14-3 runjob_mux_status output

BG/Q runjob multiplexer
driver: bgq
revision: 50784
configured from: /bgsys/local/etc/bg.properties
load: 47 microseconds

runjob server: localhost

scheduler plugin: loaded from: /usr/lib64/libllrunjob_mux.so
bgsched version: 1.0.0

1 connection
Host Port Type
localhost 58813 command

5 clients
 pid Client Username Job Queue Size Max Size Dropped Messages
 29184 2214 dougjpvl 174029 0 524288 0
 7622 2282 kmsftr 174119 0 524288 0
 1815 1843 smithjq 173706 0 524288 0
 12222 2339 dougjpvl 174181 0 524288 0
 26100 2340 jpvldill 174183 0 524288 0

The accepted arguments for the runjob_mux_status command are:

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values are:

127.0.0.1

172.16.3.1:12345

[::1]

[fe80::214:5eff:fre9c:52ce%eth0]

[::1]:24555
174 IBM System Blue Gene Solution: Blue Gene/Q System Administration

--wait-for-server Keep trying to connect to the server if it is unavailable.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_mux_status --verbose=DEBUG --verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--version Displays version information

--help Prints the help text.

14.4.5 The runjob_mux_log_level command

The runjob_mux_log_level command is used to display and change the logging levels for the
runjob_mux. When no logger arguments are submitted the current logger names and their
levels of the runjob_mux are displayed. To set logger levels, specify the name of the logger
and a level as positional arguments. The valid logging levels are the same values that are
supported by the verbose argument.

The accepted arguments for the runjob_mux_log_level command are:

--host Defines the server host and port to connect to. Enclose IPv6
addresses in square brackets. For link-local addresses, append the
interface to the address after a ‘%’ character. Specify the port after the
interface using a colon. Example values follow:

127.0.0.1

172.16.3.1:12345

[::1]

[::1]:24555

--wait-for-server Keep trying to connect to the server if it is unavailable.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
runjob_mux_log_level --verbose=DEBUG
--verbose=ibm.utility=DEBUG

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties, or the
location specified by BG_PROPERTIES_FILE environment variable, if
defined, is used if the option is not specified.

--version Displays version information

--help Prints the help text.
Chapter 14. The runjob server and runjob mux 175

176 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 15. The Blue Gene Web Services
server

The Blue Gene Web Services (BGWS) provides a RESTful web service for the Blue Gene/Q
system. As a web service, the BGWS can be used by any web client, either from a web
application running in a browser, such as the Blue Gene Navigator, or other programs, such
as a command-line utility like list_jobs.

The BGWS are documented in the online documentation shipped with Blue Gene/Q in the
/bgsys/drivers/ppcfloor/bgws/doc/html directory. You can also display the BGWS
documentation from the Knowledge Center in the Navigator.

15
© Copyright IBM Corp. 2013. All rights reserved. 177

15.1 Configuring and running the BGWS server

Administrators must follow these instructions to configure and run the BGWS server:

1. Download the prerequisite packages. It is recommended to configure the Apache server to
use SSL, which is enabled by installing the mod_ssl package. This package is shipped
with RedHat Enterprise Linux. Also, to build pwauth you need the pam-devel package. Use
the following command to install mod_ssl and the pam-devel packages:

yum install mod_ssl pam-devel

You also need the pwauth package. It can be downloaded from the following location:

http://code.google.com/p/pwauth

2. The BGWS server runs under the bgws user account. For security reasons, the pwauth
program is configured such that only bgws can run it. Create a bgws system account using
the following command:

useradd -c “Blue Gene Web Services” -r bgws

Add the bgws account to the Blue Gene/Q administrators group. The user must be an
administrator so that the BGWS server can connect to the database and run service
actions and diagnostics.

3. Un-tar the pwauth tar file previously downloaded in step 1:

a. Change into the source directory and edit the config.h file making the following
updates:

i. Comment out SHADOW_SUN
ii. Uncomment PAM
iii. Set SERVER_UIDS to the bgws user ID

b. Edit the Makefile (it is in the same directory as config.h) making the following changes:

i. Comment out this line:

#LIB= -lcrypt

ii. Set the LIB parameter as follows:

LIB=-lpam -ldl

c. Build pwauth and install it to /usr/local/libexec with the correct permissions using the
following commands:

$ make
cp pwauth /usr/local/libexec/pwauth
chown root:bgqadmin /usr/local/libexec/pwauth
chmod 4750 /usr/local/libexec/pwauth

d. pwauth in PAM mode uses the “pwauth” PAM stack. You must create a pwauth pam
config in /etc/pam.d:

cd /etc/pam.d
ln -s system-auth pwauth

Now the system is set up so that the BGWS server can run. The BGWS server is typically
started by BGmaster. You might want to make further changes to the configuration, as
described in the next section. For example, you might want to set the machine_name and
allow connections from front end nodes by changing the listen_ports.

To support the Blue Gene Navigator web application, the Apache httpd server is typically
configured to forward requests for the BGWS to the BGWS server. Setting up the httpd server
is documented in the Chapter 2, “Navigator” on page 7.
178 IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://code.google.com/p/pwauth

15.2 Configuration

The BGWS server can be configured by setting options in the Blue Gene/Q configuration file
(/bgsys/local/etc/bg.properties) or by setting command-line options when the server starts.
The BGWS server is typically started under BGmaster. The executable is
/bgsys/drivers/ppcfloor/sbin/bgws_server.

15.2.1 Configuration file options

Configuration options used by the BGWS server are in the [bgws] section of the Blue Gene/Q
configuration file (/bgsys/local/etc/bg.properties). Configuration options are:

� machine_name = My Blue Gene

User interfaces, such as the Blue Gene Navigator, can display this option so that users
know what machine they are connected to. Defaults to the system host name. This value
can be refreshed by running the command refresh_config bgws_server from
bg_console.

� measurement_system = US

The measurement system. User interfaces can use this to display environmental
measurements in US customary units or SI units. By default there is no measurement
system specified. The allowed values are US or SI. This value can be refreshed by
running the command refresh_config bgws_server from bg_console.

� listen_ports = [::1]:32071,127.0.0.1:32071

The ports that the BGWS server listens for connections on. The format is a
comma-separated list of host:port pairs. Host is an IP address or host name. IP addresses
containing colons must be enclosed in brackets []. Port is a port number or service name.
The host and port are optional. If the host is not specified, the server listens on any
interface. If the port is not specified, the default port is used (32071).

� path_base = /bg

Path on the web server to the BGWS resources. Defaults to /bg. This value can be
refreshed by running the command refresh_config bgws_server from bg_console.

� thread_pool_size = auto

Number of threads to run in the server. Allowed values are integers greater than 0 or auto.
Specifying auto means the BGWS server picks the number of threads to start. The default
is auto.

� blocking_operations_thread_pool = auto

Number of threads in the blocking operations thread pool. Allowed values are integers
greater than 0 or auto. Specifying auto means that the BGWS server picks the number of
threads to start. The default is auto.

� connection_pool_size = 20

Maximum number of connections held in the BGWS server database connection pool.

� extra_connection_parameters =

Extra parameters to use when connecting to the database. Format is NAME=VALUE pairs
separated by a semicolon (;). Optional, default is no extra parameters.

� session_timeout = 3600
Chapter 15. The Blue Gene Web Services server 179

Number of seconds of inactivity before a session is discarded. The default is 3600. This
value can be refreshed by running the command refresh_config bgws_server from
bg_console.

� user_authentication_exe = /usr/local/libexec/pwauth

Path to the program to run to authenticate users. The default is /usr/local/libexec/pwauth.
This value can be refreshed by running the command refresh_config bgws_server from
bg_console.

� check_user_admin_exe = /bgsys/drivers/ppcfloor/bgws/libexec/checkUserAdmin

Path to the program to run to check if a user is an administrator. If not set, all users are
non-administrators. This value can be refreshed by running the command refresh_config
bgws_server from bg_console.

� diagnostics_exe = /bgsys/drivers/ppcfloor/diags/bin/rundiags.py

Path to the program to run for diagnostics. The default is
/bgsys/drivers/ppcfloor/diags/bin/rundiags.py. This value can be refreshed by running the
command refresh_config bgws_server from bg_console.

� service_action_exe = /bgsys/drivers/ppcfloor/baremetal/bin/ServiceAction

Path to the program to run for service actions. The default is
/bgsys/drivers/ppcfloor/baremetal/bin/ServiceAction. This value can be refreshed by
running the command refresh_config bgws_server from bg_console.

� teal_chalert_exe = /opt/teal/bin/tlchalert

Path to the program to close TEAL alerts, tlchalert. The default is /opt/teal/bin/tlchalert.
This value can be refreshed by running the command refresh_config bgws_server from
bg_console.

� teal_rmalert_exe = /opt/teal/bin/tlrmalert

Path to the program to remove TEAL alerts, tlrmalert. The default is /opt/teal/bin/tlrmalert.
This value can be refreshed by running the command refresh_config bgws_server from
bg_console.

The BGWS server also gets configuration options from the [security.ca], [security.admin], and
[logging] sections of the configuration file.

15.2.2 Command-line options

The BGWS server accepts the following options on the command line:

--listen-port arg Ports to accept connections on. This overrides the listen_ports option
in the [bgws] section of the configuration file. The format for this option
is the same as the format for listen_ports in the [bgws] section of the
bg.properties file.

--properties This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by the BG_PROPERTIES_FILE environment
variable if defined is used if the option is not specified.

--verbose Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
180 IBM System Blue Gene Solution: Blue Gene/Q System Administration

logger to the debug value, the following command can be used:
bgws_server --verbose=DEBUG --verbose=ibm.utility=DEBUG

-h [--help] Prints the help text

15.3 Utilities

Several utility programs are shipped with Blue Gene/Q that use the BGWS server. The
following sections describe configuring the utilities and the utility programs.

15.3.1 Configuration

The BGWS server utilities and other BGWS commands read their configuration from the
[bgws.commands] section in the Blue Gene/Q configuration file
(/bgsys/local/etc/bg.properties). The following setting is configured in this file:

base_url = https://localhost:32071/bg

This is the base URL that the commands connect to. The default is https://localhost:32071/bg.
The BGWS server must accept requests on that URL. If you want users to be able to run
commands, such as list_jobs, from front end nodes you must change the host name to your
service node.

In addition to the option in the [bgws.commands] section, the utilities and BGWS commands
read configuration options from the [security] and [logging] sections in the configuration file.

15.3.2 The bgws_server_status command

The bgws_server_status command displays the status of the BGWS server.

Example 15-1 shows sample output when the BGWS server is running.

Example 15-1 Output of bgws_server_status

$ bgws_server_status
BGWS server is running and available.

Example 15-2 shows sample output when including details (-d).

Example 15-2 Output with details

$ bgws_server_status -d
BGWS server is running and available.
Server started: 2011-10-27 12:59:57.572908
Requests in progress: 1
Requests handled: 327
Max request time: 82.0508
Avg request time: 11.0661

The bgws_server_status command accepts the following command-line options:

-d [--details] Prints server status details.

--properties Provides the path to an alternate Blue Gene/Q configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
Chapter 15. The Blue Gene Web Services server 181

https://localhost:32071/bg
https://localhost:32071/bg

BG_PROPERTIES_FILE environment variable if defined is used if the
option is not specified.

--base Overrides the base_url in the [bgws.commands] section of the
bg.properties file. Refer to the documentation in section 15.3.1,
“Configuration” on page 181.

--verbose Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
bgws_server_status --verbose=DEBUG --verbose=ibm.utility=DEBUG

-h [--help] Print help text.

The user must be an administrator to use this command.

15.3.3 The bgws_server_refresh_config command

This utility tells the BGWS server to re-read the configuration file and continue running with
the new values. Some of the values in the bg.properties file can be updated dynamically. The
documentation for the value says if the value can be updated by refreshing the configuration
of the BGWS server with this command.

This command outputs nothing if the request was successful.

This command allows one optional positional parameter, the filename of the new
bg.properties file, to read. If the filename is not present, the BGWS server re-reads its current
configuration file. If the filename is an empty string, the BGWS server re-reads the default
configuration file (/bgsys/local/etc/bg.properties). Otherwise, the provided filename is read.

The bgws_server_refresh_config command also allows the following options:

--properties arg This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--base This option overrides the base_url in the [bgws.commands] section of
the bg.properties file. Refer to the documentation in section 15.3.1,
“Configuration” on page 181.

--verbose Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
bgws_server_refresh_config --verbose=DEBUG
--verbose=ibm.utility=DEBUG

-h [--help] Print help text.

The user must be an administrator to use this command.
182 IBM System Blue Gene Solution: Blue Gene/Q System Administration

15.3.4 The bgws_server_log_level command

The bgws_server_log_level command changes the run time logging configuration of the
BGWS server. The positional parameters to the bgws_server_log_level command are new
settings for the different loggers.

The bgws_server_log_level command accepts the following command-line options:

--properties Provides the path to an alternate Blue Gene/Q configuration file. The
default file, /bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable if defined is used if the
option is not specified.

--base Overrides the base_url in the [bgws.commands] section of the
bg.properties file. Refer to the documentation in section 15.3.1,
“Configuration” on page 181.

--verbose Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
bgws_server_log_level --verbose=DEBUG
--verbose=ibm.utility=DEBUG

-h [--help] Prints the help text.

The user must be an administrator to use this command.
Chapter 15. The Blue Gene Web Services server 183

184 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 16. Real-time server

The Blue Gene/Q Real-time server monitors the database transaction logs and sends events
to any connected clients.

16
© Copyright IBM Corp. 2013. All rights reserved. 185

16.1 Real-time server

The Real-time server provides real-time notifications of system events to client applications.
Applications use the Real-time API, provided as part of the Blue Gene Scheduler APIs, to
receive these notifications. By using these notifications rather than polling the database on an
interval, applications can be more efficient and responsive.

The types of system events that can be monitored using the Real-time APIs are block status
changes (for example, booting, freeing), job status changes (for example, loading, starting,
terminating), hardware state changes (becoming available or unavailable), and RAS events.

The Real-time server works by monitoring the database transaction logs using Linux's inotify
API. When the transaction log file changes, the server reads the changes using APIs
provided by IBM DB2®. The changes are sent to the clients that are connected.

The server executable is /bgsys/drivers/ppcfloor/sbin/bg_realtime_server. The server is
usually started by BGmaster.

16.2 Configuration

The Real-time server can be configured by setting options in the Blue Gene/Q configuration
file or by setting command-line options when the server starts.

16.2.1 Configuration file options

Configuration options used by the Real-time server are in the [realtime.server] section of the
Blue Gene/Q configuration file (/bgsys/local/etc/bg.properties). Configurable options are:

� listen_ports = localhost:32061

The ports that the Real-time server listens for connections on. The format is a
comma-separated list of host:port pairs. Host is an IP address or host name. IP addresses
containing colons must be enclosed in square brackets, []. Port is a port number or
service name. The host and port are optional. If the host is not specified, the server listens
on any interface. If the port is not specified, the default port is used (32061).

� command_listen_ports = localhost:32062

The ports that the Real-time server listens for command connections on. The format is a
comma-separated list of host:port pairs. Host is an IP address or host name. IP addresses
containing colons must be enclosed in square brackets []. Port is a port number or service
name. The host and port are optional. If the host is not specified, the server listens on any
interface. If the port is not specified, the default port is used (32062).

� workers = 0

The workers parameter sets the number of worker threads to start. 0 indicates to let the
server pick; otherwise, it must be a positive number.

� maximum_transaction_size = 40

The number of operations in a transaction before the server enters large-transaction
mode. When the server is in large-transaction mode, clients do not receive real-time
events. The default is 40.

The Real-time server also gets configuration options from the [security.ca], [security.admin],
and [logging] sections of the configuration file.
186 IBM System Blue Gene Solution: Blue Gene/Q System Administration

16.2.2 Command-line options

The Real-time server accepts the following options on the command line:

--listen-port arg

Ports to accept connections on. This overrides the listen_ports option in the
[realtime.server] section of the configuration file. The format for this option is the same as
the format for listen_ports option in the [realtime.server] section of the bg.properties file.

--command-listen-port arg

Ports to accept command connections on. This overrides the command_listen_ports
option in the [realtime.server] section of the configuration file. The format for this option is
the same as the format for the command_listen_ports in the [realtime.server] section of
the bg.properties file.

--properties arg

This option provides the path to an alternate Blue Gene/Q configuration file. The default
file, /bgsys/local/etc/bg.properties or the location specified by BG_PROPERTIES_FILE
environment variable if defined is used if the option is not specified.

--verbose arg

Sets the logging configuration. Setting these values overrides the logging configuration in
the bg.properties file. The --verbose option can be used to set the logging level for the
default logger or any additional loggers. The following values are allowed for the level:
OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For example, if you want to
set both the default logger and the ibm.utility logger to the debug value, the following
command can be used:
bg_realtime_server --verbose=DEBUG --verbose=ibm.utility=DEBUG

-h [--help]

Prints the help text.

16.3 Security

Each client must present the Blue Gene/Q administrative certificate when it connects to the
Real-time server. The authentication process is handled automatically by the Real-time API
and is transparent to the user. Clients not presenting the administrative certificate are
rejected. Communication between the client and server is encrypted using secure sockets
layer (SSL).

16.4 Utilities

Utilities are provided to get the status of the Real-time server and change the server's logging
configuration.
Chapter 16. Real-time server 187

16.4.1 Configuration

The Real-time server utilities read their configuration from the [realtime.server.command]
section in Blue Gene/Q configuration file (/bgsys/local/etc/bg.properties). The following
setting is configured in this file:

host = localhost:32062

The host and port to connect to. The Real-time server listens for command connections on
the port. The format is a comma-separated list of host:port pairs. Host is an IP address or
host name. IP addresses containing colons must be enclosed in square
brackets []. Port is a port number or service name. The host and port are optional. If the host
is not specified, the client connects to localhost. If the port is not specified, the default port is
used (32062).

16.4.2 The realtime_server_status command

The realtime_server_status command displays the status of the Real-time server. The
command executable is /bgsys/drivers/ppcfloor/sbin/realtime_server_status.

Example 16-1 shows sample output when the server has started and no clients connected.

Example 16-1 Output of realtime_server_status with no clients

Server status: running
Connected clients: 0
DB monitor state: idle

Example 16-2 shows the output of the command when one client has connected.

Example 16-2 Output of realtime_server_status with one client

Server status: running
Connected clients: 1
DB monitor state: monitoring

The realtime_server_status command accepts the following command-line options:

--host arg Server to connect to. This option overrides the host setting in the
[realtime.server.command] section of the configuration file. The format
for this option is the same as the host setting in the [realtime.server]
section of the bg.properties file.

--properties arg This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
realtime_server_status --verbose=DEBUG
--verbose=ibm.utility=DEBUG
188 IBM System Blue Gene Solution: Blue Gene/Q System Administration

-h [--help] Prints help text.

16.4.3 The realtime_server_log_level command

The realtime_server_log_level command changes the run-time logging configuration of the
Real-time server. The positional parameters to the realtime_server_logging command are
new settings for the different loggers.

The realtime_server_log_level command accepts the following arguments:

--host arg Server to connect to. This option overrides the host setting in the
[realtime.server.command] section of the configuration file. The format
for this option is the same as the host setting in the [realtime.server]
section of the bg.properties file.

--properties arg This option provides the path to an alternate Blue Gene/Q
configuration file. The default file, /bgsys/local/etc/bg.properties or the
location specified by BG_PROPERTIES_FILE environment variable if
defined is used if the option is not specified.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
realtime_server_log_level --verbose=DEBUG
--verbose=ibm.utility=DEBUG

-h [--help] Prints help text.

16.5 Requirements

Because of the way the Real-time server works, it has a couple of requirements that are
unique to it beyond the other servers provided as part of the Blue Gene/Q system. It must be
able to read the database transaction logs, and the database must be configured to support
reading the transaction logs.

16.5.1 Access to the database transaction logs

The Real-time server must reside on the same host as the Blue Gene/Q DB2 database and
have read access to the database transaction logs. BGmaster is typically configured to start
the Real-time server as the database user (bgqsysdb) so that it has access. If the Real-time
server does not have access to the database transaction logs, the Real-time server shuts
down with the error message shown in Example 16-3 when a client connects.

Example 16-3 Message generated when permission to transaction logs denied

(INFO) [0x7f7473301820] ibm.realtime.server.db2.DbChangesMonitor: Start monitoring because a client
connected.
(INFO) [0x7f7473301820] ibm.realtime.server.db2.DbChangesMonitor: db2CfgGet sql_rc=0 sqlcode=0
(INFO) [0x7f7473301820] ibm.realtime.server.db2.DbChangesMonitor: log path for 'BGDB0' is
'/dbhome/bgqsysdb/bgqsysdb/NODE0000/SQL00003/SQLOGDIR/'
(WARN) [0x7f7473301820] ibm.realtime.server.db2.DbChangesMonitor: Client rejected because an error
occured. The error is Permission denied
Chapter 16. Real-time server 189

./bg_realtime_server: failed, Permission denied

16.5.2 Database configuration

The database must be configured with archive logging. The DB2 APIs used by the Real-time
server require that the database is configured with archive logging. The database uses
archive logging if the LOGARCHMETH1 configuration option is not OFF. If the database is not
configured with archive logging, the Real-time server shuts down when a client connects.

The database tables that the Real-time server monitors must have DATA CAPTURE
CHANGES enabled. By default, at install time, this is done by the script that creates the
database schema, /bgsys/drivers/ppcfloor/db/schema/createBGQSchema.

Use the following steps to verify that the current settings are correct:

1. Change the current user to bgqsysdb and supply the password when prompted.

$ su - bgqsysdb

2. Run the following command to view the current database configuration:

$ db2 "get database configuration for bgdb0"

3. If the database is set to the default install configuration, the following line in the database
configuration output is displayed:

First log archive method (LOGARCHMETH1) = DISK:/dbhome/bgqsysdb/dblogs/archive/bgdb0

If the output shows LOGARCHMETH1 = OFF, the database must be reconfigured. To
configure the database with archive logging, after creating the database and before running
createBGQSchema, perform the following steps:

1. Switch the user to bgqsysdb, and update the database configuration with the following
commands:

su - bgqsysdb

mkdir -p /dbhome/bgqsysdb/dblogs/archive/bgdb0

db2 "update database configuration for bgdb0 using logarchmeth1

 DISK:/dbhome/bgqsysdb/dblogs/archive/bgdb0"

2. Stop and restart DB2 so the changes take effect:

db2 force application all

db2stop

db2start

3. After the database restarts, you must make a backup. Use the following command:

db2 "BACKUP DATABASE BGDB0"

4. Create a cron job (logged in as root) to remove old archive log files. Create a file
/etc/cron.daily/bluegene-db-log-cleaner.sh with the contents shown in Example 16-4 on
page 191.

The update command: The DB2 update command in step 1 extends over two lines;
however, it is a single command
190 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Example 16-4 Contents of bluegene-db-log-cleaner.sh

#!/bin/bash
find /dbhome/bgqsysdb/dblogs/archive/bgdb0/ -type f -mtime +1 -exec rm {} \;

5. Make sure the new file is executable by running the following command:

chmod +x /etc/cron.daily/bluegene-db-log-cleaner.sh
Chapter 16. Real-time server 191

192 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 17. Distributed Control System

This chapter describes a centralized load balancing cluster for distributing service node
bandwidth and CPU utilization over multiple smaller nodes. The centralized model focuses on
splitting the mc_server process and managing it with a distributed process manager.

Two types of clustering models are supported on the Blue Gene/Q system: service node
failover and load balancing. Service node failover provides redundancy to minimize resource
downtime. Load balancing clusters distribute processing to multiple server nodes to improve
resource utilization. The two solutions (service node failover and load balancing) can be used
separately or together.

The Blue Gene/Q Service Node Failover using the Linux High Availability solution is designed
to provide transparent server failover for the primary service node. This feature is installed as
a customer option. It is covered in detail in IBM System Blue Gene Solution: Blue Gene/Q
Service Node Failover using Linux High Availability, REDP-4657 IBM Redpapers™
publication.

17
© Copyright IBM Corp. 2013. All rights reserved. 193

17.1 Overview of the Distributed Control System

Performance measurements show that the mc_server component of the Control System is
the largest consumer of CPU and networking bandwidth, especially during block booting.
Offloading the management of the Blue Gene/Q service network and hardware significantly
reduces the load on the primary service node. This offload can be accomplished by
distributing the management of the network connections on a single service node or adding
subnet service nodes.

17.2 Distributed Control System software

The Control System allows the boot image distribution and other mc_server functions to be
distributed over multiple systems. The software components that comprise the distributed
machine controller are:

mc_server The mc_server's controlling process handles client connections and
hardware arbitration. It coordinates the worker processes and
dispatches work to them. To distribute this function, the machine
controller is broken up further into the machine controller (MC) library
and independent remote processes called SubnetMc. The mc_server
is described in detail in Chapter 13, “The machine controller server” on
page 159

MC library The mc_server is a server process built on the machine controller
library. The machine controller library provides the low-level hardware
control and communications.

SubnetMc The worker processes (instances of SubnetMc) are responsible for
managing the network connections and the Blue Gene/Q hardware
assigned to them.

BGmaster The BGmaster is the process manager on Blue Gene/Q for the Control
System servers. Its purpose is to act as a centralized failure and
recovery process. BGmaster is responsible for managing the
SubnetMc components. BGmaster is described in detail in Chapter 11,
“BGmaster” on page 129.
194 IBM System Blue Gene Solution: Blue Gene/Q System Administration

17.3 Hardware configurations

A small configuration, such as the one shown in Figure 17-1, typically runs on a single service
node with only one instance of the SubnetMc process running. This single process provides
communication between the mc_server process and the hardware. The amount of overhead
generated by a single four-rack row of compute racks does not cause any network or CPU
issues on the service node.

Figure 17-1 Small service node Distributed Control System system configuration

However, as additional compute and I/O racks are added, the load on the service node’s CPU
increases and network traffic can cause delays in communication with the hardware. To deal
with the additional stress, configuration changes to software or hardware can be made to
relieve the burden on the service node. In addition to a single service node with one
SubnetMc process running, several other configurations are supported. These configurations
include a service node hosting multiple SubnetMc processes, a service node with multiple
subnet service nodes each running their own SubnetMc process, and a service node with
multiple subnet service nodes each running their own SubnetMc process with ability to
failover to backup subnet service nodes.

Service Node

bgmaster_server

bgagentd

SubnetMc

Subnet
switch

R00

Q04

Control System
Components
Chapter 17. Distributed Control System 195

17.3.1 Multiple SubnetMc processes on a service node

Figure 17-2 shows a service node running multiple SubnetMc processes to balance the load
between the rows of compute and I/O racks. In this configuration, the SubnetMc processes
exist on the service node and are managed by a single bgagentd process.

In Figure 17-2, there are twelve Blue Gene/Q racks set up in three rows of four racks. Each
row is configured as a separate subnet that consists of four Blue Gene racks, an I/O rack
(Qxx), and the subnet switch.

The load is balanced by spreading the Ethernet traffic over multiple interfaces and splitting the
SubnetMc work among three processes.

Figure 17-2 Multiple SubnetMc processes on a service node

Service Node

bgmaster_server

bgagentd

Subnet 0
switch

R00

Q04

SubnetMc

Control System
Components

SubnetMc

Subnet 1
switch

R10

Q14

SubnetMc

Subnet 2
switch

R20

Q24
196 IBM System Blue Gene Solution: Blue Gene/Q System Administration

17.3.2 Multiple subnet service nodes

The hardware solution to reducing the load on the service node is shown in Figure 17-3. In
this configuration, the mc_server process runs on the primary service node. The additional
rows of compute and I/O racks are grouped by row into subnets. Each of the subnets are
controlled by their own subnet service node. The subnet service node also has a bgagentd
process and a SubnetMc process running. In this configuration the bgagentd on the subnet
service nodes communicates with bgmaster_server on the primary service node.

Figure 17-3 Distributed configuration with multiple subnet service nodes

Service Node
bgagentd

Subnet 0
switch

R00

Q04

Control System
Components

Subnet 1
switch

R10

Q14

Subnet 2
switch

R20

Q24

Subnet service node

bgagentd SubnetMc

Subnet service node

bgagentd SubnetMc

Subnet service node

bgagentd SubnetMc

bgmaster_server
Chapter 17. Distributed Control System 197

17.3.3 Multiple subnet service nodes with failover

This hardware solution is similar to the setup in Figure 17-3 on page 197 but with failover
enabled. When a subnet service node failure is detected, the bgmaster_server process
running on the service will failover the SubnetMc process to a backup subnet service node.
As part of the failover processing, the SubnetMc processes connections with the Blue
Gene/Q hardware. The hardware in this scenario remains booted and usable.

To recover from a failover event, use the fail_over command described in section 11.2.6,
“The fail_over command” on page 134.

Figure 17-4 Multiple subnet service nodes with failover

Subnet 0
switch

Subnet 1
switch

Subnet 2
switch

Service node

bgmaster_server

bgagentd

Control System
components

bgagentd SubnetMc

Subnet service node

bgagentd SubnetMc

Subnet service node

bgagentd SubnetMc

Subnet service node

eth eth eth eth eth eth

Primary

Backup
198 IBM System Blue Gene Solution: Blue Gene/Q System Administration

17.4 SubnetMc configuration

Whether the environment has a single subnet or multiple subnets a SubnetMc must be
configured. The SubnetMc configuration is done in the [machinecontroller.subnet.x] section of
the /bgsys/local/etc/bg.properties file (where x is the number of the subnet). Configurable
options for SubnetMc are (default values are shown):

� [machinecontroller.subnet.0]

This type of header indicates the start of the parameters for the SubnetMc. In this case, it
is the first SubnetMc in the configuration file. Subsequent subnets increment the number
at the end of the header (for example, [machinecontroller.subnet.1]).

� Name = Subnet1

Name is the identifier (alias) for the SubnetMc. It represents a unique identifier for each
subnet and is used when logging messages, RAS events, and so on. The alias name for
each subnet MC process in the [master.binmap] section must match the Name keyword in
the [machinecontroller.subnet.X] section. By default the first subnet name is "Subnet1",
the second subnet name is "Subnet2", and so on. A unique alias name is needed for each
instance of a SubnetMc process because the aliases must be associated with different
agents and this name determines the subnet service node (host system) where each
SubnetMc runs.

� PrimaryServer = 127.0.0.1

The PrimaryServer is the IP address of the machine (host) that runs this SubnetMc
process. If there is only one subnet, the PrimaryServer is set to the 127.0.0.1 (loopback)
address. In environments with multiple subnet servers, this address is the interface that
the service node uses to contact the subnet service node. Typically this address is a
192.169.x.x address.

� BackupServer = 127.0.0.1

The BackupServer is the IP address of the machine (host) that runs this SubnetMc
process when the primary server is unavailable. If there is only one subnet, the
BackupServer is set to the 127.0.0.1 (loopback) address. In environments with multiple
subnet servers, this address is the interface that the service node uses to contact the
subnet service node. Typically this address is a 192.169.x.x address.

� PrimaryServerInterface = lo

The PrimaryServerInterface is the Ethernet adapter that the mc_server uses to
communicate with the SubnetMc for this subnet. In a single service node configuration,
this parameter is set to lo (local loopback). When multiple subnet service nodes are being
used, the PrimaryServerInterface designates the address that is used to connect the
service node to the subnet service node. Typically it is an adapter with a 192.169.x.x
address.

� BackupServerInterface = lo

The BackupServerInterface is the Ethernet adapter that the mc_server uses to
communicate with the SubnetMc for this subnet when the primary server is unavailable. In
a single service node configuration, this parameter is set to lo (local loopback). When
multiple subnet service nodes are being used, the BackupServerInterface designates the
address that is used to connect the service node to the subnet service node. Typically it is
an adapter with a 192.169.x.x address.

� PrimaryServerPort = 33456

The PrimaryServerPort is the TCP port number that the SubnetMc for this subnet is
listening on. The default is 33456.
Chapter 17. Distributed Control System 199

� BackupServerPort = 33456

The BackupServerPort is the TCP port number that the SubnetMc for this subnet is
listening on when the primary server is unavailable and the backup server is used instead.
The default is 33456.

� PrimaryBGInterface = eth1

The PrimaryBGInterface defines the Ethernet adapter on the subnet service node used to
talk to the Blue Gene hardware on the service network. The interface IP address is in the
10.x.x.x range, and the second octet increments with the number of rows in the system. A
single SubnetMc system has addresses 10.0.x.x. A second SubnetMc process has the
address 10.1.x.x.

� BackupBGInterface = eth1

The BackupBGInterface defines the Ethernet adapter on the subnet service node used to
talk to the Blue Gene hardware on the service network when the primary server is
unavailable and the backup server is used instead. The interface IP address is in the
10.x.x.x range, and the second octet increments with the number of rows in the system. A
single SubnetMc system has the address range 10.0.x.x. A second SubnetMc has the
address range 10.1.x.x.

� HardwareToManage = R00

HardwareToManage is a list of the racks that are allowed to communicate on this subnet
(for example, the racks expected to be on this subnet). This list includes both the compute
racks and the I/0 racks.

There are several other sections of the bg.properties file that might need to be updated
depending on the number of subnets defined.

The [master.binmap] section defines the binary used for the SubnetMc. Additional subnets
use the same binary. Example 17-1 shows a system that has two SubnetMcs defined.

Example 17-1 [master.binmap] section

[master.binmap]
Maps an alias to a binary path
...
Subnet1=/bgsys/drivers/ppcfloor/control/sbin/SubnetMc_64
Subnet2=/bgsys/drivers/ppcfloor/control/sbin/SubnetMc_64
...

The [master.binargs] section defines the command-line arguments. In this case, as shown in
Example 17-2, different command-line arguments are needed for the two SubnetMc
processes.

Example 17-2 [master.binargs] section

[master.binargs]
List of arguments for each alias specified in [master.binmap] section
...
Subnet1=--ip 172.16.1.135,172.16.1.136 --inport 33456
Subnet2=--ip 172.16.1.136,172.16.1.135 --inport 33457
...

Assign the SubnetMc aliases to hosts in the [master.policy.host_list] section. It is important to
correctly match the alias with the host IP addresses where the binary can run. In this case, as
200 IBM System Blue Gene Solution: Blue Gene/Q System Administration

shown in Example 17-3, each SubnetMc has a preferred host where it can run and a backup
(failover) host where it can run.

Example 17-3 [master.policy.host_list] section

[master.policy.host_list]
Comma separated list of hosts on which the binary associated with the alias may start
....
Subnet1=172.16.1.135,172.16.1.136
Subnet2=172.16.1.136,172.16.1.135
...

In the [master.policy.failure] section, define the failure policy. For more information about
policies, see Chapter 11, “BGmaster” on page 129. In this case, as shown in Example 17-4, a
failover policy is defined for each SubnetMc process.

Example 17-4 [master.policy.failure] section

[master.policy.failure]
Format:
policy_name=trigger,[failover|restart|cleanup],<retries>,<failover_from:failover_to>|etc
...
Subnet1_failover=agent,failover,3,172.16.1.135:172.16.1.136|172.16.1.136:172.16.1.135
Subnet2_failover=agent,failover,3,172.16.1.136:172.16.1.135|172.16.1.135:172.16.1.136
...

The [master.policy.map] section, Example 17-5, sets the policy for the SubnetMc processes.

Example 17-5 [master.policy.map] section

[master.policy.map]
Map comma separated list of named policies to an alias
...
Subnet1=Subnet1_failover
Subnet2=Subnet2_failover
...

17.4.1 Troubleshooting configuration issues

The following items are some possible configuration problems that can lead to confusing or
inconsistent behavior:

� Under certain conditions, using localhost instead of 127.0.0.1 can result in a SubnetMc
process failing to start or restart. If the PrimaryServer or BackupServer keywords are set
to localhost in the [machinecontroller.subnet.x] sections, change them to 127.0.0.1.

� If a SubnetMc has no backup service network connections available, change the
BackupServer, BackupServerInterface, BackupServerPort, and BackupBGInterface
settings to match the PrimaryServer, PrimaryServerInterface, PrimaryServerPort, and
PrimaryBGInterface settings. Repeat this step for all configured subnets.

� Cross-check the [master.policy.host_list] section to confirm that the alias configured for
this subnet can only start on the IP addresses listed from the PrimaryServer and
BackupServer. Repeat this step for all configured subnets.
Chapter 17. Distributed Control System 201

202 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 18. Security

This chapter provides an overview of the security architecture for Blue Gene/Q. There are
three aspects to the Blue Gene/Q security model: an object-based model, network
communications, and the database.

18
© Copyright IBM Corp. 2013. All rights reserved. 203

18.1 Object based model

Blue Gene/Q uses an object-based security model with three basic object types:

� Job
� Block
� Hardware

There are five types of actions upon these objects:

� Create
� Read
� Update
� Delete
� Execute

Not all actions apply to all object types, for example, the update action does not apply for a job
object.

There is also a special value of All that when configured in the bg.properties configuration file
allows a user or group the authority to perform any of the previously mentioned actions.

User and group authorities for objects can be defined in the bg.properties file or granted and
revoked through bg_console. The Blue Gene/Q Scheduler API also provides interfaces for job
schedulers to control user access to compute blocks so they can run jobs. The job and block
authority commands that are available from bg_console are: grant_block_authority,
revoke_block_authority, list_block_authority, grant_job_authority,
revoke_job_authority, and list_job_authority. For more information about these
commands, see Chapter 5, “Control System console” on page 67.

Security configuration in the bg.properties file is kept in the [security.jobs],
[security.hardware], and [security.blocks] sections. Both user and group IDs are supported in
defining the permissions. Example 18-1 shows an example of the [security.jobs] and
[security.blocks] sections. In this example, user bgqadmin or any user in the bgqadmin group
is allowed to perform any action on any job, on any hardware or any block.

Example 18-1 bg.properties object security

[security.blocks]
 # All of the values in this section can be refreshed by running refresh_config from
bg_console.

all = bgqadmin
 # Comma separated list of users or groups allowed to execute all actions on blocks.

create =
 # Comma separated list of users or groups allowed to create blocks.

read =
 # Comma separated list of users or groups allowed to read blocks.

update =
 # Comma separated list of users or groups allowed to update blocks.

delete =
 # Comma separated list of users or groups allowed to delete blocks.

execute =
 # Comma separated list of users or groups allowed to execute blocks.
204 IBM System Blue Gene Solution: Blue Gene/Q System Administration

[security.jobs]
 # All of the values in this section can be refreshed by running refresh_config from
bg_console.

all = bgqadmin
 # Comma separated list of users or groups allowed to execute all actions on all jobs.

read =
 # Comma separated list of users or groups allowed to read all jobs.

execute =
 # Comma separated list of users or groups allowed to execute all jobs.

[security.hardware]
 # All of the values in this section can be refreshed by running refresh_config from
bg_console.

all = bgqadmin
 # Comma separated list of users or groups allowed to execute all actions on hardware.

read =
 # Comma separated list of users or groups allowed to read hardware.

execute =
 # Comma separated list of users or groups allowed to execute hardware.

18.2 Network communication security

Communication between the TCP/IP clients and servers provided by Blue Gene/Q are
secured using the Secure Sockets Layer (SSL) protocol, as provided by the OpenSSL and
Java libraries. This section describes how security is established.

18.2.1 Certificates and keys

Trust must be established between a client and server. Both sides must prove their identity,
and both sides can only trust the data they receive if it cannot be modified along the way. The
use of the SSL protocol and encryption ensures that the data is not modified.

Identity is established using certificates. If a server or client can present a certificate, it can
prove that it has that identity. There are three identities that are used in the Blue Gene
security model: certificate authority (CA), administrative, and command. A certificate is stored
in two files: a public certificate file and a private key file.

Figure 18-1 on page 206 provides an overview of how security certificates are used to protect
communication between clients and servers. The command and administrative certificates
are signed by the CA. The servers use the administrative key to communicate between
themselves and to communicate with commands, such as bg_console. End-user commands
use the command certificate. Administrative commands, such as diagnostics use the
administrative certificate.
Chapter 18. Security 205

Figure 18-1 Certificates for trusted communication

The Certificate Authority (CA) certificate is used to sign the administrative and command
certificates. If a certificate is signed with the CA certificate, it is considered valid; otherwise, it
cannot be trusted. The Control System can trust that the CA verified the Common Name (CN)
in the certificate. Every user must be able to read the CA public key file so that they can verify
the certificates that they receive. Only a trustworthy user (root) can access the CN private key
file because this can be used to generate a new certificate.

The administrative certificate identifies Blue Gene/Q administrative users. If a user can read
the administrative private key file, they are considered to be a Blue Gene/Q administrator.

The command certificate identifies the Blue Gene/Q end user command programs. The
private key for this certificate should only be readable by the bgqcommand system account.
The Blue Gene/Q end user command programs are setuid bgqcommand so that they can
read this key. Only user root can make a program setuid bgqcommand. A normal user cannot
subvert this security by running their own copy of the command.

When an end user command connects to the server, it sends the real user information (uid
and groups). If a user can send a different user’s user information, it can spoof the other user.
Requiring access to the command private key allows the server to trust that the client is
sending valid user information. Also, as a setuid program, the user cannot run it under ptrace
and change the application in progress because they can lose their bgqcommand authority
and cannot read the private key file.

18.2.2 Handshake

After a client connects to a server a handshake takes place. The server and client exchange
certificates, and the client sends the user information before normal communication occurs.
This section describes the handshake from both the client’s and server’s perspectives.

bg_console
uid = sally

bg_console
uid = alice

bg_console
uid = bob

diags harness
uid = root

runjob_server

root CA
private key

and
certificate

command
private key

and
certificate

admin
private key

and
certificate

mmcs_server
206 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The typical client handshake follows these steps:

1. If the user has access to the administrative key file, it presents the administrative
certificate; otherwise, it presents the command certificate.

2. Verifies that the certificate presented by the server is signed by the CA and that the
certificate’s CN matches the configured administrative CN.

3. The user’s information is sent to the server.

4. Now the regular protocol is followed.

The typical server handshake follows these steps:

1. Presents the administrative certificate.

2. Verifies that the certificate presented by the client is signed by the CA.

3. If the CN in the client’s certificate matches the configured administrative CN, the client is
accepted as an administrator.

4. If the CN in the client’s certificate matches the configured command CN, the user
information is read.

5. If the certificate has neither the administrative CN nor the command CN, the connection is
closed.

6. Now the regular protocol is followed.

There are variations in the handshake procedure. Some clients are administrative only, so it
only attempts to use the administrative certificate (for example, the refresh_config
commands and diagnostics). Some servers only accept administrative connections, so it only
accepts the administrative certificate (for example, the Real-time server).

18.2.3 Configuration

Certificate configuration in the bg.properties file is kept in the [security.ca], [security.admin],
and [security.command] sections. Example 18-2 shows an example of the [security.ca],
[security.admin], and [security.command] sections.

Example 18-2 bg.properties certificate security

[security.ca]
 # Certificate Authority.

certificate = /bgsys/local/etc/security/ca/cert.pem
 # File containing the root CA (certificate authority) certificate.
 # This property is optional, but either certificate or
 # certificates_dir must be set or use_default_paths must be 'true'.

certificates_dir = /bgsys/local/etc/security/root/
 # Directory containing root CA certificates.
 # This property is optional, but either certificate or
 # certificates_dir must be set or use_default_paths must be 'true'.

use_default_paths = false
 # Set to 'true' to use the system default root CA paths.
 # If this is 'false' then either certificate or certificates_dir
 # must be set.
Chapter 18. Security 207

keystore = /bgsys/local/etc/security/ca/cert.jks
 # File containing the root CA certificate in Java Keystore format.

[security.admin]
 # Administrative certificate.
certificate = /bgsys/local/etc/security/admin/cert.pem
 # File containing the Blue Gene administrative certificate.

key_file = /bgsys/local/etc/security/admin/key.pem
 # File containing the Blue Gene administrative private key.

cn = Blue Gene administrative
 # The certificate provided by the server or administrator must have this CN
 # (common name).

keystore = /bgsys/local/etc/security/admin/key.jks
 # File containing the Blue Gene administrative certificate in Java Keystore format
(jks).

[security.command]
 # Command certificate.

certificate = /bgsys/local/etc/security/command/cert.pem
 # File containing the Blue Gene command certificate.

key_file = /bgsys/local/etc/security/command/key.pem
 # File containing the Blue Gene command private key.

cn = Blue Gene command
 # The certificate provided by the Blue Gene command must have this CN.

18.2.4 Certificate file permissions

To establish effective trust between components, the private keys must be kept secret to
prevent unauthorized users from escalating their privileges. The administrative key file is only
readable by the administrative group. The command key file is readable by the bgqcommand
system account.

Example 18-3 shows the correct file permissions for the various security keys.

Example 18-3 Permissions for keys

bgqadmin@bgqsn etc> ll security/*
 security/admin:
 total 12
 -rw-r--r-- 1 root root 859 Oct 26 17:39 cert.pem
 -rw-r----- 1 root bgqadmin 1511 Oct 26 17:39 key.jks
 -rw-r----- 1 root bgqadmin 887 Oct 26 17:39 key.pem
 security/ca:
208 IBM System Blue Gene Solution: Blue Gene/Q System Administration

 total 8
 -rw-r--r-- 1 root root 636 Oct 26 17:39 cert.jks
 -rw-r--r-- 1 root root 839 Oct 26 17:39 cert.pem
 security/command:
 total 8
 -rw-r--r-- 1 root root 851 Oct 26 17:39 cert.pem
 -rw------- 1 bgqcommand root 887 Oct 26 17:39 key.pem
bgqadmin@bgqsn etc>

18.2.5 Generating security keys and certificates

If your site already has a public key infrastructure in place, that can be used to create the
administrative and command certificate files. The CN in the administrative certificate must
match the configured administrative CN in the bg.properties file and the CN in the command
certificate must match the configured command CN.

Alternatively, the Blue Gene/Q software ships with a simple utility that uses the OpenSSL
command-line utility to generate certificates for use. The program is
/bgsys/drivers/ppcfloor/utility/sbin/generate_security_certificates.sh and must be run from the
/bgsys/local/etc directory by user root. Example 18-4 provides an example of how to use this
program to generate security keys and certificates.

Example 18-4 Generating keys and certificates

root@bgqsn etc>/bgsys/drivers/ppcfloor/utility/sbin/generate_security_certificates.sh
Generating RSA private key, 1024 bit long modulus
....................................++++++
.......++++++
e is 65537 (0x10001)
Signature ok
subject=/C=US/ST=Minnesota/L=Rochester/O=IBM/OU=STG/CN=Root CA
Getting Private key
Certificate was added to keystore
Generating RSA private key, 1024 bit long modulus
..............................++++++
..........++++++
e is 65537 (0x10001)
Signature ok
subject=/C=US/ST=Minnesota/L=Rochester/O=IBM/OU=STG/CN=Blue Gene administrative
Getting CA Private Key
security/admin/cert.pem: OK
Entry for alias 10241040677550452466cn=blue gene administrative, ou=stg, o=ibm, l=rochester,
st=minnesota, c=uscn=root ca, ou=stg, o=ibm, l=rochester, st=minnesota, c=us successfully
imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled
Generating RSA private key, 1024 bit long modulus
...++++++
............++++++
e is 65537 (0x10001)
Signature ok
subject=/C=US/ST=Minnesota/L=Rochester/O=IBM/OU=STG/CN=Blue Gene command
Getting CA Private Key
Chapter 18. Security 209

security/command/cert.pem: OK
root@bgqsn etc>

When this program runs, it deletes the certificate authority private key file. If the certificates
are compromised in some way, run the program again to generate new certificates.

18.3 Database security

Multiple programs access the Blue Gene/Q DB2 database. The Blue Gene/Q servers, system
configuration programs, and users of the Scheduler APIs are the primary users of the
database. Access to the database is secured using standard DB2 security mechanisms. Blue
Gene/Q administrative users are expected to have DBADM authority to the database.

Users with DBADM database authority have all privileges to the database objects and their
contents. They can create, delete, and alter tables, update table contents, perform queries,
and so on. DBADM authority can be assigned to individual users or groups. The following
commands illustrate different ways in which you can give DBADM authority.

A DB2 user with SYSADM authority can grant other users access to the Blue Gene/Q
database. One user with SYSADM authority is the database instance user, typically
bgqsysdb.

Example 18-5 shows the DB2 command to grant DBADM authority to everyone in the
bgqadmin group. The issuing user must be connected to the database before granting
authority.

Example 18-5 Granting group authority to DB2 database

$ su - bgqsysdb
$ db2 connect to bgdb0
$ db2 grant dbadm on database to group bgqadmin

Example 18-6 shows the DB2 command to grant DBADM authority to user bgqadmin1. The
issuing user must be connected to the database before granting authority.

Example 18-6 Granting user authority to DB2 database

$ db2 grant dbadm on database to user bgqadmin1
210 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 19. Database

This chapter provides information about database configuration, maintenance, and
optimization.

19
© Copyright IBM Corp. 2013. All rights reserved. 211

19.1 Database overview

All of the information about the Blue Gene/Q system’s state is stored in the DB2 database.
DB2 is installed and configured during the initial installation of the system. After it is installed,
there is rarely a need for manual interaction with the database.

The data stored in DB2 is managed by the Blue Gene/Q Control System software. In all
cases, the viewing and modification of the database information is handled through
commands and interfaces, and never through direct database commands or SQL statements.
For instance, all hardware status and operational state of the machine is represented in the
database and can be viewed using the Blue Gene Navigator. If old data needs to be purged
from any tables, this is accomplished using the dbPurge tool. See 19.3.1, “Purging old data
from tables” on page 213. View the database as being the repository for machine information,
but not requiring direct manipulation by users or administrators, and also not requiring deep
knowledge of the DB2 product or SQL syntax.

19.2 Database configuration

The home directory for the database is /dbhome. Information about the local database
configuration is maintained in the /bgsys/local/etc/bg.properties file. The default entries in the
bg.properties file for the database are shown in Example 19-1.

Example 19-1 bg.properties database entries

[database]

name=BGDB0
 # The name of the database containing the Blue Gene schema.

#user=bgqsysdb
 # The user to connect to the database as.
 # This value is optional. If not set, then the current user is used.

#password=xxxxxx

schema_name=bgqsysdb
 # The database schema containing the Blue Gene tables.
 # This value is optional. If not set, the default schema is used.

computeRackRows=1
computeRackColumns=1
 # Used by dbPopulate to populate the schema

19.3 Database maintenance

There are two suggested steps to maintaining the database: purging old data to prevent the
database from growing too large and creating indexes to optimize performance.
212 IBM System Blue Gene Solution: Blue Gene/Q System Administration

19.3.1 Purging old data from tables

A Perl script, dbPurge.pl, is provided in the /bgsys/drivers/ppcfloor/db/schema directory to
purge data from the database. The dbPurge.pl script purges environmental data, RAS events,
history, performance data, and so on. It is designed to purge data that is older than a
specified number of months. In most environments, it is recommended that the script be run
daily to prevent the database from growing too large. The recommended data retention period
is three months. In a large system environment, purging data older than one month might be
necessary. The dbPurge.pl script is the only supported method of deleting old database
information. Using the dbPurge.pl command without options defaults to deleting all rows of
data that are beyond three months old. The following options can be used to change the
default behavior:

-properties <properties-file-name>
Defines an alternate bg.properties file. The default file,
/bgsys/local/etc/bg.properties or the location specified by
BG_PROPERTIES_FILE environment variable if defined is used if the
option is not specified.

-months, -m <number_of_months>
Number of months that determines which rows to delete. Rows older
than the number of months passed in from the current date are purged
from the tables.

-v Does not actually purge anything. Instead it just reports on which
tables it can purge and how many rows it can purge in each.

-env Only purges rows from the TBGQ*ENVIRONMENT and TBGQ*TEMP
tables.

-hist Only purges rows from the TBGQ*_HISTORY tables.

-event Only purges rows from the TBGQ*EVENTLOG tables.

-perf Only purges rows from the TBGQ*PERF tables.

-diags Only purges rows from the TBGQDIAG* tables.

-all Purges rows from the ENVIRONMENT, PERF, DIAGS, and HISTORY
tables along with the EVENTLOG tables.

-q <text> Further qualify the table(s) to purge using text that must be part of the
table name.

-h, --help The command help text.

One method of implementing the data purge is to execute a simple wrapper script on the
service node, using cron, every night at midnight. Example 19-2 shows bgqadmin’s crontab
information that initiates the dbPurge.sh script.

Example 19-2 bgqadmin’s crontab entry to run dbPurge.sh

$crontab -l
0 0 * * * /bgsys/local/etc/dbPurge.sh

Example 19-3 on page 214 shows the contents of the calling script, dbPurge.sh, that was
placed in the /bgsys/local/etc directory. dbPurge.sh is not included in the Blue Gene/Q
software. The contents of Example 19-3 on page 214 can be used to create the script on the
service node. The example script overrides the default three-month interval and sets it to one
month.
Chapter 19. Database 213

Example 19-3 Contents of simple dbPurge.sh

#! /bin/bash
source /dbhome/bgqsysdb/sqllib/db2profile
/bgsys/drivers/ppcfloor/db/schema/dbPurge.pl --all -m 1

The calling script can be modified to suit individual environments. The script shown in
Example 19-4 is set up to delete RAS events older than three months, and environmentals
older than two months.

Example 19-4 dbPurge.sh script

#! /bin/bash
source /dbhome/bgqsysdb/sqllib/db2profile
/bgsys/drivers/ppcfloor/db/schema/dbPurge.pl --event -m 3
/bgsys/drivers/ppcfloor/db/schema/dbPurge.pl --env -m 2

19.3.2 Optimizing with indexes

The following steps can be used to automatically create indexes that improve database
performance on a Blue Gene/Q service node. The steps might take several hours to
complete. The steps can be done during normal operation of the machine. The procedures
must be done by someone with a general familiarity with using DB2 on a Blue Gene/Q service
node, with the ability to connect to the BGDB0 database, and who has the password for the
bgqsysdb user ID.

This procedure is optional. If the machine is running normally, and there are no issues with
database performance, such as slow response from Blue Gene Navigator, or other database
operations, there is no need to use this procedure. This procedure must only be used if there
is some evidence of database performance problems.

Before starting, verify that DB2 is set to do automatic maintenance of database statistics. The
procedures in this document rely on the statistics maintained by DB2 to make accurate
recommendations on index creation:

1. Display the current maintenance settings with the following command:

db2 get db config for bgdb0 | grep AUTO_

The command returns results similar to those in Example 19-5.

Example 19-5 DB2 maintenance settings

Auto deletion of recovery objects (AUTO_DEL_REC_OBJ) = OFF
Automatic maintenance (AUTO_MAINT) = ON
Automatic database backup (AUTO_DB_BACKUP) = OFF
Automatic table maintenance (AUTO_TBL_MAINT) = ON
Automatic runstats (AUTO_RUNSTATS) = ON
Automatic statement(AUTO_STMT_STATS) = OFF
Automatic statistics profiling (AUTO_STATS_PROF) = OFF
Automatic profile updates (AUTO_PROF_UPD) = OFF
Automatic reorganization (AUTO_REORG) = OFF
Auto-Revalidation (AUTO_REVAL) = DISABLED
214 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2. Ensure that the values Automatic maintenance, Automatic table maintenance, and
Automatic runstats are set to ON. If they are not ON, they can be turned on using this
command:

db2 update db cfg for bgdb0 using auto_runstats ON auto_tbl_maint ON auto_maint
ON

If the settings were not ON, and had to be turned on, run it for at least a week to
accumulate accurate statistics before running the rest of this procedure. You get improved
database performance on your service node by having indexes that are best suited to the
usage patterns on your machine.

If these automatic maintenance features are not present in your installed version of DB2, you
must upgrade to the latest version of DB2.

The main procedure is described in the following steps. When the steps are completed, the
procedure is complete. This procedure can be run again every few months in case there are
changes in usage patterns. Run the following steps as user ID bgqsysdb:

1. Set your user ID using the command:

su bgqsysdb

Supply the password when prompted.

2. Create a new directory on your service node. Using a text editor, create three files,
extract.sed, extract_idx.sed, and parse.awk in the new directory. The contents of each file
are shown in the following examples:

i. Copy the contents of Example 19-6 into the extract.sed file.

Example 19-6 extract.sed file contents

0,/Dynamic SQL Statements:/ d
/Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text/ d
/Dynamic SQL Environments:/ { g; q; }

ii. Copy the contents of Example 19-7 into the extract_idx.sed file.

Example 19-7 extract_idx.sed file contents

0,/-- LIST OF RECOMMENDED INDEXES/ d
/ADVISOR DETAILED XML OUTPUT/ { h ; q; }

iii. Copy the contents of Example 19-8 into the parse.awk file.

Example 19-8 parse.awk file contents

BEGIN { RS="\n0x"; IGNORECASE=1; }
{
d = $8;
i = 9;
while (i <= NF) { d = d " " $i; ++i; }
if ($8 == "select" || $8 == "SELECT") {
print "-- #SET FREQUENCY " $7;
print d;
print ";"
}
}

Chapter 19. Database 215

3. Extract SQL statements from the dynamic statement cache using the following command:

db2pd -d bgdb0 -dynamic > ./db2pd.out

4. Convert the file into the format required by the DB2 Design Advisor using the following
command:

sed -f extract.sed < ./db2pd.out | awk -f parse.awk | sed "s/block
d/blockid/g" > ./db2advis.in

5. Run the DB2 Design Advisor with this command:

db2advis -d bgdb0 -i ./db2advis.in > db2advis.out

6. Extract the list of CREATE INDEX statements from the DB2 Design Advisor output by
running the following command:

cat db2advis.out | sed -f extract_idx.sed > ./create_index.sql

7. Create the recommended indexes:

db2 connect to bgdb0

db2 -tvf ./create_index.sql

If for any reason, you want to undo the index creation, the following commands drop the
indexes created in step 5.

cat db2advis.out | grep "CREATE.* INDEX" | sed "s/ON.*//" | sed
"s/.*BGQSYSDB\"./DROP INDEX BGQSYSDB./" > drop_index.sql

db2 connect to bgdb0

db2 -vf ./drop_index.sql

db2 commit work

19.3.3 Reorganizing tables

Reorganizing tables can reduce the amount of disk space used. Perform this operation
periodically. In Figure 19-1 on page 217, the dbReorg.sh script is added to the cron.weekly
crontab file to run one time per week.

Note: This command might run for several hours depending on the service node, and
the amount of DB2 activity. If this step fails due to missing explain tables, run the
following command from the ~bgqsysdb/sqllib/misc/ directory:

db2 -tf EXPLAIN.DDL

If db2advis still fails with errors about the explain tables, drop the objects created by
EXPLAIN.DDL because they might be out of date. Then run db2 -tf EXPLAIN.DDL
again.
216 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 19-1 Sample script for reorganizing tables

bgqsn@bqadmin:cat /etc/cron.weekly/dbReorg.sh
#! /bin/bash

. ~bgqsysdb/sqllib/db2profile

db2 connect to bgdb0

db2 "select tabname from syscat.tables where tabname like 'TBGQ%' and
tabschema='BGQSYSDB'" | grep TBGQ | awk '{print $1}' > /tmp/bgdb0.tables

for i in `cat /tmp/bgdb0.tables`
do
 echo "Reorganizing Table - $i"
 db2 "reorg indexes all for table $i allow write access"
 db2 "reorg table $i"
done

bgqsn@bgqadmin:
Chapter 19. Database 217

218 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 20. Logging

Control System logs diagnose software, hardware, and configuration problems. This chapter
provides information about Apache log4j and log4cxx, log file format, log merge utility, log
configuration, and log rotation.

20
© Copyright IBM Corp. 2013. All rights reserved. 219

20.1 Apache log4j and log4cxx

The Blue Gene/Q Control System programs use an open source library based on Apache
log4j for logging.The Apache log4j design provides a large number of features and offers a
great deal of customizability. The library can be configured dynamically and includes a facility
for initializing the library using a configuration file. In log4j, the central object is a logger. An
application typically has several loggers. Each logger has a name. Examples of loggers in the
Control System are ibm.mmcs.mmcs_server and ibm.bgsched.allocator.Allocator. Another
attribute of a logger is its level, which is the cut-off for the message level (or severity) that will
be logged. The message levels in log4j are TRACE, DEBUG, INFO, WARN, ERROR, and
FATAL.

Loggers form a hierarchy, where a child logger can inherit or override the message level of its
parent logger. For example, the two Control System loggers used in the previous paragraph
are both descendants of the “ibm” logger. Because child loggers inherit their parent logger’s
attributes, unless overridden, an administrator can quickly and easily configure all of the
loggers in an application. It is often also useful when debugging to override the level for a
single logger.

Each logger is also associated with an appender. The appender determines where log
records go. The appenders provided by the log4j library can send log records to the program’s
standard output, to a file, to syslog, and various other locations. Text-file based appenders
have a layout that formats the log record for output. By setting the layout consistently, the log
records have a standard format.

The log4j design was ported to several programming languages. The Control System is
written in C++ and uses the log4cxx library.

20.2 Log file format

The Control System logs use a common format for log records. Each log record begins with
the time stamp in standard ISO 8601 format. An example time stamp found in a log file is
2010-10-01 14:38.627. After the time stamp, the log record contains the message’s level
(TRACE, DEBUG, INFO, WARN, ERROR, or FATAL). After the level is the thread ID, which is
useful for debugging multi-threaded applications. Next, the name of the logger is displayed,
and finally the message that is being logged.

The following syntax is the standard format used for log message on Blue Gene/Q using the
log4j formatting language:

%d{yyyy-MM-dd HH:mm:ss.SSS} (%-5p) [%t] %c: %m%n

Some Control System applications take advantage of a feature of the log4j design called
Mapped Diagnostic Context (MDC) to include context for a log record, such as the name of
the user or a client ID when the application can process multiple clients.

Example 20-1 contains lines from the MMCS server log file when it starts and a later
message indicating an error.

Example 20-1 Sample MMCS log file

2011-10-01 09:11:59.273 (INFO) [0xfff7bbbdb10] ibm.mmcs.mmcs_server: MMCS[18618]:
starting: DRV400_2011 (revision 47346) Sep 29 2011 04:39:34
2011-10-01 09:11:59.274 (INFO) [0xfff7bbbdb10] ibm.mmcs.mmcs_server: Startup parameters:
mmcs_server
220 IBM System Blue Gene Solution: Blue Gene/Q System Administration

2011-10-01 09:11:59.334 (INFO) [0xfff7bbbdb10] ibm.mmcs.MMCSConsolePort: Attempting to
bind and listen on 2 port pairs.
2011-10-01 09:11:59.335 (INFO) [0xfff7bbbdb10] ibm.mmcs.mmcs_server: MMCS: console port
open.
2011-10-01 09:37:58.118 (ERROR) [0xfff561ff0c0] ibm.mmcs.MMCSCommandProcessor:
allocate_block: FAIL;create_block: resources are unavailable - CABLE: D_R00-M1D_R00-M0

20.3 Log merge utility

The Control System writes several log files in /bgsys/logs/BGQ that are generated by the
different servers, the runjob muxes running on the front end nodes, and Common I/O
Services (CIOS) running on the I/O nodes. When debugging a problem, developers and
service personnel often examine log files from multiple servers for clues as to the source of
the problem. Often they want to see the log records from multiple servers interleaved in the
same file to examine what has happened on the servers. The Blue Gene/Q log merge utility
can create a merged log file.

The log_merge reads Control System log files and merges them, displaying log entries from
different log files in order of the time stamp and prefixed with the name of the file the log
record came from. Blue Gene/Q log files use a common format for log entries that allows
them to be merged in this way.

The output of log_merge is the log entries from the log files, with each entry prefixed with the
filename or the process name. Use the --map (or -m) option to print the process name rather
than the filename.

The input files can be specified on the command line or read from standard input. If no files
are given then the log files used are the ones in the default location, /bgsys/logs/BGQ, or the
value for the log directory in the Blue Gene/Q configuration file (bg.properties). If a directory is
given then log_merge will use every file in the directory. It does not recurse into subdirectories
of the given directory.

If -, -0, or --null is given on the command line, log_merge reads file or directory names from
standard input. The filenames must be separated by a newline character unless -0 or --null is
given on the command line. The filenames must be separated by a null character if -0 or --null
is used. If you use the find command to generate the list of files, use -print0 to generate a list
of filenames separated by a null character.

The log_merge works in one of two modes: historical or live. The default mode is historical. In
historical mode, log_merge reads log entries within the interval from the existing log files and
merges them into a single stream. The interval is specified using the --start and --end
command-line options.

In live mode, log_merge monitors the log files for new output and prints the log entries as they
are added. This is useful for monitoring the Blue Gene/Q Control System processes. Use the
--live option to run log_merge in live mode.

The log_merge utility is installed to /bgsys/drivers/ppcfloor/bin/log_merge and should be in
your system path.

20.3.1 Configuration

The log_merge utility reads the Blue Gene/Q configuration file (bg.properties) for
configuration. The only configuration option is log_dir in the log_merge section. This is the
Chapter 20. Logging 221

directory that is used if no arguments are given on the command line. If not present, the
default value of /bgsys/logs/BGQ is used.

20.3.2 Usage

The log_merge utility optionally takes a list of file or directory names as the files to merge or
the directory containing the files to merge. If no files or directories are given, the command
will use the configured directory as described in the Configuration section above. Use a
filename of “-” (the dash character) to read file or directory names from standard input. You
must have read permission to the file to perform this operation. The syntax of the log_merge
command is:

log_merge [OPTIONS ...]... [FILE or DIRECTORY]

The supported log_merge command options are as follows:

--live Live updates.

-m [--map] Displays short names for log files.

--start arg Interval start time. See 20.3.3, “Time stamp format” on page 222 for
time stamp formatting. This option cannot be used with the --live
option.

--end arg Interval end time. See 20.3.3, “Time stamp format” on page 222 for
time stamp formatting. This option cannot be used with the --live
option.

-0 [--null] Reads null-terminated file names from standard input.

--properties arg Blue Gene/Q configuration file.

--verbose arg Sets the logging configuration. Setting these values overrides the
logging configuration in the bg.properties file. The --verbose option
can be used to set the logging level for the default logger or any
additional loggers. The following values are allowed for the level: OFF,
FATAL, ERROR, WARN, INFO, DEBUG, TRACE, or ALL. For
example, if you want to set both the default logger and the ibm.utility
logger to the debug value, the following command can be used:
log_merge --verbose=DEBUG --verbose=ibm.utility=DEBUG

-h [--help] Print command help text.

20.3.3 Time stamp format

The format of time stamps, used in the --start and --end options, are:

� YYYY-mm-dd HH:MM::SS.sss
� YYYY-mm-dd
� mm-dd
� HH:MM::SS.sss

In the time stamp, YYYY is the year, mm is the month number, dd is the day, HH is the hour in
24-hour format, MM is the minute, SS is the seconds, and sss is fractions of a second.

When a date is given without a time stamp, the actual time is midnight of that day if it is the
--start option, or midnight of the next day if it is the --end option. For example, to show the log
entries for June 7, you can use --start 06-07 --end 06-07.
222 IBM System Blue Gene Solution: Blue Gene/Q System Administration

20.4 Configuration

The logging configuration is included in the logging section of the Blue Gene/Q system
configuration file. Because of this, the names of many of the loggers that an administrator
wants to change the level for are visible. For debugging purposes, users can also set the
logging level for individual loggers by adding them to this file with the new level.

If you alter the format of the log record, the log merge utility will not work because it cannot
parse the time stamp from the log record.

Example 20-2 shows the logging configuration in the Blue Gene/Q system configuration file.

Example 20-2 Logging configuration in the bg.properties file

[logging]
 # log4cxx configuration. For more information, see http://logging.apache.org/log4cxx/
log4j.logger.ibm = INFO, default
 # ibm logger - Root for logging done by IBM components ('level' progression - TRACE,
DEBUG, INFO, WARN, ERROR, FATAL)
log4j.additivity.ibm = false

log4j.logger.ibm.utility = INFO # Utility functions
log4j.logger.ibm.utility.cxxsockets = WARN # CxxSockets library
log4j.logger.ibm.bgsched = INFO # Scheduler APIs
log4j.logger.ibm.security = INFO # Security
log4j.logger.ibm.database = INFO # Database layer
log4j.logger.ibm.realtime = INFO # Real-time server
log4j.logger.ibm.runjob = WARN # job submission
log4j.logger.ibm.runjob.mux = DEBUG # job submission multiplexer
log4j.logger.ibm.runjob.server = DEBUG # job submission server
log4j.logger.ibm.mc = DEBUG # MC (machine controller)
log4j.logger.ibm.mc.MCServer = DEBUG # mcServer
log4j.logger.ibm.mc.MCServerThread = DEBUG # mcServer
log4j.logger.ibm.mc.MCServerLockNode = DEBUG # mcServer
log4j.logger.ibm.boot = DEBUG # MC boot lib
log4j.logger.ibm.bgqconfig = INFO # BGQ config
log4j.logger.ibm.icon = DEBUG # iCon
log4j.logger.ibm.bgws = INFO # Web Services
log4j.logger.ibm.mmcs = INFO # MMCS server
log4j.logger.ibm.ras = WARN # RAS
log4j.logger.ibm.master = INFO # BGmaster
log4j.logger.ibm.cios = WARN # Common I/O Services

[logging.default]

log4j.appender.default = org.apache.log4j.ConsoleAppender
log4j.appender.default.layout = org.apache.log4j.PatternLayout
log4j.appender.default.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss.SSS} (%-5p) [%t]
%c: %m%n

20.5 Log rotation

There are many log files that exist on a Blue Gene/Q service node, and some can grow large
and become difficult to analyze. To resolve this problem, log files can be split into more
manageable sizes using the logrotate utility that ships with many flavors of Linux, including
RedHat. You can learn more about logrotate by reading its manual page.
Chapter 20. Logging 223

20.5.1 Control System logs

The BGmaster component (see Chapter 11, “BGmaster” on page 129) creates log files for
each managed process if they do not exist. The file names are in the format
$hostname-alias.log. BGmaster redirects the standard output and error file descriptors of the
process to this file. By configuring logrotate, you will have a series of compressed log files,
each with a date appended to the end, showing when logrotate compressed and rotated the
file. The log files will not grow much beyond the size specified in the size argument in the
logrotate configuration file, as shown in Example 20-3.

Example 20-3 logrotate Control System logs configuration file

bgqadmin@bgqsn ~> cat /etc/logrotate.d/bgmaster
/bgsys/logs/BGQ/*-mc_server.log /bgsys/logs/BGQ/*ubnet*.log
/bgsys/logs/BGQ/*-runjob_server.log /bgsys/logs/BGQ/*-runjob_mux*.log
/bgsys/logs/BGQ/*-mmcs_server.log /bgsys/logs/BGQ/*-bgmaster_server.log
/bgsys/logs/BGQ/*-bgagentd.log /bgsys/logs/BGQ/*-bgws_server.log
/bgsys/logs/BGQ/*-realtime_server.log /bgsys/logs/BGQ/teal/*teal*.log {
 rotate 10
 size=100M
 notifempty
 missingok
 copytruncate
 compress
}
bgqadmin@bgqsn ~>

20.5.2 I/O node logs

The MMCS server creates log files for each I/O node in the Blue Gene/Q system. They are by
default located in /bgsys/logs/BGQ/location.log where location is the I/O node location. It is
also useful to rotate these logs to prevent them from growing too large. The logrotate
configuration file for I/O node logs is shown in Example 20-4.

Example 20-4 logrotate I/O node logs configuration file

bgqadmin@bgqsn ~> cat /etc/logrotate.d/ionodes
/bgsys/logs/BGQ/R*I*J*.log /bgsys/logs/BGQ/Q*I*J*.log {
 rotate 10
 size=10M
 notifempty
 missingok
 copytruncate
 compress
}
bgqadmin@bgqsn ~>

20.5.3 Subnet service node logs

Every subnet service node (see Chapter 17, “Distributed Control System” on page 193) also
needs a logrotate configuration file defined to manage the size of log files. The logrotate
configuration file for subnet service node logs is shown in Example 20-5 on page 225.
224 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Example 20-5 logrotate subnet service node logs configuration file

bgqadmin@bgqssn6 ~> cat /etc/logrotate.d/bgmaster
/bgsys/logs/BGQ/*/*ubnet*.log /bgsys/logs/BGQ/*/*-bgagentd.log {
 rotate 10
 size=100M
 notifempty
 missingok
 copytruncate
 compress
}
bgqadmin@bgqssn6 ~>

20.5.4 Log maintenance

The majority of the logs created by Control System daemons are rotated by the logrotate
utility. Other logs created in subdirectories of /bgsys/logs/BGQ are not rotated or purged by
logrotate. To manage these logs, add a script to the cron.daily directory so that a daily job
will run that cleans up the logs, as shown in Example 20-6.

Example 20-6 cron.daily script to clean up old logs

bgqadmin@bgqsn ~> cat /etc/cron.daily/clean_bgsys_logs
#!/bin/bash
Clean old log files
find /bgsys/logs/BGQ -type f -mtime +30 -exec rm {} \;
find /bgsys/logs/BGQ/diags/bringup -type f -name "*EdramChargePump*.log" -ctime +7 -exec rm
-f "{}" \;
bgqadmin@bgqsn ~>
Chapter 20. Logging 225

226 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 21. The bg.properties file

The properties file is the single central location for all Blue Gene/Q software configuration
information. The contents of the file are used to configure database connection information,
configure and control logging behavior, and enable the configuration of every component
present in the Blue Gene/Q software stack.

21
© Copyright IBM Corp. 2013. All rights reserved. 227

21.1 The bg.properties file overview

The bg.properties file is located in the /bgsys/local/etc directory. The file contains no plain text
passwords and must be readable by all users. The format of the file is similar to an INI file.

Characteristics and limitations of the file are:

� Section names are enclosed in square brackets.
� Subsections are also in square brackets but have one or more periods in the name.
� Comments can start anywhere in a line and are denoted by a single pound ‘#’ character.
� Duplicate sections are invalid.
� Duplicate keys within a section are invalid.

Example 21-1 shows the database configuration and the runjob server sections of the
bg.properties file.

Example 21-1 bg.properties file format

Blue Gene configuration file.

[database]

name=BGDB0
 # The name of the database containing the Blue Gene schema.

#user=bgqsysdb
 # The user to connect to the database as.
 # This value is optional. If not set, then the current user is used.

#password=xxxxxxx
 # The password to use when connecting to the database.
 # This value is required if the user is set and ignored if it's not.

schema_name=bgqsysdb
 # The database schema containing the Blue Gene tables.
 # This value is optional. If not set, the default schema is used.

computeRackRows=1
computeRackColumns=4
 # Used by dbPopulate to populate the schema.

...

[runjob.server]

thread_pool_size = auto
 # Number of threads to run in the server.
 # Allowed values are integers greater than 0 or "auto".
 # "auto" means the runjob_server will pick the number of threads to start.
 # The default is auto.

mux_listen_ports = localhost:25510,172.20.3.1:25510
command_listen_ports = localhost:24510,172.20.3.1:24510
 # The ports that the runjob_server will listen for connections on.
 # The format is a comma-separated list of host:port pairs. host is an IP

address or host name. IP addresses containing colons must be enclosed in
228 IBM System Blue Gene Solution: Blue Gene/Q System Administration

[]. Link local ipv6 addresses must include the interface name appended
after a % character. port is a port number or service name.

 # The host and port are optional. If the host is not specified the server
will listen on any interface. If the port is not specified the default
port will be used (25510 and 24510).

io_connection_interval_increment = 5
 # Number of seconds to increment a progressive timeout when
 # retrying connection attempts to the CIOS (common I/O services) daemons.
 # This value can be updated by the runjob_server_refresh_config command.
io_connection_interval_max = 120
 # Maximum number of seconds to wait between connection attempts to the CIOS

daemons. This value can be updated by the runjob_server_refresh_config
command.

performance_counter_interval = 30
 # Number of seconds to wait between inserting performance counter

statistics into the database for persistent storage. The default is 30
seconds if this value is not specified. This value can be updated by the
runjob_server_refresh_config command.

connection_pool_size = 20
 # The maximum number of connections held in the runjob_server database
connection pool.
 # If not specified, the maximum is 20.

extra_connection_parameters = Debug=True;
 # Extra parameters to pass on the connection.
 # Format is NAME=VALUE pairs separated by ;.
 # Optional, default is no extra parameters.

output_throttle = 128
 # The maximum throughput per I/O connection for standard output and

standard error. The units are kilobytes per second. If not specified, the
value is 128. This value can be updated by the
runjob_server_refresh_config command.

output_delay = 500
 # The amount of milliseconds to delay reading from a stdio daemon running

on an I/O node if it has hit the output_throttle maximum throughput
value. If not specified, this value is 500.

 # This value can be updated by the runjob_server_refresh_config command.

control_action_heartbeat = 60
 # The number of seconds to wait between checking for progress of a job that

has been terminated due to a RAS event with a control action. If not
specified, this value is 60.

 # This value can be updated by the runjob_server_refresh_config command.

...
Chapter 21. The bg.properties file 229

21.2 Property file validation

The server configuration sections of the bg.properties file can be validated for correctness
using the properties_validate command. The command ensures that the configuration
options that must be present are there and that all dependencies are met. Any failures
detected by the command can cause servers to fail on start up. The accepted arguments for
the properties_validate command are:

--properties This required argument is the fully qualified file name to validate (for
example, /bgsys/local/etc/bg.properties).

--server This option allows specification of a single server. Valid values are
bgmaster_server and mmcs_server. If this argument is not specified,
the default is for the configuration of all supported servers (for
example, bgmaster_server and mmcs_server) to be checked.

--dynamic Specifying this option provides extended analysis of runtime options,
such as port configurations and file permissions. Dynamic analysis
must only be run on the system that is running the processes under
test. If you are testing BGmaster configuration, run the
properties_validate command on the primary service node.

--help Prints the help text.
230 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Chapter 22. The Coreprocessor tool

This chapter describes the Blue Gene/Q Coreprocessor tool, which is a basic parallel
debugger that enables debugging of problems at all levels (hardware, kernel, and
application).

The Coreprocessor tool uses the low-level hardware JTAG interface to read and organize
hardware information, including instruction address registers (IAR), general purpose registers
(GPR), special purpose registers (SPR), and device control registers (DCR). It can process
compute node core files, and it can also connect to a running job.

The Coreprocessor tool has no dependencies on the application code that is running on the
node (no special calls that need to be made, libraries to link in, and so on). It can sort nodes
based on their stack traceback and kernel status, which can help isolate a failing or problem
node quickly. It also supports stack dumping on a per processor basis.

22
© Copyright IBM Corp. 2013. All rights reserved. 231

22.1 Usage and dependencies

You can use the Coreprocessor tool for the following purposes:

� To examine compute node core files. For performance and disk space reasons, core files
are simple text files, and their format is not understood by all debuggers. The
Coreprocessor tool helps determine which node is acting in a suspicious manner and
caused the block to dump.

� When a standard debugger cannot connect to the compute nodes. Other debuggers are
not useful when a node is non-responsive. The Coreprocessor tool uses the JTAG
connection to a node to collect debug information. It does not require a functional
connection to a compute node through an I/O node.

Using the Coreprocessor tool provides the following advantages:

� The operating system can be completely dead and can still handle debug
� Quick isolation of nodes that are abnormal
� Scales to a full Blue Gene/Q system.

With the Coreprocessor tool, you cannot set breakpoints, and there is no visibility. However, it
does provide the instruction address and function name. It also provides the line number
when the code has been compiled with the debug option.

Dependencies
The Coreprocessor tool uses the following Perl modules:

� Cwd
� Compress::Zlib
� IO::Socket
� OpenGL (for 3D Map function only)
� Tk

22.2 Starting the Coreprocessor tool

The Coreprocessor tool is initiated from a Virtual Network Computing (VNC) session. From
the command line (VNC), enter the following command:

/bgsys/drivers/ppcfloor/coreprocessor/bin/coreprocessor.pl

The tool does not require parameters to start. Table 22-1 on page 233 provides a list of
options that you can use when starting the tool.

Note: Coreprocessor does not support debugging sub-block jobs.

Note: Tk is not usually installed with the operating system. It can be installed by running
the following command:

sudo perl -MCPAN -e “install Tk” \;

Answer no at the prompt to let it autoconfigure.
232 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Table 22-1 Options to use when starting the tool

Figure 22-1 on page 234 shows the graphical user interface (GUI) Coreprocessor tool started
in a VNC session.

Option Description

-b Specifies the ELF image to load for compute nodes. Multiple ELF files can be
specified by concatenating them with a colon (:). Typically the user’s application is
specified here. Example:
-b=/bguser/username/hello_world.elf:/bgsys/drivers/ppcfloor/boot/cnk

-c Specifies the path to the directory containing existing core files. Example:
-c=/bgusr/username/
You can use the following options:
-mincore Specifies the lowest numbered core file to load. The default is 0.

Example: -mincore=75
-maxcore Specifies the highest numbered core file to load. The default is

131072. Example: -maxcore=65536
-coreprefix Specifies the filename prefix for lightweight core files. The default is

core. Example: -coreprefix=core

-a Connects to MC server and attaches to the specified hardware. The format is a Perl
regular expression. Example:
-a=R00-M0-N00-J..
You can use the following options:

-user The user ID of the specified hardware. Example:
-user=bgqadmin

-numbadframes Number of the topmost stack frames to remove from
collection. This is useful if the application under debug is
doing some custom assembly. Under these conditions
the application might not strictly adhere to the PowerPC
ABI governing stack frame usage. Example:
-numbadframes=1

-s Loads the specified Coreprocessor Snapshot file for post-failure analysis. Example:
-s=/bgusr/username/linpack.snapshot

-templates Specifies the directory for saved memory templates. Example:
-templates=/bgusr/username/mytemplates/.

-nogui GUI-less mode. Coreprocessor tool processes the data and terminates. Example:
-nogui
You can use these options:
-mode Specifies the type of analysis to perform when Coreprocessor

is running in GUI-less mode. Valid modes include: Condensed,
Detailed, Survey, Instruction, Kernel, Processor, DCR, PPC,
Ungroup_trace, Ungroup, and Neighbor. Example: -mode=DCR

-register Specifies the PPC or DCR register when using the PPC or DCR
modes. Example: -register=GPR3

-snapshot Fetches failure data and saves to snapshot file. Example:
-snapshot=/tmp/hang_issue1234

-flightlog Suggests which nodes to collect flight log data from based on
unique IARs. Example: -flightlog

-j Connects to a running job through the scalable debugger interface. Example:
-j=57132

-h Displays help text. Example: -h
Chapter 22. The Coreprocessor tool 233

Figure 22-1 Coreprocessor GUI

22.3 Debugging live compute node problems

When debugging an unresponsive job, you are looking usually for one or a small subset of
compute nodes that are doing something different from the majority of compute nodes.

To do live debug on compute nodes:

1. Start the Coreprocessor GUI, and then select File Attach To Block. The window in
Figure 22-2 opens.

Figure 22-2 Coreprocessor attach window

2. Supply the following information:

– Session Name. You can run more than one session at a time, so this is used to
distinguish between multiple sessions.
234 IBM System Blue Gene Solution: Blue Gene/Q System Administration

– Block hardware. This is a regular expression that matches the locations used by the
block. For example, R00-M0-N00-J.

– CNK binary (with path). To see both your application and the Compute Node Kernel in
the stack, specify the Compute Node Kernel Image and your application binary
separated by a colon. For example:

/bgsys/drivers/ppcfloor/boot/cnk:/bgusr/bgquser1/mpi_hang_test.bg

– User name or current owner of the hardware.

3. Click Attach. At this point, you have not yet affected the state of the processors.

4. Back at the main window, click Select Grouping Mode. When you choose one of the
stack traceback options, the Coreprocessor tool halts all the compute node processor
cores and displays the requested information. Choose each of the options on that menu in
turn so you can see the variety of data formats that are available.

Stack traceback (condensed)
In the condensed version of Stack Traceback, data from all nodes is captured. The unique
instruction addresses per stack frame are grouped and displayed, except that the last stack
frame is grouped based on the function name (not the IAR), as shown in Figure 22-3. This
mode is normally the most useful mode for debug.

Notice the text in the main pane. The numbers 2176, 64, 32, and so on. In parenthesis are the
number of nodes in the block that share that function call in the call stack. The number in
parenthesis always indicates the number of nodes that share whatever attribute is displayed
on the line (the function name in this case).

Figure 22-3 Stack traceback (condensed)
Chapter 22. The Coreprocessor tool 235

Stack traceback (detailed)
In Stack Traceback, detailed data from all nodes are captured, as shown in Figure 22-4. The
unique instruction addresses per stack frame are grouped and displayed. The IAR at each
stack frame is also displayed.

Figure 22-4 Stack traceback (detailed)

Stack traceback (survey)
Stack Traceback (survey) is a quick but potentially inaccurate mode. IARs are initially
captured, and stack data is collected for each node from a group of nodes that contain the
same IAR. The stack data fetched for that one node is then applied to all nodes with the same
IAR. Figure 22-5 shows an example of survey mode.

Figure 22-5 Stack traceback (survey)
236 IBM System Blue Gene Solution: Blue Gene/Q System Administration

The following points can help you use the tool more effectively:

� The number at the far left, before the colon, indicates the depth within the stack.

� The number in parentheses at the end of each line indicates how many of the nodes share
that same stack frame.

� If you click any line in the stack dump, the upper-right pane (labeled Common nodes)
shows the list of nodes that share that stack frame, as shown in Figure 22-6.

Figure 22-6 Stack traceback common nodes

� When you click one of the stack frames, and then select Run from the Control pull-down,
that action is performed for all nodes sharing that stack frame. A new Processor Status
summary is displayed. If you chose a Stack Traceback option again, the running
processors are halted and the stacks are refetched.

� You can hold down the Shift key and click several stack frames if you want to control all
procedures that are at a range of stack frames.

� From the Filter pull-down, you can select Create Filter from Group Selection. This adds a
filter with the name you specify in the Filter pull-down. When the box for your filter is
highlighted, only the data for those processors is displayed in the upper left window. You
can create several filters if you want.

� Set Group Mode to Ungrouped or Ungrouped with Traceback to control one processor at a
time.

22.4 Saving your information

To save your Traceback information, select File Save Traceback to save the current contents
of the upper-left pane to a file of your choosing.

To gain more complete data, click File Take Snapshot. Notice that you then have two
sessions to choose from on the Sessions pull-down. The original session is Session 1and the
second one is Session 2. The snapshot is just what the name implies—a picture of the debug
session at a particular point. Notice that you cannot start or stop the processors from the
snapshot session. You can choose File Save Snapshot to save the snapshot to a file. If you
Chapter 22. The Coreprocessor tool 237

are sending data to IBM for debug, Save Snapshot is a better choice than Save Traceback
because the snapshot includes objdump data.

If you choose File Quit and there are processors halted, you are given an option to restart
them before quitting.

22.5 Debugging live I/O node problems

It is possible to debug the I/O nodes and compute nodes, but you normally want to avoid
doing so. Collecting data causes the processor to be stopped, and stopping the I/O node
processors can cause problems with your file system. In addition, the compute nodes will not
be able to communicate with the I/O nodes. If you want to do I/O node debug, you must
specify the ION binary when you do the File Attach to block the pop-up window and choose
Debug IONodes from the Filter pull-down menu.

22.6 Debugging core files

To work with core files, select File Load Core. In the window that opens, specify the following:

� The location of the CNK binary or binaries.

� The core files location.

� The lowest and highest-numbered core files that you want to work with. The default is all
available core files.

Click Load Cores when you are done.

The same Grouping Modes are available for core file debug as for live debug. Figure 22-7
shows an output example of the Condensed Stack Traceback options from a core file.
Condensed mode is the easiest format to work with.

Figure 22-7 Core file condensed stack trace
238 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure 22-8 shows the detailed version of the same trace.

Figure 22-8 Core file detailed stack trace

The Survey option is not as useful for core files because speed is not such a concern.

When you select a stack frame in the traceback output, two additional pieces of information
are displayed, as shown in Figure 22-9 on page 240. The core files that share that stack
frame are displayed in the Common nodes pane. The Location field under the traceback pane
displays the location of that function and the line number represented by the stack frame. If
you select one of those core files in the Common nodes pane, the contents of that core file
are displayed in the bottom pane.
Chapter 22. The Coreprocessor tool 239

Figure 22-9 Core files common nodes
240 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Appendix A. Hardware location naming
conventions

This appendix provides an overview of how the Blue Gene/Q hardware locations are
assigned. This naming convention is used consistently throughout both the hardware and
software.

Letter designation reference

The following letter designations are used for naming Blue Gene/Q hardware component
locations:

A = PCI Adapter Card
B = Bulk Power Supply
C = Compute Card Core
D = Direct Current Assembly (DCA) Card
E = Fiber Optic Ribbon
F = Fan
H = Fan Assembly
I = I/O Drawer
J = Compute Card
K = Clock Card
L = Coolant Monitor
M = Midplane
N = Node Board
O = Optical Module
P = Power Module
Q = I/O rack
R = Compute Rack
S = Service Card
T = Node/IO Fiber Adapter Port
U = Link/Compute Module

A

© Copyright IBM Corp. 2013. All rights reserved. 241

Hardware location naming convention

Figure A-1 shows the Blue Gene/Q naming convention used when assigning locations for
racks, power supplies, midplanes, and service cards.

Figure A-1 Hardware naming convention for racks, power supplies, midplanes and service cards

Midplanes:
Rxx-Mx

Midplane (0-1) 0=Bottom 1=Top
Rack Column (0-V)
Rack Row (0-V)

Bulk Power Supply in Compute Rack:
Rxx-Bx

Bulk Power Supply (0-3)
Rack Column (0-V)
Rack Row (0-V)

Power Modules in Compute Rack:
Rxx-Bx-Px

Power Module (0-8) 0=Bottom, 8=Top
Bulk Power Supply (0-3)
Rack Column (0-V)
Rack Row (0-V)

I/O Racks:
Qxx

Rack Column (0-V) Rack
Row (0-V)

Compute Racks:
Rxx

Rack Column (0-V)
Rack Row (0-V)
Note: The maximum number of rows and
columns is 32. Therefore the numbering
system is to use digits 0-9 and letters A-V.

Service Cards:
Rxx-Mx-S

Service Card
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Note: Master service card for a
rack is always Rxx-M0-S

Power Modules in I/O Rack:
Qxx-B-Px

Power Module (0-5)
Bulk Power Supply
Rack Column (0-V)
Rack Row (0-V)

0=Bottom Front
1=Bottom Rear
2=Top Front
3=Top Rear

Note: The maximum number of rows and
columns is 32. Therefore the numbering
system is to use digits 0-9 and letters A-V.

Bulk Power Supply in I/O Rack:
Qxx-B

Bulk Power Supply
Rack Column (0-V)
Rack Row (0-V)

0=Bottom Left
1=Bottom Right
2=Middle Left
3=Middle Right
4=Top Left
5=Top Right
242 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure A-2 shows the Blue Gene/Q naming convention used when assigning locations for
clock cards, I/O drawers, node boards, and compute cards.

Figure A-2 Hardware naming convention for clock cards, I/O drawers, node boards and compute cards

I/O Drawers in I/O Rack:
Qxx-Ix

Node Boards:
Rxx-Mx-Nxx

I/O Drawer (0-B) 0=Bottom,B=Top
Rack Column (0-V)
Rack Row (0-V)

Node Board (00-15)

Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

00=Bottom Front
07=Top Front
08=Bottom Rear
15=Top Rear

Clock Card in Compute Rack:
Rxx-Kx

Clock Card (0-1) 0=bottom 1=top
Rack Column (0-V)
Rack Row (0-V)

Clock Card in I/O Rack:
Qxx-Kx

Clock Card (0-1) 0=bottom 1=top
Rack Column (0-V)
Rack Row (0-V)

I/O Drawers in Compute Rack:
Rxx-Ix

I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

C=Bottom Left
D=Bottom Right
E=Top Left
F=Top Right

Compute Cards on Node Board:
Rxx-Mx-Nxx-Jxx

Compute Card (00-31)
Node Board (00-15)
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Compute Cards on I/O Boards in I/O Rack:
Qxx-Ix-Jxx

Compute Card (00-07)
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

Compute Cards on I/O Boards in Compute Rack:
Rx-Ix-Jxx

Compute Card (00-07)
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)
Appendix A. Hardware location naming conventions 243

Figure A-3 shows the Blue Gene/Q naming convention used when assigning locations for
cores, link modules, and Direct Current Assemblies (DCA).

Figure A-3 Hardware naming convention for cores, link modules and DCA

Link Module on Node Board:
Rxx-Mx-Nxx-Uxx

Link Module (00-08) 00-left, 08=right
Node Board (00-15)
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Link Module on I/O Board in I/O Rack:
Qxx-Ix-Uxx

Link Module (00-05) 00-left, 05=right
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

DCA (Direct Current Assembly) on Node Board:
Rxx-Mx-Nxx-Dx

DCA Module (0-1) 0=Left, 1=Right
Node Board (00-15)
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Compute Card Cores on Node Board:
Rxx-Mx-Nxx-Jxx-Cxx

Compute Card Core (00-16)
Compute Card (00 - 31)
Node Board (00-15)
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Compute Card Cores on I/O Boards in I/O Rack:
Qxx-Ix-Jxx-Cxx

Compute Card Core (00-16)
Compute Card (00-07)
I/O Drawer (0-B) 0=Bottom, B=Top
Rack Column (0-V)
Rack Row (0-V)

DCA on I/O Board in Compute Rack:
Rxx-Ix-D0

DCA Module
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

Compute Card Cores on I/O Boards in Compute Rack:
Rxx-Ix-Jxx-Cxx

Compute Card Core (00-16)
Compute Card (00-07)
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

Link Module on I/O Board in Compute Rack:
Rxx-Ix-Uxx

Link Module (00-05) 00-left, 05=right
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)
244 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Figure A-4 shows the Blue Gene/Q naming convention used when assigning locations for
optical modules, fans, and DCA.

Figure A-4 Hardware naming convention for optical modules, fans and DCA

Figure A-5 shows the Blue Gene/Q naming convention used when assigning locations for PCI
adapters and coolant monitors.

Figure A-5 Hardware naming convention for PCI adapters and coolant monitors

As an example, if you had an error in fan R23-IC-H1-F0 where would you go to look for it? The
upper left corner of Figure A-1 on page 242 shows that the compute racks use the convention
Rxx. Looking at the error message, the rack involved is R23. From the chart, that rack is the

Fan (0-1) 0=Intake side, 1=Exhaust side
Fan Assembly (0-2) 0=PCI Side,1=Middle
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

Fan (0-1) 0=Intake side, 1=Exhaust side
Fan Assembly (0-2) 0=PCI Side,1=Middle
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

Fan Assembly in Compute Rack:
Rxx-Ix-Hx

Fan Assembly (0-2)
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

Fans in Compute Rack:
Rxx-Ix-Hx-Fx

Fan Assembly in I/O Rack:
Qxx-Ix-Hx

Assembly (0-2)
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

C=Bottom Left
D=Bottom Right
E=Top Left
F=Top Right

C=Bottom Left
D=Bottom Right
E=Top Left
F=Top Right

Fans in I/O Rack:
Qxx-Ix-Hx-Fx

0=Bottom
B=Top

0=PCI Side
2=Compute Card Side

Optical Module on Node Board:
Rxx-Mx-Nxx-Oxx

Optical Module (00-35)
Node Drawer (00-15)
Midplane (0-1) 0=Bottom, 1=Top
Rack Column (0-V)
Rack Row (0-V)

Optical Module on I/O Board in I/O Rack:
Qxx-Ix-Oxx

Optical Module (00-23)
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

Optical Module on I/O Board in Compute Rack:
Rxx-Ix-Oxx

Optical Module (00-23)
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)

DCA on I/O Board in I/O Rack:
Qxx-Ix-D0

DCA Module
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

0=PCI Side
2=Compute Card Side

Coolant Monitor in Compute Rack:
Rxx-L

Coolant Monitor
Rack Column (0-V)
Rack Row (0-V)

PCI Adapter Cards in I/O Racks:
Qxx-Ix-Ax

PCI Card (0-7) 0=right, 7=left
I/O Drawer (0-B)
Rack Column (0-V)
Rack Row (0-V)

PCI Adapter Cards in Compute Racks:
Rxx-Ix-Ax

PCI Card (0-7) 0=right, 7=left
I/O Drawer (C-F)
Rack Column (0-V)
Rack Row (0-V)
Appendix A. Hardware location naming conventions 245

fourth rack in row two (remember that all numbering starts with 0). The bottom left corner of
Figure A-4 indicates the bottom left I/O drawer of any rack is C. The chart shows that in the
Fan Assemblies description, assembly 1 is in the middle. So, you are going to be checking for
an attention light (Amber LED) on the middle Fan Assembly on the intake side because that
fan is causing the error message to surface.

Table A-1 contains several examples of hardware location names.

Table A-1 Examples of location names

Figure A-6 shows the layout of a system with 64 compute racks and 16 I/O racks and how the
compute racks and I/O rack locations are named.

Figure A-6 Rack numbering

Card/board Element Name Example

Compute on
node board

Card J00 through J31 R23-M1-N02-J09

Link on node
board

Module U00 through U08 (00 left most, 08 right
most)

R32-M0-N04-U03

Service Card S R00-M0-S

Note: The fact that this illustration
shows numbers 00 through 79 does
not imply this is the largest
configuration possible. The largest
configuration possible is 1024 racks
numbered 00 through VV. The
numbering system uses digits 0-9
then letters A-V.

I/O racks (Qxx)

Compute racks (Rxx)
246 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Appendix B. Control System simulator

The Blue Gene/Q Control System simulator environment is typically used by job scheduler
developers to test out system configurations and Application Programming Interfaces (APIs)
without requiring actual Blue Gene/Q hardware to be present. Except for some restrictions on
running jobs, the majority of High-Level Control System (HLCS) software behaves exactly
like a real Blue Gene/Q production environment.

The simulator leverages the Blue Gene/Q database to simulate jobs running on essentially
any supported machine configuration (for example a 16 rack system). It achieves this by
simulating the I/O node software stack with four processes per I/O node. Even though it is
possible to simulate large system configurations, there are a few limitations, such as the
number of simulated jobs running at one time.

B

© Copyright IBM Corp. 2013. All rights reserved. 247

Setting up

Perform the following steps to set up the simulator environment. Prior to this step, it is
expected that a system acting as combination service node and front end node has been
installed with the necessary software and the DB2 database has been set up but not
populated with any data.

1. Create your own bg.properties file:

2. Edit your bg.properties file:

– Add schema_name = user in the [database] section, where user is your user name. You
must have authority to the DB2 database. See section 18.3, “Database security” on
page 210 for instructions about setting up database authority.

– Pick a machine size to simulate by changing the computeRackRows and
computeRackColumns values in the [database] section.

– You must add the max_user_processes key to the [runjob.server] section. By default,
you must set the value to 256 (max_user_processes = 256). This configuration setting
is designed to prevent overloading a system with simulated I/O processes forked from
runjob_server. There is no maximum value beyond what the Linux kernel enforces for
non-privileged users. Be careful when changing this value.

– Change port numbers to be unique in the following sections:

• [runjob.server] command_listen_ports and mux_listen_ports

• [runjob.mux] host should match the port from [runjob.server] mux_listen_ports

• [runjob.server.commands] host should match the port from [runjob.server]
command_listen_ports

• [runjob.mux] local_socket must contain something specific to your uid, for
example: local_socket = runjob_mux.username

– Add the following simulation settings in the [runjob.server] section:

job_sim = true

iosd_sim_path = /bgsys/drivers/ppcfloor/ramdisk/bin

iosd_sim_name = start_job_simulation

iosd_id_counter_name = /tmp/runjob_server_iosd_counter

iosd_id_counter_size = 2048

iosd_remove_log_files = true

– Modify the binary argument in the [master.binargs] section for mmcs_server so it will
not perform environmental monitoring. This is done by specifying the --no-poll-env
argument. Environmental monitoring can also be turned off by setting poll_envs = false
in the [mmcs.envs] section of bg.properties. In addition, specify the location of the
bg.properties file to use when starting the various servers by passing in the
--properties argument:

user@host ~> cp /bgsys/drivers/ppcfloor/utility/etc/bg.properties.ship.tpl
/pathtoyourcfg/bg.properties
user@host ~> export BG_PROPERTIES_FILE=/pathtoyourcfg/bg.properties
248 IBM System Blue Gene Solution: Blue Gene/Q System Administration

– Modify the mc_server binary mapping in the [master.binmap] section by changing
mc_server so it maps to mc_serversim instead of mc_server_64:

3. Create a database schema:

4. Populate your database schema:

This will use the rackRows and rackColumns values that you specified in your bg.properties
file to pick a machine configuration.

Starting and stopping servers

To simulate booting blocks and running jobs, four servers are required to be running in the
simulator environment. They are mc_serversim, mmcs_server, runjob_server, and
runjob_mux. Except for mc_serversim, these are all standard servers in a production
environment. Because the simulator has no actual Blue Gene/Q hardware that is being
managed, the normal mc_server_64 binary is replaced with a special executable called
mc_serversim that supports the simulator setup. Swapping out mc_server_64 with
mcserver_sim was a step in setting up the simulator. In addition, the bg.properties file was
updated so servers are started using the customized bg.properties configuration file.

After all of the bg.properties updates are completed, the required servers can be started
using:

master_start bgmaster --properties /pathtoyourcfg/bg.properties

[master.binargs]
mmcs_server = --properties /pathtoyourcfg/bg.properties --no-poll-envs
runjob_mux = --properties /pathtoyourcfg/bg.properties
bgmaster_server = --properties /pathtoyourcfg/bg.properties
bgws_server = --properties /pathtoyourcfg/bg.properties
realtime_server = --properties /pathtoyourcfg/bg.properties
runjob_server = --properties /pathtoyourcfg/bg.properties
mc_server = --properties /pathtoyourcfg/bg.properties

[master.binmap]
bgmaster_server=/bgsys/drivers/ppcfloor/hlcs/sbin/bgmaster_server
bgws_server=/bgsys/drivers/ppcfloor/bgws/sbin/bgws_server
realtime_server=/bgsys/drivers/ppcfloor/hlcs/sbin/bg_realtime_server
runjob_server=/bgsys/drivers/ppcfloor/hlcs/sbin/runjob_server
runjob_mux=/bgsys/drivers/ppcfloor/hlcs/sbin/runjob_mux
mc_server=/bgsys/drivers/ppcfloor/control/sbin/mc_serversim
mmcs_server=/bgsys/drivers/ppcfloor/hlcs/sbin/mmcs_server
subnet_mc=/bgsys/drivers/ppcfloor/control/sbin/SubnetMc_64

user@host ~> /bgsys/drivers/ppcfloor/db/schema/createBGQSchema
/dbhome/bgqsysdb/sqllib bgdb0

user@host ~> source /dbhome/bgqsysdb/sqllib/db2profile
user@host ~> cd /bgsys/drivers/ppcfloor/db/schema
user@host schema> ./dbPopulate.pl --properties /pathtoyourcfg/bg.properties
Appendix B. Control System simulator 249

For more details about master_start, see section 11.2.1, “The master_start command” on
page 131.

Servers can be stopped using:

master_stop bgmaster --properties /pathtoyourcfg/bg.properties

For more details about master_stop, see section 11.2.10, “The master_stop command” on
page 136.

Creating and booting I/O blocks and compute blocks

Before you can run a job in the simulator environment, you need both an I/O block and a
compute block booted. Details about creating I/O blocks and compute blocks is in Chapter 3,
“Compute and I/O blocks” on page 29.

After the I/O block and compute block are created, the next step is to boot them. Blocks can
be booted using the allocate command from the bg_console. For this example, assume the
I/O block name created is “IOBlock” and that the compute block name created is
“R00-M0-N00”. Note that the I/O block must be booted before the compute block.

� Booting I/O block from bg_console:

� Booting compute block from bg_console:

Running jobs

Jobs can be submitted after the I/O block and compute block are successfully booted. Job
submission is done using the standard runjob command. For complete details about the
runjob command, see section 6.2, “The runjob command” on page 76.

In this example, the /bin/date executable is run on compute block R00-M0-N00.

Limitations with runjob

There are a few limitations with job simulation. Some are inherent in the overall idea of
simulating such a large supercomputer, and others are intentionally omitted:

� No support is provided for stdin.
� Alternative mappings through the runjob --mapping argument are not supported.

mmcs$ allocate IOBlock
OK
mmcs$

mmcs$ allocate R00-M0-N00
OK
mmcs$

user@host ~> /bgsys/drivers/ppcfloor/hlcs/bin/runjob --block R00-M0-N00 --properties
/pathtoyourcfg/bg.properties : /bin/date
250 IBM System Blue Gene Solution: Blue Gene/Q System Administration

� The tool arguments (for example, --start-tool, --tool-args, and so on) of runjob are not
supported.

When simulating large configurations, you might see the following entry in the runjob_server
output before it aborts:

This is due to a safety mechanism designed to prevent overloading the system. The
runjob_server unconditionally sets the maximum number of user processes with the following
value during job simulation when it starts:

You can modify this value using the max_user_processes key in the [runjob.server] section of
your bg.properties file. The default value is 256. If you run a vnc, you probably want to
increase this value. Be careful when increasing this to a large value because it can lead to
overloading your system.

Simulator cleanup

Job simulation normally cleans up processes but it is a good practice to check for any stray
processes just in case cleanup was not done. The following commands clean up any stray
processes:

Temporary iosd directories and log files must also be removed by running the following
command:

2010-05-03 02:57:06.668 (ERROR) [0x4000c81f1b0]
R00-IC-J00:ibm.runjob.server.sim.Iosd: could not fork 11 (Resource temporarily
unavailable)

setrlimit(RLIMIT_NPROC, value)

user@host ~> killall -KILL iosd
user@host ~> killall -KILL jobctld
user@host ~> killall -KILL stdiod

user@host ~> rm -rf /tmp/cios*
Appendix B. Control System simulator 251

252 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 254.
Note that some of the documents referenced here might be available in softcopy only.

� IBM System Blue Gene Solution: Blue Gene/Q Application Development Manual,
SG24-7948-00

� IBM System Blue Gene Solution: Blue Gene/Q Code Development and Tools Interface,
REDP-4659

� IBM System Blue Gene Solution: Blue Gene/Q Hardware Installation and Maintenance
Guide, SG24-7974-00

� IBM System Blue Gene Solution: Blue Gene/Q Hardware Overview and Planning,
SG24-7872-00

� IBM System Blue Gene Solution: Blue Gene/Q Safety Considerations, REDP-4656

� IBM System Blue Gene Solution: Blue Gene/Q Service Node Failover using Linux High
Availability, REDP-4657

Other publications

This publication is also relevant as a further information source:

� General Parallel File System HOWTO for the IBM System Blue Gene/Q Solution,
SC23-6939-00

Online resources

These web sites are also relevant as further information sources:

� Logging Services: Short introduction to Apache log4cxx

http://logging.apache.org/log4cxx/

� pwauth: A Unix Authentication Tool

http://code.google.com/p/pwauth

� SourceForge: Building pyodbc

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=Building_pyodbc

� SourceForge: HowTo - Event Analyzer

http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=HowTo_-_Event_Analyzer

� SourceForge: Toolkit for Event Analysis and Logging

http://sourceforge.net/apps/mediawiki/pyteal/index.php
© Copyright IBM Corp. 2013. All rights reserved. 253

http://logging.apache.org/log4cxx/
http://sourceforge.net/apps/mediawiki/pyteal/index.php
http://code.google.com/p/pwauth
http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=Building_pyodbc
http://sourceforge.net/apps/mediawiki/pyteal/index.php?title=HowTo_-_Event_Analyzer

� Updating Firmware and Software for IBM Network Adapter Cards & Switch Systems

http://www.mellanox.com/content/pages.php?pg=firmware_table_IBM

� YACI: Yet Another Cluster Installer

http://www.yaci.org

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and additional materials, as well as order hardcopy Redbooks publications, at this website:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
254 IBM System Blue Gene Solution: Blue Gene/Q System Administration

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.mellanox.com/content/pages.php?pg=firmware_table_IBM
http://www.yaci.org

ronyms
API Application programming interfaces

BGWS Blue Gene Web Services

BIST Built-in self-test

BPE Bulk power enclosure

BPM Bulk power module

CA Certificate authority

CIOS Common I/O services

CN Common name

CNK Compute Node Kernel

DCA Direct current assembly

DCR Device control registers

ELA Event log analysis

FEN Front end nodes

FPGA Field programmable gate arrays

GDB GNU project debugger

GPR General purpose registers

GUI Graphical user interface

HLCS High-Level Control System

HPC High performance computing

IAR Instruction address registers

IOSD I/O services daemon

IP Internet protocol

IPC Inter-process communication

JOBCTLD Job control daemon

LAN Local area network

LLCS Low-Level Control System

MC Machine controller

MDC Mapped diagnostic context

MMCS Midplane Management Control
System

NFS Network file system

PID Process ID

QDR Quad data rate

RAS Reliability, availability, and
serviceability

SN Service node

SPR Special purpose registers

SSL Secure sockets layer

SSN Subnet service nodes

SSR Systems service representative

STDIOD Standard I/O daemon

Abbreviations and ac
© Copyright IBM Corp. 2013. All rights reserved.
SYSIOD System I/O daemon

TCP Transmission control protocol

TEAL Toolkit for Event Analysis and
Logging

TOOLCTLD Tool control daemon

UDP User datagram protocol

YACI Yet Another Cluster Installer
 255

256 IBM System Blue Gene Solution: Blue Gene/Q System Administration

Index

A
alerts 5
allocate 38, 68–70, 147, 151, 221, 250
allocate_block 70, 151, 221
API 186–187, 204
application programming interfaces 247
attention 37
authentication 187, 253

B
BGQMaster

mcServer 160
BGWS 68, 70, 130, 132, 139, 223–224, 249
block 3, 38, 70, 216

creating in mmcs 35
blocks 5
Blue Gene Navigator 7, 145, 212, 214
Blue Gene Web Services 68, 130
boot_block 70
BPE 158
BPM 154–155
buffer 137–138, 144
bulk power module 154–155, 157–158

C
CA 186, 205–209
certificate authority 205–207, 210
CIOS 38, 221, 223, 229, 251
clients 70, 136, 148, 160, 185–188, 205, 207, 220
CN 149, 206–209
CNK 3
command 135, 138–139, 142, 200
commands 30, 130, 144, 178
common I/O services 221, 223, 229
common name 206, 208
compute card 241
Compute Node Kernel 3, 151
configuration 3, 131–141, 143–144, 148–150, 160–162,
186–190, 201, 204, 207, 210–212, 219–225, 227–228,
230, 247–249
configuring 224
connect 70–71, 130–131, 133–139, 143–144, 150, 160,
162, 188–189, 210, 212, 214, 216, 228
console 5, 30, 38, 67–69, 72–74, 131, 139, 147–149,
152, 155, 160, 204–205, 221, 250
Coreprocessor tool 231–232
creating 190, 212, 250

D
dbPopulate 212, 228, 249
DCA 156–157, 241, 244–245
delete 38, 70, 204, 210, 213–214
© Copyright IBM Corp. 2013. All rights reserved.
deselect_block 70
diagnostics xiii, 5, 7, 160, 205, 207, 262
direct current assembly 241
disconnect 70
dynamic 30, 215–216, 230

E
ending 140
environment variable 52, 73, 131–139, 150, 161–162,
187–189, 213
environmental monitor 151, 155
errors 70, 137–138, 144, 216
event analyzer 253

F
free 38, 70, 149–151
free_block 70
front end nodes 2, 4

G
GDB 4
genblock 35
General Parallel File System 4, 253
GNU project debugger 4
GPFS 4

H
High-Level Control System 147, 247
HLCS 131–138, 141–142, 147–148, 247, 249–250

I
I/O node 3–4, 30, 37–38, 153, 224, 229, 247
internet protocol 4
IOSD 248, 251
IP xiii, 4, 130–139, 142–144, 149–150, 161, 186, 188,
200, 205, 228

J
JOBCTLD 251

K
kill_job 72

L
LAN 2
list 38, 69–74, 131, 135–136, 140–145, 149–150, 152,
155, 186, 188, 200–201, 204–205, 215–216, 221–222,
228
list_blocks 71, 73–74
list_jobs 69–70
 257

list_users 71, 73–74
LLCS 68, 154, 159–160
local area network 2
locate 71–72
log file 52, 186, 219–221
logging 4, 130, 161–162, 186–190, 219–220, 222–223,
227
logs 105, 139, 149–150, 185–186, 189, 219–222,
224–225
Low-Level Control System 68, 154, 159–160

M
machine controller 68, 130, 159–160, 223
mailbox 151
mapped diagnostic context 220
MC 68, 70, 129–130, 132, 141–142, 147–148, 150,
159–162, 200, 223–224, 249
mcServer 70, 148, 160, 223, 249
MDC 220
mesh 31
messages 94, 137, 145, 147, 152
Midplane Management Control System 68, 130, 147
MMCS 30, 35, 38, 68–73, 130, 132, 147–152, 154, 160,
220–221, 223–224, 230, 248–250
mmcs 30, 35, 38, 68–73, 130, 132, 147–152, 154, 160,
220–221, 223–224, 230, 248–250

mcServer 148
MMCS commands 148

N
Navigator 7, 30, 35, 38, 145, 212, 214

diagnostics 123
navigator 5
network 3–4, 143–144, 203, 205
network file system 4
NFS 4

P
pass through 31, 34, 36
performance 151–152, 154, 212–215, 229
PID 132–134
pipes command input 72
process ID 130–131, 133–135

Q
quit 71

R
ramdisk 4, 248
RAS 3, 38, 52, 94, 137, 144–145, 147–148, 151–158,
160–161, 186, 213–214, 223, 229
read 70–71, 188–189, 221–222
Real-time 130, 187, 190
real-time 68, 185–190, 207, 223
reboot_nodes 71
Redbooks website 254

Contact us xiv

redirect 71, 151
reliability, availability, and serviceability 3, 147

S
secure sockets layer 187, 205
select_block 71
Service Action

logs 117
service actions xiii, 5, 7, 160, 262
service node 2–5, 230
setup 248–249
severity 94, 220
shutdown 149–150, 161
sleep 71
small blocks 30, 34
SN 2
socket 151, 248
sql 71, 189, 212, 215–216
SSL 187, 205
SSN 2
starting 139, 214, 248–249
startup 220, 230
static 30
static block 30
status 38, 69–70, 72, 131–133, 136–137, 139–140, 151,
156–158, 186–188, 212
STDIOD 251
stopping 140, 150, 249
subnet service nodes 2
system logs 219–220, 224

T
TCP xiii, 4, 131–139, 149–150, 161, 205
TEAL 105, 130, 132, 224
Toolkit for Event Analysis and Logging 130, 253
transaction logs 185–186, 189
transmission control protocol 4

U
UDP 4
user datagram protocol 4
username 72, 248

V
version 72–73, 162, 215

W
wait_boot 72, 149
write 139
write_con 72

Y
YACI 254
Yet Another Cluster Installer 254
258 IBM System Blue Gene Solution: Blue Gene/Q System Administration

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 System

 Blue Gene Solution: Blue Gene/Q System
 Adm

inistration

IBM
 System

 Blue Gene Solution: Blue
Gene/Q System

 Adm
inistration

IBM
 System

 Blue Gene Solution:
Blue Gene/Q System

 Adm
inistration

IBM
 System

 Blue Gene Solution: Blue Gene/Q System
 Adm

inistration

IBM
 System

 Blue Gene Solution:
Blue Gene/Q System

 Adm
inistration

IBM
 System

 Blue Gene Solution:
Blue Gene/Q System

 Adm
inistration

®

SG24-7869-01 ISBN 0738438006

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM System Blue Gene Solution:
Blue Gene/Q System Administration

Perform Blue Gene/Q
system
administration

Configure and use
Blue Gene Navigator

Run diagnostics
and perform
service actions

This IBM Redbooks publication is one in a series of books
that are written specifically for the IBM System Blue Gene
supercomputer, Blue Gene/Q, which is the third generation
of massively parallel supercomputers from IBM in the Blue
Gene series. This book provides an overview of the system
administration environment for Blue Gene/Q. It is intended
to help administrators understand the tools that are
available to maintain this system.

This book details Blue Gene Navigator, which has grown to
be a full featured web-based system administration tool on
Blue Gene/Q. The book also describes many of the
day-to-day administrative functions, such as running
diagnostics, performing service actions, and monitoring
hardware. There are also sections that cover BGmaster
and the Control System processes that it monitors.

This book is intended for Blue Gene/Q system
administrators. It helps them use the tools that are available
to maintain the Blue Gene/Q system.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	May 2013, Second Edition

	Chapter 1. IBM Blue Gene/Q system overview
	1.1 Blue Gene/Q hardware overview
	1.2 Blue Gene/Q software overview
	1.2.1 Compute Node Kernel and services
	1.2.2 I/O node kernel and services
	1.2.3 Application development and debugging tools
	1.2.4 System administration and management

	Chapter 2. Navigator
	2.1 System setup
	2.2 Using the Navigator
	2.2.1 The Navigator window
	2.2.2 Security integration
	2.2.3 Result tables
	2.2.4 System summary
	2.2.5 Alerts
	2.2.6 Jobs and job history
	2.2.7 Blocks and I/O blocks
	2.2.8 RAS
	2.2.9 Environmentals
	2.2.10 Hardware
	2.2.11 Hardware replacements
	2.2.12 Diagnostics
	2.2.13 Service actions
	2.2.14 Performance monitoring
	2.2.15 Knowledge Center
	2.2.16 Creating blocks with the Block Builder

	Chapter 3. Compute and I/O blocks
	3.1 Compute blocks
	3.1.1 Large blocks
	3.1.2 Small blocks

	3.2 Creating compute blocks
	3.3 I/O blocks
	3.4 Creating I/O blocks
	3.5 I/O links and ratios
	3.6 Deleting blocks
	3.7 Block status transitions

	Chapter 4. Configuring I/O nodes
	4.1 I/O node kernel
	4.1.1 Building new Linux kernels
	4.1.2 Installing the Linux kernel from the Red Hat download website

	4.2 I/O node run time
	4.2.1 Installing Red Hat Enterprise Linux
	4.2.2 Installing additional packages
	4.2.3 Creating Blue Gene/Q Linux distribution sandboxes

	4.3 I/O adapters
	4.3.1 Supported adapters
	4.3.2 Firmware updates

	4.4 I/O configuration
	4.4.1 Network Interface MTU
	4.4.2 Defining interfaces and IP addresses
	4.4.3 Interface bonding configuration
	4.4.4 Environment variables using /dev/bgpers
	4.4.5 Site customization
	4.4.6 Customizing ramdisk
	4.4.7 The bgras command

	4.5 Boot sequence
	4.5.1 Persistent file systems

	4.6 Maintenance
	4.6.1 Installing RHEL updates
	4.6.2 Installing a new RHEL dot release
	4.6.3 Installing efixes
	4.6.4 Installing GPFS updates
	4.6.5 Node Health Monitor
	4.6.6 Core files

	4.7 Common I/O services
	4.7.1 Configuration
	4.7.2 Jobs directory

	4.8 NFS configuration
	4.9 Troubleshooting
	4.9.1 NFS errors

	Chapter 5. Control System console
	5.1 Overview
	5.1.1 Accessing help
	5.1.2 Command history

	5.2 Commands
	5.3 Special commands
	5.4 Command parameters
	5.5 Scripting

	Chapter 6. Submitting jobs
	6.1 The runjob architecture
	6.2 The runjob command
	6.2.1 The runjob options
	6.2.2 Scheduler

	6.3 Sub-block jobs
	6.4 Signal handling
	6.4.1 Exit status
	6.4.2 Normal job termination
	6.4.3 Abnormal job termination

	6.5 Standard input, output and error
	6.6 Job authority
	6.6.1 The grant_job_authority command
	6.6.2 The revoke_job_authority command
	6.6.3 The list_job_authority command

	6.7 The kill_job command
	6.8 Job status
	6.8.1 The list_jobs command
	6.8.2 The job_status command

	6.9 Historical perspective of job submission on Blue Gene

	Chapter 7. Reliability, availability, and serviceability
	7.1 Elements of a RAS message
	7.1.1 Message ID and component
	7.1.2 Category
	7.1.3 Severity
	7.1.4 Message
	7.1.5 Description
	7.1.6 Service action
	7.1.7 Diagnostics suites
	7.1.8 Control Action

	7.2 Tailoring RAS messages
	7.3 Viewing Blue Gene/Q defined RAS events
	7.4 Viewing sent RAS events

	Chapter 8. Toolkit for Event Analysis and Logging
	8.1 TEAL framework
	8.1.1 Connector
	8.1.2 Event analyzers
	8.1.3 Plug-ins

	8.2 Location reporting
	8.3 Integration with BGmaster
	8.4 Alerts and service actions
	8.5 Installation

	Chapter 9. Service actions
	9.1 Service actions overview
	9.2 Service action commands
	9.2.1 InstallServiceAction
	9.2.2 VerifyCables

	9.3 Hardware maintenance
	9.3.1 ServiceNodeDCA
	9.3.2 ServiceNodeBoard
	9.3.3 ServiceIoDrawer
	9.3.4 ServiceMidplane
	9.3.5 ServiceBulkPowerModule
	9.3.6 ServiceRack
	9.3.7 ServiceClockCard

	9.4 Deciding which service action command to use
	9.5 Preparing a service action
	9.6 Ending a service action
	9.7 Service action logs
	9.8 Cycling power

	Chapter 10. Diagnostics
	10.1 System diagnostics
	10.1.1 Requirements

	10.2 Diagnostic test cases
	10.3 Using the Navigator diagnostics interface
	10.4 Running diagnostics
	10.5 Preventive maintenance
	10.6 Running diagnostics through a scheduler
	10.6.1 Running diagnostics from a LoadLeveler job

	10.7 Diagnostics performance considerations

	Chapter 11. BGmaster
	11.1 BGmaster
	11.2 Running bgmaster_server
	11.2.1 The master_start command
	11.2.2 The master_status command
	11.2.3 The binary_status command
	11.2.4 The bgmaster_server_refresh_config command
	11.2.5 The binary_wait command
	11.2.6 The fail_over command
	11.2.7 The alias_wait command
	11.2.8 The list_agents command
	11.2.9 The list_clients command
	11.2.10 The master_stop command
	11.2.11 The get_errors command
	11.2.12 The get_history command
	11.2.13 The monitor_master command

	11.3 The bgagent daemon system process watcher
	11.3.1 Starting bgagentd
	11.3.2 Stopping bgagentd

	11.4 Configuration
	11.4.1 Sample configuration
	11.4.2 BGmaster network configuration

	11.5 Troubleshooting
	11.5.1 Configuration issues
	11.5.2 RAS messages

	Chapter 12. The Midplane Management Control System server
	12.1 MMCS components
	12.1.1 The MMCS server handles requests from clients
	12.1.2 Blocks are defined in the database
	12.1.3 MC server communicates with the Blue Gene/Q hardware

	12.2 Starting and stopping the MMCS server
	12.3 Configuration
	12.3.1 Configuration file options
	12.3.2 Command-line options

	12.4 Mailbox output
	12.5 Environmental polling
	12.5.1 How the environmental monitor works
	12.5.2 Polling intervals
	12.5.3 Data collection and RAS
	12.5.4 Location-specific monitoring
	12.5.5 RAS events

	Chapter 13. The machine controller server
	13.1 Machine controller server overview
	13.2 Starting and stopping the MC server
	13.3 Configuration
	13.3.1 Configuration file options
	13.3.2 Command-line options

	13.4 The mc_server_log_level command

	Chapter 14. The runjob server and runjob mux
	14.1 The runjob architecture
	14.2 The runjob_server
	14.2.1 Configuration file options
	14.2.2 Command-line options

	14.3 The runjob_mux
	14.3.1 Configuration file options
	14.3.2 Command-line options

	14.4 Utilities
	14.4.1 Configuration options
	14.4.2 The runjob_server_status command
	14.4.3 The runjob_server_log_level command
	14.4.4 The runjob_mux_status command
	14.4.5 The runjob_mux_log_level command

	Chapter 15. The Blue Gene Web Services server
	15.1 Configuring and running the BGWS server
	15.2 Configuration
	15.2.1 Configuration file options
	15.2.2 Command-line options

	15.3 Utilities
	15.3.1 Configuration
	15.3.2 The bgws_server_status command
	15.3.3 The bgws_server_refresh_config command
	15.3.4 The bgws_server_log_level command

	Chapter 16. Real-time server
	16.1 Real-time server
	16.2 Configuration
	16.2.1 Configuration file options
	16.2.2 Command-line options

	16.3 Security
	16.4 Utilities
	16.4.1 Configuration
	16.4.2 The realtime_server_status command
	16.4.3 The realtime_server_log_level command

	16.5 Requirements
	16.5.1 Access to the database transaction logs
	16.5.2 Database configuration

	Chapter 17. Distributed Control System
	17.1 Overview of the Distributed Control System
	17.2 Distributed Control System software
	17.3 Hardware configurations
	17.3.1 Multiple SubnetMc processes on a service node
	17.3.2 Multiple subnet service nodes
	17.3.3 Multiple subnet service nodes with failover

	17.4 SubnetMc configuration
	17.4.1 Troubleshooting configuration issues

	Chapter 18. Security
	18.1 Object based model
	18.2 Network communication security
	18.2.1 Certificates and keys
	18.2.2 Handshake
	18.2.3 Configuration
	18.2.4 Certificate file permissions
	18.2.5 Generating security keys and certificates

	18.3 Database security

	Chapter 19. Database
	19.1 Database overview
	19.2 Database configuration
	19.3 Database maintenance
	19.3.1 Purging old data from tables
	19.3.2 Optimizing with indexes
	19.3.3 Reorganizing tables

	Chapter 20. Logging
	20.1 Apache log4j and log4cxx
	20.2 Log file format
	20.3 Log merge utility
	20.3.1 Configuration
	20.3.2 Usage
	20.3.3 Time stamp format

	20.4 Configuration
	20.5 Log rotation
	20.5.1 Control System logs
	20.5.2 I/O node logs
	20.5.3 Subnet service node logs
	20.5.4 Log maintenance

	Chapter 21. The bg.properties file
	21.1 The bg.properties file overview
	21.2 Property file validation

	Chapter 22. The Coreprocessor tool
	22.1 Usage and dependencies
	22.2 Starting the Coreprocessor tool
	22.3 Debugging live compute node problems
	22.4 Saving your information
	22.5 Debugging live I/O node problems
	22.6 Debugging core files

	Appendix A. Hardware location naming conventions
	Letter designation reference
	Hardware location naming convention

	Appendix B. Control System simulator
	Setting up
	Starting and stopping servers
	Creating and booting I/O blocks and compute blocks
	Running jobs
	Limitations with runjob

	Simulator cleanup

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Abbreviations and acronyms
	Index
	Back cover

